
Progress in Computer Science and Applied Logic

28

Reinhard Kahle

Thomas Strahm

Thomas Studer

Editors

Advances
in Proof
Theory

Progress in Computer Science and Applied Logic

Volume 28

More information about this series at http://www.springer.com/series/4814

Editor-in-Chief

Erich Grädel, Aachen, Germany

Associate Editors

Eric Allender, Piscataway, NJ, USA
Mikołaj Bojańczyk, Warsaw, Poland
Sam Buss, San Diego, CA, USA
John C. Cherniavski, Washington, DC, USA
Javier Esparza, Munich, Germany
Phokion G. Kolaitis, Santa Cruz, CA, USA
Jouko Väänänen, Helsinki, Finland and Amsterdam, The Netherlands

http://www.springer.com/series/4814

Reinhard Kahle • Thomas Strahm
Thomas Studer
Editors

Advances in Proof Theory

Editors
Reinhard Kahle
CMA and DM, FCT
Universidade Nova de Lisboa
Caparica
Portugal

Thomas Strahm
Institute of Computer Science
University of Bern
Bern
Switzerland

Thomas Studer
Institute of Computer Science
University of Bern
Bern
Switzerland

ISSN 2297-0576 ISSN 2297-0584 (electronic)
Progress in Computer Science and Applied Logic
ISBN 978-3-319-29196-3 ISBN 978-3-319-29198-7 (eBook)
DOI 10.1007/978-3-319-29198-7

Library of Congress Control Number: 2016931426

Mathematics Subject Classification (2010): 03F03, 03F15, 03F05, 03F50, 03B20, 03B30, 03B35,
68T15

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This book is published under the trade name Birkhäuser
The registered company is Springer International Publishing AG Switzerland
(www.birkhauser-science.com)

Gerhard Jäger, with kind permission of © Alexander Kashev, 2013

Preface

Advances in proof theory was the title of a symposium organized on the occasion
of the 60th birthday of Gerhard Jäger. The meeting took place on December 13 and
14, 2013, at the University of Bern, Switzerland.

The aim of this symposium was to bring together some of the best specialists
from the area of proof theory, constructivity, and computation and discuss recent
trends and results in these areas. Some emphasis was put on ordinal analysis,
reductive proof theory, explicit mathematics and type-theoretic formalisms, as well
as abstract computations.

Gerhard Jäger has devoted his research to these topics and has substantially
advanced and shaped our knowledge in these fields.

The program of the symposium was as follows:

Friday, December 13

Wolfram Pohlers: From Subsystems of Classical Analysis to Subsystems of Set
Theory: A personal account

Wilfried Buchholz: On the Ordnungszahlen in Gentzen’s First Consistency
Proof

Andrea Cantini: About Truth, Explicit Mathematics and Sets

Peter Schroeder-Heister: Proofs That, Proofs Why, and the Analysis of
Paradoxes

Roy Dyckhoff: Intuitionistic Decision Procedures since Gentzen

Grigori Mints: Two Examples of Cut Elimination for Non-Classical Logics

Rajeev Goré: From Display Calculi to Decision Procedures via Deep Inference
for Full Intuitionistic Linear Logic

Pierluigi Minari: Transitivity Elimination: Where and Why

vii

Saturday, December 14

Per Martin-Löf: Sample Space-Event Time

Anton Setzer: Pattern and Copattern Matching

Helmut Schwichtenberg: Computational Content of Proofs Involving
Coinduction

Michael Rathjen: When Kripke-Platek Set Theory Meets Powerset

Stan Wainer: A Miniaturized Predicativity

Peter Schuster: Folding Up

Solomon Feferman: The Operational Perspective

This volume comprises contributions of most of the speakers and represents the
wide spectrum of Gerhard Jäger’s interests. We deeply miss Grisha Mints who
planned to contribute to this Festschrift.

We acknowledge gratefully the financial support of Altonaer Stiftung für
philosophische Grundlagenforschung, Burgergemeinde Bern, Swiss Academy of
Sciences, Swiss National Science Foundation, and Swiss Society for Logic and
Philosophy of Science. We further thank the other members of the program com-
mittee, namely Roman Kuznets, George Metcalfe, and Giovanni Sommaruga.

For the production of this volume, we thank the editors of the Progress in
Computer Science and Applied Logic (PCS) Series, the staff members of
Birkhäuser/Springer Basel, and the reviewers of the papers of this volume.

We dedicate this Festschrift to Gerhard Jäger and thank him for his great
intellectual inspiration and friendship.

Lisbon Reinhard Kahle
Bern Thomas Strahm
Bern Thomas Studer
December 2015

viii Preface

Contents

A Survey on Ordinal Notations Around the Bachmann-Howard
Ordinal . 1
Wilfried Buchholz

About Truth and Types. 31
Andrea Cantini

Lindenbaum’s Lemma via Open Induction. 65
Francesco Ciraulo, Davide Rinaldi and Peter Schuster

Ordinal Analysis of Intuitionistic Power and Exponentiation
Kripke Platek Set Theory . 79
Jacob Cook and Michael Rathjen

Machine-Checked Proof-Theory for Propositional Modal Logics 173
Jeremy E. Dawson, Rajeev Goré and Jesse Wu

Intuitionistic Decision Procedures Since Gentzen 245
Roy Dyckhoff

The Operational Perspective: Three Routes . 269
Solomon Feferman

Some Remarks on the Proof-Theory and the Semantics
of Infinitary Modal Logic . 291
Pierluigi Minari

From Subsystems of Analysis to Subsystems of Set Theory 319
Wolfram Pohlers

Restricting Initial Sequents: The Trade-Offs Between Identity,
Contraction and Cut . 339
Peter Schroeder-Heister

Higman’s Lemma and Its Computational Content 353
Helmut Schwichtenberg, Monika Seisenberger and Franziskus Wiesnet

ix

http://dx.doi.org/10.1007/978-3-319-29198-7_1
http://dx.doi.org/10.1007/978-3-319-29198-7_1
http://dx.doi.org/10.1007/978-3-319-29198-7_2
http://dx.doi.org/10.1007/978-3-319-29198-7_3
http://dx.doi.org/10.1007/978-3-319-29198-7_4
http://dx.doi.org/10.1007/978-3-319-29198-7_4
http://dx.doi.org/10.1007/978-3-319-29198-7_5
http://dx.doi.org/10.1007/978-3-319-29198-7_6
http://dx.doi.org/10.1007/978-3-319-29198-7_7
http://dx.doi.org/10.1007/978-3-319-29198-7_8
http://dx.doi.org/10.1007/978-3-319-29198-7_8
http://dx.doi.org/10.1007/978-3-319-29198-7_9
http://dx.doi.org/10.1007/978-3-319-29198-7_10
http://dx.doi.org/10.1007/978-3-319-29198-7_10
http://dx.doi.org/10.1007/978-3-319-29198-7_11

How to Reason Coinductively Informally . 377
Anton Setzer

Pointwise Transfinite Induction and a Miniaturized Predicativity 409
Stanley S. Wainer

x Contents

http://dx.doi.org/10.1007/978-3-319-29198-7_12
http://dx.doi.org/10.1007/978-3-319-29198-7_13

Contributors

Wilfried Buchholz Mathematisches Institut Ludwig-Maximilians-Universität
München, Munich, Germany

Andrea Cantini Dipartimento di Lettere e Filosofia, Università degli Studi di
Firenze, Florence, Italy

Francesco Ciraulo Dipartimento di Matematica, Università Degli Studi di
Padova, Padova, Italy

Jacob Cook Department of Pure Mathematics, University of Leeds, Leeds, UK

Jeremy E. Dawson Logic and Computation Group, School of Computer Science,
The Australian National University, Canberra, ACT, Australia

Roy Dyckhoff University of St Andrews, St Andrews, UK

Solomon Feferman Department of Mathematics Stanford University, Stanford,
USA

Rajeev Goré Logic and Computation Group, School of Computer Science, The
Australian National University, Canberra, ACT, Australia

Pierluigi Minari Section of Philosophy, Department of Letters and Philosophy,
University of Florence, Firenze, Italy

Wolfram Pohlers Institut für math. Logik und Grundlagenforschung,
Westfälische Wilhelms-Universität, Münster, Germany

Michael Rathjen Department of Pure Mathematics, University of Leeds, Leeds,
UK

Davide Rinaldi Department of Pure Mathematics, University of Leeds, Leeds,
England

Peter Schroeder-Heister Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, Tübingen, Germany

xi

Peter Schuster Dipartimento di Informatica, Università Degli Studi di Verona,
Verona, Italy

Helmut Schwichtenberg Mathematisches Institut, LMU, Munich, Germany

Monika Seisenberger Department of Computer Science, Swansea University,
Swansea, UK

Anton Setzer Department of Computer Science, Swansea University, Swansea,
UK

Stanley S. Wainer University of Leeds, Leeds, UK

Franziskus Wiesnet Mathematisches Institut, LMU, Munich, Germany

Jesse Wu Logic and Computation Group, School of Computer Science, The
Australian National University, Canberra, ACT, Australia

xii Contributors

A Survey on Ordinal Notations Around
the Bachmann-Howard Ordinal

Wilfried Buchholz

Dedicated to Gerhard Jäger on the occasion of his 60th birthday.

Abstract Various ordinal functions which in the past have been used to describe
ordinals not much larger than the Bachmann-Howard ordinal are set into relation.

1 Introduction

In recent years a renewed interest in ordinal notations around the Bachmann-Howard
ordinal φε�+1(0) has evolved, amongst others caused by Gerhard Jäger’s metapred-
icativity program. Therefore it seems worthwile to review some important results
of this area and to present detailed and streamlined proofs for them. The results in
question are mainly comparisons of various functions which in the past have been
used for describing ordinals not much larger than the Bachmann-Howard ordinal.
We start with a treatment of the Bachmann hierarchy

(
φα

)
α≤��+1

from [3]. This
hierarchy consists of normal functions φα : � → � (α ≤ ��+1) which are defined
by transfinite recursion on α referring to previously defined fundamental sequences
(α[ξ])ξ<τα

(with τα ≤ �). The most important new concept in Bachmann’s approach
is the systematic use of ordinalsα > � as indices for functions from� into�. Bach-
mann describes his approach as a generalization of a method introduced by Veblen
in [22]; according to him the initial segment (φα)α<�� is just a modified presentation
of a system of normal functions defined by Veblen. But actually this connection is
not so easy to see. At the end of Sect. 2 we will establish the connection between
(φα)α<�� and Schütte’s Klammersymbols [19] for which the relation to [22] is clear

W. Buchholz (B)
Mathematisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: buchholz@mathematik.uni-muenchen.de

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_1

1

2 W. Buchholz

cf. [19, footnote 4]. In Sect. 3 we give an alternative characterization of the Bach-
mann hierarchy which instead of fundamental sequences

(
α[ξ])

ξ<τα
uses finite sets

Kα ⊆ � of coefficients (“Koeffizienten”). For α < ε�+1, Kα is almost identical to
the set C(α) of constituents (i.e., ordinals < � which occur in the complete base �

Cantor normal form of α) in [15], where it was shown how to construct a recursive
system of ordinal notations on the basis of Bachmann’s functions.

In the 1960s, theBachmannmethod for generating hierarchies of normal functions
on�was extended by Pfeiffer [17] and, much further, by Isles [16]. These extensions
were highly complex; especially the Isles approach was so complicated that it was
practically unusable for proof-theoretic applications. Therefore Feferman, in unpub-
lished work around 1970, proposed an entirely different and much simpler method
for generating hierarchies of normal functions θα (α ∈ On) (see e.g. [14]). Aczel (in
[1]) showed how the θα (α < ��+1) correspond to Bachmann’s φα. (Independently,
Weyhrauch [23] established the same results for α < ε�+1.) In addition, Aczel gen-
eralized Feferman’s definition and conjectured that the generalized hierarchy (θα)

matches up with the Isles functions. This conjecture was proved by Bridge in [4, 5].
In Sect. 4 of the present paper we show how Feferman’s functions θα (α < ��+1)
can also be defined by use of the Kα’s. Together with the content of Sect. 3 this leads
to an easy comparison of the hierarchies

(
φα

)
α<��+1

and
(
θα

)
α<��+1

which becomes

particularly simple if one switches to the fixed-point-free versions: φα(β) = θα(β)

for all α < ��+1, β < � (Theorem4.7).
In Sects. 5, 6 we deal with the unary functions ϑ : ε�+1 → � and ψ : ε�+1 → �

which play an important rôle in [18]. We show that θ1+α(β) = ϑ(�α+ β) (for
α < ε�+1, β < �) and refine a result from [18] on the relationship between ϑ and
ψ. In Sect. 7, largely following [23], we show how the Bachmann hierarchy below
ε�+1 can be defined by means of functionals of finite higher types.

A nice survey on the history of the subject can be found in [13].
Preliminaries. The letters α,β, γ, δ, ξ, η, ζ always denote ordinals. On denotes

the class of all ordinals and Lim the class of all limit ordinals. We are working in
ZFC. So, every ordinal α is identical to the set {ξ ∈ On : ξ < α}, and we have β <

α ⇔ β ∈ α and β ≤ α ⇔ β ⊆ α. For X ⊆ On we define: X <(≤)α :⇔ ∀x ∈ X
(x <(≤)α) and α ≤ X :⇔ ∃x ∈ X (α ≤ x), i.e., X < α ⇔ X ⊆ α and α ≤ X ⇔
¬(X < α). By H we denote the class {γ ∈ On : ∀α,β < γ(α+ β < γ)} = {ωα :
α ∈ On} of all additive principal numbers (Hauptzahlen), and by E the class {α ∈
On : ωα = α} = {εα : α ∈ On}of all epsilon-numbers.Anormal function is a strictly
increasing continuous function F : On → On. The normal functionsϕα : On → On
(α ∈ On) are defined by:ϕ0(β) := ωβ , andϕα := ordering (or enumerating) function
of {β : ∀ξ < α(ϕξ(β) = β)}, if α > 0. The family (ϕα)α∈On is called the Veblen
hierarchy over λξ.ωξ . An ordinal α is called strongly critical iff ϕα(0) = α. The
class of all strongly critical ordinals is denoted by SC, and its enumerating function
by λα.�α. It is well-known that λα.�α is again a normal function, and that �� = �,
where � is the least regular ordinal >ω.

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 3

2 Fundamental Sequences and the Bachmann Hierarchy

The following stems from Bachmann’s seminal paper [3], but in some minor details
we deviate from that paper. We start by assigning to each limit number α ≤ ��+1
a fundamental sequence (α[ξ])ξ<τα

with τα ≤ �. The definition of α[ξ] is based on
the normal form representation of α in terms of 0,+, ·, F , where (Fα)α∈On is the
Veblen hierarchy over λx .�x , i.e., F0(β) := �β , and Fα := ordering function of
{β : ∀ξ < α(Fξ(β) = β)}, if α > 0. The relationship between Fα and ϕα for α > 0
is given by

Fα(β) = ϕα(α̃+ β) with α̃ :=

⎧
⎪⎨

⎪⎩

�+1 if 0 < α < �,

1 if α = �,

0 if � < α.

From this it follows that ��+1 is the least fixed point of λα.Fα(0).
For completeness note, that F0(β) = ϕ0(�β).

Abbreviations

1. � := ��+1 = min{α : Fα(0) = α}.
2. α|γ :⇔ ∃ξ(γ = α·ξ).
3. α =NF γ +�βη :⇔ α = γ +�βη & 0 < η < � & �β+1|γ.
4. γ =NF Fα(β) :⇔ α,β < γ = Fα(β).

Proposition

(a) For each 0 < δ < � there are unique γ,β, η such that δ =NF γ +�βη.
(b) For each δ ∈ ran(F0) ∩� there are unique α,β such that δ =NF Fα(β).
(c) δ < � ⇒ (δ =NF Fα(β) ⇔ β < δ = Fα(β)).

Definition of a fundamental sequence (λ[ξ])ξ<τλ
for each limit number

λ ≤ �

1. λ =NF γ +�βη /∈ ran(F0):
1.1. η ∈ Lim: τλ := η and λ[ξ] := γ +�β ·(1+ξ).
1.2. η = η0+1: τλ := τ�β and λ[ξ] := γ +�βη0 +�β[ξ].
2. λ =NF Fα(β):

2.1. β ∈ Lim: τλ := τβ and λ[ξ] := Fα(β[ξ]).
2.2. β /∈ Lim: Let λ− :=

{
0 if β = 0,

Fα(β0)+1 if β = β0+1.
2.2.0. α = 0: Then β = β0+1. τλ := � and λ[ξ] := �β0 ·(1+ξ).
2.2.1. α = α0+1: τλ := ω and λ[n] := F (n+1)

α0
(λ−).

2.2.2. α ∈ Lim: τλ := τα and λ[ξ] := Fα[ξ](λ−).
3. τ� := ω and �[0] := 1, �[n+1] := F�[n](0).

4 W. Buchholz

Definition
For each limit λ ≤ � we set λ[τλ] := λ.
Further τ0 := 0, 0[ξ] := 0 and τα+1 := 1, (α+1)[ξ] := α.

Lemma 2.1 λ =NF Fα(β) < � & β ∈ Lim & 1 ≤ ξ < τβ ⇒
λ[ξ] =NF Fα(β[ξ]).
Proof Cf. Appendix.

Lemma 2.2 Let λ ∈ Lim ∩ (�+1).
(a) ξ < η ≤ τλ ⇒ λ[ξ] < λ[η].
(b) λ = supξ<τλ

λ[ξ].
(c) η ∈ Lim ∩ (τλ + 1) ⇒ λ[η] ∈ Lim & τλ[η] = η & ∀ξ < η(λ[η][ξ] = λ[ξ]).
(d) ξ < τλ & λ[ξ] < δ ≤ λ[ξ+1] =⇒ λ[ξ] ≤ δ[1].
The proof of (a), (b), (c) is left to the reader. The proof of (d) will be given in the
Appendix.

We now introduce a binary relation� which corresponds to Bachmann’s→ (cf.
[3] p. 123, 130) and is essential for proving the basic properties of the Bachmann
hierarchy. The advantage of � over → is that its definition does not refer to the
functions φα but only to the fundamental sequences (α[ξ])ξ<τα

.

Definition of�1,� and�

1. β �1 α :⇔ α ≤ � & β ∈ {α[ξ] : ξ < τ ◦α}, where τ ◦α :=
{

ω if τα = �,

τα otherwise.
2. � (�) is the transitive (transitive and reflexive) closure of�1.

Lemma 2.3 Let α ≤ �.

(a) α ∈ Lim & ξ+1 < τα ⇒ α[ξ]+1� α[ξ+1].
(b) α ∈ Lim & ξ < η < (τα+1) ∩� ⇒ α[ξ] � α[η].
(c) β � α ⇒ β+1� α.
(d) n < ω & n ≤ α ⇒ n � α.

Proof
(a) By induction on δ we prove: α[ξ] < δ ≤ α[ξ+1] ⇒ α[ξ] + 1� δ.

1. δ = δ0+1 with α[ξ] ≤ δ0: Then either α[ξ]+1 = δ or α[ξ]+1 IH� δ0 �1 δ.
2. δ ∈ Lim:

By Lemma2.2a, d, α[ξ] < δ[2] < α[ξ+1]. Hence α[ξ]+1 IH� δ[2] �1 δ.

(b) Induction on η:

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 5

1. η = η0+1 < τα: α[ξ]
IH� α[η0] �1 α[η0] + 1

(a)� α[η].
2. η ∈ Lim: Then τα[η] = η and α[ξ] = α[η][ξ] �1 α[η].
(c) We may assume β �1 α, i.e. β = α[ξ] with ξ < τ ◦α.

Then either τ ◦α = 1 & β+1 = α or τ ◦α ∈ Lim & α[ξ] + 1
(a)�α[ξ+1] �1 α.

(d) Induction on n:

1. Using Lemma2.2a we get 0� α by transfinite induction on α.

2. n+1 ≤ α ⇒ n < α & n
IH� α ⇒ n � α

(c)⇒ n+1� α.

Definition
An �-normal function is a strictly increasing continuous function f : � → �.

A set M ⊆ � is �-club (closed and unbounded in �) iff

∀X ⊆ M(X = ∅ & sup(X) < � ⇒ sup(X) ∈ M) and ∀α < �∃β ∈ M(α < β).

It is well-known that M ⊆ � is �-club if, and only if, M is the range of some
�-normal function. Hence the ordering function of any �-club set is �-normal.

The collection of �-club sets has the following closure properties:

1. If f is �-normal then {β ∈ � : f (β) = β} is �-club.
2. If (Mξ)ξ<α is a sequence of�-club sets with 0 < α < � then

⋂
ξ<α Mξ is�-club.

3. If (Mξ)ξ<� is a sequence of �-club sets then also {α ∈ � : α ∈ ⋂
ξ<α Mξ} is

�-club.

Drawing upon 1.–3. and upon the above assignment of fundamental sequences we
now define Bachmann’s hierarchy of �-normal functions φα (α ≤ �).

Definition φα : � → � is the ordering function of the �-club set Rα, where Rα is
defined by recursion on α as follows:

R0 := H ∩�,
Rα+1 := {β ∈ � : φα(β) = β} ,
Rα :=

{⋂
ξ<τα

Rα[ξ] if τα ∈ � ∩ Lim,

{β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Rα[ξ]} if τα = �.

Notes

1. In Lemma2.5d we will show that Rα = {β ∈ � : φα[β](0) = β} if τα = �.
2.Asmentioned above, our definition of theBachmannhierarchy (and of Fα) diverges
in some minor points from [3]. As a consequence of this, Bachmann’s ordinals
H(1) = ϕF�(1)+1(1) and ϕFω2+1(1)(1) are φF�(0)(0) and φ�(0), respectively, in the
present paper. For more details cf. [2, Note on p. 35].

Lemma 2.4

(a) α0 � α ⇒ Rα ⊆ Rα0 .
(b) α0 � α ⇒ φα0(0) < φα(0).
(c) n < α ∩ ω & β ∈ Rα ⇒ ω·n < β ∈ Lim.

6 W. Buchholz

Proof
(a) It suffices to prove Rα ⊆ Rα0 for α0 �1 α.

1. α = α0+1: Then Rα = {β ∈ � : φα0(β) = β} ⊆ Rα0 .
2. τα ∈ � ∩ Lim: Then α0 ∈ {α[ξ] : ξ < τα} and thus Rα = ⋂

ξ<τα
Rα[ξ] ⊆ Rα0 .

3. τα = �: β ∈ Rα ⇒ ω ≤ β ∈ ⋂
ξ<β Rα[ξ] ⇒ β ∈ ⋂

ξ<ω Rα[ξ] ⊆ Rα0 , since α0 ∈
{α[ξ] : ξ < ω}.

(b) 1. α = α0+1: β := φα(0) ∈ Rα ⇒ φα0(0) < φα0(β) = β.

2. α0+1 < α:α0 � α
2.3c⇒ α0+1� α

(a)⇒ Rα ⊆ Rα0+1 ⇒ φα0(0)
1.
<

φα0+1(0) ≤ φα(0).

(c) We have 1 ≤ φ0(0) < φ1(0) < · · · and φk+1(0) ∈ Lim. Hence ω·n < φn+1(0).
Further: n<α

2.3d⇒ n+1� α
(a)⇒ Rα ⊆ Rn+1 ⊆ {β : φn+1(0) ≤ β ∈ Lim}.

Lemma 2.5 For each α ∈ Lim ∩ (�+1) the following holds:

(a) ξ < η < (τα+1) ∩� ⇒ Rα[η] ⊆ Rα[ξ] & φα[ξ](0) < φα[η](0).
(b) ξ < (τα+1) ∩� ⇒ ξ ≤ φα[ξ](0).
(c) λ ∈ Lim ∩ (τα+1) ∩� ⇒ Rα[λ] = ⋂

ξ<λ Rα[ξ].
(d) τα = � ⇒ Rα = {β ∈ � : φα[β](0) = β}.
(e) n < ω ⇒ φα[n](0) < φα(0).

Proof

(a) follows from Lemmata2.3b, 2.4a, b.
(b) follows from (a).
(c) By Lemma2.2c we have τα[λ] = λ and α[λ][ξ] = α[ξ]. Hence, by definition,

Rα[λ] = ⋂
ξ<λ Rα[ξ].

(d) Rα = {β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Rα[ξ]} (c)= {β ∈ � : β ∈ Rα[β]} (b)=

{β ∈ � : φα[β](0) = β}.
(e) follows from Lemma2.4b.

Schütte’s Klammersymbols
In [19], building on [22], Schütte introduced a system of ordinal notations based on

so-called ‘Klammersymbols’. A Klammersymbol is a matrix

(
ξ0 . . . ξn

α0 . . . αn

)
with 0 ≤

α0 < α1 < · · · < αn < � and ξ0, . . . , ξn < �. Two Klammersymbols are defined
to be equal if they are identical after deleting all columns of the form

(0
αi

)
. This

means that one can identify the Klammersymbol

(
ξ0 . . . ξn

α0 . . . αn

)
with the ordinal

�αn ξn + · · · +�α0ξ0. Under this identification the <-relation between ordinals
induces a well-ordering ≺ on the Klammersymbols. To each �-normal function
f and each Klammersymbol A an ordinal f A < � is assigned by ≺-recursion:
f
(ξ
0

) := f (ξ), and for ξ1 > 0, the function λx . f

(
x ξ1 . . . ξn

0 α1 . . . αn

)
is the ordering

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 7

function of the set {β ∈ � : ∀ξ < ξ1∀α0 < α1[f

(
β ξ ξ2 . . . ξn

α0 α1 α2 . . . αn

)
= β]}. In this

subsection we will locate the values φ0 A within the Bachmann hierarchy, i.e., we

will prove φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
= φ�αn ξn+···+�α0 ξ0(β).

Lemma 2.6 Assume α =NF γ +�δ1ξ1 with δ1 < �.

(a) ξ < ξ1 ⇒ γ +�δ1ξ + 1� γ +�δ1(ξ+1) � α.
(b) ξ < ξ1 & δ0 < δ1 ⇒ γ +�δ1ξ +�δ0+1 � α.
(c) β ∈ Rα ⇔ ∀ξ < ξ1[φγ+�δ1 ξ(β) = β & ∀δ0 < δ1(φγ+�δ1 ξ+�δ0β(0) = β)].
Proof
(a) Let α̂ := γ +�δ1+1, η := −1+ (ξ + 1), and η1 := −1+ ξ1. Then α̂[η] = γ +
�δ1(ξ+1), α̂[η1] = γ +�δ1ξ1 = α, and η ≤ η1 < τα̂. Hence γ +�δ1(ξ+1) � α by
Lemma2.3b. For the first inequality one needs the following auxiliary lemma (to be
proved by induction on δ1): �δ1 |γ1 ⇒ γ1 + 1� γ1 +�δ1 .

(b) γ +�δ1ξ +�δ0+1 (∗)� γ +�δ1ξ +�δ1 = γ +�δ1(ξ+1) (a)� γ +�δ1ξ1=α.

(∗) Let γ1 := γ +�δ1ξ. We have δ1 = δ + n with (δ0 < δ ∈ Lim or δ = δ0 + 1).

Further, γ1 +�δ0+1 � γ1 +�δ � γ1 +�δ+1 � · · · � γ1 +�δ+n .

(c) We have to show:
β ∈ Rα ⇔ ∀ξ < ξ1[β ∈ Rγ+�δ1 ξ+1 & ∀δ0 < δ1(β ∈ Rγ+�δ1 ξ+�δ0+1)].
“⇒”: Cf. Lemma2.4a and (a), (b).
“⇐”: We distinguish the following cases:
1. ξ1 ∈ Lim: β ∈ ⋂

ξ<ξ1
Rγ+�δ1 (1+ξ) = Rα.

2. ξ1 = ξ0+1:
2.1. δ1 = 0: Then β ∈ Rγ+�δ1 ξ0+1 = Rα.
2.2. δ1 = δ0+1: β ∈ Rγ+�δ1 ξ0+�δ0+1 = Rα.
2.3. δ1 ∈ Lim: Since δ1 < �, we then have τα = δ1 and α[ξ] = γ +�δ1ξ0 +�1+ξ .

From ∀ξ < δ1(β ∈ Rγ+�δ1 ξ0+�ξ+1)we get β ∈ ⋂
ξ<τα

Rα[ξ+1]
2.5a⊆ ⋂

ξ<τα
Rα[ξ] = Rα.

Definition Due to the fact that every ordinal can be uniquely represented in the
form �α+ β with β < � it is possible to code the binary function (α,β) �→ φα(β)

(α ≤ �, β < �) into a unary one by φ〈�α+ β〉 := φα(β) (α ≤ �, β < �).
Using φ〈·〉, the values of the Klammersymbols can be presented in a particularly

nice way (cf. Theorem2.8a below).

8 W. Buchholz

Lemma 2.7 Assume α̃ =NF γ1 +�α1ξ1 with 0 < α1 < �.

(a) λx .φ〈γ1 +�α1ξ1 + x〉 enumerates
Q := {β ∈ � : ∀ξ < ξ1∀α0 < α1[φ〈γ1 +�α1ξ +�α0β〉 = β]}.

(b) If α1 = α0 + 1 then Q = {β ∈ � : ∀ξ < ξ1[φ〈γ1 +�α1ξ +�α0β〉 = β]}.
Proof There are δ1 and γ such that α1 = 1+ δ1 and γ1 = �γ. Let α := γ +�δ1ξ1.
From (the proof of) Lemma2.6c we get

Rα = {β ∈ � : ∀ξ < ξ1[φ〈�γ +�1+δ1ξ + β〉 = β &

∀δ0 < δ1(φ〈�γ +�1+δ1ξ +�1+δ0β〉 = β)]}
= {β ∈ � : ∀ξ < ξ1∀α0 < α1[φ〈γ1 +�α1ξ +�α0β〉 = β]}, and

Rα = {β ∈ � : ∀ξ < ξ1[φ〈γ1 +�α1ξ +�α0β〉 = β]}, ifα1 = α0+1.

On the other side, λx .φ〈γ1 +�α1ξ1 + x〉 = λx .φ〈�α+ x〉 enumerates Rα.

Theorem 2.8 For α0 < · · · < αn < � and ξ0, . . . , ξn < �:

(a) φ0

(
ξ0 . . . ξn

α0 . . . αn

)
= φ〈�αn ξn + · · · +�α0ξ0〉.

(b) φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
= φ�αn ξn+···+�α0 ξ0(β).

Proof
(a) W.l.o.g. α0 = 0.

1. n = 0: φ〈�0ξ0〉 = φ〈�·0+ ξ0〉 = φ0(ξ0) = φ0

(
ξ0
0

)
.

2. n > 0: W.l.o.g. ξ1 > 0.

By Lemma2.7a, λx .φ〈�αn ξn + · · · +�α1ξ1 + x〉 is the ordering function of {β ∈
� : ∀ξ < ξ1∀α0 < α1[φ〈�αn ξn + · · · +�α1ξ +�α0β〉 = β]}.

Combining this with the above given definition of φ0 A (for Klammersymbols A)
the assertion is established by induction on �αn ξn + · · · +�α0ξ0.

(b) φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
(a)= φ〈�1+αn ξn + · · · +�1+α0ξ0 +�0β〉 =

= φ〈�·(�αn ξn + · · · +�α0ξ0)+ β〉.
Lemma 2.9 For ξ0, . . . , ξn < � let ϕn+1(ξn, . . . , ξ0) := φ〈�nξn + · · · +�0ξ0〉.
Then the following holds:

(i) ϕn+1(0, . . . , 0,β) = φ0(β).

(ii) If 0 < k ≤ n and ξk > 0, then λx .ϕn+1(ξn, . . . , ξk, 0, . . . , 0, x) enumerates
{β ∈ � : ∀ξ < ξk(ϕ

n+1(ξn, . . . , ξk+1, ξ,β, 0, . . . , 0) = β)}.
Proof of (ii):
By definition, ϕn+1(ξn, . . . , ξk, �0, x) = φ〈γ +�kξk +�0x〉 with
γ := �nξn + · · · +�k+1ξk+1.

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 9

Therefore by Lemma2.7a, b, λx .ϕn+1(ξn, . . . , ξk, �0, x) enumerates
{β ∈ � : ∀ξ < ξk[φ〈γ +�kξ +�k−1β〉 = β]}.
Note
ϕn+1 (n ≥ 1) is known as the n+1-ary Veblen function.
Usually it is defined by (i), (ii).

3 Characterization of φα via Kα

In [15] the Bachmann hierarchy (φα) restricted to α < ε�+1 is studied, and thereby,
as a technical tool, the sets C(α) and ND(α) (of constituents and nondistinguished
constituents of α) are defined. From Lemmata4.1, 4.2 and Theorems 3.1, 3.3 of this
paper one can derive the following interesting result which provides an alternative
definition of the Bachmann hierarchy not referring to fundamental sequences:

Rα = {γ ∈ R0 : C(α) ≤ γ & ND(α) < γ &
∀ξ < α(C(ξ) < γ ⇒ φξ(γ) = γ)} (α < ε�+1).

(G)

In the following we will directly prove an analogue of (G), namely Theorem3.4, and
then exemplarily derive Gerber’s Theorems5.1, 4.3 (our Lemmas3.7, 3.8) from that.

Definition of Kα for α ≤ �

1. Kα :=
⎧
⎨

⎩

∅ if α ∈ {0,�},
{α} if α ∈ Lim ∩�,

Kα0 if α = α0+1 < �.

2. � < α =NF γ +�βη /∈ ran(F0): Kα := Kγ ∪ Kβ ∪ Kη.

3. � < α =NF Fξ(η) < �: Kα := K ′ξ ∪ Kη with K ′ξ :=
{∅ if ξ = 0,
{ω} ∪ K ξ if ξ > 0.

4. K� := {ω}.
Remark K (α0+1) = Kα0.

Lemma 3.1 λ ∈ Lim & 1 ≤ ξ ≤ τλ ⇒ Kλ[ξ] = Kλ[1] ∪ K ξ.

Proof

1. λ =NF γ +�βη /∈ ran(F0):
1.1. η ∈ Lim: τλ = η and λ[ξ] = γ +�β(1+ξ).

ξ ≤ η ⇒ Kλ[ξ] = Kγ ∪ Kβ ∪ K ξ.
1.2. η = η0+1: τλ = τ�β and λ[ξ] = γ +�βη0 +�β[ξ].

Kλ[ξ] = Kγ ∪ K (�βη0) ∪ K (�β[ξ]) IH= Kγ ∪ K (�βη0) ∪ K (�β[1]) ∪
K ξ.

2. λ =NF Fα(β):
2.1. β ∈ Lim: Then by Lemma2.1, λ[ξ] =NF Fα(β[ξ]) and thus Kλ[ξ] = K ′α ∪

K (β[ξ]) IH= K ′α ∪ Kβ[1] ∪ K ξ = Kλ[1] ∪ K ξ.

10 W. Buchholz

2.2. β /∈ Lim: Then Kλ− =
{

K ′α ∪ Kβ if β = β0+1 & β0 < Fα(β0),

Kβ otherwise.
Hence Kλ = K ′α ∪ Kβ = K ′α ∪ Kλ−.

2.2.0. α = 0: Then λ = �β0+1, τλ = � and λ[ξ] = �β0(1+ξ).
Hence Kλ[ξ] = Kβ0 ∪ K ξ.

2.2.1. α = α0+1: Then τλ = ω and, for ξ < ω, Kλ[ξ] = K (F (ξ+1)
α0

(λ−)) = K ′α ∪
Kλ− and K ξ = ∅.
Further Kλ[ω] = Kλ = K ′α ∪ Kλ− = K ′α ∪ Kλ− ∪ Kω.

2.2.2. α ∈ Lim: For ξ < τλ = τα we have Kλ[ξ] = K Fα[ξ](λ−) = Kα[ξ] ∪ {ω} ∪
Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K ξ.

Further Kλ = Kα ∪ {ω} ∪ Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K τα.
3. λ = �: For 1 ≤ ξ ≤ ω we have K�[ξ] = {ω}, whence K�[ξ] = K�[1] ∪

K ξ.

Lemma 3.2

(a) α ∈ Lim & α[ξ] ≤ δ ≤ α[ξ+1] ⇒ Kα[ξ] ⊆ K δ.
(b) δ < α & K δ < ξ ∈ Lim ∩ τα ⇒ δ < α[ξ].
Proof

(a) Induction on δ:

1. δ = α[ξ]: trivial.
2. δ = δ0 + 1 with α[ξ] ≤ δ0: Then Kα[ξ] IH⊆ K δ0 = K δ.

3. α[ξ] < δ ∈ Lim: Then, by Lemma2.2d, α[ξ] ≤ δ[1]. Hence Kα[ξ] IH⊆ K δ[1]
3.1⊆ K δ.

(b) Assume α[0] ≤ δ. Then by Lemma2.2a, b, c there exists ζ < τα such that
α[ζ] ≤ δ < α[ζ+1]. By (a) and Lemma3.1 we get K ζ ⊆ Kα[ζ] ⊆ K δ < ξ ∈
Lim. Hence δ < α[ζ+1] < α[ξ].

Definition
k(α) := max(Kα ∪ {0}). k+(α) := max{k(α[1])+1, k(α)}.
Lemma 3.3

(a) k(α) ≤ k+(α) ≤ k(α)+1;
(b) k+(α+1) = k(α)+ 1;
(c) k+(α) ≤ φα(0).

Proof

(a) By Lemma3.1, k(α) = max{k(α[1]), k(τα)} and thus
k+(α) = max{k(α[1])+ 1, k(τα)} (∗).

(b) k+(α+1) = max{k(α)+1, k(α+1)} = k(α)+1.
(c) Induction on α:

1. k+(0) = 1 ≤ φ0(0).

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 11

2. α > 0: By IH and Lemma2.5e, k(α[1]) ≤ φα[1](0) < φα(0). By Lemma2.5b,

k(τα) ≤ φα(0). Hence k+(α)
(∗)= max{k(α[1])+ 1, k(τα)} ≤ φα(0).

Theorem 3.4 Rα = {β ∈ R0 : k+(α) ≤ β & ∀ξ < α(K ξ < β ⇒ φξ(β) = β)}.
Proof “⊆”: Assume β ∈ Rα. By Lemmata2.4a, 3.3a, c we get k+(α) ≤ β ∈ R0. The
second part is proved by induction on α. So let δ < α & K δ < β ∈ Rα.

1. α = δ + 1: β ∈ Rδ+1 implies φδ(β)=β.
2. α = α0 + 1 & δ < α0: From δ < α0 & K δ < β ∈ Rα ⊆ Rα0 we obtainφδ(β) =

β by IH.
3. α ∈ Lim & τα < �: Then β ∈ ⋂

ξ<τα
Rα[ξ] and δ < α. From this we get ∃ξ <

τα(β ∈ Rα[ξ] & δ < α[ξ]) and then φδ(β) = β by IH.
4. τα = �: By Lemmata2.4c, 2.5c we get β ∈ Lim ∩ Rα[β]. From δ < α and K δ <

β ∈ Lim ∩ τα we get δ < α[β] by Lemma3.2b. Now we have β ∈ Rα[β] and
δ < α[β] < α & K δ < β which by IH yields φδ(β) = β.

“⊇”: Assume (1) k+(α) ≤ β ∈ R0, and (2) ∀δ < α(K δ < β ⇒ β ∈ Rδ+1). From
k+(α) ≤ β we get (3) Kα[1] < β.

1. α = 0: trivial.
2. α = α0+1: From α0 < α & Kα0 = Kα[1] < β by (2) we obtain β ∈ Rα0+1 =

Rα.
3. α ∈ Lim & τα < �: By Lemma3.1 and (1) we have τα ≤ k(α) ≤ β. From 0 <

ξ < τα ≤ β by Lemma3.1 and (3) we conclude α[ξ] < α & Kα[ξ] ⊆ Kα[1] ∪
K ξ < β, and then by (2), β ∈ Rα[ξ]+1. Hence β ∈ ⋂

ξ<τα
Rα[ξ] = Rα.

4. τα = �: From 0 < α & K0 = ∅ < β by (2) we get β ∈ R1, thence β ∈ Lim.
Similarly as above we obtain β ∈ ⋂

ξ<β Rα[ξ]. Hence β ∈ Rα.

The Fixed-point-free Functions φα

Definition
φα(β) := φα(β + ι̃αβ) where

ι̃αβ :=
{
1 if β = β0 + n with φα(β0) ∈ Kα ∪ {β0},
0 otherwise.

Rα := ran(φα).

Notation. From now on we mostly write φαβ, φαβ for φα(β), φα(β).

Theorem 3.5

(a) φα is order preserving.
(b) Rα = {φαβ : Kα ∪ {β} < φαβ} = {γ ∈ Rα \ Rα+1 : Kα < γ}.
(c) φαβ = min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ}.
Proof

(a) If β1 < β2 then β1 + ι̃αβ1 < β2 or β1 + ι̃αβ1 = β2.
In the latter case ι̃αβ2 = ι̃αβ1 = 1.

12 W. Buchholz

(b) The first equation follows immediately from the definition, since k(α) ≤ φα0
and η+1 < φα(η+1) for all η < �. The second equation follows from the first,
since φαβ ∈ Rα+1 ⇔ β = φαβ.

(c) Let X := {γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ}. By (a) and (b) we
have φαβ ∈ X . It remains to prove ∀γ ∈ X (φαβ ≤ γ). So let γ ∈ X , i.e. γ =
φαδ with ∀η < β(φα(η + ι̃αη) < φαδ) & Kα ∪ {β} < φαδ (∗).

To prove: φαβ ≤ φαδ, i.e. β + ι̃αβ ≤ δ.
From ∀η < β(φα(η + ι̃αη) < φαδ) we get β ≤ δ. Therefore if β < δ or ι̃αβ =

0, we are done.
Assume now β = δ & ι̃αβ = 1. Then δ = β = β0 + n with φαβ0 ∈ Kα ∪ {β0}.

1. 0 < n: Then η := β0 + (n−1) < β = η + 1 and therefore β = η + ι̃αη
(∗)
<

δ = β. Contradiction.

2. n = 0: Then φαβ ∈ Kα ∪ {β} (∗)
< φαδ = φαβ. Contradiction.

Corollary 3.6

(a) ξ < α & K ξ ∪ {η} < φαβ ⇒ φξη < φαβ.
(b) Kα ∪ {β} < φαβ.

Proof

(a) ξ < α & K ξ ∪ {η} < φαβ ∈ Rα ⇒ φξη ≤ φξ(η+1) < φξφαβ
3.4= φαβ.

(b) follows immediately from Theorem3.5c.

Lemma 3.7 Let γi = φαiβi (i = 1, 2).

(a) γ1 < γ2 if, and only if, one of the following holds:

(i) α1 < α2 & Kα1 ∪ {β1} < γ2;
(ii) α1 = α2 & β1 < β2;

(iii) α2 < α1 & γ1 ≤ Kα2 ∪ {β2}.
(b) γ1 = γ2 ⇒ α1 = α2 & β1 = β2.

Proof
(a) Let Q(α1,β1,α2,β2) :≡ (i) ∨ (ii) ∨ (iii).

To prove: γ1 < γ2 ⇔ Q(α1,β1,α2,β2).
From Theorem3.5a and Corollary3.6 we get the implications

(1) Q(α1,β1,α2,β2) ⇒ γ1 < γ2 and (2) Q(α2,β2,α1,β1) ⇒ γ2 < γ1.
Obviously,

(3) ¬Q(α1,β1,α2,β2) ⇒ Q(α2,β2,α1,β2) ∨ (α1 = α2 & β1 = β2).
From (2) and (3) we get: ¬Q(α1,β1,α2,β2) ⇒ ¬(γ1 < γ2).

(b) Proof by contradiction. Assume γ1 = γ2 & α1 < α2. Then by Corollary2.6b we
have α1 < α2 & Kα1 ∪ {β1} < γ1 = γ2. Hence γ1 < γ2 by Corollary 2.6a.

Lemma 3.8 For each γ ∈ R0 ∩ φ�(0) there exists α < � such that γ ∈ Rα.

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 13

Proof
Assume ω < γ. Then K� < γ /∈ R�. Let α1 be the least ordinal such that Kα1 <

γ /∈ Rα1 . Then by Theorem3.4 there exists α < α1 such that Kα < γ /∈ Rα+1. By
minimality of α1 we get γ ∈ Rα. Hence γ ∈ Rα by Theorem3.5b.

The following will prove useful in Sect. 5.

Theorem 3.9 Let φ〈�α+ β〉 := φαβ (α ≤ �, β < �). Then for all α < �+�,
φ〈α〉 = min{γ ∈ R0 : ∀ξ < α(K ξ < γ ⇒ φ〈ξ〉 < γ) & Kα < γ}.
Proof

φ〈�α+ β〉 = φαβ
3.5c=

min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ} 3.4=
min{γ ∈ R0 : ∀ξ < α∀η(K ξ ∪ {η} < γ ⇒ φξη < γ) &

∀η < β(φαη < γ) & Kα ∪ {β} < γ} (∗)=
min{γ ∈ R0 : ∀ξ < α∀η(K ξ ∪ Kη < γ ⇒ φ〈�ξ + η〉 < γ) &

∀η < β(Kα ∪ Kη < γ ⇒ φ〈�α+ η〉 < γ) & Kα ∪ Kβ < γ} =
min{γ ∈ R0 : ∀ζ < �α+β(K ζ < γ ⇒ φ〈ζ〉 < γ) & K (�α+ β) < γ}.
(∗) For α = β = 0 the equation is trivial. Otherwise it follows from the fact that for
1 < γ ∈ R0 we have ∀η < �(Kη < γ ⇔ η < γ).

4 Comparison of φα,φα with θα,θα

In this sectionwewill compare theBachmann functionsφα withFeferman’s functions
θα. Wewill prove that φαβ = θα(α̂+ β) for allα ≤ �, β < �, where α̂ := min{η :
k+(α) ≤ θαη}. This result is already stated in [1], Theorem 31 and, for α < ε�+1,
proved in [23].

Before we can turn to the proper subject of this section we have to do some
elementary ordinal arithmetic.

Definition E�(α) =
⎧
⎨

⎩

∅ if α ∈ {0,�},
{α} if α ∈ E \ {�},⋃

i≤n E�(αi) if α = ωα0 # · · · # ωαn /∈ E.

Definition A set C ⊆ On is nice iff
0 ∈ C & ∀n∀α0, . . . ,αn(ω

α0# · · · #ωαn ∈ C ⇔ {α0, . . . ,αn} ⊆ C).

Lemma 4.1

(a) E�(�+ α) = E�(�·α) = E�(�
α) = E�(α).

(b) α =NF γ +�βη ⇒ E�(α) = E�(γ) ∪ E�(β) ∪ E�(η).
(c) If C is nice and � ∈ C then ∀α(α ∈ C ⇔ E�(α) ⊆ C).

1Actually Aczel’s Theorem 3 looks somewhat different, but it implies the above formulated result.
A proof of Theorem 3 can be extracted from the proof of Theorem 3.5 in [5].

14 W. Buchholz

(d) α < ε�+1 & δ ∈ E ⇒ (E�(α) < δ ⇔ Kα < δ).

Proof
(a) Let α = ωα0 + · · · + ωαn with α1 ≥ · · · ≥ αn .

1. E�(�+ α) =
{

E�(α) if � < α0,

E�(�) ∪ E�(α) if � ≥ α0.

2. E�(�·α) = E�(ω
�+α0 + · · · + ω�+αn) = ⋃

i≤n E�(�+ αi)
1.=⋃

i≤n E�(αi) =
E�(α).

3. E�(�
α) = E�(ω

�·α) = E�(� · α)
2.= E�(α).

(b) Let η = ωη0 + · · · + ωηm with η0 ≥ · · · ≥ ηm .
Then �βη = ω�·β · (ωη0 + · · · + ωηm) = ω�β+η0 + · · · + ω�β+ηm .
Hence E�(�

βη) = ⋃
i≤m E�(�β + η0) = ⋃

i≤m(E�(β) ∪ E�(ηi)) = E�(β) ∪⋃
i≤m E�(ηi) = E�(β) ∪ E�(η).

(c) 1. α ∈ {0,�}: E�(α) = ∅ ⊆ C and α ∈ C .
2. α ∈ E: E�(α) = {α}.
3. α = ωα0 # · · · # ωαn /∈ E: E�(α) = E�(α0) ∪ · · · ∪ E�(αn) and therefore:

E�(α) ⊆ C ⇔ ∀i ≤ n(E�(αi) ⊆ C)
IH⇔ ∀i ≤ n(αi ∈ C)

Cnice⇔ α ∈ C .

(d) 1. α ∈ {0,�}: E�(α) = ∅ = Kα.
2. α < �: E�(α) < δ ⇔ α < δ ⇔ Kα < δ.

3.� < α =NF γ +�βη: E�(α) < δ
(b)⇔ E�(γ) ∪ E�(β) ∪ E�(η) < δ

IH⇔ Kγ ∪ Kβ ∪
Kη < δ ⇔ Kα < δ.

Basic Properties of the Functions θα

The functions θα : On → On and sets C(α,β) ⊆ On are defined simultaneously by
recursion on α (cf. [5], p. 174, [7], p. 6, [20], p. 225). Instead of giving this definition
we present a list of basic properties which are sufficient for proving Theorems4.6,
4.7 below.—Notation: θαβ := θα(β).

(θ1) θα : On → On is a normal function and Inα := ran(θα).

(θ2) (i) In0 = H,
(ii) Inα+1 = {β ∈ Inα : α ∈ C(α,β) ⇒ β = θαβ},
(iii) Inα = ⋂

ξ<α Inξ if α ∈ Lim.
(θ3) θα� = �.
(θ4) Inα ∩� = {β ∈ � : C(α,β) ∩� ⊆ β}.
(θ5) {0} ∪ β ⊆ C(α,β), and if α > 0 then C(α,β) is nice and � ∈ C(α,β).
(θ6) ξ < α ≤ � & � < η < θξη ⇒ (ξ, η ∈ C(α,β) ⇔ θξη ∈ C(α,β)).

Remark (θ4)–(θ6) are only needed for the proof of Lemma4.3c (via Lemmas4.2
and 4.3a, b). Having established Lemma4.3c we will make use only of (θ1)–(θ3)
with (θ2ii) replaced by Lemma4.3c.

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 15

Lemma 4.2

(a) α < θα(�+1) & � ≤ β ⇒ (β ∈ Inα+1 ⇔ β = θαβ).
(b) 0 < α ≤ � ⇒ Fα(β) = θα(�+ 1+ β).

Proof
(a) “⇐”: immediate consequence of (θ2i i) (and (θ1)).
“⇒”: Assume β ∈ Inα and (α ∈ C(α,β) ⇒ β = θαβ). For β = � the claim fol-
lows directly from (θ3). Otherwise:

θα�
(θ3)= � < β ∈ Inα ⇒ θα(�+1) ≤ β ⇒ α < β

(θ5)⇒ α ∈ C(α,β) ⇒ β= θαβ.

(b) Let J := {β : � < β}. We prove ran(Fα) = Inα ∩ J which is equivalent to the
claim ∀β(Fα(β) = θα(�+ 1+ β)).

The proof proceeds by induction on α.

1. α = 1: ran(F1) = {β : β = �β} = {β : � < β = ωβ} (θ2)= In1 ∩ J .

2. α = α0+1 with 1 ≤ α0: ran(Fα) = {β : β = Fα0(β)} IH=
{β : β = θα0(�+1+β)} = {β : � < β = θα0β} (∗)= Inα ∩ J .

(∗) α0<� ⇒ α0<Fα0(0)
IH= θα0(�+1) (a)⇒ ∀β > �(β = θα0β ⇔ β ∈ Inα).

3. α ∈ Lim: ran(Fα) = ⋂
ξ<α ran(Fξ)

IH= ⋂
ξ<α Inξ ∩ J

(θ2iii)= Inα ∩ J .

Lemma 4.3 For α < � we have:

(a) ξ < α & η < Fξ(η) < � ⇒ (ξ, η ∈ C(α,β) ⇔ Fξ(η) ∈ C(α,β)).
(b) ∀δ ≤ α(δ ∈ C(α,β) ⇔ K δ ⊆ C(α,β)).
(c) Inα+1 = {β ∈ Inα : Kα < β ⇒ β = θαβ}.
Proof
(a) For ξ = 0 the claim follows from Lemma4.1a, c and (θ5).
Assume now ξ > 0 and let γ := Fξ(η).
Then ξ, η1 < γ = θξη1 with η1 := �+1+η.
By (θ5) and Lemma4.1a, c we have (η ∈ C(α,β) ⇔ η1 ∈ C(α,β)).

Hence: ξ, η ∈ C(α,β) ⇔ ξ, η1 ∈ C(α,β)
(θ6)⇔ γ ∈ C(α,β).

(b) Induction on δ: Assume δ ≤ α, and let C := C(α,β).

1. δ ∈ {0,�}: δ ∈ C & K δ = ∅.
2. δ = δ0+1: δ ∈ C ⇔ δ0 ∈ C , and K δ = K δ0.
3. δ ∈ Lim ∩�: K δ = {δ}.
4. δ =NF γ +�βη /∈ ran(F0): δ ∈ C

4.1c⇔ E�(δ) ⊆ C
4.1b⇔ E�(γ) ∪ E�(β) ∪ E�(η) ⊆

C
4.1c⇔ γ,β, η ∈ C

IH⇔ Kγ ∪ Kβ ∪ Kη ⊆ C ⇔ K δ ⊆ C .

5. δ =NF Fξη: δ ∈ C
(a)⇔ ξ, η ∈ C

IH⇔ K ξ ∪ Kη ⊆ C
(∗)⇔ K δ ⊆ C .

(∗) ω = θ01 ∈ C .
(c) follows from (θ2ii), (θ4), (b) and the fact that Kα ⊆ �.

16 W. Buchholz

Theorem 4.4 α ≤ � ⇒ Inα = {β ∈ H : ∀ξ < α(K ξ < β ⇒ θξβ = β)}.
Proof by induction on α

1. α = 0: By (θ2i) we have In0 = H.

2. α = α0+1: Inα
4.3c= {β ∈ Inα0 : Kα0 < β ⇒ β = θα0β} IH=

{β ∈ H : ∀ξ < α0(K ξ < β ⇒ β = θξβ) & (Kα0 < β ⇒ β = θα0β)}.
3. α ∈ Lim: Then, by (θ2iii), Inα = ⋂

ξ<α Inξ and the assertion follows immediately
from the IH.

Definition α̂ := min{η : k+(α) ≤ θαη}.
Lemma 4.5 α ≤ � & Kα < θαβ ⇒ (θα(α̂+ β) = β ⇔ θαβ = β).

Proof
“⇒”: This follows from β ≤ θαβ ≤ θα(α̂+ β).
“⇐”: If Kα < β = θαβ then α̂ ≤ k+(α) ≤ k(α)+1 < β ∈ H and thus α̂+ β = β.

Theorem 4.6 If α ≤ �, then Rα = {γ ∈ � : k+(α) ≤ γ ∈ Inα},
and thus ∀β < �(φαβ = θα(α̂+ β)).

Proof by induction on α:
For β < � we have:

β ∈ Rα
3.4⇔ k+(α) ≤ β ∈ H & ∀ξ < α(K ξ < β ⇒ φξβ = β)

I H+4.5⇔ k+(α)

≤ β ∈ H & ∀ξ < α(K ξ < β ⇒ θξβ = β)
4.4⇔ k+(α) ≤ β ∈ Inα.

The Functions θα

In [7] the fixed-point-free functions θα are introduced, which are more suitable for
proof-theoretic applications than the θα’s. By definition, θα is the <-isomorphism
from {η ∈ On : Sμ(α) ≤ η} onto Inα where Inα := Inα \ Inα+1, μ(α) := min{η :
θαη ∈ Inα}, Sμ(α) := min{�ξ : μ(α) < �ξ+1} where �0 := 0.

As we will show in a moment, Sμ(α) = 0 for all α < �, and therefore, if α < �

then θα is the ordering function of Inα. On the other side, by Theorem3.5, φα is
the ordering function of Rα = {γ ∈ Rα \ Rα+1 : Kα < γ}. Using Theorem4.6 one
easily sees that Rα = Inα ∩�. So we arrive at the following theorem.

Theorem 4.7 φαβ = θαβ for all α < �, β < �.

Proof
I. Fromα < �byLemma4.3c and (θ3)weobtain∀β ∈ �(k(α) ≤ β ⇒ θα(β+1) ∈
Inα ∩�). Hence Sμ(α) = 0, and Inα ∩� is unbounded in�. This implies that θα��
is the ordering function of Inα ∩�.
II. As mentioned above, φα is the ordering function of Rα. So it remains to prove
that Rα = Inα ∩�. First note that

(1) k+(α) ≤ k(α)+1 = k+(α+1) and (2) ∀γ ∈ Inα(k(α) < γ) (by Lemma4.3c).

Then for γ < � we get: γ ∈ Rα ⇔ k(α) < γ ∈ Rα & γ /∈ Rα+1
4.6.(1)⇔ k(α)

< γ ∈ Inα & (k(α) < γ ⇒ γ /∈ Inα+1)
(2)⇔ γ ∈ Inα.

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 17

5 The Unary Functions ϑX and ψX

As we have seen above, θα is the ordering function of Inα = Inα \ Inα+1 (if α < �).
From this together with (θ2i i) and (θ4) one easily derives the following equation
(1) θα0 = min{β : C(α,β) ∩� ⊆ β & α ∈ C(α,β)}
which motivates the definition of ϑα in [18]:
(2) ϑα := min{β : C̃(α,β) ∩� ⊆ β & α ∈ C̃(α,β)} (α < ε�+1)
where C̃(α,β) is the closure of {0,�} ∪ β under +, λξ.ωξ and ϑ�α.
On the other side, by Theorems4.7, 3.9 we have:
(3) θα0 = φ〈�α〉 = min{β ∈ H : ∀ξ < �α(K ξ < β ⇒ φ〈ξ〉 < β) & Kα < β}.

In the light of (1)–(3) the following theorem suggests itself.

Theorem 5.1
α < ε�+1 ⇒ ϑα = min{β ∈ E : ∀ξ < α(K ξ < β ⇒ ϑξ < β)& Kα < β}.
Proof
I. From [18], Lemma2.1 and 2.2(1)–(4) we obtain
ϑα ∈ E& ∀ξ < α(E�(ξ) < ϑα ⇒ ϑξ < ϑα)& E�(α) < ϑα.
II. Assume β ∈ E & ∀ξ < α(E�(ξ) < β ⇒ ϑξ < β) & E�(α) < β.
We will prove that ϑα ≤ β.

For this let Q := {γ : E�(γ) ⊆ β}. Sinceβ ∈ E,wehave Q ⊆ β.Moreover, as one
easily sees, {0,�} ⊆ Q and Q is closed under+, λξ.ωξ and ϑ�α. Hence C̃(α,β) ⊆
Q and thus C̃(α,β) ∩� ⊆ Q ∩� ⊆ β. It remains to show that α ∈ C̃(α,β). But
this follows immediately from E�(α) ⊆ β ⊆ C̃(α,β) and [18, 1.2(4)].

From I. and II. we get
ϑα = min{β ∈ E : ∀ξ < α(E�(ξ) < β ⇒ ϑξ < β)& E�(α) < β},
which together with Lemma4.1 d yields the claim.

Relativization
Comparing the recursion equations for ϑα and φ〈α〉 in Theorems5.1, 3.9 one notices
that these equations are almost identical. The only difference is that in the equa-
tion for ϑα there appears E where in the equation for φ〈α〉 we have R0 (i.e.
H). In order to establish the exact relationship between ϑ and φ we go back to
the definition of the Bachmann hierarchy in Sect. 2 and replace the initial clause
“R0 := H ∩�” of this definition by “R0 := X ∩�” where here and in the sequel X
always denotes a subclass of {1} ∪ Lim such that X ∩� is �-club. Then the whole
of Sects. 2, 3 remains valid as it stands. To make the dependency on X visible we
write RX

α , RX

α ,φX

α ,φX

α ,φX〈α〉,φX〈α〉 instead of Rα, Rα,

Remark
Theorems5.1, 3.9 yield ϑα = φE〈α〉 and ϑ(�α+ β) = φE

α(β) (α < ε�+1, β < �)
The previous explanations motivate the following definition.

18 W. Buchholz

Definition
ϑXα := min{β ∈ X : ∀ξ < α(K ξ < β ⇒ ϑXξ < β)& Kα < β} (α ≤ �).

Theorem5.1 now reads: ϑα = ϑEα for α < ε�+1.
Further, by Theorem3.9 we have

(ϑ0) ϑX(�α+ β) = φX

α(β), if β < �.

Therefore, properties of ϑX can be proved by deriving them from corresponding
properties of φ. But for various reasons it is also advisable to work directly from the
above definition.

Let us first mention that for β < � the set {ξ < α : K ξ < β} is countable too,
and therefore ϑXα < �. Moreover, directly from the definition of ϑX we obtain:

(ϑ1) Kα < ϑXα ∈ X,
(ϑ2) α0 < α & Kα0 < ϑXα ⇒ ϑXα0 < ϑXα,
(ϑ3) β ∈ X & Kα < β < ϑXα ⇒ ∃ξ < α(K ξ < β ≤ ϑXξ),

and then

(ϑ4) ϑXα0 = ϑXα1 ⇒ α0 = α1 [from (ϑ1), (ϑ2)],
(ϑ5) β ∈ X & β < ϑX� ⇒ ∃ξ < �(β = ϑXξ).

Proof of (ϑ5): If β ≤ ω then β ∈ {ϑ0,ϑ1}. Otherwise we have K� < β < ϑX�, and
the assertion follows by transfinite induction from (ϑ3).

Note on Klammersymbols. As we mentioned above, Sects. 2, 3 remain valid if

φ is replaced by φX. So by Theorem2.8, for A =
(

ξ0 . . . ξn

α0 . . . αn

)
and α = �αn ξn +

· · · +�α0ξ0 we have φX

0 A = φX〈α〉 fromwhich one easily derives φX

0 A = φX〈α〉 ,2
whence (by Theorem3.9) φX

0 A = ϑXα. Via Theorem5.1 this fits together with

Schütte’s result φE

0 A = ϑα in [21].

The Function ψX

In [9] (actually already in [8]) the author introduced the functions ψσ : On → �σ+1
and proved, via an ordinal analysis of IDν , that ψ0ε�ν+1 = θε�ν+1(0). In [12] ordinal
analyses of several impredicative subsystems of 2nd order arithmetic are carried out
by means of the ψσ’s. The definition of ψσ in [12] differs in some minor respects
from that in [9]; for example, λξ.ωξ is a basic function in [12] but not in [9]. In
[18] Rathjen and Weiermann compare their ϑ with ψ0�ε�+1 from [12] which they
abbreviate by ψ. In Sect. 6 we will present a refinement of this comparison which
is based on Schütte’s definition of the Veblen function ϕ (below �0) in terms of ψ,
given in Sect. 7 of [12].

Similarly as Theorem5.1 one can prove

ψα = min{β ∈ E : ∀ξ < α(K ξ < β ⇒ ψξ < β)}, for α < ε�+1.

2 ϕA is the ‘fixed-point-free version’ of ϕA defined in [19, Sect. 4].

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 19

This motivates the following

Definition of ψXα for α ≤ �+1
ψXα := min{β ∈ X : ∀ξ < α(K ξ < β ⇒ ψXξ < β)}.

For the rest of this section we assume X to be fixed, and write ϑ,ψ for ϑX,ψX.

Remark Immediately from the definitions it follows that ψα ≤ ϑα.
Before turning to the announced exact comparison of ϑ and ψ, we prove a some-

what weaker (but still very useful) result which can be obtainedwithmuch less effort.
This corresponds to [18, p. 64] which in turn stems from [10, 11].

Lemma 5.2 For α ≤ �.

(a) α0 ≤ α ⇒ ψα0 ≤ ψα.
(b) α0 < α & Kα0 < ψα ⇒ ψα0 < ψα.
(c) ψα < ψ(α+1) ⇔ Kα < ψα.
(d) α ∈ Lim ⇒ ψα = supξ<α ψξ.
(e) ψα = min{γ ∈ X : ∀ξ < α(K ξ < ψξ ⇒ ψξ < γ)}.
Proof
(a), (b) follow directly from the definition.
(c) “⇒”: Assume ¬(Kα < ψα). Then from ψα ∈ X & ∀ξ < α(K ξ < ψα ⇒ ψξ
< ψα) we conclude ψα ∈ X & ∀ξ < α+1(K ξ < ψα ⇒ ψξ < ψα), and thus
ψ(α+1) ≤ ψα.
“⇐”: From α < α+1 & Kα < ψα ≤ ψ(α+1) we conclude ψα < ψ(α+1) by (b).
(d) By (a) we have γ := supξ<α ψξ ≤ ψα. Assume γ < ψα. Then γ ∈ X ∩ ψα, and
therefore by definition of ψα there exists ξ < α with K ξ < γ ≤ ψξ. Hence by (c),
∃ξ < α(γ < ψ(ξ+1)). Contradiction.
(e) 1. We have ψα ∈ X and, by (a), (b), ∀ξ < α(K ξ < ψξ ⇒ ψξ < ψα).
2. Notice that (K ξ < ψξ ⇒ ψξ < γ) implies (K ξ < γ ⇒ ψξ < γ). Therefore,
if γ ∈ X & ∀ξ < α(K ξ < ψξ ⇒ ψξ < γ) then γ ∈ X & ∀ξ < α(K ξ < γ ⇒ ψξ <

γ) which yields ψα ≤ γ.

Definition
Let α ≤ � with Kα < ψ�.

Then by Lemma5.2d there exists ξ < � such that Kα < ψξ, and we can define

g̃(α) := min{ξ < � : Kα < ψξ},
g(α) := g̃(α)−̇1, where β−̇1 :=

{
β0 if β = β0+1,
β otherwise.

h(α) := g(α)+�α. (Note that h(α) ≤ �.)

Lemma 5.3 Assume α ≤ � & Kα < ψ�.

(a) ψ0 ≤ Kα ⇒ ψg(α) ≤ Kα < ψ(g(α)+1).
(b) Kg(α) < ψg(α).
(c) Kh(α) < ψh(α).
(d) α0 < α & Kα0 < ψh(α) ⇒ ψh(α0) < ψh(α).

20 W. Buchholz

Proof
(a) From ψ0 ≤ Kα and Lemma5.2d it follows that 0 < g̃(α) /∈ Lim. Therefore
g̃(α) = g(α)+1, which yields the assertion.
(b) Follows from (a) and Lemma5.2c.

(c) K (g(α)+�α) ⊆ Kg(α) ∪ Kα
(b),(a)
< ψ(g(α)+ 1) ≤ ψ(g(α)+�α).

(d) From α0 < α & Kα0 < ψh(α) by (a) we obtain α0 < α & g(α0) < h(α) =
g(α)+�α and then h(α0) = g(α0)+�α0 < h(α). This together with Kh(α0) <

ψh(α0) (cf. (c)) yields ψh(α0) < ψh(α) by Lemma5.2a, b.

Theorem 5.4 α ≤ � & Kα < ψ� ⇒ ϑα ≤ ψh(α).

Proof by induction on α:
By Lemma5.3a, d, Kα<ψh(α) ∈ X & ∀ξ<α(K ξ<ψh(α) ⇒ ψh(ξ)<ψh(α)).

Hence by IH, Kα < ψh(α) ∈ X & ∀ξ < α(K ξ < ψh(α) ⇒ ϑξ < ψh(α)) which
yields ϑα ≤ ψh(α).

Corollary 5.5

(a) α = �α ≤ � & Kα < ψα ⇒ ϑα = ψα.
(b) ϑε�+1 = ψε�+1 & ϑ� = ψ�.

Proof

(a) Kα < ψα & α = �α ⇒ g(α) < α = �α ⇒ h(α) = g(α)+�α = α
5.4⇒

ϑα ≤ ψα ≤ ϑα.
(b) are instances of (a).

Note In the appendix of [6] it is shown that ψSC� equals Bachmann’s ϕFω2+1(1)(1).
In the present context this equation can be derived as follows

ψSC�
Cor.5.5= ϑSC�

(ϑ0)= φSC
� (0) = φSC

� (0)
L.5.6= φH

�(0) = ‘ϕFω2+1(1)(1)’.

Lemma 5.6

(a) Kγ = ∅ & Y ∩� = RX

γ ⇒ φY

α = φX

γ+α.
(b) SC ∩� = RH

� .

Proof
(a) Induction on α using Theorem3.4 and the fact that Kγ = ∅ implies K (γ + α) =
Kα and k+(γ + α) = k+(α) for all α.
(b) By definition we have ∀α < �(φH

α = ϕα), which together with Lemma2.5d
yields SC ∩� = {α ∈ � : φH

α (0) = α} = RH

� .

Corollary 5.7

(i) Kγ = ∅ & Y ∩� = RX

γ ⇒ φY

α = φX

γ+α and ϑYα = ϑX(�γ + α).
(ii) φE

α = φH

1+α, φSC
α = φH

�+α, ϑEα = ϑH(�+ α), and ϑSCα = ϑH(�2 + α) =
ϑE(�2 + α).

Proof
(i) follows from Lemma5.6a by Theorem3.5b and (ϑ0).
(ii) follows from Lemma5.6, (i), and E ∩� = RH

1 .

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 21

6 Exact Comparison of ϑ and ψ

Let X ⊆ H be fixed such that X ∩� is �-club. As before we write ϑ,ψ for ϑX,ψX.
In this section we always assume α < � and Kα ∪ {β} < ψ�.

Lemma 6.1

(a) α0 < α & ∀ξ(α0 ≤ ξ < α → ψξ = ψ(ξ+1)) ⇒ ψα0 = ψα.
(b) ψα0 < ψα ⇒ ∃α1(α0 ≤ α1 < α & Kα1 < ψα1 = ψα0).

Proof
(a) follows from Lemma5.2a, d by induction on α.
(b) From ψα0 < ψα by Lemmata5.2a, 6.1a we obtain ∃ξ(α0 ≤ ξ < α & ψξ <

ψ(ξ+1)). Let α1 := min{ξ ≥ α0 : ψξ < ψ(ξ+1)}. Then α0 ≤ α1 < α and, by (a)
and Lemma5.2c, Kα1 < ψα1 = ψα0.

Lemma 6.2

(a) ψα < γ ∈ X ⇒ ψ(α+1) ≤ γ.
(b) γ ∈ X ∩ ψ� ⇒ ∃α(Kα < ψα = γ).
(c) �α|γ & δ < �α & K (γ + δ) < ψ(γ + δ) ⇒ Kγ < ψγ.
(d) �α|γ & ψγ < ψ(γ +�α) ⇒ Kγ < ψγ.

Proof
(a) X � γ < ψ(α+ 1) ⇒ ∃ξ < α+1(K ξ < γ ≤ ψξ) ⇒ γ ≤ ψα.
(b) By Lemma5.2a, d it follows that ψα ≤ γ < ψ(α+1) for some α < �. By (a) it
follows that ψα = γ.
(c) Induction on δ: Since �α|γ & δ < �α we have Kγ ⊆ K (γ + δ). Therefore, if
ψγ = ψ(γ + δ) then Kγ < ψγ. If ψγ < ψ(γ + δ), then by Lemma6.1b there exists
δ0 < δ such that K (γ + δ0) < ψ(γ + δ0); thence, by IH, Kγ < ψγ.
(d) By Lemma6.1b there exists δ < �α such that K (γ + δ) < ψ(γ + δ). Hence
Kγ < ψγ by (c).

Lemma 6.3 δ =NF γ +�αξ & K (�αξ) < ψ(γ +�α+1) ⇒ K (�αξ) < ψδ.

Proof For ψδ = ψ(γ +�α+1) the claim is trivial. Otherwise, by Lemma6.1b
there exists δ1 with δ ≤ δ1 < γ +�α+1 and K δ1 < ψδ1 = ψδ. Then δ1 = γ +
�αβ + δ2 with ξ ≤ β < � and δ2 < �α.Hence K (�αβ) ⊆ K δ1 < ψδ.Nowassume
β > 0. Then Kα ∪ Kβ = K (�αβ) < ψδ which together with ξ ≤ β < � yields
K (�αξ) ⊆ Kα ∪ K ξ < ψδ.

Definition

1. ψ̇α :=
{
0 if α = 0,
ψα if α > 0.

2. If α ≤ β then −α+ β denotes the unique γ such that α+ γ = β.

The following definition is an extension and modification of the corresponding
definition on p. 26 of [12].

22 W. Buchholz

Definition of [α,β] < �

By Lemma5.2a, d there exists η < � such that
ψ̇(�α+1η) ≤ Kα ∪ {β} < ψ(�α+1(η+1)).

Let γ := �α+1η. Then ψ̇γ ≤ Kα ∪ {β} < ψ(γ +�α+1).

If �α+ β < ω then [α,β] := β, else

[α,β] := γ +�α(1+ξ) with ξ :=
{−ψ̇γ + β if Kα < ψ̇γ,

β otherwise.

Remark ω ≤ �α+ β ⇒ ω ≤ [α,β].
Lemma 6.4 (a) K [α,β] < ψ[α,β] ; (b) K (�α+ β) < ψ[α,β].
Proof
Assume ω ≤ �α+ β (otherwise K [α,β] = ∅ and K (�α+ β) = ∅). Then [α,β]
=NF γ +�α(1+ξ) with ψγ ≤ Kα ∪ {β} < ψ(γ +�α+1) and ξ ≤ β ≤ ψ̇γ + ξ.

(a) By Lemmata6.2d and 5.2a, b we obtain Kγ < ψγ < ψ[α,β].

K (�α(1+ξ)) = Kα ∪ K ξ & ξ ≤ β < � & Kα ∪ {β} < ψ(γ +�α+1) ⇒
K (�α(1+ξ)) < ψ(γ +�α+1).
[α,β] =NF γ +�α(1+ξ) & K (�α(1+ξ)) < ψ(γ +�α+1) 6.3⇒
K (�α(1+ξ)) < ψ[α,β].

(b) By (proof of) (a) we have Kα ∪ {ξ} ⊆ K [α,β] < ψ[α,β] and ψγ < ψ[α,β].
From this togetherwithβ ≤ ψ̇γ + ξ andψ[α,β] ∈ X ⊆ H,weobtain K (�α+ β) =
Kα ∪ {β} < ψ[α,β].
Lemma 6.5
�α0 + β0 < �α1 + β1 & K (�α0 + β0) < ψ[α1,β1] ⇒ [α0,β0] < [α1,β1].
Proof
1. �α1 + β1 < ω: Then [α0,β0] = β0 < β1 = [α1,β1].
2. �α0 + β0 < ω ≤ �α1 + β1: Then [α0,β0] = β0 < ω ≤ [α1,β1].
3.ω ≤ �α0 + β0: Then [αi ,βi] =NF γi +�αi (1+ ξi) (i = 0, 1), and ψ̇γ0 ≤ Kα0 ∪
{β0} < ψ[α1,β1].
3.1. α := α0 = α1 & β0 < β1:
3.1.1. γ0 < γ1: Then [α0,β0] = γ0 +�α(1+ξ0) < γ0 +�α+1 ≤ γ1 ≤ [α1,β1].
3.1.2. γ := γ0 = γ1: To prove ξ0 < ξ1. We have ξi =

{−ψ̇γ + βi if Kα < ψ̇γ,

βi otherwise.
Hence ξ0 < ξ1 follows from β0 < β1.
3.2. α0 < α1: From ψ̇γ0 < ψ[α1,β1] and 0 < α1 we get γ0 < [α1,β1] = γ1 +
�α1(1+ξ1), and then γ0 +�α1 ≤ [α1,β1]. Further we have [α0,β0] = γ0 +�α0

(1+ξ0) < γ0 +�α0+1 ≤ γ0 +�α1 .

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 23

Lemma 6.6 ϑ(�α+ β) ≤ ψ([α,β]) < ψ�.

Proof by induction on �α+ β:
Let γ0 := ψ[α,β].
To prove: γ0 ∈ X & K (�α+ β) < γ0 & ∀ζ < �α+ β(K ζ < γ0 ⇒ ϑζ < γ0).
1. By definition of ψ and Lemma6.4b we have γ0 ∈ X & K (�α+ β) < γ0.
2. Assume �ξ + η < �α+ β & K (�ξ + η) < γ0. Then, by Lemma6.5, [ξ, η] <

[α,β]. From this by Lemmata6.4a, 5.2a, b and the IH we obtain ϑ(�ξ + η) ≤
ψ[ξ, η] < ψ[α,β] = γ0.

Definition of δ < � for δ < �3

1. If δ < ω then δ := δ.

2. Ifω ≤ δ =NF γ +�α(1+ ξ) then δ := �α+ βwithβ :=
{
ψ̇γ + ξ if Kα < ψ̇γ,

ξ otherwise.

Remark ω ≤ δ ⇒ ω ≤ δ.

Lemma 6.7 [α,β] = �α+ β.

Proof

[α,β] =NF γ +�α(1+ξ) with ξ =
{−ψ̇γ + β if Kα < ψ̇γ,

β otherwise.

Hence [α,β] = �α+ β̃ with β̃ :=
{

ψ̇γ + ξ if Kα < ψ̇γ,

ξ otherwise.
Obviously β̃ = β.

Lemma 6.8 Let δ, δ′ < �.

(a) K δ < ψδ & δ = �α+ β ⇒ δ = [α,β].
(b) K δ < ψδ ⇒ ϑδ ≤ ψδ.
(c) K δ < ψδ & K δ′ < ψδ′ & δ = δ′ ⇒ δ = δ′.

Proof
(a) 1. δ < ω: Then �α+ β = δ = δ < ω and thus [α,β] = β = δ.

2. Otherwise: Then ω ≤ δ =NF γ +�α(1+ξ) with β =
{

ψ̇γ + ξ if Kα < ψ̇γ,

ξ otherwise.

The latter yields ψ̇γ ≤ Kα ∪ {β}. From K δ < ψδ by Lemma6.2c we get Kγ <

ψγ and thenψγ < ψδ. Nowwehave Kα ∪ K ξ ⊆ K δ < ψδ ∈ H & ψγ < ψδwhich
implies Kα ∪ {β} < ψδ ≤ ψ(γ +�α+1).

It follows that [α,β] = γ +�α(1+ξ̃) where ξ̃ :=
{−ψ̇γ + β if Kα < ψ̇γ,

β otherwise.

Obviously ξ̃ = ξ and therefore [α,β] = δ.

3This definition is closely related to clause 5 in Definition 3.6 of [18]. But be aware that δ there has
a different meaning than here.

24 W. Buchholz

(b) Take α,β such that δ = �α+ β. Then by Lemma6.6 and (a) we obtain ϑδ =
ϑ(�α+ β) ≤ ψ[α,β] = ψδ.
(c) By (a) there are α,β,α′,β′ such that δ = �α+ β & δ = [α,β] and δ

′ = �α′ +
β′ & δ′ = [α′,β′]. Therefore from δ = δ′ one concludes α = α′ & β = β′ and then
δ = δ′.

Theorem 6.9 δ < � & K δ < ψδ ⇒ ϑδ = ψδ.

Proof by induction on δ:
ByLemma6.8bwehaveϑδ ≤ ψδ.Assumption:ϑδ < ψδ. ThenbyLemma6.2b there
exists γ s.t. Kγ < ψγ = ϑδ < ψδ. Hence γ < δ and therefore, by IH, ψγ = ϑγ.
From ϑδ = ψγ = ϑγ & K δ < ψδ & Kγ < ψγ by (ϑ4) and Lemma6.8c we obtain
δ = γ. Contradiction.

Corollary 6.10

(a) ϑ(�α+ β) = ψ[α,β].
(b) Kα < ψ�α+1 ⇒ ϑ(�α) = ψ�α.

Proof

(a) Let δ := [α,β]. Then by Lemma6.4a K δ < ψδ, and therefore ϑ(�α+ β)
L.6.7=

ϑδ = ψδ = ψ[α,β].
(b) α < � & Kα < ψ�α+1 ⇒ ϑ(�α) = ψ[α, 0] = ψ(�α(1+ 0)) = ψ�α.

7 Defining the Bachmann Hierarchy by Functionals
of Higher Type

This section is based on [23, (3.2.9)–(3.2.11), (3.2.15)].

Convention. n ranges over natural numbers ≥ 1.

Definition Let M be an arbitrary nonempty set.
1. M1 := M. 2. Mn+1 := set of all functions F : Mn → Mn .

Notation If 1 ≤ m < n and Fi ∈ Mi for m ≤ i ≤ n, then Fn Fn−1 . . . Fm :=
Fn(Fn−1) . . . (Fm).

Abbreviation Idn+1 := IdMn ∈ Mn+1.

Assumption
∇ is an operation such that for every family (Xξ)ξ<α with 0 < α ≤ � the following
holds: ∀ξ < α(Xξ ∈ M1) ⇒ ∇ξ<α Xξ ∈ M1.

Definition If n > 1 and ∀ξ < α(Fξ ∈ Mn+1) then
∇ξ<α Fξ ∈ Mn+1 is defined by (∇ξ<α Fξ)G := ∇ξ<α(FξG).

Lemma 7.1 If 0 < α ≤ � & ∀ξ < α(Fξ ∈ Mn+1) & H ∈ Mn+1, then
(∇ξ<α Fξ) ◦ H = ∇ξ<α(Fξ ◦ H).

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 25

Proof
For each G ∈ Mn we have
((∇ξ<α Fξ) ◦ H)G = (∇ξ<α Fξ)(H G) = ∇ξ<α(Fξ(H G)) = ∇ξ<α((Fξ◦H)G) =
(∇ξ<α(Fξ◦H))G.

Definition For F ∈ Mn+1 and α ≤ � we define F (α) ∈ Mn+1 by (i) F (0) := Idn+1;
(ii) F (α+1) := F ◦ F (α); (iii) F (α) := ∇ξ<α F (1+ξ) if α ∈ Lim.

Definition

(i) Let I2 ∈ M2 be given;
(ii) For m ≥ 2 we define Im+1 ∈ Mm+1 by Im+1F := F (�).

Definition of [[α]]m
For m ≥ 2 and α < ε�+1 we define [[α]]m ∈ Mm by recursion on α:
(i) [[0]]m := Idm ; (ii) If α =NF γ +�βη, then [[α]]m := ([[β]]m+1Im)(η) ◦ [[γ]]m .
Lemma 7.2 For m ≥ 2 and α < ε�+1:

(a) [[α+1]]m = Im ◦ [[α]]m;
(b) α ∈ Lim ⇒ [[α]]m = ∇ξ<τ (α)[[α[ξ]]]m.

Proof
(a) [[γ +�0(η+1)]]m = ([[0]]m+1Im)(η+1) ◦ [[γ]]m = I(η+1)m ◦ [[γ]]m = Im ◦ (I(η)

m ◦
[[γ]]m) = Im ◦ [[γ +�0·η]]m .
(b) Induction on α:
1. α =NF γ +�βη with η ∈ Lim: Then τ (α) = η and α[ξ] = γ +�β(1+ξ).
[[α]]m = ([[β]]m+1Im)(η) ◦ [[γ]]m = (∇ξ<η([[β]]m+1Im)(1+ξ)) ◦ [[γ]]m =
∇ξ<η(([[β]]m+1Im)(1+ξ) ◦ [[γ]]m) = ∇ξ<η[[α[ξ]]]m .
2. α =NF γ +�β(η+1) with β = β0+1: Then τ (α) = � and α[ξ] = γ +�βη +
�β0(1+ξ).

[[α]]m = ([[β]]m+1Im)(η+1) ◦ [[γ]]m = ([[β0+1]]m+1Im) ◦ ([[β]]m+1Im)(η) ◦ [[γ]]m (a)=
(Im+1([[β0]]m+1Im)) ◦ [[γ +�βη]]m = (∇ξ<�([[β0]]m+1Im)(1+ξ)) ◦ [[γ +�βη]]m =
∇ξ<�(([[β0]]m+1Im)(1+ξ) ◦ [[γ +�βη]]m) = ∇ξ<�[[α[ξ]]]m .
3. α =NF γ +�β(η+1) with β ∈ Lim:
Then τ (α) = τ (β) and α[ξ] = γ +�βη +�β[ξ].
[[α]]m = ([[β]]m+1Im)(η+1) ◦ [[γ]]m = ([[β]]m+1Im) ◦ ([[β]]m+1Im)(η) ◦ [[γ]]m =
([[β]]m+1Im) ◦ [[γ +�βη]]m IH=(∇ξ<τ (β)([[β[ξ]]]m+1Im)) ◦ [[γ +�βη]]m =
∇ξ<τ (β)(([[β[ξ]]]m+1Im) ◦ [[γ +�βη]]m) = ∇ξ<τ (α)[[α[ξ]]]m .
Corollary 7.3 For X ∈ M1 and α < ε�+1 the following holds:

(i) [[0]]2X = X;
(ii) [[α+1]]2X = I2([[α]]2X);

(iii) [[α]]2X = ∇ξ<τ (α)([[α[ξ]]]2X) if α ∈ Lim.

Now we fix M, I2 and ∇ as follows:

26 W. Buchholz

1. M := set of all �-club subsets of �.
2. I2 : M→ M, I2(X) := {β ∈ � : enX (β) = β},where enX is the ordering function

of X .

3. If∀ξ < α(Xξ ∈ M) then∇ξ<α Xξ :=
{⋂

ξ<α Xξ if α < �,

{β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Xξ} if α = �.

Then by transfinite induction on α from the above Corollary and the definition of
RX

α we conclude

Theorem 7.4 RX
α = [[α]]2X, for all α < ε�+1 and X ∈ M.

Appendix

This appendix is devoted to the proof of Lemmata2.1, 2.2d.

Lemma A1

(a) λ ∈ Lim ⇒ 0 < λ[0].
(b) γ +�β < �α & η < � ⇒ γ +�βη < �α.
(c) λ =NF γ +�βη /∈ ran(F0) & �α < λ ⇒ �α ≤ λ[0].
Proof of (c):
From �α < λ = γ +�βη by (b) we get �α ≤ γ +�β . If η ∈ Lim then λ[0] =
γ +�β . If 1 < η = η0+1 then γ +�β ≤ γ +�βη0 ≤ λ[0]. If η = 1 then 0 < γ
(since λ /∈ ran(F0)) and therefore�β+1 ≤ γ which together with�α < λ = γ +�β

yields �α ≤ γ ≤ λ[0].
Lemma A2 λ =NF Fα(β) & 0 < β ⇒ Fα(β[n]) ≤ λ[n].
Proof
1. β ∈ Lim: Fα(β[n]) = λ[n].
2. β = β0+1:
2.1. α = 0: Fα(β[n]) = �β0 ≤ �β0 ·(1+n) = λ[n].
2.2. α > 0: Fα(β[n]) = Fα(β0) < λ− ≤ λ[n].
Lemma A3 Fζ(μ) < λ ≤ Fζ(μ+1) ⇒ Fζ(μ) ≤ λ[0].
Proof
0. λ = Fζ(μ+ 1):
0.1. ζ = 0: λ = �μ+1, λ[ξ] = �μ(1+ξ), λ[0] = F0(μ).
0.2. ζ > 0: Fζ(μ) < λ− < Fζ[0](λ−) = λ[0].
1. λ < Fζ(μ+ 1):
1.1. λ =NF γ +�βη /∈ ran(F0):

Fζ(μ) ∈ ran(F0) & Fζ(μ) < λ
L.A1c⇒ Fζ(μ) ≤ λ[0].

1.2. λ =NF Fα(β): Thenα < ζ and thus Fα(Fζ(μ)) = Fζ(μ) < Fα(β). Hence Fζ(μ)

< β and therefore Fζ(μ)
IH≤ β[0] ≤ Fα(β[0]) A2≤ λ[0].

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 27

Definition r(γ) :=
⎧
⎨

⎩

−1 if γ /∈ ran(F0),

α if γ =NF Fα(β),

γ if γ = �.

Lemma A4

(a) r(Fα(β)) = max{α, r(β)}.
(b) λ[0] < δ < λ ⇒ r(δ) ≤ r(λ).
(c) λ =NF Fα(β) & β /∈ Lim & λ− < η < λ ⇒ λ− ≤ η[1].
Proof
(a) 1. β < Fα(β):
Then r(Fα(β)) = α and (r(β) = −1 or β =NF Fβ0(β1) with β0 ≤ α).
2. β = Fα(β): Then β =NF Fβ0(β1) with α < β0 = r(β) = r(Fα(β)).
(b) 1. λ =NF γ +�βη /∈ ran(F0):

1.1. η ∈ Lim: γ +�β = λ[0] < δ < γ +�βη
A1b⇒ δ /∈ ran(F0).

1.2. η = η0+1:
γ +�βη0 < λ[0] < δ < γ +�β(η0+1) /∈ ran(F0) & �β+1|γ ⇒ δ /∈ ran(F0).
2. λ =NF Fα(β): If λ < Fα+1(0) then also δ < Fα+1(0) and thus r(δ) ≤ α = r(λ).
Otherwise there exists μ such that Fα+1(μ) < λ < Fα+1(μ+1). Then by LemmaA3
we get Fα+1(μ) ≤ λ[0] < δ < Fα+1(μ+1) and thus δ /∈ ran(Fα+1), i.e. r(δ) ≤ α =
r(λ).
3. λ = �: r(δ) < � = r(�).
(c) For β = 0 ∨ η = η0+1 the claim is trivial. Assume now β = β0+1 & η ∈ Lim.

Fα(β0) < η < Fα(β0+1) L.A3⇒ λ− = Fα(β0)+1 ≤ η[0] + 1 ≤ η[1].
Lemma 2.1 λ =NF Fα(β) & β ∈ Lim & 1 ≤ ξ < τβ ⇒ λ[ξ] =NF Fα(β[ξ]).
Proof
We have λ[ξ] = Fα(β[ξ]) & β[0] < β[ξ] < β. By LemmaA4b this yields λ[ξ] =
Fα(β[ξ]) & r(β[ξ]) ≤ r(β) ≤ α, whence λ[ξ] =NF Fα(β[ξ]).
Lemma 2.2d ξ+1 < τλ & λ[ξ] < δ ≤ λ[ξ+1] ⇒ λ[ξ] ≤ δ[1].
Proof by induction on δ # λ:
If r(δ) < r(λ[ξ]) then, by LemmaA4b, λ[ξ] ≤ δ[0]. (Proof: δ[0] < λ[ξ] < δ
L.A4b⇒ r(λ[ξ]) ≤ r(δ)).

Assume now that r(λ[ξ]) ≤ r(δ) (†).
1. λ =NF γ +�βη /∈ ran(F0).
1.1. η ∈ Lim:
γ +�β(1+ξ) = λ[ξ] < δ < λ[ξ+1] = γ +�β(1+ξ)+�β ⇒ λ[ξ] ≤ δ[0].
1.2.η = η0+1:γ +�βη0 +�β[ξ] = λ[ξ] < δ ≤ λ[ξ+1] = γ +�βη0 +�β[ξ+1]
⇒ δ = (γ +�βη0)+ δ0 with �β[ξ] < δ0 ≤ �β[ξ+1] ⇒ δ[0] = γ +�βη0 +
δ0[0] with �β[ξ] IH≤ δ0[0] ⇒ λ[ξ] ≤ δ[0].

28 W. Buchholz

2.λ =NF Fα(β) & β ∈ Lim: Then (1)λ[ξ] = Fα(β[ξ]), and (2)λ[ξ] < δ < λ. From

α
(1)≤ r(λ[ξ]) (†)≤ r(δ)

(2),L.A4b≤ r(λ) = α we get r(δ) = α, i.e. δ =NF Fα(η) for some
η. Now from λ[ξ] < δ ≤ λ[ξ+1] we conclude β[ξ] < η ≤ β[ξ+1] and then, by IH,
β[ξ] ≤ η[0]. Hence λ[ξ] ≤ Fα(η[0]) L.A2≤ δ[0].
3. λ =NF Fα(β) & β /∈ Lim:
3.1.α = 0: Then β = β0+1, and λ[ξ] = �β0(1+ξ) < δ ≤ �β0(1+ξ)+�β0 implies
λ[ξ] ≤ δ[0].
3.2. α = α0+1: Then λ[ξ] = Fξ+1

α0
(λ−). Hence, by (†), δ =NF Fζ(η) with α0 ≤ ζ.

3.2.1. α0 < ζ: λ− < Fζ(η) ⇒ λ[ξ+1] = Fξ+2
α0

(λ−) < Fζ(η). Contradiction.
3.2.2. ζ = α0: Then from Fξ+1

α0
(λ−) = λ[ξ] < δ = Fα0(η) ≤ λ[ξ+1] we conclude

Fξ
α0

(λ−) < η ≤ λ[ξ]. As we will show, this implies Fξ
α0

(λ−) ≤ η[1], thence

Fξ+1
α0

(λ−) ≤ Fζ(η[1]) L.A2≤ δ[1].
Proof of Fξ

α0
(λ−) ≤ η[1]:

(i) ξ = n+1: Then the claim follows by IH from λ[n] = Fξ
α0

(λ−) < η ≤ λ[n+1].
(ii) ξ = 0: λ− < η < λ

L.A4c⇒ λ− ≤ η[1].
3.3. α ∈ Lim: λ[ξ] = Fα[ξ](λ−), and by (†) we have δ =NF Fζ(η) with α[ξ] ≤ ζ.
3.3.1. α[ξ+1] < ζ: λ− < Fζ(η) ⇒ Fα[ξ+1](λ−) < Fζ(η) = δ. Contradiction.
3.3.2. α[ξ] < ζ ≤ α[ξ+1]:
(i) η ∈ Lim: Then λ− < δ[1] = Fζ(η[1]) (for β = 0, λ− = 0. If β = β0+1, then
Fα(β0) < δ < Fα(β0+1) and thus, byLemmaA3, Fα(β0) ≤ δ[0]).α[ξ] < ζ & λ−<

δ[1] ⇒ λ[ξ] = Fα[ξ](λ−) < δ[1].
(ii) η /∈ Lim: By IH α[ξ] ≤ ζ[1]. Further λ− ≤ δ−.
Proof of λ− ≤ δ−: Assume β = β0+1.
Fα(β0) < δ = Fζ(η) & ζ < α ⇒ 0 < η ⇒ η = η0+1.
Fα(β0) < Fζ(η0+1) & ζ < α ⇒ Fα(β0) ≤ Fζ(η0).
From α[ξ] ≤ ζ[1] and λ− ≤ δ− we conclude λ[ξ] = Fα[ξ](λ−) ≤ Fζ[1](δ−) ≤ δ[1].
3.3.3. ζ = α[ξ]: This case is similar to 3.2.2(ii):
λ[ξ] = Fζ(λ

−) < Fζ(η) < Fα(β) ⇒ λ− < η < Fα(β) ⇒ λ[ξ] = Fζ(λ
−)

L.A4c≤ Fζ(η[1]) L.A2≤ δ[1].
4. λ = �: This case is very similar to 3.3, but considerably simpler.

References

1. P. Aczel, An new approach to the Bachmann method for describing countable ordinals (Pre-
liminary Summary). Unpublished Notes

2. P. Aczel, Describing ordinals using functionals of transfinite type. J. Symbolic Logic 37(1),
35–47 (1972)

3. H. Bachmann, Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ord-
nungszahlen. Vierteljschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)

4. J. Bridge, Some problems in mathematical logic. Systems of ordinal functions and ordinal
notations. Ph.D. thesis. Oxford University, 1972

A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal 29

5. J. Bridge, A simplification of the Bachmann method for generating large countable ordinals.
J. Symbolic Logic 40, 171–185 (1975)

6. U.T. Buchholtz, Unfolding of systems of inductive definitions. Ph.D thesis. StanfordUniversity,
2013

7. W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen. Proof theory
symposion Kiel 1974. Springer Lecture Notesin Mathmetical, vol. 500. pp. 4–25 (1975)

8. W. Buchholz, Collapsingfunktionen. Unpublished Notes (1981). http://www.mathematik.uni-
muenchen.de/~buchholz/articles/Bu_Collapsing.pdf

9. W. Buchholz, A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic 32(3),
195–207 (1986)

10. W. Buchholz, K. Schütte, Die Beziehungen zwischen den Ordinalzahlsystemen � und θ(ω).
Arch. Math. Logik und Grundl. 17, 179–189 (1976)

11. W. Buchholz, K. Schütte, Ein Ordinalzahlensystem für die beweistheoretische Abgrenzung der
�1

1-Separation und Bar-Induktion. Bayr. Akad. Wiss. Math.-Naturw. Kl. 99–132 (1983)
12. W. Buchholz, K. Schütte, Proof Theory of Impredicative Subsystems of Analysis. No. 2 in

Studies in Proof Theory, Monographs. Bibliopolis (1988)
13. J.N. Crossley, J. Bridge-Kister, Natural well-orderings. Arch. Math. Logik und Grundl. 26,

57–76 (1986/87)
14. S. Feferman, Proof theory: a personal report, in Proof theory, 2nd edn., ed. by G. Takeuti,

(North-Holland 1987) pp. 447–485
15. H. Gerber, An extension of Schütte’s Klammersymbols. Math. Ann. 174, 203–216 (1967)
16. D. Isles, Regular ordinals and normal forms, in Intuitionism and Proof Theory (Proc. Conf.,

Buffalo N.Y., 1968), pp. 339–362, North-Holland (1970)
17. H. Pfeiffer. Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlen-

klassen, Dissertation, Hannover, 1964
18. M. Rathjen, A. Weiermann, Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure

Appl. Logic 60(1), 49–88 (1993)
19. K. Schütte, Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math.

Ann. 127, 15–32 (1954)
20. K. Schütte, Proof Theory. No. 225 in Grundlehren der Mathematischen Wissenschaften

(Springer, 1977)
21. K. Schütte, Beziehungen des Ordinalzahlensystems OT(ϑ) zur Veblen-Hierarchie. Unpub-

lished notes (1992)
22. O. Veblen, Continous increasing functions of finite and transfinite ordinals. Trans. Amer. Math.

Soc. 9, 280–292 (1908)
23. R. Weyhrauch, Relations between some hierarchies of ordinal functions and functionals. Com-

pleted and circulated in 1972. Ph.D. thesis, Stanford University, 1976

http://www.mathematik.uni-muenchen.de/~buchholz/articles/Bu_Collapsing.pdf
http://www.mathematik.uni-muenchen.de/~buchholz/articles/Bu_Collapsing.pdf

About Truth and Types

Andrea Cantini

Dedicated to Gerhard Jäger on occasion of his 60th birthday.

