
Machine-Checked Proof-Theory
for Propositional Modal Logics

Jeremy E. Dawson, Rajeev Goré and Jesse Wu

Abstract We describe how we machine-checked the admissibility of the standard
structural rules of weakening, contraction and cut for multiset-based sequent calculi
for the unimodal logics S4, S4.3 and K4De, as well as for the bimodal logic S4C
recently investigatedbyMints.Our proofs for bothS4andS4.3 appear to benewwhile
our proof for S4C is different from that originally presented byMints, and appears to
avoid the complications he encountered. The paper is intended to be an overview of
how to machine-check proof theory for readers with a good understanding of proof
theory.

1 Introduction

Sequent calculi provide a rigorous basis for meta-theoretic studies of various log-
ics. The central theorem is cut-elimination/admissibility, which states that detours
through lemmata can be avoided, since it can help to show many important logi-
cal properties like consistency, interpolation, and Beth definability. Cut-free sequent
calculi are also used for automated deduction, for nonclassical extensions of logic
programming, and for studying the connection between normalising lambda calculi
and functional programming. Sequent calculi, and their extensions, therefore play
an important role in logic and computation.

Meta-theoretic reasoning about sequent calculi is error-prone because it involves
checking many combinatorial cases, with some being very difficult, but many being
very similar. Invariably, authors resort to expressions like “the other cases are simi-
lar”, or “we omit details”. The literature contains many examples of meta-theoretic
proofs with serious and subtle errors in the original pencil-and-paper proofs. For
example, the cut-elimination theorem for the modal “provability logic” GL, where

J.E. Dawson · R. Goré (B) · J. Wu
Logic and Computation Group, School of Computer Science, The Australian
National University, Canberra, ACT 2601, Australia
e-mail: jeremy.dawson@anu.edu.au

R. Goré
e-mail: rajeev.gore@anu.edu.au

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_5

173



174 J.E. Dawson et al.

�ϕ can be read as “ϕ is provable in Peano Arithmetic”, has a long and chequered
history which has only recently been resolved [11].

Here, we describe how we formalised cut-elimination for traditional, proposi-
tional, multiset-based sequent calculi without explicit structural rules for the propo-
sitional modal logics S4, S4.3, K4De and S4C using the interactive proof-assistant
Isabelle/HOL. As far as we know, the proofs for S4 and S4.3 are new, and avoid the
complexities of previous proofs for these logics. Our results also confirm the recent
claim of cut-elimination for S4C due to Mints, although our proof is different, and
avoids the complications he encountered in his proofs.

In Sect. 2.1, we briefly describe traditional sequent calculi, discuss the need for
multisets, and describe the general form of our main theorems. In Sect. 2.2 we
describe themodal logics we study. In Sect. 2.3 we give a brief overview of how inter-
active proof assistants work. In Sect. 3 we show how we encode formulae, sequents
and rules, showing a sequent rule as an example. In Sect. 4 we describe how we
encoded the notion of derivability, giving rise to what we call “implicit derivations”.
In Sect. 4.4 we show how we encoded “explicit derivations” as concrete tree data
structures, and the functions used to reason about them. In Sect. 5 we describe how
wegeneralised the forms of our sequent rules to easily capture rule skeletons extended
with arbitrary contexts which are essential to make weakening admissible. In Sect. 6
we describe how we encoded the properties of weakening, invertible of some rules,
and contraction in Isabelle. In Sect. 7 we describe how we generalised our previous
work on explicit derivations to facilitate inductive proof of properties (such as the
admissibility of contraction or cut), and in Sect. 8 we describe this further specifically
for cut-admissibility. In Sects. 9–12 we describe the cut-admissibility proofs for the
specific logics S4, S4.3, K4De and S4C. The remaining sections discuss related work
and conclude.

We assume the reader is familiar with basic proof-theory and higher-order logic,
but assume that the reader is a novice in interactive proof assistants. Our Isabelle code
can be found at http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/seqms/. Some of
this work was reported informally in [13] and also, more formally, in [6].

2 Preliminaries

2.1 Sequents Built from Multisets Versus Sets

Proof-theorists typically work with sequents� � �where� and� are “collections”
of formulae. The “collections” found in the literature increase in complexity from
simple sets for classical logic [8], to multisets for linear logic [9], to ordered lists for
substructural logics [7], to complex tree structures for display logics [1]. A sequent
rule typically has a rule name, a (finite) number of premises, a side-condition and a
conclusion. Rules are read top-down as “if all the premises hold then the conclusion
holds”. A derivation of the judgement � � � is typically a finite tree of judgements

http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/seqms/


Machine-Checked Proof-Theory for Propositional Modal Logics 175

with root � � � where parents are obtained from children by “applying a rule”.
We use “derivation” to refer to a proof within a calculus, reserving “proof” for a
meta-theoretic proof of a theorem about the calculus.

Sequent calculi typically contain three structural rules called weakening, contrac-
tion and cut. These rules are bad for automated reasoning using backward proof-
search since they can be applied at any time. Thus for backward proof-search, we are
interested in sequent calculi which do not contain explicit rules for weakening, con-
traction and cut. The traditional way to design such calculi is to assume that sequents
are built out of multisets, omit these rules from the calculus itself, and prove that
each of these rules is admissible. That is, for each rule, we have to prove that the
conclusion sequent is derivable if each of its premises are derivable. For example,
our work does not regard the cut rules shown below as being part of the system:

� � A,� �, A � �
(cut)

� � �

�1 � A,�1 �2, A � �2(cut)
�1, �2 � �1,�2

Thus our results will be lemmata of the form: if � � A,� is (cut-free) derivable and
�, A � � is (cut-free) derivable then � � � is (cut-free) derivable.

2.2 Our Modal Logics

The sequent calculi we study are designed to reason about the meta-theory of the
basic modal logics S4, S4.3, K4De (called GTD by Mints) and S4C. Semantically,
the first three are mono-modal logics characterised, respectively, by Kripke frames
having: reflexive and transitive frames; reflexive, transitive and linear frames; and
transitive and dense frames. The logic S4C, called dynamic topological logic, is a
bimodal logic where � is captured by a reflexive and transitive binary relation R�
and where ◦ is captured by a serial and discrete linear relation R◦ with an interaction
between them of “confluency”:

∀x∀y∀z∃u.R�(x, y) & R◦(x, z) ⇒ R◦(y, u) & R�(z, u). (1)

TheHilbert-calculi for these logics are obtained by extending a traditionalHilbert-
calculus for classical propositional logicwith the axioms and inference rules as shown
below using the naming conventions given in Fig. 1:

Logic Axioms Rules
S4 K,�⊥,4,T RN�
S4.3 K,�⊥,4,T,.3 RN�
K4De (GTD) K,�⊥,4,De RN�
S4C K,�⊥,K◦,T,4,C,◦⊥ RN�, RN◦



176 J.E. Dawson et al.

Fig. 1 Various axioms and inference rules

The modal logic S4C is designed to capture the basic logic for hybrid systems [4]
where Eq. (1) captures the lower semi-continuity of the linear discrete relation with
respect to the topological interpretation of the �-connective.

2.3 Interactive Proof Assistants

Interactive proof-assistants are now a mature technology for “formalising math-
ematics” [23]. They come in many different flavours as indicated by the names of
someof themost popular onesMizar, HOL, Coq, LEGO, NuPrl, NqThm,
Isabelle, λ-Prolog, HOL-Light, LF, ELF, Twelf, with apologies
to those whose favourite proof-assistant we have omitted.

Most of the modern proof-assistants are implemented using a modern functional
programming language such as ML, which was specifically designed for the imple-
mentation of, and interaction with, such proof-assistants.

The lowest levels typically implement a typed λ-calculus with hooks provided to
allow the encoding of further logical notions such as equality of terms on top of this
base implementation. The base implementation is usually very small, comprising of
a few hundred lines of code, so that this code can be scrutinised by experts to ensure
its correctness.

Almost all aspects of proof-checking eventually compile down to a type-checking
problem using this small core, so that trust rests on strong typing and a well-
scrutinised small core of (ML) code.

Most proof-assistants also allow the user to create a proof-transcript which can
be cross-checked using other proof-assistants to guarantee correctness.

Figure 2 shows how these logical frameworks typically work. Thus given some
goal β and an expression which claims that α is implied by the conjunction of β1

up to βn , the Isabelle engine pattern-matches α and β to find a substitution θ such



Machine-Checked Proof-Theory for Propositional Modal Logics 177

Fig. 2 Backward chaining
in logical frameworks

[β1 ; β2 ; · · · ; βn] =⇒ α β

θ = match(β, α) β1θ ; β2θ ; · · · ; βnθ

that αθ = β, and then reduces the original goal β to the n subgoals β1θ, . . . ,βnθ
(note that n may be 0). We can then repeat this procedure on each βiθ until all
subgoals are proved (which requires that each final step produces no new subgoals,
i.e., has n = 0). The pattern matching required is usually higher order unification.
The important point is that the logical framework keeps track of sub-goals and the
current proof state.

The syntax of the “basic propositions” such as α, β is defined via an “object
logic”, which is a parameter. Different “object logics” can be invoked using the same
logical-framework for the task at hand.

The logical properties of “;” such as associativity or commutativity, and properties
of the “=⇒” such as classicality or linearity are determined by the “meta-logic”,
which is usually fixed for the logical framework in question.

For example, the meta-logic of Isabelle [20] is higher-order typed intuitionistic
logic with connectives =⇒ (implication), !! (∀), == (equality), and no negation,
while the object-logic is classical higher-order logic (HOL) using −→, ALL (∀), =,
EX (∃), and ∼ (not) [10]. Unlike in classical first-order logic, which has terms and
formulae, functions and predicates, in Isabelle’s meta-logic and in HOLwe just have
terms (where a formula is a term of type boolean), and functions (where a predicate
is a function whose return type is boolean). Further, functions are themselves terms,
of a function type, and “higher order” simply means that functions can accept other
functions as arguments and can produce functions as results. This allows a uniform
treatment of all these entities.

As noted, the meta-logic allows propositions such as [β1;β2] =⇒ α, which
in fact is the pretty-printer’s rendering of β1 =⇒ (β2 =⇒ α). Think of this as
meaning “from β1 and β2 one may infer α”. Since the object-logic (HOL) con-
tains the connectives & and −→ with their usual classical semantics, we find that
β1&β2 −→ α means the same (but in a classical rather than intuitionistic setting) as
β1 =⇒ (β2 =⇒ α). But to direct Isabelle to actually use an inference to reduce α
to β1θ, . . . ,βnθ as explained above, we need the first (meta-logical) form. Thus we
shall see two logical syntaxes:=⇒, !! (and ; as explained above) for the Isabelle intu-
itionistic meta-level, and −→, ALL,&, EX and ∼ for the classical HOL object-level.
Together they are referred to as Isabelle/HOL [26].



178 J.E. Dawson et al.

3 A Deep Embedding of Formulae, Sequents and Rules

Recall that the meta-logic provides us with a method for backward chaining via
expressions of the form (see Fig. 2):

[β1 ; · · · ; βn] =⇒ α.

The usual method for obtaining the power for reasoning about sequent derivations
is to use the full power of higher-order classical logic (HOL) to build the basic object-
level propositions βi .

Isabelle’s incarnation of HOL provides the usual connectives of logic such as
conjunction, disjunction, implication, negation and the higher order quantifiers. But
it also provides many powerful facilities allowing us to define new types, define
functions which accept and return other functions as arguments, and even define
infinite sets using inductive definitions [26].

For example, the following HOL expressions would capture the usual inductive
definition of the set even_nat of even natural numbers by encoding the facts that
“zero is even, and if n is even then so is n + 2”, where : stands for set membership∈:

0 : even_nat

n : even_nat ==> n + 2 : even_nat

Most proof-assistants will automatically generate an induction principle from
a given inductive definition. For example, Isabelle will automatically generate the
usual induction principle which states that we can prove a property P holds of all
even naturals if we can show that P(0) holds and we can show that P(n) implies
P(n + 2). An implicit assumption which facilitates such induction principles is that
the inductive definitions are the only way to construct its members. Thus, if m is
an even natural, then it is either 0, or is of the form n + 2 for some (“smaller”)
even natural n. Together, they form the base case and the inductive step of an
inductive definition that defines the set even_nat as the smallest set of terms
0, 0 + 2, 0 + 2 + 2, . . .. It is implicit in these definitions that an inference step such
asn : even_nat =⇒ n + 2 : even_natmay be applied only finitelymany times.

We previously said that we shall see two syntaxes: a meta-level intuitionistic logic
and an object-level classical HOL syntax. Since we wish to reason about sequent
calculi for modal logics, we now need to encode a third logical syntax: namely the
syntax of modal sequents.

To encode sequent calculus into HOL we first encode terms for capturing the
grammar for recognising formulae as below where comments are enclosed in (*
and *):

datatype formula

= FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* prim prop *)



Machine-Checked Proof-Theory for Propositional Modal Logics 179

Weuse three type constructorsFC,FV and PPwhich encode, respectively, formula
connectives, formula variables, and atomic formulae (primitive propositions) asHOL
terms. Each of them takes one string argument which is simply the string we want to
use for that construction. The formula connective constructor FC also accepts a list of
formulae, which constitute its subformulae. For example, the term FC “&&” [FV
“A”, PP “q”] encodes A ∧ q where we use “&&” as the string for conjunction
of classical logic. Sincewewant to encodemodal logics, we require only the classical
connectives, plus three unary modalities FC “Box” [.] for �. and FC “Dia”
[.] for ♦. and FC “Circ” [.] for ◦.

Isabelle’s HOL allows us to form sets and multisets of objects of an arbitrary
type, so the HOL expressions formula set and formula multiset capture
the types of modal formula sets and modal formula multisets.

Using these types we can build a sequent type using a constructor Sequent:

datatype ’a sequent = Sequent "’a multiset" "’a multiset"

Here ’a is a type variable and the datatype ’a sequent demands that the con-
structor Sequent is followed by two multisets of items of type ’a. For example,
the datatype formula sequentwould require our sequents to be constructed out
of multisets of formulae (of type formula). An alternative infix notation for the
constructor Sequent is � or |-.

We define the type for our sequent rules by the type definition:

types ’a psc = "’a list * ’a" (* single rule *)

Such a sequent rule is a pair (ps, c) of a list of items ps (the premises) and a single
item c (the conclusion): the items are of some type ’a which is a parameter. We
shall instantiate the type variable ’a with the type formula sequent to obtain
sequents built from two multisets of modal formulae.

Note that in common parlance we may say that (ps, c) is a rule meaning that
ps and c may be instantiated in any way. Such a “rule” is a schema which can
be instantiated to give infinitely many rule instances. When describing the Isabelle
implementation we may refer to a specific pair (ps, c) as a “rule”, although in the
context of logical rules, this could be better described as a specific instance of a rule
schema; where we describe our Isabelle theorems involving “sets of rules”, these
will usually be the infinite sets of instances of a finite set of rule schemata.

Thus, we can use the HOL type-declaration below to declare that rls is a set of
sequent rules, where each element of rls is a pair (ps, c) whose first component ps
is a list of its premise sequents, and whose second component c is its conclusion
sequent:

rls :: formula sequent psc set



180 J.E. Dawson et al.

Each sequent consists of two multisets of items of type formula, and inductively
define the set rls by giving a finite collection of rule schemata, each denoting an
infinite set of instances, which belong to this set. For example, the traditional rule
(� ∧) for introducing a conjunction into the right hand side of a sequent, as shown
below, can be given by the encoding below it where we use the string && to encode
∧, “+” for multiset union, and {#A#} to denote a singleton multiset:

� � A,� � � B,�
(� ∧)

� � A ∧ B,�

( [ G � {#A#} + D , G � {#B#} + D ], G � {#A && B#} + D ) ∈ rls

When this clause appears in the definition of rls, it means that this sequent rule is
in rls for each possible value of A, B, G, D of the appropriate type.

Having encoded the notions of formulae and sequents into HOL, we are now in
a position to encode the notion of derivability and derivations. As we shall explain
shortly, the notion of derivability and derivations are subtly different in the following
senses:

Derivability we write inductively defined predicates in HOL to capture the set of
sequents derivable from a given, possibly empty, set of potential leaf sequents,
using a given set of rules defined using the encoding of formulae and sequents
described above. The base case will capture that every given leaf is vacuously
derivable, and the inductive case will capture that a sequent c is derivable if
the rule set contains a rule (ps, c) where each of the premises in ps is itself
derivable. We do not construct an actual derivation, as such, but just ensure that
there exists a sequence of sequent rule applications which can take us from the
given leaf sequents to the given end-sequent.We therefore use the word “implicit”
to describe such derivations.

Derivation (trees) we create a new object type called dertree which will allow
us to encode an explicit tree as a HOL term to represent an actual derivation of
the given sequent from the given leaves using the given set of rules. We therefore
use the word “explicit” to describe such derivations.

4 Implicit and Explicit Derivations

In Sect. 4.1, we give an inductively defined predicate derrec for capturing the set of
all recursively derivable sequents. In Sect. 4.2, we describe the principle of induction
that is automatically generated by Isabelle/HOL from derrec and describe how it
can be used to prove an arbitrary property P of such sequents. In Sect. 4.3,we describe
our other implicit derivability predicates in less detail. In Sect. 4.4 we describe how
we encoded explicit derivation trees. In Sect. 4.5 we describe how we can move to
and fro between these two notions.



Machine-Checked Proof-Theory for Propositional Modal Logics 181

4.1 Defining Derivability (Implicitly) in Isabelle

We are now in a position to encode the set derrec of “recursively derivable
sequents” given a set plvs of (potential) leaf sequents and a given set rls of
sequent rules. The set derrec rls plvs is defined inductively as shown below
(the Isabelle code is precisely as it appears in the Isabelle theory file). It defines simul-
taneously the predicates derrec (that a single sequent is derivable) and dersrec
(that all sequents in a list are derivable).

