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Foreword

OC-Trust, this is an acronym representing a research cooperation that addressed
one of the core challenges of the emerging digitalisation of almost every facet
of our professional and private lives. How can we develop trust into the widely
autonomous provisioning of digital functionality and associated services? We expect
those services to know what we want them to provide, but we are not physically
capable and do not want to programme those multitudes of devices explicitly. So,
we increasingly depend on their capability to self-configure, self-optimise, self-
heal and self-protect, to name a few of the many so-called self-* properties. But
how do we know to what extent they will actually satisfy our expectations? They
should be aware of our personal preferences, but will they respect our privacy? If
agents act autonomously, how can their operating environment distinguish between
trustworthy and malicious agents? This kind of almost contradictory questions
and requirements is concerned with the trustworthiness of artefacts that are meant
to be self-organising and widely autonomous but nevertheless capable to adapt
to potentially changing requirements of their execution environment. Research
initiatives like autonomic computing and organic computing have emphasised from
the beginning that trustworthiness should be seen as one of the key requirements,
but they more or less focused on the development of generic architectures and
methodology for providing desired functionality and organic behaviour in the
best possible way. So, the German priority programme on organic computing
successfully addressed fundamental system concepts supporting controlled self-
organisation, as summarised in the compendium on “Organic Computing – A
Paradigm Shift for Complex Systems”. But it needed the additional initiative of
research groups at Augsburg and Hanover to establish this complementary DFG
research unit on “OC-Trust – Trustworthiness of Organic Computing Systems”.

Wolfgang Reif, the spokesperson of this research unit, continued his work
on software design for organic computing systems but focused now on “Formal
Analysis and Software Architectures for Trustworthy Organic Computing”. Chris-
tian Müller-Schloer, one of the core initiators of the organic computing research
programme, and Jörg Hähner concentrated on top-down and bottom-up approaches
to the “Generation of Self-organising Trust Communities”. Theo Ungerer, another
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vi Foreword

core member of the Organic Computing Initiative, investigated “Trust Relationships
in Between the Autonomous Units of OC Systems”. Finally, since the interaction
between man and machine is one of the key aspects of trustworthiness, Elisabeth
André joined the research unit with her topic “HCI Design for Trustworthy Organic
Computing”. Looking at the research unit’s record of meetings, workshops and
special spring schools, it is obvious that they have been extremely active and
productive. The TSOS workshop series on “Trustworthy Self-Organising Systems”
as well as its successor, the SASOST Workshop, were essential for significant
international recognition and provided a forum for exchange of ideas with other
research groups. The “International Spring Schools on Trustworthy Self-Organising
Systems” added specific input from international experts for the doctoral researchers
in this research unit with a significant outreach to other research groups. This book
now summarises the major results of this research unit on a topic that might prove to
become most decisive for the public acceptance of technologies that are developed
under a range of different, but highly related, headlines like “Internet of Things”,
“Cyber Physical Systems”, “Industry 4.0” and “Smart City” (including energy and
traffic systems as well as all kinds of citizen services), to name a few.

An interesting aspect of this book is the fact that it extends beyond the members
of the research unit by including external experts on topics that are of interest for a
more complete view on trustworthiness.

So, the DFG research unit OC-Trust not only generated a range of interesting
concepts and results on trustworthiness of and within self-organising systems, but
they also had a significant impact on the international research community and
clearly showed the necessity and benefits of a transdisciplinary approach for a
thorough understanding of the role of trustworthiness.

Karlsruhe, Germany Hartmut Schmeck
November, 2015



Preface

Our technological landscape is ever-changing. Interconnected devices interact with
other devices as well as people in an increasingly autonomous fashion. This core
idea manifests itself in several aspiring areas of technology – from the “Internet
of Things” to “Industry 4.0”. It seems all too obvious that these entities cannot be
controlled by individuals or even organisations but rather require sophisticated self-
organisation mechanisms to implement various self-* properties without centralised
control. This scientific challenge led to initiatives such as autonomic computing
or organic computing that proposed important basic architectures, models and
algorithms. Particularly in terms of robustness towards failures, these systems show
the potential of outperforming conventional, rigid systems. When widening the
scope of application of self-organising systems to critical domains that are more
open and consist of heterogeneous participants, an essential question accompanies
the more widespread adoption: How can we make these systems trustworthy?

More specifically, in 2009 the DFG1 research unit “Trustworthiness of Organic
Computing Systems” (OC-Trust) set out to develop methods to construct self-
organising multi-agent systems that are deemed trustworthy by their users, by other
systems interacting with them and by authorities and even organisations that certify
and deploy systems in safety- or mission-critical environments. Positive aspects of
self-organisation, such as increased robustness or other positive emergent effects,
shall, however, not be sacrificed. The common denominator of the bundled research
efforts is the scientific treatment of various facets of trust in technical systems. Trust
manifests itself in the system design, e.g. by countermeasures against ill-behaving or
little predictable agents, and helps to reduce the impact of such entities on the overall
system performance. Among technical systems benefiting from trust management,
one particular system class is selected to serve as a prominent representative. It can
be roughly categorised as open, heterogeneous, self-organising, multi-agent systems
and is visualised in Fig. 1. Systems in this class share several features that require
individual attention:

1German Research Foundation (Deutsche Forschungsgemeinschaft)

vii



viii Preface

SO System

Attacker

Other
Systems
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...
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Fig. 1 Open self-organising multi-agent systems composed of heterogeneous agents. Examples
thereof are detailed in subsequent chapters

• Components are represented by agents that interact via a self-organised com-
munication and collaboration structure to, e.g. avoid excessive broadcasting and
enable effective problem decomposition.

• The system interacts with other systems, and a single agent may even act on
behalf of a larger subsystem in a systems-of-systems approach.

• Due to its deployment as an autonomous entity in a dynamic environment,
uncertainty about interaction partners (and their possibly malicious intentions
in the case of attackers) and exogenous factors is omnipresent – hence, the
benevolence assumption is abandoned.

• Users are present “in the loop” and constantly interact with the software
surrounding them – as long as they trust it.

Clearly, these diverse challenges require a collaborative effort that is reflected
in the projects the research groups undertook and whose results of 6 years of
research form the core of this book. Chapter 1 provides an overview of the
properties of computational trust and its different uses. These are concretised in
the subsequent chapters. Wolfgang Reif and his group (see Chap. 2) investigated
methods that enable scalable, robust optimisation to control systems subject to
strong environmental influences and physical constraints. Christian Müller-Schloer
(see Chap. 4) and his team provided means to incentivise cooperative or to sanction
malicious behaviour in a group of agents. In this context, Jörg Hähner (see Chap. 5)
and his team devised mechanisms to form groups of agents that mutually trust each
other. Theo Ungerer (see Chap. 6) established with his group how various self-*
properties can be efficiently monitored and allowed for selective service placement
in middlewares for parallel algorithms and distributed systems, in general. To
accommodate the users’ interests, in particular its trust in a self-organising system,
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Elisabeth André (see Chap. 3) and her team worked on explicit user trust models
that capture the effects of system actions on the users’ experienced trust and take
these factors into consideration. Measuring, formalising and interpreting various
facets of trust as well as the incorporation of this knowledge into decision-making
is a common theme that transcends all OC-Trust projects. Many of the concepts and
algorithms were developed in close cooperation of the project partners, reflected
by 35 joint publications. More than 20 internal project meetings over the course
of 6 years offered room and time for the fundamental discussions that led to those
results.

To illustrate the developed techniques and to instantiate the system class, three
jointly used case studies were devised. All of them are based on the Trust-
Enabling Middleware that offers communication interfaces and access to a generic
infrastructure for application-specific trust metrics. The Trusted Desktop Grid deals
with open, social agent environments that jointly process computing tasks. As a self-
organised collaboration structure, the concept of trusted communities consisting of
trustworthy agents is in the focus. Trust-based Autonomous Virtual Power Plants
allow for a self-organised, robust and scalable control of a large number of power
plants in a hierarchical way. Uncertainty introduced by volatile energy sources poses
tremendous challenge to the system which has to keep supply and demand of power
in balance at all times. Multi-user multi-display environments have users interact
with a system on both public and private devices. With several participants at the
same device, privacy and usability concerns become relevant when it comes to
deciding which content should be shown. User preferences guide these decisions
which are evaluated at runtime on a dynamic user trust model.

Certainly, the research unit did not work in isolation on these fundamental
topics but rather built on top of established theories, models and algorithms and
extended the literature substantially. This fact is reflected by the structure of this
book which includes three invited contributions by selected experts from the domain
of trust in multi-agent systems. Jeremy Pitt (see Chap. 7) discusses formal models
of several social processes for open distributed systems and, in a sense, removes
the restriction on the social concept of trust otherwise so prominent in this book.
Cristiano Castelfranchi and Rino Falcone (see Chap. 8) add various other factors to
the discussion on trust in self-organising, sociotechnical systems. Natasha Dwyer
and Stephen Marsh (see Chap. 9) conclude the book by asking the interesting and
relevant question whether a digital environment empowered users to proceed on
their own terms.

These contributions are witness to the fact that the research unit enjoyed great
visibility in the scientific community and put serious efforts into the dissemination
of its results. Papers that resulted from the projects were regularly presented
at international conferences such as the IEEE International Conference on Self-
Organising and Self-Adaptive Systems (SASO), the International Conference on
Autonomic Computing (ICAC) or the International Conference on Architecture of
Computing Systems (ARCS), to name a few. Especially at SASO, nine editions of
workshops on topics related to OC-Trust were held, comprising the workshops on
trustworthy self-organising systems (TSOS), sociotechnical concepts (SASOST) and
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quality assurance for self-organising systems (QA4SASO). These workshops turned
out to be valuable regular additions to the programme of SASO and led to fruitful
discussions. But of course, until sound publications can be written, doctoral students
need to be exposed to and guided towards recent scientific work. It is for this cause
that the research unit conducted two spring schools on “trustworthy self-organising
systems” and three gender workshops to invite prominent researchers and foster
future cooperations. Furthermore, due to this encouraging culture, several doctoral
researchers were already invited to personally serve in programme committees or
panels at both conferences and workshops. Additionally, the 10th edition of SASO
will be held in Augsburg in 2016 with demonstrations of the OC-Trust projects.

Besides these community-oriented activities and OC-Trust-internal cooperations,
some of the results emerged from collaborations with external partners. Especially
papers at the frontiers of trustworthy self-organising systems that could benefit
from input from other disciplines were written with OFFIS at the University of
Oldenburg, the Imperial College London, the Max-Planck-Institute in Tübingen
and the KU Leuven. Interesting meetings took place with NEC Laboratories, the
University of Calgary, the University of Duisburg-Essen and the LMU in Munich.
Additionally, invited talks at the Stadtwerke Munich, Phoenix Contact, the SORules
workshop in London and the Helmholtz centre in Munich showed increased interest
from both industry and academia. Wolfgang Reif and Christian Müller-Schlöer
furthermore spent sabbatical terms at NICTA in Australia and Telecom ParisTech,
respectively, to work intensively on related topics. All shall be mentioned to value
their feedback that influenced and shaped the research unit.

Results of OC-Trust found their way into three courses at the universities
of Augsburg and Hanover. Therefore, motivated students were well-prepared to
conduct their own research in self-organisation in their thesis works. Many of those
results found their way into proper publications. Finally, 13 doctoral researchers
found challenging questions to complete their dissertations in the research unit. It is
due to their continuous efforts that the project succeeded the way it did, in answering
some questions but asking many important new ones. As a starting point for new
directions, a Dagstuhl seminar on “Social Concepts in Self-organising Systems” was
initiated by the research unit in December 2015. We are confident that the achieved
results presented in this book show great promise for both research and applications
and look forward to an increasing number of trustworthy self-organising systems in
our future environment.

Finally, many thanks go to the contributing authors, in particular of the invited
contributions that enriched the book tremendously. We are indebted to the German
Research Foundation for sponsoring the research unit OC-Trust (FOR 1085).

Augsburg, Germany Wolfgang Reif (head of OC-Trust)
January, 2016 Alexander Schiendorfer

Hella Seebach
Gerrit Anders
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Chapter 1
The Social Concept of Trust as Enabler
for Robustness in Open Self-Organising Systems

Gerrit Anders, Hella Seebach, Jan-Philipp Steghöfer, Wolfgang Reif,
Elisabeth André, Jörg Hähner, Christian Müller-Schloer, and Theo Ungerer

Abstract The participants in open self-organising systems, including users and
autonomous agents, operate in a highly uncertain environment in which the agents’
benevolence cannot be assumed. One way to address this challenge is to use
computational trust. By extending the notion of trust as a qualifier of relationships
between agents and incorporating trust into the agents’ decisions, they can cope with
uncertainties stemming from unintentional as well as intentional misbehaviour. As
a consequence, the system’s robustness and efficiency increases. In this context,
we show how an extended notion of trust can be used in the formation of system
structures, algorithmically to mitigate uncertainties in task and resource allocation,
and as a sanctioning and incentive mechanism. Beyond that, we outline how the
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users’ trust in a self-organising system can be increased, which is decisive for the
acceptance of these systems.

Keywords Computational trust • Uncertainty • Self-organisation • Open MAS •
Robustness

1.1 Trust as a Measure of Uncertainty in Open
Self-Organising Systems

In open self-organising systems, different participants, such as autonomous agents,
human users, and other systems, work together with a strong influence of the
environment. These participants communicate and cooperate at runtime in unfore-
seeable ways and do not always follow the intent of the system designers. They
can pursue different goals, and it cannot be assumed that they are intrinsically
motivated to contribute towards a common system goal [1, 2]. Beyond that, a
participant’s behaviour can vary over time. As there is also limited knowledge
about and control over the behaviour of the participants in the system, only
weak assumptions about them can be made – in particular, we have to abandon
assumptions of benevolence of the autonomous agents. The system participants
therefore have to deal with both unintentional as well as intentional misbehaviour of
others. This situation is aggravated by additional factors that increase uncertainties
as they influence the system in unpredictable ways. These factors comprise the
environment, other systems the agents interact with, or the users. Another form
of openness often regarded in multi-agent systems (MAS) research is present when
agents can arbitrarily enter and leave the system [3]. Especially in safety- or mission-
critical domains, such as manufacturing or power management, these challenges
have to be taken very seriously.

In this chapter, we argue that trust – as a measure of uncertainty – is a key
concept for achieving robustness and efficiency in open self-organising systems.
The classic notion of computational trust in the MAS community is focused on the
credibility of agents, i.e. the degree to which they fulfil their commitments. This
view stems mainly from psychological and sociological research [4] and boils down
to the selection of interaction partners in order to maximise the utility of individual
interactions. Economic [5, 6] and computer science [7, 8] literature characterise
trust as instrumental to manage expectations about others. In computer science, the
term “computational trust” is used to stress that the trust in a system or a system’s
part, such as an agent, is assessed by means of a well-defined metric. Since both
(a part of) the system or a human being can act in the role of the trustor, we can
differentiate between system-to-system and user-to-system trust. Often, a strong
connection between trust and risk is emphasised [9] since interactions that incur
a high risk for the participating agents require a high expectation of the others’
willingness to contribute in a beneficial manner. An empirically justified expectation
reduces the uncertainty about the behaviour of another agent [10]. In computing
systems, this is often captured by a numerical trust value [11].
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For these reasons, trust is an essential constituent of ensembles of cooperating
agents, be they human or technical systems. Game-theoretical considerations show
that trust can help to avoid getting trapped in the tragedy of the commons. Kantert
et al. [12] provide such lines of thoughts in the context of Desktop Grid Computing.
In general, trust induces a probability distribution over types of interaction partners
of different trustworthiness in a Bayesian game. In this setting, agents have to choose
their actions given probabilistic knowledge about each other’s trustworthiness.

As mentioned above, we claim that trust is a key concept for achieving robust-
ness. In this chapter, we define robustness in two dimensions. The first dimension of
robustness addresses a system’s ability to resist internal or external disturbances.
Such disturbances result from (un)intentional misbehaving agents, for instance.
A system exhibiting this type of robustness promises to remain in acceptable
states and thus to maintain its functionality despite detrimental influences. The
second dimension of robustness considers a system’s ability to return into an
acceptable state after a disturbance occurred that caused the system to leave the
acceptance space. This type of robustness characterises a system’s ability to restore
its functionality. Consequently, the magnitude of disturbances the system can cope
with (first dimension) and the duration of the deviation from acceptable states
(second dimension) can be used to quantify the robustness. Both dimensions of
robustness quantify the system’s ability to fulfil its tasks. In contrast to a mere
passive resistance, self-organising systems can actively increase their robustness
by means of reactive or proactive measures. In open systems, these measures can
be based on participants’ trustworthiness, which allows the system to anticipate
different sources of uncertainties.

In this chapter, we give an overview of the uses of computational trust (see
Sect. 1.3) to deal with uncertainties arising in open self-organising systems. We
show that these uses extend the classical use of selecting interaction partners and
are based on the same life-cycle describing how trust values evolve over time (see
Sect. 1.2). In detail, we demonstrate how trust models can be used to inform self-
organisation processes (see Sect. 1.3.1); to optimise for critical or likely situations
in uncertain environments (see Sect. 1.3.2); to sanction or incentivise agents in
normative systems (see Sect. 1.3.3); and to represent the social relationships of the
system’s users (see Sect. 1.3.4). Section 1.4 concludes the chapter by emphasising
that trust proves to be very useful to increase robustness and efficiency in open
self-organising systems.

1.2 Computational Trust

Trust is usually measured as a numerical value, often normalised to values between
0 and 1. In [13], an agent’s trust value is either very high or very low if the agent is
either always expected to behave beneficially or never; if the value is between these
extremes, the agent behaves in an unpredictable fashion and thus interactions with
it are afflicted with a high uncertainty. Such a simple representation of trust is used
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Fig. 1.1 The life-cycle of trust values derived from experiences (adapted from [OCT3])

in many trust models (for an overview, see, e.g. [14]). However, numerous other
interpretations and representations of trust exist. Anders et al. [OCT1], for instance,
regard a trust value as an expected deviation from a prediction or promise. The
lower an agent’s trust value, the higher the expected deviation from its predictions
or promises. A supplementary value, called predictability, quantifies the variance in
the agent’s behaviour and is used to indicate the certainty that the expected deviation
actually occurs. Other representations based on more complex data structures (e.g.
trust-based scenarios [OCT2] or elaborate reputation systems [15]) are able to
capture further properties, such as time-dependent behaviour in the sense that an
agent’s behaviour depends on the time of day or that its behaviour depends on those
it showed in previous time steps. Before discussing the general properties of trust,
we illustrate the life-cycle of trust values which can be transferred to most of the
other representations of trust.

The Life-Cycle of Trust Values. There is a general way of thinking about the
origin of trust values that is independent of the way they are used (see Fig. 1.1).
Two or more parties commit to a (potentially implicit) contract [16] that defines
an interaction (possibly composed of several distinct steps) as well as its stipulated
result. The actual result of the interaction can be compared to what was stipulated
in the contract, thus yielding an experience for each party [17]. Ultimately, an
agent uses its experiences and a trust metric to derive a trust value for each of its
interaction partners. The trust values, in turn, inform future interactions.

Falcone et al. [18] criticised that many trust models are void of semantics of how
the generated trust values have to be interpreted. It is, e.g. often not defined what a
trust value of, say, 0:5 actually expresses or which trust value should be assigned to
a new agent (the problem of initial trust, see, e.g. [19]). If a trust model has precise
semantics, meaning a clearly defined way to interpret generated trust values, such
an abstracting quantification can still be valid, though.
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Properties of Trust. The life-cycle shows why trust values are subjective. As
each agent makes its own experiences with others, it forms a personal opinion (i.e. a
trust value) based on these unique experiences. Thus, the experiences of two agents
with the same partner can vary tremendously. Additionally, agents can use different
metrics to assess trust values and apply different requirements to the behaviour of
others, thus implementing different trust models. The same arguments can be used
to argue against transitivity of trust [20]. An exception are recommendations as a
form of indirect trust or reputation (see discussion below) that have to be based on
a mutual understanding of the valuation of an agent’s behaviour.

Further, it is crucial to consider the context in which interactions occur. The
context includes, e.g. the roles the agents play in the interaction, its contract, or
environmental circumstances. Comparing experiences to each other in different
contexts is difficult: You might trust your doctor to fix you, but not necessarily to fix
your car. Falcone et al. [18] relate to context when they mention the “competence
belief” an agent has about another. Competence is specific to a certain goal that the
trusting agent believes the potential partner is capable to pursue. Agents that are
deemed competent for one goal can be incompetent for another. Other authors use,
e.g. “circumstance” [21] or “domain of interaction” [22] to denote context.

A trust value can also be supplemented by a measure of confidence [OCT4] or
certainty [23, 24] that indicates the degree of certainty that a trust value describes the
actual observable behaviour of an agent. Such an additional value can be based on
several criteria, such as how many experiences were used for the calculation of the
trust value, how old these experiences are, or how much the experiences differed. It
is also possible to take the social relationships between the agents into account [25]
or to distinguish short-term and long-term behaviour in order to identify changing
behaviour. As with trust values themselves, the initialisation of confidence can be
problematic. In human interactions, different trust dispositions are common where
people approach newcomers differently and are willing to put more initial trust in
them than others [26]. The experiences made by these trusting individuals can then
be used by others to judge newcomers. Such a mechanism is especially useful during
the exploratory phase after the start of a system [19].

Reputation. In open self-organising systems, interaction partners can change
often, e.g. due to alterations in system structure or inclusion of new agents. Since the
agents’ benevolence cannot be assumed, they might not be willing to communicate
their true intentions [27]. To deal with this situation, a reputation system can be used
which combines the opinions of agents and generates recommendations [7]. This
enables cooperation between agents that do not know or have only little experience
with each other. To make adequate decisions, agents can rely on a combination
of direct trust and reputation. To this end, several approaches [15, OCT5] propose
to use confidence or similar metrics to dynamically weigh the influence of direct
trust and reputation, e.g. depending on the number of direct experiences. Due to the
subjective nature of trust and because agents might lie about the trustworthiness of
others, it is often also desirable to weigh the impact a recommending agent, called
witness, has on the reputation value. The neighbour trust metric [OCT6] as well as
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DTMAS [28] propose to increase the influence of a witness with the similarity of the
provided valuation to the one of the requesting agent. If the difference is too large,
the witness can even be excluded from the calculation. This allows the system to
deal with false reports. Further approaches that incentivise agents to provide truthful
reports are discussed in Sect. 1.3.3. Providing reputation data can also be regarded
as a special context in which witnesses are assessed according to the quality of
their recommendations. In an even more fine-grained system, the context can also
include information for which kind of interaction the recommendation is given.
Whenever a reputation system is used, there has to be a consensus among the agents
about the meaning of trust and reputation values. A common trust model can fulfil
this purpose.

Accountability, Deceit, and Collusion. Open systems with little control over
the agents are prone to exploitation from egoistic or malevolent agents. Therefore,
special measures have to be taken to provide accountability of the agents and to
prevent collusion. For an overview of attacks on trust and reputation management
systems, see, e.g. [29]. Specific countermeasures are often system- or domain-
specific, such as those presented for mobile ad-hoc networks in [30] or electronic
markets in [31]. An important part of fraud prevention is a well-designed incentive
system in combination with efficient monitoring facilities [32].

1.3 Different Uses of Trust in Open Self-Organising Systems

As discussed in Sect. 1.1, trust is traditionally used for selecting appropriate
interaction partners. Bernard et al. [OCT7] call an agent’s set of preferred interaction
partners whose trust value is above a predefined threshold its Implicit Trusted
Community (iTC). From the local view of a single agent, its interaction partners
are selected through an implicit formation process. Note that this process is fully
decentralised and thus not governed or controlled by an explicit authority. Because
the agents do not coordinate their selections, the members of an iTC do not
necessarily mutually trust each other. Yet this simple approach successfully excludes
notoriously untrustworthy agents from most interactions.

In the following, we give an overview of four different uses of trust that
extend this traditional use. First, we consider the trust-based formation of explicit
organisations that allow large-scale open systems to deal with untrustworthy agents
(see Sect. 1.3.1). Second, robust task and resource allocation promises to improve
the system’s stability and efficiency in uncertain environments (see Sect. 1.3.2).
Third, uncertainties resulting from intentional misbehaviour can be reduced by
means of appropriate incentives – employing trust as a sanctioning mechanism is
one of several possibilities (see Sect. 1.3.3). Fourth, we outline measures how user
trust in open environments can be increased (see Sect. 1.3.4).
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1.3.1 Trust to Structure Large-Scale Open Systems

In essence, self-organisation enables a system to autonomously form and adapt a
structure that supports its objectives under changing conditions. The main reasons
for agents to form organisations are to achieve scalability and promote cooperation
in order to accomplish their own or the system’s goals [33]. While scalability is the
result of the accompanying problem decomposition, cooperation is necessary due to
the agents’ limited resources and capabilities. There are a multitude of paradigms
and algorithms for establishing organisations in literature, such as teams [33]
and coalition formation [34]: While teams assume altruistic behaviour, coalition
formation is used in systems consisting of self-interested and individually rational
agents.

The participants of open systems might not only show self-interested behaviour
but also lie about their capabilities, the utility of performing an action, etc.
Consequently, the selection of suitable cooperation partners becomes even more
important. Since suitable coalition structures depend on the agents’ promised
contributions, the system has to make sure that these promises are kept and all
coalition members pursue a common goal. To this end, extensions of coalition
formation incorporating trust into the agents’ decisions have been presented in
[35, 36]. In contrast to coalitions, clans [37] are long-lived. Given that cooperation
is likely to be most beneficial and least uncertain with trustworthy agents, clans
are groups of agents that mutually trust each other. A similar concept, called
Explicit Trusted Communities (eTCs), for the domain of Desktop Grid Computing
has been proposed in [OCT8]. The main difference to clans and coalitions is that
each eTC is represented by an explicit manager which administrates memberships,
deals with conflicts, and governs the participating agents with norms. By preferring
interactions with trustworthy agents (or even restricting them to these agents),
clans and eTCs incentivise untrustworthy agents to change their behaviour (see
Sect. 1.3.3 for incentive mechanisms and norms). Ultimately, this procedure aims
at a more efficient and robust system – at least with regard to the members of
clans or eTCs. While these types of organisations are not necessarily limited to
intentional misbehaviour, they assume that agents can be excluded from other parts
of the system without jeopardising the overall system’s stability and efficiency. This
is why trustworthy agents can form exclusive groups.

However, there are situations in which untrustworthy agents can or should not
be excluded from the system, e.g. if the system depends on their resources or if
they can provide them in a particularly cost-efficient way. In power management
systems, for instance, although the output of solar power plants is difficult to predict
(their volatility is mirrored in low trust values), they should not be turned off
because of their low-cost generation. If, in such a situation, scalability requires the
agents to self-organise into subsystems, other types of organisations are needed to
deal with untrustworthy agents. One possibility is the formation of homogeneous
partitionings [OCT9] where organisations are as similar as possible with respect to
certain criteria that have been identified as supporting the system’s goals (including
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their mean trustworthiness). This idea is based on the assumption that a centralised
system imposes an upper bound on the ratio between trustworthy and untrustworthy
agents: Given the uncertainties introduced by untrustworthy agents, the centralised
control over trustworthy agents allows the system to fulfil its task as well as possible.
If all organisations exhibit similar characteristics with respect to the identified
criteria, such as a similar ratio between trustworthy and untrustworthy agents, they
approximate the corresponding ratio of the centralised system. Consequently, they
also inherit its positive properties. Ideally, this results in an organisational structure
in which each organisation can deal with its untrustworthy agents internally without
affecting or involving other organisations. In such situations, homogeneous parti-
tioning increases the system’s robustness and efficiency, and should be preferred
to organisations consisting of homogeneous agents. A similar goal has been
pursued in [38] where agents mitigate uncertainties originating from unintentional
misbehaviour by forming coalitions in a way that they cancel each other out.

1.3.2 Trust as a Basis for Robust Task or Resource Allocation

In many applications, a MAS has to solve a task or resource allocation problem
in which a set of tasks is to be allocated to agents, or a set of the agents have to
provide a certain amount of resources in order to satisfy a given demand [39]. Due
to the agents’ limited resources and knowledge, they usually have to cooperate in
order to achieve the goal. In open systems, finding an adequate allocation is even
more difficult since agents might not provide resources or fulfil the task as promised
and the actual demand that has to be satisfied or the resources required to perform
a task might not be known exactly beforehand. Both types of uncertainties can be
attributed to unintentional or intentional misbehaviour of the system’s participants
or its environment [OCT1]. If the system’s stability or efficiency hinges on how
well the agents fulfil the tasks or meet the demand – e.g. think about the demand of
electric load in a smart grid application – techniques for robust task or resource
allocation have to be regarded. In general, the way a robust allocation can be
obtained depends on the type of misbehaviour.

Unintentional misbehaviour is introduced by external forces, such as current
weather conditions. While this type of misbehaviour cannot be actively reduced,
trust can be used to quantify and anticipate the uncertainties [10]. Incorporating
trust into the decision-making process allows the system to optimise for expec-
tations, such as the expected probability of success [40]. In [OCT10, OCT11], a
self-organising middleware incorporating a trust-aware load-balancing mechanism
assigns important services to trustworthy nodes in order to increase the services’
expected availability. Similarly, participants of a Desktop Grid Computing system
delegate the calculation of jobs to trustworthy agents, i.e. to members of their
eTC, to improve their expected outcome (see Sect. 1.3.1). If the predictability
(cf. “confidence”) of an agent’s behaviour depends on its state, allocations can
also be made in a way that promotes predictable behaviour [OCT1]. For highly
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volatile environments in which dependencies in a sequence of observed behaviour
have to be captured, a more expressive trust model, called Trust-Based Scenario
Trees (TBSTs), has been proposed in [OCT2]. Basically, each TBST represents
an empirical probability mass function that approximates the observed stochastic
process. In contrast to trust models that capture the expected uncertainty or its
variation, a TBST holds multiple possible scenarios, each with a probability of
occurrence, of how the uncertainty might develop over a sequence of time steps. As
opposed to the concept of scenario trees as known from the domain of operations
research [41], TBSTs make only few assumptions about the underlying stochastic
process. Further, they have been developed with the purpose of being learned online
by agents with possibly low computational power. Combined with the principle of
stochastic programming [42], agents can obtain robust allocations dynamically at
runtime.

Intentional misbehaviour can be ascribed to agents that lie about some private
information needed to decide about an adequate allocation, such as the cost or
probability of performing a task successfully [40, 43]. Contrary to unintentional mis-
behaviour, uncertainties originating from intentional misbehaviour can be avoided.
The field of mechanism design [40] studies how a system has to work in order
to incentivise its self-interested, strategic, and individually rational participants to
tell the truth. Further details concerning this matter are discussed in the following
section.

1.3.3 Trust as a Sanctioning and Incentive Mechanism

Employing the techniques of mechanism design (MD) can guarantee efficiency
(maximisation of the agents’ overall utility), individual rationality (the agents’
utility of participating in the scheme is non-negative), and incentive compatibility
(the agents are best off revealing their true type) [44]. The latter property is of
particular interest in open systems when agents have to be incentivised to disclose
their private information needed to make decisions. In other words, MD can be used
to incentivise individually rational agents to behave benevolently, that is, to ensure
their trustworthy behaviour. Fault-Tolerant MD [43] and Trust-Based MD [40]
address the issue of agents that have a probability of failure – quantified by a trust
value – when performing an assigned task. Both approaches investigate the problem
that reasonable task allocations depend on truthfully reported trust values. While
each agent calculates and reports its own trust value in Fault-Tolerant MD [43],
reputation values stemming from subjective trust measurements are considered in
Trust-Based MD [40]. The ideas of MD have been adopted in various market-
based approaches in which pricing mechanisms prevent agents from gaming the
system [38, 45]. Depending on the regarded problem, it is often hard to devise a
proper mechanism guaranteeing incentive compatibility, though, especially in case
of unintentional misbehaviour. In these cases, it is still possible to use penalty
schemes to increase the agents’ risk that providing false reports or promises that
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cannot be kept is detrimental to their utilities [44, OCT1]. Often, corresponding
incentives can rely on the agents’ trustworthiness. In electronic markets, trustworthy
agents can obtain price premiums or price discounts [6]. In [OCT1], for instance,
agents showing well-predictable behaviour can demand higher payments. Preferring
trustworthy interaction partners or creating groups of trustworthy agents that benefit
from a mutual increase in efficiency (cf. eTCs discussed in Sect. 1.3.1) also
incentivises benevolent behaviour. These examples illustrate that trust in the sense
of benevolent behaviour yields and, at the same time, embodies a form of social
capital [46].

While the rules employed in these mechanisms are created at design time,
open systems often have to be able to define, adjust, and implement behavioural
guidelines in response to environmental and internal conditions at runtime. Such
an adaptability is akin to Ostrom’s principle of “congruence” that states that
sustainable management of commons requires to “match rules governing use of
common goods to local needs and conditions” [47]. While stemming from economic
and sociological research, these Ostrom’s principles have been recognised as the
foundations for self-organising electronic institutions as well [48]. In normative
MAS [49], normative institutions enact and enforce norms [50] to influence the
agents’ behaviour indirectly. Each norm describes a behavioural rule and a sanction
that is imposed if the rule is not followed. A sanction might be punitive fines or a
(temporary) reduction of the violator’s reputation value. The latter type of sanction
treats reputation in the sense of social capital such that its reduction incentivises
trustworthy behaviour in the long run. If an agent did not violate a norm on purpose,
if it compensates for the violation, or if the violation was inevitable, the institution
might also abstain from a sanction, which introduces a form of forgiveness [51, 52].
Essentially, norms have to contribute to reaching the system’s goal. In eTCs (see
Sect. 1.3.1), managers take on the role of normative institutions. If a manager detects
an attack, it defends its community by adjusting the set of norms, e.g. by regulating
the delegation and the acceptance of jobs in case of a trust breakdown – a situation
in which even the reputation of benevolent agents declines [OCT12]. To enforce
norms, an institution must not only be able to react with sanctions but also to detect
their violation. Since monitoring an agent’s behaviour comes at a price, Edenhofer
et al. [OCT13] proposed to couple the effort put into surveillance to the number of
received accusations. Especially when regarding trust as the basis of delegation [18],
norms can also be understood as social laws governing the delegation of institutional
power [53]. In this case, norms represent explicit permissions that have to be
acquired before a specific action may be performed.

1.3.4 Increasing User Trust in Open Environments

Beyond the use of trust to qualify the relationships between software agents (cf.
system-to-system trust in Sect. 1.1), it can also be applied to describe the social
relationships between the users and the system (cf. user-to-system trust). Recent
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advances in sensor technologies and context recognition enable us to capture the
users’ physical context continuously and to personalise information and services to
them in real-time. Apart from simply providing information, context-aware systems
can also allow users to manipulate or share data or even act autonomously on
their behalf. Combined with advances in display and wireless technologies, users
can employ these systems basically anytime and anywhere. While these so-called
ubiquitous environments offer great benefits to users, they also raise a number of
challenges. In particular, they might show a behaviour that negatively affects user
trust. Examples include (1) highly dynamic situations where the rationale behind
the system’s actions is no longer apparent to the user [54], (2) implicit interactions
through proxemic behaviour where the user no longer feels in control [55], or
(3) privacy issues [56]. Hence, there is an enormous need for sophisticated trust
management in ubiquitous environments in order to ensure that such environments
will find acceptance among users.

While most work in the area of computational trust models aims to develop trust
metrics that determine, on the basis of objective criteria, whether a system should
be trusted or not, not much interest has been shown towards trust experienced
by a user when interacting with a system. A system may be robust and secure,
but nevertheless be perceived as not very trustworthy by a user, e.g. because
its behaviour appears opaque or hard to control. Following the terminology by
Castelfranchi and Falcone [57], a focus is put on the affective forms of trust that
are based on the user’s appraisal mechanisms. Therefore, the objective must be
to develop a computational trust model that captures how a system – and more
specifically a ubiquitous environment – is perceived by a user while interacting
with it.

Many approaches found in literature aim to identify trust dimensions that
influence the user’s feeling of trust. This is an extension to the trust models as
discussed in Sect. 1.2, even though facets of trust play a role in open self-organising
systems as well [OCT14]. Trust dimensions that have been researched in the context
of internet applications and e-commerce include reliability, dependability, honesty,
truthfulness, security, competence, and timeliness, see, e.g. [58, 59]. Tschannen
et al. [60], who are more interested in the sociological aspects of trust, introduce
willing vulnerability, benevolence, reliability, competence, honesty, and openness
as the constituting facets of trust, although their work does not focus on trust in
software. Researchers working on adaptive user interfaces consider transparency
as a major component of trust, see, e.g. [61]. Trust dimensions have formed the
underlying basis of many conceptual models of trust. However, incorporating them
into a computational model of trust is not a trivial task.

With the User Trust Model (UTM) [62], such a computational model of trust
was introduced, along with a decision-theoretic approach to trust management
for ubiquitous and self-adaptive environments. The UTM is based on Bayesian
networks and, following ideas put forward by Yan et al. [63], assesses the users’
trust in a system, monitors it over time, and applies appropriate system reactions to
maintain users’ trust in critical situations. In a smart office application, for example,
the system could automatically switch off the lights because it senses that it is
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bright enough outside, but might actually decide against it if it assesses that such
an action would have a negative impact on the user’s trust due to a lack of control
and transparency.

1.4 Conclusion

The potential of computational trust in open self-organising systems is substantial.
As we outlined in this chapter, trust models can increase a system’s fitness by
providing a means to optimise for the most likely or most risky future states; they
can decrease information asymmetry; they can be used in combination with sanc-
tioning and incentive mechanisms in normative frameworks codifying behavioural
guidelines; and they can enable the formation of a system structure supporting
the functions of the system optimally. If trust models are used to represent the
social relationships of a system’s users [OCT15], the system can, for instance, even
make robust decisions with regard to the users’ privacy. The basic principles are
the same for all of the uses shown here. They can all be applied on the basis
of an understanding of trust that puts the concepts of interactions, contracts, and
experiences at its core and is compatible with many trust models available in the
literature.

In all cases, trust increases the efficiency and robustness of open self-organising
systems by mitigating uncertainties originating from a system’s unknown partici-
pants and the environment it is exposed to.
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Abstract In open multi-agent systems, we can make only little assumptions about
the system’s scale, the behaviour of participating agents, and its environment. Espe-
cially with regard to mission-critical systems, the ability to deal with a large number
of heterogeneous agents that are exposed to an uncertain environment becomes
a major concern: Because failures can have massive consequences for people,
industries, and public services, it is of utmost importance that such systems achieve
their goals under all circumstances. A prominent example are power management
systems whose paramount goal is to balance production and consumption. In this
context, we tackle challenges comprising how to specify and design these systems
to allow for their efficient and robust operation. Among other things, we introduce
constraint-based specification techniques to address the system’s heterogeneity and
show trust models that allow to measure, anticipate, and deal with uncertainties.
On this basis, we present algorithms for self-organisation and self-optimisation that
enable the formation of scalable system structures at runtime and allow for efficient
and robust resource allocation under adverse conditions. Throughout the chapter,
the problem of balancing production and consumption in decentralised autonomous
power management systems serves as a case study.
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2.1 Open Systems: From Correctness to Optimality

Self-organising systems are mainly investigated due to their increased flexibility and
robustness to failures which allows them to cope with a wide range of circumstances.
Instead of having human operators dealing constantly with ongoing issues, the
ability to restore a valid state is implemented in self-* algorithms. A paramount goal
is the increased productivity of a variety of systems, such as adaptive production
cells, many-core systems, or learning robots [1]. Applications that have been
regarded in this context target a rather closed setting with a manageable number
of components known to designers, making their analysis feasible [2] by extensive
simulation or mathematical tools – albeit at possibly high efforts.

First attempts at a software engineering methodology tailored to self-organising
systems focused on specifying valid and invalid states and explicitly modelling
the adaptive aspects added to the conventional system. In the Restore Invariant
Approach [3], an invariant (a logical formula), separates invalid from valid states,
i.e. those inside the corridor of correct behaviour (see Fig. 2.1a). Structurally, the
invariant is a conjunction of constraints that have to be satisfied by the system
variable assignment induced by a state. For instance, having a robot assigned to
a role “drilling” presupposes that a functioning driller is available to it. Should
the driller break (invalidating the current assignment), a reorganisation aiming for
another valid role assignment is initiated to guide the system back into the corridor.
A governing idea is that the system delivers its correct functionality as long as the
invariant over the individual participants and the organisational structure (i.e. the
communication and collaboration networks) holds. In case of software or hardware
failures of individual components, the organisational structure and software agents

reorg. reorg.
survival space

acceptance space
survival space

Time

State

(a) The corridor of correct behaviour.

reorg. reorg.
survival space

acceptance space
survival space

target space

Time

State

(b) Differentiating between target and accep-
tance space (adapted from [4]).

Fig. 2.1 Once a violation of the corridor of correct behaviour is detected, the system triggers a
reorganisation that re-establishes compliance with the invariant (see (a)). Refining the corridor by
means of a target space allows the system to preserve its efficiency by triggering a reorganisation
before it leaves the acceptance space (cf. the second reorganisation in (b)). In this case,
reorganisations aim at bringing the system back into an optimal state
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adapt to keep the system working. In fact, this architecture enables proving some
properties about the correctness of the obtained system. Similarly, [4] proposed
a distinction of states into the acceptance space (correct states, e.g. feasible role
assignments), the target space (optimal states, e.g. throughput-maximising role
assignments), and the dead space for irreversibly faulty states (e.g. a necessary tool
is no longer available). See Fig. 2.1b for an illustration. Both views follow a rather
reactive paradigm.

Some interesting application areas for self-organisation principles, however,
call for extending this view to open systems [5] in which individual software
agents are assumed to be programmed by different (and possibly competitive)
developers. A prominent example is given by distributed power management
systems in which energy producers and consumers have to work together to
keep supply and demand in balance at low overall costs and resource usage, e.g.
fossil fuels. A very dynamic environment results from the interactions of possibly
volatile heterogeneous participants as well as other stochastic influences including
weather and consumer behaviour. These characteristics give rise to uncertainties that
manifest in the form of deviations between promised and actual supply or demand.
The stable operation of such mission-critical supply systems becomes a major
concern because failure can have massive consequences for people, industries, and
public services. Consequently, the approved reactive approaches to self-organisation
mentioned above would lead to extraordinarily high reorganisation costs since they
can only perform control actions after the system detects that it is in a bad state.

When moving from closed self-organising systems to open ones in more dynamic
environments, the notion of correctness in the momentary state fades out. Instead,
proactive actions have to be made in pursuit of satisfactory future states. Otherwise,
the system might not react fast enough to disturbances or do so at very high cost.
Pictorially speaking, we thus aim to keep the system in a state far away from its
acceptance boundaries to anticipate possible future violations of an invariant early
enough. Changes caused by the more dynamic and volatile environment are also
more likely to invalidate current configurations without the system adapting its
structure. In such situations, the system is passively “moved out of the corridor”,
so to speak. In terms of [4], we aim at weakly robust systems, i.e. systems
that, once being in the target space, cannot be forced to leave the acceptance
space by external disturbances. Clearly, this cannot be achieved by putting the
system in an arbitrary valid state. Instead, the system now has to solve multiple
interconnected optimisation problems (e.g. finding optimal system structures or
optimally scheduling control actions) in order to find states that allow it to deal
with a wide range of disturbances.

These challenges imposed by the system class necessarily lead to a shift from
correctness to optimisation that has to be built into the design of open self-organising
systems. In this chapter, we address these challenges based on a vision of self-
organised and robust resource allocation in large-scale open technical systems (see
Sect. 2.2). To be able to find adequate allocations, detailed agent models in terms
of their controllability are required (see Sect. 2.3). To deal with uncertainties when
solving the resource allocation problem and to increase the system’s robustness, we
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devise predictive models of the agents’ possibly deviating behaviour and integrate
them with robust optimisation techniques (see Sect. 2.4). Due to the systems’ large
scale, there is also a need for adequate organisational structures supporting the
system’s stability (see Sect. 2.5). In all these aspects, the concept of computational
trust [5] serves as a common denominator to quantify and anticipate uncertainties.
Throughout the chapter, we illustrate our findings by means of a case study from the
field of decentralised autonomous power management systems. While developing
the power management system and through analysis of several other open self-
organising systems, we gained a lot of insights into the difficulties of engineering
such systems. To make these insights accessible to a broader community, we
embedded them in a methodology for the principled design of open self-organising
systems. More details concerning this Process for open self-organising Multi-Agent
Systems (PosoMAS) [6] are available online.1

2.2 Vision: Self-Organised and Robust Resource Allocation
in Open Technical Systems

An important representative of open systems influencing our daily life is the class
of supply systems. Systems of this class have in common that their task is to solve a
resource allocation problem (RAP). That is, their goal is to stipulate the supply, i.e.
the contribution, of the system components in a way that their sum satisfies a given
demand that is imposed by the environment or other components in the system.
Neither surplus nor shortage is desirable and, often, even feasible without risking to
damage the system’s infrastructure. In gas pipeline and water supply systems, for
instance, the challenge is to maintain the system’s pressure at a certain level [7, 8].
Regarding district heating systems, the network temperature has to be kept between
specific bounds [9].

Similarly, the main task in power management systems (PMSs) is to maintain
the balance between power production and consumption at all times [10]. This
problem is an instance of a one-good RAP without externalities [11] in which
the RAP’s demand corresponds to the so-called residual load. The residual load
is defined as the difference between the overall non-dispatchable load (the term
“non-dispatchable” refers to load and supply that cannot be controlled) and the
accumulated output of non-dispatchable power plants (see Fig. 2.2).2 In other words,
it is the fraction of the overall non-dispatchable load that has to be fulfilled by
dispatchable prosumers (we use the term “prosumer” to refer to producers as well
as consumers). Consequently, the goal is to find an allocation of the individual
dispatchable prosumers’ contributions such that, in each time step t, their sum

1http://posomas.isse.de
2Note that we specify the output of non-dispatchable power plants to be part of the system’s
demand. That is because their supply cannot be controlled.

http://posomas.isse.de
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Power

Time
tnow t1 t2 t3

Load

Non-Dispatchable Output

Residual Load

Fig. 2.2 The residual load is the difference between the overall non-dispatchable load and
the overall output of non-dispatchable power plants. It has to be satisfied by the dispatchable
power plants and the dispatchable consumers. Note that the residual load is negative if the non-
dispatchable output exceeds the non-dispatchable load

matches the residual load as accurately as possible. While the satisfaction of the
residual load is paramount, this goal should be achieved at minimal costs.

An important characteristic of PMSs is that it is not feasible to hold the balance
between power production and consumption by only reactively adapting the supply
of dispatchable prosumers. This is due to heterogeneous types of inertia, such as
limits in ramping up and down. Most types of power plants are specialised to take
on specific tasks: Peaking power plants like gas turbines, for instance, are able to
adjust their output very quickly but cause high costs. On the other hand, base load
power plants, such as coal power plants, are designed for operating very efficiently
in specific output ranges but their cold and hot start-up behaviour as well as minimal
and maximal up-times become additional decisive factors for control actions.

Hence, to take account of the different types of inertia, the contribution of
dispatchable prosumers has to be specified proactively in the form of schedules
for a fixed time span H in advance. This means that schedules are created on the
basis of predictions of the future residual load. A recalculation of the schedules is
needed at least after the time span H elapsed since the last schedule creation. For
each schedule creation, the time span H defines a so-called scheduling windowW D
ftnow C i � �� � tnow C H j i 2 N�1g that, depending on the schedule resolution
�� (defined as a multiple of the difference �t between two successive time steps t
and t C 1), comprises N D H=�� time steps. Consequently, the system’s success in
solving the RAP (in terms of balancing supply and demand) depends on its success
in solving a scheduling problem. In PMSs, this problem is also known as economic
load dispatch [12] or unit commitment [13]. The idea of satisfying the residual load
by repeated schedule creation follows the principle of receding horizon control [14],
which is illustrated in Fig. 2.3. Solving the scheduling problem introduces two
central and interconnected challenges:

1. Scalability: Solving the scheduling problem is NP-hard [15]; both with regard to
the number jD j of dispatchable prosumers involved and time steps N schedules
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frequency of
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Fig. 2.3 Schedules stipulate the dispatchable prosumers’ output on the basis of residual load
predictions (cf. the numbers in the boxes) for a specific time span in advance. Here, schedules
cover a time span of H D 45 min and are created with a resolution of �� D 15 min. Hence,
each schedule comprises N D 3 time steps. At 10:00, for instance, schedules are created for the
scheduling window W D f10:15; 10:30; 10:45g. As predictions become more accurate as a future
point in time approaches, schedules are periodically revised (here, every 15 min). Each schedule
creation is depicted in a different colour

are created for in advance.3 We therefore have to assume a worst-case complexity
of O

�
2jDj�N�

.
2. Uncertainty: The dispatchable prosumers have to fulfil the residual load in spite

of erroneous predictions of its development. Fluctuations in the residual load
originate from changing weather conditions and stochastic consumer behaviour,
among others. As for unexpected events, dispatchable prosumers might not be
able to comply with their schedules in the light of technical difficulties. In terms
of the RAP, uncertainties manifest in the form of deviations between actual and
predicted demand, as well as deviations between actual and scheduled supply.

With regard to scalability, a too fine-grained schedule resolution �� , which
unnecessarily increases the number of time steps N in W , should be avoided
due to the exponent N in the scheduling problem’s computational complexity. In
the synchronous grid of Continental Europe, for instance, schedules are typically
created with a resolution of �� D 15 min (see Fig. 2.3), whereas imbalances have
to be detected and compensated for within seconds (e.g. �t D 3 s) to ensure the
grid’s stable operation [10]. At the same time, a too fine-grained schedule resolution
is not useful because, given that residual load predictions tend to become more
accurate as a future point in time approaches, uncertainties require that schedules
are periodically revised at runtime.

For many years, PMSs consisted of relatively few and well-predictable power
suppliers that faced a large number of pure power consumers. The deregulation of
the electricity market as well as climate protection goals have been just a few of var-
ious driving forces changing this situation. Nowadays, the wide-spread installation

3Since dispatchable prosumers show discrete modes of operation (e.g. on/off), the knapsack
problem (i.e. choosing which prosumers should contribute at all) can be seen as a special case
of the scheduling problem.
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of weather-dependent power plants as well as the advent of new consumer types,
such as electric vehicles, put a lot of strain on power grids [16]. Additionally, small
dispatchable power plants (e.g. biogas plants) owned by individuals or cooperatives
feed in power without external control. To save expenses, gain more flexibility,
and deal with uncertainties, future autonomous PMSs have to take advantage
of the full potential of dispatchable prosumers by incorporating them into the
scheduling scheme. Especially, the ability to deal with uncertainties introduced
by non-dispatchable prosumers becomes a major concern. Although the output of
weather-dependent power plants is difficult to predict, simply turning them off is not
feasible because the system might depend on their resources at on-peak hours and
benefits from their low-cost generation. Utilising the output of renewable energy
sources is further incentivised by legal regulations, such as the German Renewable
Energy Act.4 To ensure the system’s stable and efficient operation, uncertainties
therefore have to be anticipated when creating schedules and compensated for
locally to prevent their propagation through the system.

A natural approach to designing autonomous PMSs is to represent each prosumer
by a software agent that is able to proactively participate in the creation of schedules
and in maintaining the stability of the grid. In [17], we presented the concept of
Autonomous Virtual Power Plants (AVPPs) as an approach to meet the challenges of
future PMSs. AVPPs represent self-organising groups of two or more power plants
of various types. Each AVPP has to satisfy a fraction of the overall residual load
by periodically calculating schedules for its dispatchable power plants. The overall
residual load is the sum of the AVPPs’ local demand, i.e. local residual load. An
AVPP’s local demand originates from its non-dispatchable prosumers. Depending
on its composition, its local demand is either positive or negative.5 To avoid affecting
other parts of the system, each AVPP’s dispatchable power plants have to reactively
compensate for deviations resulting from fluctuations of the uncertain local demand.

To cope with the vast number of dispatchable power plants, we proposed a
self-organising hierarchical structure of AVPPs that decomposes the overall set
of dispatchable and non-dispatchable power plants A into several hierarchically
arranged AVPPs (see Fig. 2.4). In this hierarchical environment, each AVPP acts as
an intermediary � 2 I between its superior AVPP and its subordinate6 power
plants A� � A . Since an intermediary � represents the subsystem A�, it can
be viewed and treated as one large (dispatchable) power plant that subsumes the
behaviour of its collective (thus I � D � A ). As the hierarchy constitutes a tree,
the sets of subordinate power plants are pairwise disjoint. We refer to the root of the
hierarchy as the top-level intermediary/AVPP � 2 I .

In this hierarchical system structure, AVPPs autonomously create schedules in
a regionalised and top-down manner, meaning that each AVPP redistributes its

4http://www.gesetze-im-internet.de/eeg_2014/index.html
5An AVPP’s local residual load is negative, for instance, if its local environment only consists of
photovoltaics, leading to a surplus of production.
6“Subordinate” power plants are those an AVPP is directly responsible for, i.e. those on its next
lower level in the hierarchy.

http://www.gesetze-im-internet.de/eeg_2014/index.html
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Top-Level
AVPP

Fig. 2.4 Hierarchical system structure of a future autonomous and decentralised power manage-
ment system: Power plants are structured into systems of systems represented by AVPPs that act
as intermediaries to decrease the complexity of control and scheduling. AVPPs can be part of
other AVPPs. The left child of the top-level AVPP, for instance, controls a solar power plant, a
storage battery, and two subordinate AVPPs

own assigned demand to its subordinate dispatchable power plants D� � A�

(note that these might contain subordinate AVPPs). Even in such a regio-central
approach where AVPPs assign schedules to subordinates, the complexity of solving
the scheduling problem is reduced because each AVPP controls only a subset of all
dispatchable power plants (recalling the complexity O

�
2jDj�N�

, AVPPs thus have to
deal with smaller exponents jD�j instead of jD j). Assuming perfect parallelisation,
the time needed to solve the overall scheduling problem is the maximum of the
aggregated scheduling times of each branch in the hierarchy. Given an adequate
hierarchical structure, this results in shorter scheduling times for the overall system
in comparison to a centralised approach. While hierarchical problem decomposition
has been proposed as a generic approach to deal with large-scale systems prohibiting
a centralised solution [18, 19], our self-organising hierarchy of AVPPs is a means
to autonomously decompose the scheduling problem at runtime. This allows
the AVPPs to adapt their organisational structure in response to changes in the
environment or the agents’ internal state, and thereby to maintain an appropriate
compromise between solution quality and runtime performance.

Such a setting imposes several challenges we address in the remainder of
this chapter: (1) To ensure that schedules comply with the physical capabilities
of heterogeneous power plants, the dynamic behaviour of dispatchable power
plants has to be specified in the form of control models (see Sect. 2.3.1). (2) To
reduce the complexity of creating schedules on higher levels in the hierarchy,
the control models of AVPPs have to be abstracted (see Sect. 2.3.2). (3) To take
account of the individual preferences of physical prosumers and organisations,
their preferences have to be specified and incorporated into the schedule creation
(see Sect. 2.3.3). (4) To quantify and anticipate uncertainties stemming from
different sources, the AVPPs have to create predictive models of their subordinate
prosumers (see Sect. 2.4.1). In our approach, we use the social concept of trust as
a metaphor to measure the accuracy of predicted demand and scheduled supply. A
prosumer’s trustworthiness is the higher, the more it complies with its predictions
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or promises. (5) To promote the system’s robustness, the scheduling problem has
to be devised in a way that incorporates anticipated uncertainties and allows for
reactive compensations for deviations at runtime (see Sect. 2.4.2). (6) To obtain
robust schedules in large systems, appropriate heuristics have to be employed (see
Sect. 2.4.3). Since they can provide high-quality schedules in shorter time than the
regio-central approach sketched in this section, they allow for more frequent updates
of the schedules. (7) To promote both stability as well as efficiency, new types of
organisations have to be considered when forming AVPPs (see Sect. 2.5.1). (8) To
create and maintain such structures at runtime, new self-organisation algorithms
have to be developed (see Sect. 2.5.2). (9) To establish hierarchical structures that
feature an appropriate trade-off between scheduling times, system stability, and
efficiency, the system has to trigger the right control actions at the right time (see
Sect. 2.5.3).