Abstract We investigate a weakening of the classical theory of Frege structures and
extensions thereof which naturally interpret (predicative) theories of explicit types
and names à la Jäger.

1 Introduction

Non-extensionality is a basic feature of the so-called systems of explicit mathematics
(EM in short), be they formalized in the style of Feferman [9] or in the framework
of types and names à la Jäger [18]. Instead of functions in set theoretic sense, EM
assumes the notion of rule or algorithm as basic. Similarly, a fundamental tenet
is that a collection X always comes equipped with an explicit presentation, i.e. by
specifying a defining property given by a. It follows that the membership predicate
for stating that a given object x is a member of X is naturally interpreted by means of
satisfaction or predicate application: x ∈ X iff a truly applies to x, or x satisfies the
defining property (presented by) a of X, a being termed a name of X (see [18]). This
calls for a ground applicative structure M with a primitive application operation (a
applies to x) and a truth predicate T which applies to elements of M. It is a crucial
point: T is not a metamathematical predicate in the standard sense, that applies to

This paper originates from the slides for the talk presented at the Jäger conference, Bern,
December 12–13, 2013. We wish to thank the organizers for the nice hospitality. Thanks to an
anonymous referee for comments and criticism.

A. Cantini (B)
Dipartimento di Lettere e Filosofia, Università degli Studi di Firenze, Florence, Italy
e-mail: andrea.cantini@unifi.it

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_2

31

32 A. Cantini

(the Gödel numbers of) formulas of a given formal language. Abstract truth applies in
the present context to suitable objects—termed propositions—as distinguished from
sentences: sentences may represent propositions, but it is in general open whether
every sentence represents a proposition, and whether every proposition is explicitly
represented by a sentence.

This leads to the motivation of the present paper: we like to investigate some
connections between axiomatic theories of truth in the general setting explained
above, and explicit mathematics. In this direction Jäger and his school have offered
important contributions, which range from the field of (meta)predicativity to the field
of feasible applicative systems, as witnessed e.g. by [20, 22] or [8].

As to the contents, we survey four different truth-theoretic extensions of a basic
applicative theory TON, the core of explicit mathematics. Section 2 describes a
compositional theoryCTof propositions and truth, corresponding to Jäger’sEET, the
elementary theory of types and names, which is related to the system of arithmetical
analysis, and ought to be compared with axiomatic theories of truth over Peano
arithmetic, as investigated by Halbach [17]. We then consider two incompatible
extensions of CT. Section 3 deals with an extension AT, where the very predicate
of being a proposition does define a propositional function. AT justifies theories of
types and names, where elementary types are closed under a weak form of power
type operation. In Sect. 4 we describe a theory PT of propositions and truth, in
which propositions and truth interact up to a certain point, and the collection of types
is also closed under the so-called join axiom. Thus PT interprets EETJ, i.e. EET
with the join principle. The conclusive Sect. 5 explores a strengthening of axiomatic
abstract self-referential truth via generalized induction principles; this matches the
theory NEM of EM, where a principle of name induction is assumed besides join
and elementary comprehension.

Some results are only stated and proofs sketched. A detailed development is left
to a subsequent paper. Nevertheless, there should be little somewhat novel points in
comparison to the extant literature, e.g. Theorems 5–6 of Sect. 2.4, Theorem 38 of
Sect. 4.3, and Theorem 46 in Sect. 5.2.

2 Truth and Types I

2.1 Abstract Truth Over Combinatory Structures

The picture to have in mind corresponds to a structureM = 〈M, ·M ,PM , T M〉, such
that:

1. M is an expanded combinatory algebrawith binary total application ·M and distin-
guished elements representing (i) basic combinators; (ii) basic number theoretic
constructors; (iii) logic constructors and predicates; as usual |M| is the underlying
non-empty set of M (domain of M);

2. M contains an isomorphic copy NM of the standard natural numbers;

About Truth and Types 33

3. PM , T M are distinguished subsets of |M| containing (objects representing) ele-
mentary propositions and true elementary propositions.

T M acts as a classifier over |M|: there is a natural map RM such that

a ∈ M �→ RM(a) := {c ∈ M|T M(ac)}. (1)

RM yields a connection with Jäger’s approach to Explicit Mathematics. The set
RM(a) corresponds to the type named by a in the sense of explicit mathematics.

The collection of explicit types overM depends on the closure conditions onPM

and T M . And this is a reason to investigate abstract notions of truth with non-trivial
closure properties. PM may be absent and defined via T M .

2.2 Ground System: Language and Notations

The basic first order language LT includes: predicate symbols =, P (proposition),
T (true), N (natural number), the binary function symbol App (application), com-
binators K, S, the constant 0, successor SUC, predecessor PR, definition by cases
on numbers DN, pairing PAIR, with projections LEFT, RIGHT; certain additional
constants for representing predicate and logical constructors, namely: =̇, Ṅ , Ṗ, Ṫ , ∧̇,
¬̇, ∀̇. The constants ∨̇, ∃̇ and →̇ are also freely used (when needed), as being defined
according to their classical definitions.1

LP is the T -free sublanguage of LT (i.e. T does not occur in LP-formulas); Lop

is the P-free sublanguage of LP (i.e. P does not occur in LP-formulas).
As usual, terms are inductively generated from variables and individual constants

via application (forwhichwe adopt the notation ts := App(t, s)). Formulas are induc-
tively defined from atoms of the form t = s, P(t), T(t), N(t) by means of sentential
operators and quantifiers.

We further introduce a map from formulas into terms, preserving free variables:

A �→ [A].

E.g. [t = s] := =̇ts, [P(t)] := Ṗt; [T(t)] := Ṫ t; [∀xA] := ∀̇(λx.[A]), etc.
Henceforth we also agree to use infix notation whenever we have constants rep-

resenting binary operators or predicates, that is, we write t →̇ s, t ∧̇ s, etc. instead of
the proper →̇ts, ∧̇ts, etc.

Abstraction terms can then be defined by lambda abstraction, i.e. ifA is an arbitrary
formula, {x|A} := λx.[A]. We need some defined predicates:

1E.g. ∃̇f := ¬̇(∀̇(λx.¬̇(fx))); →̇ is assumed as primitive in Sect. 4.

34 A. Cantini

1. PF(f) := ∀x.P(fx), f is a propositional function;
2. DF(f) := ∀xD(fx), where

D(a) := T(a) ∨ T(¬̇a). (2)

D(a) can be read as: a is determinate or meaningful (see [10, 13]), while DF(f)
means that f has determinate truth values.

3. t =e s := ∀u(T(tu) ↔ T(su)); =e represents extensional equality.
4. xηy := T(yx) is used for predicate application (or intensional membership).

2.3 Ground System: Applicative and Compositional Axioms

All systems we consider include a ground theory TON− of total operations and
numbers, i.e. equations for the standard combinators K and S, pairing, projections,
closure axioms for the predicate N (natural numbers) and basic operations of succes-
sor SUC, predecessor PR, the constant 0, definition by cases DN on N . For details,
see [21, 22, 28].

In addition, we tacitly include in the ground system TON− the following inde-
pendence conditions: if b0, b1 (c, d) are distinct (arbitrary) constants among =̇, Ṅ ,
Ṗ, Ṫ , ∧̇, ¬̇, ∀̇:

b0 �= b1, (3)

cx = dy → c = d ∧ x = y. (4)

We also require some form of number theoretic induction; below we need a
taxonomy of induction principles about numbers and propositional objects. We then
state the basic axioms on propositions and we describe the core system.

Number-theoretic induction The schema LT -INDN : if A is any arbitrary formula
of LT , and x + 1 stands for the applicative term SUCx,

A(0) ∧ (∀x ∈ N)(A(fx) → A(f (x + 1))) → ∀x(N(x) → A(fx)). (5)

Besides LT -INDN , we shall also consider other versions of the induction principle
for N (in decreasing strength).

• The schema LP-INDN : as LT -INDN except that A is any formula of LP.
• The schema Lop-INDN : as LT -INDN except that A is any formula of Lop.
• The axiom PF-INDN for propositional functions: add the hypothesis PF(f) to (5)
while replacing A(−) by T(f −).

• N-induction for determinate conditions D-INDN : replace PF(f) by DF(f) in PF-
INDN .

About Truth and Types 35

Axioms for atomic propositions P-axioms

T(x) → P(x), (6)

P([x = y]) ∧ (T([x = y]) ↔ x = y), (7)

P([N(x)]) ∧ (T([N(x)]) ↔ N(x)). (8)

Axioms for classical compositional truth T -axioms

P(x) → P(¬̇x) ∧ (T(¬̇x) ↔ ¬T(x)), (9)

P(x) ∧ P(y) → P(x ∧̇ y) ∧ (T(x ∧̇ y) ↔ T(x) ∧ T(y)), (10)

∀xP(fx) → P(∀̇f) ∧ (T(∀̇f) ↔ ∀xT(fx)). (11)

Axioms for strictness S-axioms:

P(¬̇x) → P(x), (12)

P(x ∧̇ y) → P(x) ∧ P(y), (13)

P(f) → ∀xP(fx). (14)

2.3.1 Simple Consequences of the Core System

Definition 1

1. CT is TON− with the truth axioms for atomic propositions, classical composi-
tional truth, strictness and the schema of number theoretic induction LT -INDN

for arbitrary formulas of LT (5).
2. CT= CT with formula N-induction replaced by PF-INDN.

Notation. In general, given any formal theory SF, SF− is the theory obtained
from SF by omitting N-induction (of any sort).

Proposition 2 (provably in CT−)

(i) Propositional objects are exactly the determinate ones in the sense of (2):

∀x(P(x) ↔ T(x) ∨ T(¬̇x)). (15)

Hence
PF-INDN ↔ D-INDN .

(ii) If A is a formula of Lop with free variables in the list �x = x1, . . . , xn,

∀x1 . . . ∀xn(P([A(�x)])). (16)

36 A. Cantini

(iii) Moreover, under the same assumption as (ii):

∀x1 . . . ∀xn(T([A(�x)]) ↔ A(�x)). (17)

Proof Ad (i), (15): apply (6), (12) from right to left, and (9) from left to right.
Ad (ii)–(iii): easy induction on the definition of A, applying the closure conditions

on the predicate P. �

Remark 1 (i) CT and CT are neutral as to the internal status of P, i.e. we do not
have in general T([P(x)]) ∨ T([¬P(x)]). In order to conclude T([¬P(x)]) from
¬T([P(x)]), we need that P(x) is a proposition: this is an axiom of the next
system to be considered.

(ii) If we interpret P(x) trivially, i.e. we assume that everything is a proposition, all
axioms involving P go through except the one for negation: for then we should
have to postulate T(a) ∨ T(¬̇a), which leads to inconsistency.

P-induction A natural assumption on the set of propositions is to assume that it
is inductively generated according to clauses embodied by the axioms on atomic
propositions and compositional truth.

Definition 3 Let the corresponding positive elementary operator be given by the
formula

C(u, X) ⇔ ∃x∃y[(u = [x = y] ∨ u = [N(x)] ∨
∨(u = ¬̇x ∧ X(x)) ∨ (u = (x∧̇y) ∧ X(x) ∧ X(y)) ∨
∨(u = ∀̇x ∧ ∀zX(xz)))].

(i) Then LT -INDP is the schema of induction on propositions:

∀x(C(x, B) → B(x)) → ∀x(P(x) → B(x)) (18)

where B(x) is an arbitrary formula of LT .
(ii) If we restrict B to be a formula of LP (respectively of Lop), we have the cor-

responding schema LP-INDP(Lop-INDP). Similarly, PF-INDP(D-INDP) is the
P-induction axiom restricted to propositional (determinate) functions (choose
B(x) := T(fx) and assume fx to be a proposition).

Lemma 4 The strictness axioms for propositions become provable in CT− with
LP-INDP restricted to formulas which are positive in P.

(Simply choose B(x) := C(x, P) in LP-INDP and apply the independence axioms
(3), (4)).

About Truth and Types 37

2.4 Conservativity and Upper Bound

First of all, a preliminary remark. We assume that the reader is acquainted with the
relationship between formal systems:S is proof-theoretically reducible toR, in short
S ≤ R [12, 13]. It is understood that the relation holds modulo some fixed class of
formulas in the common language and a fixed metatheory U, where the reduction
proof can be carried out. Usually the reduction consists of an effective method for
transforming proofs in S into proofs in R, which is shown to converge in U and to
preserve formulas of the given class �. As standard choice, U is primitive recursive
arithmetic PRA, while � includes at least the formulas expressing the totality of
operations from N to N . We also say that S is proof-theoretically equivalent toR (in
short S ≡ R) iff S ≤ R andR ≤ S;≤ is so defined that it is reflexive and transitive,
and hence ≡ is an equivalence.

We further assume acquaintance with the relation: S is relatively interpretable
in R.

With this in mind we pass to consider the following problem: isCT conservative
with respect to TON?

Theorem 5 CT + LT -INDP is proof-theoretically reducible to TON (and actually
conservative over TON).

Proof This can be shown by interpreting CT in the least fixed point model of the
abstract Kripke-Feferman theory, which is mirrored axiomatically by the system
KF+GID and whose upper bound is TON (see [3, 6]). To this aim, we assume
that the reader has skipped just a moment to Sect. 5 where the relevant interpreting
theory KF+GID is described.

First of all, the applicative language of CT may be regarded as a sublanguage
of the language ofKF+GID. Indeed, let ∗ be the map which preserves application,
it is the identity on the TON-constants (combinators, number-theoretic operations)
and is defined as follows on the special constants2:

eq ∗ = λxλy.〈1, 〈x, y〉〉,
nat∗ = λx.〈2, x〉,

∧̇∗ = λxλy.〈3, 〈x, y〉〉,
¬̇∗ = λx.〈4, x〉,
∀̇∗ = λx.〈5, x〉.

Choose P∗ by the fixed point theorem for predicates in KF, so that ∀x(P∗(x) ↔
C(x, P∗)) where C(x,−) is the positive elementary operator of (18). We argue in in
KF+GID by generalized induction on P∗ and show that every proposition in the
sense of P∗ has a determinate truth value, i.e.

2We use the standard abbreviations 〈t, s〉 := PAIRts; (t)0 := LEFTt, (t)1 := RIGHTt. Below 1, 2,
…stand for the corresponding numerals.

38 A. Cantini

∀x(P∗(x) → T(x) ∨ T(¬̇x)). (19)

We then extend the star map to a translation A �→ A∗ of the language of CT into
the language of KF+GID, such that

(P(x))∗ := P∗(x), (20)

(T(x))∗ := T(x) ∧ P∗(x). (21)

The essential step is (19), which requires a special instance ofGIDwhich is positive
in T . Also observe that, again by (19), the axiom of N-induction for propositional
functions is sent onto an instance of N-induction for determinate conditions. Hence
the ∗-translations of all theoremsofCT are transformed into theoremsofKF+GID.
Moreover, the ∗-translation ofLT -INDP becomes provable byGID and every theorem
of CT in the applicative part of the language is also provable in KF+GID. But
KF+GID is proof-theoretically reducible to and conservative over TON by [3, 6]
whence the claim. �

Remark 2 (i) We cannot prima facie directly embed CT into KF by identifying
P(x) with T(x) ∨ T(¬̇x) because of the strictness conditions; this is the reason
we have to pass through the inductive definition of P in KF+GID.

(ii) On the surface, one is tempted to considerCT as an abstraction from and an ana-
logue to Halbach’s system CT[PA] of compositional truth over PA (see [17]).
And it is known thatCT[PA] is conservative overPA [24]. However, the analogy
is only superficial, as the notion of sentence in the case of CT[PA] is arithmeti-
cally fixed and does not depend on an inductive definition.

Theorem 6 CT + LT -INDP and arithmetical analysis ACA are mutually inter-
pretable.

Proof

(i) Lower bound: it follows from Theorem 7 (see below).
(ii) Upper bound. First of all, we fix an arithmetization of the open term model TER

for TON, induced by the underlying expanded combinatory logic; this can be
done within theories of strength at most PA (for details see e.g. [21, 28]). Then
we devise an arithmetical interpretation PTM for the predicate P by means of a
recursively enumerable derivability relation �. The axioms of � have the form

� [t = s] � [N(t)]
for the basic atomic formulas with = and N , where t, s range over elements of
TM. The inference rules corresponding to negation, conjunction and universal
quantification have the form:

� t

� ¬̇t

� t � s

� (t ∧̇ s)

About Truth and Types 39

The clause for ∀ is rephrased as a finitary inference:

� tx

� ∀̇t

provided x is not free in t.

It is then easy to check that the derivability relation is closed under substitution,
that is, for arbitrary terms t, s:

� t ⇒ � t[x := s]. (22)

Each statement � t can be naturally attached a number k such that �k t means
that the deduction tree for t has depth k. Then define

t ∈ PTM :⇔ ∃k(�k t ∧ t ∈ TM). (23)

We can verify:

(i) PTM satisfies the P-axioms in ACA.
(ii) PTM satisfies (the interpretation of) LT -INDP in the open term model.

As to (ii), it amounts to check by number theoretic induction on k and (22) that
∀k∀t(�k t → BTM(t)) holds under the assumption that the subset defined by
B(x) in TM is closed under the clauses generating propositions. Finally, we can
define an interpretation for T by simulating the canonical definition of the truth
predicate for arithmetic in the subsystemACA of second order arithmetic, based
upon arithmetical comprehension. �

2.5 Elementary Types

The language Lν for the elementary theory EET of types and names consists of:

(i) predicate constants= (identity predicate for individuals),=t (identity predicate
for types), ∈ (membership), R (naming relation), N (natural numbers);

(ii) besides the usual individual constants for the extended combinatory algebras,
one has naming operations for types: nat, id, co, int, inv, dom;

(iii) countably many individual variables (x, y, z . . .) and type variables X, Y , Z

EET obviously includes TON−, independence conditions for constructors3 and the
number theoretic induction schema. EET is the corresponding subsystem with the
axiom of N-induction for types:

3Among them nat, id, co, int, inv, dom; we leave the obvious statement to the reader, in analogy
to (3), (4).

40 A. Cantini

0 ∈ X ∧ (∀x ∈ N)(x ∈ X → (x + 1) ∈ X) → ∀x(N(x) → x ∈ X). (24)

EET: representation axioms and extensionality

R1 ∀X∃yR(y, X);
R2 R(a, X) ∧ R(a, Y) → X =t Y;
Ext ∀x(x ∈ X ↔ x ∈ Y) → X =t Y .

In sum: there exists a partial surjectionR from the universe V onto TYPE:

R : W � TYPE,

for some W ⊆ V .

EET: existence of elementary types

nat ∃X(R(nat, X) ∧ ∀x(x ∈ X ↔ N(x)));
id ∃X(R(id, X) ∧ ∀x(x ∈ X ↔ ∃y(x = PAIRyy)));
co R(y, Y) → ∃X(R(coy, X) ∧ ∀x(x ∈ X ↔ ¬x ∈ Y));
int R(y, Y) ∧ R(z, Z) → ∃X(R(intyz, X) ∧ ∀x(x ∈ X ↔ x ∈ Y ∧ x ∈ Z));
inv R(y, Y) → ∃X(R(invfy, X) ∧ ∀x(x ∈ X ↔ fx ∈ Y));

dom R(y, Y) → ∃X(R(domy, X) ∧ ∀x(x ∈ X ↔ ∃v(PAIRxv ∈ Y))).

CT and EET

Theorem 7

(i) EET is interpretable into CT.
(ii) EET is interpretable into CT.

Proof We define a suitable embedding. �

Definition 8 The translation A �→ A∗.

(i) ∗ preserves application, it is the identity transform on TON-constants (combi-
nators, number-theoretic operations) and variables.4 Moreover the ∗-transform
of the special constants is defined as follows:

1. id∗ = λx[∃y(x = 〈y, y〉)],
2. nat∗ = λx[N(x)],
3. dom∗ = λyλu∃̇v(y(〈u, v〉),
4. int∗ = λxλyλu.((xu)∧̇(yu)),

5. co∗ = λxλu.¬̇(xu),

6. inv∗ = λyλf λx.y(fx).

4This makes sense, since we can identify individual variables of EET with CT-variables with odd
indices, and type variables of EET with CT-variables with even indices.

About Truth and Types 41

(ii) Atomic formulas:

R(a, X)∗ := (a =e X) ∧ PF(a) ∧ PF(X), (25)

(X =t Y)∗ := X =e Y , (26)

(a ∈ X)∗ := T(X(a)), (27)

(t = s)∗ := (t∗ = s∗), (28)

N(t)∗ := N(t∗). (29)

(For =e, PF(x) in (25) above, see Sect. 2.2.)
(iii) A �→ A∗ is extended to the non-atomic formulas by requiring that it preserves

sentential connectives, individual quantification. In addition:

(∀XA)∗ := ∀x(PF(x) → A∗[X := x]), (30)

(∃XA)∗ := ∃x(PF(x) ∧ A∗[X := x]). (31)

It is enough to check that the translation of the axioms of EET is provable in
CT.
(i) R1–R2, Ext: the translations are tautologies
(ii) nat-id-co-int-inv-dom: apply the corresponding axioms for atomic propositions

and classical compositional truth. For instance, in the case of inverse image, if
y is a propositional function, then inv∗fy := λx.y(fx) is a propositional function
of x given that y is, and it satifies the ∗-transform of

∃X(R(invfy, X) ∧ ∀x(x ∈ X ↔ fx ∈ Y)).

3 Truth and Types II

3.1 Strengthening CT: The Theory AT

Does the notion of proposition define a propositional function, i.e. is λx.[P(x)] a
propositional function? We consider theories which yield a positive answer.

Definition 9

P([P(x)]) ∧ (T([P(x)]) ↔ P(x)). (32)

1. AT :=CT + (32),
2. AT :=CT + (32).

42 A. Cantini

Lemma 10

(i) Let S be such that S = [P(S)]. Then AT− � P(S) ∧ T(S).

(ii) Let L be such that L = [¬P(L)]. Then AT− � P(L) ∧ T(¬̇L).

(iii) AT− proves:

∀x(T([P(x)]) ∨ T([¬P(x)])), (33)

∀x(T(x) → T([P(x)])), (34)

∀xT([P([P(x)])]). (35)

Proof

(i): by the axiom (32), P([P(S)]); hence P(S), so T([P(S)])), hence T(S).
(ii): by (32) and (12) we obtain P(L). Were T(L), then T([¬P(L)]) and hence

¬T([P(L)]), i.e. ¬P(L): contradiction. Hence ¬T(L), i.e. T(¬̇L).
(iii): by axioms (6), (9), (32). �

Informally, (i)–(ii) above can be rendered as: there is a true proposition saying “I
am a proposition”, there is a false proposition saying “I am not a proposition”.

Lemma 11 Proposition 2 holds for AT−: the Tarski schema (see (16), (17)) holds
for every formula A of LP. In particular, every formula A of LP with free variables
in the list �x = x1,…, xn defines a propositional function:

∀x1 . . . ∀xn(P([A(�x)])). (36)

Remark 3 Under the same label AT a related system was introduced in [5]; the
original system included CT− with (37)–(39):

P([T(x)]) ↔ P(x), (37)

T([T(x)]) ↔ T(x), (38)

T([¬P(x)]). (39)

It is consistent to expand the present AT with (37), (38): simply put [T(x)] := x.
Also, the old system proved P([P(x)]) but it is incompatible with the present one.

3.2 Generating an AT-Model: Propositions

As usual, if M is a structure for a given language L (among those described), LM

is L expanded with distinct constants for distinct elements of the domain |M|. For
the sake of simplicity, we keep using the same notation a for an element of |M| and
the corresponding constant. If t is a closed term of the expanded language, tM is the
unique element of |M| denoted by t inM.

About Truth and Types 43

Definition 12 We recursively define the collection of propositional objects uni-
formly in any given expanded combinatory algebra.

• Initial clause: if A := (a = b), Na, Pa,

PM
0 = {[A]M | a, b ∈ M}.

• Successor clause:

PM
α+1 = PM

α ∪ {(¬̇a)M |a ∈ PM
α } ∪

∪ {(b ∧̇ c)M |b ∈ PM
α , c ∈ PM

α } ∪
∪ {(∀̇f)M |for all c in |M|, fcM ∈ PM

α }.

• If λ is a limit,
PM

λ =
⋃

{PM
β | β < λ}.

• Let
PM =

⋃
{PM

β | β < card(M)+}.

Lemma 13

(i) For every α, β,
α ≤ β ⇒ PM

α ⊆ PM
β . (40)

(ii) If a, b ∈ |M| and A := (a = b), Na, Pa, then ([A])M ∈ PM.
(iii) Moreover:

a ∈ PM ⇔ (¬̇a)M ∈ PM (41)

(a ∧̇ b)M ∈ PM ⇔ a ∈ PM ∧ b ∈ PM (42)

∀ c ∈ |M|(ac)M ∈ PM ⇔ (∀̇a)M ∈ PM . (43)

Proof Trivial transfinite induction on ordinals using the closure properties embodied
in the definitions of PM . �

Incidentally the construction ensures that there are models of an auxiliary theory
of operations and propositions TONP formalized in the T -free language.

Definition 14 TONP includes, besides the applicative axioms of TON:

1. the axioms concerning the predicate P, i.e. the T -free part of (7)–(14) and (32)5;
2. N-induction and P-induction schemata restricted to LP-formulas.

5Concerning (32), we are thus left only with ∀xP([P(x)]).

44 A. Cantini

Lemma 15 TONP is interpretable into TON.

The lemma holds since the open term model for TONP can be formalized in TON
(for the proof, see Theorem 6).

Definition 16 If M is a model of TON−, a structure 〈M,PM〉 for the language LP

which is a model of TONP is N-standard iff the denotation NM of N is isomorphic to
the structure of natural numbers; if, in addition,PM is the least fixed point of the pos-
itive elementary operator Cp(x,−)6 inductively generating the notion of proposition
over M according to Sect. 3.2, 〈M,PM〉 is called N, P-standard.

Trivially:

Lemma 17 If M is N-standard and PM is defined as above (see Definition 12), then
〈M,PM〉 is N, P-standard and 〈M,PM〉 |= TONP.

3.3 Generating an AT-Model: Truth

A N, P-standard model of TONP can be expanded to a model of AT. Indeed, we
produce a sequence {T M

α } approximating the truth set, uniformly in PM :

• Initial clause:

T M
0 = {[a = b]M |M |= (a = b)} ∪

∪ {[¬a = b]M |M |= ¬(a = b)} ∪
∪ {[N(a)]M |M |= N(a)} ∪
∪ {[¬N(a)]M |M |= ¬N(a)} ∪
∪ {[P(a)]M |a ∈ PM} ∪
∪ {[¬P(a)]M |a /∈ PM}.

• Successor clause:

T M
α+1 = T M

α ∪ {(¬̇¬̇b)M |b ∈ T M
α } ∪

∪ {(b ∧̇ c)M |b ∈ T M
α ∧ c ∈ T M

α } ∪
∪ {(¬̇(b ∧̇ c))M |((¬̇b)M ∈ T M

α ∧ (¬̇c)M ∈ PM) ∨
∨ ((¬̇c)M ∈ T M

α ∧ (¬̇b)M ∈ PM)} ∪
∪ {(∀̇f)M | for all c in |M| (fc)M ∈ T M

α } ∪
∪ {(¬̇∀̇f)M | for some c in |M| (¬̇fc)M ∈ T M

α ∧
∧ for all c in |M|(¬̇fc)M ∈ PM)}.

6NB: this operator is distinct from C(x,−) of Remark 1 and schema (18), since it embodies the
initial condition ensuring P[(P(x))].

About Truth and Types 45

• If λ is a limit,
T M

λ =
⋃

{T M
β | β < λ}.

Lastly, define
T M =

⋃
{T M

β | β < card(M)+}.

Remark 4 The internal truth value of P(a) at stage 0 is determined in an impredica-
tive way, i.e. by assuming the set of propositional objects as completed.

Lemma 18 If a ∈ |M|, then for every α, β

α ≤ β ⇒ T M
α ⊆ T M

β , (44)

a ∈ T M
α ⇒ a ∈ PM, (45)

a ∈ PM
α ⇒ a ∈ T M

α ∨ (¬̇a)M ∈ T M
α , (46)

a ∈ PM
α ⇒ a /∈ T M

α ∨ (¬̇a)M /∈ T M
α . (47)

Hence completeness and consistency hold:

a ∈ PM ⇒ (a ∈ T M ∨ (¬̇a)M ∈ T M) ∧ (a /∈ T M ∨ (¬̇a)M /∈ T M). (48)

Proof Transfinite induction on ordinals using the closure properties embodied in the
definitions of T M , PM . Let us only deal with (46).

Ad (46): assume a ∈ PM
0 : if a = [P(b)]M , then either b ∈ PM and hence

[P(b)]M ∈ T M
0 , or else b /∈ PM and hence by definition [¬P(b)]M ∈ T M

0 . The other
atomic cases are immediate.

Let a = (¬̇b)M ∈ PM
α+1. Then b ∈ PM

α and by IH, b ∈ T M
α ∨ (¬̇b)M ∈ T M

α . Hence
by (44) and closure conditions on truth, (¬̇b)M ∈ T M

α+1 ∨ (¬̇¬̇b)M ∈ T M
α+1.

Let a = (b ∧̇ c)M ∈ PM
α+1, i.e. b ∈ PM

α and c ∈ PM
α . Then by IH,

b ∈ T M
α ∨ (¬̇b)M ∈ T M

α , (49)

c ∈ T M
α ∨ (¬̇c)M ∈ T M

α . (50)

If b ∈ T M
α and c ∈ T M

α , then by the closure conditions on truth, (b ∧̇ c)M ∈ T M
α+1. If

c ∈ T M
α but (¬̇b)M ∈ T M

α , then by (45)wehave c ∈ PM and (¬̇b)M ∈ T M
α , whence by

the closure conditions on truth, (¬̇(b ∧̇ c))M ∈ T M
α+1. The symmetric case is similar.

Let a = (∀̇f)M ∈ PM
α+1. Then for all c ∈ |M|, fc ∈ PM

α , whence by IH, for all
c ∈ |M|:

fc ∈ T M
α ∨ (¬̇fc)M ∈ T M

α (51)

which implies either (∀̇f)M ∈ T M
α+1 or, for some c ∈ |M|, (¬̇fc)M ∈ T M

α , i.e. since
(∀̇f)M ∈ PM , (∀̇f)M ∈ T M

α+1 ∨ (¬̇∀̇f)M ∈ T M
α+1.

46 A. Cantini

If a ∈ PM
λ with λ limit, apply IH and (40). �

Hence:

Proposition 19 If 〈M,PM〉 |= TONP is a N, P-standard model of TONP, then

〈M,PM , T M〉 |= AT. (52)

3.4 On the Strength of AT

Theorem 20 AT is proof theoretically equivalent to ACA.

Proof

(i) Lower bound: obvious since AT extends CT.
(ii) Upper bound: by a straightforward extension of the proof of Theorem 6. Indeed,

we first slightly modify the open term model TER for TON by adding to the
derivability relation � a clause

� [P(t)]

The meaning of Pt becomes as before �k t, for some natural number k. Then
we inductively define a sequence {T M

k } satisfying the same closure conditions
as those given in Sect. 3.3. The truth predicate is then interpreted as the union
over the corresponding countable sequence and the finitary interpretation of P
allows us to replace arbitrary ordinals by finite ones, to the extent that the whole
construction can be carried out in ACA by a suitable non-arithmetical instance
of number-theoretic induction. �

Conjecture 1 AT is proof-theoretically reducible to PA.

3.5 Adding a Weak Power Type Operation

3.5.1 Axioms for Explicit Types: Weak Power

EETπ (EETπ) is the extension of EET (EET) with the axiom (U)

∃X(R(cl , X) ∧ ∀x(x ∈ X ↔ ∃Y(R(x, Y))).

cl is the object representing the type of all names; intensionally (U) states the
existence of the type of all types.

cl exists if the axiom everything is a name is assumed (and henceR is a surjection
defined on V).

About Truth and Types 47

Proposition 21 (Uniform weak power type axiom [9]) There exists a term π such
that EETπ proves:

R(x, X) → ∃Y(R(πx, Y) ∧
∧ ∀Z(Z ⊆ X → ∃v(v ∈ Y ∧ R(v, Z))

∧ ∀v(v ∈ Y → ∃Z(Z ⊆ X ∧ R(v, Z))))) (53)

For more information about power types in explicit mathematics, see also [4, 19].

3.5.2 Embedding EETπ into AT

We extend the translation A �→ A∗ of Definition 8 with an additional clause:

cl ∗ = λu[PF(u)].

Theorem 22 EETπ � A ⇒ AT � A∗ and the same holds for the pair EETπ and
AT.

Proof By Theorem 7 it is enough to verify the ∗-transform of the axiom (U)

∃X(R(cl , X) ∧ ∀x(x ∈ X ↔ ∃Y(R(x, Y))

holds. Therefore we check

PF(λx.[PF(x)]),
∀u(T(λx[PF(x)])u ↔ ∃Y(PF(Y) ∧ PF(u) ∧ u =e Y)).

The ∗-transform of the second condition is trivial (choose Y = u). As to the first
one, we have by the first part of axiom (32), the definition of propositional function,
β-conversion and (11):

⇒ ∀vP([P(v)])
⇒ ∀u∀xP([P(ux)])
⇒ ∀uP([∀xP(ux)])
⇒ ∀uP([PF(u)])
⇒ ∀uP((λx.[PF(x)])u)

⇒ PF(λx.[PF(x)]). �

Theorem 23 EETπ (EETπ) is proof-theoretically reducible to PA (ACA).

This is known to be true by [16]. It follows by Theorem 22 if Conjecture 1 is true.

48 A. Cantini

4 Truth and Types III

4.1 Strengthening CT: The System PT

We introduce a theory of propositions and truth, where the constant →̇ is a primitive
symbol.7

Definition 24 (i) PT:=CT + (54) + (55) + (56), where

P(x) ↔ P([P(x)]), (54)

P(a →̇ b) ↔ P(a) ∧ (T(a) → P(b)), (55)

P(a →̇ b) → (T(a →̇ b) ↔ (T(a) → T(b))). (56)

(ii) PT isPTwithnumber-theoretic induction restricted to propositional functions.
(iii) a � b := a ∧̇ (a →̇ b).8

Remark 5 Essentially the same system (also labelled PT) was presented to the Rus-
sell conference in München in 2001 (see [5]) in the context of the discussion of
a Russellian paradox about truth and propositions. If we compare it with systems
available in the literature, PT and its variants are closely related to Aczel’s theory of
Frege structures (see [1]). Aczel’s axioms do not include (54) and (56) while (55) is
only stated from right to left and also the strictness conditions for propositions are
not included. PT can be regarded as abstract version of Feferman’s theory DT of
determinate truth (see [10, 13], p. 318) over Peano Arithmetic. Here PA is replaced
by the applicative theory TON, Feferman’s determinatess predicate D is interpreted
as P and assumed as primitive.9

Lemma 25 (provably in PT−)

(i) Assume that a is a proposition and that b is a proposition provided a is true.
Then

P(a � b) ∧ (T(a � b) ↔ T(a) ∧ T(b))). (57)

(ii) Assume that f is a family of propositional functions indexed by the propositional
function a. Choose t(u) := [u = (u0, u1)], s(u) := (au0) � (fu0)u1, and define
j (a, f) := λu.(t(u) ∧̇ s(u)). Then j (a, f) is a propositional function, such that

T(j (a, f)u) ↔ T(au0) ∧ T((fu0)u1). (58)

7Hence (3), (4) are expanded so as to include →̇.
8This is a sequential conjunction introduced by Aczel in [1].
9Indeed Feferman [10], noting that Aczel’s approach is based on λ-calculus which allows for more
general interpretations, adds that “further work on systems like DT might usefully incorporate
similar features.”

About Truth and Types 49

Proof (i): apply (10), (55), (56). As to (ii), simply apply (i). �

Remark 6 PT− can be conservatively extended by

P([T(x)]) ↔ P(x), (59)

T([T(x)]) ↔ T(x), (60)

T([¬T(x)]) ↔ T(¬̇x). (61)

Simply define [Tt] := t.
The negation axioms for P and T are redundant once we assume an implication

operator as primitive.Define ¬̇a := (a →̇ ⊥), where⊥ := [K = S]. Then sincePT−
without axioms on ¬̇ derives P(⊥) and ¬T(⊥), PT− without axioms for ¬̇ derives
the negation axioms for propositions and truth.

4.2 Generating PT-Models

Can we produce PT-models by generalized inductive definition? The difficulty is
that the clause for introducing implication makes use (negatively) of the collection
of truths. But we can adapt to our case a trick of Aczel [1].

Definition 26 Fix a model M of TON− and let X, Y range over subsets of the
domain |M| of M. X is called suitable, if X1 ⊆ X0 and for every u, if u ∈ X, then
either u = 〈0, (u)1〉 or u = 〈1, (u)1〉.10 We put S := {X|X is suitable}.

We use the following abbreviations:

1. u ∈ X0 := 〈0, u〉 ∈ X and u ∈ X1 := 〈1, u〉 ∈ X.
2. A suitable X is determined by an ordered pairing 〈X0, X1〉 of sets by letting

Xi := {u|〈i, u〉 ∈ X} where i = 0, 1.
3. We also define a partial ordering on suitable sets:

X ≤ Y := X0 ⊆ Y0 ∧ ∀u(u ∈ X0 → (u ∈ X1 ↔ u ∈ Y1)). (62)

4. If � : S −→ S, we define: �i(X) := {u|〈i, u〉 ∈ �(X)}; � is≤-monotone iff X ≤
Y implies �(X) ≤ �(Y).

5. An operator � is suitable if � : S −→ S and � is ≤-monotone.

Hence by standard facts (see e.g. [7]) we can state the

10Recall footnote 2 of Sect. 2.4: think of 〈a, b〉, (u)0, (u)1 as values of the terms PAIRab, LEFTu,
RIGHTu.

50 A. Cantini

Lemma 27

(i) The structure 〈S,≤〉 is a partial ordering in which every ≤-increasing sequence
of elements of S has a ≤-least upper bound in S.

(ii) Every suitable operator � has fixed points (in particular there exists the ≤-least
suitable X with X = F(X)).

We now define a suitable operator whose fixed points provide PT-models. This
operator will be given by two separate operators described by means of elementary
formulas in the language of TON, possibly expanded by parameters for naming
subsets of M.

(i) S0(u, X) is the formula

∃x∃y((u = [x = y] ∨ u = [N(x)]) ∨
∨ (u = x →̇ y ∧ X0(x) ∧ (X1(x) → X0(y))) ∨
∨ (u = x ∧̇ y ∧ X0(x) ∧ X0(y)) ∨
∨ (u = [P(x)] ∧ X0(x)) ∨
∨ (u = ∀̇x ∧ ∀zX0(xz)))).

(ii) S1(u, X) is the formula

∃x∃y((u = [x = y] ∧ x = y) ∨
∨ (u = [N(x)] ∧ N(x)) ∨
∨ (u = [P(x)] ∧ X0(x)) ∨
∨ (u = x →̇ y ∧ X0(u) ∧ (X1(x) → X1(y))) ∨
∨ (u = (x ∧̇ y) ∧ X0(u) ∧ X1(x) ∧ X1(y)) ∨
∨ (u = (∀̇x) ∧ X0(u) ∧ ∀uX1(xu))).

(iii) Finally, S(u, X)—the disjoint sum of the two operators—is an elementary oper-
ator in the applicative language of TONwith a new predicate variable X, which
formalizes the clauses inductively generating the interpretation of T and P.
Explicitly:

S(t, X) ⇔ ∃i∃y[t = (i, y) ∧ ((i = 0 ∧ S0(y, X)) ∨ (i = 1 ∧ S1(y, X))].

S(u, B) is the formula, which result from S(u, Y)) by replacing each subformula of
the form Y(t) with B[x := t]).

NB. Just to avoid further notational overloading, we identify operators with their
defining formulas, and we leave the dependence on a fixed ground structure M
implicit.

About Truth and Types 51

Lemma 28 The operator defined by S is suitable (with respect to any M such that
M |= TON−).

Proof Clearly by definition the image of a suitable subset under S is suitable. Let us
check that it preserves the ordering ≤. We argue informally. Let X, Y be suitable and
X ≤ Y . Then X0 ⊆ Y0 and hence, since S0(a, X) is positive in X0, S0(a, Y). Thus it
is enough to check

S0(a, X) → (S1(a, X) ↔ S1(a, Y)). (63)

There are several cases according to the formof a and all can be dealt with by standard
arguments. Let us consider three cases.

1. Let a = [P(x)], for some x. Then if we assume S0(a, X), by definition of S0

we have X0(x), which trivially implies (63), since S1(a, X) ≡ X0(x), S1(a, Y) ≡
Y0(x) and X0 ⊆ Y0.

2. a = x →̇ y. Assume S0(a, X). Then X0(x) and X1(x) → X0(y). We want:

• S1(x →̇ y, X) → S1(x →̇ y, Y);
• S1(x →̇ y, Y) → S1(x →̇ y, X).

As to the first implication, from the antecedent it follows Y0(x) since X0 ⊆ Y0. On
the other hand if X1(x), X1 and Y1 coincide for elements of X0; hence we conclude
Y1(x), that is, we have shown S1(x →̇ y, Y). The second implication is similar.

3. Let a = ∀̇x and assume S0(∀̇x, X), which implies ∀uX0(xu). By definition of the
operator S1, we have to check ∀u(X1(xu)) ↔ ∀u(Y1(xu)). By logic, it is enough
to prove ∀u(X1(xu) ↔ Y1(xu)). But if we choose any u with X0(xu), since X ≤ Y ,
X1(xu) ↔ Y1(xu). �

Theorem 29 Let M be a model of TON−. If X is a fixed point of the operator S,
then 〈M, X〉 |= PT−. If M is N-standard, 〈M, X〉 |= PT.

Proof Assume X satisfies

• X0(x) ↔ S0(x, X);
• X1(x) ↔ S1(x, X).

We have to show that every PT-axiom is satisfied, whenever we interpret P(a), T(a)

by X0(a), X1(a) (in the given order).
Let us check the interpretation ofT(a) → P(a). So assumeX1(a); sinceX is a fixed

point, S1(a, X). There are several cases according to the form of a. If a = [x = y] or
a = [N(x)], by definition of S0, we have S0(a, X), and hence X0(a). Let a = [P(x)];
then X0(x), i.e. again by definition of S0, S0([P(x)], X) whence, since X is a fixed
point,X0([P(x)]). The converse is similar. In all other cases, by inspectionofS1(a, X),
X0(a) follows.

52 A. Cantini

Consider the interpretation of T(P(a)) ↔ P(a) ↔ P([P(x)]). Indeed, by defini-
tion and fixed point property:

X1([P(x)]) ⇔ S1([P(x)], X)

⇔ X0(x)

⇔ S0([P(x)], X)

⇔ X0([P(x)]). (64)

Consider the interpretation of P(x →̇ y) ↔ P(x) ∧ (T(x) → P(y)). Indeed by fixed
point and definition of S0, S1:

X0(x →̇ y) ⇔ S0(x →̇ y, X)

⇔ X0(x) ∧ (X1(x) → X0(y)). (65)

Let us check the soundness of ∀uT(xu) → T(∀̇x). Then:

∀uX1(xu) ⇒ ∀uS1(xu, X)

⇒ S1(∀̇x, X)

⇒ X1(∀̇x). (66)

The remaining cases are also straightforward. �

4.3 Upper Bounds for PT� and PT

In order to classify the proof-theoretic strength of PT, PT, we consider variants,
which serve for proof theoretic investigations. We formalize the new systems in the
sublanguageLt ofLT without the predicate P, but we adopt the obvious abbreviation

P(x) := T(x) ∨ T(¬̇x) (67)

so that we can identify the new language with the language of PT.
The basic positive atoms have the form: t = s, N(t), T(t). The negative atoms are

obtained by negating the positive ones; an atom is simply a positive or a negative
atom and we stipulate that ¬¬A := A (A atom). Formulas are inductively generated
from atoms by closing under disjunction, conjunction, unbounded quantification. If
A is an arbitrary formula, ¬A is the formula which results from the negation normal
form of ¬A by erasing each even sequence of occurrences of negation in front of
atoms.

If Q := P, T , a formula A of LT is Q-positive (Q-negative) if every occurrence
ofQ inA occurs within positive (negative) atoms of the formQ(t) (¬Q(t)). A formula

About Truth and Types 53

A is Q-separated if A is Q-positive or Q-negative. A formula A is Q-free if Q does
not occur in A. A Q-free formula can be regarded as both Q-positive and Q-negative.

The rank of a formula over its Q-separated formulas is assigned as follows: a)
if A is Q-separated, rk(A) = 0; b) else, if A or B is not Q-separated, rk(A ◦ B) =
max(rk(A), rk(B)) + 1 (◦ is a conjunction or a disjunction); rk(QsA) = rk(A) + 1
(where Qs is an unbounded quantifier).

Definition 30

(i) Tw(u, Y) is an elementary positive operator11 in the applicative language of
TON, expandedwith a new predicate variableY ; Tw(u, Y) formalizes the clauses
inductively generating the interpretation of T , and Y occurs positively in it.
Explicitly:

Tw(t, Y) ⇔ ∃x∃y((t = [x = y] ∧ x = y) ∨
∨(t = [¬x = y] ∧ ¬x = y) ∨
∨ (t = [N(x)] ∧ N(x)) ∨
∨ (t = [¬N(x)] ∧ ¬N(x)) ∨
∨ (t = ¬̇(¬̇x) ∧ Y(x)) ∨
∨ (t = (x ∧̇ y) ∧ Y(x) ∧ Y(y)) ∨
∨ (t = ¬̇(x ∧̇ y) ∧ ((Y(¬̇x) ∧ Y(y)) ∨
∨ (Y(¬̇y) ∧ Y(x)) ∨ (Y(¬̇x) ∧ Y(¬̇y))) ∨
∨ (t = x →̇ y ∧ ((Y(x) ∧ Y(y)) ∨ Y(¬̇x))) ∨
∨ (t = ¬̇(x →̇ y) ∧ ((Y(x) ∧ Y(¬̇y)))) ∨
∨ (t = (∀̇x) ∧ ∀uY(xu)) ∨
∨ (t = ¬̇(∀̇x) ∧ ∃uY(¬̇(xu)) ∧ ∀u(Y(xu) ∨ Y(¬̇(xu))))).

Tw(u, B) is the formula, which result from Tw(u, Y)) by replacing each subformula
of the form Y(t) with B[x := t]).
Definition 31 FL12 is consists of
1. logical axioms of the form

�,¬A, A

�,¬t = s, A[x := t], A[x := s]

where A is an atom (according to the previous definitions);
2. axioms of the form �,� where � is an e-atom or a finite set of e-atoms; �

formalizes the standard axioms for extended combinatory, logic, natural numbers;

11In the standard sense, see [25].
12FL is reminiscent of Feferman’s logic.

54 A. Cantini

3. standard logical rules for introducing ∧, ∨, ∀, ∃ and the cut rule

�, A �,¬A

�

4. T -consistency:
�,¬T(t),¬T(¬̇t)

5. N-induction rule for determinate functions (see Sect. 2.2):

�, PF(f) �, T(f 0) �,∀x(N(x) → (T(fx) → T(f (x + 1))))

�,¬N(t), T(ft)

6. T -closure:
�, Tw(t, T)

�, T(t)

7. T -soundness:
�,¬Tw(t, T)

�,¬T(t)

FL is the calculus which is obtained from FL by replacing N-induction rule for
determinate functions by full N-induction rule, that is, if A(x) is an arbitary formula
of Lt ,

�, A(0) �,∀x(N(x) → (A(x) → A(x + 1)))

�,¬N(t), A(t)

Remark 7 The label FL hints at a compositional theory of truth introduced by
Kentaro Fujimoto in [13] under the label FKF. The original theory FKF is a variant
of Kripke-FefermanKF over Peano arithmetic, where one assumes for the predicate
T Feferman’s logic for determinate truth [10].

Definition 32 If S := FL,FL,TON, we inductively define a derivability relation
S �m

n � as follows:

(i) If � is an axiom, S �m
n �;

(ii) assume � is inferred by means of a finitary rule (but not a cut) from the set
{�i|i ≤ j}; if S �mi

ni
where mi < m, ni ≤ n, i ≤ j, then also S �m

n �;
(iii) assume � is inferred by means of a cut from the premises �, A and �,¬A. If

S �w
u �, A and S �p

q �,¬A where w, p < m and R(A) + 1, u, q ≤ n, S �m
n �.

Lemma 33 (Partial Cut-elimination) Let FL�m
k+2 �. Then FL�2m

k+1 �. Hence
every FL-derivation D can be effectively transformed into a FL-derivation of
the same end-sequent, where cut-formulas are T-separated and have rank 0.

Proof The argument is standard; it essentially depends on the fact that the active
formulas in the axioms and in the conclusions of the mathematical inferences are
T -separated. �

About Truth and Types 55

Lemma 34 The system FL− proves

T(x) → P(x),

P([x = y]) ∧ P([N(x)]),
P(x) → ¬(T(x) ∧ T(¬̇x)),

T(¬̇¬̇x) ↔ T(x),

T(x ∧̇ y) ↔ T(x) ∧ T(y),

T(¬̇(x ∧̇ y)) ↔ (T(¬̇x) ∧ T(¬̇y))∨,

∨ (T(¬̇x) ∧ T(y)) ∨ (T(x) ∧ T(¬̇y)),

T(x →̇ y) ↔ (T(x) ∧ T(y)) ∨ T(¬̇x),

T(¬̇(x →̇ y)) ↔ (T(x) ∧ T(¬̇y)),

T(∀̇f) ↔ ∀xT(fx),

T(¬̇∀̇f) ↔ ∃xT(¬̇(fx)) ∧ ∀xP(fx). (68)

Proof Apply T -consistency, and T -closure, T -soundness rules. �
Lemma 35 PT− � A iff FL− � A.

Proof This amounts to check that the axioms ruling implication internally are inter-
deducible. But this is an exercise in formal deducibility. �

4.3.1 Approximating Truth by Its Finite Levels

Is it possible to approximate truth by its finite levels and hence to eliminate truth?

Definition 36 Let ⊥ = K = S; then

T 0(t) = ⊥, (69)

Tm+1(t) = Tw(t, Tm)). (70)

Clearly each formula in the sequence belongs to the language Lop.
If A is any formula in negation normal form, let A[m, n] be obtained from A by

replacing each atom of the form T(t) (¬T(t)) by Tn(t) (¬T m(t)). Clearly Tm(t),
¬Tn(t) are T -free formulas of Lop.

Lemma 37 If 0 < m2 ≤ m1 ≤ k1 ≤ k2, � is a set of formulas such that TON �n
p

�[m1, k1],�, then TON �n
p �[m2, k2],�.

Theorem 38 Let D be a FL-derivation of � with height k, where cut-formulas are
T-separated. Then, provably in TON, for every m > 0,13 if H(m) := m + 2k:

�[m, H(m)]. (71)

13In general, if � := {A1, . . . , Aq}, �[m, n] := {A1[m, n], . . . , Aq[m, n]}.

56 A. Cantini

Proof The restriction to propositional functions has the effect that N-induction for
Lop-formulas is enough. The asymmetric interpretation relies on the fact that cut
formulas are always T -separated. Of course, note that the transform A �→ A[m, n] is
the identity function on formulas of Lop.

1. Logical axioms and rules: by persistence.
2. Cut: use partial cut elimination and a standard substitution argument.
3. Consistency: verify by outer induction on m

∀x(¬Tm(x) ∨ ¬Tm(¬̇x)). (72)

4. N-induction rule for determinate functions: assume that, provably in TON, for
some g, given any m > 0, we have m ≤ g(m) and

Tg(m)(f 0), (73)

∀x(N(x) → (Tm(fx) → Tg(m)(f (x + 1))), (74)

∀x(Tg(m)(fx) ∨ Tg(m)(¬̇(fx))). (75)

Then by Lop-INDN it is enough to verify:

∀x(N(x) → (Tg(m)(fx) → Tg(m)(f (x + 1))).

Assume N(x), Tg(m)(fx): then by (74),

Tg(g(m))(f (x + 1)). (76)

Moreover by (75), consistency and downward persistence, we have

Tg(m)(f (x + 1)) ∨ Tg(m)(¬̇(f (x + 1)), (77)

¬Tg(g(m))(f (x + 1)) ∨ ¬Tg(m)(¬̇(f (x + 1))). (78)

whence by cut between (77) and (78)

T g(m)(f (x + 1)) ∨ ¬Tg(g(m))(f (x + 1)). (79)

The conclusion follows again by cut between (79) and (76).
5. T -closure (T -soundness): straightforward. �

Corollary 39 If PT� A and A ∈ Lop, then TON � A.

Proof Apply Theorem 38. �

Let �0
1 − CA<ε0 be the theory of iterated jump up to any α < ε0.14

14For a precise definition, see [11].

About Truth and Types 57

Theorem 40

(i) PA ≡ PT≡ CT.
(ii) �0

1 − CA<ε0 ≡ PT.

Proof

(i) Ad PA ≤ PT: obvious.
(ii) Ad PT≤ PA: by Theorem 38 since CT is a subtheory of PT(even if ¬̇ is

omitted, see by Remark 6).
(iii) Ad �0

1 − CA<ε0 ≤ PT: consider the ω-model consisting—as range of second
order variables—of the collection PFN of propositional functions which define
subsets of N . Then the jump hierarchy up to any α < ε0 can be shown to exist
in PFN by applying Lemma 25.

(iv) Ad PT ≤ �0
1 − CA<ε0 : by lifting the previous method to the case of systems

with full number theoretic induction. In this casewe rely upon a standard embed-
ding into systems with ω-rule. �

Remark 8 We can strengthen the theorem above by adding generalized induction
schemata over truth, e.g. in the form of the following inference rule of T -induction:
if B(x) is any T -positive LT -formula,

�,∀x(Tw(x, B) → B(x))

�,¬T(t), B(t)
(80)

Then GID-induction can be eliminated in favour of a suitable infinitary rule T∞:

�,¬Tn(t) for each n ∈ ω

�,¬T(t)
(81)

The ruleT∞ allows to showeach instance of the schemaof generalized on truth (argue
by induction on n ∈ ω). Moreover the system based on (81)—with N-induction
restricted to determinate functions—satisfies partial cut elimination theorem. Of
course, derivation trees are now infinitary and the interpretation theorem holds with
m �→ H(m), where H is an α-recursive function,15 for some α < ε0.

Remark 9 Feferman [10] stated a conjecture about the strength of the theory of
determinate truth over PA, and the conjecture has been settled by Fujimoto [13] by
employing the so-called relative truth definability. The construction above can be
adapted to the system DT over PA, in order to produce an alternative proof of the
conjecture.

15See [26, 27].

58 A. Cantini

Remark 10 In view of Theorems 6 and 40, PT is strictly stronger thanCT and hence
the proof theoretic strength of PT over CT resides in the implication axioms (55)
and (56). This should be contrasted with the situation in [13], Theorem 50.

4.4 Adding the Join Operator

4.4.1 Axioms for Explicit Types: Join

Define:

• R(a) := ∃YR(a, Y).
• s ∈̇ t := ∃Y(R(t, Y) ∧ s ∈ Y).
• Join is the principle (J):

R(a) ∧ ∀x(x ∈̇ a → R(fx)) → R(j (a, f)) ∧
∧ ∀u, v(〈u, v〉 ∈̇ j (a, f) ↔ u ∈̇ a ∧ v ∈̇ fu)), (82)

• EETJ:= EET with (J).
• EETJ: asEETJ except that it now includes only type induction for numbers (24).

Theorem 41 EETJ(EETJ) is interpretable in PT (PT).

Proof Apply Lemma 25 and the previous interpretability results about EET, since
PT− contain CT−. �

5 Truth and Types IV

5.1 Abstract ‘Kripke-Feferman’

We outline an abstract version of the Kripke-Feferman system over PA, which can
also be regarded as the theory of classical Frege structures (see [6, 14, 22]).

Definition 42 KF comprises the base theoryTON−, and the fixed point axiom (T)
for abstract truth:

T (x, T) ↔ T(x). (83)

Here T (x, T) is a formula encoding the closure properties:

a = b

T [a = b]
¬(a = b)

T [¬(a = b)]
N(a)

T [N(a)]
¬N(a)

T [¬N(a)]
for the basic atomic formulas with= and N . Further, the following additional clauses
for the compound formulas:

About Truth and Types 59

T(a)

T(¬̇¬̇a)

T(a) T(b)

T(a ∧̇ b)

T(¬̇a) [or T(¬̇b)]
T(¬̇(a ∧̇ b))

∀x T(ax)

T(∀̇a)

∃x T(¬̇ax)

T(¬̇∀̇a)

Finally KF includes:
1. Consistency axiom: ¬(T(x) ∧ T(¬̇x)).
2. the axiom D-INDN of induction on natural numbers N for functions with deter-

minate truth values (see Sect. 2.3).

5.1.1 Recursion-Theoretic Structure

For each formula A, if Y is the Curry fixed point combinator, define

I(A) := Y(λv.{x : A(x, v)}).

Hence by β-conversion I(A) = {x : A(x, I(A))}, and a general second recursion the-
orem for predicates holds in KF−:

Lemma 43 If A is T-positive

∀x (T(I(A)x) ↔ A(x, I(A))). (84)

Theorem 44 Let M be a model of TON and let MINM be the least fixed point model
of KFμ expanding M. Then I(A) represents the least fixed-point of the monotone
operator defined by A in MINM.16

This suggests the schema GID, ensuring the minimality of the fixed points: if
A(x, v) is a positive operator

ClosA(B) → ∀x (T(I(A)x) → B(x))

with ClosA(B) := ∀x (A(x, B) → B(x)).

Theorem 45 ([6])

(i) KF+GID is proof-theoretically equivalent to PA.
(ii) KF + GID is proof-theoretically equivalent to ID1.

16Thismeans: the set of all a ∈ M satisfying T(I(A)x inMINM is the least fixed point of the operator
defined by A in MINM.

60 A. Cantini

5.2 Partial Truth with Minimality

KFμ (Truth with minimality, see Burgess [2]): it is the fragment of KF17 with

(i) only the composition principles, e.g. ∀x(T (x, T) → T(x));
(ii) the schema: if B is an arbitrary formula,

∀x(T (x, B) → B(x)) → ∀x(T(x) → B(x)). (85)

Then KFμ proves the decomposition axioms ∀x(T(x)) → T (x, T)) and the con-
sistency axiom. Also, it explicitly refutes statements that fail in the least fixed point
model, e.g. the so-called Truth-Teller S such that, provably inKF−, S = ṪS. Indeed,
choose TS(x) := T(x) ∧ x �= S. Then it’s easy to check by independence and T -
closure that ∀x(T (x, TS) → TS(x), and hence T(x) implies TS(x), for arbitrary x.
Therefore T(S) implies TS(S), whence ¬T(S) by logic.

Clearly KFμ has an inner model in KF+GID.
As to the upper bound, we can adapt the direct proof theoretic analysis of

KF+GID (see [3]) to KFμ.
As to the lower bound, let IDacc

1 be the theory of accessibility inductive definitions
over PA, which is known to be proof-theoretically equivalent to the theory of ele-
mentary inductive definitions. Let ≺ be a binary relation encoded by a propositional
function,18 and let Field(≺) := {u|∃v(〈u, v〉η ≺ ∨〈v, u〉η ≺)}. Let

� := λaλx.[∀y(y ≺ x → ay)]

where [∀y(y ≺ u → ay)] is the applicative term ∀̇(λy.(→̇)[y ≺ x](ay)). Then we
can choose by (84) a term W (≺), such that—using the notations of Sect. 2.2—KF
proves

W (≺)x = [∀y(y ≺ x → W (≺)y)],
xηW (≺) ↔ xηField(≺) ∧ ∀y(y ≺ x → yηW (≺)).

The schema of transfinite induction along ≺ has the form

TI(≺, A) := Progr(≺, A) → ∀x(xηW (≺) → A(x)). (86)

where

Progr(≺, A) := (∀xηField(≺))(∀y(y ≺ x → A(y)) → A(x)).

17As for KF, a warning: we keep using the same label of [2] for a theory KFμ, which is not an
extension of Peano Arithmetic.
18So ≺ is determinate in the sense of (2).

About Truth and Types 61

Then we lift to the present context the (classical form of so-called) bar-induction
schema, which goes back to Kreisel; the proof below takes inspiration from an
analogous result of [15], also exploited by [2]:

Theorem 46 If A is an arbitrary formula, ≺ is a (propositional function encoding a)
binary relation, then the schema of transfinite induction on the largest well-founded
part W (≺) of ≺ holds, provably in KFμ.

Proof For simplicity, it is convenient to work in a definitional extension of KFμ,
where T(¬̇x) ∨ T(y) → T(x →̇ y) is provable. Fix any A, ≺, such that ≺ is a propo-
sitional function. Assume that A is ≺-progressive and uηW (≺). It is sufficient to
verify A(u). For the sake of semplification, we further assume that the field of ≺ is
the whole universe (so that we can avoid to make explicit reference to it). Define

TA(x) :⇔ T(x) ∧ ∀u(x = W (≺)u → A(u)) ∧
∧∀u∀v(x = [v ≺ u → W (≺)v] ∧ v ≺ u → A(v)). (87)

Assume that we have shown

∀x(T (x, TA) → TA(x)). (88)

Then by the schema (85) we can conclude ∀x(T(x) → TA(x)). Hence by assumption,
for x := W (≺)u, we have TA(W (≺)u), which immediately implies A(u).

Hence it remains to check (88). But this follows with the closure axioms of T
and with the independence conditions ruling the dotted constants Ṅ ,

.=, etc. Let us
consider three cases.

1. Assume T ([a = b], TA); then a = b holds and hence T([a = b]). Since
W (≺)u = ∀̇f for a suitable f , then W (≺)u �= [a = b] and

[v ≺ u → W (≺)v] �= [a = b]

by (3). So we can trivially conclude TA([a = b]).
2. Assume T (∀̇f , TA); then for all x, TA(fx). Then by definition of TA, we have

∀xT(fx) whence T(∀̇f). It remains to check:

∀u(∀̇f = W (≺)u → A(u)), (89)

∀u∀v(∀̇f = [v ≺ u → W (≺)v] ∧ v ≺ u → A(v)). (90)

The second is trivially true by independence. As to the first condition, assuming
∀̇f = W (≺)u, we must prove A(u). But ∀̇f = W (≺)u implies

f = λv[v ≺ u → W (≺)v],

62 A. Cantini

whence, for arbitrary v:
f v = [v ≺ u → W (≺)v]. (91)

Since for all x, TA(fx), we have, for x := v

∀y∀z(f v = [y ≺ z → W (≺)y] ∧ y ≺ z → A(y)).

Hence, for y := v, z := u

f v = [v ≺ u → W (≺)v] ∧ v ≺ u → A(v).

By (91), for arbitrary v :
v ≺ u → A(v).

But A is ≺-progressive and hence A(u). It follows TA(∀̇f).
3. Assume TA(¬̇a) ∨ TA(b). We check TA(a →̇ b). By assumption T(¬̇a) ∨ T(b)

and hence T(a →̇ b). So it is enough to check

∀u(a →̇ b = W (≺)u → A(u)), (92)

∀u∀v(a →̇ b = [v ≺ u → W (≺)v] ∧ v ≺ u → A(v)). (93)

(92) is trivial by independence (since →̇ �= ∀̇). As to (93), assume v ≺ u and
a →̇ b = [v ≺ u → W (≺)v]. Then a = [v ≺ u] and b = W (≺)v. Were TA(¬̇a),
then T([¬v ≺ u]); but ≺ is a propositional function and hence ¬v ≺ u, contra-
diction! Hence TA(b), and, in particular:

∀u∀v(b = W (≺)v ∧ v ≺ u → A(v)).

By separation A(v), and we have checked (93). �

Hence by the previous lemma:

Corollary 47 IDacc
1 is interpretable in KFμ.

Conjecture 2 KF+GID is interpretable in KFμ.

Note that, according to [2], the conjecture holds for the ordinary formal system
formalized in the language of Peano arithmetic.

About Truth and Types 63

5.3 Explicit Types and Name Induction

There is a simple extension of EETJ which corresponds to truth minimality inKFμ.
The idea (see [23]) is thatnames are inductively generated from the basic constructors
only (identity id, natural numbers nat, inverse image inv, domain dom, complement
co, intersection int, join j). Therefore, if B(x) satisfies the same closure conditions
N (x,−)19 as the name constructors, B contains all names:

∀x(N (x, B) → B(x)) → ∀x(R(x) → B(x)). (94)

NEM :=EETJ + (94).

Theorem 48 ID1, NEM, KFμ, KF + GID are proof-theoretically equivalent.

As to the proof, the crucial step is Theorem 1 in [23], that is, if ≺ is a binary
relation on X, the largest well-founded part W (≺, X) of ≺ can be assigned a name,
uniformly in any given name for X and ≺. Hence IDacc

1 is interpretable in NEM. On
the other hand, it is straighforward to check:

Lemma 49 NEM is interpretable into KF + GID.

References

1. P. Aczel, Frege structures and the notions of proposition, truth and set, in The Kleene Sym-
posium, ed. by J. Barwise, H.J. Keisler, K. Kunen (North Holland, Amsterdam, 1980), pp.
31–59

2. J. Burgess, Friedman and the axiomatization of Kripke’s theory of truth, in Foundational
Adventures: Essays in Honor of Harvey M. Friedman, ed by N. Tennant (College Publications,
London, 2014), pp. 125–148

3. A. Cantini, Levels of implications and type free theories of partial classifications with approx-
imation operator. Zeitschrift f. Math. Logik u. Grundlagen 38, 107–141 (1992)

4. A. Cantini, P. Minari, Uniform inseparability in explicit mathematics. J. Symbolic Logic 61,
313–326 (1999)

5. A. Cantini, On a Russellian paradox about propositions and truth, in One Hundred Years of
Russell’s Paradox. Mathematics, Logic and Philosophy ed by G. Link (Walter de Gruyter,
Berlin, 2004), pp. 259–284

6. A. Cantini, Logical Frameworks for Truth and Abstraction, Studies in Logic and the Founda-
tions of Mathematics, vol. 135 (North Holland, Amsterdam, 1996)

7. B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, 2nd edn. (Cambridge, 2002)
8. S. Eberhard, T. Strahm,Weak theories of truth and explicitmathematics, inLogic, Construction,

Computation, ed. by U. Berger, H. Diener, P. Schuster (Ontos Verlag, 2012), pp. 156–183
9. S. Feferman, Constructive theories of operations and classes, in Logic Colloquium ’78 ed by

M. Boffa, et al. (North-Holland, 1979), pp. 159–224
10. S. Feferman, Axioms for determinate truth. Rev. Symbolic Logic 1, 204–217 (2008)
11. S. Feferman, Reflecting on incompleteness. J. Symbolic Logic 56, 1–49 (1991)
12. S. Feferman, Does reductive proof theory have a viable rationale? Erkenntnis 53, 63–96 (2000)

19We will not spell them explicitly for the sake of brevity.

64 A. Cantini

13. K. Fujimoto, Relative truth definability of axiomatic truth theories. Bull. Symbolic Logic 16,
305–344 (2010)

14. R. Flagg, J. Myhill, Implication and analysis in classical Frege structures. Ann. Pure Appl.
Logic 34, 33–85 (1987)

15. H. Friedman, M. Sheard, An axiomatic approach to self-referential truth. Ann. Pure Appl.
Logic 33, 1–21 (1987)

16. T. Glass, On power set in explicit mathematics. J. Symbolic Logic 61, 468–489 (1996)
17. V. Halbach, Axiomatic Theories of Truth (Cambridge University Press, Cambridge, 2011)
18. G. Jäger, Type theory and explicit mathematics, in Logic Colloquium ’87, Studies in Logic and

the Foundations of Mathematics, vol. 129 (North-Holland, Amsterdam, 1989), pp. 117–135
19. G. Jäger, Power types in explicit mathematics? J. Symbolic Logic 62, 1141–1146 (1997)
20. G. Jäger, R. Kahle, A. Setzer, T. Strahm, The proof theoretic analysis of transfinitely iterated

fixed point theories. J. Symbolic Logic 64, 53–67 (1999)
21. G. Jäger, T. Strahm, Totality in applicative theories. Ann. Pure Appl. Logic 74, 105–120 (1995)
22. R. Kahle, Truth in applicative theories. Studia Logica 68, 103–128 (2001)
23. R. Kahle, T. Studer, A theory of explicit mathematics equivalent to ID1, in Computer Science

Logic (Fischbachau), Lecture Notes in Computer Science, 1862 (Springer, Berlin, 2000), pp.
356–370

24. G.E. Leigh, Conservativity for theories of compositional truth via cut elimination. J. Symbolic
Logic, 80, 845–865 (2015)

25. Y.N. Moschovakis, Elementary Induction on Abstract Structures, Studies in Logic and the
Foundations of Mathematics, vol. 77 (North Holland, Amsterdam, 1974)

26. W. Pohlers, Proof Theory (Springer, Berlin-New York, 2009)
27. H. Schwichtenberg, S. Wainer, in Proofs and Computations, Perspectives in Logic (ASL and

Cambridge University Press, Cambridge, 2012)
28. T. Strahm, Theories with self-application and computational complexity. Inf. Comput. 185,

263–297 (2003)

Lindenbaum’s Lemma via Open Induction

Francesco Ciraulo, Davide Rinaldi and Peter Schuster

Abstract With Raoult’s Open Induction in place of Zorn’s Lemma, we do a perhaps
more perspicuous proof of Lindenbaum’s Lemma for not necessarily countable lan-
guages of first-order predicate logic. We generally work for and with classical logic,
but say what can be achieved for intuitionistic logic, which prompts the natural
generalizations for distributive and complete lattices.

1 Introduction

It is not uncommon in mathematics that a concrete theorem admits an elegant but
highly abstract proof by some transfinite method, typically Zorn’s Lemma (ZL)
combined with a proof by contradiction: under the hypothesis that there is any coun-
terexample at all, by ZL there exists a maximal or minimal counterexample, which
helps to the desired contradiction. Unfortunately, one thus virtually loses the com-
putational information given by the input data, and the proof fails to produce an
algorithm for computing the output data.

Some theorems of this kind [1, 5, 6, 10, 12, 18, 24] have already proved to follow
in a direct and elementary way from (a variant of) the principle of Open Induction
(OI) distinguished by Raoult [18]. Although fully-fledgedOI is equivalent to ZLwith
classical logic [12], using OI rather than ZL has some advantage at least when the
original statement is sufficiently concrete. In this case there is in fact some evidence

F. Ciraulo (B)
Dipartimento di Matematica, Università degli Studi di Padova, via Trieste, 63,
35121 Padova, Italy
e-mail: ciraulo@math.unipd.it

D. Rinaldi
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England
e-mail: daviderinaldi@gmail.com

P. Schuster
Dipartimento di Informatica, Università degli Studi di Verona,
strada le Grazie, 15, 37134 Verona, Italy
e-mail: peter.schuster@univr.it

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_3

65

66 F. Ciraulo et al.

that—in Hilbert’s terms—the ideal objects characteristic of any invocation of ZL
can be eliminated, and that one can get by with finite means only. Under sufficiently
concrete circumstances, for example, OI can be reduced to ordinary mathematical
induction or even, by fixing the size of the data under consideration, an entirely
first-order proof can be obtained.

As a classical equivalent of ZL, OI cannot be considered a theorem from any con-
structive perspective; whence we prefer to call OI rather a principle than a lemma.
Since, however, OI is a form of induction, it not only looks less harmful than ZL
already at first glance, but also allows for a computational interpretation. Moreover,
one can extract the computational content from proofs in which OI is used in com-
bination with intuitionistic logic, which in turn can be made possible just by moving
away from the notorious proofs by contradiction with ZL.1

In logic, semantic arguments based on Gödel’s Completeness Theorem (CT) give
short and elegant proofs of purely syntactical results. To prove, say, a conservation
theorem, with CT at hand it suffices to show that every model of the base theory
can be extended to a model of the extended theory. Although this proof technique is
non-constructive a priori, similar arguments are valid constructively [4]. Constructive
completeness theorems for intuitionistic logic have been proved and applied e.g. in
[2, 3, 7, 8, 22].

The aforementioned uses of OI suggest the possibility of getting some form of
CT by means of OI. In this paper we re-prove Lindenbaum’s Lemma (LL) [26] in
contrapositive form [23], the novelty being that we work with OI in place of ZL.
We then discuss how to carry this over to intuitionistic logic, which leads us to the
natural generalizations to distributive and complete lattices.

In spite of the method of proof by cases we need to employ, which is essentially
classical, our approach with OI appears to be somewhat more direct than the usual
one with ZL. Thanks to the move from ZL to OI, we indeed expect that, as in the case
studies mentioned above, one will eventually be able to do with finite methods only,
at least when dealing with some concrete application of CT or LL. Evidence for the
latter claim is yet to be given, though there already is strong motivation: while the
conservation of extensions of Peano Arithmetic by a Tarskian truth predicate was
first dealt with from a semantic point of view [9, 14], a syntactical proof has become
possible [15] by adapting just those semantic methods [14].

Conventions Let X be a set. The complement of a subset P of X is denoted by −P ,
that is,

−P = {x ∈ X : x /∈ P}.

Wesay that a subset P of X is inhabited (rather than non-empty) if P has an element.2

1The authors are most grateful to the anonymous referee for hinting at this issue.
2This and other choices of terminology typical for constructive settings are made to prepare for
Sect. 3.3.

Lindenbaum’s Lemma via Open Induction 67

Adopting a handy notation used by Sambin, we denote by M � N (rather than
M ∩ N �= ∅) that the intersection of the subsets M, N of X is inhabited, that is,

M � N ⇐⇒ ∃x ∈ X (x ∈ M ∧ x ∈ N).

For example, M � M says that M is inhabited; {x, y} � N means that either x ∈ N or
y ∈ N ; and ¬(M � N) is tantamount to each of M ⊆ −N and N ⊆ −M . Denoting
the subset relation by ⊆, we only write M ⊂ N if M is a proper subset of N , that is,
−M � N . We sometimes view a subset P of X as a unary predicate, and write P(x)

in place of x ∈ P for any x ∈ X .
Last but not least, if X is a poset, then every subset of X is tacitly endowed with

the induced order; and a chain in X is a totally ordered, inhabited subset. Let us stress
that we need to require that every chain be inhabited, to have that the supersets of a
fixed set be closed under forming unions of chains.

2 Open Induction

Raoult’s principle ofOpen Induction is essentially the logical contrapositive ofZorn’s
Lemma (ZL). To briefly explain this, let (X,�) be a poset; and recall that X is chain-
complete if every chain C ⊆ X has a least upper bound

∨
C ∈ X . The form of ZL

we have in mind reads as follows:
Let X be chain-complete. If X is inhabited, then X has a maximal element.
We cannot avoid requiring X to be inhabited, for in this paper the empty set

cannot be admitted as a chain (see above). With classical logic we can rewrite ZL in
an equivalent contrapositive form:

Let X be chain-complete. A subset Q of X is empty whenever

1. Q has no maximal elements and
2. Q is closed, that is, C ⊆ Q ⇒ ∨

C ∈ Q for every chain C .

In fact, the form of ZL we have given first can be relativised equivalently as
follows:

If X is chain-complete, and P ⊆ X inhabited and closed, then P has a maximal
element.

Conditions 1 and 2 above have the following well-known dual forms (think of Q
as −P):

Definition 1 Let X be a chain-complete poset. A subset P of X is

1. progressive if (∀x ∈ X)(x > a ⇒ x ∈ P) ⇒ a ∈ P for every a ∈ X ,
2. open if

∨
C ∈ P ⇒ C � P for every chain C ⊆ X .

With classical logic, in fact, P is progressive precisely when −P has no maximal
elements, and P is open precisely when −P is closed. Note also that if P is pro-
gressive, then P is satisfied by every maximal element of X , and thus by the greatest
element of X whenever this exists.

68 F. Ciraulo et al.

Open predicates form a topology. We pause to recall this standard fact, if only for
the reader’s convenience. We write ↑ x for the set of all y with x � y.

Lemma 2 Let A and C be an open subset and a chain, respectively, of a chain-
complete poset. If

∨
C ∈ A, then C ∩ ↑ c ⊆ A for some c ∈ C.

Proof Suppose, towards a contradiction, that for every c ∈ C there exists c′ ∈ C
such that c � c′ and c′ /∈ A. This gives

∨
(C − A) = ∨

C . So
∨

(C − A) ∈ A and
hence (C − A) � A, a contradiction. �

While the proof involves classical logic, the lemma itself holds trivially if A is even
Scott open, that is, open and upwards closed.

Proposition 3 The open subsets of a chain-complete poset are closed under finite
intersections and arbitrary unions.

Proof Closure under union is clear. Now let A and B be open and assume that
∨

C ∈
A ∩ B for a given chain C . By the previous lemma, there exists c ∈ C such that C ∩
↑ c ⊆ A. Clearly, C ∩ ↑ c is a chain and

∨
(C ∩ ↑ c) = ∨

C . So
∨

(C ∩ ↑ c) ∈ B
and hence (C ∩ ↑ c) � B. Hence C � (A ∩ B). �

After this digression on topology, we recall from Raoult [18] the principle we use
in place of ZL:

Open Induction (OI) Let X be a chain-complete poset. If P is a progressive and
open predicate on X , then P(x) for all x ∈ X .

With classical logic (taking P and Q as complements of each other), OI is equivalent
to one of the equivalents (“if Q is a closed subset of a chain-complete poset X , and
Q has no maximal elements, then Q is empty”) of ZL we have displayed before;
whence OI is equivalent to ZL [12].

In the sequel, as in [24], by induction for P and X wemean the followingprinciple:
If P is progressive, then (∀x ∈ X)P(x).

Classically, induction holds for every P precisely when X is well-founded in the
sense that every inhabited predicate on X has a maximal element. This is known
as Transfinite Induction (TI), and is implied by OI. In fact, if the poset X is well-
founded, then every chain in X has a greatest element; whence X is chain-complete,
and every predicate P on X is open. Unlike OI, TI is provable in ZF.

In some important cases, moreover, induction is provable by mathematical induc-
tion only. For instance, induction holds whenever X is

1. a tree (with the root as top element) or, more generally, a forest;
2. a finite poset.

In either case there is no need to have that X be well-founded or chain-complete,
let alone that P be open. To see this, let P be a progressive predicate on a poset X .
Recall first that P(y) whenever y is a maximal element of X . If X is a forest, to
prove P(x) for any x ∈ X one can do induction on the distance from x to the root
y of the tree of X to which x belongs, for which P(y) as this y is maximal. If X is

Lindenbaum’s Lemma via Open Induction 69

finite and inhabited, then X has a maximal element y, for which P(y) and which y
we thus may remove from X ; whence induction on the size of X applies.

The second instance above also was the outcome of a reduction of OI in a concrete
situation [24]. The following is yet another special case of induction provable by
mathematical induction.

Example 4 Let P be a progressive predicate on N. If P � I for every infinite I ⊆ N,
then P = N.

Proof First, −P must be finite, since otherwise, by hypothesis, we would have
P � −P , which is impossible. We now can show that −P is empty. If −P were
inhabited, then−P would have a greatest element m, for which n ∈ P for all n > m.
But P is progressive and thus m ∈ P , a contradiction. �

This example can also be seen as a case of OI, as follows. Consider the chain-
complete poset X = N ∪ {∞}, that is, the ordinal ω + 1. Given P as above, the
property Q = P ∪ {∞} is progressive, because so is P , and also open. To check
this, let C be a chain in X with

∨
C ∈ Q. If

∨
C ∈ N, then C is finite and hence∨

C ∈ C ; thereforeC � Q. On the other hand, if
∨

C = ∞, then either∞ ∈ C , and
hence C � Q, or C is an infinite subset of N, in which case C � P by hypothesis.

3 Lindenbaum’s Lemma

Let L be a first-order language, which need not be countable. We write SL for the
set of sentences over L. Let � denote the deducibility relation of classical predicate
logic.3

The deductive closure of � ⊆ SL is

� = {ϕ ∈ SL | � � ϕ}. (1)

We note in passing that � �→ � defines a closure operator on the subsets of SL. This
means that (i) � ⊆ �, (ii) � ⊆ �′ implies � ⊆ �′ and (iii) � = �, for all �,�′ ⊆ SL.
Note that the latter says that � � ϕ is tantamount to � � ϕ. This closure operator,
however, is not topological, that is, it does not preserve finite unions. In fact, ∅ is not
empty and �1 ∪ �2 is, in general, greater than �1 ∪ �2.

3.1 Types of Theories

A theory is a set of sentences that equals its deductive closure. Conversely, with the
concept of theory at hand one can characterise the one of deductive closure. In fact,

3We could equally have worked for and with propositional logic, with arbitrary formulas in place
of sentences.

70 F. Ciraulo et al.

� is the smallest theory in the language L which contains the given set � ⊆ SL,
which is to say that � equals the intersection of all theories in the language L which
contain �. In view of the impredicative character of all this, we have preferred to
define � by (1), from which one can of course prove these characterisations.

Wenext recollect a fewwell-known features of theories,which are scattered across
the literature.

Remark 5 A set of sentences � is a theory if and only if the following hold for all
ϕ,ψ ∈ SL:

1. � ∈ �;
2. if {ϕ,ψ} ⊆ �, then ϕ ∧ ψ ∈ �;
3. if ϕ ∈ � and ϕ � ψ , then ψ ∈ �.

So theories correspond to filters of the Lindenbaum algebra, the quotient of SL
modulo equivalence.

As usual, a set of sentences � is consistent if � � ⊥. A theory � is consistent if
and only if it is proper: that is, � ⊂ SL. So consistent theories correspond to proper
filters of the Lindenbaum algebra.

We further recall that a theory � is

• complete if {ϕ,¬ϕ} � � for every ϕ ∈ SL;
• prime if ϕ ∨ ψ ∈ � implies {ϕ,ψ} � � for every {ϕ,ψ} ⊆ SL.

Although the next lemma is well-known, we give a proof for the sake of later inspec-
tion (Sect. 3.3).

Lemma 6 The complete consistent theories are exactly the proper prime theories.
More precisely,

1. if a consistent theory � is complete, then � is a prime theory;
2. every prime theory � is complete.

Proof As for part 1, let� be a consistent theory. Assume that� is complete. To show
that� is prime, let ϕ ∨ ψ ∈ �. Since� is complete, we have as required either ϕ ∈ �

or ψ ∈ �. In fact, if otherwise both ¬ϕ ∈ � and ¬ψ ∈ �, that is, ¬(ϕ ∨ ψ) ∈ �,
then ⊥ ∈ �, which is impossible in view of � being consistent. As for part 2, every
prime theory � is complete, simply because ϕ ∨ ¬ϕ ∈ �. �

In other words, the ultrafilters of the Lindenbaum algebra are just its proper prime
filters, which is no surprise as this is a Boolean algebra. As a digression, we next
recall that these notions of theories are equivalent to yet another one—of which,
however, we will not make any use in the sequel.

Remark 7 Let� be a consistent set of sentences. The following conditions are equiv-
alent:

1. � is a complete theory.
2a. For every sentence ψ , if � ∪ {ψ} is consistent, then ψ ∈ �.

Lindenbaum’s Lemma via Open Induction 71

2b. For every sentence ψ , if ψ /∈ �, then � ∪ {ψ} is inconsistent.
3a. If �′ is a consistent theory with �′ ⊇ �, then �′ = �.
3b. If �′ is a theory with �′ ⊃ �, then �′ is inconsistent.

In all, a set of sequences � is a complete consistent theory precisely when � is
a maximal consistent set of sequences, i.e. maximal among the consistent sets of
sentences. Here maximality may be understood in the sense of any of the conditions
2a–b, 3a–b of Remark 7. In particular, the maximal consistent sets of sentences
correspond to the ultrafilters of the Lindenbaum algebra [19].

A typical example of a maximal consistent theory is the theory Th(M) of a model
M. By theCompleteness Theorem, this is the only type ofmaximal consistent theory.
In fact, if � is a consistent theory, then it has a modelM. So � ⊆ Th(M), and if �

is maximal consistent, then � = Th(M).

3.2 Lindenbaum’s Lemma with Open Induction

We now show how to prove Lindenbaum’s Lemma with OI in place of ZL.

Theorem 8 (OI) For each � ∪ {ϕ} ⊆ SL the following are equivalent:

(i) � � ϕ;
(ii) � ⊆ � ⇒ ϕ ∈ � for every proper prime theory � ⊆ SL.

Proof The non-trivial implication using OI is the one from (ii) to (i). To this end,
define

X = {� ⊆ SL | � is a theory and � ⊆ �}.

Clearly � is the least element of X , partially ordered by inclusion.
Claim 1: (X,⊆) is chain-complete. To see this, let {�i | i ∈ I } be a chain in X .

We claim that � = ⋃
i∈I �i belongs to X . Since � ⊆ �, as I is inhabited, we only

need to verify that � is a theory. If � � ψ , then K � ψ for some finite K ⊆ �. So
there is k ∈ I such that K ⊆ �k . Hence �k � ψ and so ψ ∈ �k ⊆ �. Note that the
join of a chain of theories is its union.
Now let P be the predicate on X defined by

P(�) ⇐⇒ ϕ ∈ �.

Claim 2: P is open. In fact, if ϕ ∈ ⋃
i∈I �i , then ϕ ∈ �i for some i .

Claim 3: P is progressive. Given � ∈ X , we have to deduce ϕ ∈ � from the
induction hypothesis that ϕ ∈ �′ for every�′ ∈ X such that�′ ⊃ �. To this end we
distinguish the following cases.

Case I: � is both proper and prime. In this case, (ii) applies to �; whence ϕ ∈ �.
Case II: the negation of Case I, is split into two subcases, as follows.
Subcase IIa: � is not proper, i.e. � = SL, in which case trivially ϕ ∈ �.

72 F. Ciraulo et al.

Subcase IIb: � is not prime, i.e. there are ψ1, ψ2 ∈ SL, both outside �, such
that ψ1 ∨ ψ2 ∈ �. For i = 1, 2 we then have � ∪ {ψi } ⊃ � and thus P(� ∪ {ψi }),
that is, �,ψi � ϕ, by induction hypothesis. Hence �,ψ1 ∨ ψ2 � ϕ by disjunction
elimination, and so eventually ϕ ∈ � because ψ1 ∨ ψ2 ∈ �.

With OI at hand we can conclude that P(�) for every � ∈ X . In particular,
P holds for the least element of X , that is, P(�). By definition of P , this means
� � ϕ. �

In view of Lemma 6, Theorem 8 can equivalently be put as follows.

Corollary 9 (OI) For each � ∪ {ϕ} ⊆ SL the following are equivalent:

(i) � � ϕ;
(ii) � ⊆ � ⇒ ϕ ∈ � for every complete consistent theory � ⊆ SL.

To prepare for Sect. 3.3, we sketch how a proof of Corollary 9 can be obtained
from the above proof of Theorem 8. The only modifications are required in Case II
of the proof of Claim 3, which again is to be split into two subcases.

Subcase IIa’: � is inconsistent, that is, ⊥ ∈ �. Hence again � = SL and thus
trivially ϕ ∈ �.

Subcase IIb’: � is not complete, i.e. there is ψ ∈ SL such that both ψ and ¬ψ

lie outside �. Hence � ∪ {ψ} ⊃ � and � ∪ {¬ψ} ⊃ �, and thus P(� ∪ {ψ}) and
P(� ∪ {¬ψ}) by induction hypothesis, which is to say that �,ψ � ϕ and �,¬ψ �
ϕ. In all, �,ψ ∨ ¬ψ � ϕ by disjunction elimination, and so ϕ ∈ � simply because
ψ ∨ ¬ψ ∈ �, as � is a classical theory.

3.3 Intuitionistic Logic

As usual, ⊥ stands for absurdity, ¬ϕ for ϕ → ⊥ and � for ¬⊥. We write EFQ
and TND for the axioms ex falso quodlibet ⊥ → ψ and tertium non datur ψ ∨ ¬ψ

restricted to sentences ψ .
Convention If we say that a statement holds in a certain logic, then we mean that
this statement can be proved for deducibility within this logic and with the very same
logic used in the meta-language. Likewise, if we say that we use EFQ and/or TND,
then we mean this in the meta-language, too.

3.3.1 Excluded Middle

Remark 5 holds in intuitionistic logic, too. This also is the case for some but not
all implications within Remark 7—in which, however, we are not interested, for we
have focussed on proper prime and complete consistent theories rather than maximal
consistent sets of sentences.

Let us turn our attention to Lemma 6 instead. Trivially, every consistent theory is
proper. By EFQ every proper theory is consistent; and again by EFQ every complete

Lindenbaum’s Lemma via Open Induction 73

consistent theory is prime. In intuitionistic logic, in particular, Corollary 9 implies
Theorem 8. In intuitionistic logic, however, one cannot prove that every prime theory
is complete, for which—as in the proof of Lemma 6—one needs TND. Here is a
characteristic example.

The smallest theory ∅ is consistent and prime in intuitionistic logic, thanks to
Gentzen’s Hauptsatz and the disjunction property, respectively. In particular, The-
orem 8 holds for � = ∅. On the other hand, ∅ cannot be proved to be complete in
intuitionistic logic, as this would just mean to postulate TND.

This example also shows that intuitionistic logic has not enough complete theories
to make Corollary 9 hold for � = ∅, which would indeed entail TND. In fact, if ψ

is any sentence, then ϕ ≡ ψ ∨ ¬ψ belongs to every complete theory �, since either
ψ ∈ � or ¬ψ ∈ �. So Corollary 9 is definitely too strong to hold in intuitionistic
logic.

Before we study the status of Theorem 8 in intuitionistic logic, let us make a
digression in the spirit of constructive reverse mathematics [13].We say that a theory
� is Boolean if ψ ∨ ¬ψ ∈ � for every sentence ψ . In classical logic every theory
is Boolean, for which TND suffices. Independent of that, every complete theory
is Boolean, as we have just stated—even in intuitionistic logic where conversely
every Boolean theory is complete provided that it is prime. In intuitionistic logic,
in particular, the complete consistent theories are exactly the Boolean proper prime
theories. Now we can sum up.

Proposition 10 In intuitionistic logic the following are equivalent.

1. TND holds.
2. Every theory is Boolean.
3. Every prime theory is complete.
4. The smallest theory ∅ is complete.
5. Theorem 8 implies Corollary 9.
6. Corollary 9 holds for � = ∅.

We recommend to proceed alongside the following paths: 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 6 and
3 ⇒ 5 ⇒ 6 ⇒ 1.

3.3.2 Proof by Cases

We next inspect the proofs of Theorem 8 and Corollary 9. In the proof of Corollary 9
sketched before, we have used EFQ and TND to settle Subcase IIa’ and Subcase
IIb’, respectively. This parallels our use of these principles, noticed above, during
the proof of the parts of Lemma 6 that are relevant for deducing Corollary 9 from
Theorem 8.

In the proof of Theorem 8, on the other hand, we did not need EFQ and TND to
settle Subcase IIa and Subcase IIb. Yet in the proof of Theorem 8, and likewise in the
one of Corollary 9, we had to distinguish Case I from Case II, actually from Subcase

74 F. Ciraulo et al.

IIa and Subcase IIb. To control this instance of a proof by cases, which is essentially
classical, we make it explicit following [16].

To this end we say that a finitely axiomatisable theory� has a strong primality test
if for every theory�with� ⊇ � one can do a proof by cases of the type incriminated
above. By this we mean that one can tell whether� is proper and prime, and if this is
not the case, then one either knows that� = SL or else one has at handψ1, ψ2 ∈ SL,
both lying outside �, such that ψ1 ∨ ψ2 ∈ �.

Hence the following variant of Theorem 8 equally holds for intuitionistic logic.

Theorem 11 (OI) If a finitely axiomatisable theory � ⊆ SL admits a strong primal-
ity test, then for each ϕ ∈ SL the following are equivalent:

(i) ϕ ∈ �;
(ii) � ⊆ � ⇒ ϕ ∈ � for every proper prime theory � ⊆ SL.

Two choices have made possible to move to intuitionistic logic in the foregoing:
first, to work with proper prime theories rather than complete consistent theories;
secondly, to assume a strong primality test. Note that neither choice would make any
difference for classical logic.

Although the assumption of a strong primality test may somehow look like cheat-
ing, it is of interest to review the situation in commutative algebra by which it has
been inspired:

1. The appropriate analogue of a strong primality test is constructively provable for
a sufficiently rich class of rings, the so-called fully Lasker-Noether rings [16].

2. If Krull’s Lemma (KL), the counterpart of Theorem 8, is used to give a short and
elegant proof of a certain theorem of concrete character, by reduction to the case
of integral domains, then a constructive proof of the theorem is possible [17, 24]
under decidability assumptions that are

(a) more elementary than a strong primality test and
(b) can be eliminated by basic proof-theoretic means.

For the time being, however, we do not know whether any part of this method can be
carried over from algebra to logic. But KL and LL together, in the form of Theorem 8,
have given rise to a universal Krull-Lindenbaum Theorem that equally follows from
OI [20], which in turn has prompted a fairly general, constructive and syntactical
conservation theorem for abstract entailment relations [21].

4 Related Results for Lattices

4.1 Distributive Lattices

The proof given above of Theorem 8—which, as we have seen, in fact proves
Theorem 11—can be generalized from the Lindenbaum algebra to arbitrary dis-
tributive lattices.

Lindenbaum’s Lemma via Open Induction 75

Proposition 12 (OI) In a distributive lattice, every filter is the intersection of the
(proper) prime filters above.

Proof Let (S,�) be a distributive lattice. We show that every filter A ⊆ S is the
intersection of all proper prime filters U with A ⊆ U . In other words, given b ∈ S,
we show that b ∈ A follows from the assumption that A ⊆ U ⇒ b ∈ U for every
proper prime filter U .

To this end, we consider

X = {B ⊆ S | B is a filter and A ⊆ B}.

Partially ordered by inclusion, this X is chain-complete: e.g., the union of a chain of
filters is a filter.

Let P be the predicate on X defined by

P(B) ⇐⇒ b ∈ B.

Note that P is open, as joins of chains in X are given by unions.
We now prove that P is progressive, that is, P(B) follows from the assumption

that P(B ′) holds for all B ′ ∈ X with B ′ ⊃ B. To this end we distinguish two cases.
If B is proper and prime, then we use the hypothesis A ⊆ U ⇒ b ∈ U for U = B.
Otherwise, either B is improper, i.e. B = S, in which case b ∈ B anyway; or B is not
prime. In the latter case there must be c, d /∈ B such that c ∨ d ∈ B. Consider the
filters Bc and Bd generated by B ∪ {c} and B ∪ {d}, respectively. Since these filters
are strictly larger than B, by assumption both P(Bc) and P(Bd), that is, b ∈ Bc ∩ Bd .
This means that either b ∈ B, and we are done, or there are bc and bd in B with b �
bc ∧ c and b � bd ∧ d. Hence

b = b ∨ b � (bc ∧ c) ∨ (bd ∧ d) = (bc ∨ bd) ∧ (bc ∨ d) ∧ (c ∨ bd) ∧ (c ∨ d) ∈ B,

because bc, bd , c ∨ d ∈ B and B is a filter. So b ∈ B as well, that is, P(B).
By OI, the predicate P holds for all U ∈ X . In particular, P(A), that is, b ∈ A.

�
Corollary 13 For all a, b ∈ S,

a � b if and only if a ∈ U ⇒ b ∈ U for all (proper) prime filters U ⊆ S.

Proof Apply the previous proposition to the principal filter ↑ a. �

4.2 Complete Lattices

In the case of complete lattices, it is natural to try to replace prime filters with
completely-prime filters. Recall that a filter U in a complete lattice S is completely-
prime if

∨
T ∈ U implies T � U for every T ⊆ S. One cannot, however, expect

76 F. Ciraulo et al.

a similar proposition to hold true in general. For instance, in the case of locales
(frames), the statement “every filter is an intersection of completely-prime filters”
would imply the so-called property of spatiality, which is simply not true in general.
Recall that a locale is spatial when a � b holds if and only if every “point” in a
also belongs to b, where the notion of a point for a locale is equivalent to that of a
completely-prime filter. The regular open sets of, say, the real line form a locale in
which joins are interiors of closures of unions. Such a locale has no point (though
having many filters, of course: e.g. the principal ones).

For complete lattices we must content ourselves with the following. Note that
Proposition 12 remains true, by a similar proof, when distributivity is dropped, but
filters are replaced by upward closed sets (upsets). The same result extends to the
complete case as well.

Proposition 14 (OI) Every upset in a complete lattice is the intersection of the
(proper) completely-prime upsets above.

As for the proof of Proposition 12, the crucial case is the one in which the upset
B is not completely-prime, i.e. in which there is {ci : i ∈ I } ⊆ S, disjoint from B,
with

∨
i∈I ci ∈ B. Now if I is empty, then B = S and so b ∈ B for the b ∈ S under

consideration. If I is inhabited, for each i ∈ I the upset Bi = ↑ (B ∪ {ci }) is strictly
larger than B and hence contains b by hypothesis. So either b ∈ B or b � ci for all
i ∈ I , that is, b �

∨
i∈I ci ∈ B, and thus b ∈ B.

Acknowledgments The research that has led to this note was carried out within the project
“Abstract Mathematics for Actual Computation: Hilbert’s Program in the 21st Century” funded
by the John Templeton Foundation, and within two of the European Union’s Marie Curie projects:
the Initial Training Network “MALOA: From Mathematical Logic to Applications” and the Inter-
national Research Exchange Scheme project “CORCON: Correctness by Construction”. The final
version of the present note was prepared when the third author was visiting the Munich Center
for Mathematical Philosophy: upon kind invitation by Hannes Leitgeb and with a research fellow-
ship “Erneuter Aufenthalt” by the Alexander-von-Humboldt Foundation. All authors wish to thank
Thierry Coquand, Volker Halbach, Kentaro Fujimoto, Giovanni Sambin and the anonymous referee
for useful hints and constructive critique. Last but not least, the third author would like to express his
gratitude to Gerhard Jäger for now more than a decade of encouragement, support and hospitality.