Definition 4.1 (derrec, dersrec) derrec rls plvs is the set of end-
sequents which are derivable from the set plvs of potential leaves using the set
rls of sequent rules.

dersrec rls plvs is the set of lists of endsequents which are all derivable
from potential leaves plvs using sequent rules rls:

consts (* these are type declarations *)

derrec :: "’a psc set => ’a set => ’a set"

dersrec :: "’a psc set => ’a set => ’a list set"

inductive "derrec rls plvs" "dersrec rls plvs"

intrs (* the clauses defining members of these two

mutually defined inductive sets *)

dpI "eseq : plvs ==> eseq : derrec rls plvs"

derI "[| (ps, eseq) : rls ; ps : dersrec rls plvs |]

==> eseq : derrec rls plvs"

dlNil "[] : dersrec rls plvs"

dlCons "[| seq : derrec rls plvs ;

seqs : dersrec rls plvs |]

==> seq # seqs : dersrec rls plvs"

We now explain the Isabelle code and why it achieves the meanings for derrec
and dersrec given in the definition. These are two mutually inductively defined
sets each of which depends on the other. The type declarations mean that where
plvs is a set of (potential) leaf sequents and rls is a set of “rules”, instances of
(premise list, conclusion) pairs, then derrec rls plvs is a set of sequents. A
sequent is in derrec rls plvs if and only if finite repeated application of the
clauses of the definition require it to be, and likewise dersrec rls plvs. We
now describe the four clauses, each of which is preceded by its name:

dpI The base case of the inductive definition of derrec captures that each initial
sequent eseq from plvs is itself (vacuously) derivable from the initial leaf set
plvs using the rules rls. The : stands for set membership ∈.

derI If (ps, eseq) is the list of premises and the conclusion of a rule, and the
premise list ps satisfies dersrec rls plvs, meaning that the premises ps
are all derivable (see below), then the conclusion eseq is derivable.



182 J.E. Dawson et al.

dlNil An empty list of sequents satisfies dersrec rls plvs
dlCons If seq satisfies derrec rls plvs and the list seqs satisfies

dersrec rls plvs then the list seq # seqs satisfies dersrec rls
plvs. The symbol # denotes appending an item seq to the front of a list seqs
to form a longer list.

Note that the clauses dlNil and dlCons give us that a list is in dersrec rls
plvs if all its members are in derrec rls plvs; and since these clauses give
all members of dersrec rls plvs, this “if” is in fact “if and only if”.

In fact the actual Isabelle/HOL code is more general, in that the things being
derived are of a parametric type ’a and need not be sequents, but could be formulae
or other constructs, and a “rule” merely consists of a list of “premises” and a “con-
clusion”. We describe it in terms of sequents, here, merely to place it in the context
of our cut-admissibility proofs.

4.2 Inductive Proofs via Automated Inductive Principles

We use inductive definitions because correct induction principles are generated auto-
matically by Isabelle from the inductive definition of derrec. A heavily simplified
version of the induction principle automatically generated for proving an arbitrary
property P by the definition of the inductive set derrec is shown below using
meta-level intuitionistic connectives (==>, !!, ;) and object-level classical HOL
connectives (ALL, -->, :).

1 !! x .!! P.

2 [| x : derrec rls plvs ;
3 (ALL c. c : plvs −→ P(c)) ;
4 (ALL c. ALL ps. (ps,c) : rls −→ (ALL y : (set ps). P(y)) −→ P(c))

5 |] ==> P(x)

An explanation is:

1 for all sequents x and all properties P
2 if x is derivable from (potential) leaves plvs using rules rls, and
3 P holds for every sequent c in plvs, and
4 for each rule (ps, c), P of each premise in ps implies P of its conclusion c,
5 then P holds of x

Wecan visualise this induction principle as belowwherewe replace themeta-level
==> by a horizontal line and replace the meta-level ;with juxtaposition of premises
and replace : by set membership ∈:

x ∈ derrec rls plvs ∀c ∈ plvs.P c ∀(ps, c) ∈ rls.(∀p in ps.P p) ⇒ P c

P x



Machine-Checked Proof-Theory for Propositional Modal Logics 183

This is an induction principle which we use often in proof-theory: prove that
some property holds of the leaves of a derivation, and prove that the property is
preserved from the premises to the conclusion of each rule. For example, consider
the standard translation from sequents of LK to formulae given by τ (A1, . . . , An �
B1, . . . , Bm) = A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm . We typically use this translation
to argue that all derivable sequents are valid in the semantics of first-order logic.
The proof proceeds by showing that the translation of the leaves of a derivation
are all valid, and showing that if the translations of the premises are valid then the
translations of the conclusion are valid, for every rule. Note that no explicit derivation
is created by this induction principle since it uses derivability (implicit derivations).

Thus this induction principle is really a lemma, but our formal encoding of it
requires one more definition.

Definition 4.2 For all sets A and all unary predicates P, the property Ball A P
holds iff every member x of A satisfies P:

Ball_def: "Ball A P == ALL x. x : A --> P x"

The following is the formal inductive principle described informally above which
is generated by Isabelle/HOL, automatically, using “?” to show arguments that are
implicitly universally quantified.

Lemma 4.1 (derrec-induction) For every sequent x, every rule set rls, every list
of leaves plvs, and every property P, if

(a) x is derivable from potential leaves plvs using the rules in rls, and
(b) every sequent c in plvs obeys P, and
(c) for every sequent c and premise list ps if (ps, c) is a rule in rls, and each

premise in ps is derivable from potential leaves plvs using rules in rls and
every premise from ps obeys P then c obeys P

then x obeys P:

standard drs.inductr:

"[| ?x : derrec ?rls ?plvs ;

!!c. c : ?plvs ==> ?P c ;

!!c ps. [| (ps, c) : ?rls ;

ps : dersrec ?rls ?plvs ;

Ball (set ps) ?P |] ==> ?P c

|] ==> ?P ?x"

Proof Isabelle automatically generates an induction principle (not shown) from the
definition of derrec. Since the definition also involves defining dersrec (which
expresses that a list of items are all derivable), the automatically generated principle
involves a property P1 of derivable sequents and a property P2 of lists of derivable
sequents. Naturally we choose property P2 of a list to be that all members of the list
satisfy P1. That instantiation gives us the lemma. �



184 J.E. Dawson et al.

Intuitively, Isabelle converts object-level classical implications (−→) into meta-
level intuitionistic implications (==>), allowing us to use the lemma itself for sub-
goaling.

Using these inductive principleswe proved the following lemmaabout derivability
using Isabelle, where the question marks indicate free-variables which are implicitly
universally quantified:

Lemma 4.2 If each premise in ps is derivable from leaves plvs using rules rls,
and eseq is derivable from ps using rls, then eseq is derivable from plvs using
rls:

[|?ps ⊆ derrec ?rls ?plvs ; ?eseq∈ derrec ?rls ?ps|]
=⇒ ?eseq ∈ derrec ?rls ?plvs

4.3 Further Implicit Derivability Predicates

We briefly describe the remaining functions we used to describe derivability.

Definition 4.3 (derivable rule) For a list of sequents lvs and a sequent eseq,
(lvs, eseq) is a derivable rulewith respect to the rule set rls ifwe can construct
an implicit derivation using rules in rls whose leaves are exactly the sequents lvs
(in the same order), and whose endsequent is eseq.

We formalise this notion using functions derl (for the derivable rules) and
dersl (an auxiliary function).

Definition 4.4 (derl, dersl) For a list of sequents lvs and a sequent eseq,
the pair (lvs, eseq) is in derl rls if it is a derivable rule with respect to
rls.

For lists of sequents lvs and eseqs, the pair (lvs, eseqs) is in dersl
rls if there is a sequence of rule instances from rls which take us from (exactly)
the list of leaf sequents lvs to the list of endsequents eseqs. We envisage a number
of implicit derivations drawn side-by-side, whose endsequents are the members of
the list eseqs.

types ’a psc = "’a list * ’a" (* single step inference *)

consts (* these are type definitions *)

derl :: "’a psc set => ’a psc set"

dersl :: "’a psc set => (’a list * ’a list) set"

inductive "derl rls" "dersl rls"

intrs

asmI "([eseq], eseq) : derl rls"



Machine-Checked Proof-Theory for Propositional Modal Logics 185

dtderI "[| (lvs, eseq) : rls ; (lvss, lvs) : dersl rls |]

==> (lvss, eseq) : derl rls"

dtNil "([], []) : dersl rls"

dtCons "[| (lvs, eseq) : derl rls ; (lvss, eseqs) : dersl rls|]

==> (lvs @ lvss, eseq # eseqs) : dersl rls"

This formalises the notion of a derivable rule: derl rls is the set of derivable
rules with respect to rls.

Where an inference rule ’a psc is a list of premises ps and a conclusion c,
a “derived rule” is of the same type. We define derl rls to be the set of rules
derivable from the rule set rls. This, like derrec, was defined as an induc-
tive set. So (lvs,eseq) ∈ derl rls reflects the shape of an implicit deriva-
tion tree: lvs is a list of exactly the leaves used, in the correct order, whereas
eseq ∈ derrec rls plvs holds even if the set of (potential) leaves plvs con-
tains extra sequents.

We note that the definition means that ([c], c) ∈ derl rls: that is, the “trivial”
derived rules are included. To define derl rls to exclude the “trivial” derived
rules would complicate results such as Theorem 4.1.

The formal Isabelle definitions of derl used also the function dersl, which
represents several implicit derivation trees side-by-side:

(lvss,eseqs) ∈ dersl rls when the list lvss is the concatenation of their
lists of leaves, and eseqs is the list of their endsequents.

Theorem 4.1 With respect to some given set of rules rls:

(a) the items derivable from a set plvs of leaves are the items derivable from the
set of sequents derivable from plvs:

derrec_trans_eq:

"derrec ?rls ?plvs = derrec ?rls (derrec ?rls ?plvs)"

(b) derivability (whether defined using derrec or derl) using the set of derived
rules is equivalent to derivability using the original set of rules:

derrec_derl_deriv_eq :

"derrec (derl ?rls) ?plvs = derrec ?rls ?plvs"

derl_deriv_eq : "derl (derl ?rls) = derl ?rls"

Finally, we can define the notion of an admissible rule.

Definition 4.5 (admissible, adm) A rule (ps, c) is admissible with respect to a
rule set rls if, assuming its premises (leaves) ps are derivable from the empty set
{} of leaves using rules from rls, then so is its conclusion (endsequent) c:



186 J.E. Dawson et al.

consts (* this is a type declaration *)

adm :: "’a psc set => ’a psc set"

inductive "adm rls"

intrs (* inductive defn of the set of admissible rules *)

I "(ps : dersrec rls {} --> c : derrec rls {})

==> (ps, c) : adm rls"

Using Definition 4.5 we obtained the following four results, which were surpris-
ingly tricky since adm is not monotonic in its argument rls, where <= encodes ⊆.

Theorem 4.2 With respect to some given set of rules rls:

(a) every derivable rule is admissible;
(b) the admissible rules are closed under admissibility;
(c) the admissible rules are closed under admissibility after derivability;
(d) the admissible rules are closed under derivability.

"derl ?rls <= adm ?rls" "adm (adm ?rls) = adm ?rls"

"adm (derl ?rls) = adm ?rls" "derl (adm ?rls) = adm ?rls"

4.4 Explicit Derivation Trees: A Deep Embedding
of Derivations

Themain advantage of themethod outlined in the previous section was that there was
no concrete representation of a derivation. That is, we relied on the proof-assistant
to perform pattern-matching and rule instantiations in an appropriate way, so that all
we needed was to capture the idea that derivations began with leaves and ended with
a single end-sequent.

When we reason about cut-elimination, often we are required to perform trans-
formations on explicit derivations. We therefore need a representation of such trees
inside our encoding. In previous work [6], we described such an encoding using the
following datatype:

datatype seq dertree = Der seq (seq dertree list)

| Unf seq

Thedeclaration states that a derivation tree can either be anUnfinished (unproved)
leaf sequent built using the constructor Unf, or it can be a pair (seq, dts)
consisting of a conclusion sequent seq and a list dts of (sub-)derivation trees
bound together using the constructor Der.



Machine-Checked Proof-Theory for Propositional Modal Logics 187

Definition 4.6 Given an object dt of type dertree, conclDT dt returns the
first argument of the constructorsDer and Unf as the conclusion (endsequent) of dt.

For a tree dt which is not an Unfinished leaf, nextUp dt returns the list of
trees whose conclusions are the premises of the last rule of dt, and botRule dt
returns the bottom rule (premise list and conclusion) of dt.

primrec

conclDT_Der: "conclDT (Der seq dts) = seq"

conclDT_Unf: "conclDT (Unf seq) = seq"

nextUp_Der: "nextUp (Der seq dts) = dts"

botRule_Der: "botRule (Der seq dts) = (map conclDT dts, seq)"

Here, map conclDT dts applies conclDT to each member of the list dts
of derivation trees and hence returns the premises of the bottom rule.

Our use of dertee can be seen as an even deeper embedding of proof-theory into
Isabelle/HOL since it utilises the proof-assistant to describe an explicit derivation
rather than the implicit existence of such a derivation as encoded by our derivability
predicates from the previous section.

4.5 To and Fro Between Explicit and Implicit Derivations

Omitting details now, suppose we define valid rls dt to hold when derivation
tree dt correctly uses rules from rls only and has no Unfinished leaves: that is, the
leaves of dt are all instances of the conclusions of rules which have no premises (i.e.,
such as �, A � A,�). We linked our two approaches for specifying the derivable
sequents by proving:

Lemma 4.3 If derivation tree dt is valid w.r.t. the rules rls then its endsequent is
(implicitly) derivable from the empty set of leaves using rls:

valid_derrec:

"valid ?rls ?dt ==> conclDT ?dt : derrec ?rls {}"

Lemma 4.4 If the end-sequent eseq is (implicitly) derivable from the empty set {}
of leaves using rules rls then there exists an explicit derivation tree dt which is
valid w.r.t. rls, whose end-sequent is eseq:

derrec_valid:

"?eseq : derrec ?rls {}

==> EX dt. valid ?rls dt & conclDT dt = ?eseq"



188 J.E. Dawson et al.

Thus we now know that the implicit derivations captured by our derivability
predicate derrec can be faithfully captured using the deeper embedding using
explicit dertree derivation trees. Indeed, the lemmas allow us to move freely
between the two embeddings at will to omit or include details as required [6].

5 Subformula Relation, Rule Skeletons and Extensions
with Contexts

Our generalised definition of formulae allows a single definition of the immediate
(proper) subformula relation, ipsubfml, which will not need to be changed when
new connectives are added.

Definition 5.1 If a formula P is in the set obtained from the list of formulae Ps
then P is a proper subformula of any larger formula FC conn Ps created using a
formula-connective conn and Ps:

consts (* this is a type-declaration for function ipsubfml *)

ipsubfml :: "(formula * formula) set"

inductive "ipsubfml" (* proper immediate subformula relation *)

intrs

ipsI "P : set Ps ==> (P, FC conn Ps) : ipsubfml"

For example, (f, Box f) : ipsubfml because Box f is the abbrevia-
tion Box f == FC “Box” [f] where conn is the string “Box” and Ps is the
formula-list [f].

In Sect. 3 we showed that the traditional ∧R rule from LK could be encoded as
below using a sequent consisting of a pair (�,�) of multisets of formulae, written
� � �, where multiset braces are written as {# and #} and multiset union is written
as +:

( [ G � {#A#} + D , G � {#B#} + D ], G � {#A && B#} + D ) ∈ rls

The essence of the rule is more succinctly described by the rule skeleton Rs shown
below left. We now describe how we can uniformly extend Rs with the context
X � Y to obtain the extended rule Re shown below at right:

Rs = � A � B

� A ∧ B
Re = X � Y, A X � Y, B

X � Y, A ∧ B

Definition 5.2 If the sequent seqXY is the pair (X, Y), representing the sequent
X � Y , and the sequent seqUV is the pair (U, V), representing the sequent U �
V , then extend seqUV seqXY is the sequent (X+U, Y+V), representing the
sequent X,U � Y, V since seqXY + seqUV is (X+U, Y+V) by the pointwise



Machine-Checked Proof-Theory for Propositional Modal Logics 189

extension of + to pairs of multisets and the function pscmap allows us to modify a
rule (ps, c) by applying an arbitrary function f to each of its components:

consts (* this is a type declaration *)

extend :: "’a sequent => ’a sequent => ’a sequent"

extrs :: "’a sequent psc set => ’a sequent psc set"

defs

extend_def : "extend seqXY seqUV == seqXY + seqUV"

pscmap_def : "pscmap f (ps, c) = (map f ps, f c)"

We can now take a set rules of rule skeletons and produce their uniform exten-
sion with arbitrary context flr (for “formulae left and right”) representing X � Y .

Definition 5.3 (extrs) Given a rule set rules, the inductively defined set extrs
rules is the set of rules consisting of all uniform extensions of all rules in rules:

inductive "extrs rules"

intrs

I "psc : rules ==> pscmap (extend flr) psc = epsc

==> epsc : extrs rules"

For example, we can now use functions extend and pscmap so that

extend (X � Y ) (U � V ) = (X +U ) � (Y + V )

Re = pscmap (extend (X � Y )) Rs

Thuspscmap uniformly extends the skeleton provided byRs with arbitrary contexts
X and Y on respective sides to encode Re using multiset addition +. So extrs S
means the set of all such extensions of all rules in the set S.

Then we define lksss, the set of rules for Gentzen’s LK; we show just a selec-
tion. The rules below are the (skeletons of some of the) traditional invertible logical
introduction rules from LK (without any context):

� A � B

� A ∧ B

� A, B

� A ∨ B

B � � A

A → B �
A, B �
A ∧ B �

A � B �
A ∨ B �

A � B

� A → B

Using && for ∧, v for ∨ and -- for ¬, we can encode the logical introduction rules
as shown below, to obtain the set lksir of LK right introduction rule skeletons,
where {#} rather than {##} is the empty-multiset:

Definition 5.4 (lksir) lksir is the set of right logical introduction rules, in the
form without any context and using the form which is invertible, as shown above.