While we focus on power generation in this chapter, both dispatchable and non-
dispatchable power consumers can easily be integrated into our concept of AVPPs
and the techniques we present in this chapter.

2.3 Dynamic Creation of Compositional Control Models
and Preference Specification

As mentioned before, power plants modelled as agents exhibit heterogeneous
physical behaviour that restricts valid ways to control them. Some are subject to
minimal start-up times, others may need to run for a minimal number of time steps
once they are on. All are bounded by their maximum output. In Sect. 2.3.1, we
discuss how to specify control models that capture typical heterogeneities faced
in our case study in order to be able to calculate feasible schedules. Moreover,
in our proposed self-organising hierarchy, an intermediary � acts on behalf of its
subordinate agentsA�. Since � will itself get assigned a schedule before it re-assigns
that schedule to its subordinates, the joint capabilities of the agents A� need to
be described adequately. Only considering the Cartesian product of the agents will
inevitably lead to a fully centralised, highly complex optimisation problem at the
top level. Therefore, we propose some techniques to calculate abstracted models of
a set of agents at runtime in Sect. 2.3.2. Besides mere physical restrictions, we also
aim for a language that captures preferences, i.e. optional yet desirable properties of
schedules. For instance, a power plant could specify to preferably be operated in a
certain economically good range. Section 2.3.3 illustrates these considerations.

Moreover, these models form the deterministic basis of the more elaborate,
uncertainty-aware scheduling problem discussed in Sect. 2.4. As such, they are
intended to comply with existing constraint-based technology, i.e. constraint pro-
gramming and mixed integer programming [20].
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2.3.1 Specifying Optimisation Problems Using Control Models

In designing control models, we search for a layer of abstraction that is flexible
enough to capture commonly occurred prosumers yet specific enough to be of use
to generate code in a modelling language amenable to optimisation solvers.

For illustration, consider two power plants a and b where b has to run at least
two time steps, once it is switched on but a does not show that physical limitation.
Both are constrained by minimal and maximal production when on and constant
maximal rate of change. For illustration, assume a may provide between two and
five units if it is on (written as the closed interval Œ2; 5�), zero if it is off, and may
change the contribution only by one unit in one time step. In [21], we introduced
supply automata as a formalism to describe feasible trajectories and generate
optimisation model code in the optimization programming language (OPL) [22].
Supply automata capture guarded transitions between modes (e.g. on or off) and
integer- or real-valued state variables (e.g. contribution or up-time). Consideration
of a real-valued supply variable S is mandatory. Figure 2.5 illustrates the idea on
the previous example regarding power plant b. Each system participant specifies its
control model as a supply automaton.

This formalism allows for a clear description of the possible physical behaviour
due to inertia and gives an operational view that is useful for simulation and
testing of the control models. In terms of constraint models for discrete optimi-
sation solvers, however, the only primitives are decision variables, parameters, and
constraints, i.e. relations that specify consistent variable assignments. We thus need
to move to a declarative view of the feasible trajectories. It is straightforward to
“flatten” an automaton-based specification to a constraint model, as was done in
[21].

To illustrate some of the complications incurred when sticking to a conventional,
parametrised constraint model, we sketch the flattening steps for the minimal up-
time constraint that could be generated from Fig. 2.5. Assuming that decision
variables for the supply at time t, SbŒt� exist, we need additional decision variables
for bookkeeping. We use a boolean variable isOnbŒt� to store whether b is on.

off
S= 0∧isOn = 0∧consOn = 0

on
Smin ≤ S ≤ Smax ∧isOn = 1

[up= 1∧consOn′ = 1]

[down= 1∧consOn ≥ 2]

[consOn′ = consOn+1]

Fig. 2.5 Supply automaton to model a minimal up-time of 2 for agent b. A local variable isOn
is constrained according to the modes of the automaton. Another local variable consOnbŒt�
counts the number of consecutive time steps b is on. Switching from on to off is only possible if
consOnbŒt� � 2. Expressions in brackets denote jump predicates, invariants are inside the modes,
and primed variables indicate values after a transition
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Assume for the sake of this example that isOnbŒt� $ SbŒt� > 0 holds. We then
define an additional variable consOnbŒt� for the number of consecutive time steps
a plant is on. These variables are constrained with a case distinction:

:isOnbŒt� ^ isOnbŒt C 1� ! consOnbŒt� D 0 ^ consOnbŒt C 1� D 1 (2.1)

isOnbŒt� ^ isOnbŒt C 1� ! consOnbŒt C 1� D consOnbŒt� C 1 (2.2)

isOnbŒt� ^ :isOnbŒt C 1� ! consOnbŒt C 1� D 0 (2.3)

:isOnbŒt� ^ :isOnbŒt C 1� ! consOnbŒt� D 0 ^ consOnbŒt C 1� D 0 (2.4)

One can write this more succinctly by noting that consOnbŒt� D 0 $ :isOnbŒt�
holds, simplifying (2.1), (2.3), and (2.4). For clarity, we used the verbose formula-
tion. These variables allow us to to specify the minimal up-time:

isOnbŒt� ^ :isOnbŒt C 1� ! consOnbŒt� � 2 (2.5)

However, these constraints do not matter for power plant a which has no minimal
up-time. The conventional, parameterised approach in modelling languages would
require adding the decision variables isOnaŒt� and consOnaŒt� to our constraint
model. The constraints (2.1), (2.2), (2.3), and (2.4) would still have to be managed
for a even if (2.5) is ignored. This unnecessarily increases the constraint model
leading to possibly higher solving efforts. Consider, e.g. an optimisation problem
intended to schedule 10 plants for 4 time steps, as faced by an AVPP and assume
that only 3 of them are of type b. Due to the minimal up-time constraint, 3 � 2 �
4 D 24 additional boolean variables have to be introduced. Simply adding isOnaŒt�
and consOnaŒt� for all 10 agents leads to 10 � 2 � 4 D 80 Booleans. Hence,
56 superfluous variables are added. More severely, in a propagation-based solver,
we also add at least 56 unnecessary constraint propagators to keep isOnaŒt� and
consOnaŒt� consistent.

Clearly, stating these and more involved inertia constraints directly in a modelling
language is prone to errors (consider, e.g. forgetting case (2.4)). We therefore move
these tedious yet straightforward “flattening” tasks to a code generator and have
modellers focus on the system they are trying to describe.

2.3.2 Model Abstraction: Dynamic Creation of Compositional
Control Models

Once control models are specified as supply automata for physical power plants, we
need to address the task of describing the composite behaviour for the intermediary.
We obtain a precise model of the joint contributions by taking the Cartesian
product of several automata, leading to a fully centralised top level optimisation,
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as mentioned before. Instead, for the sake of scalability, we can choose to sacrifice
exact optimality by using abstracted models of collectives, i.e. an intermediary �

abstracts all models of A� to a single one. Coarse decisions about schedules at a
higher level are based on these abstracted models and get refined when the assigned
residual load is redistributed. The goal of abstraction is to find composite supply
automata that are comparable in calculation efforts to those of physical plants but
represent a whole collective instead. We presented algorithms to calculate these
abstractions in [21, 23, 24] and revisit the core concepts.

More specifically, we need to calculate the states and transitions of a composite
automaton. First, the joint space of feasible contributions has to be found as they
represent the states. Since each mode constrains feasible contributions according
to its invariant (e.g. a positive minimal contribution if the plant is on), we have to
combine all possible modes. Consider again the two plants a and b which both can
be turned off but contribute in the intervals Œ2; 5� and Œ8; 15�, respectively, if they
are on. For the collective fa; bg, we get Œ0; 0�, if both a and b are off, Œ2; 5�, if only
a is on, Œ8; 15�, if only b is on, and Œ2; 5� C Œ8; 15� D Œ10; 20�, if both a and b
are on.7 Since at a higher level it does not matter whether, e.g. 10 is obtained by
assignment h2; 8i or h0; 10i, we can merge overlapping intervals. This results in a
normalised, sorted list of non-overlapping intervals, e.g. hŒ0; 0�; Œ2; 5�; Œ8; 20�i. We
identified .0; 2/ or .5; 8/ as “holes”. This procedure naturally extends to multiple
modes (e.g. start-up, shut-down, . . . ). Similarly, we obtain lists of feasible intervals
for collectives of k D jD�j > 2 agents. In the worst case, however, O.mk/ intervals
are calculated where m is the largest number of distinct intervals a single plant has.
Our application scenario typically leads to m D 2 at lower hierarchy levels since
plants contribute Œ0; 0� if they are off and in ŒSmin; Smax� with 0 < Smin � Smax

when on. Some plants may however be so-called must-run plants [25], leading to a
singleton list hŒSmin; Smax�i. Hence, if all plants must run, m D 1 and thus this single
contribution interval of the collective can be found in time linear in k. The situation
is ameliorated by applying the binary combine-and-merge operation incrementally.

In addition to the contribution ranges that map to the distinct states, we need to
consider inertia in the abstract model as well – corresponding to the transitions of
the supply automation of the collective. Moreover, other relationships between the
variables of a collective are needed such as a cost function mapping joint production
to total (minimal) costs. In the previous example, schedules h2; 8i and h0; 10i
could lead to substantially different costs. Fortunately, the constraints obtained from
supply automata give us a way to determine the best costs for, e.g. production
level 10 by solving an optimisation problem. We exploit this capability of point-
wise calculating a function of interest (e.g. “production to costs” or “production
to maximal next production”) in a sampling approach to model abstraction. With
enough points of the function, we aim for approximations that interpolate suffi-
ciently accurate in unknown ranges of the function such that a simpler representative

7Recall that b further has a minimum up-time constraint but this does not concern the generally
feasible contributions relevant at this point but rather dynamic behaviour.
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Fig. 2.6 Sampling abstraction is concerned with selecting informative points of an unknown but
computable function. Input and output represent variables of a collective, e.g. production to costs

(i.e. a piecewise linear function) can be used at a higher level.8 We revisit plants
a and b with production spaces hŒ0; 0�; Œ2; 5�i and hŒ0; 0�; Œ8; 15�i, respectively. We
know that fa; bg may only produce in hŒ0; 0�; Œ2; 5�; Œ8; 20�i. Now we basically ask
“What is the cheapest way to configure a and b such that their joint contribution is
x?”. A sequence of optimisation problems is consequently solved for various input
values of x, e.g. f0; 3; 14g to have one point for every interval, and the respective
output is used to form sampled input-output pairs.

Using these sampled points, a piecewise linear function approximates the true
underlying function f . However, the choice of useful sampling point inputs is
not straightforward. When just equidistantly sampling the function’s domain, we
might “miss” important (i.e. “informative”) points. For example, in Fig. 2.6a the
optima were captured worse with 8 (hence, more) equidistantly selected points
than with 6.9 If these points happen to be critical, bad coarse choices made by the
superordinate intermediary cannot be compensated well. Such effects were observed
empirically in [21] where offering more sampling points actually led to less precise
approximations with worse overall schedules.

In [24], we therefore presented a machine learning-guided approach to sampling
point selection to mitigate these effects. The algorithm trains a probabilistic
regression model (i.e. for an unknown input x it yields both mean � and variance �2

of the predicted output y) with a set of already sampled points. It then proceeds by
asking for function values at locations where the regression model is most uncertain
(see Fig. 2.6b). Possible regressors include Gaussian Processes or Decision Forests.
The choice has to be made in accordance with the universe of possible functions
a regressor can model (smooth functions, linear functions with jumps etc.). For

8Piecewise linear approximations offer to formulate problems as mixed integer linear programs
which have a rich and efficient algorithmic support.
9Supposedly, more points were expected to provide higher accuracy.
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our considered cost and inertia functions, Decisions Forests with linear leaf models
turned out to be more effective than Gaussian Processes due to the presence of
discontinuities and jumps [26, 27]. With this improved selection strategy, offering
more sampling points indeed led almost monotonically to better results (in contrast
to an equidistant strategy) and reduced the overhead costs compared to optimal
solutions from 1.7 % to 0.9 % [24].

2.3.3 Preference Specification

The scheduling constraints imposed by physics are hard restrictions on the sets
of feasible trajectories. However, not all schedules are perceived equally good,
especially by different agents. Instead, some schedule properties might just be
specified as optional, yet desirable. For instance, consider that an operator could
restrict the rate of change between two time steps to avoid damaging the power
plant. Classical constraint problems only include hard constraints that must hold in
any solution. Certainly, one could attempt to model preferences as additional hard
constraints but that process is likely to result in an over-constrained model, i.e. one
that admits no solution. Especially if the actual problem instances emerge at runtime
in an autonomous system, one should not expect to satisfy all constraints but rather
design for flexibility.

Therefore, the constraint framework has been extended to soft constraints
to allow for satisfaction degrees such as weights or probabilities [28]. Besides
formulating optimisation problems, soft constraints can also be employed to order
states in the corridor of correct behaviour, leading to a notion more graded than the
bi-level distinction in acceptance and target space in [4]. In most soft constraint
approaches, the image of the objective function is an algebraic structure that
includes multiplication to combine several valuations (a so-called decomposable
objective function) as well as addition to calculate suprema of partially ordered
elements (in the case of c-semirings [29]) or directly use an ordering (in the case
of valuation structures [30, 31]). Based on these structures, reusable optimisation
algorithms including branch-and-bound, soft constraint propagation, or bucket
elimination have been proposed [28].

However, there is limited use of these formalisms for open self-organising
systems. Clearly, various agents may show potentially opposing preferences over the
possible outcomes, e.g. schedules. If we simply applied some quantitative scheme
(violation of constraint c1 “costs” penalty 10), agents could outbid each other in an
open system by arbitrarily increasing the penalties of “their” own soft constraints,
making a weighted approach useless. Instead, we want agents to only issue
qualitative (ordinal) preferences over constraints. In [32], we introduced constraint
relationships to specify preferences over constraints as a directed graph (digraph)
with an edge c1 ! c2 indicating that c2 is more important than c1. To indicate
how much more important c1 is, we proposed several dominance properties in [32].
It turns out that for constraint relationships, neither a total ordering is mandatory
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Fig. 2.7 Case study depicting the composition of preference structures for an AVPP � and
3 time steps. Each dashed, rounded rectangle indicates a PVS. Lexicographic products are
shown by vertical, direct products by horizontal alignment. Directed graphs represent constraint
relationships; sets of constraints are aggregated by either worst-case (WC) or summed (SUM)
error (adapted from [34])

(rendering valuation structures inappropriate) nor suprema have to exist (making c-
semirings not directly applicable) [33]. Instead, we relied on the recently introduced
notion of a partially ordered valuation structure (PVS) [31] that properly generalises
the two former structures.

To capture the compositional nature of our system, we investigated algebraic
products of PVS. Interestingly, PVS are closed under lexicographic products as long
as some little restrictive conditions hold – in contrast to c-semirings [31]. Also, a
direct product can be defined in the usual way and effectively leads to a Pareto-
ordering of the individual agents’ preferences. With both products at hand, we can
map organisational structures in a hierarchical (lexicographic) or egalitarian (direct)
sense. An example modified from [34] illustrates this principle, as shown in Fig. 2.7.
We describe how larger PVS are composed of smaller ones.

Assume an AVPP composed of three prosumers biogas, EV (an electric vehicle),
and thermal. For simplicity, the overall goal is to meet the demand. This is
represented by constraints balanceViol�Œt� for each time step t. Each constraint
maps to a PVS by taking the absolute error between summed supply and demand.
The PVS for H�

1 is thus composed of the carrier set RC, the natural ordering �R

(0 is best) as well as a suitable combination. Assume that we compare solutions by
the worst violation, x � y D maxfx; yg, with x; y 2 R.10 This PVS is the primary
filter of optimal solutions. A schedule with a worst case violation of 6 should be
less desirable than one with 5 – no matter how the other soft constraints rate it.
We capture this using the lexicographic product. The second layer of this product
is itself a direct product of three individual PVSs. The prosumers biogas and EV
specify PVSs in terms of constraint relationships over desirable properties. For

10Note that this operator leads to so-called collapsing elements [31] that need further attention [34].
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instance, biogas aims to have gas available at night to sell at high prices due to the
lack of photovoltaic energy. Similarly, the electric vehicle EV wants to be charged
sufficiently in the morning, and specifies preferred battery levels. Finally, a generic
thermal unit reuses the idea of constraint hierarchies [35] that can be modelled
using lexicographic products internally. It puts constraints regarding reduced rates
of change and desirable production ranges into layers. We obtain as PVS for the
overall problem (shown in Fig. 2.7):

P�1 Ë .Pbiogas � PEV � .P1
thermal Ë P2

thermal// (2.6)

where Pa represents the PVS of agent a. Since our language is mathematically
positioned in existing abstract formalisms, we can instantiate generic optimisa-
tion algorithms. Moreover, the semantics of constraint relationships give rise to
interesting variable and value ordering heuristics that can significantly reduce the
size of the search trees to be explored. For instance, exploring variables involved
in important constraints first led to significant runtime savings [33]. Additional
exploitable properties are subject to further research.

2.4 Trust as Enabler for Robust Resource Allocation

A major challenge of the resource allocation problem (RAP) defined in Sect. 2.2 is
to hold the balance between supply and demand despite uncertainties in the form
of possible deviations from the predicted demand or the scheduled supply. For the
system’s stable and efficient operation, the agents have to quantify and anticipate
these uncertainties and to incorporate this information into their scheduling deci-
sions. In our approach, this is achieved by enabling the intermediaries to create
models about the trustworthiness of their subordinates. When creating schedules,
intermediaries use these models to derive an expected demand or supply from the
possibly erroneous predictions or promises.11

As for uncertain demand, we proposed to use our concept of Trust-Based
Scenario Trees (TBSTs) [36] to obtain robust solutions [37] in the sense that
the system can efficiently and effectively achieve its goals despite disturbances.
TBSTs serve as predictive models in which each scenario represents an expected
development of the demand based on previously observed deviations from demand
predictions. Creating schedules for multiple scenarios, together with the ability to
choose the most suitable scenario at runtime, avoids situations in which deviations

11We opted for anticipating prediction errors, i.e. deviations, instead of the agents’ behaviour
because some agents make better prediction about their future behaviour than others and
anticipating the agents’ actual behaviour without incorporating their prediction requires additional
information which makes the task of creating an adequate probabilistic model much more difficult.
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between supply and demand are higher than (technically) allowed, or where their
compensation is either very costly or not feasible due to the agents’ inert behaviour.

In Sect. 2.4.1, we sketch the concept of TBSTs as a means to quantify and
anticipate uncertainties in demand predictions. In Sect. 2.4.2, we borrow and adapt
techniques from the field of online stochastic optimisation [38] to create TBST-
based schedules that enable the system to deal with different possible developments
of the demand. In Sect. 2.4.3, we outline a regionalised auction-based mechanism
for scalable schedule creation in large-scale systems. It not only considers uncertain
demand by means of TBSTs but also implements a trust-based risk avoidance
strategy that mitigates uncertainties originating from schedule violations.

2.4.1 Trust-Based Scenarios

As explained in Sect. 2.2, inertia requires the intermediaries to allocate resources
proactively on the basis of demand predictions requested from their subordinate
non-dispatchable agents. However, these predictions might turn out to be wrong,
resulting in a deviation between the predicted and the actual demand (see Fig. 2.8).
If prior prediction errors are indicative of future deviations, agents can use their
observations to deduce a probabilistic model of their environment or interaction
partners. In PMSs, such deviations stem from inaccurate or outdated standard
load profiles, the prosumers’ geographic location that influences local weather
conditions, or imprecise sensor data used to make predictions, among others. Given
a demand prediction of one or a group of its subordinate agents, an intermediary
can use such a model to anticipate future deviations which – combined with the
prediction – yield an expected demand for a series of future time steps (see Fig. 2.8).
To create a meaningful probabilistic model of an agent or the environment, we
have to meet three major challenges [36]: (C1) the agents’ or the environment’s

Demand

Time
tnow t1 t2 t3
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Fig. 2.8 Uncertainties manifest as deviations between the predicted and the actual demand, which
corresponds to the residual load in the power management case study. Relying on expectations
instead of predictions can significantly reduce observed deviations (note that the curve “expected”
is closer to “actual” than the curve “predicted”). The dotted vertical lines indicate the time steps ti

for which predictions and expectations are used to create schedules
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behaviour can change over time (e.g. due to temporary environmental influences,
such as snow); (C2) only few assumptions about the behaviour can be made (e.g.
weather conditions influence consumers and producers in different ways); (C3) the
behaviour might be time-dependent in the sense that an inaccurate prediction for
time step t is likely to be followed by an inaccurate prediction for time step t C 1.
Due to challenges (C2) and (C3), a simple trust value reflecting the mean deviation –
maybe even in combination with the variance of deviations – is often not sufficient
to obtain an informative probabilistic model. On the other hand, due to challenge
(C1), a precise offline model of the stochastic process is either not accurate enough
for momentary situations or computationally not feasible for fast reactions.

In the domain of operations research and PMSs, scenarios and scenario trees
are proven concepts to describe a stochastic process (see, e.g. [39, 40]). Each
scenario represents a possible behaviour over a series of future time steps and has a
probability of occurrence. Due to the computational complexity of creating adequate
scenarios and scenario trees, many approaches make assumptions that do not
comply with the challenges of open systems, though. As a consequence, scenarios
and their probabilities are often predetermined and generated offline or cannot
mirror time-dependent behaviour [40]. Other methods predefine the tree’s structure,
the number of scenarios, or the underlying probability distribution (cf. [41]). An
approach for open self-organising systems must not make such assumptions and
derive scenarios from up-to-date data at runtime, which is why computationally
efficient solutions are needed. Other predictive models, such as Hidden Markov
Models [42], often lack the ability to reflect time-dependent behaviour for multiple
time steps (due to the Markov property) or cannot provide agents with different
(possibly related) scenarios.

In [36], we introduced the concept of Trust-Based Scenario Trees (TBSTs) that
meets the challenges listed above. By classifying (i.e. discretising) sequences of
deviations by means of bins (i.e. intervals) of a predefined size, an agent obtains
an individual empirical probability mass function specifying a discrete probability
distribution over multiple time steps. Each observed sequence of bins represents
a Trust-Based Scenario (TBS), which, in turn, stands for a possible sequence of
deviations. The presumed probability that a TBS occurs depends on how often
the corresponding sequence was observed relative to the occurrence of the other
sequences. In combination, the TBSs yield a TBST whose transitions are annotated
with conditional probabilities that the expected deviation changes from one value
to another. Figure 2.9 illustrates the process of creating a TBST from an agent’s
observed deviations in detail. For the sake of clarity, we call such a tree and its
scenarios a deviation tree and deviation scenarios in the following.

With respect to the hierarchical system structure, each intermediary employs the
concept of TBSTs to measure the accuracy of its local demand predictions and to
deduce expected deviations. As schedules are created for the next N time steps,
the experiences used for the generation of deviation trees encompass N deviations
each. Every time schedules are created, intermediaries update their deviation trees
with their latest experiences. In our case study, each AVPP creates a deviation
tree to anticipate prediction errors of its local residual load that comprises its
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Fig. 2.9 The creation of a Trust-Based Scenario Tree (TBST) is reminiscent of the creation of
a histogram in which time dependencies are taken into account: A TBST is based on a set of
experiences, each of which captures a sequence of deviations between the actual and the predicted
demand (cf. step 1). Each deviation is normalised to an interval between �1 and 1 (here we use
a normalisation factor of 100). Regarding Experience 1 in step 1, for instance, the deviation of
35 � 85 D �50 between actual and predicted demand is normalised to �0:5. Each normalised
experience is then classified by means of a grid of bins (cf. step 2). Classifying sequences of
deviations allows the agents to record time-dependent behaviour. A set of classified experiences
that results in the same sequence of bins constitutes a Trust-Based Scenario, as is the case with
Experiences 1 and 2 (cf. step 2). In step 3, we regard the set of TBSs as a tree whose branches
result from common prefixes of the sequences of bins (each path from the root r to a leaf represents
a TBS). The numbers in the tree’s nodes indicate how often a bin is reached from another bin. By
using the relative frequency of these numbers, we obtain a node-specific frequency distribution of
its child. The result is a TBST with conditional probabilities as shown at the TBST’s transitions
in step 4. A TBS’s probability of occurrence is equal to that of the corresponding leaf. With
regard to a specific TBS, the series of the bins’ mean values embodies an expected sequence
of deviations. For example, the uppermost TBS hŒ�0:56; �0:33/; Œ�0:6; �0:2/; Œ�1; �0:33/i in
step 4 represents an expected sequence of deviations of h�44:5; �40:0; �66:5i of probability 0:34

(the bins’ mean values were multiplied by the normalisation factor of 100). The grid’s granularity
not only influences the number of TBS, the shape of the TBST, and the conditional probabilities,
but also the quality of derived expectations. If the quality of long-term predictions is less important
than those of short-term predictions, one can decrease the bins’ granularity with the relative time
step as shown in steps 2 and 3

subordinate non-dispatchable power plants and, in case of the top-level AVPP, also
the consumers. Apart from the top-level AVPP, the AVPPs’ local residual load is
thus most likely negative.
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2.4.2 Robust Resource Allocation on the Basis of Scenario
Trees

To create schedules on the basis of the expected instead of the predicted demand,
each intermediary uses a so-called demand tree consisting of demand scenarios. It is
derived from the intermediary’s deviation tree, reflecting the uncertainties of its local
demand, by adding the predicted demand to each deviation scenario. For instance,
adding the deviation scenario h�44:5; �40:0; �66:5i given in the caption of Fig. 2.9
to the demand prediction h85; 90; 90i depicted in Fig. 2.8 yields the demand scenario
h40:5; 50; 23:5i, labelled “expected” in Fig. 2.8.

If intermediaries created schedules for a single demand scenario, they would
have to decide for a specific TBS. Since this decision can turn out to be wrong,
stochastic programming [43] proposes to consider multiple scenarios when solving
an optimisation problem under uncertainty. By taking the scenarios’ probabilities
into account, intermediaries create schedules that minimise the expected violation
of the demand [44]. This yields robust solutions [37] as the effect of changes in the
environment or the decision variables is less severe than in a situation in which only
a single scenario is regarded (see Fig. 2.10).

In our case, each intermediary creates schedules for the entire demand tree and
thus solves a so-called multi-stage stochastic program. Due to their computational
complexity [45], most of the scenario-based approaches that can be found in the
literature (e.g. [46, 47]) use a two-stage stochastic program as approximation.
A solution to a two-stage problem is composed of a first- and a second-stage
decision: The first-stage decision states how many resources the agents should

Fitness f (v)

Decision Vector v

disturbances

expected
value expected

value

solution of a robust
optimisation scheme
for a certain scenario

solution of a conventional
optimisation scheme
for a certain scenario

Fig. 2.10 A fitness landscape illustrating the idea of robust solutions (according to [37]): A
conventional optimisation scheme searches for the optimal solution that might only be feasible for
a specific scenario (e.g. it finds the least expensive schedules for a residual load of 10 MW). In case
of disturbances, the solution’s actual fitness might turn out to be much lower, though (e.g. assume
that the actual residual load is 12 MW so that a costly peaking power plant has to be ramped up to
satisfy the additional demand). A robust optimisation scheme incorporates uncertainties in the form
of multiple scenarios. Robustness is achieved by, e.g. searching for a plateau of good fitness values
that yields a higher expected fitness than the solution of the conventional optimisation scheme (e.g.
as a residual load of either 10 MW or 12 MW is expected, it schedules the power plants in such a
way that both scenarios get by with inexpensive power plants)
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provide independently of the realisation of the uncertain demand that has to be met
in tnow C �� (recall that we defined �� as a schedule’s resolution in Sect. 2.2). The
second-stage decision serves as a scenario-specific corrective, i.e. a recourse action,
that is carried out to balance supply and demand as soon as its realisation is known.
A typical example would be to take the risk of buying resources at a higher price
once the actual demand is known instead of pre-ordering them due to storage costs
and the possibility of a surplus. The concept of recourse actions (which is also used
in multi-stage problems) is, however, not applicable to our RAP because inertia is
likely to prevent the agents from performing the action as scheduled (e.g. because
of their limited rate of change). As opposed to this, our agents have to monitor
the development of the demand at runtime and to make continuous reactive supply
adjustments in order to maintain the balance as well as possible [48]. Apart from
inertia, continuous reactive adjustments are necessary because of the following three
reasons: (1) The scheduling problem’s complexity and the uncertainties involved
call for rather coarse-grained schedules, which is why we create them for a time
pattern of multiples of �� . Still, the demand has to be satisfied in a fine-grained
time pattern of �t � �� (see Sect. 2.2). (2) Some agents might contribute according
to the wrong scenario. Such a mistake is caused by a false expectation of how the
demand will develop, e.g. from tnow until tnow C�� . Our approach allows the agents
to self-improve their flexibility in dealing with expected uncertainties as they can
choose the most appropriate schedule at runtime [48]. In [44], we demonstrate that
the ability to switch to the most suitable scenario at runtime reduces the prediction
error by 75:03 % (standard deviation � D 0:36 %) on average, compared to 59:67 %
(� D 2:04 %) when sticking to the TBSTs’ most probable development. (3) The
system must be able to deal with unforeseen developments of the demand, i.e. even
those that are not captured by any demand scenario.

In the context of continuous adjustments, considering a multi-stage instead of a
two-stage problem is advantageous because scenarios are treated as a tree instead of
a fan of unrelated scenarios. By taking account of the demand tree’s structure (this
means that we schedule contributions for nodes, which might be part of multiple
scenarios), we ensure that the agents cannot only provide the scheduled output in
tnow C �� but also in subsequent time steps (note that there might be a branch
following tnow C ��). This characteristic allows the agents to delay their decision
which demand scenario to choose, i.e. their assumption in which direction the
demand develops, until the time step before a branch in the tree has to be taken.

Since each schedule has the same shape as the intermediary’s demand tree,
scenario-based schedules proactively guide the agents’ decisions of how much
resources to provide in which situation. In other words, the schedules encode
strategies for possibly necessary contribution adjustments or, in terms of stochastic
programming, schedules provide the agents with a decision rule [43]. An example
illustrating this principle is shown in Fig. 2.11 where the combined scheduled output
of a base load and a peaking power plant has to meet different residual load
scenarios. The power plants use their schedule as a source of information about
adequate reactive output adjustments that comply with the actual residual load. As
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Fig. 2.11 The power plants use TBST-based schedules as a blueprint for how much power to
provide in which situation. For each node, the sum of scheduled output (upper half of the nodes)
of the base load and peaking power plant matches the corresponding expected residual load (lower
half of the nodes). While the base load power plant should provide an output that is more or
less constant and independent of changes in the residual load, the peaking power plant – whose
maximum output is 20 MW – should make adjustments in accordance with residual load changes.
The dotted line symbolises the development of the selection of the most suitable scenario, i.e. the
scenario the power plants identified as closest to the actual residual load, which is indicated by the
light curve. Between tnow and t1, the power plants reactively switch from one scenario to another
after they noticed that the demand tends to be closer to 60 MW instead of 80 MW

we showed in [48], this procedure allows the system to improve its efficiency and
stability.

2.4.3 Auction- and Trust-Based Resource Allocation

The decision to underpin the system’s robustness by creating schedules for several
demand scenarios complicates the search for optimal solutions in large-scale
systems. As stated in Sect. 2.2, the environment’s dynamic and uncertain nature
requires to revise the schedules over time. It is therefore more beneficial to be
able to update schedules frequently with a fast but possibly sub-optimal method
than spending much time on calculating optimal schedules for a problem whose
conditions might change during calculation. In other words, sparing no effort
in finding an optimal solution would be out of proportion to the benefit. This
not only justifies our approach to decompose the scheduling problem by means
of a self-organising hierarchical system structure as shown in Sect. 2.5, but also
the application of heuristics for solving the scheduling problem within each
organisation (i.e. AVPP).

In [49], we presented an auction-based algorithm, called TruCAOS, that solves
the scheduling problem in a cooperative and regionalised manner. As the provision
and consumption of resources, such as electricity, are already subject to rewards
and costs in real systems, a market-based approach is a natural choice. TruCAOS
deals with an uncertain provision of scheduled resources by means of trust values
and with uncertain demand by means of TBSTs. Furthermore, it can schedule the
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provision of reserves, that is, it can proactively increase the agents’ available degrees
of freedom [50]. This measure promotes the agents’ ability to adapt their supply to
unforeseen situations. In the following, we give a brief overview of TruCAOS’s
functionality. For more details, we refer the interested reader to [49, 50].

Similarly to the regio-central approach sketched in Sect. 2.2, TruCAOS deter-
mines schedules in a top-down manner: The schedule creation is triggered by the
top-level intermediary and subordinate intermediaries are responsible for recur-
sively distributing their fraction of the overall demand. In contrast to the regio-
central approach, which assigns schedules, TruCAOS does not accumulate the
complexity of solving the scheduling problem in the intermediaries, though. To
decrease complexity, each intermediary’s subordinate dispatchable agents become
an active part in the scheduling process by enabling them to sell or buy resources
according to the demand (tree) it has to distribute. This is done in an iterative and
incremental process that, in its basic form, is reminiscent of an iteratively performed
first-price sealed-bid auction (see, e.g. [51]).

In each iteration, the subordinate dispatchable agents D� of an intermediary �

can bid for a part of the remaining demand it has to distribute. A corresponding
proposal, i.e. a proposed schedule, includes a promised contribution along with
the costs, i.e. a remuneration, for providing the contribution. Having gathered the
proposals of all bidders in a set P , the intermediary completes the bidding iteration
by identifying and accepting one or more suitable winner proposals Pw � P . For
the selection of Pw, we opted for a compromise between the number of bidding
iterations and resulting monetary costs. Clearly, accepting only the proposal with
the best price-performance ratio (defined as the ratio between the expected total
contribution and the expected remuneration) that improves the demand’s satisfaction
leads to low-priced allocations. Yet, we allow intermediaries to accept a combination
of proposals to decrease the number of bidding iterations and to take advantage
of synergy effects (these are especially beneficial in the context of multi-objective
optimisation). This requires solving the combinatorial auction problem in which
the intermediary chooses Pw in such a way that there is no other combination
that yields a greater expected gain in satisfaction of the remaining demand. As
the secondary goal is to minimise the expected costs, these objectives as well
as their lexicographical order correspond to those defined in Sect. 2.2. Because
there might be less expensive yet suitable proposals in the next bidding iteration,
intermediaries filter out, i.e. reject, proposals with a price-performance ratio worse
than a historical average (calculated as a moving average over a number of previous
schedule creations) before determining Pw. While this procedure does not yield
minimal costs, it ensures that the average costs do not increase. If there is no
proposal whose price-performance ratio is better or equal to the historical average,
only the proposals with the best price-performance ratio pass the filtering stage.
As filtered proposals are rejected, the complexity of the combinatorial optimisation
problem that is solved to determine Pw is reduced. The most recently accepted
proposal of a dispatchable agent a defines its schedule, which is a contract between
a and its intermediary for all time steps in the regarded scheduling window W : a
has to comply with its schedule in exchange for payment.
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In TruCAOS, the dispatchable agents create their proposals by solving an optimi-
sation problem that is very similar to the one solved by the regio-central scheduling
approach introduced in Sect. 2.2. An agent creates its proposals according to its
control model including a cost function and may involve individual preferences
that should be considered as much as possible (see Sect. 2.3.3). However, since
each dispatchable agent now only has to determine the scheduled contribution for
itself, TruCAOS mitigates the scalability issues discussed in Sect. 2.2. Instead of
O

�
2jD�j�N�

, the complexity of solving the RAP for a subsystemA� with dispatchable
agentsD� is only O

�
jtotal � �jD�j � 2N C 2jD�j��, with D� D P , jtotal the total number

of iterations needed to solve the RAP, and O
�
2jD�j� the complexity of selecting

winner proposals Pw from P . Note that we still benefit from a hierarchical
approach due to the complexity of proposal selection.12 Because of the top-
down creation of schedules, intermediaries submit bids before their subordinates.
Therefore, they have to be aware of the capabilities of their collective to avoid
infeasible schedules that would have to be corrected. Since intermediaries do
not impose schedules on subordinates in TruCAOS, they can use the abstracted
control model of their collective to create their own proposals in O

�
2N

�
instead

of O
�
2jD�j�N�

(see Sect. 2.3.2).
The iterative process of distributing the remaining demand terminates either

if it is sufficiently satisfied (i.e. if its absolute values are below a predefined
threshold), if � did not receive any proposals (i.e. P D ;), if there is no proposal
that increases the demand’s satisfaction, or if a maximum number of bidding
iterations is exceeded. The information about termination originates from the top-
level intermediary and propagates downwards in the hierarchy.

To cope with uncertain supply, each intermediary assesses the behaviour of
each of its subordinate dispatchable agents by means of two trust values: The
first trust value records a dispatchable agent’s mean deviation from its scheduled
supply and thus captures systematic misbehaviour. The second trust value is used
to mirror a dispatchable agent’s predictability. It represents the risk that the goal of
balancing supply and demand is not achieved because the agent does not provide
resources as stipulated or expected. An agent’s predictability decreases with the
variance of its deviations (this criterion is part of the confidence metric we defined
in [52]). Both trust values are assessed as a function of an agent’s scheduled supply.
Intermediaries incorporate these trust values when selecting winner proposals to
anticipate uncertainties and incentivise benevolent behaviour: Instead of relying on
a proposed contribution, intermediaries use a dispatchable agent’s first trust value
to determine its expected contribution.13 The concept of predictability is used to put

12Bear in mind that model abstraction requires additional computational effort (see Sect. 2.3.2).
13Note that we do not use TBSTs to reflect uncertainties in the dispatchable agents’ supply. If we
used TBSTs, we would be faced with the problem that changing the contribution of a proposer ai

in response to the TBST of a proposer aj could cause a change in ai’s TBST, whereupon aj would
have to change its contribution and so on and so forth. It is not guaranteed that there is a fixed
point, i.e. a steady state.
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the dispatchable agents into states of less uncertainty. This is obtained by decreasing
the price-performance ratio of agents of low predictability. As a consequence,
trustworthy agents can charge higher prices for a contribution than untrustworthy
agents (cf. price premiums and price discounts in [53]). In conjunction with a
payment function that distributes rewards according to the agents’ actual instead
of their scheduled supply and that penalises schedule deviations, these measures
incentivise benevolent behaviour. This corresponds to the idea of mechanism
design [54]. A more detailed explanation of the trust-based techniques, accompanied
by an evaluation, can be found in [55].

Our evaluations confirm that these characteristics allow TruCAOS to create high-
quality schedules in much shorter time than a central or even the regio-central
approach at marginally higher costs. While both the regio-central approach and
TruCAOS profit from the creation of hierarchical system structures in general, we
observed that the shape of an adequate structure can differ substantially. Because
TruCAOS can deal with much larger subsystems, the overall structure can be
kept flatter, which prevents the introduction of unnecessary abstraction errors
(see Sect. 2.3.2). Comprehensive empirical evaluations concerning TruCAOS’s
performance in terms of runtime and the schedules’ quality as well as a comparison
to the regio-central approach can be found in [49, 50]. Compared to other agent-
based resource allocation mechanisms, TruCAOS is unique in the way it combines
ideas from the field of mechanism design and online stochastic optimisation in a
market-based approach that creates schedules for multiple future time steps. Other
approaches for resource allocation either do not regard uncertainties at all (e.g. [56–
58]) or are specialised to specific types (e.g. [59–62]).

2.5 Self-Organised Formation of System Structures
Promoting Robustness

In numerous multi-agent systems (MAS), the task is to solve an optimisation
problem whose complexity is subject to the number of participating agents. A
well-known representative is the scheduling problem considered in this chapter.
To achieve scalability in large-scale systems, a crucial step is to establish an
organisational structure that supports the agents’ and the system’s objectives [63]. If
the regarded optimisation problem can be reasonably decomposed in a hierarchical
manner, hierarchical system structures come into play. In this section, we describe
how such hierarchies can evolve in a self-organising manner and show that they
allow a system to come to a compromise between solution quality and performance
in terms of runtime. Essentially, hierarchies are obtained by recursively partitioning
a set of agents into disjoint subsystems represented by intermediaries. These are
then arranged in a tree. If the system has to deal with uncertainties originating from
participants that can or should not be excluded from the system, the characteristics
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of the created partitionings become a major concern: A single subsystem not being
able to cope with its uncertainties endangers the stability of the overall system.

We define the partitioning problem that aims at creating scalable system struc-
tures that promote the system’s robustness in Sect. 2.5.1. In Sect. 2.5.2, we present a
self-organisation algorithm that solves these partitioning problems in a decentralised
manner. The formation of hierarchies is regulated by a control loop presented in
Sect. 2.5.3.

2.5.1 The Homogeneous Partitioning Problem

Many agent organisations are based on structures that can be described as a
partitioning. In the partitioning problem (PP) [64], a set A D fa1; : : : ; ang of
n > 1 agents ai is partitioned into non-empty and pairwise disjoint subsets,
called partitions, that together constitute a partitioning at minimal cost. Finding
the optimal partitioning for non-trivial cost functions is NP-hard [65]. We presume
that feasible partitions are only constrained in terms of a minimum smin and
maximum smax size. In the unbounded case, the number of feasible partitions m
grows exponentially with n. In this situation, the size of the search space, i.e.
the number of possible partitionings, is given by the n-th Bell number Bn (e.g.
B50 	 1:86�1047) [66]. In contrast to the well-known set partitioning problem (SPP)
(cf. [65]), we assume that the mere number of feasible partitions prevents us
from pre-calculating all of them in advance. To allow for more flexible objective
functions, we further do not assume that the costs of having a feasible partition
included are additive and predefined. Instead, we only presume an application-
specific metric that evaluates if a partitioning, i.e. a combination of partitions, is fit
for purpose. If the metric defines how well agents can work together on a common
task, the PP is equivalent to coalition structure generation (cf. [67]). If it specifies
to group similar or dissimilar agents, the PP is equivalent to strict partitioning
clustering (with outliers14) or anticlustering (cf. [68, 69]), respectively.

Another form of partitionings, called homogeneous partitioning [64], is of
particular interest for a certain class of open systems: Some of these systems suffer
from agents that, on the one hand, introduce uncertainties and thus jeopardise its
stability but, on the other hand, cannot or should not be excluded. This is the
case, e.g. if the system depends on their resources or if they can provide them in
a particularly cost-efficient way. For instance, although the output of solar power
plants is difficult to predict, they might be needed to satisfy the load at on-peak
hours and should not be turned off due to their low-cost generation. If, in such
a situation, scalability requires the agents to self-organise into subsystems, the
system’s stability and efficiency hinges on the way agents are grouped according
to their trustworthiness (i.e. predictability). Homogeneous partitioning aims at the

14Supported by a separate partition that holds all outliers.
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creation of organisations that are, with respect to certain (possibly aggregated)
criteria, as similar as possible. Examples of such criteria are partitions with a similar
number of dispatchable power plants or a similar average costs per kWh. This
idea is based on the assumption that a centralised system imposes an upper bound
on the ratio between trustworthy and untrustworthy agents: The global knowledge
about possible uncertainties and the centralised control over the trustworthy agents
allow the system to fulfil its task as well as possible. If each organisation now
exhibits similar characteristics, such as a similar ratio between controllability and
uncertainty, they approximate the corresponding ratio of the centralised system.15

Consequently, they also inherit its positive properties.
Another important attribute of homogeneous partitions is that the resulting

subsystems are loosely coupled, meaning that the underlying optimisation problem
(that is, the scheduling problem) is decomposed into independent sub-problems:
Since each organisation has a similar ratio between controllability and uncertainty,
the trustworthy agents’ degrees of freedom can be used to compensate for the
uncertainties stemming from untrustworthy agents internally. This avoids affecting
other organisations or involving them into the decision-making process.

In the class of open systems regarded in this chapter, homogeneous partitioning
increases the system’s robustness and efficiency, and should be preferred to other
types of organisations, e.g. those consisting of homogeneous agents. With respect
to the power management case study, this is achieved by forming partitions with
a similar ratio between the sum of the typical prediction errors of the weather-
dependent power plants and the sum of the rate of change of dispatchable power
plants. Recall that the information about typical prediction errors is captured in the
power plants’ trust models.

Note that many instances of homogeneous partitioning are not supported by the
original SPP due to its restriction to additive and predefined costs of partitions.
In [70], we demonstrated that homogeneous partitionings are far more robust against
environmental changes than organisations consisting of homogeneous agents. When
partitions are formed on the basis of aggregated criteria, robustness further increases
when creating larger partitions. This characteristic highlights the advantage of
employing efficient scheduling mechanism like TruCAOS from another perspective
(see Sect. 2.4.3).

To guide the self-organised problem decomposition, we proposed in [64] to allow
the user or the system itself to specify suitable ranges for the number and the size
of partitions, i.e. the minimum nmin and the maximum nmax number of partitions
as well as their minimum smin and maximum smax size. The parametrisation of the
partitioning constraints defines the shape of the hierarchy. In a hierarchical system,

15If the objective is to have similar mean values, optimal anticlusterings also yield partitions whose
mean values correspond to the mean of all elements in the system. However, the anticlustering
metric still implies another order on candidate solutions than homogeneous partitioning. As the
large search space prevents us from taking optimal results for granted, anticlustering is not of use
here. Homogeneous partitioning is further not limited to establishing similar mean values. This is
shown by the example of forming partitions with a similar number of agents of a specific type.
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the ranges for the number and the size of partitions stipulate how many subsystems
or agents should be controlled by an intermediary. Note that both aspects have an
influence on the hierarchy’s height and can therefore be used to make a trade-off
between solution quality and performance in terms of runtime. Using ranges instead
of fixed values provides the system with degrees of freedom needed to optimise the
partitionings’ composition according to application-specific formation criteria. In
the example of creating AVPPs, it is required that each AVPP’s size is not less than
two and below a certain threshold restricting the maximum time needed for schedule
creation, including the time needed for model abstraction.

2.5.2 Self-Organisation Algorithms for the Partitioning
Problem

Algorithms for the solution of the PP in MAS have a broad area of application,
e.g. in sensor networks [71], power management systems [60], manufacturing
systems [72], communication systems [73], or e-commerce [74]. The large size
of the PP’s search space calls for efficient solutions. For this reason, approaches
solving instances of the PP propose to exploit properties of the objective function,
such as additivity, to represent the search space in a way that allows for a systematic
search for high-quality solutions [75], distribute the search space among the agents
or try to exclude specific solutions in advance [67], trade optimality for efficiency
by relying on metaheuristics (such as genetic algorithms [65] or particle swarm
optimisers [76]), or try to handle complexity by solving the PP in a completely
decentralised fashion on the basis of local knowledge [77]. Because of the PP’s
complexity, they are often designed as anytime algorithms (cf. [64, 67, 75]). Usually,
algorithms solving the PP either (1) are specialised to a particular problem in a
certain domain (cf. the examples listed above), (2) depend on the properties of a
specific objective function, or (3) are very restrictive with regard to the possibility
to specify mandatory characteristics of the resulting partitioning’s structure in the
form of the number and the size of partitions. These attributes limit the algorithms’
applicability, in particular with regard to self-organised problem decomposition in
large-scale MAS. As for point (2), many algorithms – for instance, those addressing
the original SPP (e.g. [65]) or coalition structure generation [75] – are specialised
to certain objective functions, e.g. those in which the quality of partitions is
additive and can thus be assessed independently of each other. Another example
is the well-known k-means algorithm [78], its variants (e.g. [79]), and different
implementations (e.g. [76]). With respect to point (3), most algorithms either do
not allow to characterise valid partitionings at all (cf. [77]) or the user or the agents
have to be very specific, such as in [78] or [67]. While the x-means algorithm [80]
automatically finds a suitable number of partitions for a given data set, it is not
possible to specify appropriate ranges for the size and the number of partitions. An
exception to the rule is the discrete particle swarm optimiser PSOPP [64]. Due to
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its centralised optimisation scheme, PSOPP struggles with very large numbers of
participating agents in the context of multi-objective optimisation, though.

In this chapter, we present a substantially revised version of SPADA [81], the Set
Partitioning Algorithm for Distributed Agents. As opposed to the afore-mentioned
approaches, SPADA (1) implements a decentralised optimisation scheme, (2) solves
the PP in a general manner, and (3) allows to specify suitable ranges for the number
as well as the size of partitions. Similar to [77], the agents to be partitioned A � A
solve the PP by themselves. To comply with large search spaces, SPADA applies
a regionalised optimisation technique in which the agents decompose the overall
PP into multiple sub-problems, i.e. regional partitionings. The decomposition
is obtained on the basis of an overlay network, called acquaintances graph,
which represents the current partitioning (SPADA is an anytime algorithm) and
acquaintances between agents. Compared to a fully localised optimisation as shown
in [77, 81], the regionalised optimisation scheme allows SPADA to benefit from
synergy effects, which is of particular interest in multi-objective optimisation
problems. In SPADA, the PP is solved in an iterative manner. We refer to iterations
as optimisation cycles. In each of these cycles, every agent performs an optimisation
step in which it tries to increase the fitness of its regional partitioning. Since regional
partitionings are likely to change from one step to another, the overall solution
results from an iterative refinement of overlapping partial solutions that is carried
out from different perspectives. Its regionalised principle further allows SPADA to
make selective changes with respect to the composition of an existing partitioning,
which is beneficial in case of a reorganisation.

Due to these characteristics, SPADA can be applied to many different appli-
cations in which solving the PP is relevant. In conjunction with the control
loop presented in Sect. 2.5.3, it can be used to establish self-organised problem
decomposition by means of self-organising hierarchical system structures. In the
following, we give an overview of the most important properties of the acquaintance
graph before we summarise SPADA’s basic functionality and characteristics.

The Acquaintances Graph. In order to lower complexity when solving the PP in
large-scale MAS, SPADA operates on an overlay network generated for the purpose
of constraining communication and direct interactions between agents. This overlay
network is a simple directed graph, hereinafter called acquaintances graph [81].
All operations the agents apply to establish a suitable partitioning can therefore
be mapped to graph operations. The nodes of the acquaintances graph are the
agents participating in the PP. Directed edges symbolise acquaintance relationships
between agents. In SPADA, a partitioning of A is a division of the acquaintances
graph into several subgraphs with a pairwise disjoint set of nodes. Each of these
subgraphs stands for a partition. To specify a partitioning, edges can be marked
with a partition-specific flag. A marked edge .a; b/ between two agents a; b states
that a is acquainted with b and, additionally, that a and b are members of the same
partition. For the sake of clarity, we call edges without such a mark unmarked edges.
Partitions are thus defined by the transitive-reflexive closure of the binary relation
induced by the marked edges.
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Each partition has a designated leader that is responsible for optimising the
composition of a part of the overall partitioning according to application-specific
formation criteria. This part is restricted to the leader’s own as well as its acquainted
partitions (i.e. those containing acquaintances of the leader’s partition members).
Limiting a leader’s changes to a part of the entire partitioning restricts the size
of its (regional) search space and thereby reduces its computational cost of
finding suitable modifications. That way, SPADA uses the acquaintances graph to
decompose the overall PP into multiple sub-problems.

Although every agent is capable of being a leader, there is only one leader per
partition to avoid inconsistencies in the course of the formation process. Conse-
quently, non-leaders show a rather passive behaviour until they become leaders
themselves. Because partitions located in separated subgraphs cannot exchange
agents, SPADA is initialised with a weakly connected acquaintances graph (i.e. the
graph’s undirected counterpart is connected). SPADA’s graph operations ensure that
modifying partitions and acquaintances does not break the weakly connectivity. This
prevents SPADA from not being able to reach specific positions in the search space.
An example of such an acquaintances graph is depicted in Fig. 2.12.

SPADA’s Basic Procedure. Once a reorganisation is triggered, SPADA starts
with the initialisation of the acquaintances graph for the agents A participating in the
PP. This encompasses (1) the creation of the graphs of marked edges representing
the partitions, i.e. the (sub)systems, of the partitioning that has to be reorganised
as well as (2) the randomised yet guided generation of unmarked edges. The latter
ensures the acquaintances graph’s weakly connectivity. In case SPADA is used to
create an initial partitioning, it is initialised with a randomly generated partitioning.
We assume that SPADA is always initialised with a partitioning satisfying the
partitioning constraints introduced in Sect. 2.5.1.

Subsequent to the initialisation, each agent performs an optimisation step
in each optimisation cycle. As mentioned before, non-leaders exhibit a passive
behaviour and thus finish their optimisation step without performing any action.
Figure 2.13 shows the main activities each leader’s optimisation step comprises

a b c

d e f

Fig. 2.12 An exemplary acquaintances graph for a system consisting of six agents: agents are
represented as nodes and acquaintances as directed edges, e.g. d is acquainted with a and f . Marked
edges (symbolised as solid arcs) indicate that their tail and head belong to the same partition. In this
example, there are three partitions fa; c; f g; fb; dg; feg with leaders a; b; e (represented by double-
bordered nodes)
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Fig. 2.13 Actions leaders perform during their optimisation step in each optimisation cycle

in order to improve the partitioning’s fitness: If the chosen termination criterion
is not met, the regarded leader first determines a regional partitioning to optimise
by choosing a set of transaction partners from its set of acquainted partitions.
Afterwards, it creates candidate moves, i.e. possible modifications, for its regional
partitioning to optimise. Several candidate moves are then combined to candidate
transactions. The concept of candidate transactions allows SPADA to profit from
synergy effects originating from changing the affiliation of two or more agents at
once. While candidate transactions are created in a target-oriented manner such
that their application would increase the region’s fitness, the procedure does not
guarantee that the resulting partitioning would satisfy the partitioning constraints.
The sacrifice of creating feasible candidate transactions reduces complexity and
fosters SPADA’s exploratory behaviour. However, since the partitioning ultimately
has to comply with the partitioning constraints, the leader corrects the candidate
transactions after their creation. Apart from the first correction needed to abide by
the global number-of-partitions constraints, all corrections can be made locally.
Having repaired all candidate transactions, the leader applies the best candidate
transaction that increases the region’s fitness to the acquaintances graph. This
means that the changes stipulated in the candidate transaction are transferred to
the underlying graph structure representing the current partitioning. To localise the
global minimum- and maximum-number-of-partitions constraints, each leader holds
upper bounds for creating and resolving partitions that are updated in accordance
with the applied candidate transaction. Finally, the leader shuffles the acquaintances
of its partition members so that regional partitionings change from one optimisation
step to another. This allows regional solutions to evolve over time and to spread out
across wider parts of the overall partitioning. The overall solution is thus the result
of an iterative refinement of overlapping partial solutions that is carried out from
different perspectives.

SPADA provides several termination criteria, such as a maximal runtime or
a minimal fitness value. The algorithm expects that the termination criterion is
formulated as a conjunction of hard constraints. Other application-specific termi-
nation criteria that are in line with the corridor of correct and preferred behaviour
can therefore be easily integrated into the algorithm. With regard to the power
management case study, the objective is to establish a homogeneous partitioning
(i.e. similar AVPPs) with respect to the ratio between the sum of the typical
prediction errors of non-dispatchable power plants and the sum of the rate of
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change of dispatchable power plants, among others (see Sect. 2.5.1). The runtime
of a reorganisation is limited as AVPPs must have sufficient time to recalculate
the schedules without exceeding their date of expiry. If a centralised perspective is
necessary to decide whether to terminate or not, a dedicated leader checks if the
termination criterion is satisfied at the beginning of each optimisation cycle. In case
the number of partitions is restricted, the same leader also takes care of the one-time
centralised correction with respect to the global number-of-partitions constraints. If
this correction has not yet been performed, the dedicated leader repairs the overall
partitioning before returning it as solution. Due to that and because the satisfaction
of the partition-size constraints is ensured during the entire optimisation process,
SPADA always returns a feasible solution. However, since SPADA is a heuristic, it
is not complete in a general sense. Basically, this can be ascribed to its decentralised
regional optimisation scheme. While SPADA is complete if feasible solutions are
only restricted by the partitioning constraints, it cannot guarantee to find solutions
exhibiting other mandatory properties, such as solutions of predefined quality.

