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1 Introduction

Without exaggeration it can be said that Higman’s Lemma [15] is one of the most
often proven theorems in Mathematical Logic and Theoretical Computer Science.
The fascination of this theorem is due to the fact that it has various formulations and
is of interest in different areas such Proof theory, ConstructiveMathematics, Reverse
Mathematics, and Term rewriting, as we will briefly discuss further below.

Nash-Williams [19] gave a very concise classical proof using the so-called min-
imal bad sequence argument. In the following we briefly recall well-quasiorderings
and sketch Nash-Williams’ proof.

Definition A binary relation � on a set A is a well-quasiorder (wqo) if (i) it is
transitive and (ii) every infinite sequence in A is “good”, i.e.,∀(ai )i<ω

∃i, j (i < j ∧ ai �
a j ).

Let A∗ denote the set of finite sequences (“words”) with elements in A. We call a
word [a1, . . . , an] embeddable (�∗) in [b1, . . . , bm] if there exists a strictly increasing
map f : {1, . . . , n} → {1, . . . , m} such that ai � b f (i) for all i ∈ {1, . . . n}.

Now Higman’s Lemma says
If (A,�) is a well-quasiorder, then so is (A∗,�∗).
Nash-Williams’ proof proceeds as follows. That a bad sequence of words, i.e.,

a sequence that is not good, is impossible is basically a consequence of two facts:
(a) for each bad sequence exists a bad sequence with is smaller in a lexicographical
sense, and (b), if there exists a bad sequence, then exists also a minimal bad sequence
with respect to this lexicographical order. We give the proof in more detail:

(1) In order to show “wqo (A,�) implies wqo (A∗,�∗)” assume for contradiction
that there is a bad sequence of words in A∗.

(2) Among all infinite bad sequences of words we choose (using classical dependent
choice) a minimal bad sequence, i.e., a sequence (wi )i<ω, such that, for all n,
w0, . . . , wn starts an infinite bad sequence, but w0, . . . , wn−1, v, where v is a
proper initial segment of wn , does not.

(3) Since for all i wi 	= [ ], let wi = ai∗vi . By Ramsey’s theorem and the fact
that our alphabet A is a well-quasiorder, there exists an infinite subsequence
aκ0 � aκ1 � · · · of the sequence (ai )i<ω. This also determines a corresponding
sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . .

(4) The sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . must be bad (otherwise also (wi )i<ω

would be good), but this contradicts the minimality in (2).

The computational content of Nash-Williams’ proof was first investigated by
Murthy [17], by applying Friedman’s A-translation in the interactive theorem prover
NuPRL to the classical proof. Murthy represented functions as relations to eliminate
choice, and used second order classical logic. However, due to the size of the trans-
lated proof and program, the resulting program could only be run on trivial input.
In [29], the second author formalized Nash-Williams’ proof in the proof assistant
Minlog, by applying a refined version of the A-translation and, contrary to Murthy,
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not eliminating the axiom of classical dependent choice, but rather adding com-
putational content to it using bar recursion. This resulted in a considerable smaller
extracted program, but still with infeasible run-times due to the eager evaluation strat-
egy of Minlog’s term language. Reasonable results have been only obtained recently
thanks to a Minlog extension which translates extracted terms to Haskell. Other for-
malizations of the classical proof include Herbelin’s formalization of Murthy’s A-
translated proof in Coq [14] and Sternagel’s formalization of Nash-Williams’ proof
in Isabelle [30] which also provides a proof of Kruskal’s theorem. However, [30]
does not include the extraction of a program. Recently, Powell [21] applied Gödel’s
Dialectica Interpretation to this proof. The interpretation yields a program, but no
formalization has been provided so far.

In this paper, we aim at a constructive proof (without choice) which has the same
underlying construction asNash-Williams’ proof but allows us to directly read off the
program. For a {0, 1}-alphabet such a proof was given by Coquand and Fridlender [6,
7]. Here we provide a proof and a formalization for full Higman’s Lemma, and also
discuss how this proof is related to other constructive proofs. The paper is organized
as follows: We give a constructive reformulation of Nash-Williams’ proof in Sect. 2
and comment on its formalization in Sect. 3. In Sect. 4 we spell out the computational
content of someof the proofs. Each time it comes in the formof a term (in an extension
T + of Gödels T ) machine extracted from a formalization of the respective proof. We
give an overview on existing formalizations of the Coquand/Fridlender proof at the
end of Sect. 2 and add a comparison with other constructive proofs in Sect. 5.

2 A Constructive Reformulation of Nash-Williams’ Proof

The objective of this section is to present a constructive proof of Higman’s Lemma
that uses the same combinatorial idea as Nash-Williams’ classical proof and gener-
alizes the proof by Coquand and Fridlender. Such a proof (without formalization)
has been given in [28]. However, if one is interested in the computational content
one has to reformulate this proof and to change it at various places to make the
computational content visible (see also the remark at the end of this section). We
use an inductive characterization of a binary relation satisfying condition (ii) in the
definition of a well-quasiorder; such relations have been called “almost full” in [33].
Our characterization is via a “bar” predicate which comes in two variants, one for
the alphabet and one for words, see below for a definition. Thus, the statement we
are going to prove is

BarA�[] → BarW�[].