190 J.E. Dawson et al.

inductive "lksir" (* LK right introduction rule skeletons *)

intrs

andr

"([{#} |- {#A#}, {#} |- {#B#}], {#} |- {#A && B#}) : lksir"

orr "([{#} |- {#A#} + {#B#}], {#} |- {#A v B#}) : lksir"

negr "([{#A#} |- {#}], {#} |- {#--A#}) : lksir"

impr "([{#A#} |- {#B#}], {#} |- {#A -> B#}) : lksir"

Similar rules lksil (not shown) give the skeletons of the traditional invertible
rules for left-introduction. By adding the initial sequent “axiom” A � A with an
empty list [] of premises below we obtain the set of “unextended” rules lksne for
LK:

Definition 5.5 (lksne) lksne is the set of rules, not extended by any arbitrary
context, without structural rules, for LK.

inductive "lksne" (* LK rule skeletons before being extended *)

intrs

axiom "([], {#A#} |- {#A#}) : lksne"

ilI "(ps, c) : lksil ==> (ps, c) : lksne"

irI "(ps, c) : lksir ==> (ps, c) : lksne"

We can now form the full extended set lksss of rules for LK, by extending each
rule skeleton psc from lksne by an arbitrary pair (X,Y ) of contexts flr (for
formulae left and right) regarded as a sequent X � Y :

Definition 5.6 (lksss) lksss is the set of rules, extended by arbitrary contexts,
without structural rules, for LK.

inductive "lksss"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

Now, we can encode the skeleton shown below right of the traditional K-rule
shown below left:

� � A
(K )

�,�� � �A,�
� � A

(SK )�� � �A

Definition 5.7 (SK) SK is the set of instances of the skeleton of the K rule of modal
logic

inductive "SK"

intrs

I "([X |- {#A#}], mset_map Box X |- {#Box A#}) : SK"



Machine-Checked Proof-Theory for Propositional Modal Logics 191

Note that X is a multiset, and �X is informal notation for applying � to each
member of X ; this is implemented using mset_map, used in the encoded SK rule.
Using a similar notation we write �Bk for (�B)k , the multiset containing n copies
of �B. Development of mset_map and relevant lemmas is in the source files
Multiset_no_le.{thy,ML}.

By extending the skeletons of the LK rules and extending only the conclusion of
the skeleton (SK ) of the K rule above, we could obtain an encoding of the traditional
sequent calculus for the modal logic K:

inductive "lksK"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksK"

K "(ps, c) : SK ==> (ps, extend flr c) : lksK"

Since we actually handle more complex logics, but not K as such, we have not
made this a formal definition.

Note that most of these definitions use the Isabelle feature for inductively defined
sets, even though many of them are not actually inductive (i.e., recursive). We do this
because Isabelle automatically generates useful theorems for them, including rules
which help us prove or use an expression such as rl : lksne.

6 The Weakening, Inversion and Contraction Properties

We now encode the weakening, inversion and contraction as properties.

Definition 6.1 A set rls of rules satisfies the weakening admissibility property if,
whenever a sequent X � Y is derivable, any larger sequent (X � Y ) + (U � V ) =
(X,U � Y, V ) is derivable:

consts (* type for function wk_adm using type variable ’a *)

wk_adm :: "’a sequent psc set => bool"

wk_adm_def : "wk_adm rls ==

ALL XY. XY : derrec rls {} -->

(ALL UV. XY + UV : derrec rls {})"

Here, the variablerls is forced to be a set of sequent rules by the type of wk_adm,
and thence the variables XY and UV will be forced to be of type sequent by the
typing restrictions on the inputs to derrec.

Definition 6.2 (inv_rl) A rule (ps, c) is invertible with respect to a set rls
of rules if, whenever c is derivable using rls, so is every member of ps:



192 J.E. Dawson et al.

inv_rl.simps:

"inv_rl rls (ps, c) =

(c : derrec rls {} --> ps : dersrec rls {})"

Here, the definition of dersrec hides a universal quantifier over the members
of the list ps: see Definition 4.1.

To encode contraction,we utilise an axiomatic type class for sequents, described in
more detail elsewhere [6]. Thuswe canwrite (A � 0) + (A � 0) ≤ (X � Y ) tomean
that the multiset X contains at least two copies of A and write (X � Y ) − (A � 0)
for the sequent obtained by deleting one of these copies from X . Similarly we can
write (0 � A) + (0 � A) ≤ (X � Y ) to mean that the multiset Y contains at least
two copies of A and write (X � Y ) − (0 � A) for the sequent obtained by deleting
one of these copies from Y . More generally, we can writeUV +UV ≤ XY to assert
that the sequent XY −UV can be obtained from XY by contracting the contents of
the sequent UV . Thus, if the multiset of all formulae in UV (on both sides) is the
singleton multiset {#A#} we know that the skeleton of the relevant contraction rule
is one of:

A, A �
A �

� A, A

� A

Definition 6.3 A set rls of rules satisfies the contraction admissibility property
for the formula A if, whenever a derivable sequent X � Y satisfies (A � 0) + (A �
0) ≤ (X � Y ), the sequent (X � Y ) − (A � 0) is derivable, and likewise for 0 � A.

ctr_adm_def : "ctr_adm rls A ==

ALL UV. ms_of_seq UV = {#A#} -->

(ALL XY. XY : derrec rls {} --> UV + UV <= XY -->

XY - UV : derrec rls {})"

The first condition ms_of_seq As = {#?A#}, asserts that the formulae on
both sides of the sequent As form the singleton multiset {#?A#}, thus capturing
that the contraction can happen on either side of the turnstile.

7 Generalising Cut-Admissibility Proofs

We now show how our previous work [6] on multicut admissibility for LK can
be formulated to make it as general as possible. We first give details of induction
principles and lemmata for “structural” induction over implicit derivations obtained
via our derivability predicates and then describe their analogues for explicit derivation
trees.



Machine-Checked Proof-Theory for Propositional Modal Logics 193

7.1 A General Framework for Reasoning About Implicit
Derivations

The initial sequents of our sequent calculi will be allowed to apply to arbitrary for-
mulae, not only atoms, and this excludes the possibility of proving height-preserving
invertibility. This, and also the form of our contraction rule, which allows just
one contraction per derivation step, prevents us from proving a height-preserving
contraction-admissibility result. For proofs of contraction-admissibility, without
height-preservation, an induction principle which also involves the size or structure
of the relevant formula is required. Furthermore, proving cut-admissibility requires
induction on both size of formula and derivation height (or a proxy for it). We there-
fore require a double induction on height (or proxy) and formula size (as measured
by any well-founded subformula relation).

Our first induction principle could be seen as using a lexicographic ordering (n,m)

where n is the sub-formula relation and m is the (inverse of the) distance from the
end-sequent in the original derivation.

We use a relation sub on formulae: it could be any relation on formulae, but
we use the (immediate) sub-formula relation. To put our general results in context,
we may refer to sub as a “sub-formula relation”. In general we want sub to be
well-founded; more generally our theorems will apply to the “well-founded part” of
sub.

In regard to the height measure, or distance from the original end-sequent, our
first induction principle, instead of assuming that a property holds for all derivations
of lesser height, merely assumes that it holds for sub-derivations.

Definition 7.1 (wfp) For a binary relation sub, a formula A is in wfp sub,
the “well-founded part” of sub, iff there is not any infinite descending chain
. . . , A2, A1, A such that (A1, A), (A2, A1), . . . are all in sub.

Definition 7.2 (gen_step) For a formula A, a property P, a subformula relation
sub, a set of sequents derivs, and a particular rule r = (ps, c), where ps is
a list of premises and c is the conclusion of r:

gen_step P A sub derivs r means
If

(a) forall A’ such that (A’, A) ∈ sub and all sequents s ∈ derivs the
property P A’ s holds, and

(b) for every premise p ∈ ps both p ∈ derivs and P A p holds, and
(c) c ∈ derivs

then P A c holds.



194 J.E. Dawson et al.

gen_step_def :

"gen_step P A sub derivs (ps, c) =

( (ALL A’. (A’, A) : sub --> Ball derivs (P A’))

--> (ALL p : set ps. p : derivs & P A p) --> c : derivs

--> P A c)"

In this text, ALL p : set psmeans ∀p ∈ ps. Typically derivs will be the set
of sequents derivable using a given set rls of rules, and a given set of leaves plvs,
so derivs = derrec rls plvs.

Intuitively, given afixed ruler = (ps, c), a fixed formulaA, a fixedpropertyP
and a fixed relation sub, Definition 7.2(a) formalises for any derivable sequent s that
(A, c) is “less than” (A’, s) if (A’, A) ∈ sub. Definition 7.2(b) formalises
for any premise p from ps that (A, p) is “less than”(A, c) if p is a premise of c
in the rule r. Thus, it can be seen as a particular instance of a lexicographic ordering
on formula-sequent pairs where (A1, s1) is “less than” (A2, s2) if (A1, A2) ∈ sub
or, if A1 = A2 and s2 is a premise of c via the particular rule (instance) r = (ps, c).

Alternatively, by Definition 7.2, gen_step describes the situation where if a
property P is true generally for sub-formulae A′, and for the premises of a particular
rule then the property holds for the conclusion of that rule.

The main theorem, named gen_step_lem and given as Theorem 7.1 below,
states that if this step case can be proved for all possible rule instances then P holds
for all cases.

Theorem 7.1 (gen_step_lem) For a formula A, a property P, a subformula
relation sub, a sequent S and a set of rules rls: If

(a) A is in the well-founded part of the subformula relation sub, and
(b) for all formulae A’ and all rules r in rls, the induction step condition

gen_step P A’ sub (derrec rls {}) r holds, and
(c) sequent S is rls-derivable

then P A S holds.

gen_step_lem:

"[| ?A : wfp ?sub ;

ALL A’. ALL r : ?rules.

gen_step ?P A’ ?sub (derrec ?rules {}) r ;

?S : derrec ?rules {} |]

==> ?P ?A ?S"

Proof We combine the principle of well-founded induction, applied to the formula A
and the well-founded subfomula relation sub, with the induction principle derrec-
induction for derrec shown as Lemma 4.1, which is provided by Isabelle as a
consequence of the inductive definition of derrec. �



Machine-Checked Proof-Theory for Propositional Modal Logics 195

7.2 Induction for Two-Premise Subtrees

We now turn to the induction principle used for deriving cut-admissibility, or indeed
any property P of two-premise implicit derivations. In the diagram below, to prove
P(cl, cr), for example, to prove that a cut between cl and cr is admissible, the
induction assumption is that P(psli , cr) and P(cl, psr j ) hold for all i and j :

psl1 . . . psln ρl
cl

psr1 . . . psrm ρrcr (cut ?)C
A proof of P(cl, cr) using this induction assumption inevitably proceeds according
to what the rules ρl and ρr are, and further, for a cut-formula A, whether it is principal
in either or both of ρl and ρr . But our proofs also use induction on the size of the
cut-formula, or, more generally, on some well-founded relation on formulae. So we
actually consider a property P A (cl, cr) where A is the cut-formula, psl are the
premises psl1 . . . psln of rule ρl , and cl is its conclusion, and analogously for ρr
and cr . In proving P A (cl, cr), in addition to the inductive assumption above, we
assume that P A′ (da, db) holds generally for (A′, A) ∈ sub and all sequents da
and db which are “rls-derivable”, i.e., derivable from the empty set of leaves using
rules from rls. These intuitions give the following definition gen_step2sr of a
condition which permits one step of the inductive proof:

Definition 7.3 (gen_step2sr) For a formula A, a property P, a subformula
relation sub, a set of rules rls, sequent rules (psl, cl), and (psr, cr):
gen_step2sr P A sub rls ((psl, cl), (psr, cr)) means:
If

(a) P A’ (da, db) holds for all subformulae A’ of A and all rls-derivable
sequents da and db, and

(b) for each premise pa in psl, pa is rls-derivable and P A (pa, cr) holds,
and

(c) for each premise pb in psr, pb is rls-derivable and P A (cl, pb)
holds, and

(d) cl and cr are rls-derivable,

then P A (cl, cr) holds.

gen_step2sr_simp :

"gen_step2sr P A sub rls ((psl, cl), (psr, cr)) =

( (ALL A’. (A’, A) : sub -->

(ALL da:derrec rls {}.

ALL db:derrec rls {}. P A’ (da, db)))

-->

(ALL pa:set psl. pa : derrec rls {} & P A (pa, cr)) -->

(ALL pb:set psr. pb : derrec rls {} & P A (cl, pb)) -->

cl : derrec rls {} --> cr : derrec rls {}

--> P A (cl, cr) )"



196 J.E. Dawson et al.

The main theorem gen_step2sr_lem below for proving an arbitrary property
P states that if the step of the inductive proof goes through in all cases, i.e., for
all possible final rule instances ρl = (psl, cl) on the left and ρr = (psr, cr) on the
right, then P holds for all formulae A and sequents cl and cr on the left and right
respectively.

Theorem 7.2 (gen_step2sr_lem) If A is in the well-founded part of the
subformula relation; sequents seql and seqr are rls-derivable ; and for all
formulae A’, and all rules (psl, cl) and (psr, cr), our induction step con-
ditiongen_step2sr P A’ sub rls ((psl, cl), (psr, cr)) holds,
then P A (seql, seqr) also holds.

gen_step2sr_lem :

"[| ?A : wfp ?sub ;

?seql : derrec ?rls {} ; ?seqr : derrec ?rls {} ;

ALL A’. ALL (psl, cl):?rls. ALL (psr, cr):?rls.

gen_step2sr ?P A’ ?sub rls ((psl, cl), (psr, cr)) |]

==> ?P ?A (?seql, ?seqr)"

Proof As with Lemma 7.1, the proof of this involves combining induction princi-
ples available to us. It is more complex than Lemma 7.1 because we had to deal
with the well-founded induction on the sub-formula relation and derrec-induction
(Lemma 4.1) on the two implicit derivations which provide the two premises of
the cut. �

This enables us to split up an inductive proof, by showing, separately, that
gen_step2sr holds for particular cases of the final rules(psl, cl) and (psr,
cr) on each side. In some cases these results apply generally to different calculi.

For example, the inductive step for the casewhere the cut-formula A is parametric,
not principal, on the left is encapsulated in the following theorem where prop2
car ?erls ?A (?cl, ?cr), which is equivalent to (?cl, ?cr) : car
?erls ?A, means that the conclusion of a cut on A with premises cl and cr is
derivable using rules erls. Below, :# stands for membership of a multiset, and ˜
stands for classical negation, and wk_adm refers to weakening admissibility for a
system of rules, defined formally in Definition 6.1.

Theorem 7.3 If weakening is admissible for the rule set erls, all extensions of
some rule (ps, U |- V) are in the rule set erls, and the final rule instance
pscl of the left hand (implicit) subtree is an extension of (ps, c) where the cut-
formula A is not in V (meaning that A is parametric on the left), then gen_step2sr
(prop2 car ?erls) ?A ?sub ?rls (?pscl, ?pscr) holds.



Machine-Checked Proof-Theory for Propositional Modal Logics 197

lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

˜ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==> gen_step2sr (prop2 car ?erls) ?A ?any ?erls (?pscl, ?pscr)"

Notice that so far we have dealt with a shallow embedding of derivations; it does
not apply to proofs which require derivation trees to be represented explicitly. As
noted in Sect. 4.4, the derivability of a sequent is equivalent to the existence of a
valid derivation tree for it, and so now we describe the similar approach for explicit
derivation trees.

7.3 Induction Principles for Explicit Derivation Trees

Sometimes we need to proceed by induction on (for example) the length of a deriva-
tion by which a sequent can be obtained, rather than by the fact of a sequent having
been obtained earlier in the same derivation. At other times, we not only need to do
induction on height, but we may also have to transform the immediate premises in
some way, for example, by utilising the admissibility of weakening or contraction.

We could change our (notion of implicit derivations) derivability predicate
derrec rls plvs with a third argument ht, say, so that derrec rls plvs
ht captured the set of sequents derivable from the leaves in plvs using rules from
rls with height ht. But then it becomes much harder to incorporate the trans-
formations of the immediate premises of an end-sequent using the weakening and
contraction lemmata since we have no explicit access to the derivation itself. So to
compare (say) the heights of derivations, we must be able to define them and for this
we need to look at explicit derivation trees.

We can use explicit derivation trees to perform a proof equivalent to one using
Theorem 7.1, by using the following definitions and lemmata.

Definition 7.4 (gen_step_tr) For all properties P, all formulae B, all “sub-
formula” relations sub and all (explicit) derivation trees dta:

gen_step_tr P B sub dta means:
if

(a) P C dtb holds for all subformulae C of B and all derivation trees dtb, and
(b) P B dtsub holds for all the immediate subtrees dtsub of dta

then P B dta holds.

gen_step_tr_def:

"gen_step_tr P B sub dta ==

(ALL C. (C, B) : sub --> (ALL dtb. P C dtb)) -->

(ALL dtsub:set (nextUp dta). P B dtsub) --> P B dta"



198 J.E. Dawson et al.

Lemma 7.1 (gen_step_tr_lem) For all properties P, for all formulae A, for all
relations sub, for all derivations dt, if A is in the well-founded part of sub, and
gen_step_tr P B sub dtb holds for all formulae B and all derivations dtb,
then P A dt holds.

gen_step_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtb. (gen_step_tr ?P B ?sub dtb) |]

==> ?P ?A ?dt"

Definition 7.5 (gen_step2_tr) For all properties P, for all formulae B, for all
“sub-formula” relations sub, for all pairs (dta, dtb) of derivation trees:

gen_step2_tr P B sub (dta, dtb) means:
if

(a) P C (dtaa, dtbb) holds for every sub-formula C of B and all derivation
trees dtaa and dtbb, and

(b) P B (dtp, dtb) holds for all immediate subtrees dtp of dta, and
(c) P B (dta, dtq) holds for all immediate subtrees dtq of dtb

then P B (dta, dtb) holds:

gen_step2_tr.simps:

"gen_step2_tr P B sub (dta, dtb) =

((ALL C. (C, B):sub --> (ALL dtaa dtbb. P C (dtaa, dtbb)))

--> (ALL dtp:set (nextUp dta). P B (dtp, dtb))

--> (ALL dtq:set (nextUp dtb). P B (dta, dtq))

--> P B (dta, dtb))"

Lemma 7.2 (gen_step2_tr_lem) For all properties P, for all formulae A,
for all relations sub, for all derivation trees dta and dtb, if A is in the well-
founded part of sub, and gen_step2_tr P B sub (dtaa, dtbb) holds
for all formulae B and all derivations dtaa and dtbb, then P A (dta, dtb)
holds:

gen_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtaa dtbb. gen_step2_tr ?P B ?sub (dtaa, dtbb) |]

==> ?P ?A (?dta, ?dtb)"

These properties are exact analogues, for explicit derivation trees, of the properties
gen_step and gen_step2sr and Theorems 7.1 and 7.2, with (for example)
Lemma 8.2 linking them.