References

1. U. Berger, A computational interpretation of open induction, in Proceedings of the Ninetenth
Annual IEEE Symposium on Logic in Computer Science (IEEE Computer Society, 2004), pp.
326–334

2. F. Ciraulo,A constructive semantics for non-deducibility.MLQMath. Log.Q. 54, 35–48 (2008)
3. R. Constable, M. Bickford, Intuitionistic completeness of first-order logic. Ann. Pure Appl.

Logic 165, 164–198 (2014)
4. T. Coquand, Two applications of Boolean models. Arch. Math. Logic 37, 143–147 (1997)
5. T. Coquand, Constructive topology and combinatorics, in Constructivity in Computer Science

(San Antonio, TX, 1991), ed. by J.P. Myers Jr., M.J. O’Donnell. Lecture Notes in Computer
Science, vol. 613 (Springer, Berlin, 1992), pp. 159–164

Lindenbaum’s Lemma via Open Induction 77

6. T. Coquand, H. Persson, Gröbner bases in type theory, in Types for Proofs and Programs (Irsee,
1998), ed. by T. Altenkirch, W. Naraschewski, B. Reus. Lecture Notes in Computer Science,
vol. 1657 (Springer, Berlin, 1999), pp. 33–46

7. T. Coquand, J.M. Smith, An application of constructive completeness, in Types for Proofs and
Programs (Torino, 1995), ed. by S. Berardi, M. Coppo. Lecture Notes in Computer Science,
vol. 1158 (Springer, Berlin, 1996), pp. 76–84

8. A.G. Drágalin, A completeness theorem for higher-order intuitionistic logic: an intuitionistic
proof, inMathematical Logic and Its Applications (Druzhba, 1986), ed. byD. Skordev (Plenum,
New York, 1987), pp. 107–124

9. A. Enayat, A. Visser, New constructions of satisfaction classes. Logic Group Preprint Series
303 (Utrecht University, 2013)

10. M. Hendtlass, P. Schuster, A direct proof of Wiener’s theorem, in How the World Computes.
Turing Centenary Conference and Eighth Conference on Computability in Europe (Cambridge,
2012), ed. by S.B. Cooper, A. Dawar, B. Löwe. Lecture Notes in Computer Science, vol. 7318
(Springer, Berlin, 2012), pp. 294–303

11. L. Henkin, The completeness of the first-order functional calculus. J. Symb. Logic 14, 159–166
(1949)

12. S. Huber, P. Schuster, Maximalprinzipien und Induktionsbeweise (Forthcoming)
13. H. Ishihara, Constructive reverse mathematics: compactness properties, inFrom Sets and Types

to Analysis and Topology, ed. by L. Crosilla, P. Schuster. Oxford Logic Guides 48 (Oxford
University Press, 2005), pp. 245–267

14. H. Kotlarski, S. Krajewski, A.H. Lachlan, Construction of satisfaction classes for nonstandard
models. Can. Math. Bull. 24, 283–293 (1981)

15. G.E. Leigh, Conservativity for theories of compositional truth via cut elimination. J. Symbolic
Logic 80, 825–865 (2015)

16. H. Perdry, Strongly Noetherian rings and constructive ideal theory. J. Symb. Comput. 37,
511–535 (2004)

17. H. Persson, An application of the constructive spectrum of a ring, in Type Theory and the
Integrated Logic of Programs, Ph.D. thesis (Chalmers University, University of Göteborg,
1999)

18. J.-C. Raoult, Proving open properties by induction. Inform. Process. Lett. 29(1), 19–23 (1988)
19. H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics. Monografie Matematyczne

41. Panstwowe Wydawnictwo Naukowe, Warszawa (1963)
20. D. Rinaldi, P. Schuster, A universal Krull-Lindenbaum theorem. J. Pure Appl. Algebra (to

appear)
21. D. Rinaldi, P. Schuster, Eliminating disjunctions by disjunction elimination (Forthcoming)
22. G. Sambin, Pretopologies and completeness proofs. J. Symbolic Logic 60, 861–878 (1995)
23. D. Scott, Completeness and axiomatizability inmany-valued logic, inProceedings of the Tarski

Symposium (Berkeley, CA., 1971), ed. by L. Henkin et al. (American Mathematical Society,
Providence, R.I., 1974), pp. 411–435

24. P. Schuster, Induction in algebra: a first case study. in 27th Annual ACM/IEEE Symposium on
Logic in Computer Science (Dubrovnik, 2012) (IEEE Computer Society Publications, 2012),
pp. 581–585. Journal version: Log. Methods Comput. Sci. 3(20), 9 (2013)

25. J.R. Shoenfield, Mathematical Logic (Association for Symbolic Logic, 2000)
26. A. Tarski, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I.

Monatsh. Math. Phys. 37, 361–404 (1930)

Ordinal Analysis of Intuitionistic Power
and Exponentiation Kripke Platek Set
Theory

Jacob Cook and Michael Rathjen

Abstract Until the 1970s, proof theoretic investigations were mainly concerned
with theories of inductive definitions, subsystems of analysis and finite type sys-
tems. With the pioneering work of Gerhard Jäger in the late 1970s and early 1980s,
the focus switched to set theories, furnishing ordinal-theoretic proof theory with a
uniform and elegant framework.More recently it was shown that these tools can even
sometimes be adapted to the context of strong axioms such as the powerset axiom,
where one does not attain complete cut elimination but can nevertheless extract wit-
nessing information and characterize the strength of the theory in terms of provable
heights of the cumulative hierarchy. Here this technology is applied to intuitionistic
Kripke-Platek set theories IKP(P) and IKP(E), where the operation of powerset and
exponentiation, respectively, is allowed as a primitive in the separation and collection
schemata. In particular, IKP(P) proves the powerset axiom whereas IKP(E) proves
the exponentiation axiom. The latter expresses that given any sets A and B, the col-
lection of all functions from A to B is a set, too. While IKP(P) can be dealt with
in a similar vein as its classical cousin, the treatment of IKP(E) posed considerable
obstacles. One of them was that in the infinitary system the levels of terms become
a moving target as they cannot be assigned a fixed level in the formal cumulative
hierarchy solely based on their syntactic structure. As adumbrated in an earlier paper,
the results of this paper are an important tool in showing that several intuitionistic set
theories with the collection axiom possess the existence property, i.e., if they prove
an existential theorem then a witness can be provably described in the theory, one
example being intuitionistic Zermelo-Fraenkel set theory with bounded separation.

Dedicated to Gerhard Jäger on the occasion of his 60th birthday.

J. Cook · M. Rathjen (B)
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK
e-mail: rathjen@maths.leeds.ac.uk

J. Cook
e-mail: jacob_knows@hotmail.uk

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_4

79

80 J. Cook and M. Rathjen

1 Introduction

In his early work, Gerhard Jäger laid the foundations for a direct proof-theoretic
treatment of set theories (cf. [11, 12]) which then began to a large extent to supplant
earlier work on theories of inductive definitions and subsystems of analysis. By and
large, ordinal analyses for set theories are more uniform and transparent than for the
latter theories. The primordial example of a set theory amenable to ordinal analysis is
Kripke-Platek set theory,KP. It is an important theory for various reasons, one being
that a great deal of set theory requires only the axioms ofKP. Another reason is that
admissible sets, the transitive models ofKP, have been a major source of interaction
between model theory of infinitary languages, recursion theory and set theory (cf.
[4]).KP arises from ZF by completely omitting the power set axiom and restricting
separation and collection to bounded formulae. Many of the familiar subsystems of
second order arithmetic can be viewed as reduced versions of set theories based on
the notion of admissible set. This applies for example to a fairly strong theory like
�1

2-CA plus bar induction which is of the same strength as KP augmented by an
axiom saying that every set is contained in an admissible set, whose ordinal analysis
is due to Jäger and Pohlers [15]. By restricting or completely omitting induction
principles in theories of admissible sets, Jäger was also able to give a unified proof-
theoretic treatment of many predicative theories in [14]. Systematic accounts and
surveys of admissible proof theory can be found in [7, 13, 14, 16, 20] and other
places.

Ordinal analyses of ever stronger theories have been obtained over the last 20
years. The strongest systems for which proof-theoretic ordinals have been deter-
mined are extensions ofKP augmented by �1-separation that correspond to subsys-
tems of second-order arithmetic with comprehension restricted to�1

2 comprehension
or iterations thereof (cf. [3, 19, 23]). Thus it appears that it is currently impossible to
furnish an ordinal analysis of any set theory which has the power set axiom among
its axioms as such a theory would dwarf the strength of second-order arithmetic. It
is, however, possible to relativize the techniques of ordinal analysis developed for
Kripke-Platek set theory to obtain useful information about Power Kripke-Platek set
theory as shown in [27]. The kind of information one can extract concerns bounds
for the transfinite iterations of the power set operation that are provable in the lat-
ter theory. In this paper the method is applied to intuitionistic Kripke-Platek set
theories IKP(P) and IKP(E), where the operation of powerset, respectively, expo-
nentiation, is allowed as a primitive in the separation and collection schemata. In
particular, IKP(P) proves the powerset axiom whereas IKP(E) proves the exponen-
tiation axiom. The latter expresses that given any sets A and B, the collection of all
functions from A to B is a set, too. While IKP(P) can be dealt with in a similar vein
as its classical cousin in [27], the treatment of IKP(E) posed considerable obstacles,
one of them being that in the infinitary system terms cannot be assigned a fixed level
in the formal cumulative hierarchy.

Ordinal Analysis of Intuitionistic Power … 81

It was outlined in [25] that the results of this paper are an important tool for
showing that several intuitionistic set theories with the collection axiom possess the
existence property, i.e., if they prove an existential theorem then a witness can be
provably described in the theory. One example for such a theory is intuitionistic
Zermelo-Fraenkel set theory with bounded separation. Details will be presented
in [28].

1.1 Intuitionistic Set Theories and the Existence Property

Intuitionistic theories are known to often possess very pleasing metamathematical
properties such as the disjunction property and the numerical existence property.
While it is fairly easy to establish these properties for arithmetical theories and theo-
ries with quantification over sets of natural numbers or Baire space (e.g. second order
arithmetic and function arithmetic), set theories with their transfinite hierarchies of
sets of sets and the extensionality axiom can pose considerable technical challenges.

Definition 1.1 Let T be a theory whose language, L(T), encompasses the language
of set theory. T has the existence property, EP, if whenever T � ∃x A(x) holds for a
formula A(x) having at most the free variable x , then there is a formula C(x) with
exactly x free, so that

T � ∃!x [C(x) ∧ A(x)].

A theory that does not have the existence property is intuitionistic Zermelo-
Fraenkel set theory, IZF, formulated with Collection, as was shown in [10]. Since
the version of IZF with replacement in lieu of collection has the existence property,
collection is clearly implicated in the failure of EP. This prompted Beeson in [5,
IX.1] to ask the following question:

Does any reasonable set theory with collection have the existence property?

An important theory that is closely related to Martin-Löf type theory is Construc-
tive Zermelo-Fraenkel set theory, CZF (cf. [1, 2]). It has been shown in [30] that
CZF lacks the EP. While the proof is quite difficult, the failure of EP is perhaps not
that surprising since CZF features an axiom, Subset Collection, that follows from a
combination of exponentiation and a choice principle called the presentation axiom.1

However, in [25] it was shown that three perhaps more natural versions of CZF pos-
sess the weak existence property, which requires a provably definable inhabited set
of witnesses for every existential theorem. Tellingly, neither IZF nor CZF has the
weak existence property (see [25, Proposition 1.3] and [30]). The three versions of
CZF shown to have the weak existence property are CZF without subset collection
(CZF−), CZF with exponentiation instead of subset collection (CZFE), and CZF
augmented by the powerset axiom (CZFP). Rathjen [25] also provided reductions of

1Although sometimes even set theories with strong choice principles can have the EP (see [21]).

82 J. Cook and M. Rathjen

these three theories to pertaining versions of intuitionistic Kripke-Platek set theories
in such a way that if the latter theories possessed the existence property for pertaining
syntactically restricted classes of existential theorems, then the former would possess
the full EP. This gave rise to the strategy of first embedding these extended theo-
ries of intuitionistic Kripke-Platek set theory into infinitary proof systems and use
techniques of ordinal analysis to remove those inferences which embody collection.
The second step, then, consists in showing that the infinitary systems have the term
existence property, i.e., for each provable existential theorem there is a witnessing
term. It will then ensue from the fact that the numerical existence property holds for
CZF−, CZFE , and CZFP that the existence property holds for these theories, too.
The numerical existence property was verified in [22] and also holds for CZF, even
when augmented by various choice principles [24].

1.2 Intuitionistic Power and Exponentiation Kripke-Platek
Set Theories

We call a formula bounded or �0 if all its quantifiers are of the form ∀x ∈ a and
∃y ∈ b. The axioms of classical KP consist of Extensionality, Pair, Union, Infinity,
Bounded Separation

∃x ∀u [u ∈ x ↔ (u ∈ a ∧ A(u))]

for all bounded formulae A(u), Bounded Collection

∀x ∈ a ∃y B(x, y) → ∃z ∀x ∈ a ∃y ∈ z B(x, y)

for all bounded formulae B(x, y), and Set Induction

∀x [(∀y ∈ x C(y)) → C(x)] → ∀x C(x)

for all formulae C(x).
We denote by IKP the version of KP where the underlying logic is intuitionistic

logic.
We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆ y . . . as abbreviations

for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.
We call a formula ofL∈ �P

0 if all its quantifiers are of the form Q x ⊆ y or Q x∈y
where Q is ∀ or ∃ and x and y are distinct variables.

Let Fun(f, x, y) be a acronym for the bounded formula expressing that f is a
function with domain x and co-domain y. We use exponentiation bounded quanti-
fiers ∃ f ∈ x y . . . and ∀ f ∈ x y . . . as abbreviations for ∃ f (Fun(f, x, y) ∧ . . .) and
∀x(Fun(f, x, y) → . . .), respectively.

Definition 1.2 The �P
0 -formulae are the smallest class of formulae containing the

atomic formulae closed under ∧,∨,→,¬ and the quantifiers

Ordinal Analysis of Intuitionistic Power … 83

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

The �E
0 -formulae are the smallest class of formulae containing the atomic formulae

closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀ f ∈ ab, ∃ f ∈ ab.

Definition 1.3 IKP(E) has the same language and logic as IKP. Its axioms are the
following: Extensionality, Pairing, Union, Infinity, Exponentiation, Set Induction,
�E

0 -Separation and �E
0 -Collection.

IKP(P) has the same language and logic as IKP. Its axioms are the following:
Extensionality, Pairing, Union, Infinity, Powerset, Set Induction,�P

0 -Separation and
�P

0 -Collection.
The transitive classical models of IKP(P) have been termed power admissi-

ble sets in [9]. There is also a close connection between IKP(P) and versions of
Martin-Löf type theory with an impredicative type of propositions and the calculus
of constructions (see [26]).

Remark 1.4 Alternatively, IKP(P) can be obtained from IKP by adding a function
symbol P for the powerset function as a primitive symbols to the language and the
axiom

∀y [y ∈ P(x) ↔ y ⊆ x]

and extending the schemes of �0-Separation and Collection to the �0-formulae of
this new language.

Likewise, IKP(E) can be obtained from IKP by adding a primitive function
symbol E for the exponentiation and the pertaining axioms.

Definition 1.5 The class of �-formulae in the strict sense, denoted by strict-�, is
the smallest class of formulae containing the�0-formulae closed under∧,∨ and the
quantifiers

∀x ∈ a, ∃x ∈ a, ∃x .

The strict-�P -formulae are the smallest class of formulae containing the �P
0 -

formulae closed under ∧,∨ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a, ∃x .

The strict-�E -formulae are the smallest class of formulae containing the �E
0 -

formulae closed under ∧,∨ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀ f ∈ ab, ∃ f ∈ ab, ∃x .

Later on we shall have occasion to introduce the wider class of �-formulae. A
crucial property that singles out the strict-�-formulae is that every such formula

84 J. Cook and M. Rathjen

is equivalent to a �1-formula provably in IKP, where a �1-formula is a formula
that starts with a single existential quantifier and thereafter continues with a �0-
formula. A similar characterization holds for the strict-�P and strict-�E -formulae.
It is standard to show that IKP(P) proves strict-�P -Collection and IKP(E) proves
strict-�E -Collection (for details in the case of IKP see [1, 2]).

1.3 Outline of the Paper

The main objective of the paper is an in-depth presentation of the ordinal analyses of
the three theories IKP, IKP(P), and IKP(E). In the case of IKP this means charac-
terising the proof theoretic ordinal in the sense of [20], this is done in such a way that
we can also extract witness terms from cut-free derivations of existential statements
in the infinitary system. In the cases of IKP(P) and IKP(E)we present a type of rel-
ativised ordinal analysis similar to that given in [27], we characterise the number of
iterations of the relevant hierarchy of sets (VonNeumann and Exponentiation respec-
tively) that can be proven to exist within the theory. These details cannot be found in
the existing research literature. They are needed for term extraction and, moreover,
have to be shown to be formalizable in CZF−, i.e., constructive Zermelo-Fraenkel
set theory without subset collection. Naturally, the first system to be analyzed is the
simplest. Section2 treats IKP, so is basically a detailed rendering of the intuitionistic
version of the classical analysis ofKP. However, this section is also used later since
several parts of it are modular and thus transfer to the stronger systems without any
changes. Section3 deals with IKP(P) and adapts the machinery of classical [27]
to the intuitionistic case. The system IKP(E) is the most difficult to handle and is
addressed in Sect. 4. A particular challenge is provided by the problem of assigning
a rank to the formal terms of the infinitary system. Ultimately this turned out to be
impossible and we had to deal with it in a new way by allowing for rank declarations
as extra hypothesis.

A further reason to document these ordinal analyses in the literature is that the
second author fosters hopes that this framework can be used to analyzemuch stronger
theories such as ones with full negative separation. It appears that in striking differ-
ence to classical theories, negative separation does not block the methods of ordinal
analysis that bring about the elimination of collection inferences in intuitionistic
derivations.

2 The Case of IKP

This section provides a detailed rendering of the ordinal analysis of Kripke-Platek set
theory formulated with intuitionistic logic, IKP. This is done in such a way that we
are able to extractwitness terms from the resulting cut-free derivations of� sentences
in the infinitary system. This results in a proof that IKP has the existence property

Ordinal Analysis of Intuitionistic Power … 85

for � sentences, which in conjunction with results in [25] verifies that CZF− has
the full existence property. Many of the arguments in this section are modular and
transfer over to the stronger systems analysed in subsequent sections with minimal
changes.

2.1 A Sequent Calculus Formulation of IKP

Definition 2.1 The language of IKP consists of free variables a0, a1, . . . , bound
variables x0, x1, . . ., the binary predicate symbol ∈ and the logical symbols¬,∨,∧,

→,∀, ∃ as well as parentheses),
The atomic formulas are those of the form a ∈ b.
The formulas of IKP are defined inductively by:

(i) All atomic formulas are formulas.
(ii) If A and B are formulas then so are ¬A, A ∨ B, A ∧ B and A → B.
(iii) If A(b) is a formula in which the bound variable x does not occur, then ∀x A(x),

∃x A(x), (∀x ∈ a)A(x) and (∃x ∈ a)A(x) are also formulas.

Quantifiers of the form ∃x and ∀x will be called unbounded and those of the form
(∃x ∈ a) and (∀x ∈ a) will be referred to as bounded quantifiers.

A �0-formula is one in which no unbounded quantifiers appear.
The expression a = b is to be treated as an abbreviation for (∀x ∈ a)(x ∈ b) ∧

(∀x ∈ b)(x ∈ a).
The derivations of IKP take place in a two-sided sequent calculus. The sequents

derived are intuitionistic sequents of the form � ⇒ � where � and � are finite sets
of formulas and � contains at most one formula. The intended meaning of � ⇒ �

is that the conjunction of formulas in � implies the formula in �, or if � is empty, a
contradiction. The expressions⇒ � and � ⇒ are shorthand for ∅ ⇒ � and � ⇒ ∅
respectively. �, A stands for � ∪ {A}, � ⇒ A stands for � ⇒ {A}, etc.

The axioms of IKP are:

Logical axioms: �, A ⇒ A for every �0 formula A.
Extensionality: � ⇒ a = b ∧ B(a) → B(b) for every �0 formula B(a).
Pair: � ⇒ ∃z(a ∈ z ∧ b ∈ z).
Union: � ⇒ ∃z(∀y ∈ z)(∀x ∈ y)(x ∈ z).
�0-Separation: � ⇒ ∃y[(∀x ∈ y)(x ∈ a ∧ B(x)) ∧ (∀x ∈ a)(B(x) → x∈y)]

for every �0-formula B(a).
Set Induction: � ⇒ ∀x[(∀y ∈ xF(y) → F(x)] → ∀xF(x) for any formula

F(a).
Infinity: � ⇒ ∃x[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)].
�0-Collection: � ⇒ (∀x ∈ a)∃yG(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)G(x, y)

for any �0-formula G.

86 J. Cook and M. Rathjen

The rules of inference are

�,C ⇒ �
(∧L) for C ∈ {A, B}.

�, A ∧ B ⇒ �
� ⇒ A � ⇒ B

(∧R)
� ⇒ A ∧ B

�, A ⇒ � �, B ⇒ �
(∨L)

�, A ∨ B ⇒ �

� ⇒ C
(∨R) for C ∈ {A, B}.

� ⇒ A ∨ B

� ⇒ A
(¬L)

�,¬A ⇒
�, A ⇒

(¬R)
� ⇒ ¬A

� ⇒
(⊥)

� ⇒ A

�, B ⇒ � � ⇒ A
(→ L)

�, A → B ⇒ �

�, A ⇒ B
(→ R)

� ⇒ A → B

�, a ∈ b ∧ F(a) ⇒ �
(b∃L)

�, (∃x ∈ b)F(x) ⇒ �

� ⇒ a ∈ b ∧ F(a)
(b∃R)

� ⇒ (∃x ∈ b)F(x)

�, a ∈ b → F(a) ⇒ �
(b∀L)

�, (∀x ∈ b)F(x) ⇒ �

� ⇒ a ∈ b → F(a)
(b∀R)

� ⇒ (∀x ∈ b)F(x)

�, F(a) ⇒ �
(∃L)

�, ∃xF(x) ⇒ �

� ⇒ F(a)
(∃R)

� ⇒ ∃xF(x)

�, F(a) ⇒ �
(∀L)

�,∀xF(x) ⇒ �

� ⇒ F(a)
(∀R)

� ⇒ ∀xF(x)

� ⇒ A �, A ⇒ �
(Cut)

� ⇒ �

In each of the inferences (b∃L), (∃L) (b∀R) and (∀R) the variable a is forbidden
from occurring in the conclusion. Such a variable is known as the eigenvariable of
the inference.

Theminor formulaeof an inference are those rendered prominently in its premises,
the other formulae in the premises will be referred to as side formulae. The principal
formula of an inference is the one rendered prominently in the conclusion. Note that
in inferences where the principal formula is on the left, the principal formula can
also be a side formula of that inference, when this happens we say that there has been
a contraction.

Ordinal Analysis of Intuitionistic Power … 87

2.2 An Ordinal Notation System

Given below is a very brief description of how to carry out the construction of a
primitive recursive ordinal notation system for the Bachmann-Howard ordinal.

Definition 2.2 Let � be a ‘big’ ordinal, eg. ℵ1. (In fact we could have chosen ωCK
1 ,

see [18].) We define the sets B�(α) and ordinals ψ�(α) by transfinite recursion on
α as follows

B�(α) =
⎧
⎨

⎩

closure of {0,�} under:
+, (ξ, η �→ ϕξη),

(ξ �−→ ψ�(ξ))ξ<α.

(1)

ψ�(α) � min{ρ < � : ρ /∈ B(α)}. (2)

It can be shown that ψ�(α) is always defined and thus ψ�(α) < �. Moreover, it
can also be shown that B�(α) ∩ � = ψ�(α).

Let ε�+1 be the least orinal η > � such thatωη = η. The set B�(ε�+1) gives rise to
a primitive recursive ordinal notation system [6, 17]. The ordinalψ�(ε�+1) is known
as the Bachmann-Howard ordinal. There are many slight variants in the specific
ordinal functions used to build up a notation system for this ordinal, for example
rather than ‘closing off’ under the ϕ function at each stage, we could have chosen
ω-exponentiation, all the systems turn out to be equivalent, in that they eventually
‘catch-up’ with one another and the specific ordinal functions used can be defined
in terms of one another. Here the functions ϕ and ψ are chosen as primitive since
they correspond to the ordinal operations arising from the two main cut elimination
theorems of the next section.

2.3 The Infinitary System IRS�

The purpose of this section is to define an intuitionistic style infinitary system IRS�

within which we will be able to embed IKP and then extract useful information
about IKP derivations.

Henceforth all ordinalswill be assumed to belong to the primitive recursive ordinal
representation system arising from B�(ε�+1).

The system is based around the constructible hierarchy up to level �.

L0 := ∅,

Lα+1 := {X ⊆ Lα|X is definable over Lα in the language of IKP with parameters},
Lλ :=

⋃

ξ<λ

Lξ if λ is a limit ordinal.

88 J. Cook and M. Rathjen

Definition 2.3 We inductively define the terms of IRS�. To each term t we also
assign an ordinal level |t |.
(i) For each α < �, Lα is a term with |Lα| := α.
(ii) If F(a, b1, . . . , bn) is a formula of IKP with all free variables indicated and

s1, . . . , sn are IRS� terms with levels less than α, then

[x ∈ Lα | F(x, s1, . . . , sn)
Lα]

is a term of level α. Here FLα indicates that all unbounded quantifiers in F are
restricted to Lα.

The formulae of IRS� are of the form F(s1, . . . , sn) where F(a1, . . . , an) is a
formula of IKP with all free variables displayed and s1, . . . , sn are IRS�-terms.

Note that the system IRS� does not contain free variables. We can think of the
universe made up of IRS�-terms as a formal, syntactical version of L�, unbounded
quantifiers in IRS�-formulas can be thought of as ranging over L�.

For the remainder of this section IRS�-terms and IRS�-formulae will simply be
referred to as terms and formulae.

A formula is said to be �0 if it contains no unbounded quantifiers.
We inductively (and simultaneously) define the class of �-formulae and the class

of �-formulae by the following clauses:

(i) Every �0-formula is a � and a �-formula.
(ii) If A and B are�-formulae (�-formulae) then so are A ∨ B, A ∧ B, (∀x ∈ s)A,

and (∃x ∈ s)A.
(iii) If A is a �-formula (�-formula) then so is ∃x A (∀x A).
(iv) If A is �-formula and B is a �-formula, then A → B and ¬A are �-formulae

while B → A and ¬B are �-formulae.

The strict�-formulae of Definition1.5 are�-formulae but the latter form a larger
collection. It’s perhaps worth noting that in classicalKP every �-formula is equiva-
lent to a�1-formula and every�-formula is equivalent to a�1-formula, and therefore
both are equivalent to strict versions. This, however, does not extend to IKP. These
formulae, though, satisfy well-known persistence properties.

Lemma 2.4 For a formula C and free variable a, let Ca be the result of replacing
each unbounded quantifier ∀x and ∃y in C by ∀x ∈ a and ∃y ∈ a, respectively.
Suppose A is a �-formula and B is a �-formula. Then the following are provable
in IKP:

(i) a ⊆ b ∧ Aa → Ab,
(ii) a ⊆ b ∧ Bb → Ba.

Proof Straightforward by simultaneously induction on the buildup of A and B. �

Abbreviation 2.5 For � a binary propositional connective, A a formula and s, t
terms with | s | < | t | we define the following abbreviation:

Ordinal Analysis of Intuitionistic Power … 89

s ∈̇ t � A := A if t is of the form Lα,

:= B(s) � A if t is of the form [x ∈ Lα | B(x)].

Like in IKP, derivations in IRS� take place in a two sided sequent calculus.
Intuitionistic sequents of the form � ⇒ � are derived, where � and � are finite sets
of formulae and at most one formula occurs in �. �,�,�, . . . will be used as meta
variables ranging over finite sets of formulae.

IRS� has no axioms, although note that some of the rules can have an empty set
of premises. The inference rules are as follows:

(∈ L)∞
�, p ∈̇ t ∧ r = p ⇒ � for all | p | < | t |

�, r ∈ t ⇒ �

(∈ R)
� ⇒ s ∈̇ t ∧ r = s

� ⇒ s∈ t if | s | < | t |

(b∀L)
�, s ∈̇ t → A(s) ⇒ �

�, (∀x ∈ t)A(x) ⇒ �
if | s | < | t |

(b∀R)∞
� ⇒ p ∈̇ t → A(p) for all | p | < | t |
� ⇒ (∀x ∈ t)A(x)

(b∃L)∞
�, p ∈̇ t ∧ A(p) ⇒ � for all | p | < | t |
�, (∃x ∈ t)A(x) ⇒ �

(b∃R)
� ⇒ s ∈̇ t ∧ A(s)

� ⇒ (∃x ∈ t)A(x)
if | s | < | t |

(∀L)
�, A(s) ⇒ �

�,∀x A(x) ⇒ �

(∀R)∞
� ⇒ A(p) for all p
� ⇒ ∀x A(x)

(∃L)∞
�, A(p) ⇒ � for all p
�, ∃x A(x) ⇒ �

(∃R)
� ⇒ A(s)

� ⇒ ∃x A(x)

(�-Ref�) � ⇒ A
� ⇒ ∃zAz if A is a �-formula,

as well as the rules (∧L), (∧R), (∨L), (∨R), (¬L), (¬R), (⊥), (→ L), (→ R) and
(Cut) which are defined identically to the rules of the same name in IKP.

In general we are unable to remove cuts from IRS� derivations, one of the main
obstacles to full cut elimination comes from (�-Ref�) since it breaks the symmetry of
the other rules. However we can still perform cut elimination on certain derivations,
provided they are of a very uniform kind. Luckily, certain embedded proofs from
IKP will be of this form. In order to express uniformity in infinite proofs we draw
on [7], where Buchholz developed a powerful method of describing such uniformity,
called operator control.

90 J. Cook and M. Rathjen

Definition 2.6 Let

P(ON) = {X : X is a set of ordinals}.

A class function
H : P(ON) → P(ON)

will be called an operator ifH satisfies the following conditions for all X ∈ P(ON):

1. X ⊆ Y ⇒ H(X) ⊆ H(Y) (monotone).
2. X ⊆ H(X) (inclusive).
3. H(H(X)) = H(X) (idempotent).
4. 0 ∈ H(X) and � ∈ H(X).
5. If α has Cantor normal form ωα1 + · · · + ωαn , then

α∈H(X) iff α1, . . . ,αn ∈H(X).

The latter ensures thatH(X) will be closed under+ and σ �→ ωσ , and decompo-
sition of its members into additive and multiplicative components.

From now on α ∈ H and {α1, . . . ,αn} ⊆ H will be considered shorthand for
α ∈ H(∅) and {α1, . . . ,αn} ⊆ H(∅) respectively.

Definition 2.7 If A is a formula let

k(A) := {α ∈ ON : the symbol Lα occurs in A, subterms included}.

Likewise we define

k({A1, . . . , An}) := k(A1) ∪ · · · ∪ k(An) and k(� ⇒ �) := k(�) ∪ k(�).

Now for H an arbitrary operator, s a term and X a formula, set of formulae or a
sequent we define

H[s](X) :=H(X ∪ {|s|}),
HX :=H(X ∪ k(X)).

Lemma 2.8 Let H be an operator, s a term and X a formula, set of formulae or
sequent.

(i) For any X, X ′ ∈ P(ON), if X ′ ⊆ X then H(X ′) ⊆ H(X)].
(ii) H[s] and H[X] are operators.
(iii) If k(X) ⊆ H(∅) then H[X] = H.

(iv) If | s | ∈ H then H[s] = H.

Ordinal Analysis of Intuitionistic Power … 91

Proof This result is demonstrated in full in [17]. �

We also need to keep track of the complexity of cuts appearing in derivations.

Definition 2.9 The rank of a term or formula is determined by

1. rk(Lα) := ω · α,
2. rk([x ∈ Lα | F(x)]) := max{ω · α + 1, rk(F(L0)) + 2},
3. rk(s ∈ t) := max{rk(s) + 6, rk(t) + 1},
4. rk(A ∧ B) = rk(A ∨ B) = rk(A → B) := max{rk(A) + 1, rk(B) + 1},
5. rk(¬A) := rk(A) + 1,
6. rk((∃x ∈ t)A(x)) = rk((∀x ∈ t)A(x)) := max{rk(t), rk(F(L0)) + 2},
7. rk(∃x A(x)) = rk(∀x A(x)) := max{�, rk(F(L0)) + 1}.
Observation 2.10 (i) rk(s) = ω · |s| + n for some n < ω.
(ii) If A is �0, rk(A) = ω ·max(k(A)) + m for some m < ω.
(iii) If A contains unbounded quantifiers rk(A) = � + m for some m < ω.
(iv) rk(A) < � if and only if A is �0.

There is plenty of leeway in defining the actual rank of a formula, basically we
need to make sure the following lemma holds.

Lemma 2.11 In every rule of IRS� other than (�-Ref�) and (Cut), the rank of the
minor formulae is strictly less than the rank of the principal formula.

Proof This result is demonstrated for a different set of propositional connectives in
[17], the adapted proof to the intuitionistic system is similar. �

Definition 2.12 (Operator controlled derivability for IRS�) Let H be an operator
and � ⇒ � an intuitionistic sequent of IRS�, we define the relation H α

ρ � ⇒ �

by recursion on α.
We require always that k(� ⇒ �) ∪ {α} ⊆ H, this condition will not be repeated

in the inductive clauses for each of the inference rules of IRS� below. The column
on the right gives the ordinal requirements for each of the inference rules.

(∈ L)∞
H[r] αr

ρ �, r ∈̇ t ∧ r = s ⇒ � for all | r | < | t |
H α

ρ �, s ∈ t ⇒ �

| r | ≤ αr < α

(∈ R)
H α0

ρ � ⇒ r ∈̇ t ∧ r = s

H α

ρ � ⇒ s ∈ t

α0 < α
| r | < | t |
| r | < α

92 J. Cook and M. Rathjen

(b∀L)
H α0

ρ �, s ∈̇ t → A(s) ⇒ �

H α

ρ �, (∀x ∈ t)A(x) ⇒ �

α0 < α
| s | < | t |
| s | < α

(b∀R)∞
H[s] αs

ρ � ⇒ s ∈̇ t → F(s) for all | s | < | t |
H α

ρ � ⇒ (∀x ∈ t)F(x)
| s | ≤ αs < α

(b∃L)∞
H[s] αs

ρ �, s ∈̇ t ∧ F(s) ⇒ � for all | s | < | t |
H α

ρ �, (∃x ∈ t)F(x) ⇒ �

| s | ≤ αs < α

(b∃R)
H α0

ρ � ⇒ s ∈̇ t ∧ A(s)

H α

ρ � ⇒ (∃x ∈ t)A(x)

α0 < α
| s | < | t |
| s | < α

(∀L)
H α0

ρ �, F(s) ⇒ �

H α

ρ �,∀xF(x) ⇒ �

α0 + 1 < α
| s | < α

(∀R)∞
H[s] αs

ρ � ⇒ F(s) for all s

H α

ρ � ⇒ ∀xF(x)
| s | < αs + 1 < α

(∃L)∞
H[s] αs

ρ �, F(s) ⇒ � for all s

H α

ρ �, ∃xF(x) ⇒ �

| s | < αs + 1 < α

(∃R)
H α0

ρ � ⇒ F(s)

H α

ρ �,⇒ ∃xF(x)

α0 + 1 < α
| s | < α

(Cut)
H α0

ρ �, B ⇒ � H α1

ρ � ⇒ B

H α

ρ � ⇒ �

α0,α1 < α
rk(B) < ρ

(�-Ref�)
H α0

ρ � ⇒ A

H α

ρ � ⇒ ∃z Az

α0 + 1,� < α
A is a �-formula

Lastly if � ⇒ � is the result of a propositional inference of the form (∧L), (∧R),
(∨L), (∨R), (¬L), (¬R), (⊥), (→ L)or (→ R), with premise(s)�i ⇒ �i then from
H α0

ρ �i ⇒ �i (for each i) we may conclude H α

ρ � ⇒ � , provided α0 < α.

Ordinal Analysis of Intuitionistic Power … 93

Lemma 2.13 (Weakening and Persistence for IRS�)

(i) If �0 ⊆ �, k(�) ⊆ H, α0 ≤ α ∈ H, ρ0 ≤ ρ and H α0

ρ0
�0 ⇒ � then

H α

ρ � ⇒ � .

(ii) If β ≥ γ ∈ H and H α

ρ �, (∃x ∈ Lβ)A(x) ⇒ � then H α

ρ �, (∃x ∈ Lγ)

A(x) ⇒ � .

(iii) Ifβ ≥ γ ∈ HandH α

ρ � ⇒ (∀x ∈ Lβ)A(x) thenH α

ρ � ⇒ (∀x ∈ Lγ)A(x) .

(iv) If γ ∈ H and H α

ρ �, ∃x A(x) ⇒ � then H α

ρ �, (∃x ∈ Lγ)A(x) ⇒ � .

(v) If γ ∈ H and H α

ρ � ⇒ ∀x A(x) then H α

ρ � ⇒ (∀x ∈ Lγ)A(x) .

Proof We show (i), (ii) and (v).

(i) is proved by an easy induction on α.
(ii) Is also proved using induction on α, suppose β ≥ γ ∈ H(∅) and
H α

ρ �, (∃x ∈ Lβ)A(x) ⇒ �. If (∃x ∈ Lβ)A(x) was not the principal formula of
the last inference or the last inference was not (b∃L)∞ then we may apply the induc-
tion hypotheses to it’s premises followed by the same inference again. So suppose
(∃x ∈ Lβ)A(x) was the principal formula of the last inference which was (b∃L)∞,
so we have

H[s] αs

ρ �, (∃x ∈ Lβ)A(x), A(s) ⇒ � for all |s| < β, with αs < α.

From the induction hypothesis we obtain

H[s] αs

ρ �, (∃x ∈ Lγ)A(x), A(s) ⇒ � for all |s| < β, with αs < α

but since β ≥ γ this also holds for all |s| < γ. So by another application of (b∃L)∞
we get

H α

ρ �, (∃x ∈ Lγ)A(x) ⇒ �

as required.
For (v) suppose H α

ρ � ⇒ ∀x A(x). The interesting case is where ∀x A(x) was
the principal formula of the last inference, which was (∀R)∞, in this case we have

H[s] αs

ρ � ⇒ A(s) for all s, with | s | < αs + 1 < α.

So taking just the cases where | s | < γ and noting that in these cases A(s) ≡ s ∈̇
Lγ → A(s), we may apply (b∀R) to obtain

H α

ρ � ⇒ (∀x ∈ Lγ)A(x)

as required.
The proofs of (iii) and (iv) may be carried out in a similar manner to those

above. �

94 J. Cook and M. Rathjen

2.4 Cut Elimination for IRS�

Lemma 2.14 (Inversions of IRS�)

(i) IfH α

ρ �, A ∧ B ⇒ � then H α

ρ �, A, B ⇒ � .

(ii) IfH α

ρ � ⇒ A ∧ B then H α

ρ � ⇒ A and H α

ρ � ⇒ B .

(iii) IfH α

ρ �, A ∨ B ⇒ � then H α

ρ �, A ⇒ � and H α

ρ �, B ⇒ � .

(iv) IfH α

ρ �, A → B ⇒ � then H α

ρ �, B ⇒ � .

(v) IfH α

ρ � ⇒ A → B then H α

ρ �, A ⇒ B .

(vi) IfH α

ρ � ⇒ ¬A then H α

ρ �, A ⇒ .

(vii) IfH α

ρ �, r ∈ t ⇒ � then H[s] α

ρ �, s ∈̇ t ∧ r = s ⇒ � for all |s| < |t |.
(viii) If H α

ρ �, (∃x ∈ t)A(x) ⇒ � then H[s] α

ρ �, s ∈̇ t ∧ A(s) ⇒ � for all
|s| < |t |.

(ix) IfH α

ρ � ⇒ (∀x ∈ t)A(x) thenH[s] α

ρ � ⇒ s ∈̇ t → A(s) for all |s| < |t |.
(x) IfH α

ρ �, ∃x A(x) ⇒ � then H[s] α

ρ �, A(s) ⇒ � for all s.

(xi) IfH α

ρ �,⇒ ∀x A(x) then H[s] α

ρ � ⇒ A(s) for all s.

Proof All proofs are by induction on α, we treat three of the most interesting cases,
(iv), (vi) and (x).

(iv) Suppose H α

ρ �, A → B ⇒ �, If the last inference was not (→ L) or the
principal formula of that inference was not A → B we may apply the induction
hypothesis to the premises of that inference, followed by the same inference again.
Now suppose A → B was the principal formula of the last inference, which was
(→ L). Thus, with the possible use of weakening, we have

H α0

ρ �, B, A → B ⇒ � for some α0 < α, (1)

H α1

ρ �, A → B ⇒ A for some α1 < α. (2)

Applying the induction hypothesis to (1) yields H α0

ρ �, B ⇒ � from which we
may obtain the desired result by weakening.
(vi) Now supposeH α

ρ � ⇒ ¬A. If ¬A was the principal formula of the last infer-

ence which was (¬R) then we have H α0

ρ �, A ⇒ for some α0 < α, from which
we may obtain the desired result by weakening. If the last inference was (⊥) then
H α0

ρ � ⇒ for some α0 < α, fromwhich we also obtain the desired result by weak-
ening. If the last inference was different to (¬R) and (⊥) we may apply the induc-
tion hypothesis to the premises of that inference followed by the same inference
again.
(x) Finally suppose H α

ρ �, ∃x A(x) ⇒ �. If ∃x A(x) was the principal formula of
the last inference which was (∃L)∞ then we have

H[s] αs

ρ �, ∃x A(x), A(s) ⇒ � with αs < α for each s.

Ordinal Analysis of Intuitionistic Power … 95

Applying the induction hypothesis yields

H[s] αs

ρ �, A(s) ⇒ �

from which we get the desired result by weakening. If ∃x A(x) was not the principal
formula of the last inference or the last inference was not (∃L)∞ then we may apply
the induction hypothesis to the premises of that inference followed by the same
inference again. �

Lemma 2.15 (Reduction for IRS�) Let ρ := rk(C) �= �.

If H α

ρ �,C ⇒ � and H β

ρ � ⇒ C then H α # α # β # β

ρ �,� ⇒ �.

Proof The proof is by induction on α #α # β # β. Assume that

ρ := rk(C) �= �, (1)

H α

ρ �,C ⇒ � , (2)

H β

ρ � ⇒ C. (3)

If C was not the principal formula of the last inference in both derivations then we
may simply use the induction hypothesis on the premises and then the final inference
again.

So suppose C was the principal formula of the last inference in both (2) and
(3). Note also that (1) gives us immediately that the last inference in (3) was not
(�-Ref�).

We treat three of the most interesting cases.
Case 1. Suppose C ≡ r ∈ t , thus we have

H[p] αp

ρ �,C, p ∈̇ t ∧ r = p ⇒ � for all | p | < | t | with αp < α

and
H β0

ρ � ⇒ s ∈̇ t ∧ r = s for some | s | < | t | with β0 < β. (4)

Now from (5) we know that | s | ∈ H and thus from (4) we have

H αs

ρ �,C, s ∈̇ t ∧ r = s ⇒ � . (5)

Applying the induction hypothesis to (6) and (3) yields

H αs # αs # β # β

ρ �,�, s ∈̇ t ∧ r = s ⇒ � . (6)

96 J. Cook and M. Rathjen

Finally a (Cut) applied to (5) and (7) yields

H α #α # β # β

ρ �,� ⇒ � (7)

as required.
Case 2. Now suppose C ≡ (∀x ∈ t)F(x) so we have

H α0

ρ �,C, s ∈̇ t → F(s) ⇒ � for some | s | < | t | with α0, | s | < α (8)

and
H[p] βp

ρ � ⇒ p ∈̇ t → F(p) for all | p | < | t | with βp < β. (9)

Now (8) gives s ∈ H and thus from (9) we have

H βs

ρ � ⇒ s ∈̇ t → F(s) . (10)

Applying the induction hypothesis to (3) and (8) gives

H α0 # α0 # β # β

ρ �,�, s ∈̇ t → F(s) ⇒ � . (11)

Finally (Cut) applied to (10) and (11) yields the desired result.
Case 3. Now suppose C ≡ A → B so we have

H α0

ρ �,C ⇒ A with α0 < α, (12)

H α1

ρ �,C, B ⇒ � with α1 < α, (13)

H β0

ρ �, A ⇒ B with β0 < β. (14)

The induction hypothesis applied to (12) and (3) gives

H α0 # α0 # β # β

ρ �,� ⇒ A . (15)

Now an application of (Cut) to (15) and (14) gives

H α0 # α # β # β

ρ �,� ⇒ B . (16)

Inversion (Lemma2.14 (iv)) applied to (13) gives

H α1

ρ �, B ⇒ � . (17)

Finally a single application of (Cut) to (16) and (17) yields the desired result. �

Ordinal Analysis of Intuitionistic Power … 97

Theorem 2.16 (Predicative Cut Elimination for IRS�) Suppose H
α

ρ+ωβ
� ⇒ � ,

where � /∈ [ρ, ρ + ωβ) and β ∈ H, then

H ϕβα

ρ � ⇒ � .

Provided H is an operator closed under ϕ.

Proof The proof is by main induction on β and subsidiary induction on α.
If the last inference was anything other than (Cut) or was a cut of rank < ρ then

we may apply the subsidiary induction hypothesis to the premises and then re-apply
the final inference. So suppose the last inference was (Cut) with cut-formula C and
rk(C) ∈ [ρ, ρ + ωβ). So we have

H α0

ρ+ωβ
�,C ⇒ � with α0 < α, (1)

H α1

ρ+ωβ
� ⇒ C with α1 < α. (2)

First applying the subsidiary induction hypothesis to (1) and (2) gives

H ϕβα0

ρ �,C ⇒ �, (3)

H ϕβα1

ρ �,⇒ C . (4)

Now if rk(C) = ρ then one application of the Reduction Lemma2.15 gives the
desired result (once it is noted that ϕβα0 #ϕβα0 #ϕβα1 #ϕβα1 < ϕβα since ϕβα
is additive principal.)

Now let us suppose that β > 0 and rk(C) ∈ (ρ, ρ + ωβ). Since rk(C) < ρ + ωβ

we can find some β0 < β and some n < ω such that

rk(C) < ρ + n · ωβ0 .

Thus applying (Cut) to (3) and (4) gives

H ϕβα

ρ+n·ωβ0
� ⇒ � .

Now by the main induction hypothesis we obtain

H ϕβ0(ϕβα)

ρ+(n−1)·ωβ0
� ⇒ �.

But by definition ϕβα is a fixed point of the function ϕβ0(·) i.e. ϕβ0(ϕβα) = ϕβα,
so we have

H ϕβα

ρ+(n−1)·ωβ0
� ⇒ �.

98 J. Cook and M. Rathjen

From here a further (n − 1) applications of the main induction hypothesis yields the
desired result. �

Lemma 2.17 (Boundedness for IRS�) If A is a �-formula, B is a �-formula,
α ≤ β < � and β ∈ H then

(i) IfH α

ρ � ⇒ A then H α

ρ � ⇒ ALβ .

(ii) IfH α

ρ �, B ⇒ � then H α

ρ �, BLβ ⇒ � .

Proof Suppose thatH α

ρ � ⇒ A . We prove (i) and (ii) simultaneously by induction
on α.

First we look at (i). If A was not the principal formula of the last inference then
we can simply use the induction hypothesis. If Awas the principal formula of the last
inference and is of the form ¬C , C ∧ D, C ∨ D, C → D, (∃x ∈ t)C(x) or (∀x ∈
t)C(x), then again the result follows immediately from the induction hypothesis.

Note that the last inference cannot have been (∀R)∞ or (�-Ref�) since A is a �

formula and α < �.
So suppose A ≡ ∃xC(x) and

H α0

ρ � ⇒ C(s)

for some α0, | s | < α. By induction hypothesis we obtain

H α0

ρ � ⇒ C(s)Lβ .

Which may be written as

H α0

ρ � ⇒ s ∈̇ Lβ ∧ C(s)Lβ .

Now an application of (b∃R) yields the desired result.
As part (ii) is proved in a similar manner, we shall confine ourselves to the case

when the last inference was (→ L)with principal formula B. So suppose B ≡ C →
D and

H α0

ρ � ⇒ C and H α0

ρ �, D ⇒ �

for some α0, | s | < α. By induction hypothesis we obtain

H α0

ρ � ⇒ CLβ and H α0

ρ �, DLβ ⇒ � .

Now an application of (→ L) yields the desired result. �

Definition 2.18 For each η we define

Hη : P(B�(ε�+1)) −→ P(B�(ε�+1)),

Hη(X) : =
⋂

{B�(α) : X ⊆ B�(α) and η < α}.

Ordinal Analysis of Intuitionistic Power … 99

Lemma 2.19 (i) Hη is an operator for each η.
(ii) η < η′ =⇒ Hη(X) ⊆ Hη′(X).
(iii) If ξ ∈ Hη(X) and ξ < η + 1 then ψ�(ξ) ∈ Hη(X).

Proof This is proved in [7]. �

Lemma 2.20 Suppose η ∈ Hη and let β̂ := η + ω�+β .

(i) If α ∈ Hη then α̂,ψ�(α̂) ∈ Hα̂.
(ii) If α0 ∈ Hη and α0 < α then ψ�(α̂0) < ψ�(α̂).

Proof (i) From α, η ∈ Hη = B�(η + 1) we get α̂ ∈ B�(η + 1) and hence α̂ ∈
B�(α̂) by Lemma2.19(ii). Thus ψ�(α̂) ∈ B�(α̂ + 1) = Hα̂(∅).
(ii) Suppose that α > α0 ∈ Hη. By the argument above we get ψ�(α̂o) ∈ B�(α̂0 +
1) ⊆ B�(α̂), thus ψ�(α̂0) < ψ�(α̂). �

Theorem 2.21 (Collapsing for IRS�) Suppose that η ∈ Hη, � is a set of at most
one �-formula and � a finite set of �-formulae. Then

Hη
α

�+1
� ⇒ � implies Hα̂

ψ�(α̂)

ψ�(α̂)
� ⇒ � .

Proof We proceed by induction on α. If the last inference was propositional then the
assertion follows easily from the induction hypothesis.

Case 1. Suppose the last inference was (b∀R)∞, then � = {(∀x ∈ t)F(x)} and

Hη[p] αp

�+1
� ⇒ p ∈̇ t → F(p) for all | p | < | t | with αp < α.

Since k(t) ⊆ Hη, we know that | t | ∈ B(η + 1) and thus | t | < ψ�(η + 1). Thus
k(p) ⊆ Hη for all | p | < | t |, so Hη[p] = Hη for all such p. Since p ∈̇ t → F(p)
is also a �-formula we can invoke the induction hypothesis to give

Hα̂p

ψ�(α̂p)

ψ�(α̂p)
�, p ∈̇ t ⇒ F(p) .

Since ψ�(α̂p) + 1 < ψ�(α̂) for all p, we may apply (→ R) and then (b∀R)∞ to
obtain the desired result.

Case 2. Suppose the last inference was (b∀L) so (∀x ∈ t)F(x) ∈ � and

Hη
α0

�+1
�, s ∈̇ t → F(s) ⇒ � for some | s | < | t | with α0 < α.

Noting that s ∈̇ t → F(s) is itself a�-formula, we may apply the induction hypoth-
esis to give

Hα̂0

ψ�α̂0

ψ�α̂0
�, s ∈̇ t → F(s) ⇒ �

from which we obtain the desired result using one application of (b∀L).

100 J. Cook and M. Rathjen

Case 3. (b∃L)∞ and (b∃R) are similar to cases 1 and 2.
Case 4. Suppose the last inference was (∃R), so � = {∃xF(x)} and

Hη
α0

�+1
� ⇒ F(s) for some | s | < α and α0 < α.

Since F(s) is � we may immediately apply the induction hypothesis to obtain

Hα̂0

ψ�α̂0

ψ�α̂0
� ⇒ F(s) .

Nowsince | s | ∈ Hη = B(η + 1)weknow that | s | < ψ�(η + 1) < ψ�α̂, sowemay
apply (∃R) to obtain the desired result.

Case 5. If the last inference was (∀L) we may argue in a similar fashion to Case
4.

It cannot be the case that the last inference was (∃L) or (∀R) since � contains
only � formulae and � only � formulae.

Case 6. Suppose the last inference was (�-Ref�), so � = {∃zFz} for some �

formula F and
Hη

α0

�+1
� ⇒ F .

The induction hypothesis yields

Hα̂0

ψ�α̂0

ψ�α̂0
� ⇒ F.

Now applying Boundedness Lemma2.17 yields

Hα̂0

ψ�α̂0

ψ�α̂0
� ⇒ FLψ�(α̂0) .

From which one application of (∃R) yields the desired result.
Case 7. Finally suppose the last inference was (Cut), then there is a formula C

with rk(C) ≤ � and α0 < α such that

Hη
α0

�+1
�,C ⇒ �, (1)

Hη
α0

�+1
� ⇒ C. (2)

7.1 If rk(C) < � thenC contains only bounded quantification and as such is both
� and �, thus we may apply the induction hypothesis to both (1) and (2) to give

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
�,C ⇒ �, (3)

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
� ⇒ C . (4)

Ordinal Analysis of Intuitionistic Power … 101

Since k(C) ⊆ Hη and rk(C) < �, we have rk(C) < ψ�(η + 1), so we may apply
(Cut) to (3) and (4) to obtain the desired result.

7.2 If rk(C) = � then C ≡ ∃xF(x) or C ≡ ∀xF(x) with F(L0) a �0 formula.
The two cases are similar so for simplicity just the case where C ≡ ∃xF(x) is con-
sidered.

We can begin by immediately applying the induction hypothesis to (2) since C is
a � formula, giving

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
� ⇒ C .

Now applying Boundedness Lemma2.17 yields

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
� ⇒ CLψ�(α̂0) . (5)

Since ψ�(α̂0) ∈ Hα̂0 we may apply Lemma2.13(ii) to (1) to obtain

Hα̂0

α0

�+1
�, (∃x ∈ Lψ�(α̂0))F(x) ⇒ � .

Now (∃x ∈ Lψ�(α̂0))F(x) is bounded and hence � so by the induction hypothesis
we obtain

Hα̂1

ψ�(α1

ψ�(α1)
�, (∃x ∈ Lψ�(α̂0))F(x) ⇒ � . (6)

where α1 := α̂0 + ω�+α0 . Since α1 < η + ω�+α := α̂ and rk((∃x ∈ Lψ�(α̂0))F(x))
< ψ�(α) we may apply (Cut) to (5) and (6) to complete the proof. �

2.5 Embedding IKP into IRS�

In this section we show how IKP derivations can be carried out in a very uniform
manner within IRS�. First some preparatory definitions.

Definition 2.22 (i) Given ordinals α1, . . . ,αn . The expression ωα1 # · · · # ωαn

denotes the ordinal
ωαp(1) + · · · + ωαp(n)

where p : {1, . . . , n} �→ {1, . . . , n} such that αp(1) ≥ · · · ≥ αp(n). More gen-
erally α # 0 := 0 # α := 0 and if α =NF ωα1 + · · · + ωαn and β =NF ωβ1 +
· · · + ωβm then α # β := ωα1 # · · · # ωαn # ωβ1 # · · · # ωβm .

(ii) If A is any IRS�-formula then no(A) := ωrk(A) and if � ⇒ � is an IRS�-
sequent containing formulas {A1, . . . , An}, then no(� ⇒ �) := no(A1) # · · ·
no(An).

(iii) � � ⇒ � will be used to abbreviate that

H[� ⇒ �] no(�⇒�)

0
� ⇒ � holds for any operator H.

102 J. Cook and M. Rathjen

(iv) �ξ
ρ � ⇒ � will be used to abbreviate that

H[� ⇒ �] no(�⇒�) # ξ

ρ � ⇒ � holds for any operator H.

We would like to be able to use � as a calculus since it dispenses with a lot of
superfluous notation, luckily under certain conditions this is possible.

Lemma 2.23 (i) If � ⇒ � follows from premises �i ⇒ �i by an inference other
than (Cut) or (�-Ref�) and without contractions then

if �α
ρ �i ⇒ �i then �α

ρ � ⇒ �.

(ii) If �α
ρ �, A, B ⇒ � then �α

ρ �, A ∧ B ⇒ �.

Proof The first part follows from the additive principal nature of ordinals of the form
ωα and Lemma2.11.

For the second part suppose �α
ρ �, A, B ⇒ � which means we have

H[�, A, B ⇒ �] no(�⇒�) # no(A) # no(B) #α

ρ �, A, B ⇒ � .

Two applications of (∧L) yields

H[�, A, B ⇒ �] no(�⇒�) # no(A) # no(B) #α+2
ρ �, A ∧ B ⇒ � .

It remains to note that H[�, A, B ⇒ �] = H[�, A ∧ B ⇒ �] and

no(A) # no(B) + 2 = ωrk(A) # ωrk(B) + 2 < ωrk(A∧B) = no(A ∧ B)

to complete the proof. �

Lemma 2.24 For any IRS� formulas A, B and terms s, t we have

(i) � �, A ⇒ A.

(ii) � s ∈ s ⇒.
(iii) �⇒ s ⊆ s here s ⊆ s is shorthand for (∀x ∈ s)(x ∈ s).
(iv) �⇒ s ∈̇ t → s ∈ t and � s ∈̇ t ⇒ s ∈ t , for | s | < | t |.
(v) � s = t ⇒ t = s.
(vi) If � �, A ⇒ B then �, s ∈̇ t ∧ A ⇒ s ∈̇ t ∧ B for | s | < | t |.
(vii) If � �, A, B ⇒ � then � �, s ∈̇ t → A, s ∈̇ t ∧ B ⇒ � for | s | < | t |.
(viii) If | s | < β then �⇒ s ∈ Lβ .

Proof (i) By induction of rk(A). We split into cases based on the form of the formula
A.

Case 1. If A ≡ (r ∈ t) then by the induction hypothesis we have

� �, s ∈̇ t ∧ r = s ⇒ s ∈̇ t ∧ r = s for all | s | < | t |.

Ordinal Analysis of Intuitionistic Power … 103

The following is a template for IRS� derivations.

� s ∈̇ t ∧ r = s ⇒ s ∈̇ t ∧ r = s for all | s | < | t |
(∈ R) � s ∈̇ t ∧ r = s ⇒ r ∈ t for all | s | < | t |

(∈ L)∞ � r ∈ t ⇒ r ∈ t

Case 2. If A ≡ (∃x ∈ t)F(x) then by the induction hypothesis we have

� s ∈̇ t ∧ F(s) ⇒ s ∈̇ t ∧ F(s) for all | s | < | t |.

We have the following template for IRS� derivations.

� s ∈̇ t ∧ F(s) ⇒ s ∈̇ t ∧ F(s) for all | s | < | t |
(b∃R) � s ∈̇ t ∧ F(s) ⇒ (∃x ∈ t)F(x) for all | s | < | t |

(b∃L)∞ � (∃x ∈ t)F(x) ⇒ (∃x ∈ t)F(x)

Case 3. All remaining cases can be proved in a similar fashion to above.

(ii) The proof is by induction on rk(s), inductively we get � r ∈ r ⇒ for all
| r | < | s |. Now if s is of the form Lα, then r ∈ r ≡ r ∈̇ s → r ∈ r and we have the
following template for IRS� derivations.

� r ∈ r ⇒ for all | r | < | s |
(b∀L) � (∀x ∈ s)(x ∈ r) ⇒ for all | r | < | s |
(∧L) � s = r ⇒ for all | r | < | s |

(∈ L)∞ � s ∈ s ⇒
Now if s ≡ [x ∈ Lα | B(x)] then we have the following template for derivations in
IRS�.

(i)
� B(r) ⇒ B(r) for all | r | < | s |

Induction Hypothesis
� r ∈ r ⇒ for all | r | < | s |

(→ L) � B(r), B(r) → r ∈ r ⇒
(b∀L) � B(r), (∀x ∈ s)(x ∈ r) ⇒
(∧L) � B(r), r = s ⇒

Lemma 2.23(ii) � B(r) ∧ r = s ⇒
(∈ L)∞ � s ∈ s ⇒

(iii) Again we use induction on rk(s). Inductively we have �⇒ r ⊆ r for all | r | <
| s |. If s ≡ [x ∈ Lα | B(x)] then we have the following template for derivations in
IRS�.

(i)
� B(r) ⇒ B(r) for all | r | < | s |

Induction Hypothesis

� B(r) ⇒ r ⊆ r for all | r | < | s |
(∧R) � B(r) ⇒ r = r

(∧R) � B(r) ⇒ B(r) ∧ r = r
(∈ R) � B(r) ⇒ r ∈ s

(→ R) �⇒ r ∈̇ s → r ∈ s
(b∀R)∞ �⇒ (∀x ∈ s)(x ∈ s)

104 J. Cook and M. Rathjen

If s ≡ Lα then we have the following template for derivations in IRS�.

Induction Hypothesis
�⇒ r ⊆ r for all | r | < | s |

(∧R) �⇒ r = r
(∈ R) �⇒ r ∈ s

(b∀R)∞ �⇒ (∀x ∈ s)(x ∈ s)

(iv) Was shown whilst proving (iii).
(v) The following is a template for IRS� derivations

(i)
� s ⊆ t ⇒ s ⊆ t

(∧L) � s = t ⇒ s ⊆ t

(i)
� t ⊆ s ⇒ t ⊆ s

(∧L) � s = t ⇒ t ⊆ s
(∧R) � s = t ⇒ t = s

(vi) Trivial for t ≡ Lα, now if t ≡ [x ∈ Lα | C(x)] then we have the following tem-
plate for IRS� derivations.

� �, A ⇒ B
(∧L) � �,C(s) ∧ A ⇒ B

� �,C(s) ⇒ C(s)
(∧L) � �,C(s) ∧ A ⇒ C(s)

(∧R) � �,C(s) ∧ A ⇒ C(s) ∧ B

(vii) This is also trivial for t ≡ Lα so suppose t ≡ [x ∈ Lα | C(x)] and we have the
following template for IRS� derivations.

� �,C(s) ⇒ C(s)
(∧L) � �,C(s) ∧ B ⇒ C(s)

� �, A, B ⇒ �
(∧L) � �, A,C(s) ∧ B ⇒ �

(→ L) � �,C(s) → A,C(s) ∧ B ⇒ �

(viii) Suppose | s | < β then we have the following template for derivations in IRS�.

(i i i)
�⇒ s = s

(∈ R) �⇒ s ∈ Lβ �

Lemma 2.25 For any terms s1, . . . , sn, t1, . . . , tn and any formula A(s1, . . . , sn)we
have

� [s1 = t1], . . . , [sn = tn], A(s1, . . . , sn) ⇒ A(t1, . . . , tn)

where [si = ti] is shorthand for si ⊆ ti , ti ⊆ si .

Proof We proceed by induction on rk(A(s1, . . . , sn)) # rk(A(t1, . . . , tn)).
Case 1. Suppose A(x1, x2) ≡ (x1 ∈ x2), then for all | s | < | s2 | and | t | < | t2 |

we have the following template for derivations in IRS�.

Ordinal Analysis of Intuitionistic Power … 105

� [s1 = t1], [t = s], s1 = s ⇒ t1 = t
Lemma 2.23(ii) � [s1 = t1], t = s, s1 = s ⇒ t1 = t

2.24(vi) � [s1 = t1], t ∈̇ t2 ∧ t = s, s1 = s ⇒ t ∈̇ t2 ∧ t1 = t
(∈ R) � [s1 = t1], t ∈̇ t2 ∧ t = s, s1 = s ⇒ t1 ∈ t2

(∈ L)∞ � [s1 = t1], s ∈ t2, s1 = s ⇒ t1 ∈ t22.24(vii) � [s1 = t1], s ∈̇ s2 → s ∈ t2, s ∈̇ s2 ∧ s1 = s ⇒ t1 ∈ t2
(∀L) � [s1 = t1], (∀x ∈ s2)(x ∈ t2), s ∈̇ s2 ∧ s1 = s ⇒ t1 ∈ t2

(∈ L)∞ � [s1 = t1], (∀x ∈ s2)(x ∈ t2), s1 ∈ s2 ⇒ t1 ∈ t2Lemma 2.13(i) � [s1 = t1], [s2 = t2], s1 ∈ s2 ⇒ t1 ∈ t2
Case 2. If A(x1, x2) ≡ x1 ∈ x1 then the assertion follows by Lemma2.24(ii) and

weakening.
Case 3. Suppose A(x1, . . . , xn) ≡ (∃y ∈ xi)B(y, x1, . . . , xn), for simplicity let us

suppose that i = 1. Inductively for all | r | < | s1 | we have
� [s1 = t1], . . . , [sn = tn], r ∈̇ s1 ∧ B(r, s1, . . . , sn) ⇒ r ∈̇ t1 ∧ B(r, t1, . . . , tn)

(b∃R) � [s1 = t1], . . . , [sn = tn], r ∈̇ s1 ∧ B(r, s1, . . . , sn) ⇒ (∃y ∈ s1)B(y, t1, . . . , tn)
(b∃L)∞ � [s1 = t1], . . . , [sn = tn], (∃y ∈ s1)B(y, t1, . . . , tn) ⇒ (∃y ∈ s1)B(y, t1, . . . , tn)

Case 4. The bounded universal quantification case is dual to the bounded existen-
tial one.

Case 5. If A(x1, . . . , xn) ≡ ∃yB(y, x1, . . . , xn) then inductively for all terms r
we have

� [s1 = t1], . . . , [sn = tn], B(r, s1, . . . , sn) ⇒ B(r, t1, . . . , tn)

subsequently applying (∃R) followed by (∃L)∞ yields the desired result.
Case 6. The unbounded universal quantification case is dual to the unbounded

existential one.
Case 7. All propositional cases follow immediately from the induction hypothesis.

�

Corollary 2.26 (Equality) For any IRS�-formula A(s1, . . . , sn)

�⇒ s1 = t1 ∧ · · · ∧ sn = tn ∧ A(s1, . . . , sn) → A(t1, . . . , tn).

Lemma 2.27 (Set Induction) For any formula F

�ωrk(A)

0 ⇒ ∀x[(∀y ∈ x)F(y) → F(x)] → ∀xF(x).

where A := ∀x[(∀y ∈ x)F(y) → F(x)].
Proof First we verify the following claim:

H[A, s] ωrk(A) # ω| s |+1

0
A ⇒ F(s) for all s. (∗)

The claim is verified by induction on | s |, inductively suppose that

H[A, t] ωrk(A) # ω| t |+1

0
A ⇒ F(t) holds for all | t | < | s |.

106 J. Cook and M. Rathjen

If necessary we may apply (→ R) to obtain

H[A, t, s] ωrk(A) # ω| t |+1+1

0
A ⇒ t ∈̇ s → F(t) .

Next applying (b∀R)∞ yields

H[A, s] ωrk(A) # ω| s |+2

0
A ⇒ (∀y ∈ s)F(y) .

Also by Lemma2.24(i) we have

H[A, s] ωrk(F(s)) # ωrk(F(s))

0
F(s) ⇒ F(s) .

Now one may note that ωrk(F(s)) # ωrk(F(s)) ≤ ωrk(F(s))+1 ≤ ωmax(�,rk(F(L0))+3) =
ωrk(A) to see that by weakening we can conclude

H[A, s] ωrk(A) # ω|s|+2

0
F(s) ⇒ F(s) .

Hence using one application of (→ L) we get

H[A, s] ωrk(A) # ω|s|+3

0
A, (∀y ∈ s)F(y) → F(s) ⇒ F(s) .

Applying (b∀L) yields

H[A, s] ωrk(A) # ω|s|+4

0
A ⇒ F(s) .

Thus the claim (*) is verified. A single application of (∀R)∞ to (*) furnishes us with

H[A] ωrk(A) #�

0
A ⇒ ∀xF(x) .

Finally applying (→ R) gives

�ωrk(A)

0 ⇒ A → ∀xF(x)

as required. �

Lemma 2.28 (Infinity) For any ordinal α > ω we have

�⇒ (∃x ∈ Lα)[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)].

Ordinal Analysis of Intuitionistic Power … 107

Proof The following is a template for derivations in IRS�:

Lemma 2.24(viii)
�⇒ L0 ∈ Lω

(b∃R) �⇒ (∃z ∈ Lω)(z ∈ Lω)

Lemma 2.24(viii)
�⇒ s ∈ Lα for all |s| < α < ω

(b∃R) �⇒ (∃z ∈ Lω)(s ∈ z) for all |s| < ω
(b∀R)∞ �⇒ (∀y ∈ Lω)(∃z ∈ Lω)(y ∈ z)

(∧R) �⇒ (∃z ∈ Lω)(z ∈ Lω) ∧ (∀y ∈ Lω)(∃z ∈ Lω)(y ∈ z)
(b∃R) �⇒ (∃x ∈ Lα)[(∃z ∈ x)(z ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)] �

Lemma 2.29 (�0-Separation) Suppose |s|, |t1|, . . . , |tn| < λwhereλ is a limit ordi-
nal and A(a, b1, . . . , bn) is a �0-formula of IKP with all free variables displayed,
then

�⇒ (∃y ∈ Lλ)[(∀x ∈ y)(x ∈ s ∧ A(x, t1, . . . , tn)) ∧ (∀x ∈ s)(A(x, t1, . . . , tn) → x ∈ y)].

Proof First letβ := max{|s|, |t1|, . . . , |tn|} + 1 and note thatβ < λ sinceλ is a limit.
Now let

t := [u ∈ Lβ | u ∈ s ∧ A(u, t1, . . . , tn)].

Let B(x) := A(x, t1, . . . , tn), in what follows r ranges over terms with | r | < | t |
and p ranges over terms with | p | < | s |. We have the following two templates for
derivations in IRS�:

Derivation (1)

Lemma 2.24(i)
� r ∈ s ∧ B(r) ⇒ r ∈ s ∧ B(r)

(→ R) �⇒ r ∈̇ t → (r ∈ s ∧ B(r))
(b∀R)∞ �⇒ (∀x ∈ t)(x ∈ s ∧ B(x))

Derivation (2)

Lemma 2.24(iv)
� p ∈̇ s, B(p) ⇒ p ∈ s

Lemma 2.24(i)
� p ∈̇ s, B(p) ⇒ B(p)

(∧R) � p ∈̇ s, B(p) ⇒ p ∈ s ∧ B(p)

Lemma 2.24(iii)
�⇒ p ⊆ p

(∧R) �⇒ p = p

� p ∈̇ s, B(p) ⇒ (p ∈ s ∧ B(p)) ∧ p = p
(∈ R) � p ∈̇ s, B(p) ⇒ p ∈ t

(→ R) � p ∈̇ s ⇒ B(p) → p ∈ t
(→ R) �⇒ p ∈̇ s → (B(p) → p ∈ t)

(b∀R)∞ �⇒ (∀x ∈ s)(B(x) → x ∈ t)

Now applying (∧R) to the conclusions of derivations (1) and (2) we obtain

�⇒ (∀x ∈ t)(x ∈ s ∧ B(x)) ∧ (∀x ∈ s)(B(x) → x ∈ t).

108 J. Cook and M. Rathjen

Finally note that |t | = β < λ so we may apply (b∃R) to obtain

�⇒ (∃y ∈ Lλ)[(∀x ∈ y)(x ∈ s ∧ B(x)) ∧ (∀x ∈ s)(B(x) → x ∈ y)]

as required. �

Lemma 2.30 (Pair) If λ is a limit ordinal and |s|, |t | < λ, then

�⇒ (∃z ∈ Lλ)(s ∈ z ∧ t ∈ z).

Proof Let δ := max{|s|, |t |} + 1 and note that δ < λ since λ is a limit. We have the
following template for IRS� derivations:

Lemma 2.24(viii)
�⇒ s ∈ Lδ

Lemma 2.24(viii)
�⇒ t ∈ Lδ

(∧R) �⇒ (s ∈ Lδ ∧ t ∈ Lδ)
(b∃R) �⇒ (∃z ∈ Lλ)(s ∈ z ∧ t ∈ z) �

Lemma 2.31 (Union) If λ is a limit ordinal and |s| < λ then

�⇒ (∃z ∈ Lλ)(∀y ∈ s)(∀x ∈ y)(x ∈ z).

Proof Let α = |s|, we have the following template for derivations in IRS�:

Lemma 2.24(viii)
� r ∈̇ s, q ∈̇ r ⇒ q ∈ Lα for all |q| < |r | < α

(→ R) � r ∈̇ s ⇒ q ∈̇ r → q ∈ Lα
(b∀R)∞ � r ∈̇ s ⇒ (∀x ∈ r)(x ∈ Lα)
(→ R) �⇒ r ∈̇ s → (∀x ∈ r)(x ∈ Lα)

(b∀R)∞ �⇒ (∀y ∈ s)(∀x ∈ y)(x ∈ Lα)
(b∃R) �⇒ (∃z ∈ Lλ)(∀y ∈ s)(∀x ∈ y)(x ∈ z) �

Lemma 2.32 (�0-Collection) For any �0 formula F(x, y),

�⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y).

Proof Using Lemma2.24 we have

� (∀x ∈ s)∃yF(x, y) ⇒ (∀x ∈ s)∃yF(x, y).

Now let H̄ := H[(∀x ∈ s)∃yF(x, y)] and α := no((∀x ∈ s)∃yF(x, y) ⇒ (∀x ∈
s)∃yF(x, y)), by applying (�-Ref�) we obtain

H̄ α+1

0
(∀x ∈ s)∃yF(x, y) ⇒ ∃z(∀x ∈ s)(∃y ∈ z)F(x, y) .

Ordinal Analysis of Intuitionistic Power … 109

Applying (→ R) gives

H̄ α+2

0
⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y) .

It remains to note that

α + 2 = α =no((∀x ∈ s)∃yF(x, y) ⇒ (∀x ∈ s)∃yF(x, y)) + 2

<no(⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y))

and H̄ = H[⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y)] to complete the
proof. �

Theorem 2.33 If IKP � �(ā) ⇒ �(ā) where �(ā) ⇒ �(ā) is an intuitionistic
sequent containing exactly the free variables ā := a1, . . . , an, then there is anm < ω
(which we may compute from the IKP-derivation) such that

H[�(s̄) ⇒ �(s̄)] �·ωm

�+m
�(s̄) ⇒ �(s̄)

for any IRS� terms s̄ := s1, . . . , sn and any operator H.

Proof Let A be any IRS� formula, note that by Observation2.10, we have rk(A) ≤
� + l for some l < ω. Therefore

no(A) = ωrk(A) ≤ ω�+l = ω� · ωl = � · ωl .

Thus for any choice of terms s̄ we have

no(�(s̄) ⇒ �(s̄)) ≤ � · ωm for some m < ω.

The remainder of the proof is by induction on the derivation IKP � �(ā) ⇒ �(ā).
If �(ā) ⇒ �(ā) is an axiom of IKP then the assertion follows by Lemmas2.26,

2.27, 2.28, 2.29, 2.30, 2.31 or 2.32. If �(ā) ⇒ �(ā)was the result of a propositional
inference then we may apply the induction hypothesis to the premises and then the
corresponding inference in IRS�. In order to cut down on notation we make the
following abbreviation, let

H̄ := H[�(s̄) ⇒ �(s̄)].

Case 1. Suppose that �(ā) ⇒ �(ā) was the result of the inference (b∀R), then
�(s̄) = {(∀x ∈ si)F(x)}. The induction hypothesis furnishes us with an k < ω such
that

H̄[p] �·ωk

�+k
�(s̄) ⇒ p ∈ si → F(p) for all | p | < | s |i .

110 J. Cook and M. Rathjen

Now by Lemma2.14(v) we have

H̄[p] �·ωk

�+k
�(s̄), p ∈ si ⇒ F(p).

Also by Lemma2.24(iv) we have

� p ∈̇ si ⇒ p ∈ si .

Applying (Cut) to these two yields

H̄[p] �·ωk+1

�+k
�(s̄), p ∈̇ si ⇒ F(p).

Now by (→ R) we have

H̄[p] �·ωk+2

�+k
�(s̄) ⇒ p ∈̇ si → F(p) .

Hence by (b∀R)∞ we have

H̄ �·ωk+1

�+k
�(s̄) ⇒ (∀x ∈ si)F(x)

as required.
Case 2. Now suppose that �(ā) ⇒ �(ā) was the result of the inference (b∀L).

So (∀x ∈ ai)F(x) ∈ �(ā) and we are in the following situation in IKP

�(ā), c ∈ ai → F(c) ⇒ �(ā)
(b∀L)

�(ā) ⇒ �(ā)

If c is not a member of ā then by the induction hypothesis we have an m < ω such
that

H̄ �·ωm

�+m
�(s̄), s1 ∈ si → F(s1) ⇒ �(s̄) . (1)

Now if c is a member of ā, for simplicity let us suppose that c = a1. Inductively we
can find an m < ω such that (1) is also satisfied. First we verify the following claim:

� �, (∀x ∈ si)F(x) ⇒ s1 ∈ si → F(s1). (2)

2.1 Suppose si is of the form Lα. The claim is verified by the following template
for derivations in IRS�, here r ranges over terms with |r | < |si |.

Lemma 2.25
� �, F(r), r ∈ si , r = s1 ⇒ F(s1)

(b∀L) � �, (∀x ∈ si)F(x), r ∈ si , r = s1 ⇒ F(s1)Lemma 2.23(ii) � �, (∀x ∈ si)F(x), r ∈ si ∧ r = s1 ⇒ F(s1)
(∈ L)∞ � �, (∀x ∈ si)F(x), s1 ∈ si ⇒ F(s1)
(→ R) � �, (∀x ∈ si)F(x) ⇒ s1 ∈ si → F(s1)

Ordinal Analysis of Intuitionistic Power … 111

2.2Now suppose si is of the form [x ∈ Lα | B(x)], we have the following template
for derivations in IRS�, where r and p range over terms with level below | si |.

Lemma 2.25
� p ∈̇ si , r = p, r = si ⇒ r ∈̇ siLemma 2.23(ii) � p ∈̇ si ∧ r = p, r = si ⇒ r ∈̇ si

(∈ L)∞ � r ∈ si , r = si ⇒ r ∈̇ si
Lemma 2.25

� F(r), r ∈ si , r = s1 ⇒ F(s1)
(→L) � �, r ∈̇ si → F(r), r ∈ si , r = s1 ⇒ F(s1)

(b∀L) � �, (∀x ∈ si)F(x), r ∈ si , r = s1 ⇒ F(s1)Lemma 2.23(ii) � �, (∀x ∈ si)F(x), r ∈ si ∧ r = s1 ⇒ F(s1)
(∈ L)∞ � �, (∀x ∈ si)F(x), s1 ∈ si ⇒ F(s1)
(→ R) � �, (∀x ∈ si)F(x) ⇒ s1 ∈ si → F(s1)

Now that the claim is verified we may apply (Cut) to (1) and (2) to obtain

H̄ �·ωm′

�+m ′ �(s̄) ⇒ �(s̄)

where � + m ′ := max{� + m, rk(s1 ∈ si → F(s1))}, which is the desired result.
All other quantification cases are similar to Cases 1 and 2.
Finally suppose �(ā) ⇒ �(ā) was the result of (Cut). So we are in the following

situation in IKP.

�(ā), F(ā, c̄) ⇒ �(ā) �(ā) ⇒ F(ā, c̄)
�(ā) ⇒ �(ā)

where c̄ are the free variables occurring in F(ā, c̄) that are distinct from ā. By the
induction hypothesis we can find m0,m1 < ω such that

H̄ �·ωm0

�+m0
�(s̄), F(s̄,L0) ⇒ �(s̄),

H̄ �·ωm1

�+m1
�(s̄) ⇒ F(s̄,L0) .

Note that k(F(s̄,L0)) ⊆ H̄ so we may apply (Cut) to finish the proof. �

2.6 An Ordinal Analysis of IKP

Lemma 2.34 If A is a �-sentence and IKP � ⇒ A, then there is some m < ω,
which we may compute explicitly from the derivation, such that

Hγ
ϕ(ψ�(γ))(ψ�(γ))

0
⇒ A where γ := ωm(� · ωm).

Here ω0(α) := α and ωk+1(α) := ωωk (α).

112 J. Cook and M. Rathjen

Proof Suppose that A is a �-sentence and that IKP � ⇒ A, then by Theorem 2.33
there is some 1 ≤ m < ω such that

H0
�·ωm

�+m
⇒ A . (1)

By applying Predicative Cut Elimination Theorem 2.16 (m − 1) times we obtain

H0
ωm−1(�·ωm)

�+1
⇒ A . (2)

Applying Collapsing Theorem 2.21 to (2) gives

Hγ
ψ�(γ)

ψ�(γ)
⇒ A where γ := ωm(� · ωm). (3)

Finally by applying Predicative Cut Elimination Theorem 2.16 again we get

Hγ
ϕ(ψ�(γ))(ψ�(γ))

0
⇒ A

completing the proof. �

Theorem 2.35 If A ≡ ∃xC(x) is a �-sentence such that IKP � ⇒ A then there is
an ordinal term α < ψ�(ε�+1), which we may compute from the derivation, such
that

Lα |= A.

Moreover, there is a specific IRS� term s, with | s | < α, which we may compute
explicitly from the IKP derivation, such that

Lα |= C(s).

Proof Suppose IKP � ⇒ A for some �-sentence A, from Lemma2.34 we may
compute some 1 ≤ m < ω such that

Hγ
ϕ(ψ�(γ))(ψ�(γ))

0
⇒ A where γ := ωm(� · ωm).

Let α := ϕ(ψ�(γ))(ψ�(γ)), applying Boundedness Lemma2.17 we obtain

Hγ
α

0
⇒ ALα . (2)

Since the derivation (2) contains no instances of (Cut) or (�-Ref�) and the correct-
ness of the remaining rules within Lα is easily verified by induction on the derivation,
it may be seen that

Lα |= A.

Ordinal Analysis of Intuitionistic Power … 113

For the second part of the theorem note that it must be the case that the final inference
in (2) was (b∃R) and thus by the intuitionistic nature of IRS� there must be some s,
with | s | < α, such that

Hγ
α

0
⇒ C(s)Lα . (3)

Thus
Lα |= C(s). (4)

The remainder of the proof is by checking that each part of the embedding and cut
elimination of the previous two sections may be carried out effectively, details will
appear in [28]. �

Remark 2.36 In fact Theorem2.35 can be verified within IKP, this is not immedi-
ately obvious since we do not have access to induction up to ψ�(ε�+1). However
one may observe that in an infinitary proof of the form (3) above, no terms of level
higher than α are used. By carrying out the construction of IRS� just using ordinals
from B(ωm+1(� · ωm)) we get a restricted system, but a system still capable of car-
rying out the embedding and cut elimination necessary for the particular derivation
of the sentence A. This can be done inside IKP since we do have access to induction
up to ψ�(ωm+1(� · ωm+1)). It follows that IKP has the set existence property for �

sentences. More details will be found [28].

Finally it is also worth pointing out that we can improve on Theorem2.33. Instead
of just verifying �0-Collection in the infinitary system (Lemma2.32) we could have
shown the embedding result for �-Reflection. As result we get a new conservativity
result.

Theorem 2.37 IKP and IKP+ �-Reflection prove the same �-sentences. In par-
ticular if IKP � A with A a �-sentence, then IKP � ∃x Ax .

3 The Case of IKP(P)

This section provides a relativised ordinal analysis for intuitionistic power Kripke-
Platek set theory IKP(P). The relativised ordinal analysis for the classical version
of the theory, KP(P), was carried out in [27], the work in this section adapts the
techniques from that paper to the intuitionistic case.Webegin bydefining an infinitary
system IRSP� , unlike in IRS� the terms in IRSP� can contain sub terms of a higher
level, or from higher up the Von-Neumann hierarchy in the intended interpretation.
This reflects the impredicativity of the power set operation. Next we prove some cut
elimination theorems, allowing us to transform infinite derivations of� formulae into
infinite derivations with only power-bounded cut formulae. The following section
provides an embedding of IKP(P) into IRSP� . The final section collates these results
into a relativised ordinal analysis of IKP(P).

114 J. Cook and M. Rathjen

3.1 A Sequent Calculus Formulation of IKP(P)

Definition 3.1 The formulas of IKP(P) are the same as those of IKP except we
also allow subset bounded quantifiers of the form

(∀x ⊆ a)A(x) and (∃x ⊆ a)A(x).

These are treated as quantifiers in their own right, not abbreviations. In contrast, the
formula a ⊆ b is still viewed as an abbreviation for the formula (∀x ∈ a)(x ∈ b)

Quantifiers ∀x , ∃x will still be referred to as unbounded, whereas the other quan-
tifiers (including the subset bounded ones) will be referred to as bounded.

A �P
0 -formula of IKP(P) is one that contains no unbounded quantifiers.

As with IKP, the system IKP(P) derives intuitionistic sequents of the form � ⇒
� where at most one formula can occur in �.

The axioms of IKP(P) are the following:

Logical axioms: �, A ⇒ A for every �P
0 –formula A.

Extensionality: � ⇒ a=b ∧ B(a) → B(b) for every �P
0 -formula B(a).

Pair: � ⇒ ∃x[a∈ x ∧ b∈ x].
Union: � ⇒ ∃x(∀y∈a)(∀z∈ y)(z∈ x).
�P

0 –Separation: � ⇒ ∃y[(∀x∈y)(x ∈ a ∧ B(x)) ∧ (∀x ∈ a)(B(x) → x∈y)]
for every �P

0 -formula B(a).

�P
0 –Collection: � ⇒ (∀x ∈ a)∃yG(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)G(x, y)

for every �P
0 -formula G(a, b).

Set Induction: � ⇒ ∀u [(∀x ∈ u)G(x) → G(u)] → ∀u G(u)

for every formula G(b).
Infinity: � ⇒ ∃x [(∃y ∈ x) y ∈ x ∧ (∀y ∈ x)(∃z ∈ x) y ∈ z].
Power Set: � ⇒ ∃z (∀x ⊆ a)x ∈ z.

The rules of IKP(P) are the same as those of IKP (extended to the new language
containing subset bounded quantifiers), together with the following four rules:

�, a ⊆ b ∧ F(a) ⇒ �
(pb∃L)

�, (∃x ⊆ b)F(x) ⇒ �

� ⇒ a ⊆ b ∧ F(a)
(pb∃R)

� ⇒ (∃x ⊆ b)F(x)

�, a ⊆ b → F(a) ⇒ �
(pb∀L)

�, (∀x ⊆ b)F(x) ⇒ �

� ⇒ a ⊆ b → F(a)
(pb∀R)

� ⇒ (∀x ⊆ b)F(x)

As usual it is forbidden for the variable a to occur in the conclusion of the rules
(pb∃L) and (pb∀R), such a variable is referred to as the eigenvariable of the infer-
ence.

3.2 The Infinitary System IRSP
�

The purpose of this section is to introduce an infinitary proof system IRSP� . As before
all ordinals will be assumed to be members of B�(ε�+1).

Ordinal Analysis of Intuitionistic Power … 115

Definition 3.2 We define the IRSP� terms. To each IRSP� term t we also assign its
ordinal level, | t |.
1. For each α < �, Vα is an IRSP� term with |Vα | = α.
2. For each α < �, we have infinitely many free variables aα

0 , aα
1 , aα

2 , . . ., with
| aα

i | = α.
3. If F(x, ȳ) is a �P

0 -formula of IKP(P) (whose free variables are exactly those
indicated) and s̄ ≡ s1, . . . , sn are IRSP� terms, then the formal expression [x ∈
Vα | F(x, s̄)] is an IRSP� term with | [x ∈ Vα | F(x, s̄)] | := α.

The IRSP� formulae are of the form A(s1, . . . , sn), where A(a1, . . . , an) is a for-
mula of IKP(P) with all free variables indicated and s1, . . . , sn are IRSP� terms.

A formula A(s1, . . . , sn) of IRSP� is �P
0 if A(a1, . . . , an) is a �P

0 formula of
IKP(P).

The�P formulae of IRSP� are the smallest collection containing the�P
0 -formulae

and containing A ∨ B, A ∧ B, (∀x ∈ s)A, (∃x ∈ s)A, (∀x ⊆ s)A, (∃x ⊆ s)A, ∃x A,
¬C and C → A whenever it contains A and B and C is a �P -formula. The �P -
formulae are the smallest collection containing the �P

0 formulae and containing
A ∨ B, A ∧ B, (∀x ∈ s)A, (∃x ∈ s)A, (∀x ⊆ s)A, (∃x ⊆ s)A, ∀x A, ¬D and D →
A whenever it contains A and B and D is a �P -formula.

The axioms of IRSP� are:

(A1) �, A ⇒ A for A in �P
0 .

(A2) � ⇒ t = t.
(A3) �, s1 = t1, . . . , sn = tn, A(s1, . . . , sn) ⇒ A(t1, . . . , tn) for A(s1, . . . , sn)

in �P
0 .

(A4) � ⇒ s ∈ Vα if | s | < α.

(A5) � ⇒ s ⊆ Vα if | s | ≤ α.

(A6) �, t ∈ [x ∈ Vα | F(x, s̄)] ⇒ F(t, s̄) for F(t, s̄) is �P
0 and | t | < α.

(A7) �, F(t, s̄) ⇒ t ∈ [x ∈ Vα | F(x, s̄)] for F(t, s̄) is �P
0 and | t | < α.

The inference rules of IRSP� are:

(b∀L)
�, s ∈ t → F(s) ⇒ �

�, (∀x ∈ t)F(x) ⇒ �
if | s | < | t |

(b∀R)∞
� ⇒ s ∈ t → F(s) for all | s | < | t |
� ⇒ (∀x ∈ t)F(x)

(b∃L)∞
�, s ∈ t ∧ F(s) ⇒ � for all | s | < | t |
�, (∃x ∈ t)F(x) ⇒ �

(b∃R)
� ⇒ s ∈ t ∧ F(s)
� ⇒ (∃x ∈ t)F(x)

if | s | < | t |

(pb∀L)
�, s ⊆ t → F(s) ⇒ �

�, (∀x ⊆ t)F(x) ⇒ �
if | s | ≤ | t |

(pb∀R)∞
� ⇒ s ⊆ t → F(s) for all | s | ≤ | t |
� ⇒ (∀x ⊆ t)F(x)

(pb∃L)∞
�, s ⊆ t ∧ F(s) ⇒ � for all | s | ≤ | t |
�, (∃x ⊆ t)F(x) ⇒ �

116 J. Cook and M. Rathjen

(pb∃R)
� ⇒ s ⊆ t ∧ F(s)

� ⇒ (∃x ⊆ t)F(x)
if | s | ≤ | t |

(∀L)
�, F(s) ⇒ �

�, ∀x F(x) ⇒ �

(∀R)∞ � ⇒ F(s) for all s
� ⇒ ∀x F(x)

(∃L)∞ �, F(s) ⇒ � for all s
�, ∃x F(x) ⇒ �

(∃R)
� ⇒ F(s)

� ⇒ ∃x F(x)

(∈ L)∞
�, r ∈ t ∧ r = s ⇒ � for all | r | < | t |

�, s ∈ t ⇒ �

(∈ R) � ⇒ r ∈ t ∧ r = s
�, s∈ t if | r | < | t |

(⊆L)∞
�, r ⊆ t ∧ r = s ⇒ � for all | r | ≤ | t |

�, s ⊆ t ⇒ �

(⊆ R)
� ⇒ r ⊆ t ∧ r = s

� ⇒ s ⊆ t
if | r | ≤ | s |

(Cut) �, A ⇒ � � ⇒ A
� ⇒ �

(�P -Ref) � ⇒ A
� ⇒ ∃z Az if A is a �P -formula,

as well as the rules (∧L), (∧R), (∨L), (∨R), (¬L), (¬R), (⊥), (→ L), (→ R) from
IRS�. As usual Az results from A by restricting all unbounded quantifiers to z.

Definition 3.3 The rank of a formula is determined as follows.

1. rk(s ∈ t) := max{| s | + 1, | t | + 1}.
2. rk((∃x ∈ t)F(x)) := rk((∀x ∈ t)F(x)) := max{| t |, rk(F(V0)) + 2}.
3. rk((∃x ⊆ t)F(x)) := rk((∀x ⊆ t)F(x)) := max{| t | + 1, rk(F(V0)) + 2}.
4. rk(∃x F(x)) := rk(∀x F(x)) := max{�, rk(F(V0)) + 2}.
5. rk(A ∧ B) := rk(A ∨ B) := rk(A → B) := max{rk(A), rk(B)} + 1.
6. rk(¬A) := rk(A) + 1.

Note that the definition of rank for IRSP� formulae is much less complex than for
IRS�, this is because we are only aiming for partial cut-elimination for this system.
In general it will not be possible to remove cuts with�P

0 cut formulae. Note however
that we still have rk(A) < � if and only if A is �P

0 .
We also have the following useful lemma.

Lemma 3.4 If A is a formula of IRSP� with rk(A) ≥ � (i.e. A contains unbounded
quantifiers), and A was the result of an IRSP� inference other than (�P -Re f) and
(Cut) then the rank of the minor formulae of that inference is strictly less than rk(A).

Ordinal Analysis of Intuitionistic Power … 117

Definition 3.5 (Operator controlled derivability for IRSP�) If A(s1, . . . , sn) is a
formula of IRSP� then let

| A(s1, . . . , sn) | := {| s1 |, . . . , | sn |}.

Likewise if � ⇒ � is an intuitionistic sequent of IRSP� containing formulas
A1, . . . , An , we define

|� ⇒ � | := | A1 | ∪ · · · ∪ | An |.

Definition 3.6 Let H be an operator and � ⇒ � an intuitionistic sequent of IRSP�
formulae. We define the relation H α

ρ � ⇒ � by recursion on α.

If � ⇒ � is an axiom and |� ⇒ � | ∪ {α} ⊆ H, then H α

ρ � ⇒ �.
We require always that |� ⇒ � | ∪ {α} ⊆ H where � ⇒ � is the sequent in the

conclusion, this condition will not be repeated in the inductive clauses pertaining to
the inference rules of IRSP� given below. The column on the right gives the ordinal
requirements for each of the inference rules.

(∈ L)∞
H[r] αr

ρ �, r ∈ t ∧ r = s ⇒ � for all | r | < | t |
H α

ρ �, s ∈ t ⇒ �

| r | ≤ αr < α

(∈ R)
H α0

ρ � ⇒ r ∈ t ∧ r = s

H α

ρ � ⇒ s ∈ t

α0 < α
| r | < | t |
| r | < α

(⊆L)∞
H[r] αr

ρ �, r ⊆ t ∧ r = s ⇒ � for all | r | ≤ | t |
H α

ρ �, s ⊆ t ⇒ �

| r | ≤ αr < α

(⊆ R)
H α0

ρ � ⇒ r ⊆ t ∧ r = s

H α

ρ � ⇒ s ⊆ t

α0 < α
| r | ≤ | t |
| r | < α

(b∀L)
H α0

ρ �, s ∈ t → A(s) ⇒ �

H α

ρ �, (∀x ∈ t)A(x) ⇒ �

α0 < α
| s | < | t |
| s | < α

(b∀R)∞
H[s] αs

ρ � ⇒ s ∈ t → F(s) for all | s | < | t |
H α

ρ � ⇒ (∀x ∈ t)F(x)
| s | ≤ αs < α

(b∃L)∞
H[s] αs

ρ �, s ∈ t ∧ F(s) ⇒ � for all | s | < | t |
H α

ρ �, (∃x ∈ t)F(x) ⇒ �

| s | ≤ αs < α

118 J. Cook and M. Rathjen

(b∃R)
H α0

ρ � ⇒ s ∈ t ∧ A(s)

H α

ρ � ⇒ (∃x ∈ t)A(x)

α0 < α
| s | < | t |
| s | < α

(pb∀L)
H α0

ρ �, s ⊆ t → A(s) ⇒ �

H α

ρ �, (∀x ⊆ t)A(x) ⇒ �

α0 < α
| s | ≤ | t |
| s | < α

(pb∀R)∞
H[s] αs

ρ � ⇒ s ⊆ t → F(s) for all | s | ≤ | t |
H α

ρ � ⇒ (∀x ⊆ t)F(x)
| s | ≤ αs < α

(pb∃L)∞
H[s] αs

ρ �, s ⊆ t ∧ F(s) ⇒ � for all | s | ≤ | t |
H α

ρ �, (∃x ⊆ t)F(x) ⇒ �

| s | ≤ αs < α

(pb∃R)
H α0

ρ � ⇒ s ⊆ t ∧ A(s)

H α

ρ � ⇒ (∃x ⊆ t)A(x)

α0 < α
| s | ≤ | t |
| s | < α

(∀L)
H α0

ρ �, F(s) ⇒ �

H α

ρ �,∀xF(x) ⇒ �

α0 + 1 < α
| s | < α

(∀R)∞
H[s] αs

ρ � ⇒ F(s) for all s

H α

ρ � ⇒ ∀xF(x)
| s | < αs + 1 < α

(∃L)∞
H[s] αs

ρ �, F(s) ⇒ � for all s

H α

ρ �, ∃xF(x) ⇒ �

| s | < αs + 1 < α

(∃R)
H α0

ρ � ⇒ F(s)

H α

ρ �,⇒ ∃xF(x)

α0 + 1 < α
| s | < α

(Cut)
H α0

ρ �, B ⇒ � H α0

ρ � ⇒ B

H α

ρ � ⇒ �

α0 < α
rk(B) < ρ

(�P -Ref)
H α0

ρ � ⇒ A

H α

ρ � ⇒ ∃z Az

α0 + 1,� < α
A is a �P -formula

Ordinal Analysis of Intuitionistic Power … 119

Lastly if � ⇒ � is the result of a propositional inference of the form (∧L), (∧R),
(∨L), (∨R), (¬L), (¬R), (⊥), (→ L)or (→ R), with premise(s)�i ⇒ �i then from
H α0

ρ �i ⇒ �i (for each i) we may conclude H α

ρ � ⇒ � , provided α0 < α.