Throughout the whole paper we assume� to be a binary relation on a set A which
is decidable in the sense that it is given by a binary total function into the booleans;
transitivity will not be needed. It suffices to let A be the set of natural numbers.
Most of our notions will depend on the �-relation. However, we usually suppress
this dependence, since � will be kept fixed most of the time.
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Notation We use

a, b, . . . for letters, i.e., elements of a A,

as, bs, . . . for finite sequences of letters, i.e., elements of A∗,
v, w, . . . for words, i.e., elements of A∗,
vs, ws, . . . for finite sequences of words, i.e., elements of A∗∗.

Definition (Higman embedding, inductive) The embedding relation �∗ on A∗ is
defined inductively by the following axioms (written as rules):

[ ] �∗ [ ]
v �∗ w

v �∗ a∗w

a � b v �∗ w

a∗v �∗ b∗w

where ∗ denotes the cons operation on lists.

Definition GoodA as expresses that a finite sequence as of letters is good; note
that finite sequences grow to the left, i.e., a finite sequence is good if there are two
elements such that the one to the left is larger than or equal to w.r.t. � to the one on
the right. A sequence is called bad if it is not good. Furthermore, we use

Ge∃(a, as) := ∃i<|as|a 
 (as)i ,

Ge∀(a, as) := ∀i<|as|a 
 (as)i ,

Ge∃∀(a, ws) := ∃i<|ws|∀ j<|(ws)i |a 
 (ws)i, j .

Afinite sequence as = [an−1, .., a0] is decreasing if a j 
 ai whenever j ≥ i . Further,
BSeq as determines the “first” bad subsequence occurring in as:

BSeq [ ] := [],
BSeq(a∗as) :=

{
a∗BSeq as if ¬Ge∃(a, as),

BSeq as otherwise.

Definition We inductively define a set BarA ⊆ A∗ by the following rules:

GoodA as

BarA as

∀a BarA a∗as

BarA as
.

BarW ws is defined similarly, using the corresponding GoodW ws. However,
since GoodW is a predicate on words, it refers to the embedding relation �∗ on A∗
rather than � directly.

As in the end we are interested in getting a program that for any sequence of
words yields witnesses that this sequence is good we also prove the following.

Proposition (BarWToGoodInit) BarW[ ] implies that every infinite sequence of
words has a good initial segment.

Proof Let f be a variable of type nat=>list nat. We show, more generally,
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∀ws, f,n(BarW ws → Rev( f̄ n) = ws → ∃mGoodW(Rev( f̄ m)))

by induction on BarW. The proposition then follows with ws = [].
1. GoodW ws. Assume that there are an infinite sequence f and a number n such

that Rev( f̄ n) = ws (i.e., [ f (n − 1), . . . , f 0] = ws). Since ws is good, we can
take m to be n.

2. Using the induction hypothesis

∀w, f,n(Rev( f̄ n) = w∗ws → ∃mGoodW(Rev( f̄ m)))

with f n, f and n + 1, we only have to prove Rev( f̄ (n + 1)) = f n∗ws, which
follows from Rev( f̄ n) = ws. �

Note that the reverse direction expresses a form of bar induction. However, for
the proof below the present direction suffices.

In the following we want to first highlight the idea behind the constructive proof.
This is best done by showing how the steps (1)–(4) in the proof of Nash-Williams
given in the introduction are dealt with in the inductive proof.

(1) Prove inductively “BarA [ ] → BarW[ ]”.
(2) The minimality argument will be replaced by structural induction on words.
(3) Given a sequence ws = [wn, . . . , w0] s.t. wi = ai∗vi , we are interested in all

decreasing subsequences [aκl , . . . , aκ0 ] of maximal length and their correspond-
ing sequences vκl , . . . , vκ0 , wκ0−1, . . . , w0. The sequences [aκl , . . . , aκ0 ] form a
forest. In the proof these sequences will be computed by the procedure Forest
which takes ws as input and yields a forest labeled by pairs in A∗∗ × A∗. In the
produced forest the right-hand components of each node form such a descending
subsequence [aκi , . . . , aκ0 ] and the corresponding left-hand component consists
of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0]. If we extend the sequence ws to
the left by a word a∗v, then in the existing forest either new nodes, possibly at
several places, are inserted, or a new singleton tree with root node 〈v∗ws, [a]〉 is
added. Now the informal idea of the inductive proof is: if in Forest ws new nodes
cannot be inserted infinitely often (without ending upwith a good left-hand com-
ponent in a node) and if also new trees cannot be added infinitely often, then ws
can not be extended badly infinitely often. Formally, this will be captured by the
statement:

∀ws(BarW(BSeq(Headsws)) → BarF(Forest ws) → BarW ws).

(4) The first part of item (4) corresponds to GoodWForestToGoodW.

Definition For a finite sequence ws of words let Headsws denote the finite sequence
consisting of the starting letters of the non-empty words. We call a finite sequence
ws of words admissible (Adm ws) if each word in ws is non-empty.
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Notation We use t for elements in T (A∗∗ × A∗), i.e., trees labeled by pairs in A∗∗ ×
A∗, and ts, ss for elements in (T (A∗∗ × A∗))∗, i.e., forests. The treewith root 〈ws, as〉
and list of subtrees ts is written 〈ws, as〉ts. We use the destructors Left and Right for
pairs and the destructors Root and Subtrees for trees. For better readability we set:

Newtree 〈ws, as〉 := 〈ws, as〉[ ],
Roots [tn−1, . . . , t0] := [Root tn−1, . . . ,Root t0],
Lefts [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [vsn−1, . . . , vs0],
Rights [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [asn−1, . . . , as0].