Machine-Checked Proof-Theory for Propositional Modal Logics 199

However, the purpose of using explicit derivation trees is to define different induc-
tion patterns. For example, we defined an induction pattern which depends on the
inductive assumption that the property P holds for the given tree on one side, and
any smaller tree on the other side.

Definition 7.6 (measure) For all a, all b, and all functions f : : ’a => nat, the
pair (a, b) is in measure f iff f a < f b:

measure_eq: "((?a, ?b) : measure ?f) = (?f ?a < ?f ?b)"

Definition 7.7 (height_step2_tr) For all properties P, for all formulae A, for
all subformula relations sub, for all pairs (dta, dtb) of derivations,
height_step2_tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and for all derivation trees A
and B, and

(b) P A (tp, dtb) holds for all derivation trees tp of smaller height than dta,
and

(c) P A (dta, tq) holds for all derivation trees tq of smaller height than dtb

then P A (dta, dtb) holds.

height_step2_tr_def:

"height_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtp. heightDT dtp < heightDT dta --> P A (dtp, dtb)) -->

(ALL dtq. heightDT dtq < heightDT dtb --> P A (dta, dtq)) -->

P A (dta, dtb))"

In some cases we found that this wasn’t enough, and defined a more general
pattern, in which the inductive assumption applies where the sum of the heights of
the two trees is smaller.

Definition 7.8 (sumh_step2_tr) For a property P, a formula A, a subformula
relation sub, and a pair of derivations (dta, dtb),

sumh_step2_tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and all derivation trees a and
b, and

(b) for all derivation trees dtaa and dtbb, we have
heightDT dtaa + heightDT dtbb < heightDT dta + heightDT
dtb implies P A (dtaa, dtbb)

then P A (dta, dtb) holds



200 J.E. Dawson et al.

sumh_step2_tr_eq:

"sumh_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtaa dtbb. heightDT dtaa + heightDT dtbb <

heightDT dta + heightDT dtb --> P A (dtaa, dtbb)) -->

P A (dta, dtb))"

Wecould of course generalise this by replacingheightDT by any natural number
function, which may be different for trees on the left and right sides. Indeed it could
be further generalised to any well-founded relation on pairs of derivation trees.

Each of these properties is successively weaker since the corresponding induc-
tive assumption is stronger, hence P applies to correspondingly wider classes of
derivations: as formalised next.

Lemma 7.3 For a property P, a formula A, a relation sub, and for a pair (dta,
dtb) of derivations:

(a) gen_step2_tr implies height_step2_tr
(b) height_step2_tr implies sumh_step2_tr

gs2_tr_height:

"gen_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

height_step2_tr ?P ?A ?sub (?dta, ?dtb)"

hs2_sumh:

"height_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

sumh_step2_tr ?P ?A ?sub (?dta, ?dtb)"

Accordingly we need the lemma that proving these step results is sufficient for
only the weakest of them.

Lemma 7.4 (sumh_step2_tr_lem) For a property P and a formula A in the
well-founded part of a relation sub, if sumh_step2_tr P A sub (dta,
dtb) holds for all derivations dta and dtb then P A (dtaa, dtbb) holds
for all derivations dtaa and dtbb:

sumh_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL A dta dtb. sumh_step2_tr ?P A ?sub (dta, dtb) |]

==> ?P ?A (?dtaa, ?dtbb)"

We are now in a position to define the statement of cut-admissibility in Isabelle,
and to apply all of these results.



Machine-Checked Proof-Theory for Propositional Modal Logics 201

8 Statement of Cut-Admissibility in Isabelle

Definition 8.1 (cas,car) For all formulae A, and all pair of sequents:

car rls A holds if the sequent obtained by applying the cut rule on formula A to
them is derivable: that is, (Xl � Yl , Xr � Yr ) ∈ car rls A iff (Xl , (Xr − A) �
(Yl − A),Yr ) is rls-derivable;

cas rls A holds if cut-admissibility on A is available for that pair of sequents:
that is, (Xl � Yl , Xr � Yr ) ∈ cas rls A means that if Xl � Yl and Xr � Yr are
rls-derivable, then (Xl � Yl , Xr � Yr ) ∈ car rls A.

car_eq:

"((Xl |- Yl, Xr |- Yr) : car rls A) =

((Xl + (Xr - {#A#}) |- Yl - {#A#} + Yr) : derrec rls {})"

cas_eq:

"((seql, seqr) : cas rls A) =

(seql : derrec rls {} & seqr : derrec rls {}

--> (seql, seqr) : car rls A)"

When we are talking about proving cas or car by induction on the (implicit)
derivation of the two sequents, that is, we are talking about two sequents which are
derivable, then these two concepts become equivalent. This is because the definition
of gen_step2sr only involves the property of the pair of sequents in the cases
where those two sequents are derivable.Recall thatprop2 simply gives an equivalent
concept with a different type.

Lemma 8.1 The induction steps for proving cas and car are equivalent:

prop2_def : "prop2 f rls A seqs == seqs : f rls A"

gs2_cas_eq_car: "gen_step2sr (prop2 cas ?rls) ?A ?sub ?rls =

gen_step2sr (prop2 car ?rls) ?A ?sub ?rls"

Definition 8.2 (casdt) For any set rls of rules and any formula A, two valid (ie.
no unproved leaves, and all steps are rules of rls) derivation trees dtl and dtr
satisfy casdt rls A iff their conclusions satisfy car:

casdt_eq:

"((?dtl, ?dtr) : casdt ?rls ?A) =

(valid ?rls ?dtl & valid ?rls ?dtr

--> (conclDT ?dtl, conclDT ?dtr) : car ?rls ?A)"



202 J.E. Dawson et al.

Here is the lemma linking the induction step for cut-admissibility in terms of
implicit derivability with the corresponding induction step for explicit derivation
trees.

Lemma 8.2 (gs2_tr_casdt_sr) Given two derivation trees dta and dtb, a
cut-formula A, a sub-formula relation sub, and a rule set rls, if the bottom rules
of those trees satisfy the step condition gen_step2sr for cut-admissibility, then
the two trees satisfy the step condition gen_step2_tr for cut-admissibility:

gs2_tr_casdt_sr:

"gen_step2sr (prop2 cas ?rls) ?A ?ipsubfml ?rls

(botRule ?dta, botRule ?dtb) ==>

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (?dta, ?dtb)"

In fact the two concepts are essentially equivalent:

Theorem 8.1 (gs2_casdt_equiv) Given a set of derivation rules rls, a for-
mula A, a sub-formula relation ipsubfml and two bottom rules pscl and pscr,
then the following are equivalent:

(a) if pscl and pscr are in rls, then they satisfy the step condition gen_
step2sr for cut-admissibility (for implicit derivations)

(b) all trees dta and dtb whose bottom rules are pscl and pscr respectively,
satisfy the step condition gen_step2_tr for cut-admissibility (for explicit
derivations)

gs2_casdt_equiv:

"(?pscl : ?rls -->?pscr : ?rls --> gen_step2sr (prop2 cas ?rls)

?A ?ipsubfml ?rls (?pscl, ?pscr)) =

(ALL dta dtb. botRule dta = ?pscl --> botRule dtb = ?pscr -->

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (dta, dtb))"

We are now ready to apply our formalisation work to particular calculi.

9 Weakening, Contraction and Cut Admissibility for S4

There exist both pen and paper [19, 25] and a formalised proof [5] ofmix-elimination
for sequent calculi for S4 containing explicit weakening and contraction rules. As
stated previously, explicit structural rules are detrimental for automated reasoning,
giving a practical motivation for proving that such rules are admissible. This is our
goal.



Machine-Checked Proof-Theory for Propositional Modal Logics 203

Troelstra and Schwichtenberg also state cut-elimination for a sequent calculus
G3s [25] for S4 that contains no explicit structural rules. Unfortunately, their “proof”
only discusses one actual transformation, and in particular overlooks one non-trivial
case—when Cut is applied on a formula�A, with both premises being an instance of
the G3s R� rule (shown below). In this case, the deduction cannot be transformed by
simply permuting the Cut, or introducing a new Cut of smaller rank, on the sequents
in the original deduction. Greater detail is given later in this section.

�� � A,♦�
R�

�′,�� � �A,♦�,�′

Goubault [14] acknowledges the problem posed by absorbing Weakening into
the R� rule. However, his solutions are given in the context of typed λ-calculi for
a minimal version of S4, interpreted as a sequent calculus through a version of the
Curry-Howard correspondence. Based on a proposal from [2], Goubault-Larrecq
replaces the R� rule by a different rule with multiple premises (for subformulae
within the principal formula), along with both re-write and garbage collection rules
for the λ terms involved. While this solution could possibly be extended to sequent
calculi, the creation of new premises and hence branching is detrimental to backward
proof search. Our solution presented in this section also has the advantage of being
significantly simpler.

Negri [18] proves various admissibility theorems for S4, but the calculus involved
is labelled. These labels include elements of theKripke semanticswithin the calculus,
and so the resulting theorems are thus not entirely syntactical proofs. Furthermore,
there are rules in the calculus which deal only with reachability between worlds.
While perhaps not as inefficient as the standard structural rules, these rules neverthe-
less do not operate on logical connectives. In particular to S4, from the perspective of
automated reasoning, applying all possible instances of the transitivity rule (shown
below) or checking whether the transitivity rule has been saturated can be a very
time-consuming process.

x Rz, x Ry, yRz, � � �
Transitivity

x Ry, yRz, � � �

R is the accessibility relation. x, y, z are worlds.

9.1 Calculus for S4

The sequent calculus we use for S4 is based on the calculus G3cp [25], with the
addition of twomodal rules. Note that the initial sequents�,ϕ � ϕ,� do not require
thatϕ be atomic, and that there are only rules for� formulae since♦ϕ is interpreted as
¬�¬ϕ. The rules of the calculus are shown inFigs. 3 and 4.Note that the clauseboxI
in the inductive definition for gs4_rls applies extend only to the conclusion,
corresponding to the appearance of the two sets � and � in the conclusion of the
rule S4�.



204 J.E. Dawson et al.

Fig. 3 Sequent calculus GS4 for S4

The Isabelle encoding of the calculus is modular, with the overall calculus,
gs4_rls, built up from separate declarations of the id rule, the classical rules
acting on antecedents and succedents, and the two modal rules.

9.2 Weakening for S4

Intuitively, weakening is admissible for a system of rules if, whenever the conclusion
c of a rule (ps, c) is weakened to c′, there is a rule with conclusion c′ and premises
ps ′ which are (optionally) weakened counterparts of ps.

The following definition seeks to formalise this condition.

Definition 9.1 Aset of rulesrls satisfiesext_concl iff: for every list of premises
ps and conclusion c that form a rule (ρ1 say) in rls, and for all possible sequents
UV, there exists a list of premises ps’ such that the premises ps’ and the extended
conclusion c + UV also form an instance of some rule (ρ′

1 say) in rls and for
every premise P from ps there is a corresponding premise p’ in ps’ such that p’
is either P itself or is an extension of P:



Machine-Checked Proof-Theory for Propositional Modal Logics 205

inductive "lksne" intrs (* skeletons of LK rules *)
axiom "([], {#A#} |- {#A#}) : lksne"

ilI "psc : lksil ==> psc : lksne"
irI "psc : lksir ==> psc : lksne"

inductive "lksss" intrs (* extended skeletons for LK *)
extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

inductive "lkrefl" intrs (* refl rule skeleton *)
I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

inductive "lkbox" intrs (* S4 Box rule skeleton *)
I "([gamma + mset_map Box gamma |- {#A#}],

mset_map Box gamma |- {#Box A#}) : lkbox"

inductive "gs4_rls" intrs
lksI "psc : lksss ==> psc : gs4_rls"

reflI "psc : lkrefl ==> pscmap (extend flr) psc : gs4_rls"
(* Box rule allows extra formulae in conclusion only *)

boxI "(prem, conc) : lkbox ==>
(prem, extend flr conc) : gs4_rls"

Fig. 4 Isabelle rules for GS4

p1 . . .pk
(ρ1)c

p’1 . . .p’k
(ρ′

1)c + UV
pi ≤ p’i

In the Isabelle text (ps, ps’) : allrel r means that ps and ps’ are
lists of the same length where each corresponding pair of their members is in r. The
relation≤ for sequents is defined in termsof≤ formultisets, that is, X � Y ≤ X ′ � Y ′
means X ≤ X ′ and Y ≤ Y ′.

ext_concl_def:

"ext_concl rls ==

ALL (ps, c) : rls. ALL UV. EX ps’.

(ps’, c + UV) : rls & (ps, ps’) : allrel {(p, p’). p <= p’}"

inductive "allrel r" intrs

allrel_Nil "([], []) : allrel r"

allrel_Cons "[| (ha, hb) : r ; (ta, tb) : allrel r |]

==> (ha # ta, hb # tb) : allrel r"

Lemma 9.1 If rule set rls obeys ext_concl then rls admits weakening:

wk_adm_ext_concl: "ext_concl ?rls ==> wk_adm ?rls"



206 J.E. Dawson et al.

The lemma wk_adm_ext_concl is so simple it can be proved directly by the
induction principle for derrec Lemma 4.1 (without using gen_step_lem). Use
of lemmas like gen_step_lem is really only for the purpose of breaking up the
proofs, so that various different cases of gen_step (ie various final rules of the
derivation) can be put into separate lemmata, some of whichmay be able to be reused
for different calculi.

Lemma 9.2 The set of rule gs4_rls satisfies ext_concl.

gs4_ext_concl: "ext_concl gs4_rls"

Corollary 9.1 The rules of S4 satisfy weakening admissibility.

gs4_wk_adm: "wk_adm gs4_rls"

9.3 Invertibility and Contraction for S4

We now describe how we captured the traditional proof of invertibility.
Suppose that we are given a calculus consisting of the rule set drls and suppose

that we want to reason about the derivability predicate derrec defined earlier. Let
derivs be the set derrec drls of all sequents that are derivable from the empty
set of leaves using the rules of drls. Suppose that we wish to prove that every rule
in irls is invertible w.r.t. drls (where irls is usually a subset of drls).

Omitting details, the function invs_of irls c returns the set of sequents
obtainable by applying each rule of irls to the sequent c backwards once. That
is, a sequent seq is in invs_of irls c if applying some rule ρ of irls to c
backwards, once, will give seq as one of the premises of ρ.

To prove that a rule (ps, concl) is invertible w.r.t. drls requires us to prove
that each sequent seq from the list ps of premises is in derivs if concl is in
derivs. To prove that each rule in a set of rules irls is invertible w.r.t. drls
requires us to prove that the above property holds for each rule (ps, concl)
from irls: that is, invs_of irls concl <= derivs where <= encodes
the subset relation.

Traditional proofs of invertibility proceed by an induction on the structure of a
given derivation of a sequent concl ∈ derivs. Assuming that the final rule in
this derivation is (ps, concl), the induction hypothesis is to assume that the
invertibility lemma holds for each premise in ps. That is, we assume that every
sequent seq obtained by applying any rule from irls backwards, once, to any
premise P in ps is itself in derivs:

ALL p:set ps. invs_of irls p <= derivs

Use of the induction hypothesis stated above can then be encoded in inv_step
as follows. Let an “irls-inverse” of a sequent s be a sequent s ′ obtained from s by
applying any rule from irls backwards once.



Machine-Checked Proof-Theory for Propositional Modal Logics 207

Definition 9.2 (inv_step) For a given set derivs of derivable sequents, for a
rule set irls, and for every rule instance (ps, concl), the property:
inv_step derivs irls (ps, concl) means:

If every premise in ps being in derivs implies that every “irls-invert” of
premises in ps is in derivs,

then every “irls-invert” of the conclusion concl is in derivs.

inv_step.simps:

"inv_step derivs irls (ps, concl) =

(set ps <= derivs

--> (ALL p:set ps. invs_of irls p <= derivs)

--> invs_of irls concl <= derivs)"

This is the key result for doing invertibility by stating various cases of the induction
step as separate lemmata.

The expression UNION (set ?ps) (invs_of ?irls) represents the set
X of all sequents obtained by applying some rule from irls backwards once to
every sequent P from a list of sequents ps viewed as a set:

X :=
⋃

P ∈ set ps

(invs_of ?irlsp)

Then, (set ?ps Un UNION (set ?ps) (invs_of ?irls)) represents
the union of X and the list of sequents ps treated as a set, ie (set ps) ∪ X .

The property inv_stepm is weaker than inv_step but is monotonic in its
first argument, which makes reusing lemmata such as lks_inv_stepm possible
as follows.