3.3 Cut Elimination for IRSP
�

Lemma 3.7 (Weakening and Persistence for IRSP�)

(i) If �0 ⊆ �, |� | ⊆ H, α0 ≤ α ∈ H, ρ0 ≤ ρ and H α0

ρ0
�0 ⇒ � then

H α

ρ � ⇒ �.

(ii) If γ ∈ H and H α

ρ �, ∃x A(x) ⇒ � then H α

ρ �, (∃x ∈ Vγ)A(x) ⇒ �.

(iii) If γ ∈ H and H α

ρ � ⇒ ∀x A(x) then H α

ρ � ⇒ (∀x ∈ Vγ)A(x).

Proof All proofs are by induction on α. We show (ii), suppose γ ∈ H and
H α

ρ �, ∃x A(x) ⇒ �. The interesting case is where ∃x A(x) was the principal for-
mula of the last inference which was (∃L)∞, in this case we have
H[s] αs

ρ �, ∃x A(x), A(s) ⇒ � for each term s with | s | < αs + 1 < α (If ∃x A(x)
was not a side formulawe can use part (i) tomake it one). By the induction hypothesis
we obtainH[s] αs

ρ �, (∃x ∈ Vγ)A(x), A(s) ⇒ � for all | s | < γ. By (∧L) we get

H[s] αs+1
ρ �, (∃x ∈ Vγ)A(x), s ∈ Vγ ∧ A(s) ⇒ �.

Hence we may apply (b∃L)∞ to obtain H α

ρ �, (∃x ∈ Vγ)A(x) ⇒ � as required.
�

Lemma 3.8 (Inversions of IRSP�)

(i) IfH α

ρ �, A ∧ B ⇒ � and rk(A ∧ B) ≥ � then H α

ρ �, A, B ⇒ � .

(ii) IfH α

ρ � ⇒ A ∧ B andrk(A ∧ B) ≥ � thenH α

ρ � ⇒ A andH α

ρ �⇒B .

(iii) If H α

ρ �, A ∨ B ⇒ � and rk(A ∨ B) ≥ � then H α

ρ �, A ⇒ � and

H α

ρ �, B ⇒ � .

(iv) IfH α

ρ �, A → B ⇒ � and rk(A → B) ≥ � then H α

ρ �, B ⇒ � .

(v) IfH α

ρ � ⇒ A → B and rk(A → B) ≥ � then H α

ρ �, A ⇒ B .

(vi) IfH α

ρ � ⇒ ¬A and rk(A) ≥ � then H α

ρ �, A ⇒ .

(vii) If H α

ρ �, (∃x ∈ t)A(x) ⇒ � and rk(A(V0)) ≥ � then

H[s] α

ρ �, s ∈ t ∧ A(s) ⇒ � for all |s| < |t |.
(viii) If H α

ρ � ⇒ (∀x ∈ t)A(x) and rk(A(V0)) ≥ � then

H[s] α

ρ � ⇒ s ∈ t → A(s) for all |s| < |t |.

120 J. Cook and M. Rathjen

(ix) If H α

ρ �, (∃x ⊆ t)A(x) ⇒ � and rk(A(V0)) ≥ � then

H[s] α

ρ �, s ⊆ t ∧ A(s) ⇒ � for all |s| ≤ |t |.
(x) If H α

ρ � ⇒ (∀x ⊆ t)A(x) and rk(A(V0)) ≥ � then

H[s] α

ρ � ⇒ s ⊆ t → A(s) for all |s| ≤ |t |.
(xi) IfH α

ρ �, ∃x A(x) ⇒ � then H[s] α

ρ �, F(s) ⇒ � for all s.

(xii) IfH α

ρ �,⇒ ∀x A(x) then H[s] α

ρ � ⇒ F(s) for all s.

Proof The proof is by induction on α and many parts are standard for many intu-
itionistic systems of a similar nature. We show (viii) and (ix).

(viii) Suppose that H α

ρ � ⇒ (∀x ∈ t)A(x) and rk(A(V0)) ≥ �. Since A must
contain an unbounded quantifier, the sequent� ⇒ (∀x ∈ t)A(x) cannot be an axiom.
If the last inference was not (b∀R)∞ then we may apply the induction hypothesis to
the premises of that inference, and then the same inference again. Finally suppose
the last inference was (b∀R)∞ so we have

H[s] αs

ρ � ⇒ s ∈ t → A(s) for all | s | < | t |, with αs < α.

Applying weakening completes the proof of this case.
(ix) Suppose thatH α

ρ �, (∃x ⊆ t)A(x) ⇒ � and rk(A(V0)) ≥ �. Since A(x) con-
tains an unbounded quantifier ∃x ⊆ t)A(x) cannot be the active part of an axiom,
thus if �, (∃x ⊆ t)A(x) ⇒ � is an axiom then so is �, s ⊆ t ∧ A(x) ⇒ � for any
| s | ≤ | t |. As in (viii) the remaining interesting case is where (∃x ⊆ t)A(x) was the
principal formula of the last inference, which was (pb∃L)∞. In this case we have

H[s] αs

ρ �, (∃x ⊆ t)A(x), s ⊆ t ∧ A(s) ⇒ � for all | s | ≤ | t | with αs < α.

Now applying the induction hypothesis yields H[s] αs

ρ �, s ⊆ t ∧ A(s) ⇒ � , to
which we may apply weakening to complete the proof of this case. �

Lemma 3.9 (Reduction) If rk(C) := ρ > �, H α

ρ �,C ⇒ � and H β

ρ � ⇒ C
then

H α # α # β # β

ρ �,� ⇒ �.

Proof The proof is by induction on α #α # β # β. The interesting case is where C
was the principal formula of both final inferences, notice that in this case the last
inference cannot have been (�P -Ref) since rk(C) > � and the conclusion of an
application of (�P -Ref) always has rank�. Thus the rest of the proof follows in the
usual way by the symmetry of the rules and Lemmas3.4 and 3.8, we treat the case
where C ≡ (∀x ⊆ t)A(x) and C was the principal formula of both last inferences,
so we have

H α

ρ �,C ⇒ �. (1)

H β

ρ � ⇒ C. (2)

Ordinal Analysis of Intuitionistic Power … 121

H α0

ρ �,C, s ⊆ t → A(s) ⇒ � with α0, | s | < α and | s | ≤ | t |. (3)

H[p] βp

ρ � ⇒ p ⊆ t → A(p) for all | p | ≤ | t | with | p | ≤ αp < α. (4)

From (3) we know that s ∈ H, so from (4) we get

H βs

ρ � ⇒ s ⊆ t → A(s) . (5)

Applying the induction hypothesis to (2) and (3) yields

H α0 # α0 # β # β

ρ �, s ⊆ t → A(s) ⇒ � . (6)

Finally by applying (Cut) to (5) and (6), whilst noting that by Lemma3.4 rk(s ⊆
t → A(s)) < ρ, we obtain

H α # α # β # β

ρ �,� ⇒ �

as required. �

Lemma 3.10 IfH α

�+n+1
� ⇒ � then H ωα

�+n
� ⇒ � for any n < ω.

Proof The proof is by induction on α, suppose H α

�+n+1
� ⇒ � . If � ⇒ � is an

axiom there is nothing to show. If � ⇒ � was the result of an inference other that
(Cut) or a cut with cut-rank < � + n then we may apply the induction hypothesis
to the premises of that inference and then the same inference again. So suppose the
last inference was (Cut) with cut-formula C , and that rk(C) = � + n. So we have

H α0

�+n+1
�,C ⇒ � with α0 < α. (1)

H α1

�+n+1
� ⇒ C with α1 < α. (2)

Applying the induction hypothesis to (1) and (2) gives

H ωα0

�+n
�,C ⇒ �. (3)

H ωα1

�+n
� ⇒ C. (4)

Now applying the Reduction Lemma3.9 to (3) and (4) provides us with

H ωα0 # ωα0 # ωα1 # ωα1

�+n
.

It remains to note that ωα0 # ωα0 # ωα1 # ωα1 < ωα since ωα is additive principal, so
we can complete the proof by weakening. �
Theorem 3.11 (Partial cut elimination for IRSP�) If H α

�+n+1
�⇒� then

H ωn(α)

�+1
� ⇒ � where ω0(β) := β and ωk+1(β) := ωωk (β).

122 J. Cook and M. Rathjen

Proof The proof uses an easy induction on n and the previous Lemma. �

Note that Theorem3.11 is much weaker than the full predicative cut elimination
result we obtained for IRS� (Theorem2.16), this is because in general we cannot
eliminate cuts with �P

0 cut-formulae from IRSP� derivations.

Lemma 3.12 (Boundedness) If A is a�P -formula, B is a�P -formula,α ≤ β < �

and β ∈ H then

(i) IfH α

ρ � ⇒ A then H α

ρ � ⇒ AVβ .

(ii) IfH α

ρ �, B ⇒ � then H α

ρ �, BVβ ⇒ � .

Proof The proofs are by induction on α, we show (ii), the proof of (i) is similar. As
with Lemma2.17 the only interesting case is where B was the principal formula of
the last inference and B is of the form ∀xC(x). So we have

H α0

ρ �, B,C(s) ⇒ � for some |s| < α with α0 + 1 < α.

Using the induction hypothesis we obtain

H α0

ρ �, BVβ ,C(s) ⇒ � for some |s| < α with α0 + 1 < α.

Now since �, BVβ ⇒ s ∈ Vβ is an axiom, we have H α0

ρ �, BVβ ⇒ s ∈ Vβ , so by
(→ L) we obtain

H α0+1
ρ �, BVβ , s ∈ Vβ → C(s) ⇒ � for some |s| < α with α0 + 1 < α.

Finally an application of (b∀L) yields

H α

ρ �, BVβ ⇒ �

as required. �

Theorem 3.13 (Collapsing) Suppose that η ∈ Hη, � is a set of at most one �P -
formula and � a set of �P -formulae. Then

Hη
α

�+1
� ⇒ � implies Hα̂

ψ�(α̂)

ψ�(α̂)
� ⇒ �.

Here β̂ = η + ω�+β and the operators Hξ are those defined in Definition2.18.

Proof Note first that from η ∈ Hη and Lemma2.20 we obtain

α̂,ψ�(α̂) ∈ Hα̂. (1)

The proof is by induction on α.

Ordinal Analysis of Intuitionistic Power … 123

Case 0. If � ⇒ � is an axiom then the result follows immediately from (1).
Case 1. If the last inference was propositional then the assertion follows easily by

applying the induction hypothesis and then the same inference again.
Case 2. Suppose the last inference was (pb∀R)∞, then � = {(∀x ⊆ t)F(x)} and

Hη[p] αp

�+1
� ⇒ p ⊆ t → F(p) for all | p | ≤ | t | with αp < α.

Since | t | ∈ Hη(∅) = B�(η + 1) and | t | < �, we have | t | < ψ�(η + 1), thus
| p | ∈ Hη for all | p | ≤ | t |. So we have

Hη

αp

�+1
� ⇒ p ⊆ t → F(p) .

Since p ⊆ t → F(p) is also in�P we may apply the induction hypothesis to obtain

Hα̂p

ψ�(α̂p)

ψ�(α̂p)
� ⇒ p ⊆ t → F(p) for all | p | ≤ | t | with αp < α.

Now noting that ψ�(α̂p) + 1 < ψ�(α̂), by applying (pb∀R)∞ we obtain the desired
result. The cases where the last inference was (b∀R)∞, (pb∃L)∞, (b∃L)∞, (∈ L)∞
or (⊆L)∞ are similar.

Case 3. Now suppose the last inference was (pb∀L), so (∀x ⊆ t)F(x) ∈ � and

Hη
α0

�+1
�, s ⊆ t → F(s) ⇒ � for some | s | ≤ | t | with α0 < α.

Noting that s ⊆ t → F(s) is in �P , too, we may apply the induction hypothesis to
obtain

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
�, s ⊆ t → F(s) ⇒ �

to which we may apply (pb∀L) to complete this case. The cases where the last
inference was (b∀L), (pb∃R), (b∃R), (∈ R) or (⊆ R) are similar.

Case 4. Now suppose the last inference was (∀L), so ∀x A(x) ∈ � and

Hη
α0

�+1
�, F(s) ⇒ � for some | s | < α and α0 < α.

Since F(s) is �P we may apply the induction hypothesis to obtain

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
�, F(s) ⇒ � .

Now since | s | ∈ Hη = B�(η + 1) we have | s | < ψ�(η + 1) < ψ�(α̂). So we may
apply (∀L) to complete the case. The case where the last inference was (∃R) is
similar.

124 J. Cook and M. Rathjen

The rest of the proof is completely analogous to that of Theorem2.21, using
boundedness for IRSP� Lemma3.12 instead of for IRS�. �

3.4 Embedding IKP(P) into IRSP
�

Definition 3.14 As in the embedding section for the case of IKP, � � ⇒ � will
be used to abbreviate that

H[� ⇒ �] no(�⇒�)

0
� ⇒ � holds for any operator H.

Also �ξ
ρ � ⇒ � will be used to abbreviate that

H[� ⇒ �] no(�⇒�) # ξ

ρ � ⇒ � holds for any operator H.

Only this time we are referring to operator controlled derivability in IRSP� .

Lemma 3.15 For any formula A

� A ⇒ A.

Proof We proceed by induction on the complexity of A. If A is�P
0 then this is axiom

(A1) of IRSP� .
Suppose A is of the form ∃xF(x). Let αs = | s | + no(F(s) ⇒ F(s)) and α =

no(A ⇒ A), note that | s | < αs + 1 < αs + 2 < α for all s. By the induction
hypothesis we have

H[F(s), s] αs

0
F(s) ⇒ F(s) for all terms s and for an arbitrary operator H.

Now using (∃R) we get

H[F(s), s] αs+1

0
F(s) ⇒ ∃xF(x).

Finally sinceH[F(s), s](∅) ⊆ H[∃xF(x)][s](∅) we may apply (∃L)∞ to obtain the
desired result. The other cases are similar. �

Lemma 3.16 (Extensionality)Forany formula A andany terms s1, . . . , sn, t1, . . . , tn

� s1 = t1, . . . , sn = tn, A(s1, . . . , sn) ⇒ A(t1, . . . , tn).

Proof If A is �P
0 then this is an axiom. The remainder of the proof is by induction

on rk(A(s1, . . . , sn)), note that rk(A(s1, . . . , sn) = rk(A(t1, . . . , tn) since A is not
�P

0 .

Ordinal Analysis of Intuitionistic Power … 125

Case 1. Suppose A(s1, . . . , sn) ≡ ∃x B(x, s1, . . . , sn), we know that rk(B(r, s1,
. . . , sn)) < rk(A(s1, . . . , sn)) for all r by Lemma3.4, so by induction hypothesis we
have

� s1 = t1, . . . , sn = tn, B(r, s1, . . . , sn) ⇒ B(r, t1, . . . , tn) for all terms r.

Now successively applying (∃R) and then (∃L)∞ yields the desired result.
Case 2. Now suppose A(s1, . . . , sn) ≡ (∃x ⊆ si)B(x, s1, . . . , sn). Since A is not

�P
0 , B must contain an unbounded quantifier, and thus by Lemma3.4 � ≤ rk(r ⊆

si ∧ B(r, s1, . . . , sn)) < rk(A(s1, . . . , sn)) for any | r | ≤ | si |, thus by induction
hypothesis we have

� s1 =t1, . . . , sn = tn, r ⊆ si ∧ B(r, s1, . . . , sn) ⇒ r ⊆ ti ∧ B(r, t1, . . . , tn)

for all | r | ≤ | si |.

Thus successively applying (pb∃R) and then (pb∃L)∞ yields the desired result. The
other cases are similar. �

Lemma 3.17 (�P
0 -Collection) For any �P

0 formula F

�⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y).

Proof Lemma3.15 provides us with

� (∀x ∈ s)∃yF(x, y) ⇒ (∀x ∈ s)∃yF(x, y).

Noting that (∀x ∈ s)∃yF(x, y) is a �P formula and that rk((∀x ∈ s)∃yF(x, y)) =
ω�+2 we may apply (�P -Ref) to obtain

H̄ ω�+2·2+2

0
(∀x ∈ s)∃yF(x, y) ⇒ ∃z(∀x ∈ s)(∃y ∈ z)F(x, y)

where H̄ = H[(∀x ∈ s)∃yF(x, y)] and H is an arbitrary operator. Now applying
(→ R) we get

H̄ ω�+2·2+3

0
⇒ (∀x ∈ s)∃yF(x, y) → ∃z(∀x ∈ s)(∃y ∈ z)F(x, y).

It remains to note that ω�+2 · 2+ 3 < ω�+3 = no((⇒ ∀x ∈ s)∃yF(x, y) →
∃z(∀x ∈ s)(∃y ∈ z)F(x, y)) to see that the result is verified. �

Lemma 3.18 (Set Induction) For any formula F

�⇒ ∀x[(∀y ∈ x)F(y) → F(x)] → ∀xF(x).

126 J. Cook and M. Rathjen

Proof LetH be an arbitrary operator and let A := ∀x[(∀y ∈ x)F(y) → F(x)]. First
we prove the following

Claim: H[A, s] ωrk(A) # ω| s |+1

0
A ⇒ F(s) for all terms s.

The claim is proved by induction on | s |. By the induction hypothesis we have

H[A, t] ωrk(A) # ω| t |+1

0
A ⇒ F(t) for all | t | < | s |.

Using weakening and then (→ R) we get

H[A, s, t] ωrk(A) # ω| t |+1+1

0
A ⇒ t ∈ s → F(t) for all | t | < | s |.

Hence by (b∀R)∞ we get

H[A, s] ωrk(A) # ω| s |+2

0
A ⇒ (∀x ∈ s)F(x)

(the extra+2 is needed when | s | is not a limit). Now let ηs := ωrk(A) # ω| s | + 2. By
Lemma3.15 we have H[A, s] ηs

0
F(s) ⇒ F(s), so by (→ L) we get

H[A, s] ηs+1

0
A, (∀y ∈ s)F(y) → F(s) ⇒ F(s) .

Finally by applying (∀L) we get

H[A, s] ηs+3

0
A ⇒ F(s) ,

since ηs + 3 < ωrk(A) # ω| s |+1 the claim is verified. Now by applying (∀R)∞ we
deduce from the claim that

H[A] ωrk(A)+�

0
A ⇒ ∀xF(x) .

Hence by (→ R) we obtain the desired result. �

Lemma 3.19 (Infinity) For any operator H we have

H ω+2

0
⇒ ∃x[(∃y ∈ x)(y ∈ x) ∧ (∀y ∈ x)(∃z ∈ x)(y ∈ z)].

Proof First note that for any | s | < α we haveH 0

0
s ∈ Vα by virtue of axiom (A4).

Let | s | = n < ω, we have the following derivation in IRSP� :

Ordinal Analysis of Intuitionistic Power … 127

H 0

0
⇒ Vn+1 ∈ Vω H 0

0
⇒ s ∈ Vn+1

(∧R)

H 1

0
⇒ Vn+1 ∈ Vω ∧ s ∈ Vn+1

(b∃R)

H n+2

0
⇒ (∃z ∈ Vω)(s ∈ z)

(→ R)

H n+3

0
⇒ s ∈ Vω → (∃z ∈ Vω)(s ∈ z)

(b∀R)∞
H ω

0
⇒ (∀y ∈ Vω)(∃z ∈ Vω)(y ∈ z)

H 0

0
⇒ V0 ∈ Vω

(∧R)

H 1

0
⇒ V0 ∈ Vω ∧ V0 ∈ Vω

(b∃R)

H 2

0
⇒ (∃z ∈ Vω)(z ∈ Vω)

(∧R)

H ω+1

0
⇒ (∀y ∈ Vω)(∃z ∈ Vω)(y ∈ z) ∧ (∃z ∈ Vω)(z ∈ Vω)

(∃R)

H ω+2

0
⇒ ∃x[(∀y ∈ x)(∃z ∈ x)(y ∈ z) ∧ (∃z ∈ x)(z ∈ x)] �

Lemma 3.20 (�P
0 -Separation) If A(a, b, c1, . . . , cn) is a �P

0 -formula of IKP(P)

with all free variables indicated, r, s̄ := s1, . . . , sn are IRSP� terms and H is an
arbitrary operator then:

H[r, s̄] α+7
ρ ⇒ ∃y[(∀x ∈ y)(x ∈ r ∧ A(x, r, s̄)) ∧ (∀x ∈ r)(A(x, r, s̄) → x ∈ y)]

where α := | r | and ρ := max{| r |, | s1 |, . . . , | sn |} + ω.

Proof First we define

p := [x ∈ Vα | x ∈ r ∧ A(x, r, s̄)] and H̄ := H[r, s̄].

For t any term with | t | < α the following are derivations in IRSP� , first we have:

Axiom (A1)

H̄ 0

0
t ∈ r ⇒ t ∈ r

Axiom (A1)

H̄ 0

0
A(t, r, s̄) ⇒ A(t, r, s̄)

(∧R)

H̄ 1

0
t ∈ r, A(t, r, s̄) ⇒ t ∈ r ∧ A(t, r, s̄)

Axiom (A7)

H̄ 0

0
t ∈ r ∧ A(t, r, s̄) ⇒ t ∈ p

(cut)
H̄ 2

ρ t ∈ r, A(t, r, s̄) ⇒ t ∈ p
(→ R)

H̄ 3
ρ t ∈ r ⇒ A(t, r, s̄) → t ∈ p

(→ R)

H̄ 4
ρ ⇒ t ∈ r → (A(t, r, s̄) → t ∈ p)

(b∀R)∞
H̄ α+5

ρ ⇒ (∀x ∈ r)(A(x, r, s̄) → x ∈ p)

Next we have:

Axiom (A6)

H̄ 0

0
t ∈ p ⇒ t ∈ r ∧ A(t, r, s̄)

(→ R)
H̄ 1

0
⇒ t ∈ p → t ∈ r ∧ A(t, r, s̄)

(b∀R)∞
H̄ α+2

0
⇒ (∀x ∈ p)(x ∈ r ∧ A(x, r, s̄))

128 J. Cook and M. Rathjen

Now by applying (∧R) followed by (∃R) to the conclusions of these two derivations
we get

H̄ α+7
ρ ⇒ ∃y[(∀x ∈ y)(x ∈ r ∧ A(x, r, s̄)) ∧ (∀x ∈ r)(A(x, r, s̄) → x ∈ y)]

as required. �

Lemma 3.21 (Pair) For any operator H and any terms s and t we have

H[s, t] α+2

0
⇒ ∃z(s ∈ z ∧ t ∈ z)

where α := max(| s |, | t |) + 1.

Proof The following is a derivation in IRSP� :

Axiom (A4)

H[s, t] 0

0
⇒ s ∈ Vα

Axiom (A4)

H[s, t] 0

0
⇒ t ∈ Vα

(∧R)
H[s, t] 1

0
⇒ s ∈ Vα ∧ t ∈ Vα

(∃R)
H[s, t] α+2

0
⇒ ∃z(s ∈ z ∧ t ∈ z) �

Lemma 3.22 (Union) For any operator H and any term s we have

H[s] β+5

0
⇒ ∃z(∀y ∈ s)(∀x ∈ y)(x ∈ z)

where β = | s |.
Proof Let r and t be terms such that | r | < | t | < β, we have the following derivation
in IRSP� :

Axiom (A4)

H[s, t, r] 0

0
t ∈ s, r ∈ t ⇒ r ∈ Vβ

(→ R)
H[s, t, r] 1

0
t ∈ s ⇒ r ∈ t → r ∈ Vβ

(b∀R)∞
H[s, t] β+2

0
t ∈ s ⇒ (∀x ∈ t)(x ∈ Vβ)

(→ R)

H[s, t] β+3

0
⇒ t ∈ s → (∀x ∈ t)(x ∈ Vβ)

(b∀R)∞
H[s] β+4

0
⇒ (∀y ∈ s)(∀x ∈ y)(x ∈ Vβ)

(∃R)

H[s] β+5

0
⇒ ∃z(∀y ∈ s)(∀x ∈ y)(x ∈ z) �

Ordinal Analysis of Intuitionistic Power … 129

Lemma 3.23 (Powerset) For any operator H and any term s we have

H[s] α+3

0
⇒ ∃z(∀x ⊆ s)(x ∈ z)

where α = | s |.
Proof Let t be any term with | t | < α, we have the following derivation in IRSP� :

Axiom (A4)

H[s, t] 0

0
t ⊆ s ⇒ t ∈ Vα+1

(→ R)
H[s, t] 1

0
⇒ t ⊆ s → t ∈ Vα+1

(pb∀R)∞
H[s] α+2

0
⇒ (∀x ⊆ s)(x ∈ Vα+1)

(∃R)
H[s] α+3

0
⇒ ∃z(∀x ⊆ s)(x ∈ z) �

Theorem 3.24 If IKP(P) � �(ā) ⇒ �(ā) where �(ā) ⇒ �(ā) is an intuitionistic
sequent containing exactly the free variables ā = a1, . . . , an, then there exists an
m < ω (which we may calculate from the derivation) such that

H[s̄] �·ωm

�+m
�(s̄) ⇒ �(s̄)

for any operator H and any IRSP� terms s̄ = s1, . . . , sn.

Proof Note that the rank of IRSP� formulas is always < � + ω and thus the norm of
IRSP� sequents is always< ω�+ω = � · ωω . The proof is by induction on the IKP(P)

derivation. If �(ā) ⇒ �(b̄) is an axiom of IKP(P) then the result follows by one of
Lemmas3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22 and 3.23. Let H̄ := H[s̄].

Case 1. Suppose the last inference of the IKP(P) derivation was (pb∃L) then
(∃x ⊆ ai)F(x) ∈ �(ā) and from the induction hypothesis we obtain a k such that

H̄[p] �·ωk

�+k
�(s̄), p ⊆ si ∧ F(p) ⇒ �(s̄)

for all | p | ≤ | si | (using weakening if necessary). Thus we may apply (pb∃L)∞ to
obtain the desired result.

Case 2. Now suppose the last inference was (pb∃R) then �(ā) = {(∃x ⊆
ai)F(x)} and we are in the following situation in IKP(P):

� �(ā) ⇒ c ⊆ ai ∧ F(c)
(pb∃R) � �(ā) ⇒ (∃x ⊆ ai)F(x)

130 J. Cook and M. Rathjen

2.1 If c is not a member of ā then by the induction hypothesis we have a k < ω
such that

H̄ �·ωk

�+k
�(s̄) ⇒ V0 ⊆ si ∧ F(V0) .

Hence we can apply (pb∃R) to complete this case.
2.2 Now suppose c is a member of ā for simplicity let us suppose that c = a1.

Inductively we can find a k < ω such that

H̄ �·ωk

�+k
�(s̄) ⇒ s1 ⊆ si ∧ F(s1). (1)

Next we verify the following

claim: �ω �(s̄), s1 ⊆ si ∧ F(s1) ⇒ (∃x ⊆ si)F(x). (2)

Owing to axiom (A1) we have

H̄[r] 0

0
r ⊆ si ⇒ r ⊆ si for all | r | ≤ | si |. (3)

Also by Lemma3.16 we have

� �[s̄], r = s1, F(s1) ⇒ F(r) for all | r | ≤ | si |. (4)

Now let γr = no(�[s̄], r = s1, F(s1) ⇒ F(r)). Applying (∧R) to (3) and (4) pro-
vides

H̄[r] γr+1

0
�(s̄), r ⊆ si , r = s1, F(s1) ⇒ r ⊆ si ∧ F(r) .

Using (pb∃R) we may conclude

H̄[r] γr+2

0
�(s̄), r ⊆ si , r = s1, F(s1) ⇒ (∃x ⊆ si)F(x) .

Now two applications of (∧L) gives us

H̄[r] γr+4

0
�(s̄), r ⊆ si ∧ r = s1, F(s1) ⇒ (∃x ⊆ si)F(x) .

Now applying (⊆ L)∞ provides

H̄ γ+5

0
�(s̄), s1 ⊆ si , F(s1) ⇒ (∃x ⊆ si)F(x)

where γ = sup| r |≤| si | γr . Finally, by applying (∧L) a further two times we can con-
clude

H̄ γ+7

0
�(s̄), s1 ⊆ si ∧ F(s1) ⇒ (∃x ⊆ si)F(x) .

Ordinal Analysis of Intuitionistic Power … 131

Via some ordinal arithmetic it can be observed that

γ + 7 ≤ no(�(s̄), s1 ⊆ si ∧ F(s1) ⇒ (∃x ⊆ si)F(x)) # ω,

so the claim is verified.
To complete this case we may now apply (Cut) to (1) and (2).
All other cases are similar to those above, or may be treated in a similar manner

to Theorem 2.33. �

3.5 A Relativised Ordinal Analysis of IKP(P)

Amajor difference to the case of IKP is thatwe don’t immediately have the soundness
of cut-reduced IRSP� derivations of �P -formulae within the appropriate segment of
the Von-Neumann Hierarchy. This is partly due to the fact that we don’t have a
term for each element of the hierarchy (this can be seen from a simple cardinality
argument). In fact we do still have soundness for certain derivations within Vψ�(ε�+1),
which is demonstrated in the next lemma, where we must make essential use of the
free variables in IRSP� . First we need the notion of an assignment. Let VARP be the
set of free variables of IRSP� . A variable assignment is a function

v : VARP −→ Vψ�(ε�+1)

such that v(aα
i) ∈ Vα+1 for each i . v canonically lifts to all terms as follows

v(Vα) = Vα,

v({x ∈ Vα | F(x, s1, . . . , sn)}) = {x ∈ Vα |F(x, v(s1), . . . , v(sn))}.

Moreover it can be seen that v(s) ∈ V| s |+1 and thus v(s) ∈ Vψ�(ε�+1) for all terms s.

Theorem 3.25 (Soundness for IRSP�) Suppose �[s1, . . . , sn] is a finite set of �P

formulae with max{rk(A) |A ∈ �} ≤ �, �[s1, . . . , sn] a set containing at most one
�P formula and

H α

ρ �[s̄] ⇒ �[s̄] for some operator H and some α, ρ < �.

Then for any assignment v,

Vψ�(ε�+1) |=
∧

�[v(s1), . . . , v(sn)] →
∨

�[v(s1), . . . , v(sn)]

where
∧

� and
∨

� stand for the conjunction of formulas in � and the disjunction
of formulas in � respectively, by convention

∧ ∅ = � and
∨∅ = ⊥.

132 J. Cook and M. Rathjen

Proof The proof is by induction on α. Note that the derivation H α

ρ �[s̄] ⇒ �[s̄]
contains no inferences of the form (∀R)∞, (∃L)∞ or (�P -Ref) and all cuts have
�P

0 cut formulae. All axioms of IRSP� can be observed to be sound with respect to
the interpretation.

First we treat the case where the last inference was (pb∀L) so we have

H α0

ρ �[s̄], t ⊆ si → F(t, s̄) ⇒ �[s̄] for some α0, | t | < α, with | t | ≤ | si |.

Since max{rk(A) | A ∈ �} ≤ �, it follows that t ⊆ si → F(t, s̄) is a �P
0 formula.

So we may apply the induction hypothesis to obtain

Vψ�(ε�+1) |=
∧

�[v(s̄)] ∧ [v(t) ⊆ v(si) → F(v(t), v(s̄))] →
∨

�[v(s̄)],

where v(s̄) := v(s1), . . . , v(sn). From here the desired result follows by regular log-
ical semantics.

Now suppose the last inference was (pb∀R)∞, so we have

H αt

ρ �[s̄] ⇒ t ⊆ si → F(t, s̄) for all | t | ≤ | si | with αt < α. (1)

In particular this means we have

H α0

ρ �[s̄] ⇒ aβ
j ⊆ si → F(aβ

j , s̄) for some α0 < α. (2)

Here β := | si | and j is chosen such that aβ
j does not occur in any of the terms

s1, . . . , sn . If F contains an unbounded quantifier we may use inversion for IRSP�
Lemma3.8(v) to obtain

H α0

ρ �[s̄], aβ
j ⊆ si ⇒ F(aβ

j , s̄) for some α0 < α. (3)

So we may apply the induction hypothesis to get

Vψ�(ε�+1) |=
∧

�[v(s̄)], v(aβ
j) ⊆ v(si) → F(v(aβ

j), v(s̄)) (4)

for all variable assignments v. Thus by the choice of aβ
j we have

Vψ�(ε�+1) |=
∧

�[v(s̄)] → (∀x ⊆ v(si))F(x, v(s̄)) (5)

as required. If F is �P
0 then we may immediately apply the induction hypothesis to

(2) to obtain

Vψ�(ε�+1) |=
∧

�[v(s̄)] → [v(aβ
j) ⊆ v(si) → F(v(aβ

j), v(s̄))] (6)

Ordinal Analysis of Intuitionistic Power … 133

for all variable assignments v, again by the choice of aβ
i we obtain the desired result.

All other cases may be treated in a similar manner to the two above. �

Lemma 3.26 Suppose IKP(P) � ⇒ A for some �P sentence A, then there is an
m < ω, which we may compute from the derivation, such that

Hσ
ψ�(σ)

ψ�(σ)
⇒ A where σ := ωm(� · ωm).

Proof Suppose IKP(P) � ⇒ A for some�P sentence A, then by Theorem3.24 we
can explicitly find some m < ω such that

H0
�·ωm

�+m
⇒ A .

Applying Partial cut elimination Theorem3.11 we have

H0
ωm−1(�·ωm)

�+1
⇒ A .

Now using Collapsing Theorem3.13 we obtain

Hσ
ψ�(σ)

ψ�(σ)
⇒ A where σ := ωm(� · ωm)

completing the proof. �

Note that we cannot eliminate all cuts from the derivation since we don’t have
full predicative cut elimination for IRSP� as we do for IRS�.

Theorem 3.27 If A is a�P -sentence and IKP(P) � ⇒ A then there is some ordinal
term α < ψ�(ε�+1), which we may compute from the derivation, such that

Vα |= A.

Proof From Lemma3.26 we obtain some m < ω such that

Hσ
ψ�(σ)

ψ�(σ)
⇒ A where σ := ωm(� · ωm). (1)

Let α := ψ�(σ). Applying Boundedness Lemma3.12 to (1) we obtain

Hσ
α

α ⇒ AVα . (2)

Now applying Theorem3.25 to (2) we obtain

Vψ�(ε�+1) |= AVα

134 J. Cook and M. Rathjen

and thus
Vα |= A

as required. �

Remark 3.28 Suppose A ≡ ∃xC(x) is a�P sentence and IKP(P) � ⇒ A. As well
as the ordinal term α given by Theorem3.27, it is possible to determine (making
essential use of the intuitionistic nature of IRSP�) a term s, with | s | < α, such that

Vα |= C(s).

This proof is somewhat more complex than in the case of IKP since the proof tree
corresponding to (2) above can still contain cuts with �P

0 cut formulae.
Moreover, in order to show that IKP(P) has the existence property, the embedding

and cut elimination for a given finite derivation of a�P sentence, needs to be carried
out inside IKP(P). In order to do this it needs to be shown that from the finite
derivation we can calculate some ordinal term γ < ε�+1 such that the embedding
and cut elimination for that derivation can still be performed inside IRSP� with the
term structure restricted to B(γ).

These proofs will appear in [28].

Like in the case of IKP we also arrive at a conservativity result.

Theorem 3.29 IKP(P) + �P -Reflection is conservative over IKP(P) for �P -
sentences.

4 The Case of IKP(E)

This final section provides a relativised ordinal analysis for intuitionistic exponentia-
tion Kripke-Platek set theory IKP(E). Given sets a and b, set-exponentiation allows
the formation of the set ab, of all functions from a to b. A problem that presents itself
in this case is that it is not clear how to formulate a term structure in such a way that
we can read off a terms level in the pertinent ‘exponentiation hierarchy’ from that
terms syntactic structure. Instead we work with a term structure similar to that used
in IRSP� , and a terms level becomes a dynamic property inside the infinitary system.
Making this work in a system for which we can prove all the necessary embedding
and cut-elimination theorems turned out to be a major technical hurdle. The end
result of the section is a characterisation of IKP(E) in terms of provable height of
the exponentiation hierarchy, this machinery will also be used in a later paper by
Rathjen [28], to show that CZFE has the full existence property.

Ordinal Analysis of Intuitionistic Power … 135

4.1 A Sequent Calculus Formulation of IKP(E)

Definition 4.1 The formulas of IKP(E) are the same as those of IKP except we also
allow exponentiation bounded quantifiers of the form

(∀x ∈ ab)A(x) and (∃x ∈ ab)A(x).

These are treated as quantifiers in their own right, not abbreviations. The formula
“fun(x, a, b)” is defined below. It’s intuitive meaning is “x is a function from a to
b”.

fun(x, a, b) := x ⊆ a × b ∧ (∀y ∈ a)(∃z ∈ b)((y, z) ∈ x)

∧ (∀y ∈ a)(∀z1 ∈ b)(∀z2 ∈ b)[((y, z1) ∈ x ∧ (y, z2) ∈ x) → z1 = z2].

Quantifiers ∀x , ∃x will be referred to as unbounded, whereas the other quantifiers
(including the exponentiation bounded ones) will be referred to as bounded.

A �E
0 -formula of IKP(E) is one that contains no unbounded quantifiers.

As with IKP, the system IKP(E) derives intuitionistic sequents of the form � ⇒
� where � and � are finite sets of formulae and � contains at most one formula.

The axioms of IKP(E) are given by:

Logical axioms: �, A,⇒ A for every �E
0 -formula A.

Extensionality: � ⇒ a=b ∧ B(a) → B(b). for every �E
0 -formula B(a).

Pair: � ⇒ ∃x[a∈ x ∧ b∈ x].
Union: � ⇒ ∃x(∀y∈a)(∀z∈ y)(z∈ x).
Infinity: � ⇒ ∃x [(∃y ∈ x) y ∈ x ∧ (∀y ∈ x)(∃z ∈ x) y ∈ z].
�E

0 -Separation: �⇒∃x((∀y ∈ x)(y ∈ a ∧ A(y)) ∧ (∀y ∈ a)(A(y) → y ∈ x))
for every �E

0 formula A(b).
�E

0 -Collection: � ⇒ (∀x ∈ a)∃yB(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x, y)
for every �E

0 formula B(b, c).
Set Induction: � ⇒ ∀u [(∀x ∈ u)G(x) → G(u)] → ∀u G(u)

for every formula G(b).
Exponentiation: � ⇒ ∃z (∀x ∈ ab)(x ∈ z).

The rules of IKP(E) are the same as those of IKP (extended to the new language
containing exponentiation bounded quantifiers), together with the following four
rules:

�, fun(c, a, b) ∧ F(c) ⇒ �
(Eb∃L)

�, (∃x ∈ ab)F(x) ⇒ �

� ⇒ fun(c, a, b) ∧ F(c)
(Eb∃R)

� ⇒ (∃x ∈ ab)F(x)

�, fun(c, a, b) → F(c) ⇒ �
(Eb∀L)

�, (∀x ∈ ab)F(x) ⇒ �

� ⇒ fun(c, a, b) → F(c)
(Eb∀R)

� ⇒ (∀x ∈ ab)F(x)

Asusual it is forbidden for the variablea to occur in the conclusionof the rules (Eb∃L)

and (Eb∀R), such a variable is referred to as the eigenvariable of the inference.

136 J. Cook and M. Rathjen

4.2 The Infinitary System IRSE
�

The purpose of this section is to introduce an infinitary system IRSE� within whichwe
will be able to embed IKP(E). As with the von Neumann hierarchy built by iterating
the power set operation through the ordinals, one may define an Exponentiation-
hierarchy as follows

E0 := ∅,

E1 := {∅},
Eα+2 := {X | X is definable over 〈Eα+1,∈〉 with parameters}

∪ { f | fun(f, a, b) for some a, b ∈ Eα},
Eλ :=

⋃

β<λ

Eβ for λ a limit ordinal,

Eλ+1 := {X | X is definable over 〈Eα+1,∈〉 with parameters} for λ a limit ordinal.

Lemma 4.2 If y ∈ Eα+1 and x ∈ y then x ∈ Eα.

Proof The proof is by induction on α. If y is a set definable over 〈Eα,∈〉 with
parameters, the members of y, including x , must be members of Eα.

Now suppose α = β + 1 and y ∈ Eα+1 is a function y : p → q for two sets
p, q ∈ Eβ . Since x ∈ y, it follows that x is of the form (x0, x1) with x0 ∈ p and
x1 ∈ q, we use the standard definition of ordered pair so

(x0, x1) := {{x0, x1}, {x0}}. (1)

We must now verify the following claim:

{x0}, {x1}, {x0, x1} ∈ Eβ . (∗)

If β = γ + 1 then by the induction hypothesis applied to x0 ∈ p ∈ Eβ and x1 ∈ q ∈
Eβ we get x0, x1 ∈ Eγ and thus {x0}, {x1}, {x0, x1} ∈ Eβ as required.

If β is a limit then by the induction hypothesis and the construction of the E
hierarchy at limit ordinals, we know that s0 ∈ Eβ0 and s1 ∈ Eβ1 for some β0,β1 < β,
thus {s0}, {s1}, {s0, s1} ∈ Emax(β0,β1)+1 which completes the proof of (*).

From (*) and (1) it is clear that (s0, s1) ∈ Eβ+1 as required. �

The idea of IRSE� is to build an infinitary system for reasoning about the E
hierarchy.

Definition 4.3 The terms of IRSE� are defined as follows

1. Eα is an IRSE� term for each α < �.

2. aα
i is an IRSE� term for each α < � and each i < ω, these terms will be known
as free variables.

Ordinal Analysis of Intuitionistic Power … 137

3. If F(a, b̄) is a �E
0 formula of IKP(E) containing exactly the free variables

indicated, and t, s̄ := s1, . . . , sn are IRSE� terms then

[x ∈ t | F(x, s̄)]

is also a term of IRSE�.

Observe that IRSE� terms do not come with ‘levels’ as in the other infinitary
systems. This is because it is not clear how to immediately read off the location of
a given term within the E hierarchy, just from the syntactic information available
within that term.

The formulas of IRSE� are of the form F(s1, . . . , sn), where F(a1, . . . , an) is a
formula of IKP(E) with all free variables indicated and s1, . . . , sn are IRSE� terms.
The formula A(s1, . . . , sn) is said to be �E

0 if A(a1, . . . , an) is a �E
0 formula of

IKP(E). The �E formulae are the smallest collection containing the �E
0 formulae

such that A ∧ B, A ∨ B, (∀x ∈ t)A, (∃x ∈ t)A, (∃x ∈ ab)A, (∀x ∈ ab)A, ∃x A,¬C ,
and C → A are in �E whenever A, B are in �E and C is in �E . Dually, the �E

formulae are the smallest collection containing the �E
0 formulae such that A ∧ B,

A ∨ B, (∀x ∈ t)A, (∃x ∈ t)A, (∃x ∈ ab)A, (∀x ∈ ab)A, ∀x A,¬C , and C → A are
in �E whenever A, B are in �E and C is in �E .

The axioms of IRSE� are given by

(E1) �, A ⇒ A for every �E
0 –formula A.

(E2) � ⇒ t = t for every IRSE� term t .
(E3) �, s̄= t̄, B(s̄) ⇒ B(t̄) for every �E

0 -formula B(s̄).
(E4) � ⇒ Eβ ∈ Eα for all β < α < �.
(E5) � ⇒ aβ

i ∈ Eα for all i ∈ ω and β < α < �.
(E6) �, t ∈ Eα, s ∈ t ⇒ s ∈ Eα for all α < �.
(E7) �, t ∈ Eα+1, s ∈ t ⇒ s ∈ Eα for all α < �.
(E8) �, s ∈ t, F(s, p̄) ⇒ s ∈ [x ∈ t | F(x, p̄)].
(E9) �, s ∈ [x ∈ t | F(x, p̄)] ⇒ s ∈ t ∧ F(s, p̄).
(E10) �, s ∈ Eα, t ∈ Eβ, fun(p, s, t) ⇒ p ∈ Eγ for all γ ≥ max(α,β) + 2.
(E11) �, t ∈ Eβ, p̄ ∈ Eᾱ ⇒ [x ∈ t | F(x, p̄)] ∈ Eγ for all γ ≥ max(β, ᾱ).

Definition 4.4 For a formula A(a1, . . . , an) of IKP(E) containing exactly the free
variables ā := a1, . . . , an and any IRSE� terms s̄ := s1, . . . , sn , we define the β̄-rank
‖A(s̄)‖β̄ where β̄ := β1, . . . ,βn are any ordinals < �. The definition is made by
recursion on the build up of the formula A.

(i) ‖s ∈ t‖β1,β2 := max(β1,β2).

(ii) ‖(∃x ∈ t)F(x, s̄)‖γ,β̄ := ‖(∀x ∈ t)F(x, s̄)‖γ,β̄ := max(γ, ‖F(E0, s̄)‖0,β̄ + 2).
(iii) ‖(∃x ∈ s t)F(x, p̄)‖γ,δ,β̄ := ‖(∀x ∈ s t)F(x, p̄)‖γ,δ,β̄

:= max(γ + ω, δ + ω, ‖F(E0, p̄)‖0,β̄ + 2).
(iv) ‖∃xF(x, s̄)‖β̄ := ‖∀xF(x, s̄)‖β̄ := max(�, ‖F(E0, s̄)‖0,β̄ + 2).
(v) ‖A ∧ B‖β̄ := ‖A ∨ B‖β̄ := ‖A → B‖β̄ := max(‖A‖β̄, ‖B‖β̄) + 1.
(vi) ‖¬A‖β̄ := ‖A‖β̄ + 1.

138 J. Cook and M. Rathjen

We define the rank of A(s̄) by

rk(A(s̄)) := ‖A(s̄)‖0̄.

Observation 4.5

(i) ‖A(s̄)‖β̄ < � if and only if A is �E
0 .

(ii) If A contains unbounded quantifiers then rk(A(s̄)) = ‖A(s̄)‖β̄ for all s̄ and β̄.

Definition 4.6 (Operator Controlled Derivability in IRSE�) IRS
E

� derives intuition-
istic sequents of the form � ⇒ � where � and � are finite sets of IRSE� formulae
and � contains at most one formula. For H an operator and α, ρ ordinals we define
the relation H α

ρ � ⇒ � by recursion on α.

If � ⇒ � is an axiom and α ∈ H then H α

ρ � ⇒ � .
It is always required thatα ∈ H, this requirement is not repeated for each inference

rule below.

(E-Lim)∞
H[δ] αδ

ρ �, s ∈ Eδ ⇒ � for all δ < γ

H α

ρ �, s ∈ Eγ ⇒ �

γ a limit
αδ < α
γ ∈ H

(b∀L)

H α0

ρ �, s ∈ t → A(s) ⇒ �

H α1

ρ � ⇒ t ∈ Eβ

H α2

ρ � ⇒ s ∈ Eγ

H α

ρ �, (∀x ∈ t)A(x) ⇒ �

α0,α1,α2 < α
β, γ ∈ H

γ < α
γ ≤ β

(b∀R)∞

H α0

ρ � ⇒ s ∈ t → F(s) for all s

H α1

ρ � ⇒ t ∈ Eβ

H α

ρ � ⇒ (∀x ∈ t)F(x)

α0,α1 < α
β ∈ H
β < α

(b∃L)∞

H α0

ρ �, s ∈ t ∧ F(s) ⇒ � for all s

H α1

ρ � ⇒ t ∈ Eβ

H α

ρ �, (∃x ∈ t)F(x) ⇒ �

α0,α1 < α
β ∈ H
β < α

(b∃R)

H α0

ρ � ⇒ s ∈ t ∧ A(s)

H α1

ρ � ⇒ t ∈ Eβ

H α2

ρ � ⇒ s ∈ Eγ

H α

ρ � ⇒ (∃x ∈ t)A(x)

α0,α1,α2 < α
β, γ ∈ H

γ < α
γ ≤ β

Ordinal Analysis of Intuitionistic Power … 139

(Eb∀L)

H α0
ρ �, fun(p, s, t) → A(p) ⇒ �

H α1
ρ � ⇒ s ∈ Eβ

H α2
ρ � ⇒ t ∈ Eγ

H α3
ρ � ⇒ p ∈ Eδ

H α
ρ �, (∀x ∈ s t)A(x) ⇒ �

α0, α1, α2, α3 < α
β, γ, δ ∈ H

δ < α
δ ≤ max(β, γ) + 2

(Eb∀R)∞

H α0
ρ � ⇒ fun(p, s, t) → F(p) for all p

H α1
ρ � ⇒ s ∈ Eβ

H α2
ρ � ⇒ t ∈ Eγ

H α
ρ � ⇒ (∀x ∈ s t)F(x)

α0, α1,α2 < α
β, γ ∈ H

max(β, γ) + 2 ≤ α

(Eb∃L)∞

H α0
ρ �, fun(p, s, t) ∧ F(p) ⇒ � for all p

H α1
ρ � ⇒ s ∈ Eβ

H α2
ρ � ⇒ t ∈ Eγ

H α
ρ �, (∃x ∈ s t)F(x) ⇒ �

α0, α1,α2 < α
β, γ ∈ H

max(β, γ) + 2 ≤ α

(Eb∃R)

H α0
ρ � ⇒ fun(p, s, t) ∧ A(p)

H α1
ρ � ⇒ s ∈ Eβ

H α2
ρ � ⇒ t ∈ Eγ

H α3
ρ � ⇒ p ∈ Eδ

H α
ρ � ⇒ (∃x ∈ s t)A(x)

α0, α1, α2, α3 < α
β, γ, δ ∈ H

δ < α
δ ≤ max(β, γ) + 2

(∀L)

H α0
ρ �, F(s) ⇒ �

H α1
ρ � ⇒ s ∈ Eβ

H α
ρ �, ∀x F(x) ⇒ �

α0 + 3, α1 + 3 < α
β < α
β ∈ H

(∀R)∞
H[β] αβ

ρ �, s ∈ Eβ ⇒ F(s) for all s and all β < �

H α
ρ � ⇒ ∀x F(x)

β < αβ + 3 < α

(∃L)∞
H[β] αβ

ρ �, s ∈ Eβ , F(s) ⇒ � for all s and all β < �

H α
ρ � ⇒ ∀x F(x)

β < αβ + 3 < α

(∃R)

H α0
ρ � ⇒ F(s)

H α1
ρ � ⇒ s ∈ Eβ

H α
ρ � ⇒ ∃x F(x)

α0 + 3, α1 + 3 < α
β < α
β ∈ H

140 J. Cook and M. Rathjen

(�E -Ref)
H α0

ρ � ⇒ A

H α

ρ � ⇒ ∃z Az

α0 + 1,� < α
A is a �E -formula

(Cut)

H α0

ρ �, A(s1, . . . , sn) ⇒ �

H α1

ρ � ⇒ A(s1, . . . , sn)

H α2

ρ � ⇒ si ∈ Eβi i = 1, . . . , n

H α

ρ � ⇒ �

α0,α1,α2 < α
‖A(s̄)‖β̄ < ρ

β̄ ∈ H

Lastly if � ⇒ � is the result of a propositional inference of the form (∧L), (∧R),
(∨L), (∨R), (¬L), (¬R), (⊥), (→ L)or (→ R), with premise(s)�i ⇒ �i then from
H α0

ρ �i ⇒ �i (for each i) we may conclude H α

ρ � ⇒ �, provided α0 < α.

Convention 4.7 In cases where terms Eα and aα
i occur directly as witnesses in

existential rules or in cut formulae we will omit the extra premise declaring the
terms location in the E term hierarchy since

Eα ∈ Eα+1 and aα
i ∈ Eα+1

are axioms (E4) and (E5) respectively. It must still be checked that α ∈ H however.

4.3 Cut Elimination for IRSE
�

Lemma 4.8 (Inversions of IRSE�) If max(rk(A), rk(B)) ≥ � thenwe have the usual
propositional inversions for intuitionistic systems:

(i) IfH α

ρ �, A ∧ B ⇒ � then H α

ρ �, A, B ⇒ � .

(ii) IfH α

ρ � ⇒ A ∧ B then H α

ρ � ⇒ A and H α

ρ � ⇒ B .

(iii) IfH α

ρ �, A ∨ B ⇒ � then H α

ρ �, A ⇒ � and H α

ρ �, B ⇒ � .

(iv) IfH α

ρ �, A → B ⇒ � then H α

ρ �, B ⇒ � .

(v) IfH α

ρ � ⇒ A → B then H α

ρ �, A ⇒ B .

If rk(A) ≥ � we have the following additional inversions:

(vi) IfH α

ρ � ⇒ ¬A then H α

ρ �, A ⇒ .

(vii) IfH α

ρ � ⇒ (∀x ∈ t)A(x) then H α

ρ � ⇒ s ∈ t → A(s) for all terms s.

(viii) IfH α

ρ �, (∃x ∈ t)A(x) ⇒ � thenH α

ρ �, s ∈ t ∧ A(s) ⇒ � for all terms
s.

(ix) IfH α

ρ �⇒(∀x ∈ s t)A(x) thenH α

ρ � ⇒ fun(p, s, t) → A(p) for all terms
p.

(x) IfH α

ρ �, (∃x ∈ s t)A(x) ⇒ � thenH α

ρ �, fun(p, s, t) ∧ A(p) ⇒ � for all
terms p.

Ordinal Analysis of Intuitionistic Power … 141

Finally we have the following persistence properties:

(xi) If γ ∈ H ∩ � and H α

ρ � ⇒ ∀x A(x) then H α

ρ � ⇒ (∀x ∈ Eγ)A(x) .

(xii) If γ ∈ H ∩ � andH α

ρ �, ∃x A(x) ⇒ � thenH α

ρ �, (∃x ∈ Eγ)A(x) ⇒ � .

Proof All proofs are by induction onα, (i)–(vi) are standard for intuitionistic systems
of this type.

For (viii) suppose that H α

ρ �, (∃x ∈ t)A(x) ⇒ � and rk(A(E0)) ≥ �. (∃x ∈
t)A(x) cannot have been the “active component” of an axiom, so if �, (∃x ∈
t)A(x) ⇒ � is an axiom then so is �, s ∈ t ∧ A(s) ⇒ �. Now if (∃x ∈ t)A(x) was
not the principal formula of the last inference we may apply the induction hypothe-
sis to the premises of that inference followed by the same inference again. Finally if
(∃x ∈ t)A(x) was the principal formula of the last inference and the last inference
was (b∃L)∞ so we have

H α0

ρ �, (∃x ∈ t)A(x), s ∈ t ∧ A(s) ⇒ � for all terms s and for some α0 < α.

Applying the induction hypothesis followed by weakening yields

H α

ρ �, s ∈ t ∧ A(s) ⇒ � for all terms s

as required. The proofs of (vii), (xi) and (x) are similar.
For (xi) suppose H α

ρ � ⇒ ∀x A(x) and γ ∈ H ∩ �. � ⇒ ∀x A(x) cannot be
an axiom. If the last inference was not (∀R)∞ then we may apply the induction
hypothesis to its premises and then the same inference again. So suppose the last
inference was (∀R)∞ in which case we have the premise

H[δ] αδ

ρ �, s ∈ Eδ ⇒ A(s) for all s and all δ < �, with δ < αδ + 3 < α.

In particular since γ ∈ H we have

H
αγ

ρ �, s ∈ Eγ ⇒ A(s) for all s with γ < αγ + 3 < α.

So by (→ R) we have

H
αγ+1

ρ � ⇒ s ∈ Eγ → A(s) for all s.

Now since ⇒ Eγ ∈ Eγ+1 is an instance of axiom (E4), γ ∈ H and γ < α we may
apply (b∀R) to obtain

H α

ρ � ⇒ (∀x ∈ Eγ)A(x)

as required. The proof of (xii) is similar. �

142 J. Cook and M. Rathjen

Lemma 4.9 (Reduction for IRSE�) Suppose rk(C(s̄)) := ρ > � where C(ā) is an
IKP(E) formula with all free variables displayed. If

H α

ρ � ⇒ C(s̄),

H β

ρ �,C(s̄) ⇒ �,

H γi
ρ � ⇒ si ∈ Eηi with ηi ∈ H ∩ � for each 1 ≤ i ≤ n

then
H α # α # β # β # γ

ρ � ⇒ � where γ := maxi=1,...,n(γi).

Proof The proof is by induction on α #α # β # β # γ. Assume that

rk(C(s̄)) := ρ > �, (1)

H α

ρ � ⇒ C(s̄), (2)

H β

ρ �,C(s̄) ⇒ �, (3)

H γi
ρ � ⇒ si ∈ Eηi for each 1 ≤ i ≤ n and for some ηi ∈ H ∩ �. (4)

Since rk(C(s̄)) := ρ > �, C cannot be the ‘active part’ of an axiom, hence if (2) or
(3) are axioms of IRSE� then so is � ⇒ �.

If C(s̄) was not the principal formula of the last inference in either (2) or (3) then
we may apply the induction hypothesis to the premises of that inference and then the
same inference again.

So supposeC(s̄)was the principal formula of the last inference in both (2) and (3).
Since the conclusion of a (�E -Ref) inference always has rank � and rk(C(s̄)) :=
ρ > � we may conclude that the last inference of (2) was not (�E -Ref).

Case 1. Suppose C(s̄) ≡ (∃x ∈ si)F(x, s̄), thus we have

H α0

ρ � ⇒ r ∈ si ∧ F(r, s̄) α0 < α, (5)

H α1

ρ � ⇒ si ∈ Eδ α1 < α and δ ∈ H, (6)

H α2

ρ � ⇒ r ∈ Eξ ξ,α2 < α , ξ ∈ H(∅) and ξ ≤ δ, (7)

H β0

ρ �,C(s̄), p ∈ si ∧ F(p, s̄) ⇒ � for all p and β0 < β, (8)

H β1

ρ �,C(s̄) ⇒ si ∈ Eδ′ δ′,β1 < β and δ′ ∈ H(∅). (9)

From (8) we obtain

H β0

ρ �,C(s̄), r ∈ si ∧ F(r, s̄) ⇒ � . (10)

Applying the induction hypothesis to (2), (4) and (10) yields

H α # α # β0 # β0 # γ

ρ �, r ∈ si ∧ F(r, s̄) ⇒ � . (11)

Ordinal Analysis of Intuitionistic Power … 143

Note that

� < rk(r ∈ si ∧ F(r, s̄)) = rk(F(r, s̄)) + 1

< rk(F(r, s̄)) + 2

= rk(C(s̄)) := ρ.

So we may apply (Cut) to (4), (5), (7) and (11) giving

H α #α # β # β # γ

ρ � ⇒ �

as required. The case where C(s̄) ≡ (∀x ∈ si)F(x, s̄) is similar.
Now suppose C(s̄) ≡ (∀x ∈ si s j)F(x, s̄), so we have

H α0

ρ � ⇒ fun(p, si , s j) → F(p, s̄) for all p and α0 < α, (12)

H α1

ρ � ⇒ si ∈ Eδ α1 < α and δ ∈ H(∅), (13)

H α2

ρ � ⇒ s j ∈ Eδ′ α2 < α, δ′ ∈ H(∅) and max(δ, δ′) + 2 ≤ α, (14)

H β0

ρ �,C(s̄), fun(r, si , s j) → F(r, s̄) ⇒ � β0 < β, (15)

H β1

ρ �,C(s̄) ⇒ r ∈ Eξ ξ < β, ξ ∈ H(∅) and β1 < β, (16)

H β2

ρ �,C(s̄) ⇒ si ∈ Eζ ζ ∈ H(∅) and β2 < β, (17)

H β3

ρ �,C(s̄) ⇒ s j ∈ Eζ ′ ζ ′ ∈ H(∅),β3 < β and ξ ≤ max(ζ, ζ ′) + 2. (18)

As an instance of (12) we have

H α0

ρ � ⇒ fun(r, si , s j) → F(r, s̄) . (19)

Applying the induction hypothesis to (2), (4) and (15) gives

H α # α # β0 # β0 # γ

ρ �, fun(r, si , s j) → F(r, s̄) ⇒ � . (20)

Furthermore the induction hypothesis applied to (2), (4) and (16) gives

H α # α # β1 # β1 # γ

ρ � ⇒ r ∈ Eξ . (21)

Note that

� < rk(fun(r, si , s j) → F(r, s̄)) = rk(F(r, s̄)) + 1

< rk(F(r, s̄)) + 2 = rk(C(s̄))

144 J. Cook and M. Rathjen

so we may apply (Cut) to (4), (19), (20), (21) to give

H α #α # β # β # γ

ρ � ⇒ � (22)

as required.
The case where C(s̄) ≡ (∃x ∈ si s j)F(x, s̄) is similar.
Case 3. Now suppose that C(s̄) ≡ ∀xF(x, s̄), so we have

H[δ] αδ

ρ �, p ∈ Eδ ⇒ F(p, s̄) for all p and all δ < � with αδ + 3 < α, (23)

H β0

ρ �,C(s̄), F(r, s̄) ⇒ � with β0 + 3 < β, (24)

H β1

ρ �,C(s̄) ⇒ r ∈ Eξ with ξ < β, ξ ∈ H(∅) and β1 + 3 < β. (25)

Since ξ ∈ H(∅), from (23) we obtain

H
αξ

ρ �, r ∈ Eξ ⇒ F(r, s̄). (26)

Applying the induction hypothesis to (2), (4) and (24) gives

H α # α # β0 # β0 # γ

ρ �, F(r, s̄) ⇒ � . (27)

Again applying the induction hypothesis to (2), (4) and (25) gives

H α # α # β1 # β1 # γ

ρ � ⇒ r ∈ Eξ . (28)

Now a (Cut) applied to (26) and (28) yields

H α # α # β # β1 # γ

ρ � ⇒ F(r, s̄) . (29)

Note that
� ≤ rk(F(r, s̄)) < rk(F(r, s̄)) + 2 = rk(C) = ρ.

So a (Cut) applied to (4), (27), (28) and (29) yields

H α #α # β # β # γ

ρ � ⇒ � (30)

as required.
The case where C(s̄) ≡ ∃xF(x, s̄) is similar.
In the caseswhereC ≡ A ∧ B, A ∨ B, A → B or ¬Awemay argue aswith other

intuitionistic systems of a similar nature. �

Ordinal Analysis of Intuitionistic Power … 145

Theorem 4.10 (Cut Elimination I) If H α

�+n+1
� ⇒ � then H ωn(α)

�+1
� ⇒ � for

all n < ω,
where ω0(α) = α and ωn+1(α) = ωωn(α).

Proof By main induction on n and subsidiary induction on α. The interesting case
is where the last inference was (Cut), with cut formula A(s̄) such that rk(A(s̄)) =
� + n and s̄ = s1, . . . , sm are the only terms occurring A(s̄). In this case we have

H α0

�+n+1
� ⇒ A(s̄) with α0 < α, (1)

H α1

�+n+1
�, A(s̄) ⇒ � with α1 < α, (2)

H α2

�+n+1
� ⇒ si ∈ Eβi with α2 < α and βi ∈ H for each i = 1, . . . ,m. (3)

Applying the subsidiary induction hypothesis to (1), (2) and (3) gives

H ωα0

�+n
� ⇒ A(s̄) with α0 < α, (4)

H ωα1

�+n
�, A(s̄) ⇒ � with α1 < α, (5)

H ωα2

�+n
� ⇒ si ∈ Eβi with α2 < α and βi ∈ H for each i = 1, . . . ,m. (6)

Now applying the Reduction Lemma4.9 to (4), (5) and (6) gives

H ωα0 # ωα0 # ωα1 # ωα1 # ωα2

�+n
� ⇒ � . (7)

Note that ωα0 # ωα0 # ωα1 # ωα1 # ωα2 < ωα so by weakening we have

H ωα

�+n
� ⇒ � . (8)

Finally applying the main induction hypothesis gives

H ωn(α)

�+1
� ⇒ �

as required. �

Lemma 4.11 If γ ≤ β < � with β, γ ∈ H(∅) and H α

ρ � ⇒ s ∈ Eγ then

H α+2

ρ∗
� ⇒ s ∈ Eβ

where ρ∗ := max(ρ,β + 1).

Proof If γ = β the result follows by weakening, so suppose γ < β. Assume that

H α

ρ � ⇒ s ∈ Eγ . (1)

146 J. Cook and M. Rathjen

Now as instances of axioms (E4) and (E6) respectively we have

H 0

0
� ⇒ Eγ ∈ Eβ, (2)

H 0

0
�, s ∈ Eγ,Eγ ∈ Eβ ⇒ s ∈ Eβ . (3)

Applying (Cut) to (2) and (3) yields

H 1

β+2
�, s ∈ Eγ ⇒ s ∈ Eβ . (4)

Now applying a second (Cut) to (1) and (4) supplies us with

H α+2

ρ∗
� ⇒ s ∈ Eβ

as required. �

Lemma 4.12 (Boundedness) Suppose α ≤ β < �, β ∈ H, A is a �E -formula and
B is a �E formula then

(i) IfH α

ρ � ⇒ A then H α

ρ∗
� ⇒ AEβ .

(ii) IfH α

ρ �, B ⇒ � then H α

ρ∗
�, BEβ ⇒ � ,

where ρ∗ := max(ρ,β + 1).

Proof By induction onα. The interesting case of (i) is where A ≡ ∃xC(x) and Awas
the principal formula of the last inference which was (∃R). Note that since α < �

the last inference cannot have been (�E -Ref). So we have

H α0

ρ � ⇒ C(r) with α0 + 3 < α, (1)

H α1

ρ � ⇒ r ∈ Eγ with α1 < α, γ ∈ H and γ < α. (2)

Since γ < α we also know that γ < β so using Lemma4.11 we get

H α1+2

ρ∗
� ⇒ r ∈ Eβ . (3)

Now by applying the induction hypothesis to (1) we get

H α0

ρ � ⇒ C(r)Eβ . (4)

(∧R) applied to (3) and (4) yields

H max(α0+1,α1+3)

ρ∗
� ⇒ r ∈ Eβ ∧ C(r)Eβ . (5)

Ordinal Analysis of Intuitionistic Power … 147

Now since � ⇒ Eβ ∈ Eβ+1 is an axiom we may apply (b∃R) to (2) and (5) giving

H α

ρ∗
� ⇒ (∃x ∈ Eβ)C(x)Eβ

as required.
Now for (ii) the interesting case is where B was the principal formula of the last

inference which was (b∀L), thus B ≡ ∀xC(x). So we have

H α0

ρ �, B,C(s) ⇒ � with α0 < α, (6)

H α1

ρ �, B ⇒ s ∈ Eγ with α1 + 3 < α, γ ∈ H and γ < α. (7)

Applying the induction hypothesis twice to (6) and once to (7) we get

H α0

ρ �, BEβ ,C(s)Eβ ⇒ � with α0 < α, (8)

H α1

ρ �, BEβ ⇒ s ∈ Eγ with α1 + 3 < α, γ ∈ H and γ < α. (9)

Now since γ < α we also know that γ < β so by applying Lemma 4.11 to (9) we
get

H α1+2

ρ∗
�, BEβ ⇒ s ∈ Eβ . (10)

Applying (→ L) to (8) and (10) supplies us with

H max(α0+1,α1+3)

ρ∗
�, BEβ , s ∈ Eβ → C(s)Eβ ⇒ � . (11)

Now applying (b∀L) to (11), (9) and ⇒ Eβ ∈ Eβ+1 which is an instance of axiom
(E4), we obtain

H α

ρ∗
�, BEβ ⇒ �

completing the proof. �

Theorem 4.13 (Cut Elimination II; Collapsing) Suppose η ∈ Hη, � is a set of at
most one �E formula and � is a finite set of �E formulae. Then

Hη
α

�+1
� ⇒ � implies Hα̂

ψ�(α̂)

ψ�(α̂)
� ⇒ � ,

where α̂ := η + ωα.

Proof The proof is by induction on α. Note that since η ∈ Hη we know from
Lemma2.20 that

α̂,ψ�(α̂) ∈ Hα̂.

148 J. Cook and M. Rathjen

Case 1. If � ⇒ � is an axiom the result follows easily.
Case 2. If � ⇒ � was the result of a propositional inference we may apply the

induction hypothesis to the premises of that inference, and then the same inference
again.

Case 3. Suppose the last inference was (E-Lim), then s ∈ Eγ is a formula in �

for some limit ordinal γ and

Hη[δ] αδ

�+1
�, s ∈ Eδ ⇒ � for all δ < γ with αδ < α.

Since γ ∈ Hη(∅) = B�(η + 1) and γ < �we know that γ < ψ�(η + 1) and thus
δ ∈ Hη for all δ < γ. So we have

Hη
αδ

�+1
�, s ∈ Eδ ⇒ � for all δ < γ with αδ < α.

Now applying the induction hypothesis provides

Hα̂
ψ�(α̂δ)

ψ�(α̂δ)
�, s ∈ Eδ ⇒ � for all δ < γ with αδ < α.

Now since ψ�(α̂δ) < ψ�(α̂) we may apply (E-Lim) to get the desired result.
Case 4. Suppose the last inference was (b∀L), then (∀x ∈ t)F(x) ∈ � and

Hη
α0

�+1
�, s ∈ t → F(s) ⇒ � with α0 < α, (1)

Hη
α1

�+1
� ⇒ t ∈ Eβ β ∈ Hη(∅) and α1 < α, (2)

Hη
α2

�+1
� ⇒ s ∈ Eγ γ ∈ Hη(∅), γ,α2 < α and γ ≤ β. (3)

Since s ∈ t → F(s) is also a�E -formulawemay immediately apply the induction
hypothesis to (1), (2) and (3) giving

Hα̂
ψ�(α̂0)

ψ�(α̂)
�, s ∈ t → F(s) ⇒ �, (4)

Hα̂
ψ�(α̂1)

ψ�(α̂)
� ⇒ t ∈ Eβ, (5)

Hα̂
ψ�(α̂2)

ψ�(α̂)
� ⇒ s ∈ Eγ . (6)

Since γ ∈ Hη we know that γ < ψ�(η + 1) and thus γ ∈ Hα̂ and γ < ψ�(α̂).
Moreover ψ�(αi) < ψ�(α) for i = 0, 1, 2 so we may apply (b∀L) to complete this
case. The case where the last inference was (b∃R) is treated in a similar manner.

Case 5. Suppose the last inference was (b∀R)∞, then � = {(∀x ∈ t)F(x)} and

Hη
α0

�+1
� ⇒ s ∈ t → F(s) for all s, with α0 < α, (7)

Hη
α1

�+1
� ⇒ t ∈ Eβ with α1,β < α and β ∈ Hη. (8)

Ordinal Analysis of Intuitionistic Power … 149

Applying the induction hypothesis to (7) and (8) yields

Hα̂
ψ�(α̂1)

ψ�(α̂)
� ⇒ t ∈ Eβ, (9)

Hα̂
ψ�(α̂0)

ψ�(α̂)
� ⇒ s ∈ t → F(s). (10)

Note that since β ∈ Hη we know that β < ψ�(η + 1) < ψ�(α̂), thus applying
(b∀R)∞ to (10) (noting that ψ�(α̂0) + 1 < ψ�(α̂)) gives the desired result. The
case where the last inference was (b∃L)∞ is treated in a similar manner.

Case 6. Now suppose the last inference was (Eb∃L)∞, so (∃x ∈ s t)F(x) ∈ � and

Hη
α0

�+1
�, fun(p, s, t) ∧ F(p) ⇒ � for all p, with α0 < α, (11)

Hη
α1

�+1
� ⇒ s ∈ Eβ with β ∈ Hη and α1 < α, (12)

Hη
α2

�+1
� ⇒ t ∈ Eγ with α2 < α, γ ∈ Hη and max(β, γ) + 2 ≤ α. (13)

By assumption fun(p, s, t) ∧ F(p) is a �E formula so we may apply the induction
hypothesis to (11), (12) and (13) giving

Hα̂
ψ�(α̂0)

ψ�(α̂)
�, fun(p, s, t) ∧ F(p) ⇒ � for all p, (14)

Hα̂
ψ�(α̂1)

ψ�(α̂)
� ⇒ s ∈ Eβ, (15)

Hα̂
ψ�(α̂2)

ψ�(α̂)
� ⇒ t ∈ Eγ . (16)

Since ψ�(α̂i) < ψ�(α̂) for i = 0, 1, 2 and β, γ ∈ Hη means that max(β, γ) + 2 <

ψ�(η + 1) < ψ�(α̂) we may apply (Eb∃L)∞ to (14), (15) and (16) to complete this
case. The case where the last inference was (Eb∀R)∞ may be treated in a similar
manner.

Case 7. Now suppose the last inference was (Eb∀R), so � = {(∃x ∈ s t)F(x)}
and we have

Hη
α0

�+1
� ⇒ fun(p, s, t) ∧ F(p) for all p with α0 < α, (17)

Hη
α1

�+1
� ⇒ s ∈ Eβ with β ∈ Hη(∅) and α1 < α, (18)

Hη
α2

�+1
� ⇒ t ∈ Eγ with γ ∈ Hη(∅) and α2 < α, (19)

Hη
α3

�+1
� ⇒ p ∈ Eδ α3, δ < α, δ ∈ Hη(∅) and δ ≤ max(β, γ) + 2. (20)

Since fun(p, s, t) ∧ F(p) is a �E formula we can apply the induction hypothesis to
(17), (18), (19) and (20) followed by (Eb∀R), in a similar manner to Case 4. The
case where the last inference was (Eb∀L) can also be treated in a similar manner.

150 J. Cook and M. Rathjen

Now suppose the last inference was (∀L), so ∀xF(x) ∈ � and

Hη
α0

�+1
�, F(s) ⇒ � with α0 + 3 < α, (21)

Hη
α1

�+1
� ⇒ s ∈ Eβ β,α1 + 3 < α and β ∈ Hη(∅). (22)

Since F(s) is �E we may immediately apply the induction hypothesis to (21) and
(22) giving

Hα̂
ψ�(α̂0)

ψ�(α̂)
�, F(s) ⇒ �, (23)

Hα̂
ψ�(α̂1)

ψ�(α̂)
� ⇒ s ∈ Eβ . (24)

Now since β ∈ Hη we know that β < ψ�(η + 1) < ψ�(α̂) hence we may apply
(∀L) to (23) and (24) to complete this case. The case where the last inference was
(∃R) can be treated in a similar manner.

Case 9. Now suppose the last inference was (�E -Ref), so � = {∃zAz} where A
is a �E formula and

Hη
α0

�+1
� ⇒ A with α0 + 1,� < α. (25)

We may immediately apply the induction hypothesis to (25) giving

Hα̂0

ψ�(α̂0)

ψ�(α̂0)
� ⇒ A . (26)

Applying Boundedness Lemma4.12(i) to (26) provides

Hα̂0

ψ�(α̂0)

ψ�(α̂0)+2
� ⇒ AEψ�(α̂0) . (27)

Now as an instance of axiom (E4) we have

Hα̂0

0

0
⇒ Eψ�(α̂0) ∈ Eψ�(α̂0)+1 . (28)

Since ψ�(α̂0) + 1 ∈ Hα̂ and ψ�(α̂0) + 1 < ψ�(α̂) we may apply (∃R) to (27) and
(28) to complete the case.

Now suppose the last inference was (Cut), so that we have

Hη
α0

�+1
� ⇒ A(s̄) with α0 < α, (29)

Hη
α1

�+1
�, A(s̄) ⇒ � with α1 < α, (30)

Hη
α2

�+1
� ⇒ si ∈ Eβi with α2 < α, β̄ ∈ Hη and ‖A(s̄)‖β̄ ≤ �. (31)

Ordinal Analysis of Intuitionistic Power … 151

Subcase 10.1: If ‖A(s̄)‖β̄ < � it follows from β̄ ∈ Hη = B�(η + 1) that ‖A(s̄)‖β̄ ∈
B�(η + 1) and thus ‖A(s̄)‖β̄ < ψ�(η + 1) < ψ�(α̂). Also A is �E

0 , thus we may
apply the induction hypothesis to (29), (30) and (31) followed by (Cut) to complete
this (sub)case.

Subcase 10.2: Now suppose ‖A(s̄)‖β̄ = �. Then either A ≡ ∀xF(x) or A ≡
∃xF(x) with F a �E

0 formula. The two cases are dual, we assume that the former is
the case. Thus A is �E , so we may apply the induction hypothesis to (30) giving

Hα̂1

ψ�(α̂1)

ψ�(α̂1)
�, A(s̄) ⇒ � . (32)

Applying Boundedness Lemma4.12(ii) to (32) yields

Hα̂
max(ψ�(α̂0),ψ�(α̂1))

ψ�(α̂1)
�, A(s̄)Eψ�(α̂0) ⇒ � . (33)

Now applying Lemma4.8(xi) (persistence) to (29) gives

Hα̂0

α0

�+1
� ⇒ A(s̄)Eψ�(α̂0) . (34)

Noting that A(s̄)Eψ�(α̂0) is �E
0 we may apply the induction hypothesis to (34) giving

Hα∗
ψ�(α∗)

ψ�(α∗)
� ⇒ A(s̄)Eψ�(α̂0) . (35)

where α∗ := α̂0 + ω�+α0 . Now applying the induction hypothesis to (31) gives

Hα̂2

ψ�(α̂2)

ψ�(α̂2)
� ⇒ si ∈ Eβi . (36)

Now as an instance of axiom (E4) we have

Hα̂
0

0
⇒ Eψ�(α̂0) ∈ Eψ�(α̂0)+1 . (37)

Since β̄ ∈ B�(η + 1) we get

‖A(s̄)Eψ�(α̂0)‖β̄,ψ�(α̂0)+1 = ψ�(α̂0) + 1 < ψ�(α̂).

It remains to note that

α∗ = η + ω�+α0 + ω�+α0 < η + ω�+α = α̂

152 J. Cook and M. Rathjen

and thus ψ�(α∗) < ψ�(α). So we may apply (Cut) to (33), (35), (36) and (37) to
conclude

Hα̂
ψ�(α̂)

ψ�(α̂)
� ⇒ �

as required. �

4.4 Embedding IKP(E) into IRSP
�

Definition 4.14 If �[ā] ⇒ �[ā] is an intuitionistic sequent of IKP(E) with exactly
the free variables ā = a1, . . . , an and containing the formulas A1(ā), . . . , Am(ā)

then
noβ̄(�[s̄] ⇒ �[s̄]) := ω‖A1‖β̄ # · · · # ω‖Am‖β̄ .

For terms s̄ := s1, . . . , sn and ordinals β̄ := β1, . . . ,βn the expression s̄ ∈ Eβ̄ will
be considered shorthand for s1 ∈ Eβ1 , . . . , sn ∈ Eβn

The expression � �[s̄] ⇒ �[s̄] will be considered shorthand for

H[β̄] noβ̄(�[s̄]⇒�[s̄])
0

s̄ ∈ Eβ̄, �[s̄] ⇒ �[s̄] .

For any operator H and any ordinals β̄ < �.
The expression �α

ρ �[s̄] ⇒ �[s̄] will be considered shorthand for

H[β̄] noβ̄(�[s̄]⇒�[s̄]) #α

ρ s̄ ∈ Eβ̄, �[s̄] ⇒ �[s̄] .

For any operator H and any ordinals β̄ < �.
As might be expected �α �[s̄] ⇒ �[s̄] and �ρ �[s̄] ⇒ �[s̄] will be considered

shorthand for �α
0 �[s̄] ⇒ �[s̄] and �0

ρ �[s̄] ⇒ �[s̄] respectively.
Lemma 4.15 For any formula A(ā) of IKP(E) containing exactly the free variables
displayed and any IRSE� terms s̄ = s1, . . . , sn

�� A(s̄) ⇒ A(s̄).

Proof By induction on the construction of the formula A. If A is �E
0 then this is an

instance of axiom (E1).
Suppose A(s̄) ≡ ∀xF(x, s̄). For each γ < � we define

αγ := γ + noγ,β̄(F(t, s̄) ⇒ F(t, s̄)),

note that
γ < αγ < αγ + 8 < noβ̄(A(s̄) ⇒ A(s̄)).

Ordinal Analysis of Intuitionistic Power … 153

By axiom (E1) we have

H[γ, β̄] 0

0
t ∈ Eγ ⇒ t ∈ Eγ for all t and all γ < �. (1)

Now from the induction hypothesis we have

H[γ, β̄] αγ

�
s̄ ∈ Eβ̄, t ∈ Eγ, F(t, s̄) ⇒ F(t, s̄) for all t and all γ < �. (2)

It is worth noting that this use of the induction hypothesis is where we really need
cuts of β̄-rank arbitrarily high in �. Applying (∀L) to (1) and (2) yields

H[γ, β̄] αγ+4

�
s̄ ∈ Eβ̄, t ∈ Eγ, A(s̄) ⇒ F(t, s̄)

to which we may apply (∀R)∞ to get the desired result.
Case 2. Now suppose A ≡ (∀x ∈ si)F(x, s̄). From the induction hypothesis we

have

H[δ, β̄] (ω
‖F(t,s̄)‖

δ,β̄)·2
�

t ∈ Eδ, s̄ ∈ Eβ̄, F(t, s̄) ⇒ F(t, s̄) for all t and all δ < �.
(3)

In particular when δ = βi in (3) we have

H[δ, β̄] α0

�
t ∈ Eβi , s̄ ∈ Eβ̄, F(t, s̄) ⇒ F(t, s̄) (4)

where α0 := (ω‖F(t,s̄)‖βi ,β̄) · 2. Now as an instance of axiom (E6) we have

H[β̄] 0

0
si ∈ Eβi , t ∈ si ⇒ t ∈ Eβi . (5)

Now applying (Cut) to (4) and (5) yields

H[β̄] α0+1

�
s̄ ∈ Eβ̄, t ∈ si , F(t, s̄) ⇒ F(t, s̄) . (6)

As an instance of axiom (E1) we have

H[β̄] 0

0
t ∈ si ⇒ t ∈ si . (7)

Applying (→ L) to (6) and (7) yields

H[β̄] α0+2

�
s̄ ∈ Eβ̄, t ∈ si , t ∈ si → F(t, s̄) ⇒ F(t, s̄) . (8)

An application of (b∀L) to (5) and (8) provides

H[β̄] α0+3

�
s̄ ∈ Eβ̄, t ∈ si , (∀x ∈ si)F(x, s̄) ⇒ F(t, s̄) .

154 J. Cook and M. Rathjen

Finally using (→ R) followed by (b∀R)∞ and noting that α0 + 5 < noβ̄(A(s̄) ⇒
A(s̄)) we get the desired result.

Case 3. Suppose that A ≡ (∃x ∈ si s j)F(x, s̄). From the induction hypothesis we
know that

H[β̄, δ] (ω
‖F(t,s̄)‖

δ,β̄)·2
�

s̄ ∈ Eβ̄, t ∈ Eδ, F(t, s̄) ⇒ F(t, s̄) for all t and all δ < �.
(9)

In particular when δ = γ := max(βi ,β j) + 2 we have

H[β̄] α0

�
s̄ ∈ Eβ̄, t ∈ Eγ, F(t, s̄) ⇒ F(t, s̄) for all t , (10)

where α0 := (ω‖F(t,s̄)‖β̄,γ) · 2. Now as an instance of axiom (E10) we have

H[β̄] 0

0
s̄ ∈ Eβ̄, fun(t, si , s j) ⇒ t ∈ Eγ . (11)

Applying (Cut) to (10) and (11) gives

H[β̄] α0+1

�
s̄ ∈ Eβ̄, fun(t, si , s j), F(t, s̄) ⇒ F(t, s̄) . (12)

As an instance of axiom (E1) we have

H[β̄] 0

0
fun(t, si , s j) ⇒ fun(t, si , s j) . (13)

Applying (∧R) to (12) and (13) gives

H[β̄] α0+2

�
s̄ ∈ Eβ̄, fun(t, si , s j), F(t, s̄) ⇒ fun(t, si , s j) ∧ F(t, s̄) . (14)

Now applying (Eb∃R) to (11) and (14) yields

H[β̄] α0+3

�
s̄ ∈ Eβ̄, fun(t, si , s j), F(t, s̄) ⇒ (∃x ∈ si s j)F(x, s̄) . (15)

Two applications of (∧L) gives

H[β̄] α0+5

�
s̄ ∈ Eβ̄, fun(t, si , s j) ∧ F(t, s̄) ⇒ (∃x ∈ si s j)F(x, s̄) . (16)

Finally using (Eb∃L)∞ gives

H[β̄] α0+6

�
s̄ ∈ Eβ̄, (∃x ∈ si s j)F(x, s̄) ⇒ (∃x ∈ si s j)F(x, s̄) . (17)

It remains to note that α0 + 6 < noβ̄(A(s̄) ⇒ A(s̄)) to complete this case.
All other cases are either propositional, for which the proof is standard or may be

regarded as dual to one of the three above. �

Ordinal Analysis of Intuitionistic Power … 155

Lemma 4.16 (Extensionality)Forany formula A(ā)of IKP(E) (not necessarilywith
all free variables displayed) and any IRSE� terms s̄ := s1, . . . , sn, t̄ := t1, . . . , tn we
have

�� s̄ = t̄, A(s̄) ⇒ A(t̄)

where s̄ = t̄ is shorthand for s1 = t1, . . . , sn = tn.

Proof If A(s̄) is�E
0 then this is an instance of axiom (E3). The remainder of the proof

is by induction on rk(A(s̄)), note that since A is assumed to contain an unbounded
quantifier

rk(A) = ‖A(s̄)‖β̄ ≥ � for any ordinals β̄ < �.

Case 1. Suppose A(s̄) ≡ ∀xF(x, s̄). By the induction hypothesis we have

H[β̄, γ̄, δ] noβ̄,γ̄,δ(s̄=t̄,F(r,s̄)⇒F(r,t̄))

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, r ∈ Eδ, s̄ = t̄, F(r, s̄) ⇒ F(r, t̄)

for all r and all δ < �. For ease of reading we suppress the other terms possibly
occurring in F(r, s̄) and the assumptions about their locations in the E hierarchy
since these do not affect the proof. By virtue of axiom (E1) we have

H[β̄, γ̄, δ] 0

0
r ∈ Eδ ⇒ r ∈ Eδ .

Hence we may apply (∀L) to obtain

H[β̄, γ̄, δ] αδ

�
s̄ ∈ Eβ̄, t ∈ Eγ̄, s̄ = t̄, r ∈ Eδ,∀xF(x, s̄) ⇒ F(r, t̄)

where αδ := δ + noβ̄,γ̄,δ(s̄ = t̄, F(r, s̄) ⇒ F(r, t̄)) + 1. Note that

αδ + 3 < noβ̄,γ̄(s̄ = t̄, A(s̄) ⇒ A(t̄)) =: α.

Hence we may apply (∀R)∞ to obtain

H[β̄, γ̄] α

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, s̄ = t̄, A(s̄) ⇒ A(t̄)

as required.
Case 2. Now suppose A(s̄) ≡ (∀x ∈ si s j)F(x, s̄). Using the induction hypothesis

we have

H[β̄, γ̄, δ] α0

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, r ∈ Eδ, s̄ = t̄, F(r, s̄) ⇒ F(r, t̄) (1)

for any term r and any δ < �, whereα0 = noβ̄,γ̄,δ(s̄ = t̄, F(r, s̄) ⇒ F(r, t̄)). At this

point we set δ = max(βi ,β j) + 2, note that δ ∈ H[β̄, γ̄]. By virtue of axiom (E1)
we have

H[β̄, γ̄] 0

0
fun(r, si , s j) ⇒ fun(r, si , s j). (2)

156 J. Cook and M. Rathjen

Hence by (→ L) we get

H[β̄, γ̄] α0+1

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄ , r ∈ Eδ, s̄ = t̄, (3)

fun(r, si , s j) → F(r, s̄), fun(r, si , s j) ⇒ F(r, t̄).

As an instance of axiom (E10) we have

H[β̄, γ̄] 0

0
s̄ ∈ Eβ̄, fun(r, si , s j) ⇒ r ∈ Eδ . (4)

An application of (Cut) to (3) and (4) yields

H[β̄, γ̄] α0+2

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄ , s̄ = t̄, (5)

fun(r, si , s j) → F(r, s̄), fun(r, si , s j) ⇒ F(r, t̄).

Now applying (Eb∀L) to (4) and (5) gives

H[β̄, γ̄] α0+3

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, s̄ = t̄, (∀x ∈ si s j)F(x, s̄), fun(r, si , s j) ⇒ F(r, t̄).

(6)
Note that α0 ≥ � since F is not �E

0 , so we don’t have to worry about the condition
δ < α0 + 3. Now as an instance of axiom (E3) we have

H[β̄, γ̄] 0

0
s̄ = t̄, fun(r, ti , t j) ⇒ fun(r, si , s j) . (7)

Also axiom (E10) gives rise to

H[β̄, γ̄] 0

0
t̄ ∈ Eγ̄, fun(r, ti , t j) ⇒ r ∈ Eη where η = max(γi , γ j) + 2. (8)

Applying (Cut) to (6), (7) and (8) gives

H[β̄, γ̄] α0+4

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, s̄ = t̄, (∀x ∈ si s j)F(x, s̄), fun(r, ti , t j) ⇒ F(r, t̄).

(9)
Now (→ R) gives

H[β̄, γ̄] α0+5

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, s̄ = t̄, (∀x ∈ si s j)F(x, s̄) ⇒ fun(r, ti , t j) → F(r, t̄).

(10)

Finally we may apply (Eb∀R)∞, noting that α0 + 6 < noβ̄,γ̄(s̄ = t̄, A(s̄) ⇒ A(t̄))
to complete this case.

Note that it could also be the case that A(s̄) ≡ (∀x ∈ pq)F(x, s̄) where p and/or
q is not a member of s̄. The following case is an example of this kind of thing.

Case 3. Suppose A(s̄) ≡ (∃x ∈ p)F(x, s̄, p), where p is not present in s̄. By the
induction hypothesis we have

Ordinal Analysis of Intuitionistic Power … 157

H[β̄, γ̄, δ] α0

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, p ∈ Eδ, r ∈ Eδ, s̄ = t̄, F(r, s̄, p) ⇒ F(r, t̄, p)

(11)

where α0 := noβ̄,γ̄,δ,δ(s̄ = t̄, F(r, s̄, p) ⇒ F(r, t̄, p)). As an instance of axiom (E1)
we have

H[β̄, γ̄, δ] 0

0
r ∈ p ⇒ r ∈ p . (12)

Applying (∧R) to (11) and (12) yields

H[β̄, γ̄, δ] α0+1

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄ , p ∈ Eδ, r ∈ Eδ, s̄ = t̄, F(r, s̄, p), r ∈ p ⇒ r ∈ p ∧ F(r, t̄, p) .

(13)

As an instance of axiom (E6) we have

H[β̄, γ̄, δ] 0

0
p ∈ Eδ, r ∈ p ⇒ r ∈ Eδ . (14)

(Cut) applied to (12) and (13) gives

H[β̄, γ̄, δ] α0+2

�
s̄ ∈ Eβ̄ , t̄ ∈ Eγ̄ , p ∈ Eδ, s̄ = t̄, F(r, s̄, p), r ∈ p ⇒ r ∈ p ∧ F(r, t̄, p) .

(15)

Now (b∃R) gives

H[β̄, γ̄, δ] α0+3

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, p ∈ Eδ, s̄ = t̄, F(r, s̄, p), r ∈ p ⇒ A(s̄) . (16)

Two applications of (∧L) gives

H[β̄, γ̄, δ] α0+5

�
s̄ ∈ Eβ̄, t̄ ∈ Eγ̄, p ∈ Eδ, s̄ = t̄, r ∈ p ∧ F(r, s̄, p) ⇒ A(s̄) . (17)

To which we may apply (b∃L) to complete this case.
All other cases are similar to one of those above. �

Lemma 4.17 (Set induction) For any formula F(a) of IKP(E) we have

��⇒ ∀x[(∀y ∈ x)F(y) → F(x)] → ∀xF(x).

Proof Let H be an arbitrary operator and let

A := ∀x[(∀y ∈ x)F(y) → F(x)].

Let p̄ be the terms other than s that occur in F(s), sub-terms not included. Let
H̄ := H[β̄] where β̄ is an arbitrary choice of ordinals < �. In the remainder of the
proof we shall just write H̄ α

ρ � ⇒ � instead of H[β̄] α

ρ p̄ ∈ Eβ̄, � ⇒ � , since
p̄ ∈ Eβ̄ will always remain a side formula in the derivation. We claim that

H̄[γ] ωrk(A) # ωγ+1

�
A, s ∈ Eγ ⇒ F(s) for all γ < � and all terms s. (∗)

158 J. Cook and M. Rathjen

Note that since A contains an unbounded quantifier rk(A) = noβ̄(A). We prove
the claim by induction on γ. Thus the induction hypothesis supplies us with

H̄[δ] ωrk(A) # ωδ+1

�
A, t ∈ Eδ ⇒ F(t) for all δ < γ and all terms t . (1)

So by weakening we have

H̄[γ, δ] ωrk(A) # ωδ+1

�
A, s ∈ Eγ, t ∈ s, t ∈ Eδ ⇒ F(t) . (2)

Case 1. Suppose γ = γ0 + 1, so a special case of (2) becomes

H̄[γ] ωrk(A) # ωγ

�
A, s ∈ Eγ, t ∈ s, t ∈ Eγ0 ⇒ F(t) . (3)

As an instance of axiom (E7) we have

H̄[γ] 0

0
s ∈ Eγ, t ∈ s ⇒ t ∈ Eγ0 . (4)

Applying (Cut) to (3) and (4) yields

H̄[γ] ωrk(A) # ωγ+1

�
A, s ∈ Eγ, t ∈ s ⇒ F(t) . (5)

(→ R) followed by (b∀R)∞ provides

H̄[γ] ωrk(A) # ωγ+3

�
A, s ∈ Eγ ⇒ (∀x ∈ s)F(x) . (6)

Now from Lemma4.15 we have

H̄[γ] noβ̄,γ(F(s)⇒F(s))

�
s ∈ Eγ, F(s) ⇒ F(s) . (7)

Since noβ̄,γ(F(s) ⇒ F(s)) < ωrk(A), by (→ L) we get

H̄[γ] ωrk(A) # ωγ+4

�
A, s ∈ Eγ, (∀x ∈ s)F(x) → F(s) ⇒ F(s) . (8)

To which we may apply (∀L) giving

H̄[γ] ωrk(A) # ωγ+1

�
A, s ∈ Eγ ⇒ F(s) (9)

as required.
Case 2. Now suppose γ is a limit ordinal. Applying (E-Lim) to (2) provides us

with
H̄[γ] ωrk(A) # ωγ

�
A, s ∈ Eγ, t ∈ s, t ∈ Eγ ⇒ F(t) . (10)

Ordinal Analysis of Intuitionistic Power … 159

As an instance of axiom (E6) we have

H̄[γ] 0

0
s ∈ Eγ, t ∈ s ⇒ t ∈ Eγ . (11)

An application of (Cut) to (10) and (11) yields

H̄[γ] ωrk(A) # ωγ+1

�
A, s ∈ Eγ, t ∈ s ⇒ F(t) . (12)

The remainder of this case can proceed exactly as in Case 1 from (5) onwards. Thus
the claim (*) is verified.

Finally applying (∀R)∞ to (*) gives

H̄ ωrk(A) #�

�
A ⇒ ∀xF(x) .

Finally noting that ωrk(A) #� < noβ̄(A → ∀xF(x)) we may apply (→ R) to com-
plete the proof. �

Lemma 4.18 (Infinity) For any operator H we have

H ω+4
ω ⇒ ∃x[(∀y ∈ x)(∃z ∈ x)(y ∈ z) ∧ (∃y ∈ x)(y ∈ x)] .

Proof Firstly note that by Definition2.6 1,ω ∈ H. We have the following derivation
trees in IRSE�.

Axiom (E6)

H 0

0
s ∈ En ,En ∈ En+1 ⇒ s ∈ En+1

Axiom (E4)

H 0

0
⇒ En ∈ En+1

(Cut)
H 1

n+3
s ∈ En ⇒ s ∈ En+1

Axiom (E4)

H 0

0
⇒ En+1 ∈ Eω

(∧R)

H 2

n+3
s ∈ En ⇒ En+1 ∈ Eω ∧ s ∈ En+1

(b∃R)

H n+3

n+3
s ∈ En ⇒ (∃z ∈ Eω)(s ∈ z)

(E-Lim)
H ω

ω s ∈ Eω ⇒ (∃z ∈ Eω)(s ∈ z)
(→ R)

H ω+1
ω ⇒ s ∈ Eω → (∃z ∈ Eω)(s ∈ z)

(b∀R)∞
H ω+2

ω ⇒ (∀y ∈ Eω)(∃z ∈ Eω)(y ∈ z)

Axiom (E4)

H 0

0
⇒ E0 ∈ Eω

(∧R)
H 1

0
⇒ E0 ∈ Eω ∧ E0 ∈ Eω

(b∃R)
H 2

0
⇒ (∃y ∈ Eω)(y ∈ Eω)

Applying (∧R) followed by (b∃R) to the conclusions of the two proof trees above
yields the required result. �

160 J. Cook and M. Rathjen

Lemma 4.19 (�E
0 -Separation) For any �E

0 formula A(a, b̄) of IKP(E) containing
exactly the free variables a, b̄ = b1, . . . , bn, any IRSE� terms r, s1, . . . , sn and any
operator H:

H[γ, β̄] α+7

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ ∃x[(∀y ∈ x)(y ∈ r ∧ A(y, s̄)) ∧ (∀y ∈ r)(A(y, s̄) → y ∈ x)]

where α = max(β̄, γ).

Proof First let
p := [x ∈ r | A(x, s̄)].

As an instance of axiom (E11) we have

H[γ, β̄] 0

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ p ∈ Eα . (1)

Moreover we have the following derivations in IRSE�:

Axiom (E9)

H 0

0
s̄ ∈ Eβ̄, r ∈ Eγ, t ∈ p ⇒ t ∈ r ∧ A(t, s̄)

(→ R)
H 1

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ t ∈ p → t ∈ r ∧ A(t, s̄) (1)

(b∀R)∞
H α+2

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ (∀y ∈ p)(y ∈ r ∧ A(y, s̄))

Axiom (E8)

H 0

0
s̄ ∈ Eβ̄, r ∈ Eγ, t ∈ r, A(t, s̄) ⇒ t ∈ p

(→ R)
H 1

0
s̄ ∈ Eβ̄, r ∈ Eγ, t ∈ r ⇒ A(t, s̄) → t ∈ p

(→ R)
H 2

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ t ∈ r → (A(t, s̄) → t ∈ p)

(b∀R)∞
H γ+3

0
s̄ ∈ Eβ̄, r ∈ Eγ ⇒ (∀y ∈ r)(A(y, s̄) → y ∈ p)

Now applying (∧R) to (1) and the conclusions of the two proof trees above, followed
by an application of (∃R) yields the desired result. �

Lemma 4.20 (Pair) For any operator H, and IRSE� terms s, t and any ordinals
β, γ < �:

H[β, γ] α+6

α+2
s ∈ Eβ, t ∈ Eγ ⇒ ∃z(s ∈ z ∧ t ∈ z)

where α := max(β, γ).