Definition Letws ∈ A∗∗ be a sequence of words. Then Forest ws ∈ (T (A∗∗ × A∗))∗
is recursively defined by

Forest [ ] := [],
Forest [ ]∗ws := Forest ws,

Forest(a∗v)∗ws :={
InsertF(Forest ws, v, a) if Ge∃(a,BSeq(Headsws)),

Newtree 〈v∗ws, [a]〉∗(Forest ws) otherwise

where

InsertF(ts, v, a) := map

⎛
⎝λt

⎡
⎣ if Ge∀(a,Right (Root t))

InsertT(t, v, a)

t

⎤
⎦

⎞
⎠ ts

and

InsertT(〈vs, as′〉ts, v, a) :={
〈vs, as′〉InsertF(ts, v, a) if Ge∃∀(a,Rights(Roots ts)),

〈vs, as′〉(Newtree 〈v∗vs, a∗as′〉∗ts) otherwise.

Example Take as (almost full) relation the natural numbers with ≤. For better
readability we use underlining rather than parentheses to indicate a list. We will
only use one-digit numbers, hence every digit stands for a natural number. Then
Forest [28, 421, 69, 35] is

([8, 421, 69, 35],2)
([21, 5],43) ([9, 5],63)

([5],3)

and Forest [52, 28, 421, 69, 35] is
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([2, 8, 421, 69, 35],52)
([8, 421, 69, 35],2)

([2, 21, 5],543)
([21, 5],43) ([9, 5],63)

([5],3)

If we “project” each node to its right-hand-side we obtain

2
43 63

3 and 52
2

543
43 63

3

The leaves of e.g. the final tree are themaximal decreasing subsequences of the heads
[52463] of [52, 28, 421, 69, 35]. Recall that the left-hand-side of each leaf consists
of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0], and its right-hand-side is the maxi-
mal descending subsequence [aκi , . . . , aκ0 ] of [an, . . . , a0]. In the example the leaf
([2, 8, 421, 69, 35, ], 52, ) has exactly this form: 52 is a maximal descending subse-
quence of 52463, and we have [52, 28, 421, 69, 35] = [(5 ∗ 2), (2 ∗ 8), 421, 69, 35].
Definition Let t ∈ T (A∗∗ × A∗). Then t is a tree with a good leaf (GLT t) if there
is a leaf with a good left side. We inductively define the predicate BarF ⊆ (T (A∗∗ ×
A∗))∗ by the rules

GLT(ts)i

BarFts

∀a,v(Ge∃∀(a,Rights(Roots ts)) → BarF(InsertF(ts, v, a)))

BarFts

Lemma (GoodWProjForestToGoodW, BSeqHeadsEqRhtsRootsForest)

(a) ∀ws,i (i < Lhws → GLT(Forest ws)i → GoodW ws).
(b) ∀ws(Adm ws → BSeq(Headsws) = Heads(Rights(Roots (Forest ws)))).

Proof Both parts follow from the construction of Forest; the proof of (a) is rather
laborious and involves a number of auxiliary notions. However, since we are
mainly interested in computational content and this lemma has none, we do not
give details. �
Lemma (BarFNil, BarFAppd)

(a) BarF[ ].
(b) ∀t,ts(BarF[t] → BarFts → BarFt∗ts).

Proof (a) BarF[ ] follows from the second rule of the definition of BarF, using ex-
falso-quodlibet.

(b) This assertion holds since InsertF is defined by a map operation. In more
detail, using # for the concatenation of two lists, we prove

∀ts(BarFts → ∀ss(BarFss → BarFts#ss))

by induction on BarFts. The base case is straightforward as GLT(ts)i implies
GLT(ts#ss)i . In the step case we have
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ih1 : ∀v,a(Ge∃∀(a,Rights(Roots ts)) →
∀ss(BarFss → BarF(InsertF(ts, v, a)#ss)))

and need to prove ∀ss(BarFss → BarFts#ss). Fix ss ∈ A∗ and use induction on
BarFss. The base case again is easy since GLT(ss)i implies that there is j such
that GLT(ts#ss) j . In the step case we have

ih2 : ∀v,a(Ge∃∀(a,Rights(Roots ss)) → BarFts#InsertF(ss, v, a))

as well as its “strengthening”

ih2a : ∀v,a(Ge∃∀(a,Rights(Roots ss)) → BarF(InsertF(ss, v, a))).

To show BarFts#ss, assume v, a with Ge∃∀(a,Rights(Roots ts#ss)) and show BarF
(InsertF(ts#ss, v, a)).

Case 1. ¬Ge∃∀(a,Rights(Roots ts)), i.e., new nodes are only added to ss; ts
remains unchanged. Then BarFts#ss′ follows by ih2.

Case 2. Ge∃∀(a,Rights(Roots ts))). First assume that new nodes are added to
both ts and ss, i.e., Ge∃∀(a,Rights(Roots ss)). In this case we use with v, a and
InsertF(ss, v, i). We still need to show BarF(InsertF(ss, v, a)), which holds because
of ih2a .

Now assume ¬Ge∃∀(a,Rights(Roots ss)), i.e., new nodes are only added to ts. In
this case we apply ih1 with v, a and ss where we use ih2a and the definition of BarF
to obtain BarFss. �

The next lemma tells us that a forest consisting of only one tree, in which we
continue to insert new nodes by InsertF operations, eventually becomes good.