Definition 9.3 (inv_stepm) For all rule sets drls, for all rule sets irls,
for all rules (ps, concl), the expression inv_stepm drls irls (ps,
concl) means: the irls-inverses of concl are derivable using derrec drls
from (set ps) and the irls-inverses of every P ∈ set ps:

inv_stepm.simps:

"inv_stepm drls irls (ps, concl) =

(invs_of irls concl <=

derrec drls (set ps Un UNION (set ps) (invs_of irls)))"



208 J.E. Dawson et al.

Lemma 9.3 (inv_step_mono) inv_stepm is monotonic in its first argument:

inv_step_mono:

"[| inv_stepm ?drlsa ?irls ?psc ; ?drlsa <= ?drlsb |]

==> inv_stepm ?drlsb ?irls ?psc"

Lemma 9.4 (inv_step_m) For every set drls of rules and every set plvs of
sequents, the function derrec drls plvs returns the set of sequents derivable
from plvs using the rules of drls. Let us call this set of sequents derivs. For
every set drls of rules used for derivations, for every rule set irls, for every rule
psc, if inv_stepm drls irls psc holds then so does inv_step derivs
irls psc for any set of leaf sequents plvs:

inv_step_m:

"inv_stepm ?drls ?irls ?psc

==> inv_step (derrec ?drls ?plvs) ?irls ?psc"

Lemma 9.5 (gen_inv_by_step) For every rule set rls which is used to con-
struct a set derrec rls of derivations from the empty set of leaves, for every rule
set irls, every rule psc from irls is invertible w.r.t. rls if every rule instance
(ps, concl) from rls obeys

inv_step (derrec rls ) irls (ps, concl):

gen_inv_by_step:

"[| Ball ?rls (inv_step (derrec ?rls {}) ?irls) ;

?psc : ?irls |]

==> inv_rl ?rls ?psc"

Lemma 9.6 Every instance of the rule Refl, extended with arbitrary contexts, is
invertible in the rule set gs4_rls:

Ball (extrs lkrefl) (inv_rl gs4_rls)

Proof Suppose that �,�ϕ � � is derivable. We can show that the premise �,ϕ,�
ϕ � � is derivable by applying weakening, which has already been shown to be
admissible in gs4_rls. �

Lemma 9.7 Every instance of the rule set lksss (of classical propositional logic)
is invertible in the rule set gs4_rls:

Ball lksss (inv_rl gs4_rls)

Proof By Lemma 9.5, it suffices to prove (inv_step (derrec gs4_rls
{}) lksss) psc for every rule psc from gs4_rls. By Lemma 9.4, it suf-
fices to prove inv_stepm gs4_rls lksss psc for every rule psc from
gs4_rls. Here, lksss == extrs lksne, the rule set lksne extended with
arbitrary contexts. We proceed by cases on each rule psc in gs4_rls:



Machine-Checked Proof-Theory for Propositional Modal Logics 209

psc = Refl. Immediate, the inverse of rule Refl is an instance of weakening.

"?psc : extrs lkrefl

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc is from LK. Where the rule psc is a classical rule, we first prove that the set
of classical rules is invertible w.r.t. itself:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"

Since the rules lksss are a subset of the rules gs4_rls, we can use (the
monotonicity) Lemma 9.3 to obtain:

"?psc : extrs lksne

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc = S4�. When the last rule is S4� (with arbitrary contexts in conclusion only to
makeweakening admissible)weprove a general result. If the rule setrls contains
exactly one rule extcs (ps, c) which is the rule (skeleton) (ps, c) with
only the conclusion extended by an arbitrary context, and rl is any member
(instance) of rls, then inv_stepm rls (extrs (ips, ic)) rl holds
for any rule (ips, ic) extended with arbitrary contexts if the (skeleton of the)
conclusion ic and the (skeleton of the) conclusion c are disjoint:

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ;

?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

In particular, we can put extcs (?ps, ?c) to be the rule S4� and put
(extrs (?ips, ?ic)) to be any rule from lksss since the skeletons of
the conclusions of the lksss rules contain only the principal formula of the
respective rule and none of these is a �-formula. �

Theorem 9.1 (inv_rl_gs4_refl and inv_rl_gs4_lks) The Refl
(lkrefl) rule and all Classical (lksss) rules are invertible within gs4_rls.

Proof The theorem is simply the conjunction of Lemmas 9.6 and 9.7. We explain
some of the cases in English to highlight the new aspects.

Consider invertibility for the R∨ rule. We proceed by an induction on height, and
use the induction principle gen_inv_by_step from Lemma 9.5.



210 J.E. Dawson et al.

Case 1 Axiom If � � ϕ ∨ ψ,� is an axiom, and ϕ ∨ ψ is principal, then � =
�′,ϕ ∨ ψ. The derivation for � � ϕ,ψ,� is then:

id
�′,ϕ � ϕ,ψ,�

id
�′,ψ � ϕ,ψ,�

L∨
�′,ϕ ∨ ψ � ϕ,ψ,�

If ϕ ∨ ψ is parametric in (id), then � � � is (id), and so is � � ϕ,ψ,�.
Case 2 Principal If � � ϕ ∨ ψ,� is not an axiom, but ϕ ∨ ψ is principal, then R∨

must have been the last rule applied. Invertibility follows immediately from the
premises of the R∨ rule.

Case 3 Parametric If � � ϕ ∨ ψ,� is not an axiom, and ϕ ∨ ψ is parametric, then
an application of a new instance of that last rule (perhaps using the induction
hypothesis) obtains the necessary endsequent. This is because all rules allow
arbitrary contexts in their conclusion (and premises when the premises contain
context). To illustrate, consider the two cases when the last rule used to originally
derive � � ϕ ∨ ψ,� is either the Refl or the S4� rule:

• If the last rule was Refl then � = �′,�A and the original derivation is:

�

�′, A,�A � �,ϕ ∨ ψ
Refl

�′,�A � �,ϕ ∨ ψ

Applying the inductive hypothesis on the premises gives a derivation of
�′, A,�A
� �,ϕ,ψ. Applying Refl to this gives the required �′,�A � ϕ,ψ,�.

• If the last rule was S4� then � = �,��′ and � = �A,�′ and the original
derivation looks like:

�

�′,��′ � A
S4�

�,��′ � �A,�′,ϕ ∨ ψ

To derive � � ϕ,ψ,�, simply apply a new instance of S4� to the original
premise, this time with ϕ,ψ as the context instead of ϕ ∨ ψ:

�

�′,��′ � A
S4�

�,��′ � �A,�′,ϕ,ψ �

Theorem 9.2 (gs4_ctr_adm) Contraction is admissible for gs4_rls.

gs4_ctr_adm: "ctr_adm gs4_rls ?A"

Proof The cases for the G3cp and Refl rules are handled in the standard manner
as in the literature (see [25] and [17]) using the invertibility results above. The



Machine-Checked Proof-Theory for Propositional Modal Logics 211

formalisation performs the necessary transformations using a simple instantiation
gen_ctr_adm_step (not shown) of the induction principle gen_step_lem of
Theorem 7.1.

When the rule above the contraction is an instance of the S4� rule, there are two
possible cases. Either one or both copies of the contraction-formula exist within the
context of the S4� rule, or both copies are principal.

In the first case, deleting one copy still leaves an instance of the rule. That is, if
the contraction-formula is A, with A in the succedent, then the original rule instance
is as shown below where either �ϕ = A or A ∈ �:

�,�� � ϕ
S4�

�,�� � �ϕ, A,�

Applying the S4� rule without introducing the shown second copy of A in the
conclusion above gives a proof of �,�� � �ϕ,� as required since an occurrence
of A is still in the succedent as �ϕ = A or A ∈ �. Similarly, if A is in the context
� the new S4� rule instance is then:

�,�� � ϕ
S4�

� − A,�� � �ϕ, A,�

The harder case occurs when both instances of the contraction-formula A are prin-
cipal. Due to the nature of the S4� rule this requires A to occur in the antecedent only,
as there cannot be two principal formulae in the succedent. As only boxed formulae
are principal, A has form �B. The original rule instance is thus represented by:

B, B,�B,�B, �,�� � ϕ
S4�

�,�B,�B,�� � �ϕ,�

The copies of�B and B can be contracted upon, first using the induction hypothe-
sis that the result applies to preceding sequents in the derivation, and then on the rank
of the contraction-formula. The S4� rule can then be applied to give the required
conclusion.

B,�B, �,�� � ϕ
S4�

�,�B,�� � �ϕ,�

In the Isabelle proof, this step is unfortunately rather more tedious. A significant
number of proof steps in the formalisation are dedicated to manipulating the ordering
of formulae to convince the proof assistant that the S4� rule can be applied after
applying the induction hypotheses, and that the resulting sequent is indeed what is
required. �



212 J.E. Dawson et al.

9.4 Cut-Admissibility for S4

We first state a lemma used several times in the proof of cut-admissibility.

Lemma 9.8 Given two (explicit) derivation trees dta and dtb, a cut-formula A,
a sub-formula relation sub, and a rule set rls, if the bottom rules of those trees
satisfy the step condition gen_step2sr for cut-admissibility, then the two trees
satisfy the step condition sumh_step2_tr for cut-admissibility:

gs2_car_sumhs_tr:

"gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

(botRule ?dta, botRule ?dtb)

==> sumh_step2_tr (prop2 casdt ?rls) ?A ?sub (?dta, ?dtb)"

Proof By combining Lemmas 7.3, 8.2 and 8.1. �

Theorem 9.3 (gs4_cas) Cut is admissible in the calculus gs4_rls.

gs4_cas:

"(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) : cas gs4_rls ?A"

Proof Our proof essentially uses a double induction on level and rank, where level
measures the sum of the heights of the derivation trees for the left and right premises
of the cut, and rank measures the complexity of the cut-formula. It uses Lemma 7.4,
in which ?sub is instantiated to the immediate subformula relation.

The two most difficult cases to consider correspond to when the cut-formula is
principal below an application of the S4� rule on the left, and also principal in either
the Refl or the S4� rule on the right. As these are all modal rules, the Cut in question
must be on a boxed formula, �A.

In the former case, the original Cut has form:

�l

�L ,��L � A
S4�

�,��L � �L ,�A

�r

A,�A, �R � �RRefl �A, �R � �RCut on �A
�,��L , �R � �L ,�R

This is transformed as follows:

�l

�L ,��L � A

�l

�L ,��L � A
S4�

�,��L � �L ,�A
�r

A,�A, �R � �R
Cut on �A

A, �,��L , �R � �L ,�R Cut on A
�,�L ,��L ,��L , �R � �L ,�R Contraction-admissibility

�,�L ,��L , �R � �L ,�R
Refl∗

�,��L , �R � �L ,�R



Machine-Checked Proof-Theory for Propositional Modal Logics 213

Here Refl∗ means multiple uses of Refl, once for each member of �L . Importantly,
the new Cut on �A has lower level, and the Cut on A is of smaller rank. Thus both
can be eliminated by the induction hypotheses.

For the latter case, when S4� is principal on both sides, the original Cut has form:

�l

�L ,��L � A
S4�

�L ,��L � �L ,�A

�r

A,�A, �R,��R � B
S4� �A, �R,��R � �B,�RCut on �A

�L , �R,��L ,��R � �B,�L ,�R

The normal process of reducing Cut level would apply Cut on the left cut-sequent
and the premise of the right cut-sequent, as follows:

�l

�L ,��L � A
S4�

�L ,��L � �L ,�A
�r

A,�A, �R,��R � B
Cut on �A

A, �L ,��L , �R,��R � B,�L

Unfortunately, this results in a deduction where we can no longer recover the �B
present in the conclusion of the original Cut. The nature of the calculus and the
S4� rule means that new box formulae cannot be introduced in any succedent which
contains some context� (or where there are additional formula� in the antecedent).
As stated earlier, this case is omitted in the cut-elimination theorem of Troesltra and
Schwichtenberg [25].

To overcome this issue without introducing the complications and new branching
rule in the solution of Goubault [14], we modify the original derivation of the left
premise to produce one of equal height upon which we can still apply the induction
hypothesis on level. The new application of the S4� rule differs from the original
by simply not adding any context in the conclusion. Formally, the � and � of the
generic S4� rule in Fig. 3 are ∅ in the new S4� instance below:

�l

�L ,��L � A

�l

�L ,��L � A
S4� (new) ��L � �A

�r

A,�A, �R,��R � B
Cut on �A

A,��L , �R,��R � B
Cut on A

�L ,��L ,��L , �R,��R � B
Contraction-admissibility

�L ,��L , �R,��R � B
S4�

�L , �R,��L ,��R � �B,�L ,�R

In the formalised proof, this instance is the only case where the inductive principle of
Lemma 7.4 is actually required. As the combined height of the derivations leading to
��L � �A and A,�A, �R,��R � B is lower than the level of the original Cut, the
induction hypothesis on level can be applied. In all the other cases Theorem7.2would
have sufficed. So in fact in all the other cases the propertyweprove isgen_step2sr
… and we use Lemma 9.8 to link it to the required property sumh_step2_tr …
where the ellipses indicate arguments to each function as appropriate. �



214 J.E. Dawson et al.

10 Weakening, Contraction and Cut Admissibility for S4.3

There exists a syntactic pen and paper proof of cut-admissibility for S4.3 in the
literature [22], however the calculus involved contains Weakening and Contraction
as explicit rules, and mix-elimination is proved rather than cut. There also exist
published semantic proofs of closure under Cut for both sequent and hypersequent
calculi for S4.3 [12, 15]. To our knowledge, there are no published papers for S4.3
providing a sequent calculus devoid of structural rules and proving cut-elimination
per se.

Labelled calculi [3, 18] are perhaps the closest representatives in the literature.
As noted previously, while these calculi do not use Weakening or Contraction, they
explicitly include the semantics of the logic in the calculi, along with corresponding
operations on world accessibility rather than logical operators, thus they are not
purely syntactic.

10.1 Calculus for S4.3

The rules of the sequent calculus for S4.3 are listed in Fig. 5. The calculus is based on
the version of Goré [12], but withWeakening absorbed into the modal rules. Note, in
the S4.3� rule of Fig. 5, that �� = {ϕ1, . . . ,ϕn} and ��−i = {ϕ1, . . . ,ϕi−1,ϕi+1, . . . ,

ϕn} for 1 ≤ i ≤ n.
For backward proof search, the S4.3� rule can be thought of as producing a new

premise for all boxed formula in its conclusion, each of these formula being un-
boxed separately in its own premise. Thus the general statement of the rule contains
an indeterminate number of premises, one is necessary for each ϕi ∈ ��. For the
sake of simplicity and clarity, at times only one of these premises will be shown as a
representative for all n premises. That is, the rule will be represented in the following
form shown below at left:

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

�,�� � ϕi ,� ��−i
S4.3� ∀ψ.�ψ /∈ � ∪ �

�,�� � � ��,�

There are two different versions of the S4.3� rule: either the context (� ∪ �) can
contain any formulae, as shown above left, or they cannot include top-level boxed-
formulae, as shown above right. In the latter case, the�� and� �� in the conclusion of
the S4.3� rulemust correspond to exactly all the top-level boxed formulaewithin that
sequent. The two versions of the calculus are in fact equivalent, following a proof of
the admissibility of Weakening for the latter, however, for efficient backward proof
search, the version above right is preferred as it is invertible and hence does not
require backtracking during proof search.



Machine-Checked Proof-Theory for Propositional Modal Logics 215

Fig. 5 Sequent calculus for S4.3 where † is ∀ψ.�ψ /∈ � ∪ �

Henceforth, � and � within the S4.3� rule will be restricted from containing the
� operator at the top-level. In Isabelle, this is implemented by creating a new type
of formula, based on the default formula type. HOL’s typedef allows a concise
method of declaring new types as a subset of an existing type, where ∼= stands for
inequality:

typedef nboxfml =

"{f::formula. ALL (a::formula). f ˜= FC ’’Box’’ [a]}"

The Isabelle formalisation of the overall calculus is based on the calculus for S4
given in Fig. 3. The only change is in the S4.3� rule, which requires the mapping
function nboxseq to create a new premise for each individual boxed formula in the
succedent. The code for this is given in Fig. 6.



216 J.E. Dawson et al.

(* Functions to unbox one formula for each premise *)
consts

ithprem :: "formula multiset => formula list => formula
=> formula sequent"

nprems :: "formula multiset => formula list
=> formula sequent list"

(* The boxes in the succedent are treated as a list As.
"ms_of_list (remove1 Ai As)" is the multiset consisting of
all elements in "As", with one copy of "Ai" removed. *)

defs
ithprem_def :

"ithprem Gamma As Ai ==
mset_map Box Gamma + Gamma |-
{#Ai#} + mset_map Box (ms_of_list (remove1 Ai As))"

nprems_def :
"nprems Gamma As == map (ithprem Gamma As) As"

consts (* type definitions for functions *)
gs43_rls :: "formula sequent psc set"

s43box :: "formula sequent psc set"

(* The S4.3 box rule *)
inductive "s43box"
intrs

I "(nprems gamma As, mset_map Box gamma |-
mset_map Box (ms_of_list As)) : s43box"

(* The S4.3 calculus as an extension of the LK calculus *)
inductive "gs43_rls"
intrs

lksI "psc : lksss ==> psc : gs43_rls"
reflI "psc : lkrefl ==>

pscmap (extend flr) psc : gs43_rls"
(* boxI allows extra formulae in conclusion only,

and enforces the ‘dagger’ condition of Figure 5 *)
boxI : "(p, c) : lkbox ==>

(p, extend (nboxseq flr) c) : gs43_rls"

Fig. 6 S4.3 calculus as encoded in Isabelle

10.2 Weakening for S4.3

As the S4.3� rule does not allow arbitrary contexts, weakening-admissibility must
be proved by induction, in this case on both height and rank (of the implicit derivation
tree, i.e., using Lemma 7.1). To simplify the case for the S4.3� rule and its multiple



Machine-Checked Proof-Theory for Propositional Modal Logics 217

premises, we prove weakening-admissibility for the antecedent and succedent sep-
arately, and only considering a single formula at a time. The Isabelle encodings for
these properties are given below. The induction itself proceeds on the height of the
derivation, with a sub-induction on the rank of the formula A being inserted into the
conclusion.

Definition 10.1

wk_adm_single_antec rls means:
For any rls-derivable sequent S, and any single formulae A,
if S ∈ derrec rls {} then S+({#A#} |- {#}) ∈ derrec rls {}.

wk_adm_single_succ rls means:
For any rls-derivable sequent S, and any single formulae A,
if S ∈ derrec rls {} then S+({#} |- {#A#}) ∈ derrec rls {}.

Lemma 10.1 (wk_adm_sides) For a set of rules rls, if wk_adm_single_
antec and wk_adm_single_succ both hold then so does wk_adm.

Proof By multiset induction, repeatedly applying the results for single formulae.�

Theorem 10.1 (gs43_wk_adm)Weakening is admissible for the calculus consist-
ing of the set of rule gs43_rls.