Proof If β = γ the proof is straightforward, without loss of generality let us assume
β > γ. As instances of axioms (E6) and (E4) we have

Ordinal Analysis of Intuitionistic Power … 161

H[β, γ] 0

0
t ∈ Eγ,Eγ ∈ Eβ ⇒ t ∈ Eβ, (1)

H[β, γ] 0

0
⇒ Eγ ∈ Eβ . (2)

Applying (Cut) gives

H[β, γ] 1

β+2
t ∈ Eγ ⇒ t ∈ Eβ . (3)

By axiom (E1) we have

H[β, γ] 0

0
s ∈ Eβ ⇒ s ∈ Eβ . (4)

Applying (∧R) to (3) and (4) provides

H[β, γ] 2

β+2
s ∈ Eβ, t ∈ Eβ ⇒ s ∈ Eβ ∧ t ∈ Eβ , (5)

to which we may apply (∃R) giving

H[β, γ] β+6

β+2
s ∈ Eβ, t ∈ Eγ ⇒ ∃z(s ∈ z ∧ t ∈ z)

as required. �

Lemma 4.21 (Union) For any operator H, IRSE� term s and any β < � we have

H[β] β+9

β+2
s ∈ Eβ ⇒ ∃z[(∀y ∈ s)(∀x ∈ y)(x ∈ z)] .

Proof We have the following template for derivations in IRSE�.

Axiom (E6)

H[β] 0

0
t ∈ Eβ, r ∈ t ⇒ r ∈ Eβ

Axiom (E6)

H[β] 0

0
s ∈ Eβ, t ∈ s ⇒ t ∈ Eβ

(Cut)
H[β] 1

β+2
s ∈ Eβ, t ∈ s, r ∈ t ⇒ r ∈ Eβ

(→ R)
H[β] 2

β+2
s ∈ Eβ, t ∈ s ⇒ r ∈ t → r ∈ Eβ

(b∀R)∞
H[β] β+3

β+2
s ∈ Eβ, t ∈ s ⇒ (∀x ∈ t)(x ∈ Eβ)

(→ R)

H[β] β+4

β+2
s ∈ Eβ ⇒ t ∈ s → (∀x ∈ t)(x ∈ Eβ)

(b∀R)∞
H[β] β+5

β+2
s ∈ Eβ ⇒ (∀y ∈ s)(∀x ∈ y)(x ∈ Eβ)

(∃R)

H[β] β+9

β+2
s ∈ Eβ ⇒ ∃z(∀y ∈ s)(∀x ∈ y)(x ∈ z). �

162 J. Cook and M. Rathjen

Lemma 4.22 (�E
0 -Collection) Let F(a, b, c̄) be any �E

0 formula of IKP(E) con-
taining exactly the free variables displayed then for any s̄ = s1, . . . , sn

��⇒ (∀x ∈ si)∃yF(x, y, s̄) → ∃z(∀x ∈ si)(∃y ∈ z)F(x, y, s̄).

Proof Since F is �E
0 we have

noβ̄((∀x ∈ si)∃yF(x, y, s̄)) = ω�+2.

Hence by Lemma4.15 we have

H[β̄] ω�+2·2
�

s̄ ∈ Eβ̄, (∀x ∈ si)∃yF(x, y, s̄) ⇒ (∀x ∈ si)∃yF(x, y, s̄) .

Applying (�E -Ref) gives

H[β̄] ω�+2·2+2

�
s̄ ∈ Eβ̄, (∀x ∈ si)∃yF(x, y, s̄) ⇒ ∃z(∀x ∈ si)(∃y ∈ z)F(x, y, s̄) .

By (→ R) we get

H[β̄] ω�+2·2+3
�

s̄ ∈ Eβ̄ ⇒ (∀x ∈ si)∃yF(x, y, s̄) → ∃z(∀x ∈ si)(∃y ∈ z)F(x, y, s̄) .

Finally since ω�+2 · 2+ 3 < ω�+3 we may conclude

��⇒ (∀x ∈ si)∃yF(x, y, s̄) → ∃z(∀x ∈ si)(∃y ∈ z)F(x, y, s̄)

as required. �

Lemma 4.23 (Exponentiation) For any terms s, t any β, γ < � and any operator
H

H[β, γ] δ+4

δ+3
s ∈ Eβ, t ∈ Eγ ⇒ ∃z(∀x ∈ s t)(x ∈ z)

where δ := max(β, γ) + 2.

Proof First let
p := [x ∈ Eδ | fun(x, s, t)].

As an instance of axiom (E10) we have

H[β, γ] 0

0
s ∈ Eβ, t ∈ Eγ, fun(q, s, t) ⇒ q ∈ Eδ for all q. (1)

Also axiom (E8) provides

H[β, γ] 0

0
q ∈ Eδ, fun(q, s, t) ⇒ q ∈ p for all q. (2)

Ordinal Analysis of Intuitionistic Power … 163

Applying (Cut) to (1) and (2) provides

H[β, γ] 1

δ+2
s ∈ Eβ, t ∈ Eγ, fun(q, s, t) ⇒ q ∈ p for all q. (3)

Now by (→ R) we have

H[β, γ] 2

δ+2
s ∈ Eβ, t ∈ Eγ ⇒ fun(q, s, t) → q ∈ p for all q. (4)

Thus we may use (Eb∀R)∞ giving

H[β, γ] δ+1

δ+2
s ∈ Eβ, t ∈ Eγ ⇒ (∀x ∈ s t)(x ∈ p) for all q. (5)

As instances of axioms (E11) and (E4) we also have

H[β, γ] 0

0
s ∈ Eβ, t ∈ Eγ,Eδ ∈ Eδ+1 ⇒ p ∈ Eδ+1, (6)

H[β, γ] 0

0
⇒ Eδ ∈ Eδ+1. (7)

We may apply (Cut) to (6) and (7) to obtain

H[β, γ] 1

δ+3
s ∈ Eβ, t ∈ Eγ ⇒ p ∈ Eδ+1. (8)

Finally by applying (∃R) to (5) and (8) we get

H[β, γ] δ+4

δ+3
s ∈ Eβ, t ∈ Eγ ⇒ ∃z(∀x ∈ s t)(x ∈ z)

as required. �

Theorem 4.24 If IKP(E) � �[ā] ⇒ �[ā] with ā the only free variables occurring
in the intuitionistic sequent �[ā] ⇒ �[ā]. Then there is a k < ω such that for any
IRSE� terms s̄, any β̄ < � and any operator H

H[β̄] �·ωk

�+k
s̄ ∈ Eβ̄, �[s̄] ⇒ �[s̄] .

Proof The proof is by induction on the IKP(E) derivation. If �[ā] ⇒ �[ā] is an
axiom of IKP(E) then the result follows by one of Lemmas4.15, 4.16, 4.17, 4.18,
4.19, 4.20, 4.21, 4.22 and 4.23.

Case 1. Suppose the last inference was (Eb∃L), then (∃x ∈ ai a j)F(x) ∈ �[ā] and
the final inference looks like

�[ā], fun(b, ai , a j) ∧ F(b) ⇒ �[ā]
(Eb∃L)

�[ā] ⇒ �[ā]

164 J. Cook and M. Rathjen

where b does not occur in ā. By the induction hypothesis we have a k0 such that

H[β̄, γ] �·ωk0

�+k0
s̄ ∈ Eβ̄, p ∈ Eγ, �[s̄], fun(p, si , s j) ∧ F(p) ⇒ �[s̄] (1)

for all p and allγ < �. Let us choose the special case of (1)whereγ := max(βi ,β j) +
2 and note that for this choice of γ, H[β̄, γ] = H[β̄]. Now
fun(p, si , s j) ⇒ fun(p, si , s j) is an axiom due to (E1) and by Lemma 4.15 we have
�� F(p) ⇒ F(p) so applying (∧R) gives

�� fun(p, si , s j), F(p) ⇒ fun(p, si , s j) ∧ F(p). (2)

Applying (Cut) to (1) and (2) provides

H[β̄] �·ωk1

�+k1
s̄ ∈ Eβ̄, p ∈ Eγ, �[s̄], fun(p, si , s j), F(p) ⇒ �[s̄] . (3)

Now as an instance of axiom (E10) we have

H[β̄] 0

0
s̄ ∈ Eβ̄, fun(p, si , s j) ⇒ p ∈ Eγ . (4)

So (Cut) to (3) and (4) gives

H[β̄] �·ωk1+1

�+k1
s̄ ∈ Eβ̄, �[s̄], fun(p, si , s j), F(p) ⇒ �[s̄] . (5)

To which we may apply (∧L) twice followed by (Eb∃L)∞ to complete the case.
Case 2. Suppose the last inference was (Eb∃R) then �[ā] = {(∃x ∈ ai a j)F(x)}

and the final inference looks like

�[ā] ⇒ fun(b, ai , a j) ∧ F(b)
(Eb∃R)

�[ā] ⇒ (∃x ∈ ai a j)F(x)

Suppose b is a member of ā, without loss of generality let us suppose that b ≡ a1,
so by the induction hypothesis we have a k0 < ω such that

H[β̄] �·ωk0

�+k0
s̄ ∈ Eβ̄, �[s̄] ⇒ fun(s1, si , s j) ∧ F(s1). (6)

If b is not a member of ā we can also conclude (6) by the induction hypothesis. As
an instance of axiom (E1) we have fun(s1, si , s j) ⇒ fun(s1, si , s j) to which we may
apply (∧L) giving

H[β̄] 1

0
fun(s1, si , s j) ∧ F(s1) ⇒ fun(s1, si , s j) . (7)

Now applying (Cut) to (6) and (7) yields

H[β̄] �·ωk0+1

�+k0
s̄ ∈ Eβ̄, �[s̄] ⇒ fun(s1, si , s j). (8)

Ordinal Analysis of Intuitionistic Power … 165

Axiom (E10) gives us

H[β̄] 0

0
s̄ ∈ Eβ̄, fun(s1, si , s j) ⇒ s1 ∈ Eδ where δ := max(βi ,β j) + 2. (9)

So applying (Cut) to (8) and (9) gives

H[β̄] �·ωk0+1

�+k0
s̄ ∈ Eβ̄, �[s̄] ⇒ s1 ∈ Eδ. (10)

Finally we may apply (Eb∃R) to (6) and (10) to complete this case.
Case 3. Now suppose the last inference was (Eb∀L), so (∀x ∈ ai a j)F(x) ∈ �[ā]

and the final inference looks like

�[ā], fun(b, ai , a j) → F(b) ⇒ �[ā]
(Eb∀L)

�[ā] ⇒ �[ā].
If b is present in ā, without loss of generality let us suppose b ≡ a1, regardless of
whether b is present in ā, by the induction hypothesis we have a k0 < ω such that

H[β̄] �·ωk0

�+k0
s̄ ∈ Eβ̄, p ∈ Eγ, �[s̄], fun(p, si , s j) → F(p) ⇒ �[s̄] . (11)

The problem here is that β1 may be greater than max(βi ,β j) + 2 meaning we cannot
immediately apply (Eb∀L), moreover unlike in case 2 it is not possible to derive
s̄ ∈ Eβ̄, �[s̄] ⇒ fun(s1, si , s j). Instead we verify the following claim:

�� �[s̄], (∀x ∈ si s j)F(x) ⇒ fun(s1, si , s j) → F(s1). (∗)

To prove the claim we first note that as an instance of axiom (E10) we have

H[β̄] 0

0
s̄ ∈ Eβ̄, fun(s1, si , s j) ⇒ s1 ∈ Eδ where δ := max(βi ,β j) + 2. (12)

Then we have the following template for derivations in IRSE�.

(E1)
� fun(s1, si , s j) ⇒ fun(s1, si , s j)

Lemma 4.15
�� F(s1) ⇒ F(s1)

(→ L) �� fun(s1, si , s j) → F(s1), fun(s1, si , s j) ⇒ F(s1) (12)
(Eb∀L) �� (∀x ∈ si s j)F(x), fun(s1, si , s j) ⇒ F(s1)

(→ R) �� (∀x ∈ si s j)F(x) ⇒ fun(s1, si , s j) → F(s1)

Thus the claim is verified. Now we may complete the case by applying (Cut) to (11)
and (*).

Case 4. Now suppose the last inference was (b∀L), so (∀x ∈ ai)F(x) ∈ �[ā] and
the final inference looks like

�[ā], b ∈ ai → F(b) ⇒ �[ā]
(b∀L)

�[ā] ⇒ �[ā]

166 J. Cook and M. Rathjen

If b does occur in ā, without loss of generality we may assume b ≡ a1. Regardless
of whether b is present in ā, by the induction hypothesis we have a k0 < ω such that

H[β̄] �·ωk0

�+k0
s̄ ∈ Eβ̄, �[s̄], s1 ∈ si → F(s1) ⇒ �[s̄]. (13)

We claim that
�� (∀x ∈ si)F(x) ⇒ s1 ∈ si → F(s1). (∗∗)

To prove the claim we first note that by axiom (E6) we have

H[β̄] 0

0
s̄ ∈ Eβ̄, s1 ∈ si ⇒ s1 ∈ Eβi . (14)

Then we have the following template for derivations in IRSE�.

(E1)
� s1 ∈ s j ⇒ s1 ∈ s j

Lemma 4.15
�� F(s1) ⇒ F(s1)

(→ L) �� s1 ∈ s j → F(s1), s1 ∈ s j ⇒ F(s1) (14)
b∀L) �� (∀x ∈ si)F(x), s1 ∈ s j ⇒ F(s1)

(→ R) �� (∀x ∈ si)F(x) ⇒ s1 ∈ si → F(s1)

Finally we may apply (Cut) to (13) and (**) to complete this case.
Case 5. Now suppose the last inference was (∀L), so ∀xF(x) ∈ �[ā] and the final

inference looks like

�[ā], F(b) ⇒ �[ā]
(∀L)

�[ā] ⇒ �[ā]
If b is a member of ā, without loss of generality let us assume b ≡ a1. By the
induction hypothesis we have a k0 < ω such that

H[β̄] �·ωk0+1

�+k0
s̄ ∈ Eβ̄, �[s̄], F(s1) ⇒ �[s̄]. (15)

If b is not a member of ā we can in fact still conclude (15) from the induction
hypothesis. Now as an instance of axiom (E1) we have

H[β̄] 0

0
s̄ ∈ Eβ̄ ⇒ s1 ∈ Eβ1 . (16)

So applying (∀L) gives the desired result.
Case 6. Now suppose the last inference was (∀R), then {∀xF(x)} ≡ �[ā] and the

final inference looks like

�[ā] ⇒ F(b)
(∀L)

�[ā] ⇒ ∀xF(x)

Ordinal Analysis of Intuitionistic Power … 167

with b not present in ā. By the induction hypothesis we have a k0 < ω such that

H[β̄, γ] �·ωk0

�+k0
s̄ ∈ Eβ̄, p ∈ Eγ, �[s̄] ⇒ F(p)

for all p and all γ < �. Applying (∀R)∞ gives the desired result.
Case 7. Suppose the last inference was (Cut) then the derivation looks like

�[ā], B(ā, b̄) ⇒ �[ā] �[ā] ⇒ B(ā, b̄)
�[ā] ⇒ �[ā]

where each member of b̄ is distinct from the members of ā. By the induction hypoth-
esis we get k0, k1 ∈ ω such that

H[β̄] �·ωk0

�+k0
s̄ ∈ Eβ̄,E0 ∈ E1, �[s̄], B(s̄, Ē0) ⇒ �[s̄], (17)

H[β̄] �·ωk1

�+k1
s̄ ∈ Eβ̄,E0 ∈ E1, �[s̄] ⇒ B(s̄, Ē0) . (18)

Now since ⇒ E0 ∈ E1 is an instance of axiom (E4) and s̄ ∈ Eβ̄ ⇒ si ∈ Eβi is an
instance of axiom (E1) we may apply (Cut) to (17) and (18) giving

H[β̄] �·ωk

�+k
s̄ ∈ Eβ̄,E0 ∈ E1, �[s̄] ⇒ �[s̄] . (19)

Finally applying (Cut) to (19) and H[β̄] 0

0
E0 ∈ E1 we can complete this case.

All other cases can be treated in a similar manner to one of those above. �

4.5 A Relativised Ordinal Analysis of IKP(E)

Analogously to with IRSP� we will prove a soundness theorem for certain IRSE�
derivable sequents in Eψ�(ε�+1). Again we need the notion of an assignment. Let
VARE be the set of free variables of IRSE�, an assignment is a map

v : VARE −→ Eψ�(ε�+1)

such that v(aα
i) ∈ Eα+1 for all i < ω andordinalsα. Again an assignment canonically

lifts to all IRSE� terms by setting

v(Eα) = Eα,

v([x ∈ t | F(x, s1, . . . , sn)]) = {x ∈ v(t) | F(x, v(s1), . . . , v(sn))}.

168 J. Cook and M. Rathjen

The difference between here and the case of IRSP� is that for a given term t , it is
no longer possible to ascertain the location of v(t) within the E-hierarchy solely by
looking at the syntactic structure of t . It is however possible to place an upper bound
on that location using the following function

m(Eα) : = α,

m(aα
i) : = α,

m([x ∈ t | F(x, s1, . . . , sn)]) : = max(m(t),m(s1), . . . ,m(sn)) + 1.

It can be observed that v(s) ∈ Em(s)+1 for any s, however in general m(s) is only an
upper bound on a term’s position in the E-hierarchy.

Theorem 4.25 (Soundness for IRSE�) Suppose �[s1, . . . , sn] is a finite set of �E

formulae with max{rk(A) | A ∈ �} ≤ �, �[s1, . . . , sn] a set containing at most one
�E formula and

H α

ρ �[s̄] ⇒ �[s̄] for some operator H and some α, ρ < �.

Then for any assignment v,

Eψ�(ε�+1) |=
∧

�[v(s1), . . . , v(sn)] →
∨

�[v(s1), . . . , v(sn)],

where
∧

� and
∨

� stand for the conjunction of formulae in � and the disjunction
of formulae in � respectively, by convention

∧∅ := � and
∨∅ := ⊥.

Proof The proof is by induction on α. Note that the derivation H α

ρ �[s̄] ⇒ �[s̄]
contains no inferences of the form (∀R)∞, (∃L)∞ or (�E -Ref) and all cuts have
�E

0 cut formulae.
All axioms apart from (E6) and (E7) are clearly sound under the interpretation,

the soundness of (E6) and (E7) follows from Lemma4.2.
Now suppose the last inference was (Eb∃R), so amongst other premises we have

H α0

ρ �[s̄] ⇒ fun(t, si , s j) ∧ A(t, s̄) for some α0 < α.

Applying the induction hypothesis yields

Eψ�(ε�+1) |=
∧

�[v(s̄)] →[fun(v(t), v(si), v(s j)) ∧ A(v(t), s̄)]
where v(s̄) := v(s1), . . . , v(sn).

Suppose �[v(s̄)] holds in Eψ�(ε�+1), so we have

Eψ�(ε�+1) |= fun(v(t), v(si), v(s j)) ∧ A(v(t), v(s̄)).

Ordinal Analysis of Intuitionistic Power … 169

It remains to note that the function space v(si)v(s j) is a member of Eψ�(ε�+1) and thus

Eψ�(ε�+1) |= (∃x ∈ v(si)v(s j))A(x, v(s̄)).

as required.
Now suppose the last inference was (Eb∃L)∞, thus amongst other premises we

have

H α0

ρ �[s̄], fun(p, si , s j) ∧ A(p, s̄) ⇒ �[s̄] for all terms p and some α0 < α.
(20)

For the remainder of this case fix an arbitrary valuation v0. Let β0 := m(si), β1 :=
m(s j) and β := max(β0,β1) + 2. Choose k such that aβ

k does not occur in any of the
terms in s̄. As a special case of (20) we have

H α0

ρ �[s̄], fun(aβ
k , si , s j) ∧ A(aβ

k , s̄) ⇒ �[s̄] .
Applying the induction hypothesis we get

Eψ�(ε�+1) |=
∧

�[v(s̄)] ∧ [fun(v(aβ
k), v(si), v(s j)) ∧ A(v(aβ

k), v(s̄))] →
∨

�[v(s̄)]
(21)

for all valuations v. In particular (21) holds true for all valuations v which coincide
with v0 on s̄. By the choice of aβ

k it follows that

Eψ�(ε�+1) |=
∧

�[v0(s̄)] →
∨

�[v0(s̄)]

as required.
All other cases may be treated in a similar manner to those above, using similar

reasoning to Theorem3.25. �
Lemma 4.26 Suppose IKP(E) � ⇒ A for some �E sentence A, then there exists
an n < ω, which we may compute from the derivation, such that

Hσ
ψ�(σ)

ψ�(σ)
⇒ A where σ := ωm(� · ωm).

Proof Suppose IKP(E) � ⇒ A, then by Theorem4.24 we can explicitly calculate
some 1 ≤ m < ω such that

H0
�·ωm

�+m
⇒ A .

Applying partial cut elimination for IRSE� Theorem4.10 we get

H0
ωm−1(�·ωm)

�+1
⇒ A .

170 J. Cook and M. Rathjen

Finally by applying collapsing for IRSE� Theorem 4.13 we get

Hωm (�·ωm)

ψ�(ωm (�·ωm))

ψ�(ωm (�·ωm))
⇒ A

as required. �

Theorem 4.27 If A is a �E -sentence and IKP(E) � ⇒ A then there is an ordinal
term α < ψ�(ε�+1), which we may compute from the derivation, such that

Eα |= A.

Proof By Lemma4.26 we can determine some m < ω such that

Hσ
ψ�(σ)

ψ�(σ)
⇒ A where σ := ωm(� · ωm).

Let α := ψ�(σ). Applying boundedness Lemma4.12 we get

H α

α ⇒ AEα .

Now Theorem4.25 yields
Eψ�(ε�+1) |= AEα .

It follows that
Eα |= A

as required. �

Remark 4.28 Suppose A ≡ ∃xC(x) is a�E sentence and IKP(E) � ⇒ A. As in the
case of IKP(P), as well as the ordinal term α given by Theorem4.27, it is possible
to compute a specific IRSE� term s such that Eα |= C(s). Moreover this process can
be carried out inside IKP(E). These results will be verified in [28].

As in the foregoing cases we also have a conservativity result.

Theorem 4.29 IKP(E) + �E -Reflection is conservative over IKP(E) for �E -
sentences.

Remark 4.30 An obvious question is whether the conservativity results of Theo-
rems2.37, 3.29, 4.29 can be lifted to formulaewith free variables? This would require
ordinal analyses with set parameters. For classical Kripke-Platek set theory this has
been carried out by the first author in [8]. The second author thinks that this result can
be lifted to the intuitionistic context. However it is likely that this extension requires
a fair amount of extra work since the linearity and decidability of the ordinal repre-
sentation system would have to be sacrificed.

Ordinal Analysis of Intuitionistic Power … 171

Acknowledgments The work of the second author was supported by a Leverhulme Research
Fellowship and the Engineering and Physical Sciences Research Council under grant number
EP/K023128/1.

References

1. P. Aczel, M. Rathjen, Notes on constructive set theory, Technical Report 40, Institut Mittag-
Leffler (The Royal Swedish Academy of Sciences, Stockholm, 2001). http://www.ml.kva.se/
preprints/archive2000-2001.php

2. P. Aczel, M. Rathjen, Constructive set theory, book draft (2010)
3. T. Arai, Proof theory for theories of ordinals II: �3-Reflection. Ann. Pure Appl. Log. 129,

39–92 (2004)
4. J. Barwise, Admissible Sets and Structures (Springer, Berlin, 1975)
5. M. Beeson, Foundations of Constructive Mathematics (Springer, Berlin, 1985)
6. W. Buchholz, A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Log. 32,

195–207 (1986)
7. W. Buchholz, A simplified version of local predicativity, in Leeds Proof Theory 1991, ed. by P.

Aczel, H. Simmons, S. Wainer (Cambridge University Press, Cambridge, 1993), pp. 115–147
8. J. Cook,OrdinalAnalysis of Set Theories; Relativised and Intuitionistic. Ph.D. thesisUniversity

of Leeds, 2015
9. H. Friedman, Countable models of set theories, inCambridge Summer School in Mathematical

Logic, vol. 337, Lectures Notes inMathematics, ed. byA.Mathias, H. Rogers (Springer, Berlin,
1973), pp. 539–573

10. H. Friedman, S. Ščedrov, The lack of definable witnesses and provably recursive functions in
intuitionistic set theory. Adv. Math. 57, 1–13 (1985)

11. G. Jäger, Beweistheorie von KPN. Arch. Math. Logik 2, 53–64 (1980)
12. G. Jäger, ZurBeweistheorie derKripke-PlatekMengenlehre über den natürlichenZahlen.Arch.

Math. Logik 22, 121–139 (1982)
13. G. Jäger, Iterating admissibility in proof theory, in Proceedings of the Herbrand Logic Collo-

quium’81, by ed. J. Stern (North-Holland, Amsterdam, 1982), pp. 137–146
14. G. Jäger, Theories for Admissible Sets: A Unifying Approach to Proof Theory (Bibliopolis,

Naples, 1986)
15. G. Jäger,W. Pohlers, Eine beweistheoretische Untersuchung von�1

2-CA+ BI und verwandter
Systeme (Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse, 1982)

16. W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof
Theory, ed. by S. Buss (Elsevier Science B.V., 1998), pp. 209–335

17. M. Rathjen, Unpublished Lecture Notes on Proof Theory (Ohio State University, 1993)
18. M. Rathjen, How to develop proof-theoretic ordinal functions on the basis of admissible ordi-

nals. Math. Log. Q. 39, 47–54 (1993)
19. M. Rathjen, Proof theory of reflection. Ann. Pure Appl. Log. 68, 181–224 (1994)
20. M. Rathjen, The realm of ordinal analysis, in Sets and Proofs, ed. by S.B. Cooper, J.K. Truss

(Cambridge University Press, 1999), pp. 219–279
21. M. Rathjen, S. Tupailo, Characterizing the interpretation of set theory in Martin-Löf type

theory. Ann. Pure Appl. Log. 141, 442–471 (2006)
22. M. Rathjen, The disjunction and other properties for constructive Zermelo-Fraenkel set theory.

J. Symb. Log. 70, 1233–1254 (2005)
23. M. Rathjen, An ordinal analysis of parameter-free �1

2 comprehension. Arch. Math. Log. 44,
263–362 (2005)

24. M. Rathjen, Metamathematical properties of intuitionistic set theories with choice principals,
in New Computational Paradigms: Changing Conceptions of What is Computable, ed. by S.B.
Cooper, B. Löwe, A. Sorbi (Springer, New York, 2008), pp. 287–312

http://www.ml.kva.se/preprints/archive2000-2001.php
http://www.ml.kva.se/preprints/archive2000-2001.php

172 J. Cook and M. Rathjen

25. M. Rathjen, From the weak to the strong existence property. Ann. Pure Appl. Log. 163, 1400–
1418 (2012)

26. M. Rathjen, Constructive Zermelo-Fraenkel set theory, power set, and the calculus of con-
structions, in Epistemology Versus Ontology: Essays on the Philosophy and Foundations of
Mathematics in Honour of Per Martin-Löf, ed. by P. Dybjer, S. Lindström, E. Palmgren, G.
Sundholm (Springer, Heidelberg, 2012), pp. 313–349

27. M. Rathjen, Relativized ordinal analysis: the case of Power Kripke-Platek set theory. Ann. Pure
Appl. Log. 165, 316–393 (2014)

28. M. Rathjen, The existence property for intuitionistic set theories with collection. In preparation
29. K. Schütte, Proof Theory (Springer, Berlin, 1977)
30. A.W. Swan, CZF does not have the existence property. Ann. Pure Appl. Log. 165, 1115–1147

(2014)

Machine-Checked Proof-Theory
for Propositional Modal Logics

Jeremy E. Dawson, Rajeev Goré and Jesse Wu

Abstract We describe how we machine-checked the admissibility of the standard
structural rules of weakening, contraction and cut for multiset-based sequent calculi
for the unimodal logics S4, S4.3 and K4De, as well as for the bimodal logic S4C
recently investigatedbyMints.Our proofs for bothS4andS4.3 appear to benewwhile
our proof for S4C is different from that originally presented byMints, and appears to
avoid the complications he encountered. The paper is intended to be an overview of
how to machine-check proof theory for readers with a good understanding of proof
theory.

1 Introduction

Sequent calculi provide a rigorous basis for meta-theoretic studies of various log-
ics. The central theorem is cut-elimination/admissibility, which states that detours
through lemmata can be avoided, since it can help to show many important logi-
cal properties like consistency, interpolation, and Beth definability. Cut-free sequent
calculi are also used for automated deduction, for nonclassical extensions of logic
programming, and for studying the connection between normalising lambda calculi
and functional programming. Sequent calculi, and their extensions, therefore play
an important role in logic and computation.

Meta-theoretic reasoning about sequent calculi is error-prone because it involves
checking many combinatorial cases, with some being very difficult, but many being
very similar. Invariably, authors resort to expressions like “the other cases are simi-
lar”, or “we omit details”. The literature contains many examples of meta-theoretic
proofs with serious and subtle errors in the original pencil-and-paper proofs. For
example, the cut-elimination theorem for the modal “provability logic” GL, where

J.E. Dawson · R. Goré (B) · J. Wu
Logic and Computation Group, School of Computer Science, The Australian
National University, Canberra, ACT 2601, Australia
e-mail: jeremy.dawson@anu.edu.au

R. Goré
e-mail: rajeev.gore@anu.edu.au

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_5

173

174 J.E. Dawson et al.

�ϕ can be read as “ϕ is provable in Peano Arithmetic”, has a long and chequered
history which has only recently been resolved [11].

Here, we describe how we formalised cut-elimination for traditional, proposi-
tional, multiset-based sequent calculi without explicit structural rules for the propo-
sitional modal logics S4, S4.3, K4De and S4C using the interactive proof-assistant
Isabelle/HOL. As far as we know, the proofs for S4 and S4.3 are new, and avoid the
complexities of previous proofs for these logics. Our results also confirm the recent
claim of cut-elimination for S4C due to Mints, although our proof is different, and
avoids the complications he encountered in his proofs.

In Sect. 2.1, we briefly describe traditional sequent calculi, discuss the need for
multisets, and describe the general form of our main theorems. In Sect. 2.2 we
describe themodal logics we study. In Sect. 2.3 we give a brief overview of how inter-
active proof assistants work. In Sect. 3 we show how we encode formulae, sequents
and rules, showing a sequent rule as an example. In Sect. 4 we describe how we
encoded the notion of derivability, giving rise to what we call “implicit derivations”.
In Sect. 4.4 we show how we encoded “explicit derivations” as concrete tree data
structures, and the functions used to reason about them. In Sect. 5 we describe how
wegeneralised the forms of our sequent rules to easily capture rule skeletons extended
with arbitrary contexts which are essential to make weakening admissible. In Sect. 6
we describe how we encoded the properties of weakening, invertible of some rules,
and contraction in Isabelle. In Sect. 7 we describe how we generalised our previous
work on explicit derivations to facilitate inductive proof of properties (such as the
admissibility of contraction or cut), and in Sect. 8 we describe this further specifically
for cut-admissibility. In Sects. 9–12 we describe the cut-admissibility proofs for the
specific logics S4, S4.3, K4De and S4C. The remaining sections discuss related work
and conclude.

We assume the reader is familiar with basic proof-theory and higher-order logic,
but assume that the reader is a novice in interactive proof assistants. Our Isabelle code
can be found at http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/seqms/. Some of
this work was reported informally in [13] and also, more formally, in [6].

2 Preliminaries

2.1 Sequents Built from Multisets Versus Sets

Proof-theorists typically work with sequents� � �where� and� are “collections”
of formulae. The “collections” found in the literature increase in complexity from
simple sets for classical logic [8], to multisets for linear logic [9], to ordered lists for
substructural logics [7], to complex tree structures for display logics [1]. A sequent
rule typically has a rule name, a (finite) number of premises, a side-condition and a
conclusion. Rules are read top-down as “if all the premises hold then the conclusion
holds”. A derivation of the judgement � � � is typically a finite tree of judgements

http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/seqms/

Machine-Checked Proof-Theory for Propositional Modal Logics 175

with root � � � where parents are obtained from children by “applying a rule”.
We use “derivation” to refer to a proof within a calculus, reserving “proof” for a
meta-theoretic proof of a theorem about the calculus.

Sequent calculi typically contain three structural rules called weakening, contrac-
tion and cut. These rules are bad for automated reasoning using backward proof-
search since they can be applied at any time. Thus for backward proof-search, we are
interested in sequent calculi which do not contain explicit rules for weakening, con-
traction and cut. The traditional way to design such calculi is to assume that sequents
are built out of multisets, omit these rules from the calculus itself, and prove that
each of these rules is admissible. That is, for each rule, we have to prove that the
conclusion sequent is derivable if each of its premises are derivable. For example,
our work does not regard the cut rules shown below as being part of the system:

� � A,� �, A � �
(cut)

� � �

�1 � A,�1 �2, A � �2(cut)
�1, �2 � �1,�2

Thus our results will be lemmata of the form: if � � A,� is (cut-free) derivable and
�, A � � is (cut-free) derivable then � � � is (cut-free) derivable.

2.2 Our Modal Logics

The sequent calculi we study are designed to reason about the meta-theory of the
basic modal logics S4, S4.3, K4De (called GTD by Mints) and S4C. Semantically,
the first three are mono-modal logics characterised, respectively, by Kripke frames
having: reflexive and transitive frames; reflexive, transitive and linear frames; and
transitive and dense frames. The logic S4C, called dynamic topological logic, is a
bimodal logic where � is captured by a reflexive and transitive binary relation R�
and where ◦ is captured by a serial and discrete linear relation R◦ with an interaction
between them of “confluency”:

∀x∀y∀z∃u.R�(x, y) & R◦(x, z) ⇒ R◦(y, u) & R�(z, u). (1)

TheHilbert-calculi for these logics are obtained by extending a traditionalHilbert-
calculus for classical propositional logicwith the axioms and inference rules as shown
below using the naming conventions given in Fig. 1:

Logic Axioms Rules
S4 K,�⊥,4,T RN�
S4.3 K,�⊥,4,T,.3 RN�
K4De (GTD) K,�⊥,4,De RN�
S4C K,�⊥,K◦,T,4,C,◦⊥ RN�, RN◦

176 J.E. Dawson et al.

Fig. 1 Various axioms and inference rules

The modal logic S4C is designed to capture the basic logic for hybrid systems [4]
where Eq. (1) captures the lower semi-continuity of the linear discrete relation with
respect to the topological interpretation of the �-connective.

2.3 Interactive Proof Assistants

Interactive proof-assistants are now a mature technology for “formalising math-
ematics” [23]. They come in many different flavours as indicated by the names of
someof themost popular onesMizar, HOL, Coq, LEGO, NuPrl, NqThm,
Isabelle, λ-Prolog, HOL-Light, LF, ELF, Twelf, with apologies
to those whose favourite proof-assistant we have omitted.

Most of the modern proof-assistants are implemented using a modern functional
programming language such as ML, which was specifically designed for the imple-
mentation of, and interaction with, such proof-assistants.

The lowest levels typically implement a typed λ-calculus with hooks provided to
allow the encoding of further logical notions such as equality of terms on top of this
base implementation. The base implementation is usually very small, comprising of
a few hundred lines of code, so that this code can be scrutinised by experts to ensure
its correctness.

Almost all aspects of proof-checking eventually compile down to a type-checking
problem using this small core, so that trust rests on strong typing and a well-
scrutinised small core of (ML) code.

Most proof-assistants also allow the user to create a proof-transcript which can
be cross-checked using other proof-assistants to guarantee correctness.

Figure 2 shows how these logical frameworks typically work. Thus given some
goal β and an expression which claims that α is implied by the conjunction of β1

up to βn , the Isabelle engine pattern-matches α and β to find a substitution θ such

Machine-Checked Proof-Theory for Propositional Modal Logics 177

Fig. 2 Backward chaining
in logical frameworks

[β1 ; β2 ; · · · ; βn] =⇒ α β

θ = match(β, α) β1θ ; β2θ ; · · · ; βnθ

that αθ = β, and then reduces the original goal β to the n subgoals β1θ, . . . ,βnθ
(note that n may be 0). We can then repeat this procedure on each βiθ until all
subgoals are proved (which requires that each final step produces no new subgoals,
i.e., has n = 0). The pattern matching required is usually higher order unification.
The important point is that the logical framework keeps track of sub-goals and the
current proof state.

The syntax of the “basic propositions” such as α, β is defined via an “object
logic”, which is a parameter. Different “object logics” can be invoked using the same
logical-framework for the task at hand.

The logical properties of “;” such as associativity or commutativity, and properties
of the “=⇒” such as classicality or linearity are determined by the “meta-logic”,
which is usually fixed for the logical framework in question.

For example, the meta-logic of Isabelle [20] is higher-order typed intuitionistic
logic with connectives =⇒ (implication), !! (∀), == (equality), and no negation,
while the object-logic is classical higher-order logic (HOL) using −→, ALL (∀), =,
EX (∃), and ∼ (not) [10]. Unlike in classical first-order logic, which has terms and
formulae, functions and predicates, in Isabelle’s meta-logic and in HOLwe just have
terms (where a formula is a term of type boolean), and functions (where a predicate
is a function whose return type is boolean). Further, functions are themselves terms,
of a function type, and “higher order” simply means that functions can accept other
functions as arguments and can produce functions as results. This allows a uniform
treatment of all these entities.

As noted, the meta-logic allows propositions such as [β1;β2] =⇒ α, which
in fact is the pretty-printer’s rendering of β1 =⇒ (β2 =⇒ α). Think of this as
meaning “from β1 and β2 one may infer α”. Since the object-logic (HOL) con-
tains the connectives & and −→ with their usual classical semantics, we find that
β1&β2 −→ α means the same (but in a classical rather than intuitionistic setting) as
β1 =⇒ (β2 =⇒ α). But to direct Isabelle to actually use an inference to reduce α
to β1θ, . . . ,βnθ as explained above, we need the first (meta-logical) form. Thus we
shall see two logical syntaxes:=⇒, !! (and ; as explained above) for the Isabelle intu-
itionistic meta-level, and −→, ALL,&, EX and ∼ for the classical HOL object-level.
Together they are referred to as Isabelle/HOL [26].

178 J.E. Dawson et al.

3 A Deep Embedding of Formulae, Sequents and Rules

Recall that the meta-logic provides us with a method for backward chaining via
expressions of the form (see Fig. 2):

[β1 ; · · · ; βn] =⇒ α.

The usual method for obtaining the power for reasoning about sequent derivations
is to use the full power of higher-order classical logic (HOL) to build the basic object-
level propositions βi .

Isabelle’s incarnation of HOL provides the usual connectives of logic such as
conjunction, disjunction, implication, negation and the higher order quantifiers. But
it also provides many powerful facilities allowing us to define new types, define
functions which accept and return other functions as arguments, and even define
infinite sets using inductive definitions [26].

For example, the following HOL expressions would capture the usual inductive
definition of the set even_nat of even natural numbers by encoding the facts that
“zero is even, and if n is even then so is n + 2”, where : stands for set membership∈:

0 : even_nat

n : even_nat ==> n + 2 : even_nat

Most proof-assistants will automatically generate an induction principle from
a given inductive definition. For example, Isabelle will automatically generate the
usual induction principle which states that we can prove a property P holds of all
even naturals if we can show that P(0) holds and we can show that P(n) implies
P(n + 2). An implicit assumption which facilitates such induction principles is that
the inductive definitions are the only way to construct its members. Thus, if m is
an even natural, then it is either 0, or is of the form n + 2 for some (“smaller”)
even natural n. Together, they form the base case and the inductive step of an
inductive definition that defines the set even_nat as the smallest set of terms
0, 0 + 2, 0 + 2 + 2, It is implicit in these definitions that an inference step such
asn : even_nat =⇒ n + 2 : even_natmay be applied only finitelymany times.

We previously said that we shall see two syntaxes: a meta-level intuitionistic logic
and an object-level classical HOL syntax. Since we wish to reason about sequent
calculi for modal logics, we now need to encode a third logical syntax: namely the
syntax of modal sequents.

To encode sequent calculus into HOL we first encode terms for capturing the
grammar for recognising formulae as below where comments are enclosed in (*
and *):

datatype formula

= FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* prim prop *)

Machine-Checked Proof-Theory for Propositional Modal Logics 179

Weuse three type constructorsFC,FV and PPwhich encode, respectively, formula
connectives, formula variables, and atomic formulae (primitive propositions) asHOL
terms. Each of them takes one string argument which is simply the string we want to
use for that construction. The formula connective constructor FC also accepts a list of
formulae, which constitute its subformulae. For example, the term FC “&&” [FV
“A”, PP “q”] encodes A ∧ q where we use “&&” as the string for conjunction
of classical logic. Sincewewant to encodemodal logics, we require only the classical
connectives, plus three unary modalities FC “Box” [.] for �. and FC “Dia”
[.] for ♦. and FC “Circ” [.] for ◦.

Isabelle’s HOL allows us to form sets and multisets of objects of an arbitrary
type, so the HOL expressions formula set and formula multiset capture
the types of modal formula sets and modal formula multisets.

Using these types we can build a sequent type using a constructor Sequent:

datatype ’a sequent = Sequent "’a multiset" "’a multiset"

Here ’a is a type variable and the datatype ’a sequent demands that the con-
structor Sequent is followed by two multisets of items of type ’a. For example,
the datatype formula sequentwould require our sequents to be constructed out
of multisets of formulae (of type formula). An alternative infix notation for the
constructor Sequent is � or |-.

We define the type for our sequent rules by the type definition:

types ’a psc = "’a list * ’a" (* single rule *)

Such a sequent rule is a pair (ps, c) of a list of items ps (the premises) and a single
item c (the conclusion): the items are of some type ’a which is a parameter. We
shall instantiate the type variable ’a with the type formula sequent to obtain
sequents built from two multisets of modal formulae.

Note that in common parlance we may say that (ps, c) is a rule meaning that
ps and c may be instantiated in any way. Such a “rule” is a schema which can
be instantiated to give infinitely many rule instances. When describing the Isabelle
implementation we may refer to a specific pair (ps, c) as a “rule”, although in the
context of logical rules, this could be better described as a specific instance of a rule
schema; where we describe our Isabelle theorems involving “sets of rules”, these
will usually be the infinite sets of instances of a finite set of rule schemata.

Thus, we can use the HOL type-declaration below to declare that rls is a set of
sequent rules, where each element of rls is a pair (ps, c) whose first component ps
is a list of its premise sequents, and whose second component c is its conclusion
sequent:

rls :: formula sequent psc set

180 J.E. Dawson et al.

Each sequent consists of two multisets of items of type formula, and inductively
define the set rls by giving a finite collection of rule schemata, each denoting an
infinite set of instances, which belong to this set. For example, the traditional rule
(� ∧) for introducing a conjunction into the right hand side of a sequent, as shown
below, can be given by the encoding below it where we use the string && to encode
∧, “+” for multiset union, and {#A#} to denote a singleton multiset:

� � A,� � � B,�
(� ∧)

� � A ∧ B,�

([G � {#A#} + D , G � {#B#} + D], G � {#A && B#} + D) ∈ rls

When this clause appears in the definition of rls, it means that this sequent rule is
in rls for each possible value of A, B, G, D of the appropriate type.

Having encoded the notions of formulae and sequents into HOL, we are now in
a position to encode the notion of derivability and derivations. As we shall explain
shortly, the notion of derivability and derivations are subtly different in the following
senses:

Derivability we write inductively defined predicates in HOL to capture the set of
sequents derivable from a given, possibly empty, set of potential leaf sequents,
using a given set of rules defined using the encoding of formulae and sequents
described above. The base case will capture that every given leaf is vacuously
derivable, and the inductive case will capture that a sequent c is derivable if
the rule set contains a rule (ps, c) where each of the premises in ps is itself
derivable. We do not construct an actual derivation, as such, but just ensure that
there exists a sequence of sequent rule applications which can take us from the
given leaf sequents to the given end-sequent.We therefore use the word “implicit”
to describe such derivations.

Derivation (trees) we create a new object type called dertree which will allow
us to encode an explicit tree as a HOL term to represent an actual derivation of
the given sequent from the given leaves using the given set of rules. We therefore
use the word “explicit” to describe such derivations.

4 Implicit and Explicit Derivations

In Sect. 4.1, we give an inductively defined predicate derrec for capturing the set of
all recursively derivable sequents. In Sect. 4.2, we describe the principle of induction
that is automatically generated by Isabelle/HOL from derrec and describe how it
can be used to prove an arbitrary property P of such sequents. In Sect. 4.3,we describe
our other implicit derivability predicates in less detail. In Sect. 4.4 we describe how
we encoded explicit derivation trees. In Sect. 4.5 we describe how we can move to
and fro between these two notions.

Machine-Checked Proof-Theory for Propositional Modal Logics 181

4.1 Defining Derivability (Implicitly) in Isabelle

We are now in a position to encode the set derrec of “recursively derivable
sequents” given a set plvs of (potential) leaf sequents and a given set rls of
sequent rules. The set derrec rls plvs is defined inductively as shown below
(the Isabelle code is precisely as it appears in the Isabelle theory file). It defines simul-
taneously the predicates derrec (that a single sequent is derivable) and dersrec
(that all sequents in a list are derivable).

Definition 4.1 (derrec, dersrec) derrec rls plvs is the set of end-
sequents which are derivable from the set plvs of potential leaves using the set
rls of sequent rules.

dersrec rls plvs is the set of lists of endsequents which are all derivable
from potential leaves plvs using sequent rules rls:

consts (* these are type declarations *)

derrec :: "’a psc set => ’a set => ’a set"

dersrec :: "’a psc set => ’a set => ’a list set"

inductive "derrec rls plvs" "dersrec rls plvs"

intrs (* the clauses defining members of these two

mutually defined inductive sets *)

dpI "eseq : plvs ==> eseq : derrec rls plvs"

derI "[| (ps, eseq) : rls ; ps : dersrec rls plvs |]

==> eseq : derrec rls plvs"

dlNil "[] : dersrec rls plvs"

dlCons "[| seq : derrec rls plvs ;

seqs : dersrec rls plvs |]

==> seq # seqs : dersrec rls plvs"

We now explain the Isabelle code and why it achieves the meanings for derrec
and dersrec given in the definition. These are two mutually inductively defined
sets each of which depends on the other. The type declarations mean that where
plvs is a set of (potential) leaf sequents and rls is a set of “rules”, instances of
(premise list, conclusion) pairs, then derrec rls plvs is a set of sequents. A
sequent is in derrec rls plvs if and only if finite repeated application of the
clauses of the definition require it to be, and likewise dersrec rls plvs. We
now describe the four clauses, each of which is preceded by its name:

dpI The base case of the inductive definition of derrec captures that each initial
sequent eseq from plvs is itself (vacuously) derivable from the initial leaf set
plvs using the rules rls. The : stands for set membership ∈.

derI If (ps, eseq) is the list of premises and the conclusion of a rule, and the
premise list ps satisfies dersrec rls plvs, meaning that the premises ps
are all derivable (see below), then the conclusion eseq is derivable.

182 J.E. Dawson et al.

dlNil An empty list of sequents satisfies dersrec rls plvs
dlCons If seq satisfies derrec rls plvs and the list seqs satisfies

dersrec rls plvs then the list seq # seqs satisfies dersrec rls
plvs. The symbol # denotes appending an item seq to the front of a list seqs
to form a longer list.

Note that the clauses dlNil and dlCons give us that a list is in dersrec rls
plvs if all its members are in derrec rls plvs; and since these clauses give
all members of dersrec rls plvs, this “if” is in fact “if and only if”.

In fact the actual Isabelle/HOL code is more general, in that the things being
derived are of a parametric type ’a and need not be sequents, but could be formulae
or other constructs, and a “rule” merely consists of a list of “premises” and a “con-
clusion”. We describe it in terms of sequents, here, merely to place it in the context
of our cut-admissibility proofs.

4.2 Inductive Proofs via Automated Inductive Principles

We use inductive definitions because correct induction principles are generated auto-
matically by Isabelle from the inductive definition of derrec. A heavily simplified
version of the induction principle automatically generated for proving an arbitrary
property P by the definition of the inductive set derrec is shown below using
meta-level intuitionistic connectives (==>, !!, ;) and object-level classical HOL
connectives (ALL, -->, :).

1 !! x .!! P.

2 [| x : derrec rls plvs ;
3 (ALL c. c : plvs −→ P(c)) ;
4 (ALL c. ALL ps. (ps,c) : rls −→ (ALL y : (set ps). P(y)) −→ P(c))

5 |] ==> P(x)

An explanation is:

1 for all sequents x and all properties P
2 if x is derivable from (potential) leaves plvs using rules rls, and
3 P holds for every sequent c in plvs, and
4 for each rule (ps, c), P of each premise in ps implies P of its conclusion c,
5 then P holds of x

Wecan visualise this induction principle as belowwherewe replace themeta-level
==> by a horizontal line and replace the meta-level ;with juxtaposition of premises
and replace : by set membership ∈:

x ∈ derrec rls plvs ∀c ∈ plvs.P c ∀(ps, c) ∈ rls.(∀p in ps.P p) ⇒ P c

P x

Machine-Checked Proof-Theory for Propositional Modal Logics 183

This is an induction principle which we use often in proof-theory: prove that
some property holds of the leaves of a derivation, and prove that the property is
preserved from the premises to the conclusion of each rule. For example, consider
the standard translation from sequents of LK to formulae given by τ (A1, . . . , An �
B1, . . . , Bm) = A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm . We typically use this translation
to argue that all derivable sequents are valid in the semantics of first-order logic.
The proof proceeds by showing that the translation of the leaves of a derivation
are all valid, and showing that if the translations of the premises are valid then the
translations of the conclusion are valid, for every rule. Note that no explicit derivation
is created by this induction principle since it uses derivability (implicit derivations).

Thus this induction principle is really a lemma, but our formal encoding of it
requires one more definition.

Definition 4.2 For all sets A and all unary predicates P, the property Ball A P
holds iff every member x of A satisfies P:

Ball_def: "Ball A P == ALL x. x : A --> P x"

The following is the formal inductive principle described informally above which
is generated by Isabelle/HOL, automatically, using “?” to show arguments that are
implicitly universally quantified.

Lemma 4.1 (derrec-induction) For every sequent x, every rule set rls, every list
of leaves plvs, and every property P, if

(a) x is derivable from potential leaves plvs using the rules in rls, and
(b) every sequent c in plvs obeys P, and
(c) for every sequent c and premise list ps if (ps, c) is a rule in rls, and each

premise in ps is derivable from potential leaves plvs using rules in rls and
every premise from ps obeys P then c obeys P

then x obeys P:

standard drs.inductr:

"[| ?x : derrec ?rls ?plvs ;

!!c. c : ?plvs ==> ?P c ;

!!c ps. [| (ps, c) : ?rls ;

ps : dersrec ?rls ?plvs ;

Ball (set ps) ?P |] ==> ?P c

|] ==> ?P ?x"

Proof Isabelle automatically generates an induction principle (not shown) from the
definition of derrec. Since the definition also involves defining dersrec (which
expresses that a list of items are all derivable), the automatically generated principle
involves a property P1 of derivable sequents and a property P2 of lists of derivable
sequents. Naturally we choose property P2 of a list to be that all members of the list
satisfy P1. That instantiation gives us the lemma. �

184 J.E. Dawson et al.

Intuitively, Isabelle converts object-level classical implications (−→) into meta-
level intuitionistic implications (==>), allowing us to use the lemma itself for sub-
goaling.

Using these inductive principleswe proved the following lemmaabout derivability
using Isabelle, where the question marks indicate free-variables which are implicitly
universally quantified:

Lemma 4.2 If each premise in ps is derivable from leaves plvs using rules rls,
and eseq is derivable from ps using rls, then eseq is derivable from plvs using
rls:

[|?ps ⊆ derrec ?rls ?plvs ; ?eseq∈ derrec ?rls ?ps|]
=⇒ ?eseq ∈ derrec ?rls ?plvs

4.3 Further Implicit Derivability Predicates

We briefly describe the remaining functions we used to describe derivability.

Definition 4.3 (derivable rule) For a list of sequents lvs and a sequent eseq,
(lvs, eseq) is a derivable rulewith respect to the rule set rls ifwe can construct
an implicit derivation using rules in rls whose leaves are exactly the sequents lvs
(in the same order), and whose endsequent is eseq.

We formalise this notion using functions derl (for the derivable rules) and
dersl (an auxiliary function).

Definition 4.4 (derl, dersl) For a list of sequents lvs and a sequent eseq,
the pair (lvs, eseq) is in derl rls if it is a derivable rule with respect to
rls.

For lists of sequents lvs and eseqs, the pair (lvs, eseqs) is in dersl
rls if there is a sequence of rule instances from rls which take us from (exactly)
the list of leaf sequents lvs to the list of endsequents eseqs. We envisage a number
of implicit derivations drawn side-by-side, whose endsequents are the members of
the list eseqs.

types ’a psc = "’a list * ’a" (* single step inference *)

consts (* these are type definitions *)

derl :: "’a psc set => ’a psc set"

dersl :: "’a psc set => (’a list * ’a list) set"

inductive "derl rls" "dersl rls"

intrs

asmI "([eseq], eseq) : derl rls"

Machine-Checked Proof-Theory for Propositional Modal Logics 185

dtderI "[| (lvs, eseq) : rls ; (lvss, lvs) : dersl rls |]

==> (lvss, eseq) : derl rls"

dtNil "([], []) : dersl rls"

dtCons "[| (lvs, eseq) : derl rls ; (lvss, eseqs) : dersl rls|]

==> (lvs @ lvss, eseq # eseqs) : dersl rls"

This formalises the notion of a derivable rule: derl rls is the set of derivable
rules with respect to rls.

Where an inference rule ’a psc is a list of premises ps and a conclusion c,
a “derived rule” is of the same type. We define derl rls to be the set of rules
derivable from the rule set rls. This, like derrec, was defined as an induc-
tive set. So (lvs,eseq) ∈ derl rls reflects the shape of an implicit deriva-
tion tree: lvs is a list of exactly the leaves used, in the correct order, whereas
eseq ∈ derrec rls plvs holds even if the set of (potential) leaves plvs con-
tains extra sequents.

We note that the definition means that ([c], c) ∈ derl rls: that is, the “trivial”
derived rules are included. To define derl rls to exclude the “trivial” derived
rules would complicate results such as Theorem 4.1.

The formal Isabelle definitions of derl used also the function dersl, which
represents several implicit derivation trees side-by-side:

(lvss,eseqs) ∈ dersl rls when the list lvss is the concatenation of their
lists of leaves, and eseqs is the list of their endsequents.

Theorem 4.1 With respect to some given set of rules rls:

(a) the items derivable from a set plvs of leaves are the items derivable from the
set of sequents derivable from plvs:

derrec_trans_eq:

"derrec ?rls ?plvs = derrec ?rls (derrec ?rls ?plvs)"

(b) derivability (whether defined using derrec or derl) using the set of derived
rules is equivalent to derivability using the original set of rules:

derrec_derl_deriv_eq :

"derrec (derl ?rls) ?plvs = derrec ?rls ?plvs"

derl_deriv_eq : "derl (derl ?rls) = derl ?rls"

Finally, we can define the notion of an admissible rule.

Definition 4.5 (admissible, adm) A rule (ps, c) is admissible with respect to a
rule set rls if, assuming its premises (leaves) ps are derivable from the empty set
{} of leaves using rules from rls, then so is its conclusion (endsequent) c:

186 J.E. Dawson et al.

consts (* this is a type declaration *)

adm :: "’a psc set => ’a psc set"

inductive "adm rls"

intrs (* inductive defn of the set of admissible rules *)

I "(ps : dersrec rls {} --> c : derrec rls {})

==> (ps, c) : adm rls"

Using Definition 4.5 we obtained the following four results, which were surpris-
ingly tricky since adm is not monotonic in its argument rls, where <= encodes ⊆.

Theorem 4.2 With respect to some given set of rules rls:

(a) every derivable rule is admissible;
(b) the admissible rules are closed under admissibility;
(c) the admissible rules are closed under admissibility after derivability;
(d) the admissible rules are closed under derivability.

"derl ?rls <= adm ?rls" "adm (adm ?rls) = adm ?rls"

"adm (derl ?rls) = adm ?rls" "derl (adm ?rls) = adm ?rls"

4.4 Explicit Derivation Trees: A Deep Embedding
of Derivations

Themain advantage of themethod outlined in the previous section was that there was
no concrete representation of a derivation. That is, we relied on the proof-assistant
to perform pattern-matching and rule instantiations in an appropriate way, so that all
we needed was to capture the idea that derivations began with leaves and ended with
a single end-sequent.

When we reason about cut-elimination, often we are required to perform trans-
formations on explicit derivations. We therefore need a representation of such trees
inside our encoding. In previous work [6], we described such an encoding using the
following datatype:

datatype seq dertree = Der seq (seq dertree list)

| Unf seq

Thedeclaration states that a derivation tree can either be anUnfinished (unproved)
leaf sequent built using the constructor Unf, or it can be a pair (seq, dts)
consisting of a conclusion sequent seq and a list dts of (sub-)derivation trees
bound together using the constructor Der.

Machine-Checked Proof-Theory for Propositional Modal Logics 187

Definition 4.6 Given an object dt of type dertree, conclDT dt returns the
first argument of the constructorsDer and Unf as the conclusion (endsequent) of dt.

For a tree dt which is not an Unfinished leaf, nextUp dt returns the list of
trees whose conclusions are the premises of the last rule of dt, and botRule dt
returns the bottom rule (premise list and conclusion) of dt.

primrec

conclDT_Der: "conclDT (Der seq dts) = seq"

conclDT_Unf: "conclDT (Unf seq) = seq"

nextUp_Der: "nextUp (Der seq dts) = dts"

botRule_Der: "botRule (Der seq dts) = (map conclDT dts, seq)"

Here, map conclDT dts applies conclDT to each member of the list dts
of derivation trees and hence returns the premises of the bottom rule.

Our use of dertee can be seen as an even deeper embedding of proof-theory into
Isabelle/HOL since it utilises the proof-assistant to describe an explicit derivation
rather than the implicit existence of such a derivation as encoded by our derivability
predicates from the previous section.

4.5 To and Fro Between Explicit and Implicit Derivations

Omitting details now, suppose we define valid rls dt to hold when derivation
tree dt correctly uses rules from rls only and has no Unfinished leaves: that is, the
leaves of dt are all instances of the conclusions of rules which have no premises (i.e.,
such as �, A � A,�). We linked our two approaches for specifying the derivable
sequents by proving:

Lemma 4.3 If derivation tree dt is valid w.r.t. the rules rls then its endsequent is
(implicitly) derivable from the empty set of leaves using rls:

valid_derrec:

"valid ?rls ?dt ==> conclDT ?dt : derrec ?rls {}"

Lemma 4.4 If the end-sequent eseq is (implicitly) derivable from the empty set {}
of leaves using rules rls then there exists an explicit derivation tree dt which is
valid w.r.t. rls, whose end-sequent is eseq:

derrec_valid:

"?eseq : derrec ?rls {}

==> EX dt. valid ?rls dt & conclDT dt = ?eseq"

188 J.E. Dawson et al.

Thus we now know that the implicit derivations captured by our derivability
predicate derrec can be faithfully captured using the deeper embedding using
explicit dertree derivation trees. Indeed, the lemmas allow us to move freely
between the two embeddings at will to omit or include details as required [6].

5 Subformula Relation, Rule Skeletons and Extensions
with Contexts

Our generalised definition of formulae allows a single definition of the immediate
(proper) subformula relation, ipsubfml, which will not need to be changed when
new connectives are added.

Definition 5.1 If a formula P is in the set obtained from the list of formulae Ps
then P is a proper subformula of any larger formula FC conn Ps created using a
formula-connective conn and Ps:

consts (* this is a type-declaration for function ipsubfml *)

ipsubfml :: "(formula * formula) set"

inductive "ipsubfml" (* proper immediate subformula relation *)

intrs

ipsI "P : set Ps ==> (P, FC conn Ps) : ipsubfml"

For example, (f, Box f) : ipsubfml because Box f is the abbrevia-
tion Box f == FC “Box” [f] where conn is the string “Box” and Ps is the
formula-list [f].

In Sect. 3 we showed that the traditional ∧R rule from LK could be encoded as
below using a sequent consisting of a pair (�,�) of multisets of formulae, written
� � �, where multiset braces are written as {# and #} and multiset union is written
as +:

([G � {#A#} + D , G � {#B#} + D], G � {#A && B#} + D) ∈ rls

The essence of the rule is more succinctly described by the rule skeleton Rs shown
below left. We now describe how we can uniformly extend Rs with the context
X � Y to obtain the extended rule Re shown below at right:

Rs = � A � B

� A ∧ B
Re = X � Y, A X � Y, B

X � Y, A ∧ B

Definition 5.2 If the sequent seqXY is the pair (X, Y), representing the sequent
X � Y , and the sequent seqUV is the pair (U, V), representing the sequent U �
V , then extend seqUV seqXY is the sequent (X+U, Y+V), representing the
sequent X,U � Y, V since seqXY + seqUV is (X+U, Y+V) by the pointwise

Machine-Checked Proof-Theory for Propositional Modal Logics 189

extension of + to pairs of multisets and the function pscmap allows us to modify a
rule (ps, c) by applying an arbitrary function f to each of its components:

consts (* this is a type declaration *)

extend :: "’a sequent => ’a sequent => ’a sequent"

extrs :: "’a sequent psc set => ’a sequent psc set"

defs

extend_def : "extend seqXY seqUV == seqXY + seqUV"

pscmap_def : "pscmap f (ps, c) = (map f ps, f c)"

We can now take a set rules of rule skeletons and produce their uniform exten-
sion with arbitrary context flr (for “formulae left and right”) representing X � Y .

Definition 5.3 (extrs) Given a rule set rules, the inductively defined set extrs
rules is the set of rules consisting of all uniform extensions of all rules in rules:

inductive "extrs rules"

intrs

I "psc : rules ==> pscmap (extend flr) psc = epsc

==> epsc : extrs rules"

For example, we can now use functions extend and pscmap so that

extend (X � Y) (U � V) = (X +U) � (Y + V)

Re = pscmap (extend (X � Y)) Rs

Thuspscmap uniformly extends the skeleton provided byRs with arbitrary contexts
X and Y on respective sides to encode Re using multiset addition +. So extrs S
means the set of all such extensions of all rules in the set S.

Then we define lksss, the set of rules for Gentzen’s LK; we show just a selec-
tion. The rules below are the (skeletons of some of the) traditional invertible logical
introduction rules from LK (without any context):

� A � B

� A ∧ B

� A, B

� A ∨ B

B � � A

A → B �
A, B �
A ∧ B �

A � B �
A ∨ B �

A � B

� A → B

Using && for ∧, v for ∨ and -- for ¬, we can encode the logical introduction rules
as shown below, to obtain the set lksir of LK right introduction rule skeletons,
where {#} rather than {##} is the empty-multiset:

Definition 5.4 (lksir) lksir is the set of right logical introduction rules, in the
form without any context and using the form which is invertible, as shown above.

190 J.E. Dawson et al.

inductive "lksir" (* LK right introduction rule skeletons *)

intrs

andr

"([{#} |- {#A#}, {#} |- {#B#}], {#} |- {#A && B#}) : lksir"

orr "([{#} |- {#A#} + {#B#}], {#} |- {#A v B#}) : lksir"

negr "([{#A#} |- {#}], {#} |- {#--A#}) : lksir"

impr "([{#A#} |- {#B#}], {#} |- {#A -> B#}) : lksir"

Similar rules lksil (not shown) give the skeletons of the traditional invertible
rules for left-introduction. By adding the initial sequent “axiom” A � A with an
empty list [] of premises below we obtain the set of “unextended” rules lksne for
LK:

Definition 5.5 (lksne) lksne is the set of rules, not extended by any arbitrary
context, without structural rules, for LK.

inductive "lksne" (* LK rule skeletons before being extended *)

intrs

axiom "([], {#A#} |- {#A#}) : lksne"

ilI "(ps, c) : lksil ==> (ps, c) : lksne"

irI "(ps, c) : lksir ==> (ps, c) : lksne"

We can now form the full extended set lksss of rules for LK, by extending each
rule skeleton psc from lksne by an arbitrary pair (X,Y) of contexts flr (for
formulae left and right) regarded as a sequent X � Y :

Definition 5.6 (lksss) lksss is the set of rules, extended by arbitrary contexts,
without structural rules, for LK.

inductive "lksss"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

Now, we can encode the skeleton shown below right of the traditional K-rule
shown below left:

� � A
(K)

�,�� � �A,�
� � A

(SK)�� � �A

Definition 5.7 (SK) SK is the set of instances of the skeleton of the K rule of modal
logic

inductive "SK"

intrs

I "([X |- {#A#}], mset_map Box X |- {#Box A#}) : SK"

Machine-Checked Proof-Theory for Propositional Modal Logics 191

Note that X is a multiset, and �X is informal notation for applying � to each
member of X ; this is implemented using mset_map, used in the encoded SK rule.
Using a similar notation we write �Bk for (�B)k , the multiset containing n copies
of �B. Development of mset_map and relevant lemmas is in the source files
Multiset_no_le.{thy,ML}.

By extending the skeletons of the LK rules and extending only the conclusion of
the skeleton (SK) of the K rule above, we could obtain an encoding of the traditional
sequent calculus for the modal logic K:

inductive "lksK"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksK"

K "(ps, c) : SK ==> (ps, extend flr c) : lksK"

Since we actually handle more complex logics, but not K as such, we have not
made this a formal definition.

Note that most of these definitions use the Isabelle feature for inductively defined
sets, even though many of them are not actually inductive (i.e., recursive). We do this
because Isabelle automatically generates useful theorems for them, including rules
which help us prove or use an expression such as rl : lksne.

6 The Weakening, Inversion and Contraction Properties

We now encode the weakening, inversion and contraction as properties.

Definition 6.1 A set rls of rules satisfies the weakening admissibility property if,
whenever a sequent X � Y is derivable, any larger sequent (X � Y) + (U � V) =
(X,U � Y, V) is derivable:

consts (* type for function wk_adm using type variable ’a *)

wk_adm :: "’a sequent psc set => bool"

wk_adm_def : "wk_adm rls ==

ALL XY. XY : derrec rls {} -->

(ALL UV. XY + UV : derrec rls {})"

Here, the variablerls is forced to be a set of sequent rules by the type of wk_adm,
and thence the variables XY and UV will be forced to be of type sequent by the
typing restrictions on the inputs to derrec.

Definition 6.2 (inv_rl) A rule (ps, c) is invertible with respect to a set rls
of rules if, whenever c is derivable using rls, so is every member of ps:

192 J.E. Dawson et al.

inv_rl.simps:

"inv_rl rls (ps, c) =

(c : derrec rls {} --> ps : dersrec rls {})"

Here, the definition of dersrec hides a universal quantifier over the members
of the list ps: see Definition 4.1.

To encode contraction,we utilise an axiomatic type class for sequents, described in
more detail elsewhere [6]. Thuswe canwrite (A � 0) + (A � 0) ≤ (X � Y) tomean
that the multiset X contains at least two copies of A and write (X � Y) − (A � 0)
for the sequent obtained by deleting one of these copies from X . Similarly we can
write (0 � A) + (0 � A) ≤ (X � Y) to mean that the multiset Y contains at least
two copies of A and write (X � Y) − (0 � A) for the sequent obtained by deleting
one of these copies from Y . More generally, we can writeUV +UV ≤ XY to assert
that the sequent XY −UV can be obtained from XY by contracting the contents of
the sequent UV . Thus, if the multiset of all formulae in UV (on both sides) is the
singleton multiset {#A#} we know that the skeleton of the relevant contraction rule
is one of:

A, A �
A �

� A, A

� A

Definition 6.3 A set rls of rules satisfies the contraction admissibility property
for the formula A if, whenever a derivable sequent X � Y satisfies (A � 0) + (A �
0) ≤ (X � Y), the sequent (X � Y) − (A � 0) is derivable, and likewise for 0 � A.

ctr_adm_def : "ctr_adm rls A ==

ALL UV. ms_of_seq UV = {#A#} -->

(ALL XY. XY : derrec rls {} --> UV + UV <= XY -->

XY - UV : derrec rls {})"

The first condition ms_of_seq As = {#?A#}, asserts that the formulae on
both sides of the sequent As form the singleton multiset {#?A#}, thus capturing
that the contraction can happen on either side of the turnstile.

7 Generalising Cut-Admissibility Proofs

We now show how our previous work [6] on multicut admissibility for LK can
be formulated to make it as general as possible. We first give details of induction
principles and lemmata for “structural” induction over implicit derivations obtained
via our derivability predicates and then describe their analogues for explicit derivation
trees.

Machine-Checked Proof-Theory for Propositional Modal Logics 193

7.1 A General Framework for Reasoning About Implicit
Derivations

The initial sequents of our sequent calculi will be allowed to apply to arbitrary for-
mulae, not only atoms, and this excludes the possibility of proving height-preserving
invertibility. This, and also the form of our contraction rule, which allows just
one contraction per derivation step, prevents us from proving a height-preserving
contraction-admissibility result. For proofs of contraction-admissibility, without
height-preservation, an induction principle which also involves the size or structure
of the relevant formula is required. Furthermore, proving cut-admissibility requires
induction on both size of formula and derivation height (or a proxy for it). We there-
fore require a double induction on height (or proxy) and formula size (as measured
by any well-founded subformula relation).

Our first induction principle could be seen as using a lexicographic ordering (n,m)

where n is the sub-formula relation and m is the (inverse of the) distance from the
end-sequent in the original derivation.

We use a relation sub on formulae: it could be any relation on formulae, but
we use the (immediate) sub-formula relation. To put our general results in context,
we may refer to sub as a “sub-formula relation”. In general we want sub to be
well-founded; more generally our theorems will apply to the “well-founded part” of
sub.

In regard to the height measure, or distance from the original end-sequent, our
first induction principle, instead of assuming that a property holds for all derivations
of lesser height, merely assumes that it holds for sub-derivations.

Definition 7.1 (wfp) For a binary relation sub, a formula A is in wfp sub,
the “well-founded part” of sub, iff there is not any infinite descending chain
. . . , A2, A1, A such that (A1, A), (A2, A1), . . . are all in sub.

Definition 7.2 (gen_step) For a formula A, a property P, a subformula relation
sub, a set of sequents derivs, and a particular rule r = (ps, c), where ps is
a list of premises and c is the conclusion of r:

gen_step P A sub derivs r means
If

(a) forall A’ such that (A’, A) ∈ sub and all sequents s ∈ derivs the
property P A’ s holds, and

(b) for every premise p ∈ ps both p ∈ derivs and P A p holds, and
(c) c ∈ derivs

then P A c holds.

194 J.E. Dawson et al.

gen_step_def :

"gen_step P A sub derivs (ps, c) =

((ALL A’. (A’, A) : sub --> Ball derivs (P A’))

--> (ALL p : set ps. p : derivs & P A p) --> c : derivs

--> P A c)"

In this text, ALL p : set psmeans ∀p ∈ ps. Typically derivs will be the set
of sequents derivable using a given set rls of rules, and a given set of leaves plvs,
so derivs = derrec rls plvs.

Intuitively, given afixed ruler = (ps, c), a fixed formulaA, a fixedpropertyP
and a fixed relation sub, Definition 7.2(a) formalises for any derivable sequent s that
(A, c) is “less than” (A’, s) if (A’, A) ∈ sub. Definition 7.2(b) formalises
for any premise p from ps that (A, p) is “less than”(A, c) if p is a premise of c
in the rule r. Thus, it can be seen as a particular instance of a lexicographic ordering
on formula-sequent pairs where (A1, s1) is “less than” (A2, s2) if (A1, A2) ∈ sub
or, if A1 = A2 and s2 is a premise of c via the particular rule (instance) r = (ps, c).

Alternatively, by Definition 7.2, gen_step describes the situation where if a
property P is true generally for sub-formulae A′, and for the premises of a particular
rule then the property holds for the conclusion of that rule.

The main theorem, named gen_step_lem and given as Theorem 7.1 below,
states that if this step case can be proved for all possible rule instances then P holds
for all cases.

Theorem 7.1 (gen_step_lem) For a formula A, a property P, a subformula
relation sub, a sequent S and a set of rules rls: If

(a) A is in the well-founded part of the subformula relation sub, and
(b) for all formulae A’ and all rules r in rls, the induction step condition

gen_step P A’ sub (derrec rls {}) r holds, and
(c) sequent S is rls-derivable

then P A S holds.

gen_step_lem:

"[| ?A : wfp ?sub ;

ALL A’. ALL r : ?rules.

gen_step ?P A’ ?sub (derrec ?rules {}) r ;

?S : derrec ?rules {} |]

==> ?P ?A ?S"

Proof We combine the principle of well-founded induction, applied to the formula A
and the well-founded subfomula relation sub, with the induction principle derrec-
induction for derrec shown as Lemma 4.1, which is provided by Isabelle as a
consequence of the inductive definition of derrec. �

Machine-Checked Proof-Theory for Propositional Modal Logics 195

7.2 Induction for Two-Premise Subtrees

We now turn to the induction principle used for deriving cut-admissibility, or indeed
any property P of two-premise implicit derivations. In the diagram below, to prove
P(cl, cr), for example, to prove that a cut between cl and cr is admissible, the
induction assumption is that P(psli , cr) and P(cl, psr j) hold for all i and j :

psl1 . . . psln ρl
cl

psr1 . . . psrm ρrcr (cut ?)C
A proof of P(cl, cr) using this induction assumption inevitably proceeds according
to what the rules ρl and ρr are, and further, for a cut-formula A, whether it is principal
in either or both of ρl and ρr . But our proofs also use induction on the size of the
cut-formula, or, more generally, on some well-founded relation on formulae. So we
actually consider a property P A (cl, cr) where A is the cut-formula, psl are the
premises psl1 . . . psln of rule ρl , and cl is its conclusion, and analogously for ρr
and cr . In proving P A (cl, cr), in addition to the inductive assumption above, we
assume that P A′ (da, db) holds generally for (A′, A) ∈ sub and all sequents da
and db which are “rls-derivable”, i.e., derivable from the empty set of leaves using
rules from rls. These intuitions give the following definition gen_step2sr of a
condition which permits one step of the inductive proof:

Definition 7.3 (gen_step2sr) For a formula A, a property P, a subformula
relation sub, a set of rules rls, sequent rules (psl, cl), and (psr, cr):
gen_step2sr P A sub rls ((psl, cl), (psr, cr)) means:
If

(a) P A’ (da, db) holds for all subformulae A’ of A and all rls-derivable
sequents da and db, and

(b) for each premise pa in psl, pa is rls-derivable and P A (pa, cr) holds,
and

(c) for each premise pb in psr, pb is rls-derivable and P A (cl, pb)
holds, and

(d) cl and cr are rls-derivable,

then P A (cl, cr) holds.

gen_step2sr_simp :

"gen_step2sr P A sub rls ((psl, cl), (psr, cr)) =

((ALL A’. (A’, A) : sub -->

(ALL da:derrec rls {}.

ALL db:derrec rls {}. P A’ (da, db)))

-->

(ALL pa:set psl. pa : derrec rls {} & P A (pa, cr)) -->

(ALL pb:set psr. pb : derrec rls {} & P A (cl, pb)) -->

cl : derrec rls {} --> cr : derrec rls {}

--> P A (cl, cr))"

196 J.E. Dawson et al.

The main theorem gen_step2sr_lem below for proving an arbitrary property
P states that if the step of the inductive proof goes through in all cases, i.e., for
all possible final rule instances ρl = (psl, cl) on the left and ρr = (psr, cr) on the
right, then P holds for all formulae A and sequents cl and cr on the left and right
respectively.

Theorem 7.2 (gen_step2sr_lem) If A is in the well-founded part of the
subformula relation; sequents seql and seqr are rls-derivable ; and for all
formulae A’, and all rules (psl, cl) and (psr, cr), our induction step con-
ditiongen_step2sr P A’ sub rls ((psl, cl), (psr, cr)) holds,
then P A (seql, seqr) also holds.

gen_step2sr_lem :

"[| ?A : wfp ?sub ;

?seql : derrec ?rls {} ; ?seqr : derrec ?rls {} ;

ALL A’. ALL (psl, cl):?rls. ALL (psr, cr):?rls.

gen_step2sr ?P A’ ?sub rls ((psl, cl), (psr, cr)) |]

==> ?P ?A (?seql, ?seqr)"

Proof As with Lemma 7.1, the proof of this involves combining induction princi-
ples available to us. It is more complex than Lemma 7.1 because we had to deal
with the well-founded induction on the sub-formula relation and derrec-induction
(Lemma 4.1) on the two implicit derivations which provide the two premises of
the cut. �

This enables us to split up an inductive proof, by showing, separately, that
gen_step2sr holds for particular cases of the final rules(psl, cl) and (psr,
cr) on each side. In some cases these results apply generally to different calculi.

For example, the inductive step for the casewhere the cut-formula A is parametric,
not principal, on the left is encapsulated in the following theorem where prop2
car ?erls ?A (?cl, ?cr), which is equivalent to (?cl, ?cr) : car
?erls ?A, means that the conclusion of a cut on A with premises cl and cr is
derivable using rules erls. Below, :# stands for membership of a multiset, and ˜
stands for classical negation, and wk_adm refers to weakening admissibility for a
system of rules, defined formally in Definition 6.1.

Theorem 7.3 If weakening is admissible for the rule set erls, all extensions of
some rule (ps, U |- V) are in the rule set erls, and the final rule instance
pscl of the left hand (implicit) subtree is an extension of (ps, c) where the cut-
formula A is not in V (meaning that A is parametric on the left), then gen_step2sr
(prop2 car ?erls) ?A ?sub ?rls (?pscl, ?pscr) holds.

Machine-Checked Proof-Theory for Propositional Modal Logics 197

lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

˜ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==> gen_step2sr (prop2 car ?erls) ?A ?any ?erls (?pscl, ?pscr)"

Notice that so far we have dealt with a shallow embedding of derivations; it does
not apply to proofs which require derivation trees to be represented explicitly. As
noted in Sect. 4.4, the derivability of a sequent is equivalent to the existence of a
valid derivation tree for it, and so now we describe the similar approach for explicit
derivation trees.

7.3 Induction Principles for Explicit Derivation Trees

Sometimes we need to proceed by induction on (for example) the length of a deriva-
tion by which a sequent can be obtained, rather than by the fact of a sequent having
been obtained earlier in the same derivation. At other times, we not only need to do
induction on height, but we may also have to transform the immediate premises in
some way, for example, by utilising the admissibility of weakening or contraction.

We could change our (notion of implicit derivations) derivability predicate
derrec rls plvs with a third argument ht, say, so that derrec rls plvs
ht captured the set of sequents derivable from the leaves in plvs using rules from
rls with height ht. But then it becomes much harder to incorporate the trans-
formations of the immediate premises of an end-sequent using the weakening and
contraction lemmata since we have no explicit access to the derivation itself. So to
compare (say) the heights of derivations, we must be able to define them and for this
we need to look at explicit derivation trees.

We can use explicit derivation trees to perform a proof equivalent to one using
Theorem 7.1, by using the following definitions and lemmata.

Definition 7.4 (gen_step_tr) For all properties P, all formulae B, all “sub-
formula” relations sub and all (explicit) derivation trees dta:

gen_step_tr P B sub dta means:
if

(a) P C dtb holds for all subformulae C of B and all derivation trees dtb, and
(b) P B dtsub holds for all the immediate subtrees dtsub of dta

then P B dta holds.

gen_step_tr_def:

"gen_step_tr P B sub dta ==

(ALL C. (C, B) : sub --> (ALL dtb. P C dtb)) -->

(ALL dtsub:set (nextUp dta). P B dtsub) --> P B dta"

198 J.E. Dawson et al.

Lemma 7.1 (gen_step_tr_lem) For all properties P, for all formulae A, for all
relations sub, for all derivations dt, if A is in the well-founded part of sub, and
gen_step_tr P B sub dtb holds for all formulae B and all derivations dtb,
then P A dt holds.

gen_step_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtb. (gen_step_tr ?P B ?sub dtb) |]

==> ?P ?A ?dt"

Definition 7.5 (gen_step2_tr) For all properties P, for all formulae B, for all
“sub-formula” relations sub, for all pairs (dta, dtb) of derivation trees:

gen_step2_tr P B sub (dta, dtb) means:
if

(a) P C (dtaa, dtbb) holds for every sub-formula C of B and all derivation
trees dtaa and dtbb, and

(b) P B (dtp, dtb) holds for all immediate subtrees dtp of dta, and
(c) P B (dta, dtq) holds for all immediate subtrees dtq of dtb

then P B (dta, dtb) holds:

gen_step2_tr.simps:

"gen_step2_tr P B sub (dta, dtb) =

((ALL C. (C, B):sub --> (ALL dtaa dtbb. P C (dtaa, dtbb)))

--> (ALL dtp:set (nextUp dta). P B (dtp, dtb))

--> (ALL dtq:set (nextUp dtb). P B (dta, dtq))

--> P B (dta, dtb))"

Lemma 7.2 (gen_step2_tr_lem) For all properties P, for all formulae A,
for all relations sub, for all derivation trees dta and dtb, if A is in the well-
founded part of sub, and gen_step2_tr P B sub (dtaa, dtbb) holds
for all formulae B and all derivations dtaa and dtbb, then P A (dta, dtb)
holds:

gen_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtaa dtbb. gen_step2_tr ?P B ?sub (dtaa, dtbb) |]

==> ?P ?A (?dta, ?dtb)"

These properties are exact analogues, for explicit derivation trees, of the properties
gen_step and gen_step2sr and Theorems 7.1 and 7.2, with (for example)
Lemma 8.2 linking them.

Machine-Checked Proof-Theory for Propositional Modal Logics 199

However, the purpose of using explicit derivation trees is to define different induc-
tion patterns. For example, we defined an induction pattern which depends on the
inductive assumption that the property P holds for the given tree on one side, and
any smaller tree on the other side.

Definition 7.6 (measure) For all a, all b, and all functions f : : ’a => nat, the
pair (a, b) is in measure f iff f a < f b:

measure_eq: "((?a, ?b) : measure ?f) = (?f ?a < ?f ?b)"

Definition 7.7 (height_step2_tr) For all properties P, for all formulae A, for
all subformula relations sub, for all pairs (dta, dtb) of derivations,
height_step2_tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and for all derivation trees A
and B, and

(b) P A (tp, dtb) holds for all derivation trees tp of smaller height than dta,
and

(c) P A (dta, tq) holds for all derivation trees tq of smaller height than dtb

then P A (dta, dtb) holds.

height_step2_tr_def:

"height_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtp. heightDT dtp < heightDT dta --> P A (dtp, dtb)) -->

(ALL dtq. heightDT dtq < heightDT dtb --> P A (dta, dtq)) -->

P A (dta, dtb))"

In some cases we found that this wasn’t enough, and defined a more general
pattern, in which the inductive assumption applies where the sum of the heights of
the two trees is smaller.

Definition 7.8 (sumh_step2_tr) For a property P, a formula A, a subformula
relation sub, and a pair of derivations (dta, dtb),

sumh_step2_tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and all derivation trees a and
b, and

(b) for all derivation trees dtaa and dtbb, we have
heightDT dtaa + heightDT dtbb < heightDT dta + heightDT
dtb implies P A (dtaa, dtbb)

then P A (dta, dtb) holds

200 J.E. Dawson et al.

sumh_step2_tr_eq:

"sumh_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtaa dtbb. heightDT dtaa + heightDT dtbb <

heightDT dta + heightDT dtb --> P A (dtaa, dtbb)) -->

P A (dta, dtb))"

Wecould of course generalise this by replacingheightDT by any natural number
function, which may be different for trees on the left and right sides. Indeed it could
be further generalised to any well-founded relation on pairs of derivation trees.

Each of these properties is successively weaker since the corresponding induc-
tive assumption is stronger, hence P applies to correspondingly wider classes of
derivations: as formalised next.

Lemma 7.3 For a property P, a formula A, a relation sub, and for a pair (dta,
dtb) of derivations:

(a) gen_step2_tr implies height_step2_tr
(b) height_step2_tr implies sumh_step2_tr

gs2_tr_height:

"gen_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

height_step2_tr ?P ?A ?sub (?dta, ?dtb)"

hs2_sumh:

"height_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

sumh_step2_tr ?P ?A ?sub (?dta, ?dtb)"

Accordingly we need the lemma that proving these step results is sufficient for
only the weakest of them.

Lemma 7.4 (sumh_step2_tr_lem) For a property P and a formula A in the
well-founded part of a relation sub, if sumh_step2_tr P A sub (dta,
dtb) holds for all derivations dta and dtb then P A (dtaa, dtbb) holds
for all derivations dtaa and dtbb:

sumh_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL A dta dtb. sumh_step2_tr ?P A ?sub (dta, dtb) |]

==> ?P ?A (?dtaa, ?dtbb)"

We are now in a position to define the statement of cut-admissibility in Isabelle,
and to apply all of these results.

Machine-Checked Proof-Theory for Propositional Modal Logics 201

8 Statement of Cut-Admissibility in Isabelle

Definition 8.1 (cas,car) For all formulae A, and all pair of sequents:

car rls A holds if the sequent obtained by applying the cut rule on formula A to
them is derivable: that is, (Xl � Yl , Xr � Yr) ∈ car rls A iff (Xl , (Xr − A) �
(Yl − A),Yr) is rls-derivable;

cas rls A holds if cut-admissibility on A is available for that pair of sequents:
that is, (Xl � Yl , Xr � Yr) ∈ cas rls A means that if Xl � Yl and Xr � Yr are
rls-derivable, then (Xl � Yl , Xr � Yr) ∈ car rls A.

car_eq:

"((Xl |- Yl, Xr |- Yr) : car rls A) =

((Xl + (Xr - {#A#}) |- Yl - {#A#} + Yr) : derrec rls {})"

cas_eq:

"((seql, seqr) : cas rls A) =

(seql : derrec rls {} & seqr : derrec rls {}

--> (seql, seqr) : car rls A)"

When we are talking about proving cas or car by induction on the (implicit)
derivation of the two sequents, that is, we are talking about two sequents which are
derivable, then these two concepts become equivalent. This is because the definition
of gen_step2sr only involves the property of the pair of sequents in the cases
where those two sequents are derivable.Recall thatprop2 simply gives an equivalent
concept with a different type.

Lemma 8.1 The induction steps for proving cas and car are equivalent:

prop2_def : "prop2 f rls A seqs == seqs : f rls A"

gs2_cas_eq_car: "gen_step2sr (prop2 cas ?rls) ?A ?sub ?rls =

gen_step2sr (prop2 car ?rls) ?A ?sub ?rls"

Definition 8.2 (casdt) For any set rls of rules and any formula A, two valid (ie.
no unproved leaves, and all steps are rules of rls) derivation trees dtl and dtr
satisfy casdt rls A iff their conclusions satisfy car:

casdt_eq:

"((?dtl, ?dtr) : casdt ?rls ?A) =

(valid ?rls ?dtl & valid ?rls ?dtr

--> (conclDT ?dtl, conclDT ?dtr) : car ?rls ?A)"

202 J.E. Dawson et al.

Here is the lemma linking the induction step for cut-admissibility in terms of
implicit derivability with the corresponding induction step for explicit derivation
trees.

Lemma 8.2 (gs2_tr_casdt_sr) Given two derivation trees dta and dtb, a
cut-formula A, a sub-formula relation sub, and a rule set rls, if the bottom rules
of those trees satisfy the step condition gen_step2sr for cut-admissibility, then
the two trees satisfy the step condition gen_step2_tr for cut-admissibility:

gs2_tr_casdt_sr:

"gen_step2sr (prop2 cas ?rls) ?A ?ipsubfml ?rls

(botRule ?dta, botRule ?dtb) ==>

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (?dta, ?dtb)"

In fact the two concepts are essentially equivalent:

Theorem 8.1 (gs2_casdt_equiv) Given a set of derivation rules rls, a for-
mula A, a sub-formula relation ipsubfml and two bottom rules pscl and pscr,
then the following are equivalent:

(a) if pscl and pscr are in rls, then they satisfy the step condition gen_
step2sr for cut-admissibility (for implicit derivations)

(b) all trees dta and dtb whose bottom rules are pscl and pscr respectively,
satisfy the step condition gen_step2_tr for cut-admissibility (for explicit
derivations)

gs2_casdt_equiv:

"(?pscl : ?rls -->?pscr : ?rls --> gen_step2sr (prop2 cas ?rls)

?A ?ipsubfml ?rls (?pscl, ?pscr)) =

(ALL dta dtb. botRule dta = ?pscl --> botRule dtb = ?pscr -->

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (dta, dtb))"

We are now ready to apply our formalisation work to particular calculi.

9 Weakening, Contraction and Cut Admissibility for S4

There exist both pen and paper [19, 25] and a formalised proof [5] ofmix-elimination
for sequent calculi for S4 containing explicit weakening and contraction rules. As
stated previously, explicit structural rules are detrimental for automated reasoning,
giving a practical motivation for proving that such rules are admissible. This is our
goal.

Machine-Checked Proof-Theory for Propositional Modal Logics 203

Troelstra and Schwichtenberg also state cut-elimination for a sequent calculus
G3s [25] for S4 that contains no explicit structural rules. Unfortunately, their “proof”
only discusses one actual transformation, and in particular overlooks one non-trivial
case—when Cut is applied on a formula�A, with both premises being an instance of
the G3s R� rule (shown below). In this case, the deduction cannot be transformed by
simply permuting the Cut, or introducing a new Cut of smaller rank, on the sequents
in the original deduction. Greater detail is given later in this section.

�� � A,♦�
R�

�′,�� � �A,♦�,�′

Goubault [14] acknowledges the problem posed by absorbing Weakening into
the R� rule. However, his solutions are given in the context of typed λ-calculi for
a minimal version of S4, interpreted as a sequent calculus through a version of the
Curry-Howard correspondence. Based on a proposal from [2], Goubault-Larrecq
replaces the R� rule by a different rule with multiple premises (for subformulae
within the principal formula), along with both re-write and garbage collection rules
for the λ terms involved. While this solution could possibly be extended to sequent
calculi, the creation of new premises and hence branching is detrimental to backward
proof search. Our solution presented in this section also has the advantage of being
significantly simpler.

Negri [18] proves various admissibility theorems for S4, but the calculus involved
is labelled. These labels include elements of theKripke semanticswithin the calculus,
and so the resulting theorems are thus not entirely syntactical proofs. Furthermore,
there are rules in the calculus which deal only with reachability between worlds.
While perhaps not as inefficient as the standard structural rules, these rules neverthe-
less do not operate on logical connectives. In particular to S4, from the perspective of
automated reasoning, applying all possible instances of the transitivity rule (shown
below) or checking whether the transitivity rule has been saturated can be a very
time-consuming process.

x Rz, x Ry, yRz, � � �
Transitivity

x Ry, yRz, � � �

R is the accessibility relation. x, y, z are worlds.

9.1 Calculus for S4

The sequent calculus we use for S4 is based on the calculus G3cp [25], with the
addition of twomodal rules. Note that the initial sequents�,ϕ � ϕ,� do not require
thatϕ be atomic, and that there are only rules for� formulae since♦ϕ is interpreted as
¬�¬ϕ. The rules of the calculus are shown inFigs. 3 and 4.Note that the clauseboxI
in the inductive definition for gs4_rls applies extend only to the conclusion,
corresponding to the appearance of the two sets � and � in the conclusion of the
rule S4�.

204 J.E. Dawson et al.

Fig. 3 Sequent calculus GS4 for S4

The Isabelle encoding of the calculus is modular, with the overall calculus,
gs4_rls, built up from separate declarations of the id rule, the classical rules
acting on antecedents and succedents, and the two modal rules.

9.2 Weakening for S4

Intuitively, weakening is admissible for a system of rules if, whenever the conclusion
c of a rule (ps, c) is weakened to c′, there is a rule with conclusion c′ and premises
ps ′ which are (optionally) weakened counterparts of ps.

The following definition seeks to formalise this condition.

Definition 9.1 Aset of rulesrls satisfiesext_concl iff: for every list of premises
ps and conclusion c that form a rule (ρ1 say) in rls, and for all possible sequents
UV, there exists a list of premises ps’ such that the premises ps’ and the extended
conclusion c + UV also form an instance of some rule (ρ′

1 say) in rls and for
every premise P from ps there is a corresponding premise p’ in ps’ such that p’
is either P itself or is an extension of P:

Machine-Checked Proof-Theory for Propositional Modal Logics 205

inductive "lksne" intrs (* skeletons of LK rules *)
axiom "([], {#A#} |- {#A#}) : lksne"

ilI "psc : lksil ==> psc : lksne"
irI "psc : lksir ==> psc : lksne"

inductive "lksss" intrs (* extended skeletons for LK *)
extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

inductive "lkrefl" intrs (* refl rule skeleton *)
I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

inductive "lkbox" intrs (* S4 Box rule skeleton *)
I "([gamma + mset_map Box gamma |- {#A#}],

mset_map Box gamma |- {#Box A#}) : lkbox"

inductive "gs4_rls" intrs
lksI "psc : lksss ==> psc : gs4_rls"

reflI "psc : lkrefl ==> pscmap (extend flr) psc : gs4_rls"
(* Box rule allows extra formulae in conclusion only *)

boxI "(prem, conc) : lkbox ==>
(prem, extend flr conc) : gs4_rls"

Fig. 4 Isabelle rules for GS4

p1 . . .pk
(ρ1)c

p’1 . . .p’k
(ρ′

1)c + UV
pi ≤ p’i

In the Isabelle text (ps, ps’) : allrel r means that ps and ps’ are
lists of the same length where each corresponding pair of their members is in r. The
relation≤ for sequents is defined in termsof≤ formultisets, that is, X � Y ≤ X ′ � Y ′
means X ≤ X ′ and Y ≤ Y ′.

ext_concl_def:

"ext_concl rls ==

ALL (ps, c) : rls. ALL UV. EX ps’.

(ps’, c + UV) : rls & (ps, ps’) : allrel {(p, p’). p <= p’}"

inductive "allrel r" intrs

allrel_Nil "([], []) : allrel r"

allrel_Cons "[| (ha, hb) : r ; (ta, tb) : allrel r |]

==> (ha # ta, hb # tb) : allrel r"

Lemma 9.1 If rule set rls obeys ext_concl then rls admits weakening:

wk_adm_ext_concl: "ext_concl ?rls ==> wk_adm ?rls"

206 J.E. Dawson et al.

The lemma wk_adm_ext_concl is so simple it can be proved directly by the
induction principle for derrec Lemma 4.1 (without using gen_step_lem). Use
of lemmas like gen_step_lem is really only for the purpose of breaking up the
proofs, so that various different cases of gen_step (ie various final rules of the
derivation) can be put into separate lemmata, some of whichmay be able to be reused
for different calculi.

Lemma 9.2 The set of rule gs4_rls satisfies ext_concl.

gs4_ext_concl: "ext_concl gs4_rls"

Corollary 9.1 The rules of S4 satisfy weakening admissibility.

gs4_wk_adm: "wk_adm gs4_rls"

9.3 Invertibility and Contraction for S4

We now describe how we captured the traditional proof of invertibility.
Suppose that we are given a calculus consisting of the rule set drls and suppose

that we want to reason about the derivability predicate derrec defined earlier. Let
derivs be the set derrec drls of all sequents that are derivable from the empty
set of leaves using the rules of drls. Suppose that we wish to prove that every rule
in irls is invertible w.r.t. drls (where irls is usually a subset of drls).

Omitting details, the function invs_of irls c returns the set of sequents
obtainable by applying each rule of irls to the sequent c backwards once. That
is, a sequent seq is in invs_of irls c if applying some rule ρ of irls to c
backwards, once, will give seq as one of the premises of ρ.

To prove that a rule (ps, concl) is invertible w.r.t. drls requires us to prove
that each sequent seq from the list ps of premises is in derivs if concl is in
derivs. To prove that each rule in a set of rules irls is invertible w.r.t. drls
requires us to prove that the above property holds for each rule (ps, concl)
from irls: that is, invs_of irls concl <= derivs where <= encodes
the subset relation.

Traditional proofs of invertibility proceed by an induction on the structure of a
given derivation of a sequent concl ∈ derivs. Assuming that the final rule in
this derivation is (ps, concl), the induction hypothesis is to assume that the
invertibility lemma holds for each premise in ps. That is, we assume that every
sequent seq obtained by applying any rule from irls backwards, once, to any
premise P in ps is itself in derivs:

ALL p:set ps. invs_of irls p <= derivs

Use of the induction hypothesis stated above can then be encoded in inv_step
as follows. Let an “irls-inverse” of a sequent s be a sequent s ′ obtained from s by
applying any rule from irls backwards once.

Machine-Checked Proof-Theory for Propositional Modal Logics 207

Definition 9.2 (inv_step) For a given set derivs of derivable sequents, for a
rule set irls, and for every rule instance (ps, concl), the property:
inv_step derivs irls (ps, concl) means:

If every premise in ps being in derivs implies that every “irls-invert” of
premises in ps is in derivs,

then every “irls-invert” of the conclusion concl is in derivs.

inv_step.simps:

"inv_step derivs irls (ps, concl) =

(set ps <= derivs

--> (ALL p:set ps. invs_of irls p <= derivs)

--> invs_of irls concl <= derivs)"

This is the key result for doing invertibility by stating various cases of the induction
step as separate lemmata.