Lemma (BarFNew) Assume BarA [ ]. Then

∀ws0(BarW ws0 → ∀as0BarF[Newtree 〈ws0, as0〉]).

Proof Ind1(BarW). 1.1. GoodW ws0. Then GLT(Newtree 〈ws0, as0〉), i.e., BarF
[Newtree 〈ws0, as0〉]. 1.2. Assume

ih1 : ∀w,asBarF[Newtree 〈w∗ws0, as〉].

Let as0 ∈ A. Instead of proving BarF[Newtree 〈ws0, as0〉] we show more generally
that this assertion holds for all t with Root t = 〈ws0, as0〉 and (a) Subtrees t in BarF,
and (b) Heads(Rights(Roots(Subtrees t))) in BarA.We do this by main induction on
(b) and side induction on (a), i.e., we prove

∀as(BarA as → ¬GoodA as →
∀ts(BarFts → as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts])).
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Ind2(BarA). 2.1. GoodA as. Then the conclusion follows immediately by ex-falso-
quodlibet with the premise ¬GoodAas. 2.2. BarA as is obtained by the second rule.
We assume as and

ih2 : ∀a,ts(BarFts → a∗as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts]),

and have to show

∀ts(BarFts → as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts]).

Ind3(BarF). 3.1. Fix (ts)i such that GLT(ts)i . By the first clause of BarF, for
any t such that Subtrees t = ts, GLT(ts)i implies BarF[t]. 3.2. Fix ts with as =
Heads(Rights(Roots ts)) and assume the induction hypothesis

ih3 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) →
as = Heads(Rights(Roots(InsertF(ts, v, a)))) →
BarF[〈ws0, as0〉InsertF(ts, v, a)])

together with its strengthening

ih3a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) → BarF(InsertF(ts, v, a))).

To show BarF[〈ws0, as0〉ts] we use the second clause, i.e., prove

∀v,a(Ge∃(a,Head[as0]) → BarF(InsertF([〈ws0, as0〉ts], v, a))).

We fix v and a with Ge∃(a, as0) and prove the statement by case distinction on how
a relates to as, i.e., whether nodes in the existing subtrees ts need to be inserted, or
whether a new subtree has to be added.

Case 1. Ge∃(a, as). In this case we have

as = Heads(Rights(Roots ts)) = Heads(Rights(Roots(InsertF(ts, v, a))))

and by applying ih3 we obtain BarF[〈ws0, as0〉InsertF(ts, v, a)].
Case 2. ¬Ge∃(a, as). In this case we need to show

BarF[〈ws0, as0〉Newtree 〈w∗ws0, a∗as0〉∗ts]

which can be obtained by applying ih2 to a and Newtree 〈w∗ws0, a∗as0〉∗ts provided
we can show

BarF(Newtree 〈w∗ws0, a∗as0〉∗ts).

This follows from BarFts and BarF[Newtree 〈w∗ws0, a∗as0〉] via BarFAppd. The
former holds by ih3a , the latter follows by ih1.
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Now, the proof of the general assertion is completed. Since BarA [ ] by assumption
and BarF[ ] by BarFNil, we may in the assertion put as = [] and ts = [] and end up
with BarW ws → BarF[Newtree 〈ws0, as0〉]. �

Theorem (Higman) BarA [ ] → BarW[ ].
Proof Assume BarA[ ]. We show more generally

∀as(BarA as →
∀ts(BarFts →
∀ws(Adm ws → BSeq(Headsws) = as → Forest ws = ts → BarW ws))).

Ind1(BarA). 1.1. GoodA as. Then, the result follows by ex-falso-quodlibet since for
any ws, BSeq(Headsws) is bad.

1.2. Let as ∈ A∗ and assume

ih1 : ∀a,ts(BarFts →
∀ws(Adm ws → BSeq(Headsws) = a∗as → Forest ws=ts → BarW ws)).

Ind2(BarF). 2.1. GLT(ts)i . Then, byGoodWProjForestToGoodW, for anyws such
that Forest ws = ts we obtain GoodW ws and hence BarW ws. 2.2. Fix ts and assume

ih2 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) →
∀ws(Adm ws → BSeq(Headsws) = as → Forest ws=InsertF(ts, v, a) →

BarW ws))

as well as the strengthening of the induction hypothesis

ih2a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) → BarF(InsertF(ts, v, a))).

Assume that we have ws such that BSeq(Headsws) = as and Forest ws = ts. In
order to prove BarW ws, we fix a word w and show BarWw∗ws by induction on the
structure of w:

Ind3(w). 3.1. BarW[ ]∗ws holds since the empty word is embeddable in any word.
3.2. Assume that we have a word of form a∗w. We show BarW(a∗w)∗ws by case
analysis on whether or not Ge∃(a, as).

Case 1. Ge∃(a, as).
In this case, we have

BSeq(Heads((a∗w)∗ws)) = as,
Forest((a∗w)∗ws) = InsertF(ts, w, a).
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By BSeqHeadsEqRhtsRootsForest and the definition of Forest(a∗w)∗ws, we know
that at least one node has been inserted into Forest ws. In this situation, we may
apply ih2 (to InsertF(ts, w, a) and (a∗w)∗ws) and conclude BarW(a∗w)∗ws.