An in-depth empirical evaluation of SPADA and PSOPP demonstrating SPADA’s
advantages in multi-objective optimisation is provided in [82].

2.5.3 Self-Organising Hierarchies

Self-organising hierarchies are obtained by a hierarchical control loop [83] that runs
on each intermediary. To ensure that the hierarchy is created with respect to the
application-specific formation criteria, the control loop makes use of a partitioning
algorithm, such as SPADA or PSOPP [64]. The hierarchical control loop’s main
purpose is to monitor the intermediary it runs on and to react to the violation
of three basic constraints. In essence, it constitutes a partitioning control. One of
these constraints, the so-called composition constraint, targets maintaining suitable
partitionings within the hierarchy. It is evaluated in the context of the partitioning
the intermediary’s children belong to. A violation indicates that this partitioning
features an unwanted composition. It is optimised by means of a reorganisation
(see left subtree in Fig. 2.14a, b). The set of affected agents is called the interme-
diary’s neighbourhood which consists of its children and nephews. The two other
constraints address the system’s performance in terms of runtime. For this purpose,
each intermediary observes the time it needs to create schedules. If the runtime of
solving the scheduling problem exceeds a given threshold, the so-called introduction
constraint is violated. In this case, the intermediary triggers the introduction of
new intermediaries that requires partitioning its children into subsystems (see right
subtree in Fig. 2.14a, b). Consequently, the degree of decomposition is increased. If
the runtime falls below another threshold, a violation of the dissolution constraint
is registered. Because a violation indicates that the degree of decomposition is too
high, the intermediary adds its children to its parent and, subsequently, dissolves
itself. Since the purpose of these three control actions is to restore these constraints,
the approach complies with the Restore Invariant Approach [2] (see Sect. 2.1). With



2 Specification and Design of Trust-Based Open Self-Organising Systems 49

(a) Before self-organisation. (b) After self-organisation.

left right left right

Fig. 2.14 The left subtrees in (a and b) depict a re-partitioning of an intermediary’s neighbour-
hood (indicated by the solid rectangle). The nodes “�”, representing the initiating intermediary
(marked in gray) and its siblings, are replaced by the new intermediaries “˚”. The right subtrees
in (a and b) illustrate the introduction of new intermediaries, which is accomplished by solving
the partitioning problem for the children (marked by the dashed rectangle) of the initiating
intermediary “ˇ”. Each created partition is represented by a new intermediary “˝”

regard to our case study, the control loop runs on each AVPP, which results in a
self-organising hierarchy as depicted in Fig. 2.4.

An evaluation showing that the ability to form adequate hierarchical system
structures at runtime lowers overall scheduling times can be found in [82].

2.6 Conclusion and Future Work

Open self-organising systems composed of heterogeneous participants need high
quality solutions to cope with uncertainties and (un)intentional misbehaviour of
the agents. In this chapter, we outlined several building blocks that, put together,
allow for self-organised and robust resource allocation in large-scale open technical
systems. Based on the idea of a hierarchical system structure, abstraction of control
models (see Sect. 2.3) allows for scalable resource allocation that incorporates trust-
based probabilistic models (see Sect. 2.4) to deal with uncertainties. By designing
the formation of hierarchical system structures as a self-organising process (see
Sect. 2.5), the system autonomously comes to a compromise between solution
quality and runtime performance. The presented techniques are applicable to a broad
class of systems, including other supply systems (e.g. gas pipeline, water supply, or
district heating system), or desktop computing grids [84].

With respect to our power management case study, we anticipate a challenging
road ahead in the transition of our prototype from laboratory to productive usage
that will stipulate further research. But until then, we believe that our developed
techniques are useful even at smaller scale. For instance, a single plant owner
might organise her power plants into a hierarchy of virtual power plants and benefit
in terms of robustness and scalability. This direction could confirm the industrial
importance of self-organisation practices.

En route to a broader practical adoption of the proposed techniques, there remain
various open questions addressing how to systematically assure the quality of self-
organising solutions. Various interconnected optimisation problems in a highly
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dynamic environment need tools beyond the corridor of correct behaviour [2].
Analysis and testing activities have to cater the needs of self-organising systems [85]
such that they truly excel at outperforming conventional systems in a reliable
fashion.
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A User Trust Model for Automatic
Decision-Making in Ubiquitous
and Self-Adaptive Environments
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Abstract Ubiquitous Environments are able to support users during their daily
life by intelligently self-adapting to changed contexts. Examples include home
automation systems which can support energy saving by switching off unused
devices or public displays which enable users to present and interact with data,
but maintain the users’ privacy by hiding sensible data if others pass by. However,
such proactive adaptations could also cause frustration and thus harm the users’
acceptance and trust towards a system if they do not match the users’ preferences or
are not self-explanatory. In the worst case, wrong or incomprehensible decisions by
the system even could make the users abandon the system. To address this concern,
we propose a generic trust-based model, called User Trust Model (UTM), which
facilitates automatic decision-making in ubiquitous and self-adaptive environments.
It is supposed to monitor users’ trust in the system and to select context-aware
system actions that maintain, restore, or even foster user trust. In this chapter, the
construction of the generic model as well as its integration into two case studies will
be presented. We will provide a detailed description of how to customise the UTM
for the respective scenarios and share results and experiences from various studies
conducted with the developed systems.
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3.1 Introduction

Ubiquitous environments, such as public display environments or home automation
systems, are able to monitor the current states of people (e.g. presence, attention,
movement) and devices (e.g. displays, lights), as well as their surroundings (e.g.
social context, ambient noise, brightness). Using this data, these systems can
automatically adapt the provided information or services to the current situation.
Furthermore, users are also able to interact with these environments through various
means. Examples include manipulating or sharing data via a multitude of devices,
such as (semi-)public displays, or mobile, private devices such as smartphones. As
a consequence, such environments are no longer static and simple, but open, highly
dynamic, and complex and have to cope with a number of issues.

An environment could, for example, be manipulated to expose users’ private data.
However, even if it can be assumed that an environment in general has the ability
and intention to act trustworthy, the actual system behaviour could be undesirable
because it was negatively affected by the high dynamics (e.g. a multitude of
continuously approaching or leaving people) or error-prone parts of the system (e.g.
cheap or damaged sensors). Most of the contributions in this book focus on trust
between entities and agents in a system to increase its reliability, robustness, or
safety; criteria that were also considered by most work in the area of computational
trust models to assess a system’s trustworthiness.

However, even if a system is robust and secure, it might be used by very
heterogeneous user groups (different age groups, different technical backgrounds,
different preferences etc.). Thus, some of them may not understand the rationale
behind sudden adaptations, such as changes of the presented information, the
utilised modality, or switched-off devices, or might not consider them as plausible
given the current situation. As a consequence, they could lose their trust in the
system’s truth and worth [1, 2]. In the worst case, they even might no longer use it.

There are further factors that could influence users’ trust towards a system, such
as the system’s perceived controllability, the protection of users’ private data (see
for example [3]) or a certain degree of comfort while interacting with the system.

All these factors influence how users perceive a system while interacting with
it. And they influence the users’ perceived trust towards the system. Therefore,
in this chapter we will focus on “trust” following Castelfranchi’s and Falcone’s
[4] terminology of “affective” forms of trust that are based on the user’s appraisal
mechanisms.

Since it is impossible to develop a once-and-for-all solution to cope with all the
issues related to users’ perceived trust, ubiquitous and self-adaptive environments
require the functionality for a sophisticated trust management to maintain or maybe
even foster users’ acceptance and trust. Therefore, this chapter presents a generic
decision-theoretic approach to a trust management system, called User Trust Model
(UTM). The UTM is based on Bayesian networks and assesses the user’s affective
trust in a system, monitors it during the interaction and applies appropriate measures
to maintain trust in critical situations [5].
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In the following chapter, we will first discuss prior work on which the devel-
opment of the generic UTM was based. This includes work in modelling trust
in agent-based societies, social media, and adaptive and personalised systems.
This chapter’s main contribution is a detailed description of the generic UTM’s
construction (Sect. 3.3), as well as its exemplary integration and its evaluation
within two case studies (Sects. 3.4 and 3.5). To facilitate the development of other
ubiquitous and self-adaptive environments, we will provide detailed insights into
the experiences and lessons learnt during the development and evaluation of the two
systems. Finally, Sect. 3.6 will give a conclusion and an outlook on future work.

3.2 Related Work

While research on computational models of trust has become very popular in the
areas of agent-based societies and user modelling, approaches that model trust
as a user experience and focus on the affective dimension of trust are rare. This
is unsurprising because the psychological aspects of trust are hard to measure
directly. In this section, we will first give an overview of computational models
starting from approaches that have been presented for agent-based societies, social
networks, recommender systems, and interactions with virtual characters. After that,
we discuss how the concept of trust has been treated in ubiquitous environments.

3.2.1 Computational Models of Trust

Much of the original research on trust comes from the social sciences. Psychologists
and sociologists have tried for a very long time to get a grasp of the inner workings
of trust in interpersonal and interorganisational relationships. Other fields, such as
economics and computer science, relied on their findings to come up with dedicated
models of trust that are adapted to the specific requirements of their domains and
the context they are applied to. Since trust is a social phenomenon, it seems to be a
promising approach to exploit models that have been developed to characterise trust
in human societies as a basis for computational models of trust.

Especially in the area of multi-agent systems, computational models for trust-
based decision support have been researched thoroughly. Pioneering work in this
area has been conducted by Marsh [6] who modelled trust between distributed
software agents as a basis for the agents’ cooperation behaviour. Computational
mechanisms that have been proposed for trust management in agent-based societies
include Bayesian networks [7], Dempster-Shafer theory [8], hidden Markov models
[9], belief models [10], fuzzy models [4], game-theoretic approaches [11], or deci-
sion trees [12]. [13] describe a trust-enabled middleware which uses a combination
of trust, reputation and confidence to enhance a system’s self-x properties. All in
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all, there is empirical evidence that the performance of agent-based societies may
be improved by incorporating trust models.

In contrast to the approaches above, work in the area of social media aims to
model trust between human users, see [14] or [15] for a survey investigating trust in
social networks. Using algorithmic approaches or machine learning techniques, trust
between users is derived from objective observations, such as behaviour patterns
in social networks. For example, Adali et al. [16] assess trust between two users
based on the amount of conversation and the propagation of messages within
Twitter. Other approaches derive trust that is given to users from community-based
reputation or social feedback, e.g. Ivanov et al. [17].

In the area of recommender systems, computational models related to trust have
also been explored. Apparently, it does not suffice to generate recommendations
solely based on the users’ profile and preferences: The trustworthiness of people,
organisations, and services involved in the recommendation process also have to be
taken into account. There is empirical evidence that computational models of trust
may help improve the recommendation accuracy of traditional collaborative filtering
approaches, see, for example, [18]

Computational models that assess trust felt by a user while interacting with a
system are rare. One notable exception is the work by Bickmore and Cassell [19] in
which they describe a model of social dialogue that a virtual character can employ to
build trust with a human interlocutor through conversational strategies that increase
familiarity and solidarity between the character and the user.

Finally, there is a large amount of work that aims to identify factors that impact
user trust. For example, Glass et al. [20] research trust-enhancing factors for
adaptive and personalised applications. However, they do not implement a model
of the user’s trust into an adaptive and personalised system based on these factors.
Starting from the observation that people respond to technology socially, Lee and
See [21] discuss psychological factors of trust (such as the visual appearance of the
interface) that influence to what extent people rely on technology. Yan et al. [5]
model captures the trust which users experience when interacting with mobile
applications. In order to present users with recommendations that help increase
their trust, they identified various behaviours that can be monitored by a mobile
device in addition to external factors such as brand impact. The benefits of this
approach have been shown by means of simulations. However, the approach has not
been embedded in an adaptive and personalised mobile application to control the
selection of system actions during an interaction with the user.

3.2.2 Trust in Ubiquitous Environments

In the area of ubiquitous computing, the topic of trust has attracted a significant
amount of interest. This comes as no surprise since the high dynamics and openness
of ubiquitous environments come not only with great benefits, but also a number
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of trust-threatening issues in the areas of security, privacy, predictability and
transparency.

Due to the large variety of smart objects and devices that can exchange
information, the underlying infrastructure is heavily imperilled by manipulations.
Typically users interact with such environments on a short-term basis without having
the possibility to verify the security of the underlying infrastructure. Vice versa
access control in open environments which people can enter and leave at any time
is a challenging task. To solve these issues, a number of research projects have
investigated how to apply trust mechanisms from the area of network security to
pervasive computing. A common approach is to explicitly model trust relationships
between physical devices and exploit this information to choose appropriate devices
for cooperatively solving a task (e.g. [22]). The approach by Arimura et al. [23]
takes a different direction by using physical social trust relationships between
users for authentication purposes. First, actual physical vicinity between users is
confirmed by the authentication system. Then, whenever one of the users needs
to be authenticated, the other user is asked by the system to confirm the former’s
identity. Only in cases where this kind of authentication was not successful, the
system would ask for additional information, such as passwords.

At the same time, a significant amount of private data is collected silently using
sensors worn on the user’s body as well as external sensors smoothly integrated
into the user’s environment. On the one hand, the comprehensive collection of
user data contributes to a better personalisation of information and services. On
the other hand, excessive data collection may be considered as a threat to privacy.
To mitigate this threat, a variety of mechanisms has been presented to preserve the
user’s privacy and hide confidential information from others, such as preventing
the tracking of tagged consumer items or displaying private information on the
user’s personal device. Cao et al. [24] proposed an approach that enabled users to
access personalised information in public places through their mobile devices while
ensuring their anonymity. The basic idea was to publicly present all information on
a display, but to indicate to individual users only which part of the information is
relevant to them by sending personal crossmodal cues (such as vibrations) to their
mobile devices. In other words, the approach tried to enhance the users’ privacy by
obscuring the access to personal information to the public. Initial evaluations of the
approach focused on usability issues, but not on the question of whether crossmodal
cues appropriately address the users’ privacy concerns.

Another factor that may affect the users’ trust is the high uncertainty and
unpredictability of ubiquitous environments. Despite the large number of sensors
that are employed to capture user and context information, the analysis and
interpretation of the sensor data might be error-prone which in turn could lead to
unpredictable behaviour. But since it could be difficult for a user to tell whether the
current behaviour of the system is the result of an error or not, this could lead to
trust issues. To counter these issues and give the user an insight into the system’s
reasoning process, a number of researchers propose to display confidence values
(see, for example, the work by Antifakos et al. [25]).
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Finally, due to the high complexity and dynamics at which the interaction
with a ubiquitous environment might take place, a user may no longer be able
to comprehend the rationale behind the system’s decisions which may negatively
affect the formation of user trust. Lim et al. [26] present a toolkit for generating
eight different kinds of explanations automatically (such as what-if, why, how-to
etc.), in order to increase the transparency of context-aware systems. Even though
the connection to user trust is emphasised in their paper, they do not provide a
mechanism to computationally model user trust. Cheverst et al. [27] investigate
techniques to increase the transparency of a system and to give users a higher
level of control in a smart office environment. Their work is similar to ours since
it investigates the tension between proactive system behaviour and user control and
aims at improving the transparency of system behaviour. Even though the topics they
address have a tight relationship to user trust, they do not explicitly model user trust
itself to decide on appropriate system behaviours. Hochleitner et al. [28] describe the
Trust Feedback Toolkit which allows users to view detailed information on outgoing
and incoming connections for any device in an Internet of Things application, thus
building trust by providing additional transparency in security-critical situations.

3.3 The User Trust Model

The main idea underlying our approach to model the users’ trust in a computer
system is to derive the trust from a set of intermediate dimensions, the so-called
trust dimensions. These trust dimensions describe relevant properties of the system
in question. Their definition is based on an earlier literature survey [29] where we
elaborated on the determinants of trust in highly dynamic computing systems and a
summary can be found in the introductory chapter of this book [13].

However, for the construction of our UTM we were specifically interested in
the trust factors that are relevant for a user’s experience during the interaction
with a system. Therefore, we performed a series of interviews with 20 computer
science students in which they were asked to indicate factors of trust that they felt
contributed to their assessment of the trustworthiness of a user interface [30]. The
most frequently mentioned factors fell into the following categories that formed the
basis of our User Trust Model (typical statements given by participants are indicated
in parentheses):

• Comfort of Use (“The system should be easy to handle”)
• Transparency (“I need to understand what the system is doing”)
• Controllability (“I want to be in control of the system’s actions”)
• Privacy (“The system should neither ask for nor reveal private information”)
• Reliability (“The system should run in a stable manner”)
• Security (“The system should safely transfer data”)
• Credibility (“The system should have been recommended by others”)
• Seriousness (“The system should have a professional appearance”)
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Now that we have selected this set of trust dimensions as the basis for our
computational trust model, the next step is to identify a suitable representation. Such
a representation should be able to account for the following characteristics of trust:

Trust as a subjective concept: There is a consensus that trust is highly
subjective. A person who is generally confiding is also more likely to trust a piece
of software. Furthermore, users respond individually to one and the same event.
While some users might find it critical if a software asks for personal information,
others might not care. We aim at a computational model that is able to represent the
subjective nature of trust.

Trust as a non-deterministic concept: The connection between events and
trust is inherently non-deterministic. We cannot always be absolutely sure that the
user notices a critical event or actually considers such an event as critical. As a
consequence, it does not make sense to formulate rules that predict in a deterministic
manner which level of trust a user has in a particular situation. A computational
model of trust should be able to cope with trust as a non-deterministic concept.

Trust as a multifaceted concept: As shown above, trust is a multi-faceted
concept. Computational models should be able to explicitly represent the relative
contribution of the trust dimensions to the assessment of trust. In particular, the
model should help us predict the user’s level of trust based on dimensions, such
as the perceived transparency and controllability of a user interface. Furthermore,
it should be easy to alter the model by adding or removing trust dimensions based
on new experimental findings or if a certain dimension is not applicable in a given
system.

Trust as a dynamic concept: Trust depends on experience and changes over
time. Following Lumsden [31], we distinguish between Initial Trust and Interaction-
Based Trust. Both contribute to the user’s overall trust in the system. Initial trust
dimensions, such as seriousness, come into effect as soon as a user gets in touch
with the system while interaction-based trust dimensions, such as transparency of
system behaviour, influence the users’ experience of trust during the interaction.

We have chosen to model the users’ feelings of trust by means of Bayesian
networks. A Bayesian network (BN) is a directed acyclic graph in which the nodes
represent random variables while the links connecting nodes describe the direct
influence in terms of conditional probabilities. Observations, or evidence, can be
entered into nodes in the network and the probability of other nodes can then be
inferred [32]. An often used example for the application of a BN are diseases and
symptoms: The observation of symptoms is entered as evidence, and the possible
presence of certain diseases can be inferred.

Bayesian networks meet the requirements listed above very well: First, we
can represent the model’s uncertain belief about a user’s trust by a probability
distribution over different levels of trust (subjective nature of trust). Second, a BN
allows us to make predictions based on conditional probabilities that model how
likely the value of the child variable is, given the value of the parent variables. For
example, we may model how likely it is that the user has a moderate level of trust
if the system’s behaviour is moderately transparent. This allows for a much more
flexible approach than, for example, rigid rules that exactly predict how a certain
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event or situation changes the user’s trust (non-deterministic nature of trust). Third,
with a BN we are able to model the relationship between trust and its dimensions
in a rather intuitive manner. For example, it is rather straightforward to model that
reduced transparency leads to a decrease of user trust. In a BN, each trust dimension
can represented by a specific node (multifaceted nature of trust). In a similar manner,
a BN also allows us to model initial and interaction-based trust as two different
concepts, each influenced through different trust dimensions, but both contributing
to the overall user trust (dynamic nature of trust).

As a next step, the BN can be constructed, based on the trust dimensions and
requirements identified above. Figure 3.1 shows the result for a generic UTM,
i.e. one that is not yet tailored to any specific application. We started with a
node for User Trust and followed Lumsden’s [31] distinction between Interaction-
Based Trust and Initial Trust. Both depend on the users’ Trust Disposition which

Comfort of
Use Transparency Controllability Privacy

Quality of
Interaction

Interaction-
based Trust

User Trust User 
ResponseInitial Trust

User 
Disposition

Confidence

Competence

Credibility

Seriousness

Reliability

Security

Utility

System Properties

User Traits
Trust Dimensions

Context 1 Context N

System Action

Action 1

Action N

.

.

.

Fig. 3.1 Generic Bayesian network for modelling trust



3 User Trust Model 63

is characterised by their Competence and general Confidence towards technical
systems.

Next, we introduce a specific node for each trust dimension. Those in the lower
left part of the network (System Properties) represent the factors influencing the
establishment of Initial Trust that arises when a user gets a first impression of
a system: Security, could be, for example, conveyed by the use of certificates.
A system’s Seriousness is reflected, for example, by its look-and-feel. Credibility
could be supported by additional information, such as a company profile. In this
context, we would like to emphasise that trust dimensions may only affect the user’s
trust if the user is aware of them. For example, high security standards will only have
an impact on user trust if the user knows that they exist. For the sake of simplicity,
we assume that initial trust dimensions do not change over time. That is, we do not
consider the fact that a user might notice references to security certificates only after
working with a system over a longer period of time.

To describe the determinants of Interaction-Based Trust, we further distinguish
between Quality of Interaction and the trust dimensions Reliability and Privacy.
Finally, the Quality of Interaction is characterised by Transparency, Controllability
and Comfort of Use. Since the four trust dimensions Security, Seriousness, Credi-
bility and Reliability are more contributing to a system’s trustworthiness as a whole
and not as much to specific interactions, we decided to focus further refinements of
the model on the other four dimensions.

Each of these four trust dimensions is treated as a hidden variable that cannot
be observed directly, but may be inferred from observable variables. In our case
these observable variables take the form of the user’s Context and the system’s
chosen System Action. In other words: Any specific situation can be modelled as
a certain combination of observable (i.e. known) contexts, and then the BN can be
used to estimate the impact that certain system actions will have on the different
trust dimensions and consequently on the overall user trust. As an early example
from the case study described in Sect. 3.4, the context nodes could specify that the
user is alone and is viewing data that is considered private. No system action is
necessary in this situation. Then, another person might arrive, triggering a change
in context to describe the new situation, and now a possible system action to protect
the user’s privacy could be to hide private data.

We also decided to add a node User Response, representing the user’s trust-
induced reaction to the system’s decision. The idea is that this node could be used
to enter evidence of the user’s observable behaviour into the BN, allowing to derive
user trust by means of diagnostic inference.

Now that the structure of the BN is complete, the last step is to initialise the
conditional probabilities for each node combination (except for the ones that are
application-specific, i.e. the influence of System Action and Context on the four
trust dimensions). For this, we were again able to use data from our previous work:
a second study presented in [30] which provided insight into (1) the relationship
between the trust dimensions and user trust and (2) the relationship between the
user’s trust disposition and user trust. However, data for other user groups can be
easily integrated into the BN by replacing the corresponding distributions.
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Finally, in order to use the BN for decision-making, we extended it to an influence
diagram: We changed System Action into a so-called decision node and added a
Utility node that is directly influenced by User Trust. Thus, the more positively
a certain system action influences the trust dimensions in any given contextual
situation, the higher the resulting user trust and consequently the utility of that
system action will become. With this change, the decision-making algorithm can
select the best system action (i.e. the one that helps to maintain the user trust the
most in a certain situation) by choosing the one with the highest utility.

The general idea and process of using the UTM in an application is as follows:
There is one UTM per user, but it is not user-specific. Every time a user’s context
changes, that change is entered as evidence into the BN. Then the decision-making
algorithm is invoked, iterating through all possible system actions and selecting the
most appropriate one, as described above. Depending on the situation, the most
appropriate system action could actually be to do nothing at all. The chosen system
action is then performed by the application. The BN itself (both structure and
conditional probabilities) is not altered during runtime (i.e. there is no learning).

The case studies in the next two sections will illustrate how the generic UTM can
be made application-specific by selecting appropriate system actions, contexts and
conditional probabilities.

3.4 Case Study 1: Public Display Environments

Recent years have brought about a large variety of interactive displays that are
installed in many public places, such as coffee bars or airports. Apart from simply
providing information (e.g. news or weather), public displays make it possible for
passing individuals to view, edit, and exchange specific data between each other.
Mobile phones represent a popular interaction device for interacting with these
displays since they have been widely adopted by people as an everyday companion
and can be customised to individual interaction preferences.

In this case study we report on our experience of adapting the UTM for four
prototype applications for public displays which also include a user’s mobile phone
into the interaction process. All four applications require sophisticated mechanisms
to adapt to various trust-critical events: Some may disclose private information
about users and thus should be able to intelligently adapt to the surrounding social
context in order to avoid possible privacy threats. Others might allow multiple
users to interact simultaneously and thus should open space for new users as they
approach.

In the following, we describe how we customised the generic UTM presented in
the last section for these applications by gathering empirical data from two different
studies and how we validated the resulting application-specific UTMs. Note that
some details were omitted for the sake of brevity, see [33] for a more detailed
overview of this work.
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3.4.1 Customising the Generic UTM

Customising the generic UTM was split into two parts: Determining system actions
and contexts and modelling the conditional probabilities of how they influenced the
different trust dimensions.

3.4.1.1 System Actions and Contexts

Our goal was to find a common set of system actions and contexts that could be
used to describe each scenario occurring in the four applications. Figure 3.2 gives
an idea of the nature of each of the four prototypes: Friend Finder (FF), represents
a public display supporting social networking [34]. Once a user comes closer, the
large display shows the user’s social network overlaid over a local map, depicting
the status and locations of friends. By selecting individual friends via their mobile
phone, users are able to display a route to the selected friend.

Media Wall (MW), supports media exchange within a community [34]. It
displays a gallery of private media items (pictures or videos) when users approach.
Then the users can browse or rank the items via their mobile phone.

Travel Planner (TP), helps students arrange low-budget trips around Europe. By
browsing the map on the large display map via their mobile phone, users can retrieve
information on the cities and the estimated cost of a visit. Apart from this neutral
information, the application is also able to consider private budget-related data and
shows whether the estimated costs are affordable.

Shopping Mall Display (SMD), aims at supporting customers of a shopping mall
in finding products of their interests and the corresponding shops by displaying
personalised information when a user approaches.

All four applications require mechanisms for deciding how to respond to trust-
critical events, such as a passer-by approaching the display. Since all applications
may disclose private information, such as a user’s social network (FF), personal
preferences (MW and SMD), or budget limitations (TP), they should be able to
appropriately adapt to the surrounding social context in order to avoid potential
privacy threats. Whether displaying private data might be considered untrustworthy
might also depend on who else is present (if at all), and their relationship to the
user. Potential protection mechanisms include the migration of personal data from

Fig. 3.2 Prototype applications, f.l.t.r.: Friend Finder, Media Wall, Travel Planner, Shopping
Mall Display
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the public display to the user’s mobile device, the hiding or masking of personal
information as well as offering these actions to the users via their mobile phones.
The corresponding scenarios in which users interact with a display while others
pass or join will be in the following summarised under the common term “Spectator
Scenario”.

Besides people quickly passing the public display without taking notice of
its content and people that may stop and watch, people may even engage in an
interaction as well. In this case, the system does not only have to protect private
information against unwanted disclosure, it should also account for strategies to
handle the data and input originating from multiple users [35]. For example, several
users may interact with the Shopping Mall display in parallel to explore product
information (“Space Scenario”). To accommodate the needs of multiple users,
the size of the space allocated to particular users may be dynamically adapted.
Alternatively, data may migrate to the user’s mobile device. On the one hand, these
strategies enable the simultaneous exploitation of a public display by multiple users.
On the other hand, users might get irritated by the unsolicited customisation. As a
consequence, the system has to carefully balance the benefits and drawbacks of each
action in order to come up with an optimised solution.

In addition, three of the applications (FF, MW, and SMD) utilise additional
sensors, such as cameras, to also offer proxemic interaction [35]. The corresponding
scenarios for these applications will in the following be summarised under the term
“Proximity Scenario”. Whenever a user approaches the display, information relevant
to him or her could be proactively presented on the screen. As soon as the user leaves
the display, this information could be immediately removed again. On the one hand,
this feature offers great comfort. On the other hand, it limits the user’s control over
the system and might also be considered as opaque. Therefore, whenever a user
approaches or leaves, the system could ask the user for confirmation via the user’s
mobile phone. Again, this is a situation in which a system has to find a trade-off
between comfort of use, transparency, and controllability to maximise the user’s
trust. The high dynamics in public places make this task even more difficult.

Given these potential scenarios, we decided to include context nodes for the
user’s activity (arriving, leaving), their social context (alone, or in presence of
a friend, acquaintance or total stranger), and the privacy of the content shown
(private, not private). The system actions can be divided into three categories: Do
Nothing, Act Autonomously, and Ask For Conformation. While the first should be
self-explanatory, the second category comprises the various means to handle data
(show it, hide it, mask critical parts), and the third asks the user for confirmation on
their mobile device, offering a choice between all the previous options. Figure 3.3
shows the relevant part of the UTM with these nodes.

Before we describe how we determined the conditional probabilities, let us first
consider an example of how the constructed UTM might make decisions: Let us
assume a user wishes to display data on a public display while other people are
present. Such a situation could be described by the values of the BN’s context nodes
Social (e.g. set to “‘Stranger”’) and Privacy of Content (e.g. set to “‘Private”’).
These have been determined by sensors or application data and are thus known by
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Comfort of
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System Action

AdaptShow
AdaptMask
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Alone
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Context: Privacy of Content

Private
NotPrivate

Fig. 3.3 System actions and contexts in a Bayesian network for modelling trust in public display
environments

the system. The system may now consider three options to cope with the user’s
request: (1) transferring all data to the public display no matter whether they are
private or not, (2) show only the information marked as non-private or (3) asking the
user for a confirmation of one of these actions. Considering the example, option (1)
may result in serious privacy concerns, option (2) may confuse the users if there is
no plausible explanation for the adaptation, and option (3) could be less comfortable
to use in a dynamic setting but gives the full control to the user. On the other hand, if
the system decides in favour of option (1) or (2), the users might perceive the system
as less controllable.

3.4.1.2 Conditional Probabilities

Now that the structure of the application-specific UTM was complete, we needed
data which described the conditional probabilities between the newly introduced
contexts and system actions and the trust dimensions. We decided to collect this data
through experiments conducted with potential users: The users were confronted with
scenarios illustrating different contextual combinations (situations) and possible
adaptive reactions of the displays in these situations that differed in the degree of
transparency, user control, privacy, and comfort of use. To discover which of the
system reactions succeeded in maintaining the users’ trust and which did not, they
had to reflect on their perception of the reactions in the specific situation and had to
give insights into their feelings of trust and the related trust dimensions.

The data collection was arranged in two steps: First, an online survey targeting as
many users as possible was conducted. But since an online survey might not convey
the experience of a real interaction and thus affect the ratings of the users, we also
performed a live study. The live study only included two of the four applications
but was otherwise designed identically to the online survey (except that it of course
involved real user interactions).
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All in all, the online survey was aimed at gathering as much data as possible,
involving online users. The live study was aimed to complement the online survey,
supporting the results collected online by the evaluations of users during a real
interaction.

Online Survey

The online survey was aimed at capturing the users’ subjective assessment of
display reactions in various situations. To this end, participants were shown videos
clips of the four prototypes. For each prototype, we recorded several short videos
demonstrating scenarios in which a specific situation was given, the context
changed, and the display conducted a possible reaction. For example, the “Spectator
Scenario” of Friend Finder first showed a single user interacting with the display
in a public area, see Fig. 3.4 top. Then, the display recognised the arrival of an
unknown person (change in social context) and masked the user’s social network
automatically (reaction), see Fig. 3.4 case A. Another video first illustrated the
same situation and context change, but then a different display reaction: Instead
of masking the data automatically, the data was removed entirely and the user was
presented with various options on their mobile phone, see Fig. 3.4 case B.

A B

Remove friends

Mask friends

Leave friends

Fig. 3.4 Screenshots of video “Friend Finder – Approaching Stranger”: Top: single user inter-
acting with private data on public display; Case A: display reaction: mask private data; Case B:
display reaction: remove private data and present possible actions on the user’s mobile phone
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Table 3.1 Scenarios illustrated by videos: possible display reactions in different contextual
combinations (situations)

Proximity scenario

User context Data context Social context Display reaction

User approaching (a) Private data (a) User alone (a) Show user data automatically

(FF, MW, SMD) (b) Neutral data (b) User not alone (b) Ask for confirmation

(c) Do nothing

User leaving (a) Private data (a) User alone (a) Remove user data automatically

(FF, MW) (b) Neutral data (b) User not alone (b) Ask for confirmation

(c) Do nothing

Spectator scenario

User context Data context Social context Display reaction

User interacts (a) Private data A person comes: (a) Hide private data

alone (FF, MW) (b) Neutral data (a) Friend (b) Mask private data

(b) Acquaintance (c) Ask via mobile device

(c) Stranger (d) Do nothing

User logged in (a) Private data (a) User alone (a) Show data on public display

(TP) (b) Neutral data (b) User not alone (b) Show data on mobile device

Space scenario

User context Devices context Social context Display reaction

User A interacts (a) Mobile available User B approaches (a) Provide space for B,

with the display the display: shrink data of A

(SMD) (b) Not available (a) B is female (b) Provide space for B,

move data of A to mobile

(b) B is male (c) Do nothing. B will wait

Table 3.1 summarises the recorded scenarios including possible situations which
were represented by different settings of contextual variables, such as the social
context and the privacy of the displayed content, and possible display reactions.
Some scenarios were illustrated by different applications, in order to compare how
people perceive the same adaptations applied to different content. The applications
illustrating the scenarios are indicated by the capital letters in the “User Context”
column.

All in all, four to six situations for each scenario, see Table 3.1 column 1–3, and
22 situations in total were investigated. Considering two to four possible display
reactions per situation, see Table 3.1 column 4, this resulted in a total number of
68 recorded short videos. In order to reduce the time of the survey completion to
about 10 min, we grouped the videos into six online surveys. Each survey contained
about 8–12 videos. After an introductory page, the surveys provided a description
of the used applications. Then, the user was confronted with the first scenario. The
corresponding video illustrated the first situation and the first display reaction to
the context change. After watching a video, the user had to fill in a questionnaire.
The questions aimed at capturing the participants’ perception of the shown display
reaction in terms of transparency, controllability, comfort of use, privacy, and trust.
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The questions represented statements which had to be ranked on a Likert scale from
1 (“absolutely disagree”) to 5 (“absolutely agree”):

• Q1: I understood why the system was reacting in this way.
• Q2: I had control over the system.
• Q3: I found the system comfortable to use.
• Q4: The system protected my privacy in an appropriate way.
• Q5: I found the system trustworthy.

After presenting all possible display reactions for a particular situation, the users
were asked to rank their preferences for it. The preferences also had to be estimated
as statements of a 5-point Likert scale. The statements emphasised the context of the
given scenario, such as the presence of others or the privacy of data. For instance, a
statement for the scenario of Friend Finder where the user was interacting with the
display in a public area looked liked this:
“When I am watching my social network alone and a stranger approaches the
display. . . ”

• P1: I prefer to hide my data.
• P2: I prefer to mask my data.
• P3: I prefer no reaction from the display.
• P4: I prefer to be asked by my mobile phone.

Questions Q1–Q4 were aimed to collect empirical data to initialise the BN.
Question Q5 was required to validate the network by checking whether the
generated decisions matched the system action that created the highest user trust.
Questions P1–P4 reflected subjective user preferences. In particular, we wanted to
find out whether user preferences were in accord with the highest trust ratings and
decisions generated by the BN. All in all, we collected evaluations of 85 online users
and each video was seen by at least seven participants (Mean: 14). Supplying gender
and age was not mandatory. The 73 users that provided demographic data included
24 women and 49 men. They were aged between 23 and 62 years, with an average
age of 33.3 years.

Live Study

For the live study we picked two prototypes from the online surveys that could be
easily installed and tested and that covered all scenarios related to privacy issues:
Friend Finder and Travel Planner. The experiments were conducted individually in
front of large displays that were installed in a university public area with a moderate
circulation of researchers, students, and visitors. That is, the study participants were
not just watching a video, but actively experiencing an application by interacting
with it. In each application, the users were confronted with a variety of trust-
critical situations, such as another person approaching, while they were viewing
private information. As in the online survey, the users had to assess potential
system reactions to these events. Hence, the procedure and the questions used in
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the live study reproduced the web-based survey as closely as possible to control
for any unintended side effects. Both prototypes were tested between groups: Every
participant evaluated either Friend Finder or Travel Planner. Altogether, 36 people
took part in the live experiments (FF: 16; TP: 20). Among them there were 16 female
and 20 male persons, aged from 20 to 36 (mean 28.3).

The results of the live study generally matched the results obtained in the
online survey. Both experiments yielded similar distributions of user rankings for
transparency, controllability, comfort of use, privacy, and reliability. Moreover,
we found similar distributions of trust and user preferences. Interestingly, the
participants gave higher trust ratings in the live condition than in the online
condition. A two-tailed t-test showed that the differences were significant with mean
values of 3.66 (standard deviation = 1.50) and 3.08 (STD = 1.27) in FF (t(238) =
2.46, p < 0:02) and mean values of 3.98 (STD=0.84) and 3.14 (STD = 1.40) in TP
(t(248) = 5.86, p < 0:001). Apparently, the fact that the participants had the chance
to interact with the system had influenced their ratings positively.

However, the important result for us was to see that apart from a few exceptions
the ranking of system reactions in the online survey was in line with that obtained in
the live study. Independently of whether users had to evaluate the online or the live
setting, participants preferred the same system reaction. Overall, the results indicate
that the online survey provides realistic input for the initialisation of the BN despite
a few discrepancies.

Finally, the quantitative data obtained in the studies enabled us to derive
distributions for each trust dimension related to each contextual combination. For
each trust dimension, we modelled the probability distribution for all combinations
of context and display reaction in the BN after the data taken from both studies.

3.4.2 Validation of the UTM

With our customised UTM finally complete, we were interested in how well it was
suited to create trustworthy decisions.

Although we also asked for the users’ preferred display reaction for each context
combination as well as their trust in the display reaction presented for each such
combination, it should be noted that this information was not used to model the
UTM. As mentioned above, we only used the users’ rankings of the different
trust dimensions for each combination of context and display reaction. Instead,
the data on user trust ratings and user preferences was used as a ground truth
to validate the decisions generated by the UTM. In this vein, we were able to
check to what extent the relationship between trust and trust dimensions was
application-independent. For the validation of the UTM we generated decisions for
all contextual combinations. These decisions were compared to the results from the
user studies. In particular, we compared the decision obtained from the UTM with
the user’s ratings of system actions and their own trust.
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The contextual combinations were set by entering appropriate evidence into the
matching context nodes. For example, for a specific situation in the Proximity
scenario, the evidence would be set to “Privacy of Content ! Private”, “User
Activity ! Arriving” and “Social ! Alone”. We only used “hard” evidence at
this point, i.e. the corresponding values were set to 100 %. For each of these
combinations, the display reaction with the highest utility rating (which was directly
based on the computed value of user trust) was chosen as the system’s decision.

First, we compared these generated reactions with those preferred by the
participants in the studies: For each context combination, we selected the display
reaction that received the highest average score in the experiments. When comparing
the display reactions preferred by the users with those generated by the UTM,
we found that they matched in 21 out of the 22 situations (95.45 %). Second, we
compared the generated reactions with those that received the highest trust in the
studies. They matched in all 22 situations.

These results show that the BN delivers good accuracy in the generated decisions.
As an example from the results, let us take a look at the first Spectator scenario
(the third row in Table 3.1), one of its situations and the one mismatch mentioned
above: In case of the data shown being private and a friend present, the reaction to
present the different options via mobile phone received the highest trust from the
participants. This was also the reaction that the UTM deemed the most trustworthy.
However, the preferred reaction for this situation was “Hide private data”. In other
words, the participants’ trust ratings were in line with those determined by the UTM
while their favoured reaction was not.

However, this form of validation only validated our model within the same
population and also the generated decisions were compared to average and not
individual preferences. Thus we were also interested in how its generated decisions
matched with the preferences of “new” and individual users. Therefore we also per-
formed a leave-one-person-out cross-validation: For each scenario, we performed
n validations, where n is the number of users that participated in the respective
experiment for that scenario. In each of the n validations, the UTM was initialised
with the data from .n � 1/ users and then validated with the missing user. The final
result for each scenario was the average of all n validations. The comparison of
user preferences with the adaptations generated now resulted in 15.84 out of 22
matching situations (72.00 %). The comparison with the highest-trust adaptations
now matched in 17.26 out of 22 (78.45 %). These results are in line with the
percentages of participants who individually preferred the system reaction which
received the highest average score, 78.80 % for preference and 82.58 % for trust.

3.4.3 Discussion of Results

Using empirical data collected in online and live experiments, we demonstrated
how the UTM was initialised and cross-validated. The evaluation revealed that
the approach succeeded in determining system actions that obtained the highest
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value for trustworthiness from users. An interesting result obtained by the empirical
validation of the Bayesian network was the mismatch between the system reactions
users preferred most and the system reactions resulting in the highest amount of user
trust. From the comments of the live study participants, we found that the feeling of
trust often depends on the person’s ability to explain the system reaction and agree
with it. For example, when a person comes closer to the display, it seems logical and
expected that the display does not show any reaction. We learn this behaviour from
everyday life: Fixtures, even electronic ones, usually do not react. Apparently, the
option “Do nothing” therefore received highest trust rankings. However, the most
understandable reaction might not be the most preferred or the most convenient one.
Here, the more creative (but less predictable) reactions were favoured. For example,
the users found it smart and convenient that the display noticed them and proposed
via a mobile device to show their data on the large screen. Thus, the “Ask via mobile
device” option was chosen as a preference.

Future work should aim at gaining a deeper insight into this question, investigat-
ing which factor – trust or subjective preference – drives the user’s ultimate choice
of a system reaction. One limitation of our live studies is the homogeneity of the
participants, since most of them were rather young students of computer science.
Also, while we already reached a larger demographic variety with our online studies,
future work should also extend the live studies in a similar fashion.

3.5 Case Study 2: Energy-Aware Device Management
Systems

Energy-aware device management systems, such as home automation systems,
could support users in saving energy either by switching off devices proactively
if they are not needed, or by providing personalised advice respectively, asking
the users for confirmation before executing an action. However, autonomously
performed actions not only contribute to the users’ convenience, they also limit
the users’ control over the system. Furthermore, it may confuse if the system,
for example, switches off a device automatically without any information or
explanation. On the other hand, asking the users for confirmation via a message,
e.g. on a display or a mobile device, would offer more control and transparency, but
might disturb the users. Alternatively, the system could also decide to do nothing.
This certainly would leave the user undisturbed and in control, but might not be the
proper reaction one expects from a smart and adaptive system that is intended to
act proactively. As a consequence, each of the possible system actions could be the
most suitable in one situation, but might impair the users’ trust in another situation.
Hence, smart device management systems are another example for systems that
could benefit from using the UTM.

In this section, we will describe how the UTM was customised for and integrated
into a smart office environment and present important findings that could influence
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the development of similar systems. These findings (in contrast to the first case study
where we only validated the application-specific UTM) also include the results of a
live study in which participants actually interacted with the system whose decisions
were driven by the UTM.

3.5.1 Customising the UTM for a Smart Office System

In this case study, the device management system should be used in an application
that is able to control the employees’ displays and the room’s light in an office occu-
pied by several people. Therefore, for each device, a specific model was constructed
from the generic UTM described in Sect. 3.3. This represents a difference to the
previous case study, where only a single UTM was needed for each application.
Also, this case study focused on a slightly different set of trust dimensions: Even
though privacy issues could not be completely excluded, we assumed that they were
less of a concern in the investigated scenario and focused on the tension between
transparency, controllability, comfort of use, and trust.

3.5.1.1 System Actions and Contexts

To customise the UTM for the given scenario, first the available system actions
and the considered context information had to be defined. We found three general
reactions that the intended system could execute for both devices given a specific
situation. They fall into the same broad categories as the ones in the previous case
study:

1. Do nothing: If there was no reason to react in the current situation or if it was
more important to not disturb the user than to change a device’s state, the system
could decide to do nothing although this could result in wasted energy.

2. Act autonomously: If the system decided that a device should be switched off or
on to adapt the environment to a changed situation and if it was not necessary
to disturb the user by asking for confirmation, the system was enabled to change
the device’s state automatically.

3. Ask for confirmation: If the current situation required a change in a device’s state
and if it was assumed that the user would be better asked for confirmation, the
system sent a message to one of the user’s devices. For the light control this
message could be sent either to the user’s mobile device or his or her display.
Since the display should only be switched off, if the user was not using it, the
later option was not implemented for the display control.

Whether the room’s light should be on or off mainly depended on the luminance
outside and the presence of people in the room. The presence of people was further
divided into the presence of the user and the presence of the user’s colleagues or co-
workers (social context). The only context that affected the need for a switched-on
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Fig. 3.5 Architecture of the smart office system

display was the user’s current state. However, for this context a more fine-grained
representation of the user’s current activity was needed to distinguish, e.g. whether
the user was working with the PC (respectively display) or engaged in another
activity, such as reading a book, or whether the user was away from the desk.

3.5.1.2 Architecture

Figure 3.5 shows the overall architecture of the Smart Office System. It runs on
a central server which also stored the UTMs for the devices and was enabled to
send messages to the users’ displays as well as their mobile devices. To gather the
required context data, several Arduino-Sensors1 were distributed in the office: The
outdoor luminance was measured by light sensors. The presence of persons at the
desks was detected by ultrasonic sensors. Furthermore, based on the assumption that
the door would be closed if nobody is in the office, a flex sensor was attached to the
door to determine whether the office was abandoned. To control the displays and the
light, a HomeMatic2 system and remote controlled plugs were used.

A typical scenario concerning the light could be the following, see circled
numbers in Fig. 3.5: The user is working alone in the office in the morning. Since
it is still dark outside, the light is on. The system is aware of all devices’ states

1http://arduino.cc/
2http://www.homematic.com/

http://arduino.cc/
http://www.homematic.com/
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and regularly polls the sensors for the most recent context data (1). As long as
the context does not change, nothing needs to be done. However, for example, as
soon as it is getting bright outside, the system becomes active. In order to decide
which reaction may be the best in the current situation, the system enters the current
context information into the appropriate BN (2) and the system actions’ impact on
the different trust dimensions as well as the resulting user trust and the action’s
utility are calculated. Finally, the best action is chosen and communicated back
to the server (3). Let us assume that the system decides to send a request for
confirmation to the user’s mobile device (4). The user chooses “yes”, the answer
is sent back to the server (5) which then switches off the light via the HomeMatic
(6).

3.5.1.3 Conditional Probabilities

To derive the probability distributions for each trust dimension for all combinations
of contexts and system actions, two online surveys (one for each device) were
conducted. The goal was once again to discover how the system actions would
affect the trust dimensions and the users’ trust in typical situations during daily
office routines. To this end, we employed a procedure similar to the online survey in
the previous case study. However, this time we decided to use textual descriptions
instead of videos to outline the different situations, since the contexts and system
actions were easier to describe. Again, participants were asked to rate the various
system actions by answering the following statements on a 5-point Likert scale:

• Q1: I understood why the system was reacting in this way.
• Q2: I had control over the system.
• Q3: I found the system comfortable to use.
• Q4: I found the system to be trustworthy.

Table 3.2 summarises the possible system reactions per device and the investi-
gated situations represented by different settings of contextual variables.

In total, seven women and nine men evaluated the situations and actions for the
light and nine women and twelve men rated the situations and actions for the display.
They were aged between 24 and 51 years (mean: 28).

3.5.2 Live Study in the Lab

To investigate whether the developed system would be able to predict users’ trust
and preferences in a live setting, a live study was conducted. In this study, the
decisions taken by the UTM were evaluated along the lines of the validation in
the first case study: (1) Would the chosen actions affect the users’ trust in a positive
way? (2) Would the chosen actions match the actions favoured by the users?
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Table 3.2 Possible system reactions in different contextual combinations

Situation

Social Luminance

Device User state context outside System reaction

Display (1) Working at PC – – (a) Switch display
automatically

(2) Idle at PC – – (b) Ask for confirmation
via mobile

(3) Away from desk – – (c) Do nothing

(4) Out of room – –

Light (1) Arriving (1) Co-worker
present

(1) Dark (a) Switch light
automatically

(2) Present (2) Co-worker
away

(2) Bright (b) Ask for confirmation
via mobile

(3) Leaving (c) Ask for confirmation
via display

(d) Do nothing

3.5.2.1 Procedure

First, the participants had to provide general demographic information and infor-
mation about their experience with home automation systems. Furthermore, the
participants were asked whether they considered themselves to have a trusting nature
and whether they trust computer systems in general.

After a short introduction to the setting and the scenario, the participants had to
run through several tasks and situations, all of which simulated the daily routine
in an office occupied by several people. In each situation, the system performed
the actions that were selected by the UTM and the participants had to rate them
by filling in a short questionnaire that included the questions Q1–Q4 as shown
above. Furthermore, the users were asked to choose their preferred system action.
For instance, the statement concerning the display and the first task was: “When I
enter my office and sit at my desk, I prefer . . .

• P1: . . . no reaction from the display.”
• P2: . . . to switch the display on automatically.”
• P3: . . . to be asked via mobile phone for permission to switch on the device.”

All tasks and situations, as well as the system reactions selected by the UTM
are summarised in Table 3.3. To ensure that all participants conducted the study
under the same realistic conditions, the tasks were embedded in a coherent story.
Furthermore, the room was darkened and changes in the outdoor luminance were
simulated by a lamp. Changes in the participant’s and the co-worker’s state were
triggered by the participants themselves and by one of the experimenters who played
the role of the co-worker.
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Table 3.3 Tasks, situations, and system actions selected by the UTM

Situation System action

User Social Outside

Task state context luminance Light Display

1. Enter the office Arriving Co-worker away Dark Phone

2. Sit down at PC Working at PC Auto

It is getting light

3. Check slides for mistakes Bright Display

The participant’s colleague enters the room and sits down at the desk

4. Take book X off the shelf Away from Desk Co-worker present Nothing

5. Come back and Idle at PC Auto

read chapter Y

6. It is getting dark

Dark Phone

The participant’s colleague leaves the room

7. Finish work and leave Leaving Co-worker away Phone

8. Close the door Out of room Auto

Abbreviations: Nothing do nothing; Auto switch automatically; Phone ask via mobile phone;
Display ask via display

After rating all tasks, the participants had to state what they liked and disliked
about the system and to rate statements related to their attitude towards the system.

3.5.2.2 Results

All statements in the questionnaires could be rated on a 5-point Likert scale. Ratings
lower than 3 were interpreted as disagreement, ratings higher than 3 as agreement
with a statement, and a rating of 3 as a neutral attitude.

Overall 6 women and 18 men (mean age: 26) took part in the study. Five of
them were well experienced with home automation technology, such as automatic
timers. By contrast, 75 % of the participants had only little or no experience at all.
One participant reported a mediocre experience. As for their disposition to trust,
63 % of all participants agreed that they act based on the saying “Trust, but verify”.
Only one participant disagreed with this statement and 33 % had a neutral attitude.
Concerning the statements “I am overly trusting” and “On most systems, you can
be assured that they will do what they should”, one third each agreed, disagreed, or
rated neutrally.

The adaptations the system had chosen for the light achieved consistently high
ratings for all trust dimensions, and the User Trust, see Fig. 3.6. However, some
participants felt that trust was impaired because of missing feedback when the
light was switched off after leaving the office. Furthermore, despite the action
“Ask for confirmation via the user’s mobile phone” received high ratings, most
of the participants instead would have preferred messages on their displays and
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Fig. 3.6 Results of the live study: user ratings for the trust dimensions and the perceived trust
related to the selected system reaction (Abbreviations: Co-worker: C; Do Nothing: Nothing; Switch
Automatically: Auto; Ask via Mobile Phone: Phone; Ask via Display: Display)

especially automatic system actions. Several users stated that using a phone in an
office scenario is inconvenient in many situations – either because it is not within
reach or because they have to interrupt their work to read the message on the phone.

By contrast, the executed actions concerning the display matched the preferences
of most of the participants in all situations. The participants clearly favoured a
system that acts autonomously. However, some people missed a confirmation that
the display was switched off when they left the room, an authentication mechanism
after switching on the display, and functionality to set or disable the automatic
control of the display. This affected to some extent the ratings for the User Trust,
but especially the ratings for the Controllability, see Fig. 3.6.

3.5.3 Further Investigations

The live study showed that high user ratings for the trust dimensions and the
user trust not necessarily also meant that the system’s decisions matched the
users’ preferences and vice versa. The results indicated that the users weighted the
trust dimensions differently. For example, it seemed like most of the participants
preferred system actions with a higher comfort of use to actions that kept them in
control over the system. To further investigate these findings, an additional survey
was conducted under similar conditions as the live study.

3.5.3.1 Procedure of the Live Survey

The live survey, similar to the online survey in the first case study, was aimed to
acquire ratings for all combinations of situations and possible system reactions, but
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under realistic conditions. The experimental setting was adopted from the live study,
see Sect. 3.5.2. However, instead of running the system and presenting only the
actions selected by the UTM, all available actions were shown to the participants
in each situation. Furthermore, the participants had to rate the statement “I would
prefer the system action. . . ” for each action on a 5-point Likert scale (from 1 = “not
at all” to 5 = “in any case”) in order to enable a more detailed comparison of the
users’ preferences.

3.5.3.2 Results

In total, eight men and two women (mean age: 28) took part in the live survey.
Similar to the live study, we compared the chosen system action of the UTM

for each situation with the one the users found the most preferable or the most
trustworthy. The results confirmed the findings of the live study. For the display,
most of the participants preferred the actions chosen by the UTM (73 %) and
provided the highest trust ratings for them (80 %). However, the actions selected
for the light were much less in line with the preferences of the users. Only 18 % of
them expressed the highest preference for the selected system actions. Nevertheless,
80 % of the participants rated their trust towards these actions the highest. These
results confirmed that the UTM was able to make trustworthy decisions. Trust
was of course not the only factor, but there was a significant relationship between
the users’ trust and their preferences (Pearson correlation coefficient: r D 0:481,
p.one-tailed/ < 0:01).

A detailed analysis of the ratings provided for the specific trust dimensions
showed that the Controllability did not significantly influence the users’ preferences
(r D 0:117, p D 0:139). Although autonomous decisions were rated as less
controllable, see Fig. 3.7, they were preferred by most of the participants, see
Fig. 3.8.
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Fig. 3.7 Investigated trust dimension: controllability (left: actions concerning the light, right:
actions concerning the display)
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Fig. 3.9 Investigated trust dimension: transparency (left: actions concerning the light, right:
actions concerning the display)

Concerning the perceived Transparency, the users’ ratings showed a significant
correlation with the preferences (r D 0:489, p < 0:01). However, except for the
action “Do nothing”, all system actions were rated as very transparent in most of
the situations, see Fig. 3.9. Thus, it is difficult to infer why the participants preferred
some system actions over others.

In contrast, automatic system actions that were preferred by most of the users
were rated as most comfortable, whereas “Do Nothing” and especially the action
“Ask the user for confirmation via her or his mobile phone” scored significantly
worse, see Fig. 3.10. This could be emphasised by the fact that the perceived
Comfort of Use was significantly correlated with the users’ preferences (p < 0:01).
A Pearson correlation coefficient of 0.744 even showed that the perceived Comfort
of Use was the most decisive factor that influenced the users’ preferences.
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3.5.4 Discussion of Results

Overall, the results in the live study as well as in the live survey revealed that users
had a high amount of trust in the system actions that were chosen by the UTM.
However, they also showed that the participants preferred more comfortable system
actions over more controllable actions, even if this resulted in less trusted system
actions. The participants liked the idea of being asked in some situations. However,
they considered a message on their mobile phone only reasonable when they entered
or left the office. When they were seated at their desk, they preferred autonomous
decisions by the system or messages that were shown on their displays instead of
their phone that often is not within reach and would require the participants to
interrupt their work every time the phone received a message.