Proof In the case of the S4.3� rule, if A is not boxed, then it is allowed to be contained
in the context of the rule’s conclusion. The derivability of the original premises,
followed by an application of a new S4.3� rule including A as part of its context,
then gives the required sequent. The difficulty arises when A is a boxed formula, say
A = �B. For the sake of clarity, the representation of the original sequent can be
split into its boxed and non-boxed components, so the original derivation is:

�

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

When A is to be added to the antecedent, the induction on height can be used to
add A = �B to each of the original premises. Following this by an application of
the sub-induction on formula rank, allows the addition of B, giving the derivability
of B,�B, �,�� � ϕi ,� ��−i . An application of the S4.3� rule then completes the
case:

B,�B, �,�� � ϕi ,� ��−i
S4.3�

�B, �,�� � � ��,�

The final case to consider is that of adding A = �B to the succedent. The goal
once again is to use the S4.3� rule to give the desired conclusion. From the original
premises�,�� � ϕi ,� ��−i , the inductionhypothesis onheight (inserting�B) gives



218 J.E. Dawson et al.

the derivability of�,�� � ϕi ,� ��−i ,�B. A different application of the S4.3� rule,
bringing in empty contexts, on the original premises also gives the derivability of
�� � � ��. Applying the induction on formula rank then shows that �� � B,� ��
is derivable.

At this point, the derivability of all necessary premises for a new S4.3� rule
instance has been proven. These are sequents of the form �,�� � ϕ′

i ,� ��′
−i where��′ = ��, B and ϕ′ is from the multiset �� ∪ {B} as appropriate. The final rule appli-

cation is then:

�,�� � ϕ′
i ,� ��′

−i
S4.3�

�,�� � � ��,�B,� �

10.3 Invertibility and Contraction for S4.3

As for S4, we prove inversion lemmata for the G3cp and Refl rules within the overall
calculus.

Theorem 10.2 (inv_rl_gs43_refl and inv_rl_gs43_lks) Refl
(lkrefl) and all Classical rules (lksss) are invertible within the calculus
gs43_rls.

Proof Since the inverse of the Refl rule is an instance of weakening, which we have
shown is admissible, the only notable case occurs for the G3cp rules, where the last
rule applied in the original derivation is S4.3�. The proof uses the induction principle
of Lemma 9.5.

If the original derivation is as shown below left then proving invertibility for
G3cp requires showing the derivability of all premises after applying a G3cp rule
backwards from the endsequent of the S4.3� rule. The classical rules do not operate
on boxed formulae, so this rule can only modify � or � upwards into �′ and �′
respectively as shown below right:

�

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

�′,�� � � ��,�′
G3cp rule

�,�� � � ��,�

Clarifying again, invertibility of the G3cp rule requires deriving �′,�� �
� ��,�′. The usual tactic would apply another instance of the S4.3� rule to the
original premises, but bringing in a different context. However, this does not admit
a proof if there are boxed formula in �′ or �′. For example, if the G3cp rule is L∧
and the principal formula is A ∧ �B then �′ contains a boxed formula, �B, which
cannot be introduced within the (box-free) context of a new S4.3� rule application.



Machine-Checked Proof-Theory for Propositional Modal Logics 219

To accommodate this case, the premises of the modal rule are used to derive the
conclusion without any context. Then weakening-admissibility is used to bring the
remaining formulae in the premise of the G3cp rule:

�

�,�� � ϕi ,� ��−i
S4.3�

�� � � ��Weakening-admissibility
�′,�� � � ��,�′ �

For S4, proving invertibility is sufficient to lead to a contraction admissibility
proof. However, using invertibility alone does not allow an obvious transformation
when dealing with the S4.3� rule. In order to prove contraction-admissibility, we
first require the following lemma:

Lemma 10.2 (gs43_refl) The rule R-refl is admissible in gs43_rls.

� � �,�A
R-refl

� � �, A

The corresponding statement of the lemma in Isabelle (not shown) states that if a
sequent seq is derivable in gs43_rls and the sequent is equivalent to X � Y,�A
for any X and Y , then X � Y, A is also derivable.

Proof By an induction on the structure of the (implicit) derivation tree, using the
derrec-induction principle, Lemma 4.1. The analysis is on the last rule applied in
deriving � � �,�A.

Case 1 The last rule applied was id. If �A is parametric then � � � is an axiom,
and the conclusion will be also. If �A is principal, then � = {�A} ∪ �′ and the
following transformation is applied:

id
A,�A, �′ � �, A

Refl �A, �′ � �, A

Case 2 The last rule applied was from G3cp. No rules in G3cp operate on a boxed
formula, so �A must be parametric. The induction hypothesis on height is thus
applicable to the premise of the G3cp rule. Applying the original G3cp on the
resulting sequent gives the desired conclusion.

Case 3 The last rule applied was Refl. As in Case 2,�Amust be parametric, as Refl
only operates on boxed formula in the antecedent.

Case 4 The last rule applied was S4.3�. Then one premise of the original deduction
un-boxes �A. Using Refl for each member of �′ (denoted by Refl∗) followed by
weakening admissibility on this premise is enough to produce the conclusion. For



220 J.E. Dawson et al.

clarity, here we express � = � ∪ ��′ and � = � �� ∪ �′. The original deriva-
tion is:

�1

�′,��′ � � ��, A

�2

�′,��′ � ϕi ,� ��−i ,�A

�,��′ � � ��,�′,�A

This is transformed into:

�1

�′,��′ � � ��, A
Refl∗

��′ � � ��, A
Weakening-admissibility

�,��′ � � ��,�′, A �

Theorem 10.3 (gs43_ctr_adm) Contraction is admissible in gs43_rls.

Proof We use the induction principle Lemma 7.1, for implicit derivation trees. If the
last rule used in the derivationwas the S4.3� rule, there are two cases to consider. The
case where the contraction-formula is parametric is handled by simply re-applying
another instance of the S4.3� rule as in the S4 case. Similarly, when the contraction-
formula is principal in the antecedent, then the proof proceeds as for S4. Specifically,
one copy of �A from �,�A,�A,�� � � ��,� must be removed. The original
derivation is:

�

A, A,�A,�A, �,�� � ϕi ,� ��−i
S4.3�

�,�A,�A,�� � � ��,�

By contracting twice using first the induction hypothesis on height, then the induc-
tion hypothesis on rank, on all premises followed by an application of the S4.3� rule,
the desired endsequent is obtained:

�

A, A,�A,�A, �,�� � ϕi ,� ��−iIH on height
A, A,�A, �,�� � ϕi ,� ��−i

IH on rank
A,�A, �,�� � ϕi ,� ��−i

S4.3�
�,�A,�� � � ��,�

When the contraction-formula is principal in the succedent, there are two possible
premises to consider. Either a premise “un-boxes” one of the contraction-formulae,1

or it leaves both boxed. The original deduction is:

1Technically, there are two syntactically identical premises which individually un-box one of the
two copies of �A.



Machine-Checked Proof-Theory for Propositional Modal Logics 221

�1

�,�� � � ��, A,�A

�2

�,�� � ϕi ,� ��−i ,�A,�A

�,�� � � ��,�A,�A,�

In the latter case, the induction hypothesis can be directly applied, removing one
copy of the boxed formulae:

�2

�,�� � ϕi ,� ��−i ,�A,�A
IH on height

�,�� � ϕi ,� ��−i ,�A

In the former case, we use Lemma 10.2 to produce the following:

�1

�,�� � � ��, A,�A
R-refl

�,�� � � ��, A, A
IH on rank

�,�� � � ��, A

�2

�,�� � ϕi ,� ��−i ,�A,�A
IH on height

�,�� � ϕi ,� ��−i ,�A
S4.3�

�,�� � � ��,�A,�

�

10.4 Cut-Admissibility for S4.3

Theorem 10.4 (gs43_cas) Cut is admissible in the calculus gs43_rls.

Proof As with Theorem 9.3, we use the induction principle of Lemma 7.4, involving
induction on the sums of heights of two explicit trees, although for the majority of
cases the simpler principle Theorem 7.2 would suffice. So again, in those cases, we
prove gen_step2sr . . . and we use Lemma 9.8 to link it to the required property
sumh_step2_tr . . ., where the ellipses indicate arguments to each function as
appropriate.

When S4.3� leads to the left cut-sequent, and the Refl rule is used on the right,
the transformation mimics the corresponding case for S4. However, for the case
where S4.3� is principal on both sides we require a new transformation. For clarity,
the premises above the S4.3� rule on the left are given as two cases, depending on
whether the cut-formula is un-boxed or not. The boxed formula in the succedents
of the premises are also distinguished by the superscripts L and R for left and
right cut premises respectively. Explicitly, these are ��L = {ϕL

1 , . . . ,ϕL
i , . . . ,ϕL

n }
and ��R = {ψR

1 , . . . ,ψR
k , . . . ,ψR

m}. The original cut thus has the form:



222 J.E. Dawson et al.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

�b
L

�L ,��L � A,� ��L

S4.3�
�L ,��L � � ��L ,�L ,�A

...

...

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
S4.3�

�A, �R,��R � � ��R,�RCut on �A
�L , �R,��L ,��R � � ��L ,� ��R,�L ,�R

To remove this cut, the derivation is transformed into one where the principal
rule (S4.3�) is applied last to produce the desired endsequent. The problem is then
proving that the premises of the following S4.3� rule application are derivable. This
in itself requires two different transformations of the original derivation, depending
on the two forms that the premises can take; either the un-boxed formula in the
succedent originated from the left cut premise, that is from � ��L , or from the right,
within � ��R . These cases are named PL and PR respectively. The final S4.3� rule
used in our new transformation is then:

PL

�L ,��L , �R,��R � ϕL
i ,� ��L

−i ,� ��R

...

PR

�L ,��L , �R,��R � � ��L ,ψR
k ,� ��R

−k
S4.3�

�L , �R,��L ,��R � � ��L ,� ��R,�L ,�R

For both transformations, the same idea behind the principal S4� rule case is used.
We first derive the original cut-sequents but without their original contexts. These
new sequents will be calledDL andDR respectively, that is,DL = ��L � � ��L ,�A
andDR = �A,��R � � ��R . These are derived using the derivations in the original
cut, but applying new instances of the S4.3� rule. Importantly, the derivations of the
new sequents DL and DR have the same height as the original cut-sequents. This is
the case where the induction principle of Lemma 7.4 is required.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

�b
L

�L ,��L � A,� ��L

S4.3� DL = ��L � � ��L ,�A

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
S4.3� DR = �A,��R � � ��R

Having introduced all the necessary notation and pre-requisites, the first actual
case to consider is deriving PL . The induction on level allows DR to be cut, on cut-
formula �A, with all of the sequents given by the derivation �a

L above the original
left S4.3� rule. The transformation performs n cuts, for all premises corresponding



Machine-Checked Proof-Theory for Propositional Modal Logics 223

to the formulae in ��L . The results of this cut then match exactly with PL after using
the admissibility of Weakening to introduce the formulae of �R in the antecedent.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

DR

�A,��R � � ��R

Cut on �A
�L ,��L ,��R � ϕL

i ,� ��L
−i ,� ��R

Weakening-admissibility
PL = �L ,��L , �R,��R � ϕL

i ,� ��L
−i ,� ��R

To derive the sequents in PR , the induction hypothesis on level is used to cut DL

with all of the premises above the right S4.3� in the original cut, with cut-formula
�A. The induction on formula rank on A is then used to cut the sequent resulting
from �b

L with all these new sequents. Finally, contraction-admissibility allows the
removal of the extra copies of �� and � ��L , and concludes the case.

�b
L

�L ,��L � A,� ��L

...

...

...

DL

��L � � ��L ,�A

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
Cut on �A

��L , A, �R,��R � � ��L ,ψR
k ,� ��R

−k
Cut on A

�L ,��L ,��L , �R,��R � � ��L ,� ��L ,ψR
k ,� ��R

−k Contraction-
admissibilityPR = �L ,��L , �R,��R � � ��L ,ψR

k ,� ��R
−k

To conclude, the transformations above derivePL andPR while reducing cut-level
or cut-rank. These are the premises of an instance of the S4.3� rule which results in
the conclusion of the original cut. This completes the cut-admissibility proof. �

11 Weakening, Contraction and Cut Admissibility for GTD

We now describe Isabelle proofs of cut admissibility for a sequent calculus for the
logic GTD described in [16]. Axiomatically, GTD is K with the additional axiom
�A ⇔ ��A. The sequent inference rules involving �, allowing arbitrary context
in the conclusion so as to make weakening admissible, are shown below:

��,� � A

�,�� � �A,�
(� �)

��,� � �A

�,�� � �A,�
(� �)



224 J.E. Dawson et al.

The skeletons of the above two rules are encoded asGTD shownbelowby factoring
out the form of A as either B or as �B:

inductive "GTD"

intrs

I "A = B | A = Box B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : GTD"

11.1 Calculus for GTD

We now look at proving cut admissibility for a version of GTD without structural
rules, where the box rules have their conclusions (only) extended with an arbitrary
context, which permits weakening to be admissible.

We define the rules of the sequent calculus as follows. The rules used for classical
logic (before extending them with a context) form the set lksnewhere the rule sets
idrls,lksil and lksir are the axioms and the left and right logical introduction
rules: see Fig. 3.

Definition 11.1 (lkssx) Given, a rule set xrls, every rule of xrls is in the rule
set lkssx xrls, and every rule psc in rule set lknse gives a rule in lkssx
xrls obtained by uniformly extending both the premise and conclusion of psc
with an arbitrary context (sequent) flr:

inductive "lkssx xrls"

intrs

x "psc : xrls ==> psc : lkssx xrls"

extI "psc : lksne ==> pscmap (extend flr) psc : lkssx xrls"

Definition 11.2 (extcs) Given a rule set rules, the rule set extcs rules is
obtained by extending only the conclusion c of each rule (ps, c) in rules by
an arbitrary context (sequent) flr (while leaving the premises unchanged):

inductive "extcs rules"

intrs

I "(ps, c) : rules ==> (ps, extend flr c) : extcs rules"

The rule set lkssx (extcs GTD) for GTD is obtained by extending only the
conclusion of the rule GTD and by extending every rule of lknse.



Machine-Checked Proof-Theory for Propositional Modal Logics 225

11.2 Weakening-Admissibility for GTD

First we prove weakening admissibility, using a lemma which allows us to apply
Lemma 9.1.

Lemma 11.1 For any rule sets rls and rlsa

(a) extrs rlsa ∪ extcs rls satisfies ext_concl
(b) extrs rlsa ∪ extcs rls satisfies weakening admissibility

extrs_cs_ext_concl: "ext_concl (extrs ?rlsa Un extcs ?rls)"

wk_adm_extrs_cs: "wk_adm (extrs ?rlsa Un extcs ?rls)"

Proof The first is easy. The second follows using Lemma 9.1. �

Corollary 11.1 GTD satisfies weakening admissibility.

wk_adm_lkssx_cs: "wk_adm (lkssx (extcs ?xrls))"

Proof Since the rule set lkssx (extcs GTD) for GTD is also equal to extrs
lksne ∪ extcs GTD, the result follows from Lemma 11.1. �

11.3 Inversion and Contraction-Admissibility for GTD

For contraction admissibility, first we need to prove invertibility of the classical
logical rules. The general method for doing so was described in Sect. 9.3.

Recall the predicate inv_stepm, which is used in an inductive proof of invert-
ibility. Its three arguments are:

drls first, the set of derivation rules with respect to which the invertibility (a case
of admissibility) is defined,

irls second, the set of rules whose invertibility is being considered (the inversion
rules)

(ps, c) third, the final rule of a derivation—since we are talking about proving
the invertibility result by induction on the derivation, the inductive hypothesis is
that the invertibility result applies to the premises ps of this final rule.

By Lemma 9.3, inv_stepm (although not inv_step) is monotonic in the
derivation rules argument. For its second argument the following holds.

Lemma 11.2 For a given set drls of derivation rules and a given final rule psc,
if inv_stepm applies for inversion rule sets irlsa and irlsb, then it applies
for irlsa ∪ irlsb.



226 J.E. Dawson et al.

inv_stepm_Un:

"[| inv_stepm ?drls ?irlsa ?psc ;

inv_stepm ?drls ?irlsb ?psc |]

==> inv_stepm ?drls (?irlsa Un ?irlsb) ?psc"

So far as the third argument is concerned, the requirement to prove a rule is
invertible is simply that inv_stepm . . . applies for all cases of the third argument
(see Lemmas 9.4 and 9.5): thus the lemmata we use are expressed to apply to single
cases of the third argument.

We nowdescribe the lemmata used as building-blocks for the required invertibility
result.

Lemma 11.3 (a) inv_stepm … applies where the derivation rules and the set of
rules to be inverted are the classical logical rules extrs lksne, and the final
rule is any one of those rules

lks_inv_stepm:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"

(b) where the set of inversion rules is the set of extensions of a single skeleton whose
conclusion isic, and the set of derivation rules is the set of extensions of a single
skeleton rule whose conclusion is c, and these skeleton conclusions ic and c
are disjoint (i.e., have no formula in common on the same side of the turnstile),
and the final rule is one of those derivation rules, then inv_stepm…applies

inv_stepm_disj:

"[| seq_meet ?c ?ic = 0 ;

extrs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

(c) as for (b), except that the set of derivation rules is the set of extensions in the
conclusion only (using extcs) of the single skeleton

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

(d) where the set of inversion rules and the set of derivation rules are each the set of
extensions of a single skeleton rule whose conclusion has a single formula, and
if those two skeletons’ conclusions are equal then the two skeletons are equal,
then inv_stepm…applies



Machine-Checked Proof-Theory for Propositional Modal Logics 227

inv_stepm_scrls:

"[| extrs {?srl} = ?rls ; ?rl : ?rls ;

?srl : scrls ; ?irl : scrls ;

snd ?srl = snd ?irl --> ?srl = ?irl |]

==> inv_stepm ?rls (extrs {?irl}) ?rl"

Parts (b) and (c) (inv_stepm_disj and inv_stepm_disj_cs) are for the
case where the principal formula of the rule to be inverted is in the context of the
conclusion of the last rule of the derivation: the first premise gives us that the formula
to be inverted is not the principal formula of the rule, though it is expressed in a way
which is relevant to a case where the rules in question have more than just one
principal formula.