Case 2. ¬Ge∃(a, as). Then we have

BSeq(Heads((a∗w)∗ws)) = a∗as,
Forest(a∗w)∗ws) = Newtree 〈w∗ws, [a]〉∗ts.

By ih2a and ih3, we have BarFts and BarWw∗ws. Hence, by BarFNew applied
to w∗ws and [a], we obtain BarF[Newtree 〈w∗ws, [a]〉]. By BarFAppd we may
conclude

BarF[Newtree 〈w∗ws, [a]〉∗ts].

Nowwe are able to apply ih1 (to a, Newtree 〈w∗ws, [a]〉∗ts and (a∗w)∗ws) and end
up with BarW(a∗w)∗ws. This completes the proof of the general assertion.

Now, by putting as = [], ts = [] and ws = [] and the fact that BarF[ ] always
holds (by BarFNil) we obtain BarA [ ] → BarW[ ]. �

Remark In order to make the computational content behind the inductive proof vis-
ible, it is essential to use a “positive” formulation of a well-quasiorder, that is, a def-
inition using two rules, as was pointed out, e.g., in [10]. Having a proof of BarW ws
implies that the proof yields the information whether BarW ws was obtained by the
first rule or by the second. In the first case the result can be read off, in the second we
continue with looking at a proof of BarW w ∗ ws . If we used a definition consisting
of only one rule, i.e., an acc�-notion as in [28], BarW ws would correspond to

¬∃i (i < Lh ws → (ws)i embeds into ws) → BarWw∗ws

where the test whether or not the premise holds results in a brute-force search; it is
not given by the proof itself.

In the next section we discuss a formalization of this proof. For the special case of
{0,1} there are formalizations in Agda (Fridlender), Minlog (Seisenberger), Isabelle
(Berghofer, [3]) and Coq (Berghofer). The formalization of the general case is much
more elaborate. Such a formalization has been given in Coq, by Delobel.1 However,
its computational content has not been extracted and investigated. Itwould suffer from
the point made in the previous remark, and its usage of the Set/Prop distinction (see
footnote 2) in Coq.Herewewant to demonstrate how to get hold of the computational
content of a (non-trivial) proof by means of an extracted term, and that this term
clearly represents the computationally relevant aspects of the underlying proof.

1http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html.

http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html
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3 Formalization

Why should we formalize the rather clear proof given in the previous section? There
is of course the obvious reason that we want to be sure that it is correct. However,
in addition we might want to get hold of its computational content. We will present
this content in the form of an “extracted term”, in (an extension T + of) Gödel’s T .
This term can be applied to another term representing an infinite sequence of words,
and then evaluated (i.e., normalized). The normal form is a numeral determining a
good finite initial segment of the input sequence.

When formalizing we of course need a theory (or formal system) where this is
done. Now what features of such a theory are essential for our task? First of all, we
have to get clear about (i) what “computational content” is, and (ii) where it arises.
We use the Kleene-Kreisel concept of modified realizability for the former. In fact,
we will have a formula expressing “the term t is a realizer for the formula A” inside
our formal system. For the latter, we take it that computational content only arises
from inductive predicates; prime examples are the Bar predicates introduced in the
previous section. But then a particular aspect becomes prominent: we need “non
computational” (n.c.) universal quantification [1] written ∀nc to correctly express the
type of a computational problem of the form

∀nc
as(BarA as → A).

Its intended computational content is a function f mapping a witness that as is in
BarA into a realizer of A. It is important that f does not get as as an argument.2

On the more technical side, we use TCF [26], a form of HAω extended by induc-
tively defined predicates and n.c. logical connectives. TCF has the (Scott-Ershov)
partial continuous functions as its intended model.

It is also mandatory to use a proof assistant to help with the task of formalization.
We use Minlog3 [2], which is designed to support these features.

Space does not permit to present the full formalization4 of the constructive proof
above of Higman’s Lemma. We restrict ourselves to comment on some essential
aspects.

Most important are of course the basic definitions of the data structures (free
algebras) and predicates involved. Their formal definitions are very close to the
informal ones above and do not need to be spelled out. However, already at this
level computational content crops up: an inductive predicate may or may not have
computational content. Examples for the former are the Bar predicates, and for the
latter theGoodA predicate. It is convenient to define theGoodA predicate inductively,

2A similar phenomenon is addressed in Coq [5] by the so-called Set/Prop distinction. However,
enriching the logic by n.c. universal quantification (and similarly n.c. implication) seems to be more
flexible.
3See http://www.minlog-system.de.
4See http://www.git/minlog/examples/bar/higman.scm.

http://www.minlog-system.de
http://www.git/minlog/examples/bar/higman.scm
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but—since it is decidable—we can also view it as a (primitive) recursive boolean
valued function.

The first point in the proof above where we have to be careful with n.c. quantifi-
cation is the inductive definition of BarA, with clauses

InitBarA : ∀nc
�,as(GoodA�as → BarA�as),

GenBarA : ∀nc
�,as(∀aBarA�a ∗ as → BarA�as).

The (free) algebra of witnesses for this inductive predicate is called treeA. In
the clause GenBarA the generation tree of BarA�as should have infinitely many
predecessors indexed by a, hence we need ∀a . However, the outside quantifier is
∀nc�,as, since we do not want to let the argument as be involved in the computational
content of BarA�as. Hence treeA has constructors

CInitBarA : treeA,

CGenBarA : (nat ⇒ treeA) ⇒ treeA.