In future work, it should be investigated whether giving more weight to a trust
dimension (in this case the Comfort of Use) when selecting a system action could
increase the UTMs accuracy concerning users’ trust as well as preferences.

The results in this case study also showed that users seem to weight trust
dimensions differently depending on whether they are confronted with a realistic
setting or just a verbal description of it. In the first case study, see Sect. 3.4, this
mismatch between online and live data was less pronounced. One reason could be
that in case study 1, the users’ choice between different system actions was mainly
based on privacy concerns both in the online and the live setting. We assume that
privacy issues are apparent even if they are not experienced in a live scenario.
By comparison, the trust dimension that mainly influenced the users’ ratings and
decisions in the smart office scenario was the perceived comfort of use. While
actually experienced interruptions through messages via the mobile phone obviously
affected the users’ experience and thus also their ratings, the participants in the
online survey lacked this experience. Another option to explore would be to collect
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a sufficient amount of live data by recruiting a larger number of users as a basis for
the training of the BNs.

Furthermore, future data collection efforts should concentrate on longer sce-
narios with a larger number of tasks presented in randomised order. In this case
study the sequence of tasks was not randomised, but determined by the story line
representing a working day in the life of the user. While this approach helped us
create a plausible scenario for users, it might have led to an overfitting of the BNs.

3.6 Conclusion

The ability of smart environments to dynamically adapt to changing contexts comes
with a lot of benefits, such as protected privacy or increased convenience. At the
same time, if an automatically executed system action does not match the users’
assessment of the situation, it also raises issues with the users’ trust. In this chapter,
a decision-theoretic mechanism to trust management, called User Trust Model,
was delineated that utilises Bayesian networks to assess user trust through trust
dimensions, monitor it during the interaction, and choose appropriate measures to
ensure user trust in critical situations. The two different case studies presented in this
chapter showed how the UTM could be customised for different applications. Since
both case studies showed that the UTM’s decisions resulted in a highly trustworthy
system behaviour, it seems promising to integrate it in other smart and self-adaptive
environments, too.

However, since we focused on the challenge of modelling experience-based user
trust, the findings from the case studies also showed two important facts that have
to be considered when utilising the UTM: Whilst online surveys bear the advantage
that a lot of data can be collected within a short period of time, in some scenarios
they might not convey the experience of a real interaction and thus affect the users’
ratings. Although the first case study seemed to indicate that it is possible to train
BNs from online data and employ them in live scenarios, for the energy-aware
device management system the reliance on the online data was only possible to
a limited extent. In such cases, it might be essential to collect a sufficient amount of
live data for the BN’s initialisation. Furthermore, depending on the intended system,
it might be necessary to weight the trust dimensions influence on the users’ trust
differently. While privacy was an important factor for the users in public display
scenarios, comfort of use played an significant role in the users’ assessment of the
device management system’s decisions.

For future work, we plan extensions that might further increase the UTM’s
quality and flexibility and be necessary especially in complex scenarios that require
the consideration of additional trust indicators.

First of all, we aim to derive user trust not only from its causes, i.e. system
properties, but also from its effects, i.e. observable user behaviours. In earlier work
[36], we investigated various physiological patterns as an indicator of trust felt
by a user when viewing web pages. As a next step, we will concentrate on the
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identification of behavioural factors from which experience-based user trust might
be derived in smart and self-adaptive environments, such as the time spent in front
of a public display or the extent to which users are willing to relinquish control to
the system. These factors correspond to reliance as a behaviour [21] as opposed to
trust as an attitude that we focused on so far.

The detection of behavioural patterns also could be used for more objective
measurements when evaluating a system’s ability to select actions that maximise
user trust. So far we only asked participants’ to rate the perceived trustworthiness of
individual actions.

As another future step, we intend to enable the UTM to consider how user trust
felt at a particular point in time depends on user trust experienced at an earlier point
in time. Therefore, we will extend the Bayesian network to a dynamic Bayesian
network. A topology of such a network was already presented in [37], but so far it
has not been grounded and evaluated by user data.

Finally, the BNs in both case studies were initialised with data from several
individuals. Consequently, the BNs rather reflected the attitude of a variety of
users as opposed to an individual user. Due to the subjectiveness of trust, users
might, depending on their trust disposition, favour different system reactions. For
example, users that tend to distrust technical systems in general might give more
importance to a high level of control than to a high level of comfort. In our future
work, we will investigate how to improve the accuracy of the user trust model by
incorporating knowledge about user-specific attitudes. A promising approach might
be to distinguish between different categories of users based on multiple dimensions
[38]. Following Westin’s privacy indices [39], examples for such categories might
be privacy fundamentalists, pragmatists and unconcerned users. In case study 2,
the questionnaire for the live survey already contained questions about participants’
opinions and habits concerning sustainability and their trust towards other people
and technical systems in general. Such data could be included in the UTM in the
future. In order to achieve an even higher degree of personalisation, the UTM could
also be trained with data from individual users. In the ideal case, the UTM should not
require extensive training before it can be used, but dynamically adapt to people’s
preferences by learning from their behaviour during the interaction with the smart
environment.
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Chapter 4
Normative Control: Controlling Open
Distributed Systems with Autonomous Entities

Jan Kantert, Sarah Edenhofer, Sven Tomforde, Jörg Hähner,
and Christian Müller-Schloer

Abstract Open distributed systems consisting of a potentially large set of
autonomous entities might not be controllable directly. More precisely, standard
control interventions, such as altering parameters and behaviour, are not possible
due to the entity’s autonomy. However, indirect control using socio-inspired
mechanisms can be applied to guide the system’s behaviour and influence the
distributed entities using sanctions and incentives. The demanded behaviour as well
as the corresponding sanctions and incentives are coded as norms and generated
in response to perceived environmental and internal conditions. Such a norm is
issued by centralised authorities. Norm violation is monitored using a higher-level
observer in a distributed manner. After an introduction and motivation for using
social mechanisms in technical systems, we present a novel normative control loop
establishing the afore-described concept within a Trusted Desktop Grid scenario.
The evaluation demonstrates the potential benefit in terms of an increased system
robustness and fast recovery from attack states.

Keywords Organic computing • Agent organisation • Norms • Normative con-
trol • Open distributed systems • Desktop grid

J. Kantert (�)
Institute of Systems Engineering, Leibniz Universität Hannover, Hannover, Germany
e-mail: kantert@sra.uni-hannover.de

S. Edenhofer • S. Tomforde
Organic Computing Group, University of Augsburg, Augsburg, Germany
e-mail: sarah.edenhofer@informatik.uni-augsburg.de;
sven.tomforde@informatik.uni-augsburg.de

J. Hähner
Organic Computing Group, University of Augsburg, Augsburg, Germany
e-mail: jorg.hahner@informatik.uni-augsburg.de

C. Müller-Schloer
Institute of Systems Engineering, University of Hannover, Hannover, Germany
e-mail: cms@sra.uni-hannover.de

© Springer International Publishing Switzerland 2016
W. Reif et al. (eds.), Trustworthy Open Self-Organising Systems,
Autonomic Systems, DOI 10.1007/978-3-319-29201-4_4

89

mailto:kantert@sra.uni-hannover.de
mailto:sarah.edenhofer@informatik.uni-augsburg.de
mailto:sven.tomforde@informatik.uni-augsburg.de
mailto:jorg.hahner@informatik.uni-augsburg.de
mailto:cms@sra.uni-hannover.de


90 J. Kantert et al.

4.1 Introduction

The development of Information and Communication Technology (ICT) has faced
a rapid increase of complexity that has its roots in non-trivial and partly indirect
interactions, mutual influences, and an increasing interweaving of former isolated
systems1 (see e.g. [2]). One particular challenge within this observable trend
is the rise of open agent ecosystems (see [3, 4]). More precisely, we have to
cope with systems that allow for a continuous joining and leaving of agents at
runtime, a cooperation of heterogeneous agents, and a typically selfish behaviour of
participating agents without the possibility to consider their individual motivation.

Openness, heterogeneity, and dynamics, however, present severe challenges
to providing stable and efficient system behaviour, since this allows, by design,
unpredictable, exploiting, or even malicious behaviour of participating entities.
Therefore, we present a concept for guided self-organised behaviour to counter
negative emergent effects within this chapter. Consider a Desktop Computing Grid
(DCG) as particular instance of this aforementioned problem class. In such a DCG,
agents cooperate by sharing computing resources. The basic idea is to ask other
agents to process computational tasks in order to achieve a better performance
compared to processing these tasks individually. Obviously, these systems depend
on reciprocity: The system will only be successful if agents continuously contribute
their resources. In order to motivate agents to do so and to further provide fairness
and efficiency, the introduction of computational trust relationships among agents
has been shown to achieve promising results – resulting in a Trusted Desktop Grid
(TDG) [5]. Distributed rendering of films is an exemplary application running on top
of the TDG which is also presented in the evaluation chapter. The same mechanism
can also be applied to the domain of Low Power Sensor Networks[3].

Unfortunately, trust itself comes with major drawbacks – for instance, decisions
based on trust relationships might result in negative emergent behaviour. The “trust
breakdown” [6] serves as illustration for such an effect: Here, a large set of malicious
and colluding agents joins the system simultaneously which results in numerous bad
trust ratings. As a consequence, a massive drop of the average reputation among
agents can be observed, meaning that agents stop cooperating. This effect is caused
by the large numbers of bad ratings. As a consequence, the benefit for all participants
decreases significantly and the system itself becomes dysfunctional to a certain
degree. To counteract such events and to further guide the self-organised behaviour,
this chapter introduces a concept working at system-level without interfering with
the agents’ autonomy: A higher-level observation and control loop following the
general Observer/Controller pattern [7] of Organic Computing is proposed and
applied to the TDG. This loop derives an appropriate situation description in the
first place that covers abstract information about work and trust relationships among

1We will refer to these individual systems as “agents” throughout the chapter, since we assume
technical solutions that act on behalf of a user in an automated manner. This term goes back to the
domain of multi-agent systems, see [1].
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agents, augmented by figures reflecting detected patterns (e.g. quantifying negative
emergent behaviour). Afterwards, a control mechanism decides about interventions
that make use of sanctioning and incentive techniques to motivate the agents to
adapt their behaviour. Such a concept based on sanctions and incentives to guide
self-organised system behaviour implements a version of “normative control” [8].

The remainder of this chapter is organised as follows: Based on a brief
introduction to rational agent behaviour, Sect. 4.2 outlines which insights from
(human) social organisations and game theory can be utilised to improve open
agent organisations consisting of heterogeneous and distributed entities. Section 4.3
provides a discussion of the overall goal to be achieved by normative control
concepts – the application of self-organisation and adaptivity in combination with
social-inspired techniques serves the idea to establish more robust and scalable
solutions. Section 4.4 aligns the presented work in the context of the state-of-the-
art and highlights relevant contributions from this research domain. Section 4.5
describes the novel approach to establish a system-wide observation and control
loop to guide the individual behaviour of the participating agents while still
considering them as black-boxes. The presented approach is evaluated in Sect. 4.6
using simulations of the TDG as application scenario. Finally, Sect. 4.7 summarises
the chapter and gives an outlook to future work.

4.2 Social Mechanisms in Technical Systems

The general assumption for normative control of large-scale distributed and open
systems is the underlying rationality of the participating agents. Apart from the
possibility to exploit or even damage the system, individuals have an inherent
motivation to join since there is an individual benefit expected from participation.
In the following section, we discuss this rationality in more detail by deriving
fundamental concepts from social behaviour in human organisations that are
applicable to technical systems.

4.2.1 Rational Agents

In economics, game theory, decision theory, and artificial intelligence, agents have
been modelled as so called rational agents [9]. A rational agent has clear goals
and preferences, it will always try to optimise the outcome (or, in game-theoretical
terms: the utility) for itself. E.g. the main objective of an eBay bidding agent is to
win the auction. In addition, it models uncertainty with probabilities and expectation
values and always chooses to perform the action that most likely results in the
optimal outcome for itself or its owner from among all feasible actions. In the
example of the eBay bidding agent, the optimal outcome of the agent is to win
the auction paying the lowest price possible.
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In general, we can measure the outcome of an action as utility meaning that we
map the outcome of an action (or more generally, the profile of all agents’ chosen
actions) to a number. In the example of the eBay bidding agent, the utility value
of the current bidding is high if the offered amount of money is low. Vice versa,
the utility value is the smaller the higher the offered price is. However, we have
to distinguish between personal utility and system utility. The personal utility is
the utility assigned to each single agent, and the system utility is the total utility
resulting from the actions of a group of agents. Personal and system utilities are not
necessarily the same: Consider a team game played repeatedly where all players of
a group must win the rounds with a threshold frequency to reach the next level. If
one player was able to win all rounds this would be optimal for its personal utility
value. However, the team would not step up necessarily in the next level if the other
players did not perform equally well. In addition, personal and system utility can
be opposite: Chimpanzees behave cooperatively and share their food with other
chimpanzees. This decreases the personal utility but it increases the system utility
of the chimpanzee colony [10].

As mentioned above, a rational agent tries to optimise its own outcome which
means it tries to maximise its personal utility. Hence, rational agents behave
egoistically. But in the scope of Organic Computing, we have to deal with many
rational agents which have to cooperate. Therefore, the question arises if egoistic
behaviour of agents is useful from the overall system point-of-view. The example of
the Prisoner’s Dilemma [11] demonstrates that “rational” behaviour may even lead
to both, a low personal utility and a low system utility: Let us assume two persons i
and j are accused of having committed a crime. Both of them are in prison and they
are kept separately so that they can not talk to each other. The maximum (individual)
penalty is 5 years in prison. Each prisoner is given two options: He can confess (C)
or defect (D). If both i and j decide to deny the crime, each of them gets 3 years
in prison. If both of them decide to confess, each of them gets 2 years in prison
because they cooperate with the prosecutor. But if only one of them confesses while
the other defects the first one gets 5 years in prison and the second one 0 years.

This situation can be modelled by a utility matrix. It shows the two possible
decisions for each agent (C, D). Therefore this “game” has four possible outcomes.
The values in the matrix show the payoff for each outcome (see Fig. 4.1a). Since in
the classical prisoner’s dilemma the payoff is “years in prison”, which is the opposite
of a utility, let us transform the matrix into a real utility matrix by defining:

utility :D 5 � “years in prison” (4.1)

The resulting matrix is shown in Fig. 4.1b. Now each prisoner – being a rational
agent – will order the four possible outcomes according to his own objective (to
maximise the utility):

Prisoneri W DC > CC > DD > CD

Prisonerj W CD > CC > DD > DC
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Fig. 4.1 Number of years in prison/utility per prisoner. (a) Matrix describing the years in prison
dependent on the prisoners’ decisions. (b) Utility matrix according to Equation (4.1)
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Fig. 4.2 Penalties for the Prisoner’s Dilemma: C = Confess crime, D = Deny to confess crime

Each prisoner will conclude from this ranking that, no matter what his opponent
does (C or D), for himself D is better. The result is a (D, D) decision with a payoff
of 2 for each prisoner. In Game Theory, the outcome (D, D) is called a Nash
equilibrium in strictly dominant strategies [12]: Neither agent has an incentive to
deviate from (D, D) because the utility can only drop by changing the decision.

This looks fine so far. Why then is it a dilemma? First because each prisoner
has to make a difficult decision. But there is a second problem. Let us have a look
at the system utility (Fig. 4.2), i.e. the total of the two agents’ utilities. The Nash
equilibrium and the rational decisions of the agents lead to the lowest possible
system utility of four (D, D). Apparently both prisoners would be better off with
(C, C)! What would be necessary to reach a higher system utility (and, in this case,
also a higher individual utility) are two things: (1) Communicate, and (2) trust each
other!

It has been discussed extensively if this analysis means that the Prisoner’s
Dilemma is invalid. The reason for this discussion is the feeling that our society
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apparently works quite well and that after all altruism and cooperation have
developed by evolution. So there must be a fitness benefit in such social behaviours.
Binmore [13] argues that there is nothing wrong with the Prisoner’s Dilemma except
that it is not the correct model for our social behaviour. We usually do not play one-
shot games, i.e. as members of a stable society we are subject to repeated games
with the same partners. This introduces the idea of reciprocity and of empathetic
preferences. Putting oneself in the position of another makes all the difference. The
so-called original position asks a member of a society to envisage the social contract
to which they would agree if their eventual roles in this society were concealed from
them behind a “veil of ignorance”. Social rules putting some members of the society
at a gross disadvantage are not acceptable any more as soon as I can possibly be
in exactly that miserable position. This “original position” is perfectly rational if
we change the model assumptions of the Prisoner’s Dilemma. We play the game
repeatedly; as a matter of fact, we play it permanently, probably hundreds of times
every day. We communicate extensively with and without words. And we have
developed effective mechanisms of gauging the trustworthiness of our interaction
partners.

Binmore [13] argues convincingly how such social behaviour can have developed
through evolution. And this means that it must have an evolutionary advantage over
less cooperative or purely selfish behaviours. In the light of this discussion it must
be asked why economists call the Prisoner’s Dilemma behaviour “rational”. The
“invisible hand” alone cannot account for all the interactions necessary to construct
a successful society. Hence, we should refrain from calling this behaviour “rational”.
It is much more rational to follow the idea of an “extended selfishness”, which
motivates altruism by a long-term reciprocal well-being of the altruist.

4.2.2 Social Awareness

But let us return to the discussion of the prerequisites for a functional and efficient
society of technical agents. In order to overcome the limitations of the Prisoner’s
Dilemma, we have to allow our agents to communicate, and we must introduce
the equivalent of trust and the notion of binding commitments. Since it will be
difficult to implant a kind of “moral responsibility” into the agents, we need
different mechanisms to enforce socially acceptable behaviour. As we will see in the
following, we can again copy from human societies. The mechanism we are using
is social pressure. And one of its varieties is reputation. (Just as another aside: It
can be guessed that even human agents are not altruistic just for reasons of a higher
moral. As Binmore[13] points out: Justice and fairness are just concepts and will
as such not be effective. They require power for their enforcement. Social pressure
represents such a power.)

The Prisoner’s Dilemma can be illustrated looking at the scenario of the Tragedy
of the Commons [14]: Let us assume there is a piece of land (the Commons) and
several peasants (agents) who may use it. Because of their local (and rational) view
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each of them will use as much land as possible to plant his wheat. This seems like
a good idea for each of them because it increases the personal utility in the short-
term view. But in the long-term, the land is overused which results in less lucrative
harvests and thus leads to both low personal and low system utilities. This could
be improved if the peasants would cooperate limiting their individual usage of the
common good or using techniques such as crop rotation.

Again this example shows that rational behaviour of agents may lead to low
utilities. We motivated the effects by examples inspired by nature but they are the
same looking at technical systems. Therefore, it might be a good idea to introduce
social awareness into technical systems in order to mitigate the effects of the agents’
classical rational behaviour. However, this will introduce overhead in terms of
communication, memory and computation. Therefore, we have to design socially
aware technical systems in a way that optimising the personal and system utilities
pays off even with regard to the introduced overhead.

4.2.3 Why Social Awareness and/or Self-Awareness Matters

The conclusion from the last section is that, if we extend the agent’s view2 by
social awareness, then there is a way out of the tragedy. Social awareness requires
interaction and thus communication between the agents. In addition, we have to
introduce a notion of trust between the agents which enables them to estimate the
reliability of each other. In other words, if an agents trusts that another agent will
perform an action this means that the first agent expects that the second agent will
perform the action with a high probability. Also, if a group of agents assumes that
another agent performs an action but this agent fails to perform the action, the other
agents can decide to punish the agent. However, the question is how the values of
trust are to be computed and which sanctions are to be imposed in case of failures or
abnormal behaviour? The answer is that we need a social framework which defines
the rules and norms of interaction, communication, and trust between agents. The
agents need to evaluate their actions (a priori and a posteriori) according to a kind
of ethics, i.e. a set of rules (or norms), which are able to influence the decisions of
the agents.

When we introduce such a norm, we have to decide if this is a hard (or
mandatory) norm, which the agent must obey, or a soft norm, which might be
violated. In the latter case, we need also a sanctioning mechanism. Agents that
are sanctioned will change their behaviour in the future. Moreover, we need a
mechanism to invent and adopt norms and to change the severity of sanctions. This
constitutes a closed control loop used to create, adapt and even delete norms and
rules.

2The view can be extended not only locally (aware of the environment and other agents) but also
on the time axis. History-aware agents can predict future developments more accurately.
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Looking once more over the fence we find that such a social framework of norms,
which is able to overcome the Tragedy of the Commons (TtC), has already been
defined in the context of economics. Elinor Ostrom [15] has stated eight principles
of Enduring Institutions. An institution is a body of agents with a common set
of objectives and rules. “Enduring” refers to a long-term sustainability, even in
the presence of limited common resources. Here, Harvey’s Commons have been
generalised to the so-called Common Pool Resources problem (CPR). Ostrom’s
eight principles constitute conditions for overcoming the tragedy. The principles
are as follows (see [8] for details):

1. Clearly defined boundaries: Those who have rights or entitlement to appropriate
resources from the CPR are clearly defined, as are its boundaries. An example of
this principle regarding the TtC is that the part of land belonging to each peasant
must be clearly defined. The same is true for the peasants eligible to use it.

2. Congruence between appropriation and provision rules and the state of the
prevailing local environment: The rules must prevent overuse or degradation of
the common goods.

3. Collective choice arrangements: In particular, those affected by the operational
rules participate in the selection and modification of those rules. Regarding the
TtC example this means that the peasants farming the land also administer the
rules defining the farming. This principle prevents third parties imposing their
interests.

4. Monitoring, of both state conditions and appropriator behaviour, is by appointed
agencies, who are either accountable to the resource appropriators or are
appropriators themselves. This principle means that only such people may
monitor the CPR who are involved in the CPR themselves. This prevents
corruption and manipulated monitoring.

5. A flexible scale of graduated sanctions for resource appropriators who violate
communal rules. In the TtC example this principle defines in which way a peasant
violating the rules of farming can be sanctioned.

6. Access to fast, cheap conflict resolution mechanisms. A result of this principle is
that the reaction to conflicts can occur fast, by e.g. changing the rules of farming
or sanctioning a peasant.

7. Existence of and control over their own institutions is not challenged by external
authorities. This rule states that the Enduring Institution must be self-ruling.
External authorities overriding the rules might endanger the stability of the
system.

8. Systems of systems: CPRs can be layered or encapsulated. This principle means
that hierarchies of CPRs are possible in order to save communication overhead
or to simplify decision-making processes.

When considering open distributed systems, we aim to implement organisations
which follow those principles as shown in the next section.
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4.2.4 Trust Communities as Self-Organised Social
Infrastructures

We are interested in complex technical systems consisting of autonomous agents.
Here, an agent is a hardware/software subsystem with some kind of sensory (or
at least communication) equipment. If this sensory equipment adds information
pertaining to other agents and to certain higher-level entities, this agent becomes
socially aware. Also it must be able to take decisions and to act accordingly. Our
research question is if and how Ostrom’s principles are applicable and advantageous
for our technical system.

We call our approach Trust Communities (TCs). A TC comprises a set of agents
with a mutual trust relationship. It is characterised by a set of rules (norms), which
agents who want to be TC members must adhere to. TCs can be implicitly or
explicitly managed. In the latter case, there is a (possibly distributed) management
entity taking care of admission and exclusion of agents, norm adaptation, and the
TC life-cycle [16].

But in any case, TCs are self-organised. TC membership is beneficial for an
agent: The advantage of simplified interaction with other agents (no assessment
about trust has to be performed for agents within the TC), access to community
resources, and reciprocal treatment (priority over outside agents) must outweigh
the overhead usually associated with each form organisation (additional commu-
nication and an elected manager). So far TCs are not full Enduring Institutions in
Ostrom’s sense.

Let us explain the TC concept and its benefits using the Desktop Grid Computing
(DGC) System as a concrete application example. A DGC system allows for the
distribution of computing tasks, so-called work units (WUs), within a network of
personal computers. The idea is that computers with a temporary overload can
transfer WUs to presently idling ones. As long as all PCs are benevolent, they
should all be willing to accept WUs. In an open system, however, there might be
agents trying to exploit others, i.e. they distribute their WUs but do not adequately
treat WUs from others. As a consequence, the agents will replicate WUs in order
to increase the likelihood of success. But, from the overall system point of view,
this introduces unnecessary overhead. Therefore, we would like to impose a rule
of conduct with an incentive to accept WUs. For this we use the reputation of the
agents. Any time an agent performs a WU calculation satisfactorily, the client will
rate its success positively. If this is done by many agents, the client will build a
high reputation. And this, in turn, increases the likelihood to be able to off-load
WUs. This constitutes a control loop rewarding a behaviour which is beneficial for
the community. After a while, all agents who act socially responsibly in the above
sense will form a group of high-reputation agents: a Trust Community. TC members
will co-operate preferably within the TC, and doing this will increase their efficiency
since they can get rid of expensive checking procedures and WU replication.

There are more scenarios where the TC concept could be useful. Robots
exploring and mapping an unknown terrain can be led to share their findings with
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other explorers. Sensors in an open Wireless Sensor Network (WSN) are guided
to supply correct information to others even at the expense of their own battery
lifetime. And an open network of smart surveillance cameras can self-organise as a
TC in order to isolate the less reliable ones.

4.3 Robustness

Before we discuss the state-of-the-art followed by our approach in more detail, we
want to state the overall objective of our system research more clearly. It is the
ultimate goal of OC systems to become more resilient against disturbances and
attacks from outside. We call this property “robustness”.

It should be noted that the goal of building OC systems is not primarily the
construction of adaptive or self-organising systems. Self-organisation and self-
adaptation are just means to make technical systems resistant against external or
internal disturbances. It is also a misconception to assume that OC systems achieve
a higher performance than conventional systems. OC systems are not per se faster
than conventional systems but they return faster to a certain target performance in
the presence of disturbances. In the following, we want to define the robustness of
systems under attack of disturbances more clearly and quantitatively.

4.3.1 Passive and Active Robustness

We assume a system in an undisturbed state to show a certain target performance.
More generally, we rate a system by a utility measure U, which can take the form of
a performance or a throughput (in case of a computing system), a speed (in case of
car), or any other application-specific metric. The system reacts to a disturbance by
deviating from its target utility Utarget by �U.

Passively robust systems like e.g. a flexible post or tower under wind pressure
react to the disturbance by a deflection �U D �x. This deflection remains constant
as long as the disturbance remains. Active robustness mechanisms (such as self-
organisation effected by an observer/controller) counteract the deviation and guide
the system back to the undisturbed state with �U D 0 or U � Utarget. If we want
to quantify robustness (for comparison between different systems) we have to take
into account the following observables:

1. The strength of the disturbance, ı

2. The drop of the system utility from the acceptable utility Uacc, �U, and
3. The duration of the deviation (the recovery time trec).
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Fig. 4.3 System behaviour in
state space under a
disturbance ı

4.3.2 Robustness in State Space

In [17], we have explained this behaviour in a state space model as follows (Fig. 4.3):
Let a system S be characterised by a state vector in n-dimensional state space.

We assign a utility U to each state by the evaluation function 	 W U D 	.z/. The
set of acceptable states (the acceptance space) corresponds to a minimal acceptable
utility Sacc D fz 2 S j 	.z/ � Uaccg.

4.3.3 Utility Degradation over Time

In the time domain, the deviation and the recovery will happen in two phases:

• Phase I (passive robustness): A disturbance of strength ı is applied to the
system, which changes its state to zdisturbed and its utility to Udisturbed < Uacce. The
deviation begins when the state vector leaves the acceptance space. This occurs at
time tı (and not necessarily when the disturbance occurs). A disturbance taking
effect at time tı. The drop occurs within tdrop. In the passive robustness (or drop)
phase a control mechanism is not yet active. The system utility drops by �U. The
drop �U and the time tdrop are a function (1) of the strength of the disturbance, ı,
and (2) of the structural stability (robustness) of the system. In our experimental
observations, tdrop was usually very short, the drop occurs “instantaneously” in
many cases.

• Phase II (active robustness): A control mechanism (which in the case of an
adaptive self-organising system is part of the system itself) actively guides the
system back into the acceptance space (recovery). The time needed for this
recovery is trec. Given an effective control mechanism the system will return to
U � Uacc within time trec.
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Phases I and II together are called the deviation phase. In practical cases it might
be difficult to discriminate between the two phases, they might overlap since the
active recovery mechanism will start working already at or shortly after tı .

4.3.4 Passive Robustness

Passive Robustness Rpassive is measured by the sensitivity of U against ı, i.e. dU
dı

D
1

Rpassive
. Thereby, Rpassive is a measure of the structural stability of a system in the

presence of a disturbance ı.

• Example 1: A very stable concrete tower, which does not move (�U D 0) under
a storm of strength ı, is structurally infinitely stable.

• Example 2: A communication link with an error correcting code, which corrects
errors up to 3 bits, is structurally infinitely stable under a disturbance of strength
ı D 1 bit.

If ı has no effect on a system (�U D 0) its passive robustness is Rpassive D inf.
More generally Rpassive is defined as:

Rpassive D 1
dU
dı

4.3.5 Recovery by Active Robustness

Active robustness Ractive is defined as the (averaged) recovery speed of the system,
i.e. Ractive D dU

dt or Ractive D �U
trec

in case of a full recovery. With trec D �U
Ractive

and

�U D ı
Rpassive

we get:

trec D ı

Rpassive � Ractive

Ractive is a property of the Observer/Controller (O/C) mechanism. Without an O/C
the system stays at Udisturbed at least as long as the disturbance remains. The recovery
time trec depends on the initial utility drop �U determined by the passive system
resistance against the disturbance as well as the active recovery mechanism.

4.3.6 Effective Utility Degradation

As discussed above the robustness of a system under a given disturbance of strength
ı is characterised by the triple (ı, �U, trec) or (ı, Rpassive, Ractive). In order to gauge
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Fig. 4.4 Utility degradation
over time
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the total effect of the disturbance on the system we use the area A of the utility
deviation from Uacceptable until full recovery back to Uacceptable (see Fig. 4.4): We
define the effective utility degradation as A D �U � �

tdrop C trec
� � R t

tıCtrec
U.t/dt

where A is a cost � time product. To achieve a minimal degradation we have to
minimise trec and hence A. For simplification, we assume that the drop occurs very
fast: tdrop D 0. Also, we assume for simplification a linear utility increase, which
renders the utility degradation triangular. Then A 	 �U � trec

2
D 1

2
ı

Rpassive
� ı

Rpassive�Ractive
.

Hence, the effective utility degradation is:

A D 1

2

ı2

R2
passive � Ractive

(4.2)

It follows from Equation (4.2) that an increase of Rpassive decreases A more
effectively than an Ractive increase. The reason is that Rpassive influences �U as
well as trec. We also note that there is a trade-off possible between Rpassive and
Ractive depending on the cost incurred for passive and active robustness measures,
respectively.

4.3.7 Interpretation by Mechanical Analogy

We can understand the terms Rpassive and Ractive by using a physical analogy: The
system under disturbance is interpreted as a linear-elastic body modelled as a
mechanical spring, which is extended from an undisturbed position �U D 0 under
a “stress” ı to a disturbed position, or “strain”, �U. Rpassive is, by comparison with
Hook’s law, the stiffness of the system. The inverse 1

Rpassive
can be interpreted as the

sensitivity of the system under a strain ı.
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The active correction mechanism (i.e. the self-organised O/C structures) builds
up an increasing counterforce, which eventually completely sets off the effects of
the disturbance. If we want the disturbance ı to be counteracted within time trec,
then we need a recovery speed Ractive D ı

Rpassive�trec
.

This formula can be interpreted also slightly differently: Ractive � Rpassive D ı
trec

.

The recovery effort ı
trec

can be made by a combination of passive and active
measures: Ractive � Rpassive. Higher structural robustness Rpassive allows for a lower
active robustness Ractive and vice versa.

4.3.8 Example

The following is an example of Trust Community experiments with three experi-
mental recovery behaviours. We use the average speedup as the utility metric U.
Figure 4.5 shows the undisturbed utility over time as well as the utility drops for

Fig. 4.5 Trust Community experiments with three alternative O/C mechanisms result in different
recovery behaviours. iTC (red effective utility degradation) shows the lowest active robustness,
sETC (blue area) guides the system more quickly back into acceptance space. The blue, yellow,
and red lines indicate the linearised recovery behaviours for iTC, mETC, and sETC, respectively
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Table 4.1 Results of
Robustness Experiments

�U trec AŒx103� Rpassive Ractive ı

iTc 11 140,000 770 4.5 8 � 10�5 50

mTc 3 130,000 195 17 2:3 � 10�5 50

sTc 3 70,000 105 17 4:3 � 10�5 50

the Trust Community variants iTC, mETC, and sETC (see Chapter 5). As metric for
the disturbance ı we used the number of attacking agents, which was identical for
all three experiments (ı D 50). The O/C solutions mETC and sETC counteract the
attack so fast, that �U is reduced as well. The coloured areas under the drop curves
show the effective utility degradations. An approximate evaluation of these curves
results in comparison values for trec, A, Rpassive, and Ractive according to Table 4.1.
The usage of the robustness metric as defined above can be difficult in practical
cases due to the noisy character of many experiments. Nevertheless, it is useful as a
concept for the understanding of passive and active robustness mechanisms in OC
systems.

4.4 State-of-the-Art

Our application scenario is a Trusted Desktop Grid System which is an Open Dis-
tributed Systems consisting of an unknown number of autonomous entities that are
heterogeneous with respect to goals, capabilities, preferences, and behaviours [18].
These systems are used to share resources between multiple administrative author-
ities [19]. Additionally, there is no central control [20]. The ShareGrid Project
in Northern Italy is an example for a peer-to-peer-based system [21]. A second
approach is the Organic Grid which is peer-to-peer-based with decentralised
scheduling [22]. Contrary to our system, these approaches assume that there are
no malicious parties involved and each node behaves well. Another implementation
with a central tracker is the Berkeley Open Infrastructure for Network Computing
project (BOINC) [23].

All those systems solve a distributed resource allocation problem. Since work
units can be computed faster when agents cooperate, they reward and, thus, max-
imise cooperation. Additionally, a high fairness value ensures equal resource distri-
bution (cf. [24–26]). Agents can form Trust-based multiagent organisations [16, 27,
28].

We model our grid nodes as agents. Agents follow a local goal which might differ
from the global system goal [29]. We consider agents as black boxes which means
that we cannot observe their internal state. Thus, their future actions and behaviour is
unknown [30]. Our Trusted Desktop Grid supports Bag-of-Tasks applications [31].

A classification of Desktop Grid Systems can be found in [32]. A taxonomy
can be found in [33]. It is emphasised there that there has to be some mechanism
to detect failures and malicious behaviour in large-scale systems. Nodes cannot be
expected to be unselfish and well-behaving.
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In contrast to other state-of-the-art works, we do not assume the benevolence of
the agents [34]. To cope with this information uncertainty, we introduced a trust
metric. A general overview about trust in Multi-Agent Systems can be found in [6].
Another implementation of trust in a Desktop Grid System was evaluated in [35].

4.4.1 Norms

Explicit norms are similar to laws and can be expressed in deontic logic and
argumentation. Individuals can reason based on these norms. Since there are
multiple actions available, they may use additional factors or preferences [36]. Other
approaches use defeasible logic (DL) to efficiently model [37] and reason [38] about
norms. They separate facts and rules, which can be strict rules, defeasible rules, and
exceptions from defeasible rules (called defeaters). To resolve conflicts between
two rules reasoning about the same action, priorities can be specified [39]. All
reasoning can be performed in linear time and is stable even when norms are not
consistent [40].

We base our norm format on [41]. The authors developed a model for represent-
ing norms using context-aware policies with sanctions. They consider reputation
when making decisions based on norms. We use a conditional norm structure as
described in [42]. Most of our norms can be characterised as “prescriptions” based
on [43], because they regulate actions. Our norms are generated by a centrally
elected component representing all agents which classifies them as an “r-norm”
according to [44]. By using norms, our agents can reach agreements and express
commitments [44]. However, the agents can still violate such commitments and risk
a sanction. Thereby, the agents stay autonomous. In [45], the authors present a norm
life-cycle including norm creation, enforcement, and adaptation.

4.4.2 Normative Multi-Agent Systems

This work is part of wider research in the area of norms in multi-agent systems.
However, we focus more on improving system performance by using norms than
researching the characteristics of norms [46]. Our scenario is similar to management
of common pool resources. According to game theory, this leads to a “tragedy
of the commons” [14]. However, Ostrom [15] observed cases where this did not
happen. She presented eight design principles for successful self-management of
decentralised institutions. Pitt et al. [8] adapted these to Normative Multi-Agent
Systems (see Sect. 4.2.3 above in this chapter).

Normative Multi-Agent Systems are used in multiple fields: e.g. in [47] they
focus on so-called policy-based intentions in the domain of business process design.
Agents plan consecutive actions based on obligations, intentions, beliefs, and
desires. Based on DL, social agents reason about norms and intentions.
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In [48], the authors present a generic approach to form organisations using norms.
They assign a role to agents in a normative system. This system defines a goal,
a process to reach the goal, required skills, and policies constraining the process.
Agents directly or indirectly commit to certain actions using a predefined protocol.
Agents may join or form an organisation with additional rules.

The normchange definition describes attributes, which are required for Norma-
tive Multi-Agent Systems [49]. Ten guidelines for implementation of norms to MAS
are given. We follow those rules in our system. When norms are involved, agents
need to make decisions based on these norms. Rosaria et al. [50] argue that agents
have to be able to violate norms to maintain autonomy. However, the utility of
certain actions may be lower due to sanctions.

According to [51], Normative Multi-Agent Systems can be divided into five
categories: norm creation, norm identification, norm spreading, norm enforcement,
and network topology. We use a leadership mechanism for norm creation and norm
spreading. For norm identification, we use data mining and machine learning. For
norm enforcement, we use sanctioning and reputation. Related approaches use
Normative Multi-Agent Systems for governance or task delegation in distributed
systems [52].

To detect the system state, we use social network analysis. All algorithms used
for this purpose can be found in [53]. A survey of different analysed social networks
was done by [54].

4.4.3 Robustness

Robustness has been defined in the literature mostly informally, e.g. in [55] as: “. . . a
robust system can be defined as a system that functions correctly within a broad
range of operational conditions.” There exist also formal definitions: The FePIA
procedure [56] defines a tolerance region of some system parameter which must
not be violated by an external perturbation. The difference between the nominal
value of the perturbation values which map onto the upper and lower limit of
the tolerance region, respectively, is called robustness diameter (2� the robustness
radius). England et al. [57] propose a statistical approach based on the difference of
two cumulative distribution functions, one with and one without the perturbation.
These ideas, however, do not consider the time behaviour of the system which is
subject to the disturbance and which has to react, either by passive resistance or by
active countermeasures. The formalism we have presented above takes the timing
behaviour into account and proposes metrics for a quantitative assessment of the
system recovery.



106 J. Kantert et al.

4.5 Normative Control Loop

In our Trusted Desktop Grid (TDG), different attacks by malevolent agents can
occur (for instance, the aforementioned “trust breakdown”). We implemented
various counter and security measures to maintain a good utility for well-behaving
agents. However, most of these measures appear with some attached costs. Although
we do not benefit from those mechanisms under normal conditions, they are
essential under attack or at least lead to a significantly faster recovery from attacks.
Additionally, we can configure our reputation system and change the effect of
ratings. This may increase or decrease robustness but it also influences how fast
new agents are integrated into the system. Offering larger incentives leads to a faster
system start-up and a better speedup when well-behaving agents join the system.
However, it also gets easier to exploit the system for malevolent agents.

In the TDG, a variety of different parameters exist which influence the system
behaviour. They must be set before system start. For example, they enable or disable
security measures or change the influence of a rating to the reputation system. Some
settings result in a better speedup when no attacks occur, but lead to a higher impact
on the performance in case of the system being under attack. There is no global
optimal value for most of these scenarios. The ideal value or setting depends on the
current situation.

To obtain the best overall performance, we need to change these parameters
and settings during runtime according to the current situation. However, we cannot
detect global system states such as the “trust breakdown” or overload situations,
from the local viewpoint of an agent. It is also not possible to influence agents
directly since they are autonomous. There needs to be a higher-level instance which
can detect the current system state and consequently guide the agent’s behaviour
through indirect influences. The assessment of the current system situation is
presented in the remainder. Active guidance of the agents is realised by norm-based
control, which is briefly outlined in the following.

4.5.1 Norms and Sanctions

A norm is a rule with a sanction (such as laws in a society) or an incentive if certain
conditions are met or violated. We formalise a norm as a three-tuple:

Norm :D hEvaluator; Action; .Policy1 : : : Policyn/i
Policy :D hContext; Sanctioni

The Evaluator is either the worker or submitter part of an agent. Both have
different Actions they can perform. The following list names examples for both
components.



4 Normative Control 107

1. Worker

(a) AcceptJob.Aw; As/: Agent Aw accepts a job from agent As

(b) RejectJob.Aw; As/: Agent Aw rejects a job from agent As

(c) ReturnJob.Aw; As/: Aw returns the correct calculation for job to As

(d) CancelJob.Aw; As/: Aw cancels job of As

2. Submitter

(a) AskForDeadline.As; Aw/: As asks worker Aw for the deadline for a job
(b) GiveJobTo.As; Aw/: As asks worker Aw to do a job
(c) CancelJob.As; Aw/: As cancels a job Aw is working on
(d) ReplicateJob.copies/: Copies a job multiple times and uses GiveJobTo./ on

them

A norm may contain multiple Policies that consist of a Context and a Sanction,
which can also be an incentive (implemented as negative Sanction). The Context
contains one or multiple conditions which must be true to trigger a certain Sanction.
Since all agents want to achieve a maximal speedup, it is not possible to give a direct
reward to an agent and we can only increase or decrease the speedup indirectly by
varying the reputation of an agent. The Sanction may also influence more indirect
parameters, which in turn can influence the success of an agent. The following list
summarises the possible interventions in terms of sanctions and incentives:

1. Incentive

(a) Reputation is increased
(b) Monetary incentives

2. Sanction

(a) Reputation is decreased
(b) Loss of monetary incentives

Figure 4.6 shows an exemplary norm which is used in the TDG in extended OCL
format [58]. In this example, the norm formulates that a Worker should always finish
a job and will receive an incentive which is stronger when the requester has a low
reputation. Otherwise, the working agent will receive a sanction (see [59] for more
details).

Agents in the TDG need to be able to understand the currently valid norms, which
enables them to trade-off sanctions and incentives in their decision making. This
allows them to follow short- or long-term strategies based on these norms. Since
the agents are autonomous and free to obey or ignore these norms, the system still
needs to enforce the sanctions and give incentives to agents [41].
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Fig. 4.6 Norm used in the
evaluation. It sanctions
cancelling work and rewards
the completion of work. In
addition, working for
submitters with lower
reputation generates a
stronger reward

context
Target/Role︷ ︸︸ ︷

Worker::returnJob() inv:
self.returnJob(job,requester) = true︸ ︷︷ ︸

Postcondition

⎫⎪⎬
⎪⎭Condition section

incentivised
if requester.reputation< highReputationThreshold︸ ︷︷ ︸

Sanction Condition
then self.reputation += highWorkDoneIncentive︸ ︷︷ ︸

Incentive
if requester.reputation ≥ highReputationThreshold︸ ︷︷ ︸

Sanction Condition
then self.reputation += lowWorkDoneIncentive︸ ︷︷ ︸

Incentive

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Incentive section

sanctioned
self.reputation -= cancelSanction

Sanction

}
Sanction section

4.5.2 Higher-level Norm Manager

In Fig. 4.7, we present our concept of the Norm Manager (NM), which uses the
common Observer-Controller pattern [7]. The complete control loop implemented
by the Observer-Controller component helps to mitigate effects of attacks to the
TDG and allows a better fulfilment of the system goals. Thereby, it defines an
intelligent control mechanism working at system-level. However, if the additional
NM fails, the system itself is still operational and can continue to run (this refers
to the desired OC characteristic of non-critical complexity [60]). When the NM is
recovered, it can start to optimise the system again.

4.5.3 System Observation

To detect the current system state, the observer in the NM monitors work relations
of all agents. Based on the observations, the controller in the NM creates a directed
work graph with agents as nodes and edges between agents which have cooperated
in the monitored period. The intensity of the cooperation between two agents
determines the weight of the edge connecting them. In this context, the intensity
is determined according to the number of shared work packages. Additionally, the
controller creates a directed trust graph with agents as nodes and trust relations as
edges. Trust relations T.a; b/ between two agents a and b can be obtained from the
reputation system and define how trustworthy agents estimates each other within an
interval between 0 (not trustworthy at all) and 1 (fully trustworthy). Agents fully
trust themselves and, therefore, T.a; a/ is always 1 (self-trust).

Since we cannot see the internal implementations of agents, we need to observe
them from the outside. We could monitor all interactions between agents, but this
may lead to a bottleneck in larger systems. However, it is easy to monitor the actions
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Norm Manager

Agent A
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Agent C

Norm set

Agent E

Agent D

Observationmodel Change norms

Distribute 
norms

Collect data 
on agents

Observer Controller

Situation 
Description

Detect 
situation
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Fig. 4.7 System Overview of the Norm Manager consisting of an Observer and a Controller which
control the System under Observation and Control (SuOC) using norms

indirectly: We can observe the reputation system and use the ratings which agents
give to their partners after every interaction. When we collect those ratings, we can
build a trust-graph. Multiple ratings will be merged using an arithmetic mean.

Afterwards, the NM calculates certain common graph metrics for every node and
the global system state is determined. Based on this metrics, our algorithm forms
clusters and finds groups of similar agents. By further classifying these groups, the
Observer achieves an even better understanding about potentially happening attacks
which allows it to detect attacks happening in the future faster. In the end, it is able
to classify whether the system is under attack, categorise the type of the attack, and
rank attacks according to their severity. This is accompanied by an estimation of
how accurate this information is.

From a methodical point of view, the observer works as follows: First, it builds
graphs for trust and work relations between agents. In a second step, it applies graph
metrics to be able to identify groups or clusters of similar agents. Afterwards, it runs
statistics on every cluster found and compares them to historic or threshold values.
Clusters are tracked over time to detect tendencies and predict future values. We
presented this method in [61, 62] and visualised it in [63].
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4.5.4 System Control Using Norms

The controller is responsible for guiding the overall system behaviour by applying
norms. Such a norm contains a rule and a sanction or an incentive [41]. Agents are
still autonomous and can violate norms with the risk of being sanctioned.

Based on the information obtained by the observer, the controller decides
whether the system norms need to be changed. As discussed above, norms can not
directly influence agents but modify their actions. To be more specific, norms can
impose sanctions or offer incentives to actions. To defend against attacks, we can
increase sanctions for certain actions. Under certain conditions we can allow agents
to perform security measures, which would lead to sanctions otherwise [42]. We
show results for one group of attackers in Sect. 4.6.3.1. Additionally, we published
other possible norm changes in [64].

4.6 Implementation and Evaluation

The following section analyses the benefit of the previously introduced normative
control loop for open distributed systems. First, we describe the experimental setup
and the application scenario. Afterwards, we evaluate three basic characteristics: (a)
how the overall system’s robustness can be increased by reliably detecting malicious
agents, (b) how disturbances can be handled using normative control, and (c) how
the approach outperforms comparable solutions from the state-of-the-art within a
specific application case.

4.6.1 Experimental Setup

As an application scenario, we investigate open grid computing systems, which
can host numerous distributable workloads, e.g. distributed rendering of films.
The system is considered open since there is no central controlling entity, all
communication is performed peer-to-peer, and agents are free to join. Worker nodes
belong to different administrative domains, thus, benevolent behaviour cannot be
assumed. Nodes participate voluntarily to submit work into the system and, thereby,
achieve a speedup of their jobs. However, a successful system relies on reciprocity:
Agents also have to compute work units for other submitters [16].

To analyse such systems, we model nodes as agents and run a multi-agent system
in simulation. Every agent works on behalf of a user and periodically receives a job,
which contains multiple parallelisable work units. It aims to accomplish all work
units as fast as possible by asking other agents to work for it. Since we are interested
in an open system, agents behave autonomously, and can join or leave at any time.
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The system performance is measured by the speedup � . In Equation (4.3), �self is
the time it would require an agent to compute a job containing multiple work units
without cooperation. �distributed represents the time it takes to compute all work units
of one job with cooperation of other workers including all communication times.
Since all work requests are sent at the same time �distributed depends only on the
sum of computation time tcomputation;p and communication time tcommunication;p of the
slowest worker (Equation (4.4)). As a consequence, speedup can only be determined
after the result of the last work unit has been returned (simplified version of the
speedup definition in Chapter 5).

� :D �self

�distributed
(4.3)

�distributed :D max
p2Partners

˚
tcommunication;p C tcomputation;p

�
(4.4)

If no cooperation partners can be found, agents need to compute their own work
units and achieve a speedup value equal to one (i.e. no speedup at all). In general,
agents behave selfishly and only cooperate if they can expect an advantage. They
have to decide which agent they give their work to and for which agents they work
themselves. In an open system, it is not possible to control the agent implementation,
so agents might behave uncooperatively or even maliciously.

We consider the following stereotype agent behaviours in our system:

1. Adaptive Agents – These agents are cooperative. They work for other agents
who earned high reputation in the system. How high the reputation value has
to be generally depends on the estimated current system load and how much
the input queue of the agent is filled up. We refer to this group as well-
behaving (WB) agents.

2. Freeriders – Such agents do not work for other agents and reject all work
requests. However, they ask other agents to work for them. This increases the
overall system load and decreases the utility for well-behaving agents.

3. Egoists – These agents only pretend to work for other agents. They accept all
work requests but return fake results, which wastes the time of other agents. If
results are not validated, this may lead to errors. In any case it lowers the utility
of the system.

4. Cunning Agents – These agents behave well in the beginning but may change
their behaviour later. Periodically, randomly, or under certain conditions they
behave like Freeriders or Egoists. This is hard to detect and may lower the overall
system utility.

See Chapter 5 for more details.
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4.6.2 Robustness Increase

In this section, we show how to counter permanent threats by changing norms
during runtime. To evaluate the outcome, we measure the utility and calculate
the robustness.

4.6.2.1 Detecting and Isolating Cunning Agents

We have shown [16] that Freeriders and Egoists can be effectively isolated using
self-organising Trust Communities (see Chapter 5). Cunning Agents, however,
cannot be easily detected and isolated locally in a distributed system. Therefore, they
pose a permanent threat to the TDG. In the following, we discuss how a higher-level
NM can detect them and then change norms to isolate them.

To detect Cunning Agents in the NM, we cluster groups using the MCL [65] and
the BIRCH [66] algorithm on the trust graph and classify them using a decision
matrix. For the purpose of this chapter the matrix can only identify groups of
Cunning Agents. The methods used for that purpose were presented in [62]. In
particular, we use the metrics of Authorities and DegreeCentrality to detect groups
of Cunning Agents.

Once the NM detects groups of Cunning Agents it has to isolate them. Unfortu-
nately, it cannot influence agents directly but it can do this using norms. Therefore,
it introduces a new norm which allows agents to refuse work from Cunning
Agents. We propose to detect them based on their inconsistent behaviour as will
be explained below.

4.6.2.2 Inconsistent Behaviour

In a trust-based distributed system such as the TDG, we condense a series of k trust
ratings R into a single reputation value � (see Equation (4.5)). However, this does
not take into account how consistent those ratings are. Normally, agents make their
decisions based on the aggregated value � .

r 2 Œ�1; 1� ) R 2 Œ�1; 1�k

� :D
P

r2R r
P

r2R jrj (4.5)

However, Cunning Agents behave strategically regarding their reputation value:
They behave well until they reach a certain threshold �upper and then stop to
cooperate with other agents until they fall below a threshold �lower. Therefore, their
reputation � is between those two values most of the time. Moreover, they adjust
their �upper and �lower to be considered as well-behaving by other agents based on the
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reputation (see Equation (4.6)).

�wb � �lower � � � �upper (4.6)

Since those agents intentionally exploit the trust metric they cannot get detected and
isolated using the reputation value. However, they receive very inconsistent ratings r
because of their changing behaviour. We can leverage that to detect them. Therefore,
we define the consistency 
 based on the standard deviation:


 :D 1 �
P

r2R;r>0 r
P

r2R jrj � .� � 1/2 C
P

r2R;r<0 r
P

r2R jrj � .� C 1/2

We expect a very low 
 value for Cunning Agents and a value close to one for
Adaptive Agents. Other agents such as Freeriders or Egoists also should get a 


value of approximately one since they behave consistently maliciously.

4.6.2.3 Incentivising Consistent Behaviour

The NM cannot directly influence agents or force them to perform any actions.
However, it can change norms and, thereby, change incentives and sanctions for
certain actions. To cope with Cunning Agents while maintaining the autonomy of all
agents, we chose to allow them to reject jobs from inconsistently behaving agents.
Therefore, agents can decide on their own if they want to work for Cunning Agents
since they will still receive an incentive for that.

In Fig. 4.8, we show the changed norm. The threshold ! for the reputation
� is smaller than �lower and threshold � for consistency is 0:8 in our exper-
iment. requester.reputation is calculated using the trust metric � and
requester.consistency is determined by 
. The sanction results in a rating
r for the working agent.

Fig. 4.8 Changed norm used
in the evaluation to isolate
Cunning Agents. It allows
agents to reject jobs from
inconsistently behaving
agents

context
Target/Role

Worker norm
Name

AcceptJob:
requester consistency

requester reputation

Pertinence Condition

implies acceptJob(requester job) = true

Postcondition
sanctioned

if violated
Default Sanction Condition

then self.reputation += -rejectSanction

Sanction
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4.6.2.4 Results

The setup in the evaluation comprises 100 Adaptive Agents and additional 50
Cunning Agents for all experiments with attackers. Each experiment ran for 300,000
ticks and was repeated 100 times. We performed three series of experiments: (E1)
without attacker; (E2) with attackers; (E3) with attackers and our norm changes.

In this experiment, we measure the average speedup as defined in Equation (4.3)
for the attacking Cunning Agents and the well-behaving Adaptive Agents. The
detection of Cunning Agents in (E2) by the NM can be observed between tick
15,000 and 50,000 (compare Fig. 4.9) and was successful in all experiments. On
average, the NM detected the attackers at tick 24,920 with a standard deviation of
15,301. Normally, the NM can introduce the norm at this point. However, to make
the impact of the norm change more comparable, we set the time tchange to 100,000
for the subsequent experiment in (E3). We measured the consistency values 
 for
Adaptive Agents and Cunning Agents in (E2) at the end of the experiment. Both 


values turned out to be as expected: Adaptive Agents have a value of 0:99˙0:00053.
In contrast, Cunning Agents have a value of 0:06 ˙ 0:013 which is next to zero.

We measure the influence of the norm change using the speedup � for Adaptive
Agents and Cunning Agents in experiments (E1), (E2) and (E3) (see Fig. 4.10). In
Fig. 4.9, we show one single experiment of (E3) as an example with speedup over
time. In the beginning Adaptive Agents and Cunning Agents achieve a similar but
varying speedup. The oscillating character in the beginning is due to the periodic
behaviour of the cunning agents. After the NM introduced the norm change at tick
100,000 the speedup for Cunning Agents falls below one. Those agents no longer
gain any advantage from participating in the system. In contrast, Adaptive Agents
gain a stable high speedup again.