Part (d) (inv_stepm_scrls), whose proof uses part (b), uses the fact that for
each formula involved there are unique introduction rules for the left and right sides
of �, so an inversion step is either parametric or gives us the premise(s) of the last
rule applied.

Lemma 11.4 Every rule of lksss is invertible in the calculus for GTD.

gtdns_inv_rl: "Ball (extrs lksne) (inv_rl (lkssx (extcs GTD)))"

Proof This uses Lemmas 9.4, 9.5 and 11.3. �

Then, to prove contraction admissibility, we follow an approach very similar to
Sect. 9.3. For the rules (� �) and (� �), the proof for the cases where either of these
is the final rule is just the same as for the S4� rule in Sect. 9.3.

Lemma 11.5 Contraction is admissible in GTD.

gtdns_ctr_adm: "ctr_adm (lkssx (extcs GTD)) ?A"

11.4 Cut-Admissibility for GTD

Now, for cut admissibility, the difficult cases are where the last rule on both sides is
one of the two box rules (� �) and (� �):

��,� � B

�,�� � �B,�
(� �)

��,� � �B

�,�� � �B,�
(� �)

Since the proof is effectively the same whichever of these two rules is on the right,
we define a unary function s4g . such that



228 J.E. Dawson et al.

• s4g (λB. {B,�B}) is all instances of either (� �) or (� �),
• s4g (λB. {B}) is all instances of (� �), and
• s4g (λB. {�B}) is all instances of (� �)

where the function prs B encapsulates the choices of B and/or �B, as required
and where s4g prs below encodes only the skeletons of the rules above: see the
definition of GTD at the start of Sect. 11. Formally,

Definition 11.3 (s4g) s4g prs is the set of instances of the following rule where
A ∈ prsB:

��,� � A

�� � �B

inductive "s4g prs"

intrs I "A : prs B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : s4g prs"

The case of the (� �) rule on the left is dealt with in Sect. 9.4: depending on
whether we have the rule (� �) or (� �) on the right, we may need to change B to
�B in the diagrams there.

For the case where we have the (� �) rule on the left, the original derivation is
as in the following diagram, where B ′ is B or �B.

�l

�L ,��L � �A� �
�L ,��L � �L ,�A

�r

A,�A, �R,��R � B ′
� � or � � �A, �R,��R � �B,�RCut on �A

�L , �R,��L ,��R � �B,�L ,�R

As in Sect. 9.4, we modify the original derivation of a premise, in this case the
right premise, by simply not adding any context in the conclusion. This produces a
derivation of equal height upon which we can still apply the induction hypothesis on
level. Formally, the � and � of the generic box rule (� �) or (� �) are ∅ in the new
instance below:

�l

�L ,��L � �A

�r

A,�A, �R,��R � B ′
� � or � � (new)�A,��R � �B

Cut on �A
�L ,��L ,��R � �B

Weakening-admissibility
�L ,��L , �R,��R � �B � �

�L , �R,��L ,��R � �B,�L ,�R

For the cut-elimination proof we also use results for the parametric cases, that
is, where the cut-formula appears in the context of the last rule on either side above
the cut. This includes cases where that rule is in extrs … (where the rule has a



Machine-Checked Proof-Theory for Propositional Modal Logics 229

context which appears in premises and conclusion) and where that rule is in extcs
… (where the rule has a context which appears only in the conclusion).

The following lemma is used for the common situation of a cutwhich is parametric
with respect to the last rule of the left-hand derivation.

Lemma 11.6 (lcg_gen_step) Consider a set erls of derivation rules, for
which weakening is admissible, and which contains all extensions of a skeleton
rule ρ with premises ps and conclusion U � V . Consider two derivations of which
the final rule of the left side is an extension of ρ. Then for a cut-formula A which is
not contained in V , and any subformula relation sub, the inductive step condition
gen_step2_sr … holds for the admissibility of a cut on A.

lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

˜ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==>

gen_step2sr (prop2 car ?erls) ?A ?sub ?erls (?pscl, ?pscr)"

Asimilar lemmalcg_gen_steps_extcsholds for the casewhere only exten-
sions in the conclusion of ρ are contained in erls.

lcg_gen_steps_extcs:

"[| wk_adm ?rls ;

extcs {(?ps, ?c)} <= ?rls ; ˜ ?A :# succ ?c |]

==> gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

((?ps, extend ?flr ?c), ?psr, ?cr)"

Finally we need to deal with the cases of matching instances of the usual logical
introduction rules. Here we use a general result giving requirements for certain cases
of the final rules on either side of a putative cut to satisfy the step condition for
cut-admissibility.

It uses a propertyc8_ercas_prop, which encodes the property that a cut which
is principal (i.e., the cut formula is introduced by a logical introduction rule in the
final step) on both sides is reducible to cuts on sub-formulae. It is loosely defined as
follows:

Definition 11.4 (c8_ercas_prop) Given a set of derivation rules prls, a cut-
formula A, a subformula relation psubfml, and a set of skeleton rules (typically
logical introduction rules) rls,
c8_ercas_prop psubfml prls A rls means:
assuming that we have cut-admissibility for cut-formulae which are smaller than
A according to psubfml, where two derivations have as their final sequents Xl �
A,Yl and Xr , A � Yr , and on both sides the final rule introduces A using logical
introduction rules in rls, then Xl , Xr � Yl ,Yr is derivable, that is, the cut on A is
admissible.



230 J.E. Dawson et al.

Of course,whether c8_ercas_prop holds depends on the specific set of logical
rules. Beyond that, however, the following lemma is quite general.

Lemma 11.7 Given a set of derivation rules drls, a cut-formula A, and a subfor-
mula relation psubfml, if

• drls satisfy weakening admissibility
• there is a set rls of skeleton rules all of whose extensions are contained in drls
• all rules in rls, other than axiom rules B � B, have a single formula in their
conclusion

• the axiom rules are also in drls
• drls and rls satisfy c8_ercas_prop
• the final rules of two derivations are extensions of rules in rls

then the step condition gen_step2sr for cut-admissibility for the two derivations
is satisfied.

gs2sr_alle:

"[| wk_adm ?drls ;

c8_ercas_prop ?psubfml ?drls ?A ?rls ;

?rls <= iscrls ;

idrls <= ?drls ;

extrs ?rls <= ?drls ;

(?psa, ?ca) : extrs ?rls ;

(?psb, ?cb) : extrs ?rls |]

==> gen_step2sr (prop2 car ?drls) ?A ?psubfml ?drls

((?psa, ?ca), ?psb, ?cb)"

We apply this result to the logic GTD using first another general result.

Lemma 11.8 (gen_lksne_c8) If a set of derivation rules drls satisfies weak-
ening admissibility and contraction admissibility, and contains the extensions of the
logical introduction rule skeletons lksne then the condition c8_ercas_prop
is satisfied (for the usual immediate proper subformula relation and for any cut-
formula).

gen_lksne_c8:

"[| ALL A’. ctr_adm ?drls A’ ;

wk_adm ?drls ; extrs lksne <= ?drls |]

==> c8_ercas_prop ipsubfml ?drls ?A lksne"



Machine-Checked Proof-Theory for Propositional Modal Logics 231

Corollary 11.2 [gtdns_lksne_c8] GTD satisfies c8_ercas_prop in rela-
tion to the logical introduction rule skeletons lksne.

gtdns_lksne_c8:

"c8_ercas_prop ipsubfml (lkssx (extcs GTD)) ?A lksne"

Finally we get the cut admissibility result. Here, mins A M means multiset M
with one additional copy of A inserted.

Theorem 11.1 (gtdns_casdt, gtdns_cas) GTD satisfies cut-admissibility.

gtdns_casdt: "(?dt, ?dta) : casdt (lkssx (extcs GTD)) ?A"

gtdns_cas: "(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) :

cas (lkssx (extcs GTD)) ?A"

12 Weakening, Contraction and Cut Admissibility
for Dynamic Topological Logic S4C

We now describe Isabelle proofs of the cut admissibility of the logic S4C described
byMints [16]. This system has two “modal” operators,� and ◦. The S4-axioms hold
for �, ◦ commutes with the boolean operators, and the following are given:

◦(A → B) ↔ (◦A → ◦B)

◦⊥ ↔ ⊥
◦�A → � ◦ A

The following sequent rules are given for S4C by Mints [16]

◦k A, � � �, ◦k B
� � �, ◦k(A → B)

(�→)
� � �, ◦k A ◦k B, � � �

◦k(A → B), � � �
(→�)

◦k A, � � �

◦k�A, � � �
(� �)

� � �

◦� � ◦�
(◦)

B � A

B � �A
(� �)

In the (� �) rule, B must consist of “�-formulae”, that is, formulae of the form
◦k�A.

As Mints omits the other logical operators, we include, for them, the usual logical
introduction rules with the principal and side formulae preceded by ◦k just as with
the (�→) and (→�) rules shown above.



232 J.E. Dawson et al.

Our version of the calculus contains no explicit structural rules, so we prove
invertibility of the logical rules and contraction admissibility. The presence of the
(◦) rule makes the proof more complicated and is handled similarly to our handling
of contraction in proving cut admissibility for GTD.

As we have no structural rules, we use a presentation of the system which

• allows an arbitrary context to be added to the conclusion (only) of the (� �) and
(◦) rules

• uses a version of the (� �) rulewhich includes the principal formula in the premise

� � �

�, ◦� � ◦�,�
(◦)

B � A

�,B � �A,�
(� �)

◦k�A, ◦k A, � � �

◦k�A, � � �
(� �)

12.1 Calculus for S4C

We now describe how we encoded the sequent calculus. First we define the rules
which can be extended by an arbitrary context in their premises and conclusion.
Without the context, these rules form the set s4cnsne.

Applying nkmap k to a rule applies ◦k to each formula appearing in that rule, and
funpow f x means applying f to x , n times, i.e., f n(x).

inductive "s4cnsne"

intrs

id "psc : idrls ==> psc : s4cnsne"

circ_il "rl : lksil ==> nkmap k rl : s4cnsne"

circ_ir "rl : lksir ==> nkmap k rl : s4cnsne"

circ_T "rl : lkrefl ==> nkmap k rl : s4cnsne"

inductive "lkrefl"

intrs

I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

defs

nkmap_def : "nkmap k == pscmap (seqmap (funpow Circ k))"

inductive "s4cns"

intrs

extI "rl : s4cnsne ==> pscmap (extend (U |- V)) rl : s4cns"

extcsI "(ps, c) : circ Un s4cbox ==>

(ps, extend (U |- V) c) : s4cns"



Machine-Checked Proof-Theory for Propositional Modal Logics 233

inductive "circ"

intrs

I "([seq], seqmap Circ seq) : circ"

inductive "s4cbox"

intrs

boxI "M : msboxfmls ==> ([M |- {#A#}],

M |- {#Box A#}) : s4cbox"

inductive "msboxfmls"

intrs

I "ALL f. f :# M --> f : boxfmls ==> M : msboxfmls"

inductive "boxfmls"

intrs

I "funpow Circ k (Box B) : boxfmls"

We first prove the admissibility of weakening and contraction.

12.2 Weakening for S4C

Weakening admissibility was straightforward using Lemma 9.1.

12.3 Inversion and Contraction-Admissibility for S4C

Invertibility of the logical introduction rules was dealt with using multiple lemmata
showing various cases of inv_stepm, as described in Sect. 9.3: as noted there, a
proof of invertibility can be split up into

• the invertibility of various different rules
• cases of what the last rule in the derivation, from whose conclusion we wish to
apply one of the inverted rules

As in Sect. 9.3, we make significant use of Lemma 9.3.
We then prove contraction admissibility. This uses predicates and resultswhich are

essentially Definition 7.2 and Lemma 7.1, but instantiated to apply to the property
of contraction admissibility, giving the property ctr_adm_step and a lemma
gen_ctr_adm_step.

We now look at proving ctr_adm_step for each possible case for the last rule
of a derivation.



234 J.E. Dawson et al.

Lemma 12.1 If

• rule set lrls consists of rules which are the identity (axiom) rules A � A, or are
rules with a single formula in their conclusion,

• all rules in lrls have the “subformula” property (which here means that for every
premise other than a premise which contains the conclusion, every formula in that
premise is a subformula of a formula in the conclusion

• the rule set drls (derivation rules) contains the extensions of lrls
• in regard to the derivation rules drls, the inverses of extensions of lrls are admis-
sible

• rule (ps, c) is an extension of a rule of lrls

then the contraction admissibility step ctr_adm_step holds for the final rule
(ps, c) and the derivation rule set drls.

So the conclusion of this lemma means: assuming that

• contraction on formulae A′ smaller than A is admissible, and
• contraction on A is admissible in the sequents ps

then contraction on A in sequent c is admissible.

gen_ctr_adm_step_inv:

"[| ?epsc : extrs ?lrls ;

?lrls <= iscrls ;

extrs ?lrls <= ?drls ;

Ball ?lrls (subfml_cp_prop ?sub) ;

Ball (extrs ?lrls) (inv_rl ?drls) |]

==> ctr_adm_step ?sub (derrec ?drls {}) ?epsc ?A"

subfml_cp_prop.simps:

"subfml_cp_prop sub (ps, c) =

(ALL p:set ps. c <= p

| (ALL fp. ms_mem fp p -->

(EX fc. ms_mem fc c & (fp, fc) : ub)))"

Then the other cases of ctr_adm_step were proved separately:

Lemma 12.2 In S4C, for derivations with final rules (� �) and (◦) (extended in
their conclusions), the inductive contraction admissibility step ctr_adm_step
holds.

ctr_adm_step_s4cbox_r:

"[| (?ps, ?c) : extcs s4cbox ; extcs s4cbox <= ?drls |]

==> ctr_adm_step ?sub (derrec ?drls {}) (?ps, ?c) ?A"



Machine-Checked Proof-Theory for Propositional Modal Logics 235

ctr_adm_step_circ_r:

"[| (?ps, ?c) : extcs circ ; extcs circ <= ?drls |]

==> ctr_adm_step ipsubfml (derrec ?drls {}) (?ps, ?c) ?A"

Consequently, we get contraction admissibilty. The only case not covered above
is for the reflexivity rule (� �), in its form where the principal formula is copied
to the premise. This is required for contraction admissibility, which becomes simple
with the rule in this form.

Lemma 12.3 (s4cns_ctr_adm) Contraction is admissible in GTD.

s4cns_ctr_adm: "ctr_adm s4cns ?A"

12.4 Cut-Admissibility for S4C

To prove cut admissibility for a sequent calculus containing an explicit contraction
rule, two methods are

• to prove mix-elimination directly, where the property proved by induction on the
derivation is that any instance of the mix rule is admissible; in effect this was done
in [6] for the more complex logic GLS,

• in respect of the derivations on either side of the cut, to look up the derivation
skippingover consecutive instances of contraction on the cut-formula, and consider
the various cases of the next rule on either side above those contractions.

We do something similar to the second approach here, but we look up the deriva-
tions on either side to find the last rule before a consecutive sequence of (◦) rules.
For this we use the theorem top_circ_ns. In some cases we also need the fact
that if the bottom rule is not (◦), then the tree asserted to exist is actually the original
one. The function forget exists simply to prevent automatic case splitting of its
argument: logically it does nothing.

Lemma 12.4 (top_circ_ns) Given a valid (explicit) derivation tree dt, then
there is a valid (explicit) tree dtn and an integer k such that

• the bottom rule of dtn is not (◦),
• the conclusions c and c′ of dt and dtn are related by c = ◦kc′
• height of dt = height of dtn +k
• dt and dtn iff k = 0 iff the bottom rule of dt is not (◦)

top_circ_ns:

"valid ?rls ?dt

==> EX dtn k.

botRule dtn ˜: extcs circ & valid ?rls dtn

& seqmap (funpow Circ k) (conclDT dtn) <= conclDT ?dt

& heightDT ?dt = heightDT dtn + k



236 J.E. Dawson et al.

& forget ((k = 0) = (botRule ?dt ˜: extcs circ)

& (k = 0) = (dtn = ?dt))"

forget_def: "forget f == f"

But one easy case is where the last rule on both sides is the (◦) rule: then we can
apply cut (on a smaller formula) to the premises of the (◦) rules, and then apply the
(◦) rule. So when we look at the (◦) rules on both sides immediately preceding the
cut, we need only bother about the case where the number of those (◦) rules is zero
on one side.

First, the case where both rules are the (� �) rule. The fact that the conclusions
of both the (◦) rule and the (� �) rule may be extended by an arbitrary context com-
plicates matters. Consider the following diagram of a number of (◦) rules followed
by the (� �) rule.

M � A
(� �)

�,M � �A,�
(◦∗)

�′, ◦k�, ◦kM � ◦k�A, ◦k�,�′

In this case we can instead construct the following derivation tree, which is of the
same height.

M � A
(� �)M � �A

(◦∗)◦kM � ◦k�A

Thuswe can use, in proving an inductive step, the fact that ◦kM � ◦k�A is derivable,
and with a derivation of the same height as that of �′, ◦k�, ◦kM � ◦k�A, ◦k�,�′.
This will be used in our proofs without further comment.

Now, where the cut-formula is within ◦k�,�′ (where this is the derivation tree
on the left of a desired cut), or within �′, ◦k� (where this tree is on the right), the
cut is admissible because we can start from the derivable sequent M � A and apply
(� �) and ◦ rule without any extra formulae in the conclusions, as discussed above.
In this case we just use weakening admissibility to obtain the result of the cut.

These situations are covered by Lemma 12.5 (s4cns_cs_param_l”) below
and the symmetric result s4cns_cs_param_r”.

Lemma 12.5 Let the left premise subtree of a desired cut be dt, with dtn and k
as in Lemma 12.4, let the bottom rule of dtn be an extension (of the conclusion)
of a rule in s4cns whose conclusion is cl � cr , and let C not be in ◦kcr . Then the
inductive step sumh_step2_tr for proving cut-admissibility with cut-formula C
holds (where list and lista are names automatically generated by Isabelle for
the lists of premises of final rules).