A similar (but slightly more involved) comment applies to the inductive definition
of BarF. For readability we omit the dependency on � here. The clauses are

InitBarF : ∀nc
ts,i (i < Lh ts → GLT (ts)i → BarFts),

and GenBarF :

∀nc
ts (∀tas,a,v(tas = ProjF ts → Ge∃∀(a,Roots tas) →

BarF(InsertF(ts, v, a)) →
BarFts).

We need the concept of the “A-projection” of a tree t , where each rhs of a label
in t is projected out. Here only the A-projection of ts (but not ts) is used compu-
tationally. More precisely, the predecessors of BarFts are all InsertF(ts, v, a) for
v, a with Ge∃∀(a,Rights(Roots ts)). To decide the latter, we need (computationally)
Rights(Roots ts), i.e., the A-projection of ts.

The (free) algebra of witnesses for the inductive predicate BarF is called treeF;
its constructors are

CInitBarF : treeF,

CGenBarF : (list lntree nat ⇒ nat ⇒ list nat ⇒ treeF) ⇒ treeF.
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4 Extraction

We now spell out the computational content of some of the proofs above. Each time
it comes in the form of a term (in T +) machine extracted from a formalization of the
respective proof.

When reading the extracted terms please note that lambda abstraction is displayed
via square brackets; so [n]n+mmeans λnn + m. Our notation 〈ws, as〉ts for the tree
with root 〈ws, as〉 and list of subtrees ts is displayed as (ws pair as)%ts. Also
types are implicit in variable names; for example, n, a both range over natural
numbers. One can also use the display string for a type as a variable name of this
type; for example, treeW is a name for a variable of type treeW.

4.1 BarWToGoodInit

We use typed variable names

f: nat=>list nat

gw: nat=>list nat

hwfa: list nat=>(nat=>list nat)=>nat=>nat

The term extracted from the proof of the proposition BarWToGoodInit is

[treeW]

Rec treeW=>(nat=>list nat)=>nat=>nat)treeW([f,a]a)

([gw,hwfa,f,a]hwfa(f a)f(Succ a))

It takes some effort to understand such an extracted term. The recursion operator on
treeW with value type alpha has type

treeW=>alpha=>((list nat=>treeW)=>(list nat=>alpha)=>alpha)

=>alpha

Let Leaf: treeW and Branch: (list nat=>treeW)=>treeW be the
constructors of treeW. Then� := (Rec treeW=>alpha) is given by the recur-
sion equations

�(Leaf) := G,

�(Branch(g)) := H(g, λv�(g(v))).

Here the value type alpha is (nat=>list nat)=>nat=>nat, and

G := λ f,aa,

H(gw,hwfa) := λ f,ahwfa( f (a), f, a + 1).
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4.2 BarFNil, BarFAppd

For BarFNil we have the simple extracted term

CGenBarF([tas,a,v]CInitBarF)

For BarFAppd we use the variable names

g: list lntree nat=>nat=>list nat=>treeF

htat: list lntree nat=>nat=>list nat=>treeF=>nat=>treeF

hat: list lntree nat=>nat=>list nat=>nat=>treeF

Then the extracted term is

[wqo,treeF]

(Rec treeF=>treeF=>nat=>treeF)treeF([treeF0,a]CInitBarF)

([g,htat,treeF0]

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]

a)

(hat((Lh tas--a)rest tas)a0 v a)])))

The recursion operator on treeF with value type alpha has type

treeF=>alpha=>

((list lntree nat=>nat=>list nat=>treeF)=>

(list lntree nat=>nat=>list nat=>alpha)=>alpha)=>alpha

LargerARExAl wqo a ws means ∃i<|ws|∀ j<|(ws)i |a 
 (ws)i, j . treeF has con-
structors CInitBarF: treeF and CGenBarF: (list nat=>treeF)=>
texttttreeF. Then � := (Rec treeF=>alpha) is given by the recursion equa-
tions

�(CInitBarF) := G,

�(CGenBarF(g)) := H(g, λv�(g(v))).

The value type of the first recursion is treeF=>nat=>treeF, and
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G := λtreeF,aCInitBarF,

H(g,htat) := λtreeF0K (g,htat,treeF0)

with K (g,htat,treeF0) given by

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]

a)

(hat((Lh tas--a)rest tas)a0 v a)]))

The inner recursion is on treeF again, with value type nat=>treeF, and

G1 := λaCInitBarF,

H1(g0,hat) := λaCGenBarF . . .

4.3 BarFNew

With the variable names

gw: list nat=>treeW hw: list nat=>list nat=>treeF

ga: nat=>treeA hatt: nat=>treeF=>treeF

we extract

[wqo,treeA,treeW]

(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)

([gw,hw,v]

(Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)

([ga,hatt,treeF]

(Rec treeF=>treeF)treeF CInitBarF

([g,g0]

CGenBarF

([tas,a,v0]

[if (LargerARExAll wqo a Roots Subtrees Head tas)

(g0 Subtrees Head tas a v0)

(hatt a
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(cBarFAppd wqo(hw v0(a::v))

(CGenBarF g)Lh Subtrees Head tas))])))

(CGenBarF([tas,a,v0]CInitBarF)))

This time we have three nested recursions: an outer one on treeW with value type
list nat=>treeF, then ontreeAwith value typetreeF=>treeF, and inner-
most on treeF with value type treeF. This corresponds to the three elimination
axioms used in the proof. Notice that the computational content cBarFAppd of the
theorem BarFAppd appears as a constant inside the term.