In the undisturbed experiment (E1), we measured that Adaptive Agents can
achieve a speedup of 11:75 ˙ 0:73 when there is no attack. When a heavy attack

Fig. 4.9 Exemplary
simulation run of experiment
E3 with Adaptive Agents and
Cunning Agents. In the
beginning Cunning Agents
change their behaviour
periodically and the speedup
oscillates between values of
two and ten. At tick 100,000
the norm is introduced.
Cunning Agents get isolated
and reach a speedup of less
than one meaning that they no
longer have an advantage
from participating in the
system
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Fig. 4.10 Speedup for Adaptive Agents and Cunning Agents for every experiment series with 100
Experiments each. Experiment E1 uses only Adaptive Agents without any attackers. In E2 we
introduced attackers but no countermeasures. In E3 the norm was introduced to counter the attack
at tick 100,000. All experiments lasted 300,000 ticks

Table 4.2 Speedup for Adaptive Agents and Cunning Agents for every experiment series with
100 Experiments each. In E3 the norm was introduced at tick 100,000. All experiments lasted
300,000 ticks

Speedup E1 – Reference E2 – No norm E3 – With norm

Adaptive agents 11:75˙0:73 5:29˙1:26 8:19˙1:79

Cunning agents 0˙0 5:23˙1:38 0:86˙0:41

of Cunning Agents is added in (E2) the speedup decreases to 5:29 ˙ 1:26. With
norm change by the NM the speedup increases again to 8:19 ˙ 1:79 in (E3).

Cunning Agents achieve a speedup of 5:23 ˙ 1:38 when they exploit the system
in (E2). At the same time they work significantly less than Adaptive Agents.
However, when the NM changes the norm the speedup of Cunning Agents decreases
to 0:86 ˙ 0:41.

In the reference experiment the Ractive and Rpassive are 0 because the system does
not recover at all. To calculate the robustness when using our norm we introduce
tdetection which is the time after tdrop until the attack is detected and before the
recovery starts. In this experiment tdetection is set to tick 100;000 to allow better
comparison of the recovery phases. Based on the data from Table 4.2, trecovery

is 7;931 ticks in average. In the norm change case we can calculate: Rpassive D
1

11:74�5:29
100

D 15:50 and Ractive D 8:19�5:29
7:931

D 3:66 � 10�4.



116 J. Kantert et al.

4.6.2.5 Summary

We implemented an approach which allows well-behaving agents to react to
Cunning Agents in a distributed manner. The Norm Manager triggers a norm change
when it detects an attack. Afterwards, Adaptive Agents recover from the attack and
Cunning Agents get isolated.

4.6.3 Counteracting Disturbance

In this section, we focus on the controller component. The controller is responsible
for guiding the overall system behaviour by applying norms. Such a norm contains
a rule and a sanction [41]. Agents are still autonomous and can violate norms at the
risk of sanctioning.

Based on the information obtained by the observer, the controller decides
whether the system norms need to be changed. Norms cannot directly influence
agents but modify their actions. To be more specific, norms can impose sanctions or
offer incentives to actions. To defend against attacks, we can increase sanctions for
certain actions under some conditions or we can allow agents to perform security
measures, which lead to sanctioning otherwise [42]. Certainly, changed sanctions or
incentives take effect only on actions which will be taken after the change.

4.6.3.1 Reducing the Effect of Disturbances

To counter attacks of malicious agents the controller utilises various counter
measures: change or create norms; issue incentives or add sanctions. In Fig. 4.6,
the default norms of our TDG are shown. Agents get positive reputation when they
finish the work for other agents. If they reject work they get a bad rating, unless the
reputation of the requesting agent As is below ˛.

When an agent enters the system it gets an initial reputation �. To facilitate
integration into the system, � is greater 0. However, malicious agents can use this
initial trust to exploit other agents. Especially in sybil attacks [67], where agents
have multiple identities, this becomes a big issue. Unfortunately, � > 0 is also
needed to efficiently integrate well-behaving agents. Fortunately, the observer can
detect such attacks, so the controller can react based on that knowledge. In our
approach, the controller changes ˛ in Norm 1 to a value ˛ > � (see Fig. 4.8).

As a result we expect a decrease in the impact of attacks by Freeriders and
Egoists since they will no longer be able to cause a Trust Breakdown with their
initial reputation. This effect can be measured by the time between attack start and
the point where all attackers are isolated. We want to minimise this duration until
isolation. As our approach also affects well-behaving agents, we also measure the
increase of duration to integrate them into the system.
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4.6.3.2 Results

We consider attacks by Freeriders and Egoists and evaluate both attacks by adding
100 attacker agents each to a system of 200 Adaptive Agents. To measure the
effect on well-behaving agents we repeat the experiment with 100 Adaptive Agents
entering the system. The described norm change is performed at the beginning of
the attack. Additionally, we run a reference experiment without norm change for
all agent types. Since isolation and integration of agents is slower during low load
situations, we added this as a scenario. Every experiment was repeated one-thousand
times – resulting in 12,000 experiments.

After the attack starts at tstart, we periodically calculate the speedup � (defined in
Equation (4.3)) for the attacking agents. tisolation is defined to be the smallest value
with tend > tstart ^ � � 1 (Equation (4.7)). The duration until isolation �tisolation is
then determined as the difference of tend and tstart (Equation (4.8)).

tisolation :D minft W t > tstart ^ �t � 1g (4.7)

�tisolation :D tisolation � tstart (4.8)

For Adaptive Agents, we similarly calculate the duration until integration �tintegration

(Equation (4.10)). In a reference experiment without norm change, we determine
the final speedup after integration �ref. tintegration is then defined to be the first time
after a group of agents joins where � � �ref (Equation (4.9)).

tintegration :D minft W t > tstart ^ �t � �refg (4.9)

�tintegration :D tintegration � tstart (4.10)

In Fig. 4.11, we present our results for three agent types. For Freeriders and
Egoists, the graph shows �tisolation. In contrast, for Adaptive Agents, it illustrates
�tintegration. Full results with standard deviation are listed in Table 4.3.

The results show that isolation of malicious agents greatly improves when norms
are changed, especially, in low load situations. For Freeriders the duration decreases
by 78 % under normal load. Under low load, Freeriders are not fully isolated without
our norm change. However, this changes with our approach: The system does
properly isolate the attackers in all experiments. Since isolation does not work in
the reference case, we limited the length of that experiment. Therefore, the value
for low load without norms in Table 4.3 has no variance at all and the relative gain
cannot be calculated.

4.6.3.3 Discussion

Our normative control approach is very effective when dealing with Egoists. With
changed norms during attack they get isolated after calculating their first job
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Fig. 4.11 Duration until integration for Adaptive Agents and the duration until isolation for
attackers. Shorter is better for both. With our norms the duration until isolation decreases
significantly. However, the duration until integration increases slightly for Adaptive Agents

Table 4.3 Duration until isolation/integration per agent group

Low load Normal load Low load Normal load
Agent without norm without norm with norm with norm

Adaptive agents 6;837:1 ˙ 228:06 6;722:1 ˙ 568:06 18;375:3 ˙ 6;098:97 8;945:7 ˙ 2;585:81

Freerider 145;000 ˙ 0 8;841:6 ˙ 17;597:08 8;037:9 ˙ 275:77 1;930:8 ˙ 57:37

Egoists 41;178:4 ˙ 64;102:20 3;034:1 ˙ 14;268:11 1;600 ˙ 0 1;609:3 ˙ 62:47

(duration of a job is 1,600 ticks). Without the change they did not get isolated in
most cases under low load and it took about twice as long under normal load.

However, well-behaving agents are also affected by the norm change: Adaptive
Agents need 33 % longer under normal load and 169 % longer under low load.
Integration still worked in all experiments and can be considered stable.

Our results show that changing norms reduces the impact of attacks by Freeriders
and Egoists. However, this change cannot become the default because it also affects
the integration of well-behaving agents. Nevertheless, by using our NM we can
change norms in critical situations, i.e. when the observer detects an attack by
Freeriders or Egoists.

Critical to the success of this method is fast detection of such attacks. After
isolation of the attackers the norm changes can be reversed since isolation of
those two groups is permanent. Isolation is performed using trust and reputation
mechanism of the TDG. We chose this approach to keep maximal autonomy for the
agents.
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4.6.4 Open Rendering Farm

As a third experiment, we apply our techniques to a volunteer-based distributed
rendering application. Rendering cinematic films typically requires very long
calculations and, therefore, most productions are rendered in parallel using a high
number of computers. Films can easily be partitioned into frames, which then can be
calculated in parallel without any data dependencies. However, in a volunteer-based
system users may produce invalid results and, therefore, work has to be replicated.
Our TDG supports dynamic replication factors. We compare our approach with a
static replication factor of 2 used by Big and Ugly Rendering Project (BURP) which
is based on BOINC [23].

4.6.4.1 Comparing TDG with BOINC/BURP

In BURP every work unit is given to two workers. When both return the same result,
the work is accepted. Otherwise, all results are thrown away and the unit is replicated
until, eventually, two workers return the same results. This approach is very simple
and works in practice. However, it generates at least 50 % overhead if all workers
compute everything correctly.

When using the TDG as application platform for distributed rendering, we also
replicate work units multiple times. However, we choose the replication factor based
on the reputation of the worker in the system. Initially, all workers are untrusted and
we start with a replication factor of 5. As soon as all results are collected, we check if
we find a quorum of equal results (i.e. in this case three equal results). All workers
with the supposedly correct result receive a good rating and gain reputation. All
other workers receive a bad rating and loose reputation.

Based on the reputation of every worker, we calculate the minimal replication
factor when using the worker. To reduce the overall amount of replication, we
group workers by minimal replication factor and try to always select from within
one group. Additionally, if possible, we add at least one trustworthy worker (with
high reputation) to a replication set containing untrusted workers. For trustworthy
workers, we only do probabilistic replication in one out of ten cases resulting in an
average replication factor of 1:1 (e.g. 10 work units result in 11 computations).

4.6.4.2 Results

To compare the approaches, we measure replication factor, throughput and cor-
rectness. We did experiments for independent and colluding attackers. The results
of independent attackers are distinguishable when calculating a quorum. However,
colluding attackers communicate and return the same faked results which may result
in a quorum for the incorrect result when comparing. Every experiment is repeated
ten times and consist of 100 workers which compute 30,000 work units.
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Fig. 4.12 Average replication factor with increasing share of independent attackers. The replica-
tion factor of BURP starts at two with no attackers and increases to nearly 10 when adding 60 %
of attackers. In contrast, the replication factor of the TDG stays near one and only increases very
slightly

Table 4.4 Throughput (jobs per second) with no attackers, 20 % independent attackers and 20 %
colluding attackers

Throughput No attackers 20 % colluding attackers 20 % independent attackers

BOINC 39.88 ˙ 0.03 26.65 ˙ 0.078 27.92 ˙ 0.097

TDG 72.23 ˙ 0.054 56.80 ˙ 0.097 56.43 ˙ 0.25

In Fig. 4.12, we show the results for different shares of independent attackers.
Since two results of independent attackers can always be distinguished the correct-
ness is 100 % in all experiments. However, the replication factor increases when the
share of attackers increases. For BURP it starts at a value of 2:42 with 10 % attackers
and increases to 9:55 for 60 % attackers which generates nearly 90 % overhead. For
the TDG the replication factor only increases very slightly from a value of 1:23

to 1:27. In Table 4.4, we show throughput values for TDG which are in all cases
roughly twice as large as those of BOINC.

Similarly, as shown in Fig. 4.13, we performed experiments with colluding
attackers with increasing shares of attackers. When we consider colluding attackers,
replication can also lead to incorrect results. Therefore, we also show the correctness
in Fig. 4.14. Compared to Fig. 4.12, BURP has a lower replication factor and
TDG shows a higher replication factor. However, the correctness decreases with
increasing share of attackers. For BURP it starts at a correctness of 99.1 % and
decreases to 41 % with 60 % of attackers. The TDG reaches 100 % correctness
for 10–40 %. Unfortunately, when attackers start to become the majority of the
system at 50 % and more, the correctness degrades. For 20 % colluding attackers
the TDG-based approach shows about twice the throughput of BURP because of
the smaller replication factor. At the same time it produced 100 % correct results in
our experiments.
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Fig. 4.13 Average replication factor with increasing share of colluding attackers. The replication
factor of BURP starts at two with no attackers and increases to about 4 when adding 60 % of
attackers. In contrast, the replication factor of the TDG starts near one and only increases to
about 2.5
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Fig. 4.14 Average correctness factor with increasing share of colluding attackers. The correctness
of the TDG is 100 % for up to 40 % of attackers. With 50 % it drops minimally. For 60 % it is less
than 20 % because attackers have the majority. The correctness of BURP starts at 100 % without
attackers and drops as soon as attackers join. It is worse than the TDG as long as the attacker are
not the majority

4.6.4.3 Summary

We demonstrated that our approach is applicable to real world applications by
implementing it in a distributed volunteer-based rendering application and com-
paring it to BURP. The TDG shows better performance by using less replication
and generating less overhead. Additionally, when dealing with colluding attackers
it generates a higher correctness (100 % in our experiments) when dealing with less
than 50 % attackers in the system. However, our approach performs worse than the
base line as soon as attackers become the majority of the system.
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4.7 Conclusion and Outlook

This chapter presented a system-wide control loop to guide self-organised behaviour
in distributed systems. Therefore, we introduced a norm-based solution and illus-
trated the success within simulations of a Desktop Grid Computing system as
application scenario. As motivation, we outlined that open systems (i.e. agent
societies) allowing autonomous and heterogeneous participants to join freely suffer
due to uncooperative or even malicious behaviour. A successful concept to counter
these challenges posed by openness and heterogeneity is establishing computational
trust relationships among agents. However, negative emergent behaviour can appear
in some cases when dealing with computational trust – with disturbed system
operation as result (i.e. in terms of efficiency and fairness). Since we assume
autonomous and self-motivated agents, a direct intervention is hardly possible.

As a reaction to the observed challenges, we proposed a concept that resembles
Organic Computing’s observer/controller pattern at system-level. This loop derives
a situation description from externally observable information, such as trust and
cooperation relationships, and guides the self-organised behaviour of participating
agents by issuing norms as response to the currently observed conditions. For the
observation part, we introduced a graph-based method that can be utilised to identify
agents or groups of agents with malicious intentions by applying e.g. clustering
techniques. The controller part follows a rule-based approach by issuing norms in
response to the previously defined situation descriptions.

The evaluation has been performed as simulation of a Trusted Desktop Grid
in which several classes of stereotype agent behaviour have been considered.
The results highlight three basic insights: First, we demonstrate the success of
identifying malicious agents or groups of malicious agents without the need of
internal agent information. Secondly, we showed the increase of robustness in
terms of a faster recovery and a decreased drop of performance in the presence of
varying disturbances. And finally, we compared the developed concept to the most
successful solution in the Grid Computing domain: BOINC. Here, we have shown
that our concept is able to significantly reduce redundant work packet calculation
while simultaneously improving the speedup compared to individual calculation.
As a result, we demonstrated that the system can recover significantly faster from
emergent situations, such as the “trust breakdown”, compared to other solutions.

Current and future work focus on the improvement of a set of minor issues
concerning the scalability and performance of the concept. First, we are working
on the question how the partly centralised solution as investigated in this chapter
can be combined with completely distributed mechanisms. The idea is to offload
responsibilities (i.e. surveillance of norm compliance, identification of best solutions
to be established as norms, or notification about conflicting goals defined by active
norms) to the agents without decreasing the security level. This is accompanied by
the question which more sophisticated threats may appear that have been neglected
so far – and how counter measures have to be designed to be incorporated in
the proposed process. In addition, a self-stabilisation process that makes use of
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accusations can further introduce social-inspired capabilities that help to maintain
the overall system utility. Finally, we are interested in a more generic evaluation of
the developed concepts by evaluating the developed approach in other application
scenarios, e.g. from the wireless sensor network domains.

Acknowledgements This research is partly sponsored by the research unit OC-Trust (FOR 1085)
of the German Research Foundation.
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Chapter 5
Trust Communities: An Open, Self-Organised
Social Infrastructure of Autonomous Agents

Sarah Edenhofer, Sven Tomforde, Jan Kantert, Lukas Klejnowski,
Yvonne Bernard, Jörg Hähner, and Christian Müller-Schloer

Abstract Future technical systems will be increasingly characterised by open-
ness and heterogeneity of participating elements. Based on exemplary application
scenarios such as Desktop Computing Grids, Smart Power Grids, and Networked
Camera Systems, this chapter develops a solution perspective to handle anomalies,
disturbances, and malicious behaviour by making use of trust and reliability
measures in self-organised systems. The overall goal is to increase the robustness
of open distributed systems with low overhead. Therefore, a novel self-organised
multi-agent organisation—the Trust Community—is introduced in two variants:
as implicit and as explicit self-structuring society of autonomous agents. For the
explicit variant, a life-cycle and management routines are described. For evaluation
purposes, we simulate a Trusted Desktop Computing Grid and introduce different
types of stereo-type agent behaviour, ranging from altruistic to egoistic and to
cunning behaviour. In order to support efficiency and stabilise the process, we
show the benefits of explicit Trust Communities, which results in significantly lower
overhead and more reliable relations among agents compared to other forms of agent
societies.
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5.1 Introduction

Self-organised systems such as Vehicular Traffic Control [1] and Intrusion Detec-
tion [2] are facing challenges regarding controllability and administrability due
to severe complexity and interaction [3]. Typically, such a system consists of a
potentially large set of autonomous agents that act on behalf of a user and try to
achieve an intrinsic goal, potentially resulting in selfish behaviour. This is accompa-
nied by general characteristics of the self-organising system, such as heterogeneity
(in terms of participating agents), openness (i.e. there is no authorisation and
participation control mechanism), or geographic distribution. As a consequence of
these properties, we face challenges in terms of identifying reliable and trustworthy
interaction partners within such systems.

Establishing computational trust as basis for decisions about interaction partners
has been shown to be beneficial [4]. Thereby, the term trust comprises several
facets that all contribute to the prediction of the counterpart’s behaviour for an
upcoming interaction, e.g. reliability, predictability, compliance, or availability. In
general, trust is an individual experience—which can be combined with aggregated
community-based measures such as reputation. If taking trust experiences and
reputation values into account during selection of interaction partners, an agent can
decrease the fraction of unsatisfying experiences [5].

In this chapter, we utilise the concept of computational trust and improve
its impact within self-organising systems. In order to be able to decrease safety
measures and simultaneously increase efficiency and robustness, we propose a novel
multi-agent organisation called Trust Community (TC).1 Such a TC is formed by
individual agents that have strong mutual trust relationships and it is maintained as
long as there is a benefit of participation. We describe the entire TC life-cycle with
all constituting elements in the remainder of this chapter.

To illustrate the developed concept, we consider a Desktop (Computing) Grid
(DG, see [6]) as one particular instance of the aforementioned problem class. The
goal of participating in a DG is to utilise resources provided by other agents in a
reciprocal manner (i.e. each agent contributes a fair share of its resources to keep the
system running). In such a system, agents can join and leave at any time, and there is
no mechanism to control their participation strategy. More precisely, each agent can
(and probably will) behave selfishly, and malicious elements may become part of the
system as well. In this chapter, we apply the TC concept to an exemplary DG system
and demonstrate that such malicious agents are isolated fast and efficiently. We also
show that becoming a TC member has significant benefits in terms of speedup of the

1In earlier publications referred to as Trusted Communities.
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work units (WUs) to be processed. In addition, we compare the developed concept
with the Clans [7] concept that is a successful representative from the state-of-the-
art.

The remainder of this chapter is organised as follows: Sect. 5.2 gives a brief
overview of the state-of-the-art with respect to trust and reputation, multi-agent
systems, and our application scenario. Afterwards, Sect. 5.3 presents the application
scenario—the Trusted Desktop (Computing) Grid (TDG)—in more detail, includ-
ing the considered agent behaviour, the individual agent’s goal, and the overall
system goal. Section 5.4 introduces the concept of Self-organising TCs—a novel
multi-agent organisation to improve robustness and efficiency in open, distributed
systems. The approach is evaluated in Sect. 5.5 using simulations of the TDG.
Finally, Sect. 5.6 summarises the chapter and gives an outlook to future work.

5.2 Related Work

Trust is a concept well studied in fields such as philosophy [8], psychology [9], or
sociology [10, 11]. In human societies, every person is first of all concerned with
his or her individual interests, but we have learned to expect certain behaviours of
our fellow members of society and rely on them. “Trust is a belief an agent has that
the other party will do what it says it will (being honest and reliable) or reciprocate
(being reciprocative for the common good of both), given an opportunity to defect
to get higher payoffs” [4]. Many sociologists see trust as the fundamental basis for a
well functioning and stable society [12]. “Without trust, the (human) society would
cease to exist” [13]. The term Reputation is usually used as the combined trust value
of several agents towards a single agent [11, 14].

We can distinguish four possible sources of trust in computing systems [15]:
Direct experiences can be gained by direct interaction between two agents, or from
observation of an interaction between two other agents. Witness Information (or:
Indirect Information) is communicated by other agents of the system. Therefore, it
is far more abundant than direct experience and it is important in order to get an
accurate estimation of a member with whom an agent has not interacted with yet.
At the same time, it poses security threats as other members can also spread wrong
information. Sociological information is gained by taking social relationships into
account. An example is an employee’s position within a company, it has to be added
to the system manually. Prejudice is estimated by observing signs which identify
members of a community. The last two sources of information can rarely be found
in current technical systems, so only the first two sources are considered.

Traditional trust models are widely used as sources of inspiration for the
improvement of the efficiency of computing systems. In this case, “reputation
systems should not be designed to emulate the sometimes irrational behaviour of
humans. Instead, they should improve the ability of users[i.e. agents—author’s
note] to evaluate opinions and to come to the most beneficial decision” [16]. In
this chapter, the prime example are multi-agent systems [17]. These are distributed
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systems consisting of several interconnected, autonomous, and self-interested nodes
referred to as agents [4]. The agents can, for example, be computers controlled by
users (as in an e-commerce setting) or computers connected into a DG (cf. [18]).
We assume trust as “a subjective expectation an agent has about another’s future
behavior based on the history of their encounters” [19].

Our application scenario described in Sect. 5.3 is such a DG System. The
grid nodes, implemented as agents, work on behalf of the user (corresponding
to the concepts prompted by the domain of multi-agent systems). Therefore, we
do not consider user interactions. Agents can be seen as blackboxes, i.e. they are
autonomous and their internal state cannot be observed by other agents in the system
(no full disclosure). A classification and taxonomy of DG Systems can be found
in [20].

DGs are used to share the resources between multiple administrative authorities.
One example for a peer-to-peer based system is the ShareGrid Project [21]. A second
approach is the Organic Grid, a peer-to-peer based approach with decentralised
scheduling [22]. The before-mentioned systems assume benevolence [23], i.e.
that there are no malfunctioning, malicious, or misbehaving agents participating.
Otherwise, not assuming benevolence means that there are misbehaving agents
which are only downloading files while not offering them for others. At the same
time, there can be malicious agents which damage the system on purpose by lying,
offering corrupted or infected files in content sharing networks, or do not fulfil their
part of a mutual agreement in an e-commerce systems (like not sending a bought
item) [13].

Other approaches are, on the one hand, the open source Berkeley Open Infras-
tructure for Network Computing Project (BOINC) [24] and XtremWeb [25] on
the other hand, which aim at setting up a Global Computing application and
“harvest[ing] the idle time of Internet-connected computers which may be widely
distributed across the world, to run a very large and distributed application” with an
ad-hoc verification process for participating computers. BOINC has at least 50 %
overhead, since it replicates every WU at least once (for more details see [26]). A
panoramic view on computational trust in multi-agent systems can be found in [27]
or [15]. Sabotage-tolerance and distributed trust management in DGs are evaluated
in [28], where mechanisms for sabotage detection are presented, but proposed for a
paradigm of volunteer-based computing.

The concept of clans [7] describes a multi-agent system organisation based on
the idea of congregations [29] and trust management. Clans are used as reference
solution for our evaluation in Sect. 5.5. They are formed by the agents if one of the
thresholds, for either the number of missed opportunities for cooperation, the lack of
scalability, lack of information, or a high failure rate, is exceeded. In this case, one
agent starts to form a clan and invites other agents based on their trustworthiness
(i.e. with focus on reliability) and the agents’ capability. Inside a clan, agents’
benefits derive primarily from the kinship motivation. In contrast to TCs which are
semi-closed systems with central structures of power (e.g. TC Manager, described
in Sect. 5.4.3), clans are purely decentralised. Each clan member can invite other
agents into the clan. This makes clans vulnerable to concerted attacks, for instance.
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5.3 Application Scenario: Trusted Desktop (Computing)
Grid

For illustration purpose, we use the open Trusted Desktop (Computing) Grid (TDG)
as application scenario. Due to the openness of the grid, the autonomous agents
can join (or leave) voluntarily at any time. In the TDG, various autonomous agents
can distribute their work among the other agents (as submitter) as well as process
work of others (as worker, cf. Sect. 5.3.3)—following the concept of reciprocity. We
call this work jobs, which can be split into atomic WUs. Consider as example the
rendering of a cinematic film [26].

Rendering cinematic films (of about 100 min length) requires long calcula-
tions [30]. In consequence, most productions are rendered in parallel on several
computers, i.e. different agents, since rendering is by far the most expensive task
during the movie production process. Films can be partitioned into so-called frames,
i.e. WUs, without data dependencies. Here, the theoretical maximum rendering
speed (max.vrend/) is determined by the number of frames in the film, i.e. the
duration of the film multiplied by frames per second (fps, cf. Equation (5.1)).

vrend � jframesj D duration � fps (5.1)

Considering a 100 min film at 30 fps, we get �rend � 100 � 60 � 30 D 180;000.
The actual value for �rend is lower in practice, because the time to render a frame
is not constant. After the parallel rendering, all frames are merged into one film
and encoded for the target container. Usually, these finishing steps are done without
parallelisation, since they can be processed efficiently on modern computers.

Uncompressed films can be very big. To estimate the required network bandwidth
for the above-mentioned distributed rendering, we analyse the short film Big Buck
Bunny [31] of about 10 min length. This film has been developed by the Blender
Foundation and is publicly available. It has a frame rate of 60 frames per second
due to stereoscopic 3D and consists of 79,781 frames, each raw frame has a size of
10–20 MB and has to be transmitted to the participants of the network. Furthermore,
the participants need some rendering environment. Each scene may have a different
rendering equipment. Big Buck Bunny is divided into 120 scenes, each compressed
scene’s rendering environment has a size between 1 and 60 MB, but the submitter
can restrict the worker to only render frames from one scene, so the required
bandwidth can be kept small compared to the computational requirements. The
latter are ranging “from a few hours to several weeks of CPU time” per frame [31].
For the film Cars2, 12,500 CPU cores were required, a single frame took 11.5 h to
render [32].

This rendering example shows, how important it can be to split up work and
calculate it distributedly. In this section, we want to give further details about
the TDG needed for the distributed processing. First, we will introduce different
agent stereotypes in Sect. 5.3.1, agent components are presented in Sect. 5.3.2.
Afterwards, in Sect. 5.3.3 the agent goal is defined, the worker and submitter
components are explained, and the global (system) goal is introduced.
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5.3.1 Agent Stereotypes

The TDG is open and freely accessible for all different kinds of agents. Therefore,
we waived the assumption of benevolence in the system, which typically serves
as basis [23]. This allows for various types of agents: malicious, uncooperative,
or malfunctioning agents. Consequently, we can distinguish between well-behaving
(WB) and bad-behaving agents (BB) in open systems. In the following, we discuss
different types of agents, which can possibly join the TDG:

Adaptive Agents (ADA) are cooperative agents. They work for other agents,
taking into account several aspects, for example their reputation in the system
and how much their WU-queue is saturated to capacity (in this case, the agent
may reject another WU).

Altruistic Agents (ALT) accept every WU. They do not take into account their
own status, the environmental conditions, or experiences with cooperation
partners.

Freeriding Agents (FRE) are not willing to work for other agents and, there-
fore, reject all work requests but keep asking others to work for them. This
behaviour increases the overall system load and can decrease the benefit for well-
behaving agents.

Egoistic Agents (EGO) accept most WUs but only pretend to work for other
agents. They often return fake results instead of processing the WU correctly.
This wastes the time of other agents. Result validation can be a counter measure,
but this decreases the global speedup (see Sect. 5.3.3).

Cunning Agents (CUN) show an oscillating behaviour. In the beginning, they
act cooperatively, which increases their reputation value. Later, they change
their behaviour (periodically, randomly, or under certain conditions, e.g. if this
reputation is high enough) and behave like FRE or EGO. Such a behaviour is
hard to detect and lowers the overall system performance [33].

Sloppy Agents (SLA) are cooperative but do only accept a certain percentage of
all WUs, which are offered to them [34]. This percentage is expressed by the
acceptance rate ˛.

Defecting Agents (DFA) are a behavioural stereotype that can be imposed on
other agent types. It models the threat of false results for non-validating DG
applications by adding a probability (0.2) of returning a wrong WU result to the
submitter (cf. Sect. 5.3.3).

ADA can be classified as WB agents, ALT are not fully WB, since they work
for BB agents—this lowers the fairness of the whole system. FRE and EGO are
BB. CUN cannot clearly be classified due to their oscillating behaviour; the same
holds for SLA. A big problem can be observed, if several BB agents join the
system simultaneously and try to exploit, respectively attack the system. In order
to intercept this behaviour, the agents can form Trust Communities (TC), which
will be discussed in Sect. 5.4.
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5.3.2 Agent Components

In this section, the ADA is presented in more detail. It is well-suited for the
TDG, since it takes trust and reputation into account when making decisions. Basic
characteristics of the agent are described in the following. Autonomy—to a certain
degree—is granted to the agents since we have an open system. We consider all
agents as blackboxes, i.e. other agents have no knowledge about the internal state
of their respective cooperation partners. Interactions between the agents are based
on a commonly understandable communication protocol. This helps to encourage
cooperation, which is—besides the shared environment (promoting stigmergy) and
external entities such as users—an important source of information. Due to the
distributedness of the system, the agents have a strictly local view.

An ADA implements the Observer/Controller design pattern [35] and relies on
agent models in the literature, where software agents act on behalf of a user and/or
a programme (cf. [17]).

In Fig. 5.1 (in accordance with [36]), the basic structure of such an agent model is
depicted: The user Ux sets up an agent Ax to control its production engine, a client
software that allows participating in the hosting system and defines a performance
measure. This production engine is monitored by the Observer (O), based on an
observation model. This observation model specifies which sensor information
is gathered at which resolution and augmented with predictions or emergence
detection. Together with knowledge gained from monitoring the environment
(also done by the observer), a situation description is created and passed on to
the Controller (C). Based on this situation description, the Controller can alter
the behaviour of the production engine and/or change the observation model.
Therefore, the Controller decides—based on observed input information (Ox; i 2
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Fig. 5.1 Organic Computing-based ADA component with Observer/Controller design pattern. A
communication component COMM helps to communicate with other agents. The agents control
the production engine on behalf of the user
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Œ1::n�)—which components (Compx D fCompx
1; : : : ; Compx

ng) are triggered. Their
encapsulated decision-making determines the interactions (Cx

i ; i 2 Œ1::n�). This
can also influence the interaction model (sum of interactions provided to other
agents) of the communication interface (COMM). The COMM interface allows
for communication with the other agents, e.g. Ay and Az.

5.3.3 Agent Goal, Worker/Submitter Component, and Global
Goal

Agent Goal. The benefit of an agent can be measured by its speedup � , informally
speaking its benefit of having its work processed distributively over having to
process all work on its own (in accordance with [36]). A job J is a set of WUs,
which is released in time step trel

J and completed in tcompl
J , when the last WU is

finished.
The speedup � in Equation (5.2) is a metric known from multi-core systems. It

is based on the assumption that parallelisation helps to process a task (i.e. a job)
faster than processing it on a single core. � is the ratio of the time the agent would
have needed to process all WUs on its own to the real time it took to calculate J
distributedly in the system. This is why the speedup can only be determined after
the last result has been returned to the submitter.

� D
P

J
.tcompl

self � trel
self /

P

J
.tcompl

dist � trel
dist/

(5.2)

In short, we can write � :D tself

tdist
with tself being the time it would require an agent

to process all WUs of a job without cooperation, i.e. sequentially. tdist is the time it
takes until all WUs are computed distributedly and the last result is returned to the
submitting agent. If no cooperation partners can be found, agents need to calculate
their own WUs. This results in a speedup value equal to one. In general, we assume
that agents behave selfishly and only cooperate if they can expect an advantage, i.e.
� > 1, which corresponds to the agent type ADA.

Worker and Submitter Component. Each agent is free do decide which agent it
wants to give its WUs to and for which agents it wants to work for. Therefore, every
agent has a submitter and a worker component.

The submitter component is the scheduler of the agent and responsible for
distributing WUs. If an agent receives a job J from the user consisting of multiple
WUs, it creates a list of suited workers, i.e. workers it trusts. It then asks workers
from this list to cooperate and calculate WUs, until either no more WU or no more
workers are left. If all workers were asked and still unprocessed WUs remain, the
agent calculates them on its own.
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The worker component decides whether an agent wants to work for a certain
submitter. When the agent receives a request to process a WU, it calculates its
expected reward for accepting and rejecting the WU. If the reward of accepting
the WU prevails, the agent takes the WU, puts it in its own working queue, where
the WU remains until the agent starts to process it, i.e. until the other WU in the
queue were processed. Afterwards, it transfers the result back to the submitter where
the result is validated [36]. A job is completed, if all WUs were returned to the
submitter.

Global Goal. The global goal—also referred to as the system goal—is to enable
and encourage agents to cooperate and thereby achieve the best possible average
speedup. The systems’ focus is coordination, i.e. shaping the environment in a way
that allows for cooperation and, thereby, leads to optimising the global goal.

5.4 Self-Organising Trust Communities

The problem with the before-mentioned distributed processing of WUs, e.g. the
rendering of different scenes of a film, is that there can be agents in the system
that are trying to exploit it in different ways. This happens due to the fact that
agents can join the system at any time, and that their internal state is unknown. As
a countermeasure against exploiting agents, e.g. EGO or CUN, we introduce Trust
Communities (TCs). In this section, we first explain the role of computational trust in
Computing Grids in Sect. 5.4.1. Then we introduce explicit TC (eTCs) (Sect. 5.4.2)
and their typical life-cycle (Sect. 5.4.3), including different strategies to form and
control the eTC, as well as different surveillance strategies as additional counter
measure against malicious agents (Sect. 5.4.4).

5.4.1 Computational Trust in Computing Grids

In Computing Grids, trust is mainly used to help the agents find suitable cooperation
partners for processing each others’ work. This increases the performance and
robustness of the system [37]. Furthermore, we need trust to identify malicious,
uncooperative, or malfunctioning agents. Malfunctioning and uncooperative agents
mostly follow certain behaviour patterns. Therefore, they are relatively easy to
identify. Malicious agents, however, are willingly trying to harm the Computing
Grid or exploit other agents, such as the ADA. Thereby, they actively avoid being
detected. This affects the average speedup negatively and can even lead to a
breakdown of the whole system, e.g. in case they attack coordinately.

A first step towards the avoidance of these negative emergent effects inside the
TDG is that agents form implicit Trust Communities (iTC) [38]: If agents have
good experiences with each other, their mutual trust values increase over time. In
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consequence, these agents are more likely to distribute their work to and accept
work from the other agents in this group. Thus, agents they had bad experiences
with get marginalised.

With this measure, certain solely negatively acting agents can easily be isolated.
Problems arise, if several malicious agents plan coordinated joint attacks on the
system (collusion attacks). A solution for such attacks is to make the implicit TCs
explicit.

5.4.2 Explicit Trust Communities

The key concept of the TC approach is to provide an environment in which the
agents can interact, share information and cooperate like in a closed system—
without applying safety measures, such as replication or surveillance. Since there
are no explicit safety measures in an iTC, there is still a need for replication and the
iTC does not stand a chance against colluding attacks.

Therefore, we introduce the concept of eTCs [37]. An eTC is a semi-closed
system within the open system with several benefits for the agents: Inside the eTC,
no replication is necessary. Furthermore, the agents in the eTC are obliged to accept
any work from other eTC members and to share their current status, e.g. their
queue-length. A disadvantage of an eTC is that significantly more overhead effort
is required compared to the iTC, e.g. for maintenance issues. This is why the agents
in the system are constantly weighing the benefits of being in an eTC against the
disadvantages, since they are free to leave the eTC at any time.

An eTC i at time t is defined by the tuple shown in Equation (5.3):

eTCi.t/ WD hMi.t/; TCMi.t/; i.t/i (5.3)

Mi.t/ are all members of eTCi. i.e. selected from all agents. Subsequently, M.t/ are
all members in all eTCs at time t.

The membership in an eTC is disjoint, i.e. each agent can only be in one eTC at
each time. TCMi.t/ is the elected Trust Community Manager (short: TCM), which
will be described in detail in Sect. 5.4.3, and i.t/ is a set of roles that can be
assigned to agents in Mi by the TCM.

The assignment of roles is a necessity in an eTC to reduce the TCM’s admin-
istration overhead. An example for such a role is the active search for potential
new members at runtime (basic active TC expansion strategy, cf. Sect. 5.4.3). This
delegation of tasks is required, since the TCM is a self-interested agent: if it
performs all obligations by itself, this would reduce the utility it gains by being
member of an eTC considerably. As a consequence, the agent would leave the eTC.

In Fig. 5.2, an eTC is shown. Inside the open system, there are several agents,
which may have trust-based interactions. The unassociated members (containing
the misconducting agents) are outside the eTC, but may have outbound inter-
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Misconducting 
agent

eTC

Open system

Unassociated 
members

TCM
TC member

Fig. 5.2 An eTC in an open system. All members are either unassociated (and maybe misconduct-
ing) or eTC members (with one of them being the TCM). Some members are connected by a line
which shows trust-based interactions

actions with TC members. The TC members (containing the TCM) may have
inbound (member) interactions.

5.4.3 Life-Cycle of an eTC

The formation of an eTC follows a certain order. The whole life-cycle of an eTC
can be seen in Fig. 5.3. The life-cycle starts with the pre-organisation phase.
At the beginning, all system members are unassociated and the whole system
is unstructured. Furthermore, no trust-relationships exist and the agents have to
distribute their work randomly and apply sub-optimal interactions. Based on the
trust metric of the TDG, the agents rate other agents with a value representing the
amount of trust earned through this interaction. Each rating is between �1 (e.g.
the agent rejects the work request) and 1 (e.g. the WU is calculated correctly and
returned in time). For more details see [39]. During this self-organising process,
uncertainty is reduced and trust-relationships are established among the agents.
If a critical number of agents with strong mutual trust-relationships is exceeded,
these agents can decide to form an eTC from this group. The agents have to decide,
whether they would benefit from a potential membership in an eTC. Next, the eTC
gets into the TC formation phase. This phase is dominated by negotiations of all
potential future eTC members. We need this mechanism to give each agent the
chance to weigh its decision, since not all agents have the same interaction partners
and the same knowledge. The phase ends, if there are still enough potential members
left, with the election of the Trust Community Manager (TCM). The TCM takes over
the role to organise and maintain the eTC. The election process can take different
criteria into account, e.g. trust, reputation, or availability. In general, we make use
of leader election algorithms from the domain of distributed systems [40].
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Fig. 5.3 The life-cycle of an eTC: During the pre-organisation phase, potential members are
searched. Then, the eTC is formed (TC formation phase). Afterwards, a TCM is elected and the
eTC is in the TC operation phase, where the TCM and the members use strategies, e.g. to observe
the environment and control the eTC

In each phase, the agents can follow certain strategies [36]. During the pre-
organisation phase and the eTC formation phase, these are:

• Potential Member Search Strategy: Each agent decides: which are, in its opinion,
the most trustworthy agents?

• Associated Evaluation Strategy: With this strategy, agents decide whether to form
a new eTC, join the forming eTC, follow an invitation for a eTC, or remain
unassociated.

• TC Initiation Strategy: Here, criteria are defined for the eTC formation, respect-
ing the group of the initiating agents.

After all these preparations, the newly formed eTC enters the main phase, the TC
operation phase. During this phase, the TCM can assign roles to other members
in order to distribute the effort of administrating the eTC, it establishes norms to
determine the behaviour of all agents inside the eTC, and accepts agents to join or
excludes members from the eTC [26]. Members inside the eTC can compare their
own predicted utility to the (actual) utility periodically. In the TDG, the utility refers
to the speedup � . If the agents discover, that the utility did not improve (enough),
they leave the eTC. If a critical number of agents does so and the number of eTC
members falls below a certain threshold, the TCM dissolves the eTC. During the
TC operation phase, the following strategies are applied by the members:
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• Membership Evaluation Strategy: eTC members determine their utility and
whether it has improved in order to decide about staying in or leaving the eTC.

• Organisation Benefit Strategies: All strategies to increase the utility of each
agent, including efficient interactions, cooperation among the members, and
sharing information about the current status.

• Distributed Leader Election Strategy: To elect the TCM, this strategy includes
criteria for TCM qualification and distributed leader election algorithms.

When being elected as TCM, this agents needs the following strategies:

• TC Observer: The observer part of the Observer/Controller-loop, including
observation criteria and approaches.

• TC Controller: The controller part of the Observer/Controller-loop of the TCM
which regulates the operation of the eTC based on the observations (cf. the
description of the observer and controller in Sect. 5.3.2).

• Active TC Expansion Strategy: In order to quickly adapt to environmental
changes, this strategy helps to extend the composition of the eTC.

• Member Control Strategy: This strategy aims at controlling the members inside
an eTC by providing feedback to their actions and possibly even punishing them
(at worst, with exclusion from the eTC).

• Role-Assignment Strategy: Management tasks can be distributed by the TCM
with this strategy by assigning roles to other agents in the eTC.

• Surveillance Strategy: This strategy helps the TCM to decide whom to monitor
if it only has a limited surveillance budget.

With the help of all these strategies, the eTC can be self-organised and deal with
the above-mentioned negative aspects of the openness of the system. Independently
from what is happening inside the eTC, the unassociated members in the system
continue interacting with each other, as well as with the eTC members. If an
unassociated agents considers the membership in an eTC and is acceptable from
the eTC’s point of view, it can join the eTC later, since we have a dynamic system.

5.4.4 eTC Surveillance Strategies

As described above, the TCM has the ability to monitor the eTC members with
different surveillance strategies. But total surveillance is neither desirable nor
possible in an open, distributed system with autonomous agents. It should further be
noted that the knowledge acquisition involves computational and communication
costs. Therefore, the TCM can only monitor a certain percentage of all eTC
members at each time, expressed by the surveillance rate S 2 Œ0; 1�. It can use
different surveillance strategies to choose this fraction S of agents, which we
refer to as the chosen agents. These surveillance strategies are presented in the
following:
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• Accusation-Based Strategy: Agents can accuse other agents in case of an incident,
for example if they return no result for a given WU. The more accusations an
agent has, the more likely it is among the observed agents [34].

• Reputation-Based Strategy: Here, an agent is more likely to be monitored if its
reputation is low compared to the other eTC members’ reputation. This concept
can be realised by using a roulette-wheel approach that considers the available
reputation values [41].

• Round-Robin-Based Strategy: For this strategy, we consider all eTC members as
elements in a sorted list, illustrated in Fig. 5.4a: The chosen agents (dark grey) are
the first fraction S of elements in the first time step t1, in our example a1; a2, and
a3. In the second time step t2, the chosen agents are the next S of all elements,
shifted by (in this example) step-width D 2: a3; a4 and a5.

• Random-Based Strategy: The agents to be observed are chosen randomly. Each
agent has the same probability of being selected.

• Lottery-Based Strategy: The agents to be observed are randomly chosen in each
time step—but no repetition is allowed until all agents have been observed,
see Fig. 5.4b: In t1, agents a1; a4 and a10 are selected (dark grey). In t2, these
agents cannot be chosen again (striped), instead a2; a3 and a8 are chosen
randomly from the remaining agents.

The accusation-based and reputation-based strategies use additional knowledge
about the agents (i.e. their previous incidents, and their reputation-value). Therefore,
we call these strategies quality-based. We call the other three strategies quantity-
based, since their success highly depends on the parameter assignment of S ,
distinctly more so than the quality-based strategies.
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Fig. 5.4 The Round-Robin-Based Strategy (a) with step-width D 2 and S D 0:3, i.e. 3 of 9
agents are chosen (represented by dark grey), these agents are shifted by step-width 2 each time
step, and the Lottery-Based Strategy (b) with S D 0:3. At each timestep, 3 out of 10 agents are
chosen (dark grey) as a set disjoint to the agents chosen before (striped) until every agent has been
chosen once
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5.5 Evaluation

In this section, we evaluate the performance of the agents in the TDG. Therefore,
we will start with the detailed description of clans in Sect. 5.5.1. Afterwards, we
describe the experimental setup in Sect. 5.5.2, then we compare clans to iTC as
well as eTC in Sect. 5.5.3. The robustness of iTC, Clan, and eTC in the case of
a collusion attack is evaluated in Sect. 5.5.4. We conclude with Sect. 5.5.5, where
we have a closer look at the surveillance strategies which were already described
in Sect. 5.4.4.

5.5.1 Clans as Reference Solution

In Sect. 5.2, we already introduced the concept of clans [7] and emphasised
its relevance as related work for our concept of TC. Therefore, we use clans
as reference solution for our evaluations, which we do under identical system
conditions for both agent organisations. To begin with, we will outline what clans
are and differentiate them from eTCs.

The formation of clans is based on a check of criteria against certain thresholds,
such as missed opportunities for cooperation, lack of scalability, lack of information,
or high failure rate. A situation where agent a rejects a request from agent b, but
at the same time a requested b to work for him and got rejected, for instance,
qualifies as a missed opportunities. If such a criterion is met, the agent decides
to form a clan and starts to invite appropriate agents. These agents are determined
by their trustworthiness, and their number—the preferred clan size—is determined
by the initiator of the clan formation based on the number of agents it needs for
its current plan (expressed by the average number of WUs of one job) and an
additional redundancy. The invited agents make their decision to join depending
on the trustworthiness of the initiator and the promised benefits.

The kinship motivation, i.e. the motivation to cooperate if requested by another
member of the clan, is one of the most important influences on the cooperation
decision. In the TDG, it is interpreted as a situation-aware probability (cf. Table 5.1).
These probabilities are not final. They can be changed, if situations occur that
encourage a higher motivation for cooperation, e.g. if the agent itself has a job to
distribute.

Clans are purely decentralised organisations. Every member of a clan can invite
other agents, which makes this organisation susceptible to attacks and exploitation.
In other words, in a clan there is no authority which helps in managing and

Table 5.1 Values for the
kinship motivation

No jobs Unprocessed jobs

Worker decision negative 0.5 0.8

Worker decision positive 1.0 1.0
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regulating the organisation, respectively which copes with undesired emergent
system states. Contrary to an eTC, where the TCM has some authoritative powers,
e.g. inviting agents, or excluding agents.

5.5.2 Experimental Setup

For the evaluation, we use the agent types described in Sect. 5.3.1. For all experi-
ments, the agent society consists of different agent types. The DG applications used
are non-validating, a job is generated in average after 4;500 ticks and has an average
of 11 WU. As a result, a single WU is processed in 70–175 ticks. The preferred clan
size, resulting from the maximum WU number 15 plus a redundancy of 10, is 25
agents. The initial reputation of each agent is 0.05—whereas the reputation value is
2 Œ�1; 1�.

accuracy D number of correctly accepted WU results

total number of accepted WU results
(5.4)

Metrics we use are the speedup � (cf. Equation (5.2)) and the accuracy (cf.
Equation 5.4), which measures the relative amount of correctly accepted results.
Furthermore, we use the number of operating organisations (i.e. eTCs) as metric, as
well as the organisation utility, which is the speedup gain of all agents in an eTC,
calculated by their current utility minus their utility when entering the eTC. For all
metrics, we provide means and standard deviations (sN�1).

5.5.3 Performance Comparison of iTCs, eTCs, and Clans

The first experiment is set up to find out about the improvement of the basic
performance of eTC—in comparison to iTC and clans. The agent societies consists
of 250 agents: 10 % FRE, 10 % EGO and 80 % ADA. Under various conditions we
performed 100 runs each, one run lasted 500,000 ticks. The aim of the experiment is
to show the ability of the eTC to optimise themselves and to quantify the difference
towards other agent societies. The results of our experiment are shown in Table 5.2.
20 % CUN for example means that, additionally to the original setting of 250 agents,
250 � 0:2 D 50 CUN are added.

In the undisturbed experiments, there are no malicious agents (apart from the
initial 10 % FRE and 10 % EGO). eTCs are taking advantage of the organisation
benefit strategies while clans profited from the corresponding kinship motivation.
The average speedup is best for eTCs with a mean value of 8.491 (compared to
7.223 for clans and 5.411 for iTC) and an average organisation utility of 2.827
(compared to 1.770 for clans). If we change the agent society and have 20 % or 30 %
DFA, we are able to measure the risk of transparent WU validation. Replication
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Table 5.2 Comparison of the performance—under various conditions—of different agent soci-
eties according to the three approaches iTC, clan, and eTC. The best results are written bold font

Conditions Metrics (sN�1) iTC clan eTC

Undisturbed Avg. speedup 5.411 (0.222) 7.223 (0.373) 8.491 (0.623)

Accuracy 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Avg. org. utility – 1.770 (0.461) 2.827 (0.494)

Avg. operating org. – 5.280 (0.877) 3.730 (1.100)

20 % DFA Avg. speedup 5.327 (0.203) 7.066 (0.309) 7.108 (0.353)

Accuracy 0.994 (0.001) 0.998 (0.001) 0.996 (0.001)

Avg. org. utility – 1.667 (0.332) 2.284 (0.406)

Avg. operating org. – 4.880 (1.387) 3.360 (0.746)

30 % DFA Avg. speedup 5.316 (0.207) 6.936 (0.309) 6.702 (0.234)

Accuracy 0.987 (0.002) 0.995 (0.002) 0.991 (0.002)

Avg. org. utility – 1.567 (0.458) 1.920 (0.178)

Avg. operating org. – 4.350 (1.794) 3.820 (0.626)

20 % CUN Avg. speedup 4.962 (0.195) 6.785 (0.209) 8.102 (0.418)

Accuracy 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Avg. org. utility – 2.042 (0.254) 3.530 (0.387)

Avg. operating org. – 4.980 (0.284) 2.500 (0.659)

30 % CUN Avg. speedup 4.686 (0.184) 6.393 (0.202) 7.346 (0.366)

Accuracy 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)

Avg. org. utility – 2.158 (0.196) 3.517 (0.369)

Avg. operating org. – 4.650 (0.479) 2.470 (0.540)

as safety measure are abandoned and the agents are able to collude to produce
wrong WU results, resulting in the possibility to overcome majority votings. This is
especially quantified by the accuracy metric, which is better for the explicit agent
societies. Clans and eTCs reach a comparable speedup and outperform iTCs. Yet,
the average speedup for eTCs drops to 83.71 % for 20 % DFA, respectively 78.93 %
for 30 % DFA.

By adding 20 % or 30 % CUN, we evaluate the susceptibility of the three
approaches towards malicious agents, which are trying to exploit the system with
their oscillating behaviour: This agent type acts as a FRE until its reputation dropped
below 0.1, then acts cooperatively until it reaches the threshold 0.5, where it begins
to act like a FRE again. As we can see in Table 5.2, iTCs achieve 91.70 %, Clans
96.03 %, and eTCs 95.42 % of the undisturbed speedup with 20 % CUN-agents,
and 86.60 % (iTC), 88.51 % (Clans), and 86.52 % (eTCs) of the speedup with 30 %
CUN-agents in the system. eTCs outperform clans and iTC with an average speedup
of 8.102, respectively 7.346. Furthermore, we see that explicit approaches perform
significantly better than the implicit approach. In Fig. 5.5, an exemplary run from
this experiment, with 20 % CUN, is depicted. For the three agent organisations the
respective average speedup is shown for the different agent types. We can see that
for eTCs, the exploiting behaviour is punished and results in a higher speedup for
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Fig. 5.5 The average speedup of the last job of different agent types in iTC, clan, and eTC with
20 % CUN in the system. While in the iTC- and Clan- approaches the CUN-agents are allowed to
have a high speedup, eTCs punish this behaviour, which results in a lower speedup. Furthermore,
this helps to increase the overall speedup and results in a higher speedup for cooperative agents.
(a) iTC. (b) Clan. (c) eTC

cooperative ADA and lower speedup for CUN. Bad-behaving agent types (EGO
and FRE) with a simple behaviour pattern (compared to CUN) do not achieve good
speedup values in all three approaches.

5.5.4 Robustness

In the second experiment, we examine the behaviour of the three approaches,
especially the eTC approach, in case of a colluding attack of varying intensity.
A major goal of the development of eTCs is the increase in robustness compared
to former approaches. We perform 25 runs of 250,000 ticks length with each
configuration, the mean results are shown in Table 5.3. ds 2 Œ0; 1� (normalised
strength of disturbance ı) shows the intensity of the disturbance, i.e. the amount
of attackers compared to the number of agents. With an agent society of 250,
ds D 0:1 means a simultaneous entry of 25 malicious agents into the system in
tick 100,000. Metrics are the recovery duration, i.e. the time it takes the system to
reach approximately the speedup level it had before the disturbance, as well as the
intensity of the speedup collapse. For both metrics holds: the lower, the better. The
ds is varied from 0.1 to 1.0.
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Table 5.3 Robustness evaluation of the eTC approach for different disturbance sizes

Cond. Metrics (sN�1) iTC Clan eTC

ds. 0.1 Recovery duration 5,755 (1,321) 28,476 (47,837) 5,318 (1,082)

Speedup collapse 0.057 (0.046) 0.122 (0.113) 0.026 (0.031)

ds. 0.2 Recovery duration 11,096 (3,848) 25,377 (40,097) 5,640 (1,046)

Speedup collapse 0.166 (0.064) 0.205 (0.099) 0.047 (0.037)

ds. 0.3 Recovery duration 16,918 (3,895) 24,412 (37,948) 6,300 (1,520)

Speedup collapse 0.284 (0.080) 0.287 (0.094) 0.061 (0.040)

ds. 0.4 Recovery duration 20,730 (6,943) 15,367 (4,695) 8,353 (4,942)

Speedup collapse 0.392 (0.139) 0.395 (0.129) 0.080 (0.053)

ds. 0.5 Recovery duration 27,923 (10,091) 18,724 (10,402) 12,536 (7,367)

Speedup collapse 0.505 (0.166) 0.451 (0.139) 0.094 (0.055)

ds. 0.6 Recovery duration 32,176 (9,214) 29,147 (30,796) 14,526 (10,528)

Speedup collapse 0.611 (0.159) 0.538 (0.130) 0.111 (0.060)

ds. 0.7 Recovery duration 38,619 (8,861) 31,093 (27,556) 14,501 (11,731)

Speedup collapse 0.692 (0.130) 0.627 (0.105) 0.101 (0.065)

ds. 0.8 Recovery duration 39,075 (7,835) 34,731 (26,865) 19,616 (11,392)

Speedup collapse 0.728 (0.123) 0.660 (0.083) 0.137 (0.061)

ds. 0.9 Recovery duration 44,534 (7,137) 37,878 (34,825) 20,418 (13,043)

Speedup collapse 0.773 (0.074) 0.687 (0.078) 0.132 (0.060)

ds. 1.0 Recovery duration 44,113 (5,298) 35,139 (26,976) 20,028 (11,764)

Speedup collapse 0.799 (0.030) 0.692 (0.075) 0.133 (0.066)

The results show that eTCs outperform clans as well as iTCs in all cases we
examined. For example, the recovery time of eTCs does not exceed 20,028, though
we have a ds of 1.0, i.e. 250 agents attacking. This is more than half the recovery
time for iTCs (44,113) and less than 60 % of the recovery time for clans (35,139).
The mean relative recovery costs are 0.095 in the maximum, compared to 0.426
(iTC) and 0.375 (clans). This means about 400 % savings of recovery costs. The
speedup collapse emphasises these results with a maximum of 0.137 for eTCs,
compared to 0.773 for iTCs and 0.687 for clans. In Fig. 5.6, we see an exemplary
run with ds D 0:6. The reputation for each agent type is shown over time. We can
see that the time until recovery is reached is about 25,000 ticks.