The expression UNION (set ?ps) (invs_of ?irls) represents the set
X of all sequents obtained by applying some rule from irls backwards once to
every sequent P from a list of sequents ps viewed as a set:

X :=
⋃

P ∈ set ps

(invs_of ?irlsp)

Then, (set ?ps Un UNION (set ?ps) (invs_of ?irls)) represents
the union of X and the list of sequents ps treated as a set, ie (set ps) ∪ X .

The property inv_stepm is weaker than inv_step but is monotonic in its
first argument, which makes reusing lemmata such as lks_inv_stepm possible
as follows.

Definition 9.3 (inv_stepm) For all rule sets drls, for all rule sets irls,
for all rules (ps, concl), the expression inv_stepm drls irls (ps,
concl) means: the irls-inverses of concl are derivable using derrec drls
from (set ps) and the irls-inverses of every P ∈ set ps:

inv_stepm.simps:

"inv_stepm drls irls (ps, concl) =

(invs_of irls concl <=

derrec drls (set ps Un UNION (set ps) (invs_of irls)))"

208 J.E. Dawson et al.

Lemma 9.3 (inv_step_mono) inv_stepm is monotonic in its first argument:

inv_step_mono:

"[| inv_stepm ?drlsa ?irls ?psc ; ?drlsa <= ?drlsb |]

==> inv_stepm ?drlsb ?irls ?psc"

Lemma 9.4 (inv_step_m) For every set drls of rules and every set plvs of
sequents, the function derrec drls plvs returns the set of sequents derivable
from plvs using the rules of drls. Let us call this set of sequents derivs. For
every set drls of rules used for derivations, for every rule set irls, for every rule
psc, if inv_stepm drls irls psc holds then so does inv_step derivs
irls psc for any set of leaf sequents plvs:

inv_step_m:

"inv_stepm ?drls ?irls ?psc

==> inv_step (derrec ?drls ?plvs) ?irls ?psc"

Lemma 9.5 (gen_inv_by_step) For every rule set rls which is used to con-
struct a set derrec rls of derivations from the empty set of leaves, for every rule
set irls, every rule psc from irls is invertible w.r.t. rls if every rule instance
(ps, concl) from rls obeys

inv_step (derrec rls) irls (ps, concl):

gen_inv_by_step:

"[| Ball ?rls (inv_step (derrec ?rls {}) ?irls) ;

?psc : ?irls |]

==> inv_rl ?rls ?psc"

Lemma 9.6 Every instance of the rule Refl, extended with arbitrary contexts, is
invertible in the rule set gs4_rls:

Ball (extrs lkrefl) (inv_rl gs4_rls)

Proof Suppose that �,�ϕ � � is derivable. We can show that the premise �,ϕ,�
ϕ � � is derivable by applying weakening, which has already been shown to be
admissible in gs4_rls. �

Lemma 9.7 Every instance of the rule set lksss (of classical propositional logic)
is invertible in the rule set gs4_rls:

Ball lksss (inv_rl gs4_rls)

Proof By Lemma 9.5, it suffices to prove (inv_step (derrec gs4_rls
{}) lksss) psc for every rule psc from gs4_rls. By Lemma 9.4, it suf-
fices to prove inv_stepm gs4_rls lksss psc for every rule psc from
gs4_rls. Here, lksss == extrs lksne, the rule set lksne extended with
arbitrary contexts. We proceed by cases on each rule psc in gs4_rls:

Machine-Checked Proof-Theory for Propositional Modal Logics 209

psc = Refl. Immediate, the inverse of rule Refl is an instance of weakening.

"?psc : extrs lkrefl

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc is from LK. Where the rule psc is a classical rule, we first prove that the set
of classical rules is invertible w.r.t. itself:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"

Since the rules lksss are a subset of the rules gs4_rls, we can use (the
monotonicity) Lemma 9.3 to obtain:

"?psc : extrs lksne

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc = S4�. When the last rule is S4� (with arbitrary contexts in conclusion only to
makeweakening admissible)weprove a general result. If the rule setrls contains
exactly one rule extcs (ps, c) which is the rule (skeleton) (ps, c) with
only the conclusion extended by an arbitrary context, and rl is any member
(instance) of rls, then inv_stepm rls (extrs (ips, ic)) rl holds
for any rule (ips, ic) extended with arbitrary contexts if the (skeleton of the)
conclusion ic and the (skeleton of the) conclusion c are disjoint:

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ;

?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

In particular, we can put extcs (?ps, ?c) to be the rule S4� and put
(extrs (?ips, ?ic)) to be any rule from lksss since the skeletons of
the conclusions of the lksss rules contain only the principal formula of the
respective rule and none of these is a �-formula. �

Theorem 9.1 (inv_rl_gs4_refl and inv_rl_gs4_lks) The Refl
(lkrefl) rule and all Classical (lksss) rules are invertible within gs4_rls.

Proof The theorem is simply the conjunction of Lemmas 9.6 and 9.7. We explain
some of the cases in English to highlight the new aspects.

Consider invertibility for the R∨ rule. We proceed by an induction on height, and
use the induction principle gen_inv_by_step from Lemma 9.5.

210 J.E. Dawson et al.

Case 1 Axiom If � � ϕ ∨ ψ,� is an axiom, and ϕ ∨ ψ is principal, then � =
�′,ϕ ∨ ψ. The derivation for � � ϕ,ψ,� is then:

id
�′,ϕ � ϕ,ψ,�

id
�′,ψ � ϕ,ψ,�

L∨
�′,ϕ ∨ ψ � ϕ,ψ,�

If ϕ ∨ ψ is parametric in (id), then � � � is (id), and so is � � ϕ,ψ,�.
Case 2 Principal If � � ϕ ∨ ψ,� is not an axiom, but ϕ ∨ ψ is principal, then R∨

must have been the last rule applied. Invertibility follows immediately from the
premises of the R∨ rule.

Case 3 Parametric If � � ϕ ∨ ψ,� is not an axiom, and ϕ ∨ ψ is parametric, then
an application of a new instance of that last rule (perhaps using the induction
hypothesis) obtains the necessary endsequent. This is because all rules allow
arbitrary contexts in their conclusion (and premises when the premises contain
context). To illustrate, consider the two cases when the last rule used to originally
derive � � ϕ ∨ ψ,� is either the Refl or the S4� rule:

• If the last rule was Refl then � = �′,�A and the original derivation is:

�

�′, A,�A � �,ϕ ∨ ψ
Refl

�′,�A � �,ϕ ∨ ψ

Applying the inductive hypothesis on the premises gives a derivation of
�′, A,�A
� �,ϕ,ψ. Applying Refl to this gives the required �′,�A � ϕ,ψ,�.

• If the last rule was S4� then � = �,��′ and � = �A,�′ and the original
derivation looks like:

�

�′,��′ � A
S4�

�,��′ � �A,�′,ϕ ∨ ψ

To derive � � ϕ,ψ,�, simply apply a new instance of S4� to the original
premise, this time with ϕ,ψ as the context instead of ϕ ∨ ψ:

�

�′,��′ � A
S4�

�,��′ � �A,�′,ϕ,ψ �

Theorem 9.2 (gs4_ctr_adm) Contraction is admissible for gs4_rls.

gs4_ctr_adm: "ctr_adm gs4_rls ?A"

Proof The cases for the G3cp and Refl rules are handled in the standard manner
as in the literature (see [25] and [17]) using the invertibility results above. The

Machine-Checked Proof-Theory for Propositional Modal Logics 211

formalisation performs the necessary transformations using a simple instantiation
gen_ctr_adm_step (not shown) of the induction principle gen_step_lem of
Theorem 7.1.

When the rule above the contraction is an instance of the S4� rule, there are two
possible cases. Either one or both copies of the contraction-formula exist within the
context of the S4� rule, or both copies are principal.

In the first case, deleting one copy still leaves an instance of the rule. That is, if
the contraction-formula is A, with A in the succedent, then the original rule instance
is as shown below where either �ϕ = A or A ∈ �:

�,�� � ϕ
S4�

�,�� � �ϕ, A,�

Applying the S4� rule without introducing the shown second copy of A in the
conclusion above gives a proof of �,�� � �ϕ,� as required since an occurrence
of A is still in the succedent as �ϕ = A or A ∈ �. Similarly, if A is in the context
� the new S4� rule instance is then:

�,�� � ϕ
S4�

� − A,�� � �ϕ, A,�

The harder case occurs when both instances of the contraction-formula A are prin-
cipal. Due to the nature of the S4� rule this requires A to occur in the antecedent only,
as there cannot be two principal formulae in the succedent. As only boxed formulae
are principal, A has form �B. The original rule instance is thus represented by:

B, B,�B,�B, �,�� � ϕ
S4�

�,�B,�B,�� � �ϕ,�

The copies of�B and B can be contracted upon, first using the induction hypothe-
sis that the result applies to preceding sequents in the derivation, and then on the rank
of the contraction-formula. The S4� rule can then be applied to give the required
conclusion.

B,�B, �,�� � ϕ
S4�

�,�B,�� � �ϕ,�

In the Isabelle proof, this step is unfortunately rather more tedious. A significant
number of proof steps in the formalisation are dedicated to manipulating the ordering
of formulae to convince the proof assistant that the S4� rule can be applied after
applying the induction hypotheses, and that the resulting sequent is indeed what is
required. �

212 J.E. Dawson et al.

9.4 Cut-Admissibility for S4

We first state a lemma used several times in the proof of cut-admissibility.

Lemma 9.8 Given two (explicit) derivation trees dta and dtb, a cut-formula A,
a sub-formula relation sub, and a rule set rls, if the bottom rules of those trees
satisfy the step condition gen_step2sr for cut-admissibility, then the two trees
satisfy the step condition sumh_step2_tr for cut-admissibility:

gs2_car_sumhs_tr:

"gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

(botRule ?dta, botRule ?dtb)

==> sumh_step2_tr (prop2 casdt ?rls) ?A ?sub (?dta, ?dtb)"

Proof By combining Lemmas 7.3, 8.2 and 8.1. �

Theorem 9.3 (gs4_cas) Cut is admissible in the calculus gs4_rls.

gs4_cas:

"(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) : cas gs4_rls ?A"

Proof Our proof essentially uses a double induction on level and rank, where level
measures the sum of the heights of the derivation trees for the left and right premises
of the cut, and rank measures the complexity of the cut-formula. It uses Lemma 7.4,
in which ?sub is instantiated to the immediate subformula relation.

The two most difficult cases to consider correspond to when the cut-formula is
principal below an application of the S4� rule on the left, and also principal in either
the Refl or the S4� rule on the right. As these are all modal rules, the Cut in question
must be on a boxed formula, �A.

In the former case, the original Cut has form:

�l

�L ,��L � A
S4�

�,��L � �L ,�A

�r

A,�A, �R � �RRefl �A, �R � �RCut on �A
�,��L , �R � �L ,�R

This is transformed as follows:

�l

�L ,��L � A

�l

�L ,��L � A
S4�

�,��L � �L ,�A
�r

A,�A, �R � �R
Cut on �A

A, �,��L , �R � �L ,�R Cut on A
�,�L ,��L ,��L , �R � �L ,�R Contraction-admissibility

�,�L ,��L , �R � �L ,�R
Refl∗

�,��L , �R � �L ,�R

Machine-Checked Proof-Theory for Propositional Modal Logics 213

Here Refl∗ means multiple uses of Refl, once for each member of �L . Importantly,
the new Cut on �A has lower level, and the Cut on A is of smaller rank. Thus both
can be eliminated by the induction hypotheses.

For the latter case, when S4� is principal on both sides, the original Cut has form:

�l

�L ,��L � A
S4�

�L ,��L � �L ,�A

�r

A,�A, �R,��R � B
S4� �A, �R,��R � �B,�RCut on �A

�L , �R,��L ,��R � �B,�L ,�R

The normal process of reducing Cut level would apply Cut on the left cut-sequent
and the premise of the right cut-sequent, as follows:

�l

�L ,��L � A
S4�

�L ,��L � �L ,�A
�r

A,�A, �R,��R � B
Cut on �A

A, �L ,��L , �R,��R � B,�L

Unfortunately, this results in a deduction where we can no longer recover the �B
present in the conclusion of the original Cut. The nature of the calculus and the
S4� rule means that new box formulae cannot be introduced in any succedent which
contains some context� (or where there are additional formula� in the antecedent).
As stated earlier, this case is omitted in the cut-elimination theorem of Troesltra and
Schwichtenberg [25].

To overcome this issue without introducing the complications and new branching
rule in the solution of Goubault [14], we modify the original derivation of the left
premise to produce one of equal height upon which we can still apply the induction
hypothesis on level. The new application of the S4� rule differs from the original
by simply not adding any context in the conclusion. Formally, the � and � of the
generic S4� rule in Fig. 3 are ∅ in the new S4� instance below:

�l

�L ,��L � A

�l

�L ,��L � A
S4� (new) ��L � �A

�r

A,�A, �R,��R � B
Cut on �A

A,��L , �R,��R � B
Cut on A

�L ,��L ,��L , �R,��R � B
Contraction-admissibility

�L ,��L , �R,��R � B
S4�

�L , �R,��L ,��R � �B,�L ,�R

In the formalised proof, this instance is the only case where the inductive principle of
Lemma 7.4 is actually required. As the combined height of the derivations leading to
��L � �A and A,�A, �R,��R � B is lower than the level of the original Cut, the
induction hypothesis on level can be applied. In all the other cases Theorem7.2would
have sufficed. So in fact in all the other cases the propertyweprove isgen_step2sr
… and we use Lemma 9.8 to link it to the required property sumh_step2_tr …
where the ellipses indicate arguments to each function as appropriate. �

214 J.E. Dawson et al.

10 Weakening, Contraction and Cut Admissibility for S4.3

There exists a syntactic pen and paper proof of cut-admissibility for S4.3 in the
literature [22], however the calculus involved contains Weakening and Contraction
as explicit rules, and mix-elimination is proved rather than cut. There also exist
published semantic proofs of closure under Cut for both sequent and hypersequent
calculi for S4.3 [12, 15]. To our knowledge, there are no published papers for S4.3
providing a sequent calculus devoid of structural rules and proving cut-elimination
per se.

Labelled calculi [3, 18] are perhaps the closest representatives in the literature.
As noted previously, while these calculi do not use Weakening or Contraction, they
explicitly include the semantics of the logic in the calculi, along with corresponding
operations on world accessibility rather than logical operators, thus they are not
purely syntactic.

10.1 Calculus for S4.3

The rules of the sequent calculus for S4.3 are listed in Fig. 5. The calculus is based on
the version of Goré [12], but withWeakening absorbed into the modal rules. Note, in
the S4.3� rule of Fig. 5, that �� = {ϕ1, . . . ,ϕn} and ��−i = {ϕ1, . . . ,ϕi−1,ϕi+1, . . . ,

ϕn} for 1 ≤ i ≤ n.
For backward proof search, the S4.3� rule can be thought of as producing a new

premise for all boxed formula in its conclusion, each of these formula being un-
boxed separately in its own premise. Thus the general statement of the rule contains
an indeterminate number of premises, one is necessary for each ϕi ∈ ��. For the
sake of simplicity and clarity, at times only one of these premises will be shown as a
representative for all n premises. That is, the rule will be represented in the following
form shown below at left:

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

�,�� � ϕi ,� ��−i
S4.3� ∀ψ.�ψ /∈ � ∪ �

�,�� � � ��,�

There are two different versions of the S4.3� rule: either the context (� ∪ �) can
contain any formulae, as shown above left, or they cannot include top-level boxed-
formulae, as shown above right. In the latter case, the�� and� �� in the conclusion of
the S4.3� rulemust correspond to exactly all the top-level boxed formulaewithin that
sequent. The two versions of the calculus are in fact equivalent, following a proof of
the admissibility of Weakening for the latter, however, for efficient backward proof
search, the version above right is preferred as it is invertible and hence does not
require backtracking during proof search.

Machine-Checked Proof-Theory for Propositional Modal Logics 215

Fig. 5 Sequent calculus for S4.3 where † is ∀ψ.�ψ /∈ � ∪ �

Henceforth, � and � within the S4.3� rule will be restricted from containing the
� operator at the top-level. In Isabelle, this is implemented by creating a new type
of formula, based on the default formula type. HOL’s typedef allows a concise
method of declaring new types as a subset of an existing type, where ∼= stands for
inequality:

typedef nboxfml =

"{f::formula. ALL (a::formula). f ˜= FC ’’Box’’ [a]}"

The Isabelle formalisation of the overall calculus is based on the calculus for S4
given in Fig. 3. The only change is in the S4.3� rule, which requires the mapping
function nboxseq to create a new premise for each individual boxed formula in the
succedent. The code for this is given in Fig. 6.

216 J.E. Dawson et al.

(* Functions to unbox one formula for each premise *)
consts

ithprem :: "formula multiset => formula list => formula
=> formula sequent"

nprems :: "formula multiset => formula list
=> formula sequent list"

(* The boxes in the succedent are treated as a list As.
"ms_of_list (remove1 Ai As)" is the multiset consisting of
all elements in "As", with one copy of "Ai" removed. *)

defs
ithprem_def :

"ithprem Gamma As Ai ==
mset_map Box Gamma + Gamma |-
{#Ai#} + mset_map Box (ms_of_list (remove1 Ai As))"

nprems_def :
"nprems Gamma As == map (ithprem Gamma As) As"

consts (* type definitions for functions *)
gs43_rls :: "formula sequent psc set"

s43box :: "formula sequent psc set"

(* The S4.3 box rule *)
inductive "s43box"
intrs

I "(nprems gamma As, mset_map Box gamma |-
mset_map Box (ms_of_list As)) : s43box"

(* The S4.3 calculus as an extension of the LK calculus *)
inductive "gs43_rls"
intrs

lksI "psc : lksss ==> psc : gs43_rls"
reflI "psc : lkrefl ==>

pscmap (extend flr) psc : gs43_rls"
(* boxI allows extra formulae in conclusion only,

and enforces the ‘dagger’ condition of Figure 5 *)
boxI : "(p, c) : lkbox ==>

(p, extend (nboxseq flr) c) : gs43_rls"

Fig. 6 S4.3 calculus as encoded in Isabelle

10.2 Weakening for S4.3

As the S4.3� rule does not allow arbitrary contexts, weakening-admissibility must
be proved by induction, in this case on both height and rank (of the implicit derivation
tree, i.e., using Lemma 7.1). To simplify the case for the S4.3� rule and its multiple

Machine-Checked Proof-Theory for Propositional Modal Logics 217

premises, we prove weakening-admissibility for the antecedent and succedent sep-
arately, and only considering a single formula at a time. The Isabelle encodings for
these properties are given below. The induction itself proceeds on the height of the
derivation, with a sub-induction on the rank of the formula A being inserted into the
conclusion.

Definition 10.1

wk_adm_single_antec rls means:
For any rls-derivable sequent S, and any single formulae A,
if S ∈ derrec rls {} then S+({#A#} |- {#}) ∈ derrec rls {}.

wk_adm_single_succ rls means:
For any rls-derivable sequent S, and any single formulae A,
if S ∈ derrec rls {} then S+({#} |- {#A#}) ∈ derrec rls {}.

Lemma 10.1 (wk_adm_sides) For a set of rules rls, if wk_adm_single_
antec and wk_adm_single_succ both hold then so does wk_adm.

Proof By multiset induction, repeatedly applying the results for single formulae.�

Theorem 10.1 (gs43_wk_adm)Weakening is admissible for the calculus consist-
ing of the set of rule gs43_rls.

Proof In the case of the S4.3� rule, if A is not boxed, then it is allowed to be contained
in the context of the rule’s conclusion. The derivability of the original premises,
followed by an application of a new S4.3� rule including A as part of its context,
then gives the required sequent. The difficulty arises when A is a boxed formula, say
A = �B. For the sake of clarity, the representation of the original sequent can be
split into its boxed and non-boxed components, so the original derivation is:

�

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

When A is to be added to the antecedent, the induction on height can be used to
add A = �B to each of the original premises. Following this by an application of
the sub-induction on formula rank, allows the addition of B, giving the derivability
of B,�B, �,�� � ϕi ,� ��−i . An application of the S4.3� rule then completes the
case:

B,�B, �,�� � ϕi ,� ��−i
S4.3�

�B, �,�� � � ��,�

The final case to consider is that of adding A = �B to the succedent. The goal
once again is to use the S4.3� rule to give the desired conclusion. From the original
premises�,�� � ϕi ,� ��−i , the inductionhypothesis onheight (inserting�B) gives

218 J.E. Dawson et al.

the derivability of�,�� � ϕi ,� ��−i ,�B. A different application of the S4.3� rule,
bringing in empty contexts, on the original premises also gives the derivability of
�� � � ��. Applying the induction on formula rank then shows that �� � B,� ��
is derivable.

At this point, the derivability of all necessary premises for a new S4.3� rule
instance has been proven. These are sequents of the form �,�� � ϕ′

i ,� ��′
−i where��′ = ��, B and ϕ′ is from the multiset �� ∪ {B} as appropriate. The final rule appli-

cation is then:

�,�� � ϕ′
i ,� ��′

−i
S4.3�

�,�� � � ��,�B,� �

10.3 Invertibility and Contraction for S4.3

As for S4, we prove inversion lemmata for the G3cp and Refl rules within the overall
calculus.

Theorem 10.2 (inv_rl_gs43_refl and inv_rl_gs43_lks) Refl
(lkrefl) and all Classical rules (lksss) are invertible within the calculus
gs43_rls.

Proof Since the inverse of the Refl rule is an instance of weakening, which we have
shown is admissible, the only notable case occurs for the G3cp rules, where the last
rule applied in the original derivation is S4.3�. The proof uses the induction principle
of Lemma 9.5.

If the original derivation is as shown below left then proving invertibility for
G3cp requires showing the derivability of all premises after applying a G3cp rule
backwards from the endsequent of the S4.3� rule. The classical rules do not operate
on boxed formulae, so this rule can only modify � or � upwards into �′ and �′
respectively as shown below right:

�

�,�� � ϕi ,� ��−i
S4.3�

�,�� � � ��,�

�′,�� � � ��,�′
G3cp rule

�,�� � � ��,�

Clarifying again, invertibility of the G3cp rule requires deriving �′,�� �
� ��,�′. The usual tactic would apply another instance of the S4.3� rule to the
original premises, but bringing in a different context. However, this does not admit
a proof if there are boxed formula in �′ or �′. For example, if the G3cp rule is L∧
and the principal formula is A ∧ �B then �′ contains a boxed formula, �B, which
cannot be introduced within the (box-free) context of a new S4.3� rule application.

Machine-Checked Proof-Theory for Propositional Modal Logics 219

To accommodate this case, the premises of the modal rule are used to derive the
conclusion without any context. Then weakening-admissibility is used to bring the
remaining formulae in the premise of the G3cp rule:

�

�,�� � ϕi ,� ��−i
S4.3�

�� � � ��Weakening-admissibility
�′,�� � � ��,�′ �

For S4, proving invertibility is sufficient to lead to a contraction admissibility
proof. However, using invertibility alone does not allow an obvious transformation
when dealing with the S4.3� rule. In order to prove contraction-admissibility, we
first require the following lemma:

Lemma 10.2 (gs43_refl) The rule R-refl is admissible in gs43_rls.

� � �,�A
R-refl

� � �, A

The corresponding statement of the lemma in Isabelle (not shown) states that if a
sequent seq is derivable in gs43_rls and the sequent is equivalent to X � Y,�A
for any X and Y , then X � Y, A is also derivable.

Proof By an induction on the structure of the (implicit) derivation tree, using the
derrec-induction principle, Lemma 4.1. The analysis is on the last rule applied in
deriving � � �,�A.

Case 1 The last rule applied was id. If �A is parametric then � � � is an axiom,
and the conclusion will be also. If �A is principal, then � = {�A} ∪ �′ and the
following transformation is applied:

id
A,�A, �′ � �, A

Refl �A, �′ � �, A

Case 2 The last rule applied was from G3cp. No rules in G3cp operate on a boxed
formula, so �A must be parametric. The induction hypothesis on height is thus
applicable to the premise of the G3cp rule. Applying the original G3cp on the
resulting sequent gives the desired conclusion.

Case 3 The last rule applied was Refl. As in Case 2,�Amust be parametric, as Refl
only operates on boxed formula in the antecedent.

Case 4 The last rule applied was S4.3�. Then one premise of the original deduction
un-boxes �A. Using Refl for each member of �′ (denoted by Refl∗) followed by
weakening admissibility on this premise is enough to produce the conclusion. For

220 J.E. Dawson et al.

clarity, here we express � = � ∪ ��′ and � = � �� ∪ �′. The original deriva-
tion is:

�1

�′,��′ � � ��, A

�2

�′,��′ � ϕi ,� ��−i ,�A

�,��′ � � ��,�′,�A

This is transformed into:

�1

�′,��′ � � ��, A
Refl∗

��′ � � ��, A
Weakening-admissibility

�,��′ � � ��,�′, A �

Theorem 10.3 (gs43_ctr_adm) Contraction is admissible in gs43_rls.

Proof We use the induction principle Lemma 7.1, for implicit derivation trees. If the
last rule used in the derivationwas the S4.3� rule, there are two cases to consider. The
case where the contraction-formula is parametric is handled by simply re-applying
another instance of the S4.3� rule as in the S4 case. Similarly, when the contraction-
formula is principal in the antecedent, then the proof proceeds as for S4. Specifically,
one copy of �A from �,�A,�A,�� � � ��,� must be removed. The original
derivation is:

�

A, A,�A,�A, �,�� � ϕi ,� ��−i
S4.3�

�,�A,�A,�� � � ��,�

By contracting twice using first the induction hypothesis on height, then the induc-
tion hypothesis on rank, on all premises followed by an application of the S4.3� rule,
the desired endsequent is obtained:

�

A, A,�A,�A, �,�� � ϕi ,� ��−iIH on height
A, A,�A, �,�� � ϕi ,� ��−i

IH on rank
A,�A, �,�� � ϕi ,� ��−i

S4.3�
�,�A,�� � � ��,�

When the contraction-formula is principal in the succedent, there are two possible
premises to consider. Either a premise “un-boxes” one of the contraction-formulae,1

or it leaves both boxed. The original deduction is:

1Technically, there are two syntactically identical premises which individually un-box one of the
two copies of �A.

Machine-Checked Proof-Theory for Propositional Modal Logics 221

�1

�,�� � � ��, A,�A

�2

�,�� � ϕi ,� ��−i ,�A,�A

�,�� � � ��,�A,�A,�

In the latter case, the induction hypothesis can be directly applied, removing one
copy of the boxed formulae:

�2

�,�� � ϕi ,� ��−i ,�A,�A
IH on height

�,�� � ϕi ,� ��−i ,�A

In the former case, we use Lemma 10.2 to produce the following:

�1

�,�� � � ��, A,�A
R-refl

�,�� � � ��, A, A
IH on rank

�,�� � � ��, A

�2

�,�� � ϕi ,� ��−i ,�A,�A
IH on height

�,�� � ϕi ,� ��−i ,�A
S4.3�

�,�� � � ��,�A,�

�

10.4 Cut-Admissibility for S4.3

Theorem 10.4 (gs43_cas) Cut is admissible in the calculus gs43_rls.

Proof As with Theorem 9.3, we use the induction principle of Lemma 7.4, involving
induction on the sums of heights of two explicit trees, although for the majority of
cases the simpler principle Theorem 7.2 would suffice. So again, in those cases, we
prove gen_step2sr . . . and we use Lemma 9.8 to link it to the required property
sumh_step2_tr . . ., where the ellipses indicate arguments to each function as
appropriate.

When S4.3� leads to the left cut-sequent, and the Refl rule is used on the right,
the transformation mimics the corresponding case for S4. However, for the case
where S4.3� is principal on both sides we require a new transformation. For clarity,
the premises above the S4.3� rule on the left are given as two cases, depending on
whether the cut-formula is un-boxed or not. The boxed formula in the succedents
of the premises are also distinguished by the superscripts L and R for left and
right cut premises respectively. Explicitly, these are ��L = {ϕL

1 , . . . ,ϕL
i , . . . ,ϕL

n }
and ��R = {ψR

1 , . . . ,ψR
k , . . . ,ψR

m}. The original cut thus has the form:

222 J.E. Dawson et al.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

�b
L

�L ,��L � A,� ��L

S4.3�
�L ,��L � � ��L ,�L ,�A

...

...

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
S4.3�

�A, �R,��R � � ��R,�RCut on �A
�L , �R,��L ,��R � � ��L ,� ��R,�L ,�R

To remove this cut, the derivation is transformed into one where the principal
rule (S4.3�) is applied last to produce the desired endsequent. The problem is then
proving that the premises of the following S4.3� rule application are derivable. This
in itself requires two different transformations of the original derivation, depending
on the two forms that the premises can take; either the un-boxed formula in the
succedent originated from the left cut premise, that is from � ��L , or from the right,
within � ��R . These cases are named PL and PR respectively. The final S4.3� rule
used in our new transformation is then:

PL

�L ,��L , �R,��R � ϕL
i ,� ��L

−i ,� ��R

...

PR

�L ,��L , �R,��R � � ��L ,ψR
k ,� ��R

−k
S4.3�

�L , �R,��L ,��R � � ��L ,� ��R,�L ,�R

For both transformations, the same idea behind the principal S4� rule case is used.
We first derive the original cut-sequents but without their original contexts. These
new sequents will be calledDL andDR respectively, that is,DL = ��L � � ��L ,�A
andDR = �A,��R � � ��R . These are derived using the derivations in the original
cut, but applying new instances of the S4.3� rule. Importantly, the derivations of the
new sequents DL and DR have the same height as the original cut-sequents. This is
the case where the induction principle of Lemma 7.4 is required.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

�b
L

�L ,��L � A,� ��L

S4.3� DL = ��L � � ��L ,�A

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
S4.3� DR = �A,��R � � ��R

Having introduced all the necessary notation and pre-requisites, the first actual
case to consider is deriving PL . The induction on level allows DR to be cut, on cut-
formula �A, with all of the sequents given by the derivation �a

L above the original
left S4.3� rule. The transformation performs n cuts, for all premises corresponding

Machine-Checked Proof-Theory for Propositional Modal Logics 223

to the formulae in ��L . The results of this cut then match exactly with PL after using
the admissibility of Weakening to introduce the formulae of �R in the antecedent.

�a
L

�L ,��L � ϕL
i ,� ��L

−i ,�A

DR

�A,��R � � ��R

Cut on �A
�L ,��L ,��R � ϕL

i ,� ��L
−i ,� ��R

Weakening-admissibility
PL = �L ,��L , �R,��R � ϕL

i ,� ��L
−i ,� ��R

To derive the sequents in PR , the induction hypothesis on level is used to cut DL

with all of the premises above the right S4.3� in the original cut, with cut-formula
�A. The induction on formula rank on A is then used to cut the sequent resulting
from �b

L with all these new sequents. Finally, contraction-admissibility allows the
removal of the extra copies of �� and � ��L , and concludes the case.

�b
L

�L ,��L � A,� ��L

...

...

...

DL

��L � � ��L ,�A

�R

A,�A, �R,��R � ψR
k ,� ��R

−k
Cut on �A

��L , A, �R,��R � � ��L ,ψR
k ,� ��R

−k
Cut on A

�L ,��L ,��L , �R,��R � � ��L ,� ��L ,ψR
k ,� ��R

−k Contraction-
admissibilityPR = �L ,��L , �R,��R � � ��L ,ψR

k ,� ��R
−k

To conclude, the transformations above derivePL andPR while reducing cut-level
or cut-rank. These are the premises of an instance of the S4.3� rule which results in
the conclusion of the original cut. This completes the cut-admissibility proof. �

11 Weakening, Contraction and Cut Admissibility for GTD

We now describe Isabelle proofs of cut admissibility for a sequent calculus for the
logic GTD described in [16]. Axiomatically, GTD is K with the additional axiom
�A ⇔ ��A. The sequent inference rules involving �, allowing arbitrary context
in the conclusion so as to make weakening admissible, are shown below:

��,� � A

�,�� � �A,�
(� �)

��,� � �A

�,�� � �A,�
(� �)

224 J.E. Dawson et al.

The skeletons of the above two rules are encoded asGTD shownbelowby factoring
out the form of A as either B or as �B:

inductive "GTD"

intrs

I "A = B | A = Box B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : GTD"

11.1 Calculus for GTD

We now look at proving cut admissibility for a version of GTD without structural
rules, where the box rules have their conclusions (only) extended with an arbitrary
context, which permits weakening to be admissible.

We define the rules of the sequent calculus as follows. The rules used for classical
logic (before extending them with a context) form the set lksnewhere the rule sets
idrls,lksil and lksir are the axioms and the left and right logical introduction
rules: see Fig. 3.

Definition 11.1 (lkssx) Given, a rule set xrls, every rule of xrls is in the rule
set lkssx xrls, and every rule psc in rule set lknse gives a rule in lkssx
xrls obtained by uniformly extending both the premise and conclusion of psc
with an arbitrary context (sequent) flr:

inductive "lkssx xrls"

intrs

x "psc : xrls ==> psc : lkssx xrls"

extI "psc : lksne ==> pscmap (extend flr) psc : lkssx xrls"

Definition 11.2 (extcs) Given a rule set rules, the rule set extcs rules is
obtained by extending only the conclusion c of each rule (ps, c) in rules by
an arbitrary context (sequent) flr (while leaving the premises unchanged):

inductive "extcs rules"

intrs

I "(ps, c) : rules ==> (ps, extend flr c) : extcs rules"

The rule set lkssx (extcs GTD) for GTD is obtained by extending only the
conclusion of the rule GTD and by extending every rule of lknse.

Machine-Checked Proof-Theory for Propositional Modal Logics 225

11.2 Weakening-Admissibility for GTD

First we prove weakening admissibility, using a lemma which allows us to apply
Lemma 9.1.

Lemma 11.1 For any rule sets rls and rlsa

(a) extrs rlsa ∪ extcs rls satisfies ext_concl
(b) extrs rlsa ∪ extcs rls satisfies weakening admissibility

extrs_cs_ext_concl: "ext_concl (extrs ?rlsa Un extcs ?rls)"

wk_adm_extrs_cs: "wk_adm (extrs ?rlsa Un extcs ?rls)"

Proof The first is easy. The second follows using Lemma 9.1. �

Corollary 11.1 GTD satisfies weakening admissibility.

wk_adm_lkssx_cs: "wk_adm (lkssx (extcs ?xrls))"

Proof Since the rule set lkssx (extcs GTD) for GTD is also equal to extrs
lksne ∪ extcs GTD, the result follows from Lemma 11.1. �

11.3 Inversion and Contraction-Admissibility for GTD

For contraction admissibility, first we need to prove invertibility of the classical
logical rules. The general method for doing so was described in Sect. 9.3.

Recall the predicate inv_stepm, which is used in an inductive proof of invert-
ibility. Its three arguments are:

drls first, the set of derivation rules with respect to which the invertibility (a case
of admissibility) is defined,

irls second, the set of rules whose invertibility is being considered (the inversion
rules)

(ps, c) third, the final rule of a derivation—since we are talking about proving
the invertibility result by induction on the derivation, the inductive hypothesis is
that the invertibility result applies to the premises ps of this final rule.

By Lemma 9.3, inv_stepm (although not inv_step) is monotonic in the
derivation rules argument. For its second argument the following holds.

Lemma 11.2 For a given set drls of derivation rules and a given final rule psc,
if inv_stepm applies for inversion rule sets irlsa and irlsb, then it applies
for irlsa ∪ irlsb.

226 J.E. Dawson et al.

inv_stepm_Un:

"[| inv_stepm ?drls ?irlsa ?psc ;

inv_stepm ?drls ?irlsb ?psc |]

==> inv_stepm ?drls (?irlsa Un ?irlsb) ?psc"

So far as the third argument is concerned, the requirement to prove a rule is
invertible is simply that inv_stepm . . . applies for all cases of the third argument
(see Lemmas 9.4 and 9.5): thus the lemmata we use are expressed to apply to single
cases of the third argument.

We nowdescribe the lemmata used as building-blocks for the required invertibility
result.

Lemma 11.3 (a) inv_stepm … applies where the derivation rules and the set of
rules to be inverted are the classical logical rules extrs lksne, and the final
rule is any one of those rules

lks_inv_stepm:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"

(b) where the set of inversion rules is the set of extensions of a single skeleton whose
conclusion isic, and the set of derivation rules is the set of extensions of a single
skeleton rule whose conclusion is c, and these skeleton conclusions ic and c
are disjoint (i.e., have no formula in common on the same side of the turnstile),
and the final rule is one of those derivation rules, then inv_stepm…applies

inv_stepm_disj:

"[| seq_meet ?c ?ic = 0 ;

extrs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

(c) as for (b), except that the set of derivation rules is the set of extensions in the
conclusion only (using extcs) of the single skeleton

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

(d) where the set of inversion rules and the set of derivation rules are each the set of
extensions of a single skeleton rule whose conclusion has a single formula, and
if those two skeletons’ conclusions are equal then the two skeletons are equal,
then inv_stepm…applies

Machine-Checked Proof-Theory for Propositional Modal Logics 227

inv_stepm_scrls:

"[| extrs {?srl} = ?rls ; ?rl : ?rls ;

?srl : scrls ; ?irl : scrls ;

snd ?srl = snd ?irl --> ?srl = ?irl |]

==> inv_stepm ?rls (extrs {?irl}) ?rl"

Parts (b) and (c) (inv_stepm_disj and inv_stepm_disj_cs) are for the
case where the principal formula of the rule to be inverted is in the context of the
conclusion of the last rule of the derivation: the first premise gives us that the formula
to be inverted is not the principal formula of the rule, though it is expressed in a way
which is relevant to a case where the rules in question have more than just one
principal formula.

Part (d) (inv_stepm_scrls), whose proof uses part (b), uses the fact that for
each formula involved there are unique introduction rules for the left and right sides
of �, so an inversion step is either parametric or gives us the premise(s) of the last
rule applied.

Lemma 11.4 Every rule of lksss is invertible in the calculus for GTD.

gtdns_inv_rl: "Ball (extrs lksne) (inv_rl (lkssx (extcs GTD)))"

Proof This uses Lemmas 9.4, 9.5 and 11.3. �

Then, to prove contraction admissibility, we follow an approach very similar to
Sect. 9.3. For the rules (� �) and (� �), the proof for the cases where either of these
is the final rule is just the same as for the S4� rule in Sect. 9.3.

Lemma 11.5 Contraction is admissible in GTD.

gtdns_ctr_adm: "ctr_adm (lkssx (extcs GTD)) ?A"

11.4 Cut-Admissibility for GTD

Now, for cut admissibility, the difficult cases are where the last rule on both sides is
one of the two box rules (� �) and (� �):

��,� � B

�,�� � �B,�
(� �)

��,� � �B

�,�� � �B,�
(� �)

Since the proof is effectively the same whichever of these two rules is on the right,
we define a unary function s4g . such that

228 J.E. Dawson et al.

• s4g (λB. {B,�B}) is all instances of either (� �) or (� �),
• s4g (λB. {B}) is all instances of (� �), and
• s4g (λB. {�B}) is all instances of (� �)

where the function prs B encapsulates the choices of B and/or �B, as required
and where s4g prs below encodes only the skeletons of the rules above: see the
definition of GTD at the start of Sect. 11. Formally,

Definition 11.3 (s4g) s4g prs is the set of instances of the following rule where
A ∈ prsB:

��,� � A

�� � �B

inductive "s4g prs"

intrs I "A : prs B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : s4g prs"

The case of the (� �) rule on the left is dealt with in Sect. 9.4: depending on
whether we have the rule (� �) or (� �) on the right, we may need to change B to
�B in the diagrams there.

For the case where we have the (� �) rule on the left, the original derivation is
as in the following diagram, where B ′ is B or �B.

�l

�L ,��L � �A� �
�L ,��L � �L ,�A

�r

A,�A, �R,��R � B ′
� � or � � �A, �R,��R � �B,�RCut on �A

�L , �R,��L ,��R � �B,�L ,�R

As in Sect. 9.4, we modify the original derivation of a premise, in this case the
right premise, by simply not adding any context in the conclusion. This produces a
derivation of equal height upon which we can still apply the induction hypothesis on
level. Formally, the � and � of the generic box rule (� �) or (� �) are ∅ in the new
instance below:

�l

�L ,��L � �A

�r

A,�A, �R,��R � B ′
� � or � � (new)�A,��R � �B

Cut on �A
�L ,��L ,��R � �B

Weakening-admissibility
�L ,��L , �R,��R � �B � �

�L , �R,��L ,��R � �B,�L ,�R

For the cut-elimination proof we also use results for the parametric cases, that
is, where the cut-formula appears in the context of the last rule on either side above
the cut. This includes cases where that rule is in extrs … (where the rule has a

Machine-Checked Proof-Theory for Propositional Modal Logics 229

context which appears in premises and conclusion) and where that rule is in extcs
… (where the rule has a context which appears only in the conclusion).

The following lemma is used for the common situation of a cutwhich is parametric
with respect to the last rule of the left-hand derivation.

Lemma 11.6 (lcg_gen_step) Consider a set erls of derivation rules, for
which weakening is admissible, and which contains all extensions of a skeleton
rule ρ with premises ps and conclusion U � V . Consider two derivations of which
the final rule of the left side is an extension of ρ. Then for a cut-formula A which is
not contained in V , and any subformula relation sub, the inductive step condition
gen_step2_sr … holds for the admissibility of a cut on A.

lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

˜ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==>

gen_step2sr (prop2 car ?erls) ?A ?sub ?erls (?pscl, ?pscr)"

Asimilar lemmalcg_gen_steps_extcsholds for the casewhere only exten-
sions in the conclusion of ρ are contained in erls.

lcg_gen_steps_extcs:

"[| wk_adm ?rls ;

extcs {(?ps, ?c)} <= ?rls ; ˜ ?A :# succ ?c |]

==> gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

((?ps, extend ?flr ?c), ?psr, ?cr)"

Finally we need to deal with the cases of matching instances of the usual logical
introduction rules. Here we use a general result giving requirements for certain cases
of the final rules on either side of a putative cut to satisfy the step condition for
cut-admissibility.

It uses a propertyc8_ercas_prop, which encodes the property that a cut which
is principal (i.e., the cut formula is introduced by a logical introduction rule in the
final step) on both sides is reducible to cuts on sub-formulae. It is loosely defined as
follows:

Definition 11.4 (c8_ercas_prop) Given a set of derivation rules prls, a cut-
formula A, a subformula relation psubfml, and a set of skeleton rules (typically
logical introduction rules) rls,
c8_ercas_prop psubfml prls A rls means:
assuming that we have cut-admissibility for cut-formulae which are smaller than
A according to psubfml, where two derivations have as their final sequents Xl �
A,Yl and Xr , A � Yr , and on both sides the final rule introduces A using logical
introduction rules in rls, then Xl , Xr � Yl ,Yr is derivable, that is, the cut on A is
admissible.

230 J.E. Dawson et al.

Of course,whether c8_ercas_prop holds depends on the specific set of logical
rules. Beyond that, however, the following lemma is quite general.

Lemma 11.7 Given a set of derivation rules drls, a cut-formula A, and a subfor-
mula relation psubfml, if

• drls satisfy weakening admissibility
• there is a set rls of skeleton rules all of whose extensions are contained in drls
• all rules in rls, other than axiom rules B � B, have a single formula in their
conclusion

• the axiom rules are also in drls
• drls and rls satisfy c8_ercas_prop
• the final rules of two derivations are extensions of rules in rls

then the step condition gen_step2sr for cut-admissibility for the two derivations
is satisfied.

gs2sr_alle:

"[| wk_adm ?drls ;

c8_ercas_prop ?psubfml ?drls ?A ?rls ;

?rls <= iscrls ;

idrls <= ?drls ;

extrs ?rls <= ?drls ;

(?psa, ?ca) : extrs ?rls ;

(?psb, ?cb) : extrs ?rls |]

==> gen_step2sr (prop2 car ?drls) ?A ?psubfml ?drls

((?psa, ?ca), ?psb, ?cb)"

We apply this result to the logic GTD using first another general result.

Lemma 11.8 (gen_lksne_c8) If a set of derivation rules drls satisfies weak-
ening admissibility and contraction admissibility, and contains the extensions of the
logical introduction rule skeletons lksne then the condition c8_ercas_prop
is satisfied (for the usual immediate proper subformula relation and for any cut-
formula).

gen_lksne_c8:

"[| ALL A’. ctr_adm ?drls A’ ;

wk_adm ?drls ; extrs lksne <= ?drls |]

==> c8_ercas_prop ipsubfml ?drls ?A lksne"

Machine-Checked Proof-Theory for Propositional Modal Logics 231

Corollary 11.2 [gtdns_lksne_c8] GTD satisfies c8_ercas_prop in rela-
tion to the logical introduction rule skeletons lksne.

gtdns_lksne_c8:

"c8_ercas_prop ipsubfml (lkssx (extcs GTD)) ?A lksne"

Finally we get the cut admissibility result. Here, mins A M means multiset M
with one additional copy of A inserted.

Theorem 11.1 (gtdns_casdt, gtdns_cas) GTD satisfies cut-admissibility.

gtdns_casdt: "(?dt, ?dta) : casdt (lkssx (extcs GTD)) ?A"

gtdns_cas: "(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) :

cas (lkssx (extcs GTD)) ?A"

12 Weakening, Contraction and Cut Admissibility
for Dynamic Topological Logic S4C

We now describe Isabelle proofs of the cut admissibility of the logic S4C described
byMints [16]. This system has two “modal” operators,� and ◦. The S4-axioms hold
for �, ◦ commutes with the boolean operators, and the following are given:

◦(A → B) ↔ (◦A → ◦B)

◦⊥ ↔ ⊥
◦�A → � ◦ A

The following sequent rules are given for S4C by Mints [16]

◦k A, � � �, ◦k B
� � �, ◦k(A → B)

(�→)
� � �, ◦k A ◦k B, � � �

◦k(A → B), � � �
(→�)

◦k A, � � �

◦k�A, � � �
(� �)

� � �

◦� � ◦�
(◦)

B � A

B � �A
(� �)

In the (� �) rule, B must consist of “�-formulae”, that is, formulae of the form
◦k�A.

As Mints omits the other logical operators, we include, for them, the usual logical
introduction rules with the principal and side formulae preceded by ◦k just as with
the (�→) and (→�) rules shown above.

232 J.E. Dawson et al.

Our version of the calculus contains no explicit structural rules, so we prove
invertibility of the logical rules and contraction admissibility. The presence of the
(◦) rule makes the proof more complicated and is handled similarly to our handling
of contraction in proving cut admissibility for GTD.

As we have no structural rules, we use a presentation of the system which

• allows an arbitrary context to be added to the conclusion (only) of the (� �) and
(◦) rules

• uses a version of the (� �) rulewhich includes the principal formula in the premise

� � �

�, ◦� � ◦�,�
(◦)

B � A

�,B � �A,�
(� �)

◦k�A, ◦k A, � � �

◦k�A, � � �
(� �)

12.1 Calculus for S4C

We now describe how we encoded the sequent calculus. First we define the rules
which can be extended by an arbitrary context in their premises and conclusion.
Without the context, these rules form the set s4cnsne.

Applying nkmap k to a rule applies ◦k to each formula appearing in that rule, and
funpow f x means applying f to x , n times, i.e., f n(x).

inductive "s4cnsne"

intrs

id "psc : idrls ==> psc : s4cnsne"

circ_il "rl : lksil ==> nkmap k rl : s4cnsne"

circ_ir "rl : lksir ==> nkmap k rl : s4cnsne"

circ_T "rl : lkrefl ==> nkmap k rl : s4cnsne"

inductive "lkrefl"

intrs

I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

defs

nkmap_def : "nkmap k == pscmap (seqmap (funpow Circ k))"

inductive "s4cns"

intrs

extI "rl : s4cnsne ==> pscmap (extend (U |- V)) rl : s4cns"

extcsI "(ps, c) : circ Un s4cbox ==>

(ps, extend (U |- V) c) : s4cns"

Machine-Checked Proof-Theory for Propositional Modal Logics 233

inductive "circ"

intrs

I "([seq], seqmap Circ seq) : circ"

inductive "s4cbox"

intrs

boxI "M : msboxfmls ==> ([M |- {#A#}],

M |- {#Box A#}) : s4cbox"

inductive "msboxfmls"

intrs

I "ALL f. f :# M --> f : boxfmls ==> M : msboxfmls"

inductive "boxfmls"

intrs

I "funpow Circ k (Box B) : boxfmls"

We first prove the admissibility of weakening and contraction.

12.2 Weakening for S4C

Weakening admissibility was straightforward using Lemma 9.1.

12.3 Inversion and Contraction-Admissibility for S4C

Invertibility of the logical introduction rules was dealt with using multiple lemmata
showing various cases of inv_stepm, as described in Sect. 9.3: as noted there, a
proof of invertibility can be split up into

• the invertibility of various different rules
• cases of what the last rule in the derivation, from whose conclusion we wish to
apply one of the inverted rules

As in Sect. 9.3, we make significant use of Lemma 9.3.
We then prove contraction admissibility. This uses predicates and resultswhich are

essentially Definition 7.2 and Lemma 7.1, but instantiated to apply to the property
of contraction admissibility, giving the property ctr_adm_step and a lemma
gen_ctr_adm_step.

We now look at proving ctr_adm_step for each possible case for the last rule
of a derivation.

234 J.E. Dawson et al.

Lemma 12.1 If

• rule set lrls consists of rules which are the identity (axiom) rules A � A, or are
rules with a single formula in their conclusion,

• all rules in lrls have the “subformula” property (which here means that for every
premise other than a premise which contains the conclusion, every formula in that
premise is a subformula of a formula in the conclusion

• the rule set drls (derivation rules) contains the extensions of lrls
• in regard to the derivation rules drls, the inverses of extensions of lrls are admis-
sible

• rule (ps, c) is an extension of a rule of lrls

then the contraction admissibility step ctr_adm_step holds for the final rule
(ps, c) and the derivation rule set drls.

So the conclusion of this lemma means: assuming that

• contraction on formulae A′ smaller than A is admissible, and
• contraction on A is admissible in the sequents ps

then contraction on A in sequent c is admissible.

gen_ctr_adm_step_inv:

"[| ?epsc : extrs ?lrls ;

?lrls <= iscrls ;

extrs ?lrls <= ?drls ;

Ball ?lrls (subfml_cp_prop ?sub) ;

Ball (extrs ?lrls) (inv_rl ?drls) |]

==> ctr_adm_step ?sub (derrec ?drls {}) ?epsc ?A"

subfml_cp_prop.simps:

"subfml_cp_prop sub (ps, c) =

(ALL p:set ps. c <= p

| (ALL fp. ms_mem fp p -->

(EX fc. ms_mem fc c & (fp, fc) : ub)))"

Then the other cases of ctr_adm_step were proved separately:

Lemma 12.2 In S4C, for derivations with final rules (� �) and (◦) (extended in
their conclusions), the inductive contraction admissibility step ctr_adm_step
holds.

ctr_adm_step_s4cbox_r:

"[| (?ps, ?c) : extcs s4cbox ; extcs s4cbox <= ?drls |]

==> ctr_adm_step ?sub (derrec ?drls {}) (?ps, ?c) ?A"

Machine-Checked Proof-Theory for Propositional Modal Logics 235

ctr_adm_step_circ_r:

"[| (?ps, ?c) : extcs circ ; extcs circ <= ?drls |]

==> ctr_adm_step ipsubfml (derrec ?drls {}) (?ps, ?c) ?A"

Consequently, we get contraction admissibilty. The only case not covered above
is for the reflexivity rule (� �), in its form where the principal formula is copied
to the premise. This is required for contraction admissibility, which becomes simple
with the rule in this form.

Lemma 12.3 (s4cns_ctr_adm) Contraction is admissible in GTD.

s4cns_ctr_adm: "ctr_adm s4cns ?A"

12.4 Cut-Admissibility for S4C

To prove cut admissibility for a sequent calculus containing an explicit contraction
rule, two methods are

• to prove mix-elimination directly, where the property proved by induction on the
derivation is that any instance of the mix rule is admissible; in effect this was done
in [6] for the more complex logic GLS,

• in respect of the derivations on either side of the cut, to look up the derivation
skippingover consecutive instances of contraction on the cut-formula, and consider
the various cases of the next rule on either side above those contractions.

We do something similar to the second approach here, but we look up the deriva-
tions on either side to find the last rule before a consecutive sequence of (◦) rules.
For this we use the theorem top_circ_ns. In some cases we also need the fact
that if the bottom rule is not (◦), then the tree asserted to exist is actually the original
one. The function forget exists simply to prevent automatic case splitting of its
argument: logically it does nothing.

Lemma 12.4 (top_circ_ns) Given a valid (explicit) derivation tree dt, then
there is a valid (explicit) tree dtn and an integer k such that

• the bottom rule of dtn is not (◦),
• the conclusions c and c′ of dt and dtn are related by c = ◦kc′
• height of dt = height of dtn +k
• dt and dtn iff k = 0 iff the bottom rule of dt is not (◦)

top_circ_ns:

"valid ?rls ?dt

==> EX dtn k.

botRule dtn ˜: extcs circ & valid ?rls dtn

& seqmap (funpow Circ k) (conclDT dtn) <= conclDT ?dt

& heightDT ?dt = heightDT dtn + k

236 J.E. Dawson et al.

& forget ((k = 0) = (botRule ?dt ˜: extcs circ)

& (k = 0) = (dtn = ?dt))"

forget_def: "forget f == f"

But one easy case is where the last rule on both sides is the (◦) rule: then we can
apply cut (on a smaller formula) to the premises of the (◦) rules, and then apply the
(◦) rule. So when we look at the (◦) rules on both sides immediately preceding the
cut, we need only bother about the case where the number of those (◦) rules is zero
on one side.

First, the case where both rules are the (� �) rule. The fact that the conclusions
of both the (◦) rule and the (� �) rule may be extended by an arbitrary context com-
plicates matters. Consider the following diagram of a number of (◦) rules followed
by the (� �) rule.

M � A
(� �)

�,M � �A,�
(◦∗)

�′, ◦k�, ◦kM � ◦k�A, ◦k�,�′

In this case we can instead construct the following derivation tree, which is of the
same height.

M � A
(� �)M � �A

(◦∗)◦kM � ◦k�A

Thuswe can use, in proving an inductive step, the fact that ◦kM � ◦k�A is derivable,
and with a derivation of the same height as that of �′, ◦k�, ◦kM � ◦k�A, ◦k�,�′.
This will be used in our proofs without further comment.

Now, where the cut-formula is within ◦k�,�′ (where this is the derivation tree
on the left of a desired cut), or within �′, ◦k� (where this tree is on the right), the
cut is admissible because we can start from the derivable sequent M � A and apply
(� �) and ◦ rule without any extra formulae in the conclusions, as discussed above.
In this case we just use weakening admissibility to obtain the result of the cut.

These situations are covered by Lemma 12.5 (s4cns_cs_param_l”) below
and the symmetric result s4cns_cs_param_r”.

Lemma 12.5 Let the left premise subtree of a desired cut be dt, with dtn and k
as in Lemma 12.4, let the bottom rule of dtn be an extension (of the conclusion)
of a rule in s4cns whose conclusion is cl � cr , and let C not be in ◦kcr . Then the
inductive step sumh_step2_tr for proving cut-admissibility with cut-formula C
holds (where list and lista are names automatically generated by Isabelle for
the lists of premises of final rules).

Machine-Checked Proof-Theory for Propositional Modal Logics 237

s4cns_cs_param_l’’:

"[| (?ps, ?cl |- ?cr) : s4cns ; valid s4cns ?dtn ;

botRule ?dtn : extcs {(?ps, ?cl |- ?cr)} ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"

A similar pair of results, discussed later (see Lemma 12.6), covers the case where
the rule above the (◦) rules is a skeleton rule which is extended by an arbitrary context
in its conclusion and its premises.

Now we can assume that the cut-formula is within the principal part of the rule
before the (◦) rules (noting that for the (� �) rule the “principal part” means the
entireM � �A). Then there must be zero (◦) rules on the right side: because if there
are zero ◦ rules on the left, then the cut-formula must be �A, whence there would
also be zero (◦) rules on the right.

In the diagrams, (cut ?) represents the instance of the cut rule which we are aiming
to show is admissible.

M � A
(� �)

�,M � �A,�
(◦∗)

�′, ◦k�, ◦kM � ◦k�A, ◦k�,�′
◦k�A,M′ � B

(� �)
�′′, ◦k�A,M′ � �B,�′′

(cut ?)
�′, ◦k�,�′′, ◦kM,M′ � �B, ◦k�,�′,�′′

Here we do the cut, by induction, before the (� �) rule on the right, using a
derivation similar to that on the left, but without any context, then we apply the
(� �) rule, introducing the required context.

M � A
(� �)M � �A

(◦∗)◦kM � ◦k�A ◦k�A,M′ � B
(inductive cut)◦kM,M′ � B
(� �)

�′, ◦k�,�′′, ◦kM,M′ � �B, ◦k�,�′,�′′

For the other cases, we first consider the “parametric” cases, where the last rule above
the (◦) rules is an extension ρ′ of a rule ρ in s4cnsne, and the principal formula of
ρ is not the “de-circled” cut-formula A. Recall that s4cnsne consists of the axiom,
logical introduction rules and the (� �) rule, as skeletons (i.e., not extended with
context), but with ◦k applied to their formulae.

X ′ � Y ′, A
(ρ′)

X � Y, A
(◦∗)

W, ◦k X � ◦kY, ◦k A, Z ◦k Am,U � V
(cut ?)

W, ◦k X,U � ◦kY, Z , V

238 J.E. Dawson et al.

Here we must apply the ◦ rule the requisite number of times to the premise(s) of
ρ′, then apply (using the inductive hypothesis) cut on ◦k A to each of them, and finally
apply ρ′′ which we get by applying ◦k to ρ, and then extending it appropriately.

This uses the result that if a rule is in s4cnsne then so is the result of applying
◦k to all formulae in its premises and conclusion.

s4cnsne_nkmap: "?r : s4cnsne ==> nkmap ?k ?r : s4cnsne"

X ′ � Y ′, A
(◦∗)

W, ◦k X ′ � ◦kY ′, ◦k A, Z ◦k Am,U � V
(inductive cut)

W, ◦k X ′,U � ◦kY ′, Z , V
(ρ′′)

W, ◦k X,U � ◦kY, Z , V

Lemma 12.6 (s4cns_param_l’) and the symmetric result s4cns_
param_r’ cover this case.

Lemma 12.6 Let the left premise subtree of a desired cut be dt, with dtn and k as
in Lemma 12.4, let the bottom rule of dtn be an extension of a rule in s4cnsne
whose conclusion is cl � cr , and let C not be in ◦kcr . Then the inductive step
sumh_step2_tr for proving cut-admissibility with cut-formula C holds.

s4cns_param_l’:

"[| (?ps, ?cl |- ?cr) : s4cnsne ;

botRule ?dtn : extrs {(?ps, ?cl |- ?cr)} ;

valid s4cns ?dtn ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 ;

Suc (heightDTs ?list) = heightDT ?dtn + ?k |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"

It is similar for the parametric case on the right. The axiom rule is trivial in all
cases.

For the (� �) rule on the left, where the rule on the right is an extension of rule
ρ whose principal formula is the “de-circled” cut-formula, the only case remaining
is where ρ is (� �).

M � A
(� �)

X,M � �A,Y
(◦∗)

X ′, ◦k X, ◦kM � ◦k�A, ◦kY,Y ′

◦k ′′
A,U � V

(� �)◦k ′′�A,U � V
(◦∗)◦k ′+k ′′�A, ◦k ′

U,U ′ � ◦k ′
V, V ′

(cut?)
X ′, ◦k X, ◦kM, ◦k ′

U,U ′ � ◦kY,Y ′, ◦k ′
V, V ′

Machine-Checked Proof-Theory for Propositional Modal Logics 239

Here k ′ + k ′′ = k, but since we also have that k = 0 or k ′ = 0, this means that
k ′ = 0 and k ′′ = k. The following diagram omits a final use of the admissibility of
weakening.

M � A (◦∗)◦kM � ◦k A

M � A (� �)M � �A (◦∗)◦kM � ◦k�A ◦k�A, ◦k A,U � V
(inductive cut)◦kM, ◦k A,U � V

(inductive cut)◦kM, ◦kM,U � V
(ctr)◦kM,U � V

Next we look at the case of the (� �) rule on the right, but for this, since the
cut-formula must be a �-formula, all cases have already been dealt with.

Finally, there is the case where the last rules (above the final sequence of ◦-rules)
on both sides are extensions of rules in s4cnsne. Most of these cases have been
covered, i.e., the axiom rules, and the “parametric” cases, where the “de-circled”
cut-formula is not the principal formula of the rule.

So there remain the cases where the rules on either side are the logical introduction
rules. For these, the proofs are essentially the same as for other logics generally,
except that we need to allow for a number of circles. Conceptually it is easiest to
imagine that in each case the final ◦ rules are moved upwards to precede the final
logical introduction rules, although we didn’t actually prove it this way.

We proved that the usual logical introduction rules, with ◦k applied to principal
and side formulae (as used in S4C), satisfy c8_ercas_prop (Definition 11.4).
Recall that this means that assuming cut admissibility on smaller formulae, us have
cut admissibility of a more complex formula where the last rule on either side is a
logical introduction rule.

Lemma 12.7 [s4cns_c8_ercas] S4C satisfies c8_ercas_prop in relation
to the logical introduction rule skeletons lksil cup lksir, with ◦k applied to all
formulae.

s4cns_c8_ercas: "c8_ercas_prop (circrel ipsubfml) s4cns ?A

(nkmap ?k ‘ (lksil Un lksir))"

The following diagrams show an example. We let t = k + k ′ = l + l ′. In this case
we do not make use of the fact that either k or l must be zero.

X � ◦k ′
A,Y X � ◦k ′

B,Y
(� ∧)

X � ◦k ′
(A ∧ B),Y

(◦∗)◦k X � ◦t (A ∧ B), ◦kY

U, ◦l ′ A, ◦l ′ B � V
(∧ �)

U, ◦l ′(A ∧ B) � V
(◦∗)◦lU, ◦t (A ∧ B) � ◦l V
(cut ?)◦k X, ◦lU � ◦kY, ◦l V

The diagram above is simplified by not including the extra context which may be
introduced in the conclusion of the (◦) rules. This is replaced by

240 J.E. Dawson et al.

X � ◦k ′
A,Y

(◦∗)◦k X � ◦t A, ◦kY
...

...

...

X � ◦k ′
B,Y

(◦∗)◦k X � ◦t B, ◦kY
U, ◦l ′ A, ◦l ′ B � V

(◦∗)◦lU, ◦t A, ◦t B � ◦l V
(inductive cut)◦k X, ◦lU, ◦t A � ◦kY, ◦l V

(inductive cut)◦k X, ◦k X, ◦lU � ◦kY, ◦kY, ◦l V
(contraction)◦k X, ◦lU � ◦kY, ◦l V

Again, we can use weakening admissibility to get the extra context which was
introduced by the (◦) rules, but omitted from the first diagram.

Finally we combine these results to get the cut admissibility result, in terms of
explicit derivation trees, and then in terms of derivability.

Theorem 12.1 (s4cns_casdt, s4cns_cas) S4C satisfies cut-admissibility.

s4cns_casdt: "(?dta, ?dtb) : casdt s4cns ?A"

s4cns_cas: "(?cl, ?cr) : cas s4cns ?A"

12.5 Comparing Our Proofs and the Proofs of Mints

The slides for the presentation of Mints [16] contains a very abbreviated treatment of
cut-admissibility for S4C. We attempted to follow the proof shown there, but were
unable to. The slides state a lemma (“Substitution Lemma”), that the following rule
is admissible B � �C �C, � � �

B, � � �

As a lemma it is undoubtedly correct (it is a particular case of cut admissibility).
However, as part of the proof of cut-admissibility we were unable to prove it as it
stands—it appears to need (at least) an assumption that cuts on C are admissible.

13 Related Work

We may compare this approach with that of Pfenning [21]. Pfenning uses the
propositions-as-types paradigm, where a type represents (partially) a sequent. More
precisely, for intuitionistic logic, a type hyp A -> hyp B -> conc C repre-
sents a sequent containing A and B in its antecedent, and C in its succedent. For
classical logic, neg A -> neg B -> pos C -> pos D -> # represents a

Machine-Checked Proof-Theory for Propositional Modal Logics 241

sequent containing A and B in its antecedent, and C and D in its succedent. A term
of a given type represents a derivation of the corresponding sequent.

Pfenning’s proof of cut-admissibility proceeds by a triple induction, using struc-
tural induction on the formula and the two terms representing the derivations. It there-
fore most closely resembles our proofs involving explicit derivations, as described
in Sect. 7.3.

However in Sect. 7.3 we go on to measure properties (such as the height) of
an explicit derivation. It seems as though Pfenning’s approach does not allow the
possibility of doing that.

Tews [24] describes the use of Coq to prove cut-elimination for propositional
multi-modal logics. In Coq, types are identified with terms, and each term has a
type: a type has the type Type. A proposition is a type whose inhabitants are its
proofs, so A → B means both the type of proofs of the proposition A → B and the
type of functions which take proofs of A to proofs of B. Since types can depend on
terms, this gives a dependently typed system, which can provide a way of capturing
side-conditions in the type system. For example, the type counted_list A n is the
type of lists of items of type A and whose length is n.

Tews uses a (single) list of formulae as a sequent, where formulae which would
appear on the other side of a two-sided sequent are negated. He proves that for the rule
sets he uses, for any reordering s ′ of the conclusion s of a rule, there is a corresponding
rule whose conclusion is s ′, and, assuming sets of rules and hypotheses closed under
reordering, that provability is also closed under reordering. He defines an (object-
logic) proof as the type proof, similar to our definition of the type dertree, but the
type definition also incorporates the requirement that each “node” of the tree must
be in the given set of rules. This is an example of a dependent type, where the type
proof depends on the term rules.

He proves cut-elimination both semantically (by proving soundness and cut-free
completeness) and syntactically (where the proof implements a cut-elimination pro-
cedure). Thus hiswork includes extensive formalisation of the semantics of the logics.
His proofs use the modal ranks of formulae, and involve formalising substitution,
which we did not find necessary, and in some cases require proving depth-preserving
admissibility of rules.

14 Further Work and Conclusion

We have proved cut-admissibility for several different sequent calculi, ranging from
the well-known logics S4 and S4.3 to GTD and S4C described recently in [16].
In other work not described here we also proved cut-admissibility for GTD, for
a calculus containing explicit contraction and weakening rules, in both the ways
described at the start of Sect. 12.4.

242 J.E. Dawson et al.

We have shown how the proofs can be split up into components some of which
were expressed in lemmata which can be reused in similar proofs for other cal-
culi. This was of significant value, as was the use of the type classes described in
[6]. It remains to generalise our framework so that these results follow simply by
instantiating these general concepts.

Acknowledgments Jeremy E. Dawson—Supported by Australian Research Council Grant
DP120101244.

References

1. N.D. Belnap, Display logic. J. Philos. Logic 11(4), 375–417 (1982)
2. G. Bierman, V. de Paiva, Intuitionistic necessity revisited, in Proceedings of the Logic at Work

Conference (1996)
3. C. Castellini, Automated reasoning in quantified modal and temporal logics. AI Commun.

19(2), 183–185 (2006)
4. J.M. Davoren, R. Goré, Bimodal logics for reasoning about continuous dynamics, in Advances

in Modal Logic 3, papers from the Third Conference on “Advances in Modal Logic”, Leipzig
(Germany), Oct 2000 (2000), pp. 91–111

5. J. Dawson, Mix-elimination for S4 (2014). http://users.cecs.anu.edu.au/jeremy/isabelle/2005/
seqms/S4ca.ML. Included in Isabelle code base

6. J.E. Dawson, R. Goré, Generic methods for formalising sequent calculi applied to provability
logic, inProceedings of the 17th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR’10 (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 263–
277

7. K. Dosen, P. Schroder-Heister (eds.), Substructural Logics. Studies in Logic and Computation,
vol. 2 (Clarendon Press, 1993)

8. G. Gentzen, Untersuchungen über das logische schließen. Mathematische Zeitschrift 39, 176–
210 and 405–431 (1935)

9. J.-Y. Girard, Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
10. M.J.C. Gordon, T.F. Melham (eds.), Introduction to HOL: A Theorem-proving Environment

for Higher-Order Logic (Cambridge University Press, Cambridge, 1993)
11. R.Goré, R.Ramanayake,Valentini’s cut-elimination for provability logic resolved, inAdvances

in Modal Logic, vol. 7 (College Publications, London, 2008), pp. 67–86
12. R. Goré, Cut-free sequent and tableau systems for propositional diodoreanmodal logics. Studia

Logica 53(3), 433–457 (1994)
13. R. Goré, Machine checking proof theory: an application of logic to logic, in ICLA, Lecture

Notes in Computer Science, ed. by R. Ramanujam, S. Sarukkai (Springer, New York, 2009),
pp. 23–35

14. J.Goubault-Larrecq,On computational interpretations of themodal logic S4. I. Cut elimination.
Technical report, Institut fürLogik,Komplexität undDeduktionssysteme,UniversitätKarlsruhe
(1996)

15. A. Indrzejczak, Cut-free hypersequent calculus for S4.3. Bull. Sect. Logic 41(1–2), 89–104
(2012)

16. G. Mints, Two examples of cut-elimination for non-classical logics. Talk at JägerFest (2013)
17. S. Negri, J. von Plato, Structural Proof Theory (Cambridge University Press, Cambridge, 2001)
18. S. Negri, Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
19. M. Ohnishi, K. Matsumoto, Gentzen method in modal calculi. Osaka Math. J. 9(2), 113–130

(1957)
20. L. Paulson, Isabelle: A Generic Theorem Prover, vol. 828. LNCS (1994)

http://users.cecs.anu.edu.au/jeremy/isabelle/2005/seqms/S4ca.ML
http://users.cecs.anu.edu.au/jeremy/isabelle/2005/seqms/S4ca.ML

Machine-Checked Proof-Theory for Propositional Modal Logics 243

21. F. Pfenning, Structural cut elimination, in 10th Annual IEEE Symposium on Logic in Computer
Science, San Diego, California, USA, 26–29 June 1995 (IEEE Computer Society, 1995), pp.
156–166

22. T. Shimura, Cut-free systems for the modal logic S4.3 and S4.3Grz. Rep. Math. Logic 25,
57–72 (1991)

23. Special issue on formal proof. Notices of the American Mathematical Society, vol. 55, Dec
2008

24. H. Tews, Formalizing cut elimination of coalgebraic logics in coq, in Automated Reasoning
with Analytic Tableaux and Related Methods, TABLEAUX 2013. LNCS, vol. 8123 (2013), pp.
257–272

25. A. Troelstra, H. Schwichtenberg,Basic Proof Theory (CambridgeUniversity Press, Cambridge,
2000)

26. M. Wenzel, T. Nipkow, L. Paulson, Isabelle/HOL. A Proof Assistant for Higher-Order Logic.
LNCS, vol. 2283 (2002)

Intuitionistic Decision Procedures Since
Gentzen

Roy Dyckhoff

1 Introduction

Gentzen solved the decision problem for intuitionistic propositional logic in his
doctoral thesis [31]; this paper reviews some of the subsequent progress. Solutions
to the problem are of importance both for general philosophical reasons and because
of their use in implementations of proof assistants (such as Coq [4], widely used
in software verification) based on intuitionistic logic. Our focus is on calculi and
procedures that can be understood in relation to traditional proof theory.

We tend (despite their importance) to avoid implementation issues, e.g. the use
of AVL trees rather than lists [73], structure sharing techniques [44], binary deci-
sion diagrams [33], caching and dependency directed backjumping [34] and prefix
unification [72], in favour of relatively simple calculi where questions such as cut
admissibility can be raised and, ideally by syntactic methods, answered. We ignore
the first-order case, for which see Schütte [63], Franzén et al. [60] and Otten [55].
For implementations see Otten’s ILTP website [56]. We also have our own imple-
mentations of several of the calculi mentioned here, using our own Prolog software
YAPE (“Yet Another Proof Engine”) [15] allowing sequent calculus rules to be coded
clearly and proofs to be displayed usingLATEX, either as trees or linearly, as illustrated
in Sect. 8.7. We are particularly interested in questions of

1. termination (hence decidability),
2. bicompleteness (extractability of models from failed proof searches),
3. determinism (avoidance of backtracking),
4. simplicity (allows easier reasoning about systems).

We include a short discussion of labelled calculi; concerning termination therein,
we refer to some recent literature.

R. Dyckhoff (B)
University of St. Andrews, St. Andrews, UK
e-mail: rd@st-andrews.ac.uk

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_6

245

246 R. Dyckhoff

2 Gentzen’s Calculus, LJ

Gentzen [31] solved the decision problem for Int with a calculus LJ, in which the
antecedent of each sequent is a list of formulae and the succedent is either empty
or a single formula. Since lists rather than sets are used, and the “operational” rules
act only on the first element of the list, rules of Exchange, Contraction and Thinning
(hereinafter calledWeakening) are required. Initial sequents are of the formA =⇒ A,
where A is a formula. Let C indicate either a formula or an empty succedent. If A
is a formula and � a list, then A, � is the list with head A and tail �; and similarly
�,� is the list obtained by concatenating lists � and �. The important rules (for
intuitionistic implication) are

� =⇒ A B,� =⇒ C
A→B, �,� =⇒ C L→ A, � =⇒ B

� =⇒ A→B R→

Gentzen took negation as a primitive notion, with rules as follows:

� =⇒ A
¬A, � =⇒ L¬ A, � =⇒

� =⇒ ¬A R¬

which have the virtue of being illustrations of the succedent being empty.
But in practice we will take negation as a defined notion, using ¬A =def A→⊥,

and allowing also ⊥, � =⇒ C as an initial sequent (and now we can replace empty
succedents by ⊥). For completeness we show also his rules for conjunction and
disjunction:

Ai, � =⇒ C
A0 ∧ A1, � =⇒ C

L∧i
� =⇒ A � =⇒ B

� =⇒ A ∧ B R∧

A, � =⇒ C B, � =⇒ C
A ∨ B, � =⇒ C L∨ � =⇒ Ai

� =⇒ A0 ∨ A1
R∨i

Gentzen’s approach is not (as one may find suggested in the literature) a root-first
approach, but to see what sequents (from the finite range of possibilities) are initial,
what can be inferred from them, and so on. It may thus be regarded as an early
instance of Maslov’s “Inverse Method” [48]. Defining a sequent to be reduced if its
antecedent contains nomore than three occurrences of any formula, and after showing
that a derivation of a reduced sequent can be modified into one where all the sequents
are reduced, one can see an obvious finiteness argument exploiting the subformula
property. Kosta Dos̆en observed in [12] that Gentzen’s “three occurrences” can be
reduced to “two occurrences”. (B subsumes A→B, so, in the rule L→, we may need
a copy of A→B in � but we don’t need one in �. In other words, B,� =⇒ C and
B,A→B,� =⇒ C are inter-derivable.)

Intuitionistic Decision Procedures Since Gentzen 247

2.1 Calculi of Ono, Ketonen and Kleene, Troelstra’s G3i

Gentzen’s LJ is not a calculus suitable for solving the decision problem root-first—
note especially the “context-splitting” nature of L→ . Ono [54], Ketonen [42] and
Kleene [43] observed in various ways that it was better to incorporate structural
rules (like Exchange, Weakening and Contraction) into the notation and/or into the
operational rules: for example, in Kleene’s treatment one has

A→B, � =⇒ A B,A→B, � =⇒ C
A→B, � =⇒ C L→ A, � =⇒ B

� =⇒ A→B R→

with the convention that two sequents are “cognate” (and thus are interchangeable)
iff exactly the same formulae appear in the antecedents (regardless of number and
order) and they have the same succedent. Thus, using modern terminology found in
[68] but not in [43], A, � is now the multiset sum of the multisets A and �. Care
needs to be taken with rules if sets are used, since A, � as a pattern can match both
with � containing A and with � not containing A.

Note that A→B can be omitted from the second premiss of L→(as before, since
it is subsumed by B), but not from the first, lest completeness be lost.

This incorporation of Weakening into the rules allows a “root-first” approach,
i.e. the root-first construction of a tree with the sequent to be decided at the root
and expansion of the tree by choice of a principal formula and generation of the
appropriate rule instance and thus of part of the next level of the tree. Typically
(provided the search can be shown to terminate) such an expansion is done depth-
first rather than breadth-first.

Troelstra’s book (with Schwichtenberg) [68] gives a good treatment of this trans-
formation of Gentzen’s calculi by incorporation of the structural rules, including
acknowledgment of the inspiration provided by Dragalin [13].

2.2 Maehara’s Calculus, m-G3i

Maehara [47] introduced1 an important variant of Kleene’s calculus: succedents can
now be arbitrary (finite) collections� of formulae rather than just empty or singular.
The rules for implication and disjunction are then

A→B, � =⇒ A,� B,A→B, � =⇒ �

A→B, � =⇒ �
L→ A, � =⇒ B

� =⇒ A→B,�
R→

1A referee points out that this paper gave a classical provability interpretation of intuitionistic
logic and an early syntactic proof of its faithfulness, a result conjectured by Gödel (and proved
semantically by McKinsey and Tarski), as could usefully have been mentioned in [20].

248 R. Dyckhoff

A,A∨B, � =⇒ � B,A∨B, � =⇒ �

A∨B, � =⇒ �
L∨ � =⇒ A,B,A∨ B,�

� =⇒ A∨ B,�
R∨

which have the virtues (1) that L→and R∨ are invertible and hence (2) that all the
non-determinism in root-first search pertains to the R→ rule and the choice of its
principal formula A→B in the succedent for analysis. (We consider R¬ as a special
case of R→.) Without loss of completeness one may remove the repetition of the
principal formula A ∨ B from the premisses of L∨ and R∨.

Proofs in this system can be much smaller than those in the single-succedent
calculus: see Egly and Schmitt [23].

Approximately this calculus is used as a basis in tableau theorem proving; one
advantage is that counter-models can be extracted from failed searches. (Note that the
rule R∨ is classical here but not in G3i.) In other words, the calculus is bicomplete.

The same calculus (presented as a tableau calculus) appears, attributed to Beth [5],
in Fitting’s thesis [27] and in his book [28]. It can also be found in Curry’s book [11].
As noted by von Plato [58], a similar system was developed by Gentzen, and can be
found in his Nachlass.

Fitting’s notion of “tableau” is a finite sequence of configurations, each obtained
from its predecessor by applying a rule to one of the problems (i.e. sequents) therein;
each configuration is a finite collection of problems (each of which has to be solved
for the configuration to be closed). A problem is solved when it is an initial sequent.
The tableau is closed (and the proof complete) when one (without loss of generality,
the last) of its configurations is closed. Some rule applications replace a problem by
just one problem while others replace it by two; in each case the new configuration
is just the old configuration in which the old problem has been replaced by the new
ones. There is no need to apply rules to solved problems or to closed configurations.

Using sequent notation rather than signed formulae, and (as in proof theory rather
than tableau practice) writing the proof from bottom to top, and (for clarity) marking
principal formulae with a box), here is a closed tableau proving the sequent =⇒
(p→q→r)→(p→q)→p→r:

p→q→r, p→q, p =⇒ p, r; p→q→r, p→q, p, q =⇒ p, r; p→q→r, p→q, p, q, q→r =⇒ q, r; p→q→r, p→q, p, q, q→r, r =⇒ r

p→q→r, p→q, p =⇒ p, r; p→q→r, p→q, p, q =⇒ p, r; p→q→r, p→q, p, q, q→r =⇒ r
L→

p→q→r, p→q, p =⇒ p, r; p→q→r , p→q, p, q =⇒ r
L→

p→q→r, p→q , p =⇒ r
L→

p→q→r, p→q =⇒ p→r
R→

p→q→r =⇒ (p→q)→p→r

R→

=⇒ (p→q→r)→(p→q)→p→r

R→

As can be seen, each problem in the “last” (i.e. uppermost) configuration is solved;
hence, that configuration is closed. Conjunctive branching is handled at each L→
step by adding an extra problem, thus hiding the tree structure familiar to us from

Intuitionistic Decision Procedures Since Gentzen 249

Gentzen’s work; but, backtracking (because of the rule R→) is not made explicit.
The repetition (as one moves upwards) of closed problems is official, but inessential.
Backtracking could be added by allowing branching—one branch should then be
required to be closed; only then is it feasible to extract counter-models from failed
searches. [In this proof there are no backtracking possibilities.]

Termination is assured by the subformula property: some form of loop-checking
is required.

An interesting variation is the calculus GHPC of Dragalin [13]; by omitting �

in the first premiss, without loss of completeness, this has a non-invertible L→rule,
incorporating a form of focusing useful in the proof theory of the multi-succedent
m-G4ip.

3 Vorob’ev’s Calculus, G4ip

Vorob’ev introduced in [70, 71] an important calculus now known as G4ip. Others
(Hudelmaier [39–41], Dyckhoff [14]) rediscovered (and refined) the same calculus
some 40years later. See also Lincoln et al. [45]. The goal is to avoid use of loop-
checking (messy to reason about, tricky to implement). The formula ¬¬(p ∨ ¬p)
easily illustrates the need for loop-checking in Fitting’s calculus. The key idea is to
replace, in the single succedent calculus2 G3ip, the left rule for implication L→by
four rules, according to the form of the implication’s antecedent A, exploiting the
intuitionistic equivalences

1. ⊥→B ≡ �,

2. P ∧ (P→B) ≡ P ∧ B,

3. (C ∧ D)→B ≡ C→(D→B),

4. (C ∨ D)→B ≡ (C→B) ∧ (D→B),

5. C ∧ ((C→D)→B) ≡ C ∧ (D→B).

to reduce the formula’s complexity (in a carefully measured sense) and a bit of proof
theory to show completeness. The effect is that root-first depth-first proof search
terminates, i.e. root-first application of inference rules decreases the sequent’s “size”
rather than allowing it to oscillate up and down without termination. A measure of
“size” (due to Hudelmaier) can be found in [68]; another can be found in [14].

The rules for left-implication are thus as follows (with P atomic):

�,P,B =⇒ E
�,P,P→B =⇒ E L0→ �,C→(D→B) =⇒ E

�, (C ∧ D)→B =⇒ E
L∧→

�,C→B,D→B =⇒ E
�, (C ∨ D)→B =⇒ E

L∨→ �,C,D→B =⇒ D �,B =⇒ E
�, (C→D)→B =⇒ E

L→→

2The final “p” in the name indicates “propositional”.

250 R. Dyckhoff

of which each but the last is invertible. There is no need for the case ⊥→B to be
included, since this formula is equivalent to �. In each case the size of each premiss
is less than that of the conclusion.

Formulae P→B are called atomic implications; those of the form (C→D)→B
are called nested implications. Proving completeness of the resulting system is a
challenging exercise.

3.1 Hudelmaier’s Refinements of Vorob’ev’s Calculus

First appearance of Hudelmaier’s rediscovery of Vorob’ev’s work is in [39], i.e. in
1988 and then in his thesis, published in 1992 as [40].

The novelty (apart from some different proof methods) w.r.t. G4ip is in [41],
ensuring proofs are of linear rather than exponential depth, by use of freshproposition
variables P in the cases (L∨→and L→→) where a compound subformula (B, resp.
D) from the conclusion is duplicated into a premiss. So these rules are replaced by
the following:

�,C→P,D→P,P→B =⇒ E
�, (C ∨ D)→B =⇒ E L∨→′ �,C,D→P,P→B =⇒ P �,B =⇒ E

�, (C→D)→B =⇒ E L→→′

This allows one to show the decision problem to be in O(n log n)-SPACE. (In
1977 Ladner showed S4, and hence also Int, to be in PSPACE; in 1979 Statman [65]
showed Int to be P-SPACE-hard.)

More precisely, Hudelmaier showed the value of L∨′ but had difficulty3 with
L→→′, so he adopted a more complicated rule; the difficulty was overcome by
Fiorino [3, 26]. The proof of soundness is easy: given proofs of the premisses of
L→→′, substitute D for P in the first, cut with a proof of D→D, and then use the
sound rule L→→ to infer the desired conclusion. As for completeness, note that the
rule

C,D→P,P→B, � =⇒ P
C, (C→D)→B, � =⇒ D

is invertible4 in G3ip (or any other standard calculus for Int), and thus, in a proof by
inductionon sequent size of completeness ofG4ip, a sequentmatching the conclusion
may be reduced to the corresponding premiss.

3He commented “Unfortunately, this method does not work for the second problem.”.
4As established using a cut of the conclusion with D,D→P =⇒ P and a cut with C,D→P,P→
B =⇒ (C→D)→B.

Intuitionistic Decision Procedures Since Gentzen 251

3.2 Dyckhoff’s Refinements of Vorob’ev’s Calculus

Novelty5 (apart from different proof methods) of [14] is to have (in addition to the
single succedent calculus G4ip) a multi-succedent calculus m-G4ip. ([14] called
them LJT and LJT*.) This is closer to tableau methods used in implementations
and allows easy extraction of a counter-model from a failed proof search [57] (joint
work with Pinto). For the multi-succedent version, use Maehara’s rule R→ and
replace (in each of the four special left rules for implication) each succedent for-
mula E by �. (But the first premiss of L→→should have, as in Dragalin’s calculus
GHPC, just one formula D in its succedent, lest the rule be unsound.) This can be
combined with Hudelmaier’s depth-reduction techniques. Various refinements of the
multi-succedent version have been developed and implemented by a group in Milan
(Avellone, Ferrari, Fiorentino, Fiorino, Miglioli†, Moscato and Ornaghi); one of the
most recent papers is [24]. Their proof methods are almost entirely semantic.

3.3 Proof Theory of Vorob’ev’s Calculus

Vorob’ev’s proof of completeness of the calculus rests on a lemma now seen as
the completeness of a single-succedent focused calculus LJQ’: see Dyckhoff and
Lengrand [17] for details, and its extension to a multi-succedent focused calculus
LJQ∗ (a variant of a calculus in Herbelin’s thesis [36]). Root-first proof search in
LJQ’ occasionally focuses on the succedent and analyses it until either it is atomic
or the rule R→ is used; in particular, the L→ rule requires (in the first premiss, but
not in the second) a focus on the succedent. The completeness of this approach is a
useful fact, exploited not just in Vorobev’s [70, 71] but also in Hudelmaier’s [41] (in
which it is mentioned as “folklore”). The same trick is applicable elsewhere, e.g. in
guarded logic and labelled calculi.

Dyckhoff and Negri [18] give a direct proof of completeness (w.r.t. an axiomatic
presentation, via Cut-admissibility, rather than w.r.t. semantics), showing that Con-
traction is admissible in G4ip and hence (with explicit cut reduction steps) that Cut
is admissible. This approach generalises to the multi-succedent case, and even shows
the completeness of a first-order version (without, alas, the depth-boundedness …).
Dyckhoff, Kesner and Lengrand [16] show (for the implicational fragment G4ip→
only) how to make the cut reduction system strongly normalising.

4 Weich’s Thesis

Weich [73, 74] made several excellent contributions: verified constructive complete-
ness proofs, in MINLOG and in Coq, from which Scheme or OCaml programs may
be extracted; pruning of the search by use of counter-models generated earlier in

5As realised by the author after too long a delay.

252 R. Dyckhoff

the search (“an improvement both astonishing and significant”); a “conditional nor-
mal form” for formulae, obtained by pre-processing: essentially, A→B where A is
a conjunction of atoms and B is one of ⊥,P,Q ∨ R, (Q→R)→⊥, (Q→R)→S. This
reduces some of the run-time expansions that are otherwise repeated in different
branches of the search. (P,Q,R, S indicate atoms.)

5 Easy Optimisations

Once the succedent is empty (or just ⊥), one can revert to classical logic. Search can
be pruned if a new subproblem (arising from choice of instance of non-invertible
rule) isn’t solvable classically.

“Simplification”: once an atom p is added to the antecedent, all formulae in the
sequent are simplified by putting p = � and reducing (e.g. with � ∧ A ≡ A).

The same works if a negated atom ¬p is added to the antecedent; the sequent is
simplified by replacing p throughout by ⊥ (and simplifying accordingly, e.g. with
⊥ ∨ A ≡ A).

When a problem is analysed into two subproblems, and the first is solved, onemay
use [73] information from it in the second; e.g. the rules (one for multi-succedent;
two for single-succedent calculi).

A, � =⇒ � B, � =⇒ A,�

A ∨ B, � =⇒ �
L ∨ ′ A, � =⇒ G B, � =⇒ A ∨ G

A ∨ B, � =⇒ G L∨∗

A, � =⇒ G B,A→G, � =⇒ G
A ∨ B, � =⇒ G L ∨ ′′

Several other easy optimisations are to be found in Franzén’s [29], Ferrari et al’s
[24] and Weich’s [73].

6 Goal-Directed Pruning

We say that the atom P occurs strictly positively in⊥; and in P; and in A∧B iff in one
of A and B; in A∨B iff in both A and B; and in A→B iff in B. In brief, P sp-occurs
in the formula. The following is based on a result in [67, p. 69].

Theorem 1 If � =⇒ P in G4ip, then there is some formula in � in which P sp-
occurs.

Intuitionistic Decision Procedures Since Gentzen 253

Proof By induction on the derivation and case analysis:

1. The last step has ⊥ (resp. P) principal; then ⊥ ∈ � (resp. P ∈ �) and P sp-occurs
therein.

2. The last step has A ∧ B principal and derivable premiss A,B, �′ =⇒ P; by the
induction hypothesis we can find a suitable formula either in �′ or in {A,B}. In
the latter case, P sp-occurs in A ∧ B.

3. The last step has A ∨ B principal and derivable premisses A, �′ =⇒ P and
B, �′ =⇒ P; by the induction hypothesis, we can find a suitable formula either in
�′ or in both A and B. In the latter case, P sp-occurs in both A and B (and hence
in A ∨ B).

4. The remaining cases are similar. �

Thus, the sequent

(p→s)→ t, (c→p)→b =⇒ p

cannot be reduced (but would be reduced if we had p = t). Reduction of a sequent
to two new sequents using (root-first) the rule L→→generates premisses of which
the first may not be derivable even if the conclusion is derivable; the Theorem can
be used here to prune the search space. One can see this as a weak form of “goal-
directedness”.

One would like to strengthen this to the claim that the formula given by the
theorem can be taken as principal, thus (in general) allowingmany possible choices of
principal formula to be ignored. A counterexample is given by the sequent q ∨ r, q→
p, r→p =⇒ p. A counter-example with only atomic and nested implications in the
antecedent is (a→a)→b, b→(q ∨ r), q→p, r→p =⇒ p; the only derivation of
this in G4ip ends with (a→a)→b principal—but p does not sp-occur therein.

Weich [73] presents and justifies a much stronger form of goal-directedness.

7 Mints’ Classification

Mints [51] gave a convenient classification of subclasses of Int, and their complexity.
Let |S| be the formula equivalent of a sequent S. By introduction of new variables
(following Skolem1920 andWajsberg 1938), one can in linear time replace a formula
A by a sequent SA so that A is provable iff |SA| is provable, where the succedent of
SA is atomic and the antecedent consists of formulae that (with P,Q,R atomic) are
one of

(0) negated atoms ¬P,

(1) atoms P,

(2) implications P→Q,

(3) binary implications P→(Q→R),

(4) nested implications (P→Q)→R,

254 R. Dyckhoff

(5) implied disjunctions P→(Q ∨ R),

(6) negative implications P→(¬Q),

(7) converse negative implications ¬Q→P.

Thus, it suffices to consider only sequents where the antecedent X consists of
formulae of these eight types (and the succedent is atomic).

“Simplification” allows us to remove all formulae of type 0 or 1. For consistency
with Mints’ paper we avoid this step.

According to the types of formulae used in X, one has complexity results: if all
formulae of X are of type 2, 3 or 4 we talk of the class [2,3,4], and similarly for other
classes.

One then has that

• The class [2,3,4] (and any superclass) is PSPACE-complete,
• the class [1,2,5,6] is NP-complete (and any superclass is NP-hard),
• the class [0,1,2,3,6] (and any subclass) is in LIN,
• the class [0,1,2,4,5,7] (and any subclass) is in P,
• ….

Note that the class [0,1,2,3,5,6] is the zero-order case of “coherent logic”, recently
the subject of theoretical study and automation [6].

From the perspective ofG4ip, the difficulty of proof search is dealingwith “nested
implications”, i.e. formulae of type (4) and their variant (7). So the surprise is that
(provided we exclude formulae of type (3) and their variant (6)) while allowing
formulae of type (4) and their variant (7), the decision problem is in P. This is
achieved using a resolution method [50], a variant of the familiar “forward chaining”
method that disposes linearly of [0,1,2,3,6]. Tammet [66] implemented this method.
But the verdict [56] by the ILTP website authors is “Prover seems to be incorrect”.

8 Ensuring the Subformula Property

G4ip lacks the subformula property, and has been criticised by some for this failing,
apparently on philosophical grounds.

Despite a strong feeling that it doesn’t matter (because it is still analytic in a weak
but adequate sense), we consider henceforth some further approaches that ensure
that proofs have the subformula property:

1. Underwood’s calculus.
2. Intercalation calculus of Sieg and Cittadini.
3. Implication-locking (Franzén).
4. Loop-checking (two approaches).
5. The calculus LJPm∗ of Mints.
6. The calculi IGr and SIC of Corsi and Tassi.
7. The calculus LSJ of Ferrari, Fiorentino and Fiorino.
8. The calculus GLJ of RD (unpublished).

Intuitionistic Decision Procedures Since Gentzen 255

8.1 Underwood’s Calculus

Underwood [69] gave a constructive completeness proof for a calculus presented
rather in terms of Kripke semantics than proof theory. As reconstructed by Weich
[73], this is as follows, with antecedents and succedents regarded as sets: rules for
conjunction and disjunction are rather standard, with provisos about not being used if
(used root-first) they fail to add a new formula to one of the sets. Rules for implication
are thus:

A→B, � =⇒ A,� B,A→B, � =⇒ �

A→B, � =⇒ �
L→ (A /∈ �; B /∈ �)

A, � =⇒ B,A→B,�

A, � =⇒ A→B,�
RSimp (B /∈ �)

A, � =⇒ B
� =⇒ A→B,�

R→ (A /∈ �)

Branches are bounded in length by the square of the number of the end-sequent’s
subformulae, hence termination without loop-checking. This is the basis for the
extraction of an algorithm byCaldwell [8]. (An early version was in use by Constable
in NuPRL about 1991.)

8.2 Intercalation Calculus of Sieg and Cittadini

Sieg andCittadini [64], building on earlier work for classical logic by Byrnes, present
a system (the “intercalation calculus”) geared towards use in a pedagogical system
AProS, in use at Carnegie Mellon University and elsewhere; for such a system, lack
of the subformula property would be confusing. Thanks to this property, the search
space is finite; a loop-checker is required. Questions (i.e. sequents) are of the form
α;β?G, where G is the “goal formula” and α and β are sets of formulae, the former
being assumptions and the latter the formulae derived fromassumptions.As examples
of the rules, we present those for implication in more traditional notation:

α; β =⇒ A α; β,B =⇒ G

α; β =⇒ G
L→ where A→B ∈ α ∪ β, B /∈ α ∪ β, A = G

A, α; β =⇒ B

α; β =⇒ A→B
R→

The objective here, of course, is the finding of normal natural deduction proofs rather
than being an efficient decision procedure. Herbelin’s calculus LJT [36] would be
another approach to this objective, allowing (in principle) the discovery or enumer-
ation of all such proofs.

256 R. Dyckhoff

8.3 Implication-Locking (Franzén’s approach)

Franzén [29, 60] uses the notion of covering: � covers A if

• A ∈ �, or
• A ≡ B ∧ C and � covers both B and C, or
• A ≡ B ∨ C and � covers one of B and C, or
• A ≡ B→C and � covers C.

The ruleR→is then specialised to the two cases: the usual one (a transfer instance)
if� does not cover the antecedentA of the principal formula, and the special one (infer
� =⇒ A→B from� =⇒ Bwhen� coversA) (similar, respectively, toUnderwood’s
R→andRSimp). There is then the restriction that, on each branch, every two instances
of L→must be separated by a transfer instance of R→. In other words, implications
are “locked” until “released” by a transfer. This is enough to ensure termination.

8.4 Loop-Checking (The Bern Approach)

For simplicity, we ignore disjunction and absurdity. We may therefore restrict L→
to cases where the succedent formula is an atom. Left rules are cumulative, i.e. the
principal formula is duplicated to the premiss. So a loop can only occur during a
phase when nothing new is added to the antecedent, and in the succedent a formula
appears and later (i.e. higher up the proof branch) appears again. Without loss of
generality, one can restrict to the case where this formula is an atom. Sequents now
contain an extra component, the history H (the set of such atoms; quite simple).
Then, if as one moves root-first one uses the left rule for implication with conclusion
having atomic succedent P, this use is blocked if already P ∈ H, but otherwise P is
added to the history. If a new formula is added to the antecedent, the history at the
premiss is emptied. See [37] (by Heuerding et al. 1996) for details.

8.5 Loop-Checking (The St Andrews Approach)

Howe [38] presented a variation of the Bern approach. Sequents again contain an
extra component, the history. Loops are found earlier at the cost of some extra data
storage. In some cases this dramatically cuts the search time, but in general makes it
slightly slower.

Intuitionistic Decision Procedures Since Gentzen 257

8.6 System LJpm∗ of Mints

Mints’ inference rules [52] operate on tableaux, i.e. lists T of multi-succedent
sequents (the components of T). We use “;” for the “append” operation on lists,
where [52] uses a “�”; and, for emphasis, we parenthesise components. A tableau
is initial iff one of its components is an initial sequent. A proof is a tree, each leaf
of which is an initial tableau. Use of (Mints’) tableaux rather than just of sequents
avoids backtracking at the meta-level: all the inference rules are invertible.