Machine-Checked Proof-Theory for Propositional Modal Logics 237

s4cns_cs_param_l’’:

"[| (?ps, ?cl |- ?cr) : s4cns ; valid s4cns ?dtn ;

botRule ?dtn : extcs {(?ps, ?cl |- ?cr)} ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"

A similar pair of results, discussed later (see Lemma 12.6), covers the case where
the rule above the (◦) rules is a skeleton rule which is extended by an arbitrary context
in its conclusion and its premises.

Now we can assume that the cut-formula is within the principal part of the rule
before the (◦) rules (noting that for the (� �) rule the “principal part” means the
entireM � �A). Then there must be zero (◦) rules on the right side: because if there
are zero ◦ rules on the left, then the cut-formula must be �A, whence there would
also be zero (◦) rules on the right.

In the diagrams, (cut ?) represents the instance of the cut rule which we are aiming
to show is admissible.

M � A
(� �)

�,M � �A,�
(◦∗)

�′, ◦k�, ◦kM � ◦k�A, ◦k�,�′
◦k�A,M′ � B

(� �)
�′′, ◦k�A,M′ � �B,�′′

(cut ?)
�′, ◦k�,�′′, ◦kM,M′ � �B, ◦k�,�′,�′′

Here we do the cut, by induction, before the (� �) rule on the right, using a
derivation similar to that on the left, but without any context, then we apply the
(� �) rule, introducing the required context.

M � A
(� �)M � �A

(◦∗)◦kM � ◦k�A ◦k�A,M′ � B
(inductive cut)◦kM,M′ � B
(� �)

�′, ◦k�,�′′, ◦kM,M′ � �B, ◦k�,�′,�′′

For the other cases, we first consider the “parametric” cases, where the last rule above
the (◦) rules is an extension ρ′ of a rule ρ in s4cnsne, and the principal formula of
ρ is not the “de-circled” cut-formula A. Recall that s4cnsne consists of the axiom,
logical introduction rules and the (� �) rule, as skeletons (i.e., not extended with
context), but with ◦k applied to their formulae.

X ′ � Y ′, A
(ρ′)

X � Y, A
(◦∗)

W, ◦k X � ◦kY, ◦k A, Z ◦k Am,U � V
(cut ?)

W, ◦k X,U � ◦kY, Z , V



238 J.E. Dawson et al.

Here we must apply the ◦ rule the requisite number of times to the premise(s) of
ρ′, then apply (using the inductive hypothesis) cut on ◦k A to each of them, and finally
apply ρ′′ which we get by applying ◦k to ρ, and then extending it appropriately.

This uses the result that if a rule is in s4cnsne then so is the result of applying
◦k to all formulae in its premises and conclusion.

s4cnsne_nkmap: "?r : s4cnsne ==> nkmap ?k ?r : s4cnsne"

X ′ � Y ′, A
(◦∗)

W, ◦k X ′ � ◦kY ′, ◦k A, Z ◦k Am,U � V
(inductive cut)

W, ◦k X ′,U � ◦kY ′, Z , V
(ρ′′)

W, ◦k X,U � ◦kY, Z , V

Lemma 12.6 (s4cns_param_l’) and the symmetric result s4cns_
param_r’ cover this case.

Lemma 12.6 Let the left premise subtree of a desired cut be dt, with dtn and k as
in Lemma 12.4, let the bottom rule of dtn be an extension of a rule in s4cnsne
whose conclusion is cl � cr , and let C not be in ◦kcr . Then the inductive step
sumh_step2_tr for proving cut-admissibility with cut-formula C holds.

s4cns_param_l’:

"[| (?ps, ?cl |- ?cr) : s4cnsne ;

botRule ?dtn : extrs {(?ps, ?cl |- ?cr)} ;

valid s4cns ?dtn ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 ;

Suc (heightDTs ?list) = heightDT ?dtn + ?k |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"

It is similar for the parametric case on the right. The axiom rule is trivial in all
cases.

For the (� �) rule on the left, where the rule on the right is an extension of rule
ρ whose principal formula is the “de-circled” cut-formula, the only case remaining
is where ρ is (� �).

M � A
(� �)

X,M � �A,Y
(◦∗)

X ′, ◦k X, ◦kM � ◦k�A, ◦kY,Y ′

◦k ′′
A,U � V

(� �)◦k ′′�A,U � V
(◦∗)◦k ′+k ′′�A, ◦k ′

U,U ′ � ◦k ′
V, V ′

(cut?)
X ′, ◦k X, ◦kM, ◦k ′

U,U ′ � ◦kY,Y ′, ◦k ′
V, V ′



Machine-Checked Proof-Theory for Propositional Modal Logics 239

Here k ′ + k ′′ = k, but since we also have that k = 0 or k ′ = 0, this means that
k ′ = 0 and k ′′ = k. The following diagram omits a final use of the admissibility of
weakening.

M � A (◦∗)◦kM � ◦k A

M � A (� �)M � �A (◦∗)◦kM � ◦k�A ◦k�A, ◦k A,U � V
(inductive cut)◦kM, ◦k A,U � V

(inductive cut)◦kM, ◦kM,U � V
(ctr)◦kM,U � V

Next we look at the case of the (� �) rule on the right, but for this, since the
cut-formula must be a �-formula, all cases have already been dealt with.

Finally, there is the case where the last rules (above the final sequence of ◦-rules)
on both sides are extensions of rules in s4cnsne. Most of these cases have been
covered, i.e., the axiom rules, and the “parametric” cases, where the “de-circled”
cut-formula is not the principal formula of the rule.

So there remain the cases where the rules on either side are the logical introduction
rules. For these, the proofs are essentially the same as for other logics generally,
except that we need to allow for a number of circles. Conceptually it is easiest to
imagine that in each case the final ◦ rules are moved upwards to precede the final
logical introduction rules, although we didn’t actually prove it this way.

We proved that the usual logical introduction rules, with ◦k applied to principal
and side formulae (as used in S4C), satisfy c8_ercas_prop (Definition 11.4).
Recall that this means that assuming cut admissibility on smaller formulae, us have
cut admissibility of a more complex formula where the last rule on either side is a
logical introduction rule.

Lemma 12.7 [s4cns_c8_ercas] S4C satisfies c8_ercas_prop in relation
to the logical introduction rule skeletons lksil cup lksir, with ◦k applied to all
formulae.

s4cns_c8_ercas: "c8_ercas_prop (circrel ipsubfml) s4cns ?A

(nkmap ?k ‘ (lksil Un lksir))"

The following diagrams show an example. We let t = k + k ′ = l + l ′. In this case
we do not make use of the fact that either k or l must be zero.

X � ◦k ′
A,Y X � ◦k ′

B,Y
(� ∧)

X � ◦k ′
(A ∧ B),Y

(◦∗)◦k X � ◦t (A ∧ B), ◦kY

U, ◦l ′ A, ◦l ′ B � V
(∧ �)

U, ◦l ′(A ∧ B) � V
(◦∗)◦lU, ◦t (A ∧ B) � ◦l V
(cut ?)◦k X, ◦lU � ◦kY, ◦l V

The diagram above is simplified by not including the extra context which may be
introduced in the conclusion of the (◦) rules. This is replaced by



240 J.E. Dawson et al.

X � ◦k ′
A,Y

(◦∗)◦k X � ◦t A, ◦kY
...

...

...

X � ◦k ′
B,Y

(◦∗)◦k X � ◦t B, ◦kY
U, ◦l ′ A, ◦l ′ B � V

(◦∗)◦lU, ◦t A, ◦t B � ◦l V
(inductive cut)◦k X, ◦lU, ◦t A � ◦kY, ◦l V

(inductive cut)◦k X, ◦k X, ◦lU � ◦kY, ◦kY, ◦l V
(contraction)◦k X, ◦lU � ◦kY, ◦l V

Again, we can use weakening admissibility to get the extra context which was
introduced by the (◦) rules, but omitted from the first diagram.

Finally we combine these results to get the cut admissibility result, in terms of
explicit derivation trees, and then in terms of derivability.

Theorem 12.1 (s4cns_casdt, s4cns_cas) S4C satisfies cut-admissibility.

s4cns_casdt: "(?dta, ?dtb) : casdt s4cns ?A"

s4cns_cas: "(?cl, ?cr) : cas s4cns ?A"

12.5 Comparing Our Proofs and the Proofs of Mints

The slides for the presentation of Mints [16] contains a very abbreviated treatment of
cut-admissibility for S4C. We attempted to follow the proof shown there, but were
unable to. The slides state a lemma (“Substitution Lemma”), that the following rule
is admissible B � �C �C, � � �

B, � � �

As a lemma it is undoubtedly correct (it is a particular case of cut admissibility).
However, as part of the proof of cut-admissibility we were unable to prove it as it
stands—it appears to need (at least) an assumption that cuts on C are admissible.

13 Related Work

We may compare this approach with that of Pfenning [21]. Pfenning uses the
propositions-as-types paradigm, where a type represents (partially) a sequent. More
precisely, for intuitionistic logic, a type hyp A -> hyp B -> conc C repre-
sents a sequent containing A and B in its antecedent, and C in its succedent. For
classical logic, neg A -> neg B -> pos C -> pos D -> # represents a



Machine-Checked Proof-Theory for Propositional Modal Logics 241

sequent containing A and B in its antecedent, and C and D in its succedent. A term
of a given type represents a derivation of the corresponding sequent.

Pfenning’s proof of cut-admissibility proceeds by a triple induction, using struc-
tural induction on the formula and the two terms representing the derivations. It there-
fore most closely resembles our proofs involving explicit derivations, as described
in Sect. 7.3.

However in Sect. 7.3 we go on to measure properties (such as the height) of
an explicit derivation. It seems as though Pfenning’s approach does not allow the
possibility of doing that.

Tews [24] describes the use of Coq to prove cut-elimination for propositional
multi-modal logics. In Coq, types are identified with terms, and each term has a
type: a type has the type Type. A proposition is a type whose inhabitants are its
proofs, so A → B means both the type of proofs of the proposition A → B and the
type of functions which take proofs of A to proofs of B. Since types can depend on
terms, this gives a dependently typed system, which can provide a way of capturing
side-conditions in the type system. For example, the type counted_list A n is the
type of lists of items of type A and whose length is n.

Tews uses a (single) list of formulae as a sequent, where formulae which would
appear on the other side of a two-sided sequent are negated. He proves that for the rule
sets he uses, for any reordering s ′ of the conclusion s of a rule, there is a corresponding
rule whose conclusion is s ′, and, assuming sets of rules and hypotheses closed under
reordering, that provability is also closed under reordering. He defines an (object-
logic) proof as the type proof, similar to our definition of the type dertree, but the
type definition also incorporates the requirement that each “node” of the tree must
be in the given set of rules. This is an example of a dependent type, where the type
proof depends on the term rules.

He proves cut-elimination both semantically (by proving soundness and cut-free
completeness) and syntactically (where the proof implements a cut-elimination pro-
cedure). Thus hiswork includes extensive formalisation of the semantics of the logics.
His proofs use the modal ranks of formulae, and involve formalising substitution,
which we did not find necessary, and in some cases require proving depth-preserving
admissibility of rules.

14 Further Work and Conclusion

We have proved cut-admissibility for several different sequent calculi, ranging from
the well-known logics S4 and S4.3 to GTD and S4C described recently in [16].
In other work not described here we also proved cut-admissibility for GTD, for
a calculus containing explicit contraction and weakening rules, in both the ways
described at the start of Sect. 12.4.



242 J.E. Dawson et al.

We have shown how the proofs can be split up into components some of which
were expressed in lemmata which can be reused in similar proofs for other cal-
culi. This was of significant value, as was the use of the type classes described in
[6]. It remains to generalise our framework so that these results follow simply by
instantiating these general concepts.

Acknowledgments Jeremy E. Dawson—Supported by Australian Research Council Grant
DP120101244.

References

1. N.D. Belnap, Display logic. J. Philos. Logic 11(4), 375–417 (1982)
2. G. Bierman, V. de Paiva, Intuitionistic necessity revisited, in Proceedings of the Logic at Work

Conference (1996)
3. C. Castellini, Automated reasoning in quantified modal and temporal logics. AI Commun.

19(2), 183–185 (2006)
4. J.M. Davoren, R. Goré, Bimodal logics for reasoning about continuous dynamics, in Advances

in Modal Logic 3, papers from the Third Conference on “Advances in Modal Logic”, Leipzig
(Germany), Oct 2000 (2000), pp. 91–111

5. J. Dawson, Mix-elimination for S4 (2014). http://users.cecs.anu.edu.au/jeremy/isabelle/2005/
seqms/S4ca.ML. Included in Isabelle code base

6. J.E. Dawson, R. Goré, Generic methods for formalising sequent calculi applied to provability
logic, inProceedings of the 17th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR’10 (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 263–
277

7. K. Dosen, P. Schroder-Heister (eds.), Substructural Logics. Studies in Logic and Computation,
vol. 2 (Clarendon Press, 1993)

8. G. Gentzen, Untersuchungen über das logische schließen. Mathematische Zeitschrift 39, 176–
210 and 405–431 (1935)

9. J.-Y. Girard, Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. M.J.C. Gordon, T.F. Melham (eds.), Introduction to HOL: A Theorem-proving Environment

for Higher-Order Logic (Cambridge University Press, Cambridge, 1993)
11. R.Goré, R.Ramanayake,Valentini’s cut-elimination for provability logic resolved, inAdvances

in Modal Logic, vol. 7 (College Publications, London, 2008), pp. 67–86
12. R. Goré, Cut-free sequent and tableau systems for propositional diodoreanmodal logics. Studia

Logica 53(3), 433–457 (1994)
13. R. Goré, Machine checking proof theory: an application of logic to logic, in ICLA, Lecture

Notes in Computer Science, ed. by R. Ramanujam, S. Sarukkai (Springer, New York, 2009),
pp. 23–35

14. J.Goubault-Larrecq,On computational interpretations of themodal logic S4. I. Cut elimination.
Technical report, Institut fürLogik,Komplexität undDeduktionssysteme,UniversitätKarlsruhe
(1996)

15. A. Indrzejczak, Cut-free hypersequent calculus for S4.3. Bull. Sect. Logic 41(1–2), 89–104
(2012)

16. G. Mints, Two examples of cut-elimination for non-classical logics. Talk at JägerFest (2013)
17. S. Negri, J. von Plato, Structural Proof Theory (Cambridge University Press, Cambridge, 2001)
18. S. Negri, Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
19. M. Ohnishi, K. Matsumoto, Gentzen method in modal calculi. Osaka Math. J. 9(2), 113–130

(1957)
20. L. Paulson, Isabelle: A Generic Theorem Prover, vol. 828. LNCS (1994)

http://users.cecs.anu.edu.au/jeremy/isabelle/2005/seqms/S4ca.ML
http://users.cecs.anu.edu.au/jeremy/isabelle/2005/seqms/S4ca.ML


Machine-Checked Proof-Theory for Propositional Modal Logics 243

21. F. Pfenning, Structural cut elimination, in 10th Annual IEEE Symposium on Logic in Computer
Science, San Diego, California, USA, 26–29 June 1995 (IEEE Computer Society, 1995), pp.
156–166

22. T. Shimura, Cut-free systems for the modal logic S4.3 and S4.3Grz. Rep. Math. Logic 25,
57–72 (1991)

23. Special issue on formal proof. Notices of the American Mathematical Society, vol. 55, Dec
2008

24. H. Tews, Formalizing cut elimination of coalgebraic logics in coq, in Automated Reasoning
with Analytic Tableaux and Related Methods, TABLEAUX 2013. LNCS, vol. 8123 (2013), pp.
257–272

25. A. Troelstra, H. Schwichtenberg,Basic Proof Theory (CambridgeUniversity Press, Cambridge,
2000)

26. M. Wenzel, T. Nipkow, L. Paulson, Isabelle/HOL. A Proof Assistant for Higher-Order Logic.
LNCS, vol. 2283 (2002)


	Machine-Checked Proof-Theory  for Propositional Modal Logics
	1 Introduction
	2 Preliminaries
	2.1 Sequents Built from Multisets Versus Sets
	2.2 Our Modal Logics
	2.3 Interactive Proof Assistants

	3 A Deep Embedding of Formulae, Sequents and Rules
	4 Implicit and Explicit Derivations
	4.1 Defining Derivability (Implicitly) in Isabelle
	4.2 Inductive Proofs via Automated Inductive Principles
	4.3 Further Implicit Derivability Predicates
	4.4 Explicit Derivation Trees: A Deep Embedding  of Derivations
	4.5 To and Fro Between Explicit and Implicit Derivations

	5 Subformula Relation, Rule Skeletons and Extensions with Contexts
	6 The Weakening, Inversion and Contraction Properties
	7 Generalising Cut-Admissibility Proofs
	7.1 A General Framework for Reasoning About Implicit Derivations
	7.2 Induction for Two-Premise Subtrees
	7.3 Induction Principles for Explicit Derivation Trees

	8 Statement of Cut-Admissibility in Isabelle
	9 Weakening, Contraction and Cut Admissibility for S4
	9.1 Calculus for S4
	9.2 Weakening for S4
	9.3 Invertibility and Contraction for S4
	9.4 Cut-Admissibility for S4

	10 Weakening, Contraction and Cut Admissibility for S4.3
	10.1 Calculus for S4.3
	10.2 Weakening for S4.3
	10.3 Invertibility and Contraction for S4.3
	10.4 Cut-Admissibility for S4.3

	11 Weakening, Contraction and Cut Admissibility for GTD
	11.1 Calculus for GTD
	11.2 Weakening-Admissibility for GTD
	11.3 Inversion and Contraction-Admissibility for GTD
	11.4 Cut-Admissibility for GTD

	12 Weakening, Contraction and Cut Admissibility  for Dynamic Topological Logic S4C
	12.1 Calculus for S4C
	12.2 Weakening for S4C
	12.3 Inversion and Contraction-Admissibility for S4C
	12.4 Cut-Admissibility for S4C
	12.5 Comparing Our Proofs and the Proofs of Mints

	13 Related Work
	14 Further Work and Conclusion
	References