For the data shown in Fig. 5.7, which shows the average speedup for iTC, clan
and eTC with ds = 0.6, we calculate the values for passive robustness (Rpassive),
active robustness (Ractive) and the effective utility degradation (A, cf. Table 5.4).
Rpassive is a measure of the structural stability of a system, while Ractive is the
averaged recovery speed of the system. A depicts the area of the utility deviation,
effectively representing the total cost of the disturbance. For further details, see [26].
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Fig. 5.6 Reputation values for all agent types during one run with an attack (ds D 0:6) at tick
100,000. From top to bottom: reputation values for ADA, CUN, FRE, and EGO

Fig. 5.7 Average speedup for the last job for iTC, clans and eTC for agent type ADA. Results are
shown for one run with an attack of ds D 0:6 at tick 100,000. The speedup of ADA drops for all
agent organisation forms, but the recovery time and speedup collapse are way better, i.e. lower, for
eTC compared to clans and especially compared to the iTC-approach. (a) iTC. (b) Clan. (c) eTC
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Table 5.4 Robustness evaluation of the three organisation approaches. �U is the change in
speedup, tdrop is the time it takes until the lowest speedup during the disturbance is reached, and
trec is the time it takes until the speedup from before the attack is achieved again. ds represents the
strength of disturbance

Organisation �U tdrop trec A Rpassive Ractive ds

iTC 2.8 5,000 27,000 46,770 21 1:0�10�4 0.6

Clan 2.0 5,000 13,000 10,967 30 1:5�10�4 0.6

eTC 0.9 6,000 10,000 7,142 67 0:9�10�4 0.6

For A, we do not assume tdrop D 0, but we follow the assumption of linear utility
change, resulting in Equation (5.5).

A D ı

2 � Rpassive

�
tdrop C ı

Rpassive � Ractive

�
(5.5)

The data shows that eTCs have the best structural stability with Rpassive D 67.
Though eTCs show a lower Ractive than clans, their A is still better. Both, clans as
well as eTC, show superior A compared to iTC.

5.5.5 Surveillance Strategies

In the third experiment, we compared the performance of different surveillance
strategies (cf. Sect. 5.4.4). Therefore, we used two performance metrics: the number
of exclusions and the average residence time (¿tres). tres is the time an agent spends
in an eTC, i.e. the time from becoming a member of an existing eTC (or the
respective eTC enters the TC Operation Phase with this agent as initial member),
until the exclusion due to misbehaviour (or due to the dissolution of the eTC). A
lower tres for malicious agents indicates that the used surveillance strategy identifies
these agents faster.

The agent population for these experiments consists of 100 agents (70 ALT and
30 SLA with ˛ D 0:8). The experiments compare a surveillance rate S of 0.05
to 0.25. The results show the average of 100 runs, whereby one run lasts 250,000
ticks. The agents are excluded, if a third incident is monitored (expressed in the
variable ibe D 2, incidents before exclusion) in a certain period of time. This is
expressed in the forgiveness of 10,000 ticks—all of an agent’s incidents are forgiven,
if it commits no further incident for 10,000 ticks. We only show the results for
the random-based strategy as representative of the quantity-based strategies, since
the three quantity-based strategies (random-based, round-robin-based, and lottery-
based strategy, see Sect. 5.4.4) show very similar results.

In Fig. 5.8, the results for the random-based (a), accusation-based (b), and
reputation-based (c) strategies are depicted. Most importantly, we observe that
quality-based strategies perform better than quantity-based strategies on low S -
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Random-based Accusation-based

Reputation-based

Fig. 5.8 Results of the evaluation of the surveillance strategies. For each strategy, the number of
exclusions and the average residence time tres are shown for different surveillance levels S . The
quality-based strategies (accusation-based (b) and reputation-based (c)) outperform the quantity-
based strategy (random-based (a)) in both metrics

levels. This is due to the quality-based strategies are more likely to choose the
“right” agents to observe, because they use additional knowledge. tres is continu-
ously better (i.e. lower) for quality-based strategies, expressing that misbehaving
agents are identified earlier and stay in the eTC for a shorter period of time. The
number of exclusions for the random-based strategy is slightly increasing with
higher S , yet it stays distinctly lower than for the accusation-based and reputation-
based strategies. The two quality-based strategies perform quite similar, both show
good results even for a low S .
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5.6 Conclusion

In this chapter, we introduced a new form of agent societies in distributed,
open, heterogeneous multi-agent systems with (technical) trust: the explicit Trust
Community (eTC).

Initially, we introduced our application scenario, the Trusted Desktop Grid
(TDG). In this TDG, we can find several different autonomous agent types, some
are bad-behaving agents, some are well-behaving, some are in-between, but they all
have in common that they see each other as blackboxes. This means, they cannot
observe the internal behaviour of other agents in the system. The agent components
of the Adaptive Agent (ADA) were described in detail afterwards and implement
the Organic Computing-pattern of Observer and Controller. The agent’s goal is
to maximise its own speedup by having its work computed distributedly by the
workers, whereas itself acts as submitter. The deduced global goal is to maximise
the global speedup in the system.

After the introduction of the TDG, we had a closer look at the before-mentioned
eTC as an improvement of implicit Trust Communities (iTC). eTCs are formed
according to their life-cycle—consisting of pre-organisation phase, formation-
phase, and operation phase—if several agents in the system have formed strong
mutual trust-relationships over time. The behaviour of eTC members and the Trust
Community Manager (TCM) is following certain rules, or strategies.

In the following, we did experiments to shown the effectiveness of eTCs with
performance and robustness as major criteria, since these are of great importance
in self-organising systems. We compared eTCs not only to iTCs, but also to the
concept of clans as reference solution. Results showed that eTCs outperform both,
iTCs and clans, significantly in nearly all cases. They were proven to be especially
robust towards colluding attacks of malicious agents.

For future work, we plan to further improve our concept of eTCs. Since we reach
for full distribution, the TCM as central element inside the eTCs, and in consequence
the central reputation-database inside the eTC, will be replaced by a more distributed
solution. This will be done by using digital pheromones, that stick to each agent and
represent its trust-values, i.e. the trust rating the agent gets from other agents. To
avoid abuse of these ratings by malicious agents, the trust ratings will be encrypted
by the giving agent.

Another research area is the concept of the goal-oriented holonic agent. Holonic
architectures go back to Koestler’s concept of so-called holons and Simon’s
pioneering work in complex systems [42, 43]: Holons are entities that are wholes
and parts at the same time. This idea has been used in the context of technical
systems in the form of “holonic agents” organised in “holarchies”. Such systems
are characterised by four properties [44]: (1) Sufficient autonomy of the agents,
(2) recursive structure, (3) layered structure, and (4) dynamic reconfiguration at
runtime. The holonic concept has been applied e.g. for the smart grid [44], manufac-
turing systems [45], street lighting control [46], and wireless sensor networks [47].
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So far the emphasis in holonic systems research was put on their recursive
structure, which allows for relative autonomy of the holons and dynamic recon-
figuration following the blackbox principle. Possible conflicts between agents were
solved, e.g. with a contract net approach. In open heterogeneous systems this is
not sufficient because agents are unknown and neither benevolent nor reliable.
Each agent is semi-autonomous, i.e. it can follow its own goals while it is still
subject to goals from other entities. Such external goals can be soft (i.e. wishes
from peer agents) or hard (e.g. strict commands from higher-level agents). The
latter type of goals can be expressed as a norm and enforced with sanctions. In
order to accommodate this behaviour we need an extended observer/controller
architecture, which (1) makes goals explicit, (2) provides for a goal reconciliation
mechanism, and (3) implements an iterative escalation scheme in case of non-
compliance of goal-receiving agents. First ideas for such a “goal-oriented holonic
agent architecture” have been presented in [48, 49]. We intend to refine these
approaches in the future and use them for computing grid or smart grid applications.
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Chapter 6
Trust as Important Factor for Building Robust
Self-x Systems

Nizar Msadek and Theo Ungerer

Abstract Open self-x systems of a very large scale – interconnecting several
thousand of autonomous and heterogeneous entities – become increasingly complex
in their organisational structures. This is due to the fact that such systems are
typically restricted to a local view in the sense that they have no global instance,
which can be responsible for controlling or managing the whole system. Therefore,
new ways have to be found to develop and manage them. An essential aspect that
has recently gained much attention in this kind of systems is the social concept
of trust. Using appropriate trust mechanisms, entities in the system can have a
clue about which entities to cooperate with. This is very important to improve
the robustness of self-x systems, which depends on a cooperation of autonomous
entities. The contributions of this chapter are trustworthy concepts and generic self-
x algorithms with the ability to self-configure, self-optimise, and self-heal that work
in a distributed manner and with no central control to ensure robustness. Some
experimental results of our algorithms are reported to show the improvement that
can be obtained compared with the baseline measurements.

Keywords Self-x systems • Self-adaptive systems • Autonomic computing •
Organic computing • Trust • Self-Organisation

6.1 Introduction

The proliferation of self-x systems capable of acting autonomously to achieve the
overall system goal is already happening. Examples of such systems are Autonomic
and Organic Computing systems [1, 2]. These are typically based on decentralised
autonomous cooperation of system’s entities and make use of a number of desirable
self-x properties, e.g. the ability to self-configure, self-optimise, self-heal and
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self-protect in order to be manageable. The quality of their autonomy mostly
depends on their ability to adapt their behaviour in response to changes in their
environment. At runtime, they should be able to trustworthy deal with situations
not anticipated at design-time. One way to tackle trustworthiness issues is to enable
humans to supervise the system and perform all trustworthy operations. However,
this solution solves the problem only partially because the transfer of control
to humans would also drastically decrease the system’s autonomy, especially in
the context of reactive environments. Therefore, new ways have to be found to
ensure the trustworthiness of modern self-x systems by regarding different facets
of trustworthiness. Such facets may concern, for example, reliability, credibility,
availability, functional correctness and safety [3].

In this chapter, we describe our efforts to develop a generic architecture that
supports the trustworthy design of modern self-x systems. The baseline self-x
system examined in this work is OC� [4], an Organic Computing middleware
implemented in Java and based on a peer-to-peer network. All of its self-x properties
were developed without trust involvement. We propose to incorporate a trustworthy
self-x layer into the middleware to allow network entities to decide how far to
cooperate with other entities. This information is used to maintain a trustworthy and
robust configuration of the self-x properties in the face of untrustworthy entities.

The remainder of this chapter unfolds as follows. In Sect. 6.2, we highlight
relevant self-x middlewares originated from the field of Organic and Autonomic
Computing. Section 6.3 describes the baseline self-x middleware we use as refer-
ence for our main results and also addresses the benevolence limitation that hinders
the baseline system to perform well in hostile environments. Section 6.4 introduces
the novel developed Trust-Enabling Middleware (TEM) we designed to host the
trust-aware self-x properties. Then, Sect. 6.5 introduces the application case studies
implemented based on TEM. Finally, Sect. 6.6 concludes the chapter.

6.2 Related Work

This section presents relevant service-oriented self-x middlewares originated from
the field of Organic and Autonomic Computing.

Lund et al. [5] introduce an organic middleware called Artificial Hormone
System (AHS) – providing self-x properties – to autonomously assign tasks to
heterogeneous processing elements. The middleware makes use of different artificial
hormones to find the best suitable processing element (PE) taking into account
constraints such as the current PE workload and the task relationships. The fol-
lowing type of hormones exist: eager value, suppressor and accelerators. The eager
hormone aims to determine the suitability of a PE to execute a specific task. The
other hormones are responsible for reducing or increasing the eager value and thus
by applying suppressor and accelerator respectively. Through the use of hormones,
the AHS middleware implements the self-x properties: self-configuration in terms
of finding an initial allocation of tasks by exchanging hormones, self-optimisation
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by task migration when hormone levels change, and self-healing by autonomous
task reassignment due to task or resource failure. Compared to our middleware, the
AHS assumes the trustworthiness of PEs to perform well, i.e. all PEs are considered
to be trustworthy to further the system goal.

CARISMA [6] is a service-oriented middleware for hard real-time environments.
It realises self-configuration and self-optimisation with the focus on real-time
system capabilities. The services have real-time constraints, meaning that their
correctness does not only depend on their computational results, but also on the
time at which the results are delivered. For allocating services, CARISMA makes
use of an auction mechanism based on the Contract Net Protocol [7] to decide
whether a service can be contracted and which quality can be achieved. Afterwards,
the whole system is optimised by re-contracting the services to other nodes with
better resource availability. In contrast to CARISMA, our middleware focuses on
the general applicability of system’s service that are not restricted by real-time
constraints. Additionally, CARISMA does not provide a differentiation between the
importance levels of services. This differentiation is necessary to allocate the most
important services only on trustworthy nodes and thus to increase the robustness of
the system.

FraSCAti [8] is a service-oriented middleware supporting Autonomic Computing
principles. It exhibits self-x properties to add new services at runtime or to remove
existing ones. The self-x properties are obtained by applying the MAPE (moni-
toring, analysis, planning, and execution) control loop of Autonomic Computing.
The monitoring phase is responsible for collecting, aggregating and filtering the
information collected from the services and the middleware itself. The gathered
information is examined in the analysis phase. If the examination reveals a need
to adapt the placement of services, a new plan is created which is then realised
in the execution phase. In contrast to our middleware which supports trust in the
development of the self-x properties, FraSCAti expects the benevolence of device
nodes limiting its usefulness in open environments.

An organic middleware for building self-organising smart camera systems is
presented in [9, 10] and has been extended in [11] to provide support for cloud
services. The middleware consists of a number of cameras which are able to
collaborate together to detect intruders in non-public areas. At runtime, each camera
can adapt its position view while keeping other cameras’positions. The self-healing
property is used to maintain the whole tracking system stable even under failure of a
single camera or a loss of connectivity. The overall result afterwards is achieved by
merging the sub-results of each camera. The general assumption here is that cameras
always voluntarily cooperate to realise the common goal. This assumption hinders
the middleware to be used in hostile environments, in contrast to our work.
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6.3 The Baseline OC� Architecture

The baseline self-x system considered in this work is OC� [4], a middleware
for Organic Computing systems. The OC� middleware was developed in the
German Research Foundation (DFG) priority program “Organic Computing” at
the University of Augsburg and is comparable to other state-of-the-art distributed,
service-oriented middleware architectures. But it has the advantage that it imple-
ments several self-x properties and thus has the ability to be slightly extended
to provide the desired trustworthy self-x layer. The OC� middleware consists
of a collection of heterogeneous devices – called nodes for short – with diverse
capabilities of computing power, memory space and energy supply. These devices
interact with each other using message passing. An overview of a single OC� node
is illustrated in Fig. 6.1. It is composed of five main parts: the transport connector,
the message dispatcher, the service proxy, the service interface, and the services
which are explained in the following.

• Transport Connector: The communication system used in the middleware is
modelled similar to [12]. Each OC� node p has a buffered transport connector
enabling it to connect fast and reliably with other OC� nodes. In the baseline
implementation, the two following communication primitives are used:

Fig. 6.1 Structure of the baseline OC� node depicting its most relevant parts: the transport
connector, the message dispatcher, the service proxy, the service interface and the services
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– Receive: removes existing messages from p’s buffer and delivers the messages
to the message dispatcher of p.

– Send.m; q/: Sends a message m over p’s transport connector and places it in
the buffer of q.

The protocol used for the current implementation of the transport connector is
JXTA.1 This can be replaced or extended with any other communication protocol,
since it is transparent to the rest of the middleware.

• Message Dispatcher: The message dispatcher handles the message delivery
between the services in the middleware. It offers the services the functionality to
send messages and register themselves as listener for specified types of messages.
With this functionality it is also possible for a service to register itself for different
types of messages. In such a case, the service will be informed whenever a
message with one of the registered types is received.

• Service Proxy: A service proxy is used to forward messages for a service that
was recently moved to another node. During the service transfer, the service
proxy stores the incoming messages, it then forwards them as soon as the service
becomes available at the new position node. The life span of a service proxy is
predefined at runtime by its corresponding service, such that it dies after that
time.

• Service Interface: The service interface is the connector between the middle-
ware and a service. Each service has to implement this logical interface to bind
itself to the middleware. The interface provides all required methods to send and
receive messages via the message dispatcher to the services.

• Services: The considered middleware is based on the assumption that applica-
tions are composed of services. These services are distributed to the nodes of
the network. We distinguish two kinds of services, namely important services
and unimportant services. Important services are those which are necessary
for the functionality of the entire system. However, unimportant services are
those which only have a low negative effect on the entire system if they
fail.

A crucial part of the OC� middleware is to investigate decentralised solutions to
self-configuration, self-optimisation and self-healing [13]. These self-x properties
were developed independently without trust guidance. In the following, a general
description of their functional parts is given:

• Self-configuration [14]: The regarded applications produce a set of services
that are independent of each other. These services are initially distributed to
available nodes in the network through the self-configuration process. If, for
example, a new node joins the system, it will configure itself autonomously
in the middleware such that the overall resource utilisation is as good as
possible.

1JXTA: Open source peer-to-peer protocol specification begun by Sun Microsystems in 2001 –
[Accessed: December 16, 2015] – http://jxta.kenai.com.

http://jxta.kenai.com
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• Self-optimisation [15]: The self-optimisation process enables the system to
autonomously reach an optimised state. This optimisation might concern the
runtime allocation of services on nodes to ensure a uniform distribution of
load.

• Self-healing [16]: The self-healing aims to ensure a valid state of the system
even in the presence of failure. If, for instance, a node fails, the system must be
able to detect its failure using a runtime monitoring approach [17] and then to
restart all of its services on other available nodes.

The baseline middleware introduced so far does not consider the trust behaviour
of the system during runtime. It is based on the benevolence assumption that
all participating nodes want to help each other whenever possible to further the
system goal. Because of this assumption, nodes were considered to be always
trustworthy and the self-x properties were developed without regarding the node’s
trustworthiness. However, in open and heterogeneous systems where nodes can
enter and leave the system at any point in time, this benevolence assumption has to
be dropped, since nodes might behave untrustworthy and try to exploit the system.
This introduces a level of uncertainty in the middleware that has been largely
neglected so far.

6.4 The Trust-Enabling Middleware TEM

The integration of trust to deal with uncertainty gives OC� the ability to better
adapt to changes in the environment. The approaches and techniques proposed in
this section are technological and based on the notion of trust to enable the creation
of more robust self-x properties.

6.4.1 General Overview

The extension of the OC� proposed in this section aims to incorporate trust into
the basic self-x properties. For this, the distributed Observer/Controller architecture
suggested by Richter et al. in [18] is used and refined by providing trust guidance.
Figure 6.2 gives an overview of the proposed TEM concept.

The baseline OC� node is enhanced by a trustworthy self-x layer provid-
ing a feedback control loop to observe and control the behaviour of OC�. It
includes an observer component, the functional element responsible for moni-
toring the trust behaviour of the baseline system. This is performed by using
trust metrics enabling the generation of data about the trustworthiness of the
system’s entities. The collected data is used by the controller as indicator to
make decisions that will influence the future course of the self-x properties. The
following section describes the functional parts of the observer and controller
components.
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Fig. 6.2 The generic Observer/Controller architecture used for the establishment of the trust-
worthy self-x layer. The observer incorporates trust models and the controller is composed of
trust-aware self-x properties. Communication between observer and controller is based on the
feedback control loop that OC� nodes provide

6.4.2 The Trust Observer

The main objective of the observer is to monitor the current behaviour of nodes
in the system and to calculate trust data from this information. This trust data
is used by the controller to guide the overall system goal in a trustworthy way
by applying the self-x properties. The observation process mainly consists of the
following three steps: monitoring, transformation, and trust interpretation, as shown
in Fig. 6.3.

In the monitoring step, a distributed strategy is needed to allow nodes to
autonomously determine who is monitoring whom. In order to do this and to be at
least scalable, we make use of our former developed self-monitoring approach [19]
as basis for enhancing nodes with the ability to collect raw data in the system. These
raw data represent experiences that nodes have made with their interaction partners
in a specific context and per trust facet. They contain all relevant information about
the interaction partner such as message delays and loss as well as its ability to
perform services at the right time. The raw data are stored in a distributed log
file for every loop of observation. Then, they are transformed into a valid format
that makes them easily accessible to the interpreter. Finally, the interpreter uses
these transformed data to estimate the trustworthiness of a node. The metrics
used by the interpreter to calculate trust data are named trust metrics [20].
These metrics have been developed during the two first phases of the OC-Trust
project and integrated in TEM. The metrics consist of the following presented
aspects.
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Fig. 6.3 Illustration showing the different levels of abstraction of the observation process starting
from monitoring, to transformation, to the final interpretation of the trust data. Please note that only
the most interesting parts of the process are presented, due to space limitations

6.4.2.1 Direct Trust

The algorithm used by the observer to calculate the direct trust of a node is called the
Delayed-Ack [21]. The Delayed-Ack algorithm covers the reliability aspect of trust
as a facet and measures trust by observing the message flow between nodes. More
precisely, it requires that each sent message is being acknowledged. Thus the lost
of each message is determined, resulting in a negative experience (represented by
0) for lost messages and a positive experience (represented by 1) for acknowledged
messages. All these experiences are stored for each participating node. The output is
a direct trust value tdt.ni; nj/ within Œ0; 1� calculated by taking the mean or weighted
mean of past experiences. tdt.ni; nj/ D 0 means ni does not directly trust nj at all
while a value of 1 stands for a whole trust.

6.4.2.2 Confidence

In addition, a metric is used to evaluate the confidence of the own direct trust value
of a node. This is called the confidence metric [22] and aims at describing how



6 Trust as Important Factor for Building Robust Self-x Systems 161

Fig. 6.4 The three parts of the confidence value. (a) Illustration of the number confidence function
cn.X/ assuming that a certain number of experiences �n is sufficient to derive an accurate trust
value. The more experiences with an interaction partner were made, the more confidence in the
trust value. (b) The age confidence function r.ax/ aims at calculating a low rating value for a quite
outdated experience and high rating value for a quite recent experience. (c) The variance function
cv.vX/ is used to indicate the behavioural changes of a node. A confidence of 1 equals 0 variance.
Vice versa, a confidence of 0 equals 1 variance

reliable the direct trust value is. The higher the confidence is, the more certain one
can be that the trust value matches the actual behaviour of an interaction partner.
The confidence value is split in three parts:

• Number Confidence: The more experiences exist, the higher is the confidence,
up to a threshold �n. Figure 6.4a shows details of this function. If the number of
experiences jXj is greater or equal to �n then the number confidence cn.jXj/ is 1.

• Age Confidence: Every experience x is rated regarding its actuality ax. The
resulting rating r.ax/ describes how recent or outdated the experience is (see
Fig. 6.4b). The age confidence is higher if the experiences were made more
recently. Two thresholds, �o and �r, are defined for this rating function: An
experience older than �o counts as outdated and its age rating is set to 0. If an
experience is newer than the threshold �r, then it counts as a recent experience
and its age rating is therefore set to 1. From �r to �o, the age rating is gradually
decreasing. The total age confidence ca.X/ is the mean of all ratings (see
Equation (6.1)).

ca.X/ D
P

x2X r.ax/

jXj (6.1)

• Variance Confidence: It evaluates the variance of the experience values vX . The
more the values fluctuate, the lower is the variance confidence cv.vX/. If the
experiences have 0 variance, i.e. the experiences are rated exactly the same, the
variance confidence is 1. It decreases with increasing variance (see Fig. 6.4c).
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Confidence Value: The total confidence c.X/ is then calculated by a weighted mean
of the three parts, as seen in Equation (6.2). wn denotes the weight for the number
confidence, wa the weight for the age confidence and wv the weight for the variance
confidence. We assume wn; wa; wv � 0 and wn C wa C wv > 0.

c.X/ D wn � cn.jXj/ C wa � ca.X/ C wv � cv.vX/

wn C wa C wv

(6.2)

6.4.2.3 Reputation

As reputation metric the neighbour-trust metric introduced in [23] is used. The
metric is based upon a weighted mean value of the direct trust values of all
other nodes that had direct interactions with the node, the so-called neighbours.
The weights represent the truthfulness of neighbours regarding their reputation
data. A high weight indicates a neighbour whose reputation data correlates with
direct experiences of oneself, whereas a low weight stands for a neighbour whose
reputation data differs a lot from the own experiences. To achieve this, two
thresholds are defined for the reputation metric: � defines the positive area, where
reputation and direct trust are similar enough to increase the weight, the larger
��.�� � �/ denotes the negative area, where reputation and direct trust are too
far apart which will reduce the weight. If the difference between reputation and
direct weight is greater than ��, then the weight is decreased by a maximum of
� . Similarly, the weight is increased by a maximum of � . Therefore, upcoming
reputation information from a neighbour will be rated up or down depending on
the information the neighbour gave so far. A node will then only listen to other
neighbours whose experiences are similar to its own. Since the weight gets adjusted
per interaction, the reputation has to start with an initial value, which is defined
as rs. Figure 6.5 depicts the function to calculate the weight adjustment after each
interaction. tac denotes the direct trust a node a has about another node c and tbc the
reputation information of node b about node c. In the figure the weight a has about
b would be reduced, because both values differ by more than � .

Fig. 6.5 A graphic representation of the neighbour-trust metric. tac denotes the direct trust a node
a has about another node c and tbc the reputation information of node b about node c. In this
example, the weight a has about b would be reduced, because both values differ by more than �
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6.4.2.4 Aggregation

When all the aforementioned values are obtained, a total trust value ttotal based
on direct trust tdt and reputation tr values can be calculated using confidence
wc.c.X// to weigh both parts against each other. This ttotal value is calculated with
Equation (6.3).

ttotal D wc.c.X// � tdt C .1 � wc.c.X/// � tr (6.3)

The higher the confidence, the higher is wc.c.X// and therefore the weight of the
direct trust data in total. The formula to calculate wc.c.X// is based on the function
depicted in Fig. 6.6. This function is enclosed in two thresholds �cl and �ch. Outside
these thresholds, the function is constant with extreme values; in between them
monotonically increasing with near linear slope in the middle at �ch��cl

2
. Near the

thresholds the slope is low. This function is based on the consideration that a small
step over a threshold should only result in a small change in value. The domain is
restricted to Œ0; 1�, because valid confidence values must be in this interval. The
result of the function, i.e. the co-domain, is also Œ0; 1� representing the weight
wc.c.X// for the aggregation function by means of Equation (6.4).

wc.c.X// D

8
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:

0 if c.X/ < �cl

4
�

c.X/��cl
�ch��cl

�3

if �cl � c.X/ � �cl C 1
2
.�ch � �cl/

4
�

c.X/��ch
�ch��cl

�3 C 1 if �cl C 1
2
.�ch � �cl/ < c.X/ � �ch

1 if �ch < c.X/

(6.4)

Figure 6.7 summarises the main hypothesised trust metrics used for the calcu-
lation of total trust. Experiments in [24] attest that integrating such metrics into
our middleware results in a better estimation of the real hidden trust value of an
interaction node with increasing number of its interactions. For more information
about the implementation details, please refer to [25].

Fig. 6.6 A graphic representation of the function wc.c.X//. The higher the confidence, the higher
wc.c.X// and therefore the higher the influence direct trust has over reputation
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Fig. 6.7 Illustration showing how direct trust, reputation and confidence are aggregated to form
the total trust

6.4.3 The Trust-Enhanced Self-x Controller

The aim of the controller is to guide and control the self-organisation process
between nodes. To make trustworthy control decisions, it uses the trust data received
from the observer and affects the global system by influencing the execution rules
of self-x properties. The current implementation suffers from the drawback that
the self-x properties are not designed to incorporate trust decisions in their actual
executions. They assume the benevolence assumption of nodes at all time and
thus cannot be applied for open systems. Details on this assumption were given in
Sect. 6.3. In this work, we abandon this benevolence assumption and instead provide
a new trustworthy design of the baseline self-x properties allowing them to operate
robustly even in open and hostile environments.

6.4.3.1 The Trust-Aware Self-Configuration

The capability of self-configuration in open distributed environments comprises the
abilities (1) to perform an initial and trust-based distribution of services on nodes,
(2) to cope with the problem of scalability, and (3) to allow a reconfiguration of the
system during runtime due to self-optimisation or self-healing demands.

Regarding (1): There are many sophisticated approaches to deal with the initial
distribution of services on nodes, either to achieve good load balancing or to
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minimise energy consumption. An approach that has become a standard by FIPA2

is the Contract Net Protocol [7]. It consists of finding an agent that is the most
suitable to provide a service. This approach is often adapted and applied in many
application domains, for example, manufacturing systems [26], resource allocation
in grids and sensor web environments [27, 28], as well as in hospitals [29], electronic
marketplaces [30] or power distribution network restoration [31]. It is a generic
protocol [32] and thus provides an excellent basis for developing self-configuring
systems. However, it is limited in some issues and has some shortcomings if the
setting for service assignment is more complicated. For example trust limitation
in the service assignment – some of nodes are more trustworthy to do important
services while others are less trustworthy and should focus only on the processing
of unimportant services. Helping to develop these trust enhancements was the
aim of our self-configuration research. The outcome of this investigation is an
approach [33] based on the Contract Net Protocol which aims on the one hand
to equally distribute the load of services on nodes as in a typical load balancing
scenario and on the other hand to assign services with different importance levels
to nodes so that the more important services are assigned to more trustworthy
nodes. Similar to [7], nodes in our system can act as a manager or contractor. A
manager is responsible for assigning services. A contractor is responsible for the
actual execution of the service. Figure 6.8 depicts how managers and contractors can
participate in the distribution phase of the self-configuration approach. When the
assignment process starts, managers announce the list of services to the contractors.
Contractors evaluate these services and submit bids on those for which they are
suited. Then, the managers evaluate the bids. In the basic Contact Net Protocol, the
parameter characterising this evaluation is the workload. Generally, the lower the
workload of a node is, the more it is considered to be appropriate to receive the
service. Our enhancement improves the awarding part by including trust, to enable
that more trustworthy contractors always have a higher chance to receive services
than less trustworthy contractors. Finally, the result of the service assignment is
communicated to the contractors that submitted a bid.

Evaluation results [33] within our middleware show that the proposed self-
configuration algorithm indeed provides better performance than the baseline
Contract Net Protocol. The trust variation that is used to improve the availability
of important services performs much better in all cases than the baseline algorithm,
which underlines the effectiveness of our approach.

Regarding (2): In open environments, the issue of scalability is of particular
importance for any self-configuring system. The self-configuration presented until
now does not cover this issue. It was designed only for the sequential assignment of
services on nodes and thus provides solutions that are not realistic to be applied in
environments with many managers. To get a better comprehension of that problem,
please consider the following example: Assuming two managers m1, m2 and one

2FIPA: Foundation for Intelligent Physical Agents – [Accessed: October 29, 2015] – http://www.
fipa.org/specs/fipa00029/

http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/specs/fipa00029/
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Fig. 6.8 An overview of the self-configuration process showing the interactions between the
manager and its contractors. Please note that each contractor in the network can be, at the same
time and for different services, a manager of other contractors. (a) Announcement. (b) Bidding.
(c) Awarding

contractor c1. m1 is responsible for assigning service s1 and m2 is responsible for
assigning service s2. Then, consider the following sequence of operations that are
listed in Table 6.1.

Contractor c receives both services s1 and s2, as expected. However, if both man-
agers m1 and m2 perform their negotiations in parallel and without coordination, the
outcome of the assignment could be wrong. Despite not having enough resources,
contractor c uses the same bid value submitted as before to receive the service
s2. Because of this race condition, we need to incorporate coordination strategies
into our self-configuration algorithm in order to further improve its scalability
performance. Investigating and developing such strategies was the aim of our
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Table 6.1 Simplified example run of the self-configuration process that can exhibit a race
condition between managers m1 and m2

Manager m1 Contractor c Manager m2

Sends an announcement to c
for a service s1

Sends an announcement to c
for a service s2

Evaluates the given services
with respect to its workload
and sends a bid to m1 and m2

Sends an award message to
c informing it to be the most
appropriate

Chooses c to award him the
contract for s2, while the
latter submitted bid has
recently become obsolete!

work in [34] and the outcome of this research is a simultaneous self-configuration
algorithm which gives managers in our system the possibility to perform several
distribution phases at the same time. To quantify our approach, evaluations have
been conducted. The evaluation results [34] show that the simultaneous self-
configuration attests an excellent time performance to assign services on nodes than
the sequential approach. At least 50 % self-configuration time improvement was
achieved and thus only for the context of two managers. However, the drawback
of our approach is that it produces message overhead to coordinate the managers.
But, this overhead is not excessive, in most cases lower than 1 % compared to
the sequential approach, and is thus considered to be acceptable in use by our
middleware.

Regarding (3): Reconfiguration is a main characteristic of modern distributed
self-configuring systems. Managers have to assess at runtime whether contrac-
tors are operating correctly or not. Fault-tolerant techniques applied to our self-
configuration algorithm are given in [35]. If one of the contractors failed, managers
detect the failed node and trigger a reconfiguration in the system to re-establish
the balance between nodes again. The reconfiguration is applied even well in
situations in which nodes join the system. This can occur at any time during the
self-optimisation process. Managers identify the entering of nodes and reconfigure
themselves to regain an acceptable assignment state in the system.

6.4.3.2 The Trust-Aware Self-Optimisation

Self-x systems should be able to dynamically adapt their behaviour in response
to changes in their environment. At runtime, they should have the ability to deal
with situations not anticipated at design time, since not every situation can be
considered when designing the system. After the initial service distribution that is
given using the self-configuration process, nodes must be able to constantly observe
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their current resource consumptions as well as the trustworthiness of nodes they
are cooperating with, identify unacceptable situations and reconfigure themselves
to regain an acceptable state. Therefore, in [36] a self-optimisation algorithm is
presented to optimise the allocation of services on nodes during runtime. The
algorithm does not only consider pure load-balancing but also takes trust into
account to improve the assignment of important services to trustworthy nodes. More
precisely, it uses different optimisation strategies to determine whether a service
should be transferred to another node or not.

Figure 6.9 illustrates how the self-optimisation property works in our system,
using a simple example of just two nodes. Suppose that node nj sends an application
message to another node ni at a certain point during runtime. It appends onto
the outgoing message (a) its recently observed trust behaviour of node ni, (b) its
current workload and (c) some additional information (i.e. importance level and
consumption) about services which are running on it. Based on this information,
node ni decides which of the following optimisation strategies should be performed
(given in Table 6.2):

The trust optimisation strategy is used in situations in which the workload of both
nodes is similar but their trust values differ, as illustrated in Fig. 6.10. Important
services are relocated to the more trustworthy node and unimportant services to the
less trustworthy node. The workload balance, however, should still be maintained.

The second strategy is the load optimisation strategy, presented in Fig. 6.11. This
strategy aims at finding a pure load balancing between nodes. Since ni and nj are

m

nj ni

Fig. 6.9 Cooperative self-optimisation in the TEM middleware. The optimisation process is
initiated by an application message going from node nj to another node ni. This message contains
– as piggy-back – all relevant information allowing both nodes nj and ni to optimise their current
states in the system at runtime

Table 6.2 Type of strategies
the nodes can use to optimise
their current states in the
system

Workload similar Trust similar Optimisation strategy

True False Trust optimisation

False True Load optimisation

False False Trust and load

optimisation

True True No optimisation
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i j≈

i j

ni nj

Fig. 6.10 The trust strategy is depicted in a simplified form to optimise the state of nodes by
relocating the assignment of their services at runtime. Please note that important services are
represented by the green stars, whereas the unimportant services are depicted with red starlets

Fig. 6.11 The illustration shows how pure load-balancing can be achieved between nodes.
Important services are represented with the green stars, whereas the unimportant services are
depicted with red starlets

equally trustworthy with respect to a certain threshold, there is no need to consider
trust by the relocation of services.

The trust and load optimisation strategy allows for providing workload balancing
with additional consideration of the services’ priority to avoid hosting important
services on untrustworthy nodes (see Fig. 6.12).

Finally, the No Optimisation strategy is used to ensure termination when no
further optimisation can take place, e.g. if both nodes ni and nj are well optimised
in terms of trust and workload, as shown in Fig. 6.13. However, this termination is
determined only locally. A global termination is reached if the system as a whole
becomes optimised.
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Fig. 6.12 A simplified overview of the trust and load optimisation strategy. Please note that
important services are represented with the green stars, whereas the unimportant services are
depicted with red starlets

Fig. 6.13 Illustration of the non-optimisation strategy used to determine the local termination of
the algorithm. Please note that important services are represented with the green stars, whereas the
unimportant services are depicted with red starlets

Experiments have been conducted based on simulations [37] to evaluate the
effectiveness of the introduced trust-aware self-optimisation algorithm. The eval-
uation results showed that the proposed approach can improve the availability of
important services during runtime. However, it makes a small deterioration (i.e. by
about 7 %) regarding load-balancing. This is due the fact that solutions of this kind
represent a trade-off problem in which it is impossible to make any trust distribution
better without making at least the load balancing distribution worse. Moreover, the
evaluation results showed that the trust-aware self-optimisation approach is only for
use in situations in which no conflicting trust values between nodes occur. Such
conflicts are caused, for example, by collecting trust values independently from
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Fig. 6.14 The conflicting trust values problem simplified within an example of just three nodes

the neighbours of a node that can contradict each other. Figure 6.14 visualises this
problem in a short example of three nodes.

Let us consider a network with the three nodes n1, n2 and n3. Let us now
suppose that a shielding wall is set between the two nodes, i.e. n2 and n3, preventing
communication and thus producing poor trust values between them, while the third
node n1 is not affected. In this case, n2 considers node n3 as untrustworthy and
thus not being able to properly host services. Hence, it wants to relocate important
services running on n3 to another trustworthy node, while contractor n1 sees no
need for action. Such situations cause consistency conflicts during runtime between
nodes and must be resolved. Therefore, in [38] a conflict resolution mechanism is
proposed as an extension to the self-optimisation algorithm to deal with the trust
conflict issue. In the testbed, an average conflict reduction of 97.5 %, 53.42 % and
6.47 % were achieved by the best-case, average-case and worst-case scenarios of the
conflict resolution algorithm, respectively.

6.4.3.3 The Trust-Aware Self-Healing

Self-healing can be defined as the property that enables a system to perceive
services that are not operating correctly and, without human intervention, make the
necessary adjustments to restore them using self-configuration and self-optimisation
principles. Two ways of thinking have to be considered in the self-healing process,
namely proactive and reactive. The proactive measure enables the system to detect
node instability prior to failure which is recognised through degradation of a node’s
trust value, and then to transfer all running services by using self-optimisation
techniques to more trustworthy nodes. The strategies used for the service transfer are
mainly the same as those described in Sect. 6.4.3.2 and thus are not further discussed
here. More interesting is the reactive measure. This enables nodes to save recovery
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information periodically during failure-free execution. Then upon failure, which has
to be detected by using a failure detector, a node uses the already saved information
to restart from an intermediate state called snapshot, thus reducing the amount of lost
computation. In the following, the underlying algorithms of the reactive measure are
explained.

Failure detectors: Failure detectors play a crucial role in the development of
robust and dependable self-x systems. Assuming that a contractor might crash, the
manager has to be able to detect a contractor’s failure and take appropriate recovery
actions, otherwise the services running on it might block the whole system. Hence,
it is important for the manager to regularly monitor its contractors, even if it is a non-
trivial task. The main reason for this is the diversity of failures. When a contractor
node in asynchronous and distributed environments is not working correctly, it is
very difficult for the manager to know the specific cause with certainty: it may be
due to a crash failure, execution failure or reachability failure. While there are slight
discrepancies in the literature regarding their definitions, in the following the failure
models are defined:

1. Crash failure: Contractors are considered to execute their services correctly. If
a failure occurs at a certain time, the contractor stops permanently. This models
a crash of contractor that never recovers by itself. Furthermore, contractors are
not able to indicate their failures and stop to send any messages.

2. Reachability failure: The contractor is operating correctly but communication
channels loose managers’ contracts. Consequently, network partitions emerge
in the system, which can lead to outdated or duplicated service results if the
partitions are merged again into one network.

3. Execution failure: The contractor does not halt. It can send messages and answer
that it is alive when asked. However, the services which are running on it report
wrong results. Services can recover afterwards to the last stored correct state.

Regarding (1) and (2): A well-known technique to cope with crash failures is
the keep-alive approach [39, 40], in the literature also known under the name of the
heartbeat approach [16]. In this technique, contractors periodically send an alive
messages to managers responsible for their monitoring. If, for example, a manager
m does not receive such a message from its contractor c after an expiration of
time �Timeout, it adds c to its list of suspected contractors, as seen in Fig. 6.15. If
m later receives an alive message from c, then m removes c from its list of suspected
contractors. This technique is defined by two parameters:

• The frequency period �c is the time frequency at which alive messages are sent
from c to m.

• The timeout delay �Timeout is the time between the last reception of an alive
message from c and the time where m starts suspecting c, until an alive message
from c is received.

Adjusting �c and �Timeout during runtime makes a trade-off in the system.
If these parameters are chosen too short, then failures are detected quickly (i.e.
short failure detection delays) but more alive messages are sent in the network. A
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Fig. 6.15 The most common approach used in literature to monitor the failure of contractors. This
is based on the pull model in which contractors regularly unicast a message saying they are alive

longer choice of these parameter values results in a larger failure detection delay
but less communication overhead. Because of this trade-off problem, it is obvious
that an optimal solution minimising the two criteria simultaneously could never
be reached in practice. Our contribution are robust approaches [41] that provide
good but not necessarily optimal solutions to this trade-off problem. They make
use of trust concepts to reduce the expected detection delay of failures and their
subsequent message cost by allowing more trustworthy contractors to be monitored
less frequently than the untrustworthy ones. However, the difference between our
approaches arises in the way to determine �c and �Timeout either discrete, continuous
or continuous-discrete. The facet of trust considered in this part of the work concerns
the availability aspect. For this reason the trust values of contractors are determined
based on their uptime in the last interaction steps. Evaluation results showed that
the continuous-discrete approach performs best. It can adapt faster to changing trust
conditions in the network than the two other approaches and is therefore considered
suitable for our TEM middleware.

Having detected a failure, the next barrier is to determine its type. This can be
either a crash failure or reachability failure between the manager and the contractor.
In order to determine which one of these failures has occurred, the manager needs
at least the help of two other nodes, i.e. helper1 and helper2. As shown in Fig. 6.16,
both helpers send to the contractor the “Are you alive?” messages. If no response
is received by both helpers (i.e. helper1 and helper2) from the contractor within a
configurable time period, then a crash failure is confirmed. If one of the two helpers
receives a response from the contractor then a reachability failure is confirmed.

Regarding (3): An important task for the manager is to check whether a
contractor is reporting wrong results or not. For masking such execution failures,
several approaches are known in literature. One approach which has received much
attention in the recent years is the redundant execution [42–44]. This approach
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Fig. 6.16 Simplified illustration of the detection model showing how to distinguish between crash
and reachability failure by making use of helpers. Solid circle represents the manager, dashed circle
represents the helpers, and dotted circle represents the contractor. Please note that in the practice,
the manager would expect to have more helpers than only the two ones depicted here

enables to detect an execution failure by executing a service at least two times from
different contractors and comparing the results. If the results are similar, then the
service is run without failure, otherwise an execution failure has happened during
the execution. One drawback, however, is that some services cannot be handled by
redundant execution, e.g. I/O-based services that might not return the same result in
different runs. But as it goes beyond the scope of this work it is not further discussed
here.

Service recovery: As clarified in the introduced failure model, contractors in
our system are subject to crash failures. Keeping that fact in mind, a manager has
to store the stepwise results of its contractors in a trustworthy place in order to get
them back in case of failure. This has the benefit to later reduce the recovery time by
restarting the services not from the beginning but rather from an intermediate state.
To ensure this, a robust data storage is needed for our system that must obey to the
following identified research points:

• How to adjust the amount of replicas in the system during runtime in order to
guarantee a good availability of service data, characterised for example by five
nines availability 	99:999 %?
The answer of this question results, as expected, in a trade-off problem between
performance overhead and availability. It is easy to see in Fig. 6.17 that the use
of a higher number of replicas generally increases the availability of the stored
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Fig. 6.17 Example showing the number of replica required for an average nodes’ availability of
95 %

data. However, this availability is only improved until three replicas have been
reached. A greater number than 3 does not improve the availability any more but
makes performance worse, since more replicas imply more resource consumption
and higher management cost. Therefore, we provided an approach that enables
us to calculate the minimum number of replicas needed for a desired degree of
availability taking into account the average availability of nodes. First results
of this approach attest a very good reduction of performance overhead in the
network. More results related to large size networks are, however, left for future
work.

• How to distribute the replicas in a way that the more important replicas are
always hosted only on most available nodes, while at the same time achieving
load balancing between nodes?
This issue can be reduced with minor variations to the same problem that we
have addressed in Sects. 6.4.3.1 and 6.4.3.2: Instead of using the reliability facet,
the system focuses on the availability facet by observing the uptime of nodes.
The self-configuration algorithm then uses these availability values to perform
an initial distribution of replicas on nodes. At runtime, we make use of self-
optimisation techniques to continuously optimise their assignments.

Consistency limitation due to a Split-Brain Problem: One limitation of the
service recovery that we faced during the evaluation process is the Split-Brain
Problem [45]. This represents a state in which nodes in the network are partitioned
into clusters. And each one believes it is the only active cluster in the network.
Figure 6.18 provides a better comprehension of that problem.

Assume we have one contractor c1 that operates to report some service results
to manager m. Let us further assume that m can no more communicate with its
contractor c1, due to a reachability failure which can happen at any time in our
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Fig. 6.18 Simplified illustration of a network partition isolating a manager m from its contractor
c1 due to a reachability failure in the network. Once the problem is resolved, an automatic
reconciliation will be required in order to bring the network in a consistent state again

system. In such case, manager m asks helpers h1 and h2 to check whether c1 is
alive or not, as explained above. The two helpers cannot reach c1. Consecutively,
m believes that c1 has crashed. It uses the data storage to recover all services
which were running on c1 and to restart them on another contractor c2. Until now,
the system seems to run correctly. However, a problem arises when the partition
between the two clusters is lost and m is not aware of it, leading to inconsistency in
its service results. In the literature, there are many different approaches to deal with
the split-brain problem. The most common one is the Quorum approach [46, 47],
which consists of selecting the cluster with a majority of votes. A disadvantage
of this method is that it does not operate if clusters in the system have the same
number of votes causing a non-determinism in the solutions computed. Therefore
we are interested in providing a better approach that is able to consider additional
constraints (beside the voting constraint) such as the last version of services, the
number of run services, the workload and trust of contractors and so on. More
research related to this is left for future work.

6.5 Application Case Studies

The trust aware self-x properties introduced in this chapter concern basic middle-
ware concepts to provide guarantees of reliability, availability and scalability for the
TEM. Apart from these properties, the TEM implements mechanisms that allow the
application running on top of it based on the trust metrics to measure uncertainty
at runtime and to take the trustworthiness of the applications’ entities into account
when making decisions. Within the OC-Trust research group several application
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Fig. 6.19 The TEM used as basis for the construction of trustworthy self-organising applications

case studies are investigated for the TEM. The first case study comprises an
application from the domain of multi-agent systems called the Trusted Computing
Grid. The second application case study, the Autonomous Virtual Power Plants,
stems from the domain of decentralised energy management systems. And the last
case study is the Trusted Display Grid taken from the domain of multi-user multi-
display systems (see Fig. 6.19). All these case studies have the main goal to utilise
trust at the application level. They are implemented on the TEM to make use of the
trust metrics and to profit from the robustness of TEM provided at the middleware
level by means of the self-x algorithms described above.

The Trusted Computing Grid: The first application case study that profits
from the TEM middleware is the Trusted Computing Grid. This consists of a great
number of client computers with different resources that work together in a grid
to cooperatively process computationally intensive tasks, e.g. face recognition [48]
or ray tracing [49]. Each client in the grid takes on one of two roles related to the
execution of an individual task: submitter or worker. A submitter is responsible for
breaking down the task into work units, scheduling the execution of work units,
and collecting the results of their execution. A worker is responsible for the actual
execution of work units. However, not every worker in the grid is equally interested
to process work units. There are, for example, some workers that might plan to
exploit the system by accepting work units and cancelling their processing, so
called Egoistic Workers [50]. By making use of trust, the submitters can identify
those untrustworthy workers and form Trusted Communities (TCs) [51]. This
represents a community formed by workers and submitters with strong mutual
trust relationships that aims to reduce the probability of receiving invalid results.
Each Trusted Community is managed by an elected trustworthy manager, called the
Trusted Community Manager (TCM), which has as goal to maintain the stability
of community members using self-x properties. This TCM is an example for an
important service in the TEM middleware, since its failure can deteriorate the entire
TC.
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The Autonomous Virtual Power Plants: Another example of application that
profits from the TEM middleware is the Autonomous Virtual Power Plants [52].
This is a power management system composed of a variety of power plants
which provide either dispatchable or non-dispatchable power production. The
dispatchable production is made by power plants whose output can be determined
in advance such as coal or atomic power plants. In contrast, the non-dispatchable
production is made by power plants whose output is unpredictable like wind
turbines or solar power plants. One of the main challenges posed here is to
maintain the balance between power production and consumption at all times.
This is a non-trivial task for non-dispatchable power plants since their production
depends on the availability of natural resources like sunlight, air, or wind, that
cannot be controlled by humans. The Autonomous Virtual Power Plants application
overcomes this issue by integrating trust to allow an automatic regulation of non-
dispatchable power plants, so that the dispatchable power plants can be used only
as needed [53, 54]. This allows the formation of Autonomous Virtual Power Plants
(AVPPs), that group dispatchable and non-dispatchable power plants together based
on the Observer/Controller architectural pattern [55]. If an observer identifies during
runtime that the organisational structure of an AVPP is not suited, e.g. because
maybe one or more AVPPs cannot maintain the power balance any more, the
controller performs a new organisation of AVPPs in order to bring back the power
balance optimised in the system again [56]. The autonomous organisation of AVPPs
is an essential aspect of this application case study and is therefore considered as an
example for an important service in the TEM middleware.

The Trusted Display Grid: The third application case study that profits from
the TEM middleware is the Trusted Display Grid [57]. This allows users to interact
in the system with multiple self-organising displays at the same time. The displays
are divided into two types of usage: private and public. Private displays are those
that can protect the personal data of users from external observation like smart
phones and tablets. In contrast, public displays are those that everyone can use,
whose data is public and can be shown in presence of other people like Microsoft
Surfaces.3 The major challenge here is to self-organise the transfer of data between
public and private displays at runtime. However, such an organisation is a non-trivial
task. This is because the displays should continuously protect the users’ privacy on
the one hand and on the other hand maintain the user’s acceptance. Otherwise, the
user might abandon the system. The Trusted Display Grid tackles this problematic
situation by using the User Trust Model (UTM) [58], which allows the displays
to monitor the interaction of users, to measure their current trustworthiness, and
to apply appropriate self-organising mechanisms to increase the users’ trust as
well as usability in the system. This UTM is essential for the operability of the
Trusted Display Grid and is therefore treated as an important service by the TEM
middleware.

3Microsoft Surface – [Accessed: October 21, 2015] – http://www.microsoft.com/en-us/pixelsense/
whatissurface.aspx.

http://www.microsoft.com/en-us/pixelsense/whatissurface.aspx
http://www.microsoft.com/en-us/pixelsense/whatissurface.aspx
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6.6 Conclusion

In this chapter, a middleware architecture for trustworthy self-x properties in open
distributed systems is presented. The design of the architecture relies on trustworthy
algorithms to provide guarantees of reliability, availability and scalability to service-
oriented middlewares. The baseline middleware used in this work is OC�. We
have explained how the trustworthy self-x layer can be easily integrated into OC�

to make it more robust in the face of untrustworthy components. The resulting
middleware is TEM, a trust-enabling middleware that can profit from the advantage
of trust and OC principles at the same time. The TEM makes use of different trust
metrics, i.e. such as direct trust, reputation, and confidence to monitor the behaviour
of nodes in the system at runtime. This monitoring is very important to guide and
control the self-organisation process between nodes by means of trust-aware self-x
properties. The self-x properties examined in this work are self-configuration, self-
optimisation, and self-healing. We believe that these properties are fundamental
for the design of every autonomous, scalable and fault-tolerant service-oriented
middleware. The self-configuration is related to the ability to perform an initial
distribution of services on nodes taking the resource requirement and importance
level of services into account. The self-optimisation focuses on optimising the
allocation of services at runtime by monitoring the trust and resource consumption
of nodes. And the self-healing aspect is concerned with the ability to handle failures
of nodes in order to guarantee that all services running on them stay available
even in case of network partitions. We applied the TEM middleware to different
application case studies and clarified how uncertainty in open environments can be
mastered by using trust. Due to the fact that future application services will become
more autonomous, we expect to see more self-x systems based on our (or a similar)
architecture. The future design of self-x middlewares will increase the demand of
trustworthy self-x properties to ensure robustness in the system. The architecture
presented in this chapter is a step in this direction.

For future work, we plan to investigate more sophisticated self-protecting
mechanisms for the TEM that might further increase its robustness against trust
manipulation. For this purpose, we have to analyse and study the most common
security threats present in the field of trust in distributed environments such as the
ones presented in [59] to get a deeper understanding of that issue. Of course, such
investigation could also include other related fields such as Cloud Computing and
peer-to-peer systems. Based on this study, we have to build self-protecting solutions
that can be applied in our trustworthy self-x layer. It is important to note that
the found solutions should also be characterised by low overhead in order to be
integrated in TEM – no self-protection at any cost.
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Chapter 7
From Trust and Forgiveness to Social Capital
and Justice: Formal Models of Social Processes
in Open Distributed Systems

Jeremy Pitt

Abstract Open systems typically occur in a wide range of applications, from
virtual organisations and vehicular networks to cloud/grid computing and reconfig-
urable manufacturing. All these applications encounter a similar problem: how does
a system component reliably complete its own tasks, when successful task com-
pletion depends on interaction and interoperation with other, potentially unreliable
and conflicting, components. One solution to this problem is trust: depending on a
second party requires a willingness to expose oneself to risk, and to the extent that
this ‘willingness’ can be quantified or qualified, it can be used to inform a binary
trust decision. Therefore, a formal model of the social relationship underpinning
such trust decisions is essential for conditioning bipartite interactions between
components in an open system. However, there are a number of issues that follow
from this – for example: what is to be done when the outcome of the trust decision
is contrary to expectation? Are there positive externalities that can be derived from
a successful trust decision? and: How can we ensure that outcomes of collective
decision-making in such circumstances are, in some sense, ‘correct’ and/or ‘fair’.
Our answers to these question have been found in the formalisation of other social
relations, respectively forgiveness, social capital and justice. This chapter presents
a survey of the development of formal models of social relations, from trust to
justice via forgiveness and social capital, all of which address the issue of reliable
interoperation in open systems.
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7.1 Introduction

We are interested in open systems which involve cooperating (and potentially
conflicting) components, interacting asynchronously, in parallel, and peer-to-peer;
with no centralised controller, and with potentially inconsistent beliefs.1 Such open
systems typically occur in a wide range of applications, from virtual organisations
and vehicular networks to cloud/grid computing and reconfigurable manufacturing;
and have been intensively studied in the fields of multi-agent systems [1], autonomic
computing [2], and (of course) organic computing [3].

In all these applications, and the focal point of these studies, similar problems
are encountered. One is resource allocation, how to ensure that a ‘fair’ and efficient
distribution of common-pool resources can be achieved, especially in an economy of
scarcity (when there are insufficient resources to satisfy everyone’s requirements).
However, this is preceded by another common problem: if a component is going to
join such a system and pool its resources in the expectation of receiving a fair and
efficient allocation, how does it decide whether it is ‘safe’ or ‘worthwhile’ to join?
More generally, in the context of an open system: how does a component reliably
complete its own tasks, when successful task completion depends on interaction and
interoperation with other, potentially unreliable and conflicting, components?