T ; (A,A ∨ B, � =⇒ �); T ′ T ; (B,A ∨ B, � =⇒ �); T ′

T ; (A ∨ B, � =⇒ �); T ′ L∨

T ; (� =⇒ �,A ∨ B,A,B); T ′

T ; (� =⇒ �,A ∨ B); T ′ R∨

Conjunctive branching (as inL∨) replaces one tableau by two,whereas disjunctive
branching (not yet illustrated) adds components to a tableau. [Not the same usage
as Fitting.] Here are the rules for implication:

T ; (A→B, � =⇒ �,A); T ′ T ; (B,A→B, � =⇒ �); T ′

T ; (A→B, � =⇒ �); T ′ L→

T ; (� =⇒ �,A→B); (A, � =⇒ B); T ′

T ; (� =⇒ �,A→B); T ′ R→

in which note the conjunctive branching in the first (i.e. the rule has two premisses)
and the disjunctive branching (by addition of the new component (A, � =⇒ B) to
the tableau) in the second. Note that the principal formula is always, except in R→,
duplicated into the premisses. � =⇒ � subsumes �′ =⇒ �′ iff � ⊆ �′ and� ⊆ �′
(as sets of formulae); then one forbids any tableau extension step if some new sequent
subsumes some component of some tableau lower down the tree, i.e. loops must be
detected (might be costly) and avoided. A finiteness argument then shows that this
ensures termination.

8.7 System IGr of Corsi and Tassi

We present (in our own 2-D style) the system IGr of Corsi and Tassi [10] (impli-
cational part: the other parts present no difficulties). Its main features are (a) that
it is depth-bounded (b) that it has the subformula property and (c) bicompleteness.
Initial sequents are, as usual, those with an atom on both left and right.) The superfix
r stands for a regularity condition, enforced by the use of B and H.

258 R. Dyckhoff

B is for the blocked formulae, i.e. the set of all not yet unblocked formulae on
the path from here to root that have been principal for L¬ or L→. Until they are
unblocked, they cannot be principal for these rules again. Blocking is similar to
Franzén’s notion of locking. B is cleared (i.e. set to {}) whenever (as one proceeds
up such a path) there is a use of R→or R¬.

H is for a History, i.e. the set of all formulae on the path from here to root that
are principal for R¬ or R→. H is never cleared.

Implicit in the following is that we can write ¬A,B iff ¬A /∈ B, etc. Where we
cannot write it, the rule cannot be used.

¬A,Γ
¬A,B
===⇒

H
A,Δ

¬A,Γ B=⇒
H

Δ
L¬

A→B,Γ
A→B,B
====⇒

H
A,Δ B,Γ

A→B,B
====⇒

H
Δ

A→B,Γ B=⇒
H

Δ
L→

A,Γ
{}

===⇒
¬A,H

Γ B=⇒
H

¬A,Δ
R¬

A,Γ
{}

====⇒
A→B,H

B

Γ B=⇒
H

A→B,Δ
R→

Γ B===⇒
¬A,H

Δ

Γ B===⇒
¬A,H

¬A,Δ
AF¬

Γ B====⇒
A→B,H

B,Δ

Γ B====⇒
A→B,H

A→B,Δ
AF →

The rulesAF¬ andAF→ implement what the authors call anAFortiori condition,
seen most clearly in the second of these two rules.

Here is a proof in Gentzen’s tree-style of the sequent corresponding to the formula
that is the type of the S combinator:

p, p→q, p→q→r
p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

p, r
Ax

q, p, p→q→r
p→q→r,p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

p, r
Ax

q→r, q, p
q→r,p→q→r,p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

q, r
Ax

r, q, p
q→r,p→q→r,p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

r
Ax

q→r, q, p
p→q→r,p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

r
L→

q, p, p→q→r
p→q

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

r
L→

p, p→q, p→q→r
{}

======================⇒
p→r,(p→q)→p→r,(p→q→r)→(p→q)→p→r

r
L→

p→q, p→q→r
{}

====================⇒
(p→q)→p→r,(p→q→r)→(p→q)→p→r

p→r
R→

p→q→r
{}

============⇒
(p→q→r)→(p→q)→p→r

(p→q)→p→r
R→

{}
=⇒
{}

(p→q→r)→(p→q)→p→r
R→

with shape

1
2

3 4
5 L→

6 L→
7 L→
8 R→
9 R→
10 R→

Intuitionistic Decision Procedures Since Gentzen 259

A proof in the G4ip calculus looks (in tree form) much the same but with fewer
formulae at each node and without branching, using the rule L0→ rather than L→.
(Here is the IGr proof again in linear style, using a one-dimensional layout B;H :
� =⇒ � for each sequent)

[p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [p, p→q, p→q→r] =⇒ [p, r)1(]

[p→q→r, p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [q, p, p→q→r] =⇒ [p, r)2(]

[q→r, p→q→r, p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [q→r, q, p] =⇒ [q, r] (3)

[q→r, p→q→r, p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [r, q, p] =⇒ [r] (4)

[p→q→r, p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [q→r, q, p] =⇒ [r] ByL→ from 3, 4 (5)

[p→q]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [q, p, p→q→r] =⇒ [r] ByL→ from 2, 5 (6)

[]; [p→r, (p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [p, p→q, p→q→r] =⇒ [r] ByL→ from 1, 6 (7)

[]; [(p→q)→p→r, (p→q→r)→ (p→q)→p→r] : [p→q, p→q→r] =⇒ [p→r] ByR→ from 7 (8)

[]; [(p→q→r)→ (p→q)→p→r] : [p→q→r] =⇒ [(p→q)→p→r] ByR→ from 8 (9)

[]; [] : [] =⇒ [(p→q→r)→ (p→q)→p→r] ByR→ from 9 (10)

The same calculus was rediscovered in 2013–2014 by Goré et al., renamed
“IntHistGC” and implemented with several optimisations such as caching and back-
jumping [34].

8.8 The Calculus SIC of Corsi and Tassi

SIC is a variant of the system IGr in the same paper [10]; the essential difference is
that backtracking (because of disjunctive branching) is incorporated into the calculus,
and thus each node of the tree is a stack of ordinary sequents rather than just one
such sequent. This is very similar to Mints’ notion of tableau. Sequents are pushed
onto the stack to indicate all the alternative possibilities (according to the different
implicational succedent formulae); as they are tried and found unsolvable, they are
popped, and failure occurs when the stack is empty. The goal is thus achieved (as
reflected in the paper’s title, “Intuitionistic logic freed of all metarules”) that all use
of “global metarules” is thus replaced by use of “local metarules”, incorporated into
the rules of the calculus.

8.9 The Calculus LSJ of Ferrari, Fiorentini and Fiorino

Sequents are [25] of the form �
�⇒ �, the components �,�,� being sets (of for-

mulae) rather than multisets. Let us use < for ≤ without equality.
The semantics (using only finite models) of such a sequent is that (K, V, w) �

�
�⇒ � iff, whenever both

1. for every H ∈ � and w′ ∈ K with w < w′, one has (K, V, w′) � H,
2. for every G ∈ �, one has (K, V, w) � G,

then for some D ∈ � one has (K, V, w) � D. Negation is defined as usual. We omit
the rules for disjunction, dual to those for conjunction. The rules are

260 R. Dyckhoff

⊥,Γ Θ=⇒ Δ
L⊥

A,Γ Θ=⇒ Δ, A
Id

A,B,Γ Θ=⇒ Δ

A ∧ B,Γ Θ=⇒ Δ
L∧ Γ Θ=⇒ Δ, A Γ Θ=⇒ Δ, B

Γ Θ=⇒ Δ, A ∧ B
R∧

B,Γ Θ=⇒ Δ Γ
B,Θ
===⇒ Δ, A Θ,Γ B=⇒ A

A→B,Γ Θ=⇒ Δ
L→ A,Γ Θ=⇒ Δ, B A,Θ,Γ

{}
=⇒ B

Γ Θ=⇒ Δ, A→B
R→

A syntactic proof of cut-admissibility for this calculus seems difficult; a semantic
proof is in [25]. Using our own implementation of LSJ, with Prolog cuts to prune the
search space wherever seemed appropriate, the first (indeed, only) proof we found
of the formula that is the type of the S combinator is 87 lines long. It is possible that,
with differently placed cuts in the implementation, a shorter proof would be found.
An associated calculus, building on the approach of [57], gives bicompleteness.

8.10 The Calculus GLJ

We recall Sambin andValentini’s systemGLS’ from [61] for the classical provability
logic GL (implicational and modal part: the other parts are standard). Antecedents
and succedents are sets; so �,A and �,� stand for the unions {A} ∪ � and � ∪ �

(and similarly for A, �). When we see A⊃B, � in the conclusion of a schematic rule,
it is implicit thatA⊃B /∈ �; similarlywith� rather than�, and for other connectives.
Actual proofs may for clarity be written with apparent repetitions. All rules (except
RR) are invertible—[61] calls this doubly sound. Initial sequents are, as is almost
usual, those with a formula common to both left and right (or with ⊥ on the left).
The rules (in each of which � and � are disjoint, and with � and 	 disjoint sets of
atoms) are:

� =⇒ �,A B, � =⇒ �

A⊃B, � =⇒ �
L⊃ A, � =⇒ �,B

� =⇒ �,A⊃B
R⊃ �,��,�D =⇒ D

�,�� =⇒ ��,�D, 	
RR

The rule RR has the property that if the conclusion is valid then, for some choice
of a boxed formula in its succedent, the corresponding premiss is valid. ([61] also
calls this doubly sound.)

Root-first proof search inGLS’ terminates. The argument (from [61]) is as follows.
First, used root-first, every rule other than RR reduces the number of connectives.
Second, as we proceed up a branch, the set of boxed formulae in the antecedent
occasionally expands but never shrinks: thus, if a sequent �,�� =⇒ ��,	 is a
conclusion of RR, the antecedent of every sequent above it will contain a formula
�D, with D ∈ �, and the antecedent of every sequent at or below it cannot contain
such a formula (since search is required to stop at initial sequents). So all the sequents
in a branch are different. By the subformula property their number is finite, so search
along any branch terminates.

Intuitionistic Decision Procedures Since Gentzen 261

Consider the standard embedding ·� of Int into GL, in which notice the distinc-
tions between classical and intuitionistic implication, A⊃B and A→B, and between
classical and intuitionistic negation, ∼A and ¬A:

⊥� := ⊥ P� := P ∧ �P
(A ∧ B)� := A� ∧ B� (A ∨ B)� := A� ∨ B�

(¬A)� := ∼A� ∧ �(∼A�) (A→B)� := (A� ⊃B�) ∧ �(A� ⊃B�)

The interpretations of the intuitionistic implication rules are then

��, (A→B)� =⇒ A�, �� ��,B� =⇒ ��

��, (A→B)� =⇒ �� L→� ��,A� =⇒ B�

�� =⇒ (A→B)�, �� R→�

and these need to be justified as sound rules in GLS’ (in whichWeakening is known
to be admissible). This is routine.

We now specialise the rules of GLS’ and show them in the language of Int, giving
us a novel calculus GLJ. In the following, P ranges over atoms, � and 	 are sets of
atoms; � and
 are sets of either atoms, classical negations or classical mplications,
implicitly treated as boxed; � and � are arbitrary sets of formulae—and all are just
formulae of Int, apart from the classical negations and implications (in � and
).

Sequents are now of the form �;�;� =⇒ �;
;	. Provability of a formula A
will match the derivability of the sequent []; []; [] =⇒ A; []; []. We use the classical
notation A⊃B for implications after being moved by rule L→ from � to � (or by
rule R→ from � to
), so that, when moved back to � by variants of RR, they are
correctly analysed (by L⊃).

P ,�;�;� =⇒ �;
;	, P
Ax1

�; A ,�;� =⇒ �;
, A ;	 Ax2

�;�; ⊥ , � =⇒ �;
;	 L⊥ �;�;� =⇒ �;
;	
�;�;� =⇒ �, ⊥ ;
;	 R⊥

P,�;P,�;� =⇒ �;
;	
�;�; P , � =⇒ �;
;	 LAt

�;�;� =⇒ �;
;P, 	 �;�;� =⇒ �;P,
;	
�;�;� =⇒ P ,�;
;	 RAt

�;�;A,B, � =⇒ �;
;	
�;�; A ∧ B , � =⇒ �;
;	 L∧

�;�;� =⇒ �,A;
;	 �;�;� =⇒ �,B;
;	
�;�;� =⇒ �, A ∧ B ;
;	 R∧

262 R. Dyckhoff

Rules for ∨ are dual to those for ∧, so need not be shown here.

�;A⊃B,�;� =⇒ �,A;
;	 �;A⊃B,�;B, � =⇒ �;
;	
�;�; A→B , � =⇒ �;
;	 L→

�;�;� =⇒ �,A;
;	 �;�;B, � =⇒ �;
;	
�;�; A⊃B , � =⇒ �;
;	 L⊃

�;�;A, � =⇒ �,B;
;	 �;�;� =⇒ �;
,A⊃B;	

�;�;� =⇒ �, A→B ;
;	 R→

�;∼A,�;� =⇒ �,A;
;	
�;�; ¬A , � =⇒ �;
;	 L¬ �;�;� =⇒ �,A;
;	

�;�; ∼A , � =⇒ �;
;	 L∼

�;�;A, � =⇒ �;
;	 �;�;� =⇒ �;
,∼A;	
�;�;� =⇒ �, ¬A ;
;	 R¬

Finally, we have rules corresponding to the RR rule of GLS’. There are three of
these, since the formulae in
 can be either atoms, classical implications or classical
negations. These are the only rules that are not invertible.

[];A⊃B, �;A, � =⇒ B;[];[]
�;�;[] =⇒ [];
, A⊃B ;	

RR⊃ [];∼A, �;A,� =⇒ [];[];[]
�;�;[] =⇒ [];
, ∼A ;	

RR∼ �;P,�;� =⇒ [];[];P
�;�;[] =⇒ [];
, P ; 	

RRAt

In these rules RR⊃, RR∼ and RRAt, it is required that � and 	 are disjoint and � is
disjoint from (respectively)
,A⊃B, from
,∼A and from
,P.

This calculus GLJ doesn’t quite have the subformula property: for example, L→
and R→ turn intuitionistic implications into classical implications. To obtain it, we
can either decree that A⊃B is a subformula of A→B and that ∼A is a subformula
of ¬A, or adjust the calculus slightly (at the expense of some extra search). But it
does have the termination property, by an extension of the argument for GLS’ above.
Countermodel construction from failed searches seems to be routine. But, the first
proof found (of the type of the S combinator) has 5,185 lines. GLJ is thus presented
as an example, which could have been written down at any time after 1982, of a
complete calculus with an easy termination argument—but not as efficient as G4ip
or m-G4ip.

9 Labelled Calculi

Many authors (Castellini, Catach, Fitting, Gabbay, Kanger, Maslov, Negri, Russo,
Schmidt, Simpson, Tishkovsky, Vigano, …) have exploited labels (aka “prefixes”)
in sequent calculi (or tableau calculi), one motivation being to make the inference

Intuitionistic Decision Procedures Since Gentzen 263

rules invertible (and another being to allow uniform development of analytic calculi
from frame conditions rather than from axioms). Some have criticised this as a lack
of syntactic purity, i.e. as the presence of “semantic pollution”; others defend it
as allowing calculi for otherwise unmanageable logics. Read [59] mounts a strong
defence. Goré has a useful survey [32] in the context of modal logics. Using labelled
tableaux, Schmidt and Tishkovsky have implemented a generic tableau calculus
generator [62], geared rather towards description logics; this can generate a JAVA-
based prover, or could be combined with a tableau-based theorem prover such as
LOTREC [46] or the Tableaux Work Bench [1].

For Int, and using sequent calculus notation rather than tableaux, one statement of
the method is by Dyckhoff and Negri [20]. This covers a wide range of intermediate
logics—all those where the first-order frame conditions in Kripke semantics can
be presented as geometric (aka coherent) implications, i.e. (in fact) all that can be
presented semantically using first-order formulae, since every first-order theory has
a coherent conservative extension [21, 22]. This approach solves the problem of
backtracking; but termination is a problem, with various approaches, including the
“unrestricted blocking” rule of [62] and another method in [30, 53].

9.1 Calculus G3i

The calculus just mentioned (by Dyckhoff and Negri [20]) is as follows (rules for ∨
are omitted, being dual to those for ∧):

x : ⊥ , � =⇒ �
L⊥

x ≤ y, x : P , � =⇒ �, y : P Ax

x : A, x : B, � =⇒ �

x : A ∧ B , � =⇒ �
L∧ � =⇒ �, x : A � =⇒ �, x : B

� =⇒ �, x : A ∧ B
R∧

x ≤ y, x : A→B, � =⇒ �, y : A x ≤ y, x : A→B, y : B, � =⇒ �

x ≤ y, x : A→B , � =⇒ �
L→

x ≤ y, y : A, � =⇒ �, y : B
� =⇒ �, x : A→B

R→

x ≤ x, � =⇒ �

� =⇒ �
Ref

x ≤ z, x ≤ y, y ≤ z, � =⇒ �

x ≤ y, y ≤ z , � =⇒ �
Trans

with y fresh in R→, i.e. not occurring in the conclusion.
Derivations can be restricted to those in which the label x used in the Ref rule

already occurs in the conclusion.
This calculus does not terminate (e.g. on Peirce’s formula).

264 R. Dyckhoff

Negri [53] shows how to add a loop-checking mechanism to ensure termination
and build finite counter-models directly from a failed proof search. The effect on
complexity isn’t clear; the loop-checking is expensive. Further details of related
methods are in Garg et al. [30]; there is also related work by Schmidt et al. [62] and
by Antonsen and Waaler [2].

10 Focused Calculi

Naive implementations of the calculi mentioned above spend a great deal of time
looking along lists to find a formula of a certain form.

A better approach is to take the next formula and either analyse it (i.e. generate
appropriate subproblems) or put it aside in a suitable place for later use. For example,
atomic formulae can be examined (to see if the branch closes) or (if that fails) put into
a list of atoms; and succedent conjunctions can be put aside until all non-branching
rules have been dealt with. This can be regarded as a naive form of focusing. So can,
to some extent, the calculus G4ip, with its connections to the focused calculus LJQ.

But several authors, notably McLaughlin and Pfenning [49], have more logic-
based approaches. For lack of space, we omit their presentation.

11 Challenges and Open Problems

1. Find a simple calculus for Int that (a) has the termination property (ideally, with
linear depth) and (b) avoids backtracking through rules, but without implementing
the usual meta-level “list of disjunctive goals to be tried one after another”. This
can be done for classical logic and for Gödel-Dummett logic [19]. Is there a
fundamental complexity result (yet to be discovered) that forbids this? Note that
linear temporal logic is PSPACE-hard but has a terminating calculus [7] with all
rules invertible. (Termination here depends on a form of history mechanism.) Is
there a combination of the G4ip ideas and labelling that solves this problem?

2. Find, develop and simplify uniform methods for ensuring termination in labelled
calculi.

3. Find syntactic (i.e. non-semantic)methods for proving cut admissibility for calculi
with sequents with several components, e.g. LSJ and GLJ.

4. Is there a calculus that combines the good features of G4ip (where it is the
nested implications—formulae of type (4) and their variant (7)—that are prob-
lematic) and Mints’ resolution method (where these are less of a problem: his
class [0,1,2,4,5,7] is in P). Or do we get, not the good, but the bad features of
both?

5. Develop more proofs of correctness and completeness using proof assistants like
NuPRL, Coq and Agda, extending work of Underwood [69], Caldwell [8], Weich
[73, 74] and allowing extraction of verified software in (e.g.) Haskell, Scheme or

Intuitionistic Decision Procedures Since Gentzen 265

OCaml. There is some recent work (unpublished) by Larchey-Wendling on LSJ
(and on G4ip) in this direction.

Acknowledgments Thanks are especially due to Gerhard Jäger and Helmut Schwichtenberg,
whose scientific encouragement over the years has been substantial; and to Grisha Mints, now,
alas, no longer with us, for helpful comments on historical matters—regrettably not all incorpo-
rated (thanks to a failure of technology).

References

1. P. Abate, R. Goré, The Tableaux Work Bench, in Proceedings of IJCAR 2003. LNCS, vol.
2796 (Springer, 2003), pp. 230–236

2. R. Antonsen, A. Waaler, A labelled system for IPL with variable splitting, in Proceedings of
CADE 2007. LNAI, vol. 4603 (Springer, 2007), pp. 132–146

3. A. Avellone, G. Fiorino, U. Moscato, An implementation of a O(n log n)-SPACE decision
procedure for propositional intuitionistic logic, in 3rd International Workshop on the Imple-
mentation of Logics (Tbilisi, Georgia, Oct 2002)

4. B. Barras, S. Boutin, et al., The Coq proof assistant reference manual, version 6.2.1. Technical
Report, INRIA (2000). http://www.ftp.inria.fr

5. E.W. Beth, The Foundations of Mathematics (North-Holland, 1959)
6. M. Bezem, T. Coquand, Automating coherent logic, in Proceedings of LPAR 2005. LNCS,

vol. 3835 (Springer, 2005), pp. 246–260
7. K. Brünnler, M. Lange, Cut-free sequent systems for temporal logic. J. Logic Algebraic

Program. 76, 216–225 (2008)
8. J. Caldwell, Decidability extracted: synthesizing “correct-by-construction” decision proce-

dures from constructive proofs. Ph.D. dissertation (Cornell University, 1998)
9. L. Catach, TABLEAUX: a general theorem prover for modal logics. J. Autom. Reason. 7,

489–510 (1991)
10. G. Corsi, G. Tassi, Intuitionistic logic freed of all metarules. J. Symb. Logic 72, 1204–1218

(2007)
11. H. Curry, Foundations of Mathematical Logic (Dover Publications, 1963)
12. K. Dos̆en, A note on Gentzen’s decision procedure for intuitionistic propositional logic.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 33, 453–456 (1987)
13. A.G. Dragalin, Mathematical Intuitionism, Translations of Mathematical Monographs 67

(Trans. E. Mendelson). (American Mathematical Society, Providence, R.I., 1988)
14. R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic. J. Symb. Logic 57,

795–807 (1992)
15. R. Dyckhoff, Yet Another Proof Engine, MS (available from the author) (2014)
16. R. Dyckhoff, D. Kesner, S. Lengrand, Strong cut-elimination systems for Hudelmaier’s depth-

bounded sequent calculus for implicational logic, in IJCAR 2006 Proceedings. LNCS, vol.
4130, pp. 347–361 (2006)

17. R. Dyckhoff, S. Lengrand, LJQ: a strongly focused calculus for intuitionistic logic, in Pro-
ceedings of Computability in Europe 2006. LNCS, vol. 3988 (Springer, 2006), pp. 173–185

18. R. Dyckhoff, S. Negri, Admissibility of structural rules for contraction-free systems of intu-
itionistic logic. J. Symb. Logic 65, 1499–1518 (2000)

19. R. Dyckhoff, S. Negri, Decision methods for linearly ordered Heyting algebras. Arch. Math.
Log. 45, 411–422 (2006)

20. R. Dyckhoff, S. Negri, Proof analysis for intermediate logics. Arch. Math. Log. 51, 71–92
(2012)

21. R.Dyckhoff, S.Negri, Geometrisation of first-order logic, B. Symb. Logic 21, 123–163 (2015)
Geometrisation of First-order Formulae, Submitted June 2014

http://www.ftp.inria.fr

266 R. Dyckhoff

22. R. Dyckhoff, S. Negri, Coherentisation of accessibility conditions in labelled sequent calculi,
in Extended Abstract (2 pp.), Gentzen Systems and Beyond 2014, Informal Proceedings, ed.
by R. Kuznets & G. Metcalfe. Vienna Summer of Logic, July 2014

23. U. Egly, S. Schmitt, On intuitionistic proof transformations, their complexity, and application
to constructive program synthesis. Fundamenta Informaticae 39, 59–83 (1999)

24. M. Ferrari, C. Fiorentini, G. Fiorino, Simplification rules for intuitionistic propositional
tableaux. ACM Trans. Comput. Log. 13, 14:1–14:23 (2012)

25. M. Ferrari, C. Fiorentini, G. Fiorino, Contraction-free linear depth sequent calculi for intu-
itionistic propositional logicwith the subformula property andminimal depth counter-models.
J. Autom. Reason. 51, 129–149 (2013)

26. G. Fiorino, Decision procedures for propositional intermediate logics. Ph.D. thesis (Milan
University, 2000)

27. M. Fitting, Intuitionistic Logic, Model Theory and Forcing (North-Holland, 1969)
28. M. Fitting, Proof Methods for Modal and Intuitionistic Logic (Reidel, 1983)
29. T. Franzén, Algorithmic aspects of intuitionistic propositional logic, I and II, SICS Research

Reports R870X and R8906, 1987 and 1989
30. D. Garg, V. Genovese, S. Negri, Countermodels from sequent calculi in multi-modal logics,

in Proceedings of LICS 2012 (IEEE, 2012), pp. 315–324
31. G. Gentzen, Untersuchungen über das logische Schliessen. Math. Zeitschrift 39, 176–210,

405–431 (1935)
32. R. Goré, Tableau methods for modal and temporal logics, in Handbook of Tableau Methods

(Kluwer, 1999), pp. 297–396
33. R. Goré, J. Thomson, BDD-based automated reasoning in propositional non-classical logics:

progress report, in Proceedings of PAAR-2012, EPiC Series 21 (EasyChair, 2013), pp 43–57
34. R. Goré, J. Thomson, J. Wu, A history-based theorem prover for intuitionistic propositional

logic using global caching: IntHistGC system description, in Proceedings of IJCAR 2014.
LNAI, vol. 8562 (Springer, 2014), pp. 262–268

35. J. Goubault-Larrecq, Implementing tableaux by decision diagrams, Unpublished note, Institut
für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, 47 pp. (1996)

36. H. Herbelin, Séquents qu’on calcule. Thèse de Doctorat, Université Paris 7 (1995)
37. A. Heuerding, M. Seyfried, H. Zimmermann, Efficient loop-check for backward proof search

in some non-classical logics, in Proceedings of Tableaux 1996. LNAI, vol. 1071 (Springer,
1996), pp. 210–225

38. J. Howe, Two loop-detection mechanisms: a comparison, in Proceedings of Tableaux 1997.
LNCS, vol. 1227 (Springer, 1997), pp. 188–200

39. J. Hudelmaier, A Prolog program for intuitionistic propositional logic, SNS-Bericht 88–28,
Tübingen (1988)

40. J. Hudelmaier, Bounds for cut elimination in intuitionistic propositional logic. Arch. Math.
Logic 31, 331–353 (1992)

41. J. Hudelmaier, AnO(n log n)-SPACE decision procedure for intuitionistic propositional logic.
J. Logic Comput. 3, 63–76 (1993)

42. O. Ketonen, Untersuchungen zum Prädikatenkalkül. Annales Acad. Sci. Fenn, Ser. A.I. 23
(1944)

43. S.C. Kleene, Introduction to Metamathematics (North-Holland, 1952)
44. D. Larchey-Wendling, D. Mery, D. Galmiche, STRIP: structural sharing for efficient proof-

search, in Proceedings of IJCAR 2001. LNCS, vol. 2083 (Springer, 2001), pp. 696–700
45. P. Lincoln, A. Scedrov, N. Shankar, Linearizing intuitionistic implication. Ann. Pure Appl.

Logic 60, 151–177 (1993)
46. O.Gasquet, A.Herzig,D. Longin,M. Sahade, LoTREC: logical tableaux research engineering

companion, inProceedings of Tableaux 2005. LNCS, vol. 3702 (Springer, 2005), pp. 318–322
47. S. Maehara, Eine Darstellung der Intuitionistischen Logik in der Klassischen. Nagoya Math.

J. 7, 45–64 (1954)
48. S.Yu. Maslov, An inverse method of establishing deducibility in the classical predicate calcu-

lus. Dokl. Akad. Nauk. SSSR 159, 17–20 (translated as Soviet Math. Dokl. 5, 1420) (1964)

Intuitionistic Decision Procedures Since Gentzen 267

49. S. McLaughlin, F. Pfenning, Imogen: focusing the polarized inverse method for intuitionistic
propositional logic, in Proceedings of LPAR’08. LNCS, vol. 5330 (Springer, 2008), pp. 174–
181

50. G. Mints, Gentzen-type systems and resolution rule. Part I. LNCS 417, 198–231 (1990)
51. G. Mints, Complexity of subclasses of the intuitionistic propositional calculus, Programming

Logic (ed. by B. Nordström). BIT 31, 64–69 (1992)
52. G.Mints,A Short Introduction to Intuitionistic Logic, CSLI Stanford Lecture Notes (Springer,

2000)
53. S. Negri, Proofs and countermodels in non-classical logics. Logica Universalis 8, 25–60

(2014)
54. K. Ono, Logische Untersuchungen über die Grundlagen der Mathematik. J. Fac. Sci. Imperial

Univ. Tokyo. Section I. Math. Astron. Phys. Chem. 3, 329–389 (1938)
55. J. Otten, Clausal connection-based theorem proving in intuitionistic first-order logic, in Pro-

ceedings of Tableaux 2005. LNCS, vol. 3702 (Springer, 2005), pp 245–261
56. J. Otten, The ILTP Library. http://www.cs.uni-potsdam.de/ti/iltp/
57. L. Pinto, R. Dyckhoff, Loop-free construction of counter-models for intuitionistic proposi-

tional logic, Symposia Gaussiana, Conf. A, ed. by M. Behara, R. Fritsch, R.G. Lintz (Walter
de Gruyter & Co, Berlin, 1995), pp. 225–232

58. J. von Plato, Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic and Foun-
dations of Mathematics Springer (to appear, 2016)

59. S.L. Read, Semantic Pollution and Syntactic Purity, R. Symb. Logic 8, 649–691 (2015)
60. D. Sahlin, T. Franzén, S. Haridi, An intuitionistic predicate logic theorem prover. J. Logic

Comput. 2, 619–656 (1992)
61. G. Sambin, S. Valentini, The modal logic of provability. The sequential approach. J. Philos.

Logic 11, 311–342 (1982)
62. R. Schmidt, D. Tishkovsky,Automated synthesis of tableau calculi. LogicalMethodsComput.

Sci. 7, 32 (2011)
63. K. Schütte, Vollstandige Systeme modaler und intuitionistischer Logik, Ergebnisse der Math-

ematik (Springer, 1968)
64. W. Sieg, S. Cittadini, Normal natural deduction proofs (in non-classical logics), in LNAI 2605

(Springer, 2005), pp. 169–191
65. R. Statman, Intuitionistic propositional logic is polynomial-space complete. Theoret. Comput.

Sci. 9, 67–72 (1979)
66. T. Tammet, A resolution theorem prover for intuitionistic logic, in CADE-13. LNCS, vol.

1104 (Springer, 1996), pp. 2–16
67. N. Tennant, Autologic (Edinburgh University Press, 1992)
68. A.S. Troelstra, H. Schwichtenberg, Basic Proof Theory (Cambridge, 2001)
69. J. Underwood, A constructive completeness proof for intuitionistic propositional calculus, TR

90–1179, Department of Computer Science, Cornell University, 1990; also in Proceedings of
the Workshop on Analytic Tableaux (Marseille, 1993)

70. N.N. Vorob’ev, The derivability problem in the constructive propositional calculus with strong
negation. Doklady Akademii Nauk SSSR 85, 689–692 (1952)

71. N.N. Vorob’ev, A new algorithm for derivability in the constructive propositional calculus.
AMS Transl. Ser. 2(94), 37–71 (1970)

72. A. Waaler, L. Wallen, Tableaux methods in intuitionistic logic, in Handbook of Tableaux
Methods, ed. by M. D’Agostino, D.M. Gabbay, R. Hähnle, J. Posegga (Kluwer, Dordrecht,
1999), pp. 255–296

73. K. Weich, Improving proof search in intuitionistic propositional logic. Munich Ph.D. thesis,
also from Logos Verlag Berlin (2001)

74. K. Weich, Decision procedures for intuitionistic propositional logic by program extraction,
in Proceedings of Tableaux 1998. LNCS, vol. 1397 (Springer, 1998), pp. 292–306

http://www.cs.uni-potsdam.de/ti/iltp/

The Operational Perspective: Three Routes

Solomon Feferman

For Gerhard Jäger, in honor of his 60th birthday.

Let me begin with a few personal words of appreciation, since Gerhard Jäger is one
of my most valued friends and long time collaborators. It’s my pleasure to add my
tribute to him for his outstanding achievements and leadership over the years, and
most of all for having such a wonderful open spirit and being such a fine person.

I first met Gerhard at the 1978 logic colloquium meeting in Mons, Belgium.
He was attending that with Wolfram Pohlers and Wilfried Buchholz, with both of
whom I had long enjoyed a stimulating working relationship on theories of iterated
inductive definitions. From our casual conversations there, it was clear that Gerhard
was already someone with great promise in proof theory. But things really took off
between us a year later when we both visited Oxford University for the academic
year 1979–1980. Gerhard had just finished his doctoral dissertationwithKurt Schütte
and Wolfram Pohlers. I remember that we did a lot of walking and talking together,
though I had to walk twice as fast to keep up with him. We talked a lot about proof
theory and in particular about my explicit mathematics program that I had introduced
in 1975 and had expanded on in my Mons lectures; Gerhard was quick to take up all
my questions and to deal with them effectively. Since then, as hardly needs saying,
he became a leader in the development of the proof theory of systems of explicit
mathematics and related systems in the applicative/operational framework (among
many contributions to a number of other areas), and he went on to establish in Bern
a world center for studies in these subjects.

It was also throughGerhard that I was able to come in useful contactwith a number
of his students andmembers of his group, andmost particularlywith Thomas Strahm,
who then became a second very important collaborator of mine, both on explicit
mathematics and the unfolding program, of which I’ll say something below. Since

S. Feferman (B)
Department of Mathematics Stanford University, Stanford, USA
e-mail: feferman@stanford.edu

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_7

269

270 S. Feferman

some time now, Gerhard and Thomas have been working with me on a book on the
foundations of explicit mathematics, and in the last few years we have made great
progress on that with the assistance of my former student Ulrik Buchholtz, for which
I’m very grateful.1 Finally on the personal front I want to add that my wife, Anita,
and I have had the pleasure over the years of visiting Gerhard and his family, first in
Zürich, and then in Bern, and we want to thank him and his wife Corinna for their
generous, ever-ready welcome and hospitality.

This article consists of four sections, beginning in Sect. 1 with an explanation
of the general features of the operational perspective. That is then illustrated in
the remaining three sections by the explicit mathematics program, operational set
theory, and the unfolding program, resp. The material of this article is by no means
exhaustive of the work carried out under the operational perspective; instead, it
concentrates on those areas with which I have been personally involved and that I
thus know best, but references with a wider scope are given where relevant. I have
two readers in mind: the general reader with a background in logic on the one hand
and the expert in applicative theories on the other. For the former I have emphasized
the aims of the work and filled in its background. For the latter, I have added new
points toward the end of each of Sects. 2–4 that I hope will be worthy of attention.
In particular, Sect. 2 has material on the development of constructive and predicative
mathematics in systems of explicit mathematics, Sect. 3 deals with problems that
arose in my development of OST and sketches Gerhard Jäger’s solution to them, and
Sect. 4 concludes with new conjectures on the unfolding of systems of operational
set theory.

1 The Operational Perspective

Operations are ubiquitous inmathematics but not adequately accounted for in current
global (or universal) foundational schemes. In particular, the only operations that
have a direct explanation in set theory are those represented by functions qua many-
one relations, so cannot explain operations such as union and power set that are
supposed to be applicable to arbitrary sets. The attempt of Church [14, 15] to provide
a foundation of mathematics in purely operational terms that would be an alternative
to set theory was shown to be inconsistent, and later efforts at similar programs such
as that of Fitch [18] have had only very limited success. In any case, one should
not expect a “one size fits all” theory of operations; witness the great conceptual
variety of computational, algebraic, analytic and logical operations among others.
Nevertheless, there is a core theory of operations that can readily be adapted to a
number of local purposes by suitable expansions in each case. This has the following
features:

1Let me also take this opportunity to thank Thomas Strahm and Thomas Studer for organizing the
December 2014 meeting in honor of Gerhard Jäger, and for arranging for me to participate via
Skype since I was unable to attend in person.

The Operational Perspective: Three Routes 271

(i) Operations are in general allowed to be partial. For example, the operations
of division in algebra and integration and differentiation in analysis are not
everywhere defined.

(ii) Operations may be applied to operations. For example, one has the operation
of composition of two operations, the operation of n-times iteration of a given
operation, the “do…until…” operation of indefinite iteration, etc.

(iii) In consequence of (ii), a generally adaptable theory of operations is type-free.
(iv) Extensionality is not assumed for operations. For example, the theory should

allow the indices of partial recursive functions to appear as one model.
(v) The language of the theory is at least as expressive as the untyped lambda-

calculus and the untyped combinatory calculus.
(vi) Though logical operations of various kinds on propositions and predicates may

appear in particular applications, first-order classical or intuitionistic predicate
logic is taken as given.

These features form the general operational perspective.
In accordancewith (i)–(iii), in any particular expansion of the basic theory, wewill

want some way of introducing application terms s, t , u,…, generated from variables
and constants by closure under application, written s(t) or st, and then to express that
a term t is defined, in symbols t↓. In the original operational approach that I took
in my article [23] on explicit mathematics, the basic relations included a three place
relation App(x , y, z), informally read as expressing that the operation x applied to y
has the value z. Then application (pseudo-)terms were introduced contextually, first
in (pseudo-)formulas t � z expressing that t is defined and has the value z: for t a
variable or constant, this is simply taken to be ordinary equality,while for t of the form
t1t2, this is taken to be ∃x, y(t1 � x ∧ t2 � y∧App(x , y, z)). Finally, t↓ is defined to
be ∃z(t � z) and t1 � t2 is defined to be ∀z(t1 � z ↔ t2 � z). An elegant alternative
to this approachwas providedbyBeeson in 1981 (cf. [5,Chap.VI.1]) under the rubric,
the Logic of Partial Terms (LPT). In LPT, terms are now first class citizens and the
expressions t↓ are taken to be basic formulas governed by a few simple axioms
and rules, among which we have suitable restrictions on universal and existential
instantiation. In this system, t1 � t2 is defined by the formula t1↓ ∨ t2↓ → t1 = t2.
Most of the work after 1981 on the systems within the operational perspective has
taken LPT as basic, but we will see in Sect. 3 below that there may still be cases
where the original approach is advantageous. Note that LPT contains the “strictness”
axioms that if a relation R(t1, . . ., tn) holds then ti↓ holds for each i ; in particular, that
is the case for the equality relation. By t1t2, . . ., tn we mean the result of successive
application by association to the left.

The minimal theory we use has two basic constants k and s (corresponding to
Curry’s combinators K and S) with axioms: (i) kxy = y, and (ii) sxy↓ → sxyz �
xz(yz). These serve to imply that with any term t (x, . . .) we may associate a term
λx .t (x, . . .) in which the variable x is not free, and is such that (λx .t (x, . . .))y �
t (y, . . .). Moreover we can construct a universal recursor or fixed point operator r
(sometimes denoted rec), i.e. a term for which r f ↓∧ rfx � f (r f)x is provable.
In all the applications of the operational perspective below, axioms (i) and (ii) are

272 S. Feferman

further supplemented by suitable axioms for pairing and projection operations p, p0,
and p1, and definition by cases d.2 For the purposes below, let’s call these the basic
operational axioms, whether with respect to the App formulation or that in LPT.

2 Explicit Mathematics

Myworkwith the operational approach beganwith the explicit mathematics program
in [23]. Here is what led me to that. In the years following the characterization
[19, 76] of predicative analysis in terms of an autonomous progression of ramified
analytic systems whose limit is at the ordinal �0, I had explored various ways to
simplify conceptually the formal treatment of predicativity via unramified systems.3

Moreover, that would be important to see which parts of mathematical practice could
be accounted for on predicative grounds going beyond [85]. Independently of that
work, in [21] I had made use of extensions of Gödel’s functional (“Dialectica”)
interpretation to determine the proof-theoretical strength of various subsystems of
analysis by the adjunction of the unbounded minimum operator as well as the Suslin-
Kleene operator. The two pursuits came closer together in the article “Theories of
finite type related to mathematical practice” [24] for the Handbook of Mathematical
Logic. As with Gödel’s interpretation, that made use of the functional finite type
structure over the natural numbers.

Meanwhile, Errett Bishop’s novel informal approach to constructive analysis [7]
had made a big impression on me and I was interested in seeing what kind of more or
less direct axiomatic foundation could be given for it that would explain how it man-
aged to look somuch like classical analysis in practice while admitting a constructive
interpretation. Closer inspection showed that this depended on dealing with all kinds
of objects (numbers, functions, sets, etc.) needed for analysis as if they are given
by explicit presentations, each kind with an appropriate “equality” relation, and that
operations on them are conceived to lead from and to such presentations preserving
the given equality relations. In other words, the objects are conceived of as given
intensionally, while a classical reading is obtained by instead working extensionally
with the equivalence classes with respect to the given equality relations. Another
aspect of Bishop’s work that was more specific to its success was his systematic use
of witnessing data as part of what constitutes a given object, such as modulus of
convergence for a real number and modulus of (uniform) continuity for a function
of real numbers. Finally, his development did not require restriction to intuitionistic
logic (though Bishop himself abjured the Law of Excluded Middle).

2There are several possible formulations of the definition by cases operator. In the one originally
taken in [23], sometimes called definition by cases on V, this takes the form dxyuv = (x if u = v, else
y). However, when added to the axioms for k and s, extensionality is inconsistent for operations.
More restrictive versions have subsequently been used, mainly definition by cases on the natural
numbers, allowing both extensionality and totality of operations; cf. [59].
3First steps in that direction had already been made in [19] via the system IR. For subsequent
explorations cf. [20, 22, 26].

The Operational Perspective: Three Routes 273

Stripped to its core, the ontology of Bishop’s work is given by a universe of
objects, each conceived to be given explicitly, among which are operations and
classes (qua classifications). This led to my initial formulation of a system T0 of
explicit mathematics in [23] in which that approach to constructive mathematics
could be directly formalized. In addition, I introduced a second system T1, obtained
by the adjunction of the unbounded minimum operator so as to include a foundation
of predicativemathematics. The theory T0 was formulated in a single sorted language
with basic relations =, App, Cl, and ηwhere Cl(x) expresses that x is a class(ification)
and y η x expresses that y has the property given by x when Cl(x) holds. Variables A,
B, C , …, X , Y , Z , are introduced to range over the objects satisfying Cl, and y ∈ X
is also written for y η x where x = X . The basic logic of T0 is the classical first-order
predicate calculus.4 The axioms of T0 include the basic operational axioms, and the
remaining axioms are operationally given class existence axioms. For example, we
have an operationprodwhich takes any pair X ,Y of classes to produce their cartesian
product, X × Y and another operation exp which takes X , Y to the cartesian power
Y X , alsowritten X → Y . The formation of such classes is governed by anElementary
Comprehension Axiom scheme (ECA) that tells which properties determine classes
in a uniform way from given classes. These are given by formulas ϕ in which classes
may be used as parameters to the right of the membership relation and in which we
do not quantify over classes, and the uniformity is provided by operations cϕ applied
to the parameters of ϕ.5 But to form general products we need further notions and
an additional axiom. Given a class I , by an I -termed sequence of classes is meant
an operation f with domain I such that for each i ∈ I the value of f (i) is a class
Xi ; one wishes to use this to define �Xi [i ∈ I]. It turns out that in combination with
ECA amore basic operation is that of forming the join (or disjoint sum)

∑
Xi [i ∈ I]

whose members are all pairs (i , y) such that y ∈ Xi ; an additional Join axiom (J) is
needed to assure existence of the join as given by an operation j(I , f). Finally, we
have an operation i(A, R) and associated axiom (IG) for Inductive Generation which
produces the class of objects accessible under the relation R (a class of ordered pairs)
hereditarily within the class A. In particular, IG may be used to produce the class N
of natural numbers, then the class O of countable tree ordinals, and so on.

In later expositions of systems of explicit mathematics, the language of LPT was
used instead of the App relation for the operational basis, and the natural numbers N
were taken to be a basic class for which several forms of the principle of induction
were distinguished for proof theoretic purposes, as will be explained below. Also,
in the approach to the formalization of Explicit Mathematics due to Jäger [49],
it turned out to be more convenient to treat classes extensionally but each with
many possible representations within the universe V of individuals.6 Membership
has its usual meaning, but a new basic relation is needed, namely that an object x

4In [25] I also examined T0 within intuitionistic logic.
5The scheme ECA can be finitely axiomatized by adding constants for the identity relation, the first-
order logical operations for negation, conjunction, existential quantification, and inverse image of
a class under an operation.
6There is a difference in terminology, though: Jäger used ‘types’ for our classes.

274 S. Feferman

names or represents the class X , written R(x , X). In these terms, for example, one
has operations prod and exp such that whenever R(x , X) and R(y, Y) hold then
R(prod(x , y), X × Y) and R(exp(x , y), X → Y) hold.

The only difference of T1 from T0 lies in the adjunction of a numerical choice
operator µ as a basic constant, together with the axiom:

(μ) f ∈ (N → N) → μ f ∈ N ∧ [∃x(fx = 0) → f (μ f) = 0],

from which the unbounded7 least number operator can be defined. This is equivalent
to assumption of the operatorE0 for quantification overN. Later on a third system T2

was introducedbyadjoining a constant for theSuslin-KleeneoperatorE1 for choosing
a descending sequences g from a non-well-founded tree in the natural numbers
represented by an operation f . Models of the basic operational axioms of T0 are
provided in the natural numbers by taking App(x , y, z) to be the relation {x}(y) � z;
thus the extensions of the total operations are just the recursive functions. Similarly,
a model of the operational part of T1 is given by indices of partial

∏1
1 functions, so in

this case the extensions of the total operations are just the hyperarithmetic functions.
Finally, in the case of T2, one uses indices of the functions partial recursive in the
E1 functional. In general, given any model (A, App,…) of the operational axioms
with or without these special operators, one obtains a model of the class construction
axioms by a transfinite inductive definition of names of classes with suitable codes
for the operations on classes.8

The proof-theoretical study of subsystems of T0 began in [23] and was continued
in [25]. Since then the proof theory of subsystems of the Ti (either given directly or by
interpretation) has greatly proliferated and has become the dominant part of research
in explicit mathematics, continuing until this day. The paper Jäger et al. [55] provides
a useful survey of a considerable part of such work that begins with a relatively weak
theory BON (Basic Theory of Operations and Numbers). That adds to the applicative
language the constantsN, 0, and sc as well as a constant rN for primitive recursion on
N. Over the basic operational theory, BON has the usual axioms for 0 and successor;
for primitive recursion, we have an axiom which asserts that for arbitrary f and g,
total on N and N3(each to N), resp., the operation h = rNfg is total on N2 to N, and
satisfies hx0 = fx and hx(sc(y)) = gxy(hxy). Several forms of induction are considered
over BON; the full scheme, called formula induction, (F-IN) is of the usual form for
each formula ϕ(x) in the language, namely ϕ(0) ∧ (∀x ∈N)(ϕ(x) → ϕ(sc(x)) →
(∀x ∈N)ϕ(x). The single special case of this for ϕ(x) of the form fx = 0 (where f is
a variable) is called operation induction (O-IN), and when f is further assumed to be
total from N to {0, 1} that is called set induction (S-IN). Finally, the case for ϕ(x) of
the form fx ∈ N is called N-induction (N-IN). The paper Jäger et al. [55] summarizes

7In certain subsystems of T1 with restricted induction we need to add to the (μ) axiom that if μ f ∈
N then f ∈ (N → N).
8Parts of T0 relate to Aczel’s Frege structures and Martin-Löf’s constructive theory of types; cf. for
example, Beeson [5], Chaps. XI and XVII. But neither of these approaches goes on to the adjunction
of non-constructive functional operators like μ (or E0) and E1.

The Operational Perspective: Three Routes 275

the proof-theoretical strength of all combinations of these with BON and then with
BON plus the axioms for μ and E0.9 For reasons to be seen in a moment, let me
single out only two of their theorems:

(i) BON + (F-IN) ≡ PA, and
(ii) BON(µ) + (S-IN) ≡ PA,

where ≡ is the relation of proof-theoretical equivalence; we also have conservation
of the l.h.s. over the r.h.s in each of these results. (BON(µ) is BON plus the (µ)
axiom.) The result (i) is part of the folklore of the subject, and (ii) was established
in [37].

Let us now look at these systemswithin the language of T0 and T1, resp. There it is
natural to also consider class induction (C-IN), i.e. the case of the induction scheme
where ϕ(x) is of the form x ∈ X . Under the Elementary Comprehension Axiom
scheme (ECA), that implies (F-IN) for the formulas of the language of BON. More-
over, under the assumption of the (µ) axioms we can alternatively use set induction
to obtain all those instances. Put in these terms it turns out that we have the following
from Feferman and Jäger [38]:

(iii) BON + ECA + (C-IN) ≡ PA, and
(iv) BON(µ) + ECA + (S-IN) ≡ PA.

These results are of significance with respect to the question: what parts of mathe-
matics are accounted for in different parts of the explicit mathematics systems? The
results (iii) and (iv) are relevant to constructive and predicative mathematics, resp.,
as follows.

A careful examination of Bishop and Bridges [8]—a reworking and expansion of
Bishop [7]—shows that all its work in constructive analysis can be formalized in the
theory BON + ECA + (C-IN), hence requires no more principles for its justification
than given by Peano Arithmetic. The typical choice of notions and style of argument
is presented in [25, pp. 176ff]. Closer inspection shows that much of Bishop and
Bridges [8] can already be carried out in BON + ECA + (S-IN), which is equivalent
in strength to PRA. Although the theory of measure and integration presented in
Bishop [7] made use of Borel sets, and thus of the countable join of classes and the
countable tree ordinals, Bishop and Bridges [8] substituted for that an approach to
measure and integration that does not require J or IG at all.

Turning now to predicativemathematics, it is easily seen that all the redevelopment
of 19th century analysis on those grounds as sketched in [85] can be carried out in
the system BON(µ) + ECA + (S-IN) of (iv) above. The natural question to be raised is
howmuch ofmodern analysis can be carried out in that system. In that respect we can
make use of extensive detailed notes that I prepared in the period 1977–1981 but never
published at the time; a scanned copy of those notes with an up-to-date introduction is
nowavailable in [35]. Thatwork supportsmy conjecture [28, 30] that all scientifically
applicable mathematics can be formalized in a system conservative over PA, namely

9For the proof theory of systems of explicit mathematics with E1 see Jäger and Strahm [60] and
Jäger and Probst [58].

276 S. Feferman

BON(µ) + ECA + (S-IN). To carry this out in the case of 19th c. analysis, systematic
use is made of Cauchy completeness rather than the impredicative l.u.b. principle,
and sequential compactness is used in place of the Heine-Borel theorem. Then for
20th c. analysis, Lebesgue measurable sets and functions are introduced directly
via the Daniell approach without first going through the impredicative operation of
outer measure; the existence of non-measurable sets cannot be proved in the system.
Moving on to functional analysis, again the “positive” theory can be developed, at
least for separable Banach and Hilbert spaces, and can be applied to various Lp

spaces as principal examples. Among the general results that are obtained are usable
forms of theRieszRepresentationTheorem, theHahn-BanachTheorem, theUniform
Boundedness Theorem, and the Open Mapping Theorem. The notes conclude with
the spectral theory for compact self-adjoint operators on a separable Hilbert space.

This of course invites comparison with the work of Simpson [77] that examines
various parts of mathematics from the standpoint of the Reverse Mathematics pro-
gram initiated by Harvey Friedman. That centers on five subsystems of second order
arithmetic: RCA0,WKL0,ACA0,ATR0 and�1

1 −CA0. Each of these beyond the first
is given by a single second-order axiom scheme in addition to the induction axiom for
N in the form (C-IN). In contrast to our work, which permits the free representation
of practice in the full variable finite type structure over N, all mathematical notions
considered by Simpson are represented in the second-order language by means of
considerable coding. The main aim of the Reverse Mathematics program is to show
that for a substantial part of practice, if a given mathematical theorem follows from a
suitable one of the five axioms above then it is equivalent to it, i.e. the implication can
be reversed. For comparison with our work, much of predicative analysis falls under
these kinds of results obtained for WKL0 and ACA0, of proof-theoretical strength
PRA and PA respectively. Thus, on the one hand Simpson’s results are more informa-
tive than ours, since the strength of various individual theorems of analysis is sharply
determined. On the other hand, the exposition for the work in WKL0 and ACA0 is
not easily read as a systematic development of predicative analysis, as it is in our
notes. Still, the Simpson book is recommended as a rich resource of other interesting
results that could be incorporated into our approach through explicit mathematics.

Of course, predicative analysis—as measured by the explication of Feferman
[19] and Schütte [76]—in principle goes far beyond what can be reduced to PA.
First of all, there are a number of interesting subsystems of second-order arithmetic
that are of the same proof-theoretical strength as the union of the ramified ana-
lytic systems up to �0. Among these we have the system �1

1 − DC + BR, where
BR is the Bar Rule; the proof-theoretical equivalence in this case was first estab-
lished in Feferman [26] and later (as a special case of a more general statement) in
Feferman and Jäger [36]. In the latter publication, another system of this type is
formulated as the autonomous iteration of the �0

1 comprehension axiom. Finally,
Friedman et al. [41] showed by model-theoretic methods that the system ATR0 is

The Operational Perspective: Three Routes 277

also of the same strength as full predicative analysis.10 Since that may be given by
a single axiom over ACA0 (cf., ibid. p. 204), it follows that results in analysis and
other parts of mathematics that are provably equivalent to (that axiom of) ATR0

are impredicative. Simpson [78, 79] gives a number of examples of theorems from
descriptive set theory that are equivalent to ATR0, such as that every uncountable
closed (or analytic) set contains a perfect subset.

By contrast to these systems of second order arithmetic, in [23] I conjectured
that a certain subsystem T1

(N) of T1 is equivalent in strength to predicative analysis;
in the notation here, that system may be written as BON(µ) + ECA + (F-IN) + J.
However, Glass and Strahm [43] showed that T1

(N) is proof-theoretically equivalent
to the iteration of �0

1 − CA through all α < ϕ ε00, hence still far below �0. It is an
open question whether there is a natural subsystem of T1 of strength full predicative
analysis. Marzetta and Strahm [65] give a partial answer to this question by the
employment of axioms for universes.11

Finally, let us turn to the evaluation of the proof-theoretical strength of the full
systems T0 andT1 of explicit mathematics. In unpublished notes from1976, I showed
how to interpret T0 in �1

2 − CA + BI (cf. [26, p. 218]). Then Jäger and Pohlers [57]
determined an upper bound for the proof-theoretic ordinal—call it κ—of the latter
system, and Jäger [46] gave a proof in T0 of transfinite induction on α for each α < κ ,
thus closing the circle.12 One of the main results of Glass and Strahm [43] is that
proof-theoretically, T1 is no stronger than T0. In a personal communication, Dieter
Probst has sketched arguments to show that also T2 is no stronger than T0, but natural
variants of E1 lead to stronger systems.13

NB. Currently, work is well advanced on a book being coauthored with Gerhard
Jäger and Thomas Strahm with the assistance of Ulrik Buchholtz in which much of
the foundations of explicit mathematics will be exposited in a systematic way. In the
meantime, Buchholtz has set up an online bibliography of explicit mathematics and
closely related topics at http://www.iam.unibe.ch/~til/em_bibliography/ that can be
searched chronologically or by author and by title. The plans are to maintain this
independently of the publication of the book. At the time of writing it consists of 127
items; readers are encouraged to let us know if there are further items that should be
added.

10Then Jäger [47] and Avigad [3] showed that they are of the same proof-theoretical strength, by
proof-theoretical methods, the first via theories of iterated admissible sets without foundation and
the second via fixed point theories.
11In Sect. 4 below I conjecture that the unfolding of a suitable subsystem of T0 is equivalent in
strength to predicative analysis.
12Recently, Sato [74] has shown how to establish the reduction of �1

2 − CA + BI to T0 without
going through the ordinal notation system for κ .
13Another interesting group of questions concerns the strength over T0 (or its restricted version T0�)
of the principle MID that I introduced in [27]. That expresses that if f is any monotone operation
from classes to classes then f has a least fixed point. Takahashi [80] showed that T0 + MID is
interpretable in �1

2 − CA + BI, and then Rathjen [69] showed that it is much stronger than T0.
Next, exact strength of T0� + MID was determined by Glass et al. [42]. A series of further results
by Rathjen for the strength of T0 +MID and T0 + UMID, where UMID is a natural uniform version
of the principle, are surveyed in the paper Rathjen [70].

http://www.iam.unibe.ch/~til/em_bibliography/

278 S. Feferman

3 Operational Set Theory

I introduced operational set theory in notes [33], eventually published in detail
in [34].14 This is an applicative based reformulation and extension of some sys-
tems of classical set theory ranging in strength from KP to ZFC and beyond. For the
system of strength ZFC, this goes back in spirit to the theory of sets and functions
due to von Neumann [84], but Beeson [6] is a direct predecessor as an operational
theory. In addition to extending the range of this approach through intermediate sys-
tems down to KP, my work differs from both of these in its primary concern, namely
to state various large cardinal notions in general applicative terms and, among other
things, use those to explain admissible analogues in the literature. Significant further
work on the strength of various systems of operational set theory has been carried out
by Jäger [50–53] and Jäger and Zumbrunnen [61].15 The last of these is of particular
significance for the following, since it shows that one of the main conjectures of [34]
is wrong and that it (and related other conjectures) need to be modified in order to
obtain the intended consequences; Gerhard Jäger has suggested two ways to do that
that will be described later in this section.

The system OST allows us to explain in uniform operational terms the informal
idea from Zermelo [86] that any definite property of elements of a set determines the
subset of that set separated by the given property. Namely, represent the truth values
“truth” and “falsity” by 1 and 0, resp., and let B = {0, 1}. In the applicative extension
of the usual set-theoretical language, write f : a → b for ∀x(x ∈ a → fx ∈ b), and
f : a → V for ∀x(x ∈ a → f x↓). Then definite properties of subsets of a set a may
be identifiedwith operations f : a →B, and the uniform separation principle is given
by an operation S such that for each such a and f , S(f , a) is defined and exists as a
set, {x : x ∈ a ∧ fx = 1}. Furthermore, it allows us to explain in uniform operational
terms the idea from von Neumann [84] that if a is a set and f is an operation from
a into the universe of sets then the range of f on a is a set. Namely, we have an
operation R such that for each f : a → V, R(f , a) is defined and exists as a set,
{y : ∃x(x ∈ a ∧ y = fx)}. Finally, OST allows us to express a uniform form of global
choice by means of an operation C such that for each f, ∃x(fx = 1) then C f is defined
and f (C f) = 1.

In a little more detail, here is a description of the theory OST essentially as
presented in [34]. Its language is an expansion of the language of usual set theory by
the atomic applicative formulas, together with a number of constants to be specified
alongwith their axioms. The basic logic is LPT, the logic of partial terms. The axioms
of OST fall into five groups. Group 1 axioms are those for k and s. Group 2 axioms
consist of extensionality and the existence of the empty set 0, unordered pair, union

14To explain some anomalies of the dates of subsequent work on this subject, it should be noted
that my 2009 paper was submitted to the journal Information and Control in December 2006 and
in revised form in April 2008. In the meantime, Jäger [50] had appeared and so I could refer to it
in that revised version.
15Further important work is contained in Zumbrunnen [87] and Sato and Zumbrunnen [75]. Con-
structive operational theories of sets have been treated by Cantini and Crosilla [12, 13] and Cantini
[11].

The Operational Perspective: Three Routes 279

and ω; we take 1 = {0} and B = {0, 1}. Group 3 axioms are for the logical operations
el, cnj, neg and unib (bounded universal quantification), with the obvious intended
axioms, the last of which is that if f : a → B then unib(f , a) ∈ B and unib(f , a) =
1 ↔ (∀x ∈ a)(fx = 1). The Group 4 axioms are for S (Separation), R (Replacement)
and C (Choice), as described above. Finally, Group 5 is the scheme of set induction
for all formulas in the language of OST; when that is restricted to the formula x ∈ a
we write OST� for the system.

From the Group 3 (logical) axioms it is shown that one can associate with each�0

formulaϕ(x) in the language of ordinary set theory (where x= x1,…,xn) a closed term
tϕ that is defined and mapsVn into B, and which satisfies ∀x(tϕ(x) = 1↔ ϕ(x)). Thus
OST satisfies the separation axiom for bounded formulas. Then using Replacement
and Choice, one obtains the �0-Collection axiom. Hence KP (here taken to include
the axiom of infinity) is contained in OST. This leads us to the ≥ direction of the
following.

(i) OST ≡ KP.

My proof in [34] for the ≤ direction went via an interpretation of OST in KP +
V= L, beginning with an interpretation of the operations as those given by codes
for the partial functions that are �1 definable in parameters. An alternative proof of
that bound was given by Jäger [50] using his theories of numbers and ordinals for
transfinite inductive definitions.

To obtain systems of strength full set theory and beyond, one adds constants uni
for unbounded universal quantification with axiom (Uni) like that for unib, and P for
the power set operation, the latter with axiom (Pow) which states that for each x , Px
is defined and ∀y(y ∈ Px ↔ y ⊆ x).16 Then we have:

(ii) OST� + (Pow) + (Uni) ≡ ZFC.

The proof that ZFC is contained in the left side is easy, using that every formula is
now represented by a definite operation. The proof that OST� + (Pow) + (Uni) can
be reduced to ZFC + (V = L) was given by Jäger [50]. On the other hand, as shown
in Jäger [51] and Jäger and Krähenbuhl [56], the unrestricted system OST + (Pow)
+ (Uni) is of the same strength as NBG extended by a suitable form of �1

1 − AC.
Next, in view of (i) and (ii) it is natural to ask what the strength is of OST + (Pow).

Of course we have that this contains KP + (Pow), where that is formulated with an
additional constant P as above. The problem concerns the other direction. In this
case Jäger [50] showed that

(iii) OST + (Pow) is interpretable in KP + (Pow) + V = L.

But the latter theory is much stronger than KP + (Pow) as shown by Rathjen [71],17

so one can’t use (iii) to determine the strength of OST + (Pow). Nevertheless, Rathjen
[72] has been able to establish the following there, using novel means:

16Rathjen [71] uses (Pow(P)) for our formulation in the language of KP as well, in order to distin-
guish it from the usual power set axiom formulated without the additional constant. It would have
been better to do that in [34], but not having done so I here follow the notation from there.
17An earlier such result for the system with a restricted form of set induction is due to Mathias [66].

280 S. Feferman

(iv) OST + (Pow) ≡ KP + (Pow).

Let’s turn now to the problematic conjectures of [34]. These concern the natural
formulation in operational terms of an ordinal κ being regular, inaccessible, and
Mahlo, resp., as well as a notion of being 2-regular due to Aczel and Richter [2] that
is equivalent to being �1

1-indescribable (cf. [73, pp. 329–331]). Using lower case
Greek letters to range over ordinals, the first of these is defined in the language of
OST by

Reg(κ): = (κ > 0) ∧∀α, f [α < κ ∧ (f : α → κ) → ∃β < κ (f : α → β)].
Then being inaccessible is defined by

Inacc(κ): = Reg(κ) ∧∀ α < κ ∃β < κ [Reg(β) ∧ α < β].
The statements of regularity and inaccessibility of the class� of ordinals are defined
analogously by:

Reg: = ∀α, f [(f : α → �) → ∃β(f : α → β)].
Inacc: = Reg ∧∀ α ∃ β [Reg(β) ∧ α < β].
Let Fun(a) be the usual set-theoretical formula expressing that the set a is a

function, i.e. a many-one binary relation; for x in dom(a), a(x) is the unique y with
〈x , y〉 ∈ a. Then among the immediate consequences of the OST axioms are, first,
that there is a closed term op such that for each set a, opa↓ and if Fun(a) and f =
opa then for each x ∈ dom(a), fx = a(x) and, second, there is a closed term fun such
that for each f , a, if f : a →V then fun(f , a)↓ and if c = fun(f , a) then Fun(c) and
for each x ∈ dom(c), c(x) = fx. Thus the above notions and statements of regularity
and inaccessibility can be read as usual in the ordinary language of set theory. That
led me mistakenly to assert in Theorem 10 of [34] that OST + (Inacc) is interpretable
in KPi + V = L, and to conjecture that OST + (Inacc) is equivalent in strength to
KPi.18 This has been proved to be wrong by [61], who show that OST + (Inacc)
is equivalent in strength to the extension KPS of KP by the statement Inacc when
read in ordinary set-theoretical terms, denoted SLim for “strong limit axiom.” KPS
proves that for any κ that satisfies Reg(κ), Lκ is a standard model of ZFC without
the power set axiom; hence KPS is much stronger than second-order arithmetic.

Mymistake was that the notion of regularity here—while natural in the context of
ordinary set theory—does not correspond to that used in KP viewed as a theory for
admissible sets. Namely, as presented in Jäger [48], that is given by the additional
predicate Ad(x) expressing that x is admissible, with the appropriate axioms. Then
KPi asserts the unboundedness of the admissibles, in the sense that ∀x∃y[Ad(y) ∧
x ∈ y]. So the question arises as to whether there is a natural extension of OST that
is equivalent in strength to KPi. My first thought was that there should be some
notion of universe, Uni(x), formulated in the language of OST, that is analogous
to the notion of admissibility, Ad(x), in the language of KP, such that when we
extend OST by the statement ∀x∃y[Uni(y) ∧ x ∈ y] we obtain a system of the same
strength as KPi. In e-mail exchanges with Gerhard Jäger early in the summer of
2014, I made several proposals for the definition of Uni(x) to do just that, but each
proved to be defective. One of these proposals was to say that u is a universe if it

18However, I did say that I had not checked the details. In fact, I hadn’t thought them through at all.

The Operational Perspective: Three Routes 281

is a transitive set that contains all the constants of OST, is closed under application,
satisfies the basic set-theoretic axioms of OST and the axioms for S, R and C under
the hypotheses suitably relativized to u. But Jäger pointed out that the system OST
+ ∀x∃u[Uni(u) ∧ x ∈ u] is still stronger than KPi, by the results of his paper [53].

In going over this situation, Jäger noted that the applicative structure must also be
relativized in explaining the notion of a universe in the language of OST. This first led
him to make the following suggestion. Namely, one returns to the formulation of the
applicative basis in terms of the ternary App relation, rather than the logic of partial
terms. Then a universe is defined to be a pair 〈u, a〉 such that (i) u is a transitive set
with a ⊆ u3, (ii) whenever (f , x , y) ∈ a then App(f , x , y), (iii) u contains ω and
all the constants of OST, and (iv) all the axioms of OST hold when relativized to u
provided that the App relation is replaced by the set a. Jäger outlined a proof that
OST + ∀x∃u, a[Uni(〈u, a〉) ∧ x ∈ u] is proof-theoretically equivalent to KPi. More
recently, in work in progress Jäger [54], he has proposed another way of modifying
the notion of regularity (and thence inaccessibility) so as to stay within the language
and logic of partial terms while relativizing it to a universe in the preceding sense. In
the new approach one adds a predicate Reg(u, a) to the language satisfying certain
axioms similar to (i)–(iv) and in addition an assumption of the linear ordering of
those pairs 〈u, a〉 for which Reg(u, a) holds. Then in place of the above condition
Inacc on the class of ordinals one can consider the statement Lim-Reg (abbreviated
LR), which asserts that ∀x∃u,a[Reg(u, a) ∧ x ∈ u]. The main result of Jäger [54] is
that OST + LR is proof-theoretically equivalent to KPi. The advantage of his second
approach is that one can re-express further large cardinal notions such asMahlo, etc.,
much as before. Assuming this is successful, we can look forward to a reexamination
of my original aim to use OST as a vehicle to restate various large cardinal notions
in applicative terms in order to explain the existing admissible analogues that are in
the literature.

4 The Unfolding Program

In Sect. 2 I spoke ofmywork on unramified systems of predicative strength19 as being
one precursor to the development of explicit mathematics. Thatmainly had to dowith
the potential use of such systems as a means to determine which parts of classical
analysis could be justified on predicative grounds. But one of the articles indicated,
[26], was concerned with more basic conceptual aims, namely those advanced by
Kreisel [63] who suggested the study of principles of proof and definition that “we
recognize as valid once we have understood (or, as one sometimes says, ‘accepted’)
certain given concepts.” The two main examples Kreisel gave of this were finitism
and predicativity, and in both cases, he advanced for that purpose the use of some form
of autonomous transfinite progressions embodying a “high degree of self-reflection.”
My aim in [26] was to show in the case of predicativity how that might be generated

19Cf. Footnote 2.

282 S. Feferman

instead by “a direct finite rather than transfinite reflective process, and without alter-
native use of the well-foundedness notion in the axioms.” The motivation was that
if one is to model actual reflective thought then one should not invoke the transfinite
in any way. But not long after that work I realized that what is implicit in accepting
certain basic principles and concepts can be explained more generally in terms of
a notion of reflective closure of schematic systems, where schemata are considered
to be open-ended using symbols for free predicate variables P, as in the scheme for
induction on the natural numbers. One crucial engine in the process of reflection
is the employment of the substitution rule A(P)/A(B), where B(x) is a formula that
one has come to recognize as meaningful in the course of reflection, and where by
A(B) is meant the result of substituting B(t) for each occurrence P(t) in A(P). I
described the notion of reflective closure and its application to the characterization
of predicativity in a lecture for a meeting in 1979 on the work of Kurt Gödel, but
was only to publish that work in the article, “Reflecting on incompleteness” [29]. For
the technical apparatus I introduced there an axiomatization20 of the semantic theory
of truth of Kripke [64] in which the truth predicate may consistently be applied to
statements within which it appears by treating truth and falsity as partial predicates.

Though the axiomatic theory of truth employed in [29] proved to be of independent
interest, as an engine for the explanation of reflective closure it still had an air of
artificiality about it. I was thus led to reconsidering the entire matter in [31] in which
the notion of unfolding of open-ended schematic systems was introduced in close to
its present form by means of a basic operational framework. As formulated there,
given a schematic system S, the question is: which operations and predicates—and
which principles concerning them ought to be accepted if one has accepted S? And
under the heading of operations one should consider both operations on the domain
DS of individuals of S and operations on the domain�of predicates; both domains are
included in an overarching domain V. For the underlying general theory of operations
applicable to arbitrary members of V, in [31] I made use of a type 2 theory of partial
functions and (monotone) partial functionals, generated by explicit definition and
least fixed point recursion, and that is what was followed in the paper Feferman and
Strahm [39] for the unfolding of a schematic system NFA of non-finitist arithmetic.
Later, in order to simplify various matters in the treatment of finitist arithmetic, the
work on NFA was reformulated in Feferman and Strahm [40] so as to use instead the
basic operational language and axioms on V essentially as described at the end of
Sect. 1 above, and that is what has been followed in subsequent work on unfolding.

Here are a few details for the unfolding of NFA, which in many ways is par-
adigmatic. The axioms of NFA itself are simply the usual ones for 0, sc and pd
togetherwith the induction schemegiven asP(0)∧∀x[P(x) →P(sc(x))]→ ∀x(P(x))

where P is a free predicate variable. The language of the unfolding of NFA adds a
number of constants, the predicate symbol N(x), the predicate symbol �(x), and
the relation y ∈ x for x such that �(x). The axioms of the unfolding U(NFA)
consist of the following five groups: (I) The axioms of NFA relativized to N.
(II) The partial combinatory axioms, with pairing, projections and definition by

20Since referred to as KF in the literature.

The Operational Perspective: Three Routes 283

cases. (III) An axiom for the characteristic function of equality on N. (IV) Axioms
for various constants in the domain � of predicates, namely for the natural num-
bers, equality, and the free predicate variable P, and for the logical operations ¬,∧,
and ∀. (V) An axiom for the join of a sequence of predicates, given by j(f) when
f : N→ �. The full unfolding U(NFA) is then obtained by applying the substitution
rule A(P)/A(B) where B is an arbitrary formula of the unfolding language. A natural
subsystem of this called the operational unfolding of NFA and denoted U0(NFA) is
obtained by restricting to axiom groups (I)–(III) with the formulas B in the substitu-
tion rule restricted accordingly. In U0(NFA) one successively constructs terms t (x)

intended to represent each primitive recursive function, by means of the recursion
operator and definition by cases. Applying the substitution rule it is then shown by
induction on the formula t (x)↓ that each such term defines a total operation on the
natural numbers. Thus the language of PA may be interpreted in that of U0(NFA)
and so by application of the substitution rule once more, we have PA itself included
in that system. Moving on to U(NFA), the domain of predicates is expanded consid-
erably by use of the join operation. Once one establishes that a primitive recursive
ordering ≺ satisfies the schematic transfinite induction principle TI(≺, P) with the
free predicate variable P, one may apply the substitution rule to carry out proofs by
induction on ≺ with respect to arbitrary formulas. In particular, one may establish
existence of a predicate corresponding to the hyperarithmetical hierarchy along such
an ordering, relative to any given predicate p in �. Then by means of the usual
arguments, if one has established in U(NFA) the schematic principle of transfinite
induction along a standard ordering for an ordinal α, one can establish the same for
ϕ α0, hence the same for each ordinal less than �0. Thus U(NFA) contains the union
of the ramified analytic systems up to �0. The main results of Feferman and Strahm
[39] are that U0(NFA) is proof-theoretically equivalent to PA and is conservative
over it, and U(NFA) is proof-theoretically equivalent to the union of the ramified
analytic systems up to �0 and is conservative over it. In other words, U(NFA) is
proof-theoretically equivalent to predicative analysis. In addition we showed that
the intermediate system U1(NFA) without the join axiom (V) is proof-theoretically
equivalent to the union of the ramified systems of finite level.

Theunfoldingoffinitist arithmeticwas later takenup inFefermanandStrahm[40];
two open-ended schematic systems of finitist arithmetic are treated there, denoted
FA and FA + BR, resp. The basic operations on individuals are the same as in NFA
together with the characteristic function of equality, while those on predicates are
given by⊥,∧,∨, and ∃. Reasoning now is applied to sequents � →A, and the basic
assumptions are the usual ones for 0, sc and pd, and the induction rule in the form:
from � → P(0) and �, P(x) → P(sc(x)), infer � → P(x), with P a free predicate
variable. Now the substitution rule is applied to sequent inference rules of the form
�1, �2, …,�n ⇒ �; we may substitute for P throughout by a formula B to obtain
a new such rule. The first main result of Feferman and Strahm [40] is that all three
unfoldings of FAare equivalent in strength to PRA.That is in accordwith the informal
analysis of finitism by Tait [81]. On the other hand, Kreisel [62, pp. 169–172], had
sketched an analysis of finitism in terms of a certain autonomous progression and
alternatively “for a more attractive formulation” without progressions but with the

284 S. Feferman

use of the Bar Rule, BR, that is equivalent to PA. The rule BR allows one to infer from
the no-descending sequence property NDS(f , ≺) for a decidable ordering ≺, where
f is a free function variable, the principle of transfinite induction on the ordering
TI(≺, P), with the free predicate variable P. The second main result of Feferman and
Strahm [40] is that all three unfoldings of FA + BR are equivalent in strength to PA,
thus in accord with Kreisel’s analysis of finitism.

Extending the unfolding program to still weaker theories, Eberhard and Strahm
[16, 17] have dealt with three unfolding notions for a basic system FEA of feasible
arithmetic. Besides the operational unfoldingU0(FEA) and (full) predicate unfolding
U(FEA), they introduced a more general truth unfolding system UT (FEA) obtained
by adding a truth predicate for the language of the predicate unfolding.21 Their main
result is that the provably total functions of binary words for all three systems are
exactly those computable in polynomial time.

The most recent result in the unfolding program is due to Buchholtz [9] who
determined the proof-theoretic ordinal of U(ID1), where the usual system of one
arithmetical inductive definition ID1 is recast in open-ended schematic form. That
is taken to expand NFA and for each arithmetical A(P, x) in which P has only
positive occurrences one assumes the following principles for the predicate con-
stant PA associated with A: (i) ∀x(A(PA, x) → PA(x)) and (ii) ∀x(A(P, x) → P(x))

→ ∀x(PA(x) →P(x)), with P the free predicate variable. The axioms of U(ID1) are
similar to those of U(NFA), except that for Axiom (V), the join operation more gen-
erally takes an operation f from a predicate p to predicates fx = qx to the disjoint sum
j(f) of the qx ’s over the x’s in p. The main result of Buchholtz [9] is that |U(ID1)| =
ψ(��+1) (= ψ�(��+1)). This invites comparison with the famous result of Howard
(cf. [1]) according to which |ID1| = ψ(ε�+1), previously denoted ϕ ε�+10.22 In addi-
tion, Buchholtz et al. [10] show that a number of proof-theoretic results for systems of
strength �0 have direct analogues for suitable systems of strength ψ(��+1). Finally,
[9, p. 48] presents very plausible conjectures concerning the unfolding of schematic
theories of iterated inductive definitions generalizing the results for ID1.

Readers may already have guessed that the unfolding of NFA and ID1 can be
recast in terms of systems S of explicit mathematics. For that purpose it is simplest
to return to the original syntax of those systems and use Cl(x) in place of �(x).
Note that with the variables X , Y , Z ,… taken to range over Cl, every second-order
formula over the applicative structure is expressible as a formula of the language.
The substitution rule now takes the form ϕ(X)/ϕ({x :ψ(x)}} whereψ is an arbitrary
formula of the language, and where in the conclusion of the rule each instance of
the form t ∈ X that occurs in ϕ is replaced by ψ(t). In place of the operations on

21This follows the proposed formulation of U(NFA) via a truth predicate in Feferman [31, p. 14].
22Ulrik Buchholtz originally thought that ψ(��+1) is the same as the ordinal H(1) of Bachmann
[4]. This seemed to be supported by Aczel [1] who wrote (p. 36) that H(1) may have proof theo-
retical significance related to those of the ordinals ε, �0 and ϕ ε�+10. And Miller [67, p. 451] had
conjectured that “H(1) [is] the proof-theoretic ordinal of ID1* which is related to ID1 as predicative
analysis ID0* is to first-order arithmetic ID0.” However, Wilfried Buchholz recently found that the
above representation of H(1) in terms of theψ function is incorrect. This suggests one should revisit
the bases of Aczel’s and Miller’s conjectures.

The Operational Perspective: Three Routes 285

predicates in�we now use the corresponding operations on classes.23 Thus, in place
of U(NFA) we would consider the system U * (S) generated by the substitution rule
from the system S = BON + ECA + J + (C-IN), where the class induction axiom on
N takes the place of the induction scheme of NFA. So it is reasonable to conjecture
that U * (S) in this case is of the same strength as predicative analysis.24 Similarly,
we may obtain an analogue of U(ID1) by making use of the Inductive Generation
Axiom IG of T0. Recall that IG takes the form that we have an operation i(A, R)

that is defined for all classes A and R, and whose value is a class I that satisfies the
closure condition

Clos(A,R, I): = ∀x ∈ A[(∀y((y, x) ∈ R → y ∈ I) → x ∈ I]

together with the minimality condition

Min(A, R, ϕ): = Clos(A, R, ϕ) → (∀x ∈ I)ϕ(x),

where ϕ is an arbitrary formula. In its place the schematic form IG� restricts the
minimality condition to formulas ϕ(x) of the form x ∈ X , i.e.

Clos(A, R, X) → I ⊆ X .

Let us denote by IG(O) the instance of IG used to generate the class of countable
tree ordinals and by IG(O)� the same with the restricted minimality condition. Then
with S as above, the system S + IG(O)� is analogous to ID1, so we may expect that
U * (S + IG(O)�) is equivalent in strength to U(ID1) and so its proof theoretic ordinal
would be equal to ψ(�� + 1). But now we can also form the system S + IG� and it
is natural to ask what the strength is of its unfolding U * (S + IG�). This would seem
to encompass autonomously iterated systems ID (cf. [68, p. 332]).

One of themotivations for [31] was to give substance to the idea of Gödel [44] that
consideration of axioms for the existence of inaccessible cardinals and the hierarchies
of Mahlo cardinals more generally “show clearly, not only that the axiomatic system
of set theory as known today is incomplete, but also that it can be supplemented
without arbitrariness by new axioms which are only the natural continuation of those
set up so far.” (Cf. [45, p. 182]). My idea was that this could be spelled out by the
unfolding of a suitable schematic system of set theory, but the details in [31] were
rather sketchy. These now can be spelled out as follows, using the language of OST as
a point of departure. For unfoldings, we could either take theU(·) approach by adding
the predicate �(x) or the variant U* (·) approach by adding the predicate Cl(x) as
in systems of explicit mathematics. For simplicity I shall follow the latter here.
Take S-OST to be the schematic version of OST, which is obtained by replacing the
set induction axiom scheme by its class version ∀x[∀y(y ∈ x → y ∈ X) → x ∈ X]
→ ∀x(x ∈ X). Then we can consider U * (S-OST ± Pow ± Uni), where (Pow) is
formulated as in Sect. 3 above with a symbol P for the power set operation, and (Uni)

23Alternatively, one can of course work with the formulation of explicit mathematics in terms of
the representation relation R(x , X).
24This would provide another answer to the question of finding a system of explicit mathematics
of the same strength as predicative analysis.

286 S. Feferman

is the axiom for unbounded universal quantification with uni as the corresponding
basic operation. In particular, we would be interested in characterizing the three
systems, U * (S-OST), U * (S-OST + Pow) and, finally U * (OST + Pow + Uni).

Now with OST ≡ KP ≡ ID1, one may think of S-OST as analogous to schematic
ID1, so that I conjecture that U * (S-OST) ≡ U(ID1). Secondly, Rathjen [72] has
studied KP + AC + Pow(℘) using relativized ordinal analysis methods, and shown
that this system proves the existence of the cumulative hierarchy of Vα’s for all
α < ψ(ε�+1) and moreover that that is best possible. Thus I conjecture that U *
(S-OST + Pow) proves the existence of the cumulative hierarchy of Vα’s for all
α < ψ(��+1) and that that is best possible. Finally, I expect that the analogous
results for the unfolding of S-OST + Pow + Uni would make use of the ordinal
notation systemup toψ(�ORD+1) in a suitable sense. Thus the unfolding of the system
S-OST + (Pow) + (Uni) would be equivalent in strength to the extension of ZFC by
a certain range of small large cardinals. It would then be another question to see how
far that goes in terms of the standard classifications of such.

Acknowledgments I wish to thank Ulrik Buchholtz, Gerhard Jäger, Dieter Probst, Michael Rath-
jen, and Thomas Strahm for their helpful comments on a draft of this article.

References

1. P. Aczel, Describing ordinals using functionals of transfinite type. J. Symbolic Logic 37, 35–47
(1972)

2. P. Aczel, W. Richter, in Inductive definitions and analogues of large cardinals, Conference in
Mathematical Logic, London ’70, Lecture Notes in Mathematics, vol. 255, ed by W. Hodges
(1972), pp. 1–9

3. J. Avigad, On the relationship betweenATR0 and Î D<ω, J. Symbolic Logic 61, 768–779 (1996)
4. H. Bachmann, Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ord-

nungszahlen. Vierteljschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)
5. M.J. Beeson, Foundations of Constructive Mathematics. Metamathematical Studies (Springer,

Berlin, 1985)
6. M.J. Beeson, Toward a computation system based on set theory. Theor. Comput. Sci. 60, 297–

340 (1988)
7. E. Bishop, Foundations of Constructive Analysis (McGraw Hill, New York, 1967)
8. E. Bishop, D. Bridges, Constructive Analysis (Springer, Berlin, 1985)
9. U. Buchholtz, Unfolding of Systems of Inductive Definitions, Ph.D. thesis, Stanford University

(2013). http://math.stanford.edu/~utb/thesis.pdf
10. U. Buchholtz, G. Jäger, T. Strahm, Theories of Proof-Theoretic Strength ψ(��+1) (2014). In:

Probst, D. and Schuster, P. Concepts of Proof in Mathematics, Philosophy, and Computer-
Science. De Gruyter (In Press)

11. A. Cantini, Extending constructive operational set theory by impredicative principles. Math.
Logic Q. 57, 299–322 (2011)

12. A. Cantini, L. Crosilla (2008), Constructive set theory with operations, in Logic Colloquium
ed. by A. Andretta et al., Lecture Notes in Logic, vol. 29 (2004), pp. 47–83

13. A. Cantini, L. Crosilla, Elementary constructive operational set theory, inWays of Proof Theory,
ed. by R. Schindler (Ontos Verlag, Frankfurt, 2010), pp. 199–240

14. A. Church, A set of postulates for the foundation of logic. Ann. Math. 33, 346–366 (1932)

http://math.stanford.edu/~utb/thesis.pdf

The Operational Perspective: Three Routes 287

15. A. Church, A set of postulates for the foundation of logic (second paper). Ann. Math. 34,
839–864 (1933)

16. S. Eberhard, T. Strahm, Towards the unfolding of feasible arithmetic (Abstract). Bull. Symbolic
Logic 18, 474–475 (2012)

17. S. Eberhard, T. Strahm,Unfolding feasible arithmetic andweak truth, inUnifying the Philosopy
of Truth, ed. by T. Achourioti, et al. (Springer, Berlin, 2015)

18. F.B. Fitch, The system C� of combinatory logic. J. Symbolic Logic 28, 87–97 (1963)
19. S. Feferman, Systems of predicative analysis. J. Symbolic Logic 29, 1–30 (1964)
20. S. Feferman, Autonomous transfinite progressions and the extent of predicative mathematics,

in Logic, Methodology, and Philosophy of Science III, ed. by B. van Rootselaar, J.F. Staal
(North-Holland, Amsterdam, 1968), pp. 121–135

21. S. Feferman, Ordinals and functionals in proof theory, in Actes du Congrès International des
Mathématiciens (Nice) 1970, vol. 1 (Gauthier-Villars, Paris, (1971) pp. 229–233

22. S. Feferman, Predicatively reducible systems of set theory, in Axiomatic Set Theory ed. by D.
Scott, Proceedings of Symposia in Pure Mathematics. XIII, Part 2 (American. Mathematical
Society, Providence, 1974), pp. 11–32

23. S. Feferman, A language and axioms for explicit mathematics, in Algebra and Logic ed. by J.
Crossley, Lecture Notes in Mathematics, vol. 450 (1975), pp. 87–139

24. S. Feferman, Theories of finite type related to mathematical practice, in Handbook of Mathe-
matical Logic, ed. by J. Barwise (North-Holland, Amsterdam, 1977), pp. 913–971

25. S. Feferman, Constructive theories of functions and classes, in Logic Colloquium ’78, ed. by
M. Boffa, et al. (North-Holland, Amsterdam, 1979), pp. 159–224

26. S. Feferman, A more perspicuous formal system for predicativity, in Konstruktionen versus
Positionen I, ed. by K. Lorenz (Walter de Gruyter, Berlin, 1979), pp. 68–93

27. S. Feferman, Monotone inductive definitions, in The L. E. J. Brouwer Centenary Symposium,
ed. by A.S. Troelstra, D. van Dalen (North-Holland, Amsterdam, 1982), pp. 77–89

28. S. Feferman,Weyl vindicated: Das Kontinuum 70 years later, in Temi e prospettive della logica
e della filosofia della scienza contemporanee, vol. I (CLUEB, Bologna, 1988), pp. 59–93;
reprinted in Feferman [32], pp. 249–283

29. S. Feferman, Reflecting on incompleteness. J. Symbolic Logic 56, 1–49 (1991)
30. S. Feferman, Why a little bit goes a long way: logical foundations of scientifically applicable

mathematics, inPSA 1992, vol. II (1993), pp. 442–455; reprinted in Feferman [32], pp. 284–298
31. S. Feferman, Gödel’s program for new axioms: why, where, how and what?, in Gödel ’96, ed.

by P. Hájek, Lecture Notes in Logic vol. 6 (1996), pp. 3–22
32. S. Feferman, In the Light of Logic (Oxford University Press, New York, 1998)
33. S. Feferman, Notes on operational set theory I. Generalizations of “small” large cardinals and

admissible set theory (2001). http://math.stanford.edu/~feferman/papers/OperationalST-I.pdf
34. S. Feferman, Operational set theory and small large cardinals. Inf. Computat. 207, 971–979

(2009)
35. S. Feferman, How a little bit goes a longway: predicative foundations of analysis (2013). http://

math.stanford.edu/~feferman/papers/pfa(1).pdf
36. S. Feferman,G. Jäger, Choice principles, the bar rule and autonomously iterated comprehension

schemes in analysis. J. Symbolic Logic 48, 63–70 (1983)
37. S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive μ-operator I.

Ann. Pure Appl. Logic 65, 243–263 (1993)
38. S. Feferman, G. Jäger, Systems of explicit mathematics with non-constructive μ-operator II.

Ann. Pure Appl. Logic 79, 37–52 (1996)
39. S. Feferman, T. Strahm, The unfolding of non-finitist arithmetic. Ann. Pure Appl. Logic 104,

75–96 (2000)
40. S. Feferman, T. Strahm, The unfolding of finitist arithmetic. Rev. Symbolic Logic 3, 665–689

(2010)
41. H. Friedman, K. McAloon, S.G. Simpson, A finite combinatorial principle which is equivalent

to the 1-consistency of predicative analysis, in Patras Logic Symposion, ed. by G. Metakides
(North-Holland, Amsterdam, 1982), pp. 197–230

http://math.stanford.edu/~feferman/papers/OperationalST-I.pdf
http://math.stanford.edu/~feferman/papers/pfa(1).pdf
http://math.stanford.edu/~feferman/papers/pfa(1).pdf

288 S. Feferman

42. T. Glass, M. Rathjen, A. Schlüter, On the proof-theoretic strength of monotone induction in
explicit mathematics. Ann. Pure Appl. Logic 85, 1–46 (1997)

43. T. Glass, T. Strahm, Systems of explicit mathematics with non-constructive μ-operator and
join. Ann. Pure Appl. Logic 82, 193–219 (1996)

44. K. Gödel, What is Cantor’s continuum problem? Amer. Math. Monthly 54, 515–525 (1947);
errata 55, 151; reprinted in Gödel (1990), 176–187

45. K. Gödel, in Collected Works, Vol. II. Publications 1938–1974, ed. by S. Feferman, et al.
(Oxford University Press, New York, 1990)

46. G. Jäger, A well-ordering proof for Feferman’s theory T0. Archiv für mathematische Logik
und Grundlagenforschung 23, 65–77 (1983)

47. G. Jäger, The strength of admissibility without foundation. J. Symbolic Logic 49, 867–879
(1984)

48. G. Jäger, Theories for admissible sets: a unifying approach to proof theory, in Studies in Proof
Theory, vol. 2 (Bibliopolis, Naples, 1986)

49. G. Jäger, Induction in the elementary theory of types and names, in Computer Science Logic
’87, ed. by E. Börger, et al., Lecture Notes in Computer Science, vol. 329 (1988), pp. 118–128

50. G. Jäger, On Feferman’s operational set theory OST. Ann. Pure Appl. Logic 150, 19–39 (2007)
51. G. Jäger, Full operational set theory with unbounded existential quantification and power set.

Ann. Pure Appl. Logic 160, 33–52 (2009)
52. G. Jäger, Operations, sets and classes, in Logic, Methodology and Philosophy of Science:

Proceedings of the Thirteenth International Congress, ed. by C. Glymour et al. (College Pub-
lications, London, 2009), pp. 74–96

53. G. Jäger, Operational closure and stability. Ann. Pure Appl. Logic 164, 813–821 (2013)
54. G. Jäger, Relativizing Operational Set Theory (2015). (In preparation)
55. G. Jäger, R. Kahle, T. Strahm, On applicative theories, in Logic and Foundations of

Mathematics, ed. by A. Cantini, et al. (Kluwer, Dordrecht, 1999), pp. 83–92
56. G. Jäger, J. Krähenbuhl, �1

1choice in a theory of sets and classes, in Ways of Proof, ed. by R.
Schindler (Ontos Verlag, Frankfurt, 2010), pp. 283–314

57. G. Jäger,W. Pohlers, Eine beweistheoretische Untersuchung von�1
2-CA +BI und verwandter

Systeme in (Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse (1982), pp. 1–28

58. G. Jäger, D. Probst, The Suslin operator in applicative theories: its proof-theoretic analysis via
ordinal theories. Ann. Pure Appl. Logic 162, 647–660 (2011)

59. G. Jäger, T. Strahm, Totality in applicative theories. Ann. Pure Appl. Logic 74, 105–120 (1995)
60. G. Jäger, T. Strahm, The proof-theoretic analysis of the Suslin operator in applicative theories,

in Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, ed.
by W. Sieg, R. Sommer, C. Talcott (AK Peters Ltd, Natick, MA, 2002), pp. 270–292

61. G. Jäger, R. Zumbrunnen, About the strength of operational regularity, in Logic, Construction,
Computation, ed. by U. Berger, et al. (Ontos Verlag, Frankfurt, 2012), pp. 305–324

62. G. Kreisel, Mathematical logic, in Lectures on Modern Mathematics, vol. III ed. by T.L. Saaty
(Wiley, New York, 1965), pp. 95–195

63. G. Kreisel, Principles of proof and ordinals implicit in given concepts, in Intuitionism and
Proof Theory, ed. by A. Kino, et al. (North-Holland, Amsterdam, 1970), pp. 489–516

64. S. Kripke, Outline of a theory of truth. J. Philos. 72, 690–716 (1975)
65. M. Marzetta, T. Strahm, The μ quantification operator in explicit mathematics with universes

and iterated fixed point theories with ordinals. Arch. Math. Logic 37, 391–413 (1988)
66. A.R.D. Mathias, The strength of Mac Lane set theory. Ann. Pure Appl. Logic 110, 107–234

(2001)
67. L.W. Miller, Normal functions and constructive ordinal notations. J. Symbolic Logic 41, 439–

459 (1976)
68. W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof

Theory, ed. by S. Buss (North-Holland, Amsterdam, 1998), pp. 209–335
69. M. Rathjen, Monotone inductive definitions in explicit mathematics, J. Symbolic Logic 61,

125–146 (1996)

The Operational Perspective: Three Routes 289

70. M. Rathjen, Explicit mathematics with monotone inductive definitions: a survey, in Reflections
on the Foundations of Mathematics, ed. byW. Sieg, et al. (1998), pp. 329–346. Second printing,
Lecture Notes in Logic, vol. 15 (2002)

71. M. Rathjen, Relativized ordinal analysis, The case of Power Kripke-Platek set theory. Ann.
Pure Appl. Logic 165, 316–339 (2014)

72. M. Rathjen, Power Kripke-Platek and the Axiom of Choice (2014). http://www1.maths.leeds.
ac.uk/~rathjen/PowerAC.pdf

73. W. Richter, P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in
Generalized Recursion Theory, ed. by J.E. Fenstad, P.G. Hinman (North-Holland, Amsterdam,
1974), pp. 301–381

74. K. Sato, A new model construction by making a detour via intuitionistic theories II, in Inter-
pretability lower bound of Feferman’s Explicit Mathematics T0 (t.a.) (2014)

75. K. Sato, R. Zumbrunnen, A New Model Construction by Making a Detour via Intuitionistic
Theories I. Operational Set TheoryWithout Choice is�1 Equivalent to KP (2014). http://www.
iam.unibe.ch/ltgpub/2014/sz14.pdf

76. K. Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten
Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1965)

77. S.G. Simpson, Subsystems of second order arithmetic, in Perspectives in Logic, (Springer,
Berlin, 1988) 2nd edn. 2009

78. S.G. Simpson, Predicativity: the outer limits, in Reflections on the Foundations of Mathematics
ed. by W. Sieg, et al. (1998), pp. 130–136; 2nd printing, Lecture Notes in Logic vol. 15 (2002)

79. S.G. Simpson, The Gödel hierarchy and reverse mathematics, in Kurt Gödel. Essays for his
Centennial, ed. by S. Feferman, et al. Lecture Notes in Logic, vol. 33 (2010) pp. 109–127

80. S. Takahashi, Monotone inductive definitions in a constructive theory of functions and classes.
Ann. Pure Appl. Logic 42, 255–297 (1989)

81. W.W. Tait, Constructive reasoning, in Logic, Methodology and Philosophy of Science III
(North-Holland, Amsterdam, 1981), pp. 185–199; reprinted in Tait [82], pp. 21–42

82. W.W. Tait, The Provenance of Pure Reason (Oxford University Press, New York, 2005)
83. J. van Heijenoort (ed.), From Frege to Gödel, A source book in mathematical logic (Harvard

Univ. Press, Cambridge, 1967)
84. J. von Neumann, Eine Axiomatisierung derMengenlehre, J. für die reine und angewandte

Mathematik 154, 219–240 (1925); English translation in van Heijenoort [83], pp. 393–413
85. H. Weyl, Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis (Veit,

Leipzig, 1918)
86. E. Zermelo, Untersuchungen über die Grundlagen derMengenlehre I, Mathematische Annalen

65, 261–281 (1908). English translation in van Heijenoort 1967, pp. 199–215
87. R. Zumbrunnen, Contributions to Operational Set Theory, Ph.D. thesis, University of Bern

(2013). http://www.iam.unibe.ch/ltgpub/2013/zum13.pdf

http://www1.maths.leeds.ac.uk/~rathjen/PowerAC.pdf
http://www1.maths.leeds.ac.uk/~rathjen/PowerAC.pdf
http://www.iam.unibe.ch/ltgpub/2014/sz14.pdf
http://www.iam.unibe.ch/ltgpub/2014/sz14.pdf
http://www.iam.unibe.ch/ltgpub/2013/zum13.pdf

Some Remarks on the Proof-Theory
and the Semantics of Infinitary Modal Logic

Pierluigi Minari

Abstract We investigate the (multiagent) infinitary versionKω1 of the propositional
modal logic K, in which conjunctions and disjunctions over countably infinite sets
of formulas are allowed. It is known that the natural infinitary extension LK�

ω1
(here

presented as a Tait-style calculus, TK�
ω1
) of the standard sequent calculus LK�

p for
K is incomplete with respect to Kripke semantics. It is also known that in order
to axiomatize Kω1 one has to add to LK�

ω1
new initial sequents corresponding to

the infinitary propositional counterpart BFω1 of the Barcan Formula. We introduce
a generalization of standard Kripke semantics, and prove that TK�

ω1
is sound and

complete with respect to it. By the same proof strategy, we show that the stronger
system TKω1 , allowing countably infinite sequents, axiomatizes Kω1 , although it
provably does not admit cut-elimination.