4.4 Higman

[wqo,treeA]

(Rec treeA=>treeF=>list list nat=>list lntree list nat=>treeW)

treeA

([treeF,ws,tas]CInitBarW)

([ga,ha,treeF]

(Rec treeF=>list list nat=>list lntree list nat=>treeW)treeF

([ws,tas]CInitBarW)

([g,h,ws,tas]

CGenBarW

([v](Rec list nat=>treeW)v(CGenBarW([v0]CInitBarW))

([a,v0,treeW]

[if (LargerAR wqo a(BSeq wqo Heads ws))

(h tas a v0((a::v0)::ws)(InsertAF wqo tas a))

(ha a (cBarFAppd wqo(cBarFNew wqo treeA treeW a:)

(CGenBarF g)Lh tas)

((a::v0)::ws)

((a: %(Nil lntree list nat))::tas))]))))

(CGenBarF([tas,a,v]CInitBarF))

(Nil list nat)

(Nil lntree list nat)

4.5 Experiments

To run the extracted terms we need to “animate” the theorems involved. This means
that the constant denoting their computational content (e.g., cBarFAppd for the
theorem BarFAppd) unfolds into the term extracted from the proof of the theorem.
Then for an arbitrary infinite sequence extending e.g. the example in Sect. 2we obtain
the expected good initial segment.
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In more detail, we first have to animate the computationally relevant propositions
in the proof given above of Higman’s Lemma. Then we need to prove and animate
lemmas relating to the particular relation NatLe:

BarNatLeAppdOne : ∀i,m,as(i + Lh(as) = m + 1 → BarA≤(as#[m])),
BarANilNatLe : BarA≤[],
HigmanNatLe : BarW≤[].

Using these we can prove the final proposition

GoodWInitNatLe : ∀ f ∃nGoodW≤(Rev( f̄ n)).

Let neterm be the result of normalizing the term extracted from this proof. Next
we provide an infinite sequence (extending the example in Sect. 2), e.g. in the form
of a program constant:

(add-program-constant "Seq" (py "nat=>list nat"))

(add-computation-rules

"Seq 0" "5::2:"

"Seq 1" "2::8:"

"Seq 2" "4::2::1:"

"Seq 3" "6::9:"

"Seq 4" "3::5:"

"Seq(Succ(Succ(Succ(Succ(Succ n)))))" "0:")

Finally we run the our normalized extracted term by evaluating

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))

(Here nt means “normalize term” and pt means “parse term”). The result is 4, the
length of a good initial segment of our infinite sequence.

5 Related Work: Other Proofs of Higman’s Lemma

Asmentioned at the beginning of Sect. 2, our constructive proof of Higman’s Lemma
does not need transitivity; it works for arbitrary almost full relations. However, in
the following discussion we disregard this fine point and assume that the underlying
relation is a well-quasiorder. This will make it easier to compare different proofs in
the literature.
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There are quite a number of constructive proofs of Higman’s Lemma, thus the
natural question arises: are they all different? The number of proofs is due to the
fact that researchers from different areas, algebra, proof theory, constructive math-
ematics, term rewriting, to name a few, became interested in Higman’s Lemma. In
addition, there are various formulations of a well-quasiorder which include different
proof principles. These are for instance proofs using ordinal notation systems and
transfinite induction as used in [24, 25] or inductively defined predicates and struc-
tural induction as used in [9, 18, 23]. Below we argue that these proofs are the same
from a computational point of view.

The proof theoretic strength of Higman’s Lemma is that of Peano Arithmetic,
i.e. ε0, as was shown in [12] using the constructive proof of [25]. Speaking in terms
of Reverse Mathematics, Higman’s Lemma can be proven in the theory ACA0. In
term rewriting theory, Higman’s Lemma and its generalization to trees, Kruskal’s
Theorem, are used to prove termination of string rewriting systems and term rewriting
systems respectively. The orders whose termination is covered by these two theorems
are called simplification orders. They form an important class since the criterion of
being a simplification order can be checked syntactically. A constructive proof, e.g.,
as given in [4], moreover yields a bound for the longest possible bad sequence. In
the case of Higman’s Lemma the reduction length, expressed in terms of the Hardy
hierarchy, Hα , assuming a finite alphabet A, is as follows. If we have a bad sequence
(ti )i<n , fulfilling the condition |ti | ≤ |t0| + k × i , where k is a constant and |t | denotes
the size of t , then the length n of the sequence is bound by �(|t0|) where � is an
elementary function in H

ωω|A| [4, 31]. This bound is optimal since there are term
rewriting systems which “reach” these bounds [32].

5.1 Equivalent Formulations of a Well-Quasiorder

We define the maximal ordertype of a well-quasiorder (A,�) as the supremum of
the ordertypes of all extensions of (A,�) to a linear order. Equivalently, in a more
constructive manner, the maximal ordertype can be defined by the height of the tree
of all bad sequences (Bad�) with elements in A. A reification of a quasi order (A,�)

into a wellordering (σ,<) is a map

r : Bad� → σ,

such that for all a∗as ∈ Bad� we have r(a∗as) < r(as). On the set Bad� of bad
sequences in A we define a relation�A by as′ �A as iff as′ = a∗as for some a ∈ A.
The accessible part of the relation �A⊆ Bad� × Bad� is inductively given by the
rule ∀as′(as′ �A as → acc�A as′)

acc�A as
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It is obvious that the following are equivalent for a quasiorder (A,�):

(i) (A,�) is a well-quasiorder (i.e., Wqo(A,�)).
(ii) (A,�) has a maximal ordertype.
(iii) There is a reification of (A,�) into a wellorder.
(iv) (Bad�,�A) is wellfounded, i.e., acc�A [ ].
(v) BarA�[].