One solution to this problem is trust: depending on a second party requires a
willingness to expose oneself to risk, and to the extent that this ‘willingness’ can be
quantified or qualified, it can be used to inform a binary trust decision. Therefore, a
formal model of the essentially social relationship underpinning such trust decisions
is required for conditioning bipartite interactions between components in an open
system. Theories of cognition which explain how humans make trust decisions
in various contexts, offer insights into and understanding of the process, which
can then be formalised as algorithms and data structures and used as the basis
for operationalisation to solve an engineering problem – i.e. how autonomous
components can make trust decisions in open systems.

Furthermore, there are a number of issues that follow from this – for example:
what is to be done when the outcome of the trust decision is wrong, or rather,
contrary to expectation – in other words, the trust has been misplaced? As previously
mentioned, the system components may be competing, or may be unreliable, and so
may fail to comply with a mutually agreed system specification, or with the terms
and conditions of a quality-of-service contract. However, there may be many reasons
for this non-compliance, from inadvertence, through necessity, to (unfortunately)
sheer malice. A second issue is: are there positive externalities that can be derived
from a successful trust decision? A positive externality is generally considered to be

1Note this is different from open systems as defined from a systems theory perspective, i.e. a
system which has interactions with its environment through some boundary; and from a computing
perspective, where open systems are also defined as systems based on interoperability through
open standards, or dynamic systems with unrestricted access and components that join and leave
the system – although the open systems in which we are interested can exhibit all these features.
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a benefit that is derived by a third party as a result of an economic transaction. But,
what if there were positive externalities that were to be gained: from fixing incorrect
trust decisions, for example; or as a result of using relational, rather than purely
transactional, information. And a third issue involves ensuring that the outcomes
of collective decision-making in such circumstances are, in some sense, ‘correct’
and/or ‘fair’ (in the sense that each component receives equal treatment according
to some metric, within the constraint of efficiency – there is no benefit in having a
mechanism that computes the ‘fairest’ possible distribution of resources, if all those
resources are consumed in the computation, or are no longer needed by the time the
computation has completed).

In addressing the initial problem, our first step was to define a formal model of
trust, as discussed in Sect. 7.3, which is used to answer the basic question: how does
one component engage with another, in an open system, if it really must (i.e. sitting
out is not an option). This trust model is based on a formal characterisation of a
socio-cognitive theory of trust, complemented by economic reasoning. Following
on from this, our proposed solutions to the three issues have been found in the
formalisation of other social relations, respectively forgiveness (Sect. 7.4), social
capital (Sect. 7.5) and justice (Sect. 7.6). As a consequence, the chapter contributes
both a historical survey of the development of a series formal models of social
processes, from trust to justice via forgiveness and social capital, but also could be
considered as a (preliminary) handbook of formal (social) methods, or social design
patterns, for addressing the issues of ‘reliable’ interoperation in open systems.

7.2 Background: Open Systems

Open systems, as identified and defined by Hewitt [4], comprise autonomous
components of heterogenous provenance interacting asynchronously, in parallel
and peer-to-peer. Interaction implies that it is reasonable to assume there is a
common language, a specification of correct behaviour and interfaces that facilitate
interoperation; on the other hand, autonomy and heterogeneity imply that it is not
reasonable to assume that the components share a common objective, nor to assume
that there is a centralised controller that is directing or determining the actions of
components, nor to assume that their behaviour will necessarily comply with the
specification.

Based on these assumptions, five salient features of open systems are identifi-
able:

• Co-dependence and competition: each component is reliant on other components
for successful accomplishment of its own goals, but those other components may
themselves be unreliable, for example, if the components are competing for the
same (scarce) resources;

• Mutability: the environment, network topology and constituent components can
vary rapidly and unpredictably; therefore, each component will frequently be
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exposed to ‘first encounter’ problems, i.e. how to interact in a situation or with a
component that has not been previously encountered;

• Partiality and uncertainty of knowledge: because interactions are asynchronous,
in parallel, and peer-to-peer, this implies that there is no single source of ‘true’
knowledge. Therefore, each component only has a partial (and possible subjec-
tive) knowledge of the overall system and some of it components; furthermore
the union of these knowledge bases may be inconsistent (this does not mean that
it is necessary to ‘give up’ logic for open systems [5]);

• Expectation of error: actuality (what is the case) and ideality (what ought to be
the case) do not necessarily coincide; in other words, the components may fail
to comply according to the system specification – but for a variety of causes, for
example by accident, necessity, or design. It is necessary to distinguish between
these causes in order to recover from them; and

• Self-organisation: there is no central controller, and there is no operator interven-
tion; therefore, the nodes have to resolve difference, deal with first encounters,
cope with uncertainty and recover from errors by and between themselves.

One approach to addressing these issues is to observe how similar problems have
been resolved in natural (biological or social) systems, and formalise such solutions
in an appropriate calculus suitable for engineering a computational solution to be
used in (or by the components of) an artificial system.

This has, in fact, been the approach of the synthetic method underlying research
in artificial societies and artificial life [6]. The main steps involve generalising some
observed phenomena to produce a theory, from which an artificial system can be
constructed and used to test predicted claims. The outcome of applying the synthetic
method is to engineer an artificial system, and the resulting animation, experiments
or performance serves to support or refute the theory.

Several other attempts to apply ideas from the social sciences to the design of
computational systems (see, e.g. [7]) have followed a similar pattern. Furthermore,
researchers in biologically-inspired computing, notably those concerned with arti-
ficial immune systems [8] have developed a comparable approach. However, in
[9], another adaption of the synthetic method was proposed. In this approach, a
distinction was made between the social sciences source and engineering artificial
societies. The transition from theory to artificial system was no longer direct and
included the application of an intermediate step. In addition, the results of observed
performance were not used to justify or refute the source theory, but were instead
used to adjust the formalisms underpinning the artificial system.

This methodology, called sociologically-inspired computing,2 is illustrated in
Fig. 7.1. The first step is to formulate a theory by defining, for example in

2The term ‘sociologically-inspired’ was chosen as a parallel to ‘biologically-inspired’, although
it is not, perhaps, such a good term. We take inspiration not just from sociology, but from across
the social and natural sciences, and indeed have formalised theories from linguistics, philosophy,
law, psychology, cognitive science, physiology, economics, and political science in our search for
computable solutions to engineering problems.
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Fig. 7.1 Methodology for sociologically-inspired computing

natural language, the terms and principles that are used to denote or describe
the observed social phenomena. The second step of formal characterisation leads
from the (predominantly) informal representations of the source theory, to formal
representations, expressed in a formal language or ‘calculus’ of some kind (where
by ‘calculus’ it is meant any system of calculation or computation based on the
manipulation of symbolic representations). The third and final step is systematic,
controlled experimentation with a computational model of an artificial system
derived from the formal representation.

As explained in [9], there are (at least) two types of formal representation.
Firstly, there are those representations that aim to provide an analysis of conceptual
structure, identifying the fundamental elements of which complex concepts are
composed, and articulating the principles governing their composition and inter-
relations. Crucially, these representations, being used for a conceptual characteri-
sation of the theory, are theory-facing constrained primarily by considerations of
expressive capacity, and not those of computational tractability. Secondly, there
are those representations that are more suitable to the development of software
models and simulations: this is the basis of a computational framework for the
theory. However, the key points to note about these representations is that they
should be informed and guided by the conceptual characterisations of a theory-
facing representation, but they may well involve some degree of simplification,
or approximation, and there may be some abstractions that can be tolerated in
a theory-facing representation, but not in an implementation-facing one. It is
expected, though, that the designer should be fully aware of how the conceptual
characterisation is being approximated, or how the computational framework is
being enriched (i.e. it is a not a matter of ‘theory hacking’ in a preferred formalism).

The final step of principled operationalisation is concerned with moving from
the computational framework to a model of the artificial system, with algorithmic
intelligence of the components embedded in identifiable functions and processes.
This step may also be selective or approximate, but it too is principled in that it is
conducted knowing which selections and approximations have been made, and why.
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This methodology has, in part, emerged from addressing the features of open
systems. We begin in the next section with a formalisation of a socio-cognitive
theory of trust, in order to deal with issues of uncertainty and unreliability
(in ‘recurring encounter’ situations) and mutability (leading to ‘first encounter’
situations).

7.3 Trust

A particular feature of open systems is co-dependence: one component has to rely
on one or more other components in order to successfully complete its own tasks.
For example, in an ad hoc network, one node has to rely on a network of other nodes
to transmit its messages across that network [10]; in a distributed supply chain, one
manufacturing component has to rely on the timely delivery and quality of the goods
delivered in order to satisfy its own commitments to the chain [11]; in desktop grid
computing, components have to delegate tasks to each other [12]; and so on.

This requires a decision to be made about the reliability of the network, other
suppliers, etc. This is, essentially, decision-making under uncertainty, because the
decision-maker has no control over the autonomous behaviour of the components on
which it chooses to rely. Furthermore, a decision has to be made: inaction implies
inevitable failure to complete one’s own task.

This is a trust decision, loosely defined as a willingness (or necessity) to expose
oneself to risk, with the intention to reduce the doubt involved in the decision
and so mitigate the risks involved. However, this assessment of risk concerning
reliance on someone or something outside one’s control is a potentially ‘expensive’
computation; furthermore it is one that needs to be performed frequently and
in some cases replicated – in which case it would be pointless to repeat the
computation, but in any case there would be new information (i.e. the outcome of
the previous interaction).

Therefore, in dealing with such a trust decision, a framework is required which
takes into account Weisberg’s [13] two dimensions of uncertainty: doubt and
ambiguity. Doubt measures the degree of belief in a proposition; ambiguity reflects
an understanding of that proposition. Doubt is derived from those aspects that
cannot be controlled, such as randomness, chaos or non-observability; ambiguity
stems from having only a partial understanding of the situation. Doubt, according
to Weisberg, can be quantified, typically by statistical measures; but ambiguity is
essentially qualitative and requires logical reasoning.3

In retrospect, this combination of doubt and uncertainty (although not couched in
those terms) is a feature of the trust framework developed by Neville and Pitt [14],

3Although Weisberg’s key, and highly cogent, point, is that in the pursuit of the elimination of doubt
by data analytics and machine learning, some researchers appear to have neglected ambiguity and
choose to remain wilfully ignorant of this component of uncertainty.
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ten years prior to the publication of Weisberg’s book. Effectively, this framework
tried to deal with the quantitative element of doubt about the outcome by means
of economic reasoning, i.e. in terms of utilities, cost/benefit analysis, and on on;
and the qualitative element of ambiguity in the process by means of socio-cognitive
reasoning, i.e. in terms of confidence in beliefs, experiences, recommendations, the
interpretation of signals (such as reputation), and so on. The resulting trust-decision
framework brought together both socio-cognitive and socio-economic reasoning.

Applying the methodology of the previous section, the socio-cognitive reasoning
element of this framework was based on the formalisation of a trust theory from
cognitive science. In this case, computational representation of an agent’s trust
belief is based on the formal model of Castelfranchi and Falcone [15]. The essential
conceptualisation is as follows: the degree to which agent A trusts agent B about
task � in (state of the world) ˝ is a subjective probability DoTA;B;�;˝ . This is
the basis of agent A’s decision to rely upon B to “get � done”. The framework
incorporates this stance, but computes ‘trust’ as this (subjective) probability of one
agent’s expectation regarding the performance of another, as a product of its direct
experiences of that other party, and from the recommendations of its peers (i.e.
reputation), in both cases qualitative information used to reduce ambiguity.

The economic model used by a decision-making agent focuses on estimating
the utility gained by the agent from a successful outcome of the trust decision, and
estimating the utility lost in the event of an unsuccessful outcome. In situations
where there may be a number of possible partners from whom to select (e.g. a
trading partner in a supply chain, next hop in an ad hoc network, etc.), the agent
should choose to trust the potential partner with the highest positive expected
utility E , i.e.:

E D DoTA;B;�;˝ � U.succ/A;B;�;˝ C .1 � DoTA;B;�;˝/ � U.fail/A;B;�;˝

An overview of the operation of the framework, as illustrated in Fig. 7.2, is as
follows (for a detailed description, including formulas and algorithms, see [14]).

Given an opportunity (or requirement) to trust a peer (process (1) in Fig. 7.2), the
agent uses its economic model to calculate its outcome utilities (2,3). These outcome
utilities are the economic influence on the decision to trust (5), and represent the
payoffs of accepting the risk in relying on the peer. The other parameter in the
decision to trust is the agent’s trust belief (4) conditioned by its confidence in
that belief (14), this being the agent’s subjective evaluation of the probability of
a successful outcome of trusting the peer. The agent’s trust belief, is computed
from the combination of the agent’s belief about its direct experiences (8) and the
reputation of the potential trustee (10). The relative influence of these beliefs on the
trust belief is determined by the agent’s confidence in their respective accuracies (7).
Direct experience represents a distillation of its set of prior first hand interactions
with the trustee into one belief (9). Likewise, the agent’s opinion of the reputation
of the potential trustee is informed by the recommendations of its peers (11). The
credibility assigned to an experience or recommendation, and hence its weight of
influence during the distillation process, is a function of the currency of the belief
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and it is also dependent upon the agent’s decision to trust the source of the belief
(12). This opportunity to trust a peer as a source of recommendations is handled
in the same manner as defined here for the generic case (13). The agent will look
to its experiences of the peer as a recommender and at what its peers recommend
about them as recommenders. We will assume that the agent can trust itself not to
lie about or distort its own experiences (although we do not rule out the possibility
of self-deception).

In the cases where the resultant trust belief is enough to decide to trust the
potential trustee, and given there are no better opportunities available, the agent
will act upon its decision (6). The resultant experience of the trustee is added to
the agent’s set of prior experiences (15). Experiences are also formed about those
agents that have made recommendations referring to the trustee and subsequently
the agents that recommended them and so on (16).

The trust framework has been tested in a producer-consumer scenario with
unreliable producers. For details of the simulation, experiments and results, see
[16], but the main result was that consumer decision-making with the fully-featured
trust framework produced a close approximation to a ‘safe’ market (i.e. one with no
malicious or unreliable producers). The other interesting feature of the framework
was its anytime computation based on ‘sufficient confidence’: this demonstrated
that the agents’ reasoning shifts over time and experience from ‘risk’ trust, an
‘expensive’ computation for decision-making in first encounters, to ‘reliance’ trust,
which short-cuts such computations (by the confidence metric) for nth encounters,
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i.e. sufficient prior direct experience is such that there is an expectation of a
beneficial outcome without needing to consider others’ recommendations.

Of course, this is open to exploits, but this is a characteristic of ‘stings’ in
human commercial transactions. However, the fact a trust decision, based on a trust
relationship, can be exploited, raises another question – what happens when the
outcome of the trust decision is wrong, or is contrary to expectation? One answer to
this question is proposed in the next section.

7.4 Forgiveness

Trust was (informally) defined as a willingness to expose oneself to a risk; indeed,
the computation of the ‘degree of trust’ (in the trust framework of the previous
section) explicitly took into account the utility of successful and unsuccessful
outcomes. In this case, as in many trust frameworks in the multi-agent systems
literature [17], ‘trust’ is a measure of probability, or an indicator of the doubt
involved in a certain transaction or relationship. Therefore, many of these trust
frameworks attempt to reduce the level of doubt – but it is impossible to eliminate it
altogether, otherwise it would hardly be a trust decision. Therefore, if there is always
some risk of an unsuccessful outcome, the key question becomes, as previously
posited, what is a component in an open system to do, when it misplaces its trust, so
that the outcome of its trust decision is wrong, or contrary to expectation? Critically,
this does not imply that the use of trust itself is necessarily misguided, and that
the entire trust framework should be abandoned, but instead some complementary
mechanism for dealing with a particular trust breakdown is required.

A possible explanation for the trust breakdown is that there has been a violation
of a norm, or from the truster’s perspective, a violation of the expectation that the
trustee’s behaviour will comply with a norm, which is believed to be ‘in force’. This
follows from the Jones [18] account of trust, where it is suggested that the act of
trusting has two components, a belief component and an expectation component,
and that one ordinarily says of a particular situation that “A trusts B” if A has the
belief that there is a norm, or rule (to be complied with in this situation), and A has
the expectation that B’s behaviour will indeed comply with the norm.

Typically, then, in multi-agent systems research, and indeed in social system for
e-commerce, the reaction to a trust breakdown has been to damage or diminish
the reputation of the violator. Notice, though, that reputation is a factor that is
part of the trust decision framework, and as such is a quantitative punishment
mechanism which only serves to reduce doubt. It does not do anything to deal with
the ambiguity, i.e. taking into account the truster’s understanding of the situation, or
why it is that the trustee has violated the norm, or how serious the offence was, or
any of many other factors that pertain to the complexity of a trusting relationship.

Therefore, what is required instead is a qualitative repair mechanism, i.e. one
that tries to take the ambiguity into account, and instead try to restore the system
to a (kind of) homeostatic equilibrium. In fact, there is a well-established social
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mechanism for achieving precisely this effect – forgiveness [19]. Forgiveness is
a pro-social motivational change in someone who has incurred a transgression.
It implies giving up resentment and desire to punish someone. When people
forgive, they become motivated to engage in relationship-constructive, rather than
relationship-destructive, actions towards the offender. Forgiveness is influenced
by psychological processes such as empathy for the transgressor, attributions and
appraisals, and rumination about the transgression.

In social systems, forgiveness allows the truster (victim of the violation) to dis-
tinguish between intentional and unintentional violations (and a range of infractions
in between), to consider the seriousness of the offence, and to take into account
the dependence on whether this was a ‘risk’ trust vs. a ‘reliance’ trust decision
(one might be more forgiving towards someone with whom one had an established
beneficial relationship, than someone who violated in a ‘first encounter’ situation).
Forgiveness is also known to stimulate voluntary acts of recompense from the
violator.

Consequently, in ‘technical’ systems, we require a forgiveness framework which
reduces negative predisposition towards offender, and accentuates positive moti-
vations for self-repair. In [20], just such a forgiveness framework was proposed
and developed. Based on a survey of the psychological literature on forgiveness, a
conceptual model was proposed which begins with a negative evaluation, that is then
subject to four positive motivations – empathy, reparation, judgement of offence
and prior beneficial historical relationship – which might reverse an initial negative
reaction into a positive one (see Fig. 7.3).

The four positive motivations for forgiveness were broken down into 11 con-
stituent signals as follows:

• judgement of offence: offence severity, offence frequency, intent;
• reparation: apology, actions of repair;
• beneficial historical relationship: benefits utility, benefits frequency; and
• empathy: visible acknowledgement, prior familiarity, similarity, propensity to

embarrassment.
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This conceptual model was formalised in a computational forgiveness framework
as follows. With the exception of ‘propensity to embarrassment’, each constituent
signal, a formula was specified to identify the ‘strength’ of the signal (see [20] for
full details). For example, the signal j for the frequency of a particular offence was
computed by:

j D
�

noffence_kind

noffences
C noffences

ncollaborations

�

2

where noffence_kind denotes the number of the offender’s offences of the current kind,
noffences is the offender’s total number of offences across time, and ncollaborations is
the offender’s total collaborations within the community. Note that two aspects of
frequency are encapsulated in this formula: the frequency of the current offence
is computed with the first division and the frequency of the offender’s total past
offences is computed with the second division. Among other possibilities, this
formula intends to capture the instances where an agent has infrequently violated a
particular norm but at the same time frequently violates many others, i.e. it is trying
to accommodate different aspects of ambiguity in the appreciation of the situation.
The same holds for the other signals (note that ‘propensity to embarrassment’
resisted formulation in this way, although some attempts have been made to define
a formal model of ‘digital blush’, e.g. [21]).

Each constituent signal was then input into a fuzzy inference system (FIS), each
of which consisted of rules of the following form:

IF severity IS low
AND frequency IS low
AND intent IS high
THEN judgement_of_offence IS 0.4

There were four such FIS, one each positive motivation of the conceptual model,
which were combined in a fifth FIS to output a final forgiveness decision d, as in
Fig. 7.4. (Note that the weight of each input to FIS1 is equally divided between the
four positive motivations (hence 25 %); furthermore the weight on each signal input
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Fig. 7.4 Fuzzy inference system for computing forgiveness decisions
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to FIA2–FIS4 was equal. This was a design decision based on assumption that the
import of the ten signals and the four motivations were equally strong. That need not
be the case; moreover, a learning agent could quite reasonably modify the weights
at runtime according to experience. There is nothing in the framework that dictates
these weights should be equal or immutable.)

The computational framework for forgiveness has been used as a decision-
support system for unintentional violations in computer-mediated communication
(CMC) [22]. This showed that it is possible to enhance CMC interface design
with mechanisms to encourage pro-social behaviour (in this case, avatars which
exhibited shame or embarrassment at non-compliance), suggesting that it is not
simply anonymity that encourages anti-social online behaviour, but the absence
of cues that activate self-awareness in a social setting. The framework has also
been used in a socio-technical system to improve pro-social behaviour and reduce
workplace civility in, for example, open plan offices [23].

One of the other features of forgiveness is that it can even increase the strength of
a social relationship (in the same way that a broken bone re-knits more strongly).4

This is because not only can the truster rely on the trustee, but it can also rely
on being able to resolve an issue if the trust relationship is misplaced. As a
result, qualitative social value can be created, even in an open system, which
transcends purely quantitative transactional information. These social values are,
in fact, parameters to trust decisions, forgiveness decisions, and so on, and can be
formalised as social capital, as discussed in the next section.

7.5 Electronic Social Capital

Consider a decentralised community energy system (CES), such as that described
in [24], where there are a number of inter-connected ‘smarthouses’, each with their
own renewable energy generation mechanism, but no local storage mechanism, and
a number of domestic appliances which need to be operated. When generation and
consumption are in balance, all is fine; unfortunately, at some times, if generation
exceeds consumption then it needs to be burnt off, which is wasteful and potentially
harmful, and at other times, if generation is less than consumption, then the house
will experience a blackout.

Therefore, smarthouses aggregate together to form CES. However, these CES
require a method of lowering the consumption peaks by flattening the demand,
reducing the difference between peaks and troughs in electricity usage by creating
a levelled usage pattern that lessens the deviation from the average usage. One way

4It has been pointed out that previously broken bones also ache in stressful situations, such as cold
weather – a reminder of the break. This may be stretching the analogy, but forgiving and somehow
not quite forgetting, so that caution could be exercised in important situations, could be a beneficial
feature of a future forgiveness framework.
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of doing this is to create an ‘internal market’ in the CES, where the smarthouses
trade energy. An alternative way is a self-organising flexible demand system where
smarthouses can offer, demand and exchange an amount of electricity for a period
of time in an exchange arena.

Such an exchange arena is presented in [25, 26]. In these works, the smarthouses
in a CES require resources at specific time-slots, but are allocated, by some pre-
defined method some other set of time-slots. However, in the exchange arena, they
can exchange these time-slots. The key factor in the exchange is that a successful
exchange counts as a favour, and that if an exchange makes it better for both
smarthouses, that counts as two favours. Favours could then be used to gain a
preferred allocation, Experiments showed that a CES consisting of 96 ‘selfish’
smarthouses, which only agreed to exchange time-slots if it made its own allocation
better (but not otherwise, even if no worse) were outperformed in the long term by
a CES consisting of 96 ‘pro-social’ smarthouses, using the favour-based exchange
arena.

The favour-based exchange arena demonstrates that in the absence of a cen-
tralised controller, command structure, or other form of orchestration, an open
system can nevertheless use both mutually-agreed conventional rules, and equally
intangible mutually-agreed social relations (such as ‘owing a favour’), as incentives
to participate, contribute, or select an action which serves the collective, rather than
individual, utility.

Furthermore, successful trust and forgiveness decisions in a two-party interaction
can, as we have seen, also create a positive externality of benefit to third parties. For
example, in a producer-consumer market of products or services with m producers
and n consumers, it is mutually believed by all mCn participants that there are some
norms, and each has the same expectation, that others’ behaviour will comply with
those norms. As a consequence of a successful interaction between one producer-
consumer pair, and of a failed interaction which is subsequently repaired, the belief
in and expectations of the norms are reinforced, and so are more useful to other
producer-consumer pairs in subsequent transactions.

This is social capital, which has been described as “the features of social
organisation, such as networks, norms and trust, that facilitate coordination and
cooperation for mutual benefit” [27], and more recently as the “attribute of
individuals that enhances their ability to solve collective action problems” [28]. In
this latter work, Ostrom and Ahn observed that social capital has multiple forms, of
which they identified three:

• ‘trustworthiness’, as distinct from trust, and related to reputation, being a
shared understanding of someone’s willingness to honour agreements and
commitments;

• social networks, including strong and weak ties, identifying both channels
through which people communicate or other social relations; and

• institutions, identified as sets of conventional rules by which people voluntarily
and mutually agree to regulate their behaviour.
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They also suggested that trust itself was the ‘glue’ that enabled these various forms
of social capital to be leveraged for solving collective action problems (see Fig. 7.5),
for example, the sustainability of a common-pool resource. Social capital generates
‘reliance’ trust, as mentioned earlier, and, where reliance trust can be seen as a
complexity-reducing decision-making short-cut which also helps resolve collective
action problems.

In the context of this social capital model, it is interesting to consider how to
define electronic social capital for open systems, as a conventional incentivisation
mechanism for cooperation that creates positive externalities which reinforce the
very same incentives. Therefore, in [26], a formal framework was proposed to
represent and reason about (an electronic version of) social capital. The framework
comprises an observation model in which actions enhance or diminish the different
forms of social capital, and a decision-making model which uses the information
from the forms of social capital to decide to cooperate or not with another agent.

Figure 7.6 shows a schematic view of the framework. Agents sense from the
environment different events that they translate into Social Capital Information. This
information is the input of the Social Capital Framework and includes information
about when an agent cooperates or not; what messages are sent or received and
all the institutional actions such as joining, leaving, sanctioning, etc. The three
forms of social capital (Trustworthiness, Networks and Institutions) will store the
information received and aggregate it. When the agent needs information about
another agent or an institution, it will query the Social Capital Decision Module
which will combine all the information from the forms of social capital into a value
from zero to one, where zero is no cooperation and one is full cooperation.

To evaluate the Social Capital Framework we defined a theoretical scenario called
Cooperation Game. The Cooperation Game is a strategic game were a population
of agents is repeatedly randomly paired to play a game against each other. At every
round, each player has a randomly designated opponent and a two-player strategic
game to play. Once paired, players must choose either to Cooperate, Defect or
Refuse to play (in this scenario, we allow ‘sitting out’ as an option). Then, the payoff
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matrixes are applied and they receive or lose points depending on what they have
played. If one of the players refuses to play, the game is cancelled and agents do not
receive or lose any points. A global count of points is kept for all the players and it
is used to evaluate their performance over the time.

An experimental testbed has been implemented to evaluate the social capital
framework in this scenario, which was used to compare the performance of different
types of agents’ behaviours in different environments (represented by the games).
The experimental results show that the use of social capital incentivises cooperation
and enhances collective action: the use of any combination of the three forms
of social capital results in higher cooperation amongst agents, outperforming the
dominant strategy that would be suggested by a game theoretic analysis.

However, it was also concluded that while social capital is fine as a concept, as a
term it is potentially misleading, as it suggests something that can be owned, traded
or (even worse) ‘spent’. Therefore, to define social capital in terms of concrete
attributes runs the risks of commodifying the concept, with the concomitant loss
of the actual ‘value’ or leverage that social capital has or can achieve (cf. [29]). In
other words, it is more important not to focus so much on what social capital is,
but on what social capital does; and what it does is to coordinate expectations [30]
and provide a basis for community governance [31]. Therefore, any framework for
electronic social capital which can be used to support successful collective action
in self-organising open systems will need not just to define, in computational form,
the attributes that agents need to represent and reason with, but also the processes
by which those same agents can coordinate their expectations and govern their
communities.

Accordingly, in [32], there was further investigation into using alternative
economic arrangements for addressing demand-side self-organisation in decen-
tralised community energy systems, generally focusing on relational rather than
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transactional information, and specifically on a formal representation of electronic
social capital rather than market-based approaches, such as auctions.

This work has now developed a new framework for electronic social capital in
multi-agent systems, based on this understanding of what social capital does rather
than on what social capital is. As stated above, one function it ‘does’ is to coordinate
expectations, so reducing the complexity of decision-making in collective action
situations. To examine this proposition, a simulator was developed for an open,
self-organising multi-agent system playing the unscrupulous diners’ dilemma, an
n-player game [33].

This simulator was developed using PreSage-2, a large-scale multi-agent plat-
form for simulation and animation [34]. This allows the definition of different
types of agent participating in the game: these experiments had three types: random
players which arbitrarily chose their action; dominant strategy agents which selected
the Nash equilibrium action; and social capital players, which use some form (or
forms) of social capital as an input to their decision-making process. The three forms
were trustworthiness, social networks, and institutions, and social players could use
some combination of all three. Experiments were run with different populations
of types of agents, averaging 50 simulation runs per population distribution to
average out the effects of randomness and non-linearity in the system. The aim
of the experiments was to investigate, inter alia, the performance of agents using
social capital in a heterogenous population, the effects of scale, and a comparative
evaluation of different combinations of social capital.

Full details of the experimental results can be found in [32], but the general
observations that follow from these simulations were that the use of social capital in
n-party collective action situations is:

• optimal in the long-term, as agents using the social capital framework outperform
agents using the dominant strategy or other simplistic strategies;

• computable, as all the framework updating mechanisms are ‘offline’ and the
algorithms for computing the social capital metrics are mostly linear (note there is
no known polynomial-time algorithm for finding the Nash equilibrium in general
n-player, k-strategy games [35]); and

• scalable, because the complexity of individual social decision-making is inde-
pendent of the size of the collective population.

The significance of this work is that it shows, as with trust, forgiveness (both as
above), and with models of Elinor Ostrom’s institutional design principles for self-
organising common-pool resource management [36], how formal representations
of social concepts and processes could be used to regulate interactions between
autonomous agents in a relational economy based on reciprocity (rather than a
purely transactional one based on prices), which is also computable and scalable.
This has positive implications for self-organisation in large-scale collective action
situations, precisely those encountered in the decentralised community energy
systems with which we began this section.
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7.6 Computational Justice

So far, we have considered the formalisation of social concepts, processes and rela-
tions that are directly related to individual decision making (trust and forgiveness)
or to creating positive externalities which are of benefit to individuals within a
community setting. In this section we will consider the formalisation of a social
concept which aims to formalise an abstract social concept that relates to the well-
being of the collective itself. This concept is justice.

Consider again an open system in which there is co-dependence, i.e. a mutual
reliance between components. Very often, this reliance stems from the need for
sharing or pooling of resources. For example in a sensor network there are several
common-pool resources (e.g. battery power, CPU time, bandwidth, memory, etc.)
which need to be allocated and which, even under normal load conditions, could
become scarce (i.e. enough resources for some; insufficient resources for all).
Precisely the same issues arise in cloud computing, grid computing, vehicular
networks, virtual organisations and reconfigurable manufacturing; indeed all the
different types of open system application that were considered in Sect. 7.2.

Managing and distributing common-pool resources, particularly under condi-
tions of scarcity, has been a continuous or recurring social problem for thousands
of years. The issue of sustainable common-pool resource management has been
studied from the perspectives of economic and political science by Elinor Ostrom,
whose pioneering (and Nobel Prize-winning) work specified eight institutional
design principles for sustainable common-pool resource management based on the
self-organisation of conventional rules [37]. Recent work has shown how these
principles can be given an axiomatic specification in computational logic – which is
in turn executable [36], providing the foundations for a new type of self-organising
rule-oriented system (SOROS).

In general, given a set of components needing to share resources, an allocation
scheme which maps resources to those components, and a set of rules for determin-
ing that allocation scheme, some natural questions arise: Is this allocation fair? Is the
allocation method effective? Is it efficient? Are the decision makers accountable?
To what extent did those affected by the rules participate in their selection? Was
any punishment for non-compliance with the rules proportional to the severity
of the offence? Such questions have been the subject of much inter-disciplinary
research, including computational social choice [38], multi-agent systems [39] and
communications [40], as well as studies in law, health, politics and organisational
psychology [41], but these remain open questions.

Some insight into a general solution can be derived from an analysis of the key
features of resource allocation in open systems. These are:

• Self-determination: the rules for resource allocation, and indeed the rules for
choosing them, are determined by the entities themselves, i.e. those who are
affected by the rules participate in the formation, selection and modification;

• Expectation of error: as before behaviour contrary to a mutually-agreed speci-
fication should be expected, be it by accident, necessity or malice; in addition,
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there must be provision for monitoring to detect non-compliant behaviour, and
for the non-repudiable enforcement of sanctions for non-compliance should be
implemented;

• Economy of scarcity: there may be sufficient resources to keep all the com-
ponents ‘satisfied’ in the long term, even if there are insufficient resources to
keep all the components ‘optimised’ in the short term; in economic terms, the
components are satisfiers (content is good enough) rather than optimisers (only
interested in content with maximal utility);

• Endogenous resources: all the resources are generated from within the system, so
that computing the allocation, and associated tasks like monitoring, sanctioning
etc. must be ‘paid for’ from the same resources to be allocated; and

• No full disclosure: as before, components are autonomous, heterogeneous and
their internal states cannot be checked, only their observable actions; but the
range of actions does include communication with each other.

In [42], it is argued that answers to these questions can be uniformly found in
the formal characterisation of different aspects of justice, and that these different
aspects need a principled operationalisation as policies for system management. The
different aspects of justice that are proposed include:

• Natural justice: do agents participate in the decision-making affecting them?
• Distributive justice: how to distribute resources fairly?
• Retributive justice: how to punish non-compliant behaviour, proportionately?
• Procedural justice: is a procedure fit-for-purpose? Is it engaging/open/efficient?
• Interactional justice: subjectively, how fair do the components themselves

consider their treatment to be, by the rules and the decision makers?

For example, Elinor Ostrom’s research, introduced previously, provides an
explanation of how people can resolve the problem of sustainable common-pool
resource management by the formation of self-governing institutions [37]. Ostrom’s
institutional design principles can be specified and operationalised by axiomatising
the design principles in computational logic which in turn provides an executable
specification for algorithmic self-governance [36]. One of these principles is
effectively that of self-determination, that those affected by a set of mutually-agreed,
conventional rules get to participate in their formation, selection and modification,
so this axiomatisation directly contains an element of natural justice.

This approach has been extended in [43] to incorporate a theory of distributive
justice based on legitimate claims due to Rescher [44]. Rescher observed that
distributive justice had been held, by various sources, to consist of treating people
wholly or primarily according to one of seven canons (established principles
expressed in English), these being the canons of equality, need, ability, effort, pro-
ductivity, social utility and supply-and-demand. However, each canon has different
properties and qualities, satisfying different (and possibly inconsistent) notions of
utility, fairness, equity, proportionality, envy-freeness, efficiency, timeliness, etc.

Rescher’s analysis showed that each canon, taken in isolation, was inadequate
as the sole dispensary of distributive justice. He proposed instead that distributive
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justice could be represented by the canon of claims, which consists of treating
people according to their legitimate claims, both positive and negative. Then the
issue of “which is the preferred canon of distributive justice” can be displaced by
questions of: what are the legitimate claims in a specific context, how can plurality
be accommodated, and how can conflicts be reconciled.

These were the questions addressed in [43], who showed that agents participating
in an open provision and appropriation system, who could self-organise the
legitimate claims, could, even under an economy of scarcity, achieve a fair resource
allocation (as measured by the Gini index) in the long term, even if none of the
individual allocations were at all fair, using the same fairness metric. The allocation
was also fairer than alternative allocation schemes based on random assignment,
rationing or strict queuing. Thus distributive justice was effectively axiomatised as
an intrinsic fairness property of the SOROS.

Another one of Ostrom’s principles was concerned with the congruence of
the provision and appropriation rules and the state of the prevailing environment.
However, there are numerous difficulties with assessing that congruence, even as
a binary measure, let alone a degree of congruence (which would offer some
assurance that a change from one configuration of the rules to another would be
an improvement). In [41], it was proposed to equate congruence with fitness for
purpose, and measure fitness for purpose using a computational framework for
procedural justice.

Taking ideas from law, public health and organisational psychology, fitness
for purpose was evaluated according to three principles, and each principle was
computed according to a set of metrics. The three principles, and the metrics used
to compute a value for each were:

• Participation principle: purposeful activities in which agents take part in relation
to governance (not just voting). Metrics included:

– Empowerment: what is the distribution of (institutionalised) power within the
institution?

– Inclusivity: how many of the agents affected by the rule have a saying on how
to choose it?

– Representation: are the decisions made solely by agents affected by the rule,
or is there any external influence?

– Decision frequency: how often a decision about the rule is made, in relation-
ship to its application frequency?

• Transparency principle: the amenability of procedures to be subject of investiga-
tion and analysis to establish facts of interest (e.g. who is making the decisions?
Do they benefit disproportionately? Are they accountable? Can their decisions be
reviewed?) Metrics included:

– Justifiability: is membership of decision-making bodies disclosed, are their
procedures available, and are their workings revealed?

– Accountability: do those who make the decisions benefit equally (rather than
excessively) from the outcomes, and are they liable if they go wrong?
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– Equal Suffrage: to what extent is the principle of ‘one agent, one vote’ upheld,
or do some agents have multiple votes?

– Temporality: are decisions appealable, and are they repealable?

• Balancing principle: determining the proportionality of relative benefits and
burdens. Metrics included:

– Cost: what is the cost (in whatever ‘currency’, which could be time) of
operating a procedure?

– Accuracy: does the procedure ensure the correct outcome [45]?
– Consistency: does a procedure produce equal outcomes for different individu-

als under the same circumstances?

The relationship between different aspects of justice and the key features of
resource allocation is illustrated in Fig. 7.7. For example, to address the feature
of self-determination, we need to ensure participation, inclusivity and consultation
(e.g. through voting), which are all elements of natural justice. Similarly, to deal
with the range of different types of error and the enforcement of punishments
for them, we need a system of graduated sanctions (typically proportional to the
severity of the offence), and a system of dispute resolution (e.g. for appeals against
punishments): these are all features of retributive justice. Insufficiency of resources
and the requirement of ‘fair’ allocation mechanisms are issues for distributive
justice. In systems with endogenous resources, where applying the rules of natural,
distributive and retributive justice have to be ‘paid for’ from the very resources that
are to be distributed, the issue of efficiency comes to the fore (amongst other issues,
for example, the participation, transparency and balancing principles discussed
above), and is a concern for procedural justice. Finally, where the ‘internals’ of

Self-determination

Key features

Expectation of error

Enforcement

Economy of scarcity

Endogeneous resources

No full disclosure

Natural

Justice

Retributive

Distributive

Procedural

Interactional

participation, inclusion, voting

sanctions, appeals

fair allocation

efficiency

information, justification

Fig. 7.7 Computational justice and the key features of resource allocation in open systems
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decision-making (of individuals, or committees) cannot be inspected, then it is
possible to aggregate subjective self-assessments of fairness or treatment into a
collective assessment; this is a matter for interactional justice.

However, the relationships depicted in Fig. 7.7 are, as yet, incomplete, although
see [42] for more details. We have described here some initial works on formalising
natural, distributive and procedural justice, while the formalisation of retributive and
interactional justice is currently ongoing research.

7.7 Summary and Conclusions

In this chapter, we have reviewed three computational frameworks for decision-
making in open systems. These frameworks were based on trust, forgiveness and
social capital; and each was derived from a formalisation of a theory from, respec-
tively, cognitive science, psychology and socio-economics, using the methodology
of sociologically-inspired computing. The computational frameworks were shown
to support bipartite decisions concerning reliance on a second party (trust), an auto-
nomic mechanism for restoring social relations in the event of a trust breakdown,
and to support collective action through the creation of positive externalities in the
form of social capital. These computational frameworks can, we believe, be used
by autonomous components to interoperate in open systems which are significantly
more trustworthy, reliable, and robust compared to alternative approaches.

From the foundations provided by these three frameworks, we then offered some
contributory ideas to a new programme of research on computational justice, which
lies at the intersection of Computer Science and Economics, Philosophy, Psychol-
ogy and Jurisprudence. As exemplified in Fig. 7.7, it encompasses the study of
formal and/or computational models of judicial processes and systems and the for-
mal representation, organisation and administration of rules or policies. Effectively,
and ambitiously, we are trying to apply the methodology of sociologically-inspired
computing to the concept of justice. This is accomplished by importing concepts
from the Social Sciences into computing applications, but interesting outcomes
can be expected when these ideas are exported back into the social systems that
originally inspired them. For example, the role of electronic social capital and its
relation to cryptocurrencies, in the creation of values, incentives and alternative
market arrangements based on relational rather transactional arrangements, needs
to be fully explored in the development of a new generation of complex, adaptive,
collective socio-technical systems, such as those to be found in smart grids [46].

Therefore, the programme for computational justice ensures that the specification
of conventional rules for an open system provides the basis for algorithmic self-
governance which embodies such values as sustainability, inclusivity, and fairness
and democratic indices. As a corollary, we would additionally contend that self-
organising rule-oriented systems (SOROS) have the potential to support the design
and (autonomous) operation of not just open distributed systems, but also computer-
mediated socio-technical systems, which also take into account these qualitative
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social values – in other words, it is the basis of value-sensitive design [47] for socio-
technical systems.

At the core of this research programme is the intention to support the design,
development and deployment of self-organising socio-technical systems to create
digital communities for computer-supported collective action. This may be for the
specific objective of avoiding a problem, such as depletion or exploitation of a
resource such as water, energy (for example, in a community energy system [24]),
or knowledge commons [48]; hyper-localised solutions to problems of incivility
in sharing a communal living space [23]; or synchronised behaviour to incentivise
individual benefits, e.g. participatory sensing, fitness activities, etc.

Underpinning all of these applications, is the both the implicit and explicit
concern for values. For example, in resource management, there is an explicit
concern for sustainability of the common-pool resource, but also an implicit concern
for the ‘fairness’ in the distribution of the resources. Therefore, applying the
methodology of value-sensitive design (VSD), which effectively puts values (rather
than functionality or usability) as the primary design focus, to the development of
such socio-technical systems, is a proposition that warrants further consideration in
future research.
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Chapter 8
Trust & Self-Organising Socio-technical Systems

Cristiano Castelfranchi and Rino Falcone

Abstract We present our theory on trust and its components and dimensions, and
apply it to trust in complex dynamic socio-technical systems and to their self-
organising emergent results. Specifically, we apply our theory to ICT-based systems,
where a “Social Order” is no longer fully “spontaneous” due to the invisible hand
impinging on individual and selfish-decisions. In such contexts, a social order is
rather based on programmed interactions, algorithmic procedures and big data.
Since trust cannot be fully programmable and predictable, how can we build it
in this complex and dynamic system? Some of our research questions sound: is it
necessary that folks “understand” the underlying mechanisms they are relying on?
What kind of information about forecasts or future projections should be provided
and adjusted? What kind of role do simulation, serious games play on learning to
understand and expect? Will there be algorithms working on the micro-processes
and producing the emergent organisation, and if yes, how effective and reliable will
they be? There are at least two different levels of trust in complex systems and
in their functioning processes: trust in the emergent order and trust in the micro-
layer rules. Are the systems rules and resulting equilibriums fair, equity inspired, in
relation to the interests of the involved groups/subjects? A complex and cognitive
model of trust is needed for this analysis.

Keywords Trust modelling • Trust dimensions • Hybrid systems • Spontaneous
order • Self-organisation

8.1 Premise

We will present some of the main features of our socio-cognitive theory of trust and
its components (expectations, evaluations, desires, perceived risks) and bases, and
apply this model to trust in complex dynamic socio-technical systems and to their
self-organising emergent results. The aim is to discuss how we can build trust in
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ICT-based socio-technical systems, in particular in self-organising hybrid systems,
where the “Social Order” (Hayek) is no longer fully “spontaneous”, but it is rather
based on programmed interactions, algorithmic procedures, and big data [1, 2].

8.1.1 Two Challenges

(A) Any new technology we create or introduce in work or society actually is not
just technology but it is a whole new Socio-Technical System. Sometimes this
facet is not explicit enough.1

“Socio-Technical System” means that any new technology implies, requires, or
introduces not only new skills and competencies, but also new representations,
expectations, goals and beliefs. It also implies or introduces new scripts, with
their roles and norms; new forms of interaction and conventions among the social
actors, and new relations among people or between people and the artificial system,
imposed or allowed by that specific technology [9]. We must hence specify the
“cognitive” and interactive side of the new system [5]. This sounds like a challenge
in the current computational and network revolution: we are indeed building a
New Kind of Society, which is trans-local, connected, participatory; but also hybrid
(human and artificial intelligences interact with each other) and mirror (a mix of
virtual and physical world and actions).

(B) Moreover, this new complex Socio-Technical (and mental) System is not just
planned and designed. It is a complex, dynamic system, with ‘emergence’ and
‘self-organisation’ producing a “spontaneous” Social Order (von Hayek). Its
dynamic equilibrium is not necessarily good for all the actors [10].

8.1.2 Human Centred Systems and Trust

The kinds of systems we have introduced so far should be designed in a human
centred and user-friendly way. In order to go towards this direction:

(a) machines should understand and incorporate human social interaction and
organisation to support them and mediate;

(b) machines (i.e. agents) should emulate human social interaction and organisation
for good multi-agent or hybrid interactions, organisations, and so forth. These

1Consider for example the excellent definition of “Organic Computing System” in Müller-
Schloer’s document on “Organic Computing Initiative” (2004): an “Organic Computing system
is a technical system which adapts dynamically to the current conditions of its environment. It is
self-organising, self-configuring, self-optimising, self-healing, self-protecting, self-explaining, and
context-aware”. See also [3–8].
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emulations should include interpersonal aspects (e.g. trust and reputation),
conventional and normative aspects and institutional aspects (e.g. roles).

Even though these propositions incorporate the main reasons of the new growing AI
paradigm (that has to say, Artificial Social Intelligence), (a) and (b) are not sufficient
for our crucial challenge, which is focused on how to build users’ trust in those
systems and in the Cyber-Society, specifically:

– trust among people or organisations mediated by the technology;
– trust towards the tools and the infrastructure itself.

We do definitely agree with the central claim of the Call for paper of the
“Trustworthy Self-Organising Systems” WS (Budapest, 2010): “The nature of self-
organising systems demands that issues of trust and its different facets become a
primary concern.”2

Substituting trust with other concepts and mechanisms in the cooperative frame-
work (e.g. short-cuts, tricks, and ad hoc solutions) sounds to us like a wrong move,
as well as identifying it with simplified, but reductive ‘measures’ like probability or
uncertainty. Trust is frequently modelled as a simple index, a number, a dimension,
a mere subjective probability. In our view [11, 12], though, trust is not just an
evaluation of the probability of a desirable result, or a perceived (un-)certainty. Trust
is a complex cognitive attitude and representation, which cannot be simplified in
such terms. It is an expectation about a specific outcome, and more specifically it is
the combination of a belief about the future and of a goal (i.e. a desire or a need).
It is also understood as the possible decision to rely on a certain result and on the
‘agent’ or process Y that should produce it. It can be seen as the evaluation of Y’s
features and qualities such that one can count-on Y. In our view, it also deals with
the acceptance and exposure to risks. Trust is based on information, beliefs, and
evidences, and it is not simply a matter of ‘faith’. On the other hand, mistrust is not
simply a low level of trust: it is rather a negative evaluation and a bad expectation.
Trust is also context dependent and dynamic. Therefore, we need to ask ourselves
what are the main bases and origin of trust evaluations and decisions, as well as what
are the main trust dynamic processes. Moreover: what are the relations between trust
in Y and trust in the context and in the circumstances? Or between trust and control
(e.g. of Y’s behaviour)? What connects the different aspects of ‘uncertainty’ and
trust? This kind of questions goes mainly unanswered and probably unasked in the
current research. However, if trust is deeply analysed and understood within the

2We also agree with the main claims there: [what matters is] “the human as the user of self-
organising and self-adaptive systems and the usability of such systems”; “Functional correctness,
security, safety, and reliability are facets that have to be ensured for the system’s components as
well as for the system as a whole. The classical notions of trust and reputation in MAS also apply to
this relationship between system components. The relationship between the system and the user is
influenced by the transparency and consistency of the system towards the user and most importantly
by its usability, i.e. the way the user is informed about self-organising processes and is allowed to
interact with the system.”. However, we see additional problems in this, like the participatory and
hybrid nature of the system, or the hidden interests of the “spontaneous” order.
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various and disconnected disciplines, what kind of framework shall we adopt? May
we just import models and theories from sociology, economics, psychology, etc.
without trying to unify them and without considering the new original domain in
which we should embed a comprehensive model of trust?

As we mentioned, trust has different facets and components and one has to model
many of them, with their specific principles dynamics and metrics. In particular,
trust is not reducible to functional correctness, safety and security (which is crucial
in contexts that contemplate artefacts and tools) and to reputation, and privacy.

Perceived trustworthiness (see Sect. 8.2(a)) and the perception of the system as
a whole do also matter in defining trust. We would also like to highlight that “the
relationship between the system and the user is influenced by the transparency and
consistency of the system towards the users [. . . ] and by its usability”. With this
statement, several new problems arise, especially concerned with how to manage the
users’ perception of risks or of uncertainty. One of the mission of the systems should
be that of providing new scenarios to people, new scripts and new social norms.
These latter should not be aimed to merely simplify people’s reasoning, information
search, decisions, and behaviours, but they should also give them reliance on the
others, coordination, and reduction of uncertainty in certain social domains. Even
in self-organising dynamic systems we have to perceive and presuppose a natural
‘suspension’ of uncertainty and the assumption of normality [13]. Consider that trust
is instrumental only in principle (and in its function). It is actually an end itself, it is
a human need: the need to have trustworthy relations and environments, regardless
of their use and exploitation (e.g. receiving help, support, and exchanges). It is a
need for feelings of safety and possibility.3

Having this said, how shall we give transparency and right expectations, and
how shall we correct wrong expectations? How can possible failures be explained,
or accounted for?

“Visualization of self-organisation process” (cited Budapest Call) is a good idea
in our view. Although, we claim that simulation, experiments, predictions and
serious games could also be exploited. Let us now be more specific on what we
mean by trust towards technology.

8.2 Trust & Technology

Trust is not just a social attitude towards humans. It can also be applied to tools,
technologies and functional objects. It is not intended or felt towards these objects’
designers or producers, but rather towards the working devices themselves [11, 14].
This also applies to multi-agent complex dynamics and results, like traffic in a given
city, or performances on the markets. As for ICT and its systems, trust is frequently

3Consider the celebrated sentence of Epicurus: “It is not our friends’ help that helps us, it is the
confidence of their help.”
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and wrongly identified with – or reduced to – a problem of security, whereas security
issues are just one of trust’s components (see Sect. 8.2(i)). There is also a point of
view coming from sociology (ex. [15]) and economics (ex. [16]), which conceives
trust as necessarily mutual and respondent. In our model though, trust is not only
interpersonal and it is not only addressed towards other persons. It can also be
felt, intended or addressed towards a certain process or mechanism (e.g. I can trust
a given drug or not), and towards a specific technology. In this sense, trust also
includes beliefs and expectations regarding the effectiveness of a specific object or
device. For example, they can be thoughts on how reliable it is, or on how accessible
and friendly it feels. The opposite (but complementary) side of trust, in this sense,
deals with the perceived risk and the perceived unreliability or unmanageability of
technology. We may not only trust technology, but also a lot of abstract and non-
personal entities, like categories of people, institutions, organisations, rules, roles,
etc. [11, 17, 18].

Trust in computers and in networks is just the final evolution of the process
of abstraction and depersonalization of trust that characterizes modernity [19].
Concerns on trustworthy systems in the current literature are higher than those
regarding trust. We would like to stress the fact that these are indeed two different
concepts, which share a non-trivial and bidirectional relationship:

(a) on the one hand, what matters in social systems and in socio-technical systems
is not just trustworthiness (henceforth: TW), but also perceived TW. Objective
TW is not enough for organisation interaction, political systems, and even for
the market (that’s why we have marketing). Moreover, objective TW is not
sufficient to create perceived TW; in fact, we can perceive TW – then have
trust – even when TW is not there (e.g. credit cards, WEB, etc.).

(b) On the other hand, the members or users’ trust in the system is a crucial
component of its TW and of its correct functioning. This is especially true for
hybrid systems where the global result is due to the information processing and
the actions of both humans and AI systems. However, we still need a correct
dialectic between the emergence (e.g. of a self-organising TW infrastructure,
rules, conventions and scripts) and the immergence of cognitive mediators of
trust and TW in the agents’ minds. Trust is the immergent needed result of the
TW system, and a condition for its emergence.

There are four different (but not independent) possible perspectives on this:

(i) A trustworthy technology that deserves and elicits trust dispositions. In this
sense, trust is not merely a matter of security, as engineers currently believe:
it is rather a mental model of what is happening, of dependability, emotion,
personalization, transparency, and participation.

(ii) A technology (e.g. agents), which can co-construct social trust relationships
with the users, as well as confidence, social bonds, and empathy.

(iii) A technology that is capable to support social trust relations in communities
and social networks, and to create new trust dimensions among humans (e.g.
institutions).
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(iv) A technology that elicits trust dispositions both at the micro-level and at
the macro-level; this aspect is particularly important for the self-organising,
emergent result, that nobody can directly decide about (see Sect. 8.4).

8.2.1 Trust, Security and Safety

A conceptualization of trust and how trust can be used in artificial societies is a
different subject of study from the techniques applied to secure network protocols
and cryptography. Security techniques can guarantee identification of individuals
and privacy of transmission, but they cannot guarantee that an interaction partner
has the competence he/she claims, or that he/she is honest about his/her intentions.
Security can be useful in the case of intrusiveness identification, which is a crucial
aspect of trust [20]. However, security is just one of the many components of trust,
like perception of dangers and risks. Trust must give us tools for acting in a world
that continues to be insecure in principle: it has to provide us the means to act
efficaciously when we have to rely on someone in risky situations. Trust can be seen
as an open system where new possible partnerships can arise; and at the same time,
it is a complex system with non-linear and non-local effects. We cannot reduce trust
to safety and security,4 since:

> on the one hand, what matters is ‘perceived’ safety, and,
> on the other hand, building a trustful environment and atmosphere and trustwor-

thy agents is one of the bases for safety, and vice versa. Perceived unreliability
elicits cheating and bad actions, whereas collective distrust creates dangers (e.g.
panic).

8.3 A Socio-cognitive Model of Trust

The Socio-Cognitive model of trust is based on a portrait of the mental state of
trust in cognitive terms (i.e. beliefs, goals). This is not a complete account of the
psychological dimensions of trust, but it represents the most explicit, reason-based,
and conscious form. We will not consider the more implicit forms of trust (e.g. trust
by default, not based upon explicit evaluations and beliefs, or derived from previous
experience or other sources) or the affective dimensions of trust, which are not based
on explicit evaluations, but on emotional responses and on an intuitive, unconscious
appraisal.

The word “trust” means different things, which are all systematically related
to each other. In particular, three crucial concepts have been recognized and

4To see how strong such identification was, see for example [21]; the review of “Trust on the
Internet”, a book on Internet security, which focuses solely on the topic of security.
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distinguished, not only in natural language, but also in the scientific literature.
Trust is:

• a mere mental attitude (prediction and evaluation) towards another agent, or we
may say “a simple disposition”;

• a decision to rely upon the other (i.e. an intention to delegate and trust, which
makes the trustor vulnerable in some way);

• a behaviour (i.e. the intentional act of trusting, and the consequent relation
between the trustor and the trustee).