5.2 A Generic Proof of Higman’s Lemma

In the following we sketch a generic proof of

Wqo(A,�) → Wqo(A∗,�∗).

which differs from the proof presented in the earlier sections. We start by choosing
a characterization of a well-quasiorder, either using ordinal notations ((ii) or (iii)) or
inductive definitions ((iv) or (v)). (Note that in the latter casewe need to generalize the
statement; for instance, in (iv) we prove more generally acc�A as → acc�(Aas)∗ [] and
use this proof with as = [], and in the proof below instead of A[a] we use everywhere
Aa∗as, etc.). Here we define Aas as the set of all elements that extend as badly, i.e.
∀i asi � a. Similarly, we define A[a] to be the set of all elements b such that a �A b.
Assume that for our choice of characterization we are able to prove (with the obivous
extension of � to ∪ and ×):

(a) ∀a Wqo(A[a],�) → Wqo(A,�),

(b) A ⊆ B → Wqo(A,�) → Wqo(B,�),

(c) Wqo(A) ∧ Wqo(B) → Wqo(A ∪ B),

(d) Wqo(A) ∧ Wqo(B) → Wqo(A × B).

Assume Wqo(�). We proceed to prove Higman’s Lemma by using either struc-
tural induction or transfinite induction, depending on our choice. From the induction
hypothesis we get

Wqo(A[a]) → Wqo(A[a]∗). (1)

By (a) it suffices to prove ∀vWqo(A∗
[v]). Let v = [a1, . . . , an]. The main combinato-

rial idea is now contained in the following statement

(A)∗[[a1,...,an ]] ⊆
⋃

{(A[a1])
∗ × A × (A[a2])

∗ × · · · × A × (A[al ])
∗ | l < n} (2)
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which holds by a simple combinatorial argument. Using (b) we are done once we
have shown

Wqo(
⋃

{(A[a1])
∗ × A × (A[a2])

∗ × · · · × A × (A[al ])
∗ | l < n}).

But this follows immediately from (c), (d) and (1).

Remark Instantiated versions of this proof, using characterizations (ii), (iii), (iv) or
(v) of awell-quasiorder, can be found in the following articles: (ii) is used by de Jongh
and Parikh [8] and Schmidt [24]. (iii) is used in the proof by Schütte and Simpson [25]
(and Hasegawa [13]) (and is the characterization which is most promising in terms
of generalizations beyond Kruskal’s Theorem). (iv) has been used by Fridlender [9],
using an acc notation. His proof is a reformulation of the proof by Richman and
Stolzenberg [23]. To a less formal extent this characterization is also used in [18],
where also structural induction and a similar construction describing the space to
which a sequence can be extended badly are used. Characterization (v): the proof
in [9] can be easily reformulated using (v). Fridlender [10] gives a variant where
he does not need the decidability of �A. His proof is a type theoretic version of an
intuitionistic proof by Veldman, later published in [34].

Finally, the proof of [18] forms the basis of the formalization and proof of Hig-
man’s Lemma in [16], in ACL2. Their work however starts with a program solving
the problem, and then proving its properties rather than extracting the program from
the proof.

Remark Higman’s Lemma extends naturally to Kruskal’s Theorem, the correspond-
ing statement for trees. Constructive proofs of Kruskal’s Theorem have been given
by Schmidt [24] using characterization (ii), by Rathjen and Weiermann [22] and
Hasegawa [13] using (iii), and in [27] using (iv). Finally, also Goubault-Larrecq’s
proof [11] which generalizes the proof in [18] falls under this category.

It remains to compare how the computational content behind this generic proof
of Higman Lemma is related to the constructive proof given in this paper. Although
we have not yet formalized the proof above, it is quite obvious that the construction,
in particular Eq. (2) differs from the construction in our proof, and therefore would
result in a different algorithm.

6 Conclusion and Further Work

We presented and formalized a constructive proof of Higman’s Lemma that contains
the same combinatorial idea as Nash-Williams’ indirect proof, and extracted and
discussed its inherent program in detail.We also argued that a number of constructive
proofs of Higman’s Lemma are based on a combinatorial idea different from ours.
It is still open to make that claim formal, i.e. to formalize the proof presented in the
previous section, and compare the resulting program with our extracted program.
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Similarly, there are a number of formalizations of Nash-Williams’ classical proof
as mentioned in the introduction. It would be worthwhile to confirm that they, in
principle, lead to the same algorithm, which also corresponds to the algorithm in our
extracted program.

Equally interesting is the question which of the discussed proofs are most suitable
for applications such as termination of string- and term rewriting systems, see e.g. [11,
30, 35] for recent discussions on applications to termination proofs. A particularly
promising application has been given in [20]. It will be worth checking how our
alternative proof of Higman’s Lemma and its extracted program can be utilized with
regard to these applications or further generalizations.

Acknowledgments We would like to thank Daniel Fridlender and Iosif Petrakis for helpful con-
tributions and comments.
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