In each of the above concepts, different sets of cognitive ingredients are involved
in the trustor’s mind. The model is based on the BDI (Belief-desire-intention)
approach for mind modelling that is inspired to Bratman’s philosophical model. In
this trust model only an agent endowed with both goals and beliefs can trust another
agent. Let us consider the trust of an agent X towards another agent Y about the
(Y’s) behaviour/action ˛ relevant for the result (goal) g when:

X is the (relying) agent, who feels trust; it is a cognitive agent endowed with
internal explicit goals and beliefs (the trustor);
Y is the agent or entity which is trusted (the trustee);
X trusts Y about g/˛ and for g/˛.

In this model, Y is not necessarily a cognitive agent (e.g. an agent can – or cannot
– trust that a chair will sustain his weight when he/she is seated on it). On the
contrary, X must always be a cognitive agent: so, in the case of artificial agents,
we should be able to simulate these internal explicit goals and beliefs. For all the
three notions of trust above defined (trust disposition, decision to trust, and trusting
behaviour) we claim that someone trusts someone else only with regards to some
specific goal (i.e. the general, basic teleonomic notion, that’s to say any motivational
representation in the agent: desires, motives, will, needs, objectives, duties, utopias,
are kinds of goals). An unconcerned agent does not really “trust”: he/she just has
opinions and forecasts. Moreover, trust itself consists of beliefs. Since Y’s action is
useful to X (i.e. trust disposition), and X decided to rely on it (i.e. decision to trust),
this means that X might delegate (i.e. act of trusting) some action or goal in his/her
own plan to Y. This is the strict relation between trust disposition, decision to trust,
and delegation. Our model includes two main basic beliefs (we are considering the
trustee as a cognitive agent too):

– Competence Belief: a sufficient evaluation of Y’s abilities, insofar as X should
believe that Y is useful for a certain goal, that Y can produce or provide the
expected results, or that Y can play such a role in X’s plan or action.

– Willingness Belief: X should think that Y is not only capable of doing a certain
action or task, but he/she should also think that Y actually will do what he/she
needs under given circumstances. This belief makes the trustee’s behaviour
predictable.
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Another important basic belief for trust is: Dependence Belief: X believes that
either he/she needs Y, or X depends on Y (strong dependence), or at least X
believes that it is better for X to rely rather than not rely on Y (weak dependence).
In other terms, when X trusts someone, X is in a strategic situation: X believes
that his/her rewards and the results of his/her projects depend on the actions of
another agent Y. The willingness belief hides a set of other beliefs on the trustee’s
reasons and motives for helping. In particular, X believes that Y has some reasons
to help him/her (or to adopt his/her goal), and that these reasons will probably
prevail – in case of conflict – on other reasons, which may be negative for
him/her. Notice that reasons to adopt a certain goal are of several different kinds:
from friendship to altruism, from morality to fear of sanctions, from exchange to
common goals (e.g. cooperation), and so on. This explain why, for example, it
is important to have common culture, shared values, or the same acknowledged
authorities between trustors and trustees. Another important characteristic of the
socio-cognitive model of trust we propose is the distinction between trust ‘in’
someone or something that has to act and produce a given performance thanks
to their internal characteristics, and the global trust in a global process and in its
result. This latter aspect is also affected by external factors like opportunities and
interferences. Trust in Y (e.g. ‘social trust’ in a strict sense) seems to consist in
the two first prototypical beliefs identified as the basis for reliance: competence
(which, in the case of cognitive agents, includes knowledge and self-confidence),
and disposition (which is based on willingness, persistence, and engagement). An
evaluation about external opportunities is not really an evaluation about Y (at most
the belief about its ability to recognize, exploit and create opportunities is part
of our trust ‘in’ Y). We should also add an evaluation about the probability and
consistence of obstacles, adversities, and interferences. Trust can also implicitly
or explicitly imply the subjective probability of the successful performance of
a given behaviour D. Agents decide whether to rely on Y depending on this
subjective evaluation of risk and opportunity. No matter what the probability index
is based on, trust always derives from those beliefs and evaluations. In other terms,
the global, final probability of the realization of a goal g (i.e. the probability of
the successful performance of D), should be seen separately as the probability
of Y performing the action well (internal attribution), the probability of having
the appropriate conditions (external attribution) for the performance and for its
success, and the probability of not having interferences and adversities (external
attribution). The specification of these different probabilities and attributions is
important because:

– the trustor’s decision might be different with the same global probability or with
the same risk, depending on intrinsic factors (i.e. personality traits);

– trust composition (i.e. internal vs external) produces completely different
intervention strategies. Manipulating the external variables (e.g. circumstances,
infrastructures) is completely different from manipulating internal parame-
ters.
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The idea that trust is gradable is widespread in common sense, in social sciences
and in Artificial Intelligence. However, since no real definition and cognitive
characterization of trust is given, the quantification of trust is often quite ad hoc and
arbitrary and the introduction of this notion or predicate seems to us semantically
empty without a proper account of its concept. On the contrary, in the socio-
cognitive model of trust we attempt to propose, we find a strong coherence between
the cognitive definition of trust, its mental ingredients, its value, and its social
functions, whereas the latter are based on the former. A degree of trust of X in Y is
grounded on the cognitive components of X’s mental state of trust. More precisely,
the degree of trust is a function of the subjective certainty of the pertinent beliefs.
The degree of trust is used to formalize a rational basis for the decision of relying
and betting on Y. A “quantitative” aspect of another basic ingredient is relevant: the
value, importance or utility of the goal g. In sum, the quantitative dimensions of
trust are based on the quantitative dimensions of its cognitive constituents. Trust is
a dynamic phenomenon in its intrinsic nature. It changes with experience, as well
as with the different sources it is based on, with the emotional state of the trustier,
with the environmental changes of the context in which the trustee is supposed to
perform, and so on. In other words, trust is an attitude that depends from dynamic
phenomena; therefore it is itself a dynamic entity. From the point of view of the
dynamic studies of trust, it is relevant to underline how the above basic beliefs might
change during the same interaction or during several interactions: for example, the
abilities of the trustee could change, or the trustor’s beliefs on them may change; the
reasons for willing may change too, as well as the relations of dependence between
the trustor and the trustee. We have considered two main aspects of the dynamics
of trust:

(i) the traditional problem of trust reinforcement on the basis of successful
experiences (and conversely, its decreasing in case of failures);

(ii) the fact that in the same situation trust is influenced by trust itself in several
complex ways.

The first case considers the well-known phenomenon that trust evolves in time
and has a history: X’s trust in Y depends on X’s previous experience, including
learning with Y itself or with other (similar) entities. We analysed some results
where trust in the trustee decreases with positive experiences (i.e. when the trustee
realizes the delegated task) and increases with negative experiences (i.e. when the
trustee does not realize the delegated task). The problem here is the attribution
phenomenon to different parts of the trust experience. Since trust is not simply an
external prediction coming from an observer, or an expectation about a certain fact,
we also considered a case where trust is influenced by trust itself in several complex
ways that may occur in the same situation. We also took into account how trust
creates reciprocal trust, and distrust elicits distrust, and vice versa: how X’s trust in
Y could induce lack of trust or distrust in Y towards X, while X’s diffidence can
make Y more trustful in X.
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8.4 What Trust to Build Towards Self-Organising Systems
and Orders?

In our view, desirable features of trust towards a self-organising social system [22]
are the following ones:

(A) The emergent outcome should:

• fulfil its task in a satisfactory way;
• be more efficient in terms of time and costs than the traditional, spontaneous

dynamics;
• not expose people to too frequent and non-forewarned failures, impasses, or

crises;
• guarantee a reliable structure that can monitor (top-down and bottom-

up from stakeholders), readjust, and make predictions via simulation (see
Sect. 8.6);

• produce a system whose logics and functioning can be ‘understandable’ and
dependable for folks;

• produce a system of which people can be informed of.

However, there is an additional problem in social domains:
(B) What are the ‘rules’ applied in the micro-process in order to obtain such

a global result? Do we also trust that the ‘rules’ and ‘principles’ of the
designed ‘invisible hand’ are acceptable? In the distribution of power or water,
for instance, are there systematic unfair treatments of some subjects, despite
having a globally good result? What and whose are the ‘interests’ protected by
this kind of mechanism?5

People should trust both levels of the self-organisation process: the result and the
mechanism; and the second one implies some ‘transparency’ and ‘negotiation’ of
the underlying criteria.

8.4.1 “Kripta”6 of Trust in a Computer-Mediated Social System

Let us be more explicit on the problems that trust presents in complex systems with
a series of very specific, yet unanswered questions. Trust in complex dynamic socio-

5Not only the design is never neutral but is in favour of the interests of one party over another, with
conflicting interests [23], but also the algorithms managing a MA equilibria and dynamics have the
same – but more hidden – feature.
6“Kripta” is the nice term – introduced by Bacharach and Gambetta [24] – to explain that trust
presupposes and it is ascribed to some non-observable, hidden ‘quality’ of the trustee. We can
observe her/his/its behaviour (“manifesta”) but we rely on its control-devices. In our model, the
“internal” attribution of trust and its ascription to ‘inner’ qualities are particularly important: they
can be motivational (e.g. honesty, values, or friendship), cognitive (e.g. expertise, or competence),
and also performative (e.g. skills).
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technical-systems and their self-organising emergent results is different from trust
in ICT-based systems where such a social order is no longer fully “spontaneous”
(due to the “invisible hand” impinging on individual and selfish-decisions) because
it is based on programmed interactions, algorithmic procedures and collected
data.7

The issue is: how can we build trust in this kind of complex dynamic systems
and their outcomes, given that they cannot be fully programmable and predictable?
In particular, our questions sound:

> Is it necessary that folks “understand” the underlying mechanism they are relying
on? And what does this mean for us? Trust is not necessarily based on a
real technical understanding of how a given tool works. For example, it is
not necessary that people really technically understand how a device works;
however, it’s important for them to have a meaningful “mental model” of that
device’s mechanisms and processes, because that is what gives them the proper
expectations, and valid approximated ideas about the steps and contexts of the
process.

> What kind of information about forecasts or “future projections” should be
provided, and adjusted? And what role do simulation or serious games play in
the learning processes that lead to understanding and expecting?

> What kind of information should folks (i.e. not only technicians and authorities)
receive about the obtained results, about their limits, or taken risks? How much
direct experience is needed in order to achieve regular and locally good results
for those folks? How much information about failures, (e.g. their frequency and
reasons) is needed in their context?

> What forms of ‘control’ should be introduced in the process and used for
goals such as monitoring and prediction? The system should have a cycle of
‘adjustment’, which should be based on feedbacks and bottom-up hints from
people.

> How to build and maintain trust in the designers, in the authorities, in technicians,
signallers or in the stakeholders of this techno-social dynamic system?

> How effective and reliable will be the programming algorithms working on the
micro-processes and producing the emergent organisation?

> Are there alerts for unexpected evolutions? How reliable are they? On what are
they based, and how frequent are they? Are adequate, and reliable information
provided? And are there rules or recommendations for readjusting or protecting
purposes in case of undesired emergences?

7See also the so called “Algorithmic Economy”; e.g. http://www.forbes.com/forbes/welcome/;
http://blogs.gartner.com/peter-sondergaard/the-internet-of-things-will-give-rise-to-the-
algorithm-economy/

http://www.forbes.com/forbes/welcome/
http://blogs.gartner.com/peter-sondergaard/the-internet-of-things-will-give-rise-to-the-algorithm-economy/
http://blogs.gartner.com/peter-sondergaard/the-internet-of-things-will-give-rise-to-the-algorithm-economy/
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8.4.2 Not Just ‘External’ but ‘Systemic’ Trust

While coping with a chaotic system (e.g. traffic in a city), cognitive agents usually
do not have a clear representation of its complexity and dynamics. Complexity is
not in our common sense, and it is not simple to understand. People frequently
ascribe the cause of an emerging problem (e.g. a serious stoppage at a crossroad)
to the bad conduct of specific local actors (e.g. the traffic cop, that stupid driver,
that group of cars. . . ) and they tend to distrust them. This is not so counterintuitive,
if we think of it: that agent can and has to act only locally, in order to solve his
personal problems. Even if he had a good understanding of such chaotic system and
of possible unpredictable hitches, he/she will in any case just act locally and on the
basis of his/her trust in the other present agents.

Anyway, this relation between the local individual action and limited understand-
ing and representation, gives us some suggestion on what to do in order to build trust
in complex emerging orders and hidden devices.

• First off, one should improve the knowledge and understanding of complex
systems, by educating people to realize their peculiar nature (e.g. with serious
games, or by seeing possible simulations and predictions, or by having a global
monitoring of the current situation).

• Secondly, creating some possibility of communication from local stakeholders
towards some ‘authorities’ – in order to signal problems, inform about local
dynamics, or suggest local solutions – may also be very important. It would also
create an important situation of three-party trust relation [11], on two layers: trust
among the local agents producing the phenomenon, and trust towards the meta-
level agency, especially if that ‘authority’ (e.g. a policeman) had intervention
instruments to re-program the systems, and to readjust it.

• People’s trust should also be built by means of monitoring and governing
devices (e.g. computational and ICT apparatus), which notify people about the
“good usual order”, and which give people experience of critical situations and
unpredicted, but well managed and solved crises. This would increase the trust
in the ‘system’, especially in authorities and machinery.

We would also like to stress the difference between ‘internal’ vs. ‘external’
attribution: trust in the agents’ willingness and capacity is crucially separated from
trust in the external environmental conditions that might favour or hinder the success
of the agent’s action. When we deal with a multi-agent open environment and with
the need for a good emergent coordination and ‘order’, the problem of ‘external’
attribution shows yet another aspect. Coordination is frequently based on rules,
conventions and norms the agents have to follow in order to produce the desired
‘organisation’ and emergent result. These two faces of trust can be completely
independent.

Suppose that all the involved agents are absolutely reliable as for respecting the
rules of the game; however, suppose that these rules are bad, not really well designed
to produce the desired global coordination and result. In this scenario, agents are
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trustworthy but it would be impossible to trust ‘the system’, because it is impossible
to trust the ‘mechanism’ that produces that order. The opposite situation may also
arise: the rules and coordination artefacts in a given context may be excellent, but
the agents are not reliable whereas they systematically violate the rules and produce
a chaotic result. Or even, since the rules are bad and we do not trust and rely
on them, we trust agents who can intelligently violate them in order to solve the
problem locally.8

Trust is not just generically in the external ‘context’ of the agents’ actions,
but it is rather in the ‘system’. For self-organising systems, we have to build a
‘systemic’ trust, with its various components: in the agents, in the authorities, in
the infrastructure, in the rules and procedures, and in their complementarity. It is
relevant to also remind the difference between simple ignorance, uncertainty, “lack
of trust” versus true “distrust”. As we said, distrust is a form of negative trust; that
is, in our model, a negative evaluation about competence or reliability of Y. It is the
ground of a possible decision to avoid, not to delegate and not to rely on someone.
The systems must not only create trust in potential partners, organisations, etc. It
also has to create negative evaluations and decisions of avoidance [26] (see also [? ]).
However, it is crucial to remark that in order to induce possible distrust judgements
in the users, those users have to positively trust the system and its reliability. If there
is no ‘systemic trust’, but ‘lack of trust’ or ‘distrust’ in the system, no reduction of
uncertainty is possible, neither in the positive, nor in the negative direction.

8.5 The Emergent Equilibriums Are Not Necessarily the Best
and Fair

In our view, trust towards complex self-organising Socio-Technical Systems implies
another serious problem. A spontaneous social order is such in the sense of an
“emergent” and self-organising equilibrium. However, this does not prevent it from
being biased, slanted, or systematically favouring certain subjects at the expenses
of the others [10]. We are not claiming that it can no longer be spontaneous,9 but
steered, or that there are hidden intelligences controlling and orienting the economic
and social emergence. Unfortunately, this is not the main, basic explanation of
the tendentious nature of the organising society; even the influence and control
of political power over society dynamics is limited. There is not just a problem
of hidden powers intentionally governing the economy: local, non-intentional,
distributed decisions and actions will let emerge that “order” like a microphysics

8On the possible usefulness of violations in any organisation, see [25].
9In the paper on “Making visible the invisible hand” [27] the title of a section sounds “The pseudo-
spontaneous order”; despite its rhetorical efficacy, in the text there is no claim that the emerging
social order is fully “manoeuvred”.
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determines macro-properties. And to say it with an example, to reveal, monitor, and
correct complexity is more difficult than to “occupy Wall Street”.

A ‘functional’ (bad) equilibrium – A misunderstanding on this issue is
frequent: an emerging equilibrium that is not so good for the participating actors
may be a functional equilibrium. This reminds people of the wonderful problem of
the Prisoner Dilemma, where the equilibrium that emerges from the locally rational
choices of the two actors (Nash’ equilibrium) is not the best result possible for both
of them in that strategic situation (Pareto’s optimality). They are “prisoners” of their
local view. This is a crucial problem and an important example for social policies,
but it is not our problem. There are two relevant differences in the tendentious result
of the spontaneous social order.

(a) We do not simply have one shot or repeated games that culminate with such
a bottom-up result. We have a self-organising collective outcome, caused by
feedbacks on its micro-layer (i.e. minds and behaviours of the actors). In such
a way, it also reproduces and maintains itself. In our vocabulary, this is a
“functional” outcome. There is not only a bottom-up process, but also a top-
down process; there is a dialectical circularity. That outcome becomes the “end”
(A. Smith) of the individuals’ behaviours, and their function [28].

(b) Secondly, the problem is about the systematic advantage of some participants
(endowed with local and personal or structural and social powers). The “polit-
ical” problem is not how to make the participants aware of the limits of their
choice and help them to achieve a better solution for both. The problem is how
to get a more equitable equilibrium that limits the power of dominating social
groups. This is not a matter of a “technical” solution but of a political solution:
it is the decision to change the result of a basic “social conflict”, or a conflict of
“interests”, even if unaware and not understood. This problem of “hidden/covert
interests” is frequently ignored; it seems that since that order is “spontaneous”,
then it is also necessarily “neutral”.

For example, in Veits’ work (within the “Global Brain” project) we find the
claim that “distributed governance in a world of views is the next phase in the
cognitive development of human society” thanks to the development of a Global
Brain [29]. In our view, this perspective is not completely incorrect, but we find
it rather simplistic and optimistic. It ignores the conflictive side of social relations
and of societies, which are not due to lack of information or limited rationality.
Society is not an “organism” where the “organs” do necessarily cooperate. Thus,
also the interesting claims that a Distributed Governance System “needs to facilitate
the following functions: (a) Allow for the co-existence of diverse worldviews and
social institutions. (b) Provide an effective medium of communication, dialogue
and co-evolution. (c) Propagate successful experiments and containing failures
(antifragility)” are shareable but partial. In fact, the problem is not just to build or
provide an ‘infrastructure’, or a medium for the governance; what we should build
is a hybrid/symbiotic (i.e. human and AI systems) governing system and we want to
know its hidden, implemented principles, which produce the resulting equilibriums
in the emergent global ‘order’. Thus,



8 Trust & Self-Organising Socio-technical Systems 223

> for computer-mediated social orders and systems, one has to explain for whose
advantage that order is established, which group/class is favoured, and if there are
other fairer orders.

> See also on that Pitt and Artikis’ work on the design of Self-Governing Institu-
tions (for example, [14]) on the basis of Ostrom’s and Rescher’s principles of
Commons and Justice, axiomatised in computational logics.10

> One should introduce and publicize that there are binds within and in the system,
as well as norms and rules that prevent some undesirable individual and collective
conducts, conventions, roles, and scripts that facilitate functional cooperative
aggregations.

> It should be showed how the awareness, the rules, the norms, and the individual
commitment improve the collective outcome.

> Trust should be built not just in relation to personal goals and advantages, but also
in relation to public goods, or common plans.

8.6 Making Visible the Invisible Hand by MA-Based Social
Simulation

We claim that a very special role for users’ trust and understanding of self-organising
systems will be played by Social Simulation (and serious game and virtual reality)
systems.

8.6.1 Social Simulation as Social Imagination and Prediction

Intelligent “Agents” (both agent-based social simulation and agents embedded in
smart environments) will play a crucial role for the intelligent management of social
phenomena, especially for complex and emergent dynamics. They will mediate
human negotiation or situated collective planning, and provide the computational
support for coordination, cooperation and conflict. In particular, predictive and
imaginative simulations will be crucial. This means, models should be run in order
to diagnose and anticipate possible trends and effects of different policies or of
current social movements (see also [30]). Computer modelling and simulations
should be run to predict observable phenomena and to understand the underlying
psycho-social mechanisms. All this is crucial for an effective intervention policy
dealing with complex systems, not just with ‘organisations’.

10According to us, the authors are a bit optimistic as for: (i) the computational governance of
complex and self-organising hybrid systems; (ii) the role of cooperation, common interests, social
capital, etc. whereby they ignore the crucial and positive role of ‘conflicts’.
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However, a fundamental challenge for the future – in our view – is the
following one:

How can we systematically integrate the simulations of social phenomena with the real-time
feedback coming from everyday social context?

In one decade (or a bit more), we will see a generalized and structural use
of computer simulations (especially agent-based) as the required ground for all
the decisions to be taken in relation to strategies or policies, in a number of dif-
ferent domains: military, environmental, economic, financial, urban, demographic,
energetic, educational, health, logistic. Indeed, no political or managerial complex
decision can be taken without grounding it on fine grain predictions of effects
and possible developments and outcomes. Moreover, the latter will be enabled
by computer modelling and simulations of the relevant phenomena and by long-
term unfolding and ‘governable’ dynamics [27]. Social ‘planning’, or at least
an intelligent government and orientation of spontaneous social dynamics should
become reliable and unavoidable. It requires fine-grained predictions based on
“simulations”, and should combine the opportunistic, bottom-up, local adjustments
of such predictions and of the imagined policies themselves.

8.6.2 A Top-Down and Bottom-Up Model with Feedback from
the Field

The simulated predictive model (although based on previously collected empirical
data) cannot just be top-down and centralized, and simply “applied” to the field. One
will need to combine the simulation and its predictions, and their implementation
in the real domain, with possible timely feedbacks from the territory, due to
intelligent sensors or witnesses. This should happen in order to immediately readjust
the simulations on the basis of the real feedback and the subsequent policy or
intervention; and so on, cyclically (Fig. 8.1).

This cycle will increase the realism of the model. “What is needed is the
normal “cycle” of learning for problem-solving and ability acquisition: Objective
H) hypothesis about possible actions (planning/problem-solving) H) attempt and
feedback H) possible failures H) interpretation/understanding H) re-planning
(new adjusted solution) H) . . .

No learning without possible (predicted) failures and their monitoring for
revising models and replanning behaviours. Babies do that; why not nations[27]?”
On the other hand, the model should be highly flexible and adjustable to reflect no
trivial dynamics. The solution (and its design) cannot be the same in every domain,
since the degree of complexity and of possible information (e.g. stakeholders) and
intervention differ from one domain to the other (e.g. traffic is not like an epidemic,
or an unforeseen leakage of toxic substances). In other terms, also the simulative
“mind” has to be “situated”, distributed, and externalized. Computer modelling and
simulation can be a revolution of the “collective cognition”; but this collective
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Modelling &
Simulation Predictions

Choices &
Intervention

Feedback

Effects
Sensors &
Witnesses

ENVIRONMENT

Fig. 8.1 The Monitoring and Adjusting cycle (Two possible sub-cycles: Simulation => predictions
and on such basis => interventions, policies. An executive cycle: To look at the real effects of a
policy, and on the basis of this feedback from the environment readjust the policy, change the
intervention. Or the combination of both, by re-simulating on the basis of the external feedbacks
and then changing the policy.) according to [27]

cognition must be “situated” anyway, as well as it should be context-dependent
and opportunistic, based on data of the “here” and “now” of its environment, and
continuously adapted to the field, not fully and rigidly planned. It must be also
“distributed”, with various subjects and local simulation sub-systems. Their criteria,
ends, priorities and data must be complemented and integrated with very powerful
and flexible computational instruments, such as unifying ontologies; factor models;
Big Data, etc. This approach provides the “social simulation”11 with a double
experimental ground:

• the real “experimental” data coming from the model of simulation, with expected
and unexpected results;

• the “field study” of what is really happening when we apply a given simulated
policy or when we observe a given simulated phenomenon.

8.6.3 Inventing the Future

Simulation is not only, and not mainly, for predictions. As Alan Kay once suggested,
“the best way to predict the future . . . is to invent it”; the “Artificial Collective
Imagination” that we are building is for that too. On the one hand, we need to
imagine what is possible and probable and will probably happen, on the other

11For the use of simulation to test collective decision making models see in this book Ch. 17 Lucas
and Payne.
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hand, we also have to imagine what is impossible, and what might be or become
possible: action consists in creating new conditions and modifying the possibility
and probability of future events. We need imagination to explore creative solutions
in problem solving and in designing; this cannot be well done in reality, but it surely
can be done on representations, virtually, as an architect would do on drawings
and scale models. Simulation is not only useful for predictions also because strict
predictions are impossible in complex dynamics like social systems. We should
not forget that predictions are frequently imprecise and wrong and predicting
events is impossible in principle, especially due to complex dynamics. Events are
unpredictable, like earthquakes. However:

i. is seismology a useless science since earthquakes cannot be precisely and
reliably predicted? We do not think so. Also approximated and probabilistic
predictions can be very useful (e.g. for prevention, or proportional investments);

ii. we need long-term and global predictions, but also very short term and oper-
ational predictions in guiding and monitoring specific actions like motor-
prediction in motor-action. These predictions are there for immediate matching
and for immediate adjustment of both acting and prediction.

The comparison between what is expected and what is actually there, between
anticipated and perceptual information, allows us to systematically and quickly react
to the unexpected, with its threats and opportunities. Do we need at the collective
level an analogous process of attention? We need to build not only imagination,
but also artificial “attentional systems”, not by pre-programmed inspections and
controls, but by timely signalling and focus changing in monitoring, interpreting,
and predicting.

8.6.4 Empowering People

It is not simply a matter of feedbacks from the field and from people, from various
signallers and indicators, in different times, and of continuous readjusting of the
model and of the simulation. A more politically and technically advanced model is
conceivable on technological bases, implying rooms for negotiation and decisions.
For any given social phenomena, there is always a variety of stakeholders with
different interests. Therefore, the solution of the problem can never be merely
technical and predefined. We rather have to deal with new forms of participatory
evaluation. The solution requires processes, space, time, and modalities of political
negotiation between the various subjects, interests, and points of view. Social
research and scientists cannot provide strict predictions, as well as no recipes, or
ready solutions. They can just give us the evaluation of possible pros and cons of
the various alternatives, and a critical attitude about our certainties and preferences.
The decision is always – overtly or less – political, not technical. Those “who have a
say” should be inserted in the very “model” of the “social planning”; this would not
simply imply feedback, re-simulation, or re-planning (see Fig. 8.1). This would also
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imply a model that includes “re-decision” phases and places: who decides? And –
more importantly – on the basis of what kind of re-discussion and re-negotiation
of the involved interests? How shall we give room, how support, and mediate
different agreements and decisions in the processes [27]? ICT will provide us new
opportunities for participation, transparency of political decisions and practices of
e-democracy, which are necessary to deeply understand and manage complex social
phenomena. Other functions of Social Simulation – In this perspective, it is clear that
other uses of computer simulation will also be important. Such virtual environments
can be used as a “laboratory” for experience and understanding: for example,
problem-focused and data-based realistic sociological “serious games”. We also
find they may provide an educational role of learning-by-doing, of understanding
by looking and possible outcomes of our proposals and moves. We cannot have a
real participatory discussion, project, and decision process based on spontaneous
judgements, opinions, prejudices, group-psychology and even demagogy. Circulat-
ing real information is crucial, and we need it to improve real understanding and
knowledge. Networking and information circulation and discussion should serve
also to educate, to argue, to increase our knowledge. Using simulations, by trial and
errors, predictions and unexpected results can also be effective and useful. Before
deciding, real feedbacks and readjusting, simulating hypotheses might be a very
important instrument for bottom-up, participatory proposals.

8.7 Concluding Remarks

Our clearest conclusion sounds as follows: we need a complex and multidimensional
model of trust, not just a vague notion or a simple measure. We need a model that
can explicitly specify who is trusting whom, for what needs and expectations and
in what contexts. This model should also deal with trust in different environments
and how these environments support or interfere with trust. We need a model
that specifies the dynamics of trust: transitivity, inference (e.g. from classes to
individuals, from roles to players) and feedback. This model should also take into
account the following dynamics: trust and reputation; trust and direct experience;
trust and security; attribution of hidden ‘qualities’; degree of trust as evaluation;
decisions to trust and rely on; perceived risks; belief/reason-based trust versus felt
trust; and trust, autonomy and control. Reductionist approaches are simpler and
faster to formalize. However, they seem to us to be not adequate to model and
manage real problems and dynamics. As for the specific issues of complex systems,
computational self-organisation and emergent ‘orders’, let us simply underline our
critical remarks on a prevailing and rather optimistic view:

• on the one hand, a self-organising order might be quite (and not accidentally)
unbalanced and unfair (see Sect. 8.5);
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• on the other hand, also the users’ role must also be stressed: “the human as the
user of self-organising and self-adaptive systems and (then) the usability of such
systems” (cited Budapest Call).

Are we so sure that humans will actually be the users of those emergent,
collective, self-organising systems? Can we, as humans, consider ourselves the
“users” of a “spontaneous social order” like the market, or of political systems?
This was the very ideological claim of von Mises [31], who said that consumers
command in the market – a claim that does not take while marketing, manipulation
or oligopolies into account. Similarly, are we the “users” of political power?
Or are we just the submitted ‘subjects’ of such mechanisms and the exploited
micro-mechanisms that maintain them? Why or how this should be different in a
computationally managed, self-organising socio-technical system? This is important
not only for a different (and prudent) philosophical, social and moral view of what
we are building. We find this important also in order to have a less reductive
view of a needed “transparenc”. In order to have confidence and reliance in this
kind of systems we also need to feel or know that the systems rules and resulting
equilibriums are fair and equity inspired. We want to know that the system is correct
in relation to the interests of the involved groups and subjects, and that the system
is open and sensible to our reactions, criticisms, problems, and possible conflicts.
Transparency has to be bidirectional and about listening.

We need to ask ourselves: was the system designed to empower its users? With
empowerment we mean:

(a) not just “usability”, “user friendliness”;
(b) not just in an individualistic perspective: empowering the separated users; but

empowering users as “demos”, as a collective agent.
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Chapter 9
To Trust or Distrust: Has a Digital Environment
Empowered Users to Proceed on Their Own
Terms?

Natasha Dwyer and Stephen Marsh

Abstract We claim that the wider trust research area (academics and industry
practitioners) strive to develop systems that are both trustworthy and foster trust.
Evaluation methods follow this pursuit and measure for the presence of trust. How-
ever, if considered from a user’s perspective and if a digital environment is instead
designed to empower users about their trust choices, then trust and distrust are valid
options. How can environments, designed to empower users in their trust responses
(referred to in this chapter as TEU environments), be evaluated? Practitioners need
to be able to gauge their progress. In this chapter, we outline how a practitioner can
work around some of the complexities surrounding the design of TEU environments
and we present one evaluation method. To understand whether a TEU environment
is indeed empowering a user regarding trust, we suggest investigating whether there
is a change in a user’s level of uncertainty. A reduction in uncertainty is a proxy
for both trust and distrust. When uncertainty is reduced a user is clearer about what
to do and is not caught up in a cycle of exploring possibilities. Survey questions
allowing responses on a Likert scale are one means to evaluate change.

Keywords Usability • Usable security • Information trustworthiness • Evaluat-
ing • Trust evidence

9.1 Introduction

Currently the wider trust research area (academics and industry practitioners),
working in the interests of organisations and governments, value environments
that promote trusting behaviour and fostering of trust [1]. This may be because,
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as reflected in Fukuyama’s famous line ‘trust greases the wheels’ [2], a state of
trust results in higher productivity. Evaluation methods reflect this pursuit of trust,
measuring for the presence and intensity of trust. When the goal is to promote trust,
the approach towards measurement is clear: measure the level of trust before and
after an interaction or intervention [3].

If instead, as we explain in this chapter, a practitioner considers the design of a
digital environment from a user’s perspective and with the user’s interests at heart,
then both trust and distrust may be valid choices [4]. For instance, there may be
a good reason why a user should purchase from a particular vendor. Measuring
whether trust has occurred does not reveal much beyond whether the user was
coerced to engage with a system. It does not indicate whether the user was able to
make the trust choice that was in his or her interests, which is the type of experience
we want to design. Once the needs of the user are in the foreground, the role of
context in a trust scenario is emphasised. Context is different for every user and is
central to how trust and distrust are regarded [5].

Rather than systems that pretend to be trustworthy or foster and enhance trust,
designers and developers are now creating digital systems (such as sets of web pages
and mobile apps) that empower the user about trust choices, which we describe as
TEU environments. Examples of TEU environments are dating sites that help users
negotiate fraught relations [6] or an application that allows individuals to self-select
and come together to develop a creative project [7]. Nurse et al. [8] present a model
in which users can plug in their individual trust preferences and, at appropriate
times, receive a graph suggesting future actions.

The aim of this chapter is to develop a means to evaluate whether systems
that are designed to be TEU are indeed empowering users confronting trust
choices. Developers, researchers, designers and others interested in working in
users’ interests have some means to interrogate their work. We argue that the lens
to understand whether an environment empowers a user is to investigate whether
uncertainty has been reduced. Trust researchers agree that there are several results of
trust and distrust [9]. A reduction in uncertainty is common to both the experience
of trust and distrust and is an outcome that is beneficial for the user. The user is
clearer about how best to proceed, which we define as a form of empowerment.
In contrast, without a state of either trust or distrust, a user may be caught up in
a cycle of assessing possibilities and considering how he/she should act, in other
words, keep wondering about whether he/she should be either trusting or distrusting.
Such a cycle is resource intensive for an individual [9]. To assess trust and distrust
from a user’s perspective, we draw on the work of Cofta [9] who distilled work
across the trust research area and argues that users look for evidence to trust across
several dimensions. In short, the dimensions are continuity (how long a trustee has
existed in a community), competence (does a trustee have the skills to deliver on an
interaction?) and motivation (does the trustee have a commitment to working in the
trustor’s interests).

Often when theory meets practice there are complexities, and this issue is no
exception. This chapter outlines some of the issues practitioners need to tackle.
We first review how trust in a digital environment is usually valued and measured.
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Examples of alternative design approaches that attempt to empower trust for the
user are outlined. We then identify challenges associated with evaluating TEU
environments. Finally, we suggest one path: to measure whether uncertainty has
been reduced for the user. The technique of surveys arranged around Likert scale
statements is an established means to gauge attitude change. Survey statements
focusing on different areas of trust evidence can help a designer access the nuances
of users’ understanding of a TEU.

9.2 Our Perspective

This chapter takes a social science perspective, more specifically, a user experience
design (UX) viewpoint. UX is the design and communication of a system from
a user’s perspective and overlaps with other practices such as interaction design,
accessibility, usability and human computer interaction (HCI) [10]. Within the
social sciences, trust is broadly understood as a context-bound relationship within
which the trustor, in a position of vulnerability, is confident that another party
(the trustee) will respond in the trustor’s interest. However, static definitions of
trust do not contribute much when considering the design of trust and distrust in
a practical setting, as the notion of trust is only meaningful when understood in
context. The difficulty of defining trust was raised by Luhman [11], who pointed to
society as the place where trust interactions are grounded. The notion of context is
stressed by social scientists, because this emphasises the shift in an understanding
of trust depending on who you are, where you are and the moment in time [12]. All
disciplines conceptualise and define trust depending on the outcome sought by the
researcher and the research area [13]. An outcome sought by the social science
discipline is to problematise a situation, i.e. to problem-set rather than problem
solve [14]. To study trust and distrust in digital environments from a social science
perspective is to explore power relations, design, choice, and control across the
Internet, which are significantly underexplored to date [15]. If issues of power are
not acknowledged or interrogated, then there is the risk that what is in the interests
of the most powerful is assumed as what is best for all. There are many challenges
for the designers of TEU environments.

Our motivation is to gather data to inform a project we are undertaking, ‘Device
Comfort’, which is a personal interface that speculates about states of interactions
in an environment and its owner’s current context [16]. Working on behalf of
the individual, the interface is designed specifically for the purpose of health and
wellbeing and can manage an individual’s health data, aggregated from a range of
sources. The interface unites several sources of information, such as nearby devices
and the predilections of the user to present to the user an overall ‘comfort level’.
What the user does with this guidance is ultimately up to the user. The idea is to
provide an opportunity for the user to have a ‘second thought’. Developing measures
of success for this interface was the original impetus for this chapter. Before they
begin development, designers can benefit from a sense of the measurements for
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success and outcomes for users they should aim for in their projects. Usually
the activities of evaluating and measuring are regarded as the domain of more
quantitative-orientated disciplines. However, all developers need to have a sense of
how well their projects are functioning and need to access the power of numbers to
indicate change. The issue of evaluation and trust is a practical concern for designers
and developers of digital environments. The intended audiences of this chapter are
those who wish to apply theory about users and trust in practice in order to create
websites, ‘apps’ and other digital outputs.

9.3 A Problem of Bias and Emphasis

Design is never neutral; it always works in the interests of one party over another
[17]. Unsurprisingly, owners of digital environments design their spaces so that
their business models and agendas are served. Although some practitioners of ‘user-
centred’ design claim that they put the user first, this prioritisation is debatable,
Blythe et al. [18] argue that in fact their claim is unfounded and the label ‘user-
centred’ design is simply a marketing device. When owners of a digital environment
employs design strategies for their space in order to increase the success of their
mission and their engagement with users, one of the first qualities they seek is
trustworthiness and the trust of their users (regardless of whether trust is deserved).
Trust is so often touted as the magical ‘make or break’ component of a design [1].

The academic trust research area also values a result of trust (not distrust) and
emphasises the study of trust (rather than distrust). Trust is regarded as beneficial
and a success while distrust is considered a negative state and an outcome to
be avoided [1, 19]. Blyth et al. [18] argue that the acceptance of business and
commercial values is the default position of the wider human computer design
industry and is due to the close links between academia and industry.

The valuation of trust and a positive outcome for organisations and businesses
can be seen in the use of language and the prioritisation of goals by researchers and
practitioners. For instance, the area of virtual work systems and trust is shaped by
the work of Mayer et al. [20] who define trust as ‘the willingness to be vulnerable
to the actions of another party’ and cooperation, which complements the goals of
management [21], is seen as a measure of trust [20]. A popular theme in the research
area is how trust can propagate within virtual team environments [22].

E-commerce practitioners look to the speed and number of sales as indicators of
trust [23, 24]. We see this commercial interest translate into guidelines for designers
to give an interface the appearance of trust, regardless of the nature of the contents
(for instance [25]). A popular recommendation is to develop a ‘professionally
designed’ site, one that a designer with traditional graphic skills has created in
order to provide an aura of authority (for instance [26] and [27]). Other researchers
provide detail of what might constitute a professional appearance. Colour, it is
also argued, plays a role in the formation of a professional site, for instance,
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the use of blue can promote trust as does the avoidance of black [28]. Inclusion
of photographs of company people on a website, incorporating their names, can
also build a trustworthy picture, especially photographs of people in ‘everyday
situations’. The idea is to engineer ‘human warmth’ into a digital environment [29].

If we take a user’s perspective, we know that there are good reasons for us not
to trust what is presented to us in digital environments. There are very good reasons
why an employee should not collaborate in the virtual workplace, even if it is in
the interest of the company. For instance, management may favour one particular
employee and a virtual workplace is designed to hand this employee all intellectual
property at the expense of other employees [30]. In the domain of e-commerce,
sometimes a user should not buy the advertised product or engage with a particular
service. The product may not be what it should be or may be a ruse for a user to
provide credit card details [31].

9.4 TEU Environments

Trust and distrust differs depending on who you are, as the following example
illustrates. Let us assume that an individual has recently been diagnosed with a
certain medical syndrome that could be a life threatening condition. The individual
is exhibiting new symptoms. As it is the weekend, there is nobody for the individual
to turn to and the individual logs into a portal focusing on the condition. The site
includes a range of content including written advice and discussion, videos and
advertising material. The trust issue for the user is working out whose advice to
follow. It is difficult for the user to determine who owns the site. The material may
be marketing a particular medication that may be unsuitable. On the other hand,
advocates of a philosophy may be providing advice that is also biased and not
what is in this individual’s interests. From the perspective of other stakeholders,
the individual’s vulnerability is an opportunity for profit. Researchers exploring this
case from a commercial perspective could explore whether the design increased the
visitation rates of the site, whether the individual recommended the site to others,
or bought products or services. From our perspective, the TEU position, we are
interested in whether the site enabled a user to make the choice about her problem
that was in his/her interests guided by his/her beliefs, expectations, customs and
the other elements shaping the context that Zack and McKenney outline [32]. The
context could include factors such as risk, visual design elements, and presentation
of language. This example demonstrates how difficult it is to empower a user to
form trust or distrust on his/her own terms. Designers develop solutions to these
problems for users, for instance, providing tools for users to decode the bias behind
the visual design of a site or to organise their observations about trustworthiness.

In contrast to a commercial design that attempts to convince its audience that
it is the correct choice, a trust empowering design enables users to form their own
choices. In addition to the examples provided in the introduction, we are seeing the
rise of ‘trustware’, systems that attempt to assist individuals form trust perceptions
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about others by allowing users to translate the reputation they have developed in one
network to another [33]. Some examples of these systems include TrustCloud1 and
Legit.2 The demand for trustware is increasing as the sharing economy grows [34].
As the phenomenon of strangers sharing valuable resources continues, there needs to
be means for individuals to work out with whom who they should interact. Although
‘start-up’ entrepreneurial business models are currently highly influential in the
design of the systems, this area of technology design is in its infancy [34]. In the
near future we will see a diverse range of trustware approaches, and perhaps systems
dedicated to specific industries, such as health. An example is a system that helps
individuals to negotiate smoking cessation advice provided by a range of sources.
Approaches to evaluation are needed to assess these designs, examining whether
users are able to form the trust choices that are in their interests.

9.5 Complexities of Designing TEU Environments

TEU environments need to engage with a range of potential users’ interpretations
of the contexts they encounter. Trust and context are strongly interlinked. Trust
is a social construction that is only meaningful when understood in context, i.e.
the ‘here and now’ (cf. [35]). A user’s interpretation of context is shaped by a
whole range of factors, such as power relations, social conventions, traditions,
expectations, habits and memory [32]. Suchman [36] in her landmark work ‘Plans
and Situated Actions’ argues that technological developments that ignore context
result in unsuccessful technology that is not accepted by its user base. As we review
in this section, recognising the unavoidable link between trust and context adds
levels of complexity when considering the design and evaluation of environments
intended to empower individual users.

Drawing on the authority of sources of advice deemed as trustworthy, without
any further exploration, is problematic. The practice of designers, governments and
companies assuming that they know what is best for users and telling them what
to do is known as ‘benevolent paternalism’ [37]. Often the exponents of benevolent
paternalism try to distinguish themselves from commercial practices that seek to
convince users to adopt a certain behaviour in order to increase the profits of a
company. But there are still problems with ‘benevolent paternalism’. Advice can be
biased, for instance, motivated by political and religious agendas. Advice provide by
authorities cannot provide an indisputable answer on every occasion for all people.
As authorities can disagree over the solution to seemingly uncontroversial issues,
there is no guidance to suggest which authority is correct. For instance, following
from the example provided above of the user with a medical condition, an individual
could seek advice from three online doctors about different treatments. There are

1https://trustcloud.com
2https://www.legit.com

https://trustcloud.com
https://www.legit.com
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two different medications for the condition. One doctor may prescribe one type of
medication. Another doctor may prescribe the second medication. The third doctor
may prescribe a combination. So, it is clear that it is difficult to decide which advice
should dominate. The consequence in this scenario is medication that may not suit
the patient’s needs. However, Srnicek and Williams [38] point out that to refuse all
advice is misguided and does not take advantage of the expertise available to us in
the modern world. Such a rejection of authority does not recognise the nuances by
which individuals are controlled in society. Designing trust empowering systems is
a political and complicated exercise.

An evaluation of a design incorporating a ‘benevolent paternalism’ perspective
may test for whether the presentation of information in a digital environment
allowed the user to make the ‘correct’ decision regarding a medical condition. But
when one acknowledges the role of context, we can see how the ‘pre-prepared’
approach is limited. Defenders of ‘benevolent paternalism’ may argue that right or
wrong answers can be successful for the majority of the population. However, we
argue that it is impossible to know when and how such judgments can be applied,
due to the role of context, and thus ‘benevolent paternalism’ is a questionable design
strategy.

When the importance of context is acknowledged, the potential of a digital
system or an authority to pre-determine right or wrong answers for individual users
in a trust scenario is limited. Context, i.e. the environment in which understandings
are made, can only be constructed between people as they read it, participate
within it, and work out how they might function in a specific situation. Trusting
and distrusting are not entirely rational thought processes: they are a combination
of subjective and objective thinking. The response depends on the individual. As
Möllering [39] writes, there is an element of trust that is always unaccountable and
‘mystical’, otherwise what is being discussed is not trust and could more aptly be
described as ‘calculation’. When one of the elements in a context is altered, then
the outcome may be different. This is why Marsh et al. [40] suggest that TEU
environments should allow users to monitor and intervene, so that users can have
a role in interpreting their contexts.

It is also problematic for designers to simply draw on the authority of ‘trustwor-
thy’ sources, otherwise known as second-hand trust [41]. There is no such thing as
a consistently reliable trustworthy source. The generators of what might once have
been considered trustworthy or even truthful information, governments and non-
government organisations, no longer wield the same respect as in the past [42]. The
authority, bias and competence of these sources are now questioned on a regular
basis [43]. Additionally, as users of digital environments, we know that spammers
continually attempt to replicate what might be regarded as a trustworthy agent. The
problem of assessing trustworthiness is multi-layered. A trust-empowering interface
should not attempt to provide a definitive answer, but instead aim to keep a ‘case
open’ ready to receive new developments.
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9.6 Isolating a Means to Evaluate for Trust Empowerment

The creation of a TEU environment, a system that empowers its users to negotiate
trust on their own terms, requires resolution of many design challenges. How can we
measure whether a digital environment does indeed empower users to negotiate trust
on their own terms? As we argue, measuring the presence of trust is not appropriate;
distrust may be a valid option for a certain user in a specific context. Additionally,
we cannot test that users have made the ‘correct’ trust choice, as the capacity to
judge another’s trust perception is limited. Evaluating whether a design includes
elements we think empower trust is not ideal, it is the user’s perspective that is
relevant.

We argue that one way to assess the ability of an environment to trust empower
the user is for researchers to measure the level of uncertainty before and after
interaction, and by implication, the level of certainty, as we will explain shortly.
Certainty is a subjective sense of conviction or validity about one’s attitude or
opinion [44]. Certainty is when a user knows what he or she would like to do and
what is important to him or her. By uncertainty, we mean that the user is unclear
about what to do or how to proceed. In our scenario, a reduction in uncertainty
as result of interacting with a TEU environment would mean that the user is clearer
about what trust choice is best suited to their needs. The experience of the interaction
with the digital system has assisted the user to negotiate and interrogate trust. It is
the quality of assistance that we value, as this type of experience ‘empowers’ users
rather than simply supporting their current status. The aim of the evaluation is to
see if uncertainty is reduced as a result of an interaction. In this section we explain
why attitude certainty, which we argue is a proxy for both trust and distrust, is an
appropriate way to measure trust empowerment. In the following section, we explain
how a change in uncertainty levels can be measured.

Trust researchers agree that trust and distrust have an impact on cooperation,
including willingness for vulnerability, confidence, and a reduction of uncertainty
(as documented in [45]). Measuring how much a user is willing to cooperate or be
vulnerable focuses on what the user might be agreeable to, or arguably, how much
a user can be exploited. The notion of confidence does center more on the user’s
interests, but can be coopted to suit the demands of commerce and government.
According to [46], this is due to the impact of the ‘New Management Era’, the
movement to streamline the public sector in the U.K. and the U.S. Confidence
is regarded as a means to move forward with more reforms. Thus, we argue that
the concept of ‘confidence’ is not suited to our purposes because some users may
associate the term with managerial approaches.

We argue that studying if there is a reduction in uncertainty for the user is
the most suitable means to explore the success of a TEU empowerment. It is a
result orientated to a user’s interests and the term does not have strong societal
connotations, such as the word confidence. A reduction in uncertainty is a result
of both trust and distrust. Focusing on the possibility of a reduction allows an
interrogation of whether a trustee has received a benefit of both trust and distrust.
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Without trust and distrust, the user is caught up in the cycle of exploring possibilities
[5]. With trust and distrust, some future possibilities are foreclosed, as Clark [15]
says, there is a ‘call to action’. Distrust is at least as important as trust in this view.
Although often seen as a negative state, distrust can in fact resolve a complex
scenario, closing down possible paths for the individual to choose as well as
protecting the individual from negative consequences. Thus we use a reduction in
uncertainty as a proxy for trust empowerment, a means to understand whether a user
of a digital environment has indeed been empowered regarding trust. Researchers
use proxies to explore the notions of trust and distrust as neither concept can be
directly observed [47], for instance, [48] use the presence of cohesion in a team as
a proxy for trust, while [49] use the occurrence of an alliance of two parties.

Jøsang et al. (see [50]) also emphasise the role in uncertainty in trust interactions.
In their view, subjective logic, probability calculations that work with uncertainty,
can help solve trust problems. Their response is to develop an oeuvre of algorithms
that draw on a range of users’ opinions in order to dissipate the impact of uncer-
tainty. The design work we attempt aims to engage the user in an active role within
a digital system. In contrast, Jøsang et al. seek to automate decisions on behalf of
the user. A TEU system could allow a user to choose which interactions are handled
automatically and which ones require further interrogation and customisation. This
is a research issue for further investigation.

9.7 How Can Uncertainty Levels Be Measured?

We argue that a change in the user’s uncertainty levels before and after interacting
with a digital environment can be a proxy for whether trust empowerment has
occurred. In this section, we explore means to understand whether a digital
environment has reduced it. There are well-developed techniques to evaluate the
strength of attitude. One way is to ask the participant to self-report via a survey
undertaken before and after an experience. The two results are compared. The
field of Psychology has well-developed survey techniques to undertake these
measurements and determine how strongly a respondent holds an opinion via self-
report. Several fields have drawn on these techniques including Marketing and
Political Science (see [51] for an overview). Likert and Thurstone are notable
early attitude researchers, they developed the Likert scale to quantifiably measure
attitudes [52]. A common argument by survey practitioners is that strong attitudes
are more likely to exist across time, influence behaviour, and predict behaviour than
are attitudes that are not as certain [53]. The work of Maio and Haddock [53], who
have surveyed the field of the psychology of attitudes, argue that a measurement
of attitude strength is an indication of a reduction in uncertainty. Thus there is the
potential for suitable construct validity, when an operationalisation measure does
indeed study the variable under consideration.

To develop survey questions revolving around trust, we recommend that survey
writers work from the three dimensions of trust that the field agrees: competence,
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motivation, and continuity [4]. The evidence users seek in order to proceed in a
trust interaction fall into these categories and analysing a design in terms of these
dimensions allows us to understand an environment from a user’s perspective. The
dimensions of trust are interlinked and overlap but can be described as follows.
Competence refers to whether the trustee has the ability and skill to fulfill the
requirements of the interaction [45]. Motivation has to do with shared interest: Does
the trustee have an interest in working towards the welfare of the trustor? Finally,
the dimension of continuity is about whether there is possibility of a connection
between the trustor and trustee beyond the current encounter. Do the trustor and
trustee belong to similar communities? Will their paths cross again? The important
point to note is that we do not seek to test for the presence and strength of continuity,
competence and motivation but how clear a respondent is about their perception and
conviction regarding these dimensions. By studying whether a user is more certain
about different dimensions of trust evidence, we can see if a TEU environment has
indeed empowered a user about trust.

We now turn to the survey content to evaluate the ‘Device Comfort’ initiative,
an interface that assists users with health decisions in different everyday situations.
The interface aggregates advice from different locations and helps the user interpret
the advice in accordance with the user’s preferences. We wish to explore whether
this element does empower the user regarding trust.

The following survey statements are examples of what we will use to evaluate
the performance of our interface. Each statement, which forms a survey question,
focuses on one of the three dimensions of trust evidence as argued by Cofta [9].
By isolating this evidence into the three dimensions, we can gain insight into the
nuances of trust and investigate whether there is a shift in just one dimension of trust,
for instance, ‘continuity’ or whether there is a more generalised trust impression
change. Such insights are invaluable to designers because the guidance can inform
the design of one interface element over another. Participants in our study will be
asked to reflect on their perception of an advice provider at different points in time.
They will be asked the following questions:

• The advice provider has the appropriate expertise and background to provide
advice. (To determine the dimension of competence)

• The advice provider has a desire to work in my interests. (To determine the
dimension of motivation)

• The advice provider has been a member of relevant communities for a long time.
(To determine the dimension of continuity)

To close the survey and to ascertain how certain the respondent is, we draw on
the work of attitude researchers [54, 55] (who have developed questions to be used
with a Likert scale to gauge certainty). These questions provide an opportunity to
compare the strength of a user’s attitude so a change can be detected:

• I am sure that my attitude towards the advice provider is correct.
• I feel confident that my attitude towards the advice provider is the most accurate

attitude possible.
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• I believe that if someone challenged my views on the advice provider I would be
able to easily defend my point of view.

• I do not think that my attitude towards the advice provider is going to change.

Naturally, there are limitations to the survey approach and there are questions
that require further exploration. Social science literature debates the issues, which
are often context specific (see [56] for an overview). For instance, how many survey
items gather a suitable amount of data about an interaction? What are the criteria?
How much reduction in uncertainty is considered a success and does this change
across contexts? If so, why? Organising users to complete a survey is difficult to
achieve. The completion of two surveys by each participant is even more difficult.
The survey needs to be administered at a time when the participant is mindful of the
experience of the digital system.

Additionally, an increase in attitude strength across the two surveys may be a
result of a participant’s familiarisation with the context, in which they are placed
in for the research. Experimental researchers often encounter this issue. Can an
intervention really change behaviour in the fashion intended or are the results the
effect of the participants simply being involved in a study that has primed them to
think in certain ways [53]? Familiarity is part of the trust equation and familiarity
breeds trust [11]. There is, however, a predictive validity issue. Is the process really
isolating a shift in uncertainty? Is the approach measuring the effect of trust and
distrust or other variables, such as familiarity or memory, entering into the equation
that could interfere with the results? Refining the boundaries of trust, familiarity,
and attitude strength is another task for future research.

A future direction is to explore the potential of social network data, rather than
surveys, to evaluate whether a digital environment empowers trust. Social networks
can harness public comments written by users of social media sites (such as
Facebook and Twitter). Conclusions can be drawn about how different sets of users
are responding to new events and products. Sometimes users utilise the hashtag
(#) as a means to signal to others that they want their comments to be linked to
other discussions around a certain topic. The practice of sentiment analysis, which
draws assumptions about how users are thinking and feeling from their social media
activity, may provide precedents for exploring if a user is feeling more or less certain
about their trust interactions.

9.8 Conclusion

Often industry and academia value an outcome of trust for their projects and
evaluation methods follow a similar path. Yet an outcome of trust may not suit the
user of a project. From the user’s perspective, distrust may be as valuable as trust.
Some practitioners create projects that work in users’ interests and empowering
them regarding trust (which we refer to as TEU environments). These practitioners
need measures to understand the impact of their designs. Arriving at an evaluation
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method is not straightforward proposition. Assessing whether trust has formed is
not appropriate, as is testing for right and wrong answers in connection to trust.

In order to evaluate whether a TEU is successful, we suggest evaluating whether
a reduction in uncertainty for the user has occurred as a result of interacting with
an environment. A reduction in uncertainty is one of the side effects shared by both
trust and distrust that is commonly agreed upon in the research area. A reduction
in uncertainty levels can be measured via surveys administered before and after a
user interacts with a TEU environment. The work of attitude researchers provides
guidance into the use of Likert scales in a survey to identify a shift in attitude.
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