Keywords Modal logic · Infinitary logic · Kripke semantics · Tait-style calculi ·
Cut-elimination

1 Introduction

Let LKp be the propositional fragment of Gentzen’s sequent calculus for classical
logic. As is well-known (more or less since the mid 1950’s, see e.g. [11]), the sequent
calculus LK�

p obtained by adding to LKp the inference rule

� ⇒ ϕ
K�� ⇒ �ϕ

(where �� := {�ψ | ψ ∈ �})

provides an adequate axiomatizationof theminimal normal propositionalmodal logic
K, semantically defined as the set of all modal formulas which are valid in every
Kripke frame. Furthermore, this axiomatization satisfies the subformula property,

P. Minari (B)
Section of Philosophy, Department of Letters and Philosophy,
University of Florence, Firenze, Italy
e-mail: minari@unifi.it

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_8

291

292 P. Minari

since it is not difficult to verify that LK�
p admits cut-elimination. Of course, the

same does hold for the corresponding multiagent system based on an arbitrarily
fixed set A of agents—below, we will identify without limitations A with the set of
natural numbers ω.

Let us now move on to consider the infinitary (multiagent) modal version Kω1

of K (the symbol ‘ω1’ denotes the first uncountable ordinal). In the language of
Kω1 , featuring the infinitary connectives

∨
(countable disjunction) and

∧
(count-

able conjunction) in place of the corresponding finitary connectives ∨ and ∧, many
interestingmodal operators which encode infinitary formulas within a finitary frame-
work (typically, fixed point operators) become directly definable—for instance that
of common knowledge, C :

Cϕ :=
∧

{Enϕ | n ≥ 1}

where Eϕ (everyone knows, that ϕ) is defined as

Eϕ :=
∧

{�iϕ | i < ω}

and

Enϕ :=
n

︷ ︸︸ ︷
E . . .Eϕ.

It is however a known fact (see e.g. [12, 15, 17]) that the natural infinitary exten-
sion LK�

ω1
of the sequent calculus LK�

p , which is simply obtained by replacing the
rules for ∨ and ∧ with their infinitary counterparts

� ⇒ �,ϕ
(ϕ ∈ �)

� ⇒ �,
∨

�

. . . ϕ, � ⇒ � . . . (all ϕ ∈ �)
∨

�,� ⇒ �

and
. . . � ⇒ �,ϕ . . . (all ϕ ∈ �)

� ⇒ �,
∧

�

ϕ, � ⇒ �
(ϕ ∈ �)∧

�,� ⇒ �

is not Kripke complete. In particular, the schema

∧
�� → �

∧
� (BFω1)

that is the infinitary propositional counterpart of the famous Barcan Formula of
quantified modal logic,1 is trivially valid in all Kripke frames, but is not derivable in
LK�

ω1
.

1Alternatively,BFω1 may be seen as an infinitary version of theK-tautology�ϕ∧�ψ → �(ϕ∧ψ).

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 293

Notice that, as a consequence, the basic modal logic of common knowledge KC
(see e.g. [3]) cannot be embedded in LK�

ω1
, since BFω1 (together with its converse

CBFω1 , which is instead derivable in LK
�
ω1
), is essentially needed in order to derive

the fixed point axiom Cϕ ↔ Eϕ ∧ ECϕ of KC:

Cϕ ↔ E1ϕ ∧ E2ϕ ∧ E3ϕ ∧ . . .

�
Eϕ ∧ (E(E1ϕ) ∧ E(E2ϕ) ∧ . . .)

↓BFω1 ↑CBFω1

Eϕ ∧ E(E1ϕ∧E2ϕ ∧ . . .) ↔ Eϕ ∧ ECϕ

Indeed, BFω1 plays a key role in the axiomatization of Kω1 . It has been proved by
Tanaka ([15]; see also [17]) that the sequent calculusLK�

ω1
⊕BFω1—that is,LK�

ω1
plus

all instances of ⇒ BFω1 as further initial sequents—axiomatizes Kω1 . A complete
Hilbert-style calculus (KLω1) axiomatizingKω1 and featuring BFω1 as an axiom had
been earlier provided by Radev in [12].

An alternative route is followed in the present paper. We work with Tait-style
(i.e. one-sided) sequent calculi—but this is of course not essential—and we hide
BFω1 , so to speak, in the syntax. More precisely, after some preliminaries on the
(multiagent) modal infinitary language in negation normal form we adopt (Sect. 2),
we consider (Sect. 3) the two calculiTK�

ω1
andTKω1 : the essential difference between

them is that sequents are finite (sets of formulas) in TK�
ω1
, whereas they can also be

countably infinite in TKω1 . It is a known fact that this difference does not matter as
far as non-modal infinitary logic is concerned; it does however matter when modal
operators are added: whileTK�

ω1
is indeed nothing but the one-sided version ofLK�

ω1
,

the calculus TKω1 turns out to be equivalent to LK
�
ω1

⊕ BFω1 .

As we said, LK�
ω1

(our TK�
ω1
) is incomplete with respect to Kripke semantics.

Yet it is a natural calculus to consider. In Sect. 4 we introduce a generalized Kripke
semantics (standard Kripke semantics being but a limit case of the generalized one)
and show that, on the one side,TK�

ω1
is validwith respect to the generalized semantics

while, on the other side, BFω1 admits a very simple generalized countermodel.
In Sect. 5 we prove a completeness theorem for TK�

ω1
with respect to the gen-

eralized Kripke semantics, thus providing an adequate relational semantics for this
system. Actually, one and the same proof strategy—a suitable adaptation of the
familiar canonical model construction—gives also, as a bonus, a smooth complete-
ness proof for TKω1 with respect to standard Kripke semantics, which is alternative
to the completeness proofs given in [15, 17] for LK�

ω1
⊕BFω1 , and in [12] forKLω1 .

The question concerning cut-free axiomatizability ofKω1 is discussed in the con-
cluding Sect. 6. In particular, we show by suitable counterexamples that TKω1 , as
well as some natural variants of this calculus, do not admit cut-elimination. As far
as we know, only one cut-free axiomatization ofKω1 is presently available, Tanaka’s
calculus TLMω1 ([16]), whose sequents are trees of standard sequents. The cut-
elimination theorem for TLMω1 is however proved only semantically.

294 P. Minari

2 The Infinitary Modal Language L�
ω1

The alphabet of our infinitary multiagent propositional language L�
ω1

comprises the
symbols:

• p0, p̃0, p1, p̃1, p2, p̃2 . . . : denumerably many propositional atoms and negated
propositional atoms (literals);

• ∧
,
∨

,�i , �̃i (i < ω) : logical operators.2

We denote by Lit (Lit+) the set of all (positive) literals.
The formulas of the language L�

ω1
are generated starting from the literals by

applying as usual the modal operators �i and �̃i (i < ω), and by forming countable
disjunctions (

∨
) and conjunctions (

∧
).

More precisely, the set FM of all L�
ω1
-formulas is the least fixed point of the

monotone operator F such that

F(X) =Lit ∪ {�i x | x ∈ X, i < ω} ∪ {�̃i x | x ∈ X, i < ω}
∪ {

∧
Z | Z ⊆ X, |Z | ≤ ω} ∪ {

∨
Z | Z ⊆ X, |Z | ≤ ω}.

Equivalently,
FM =

⋃

α<ω1

FMα

where FMα (α < ω1) is defined by transfinite induction as follows:

(i) FM0 = Lit,
(ii) FMβ+1 = F(FMβ

),

(iii) FMλ = ⋃
β<λ FM

β (where λ is a limit ordinal).

The rank of a formula ϕ is the least ordinal β < ω1 such that ϕ ∈ FMβ . The notion
of subformula of a formula is defined as usual; notice that sbf(ϕ), the set of all
subformulas of ϕ, is always countable.

Notational conventions 2.1 Henceforth, the lower-case Greek letters ϕ,ψ,χ, pos-
sibly with indices, are used as metavariables for formulas. Capital Greek letters
�,�,�,�, . . . will range over countable subsets of FM, while capital Roman let-
ters C, D, . . . will range over finite subsets of FM.

Notice that the connective ‘¬’ is not contained in the alphabet of L�
ω1
; officially,

L�
ω1
-formulas are always in negation normal form (NNF). It is however convenient

to introduce negation in the metalanguage. The map

ϕ ∈ FM → ¬ϕ ∈ FM

2There is no special reason behind our choice of taking �̃i (where �ϕ ≡ ¬�̃iϕ) as a primitive
operator in place of the more familiar ♦i (where �iϕ ≡ ¬♦i¬ϕ).

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 295

is defined inductively in the natural way:

(i) ¬pk := p̃k, ¬ p̃k := pk,
(ii) ¬�iψ := �̃iψ, ¬�̃iψ := �iψ,

(iii) ¬∧
� := ∨{¬ψ | ψ ∈ �}, ¬∨

� := ∧{¬ψ | ψ ∈ �}.
Thus ¬¬ϕ and ϕ are syntactically identical (notation: ¬¬ϕ ≡ ϕ). Observe that ϕ
need not be a subformula of ¬ϕ.

Notational conventions 2.2 • �,ψ := � ∪ {ψ}; �,� := � ∪ �; . . . ;
• ¬� := {¬ϕ | ϕ ∈ �};
• ϕ ∧ ψ := ∧{ϕ,ψ}; ϕ ∨ ψ := ∨{ϕ,ψ};
• ϕ → ψ := ¬ϕ ∨ ψ;
• � := ∧ ∅; ⊥ := ∨ ∅;
• �i� := {�iϕ | ϕ ∈ �}; �̃i� := {�̃iϕ | ϕ ∈ �}.
Note that ¬� ≡ ⊥ and ¬⊥ ≡ �.

We conclude the present section by introducing one further notion, which however
will not be used until Sect. 5.

Definition 2.3 (Environment) Let � be a subset of FM. The environment of �, in
symbols E[�], is the least subset of FM satisfying the following conditions:

(i) � ⊆ E[�];
(ii) E[�] is closed under subformulas and under negation;
(iii) E[�] is closed under finite conjunctions and disjunctions, as well as under �i

and �̃i (i < ω);
(iv) for each formula ψ ∈ E[�] and ∧

� ∈ E[�], and for every i < ω, the formula
�i

∧{ψ ∨ ϕ | ϕ ∈ �} belongs to E[�].
Lemma 2.4 For every countable set � of formulas, its environment E[�] is count-
able.

Proof Straightforward. �

3 Tait-Style Infinitary Modal Calculi

As anticipated in the introductory section, we work with Tait-style sequent calculi.
Along with the NNF-syntax of our language L�

ω1
, this format allows a considerable

economy and elegance in the presentation of the proof systems under investigation.
The sequents to be derived are therefore not the usual two-sided sequents, but

rather one-sided sequents, that is sets of formulas, having a disjuctive reading in the
intended interpretation.3

3In a classical environment, there is an obvious correspondence between two-sided and one-sided
sequents. ‘� ⇒ �’ � ‘¬�,�’, and ‘�’ � ‘¬�1 ⇒ �2’ for each partition (�1, �2) of �.

296 P. Minari

ID (p ∈ Lit+)
p, ¬p

C
W

C, D
C, ϕ D, ¬ϕ

CUT
C, D

C, ϕ
OR (ϕ ∈ Φ)

C,
∨

Φ
. . . C, ϕ . . . (all ϕ ∈ Φ)

AND
C,

∧
Φ

Fig. 1 T�
ω1

ID (p ∈ Lit+)
p, ¬p

Γ
W

Γ, Δ
Γ, ϕ Δ, ¬ϕ

CUT
Γ, Δ

Γ, ϕ
OR (ϕ ∈ Φ)

Γ,
∨

Φ
. . . Γ, ϕ . . . (all ϕ ∈ Φ)

AND
Γ,

∧
Φ

Fig. 2 T∗
ω1

A choice concerning the cardinality of sequentsmust however be taken right from
the start: shall we confine to finite sequents only? Or shall we allow countably infinite
sequents too?

As far as infinitary classical truth-functional logic is concerned, it makes no
essential difference which of the two alternatives we adopt (see e.g. [4]). Indeed, let
us start by considering three Tait-style non-modal propositional calculi T�

ω1
, T∗

ω1
and

Tω1 , whose inference rules
4 are shown in Figs. 1, 2 and 3.

T�
ω1

derives finite sets of formulas, whereas both T∗
ω1

and Tω1 derive countable,
possibly infinite sets of formulas (recall the Notational conventions 2.1). Modulo this
difference, T�

ω1
and T∗

ω1
have the “same” inference rules; on the other side, T∗

ω1
and

Tω1 differ only in the
∨
-introduction rule.5 Notice also that the generalized cut-rule

with countably many premises

4Where formulas are of course intended to belong to the �i - and �̃i -less fragment Lω1 of L�
ω1
.

Caution: in all the calculi under consideration in this paper sequents are sets, not multisets. This
means that contraction is hidden in the logical inference rules: the principal formula of an inference
may occur as a side formula in the premise(s); e.g.

C,ϕ ∨ ψ,ψ

C,ϕ ∨ ψ
and

�,�,
∨

�

�,
∨

�

are instances of OR, respectively OR+.
5Of course, because of the presence of the rule W, the rule OR is a derived rule in Tω1 .

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 297

Tω1 = (T∗
ω1

− OR) + Γ, Φ
OR+

Γ,
∨

Φ

Fig. 3 Tω1

�,� . . . ¬ϕ,� . . . (all ϕ ∈ �)
CUT+

�,�

is admissible (as a derived rule) in Tω1 ; actually Tω1 is equivalent to the calculus
obtained from T∗

ω1
by replacing the rules OR+ and CUT with the rules OR and CUT+,

respectively.
It is immediately verified that

(1) for an arbitrary formula ϕ, the sequents

ϕ,¬ϕ and �

are cut-free derivable in any of these calculi, the latter through a vacuous appli-
cation of the AND rule;

(2) for every C and �,

T�
ω1

� C ⇔ T∗
ω1

� C and T∗
ω1

� � ⇒ Tω1 � �.

In fact, also the second arrow in (2) above can be reversed and, in a sense to be
specified, the three calculi are equivalent. Let us write

• ‘|=ω1 �’ to mean that
∨

� is truth-functionally valid: for every valuation v :
Lit+ −→ {0, 1} there is some ϕ ∈ � such that v(ϕ) = 1 (v being extended from
positive literals to arbitrary Lω1 -formulas in the natural way);

• ‘�0 �’ to mean that � is cut-free derivable.

Then the relations between the three calculi, their soundness and semantic com-
pleteness, as well as the cut-elimination property for T�

ω1
, can be summarized as

follows on the basis of known results.

Proposition 3.1 Let C be a finite set of Lω1 -formulas, and {�1, . . . , �n} be a finite,
possibly empty set of countable sets of Lω1 -formulas. Then the following are equiv-
alent:

(1) T�
ω1

�0
∨

�1, . . . ,
∨

�n,C;
(2) T�

ω1
� ∨

�1, . . . ,
∨

�n,C;
(3) T∗

ω1
� �1, . . . , �n,C;

(4) Tω1 � �1, . . . , �n,C;
(5) |=ω1 �1, . . . , �n,C.

298 P. Minari

Fig. 4 TK�
ω1 , TK

∗
ω1

and
TKω1

TK�
ω1

:= T�
ω1

+ ¬C, ϕ
K�

i (i < ω)¬�iC, �iϕ

TK∗
ω1

:= T∗
ω1

+ ¬Γ, ϕ
Ki (i < ω)¬�iΓ, �iϕ

TKω1 := Tω1 + ¬Γ, ϕ
Ki (i < ω)¬�iΓ, �iϕ

Proof (1)⇒ (2), (3)⇒ (4), (4)⇒ (5): trivial.
(2)⇒ (3): straightforward, because T∗

ω1
� ¬∨

�,�.
(5)⇒ (1): completeness and cut-elimination for T�

ω1
are proved in [14]. �

Notice that the syntactic proof of cut-elimination for T�
ω1

given in [14] can be
easily adapted to T∗

ω1
and Tω1 (see e.g. [7]; cp. also [8] and [4]).6

Let us now extend the above calculi with modal inference rules, with the aim
of capturing—by means of an adequate infinitary Tait-style calculus—the infinitary
modal propositional logic determined by the class of all Kripke frames, i.e. the
infinitary version Kω1 of the (multiagent) modal system K. Taking into account
the need for a preliminary choice concerning the cardinality of sequents, we shall
consider on the basis of the previous investigation the three candidates TK�

ω1
, TK∗

ω1

and TKω1 shown in Fig. 4.
The present scenario turns out to be radically different from the previous (non-

modal) one: now the alternative “finite vs countable sequents” does matter! Indeed,
we have:

(a) TK�
ω1

admits cut-elimination, but is incomplete (though obviously sound) with
respect to Kripke semantics;

(b) TK∗
ω1

too admits cut-elimination and is incomplete (although obviously sound)
with respect to Kripke semantics; but it is not equivalent to TK�

ω1
in the sense in

which T�
ω1

and T∗
ω1

are equivalent according to Proposition 3.1;
(c) TKω1 is instead sound and complete with respect to Kripke semantics; yet it

provably does not admit cut-elimination.

6The cut-elimination property of (the two-sided version of) T�
ω1 is exploited in [6] to prove cut-

elimination for linear-time temporal logic LTL, by faithfully embedding LTL into infinitary non-
modal propositional logic.

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 299

As to point (a), a syntactic proof of cut-elimination for TK�
ω1

can be obtained by
adapting Tait’s proof of the cut-elimination theorem forT�

ω1
([14], see also [16])—the

same does hold for TK∗
ω1
. The semantical incompleteness of TK�

ω1
follows in turn as

a consequence of cut-elimination, because of the following easily verifiable facts:

Fact 3.2 The schema (“Barcan Formula”)

∧
�i� → �i

∧
�,

or, as a finite sequent, ¬
∧

�i�, �i

∧
�

(BFω1)

is valid in every Kripke model (see the next section).

Fact 3.3 The instance

¬
∧

{�i pn | n < ω},�i

∧
{pn | n < ω}

of BFω1 has no cut-free derivation in TK�
ω1
.

Notice that BFω1 is (cut-free) derivable in TKω1 as follows:

· · ·
{

ID, W¬�,ϕ

}
· · · (ϕ ∈ �)

AND¬�,
∧

�
Ki¬�i�,�i

∧
�

OR+¬∧
�i�,�i

∧
�

On the other side, the “converse Barcan Formula”

�i

∧
� →

∧
�i�

is derivable already in TK�
ω1
:

· · ·
{ ¬ϕ,ϕ

OR¬∧
�,ϕ

Ki¬�i
∧

�,�iϕ

}
· · · (ϕ ∈ �)

AND¬�i
∧

�,
∧

�i�

As to point (b), it is immediate to verify that TK�
ω1

and TK∗
ω1

derive the same
finite sequents,

TK�
ω1

� C ⇔ TK∗
ω1

� C for every C, (3.1)

300 P. Minari

like the corresponding non-modal calculi. Hence BFω1 is not derivable in TK∗
ω1

as
well. On the other side, contrary to Proposition 3.1,

TK∗
ω1

� � � TK�
ω1

�
∨

�. (3.2)

For instance, let � := {¬�i p0,¬�i p1,¬�i p2 . . . ,�i
∧

n<ω pn}. Then TK∗
ω1

� �

· · ·
{

ID, W{¬pn}n<ω, pm

}
· · · (m < ω)

AND{¬pn}n<ω,
∧

n<ω pn
Ki{¬�i pn}n<ω,�i

∧
n<ω pn

but, as a semantic argument in the next section (Fact 4.6) will show,7 TK�
ω1

�
∨

�.
As to the two claims made in point (c), these will be addressed in Sect. 5, where

the semantic completeness of TKω1 is proved, and in Sect. 6, where the question
concerning the non eliminability of the cut rule in this calculus is discussed. Notice
that merely on the basis of what has been established so far, in particular (3.1) and
(3.2) above, we already know that TK∗

ω1
is not closed under the inference rule OR+

characteristic of TKω1 .
We conclude this section by stating a simple equivalence result, by which the key

role played in the present context by the Barcan Formula BFω1 is made fully evident.
Let TKB�

ω1
and TKB∗

ω1
be the calculi obtained from TK�

ω1
, resp. TK∗

ω1
, by adding

all the instances of BFω1 as new initial sequents. Then:

Proposition 3.4 For every countable set� of formulas, the following are equivalent:

(1) TKω1 � �;
(2) TKB∗

ω1
� �;

(3) TKB�
ω1

� ∨
�.

Proof (2)⇒ (1): obvious, since TKω1 � BFω1 .
(3)⇒ (2): it is sufficient to observe that the inversion of OR+ is admissible (as a
derived rule) in TK∗

ω1
:

�,
∨

�

· · ·
{

ID, W¬ϕ,�

}
· · · (ϕ ∈ �)

AND¬∨
�,�

CUT
�,�

7A simple syntactic argument is also at hand, by using Fact 3.3 and (see below) point (ii) in the
proof of Proposition 3.4.

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 301

(1)⇒ (3): first of all, observe that for every �,�,C :
(i) TK�

ω1
� ¬∨

�,
∨

(� ∪ �);
(ii) TK�

ω1
� ¬∨

(� ∪ C),
∨

�,C;
(iii) TK�

ω1
� ¬∨

(� ∪ �),
∨

�,
∨

�.

The easy verification is left to the reader.
Next, given a TKω1 -derivation D � �, we produce a TKB�

ω1
-derivation D′ � ∨

�

arguing by transfinite induction on the height of h(D) < ω1 of D8 and taking cases
according to the final inference R of D. The case R = ID is trivial; the cases
R = W, R = CUT are easily dealt with using the I.H. together with (i) and (ii) above.
Let us spell out the details only for the cases R = OR+ (R = AND is similar) and
R = Ki .
[R = OR+]: then, taking into account the possibility that the principal formula is a
side formula in the premise, D has the form:

...

�,
∨

�,�
OR+

�,
∨

�

We obtain D′ � ∨
(� ∪ {∨ �}) in TKB�

ω1
as follows:

... I.H.∨
(� ∪ � ∪ {∨�})

CUT with (ii)∨
(� ∪ �),

∨
�

CUT with (iii)∨
�,

∨
�

CUT with (i)∨
(� ∪ {∨ �}),∨ �

OR∨
(� ∪ {∨�})

[R = Ki]: then D has the form:

...

¬�,ϕ
Ki¬�i�,�iϕ

8The height of a derivation D in TKω1 is defined in the standard way: h(D) = 0 if D is an axiom
(ID), and h(D) = sup{h(Di)+1 | i ∈ I } ifD results from derivations {Di }i∈I by an application of
an |I |-premises inference rule W, OR+, CUT (|I | ≤ 2), AND (|I | ≤ ω). Of course h(D) can exceed
finite ordinals due to the presence of the rule AND, possibly having denumerably many premises.

302 P. Minari

We obtain D′ � ∨
(¬�i� ∪ {�iϕ}) in TKB�

ω1
as follows:

BFω1∨ ¬�i�,�i
∧

�

... I.H.∨
(¬� ∪ {ϕ})

CUT with (ii)¬∧
�,ϕ

K�
i¬�i

∧
�,�iϕ

CUT∨ ¬�i�,�iϕ
CUT with (i)∨

(¬�i� ∪ {�iϕ}),�iϕ
OR∨

(¬�i� ∪ {�iϕ}) �

4 Generalized (and Standard) Kripke Frames

As we saw, TK�
ω1

is incomplete with respect to Kripke semantics. In order to pro-
vide this calculus with a (possibly natural) adequate semantics, we introduce here a
generalization of standard Kripke models.

A generalized (multiagent) Kripke frame is a pair

G = 〈W, {Ri }i<ω〉

where W is a nonempty set and, for each i < ω, Ri is a nonempty family of binary
relations overW which is downward directedwith respect to inclusion, i.e. it satisfies:

(∀R ∈ Ri)(∀S ∈ Ri)(∃T ∈ Ri)(T ⊆ R ∩ S) (i < ω). (DD)

Standard Kripke frames are of course a special case of generalized Kripke frames,
namely the case in which the family Ri reduces to a singleton {Ri }—singletons
trivially satisfy the condition (DD)—for each i < ω. Intuitively, one may think of a
generalized frame as a “well-behaved” systemof approximations of a standard frame.
The relations inRi are the available approximations of the “real” accessibility relation
(not necessarily contained in Ri) for agent i—R ∈ Ri being a finer approximation
than S ∈ Ri just in case that R ⊆ S. The condition (DD) then amounts to a no-
conflict request, saying that any two approximations have a common refinement in
Ri—see also Remark 4.4 below.9

9Kripke-style semantics based on generalized Kripke frames not satisfying the condition (DD) have
been considered in the literature (under diverse names, likemulti-relational semantics, ormultiplex
semantics), see e.g. [2, 5, 13], in order to model various types of non-normal modal logics, in
particular deontic systems allowing conflicts of obligation (in which case the relations R ∈ Ri are
seen as distinct, possibly conflicting normative standards for agent i).

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 303

When dealing with standard frames and models (see below) we will keep to the
familiar way of presentation, by identifying {Ri } with Ri . In other words, we write
S = 〈W, {Ri }i<ω〉 instead of S = 〈W, {{Ri }}i<ω〉, when S is standard.

A valuation over a generalized frame G is, as usual, a map

v : Lit+ −→ 2W .

Finally, a generalized Kripke model is a triple

M = 〈W, {Ri }i<ω, v〉

whereG = 〈W, {Ri }i<ω〉 is a generalized Kripke frame and v is a valuation overG.
Given a generalized model M = 〈W, {Ri }i<ω, v〉, an element w of WM = W

and a formula ϕ ∈ FM, the relation

M, w �g ϕ

is defined inductively as follows:

(i) M, w �g pk iff w ∈ v(pk);
(ii) M, w �g p̃k iff w /∈ v(pk);
(iii) M, w �g

∧
� iff M, w �g ψ for each ψ ∈ �;

(iv) M, w �g
∨

� iff M, w �g ψ for some ψ ∈ �;
(v) M, w �g �iψ iff there exists a relation R ∈ Ri such that, for every u ∈ W,

wRu implies M, u �g ψ (i < ω);
(vi) M, w �g �̃iψ iff for each R ∈ Ri there is a state u ∈ W such that wRu and

M, u �g ψ (i < ω)

where ‘M, w �g ϕ’ is short for ‘not(M, w �g ϕ)’.
Notice that, for every formula ϕ, we have

M, w �g ¬ϕ iff M, w �g ϕ

as expected.
Truth of a formula ϕ in a generalized model M, in symbols

M |=g ϕ

as well as generalized universal validity of a formula, in symbols

|=g ϕ

are defined as usual:

• M |=g ϕ iff M, w �g ϕ for all w ∈ WM;
• |=g ϕ iff M |=g ϕ for all generalized models M.

304 P. Minari

All these notions are extended to arbitrary countable sets of formulas � according
to the following

Notational conventions 4.1 • M, w �g � iff M, w �g ϕ for some ϕ ∈ �;
• M |=g � iff M, w �g � for all w ∈ WM;
• |=g � iff M |=g � for all generalized models M.

Caution: note the disjunctive reading of M, w �g � !

Standard models coincide with generalized models based on standard frames
S = 〈W, {Ri }i<ω〉. In fact, as it is immediately seen, in this case the two non-standard
clauses (v) and (vi) of the above inductive definition become the usual:

(v)st M, w � �iψ iff wRiu implies M, u � ψ for every u ∈ W (i < ω);
(vi)st M, w � �̃iψ iff there exists a state u ∈ W s.t. wRiu and M, u � ψ

(i < ω)

and so the satisfaction relation ‘M, w �g ϕ’ boils down to the familiar one
‘M, w � ϕ’.

Henceforth, when dealing with standard models M, we will drop the index g
from ‘M, w �g ϕ’ and from all the related notions, including those of Convention
4.1.

Remark 4.2 It is easy to verify that every generalized Kripke model M = 〈W,

{Ri }i<ω, v〉 satisfying the condition that the relation R∗
i = ⋂

Ri belongs to Ri

(i < ω), is equivalent to the standard model

M∗ = 〈W, {R∗
i }i<ω, v〉

in the sense that for every w ∈ W and every formula ϕ of L�
ω1
:

M, w |=g ϕ iff M∗, w |= ϕ.

In view of the downward directedness condition (DD) it then follows that a gener-
alized Kripke model M = 〈W, {Ri }i<ω, v〉 in which every familyRi is finite (even
more so, one in which the set of states W is finite) is nothing but a standard Kripke
model in disguise.

Trivially, the three calculi TK�
ω1
, TK∗

ω1
and TKω1 are valid with respect to the

standardKripke semantics. Yet, after having generalized the notions of Kripke frame,
Kripkemodel and universal validity in the way described above, we can easily realize
that the soundness of the necessitation rule and of the characteristic schema K :

�(ϕ → ψ) → (�ϕ → �ψ)

of the minimal normal modal system K is not lost. As a consequence, we have that
the infinitary system TK�

ω1
is in fact valid with respect to the generalized semantics.

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 305

Theorem 4.3 (g-Validity for TK�
ω1
) For every finite set C of L�

ω1
-formulas:

�� C ⇒ |=g C.

Proof It is sufficient to check that the modal rules K�

i of TK
�
ω1

preserve truth in any
generalized model M = 〈W, {Ri }i<ω, v〉; that is, for every i < ω:

M |=g {¬ψ1, . . . ,¬ψn,ϕ} ⇒ M |=g {¬�iψ1, . . . ,¬�iψn,�iϕ}.

So, assume that M |=g {¬ψ1, . . . ¬ψn,ϕ} and suppose, towards a contradiction,
that M �|=g {¬�iψ1, . . . ,¬�iψn,�iϕ}; then

M, w �g �iψ1, . . . ,M, w �g �iψn (4.1)

and
M, w �g �iϕ (4.2)

for some w ∈ W .
By (4.1), there exist relations R1, . . . , Rn ∈ Ri such that

for 1 ≤ k ≤ n : (∀u ∈ W) (wRku ⇒ M, u �g ψk). (4.3)

Applying the downward directedness condition (DD) toRi , let T ∈ Ri be such that
T ⊆ R1 ∩ · · · ∩ Rn . Then, by (4.3):

for 1 ≤ k ≤ n : (∀u ∈ W) (wTu ⇒ M, u �g ψk). (4.4)

On the other side, it follows by (4.2) and T ∈ Ri that there exists a state t ∈ W such
that

wT t and M, t �g ϕ. (4.5)

Hence, by (4.4) and (4.5):

M, t �g {¬ψ1, . . . ,¬ψn,ϕ} (4.6)

in contrast with our assumption M |=g {¬ψ1, . . . ¬ψ1,ϕ}. �

Remark 4.4 It is easy to see that the instances of the modal rule K�
i in which the set

C is either empty, or a singleton, are sound independently of the condition (DD).
In other words, (DD) is not needed in order to show that the necessitation rule RN
(from ϕ to infer�iϕ) and the regularity rule RR (from ϕ → ψ to infer�iϕ → �iψ)
are truth-preserving in any generalized model. (CC) plays instead an essential role
when the finite set C contains at least two formulas or, equivalently, in order to show

306 P. Minari

that the schema �iϕ ∧ �iψ → �i (ϕ ∧ ψ) (the finitary version of BFω1) is valid—
indeed, by dropping (DD) a generalized countermodel to this formula can be easily
constructed.10

Now, we show that the Barcan Formula BFω1 is not universally valid with respect
to the generalized Kripke semantics.

Fact 4.5 (g-countermodel for BFω1) �|=g BFω1 .

Proof Let us consider the generalized Kripke model

C = 〈N∗, {Ri }i<ω, v〉

where:

• N
∗ := N ∪ {∗} (the natural numbers plus a new state ∗);

• for every i < ω, Ri = R := {RX | X ∈ cof (N)}, where:
– cof (N) is the set of all cofinite subsets of N,
– RX := {〈∗, n〉 | n ∈ X};

• v(pn) := N � {n}, for each pn ∈ Lit+.

The so defined family R of relations satisfies the condition (DD) since on the one
side cofinite subsets of N are closed under finite intersection, and on the other side,
by definition

RX ∩ RY = RX∩Y ∈ R (X,Y ∈ cof (N)).

Now, for i < ω we have, by construction, that for each n ≥ 0:

(∀w ∈ N
∗)(∗RN�{n}w ⇒ C, w �g pn) (4.7)

whence
C, ∗ �g �i pn. (4.8)

Thus
C, ∗ �g

∧
{�i pn | n < ω}. (4.9)

On the other side, for every X ∈ cof (N) and every k ∈ X :

∗ RXk and C, k �g pk . (4.10)

10In the usual Hilbert-style axiomatization of K (classical tautologies, axiom-schema K and infer-
ence rules MP,RN) one can equivalently replace K with the axiom schema �ϕ ∧ �ψ → �(ϕ ∧ ψ)

together with the inference rule RR. Multi-relational semantics in which the condition (DD) is not
requested (see fn. 9) are thus typically used to model subsystems of K in which RN and RR are
accepted, while �ϕ ∧ �ψ → �(ϕ ∧ ψ) is rejected.

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 307

Hence
C, ∗ �g �i

∧
{pn | n < ω}. (4.11)

We conclude from (4.9) and (4.11) that

C �|=g

∧
{�i pn | n < ω} → �i

∧
{pn | n < ω}

the latter formula being an instance of BFω1 . �

Hence, Theorem 4.3 and Fact 4.5 supplement the underivability proof of BFω1 in
TK�

ω1
, mentioned in the previous section, with a semantical argument. We can also

use the above generalized Kripke model C, together with Theorem 4.3, to see that
the formula ∨

{¬�i p0,¬�i p1,¬�i p2, . . . ,�i

∧

n<ω

pn}

is not derivable in TK�
ω1
, as claimed without proof in Sect. 3. Indeed, by (4.8) and

(4.11), we have

Fact 4.6 C, ∗ �g
∨{¬�i p0,¬�i p1,¬�i p2, . . . ,�i

∧
n<ω pn}.

In conclusion, observe that the results mentioned in point (b) of Sect. 3 show that
TK∗

ω1
is not sound with respect to the generalized Kripke semantics. Of course, both

TK∗
ω1

and TKω1 are sound with respect to the narrower class of all the generalized
Kripke frames G = 〈W, {Ri }i<ω〉 satisfying the countable downward directedness
condition

(∀S ⊆ Ri)(|S| ≤ ω → (∃T ∈ Ri)(∀S ∈ S)(T ⊆ S)). (DDω1)

However, only TKω1 is also completewith respect to this special class of generalized
frames. Thus the problem of finding an adequate Kripke-style semantic characteri-
zation of TK∗

ω1
remains open.

5 Completeness Theorems for TK�
ω1 and TKω1

We are going to prove, via a canonical model technique, a completeness theorem for
TK�

ω1
with respect to the generalized Kripke semantics, and a completeness theorem

for TKω1 with respect to the standard Kripke semantics. As the reader will see, our
proofs of the two results run closely parallel and, in fact, eventually diverge only in
one very specific key point.

We start with the common part of the two proofs. The notion of environment
E[�] of a set � of formulas (see Sect. 2) is employed here for the first time. In the
following, we will often make a tacit use of the closure properties of environments,

308 P. Minari

as well as of Lemma 2.4, saying that the environment of a countable set of formulas
is, in turn, countable.

By convenience, let us denote by J an arbitrarily fixed element of {TK�
ω1

,TKω1}.
Recall that the rule OR is available also in TKω1 as a derived rule.

Definition 5.1 Let � be a countable set of formulas:

(i) J � � := J � C for some finite subset C of �;
(ii) � is J-consistent iff J � ¬�;
(iii) � is J-saturated iff:

(a) � is J-consistent,
(b) � ∪ ¬� = E[�],
(c) for all � such that

∧
� ∈ E[�] : � ⊆ � ⇒ ∧

� ∈ �;

(iv) � is J-uniform iff for every � such that
∧

� ∈ E[�]:
if J � ¬�,ϕ for each ϕ ∈ �, then J � ¬�,

∧
�.

Lemma 5.2 (Saturated sets) Any J-saturated set � satisfies:

(1) For all ϕ ∈ E[�], either ϕ ∈ � or ¬ϕ ∈ �, and not both.
(2) For all ϕ ∈ E[�], if J � ¬�,ϕ then ϕ ∈ �.
(3) For all � such that

∧
� ∈ E[�]: � ⊆ � iff

∧
� ∈ �.

(4) For all � such that
∨

� ∈ E[�]: � ∩ � �= ∅ iff
∨

� ∈ �.

Proof
(1): immediate, by (a) and (b) of Definition 5.1. (iii).
(2): suppose J � ¬C,ϕ for some C ⊆ �. If ϕ /∈ � then, by (1), ¬ϕ ∈ � and so
D := C ∪ {¬ϕ} is finite subset of � such that J � ¬D, against the J-consistency of
�.
(3): if � is such that

∧
� ∈ E[�], then also � ⊆ E[�] by Definition 2.3. Suppose

now that
∧

� ∈ �, and letϕ ∈ �: as J � ¬∧
�,ϕ trivially, we have that J � ¬�,ϕ

and so that ϕ ∈ � by (2). Hence � ⊆ �. The converse direction is given by (c) of
Definition 5.1.(iii).
(4): by (1) and (3),

∨
� ∈ � iff

∧ ¬� /∈ � iff ¬� � � iff � ∩ � �= ∅. �

Fact 5.3 (Distributivity of ∨ over
∧
)

J �(0) ψ ∨
∧

� ↔
∧

{ψ ∨ ϕ | ϕ ∈ �}.

Proof

· · ·
{ ¬ψ,ψ,ϕ ¬ϕ,ψ,ϕ

AND¬(ψ ∨ ϕ),ψ,ϕ
OR¬∧{ψ ∨ ϕ | ϕ ∈ �},ψ,ϕ

}
· · · (ϕ ∈ �)

AND¬∧{ψ ∨ ϕ | ϕ ∈ �},ψ,
∧

�
OR¬∧{ψ ∨ ϕ | ϕ ∈ �},ψ ∨ ∧

�

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 309

· · ·
{ ¬ψ,ψ,ϕ

¬ϕ,ψ,ϕ
OR¬∧

�,ψ,ϕ
AND¬(ψ ∨ ∧

�),ψ,ϕ
OR¬(ψ ∨ ∧

�),ψ ∨ ϕ

}
· · · (ϕ ∈ �)

AND¬(ψ ∨ ∧
�),

∧{ψ ∨ ϕ | ϕ ∈ �} �

Notational convention 5.4 For i < ω:

i
√

� := {ϕ | �iϕ ∈ �}.

Lemma 5.5 For every countable set � of formulas:

(1) If � is J-consistent then, for all ψ ∈ E[�], either � ∪ {ψ} or � ∪ {¬ψ} is
J-consistent.

(2) If � is J-saturated and �iψ ∈ E[�] � � then i
√

� ∪ {¬ψ} is J-consistent.
(3) If � is finite, then � is J-uniform.
(4) If � is J-uniform then, for every ψ ∈ E[�], � ∪ {ψ} is J-uniform.
Proof (1) is immediate by the CUT rule, and (3) is trivial.
(2): under the assumptions suppose that i

√
� ∪ {¬ψ} is not J-consistent. Then, for

some finite set C such that �iC ⊆ �, we have J � ¬C,ψ and so, by an application
of the rule K�, J � ¬�iC,�iψ. Thus J � ¬�,�iψ, and it now follows by (2) of
Lemma 5.2 that �iψ ∈ �, against the assumption.
(4): assume that � is J-uniform, and suppose J � ¬�,¬ψ,ϕ for all ϕ ∈ �. Then
J � ¬�,

∧{¬ψ∨ϕ | ϕ ∈ �} by the J-uniformity of�, plus the closure properties of
environments E[�]. The conclusion follows by CUT using the sequent¬∧{¬ψ∨ϕ |
ϕ ∈ �},¬ψ,

∧
� which is derivable in J by Fact 5.3. �

Lemma 5.6 (Saturation) Every J-consistent and J-uniform countable set of formu-
las � can be extended to a countable set �∗ ⊇ � which is J-saturated.

Proof Assume that the countable set � is both J-consistent and J-uniform. First of
all, being� countable, we know (Lemma 2.4) that its environment E[�] is countable;
so let χ0,χ1,χ2 . . . be an arbitrarily fixed enumeration of E[�].
Define now inductively, for n ≥ 0, a set �n ⊆ E[�] provably satisfying:

(1) �n is J-consistent and J-uniform;
(2) � ⊆ �n ⊆ �n+1.

Basis:

• �0 := �

Step �k � �k+1 :
Supposing that�0, . . . , �k have been defined in away that (1) and (2) are satisfied,

consider the formula χk . Since �k is J-consistent, at least one of the sets �k ∪ {χk}
and �k ∪ {¬χk} must be J-consistent by (1) of Lemma 5.5.

310 P. Minari

—If �k ∪ {χk} is J-consistent, we set:
• �k+1 := �k ∪ {χk}.
— If �k ∪ {χk} is not J-consistent, and so �k ∪ {¬χk} is J-consistent, we set:
• �k+1 := �k ∪ {¬χk}, in case χk is not of the form

∧
� for some �;

• �k+1 := �k ∪ {¬χk,¬ϕ}, in case χk is of the form
∧

�, where ϕ ∈ � is chosen
in a way such that �k ∪ {¬∧

�,¬ϕ
}
is J-consistent.

Observe that in the latter case such a formulaϕ ∈ � always exists. Indeed, otherwise
we would have

for every ϕ ∈ � : J � ¬(�k ∪ {¬
∧

�}),ϕ (5.1)

and in turn, since �k ∪ {¬∧
�} is J-uniform by (4) of Lemma 5.5 and the fact that

�k is J-uniform:

J � ¬(�k ∪ {¬
∧

�}),
∧

�,

i.e. J � ¬(�k ∪ {¬
∧

�}) (5.2)

against the J-consistency of �k ∪ {¬χk}.
Clearly, (1) and (2) are preserved in the step �k � �k+1. Finally, set:

�∗ :=
⋃

n≥0

�n.

Now �∗ ⊇ � and �∗ is easily seen to be saturated. Indeed, it is J-consistent by (1)
and (2), and �∗ ∪ ¬�∗ = E[�] = E[�∗] by construction. As to the last condition,
suppose

∧
� = χn /∈ �∗. Then, by the construction, �n+1 = �n ∪ {¬∧

�,¬ϕ} for
some ϕ ∈ �; so ¬ϕ ∈ �∗ and, by J-consistency of �∗, ϕ /∈ �∗. Hence � � �∗. �

The following Lemma, which makes an essential use of the Barcan Formula, does
hold only for the calculus TKω1 .

Lemma 5.7 Let � be a TKω1 -saturated set of formulas, and let ψ ∈ E[�] be such
that �iψ /∈ �. Then i

√
� ∪ {¬ψ} is TKω1 -uniform.

Proof Under the assumptions, suppose that for each ϕ ∈ �, TKω1 � ¬(
i

√
� ∪

{¬ψ}),ϕ ; that is
for each ϕ ∈ � : TKω1 � ¬ i

√
�,ψ,ϕ. (5.3)

Then, by applying OR twice, followed by Ki , we have:

for each ϕ ∈ � : TKω1 � ¬�i
i

√
�,�i (ψ ∨ ϕ) (5.4)

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 311

and, by taking into account that �i
i

√
� ⊆ �:

for each ϕ ∈ � : TKω1 � ¬�,�i (ψ ∨ ϕ). (5.5)

The set � is TKω1 -saturated by assumption, and by Definition 2.3 the formulas
�i (ψ ∨ ϕ) (for ϕ ∈ �) and

∧{�i (ψ ∨ ϕ) | ϕ ∈ �} all belong to E[�]. Thus (5.5),
together with (2) and (3) of Lemma 5.2, yields:

∧
�i {ψ ∨ ϕ | ϕ ∈ �} ∈ �. (5.6)

On the other side, we have

TKω1 � ¬
∧

�i {ψ ∨ ϕ | ϕ ∈ �},�i (ψ ∨
∧

�) (5.7)

which is shown as follows by making use of the fact that BFω1 is derivable in TKω1

(see Sect. 3):

Fact 5.3¬∧{ψ ∨ ϕ | ϕ ∈ �},ψ ∨ ∧
�

K¬�i
∧{ψ ∨ ϕ | ϕ ∈ �},�i (ψ ∨ ∧

�)
CUT with BFω1¬∧

�i {ψ ∨ ϕ | ϕ ∈ �},�i (ψ ∨ ∧
�)

Now (5.6) and (5.7) yield

TKω1 � ¬�,�i (ψ ∨
∧

�). (5.8)

It follows by (2) of Lemma 5.2 that �i (ψ ∨ ∧
�) ∈ �, and so that ψ ∨ ∧

� ∈ i
√

�.
Therefore TKω1 � ¬ i

√
�,ψ ∨ ∧

� and finally

TKω1 � ¬(
i

√
� ∪ {¬ψ}),

∧
�

using a CUT with TK(�)
ω1

� ¬(χ1 ∨ χ2),χ1,χ2. �

We are now ready to define the canonical models for TKω1 and TK�
ω1
. Let

• SATω1 := {� | � ⊆ FM, |�| ≤ ω, � is TKω1 -saturated};
• SAT �

ω1
:= {� | � ⊆ FM, |�| ≤ ω, � is TK�

ω1
-saturated}.

Definition 5.8 (TKω1 - and TK�
ω1
-universal model)

(1) Uω1 is the standard Kripke model

Uω1 = 〈SATω1 , {Ri }i<ω, v〉

312 P. Minari

where

• �Ri� :⇔ i
√

� ⊆ � (�,� ∈ SATω1 , i < ω);
• v(p) := {� ∈ SATω1 | p ∈ �} for every p ∈ Lit+.

(2) U �
ω1

is the generalized Kripke model

U �
ω1

= 〈SAT �
ω1

, {Ri }i<ω, v〉

where

• for i < ω, Ri := {RC
i | C ⊆fin FM}, with �RC

i � :⇔ i
√

� ∩ C ⊆ �

(�,� ∈ SAT �
ω1

, i < ω)
• v(p) := {� ∈ SAT �

ω1
| p ∈ �} for every p ∈ Lit+.

Note that, trivially,

RC∪D
i ⊆ RC

i ∩ RD
i and RC∪D

i ∈ Ri ,

so that 〈SAT �
ω1

, {Ri }i<ω〉 satisfies the characteristic condition (DD) of a gener-
alized frame.

Theorem 5.9

(1) For every � ∈ SATω1 , for every formula ϕ ∈ E[�]:

Uω1 , � � ϕ ⇔ ϕ ∈ �.

(2) For every � ∈ SAT �
ω1
, for every formula ϕ ∈ E[�]:

U �
ω1

, � �g ϕ ⇔ ϕ ∈ �.

Proof For both (1) and (2) we argue by (transfinite) induction on (the rank of) ϕ.
The cases ϕ ∈ Lit and ϕ ≡ ∧

�,
∨

� are immediate by Definition 5.9 and Lemma
5.2, (3)–(4). The case ϕ ≡ �iψ requires instead separate arguments for Uω1 and U �

ω1
,

see below. Finally, the case ϕ ≡ �̃iψ easily reduces to the previous one by (1) of
Lemma 5.2.
(Uω1) : ϕ ≡ �iψ.
[⇐]: immediate by the definition of Ri and the induction hypothesis.
[⇒]: suppose that �iψ /∈ �. Then � := i

√
� ∪ {¬ψ} is TKω1 -consistent by (2) of

Lemma 5.5 as well as TKω1 -uniform by Lemma 5.7. Applying Lemma 5.6 to � we
find a� ∈ SATω1 such that �Ri� and ψ /∈ �. The conclusion Uω1 , � � �iψ follows
by applying the induction hypothesis.
(U �

ω1
) : ϕ ≡ �iψ.

[⇐]: suppose �iψ ∈ �, and let C := {ψ}. Then RC
i ∈ Ri and, for every � ∈ SAT �

ω1

such that�RC
i �we obviously haveψ ∈ �, and so alsoU �

ω1
,� �g ψ by the induction

hypothesis. Hence U �
ω1

, � �g �iψ.

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 313

[⇒]: suppose that �iψ /∈ �. To conclude U �
ω1

, � �g �iψ it is sufficient to find, for
every finite set C of formulas, a set � ∈ SAT �

ω1
such that �RC

i � and U �
ω1

,� �g ψ.

This is done as follows: givenC , let D := (
i

√
�∩C)∪{¬ψ}. D isTK�

ω1
-consistent,

for otherwise by the ruleK�

i wewould haveTK
�
ω1

� ¬�,�iψ and so by (2) of Lemma
5.2 �iψ ∈ � against the assumption. On the other side, D is finite and so is also
TK�

ω1
-uniform by (3) of Lemma 5.5. It now follows by Lemma 5.6 that there exists

a set � ∈ SAT �
ω1

such that D ⊆ �, and so �RC
i �, as well as ¬ψ ∈ �, ψ /∈ �, and

finally U �
ω1

,� �g ψ by the induction hypothesis. �

Corollary 5.10 For every finite set C ⊆ FM:

TK�
ω1

� C ⇒ U �
ω1

�|=g C.

Hence TK�
ω1

is sound and complete with respect to generalized Kripke semantics.

Proof If TK�
ω1

� C then ¬C is clearly TK�
ω1
-consistent; being a finite set, ¬C is

also TK�
ω1
-uniform by (3) of Lemma 5.5. Then by Lemma 5.6 there exists a set

� ∈ SAT �
ω1
such that ¬C ⊆ �, and so also C ∩� = ∅. It follows by (2) of Theorem

5.9 that U �
ω1

,� �g C . �

Corollary 5.11 For every countable set � ⊆ FM:

TKω1 � � ⇒ Uω1 �|= �.

Hence TKω1 is sound and complete with respect to standard Kripke semantics.

Proof If TKω1 � � then also TKω1 �
∨

�. So we can argue as above taking
C = {∨ �} and using (1) of Theorem 5.9 to conclude that Uω1 ,� �

∨
�, hence also

Uω1 ,� � �, for some � ∈ SATω1 containing
∨

�. �

6 TKω1 does not admit cut-elimination

As we anticipated, the CUT rule cannot be eliminated from TKω1 . This will be now
demonstrated by exhibiting a suitable example of a valid sequentwhich is not cut-free
derivable in the calculus under investigation.

Below, {qk
n | k, n ≥ 0} is a set of pairwise distinct positive literals. As previously

done, we write ‘�0 ’ to denote cut-free derivability.

Fact 6.1 For every m ≥ 0 and every � ⊆ {qk
n | n ≥ 0, k ≤ m}, if

� ⊆ �� := ¬�i�,
{∨

n

¬�i q
k
n | k ≥ 0

}
,�i

∧

k

qk
k

then TKω1 �0 �.

314 P. Minari

Proof We argue by transfinite induction on the height h(D) of TKω1 -derivationsD.
Let τ < ω1. Assume (I.H.) that for no set � satisfying the hypotheses there is a

TKω1 -derivation D �0 � with h(D) < τ .
Suppose, by way of contradiction, that for some m ≥ 0, some � ⊆ {qk

n | n ≥
0, k ≤ m} and some � ⊆ �� there is a cut-free derivation D of � with h(�) = τ .
Let R be the final inference of D. Clearly R must be one of W, OR+, Ki .

If R = W we are immediately in contradiction with the I.H.
If R = OR+, let

∨
n ¬�i q

j
n (for some j ≥ 0) be the principal formula of the

inference and D′ be the subderivation of the premise �′. Then �′ ⊆ �{qk
n |n≥0, k≤r},

where r = max(m, j). Since h(D′) < τ , we are in contradiction with the I.H. again.
Finally, if R = Ki , it is easily seen that from the subderivation of the premise we

would also get a derivation
D′ � ¬�′,

∧

k

qk
k

for some �′ ⊆ �. But this is clearly impossible by the boundedness condition on �

and the soundness of TKω1 . �

Proposition 6.2 The calculus TKω1 does not admit cut-elimination. For instance,
the sequent

� := {∨

n

¬�i q
k
n | k ≥ 0

}
,�i

∧

k

qk
k

is derivable, but not cut-free derivable, in TKω1 .

Proof TKω1 �0 � by Fact 6.1, since � ≡ �� with � = ∅.
On the other side, � can be derived as follows by making use of a CUT with an

appropriate instance of BFω1 (which we know being derivable in TKω1):

···
{ ¬qk

k , q
k
k Ki¬�i qk

k ,�i qk
k

OR∨
n ¬�i qk

n ,�i qk
k

}
··· (k≥0)

W , AND

{∨n ¬�i qk
n | k ≥ 0},∧k �i qk

k

...

¬∧
k �i qk

k ,�i
∧

k q
k
k

CUT{∨n ¬�i qk
n | k ≥ 0},�i

∧
k q

k
k �

We conclude with a further negative result, showing how a seemingly natural way
out of the difficulty emerging from Proposition 6.2 is in turn doomed to failure.

Let us consider the calculus TK◦
ω1
obtained from TKω1 by replacing the rule OR

+
with the stronger (and clearly sound) rule

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 315

�, {�m}m∈I
OR◦ (I countable)

�, {∨ �m}m∈I

by means of which countably many disjunctions can be simultaneously introduced.
Indeed, the sequent � of Fact 6.2 becomes cut-free derivable in TK◦

ω1
:

. . . ¬qk
k , q

k
k . . . (k ≥ 0)

W, AND{¬qk
k | k ≥ 0},∧k q

k
k Ki{¬�i qk

k | k ≥ 0},�i
∧

k q
k
k

W{¬�i qk
n | k ≥ 0, n ≥ 0},�i

∧
k q

k
k

OR◦
{∨n ¬�i qk

n | k ≥ 0},�i
∧

k q
k
k

But unfortunately, a new counterexample to cut-elimination comes out! For n ≥ 0,
let

ϕn :=
{¬�i p0, if n = 0;∧{�i p0, . . . ,�i pk,¬�i pk+1}, if n = k + 1.

Fact 6.3 For every X ⊆fin ω, if

� ⊆ �X := {ϕn}n≥0, {¬�i pm}m∈X ,�i

∧

n

pn

then TK◦
ω1

�0 �.

Proof As in the proof of Fact 6.2 we argue by transfinite induction on the height of
TK◦

ω1
-derivations.

Let τ < ω1. Assume (I.H.) that for no set � satisfying the hypotheses there is a
TK◦

ω1
-derivation D �0 � with h(D) < τ .

Suppose, by way of contradiction, that for some set X ⊆fin ω and some � ⊆ �X

there is a cut-free derivation D of � with h(�) = τ . Let R be the final inference of
D. Necessarily R is be one of W, AND, Ki .

If R = W we are immediately in contradiction with the I.H.
If R = AND, let ϕ j+1 = ∧{�i p0, . . . ,�i p j ,¬�i p j+1} (for some j ≥ 0) be the

principal formula of the inference, and let D′ be the subderivation of the j + 1-th
premise �′ (the one having ¬�i p j+1 as secondary formula) of this inference. Then
�′ ⊆ �X∪{ j+1}, and since h(D′) < τ we are in contradiction with the I.H. again.

If R = Ki , then there would be a finite set Y = X ∪ {0} ⊆ ω and a derivation

D′ � {¬pk}k∈Y ,
∧

n

pn

which is clearly impossible by the finiteness of Y and the soundness of TK◦
ω1
. �

316 P. Minari

Proposition 6.4 The calculus TK◦
ω1

does not admit cut-elimination. For instance,
the sequent

� := {ϕn}n≥0,�i

∧

n

pn

is derivable, but not cut-free derivable, in TK◦
ω1
.

Proof TK◦
ω1

�0 � by Fact 6.3, since � ≡ �X with X = ∅.
On the other side, � can be derived (in fact, already in TKω1) by making use of

CUT. First of all, we verify:

TKω1 �0 ϕ0, . . . ,ϕm,�i pm for each m ≥ 0. (6.1)

This is easily proved by induction on m:

– m = 0: ¬p0, p0
Ki¬�i p0,�i p0

– m = k + 1:

I.H.

ϕ0,�i p0
. . .

I.H.

ϕ0, . . . ,ϕk,�i pk

¬pk+1, pk+1

¬�i pk+1,�i pk+1
Ki

W, AND
ϕ0, . . . ,ϕk,

∧{�i p0, . . . ,�i pk,¬�i pk+1},�i pk+1

Next, using BFω1 , we obtain the following derivation of � in TKω1 :

···
{

(6.1)
ϕ0, . . . ,ϕm,�i pm

}
··· (m≥0)

W , AND{ϕn}n≥0,
∧

n �i pn

...

¬∧
n �i pn,�i

∧
n pn

CUT{ϕn}n≥0,�i
∧

n pn �

7 Concluding Remarks

The counterexample to cut-elimination given in Proposition 6.4 seems to involve
infinitary conjunction in an essential way. It is then natural to ask whether a strength-
ening of the AND rule might be of some use. In analogy to the strengthening OR◦ of
the disjunction rule OR+ discussed in the previous section, we may look for a rule
allowing the simultaneous introduction of countably many conjunctions in the con-
clusion.One possible candidatewe experimentedwith is the following rule (featuring
uncountably many premises):

Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic 317

. . . �,� . . . (all � � {�i | i ∈ I })
AND◦

�, {∧ �i | i ∈ I }
where {�i | i ∈ I } is a countable family of countable sets of formulas, and � �
{�i | i ∈ I } is short for (∀i ∈ I)(� ∩ �i �= ∅).

Bad news again! Let TK◦◦
ω1

be the calculus obtained from TK◦
ω1

by replacing
the rule AND with the above rule AND◦. It is easy to check that the sequent � of
Proposition 6.4, providing a counterexample to cut-elimination for TK◦

ω1
, becomes

cut-free derivable in TK◦◦
ω1
. Unfortunately, a new (rather involved) counterexample

can be provided, showing that even TK◦◦
ω1

does not admit cut-elimination.
The ensuing impression is that further attempts to look at other variants of TKω1 ,

in order to find a “conventional” sequent-style calculus forKω1 allowing (syntactical,
if possible) cut-elimination, are likely destined to bring to a deadlock. On the other
side, we think that further investigations on the proof theory of infinitary modal logic
within the framework of “non conventional” sequent-style calculi (deep sequent
systems [1], labeled sequent systems [9, 10], and other proof systems which make
explicit use of semantic parameters in the syntax), as well as a deeper exploration
of the relationship between infinitary modal logic and modal fixed point logics, are
worth to be pursued.

Acknowledgments I wish to thank an anonymous referee for helpful comments and suggestions.

References

1. K. Brünnler, Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577 (2009)
2. E. Calardo, A. Rotolo, Variants of multi-relational semantics for propositional non-normal

modal logics. J. Appl. Non-Classical Logics 24, 293–320 (2014)
3. R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge (The MIT Press,

Cambridge, 1995)
4. S. Feferman, Lectures on proof theory, in Proceedings of the Summer School in Logic, Leeds

1967, vol. 70, Lecture Notes in Mathematics, ed. by M.H. Löb (Springer, Berlin, 1967), pp.
1–107

5. L. Goble, Multiplex semantics for deontic logic. Nordic J. Philos. Logic 5, 113–134 (2000)
6. N. Kamide, Embedding linear-time temporal logic into infinitary logic: application to cut-

elimination for multi-agent infinitary epistemic linear-time temporal logic, in Computational
Logics in Multi-Agent Systems, vol. 5405, Lecture Notes in Artificial Intelligence, ed. by M.
Fisher, F. Sadri, M. Thielscher (Springer, Berlin, 2009), pp. 57–76

7. E.G.K. Lopez-Escobar, An interpolation theorem for denumerably long formulas. Fundam.
Math. 57, 253–272 (1965)

8. E.G.K. Lopez-Escobar, Remarks on an infinitary languagewith constructive formulas. J. Symb.
Logic 32, 305–318 (1967)

9. P. Minari, Labeled sequent calculi for modal logics and implicit contractions. Arch. Math.
Logic 52, 881–907 (2013)

10. S. Negri, Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)
11. M. Ohnishi, K. Matsumoto, Gentzen method in modal calculi. Osaka Math. J. 9, 113–130

(1957)
12. S. Radev, Infinitary propositional normal modal logic. Studia Logica 46, 291–309 (1987)

318 P. Minari

13. P. Schotch, R. Jennings, Non-kripkean deontic logic, in New Studies in Deontic Logic, ed. by
R. Hilpinen (Reidel, Dordrecht, 1981), pp. 149–162

14. W.W. Tait, Normal derivability in classical logic, in The Syntax and Semantics of Infinitary
Languages, vol. 72, Lecture Notes in Mathematics, ed. by J. Barwise (Springer, Berlin, 1968),
pp. 204–236

15. Y. Tanaka, Kripke completeness of infinitary predicate multimodal logics. Notre Dame J.
Formal Logic 40, 327–339 (1999)

16. Y. Tanaka, Cut-elimination theorems for some infinitary modal logics. Math. Logic Q. 47,
326–340 (2001)

17. Y. Tanaka, H. Ono, Rasiowa-Sikorski lemma and Kripke completeness of predicate and infini-
tary modal logics, in Advances in Modal Logic 98, vol. 2, ed. by M. Zakharyaschev, K.
Segerberg, M. de Rijk, H. Wansing (CSLI Publications, Stanford, 2000), pp. 419–437

From Subsystems of Analysis to Subsystems
of Set Theory

Wolfram Pohlers

Dedicated to Gerhard Jäger on the occasion of his 60th birthday

1 Introduction

It is a pleasure for me to contribute to a volume to honor Gerhard Jäger’s work in
proof theory on the occasion of his 60th birthday.

I had the advantage to accompany his first steps into proof theory. A period
during which the emphasis of a certain part of proof theory changed from studies of
subsystems of Analysis to the study of subsystems of set theory. A change whose
details were nearly exclusively worked out by Gerhard Jäger.

To honor this aspect of Gerhard Jäger’s contribution to proof theory I am going
to try to give a non technical and very personally biased account of how we got from
subsystems of Analysis to subsystems of set theory. This is, however, only one aspect
of Gerhard’s work. But it is the aspect to which I have the closest bonds.

I want to express my warmest thanks toWilfried Buchholz who improved the text
by a series of helpful remarks and corrections.

2 Ordinal Analysis for Predicative Systems

Anyone who knows me will guess that the “certain part” of proof theory I am talking
about is ordinal analysis. To distinguish ordinal analysis from Analysis in the sense

W. Pohlers (B)
Institut für math. Logik und Grundlagenforschung, Westfälische
Wilhelms-Universität, Münster, Germany
e-mail: pohlers@uni-muenster.de

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_9

319

320 W. Pohlers

of second order number theory I will always capitalize Analysis if I mean Analysis
in the sense of second order number theory.

To stress the necessities that brought us to change to subsystems of set theory I
will put some emphasis on the time before the change.

2.1 Ordinal Analysis

Tomake clear what I am talking about let us resume some of the basic facts of ordinal
analysis. It means the computation of the proof theoretic ordinal of a mathematical
theory.

The proof theoretic ordinal of a theory T is commonly defined as the supremum
of the order–types of elementarily definable order relations whose well–foundedness
is provable within the theory T. But ordinal analysis is in fact much more than just
knowing the proof theoretic ordinal of a theory T. I claim that you know nearly
everything about the meta–mathematics of a mathematical theory once you have an
ordinal analysis of it. I will, however, not deepen this claim here. Later I will mention
an example.

Determining the proof theoretic ordinal of a theory T of course requires that we
can talk about well–foundedness in the language of T. Since well–foundedness in an
arithmetical language is a genuine�1

1–notion this needs a second order language. The
situation is, however, not so bad since we can express second order �1

1–statements
in a first order logic with free second order variables.

There is a method that goes back to Gerhard Gentzen how such an information
can be achieved. I want to describe this method in more modern terms. These more
modern terms are based on a strengthening of the ω–completeness theorem due to
Henkin [16] and Orey [26] which says that ω–logic is complete for �1

1–sentences in
the standard structure N.

The strengthening Imean is that there is even a cut–free semi–formal proof system
for ω–logic that is complete for �1

1 sentences in the following sense.

2.1 Theorem A �1
1–sentence (∀X)φ(X) is true in the standard structure N iff there

is an ordinal α < ωck
1 such that

α

0
φ (X).

I promised not to become too technical. Therefore I try to explain the notions in the
theorem in a non–technical way. Clearly ωck

1 denotes the Church–Kleene ordinal, the
first ordinal that cannot be represented by a recursive well–ordering on the natural
numbers.

The ω–rule is a rule with infinitary, i.e., ω many premises saying that from ψ(n)

for every n ∈ N you can infer ((∀x)ψ(x). A proof tree in ω–logic is therefore an
ω–branching well–founded infinitary tree whose depth is canonically measured by
an ordinal. The notion

α

0
φ then denotes that there is a cut–free derivation for φ in

ω–logic whose depth is bounded by α.
A cut–free derivation in ω–logic is of course not uniquely determined by its end

formula but there is a certain border for the complexities of the possible cut–free

From Subsystems of Analysis to Subsystems of Set Theory 321

derivations which cannot be undercut. We may thus define the truth complexity
tc((∀X)φ(X)) of a �1

1–sentence as the least ordinal α for which we have a cut-free
derivation

α

0
φ (X) in ω–logic.1

The main theorem that relates truth complexities and proof theoretic ordinals is
the Boundedness Theorem which goes back to Gentzen’s paper [15]. We state it in
an improved form which is due to Arnold Beckmann [2]. For the theorem let

(∀X)�≺(X) :⇔ (∀X)[(∀x)[(∀y ≺ x)y ∈ X → x ∈ X] → (∀x)[x ∈ X]]

denote the formula that expresses the well–foundedness of an elementarily definable
relation ≺.

2.2 Theorem (Boundedness) Assume that ≺ is a transitive well–founded binary
relation on the natural numbers that is elementarily definable and

α

0
�≺(X) . Then

its order–type is less than or equal to α.
For well–orderings ≺ of limit type its order–type and the truth complexity of

(∀X)�≺(X) coincide.2

Ordinal analyses for “predicative” arithmetical theories follow, in principle, all the
same pattern.

• Unravel formal proofs into proofs within ω–logic.
• Eliminate the cuts.
• Use the Boundedness Theorem to obtain an upper bound for the proof theoretic
ordinal.3

Clearly there is ample room for numerous refinements that are needed to obtain
ordinal analyses for skew intermediate axiom systems but in general this pattern
remains retained.

The classical result is Gentzen’s analysis of Peano arithmetic. Following the above
pattern the upper bound for the proof theoretic ordinal is obtained by first observing
that every formal derivation of a formula φ in Peano Arithmetic can be unraveled

into an infinitary derivation
ω·2
n φ with n < ω in ω–logic with cut. Here

α

ρ φ denotes
an ω–derivation of length ≤ α whose cut formulas have all complexities below ρ.
The main step is Gentzen’s cut elimination theorem.

1In case that φ is a sentence not containing free variables, the calculus
α

0
φ is just a verification

of φ in the structure N. Details about semi–formal systems in general and the verification calculus
α

0
φ together with a proof of Theorem 2.1 can be found in [34].

2This formulation is quite different from Gentzen’s approach who did not use infinitary logic.
However, the idea of the proof is the same. In our formulation Gentzen’s result says that ωα is an
upper bound for the order–type of ≺. A result that sufficed to obtain the proof theoretic ordinal for
Peano Arithmetic. Already Schütte improved Gentzen’s result in showing that the order–type of ≺
is ≤ ω · α (cf. [38] Theorem 23.1).
3I concentrate on the computation of upper bounds, since only there meta–mathematical methods
are needed. Lower bounds are obtained by exhausting the mathematical power of an axiom system.

322 W. Pohlers

2.3 Theorem (Gentzen)
α

ρ+1
φ implies

ωα

ρ φ ,

which states that the cut–degree of a derivation in ω–logic can be decreased by 1
for the price of raising the length of the derivation by one ω–power.4 By iterated
use of cut elimination we obtain the first fixed–point of the function α �→ ωα, i.e.,
ε0 := min {ξ ωξ = ξ}, as an upper bound for the proof theoretic ordinal of Peano
Arithmetic.

2.2 Ramified Analysis

Gentzen’s work was a first attempt towards a—at least partial—solution of the sec-
ond problem in Hilbert’s 1900 list of mathematical problems, the consistency of
Analysis.5 Analysis is formalizable within second order number theory. The differ-
ence to Peano Arithmetic is the fact that we now also allow quantifiers over sets of
natural numbers, represented by second order variables, and reinforce the logic by
the comprehension scheme

(∃X)[(∀y)[y ∈ X ↔ F(y)]] (CA)

in which F(y) is an arbitrary formula of Analysis, i.e., second order arithmetic,
which must not contain the second order variable X freely.

For Analysis, however, the pattern which I sketched in the previous section does
not longer work. The reason for this failure is the comprehension scheme. Since F(y)

is an arbitrary formula of Analysis it may itself contain arbitrary nestings of second
order quantifiers which causes us to run into circles. To handle this “impredicativity”
in the comprehension scheme is the true challenge. Due to this impredicativity it is
unclear if there is an infinitary rule that allows us to deal with second order quantifiers
in a similar way as the ω–rule allows us to handle first order quantifiers.

Afirst step tomeet this challenge isRamified Analysis inwhich the comprehension
scheme is restricted to ramified comprehension.

To explain the ramification we declare quantifiers ranging over natural numbers as
quantifiers of stage 0. The stage of a formula of Ramified Analysis is the maximum
of the stages of the quantifiers occurring in it. So every formula in the language of
first order Peano Arithmetic obtains stage 0.

If φ(x) is a formula of stage α we call {x φ(x)} a comprehension–term of stage
α + 1. Second order quantifiers (QXα)φ(X) for Q ∈ {∀, ∃} are supposed to range

4Again the formulation deviates considerably from Gentzen’s original theorem. He did not use
infinitary derivations but obtained the result by a complicated assignment of ordinals to the nodes
in a finite derivation.
5In Sect. 3.3 I will briefly comment on Hilbert’s Programme.

From Subsystems of Analysis to Subsystems of Set Theory 323

over all comprehension–terms of stages less than α.
By ramification we avoid circularities and obtain an infinitary rule similar to the

ω–rule saying that from φ(S) for all comprehension–terms S of stages less than α
we can conclude (∀Xα)φ(X).

Augmenting ω–logic with this (∀Xα)—and the obvious dual (∃Xα)—rule we
obtain a semi–formal system which enjoys cut elimination in the following form.
Observe that the formulas in Ramified Analysis have now transfinite complexities.

2.4 Theorem Any semi–formal derivation
α

β+ωρ φ of Ramified Analysis reduces to
ϕρ(α)

β
φ .

Here ϕρ(α) denotes the Veblen function which is defined such that ϕ0(α) := ωα

and ϕρ enumerates the common fixed–points of the functions ϕξ for ξ < ρ. Hence
ϕ1(0) = ε0.

The pattern to obtain upper bounds still works using the infinitary systems of
Ramified Analysis. The more tricky part is now the unraveling of formal deriva-
tions in Analysis. It has turned out that this is possible up to systems in which the
comprehension scheme is restricted to �1

1–formulas.6

Since there are no circularities inRamifiedAnalysis all systems that can be embed-
ded into Ramified Analysis are regarded to be predicative which means that all
apparent circularities in such systems can be resolved.

It follows from Theorem 2.4 that Ramified Analysis is governed by the Veblen
function ϕ. Ordinals that are closed under the Veblen function ϕ, viewed as a binary
function, are strongly critical. Therefore every theory that can be embedded into
Ramified Analysis has a proof theoretic ordinal less than or equal to the first strongly
critical ordinal �0. A result that is independently due to Kurt Schütte [37] and Sol
Feferman [11] who have moreover shown that every ordinal less than �0 can be
predicatively justified. Predicatively justified is here understood in a very technical
(i.e., non–philosophical) sense. Let RAα denote the part of Ramified Analysis that
only contains formulas and comprehension–terms of stages less than α and only
allows infinitary derivations of lengths less than α. Roughly speaking an ordinal α is
predicatively justified if it can be represented by a well–order for which not only the
definition is non–circular but also the proof of its well–foundedness can be embedded
into RAα.

In this technical sense the Schütte–Feferman ordinal �0 is the exact bound for
predicativity and it has become common to call axiom systems with proof theoretical
ordinals less than or equal to �0 predicative.

However, the methods of predicative proof theory are not restricted to systems
with ordinals less than or equal to �0 as Gerhard Jäger and his school have shown in
their project ofmetapredicativity. So Iwould like to draw a (technical) bound between
predicative and impredicative systems there, where the methods of predicative proof
theory fail.

6There are variations of the comprehension scheme, e.g., choice schemata, and even stronger systems
such as the systemATR0 of arithmetical transfinite recursion (cf. [39]) which can also be embedded
into Ramified Analysis but this is inessential for our story.

324 W. Pohlers

3 Ordinal Analyses for Impredicative Axiom Systems

Having learned many facts about predicative proof theory in Schütte’s lectures and
seminars,my interest turned to impredicative axiomsystems. Themost famous analy-
sis of an impredicative axiom system which existed at that time was that by Gaisi
Takeuti [41] for second order number theory with the �1

1–comprehension scheme
and Bar induction. Yet it was not genuinely an ordinal analysis but rather a consis-
tency proof in the style of Gentzen. In my dissertation I analyzed Takeuti’s proof
and converted it into an ordinal analysis in terms of an ordinal notation system �

developed by Schütte.7 Although I was able to master the technique I did, at that
time, not really understandwhat was going on in Takeuti’s reduction procedure. Only
much later that became clear by studies of Wilfried Buchholz (cf. [7]).

3.1 ν–fold Iterated Inductive Definitions

However, Takeuti’s techniques turned out to be very useful in confirming the long
conjectured proof theoretic ordinals of axiom systems for iterated inductive defini-
tions.

In abstract terms an inductive definitionon the set of natural numbers is amonotone
operator � : Pow(N) −→ Pow(N). Such an operator possesses a least fixed–point
I� = ⋂ {S �(S) ⊆ S}.

A subset of the natural numbers is inductively definable if it is a slice of a fixed–
point of an elementarily definable inductive definition.

To obtain an axiomatization of inductive definitions we introduce a set constant
Iφ for every arithmetical formula φ(X, x) in which the second order variable X must
only occur positively. This ensures that the operator

�φ(S) := {n N |= φ(S, n)}

is monotone and thus an inductive definition on the natural numbers. We therefore
commonly talk about positively definable inductive definitions. The intended inter-
pretation for the constant Iφ is the least fixed–point of the inductive definition �φ.
This can be axiomatized in a first order way by the closure axiom

(∀x)[φ(Iφ, x) → x ∈ Iφ]

and the induction scheme

(∀y)[φ(ψ, y) → ψ(y)] → (∀x)[x ∈ Iφ → ψ(x)].

7Actually the system in my dissertation was weaker than Takeuti’s. The ordinal of the full system
was not available in �.

From Subsystems of Analysis to Subsystems of Set Theory 325

We obtain iterations by liberalizing the condition that the inductive definition has to
be elementarily definable but allow previously introduced set constants for fixed–
points in its definition. This can be iterated along any definable well–ordering. The
details (cf. [9, 12]) are not important here.

For an elementarily definable inductive definition �φ we obtain its fixed–point as
a comprehension–term {x (∀X)[(∀y)[φ(X, y) → y ∈ X] → x ∈ X]}, i.e., by �1

1–
comprehension. Consequently the first ordinal analyses of the theories IDν for ν–fold
iterated inductive definitionswere obtained by embedding these theories into systems
of iterated �1

1–comprehensions which then could be handled by Takeuti’s technique
(cf. [27, 28]).

Although this yielded a correct computation of the upper bounds for the proof the-
oretic ordinals of the theories IDν the method was, due to the complicated reduction
procedure à la Takeuti, completely opaque. It was Sol Feferman’s constant nagging
for a more perspicuous method that kept us (if I may speak also in the name of
Wilfried Buchholz) working on the problem. Wilfried Buchholz succeeded in devel-
oping his �–rules which, however, did not completely satisfy myself for reasons
which I will discuss below.

3.2 Buchholz’ �–Rule

For the following part we need a rough idea of Buchholz’ �–rule. This rule is
closely related to the hyperjump operation. One possibility to present a hyperjump
is the transition from a constructive number class to the next constructive transfinite
number class. The transition is given by the rule

(∀x)[x ∈ On ⇒ {e}(x) ∈ On+1] ⇒ 3n+1 · 5e ∈ On+1.

Inspired by a paper [19] by Howard on “a system of abstract constructive ordinals”
Buchholz invented a rule that mimicked the construction of higher “number classes”.
To explain the rule we use the language with the constants Iφ for fixed points and
replace the closure axiom by a rule

α

ρ χ → φ(Iφ, n) ⇒ β

ρ χ → n ∈ Iφ .

We8 introduce the “first derivation class”9 as the class of cut–free derivations in ω–
arithmetic with only positive occurrences of fixed–point constants and the “second
derivation class” which comprises derivations also with cuts and—more important—
also arbitrary lengths and negative occurrences of fixed–point constants. There is a

8When formulating such rules I tacitly assumeα < β. I mention the side formulaχ just to be not too
severely cheating. A rigid definition is preferably done in the framework of some form of sequent
calculus.
9This is my naming to emphasize the relationship to the hyperjump operation.

326 W. Pohlers

class of constructive “derivation operations”,whichwe do notwant to explain further,
and we can formulate the rule as follows.

(�–rule) If there is a derivation operation F that converts any derivation
α

0
χ → n ∈ Iφ in the first derivation class into a derivation

F(α)

ρ χ → ψ

then we can infer
F(�)

ρ n ∈ Iφ → ψ .

The similarity to the hyperjump operation should nowbe obvious. The first derivation
class plays the role of Kleene’sO and the “constructive derivation operations” adopt
the role of the recursive functions.

Clearly this rule can be extended to �ν–rules which mimic ν–fold iterated appli-
cations of the hyperjump and are thus apt for the handling of ν–fold iterations of
inductive definitions (cf. [5]).

The � rule is an infinitary rule with � many premises. The corresponding deriva-
tions are infinitary �–branching well–founded trees. It is easy to see that the formal
theory of inductive definitions is easily embedded into this system. The closure axiom
is immediate from the closure rule.

To obtain also the induction scheme we start with a derivation
α

0
n ∈ Iφ in the

first derivation class and transform it into a derivation

F(α)

ρ (∀y)[φ(ψ, y) → ψ(y)] → ψ(n)

by replacing all occurrences of k ∈ Iφ by ψ(k) and adding the premise
(∀y)[φ(ψ, y) → ψ(y)]. The only rule that can be violated by this operation
is the closure rule. In this case, however, we obtain the premise
F(α0)

ρ (∀y)[φ(ψ, y) → ψ(y)] → φ(ψ, n) from which we logically infer

F(α)

ρ (∀y)[φ(ψ, y) → ψ(y)] → ψ(n) .

Using the �–rule followed by an ω–rule we finally obtain

F(�)+1
ρ (∀y)[φ(ψ, y) → ψ(y)] → (∀x)[x ∈ Iφ → ψ(x)] .

The calculi with �ν–rules allow cut elimination. Therefore any derivation of a for-
mula with only positive occurrences of constants for non–iterated fixed–points can
be converted into a derivation in the “first derivation class”, which, in principle,
are verifications. Therefore a boundedness theorem holds true for derivations of the
first “derivation class”—the situation is, however, different from that in predicative
theories. We will come back to that in a later section. Nevertheless the suprema of
the lengths of the eventually obtained derivations in the “first derivation class” yield
upper bounds for the proof theoretic ordinals of the theories for iterated inductive
definitions.

From Subsystems of Analysis to Subsystems of Set Theory 327

3.3 A Remark on Hilbert’s Programme

With Buchholz’ �ν–rules we had a perspicuous way to determine the upper bounds
for iterated inductive definitions. At least much more perspicuous than Takeuti’s
reduction procedure. Still I myself was not completely satisfied. To explain why, I
have to give a brief avowal of my personal motivation for doing ordinal analysis.

My starting point is a certain aspect of Hilbert’s Programme. Though I believe
that—due to Gödel’s second incompleteness theorem—Hilbert’s programme failed
in so far, that elementary consistency proofs ofAnalysis are impossible, I nevertheless
think that there is another important aspect of Hilbert’s programme: The elimination
of “ideal objects”.

As I see it it is not completely clear what Hilbert understood by “ideal objects” in
general. However, there are pretty concrete hints what hemeant by “real statements”
in contrast to ideal ones. Such a hint can be found in his 1927 talk given in Hamburg.
Here is my translation of the passage. “The physicist requires for a theory that its
theorems can be formally derived from the laws of nature and its hypotheses alone
without referring to outside perceptions. Only certain combinations and conclusions
of physical laws are checkable by experiments—this is also true for my proof theory
in which only real statements are verifiable.”10

But what are the mathematical analogs of experimentally checkable statements?
Of course we cannot make experiments in mathematics but we can compute. A good
analog for an experimentally checkable statement is therefore a statement whose
instances are verifiable by computations, i.e., �0

1–statements. That of course does
not mean that we can prove �0

1–statements by computations but that we can check
their instances. This situation is comparable to that in physics where we also cannot
“prove” the consequences of a theory experimentally but can check instances of its
predictions.

The analog situation for checking the instances of �0
2–consequences of a math-

ematical theory T could therefore consist in finding a function FT that helps us to
design “experiments” for the theory T. That means that whenever we have a �0

2–
sentence (∀x)(∃y)R(x, y) there is a number k such that FT (k + m) fixes for all
m the frame for finitely many “experiments” in which we can check the instances
(∃y)R(m, y) primitive recursively.11

10Der Physiker verlangt gerade von einer Theorie, dass ohne die Heranziehung von anderwei-
tigen Bedingungen aus den Naturgesetzen oder Hypothesen die besonderen Sätze allein durch
Schlüsse, also auf Grund eines reinen Formelspiels abgeleitet werden. Nur gewisse Kombinationen
und Folgerungen der physikalischen Gesetze können durch Experimente kontrolliert werden—so
wie in meiner Beweistheorie nur die realen Aussagen unmittelbar einer Verifikation fähig sind.
(Cited from [18]).
11Here it is necessary to allow additional number parameters in �0

2–sentences. A more elaborated
discussion on the interaction of Hilbert’s programme and ordinal analysis will appear in [33].

328 W. Pohlers

3.4 �0
2–Analysis

Pursuing Hilbert’s programme for the elimination of ideal objects in this strict sense
means that the procedure for the elimination of “ideal objects” in a T–proof of a
�0

2–sentence should provide us with a function FT that designs an experiment for T.
Clearly the function FT has to be definable and computable without reference to ideal
means, which excludes functional interpretations with functionals of higher types.
Higher types are to be considered as ideal—although such functional interpretations
are of interest(s) in their own.

By “ideal methods” I understand axioms or rules that axiomatize ideal objects,
e.g., sets obtained by comprehensions, ordinals obtained by reflections, etc. Let us
call the program of elimination of ideal objects in T–proofs of �0

2–sentences the
�0

2–analysis of the theory T.
This is an ambitious aim and it was not at all clear from the beginning how far

this program could be realized. From our present knowledge we have to admit, that
the elimination of ideal methods costs the price of long transfinite recursions in the
definition of the functions FT . This is, at least at a first glance, against the spirit of
Hilbert’s programme who claimed that “operating the infinite can only be secured
in the finite”.12 Of course one could argue that the infinities needed are countable
ordinals that can be represented by elementarily—at least primitive recursively—
definable and decidable order relations on the natural numbers. Therefore one could
regard these infinities as only slight extensions of the finite, if we understand “the
finite” as natural numbers in their natural ordering. So we could extend Kronecker’s
aphorism “the natural numbers are made by God all other is man–made” to “the
(constructive countable) ordinals are made by God all other is man–made”.Whereas
I think that the question in how far the ordinals are “God–made” and how these
ordinals can be represented is one of the deepest problems in foundational research
even outside ordinal analysis or even proof theory. But this is a discussion I will
address elsewhere.

�0
2–analysis is to be seen in contrast to ordinal analysis which we may also

call �1
1–analysis due to its closeness to the computation of truth complexities of

�1
1–sentences. Nevertheless, �

1
1–analysis can be considered as a first and less ambi-

tious step towards �0
2–analysis. This is because �1

1–statements correspond to �1–
statements over Lωck

1
with parameters—a fact that in another context will become

12Das Operieren mit dem Unendlichen kann nur durch das Endliche gesichert werden [17].

From Subsystems of Analysis to Subsystems of Set Theory 329

important in a moment. �1
1–statements can thus be viewed as abstractions of �0

1–
statements with parameters in so far, that computability, i.e.,ω–computability, is gen-
eralized to ωck

1 –computability. However, ωck
1 –computability is proof–theoretically

much easier to handle since there are many ordinals with good closure properties
below ωck

1 —among them the proof theoretic ordinals of axiomatic theories—which
is not true for ω.

Admittedly one of the more practical reasons why we then first concentrated
on �1

1–analyses was the work of Gentzen (e.g., in his 1943 paper [15]) and his
descendants which showed that elimination procedures for proofs of �1

1–sentences
are possible whereas there were hardly examples for the feasibility of �0

2–analyses.
Against this background the reasons why I was not completely satisfied by the

calculus with �ν–rules were twofold.13

First, the derivations in the “first derivation class” still contain the “impredicative”
closure rule, which may be considered as an “ideal method” in the axiomatization of
the least fixed–point. Therefore the reduction to derivations in the “first derivation
class” does not yet include a complete elimination of “ideal methods”.

Secondly, more severely, the methods in the reduction procedure also included
“ideal methods”. As mentioned before, the �-rule and its iterations correspond to
iterations of hyperjumps and are therefore not directly formalizable in an elementary
basis theory (such as Primitive Recursive Arithmetic PRA) plus a certain amount
of transfinite induction along simple predicates. It did therefore not really match the
aims I had in mind.

Therefore I tried to find an alternative method which was closer to the proven
techniques of predicative proof theory. The starting point for the development of this
alternative approach was the Boundedness Theorem for inductive definitions which
I mentioned at the end of Sect. 3.2.

3.5 A Brief Résumé of Inductive Definitions

To formulate the Boundedness Theorem for inductive definitions we briefly resume
some basic facts about inductive definitions.

The fixed–point of an inductive definition � as the least �–closed subset of the
natural numbers is a simple example of an impredicative definition. A definition that
recurs to an entity—the collection of �–closed sets—of which it is itself a member.
On the other hand one has the impression that viewing fixed–points from this angle
is the wrong aspect. It suppresses the aspect of the inductive generation of the fixed–
point from below.

13This, of course, does not mean that these rules are dubious. Contrarily I think that the power of
these ingenious rules, especially in respect to second order systems, should be more extensively
studied.

330 W. Pohlers

When defining terms, formulas and other basic logical notions inductively, we
always assume to develop these notions from below by iterating the definition steps.
In all these examples the iteration becomes stationary after at most ω–many steps.
For arbitrary inductive definitions, however, i.e., arbitrary monotone operators, it
may happen that we have to iterate the operator along arbitrarily large segments of
the countable ordinals in order to reach a fixed–point.

To emphasize the idea of iterating an inductive definition we define the iteration–
stage of an inductive definition � by transfinite recursion. We put

I α
� := �(I <α

�) with I <α
� :=

⋃

ξ<α

I ξ
�.

Then it is obvious by cardinality reasons that there is a countable ordinal σ such that
I σ
� = I <σ

� . The least such ordinal is the closure ordinal ||�|| of the inductive definition
�. If σ is the closure ordinal of an inductive definition � we easily obtain that I σ

� is
the fixed–point of �, i.e., that I σ

� = I� . If we denote by |n|� := min {ξ n ∈ I ξ
�} the

stage of an element n ∈ I� we obtain ||�|| = sup {|n|� + 1 n ∈ I�}.
According to [25]14 let κS be the supremum of all closure ordinals of inductive

definitions� : Pow(S) −→ Pow(S) that are elementarily definable in a structureS.
Then we obtain κN = ωck

1 . In analogy to this ordinal we define for an axiom system
T that axiomatizes inductive definitions above S the ordinal

κT := sup {|n|� + 1 T n ∈ I� and � is elementarily definable inS}.

Denoting the axiom system for ν–fold iterated inductive definitions above N by IDν

and its proof theoretic ordinal by |IDν | it is not very difficult to show that we then
obtain

κIDν = |IDν |. (1)

Determining the proof theoretic ordinal of these theories therefore means to deter-
mine the supremum of the stages of elements which provably belong to a fixed–point
of an elementarily definable inductive definition. Observe that the definition of the
ordinal κT is not a second order definition and thus only uses sentences (without free
second order variables). This observation is of some importance as we will see in a
moment.

3.6 Infinitary Logic for Inductive Definitions

The Boundedness Theoremmentioned in Sect. 3.2 can now be stated in the following
form.

14This is probably the right place tomention thatMoschovakis’ book [25] was of central importance
for the proof theoretic study of inductive definition.

From Subsystems of Analysis to Subsystems of Set Theory 331

3.1 Theorem Let � be an elementarily definable positive inductive definition. Then
α

0
n ∈ I� implies |n|� ≤ α.

Together with (1) we get an upper bound for the proof theoretic ordinals for theories
for inductive definitions from Theorem 3.1.

Although the statement of Theorem 3.1 is very close to that of Theorem 2.2 its
proof is much simpler. It bases on the simple fact that in less than α many steps you
only can say something about I <α

� .
To come back to the starting point of my alternative approach we observe that

using the Boundedness Theorem in the form of Theorem 3.1 the impredicativity of
the closure rules

α

0
ψ → φ(Iφ, x) ⇒ β

0
ψ → x ∈ Iφ

as they occur in derivations of the first derivation class can be resolved by replacing
Iφ by its stages I <α

φ according to Theorem 3.1. Since α < β it then becomes the
semantically correct implication

ψ → φ(I <α
φ , x) ⇒ ψ → x ∈ I <β

φ . (2)

An implication which is at least locally predicative. The obvious idea was then to
define n ∈ I <α

φ by an infinite disjunction
∨

ξ<α φ(I <ξ
φ , n) of lengthα and use a canon-

ical semi–formal system for infinitary logic together with this local predicativity in
the ordinal analysis of iterated inductive definitions.

3.7 Semantical Cut–Elimination

However, there is a serious obstacle to this obvious idea. In the calculus with �ν

rules the definition of the derivation operations together with the elimination proce-
dure secure that the lengths of derivations in the “first derivation class” are always
countable (even constructively countable) ordinals. The ordinals α and β in Eq. (2)
are thus countable (even constructively countable). Since proof theoretic ordinals
are always ordinals less than ωck

1 (and similarly κN = ωck
1 , hence κT < ωck

1) this is
essential for obtaining useful upper bounds. This can, in general, not be secured if
we use just infinitary logic.

Here we have to mention a peculiarity of semi–formal systems which only derive
sentences. Since every sentence possesses a definite truth value in the intended stan-
dard structure (which is the structure of natural numbers in our case) such systems
allow for semantical cut–elimination. Say that

α

ρ is a semi–formal system for a
structure S iff S |= φ holds true if and only if there are ordinals α and ρ such that
α

ρ φ .

332 W. Pohlers

3.2 Theorem (Semantical Cut–elimination) Let
α

ρ be a semi–formal system for a

structure S that only derives sentences. Then
α

ρ φ already implies
α

0
φ .

A rigid proof of the theorem by induction on α needs a rigid definition of the rules
of the semi–formal system which we do not want to give here (since we promised
not to become too technical).15 To sketch the proof we show

α

ρ ψ → φ and S |= ψ implies
α

0
φ (3)

by induction on α. The key point in the proof is of course the application of a cut

α0

ρ ψ → ψ1 ,
α0

ρ ψ1 → φ ⇒ α

ρ ψ → φ .

From S |= ψ we get by the correctness of the semi–formal system S |= ψ1 and
therefrom

α0

0
φ by the induction hypothesis. Clearly (3) entails the claim. �

The point in the Semantical Cut–elimination Theorem is that it not only claims the
eliminability of cuts but also gives a bound for the length of the cut free derivation,
i.e., the verification.16

3.8 Local Predicativity

We have seen in Eq. (1) that we do not need a second order formula and therefore
no free second order variables to express the proof theoretic ordinal for inductive
definitions. Therefore one could expect that Semantical Cut–elimination along with
the Boundedness Theorem 3.1 make ordinal analysis for inductive definitions trivial.
That this is not the case is the need for “ideal elements” in the definition of the
semi–formal system.

In order to express the completed fixed–point we have to introduce an “ideal
ordinal” � whose defining axiom is

(∀x)[φ(I <�
φ , x) → x ∈ I <�

φ].

Possible interpretations for � are therefore ω1, the first uncountable cardinal or
ωck
1 , as φ(X, x) is supposed to be an X–positive formula in the first order language

of arithmetic. But also other, smaller, interpretations for � are possible (cf. [32],
Sect. 9.7).

Clearly this ideal ordinal17 � also appears as measure for the derivation lengths
of semi–formal derivations. A derivation

α

ρ n ∈ I <�
φ → ψ will in general require an

α ≥ �. Semantical Cut–elimination and the Boundedness Theorem 3.1 will thus in

15For a rigid proof cf. [32].
16A bound that in general is useless for proof theoretic studies.
17In former publications I sometimes talked about “virtual ordinals”.

From Subsystems of Analysis to Subsystems of Set Theory 333

general produce ordinals above �, too big as to serve for a useful upper bound for
the proof theoretic ordinal. The salvation for this problem is the “elimination of the
ideal element �”.

As just indicated derivation lengths above � are unavoidable in general. We can
only expect derivation lengths below � for sentences without negative occurrences
of I <�

φ . To realize this expectation we are confronted with a new feature that is
characteristic for impredicative proof theory: the need for a collapsing procedure
that collapses derivations of sentences with only positive occurrences of I <�

φ into
derivations of lengths below �. Since ordinals are transitive and thus not collapsible
this can only be realized by measuring the derivation lengths with ordinals taken
from a subset of all ordinals that incorporates gaps large enough for the necessary
collapsing.18

This was originally obtained by taking ordinals from a notation system with
sufficiently large gaps above � and a transitive segment below �. The notation
system allowed for the definition of a collapsing function, say ψ�, that collapsed
ordinals above � in the notation system into ordinals of the segment below �. The
outcome was a collapsing theorem in the following form.

3.3 Theorem (Collapsing Theorem) Let ψ be a sentence in the language of
inductive definitions that only contains positive occurrences of I <�

φ and assume
α

�+1
(∀x)[φ(I <�

φ , x) → x ∈ I <�
φ)] → ψ . Then we obtain

ψ�(ωα)

�
ψ .19

Having in mind the Boundedness Theorem 3.1 we can replace all occurrences of I <�
φ

in ψ by I <ψ�(ωα)

φ . The Collapsing Theorem thus provides actually an elimination of
the ideal ordinal �.

This is the basic idea of local predicativity (cf. [29]) although narrated in more
modern terms. With some teething troubles this idea turned out to work also for
iterated inductive definitions although the definition of the collapsing functions at
that time were still pretty clumsy (cf. [31]). It culminated in the contribution to
SLN 897.

4 Towards Set Theory

Of course it was tempting to try to transfer this technique to ramified analysis in
order to obtain direct analyses for subsystems of classical Analysis. The naive idea
to introduce an “ideal” ordinal � and to extend the stages of ramified Analysis
beyond � turned out to be much too naive. It was even not clear how to formulate
the “defining axiom” for � in terms of ramified analysis.

18To find the subsets of the class of ordinals with the adequate gaps is actually the most challenging
task in the ordinal analysis of strong axiom systems.
19A proof of this theorem (in a more modern form working already with operator controlled deriva-
tions which will be mentioned below) is in [32] Lemma 9.4.5.

334 W. Pohlers

The crucial hint was given by an adaption of the Buchholz �–rule to subsystems
of (unramified) Analysis. Using the language of second order number theory the rule
can be put in the following form (cf. [10] for details).

(�–rule) If there is a derivation operation F that converts every derivation
α

0
χ → (∀X)φ(X) in the first derivation class into a derivation

F(α)

ρ χ → ψ then we can infer
F(�)

ρ (∀X)φ(X) → ψ .

The �–rule is the only rule with � many premises in the Buchholz calculus and
its main formula is the negative occurrence of the formula (∀X)φ(X), i.e., a �1

1–
formula. This was at first glance unexpected. According to all experience infinitary
rules served to derive universal quantifiers. The conjecture thenwas that the reason for
this change of behavior is the hyperarithmetical quantifier theorem which states that
every �1

1–sentence corresponds to a �1
1–sentence relativized to hyperarithmetical

sets.
This suggested the idea to modify ramified analysis in such a way that universal

quantifiers of stage � vary over hyperarithmetical sets and to axiomatize � by a
form of the recursion theoretic boundedness theorem.20 The attempts to realize this
idea, however, met a lot of awkward difficulties. Difficulties that appeared not to be
insurmountable but needed somuch codingmachinery that the whole project became
practically unmanageable (at least for me) and thus ceased to be fun.

On the other hand we knew that the hyperarithmetical sets are the intersection
of the constructible sets in Lωck

1
with the powerset of the natural numbers. The idea

was therefore: why not work directly with constructible sets and avoid the awkward
coding. Searching the literature for examples we found an article by Sol Feferman
[13] inwhich he treated “predicatively reducible systems of set theory” and a paper by
Harvey Friedman [14] treating “set theoretic foundations for constructive analysis”.
These papers, however, reduced set theoretic axiom systems to known subsystems
of Analysis. What we wanted to do was the converse way.

4.1 Ramified Set Theory

The aim was therefore to replace ramified analysis by “ramified set theory”. Because
of lack of examples everything had to be done from scratch. Designing a language
for “ramified set theory” is not too difficult. One can more or less directly use the
language of the constructible hierarchy with its stages Lα as additional constants.
Therefore there are ground terms Lα of stage α for all ordinals α and composed
terms {x ∈ Lα φLα(x, a1, . . . , an)} of stage α where φ is a formula in the language
of set theory and a1, . . . , an are previously defined terms of ramified set theory of
stages less than α. There is also a canonical decoration for the language of ramified

20Which says in its simplest form that for every �1
1–definable set M of well-orderings there is an

ordinal ξ < ωck
1 that bounds the order–types of the well–orderings in M . A fact which actually is a

consequence of the Boundedness Theorem 2.2. Cf. [2].

From Subsystems of Analysis to Subsystems of Set Theory 335

set theory (in the sense of [34]) which leads to a canonical semi–formal system for
ramified set theory.

At that time not everything was as clear and smooth as we see it today and
there were many difficulties to overcome. Fortunately at that time there was a very
eager and interested student in Munich, Gerhard Jäger, with whom we could discuss
the situation intensively and who was looking for a diploma thesis. I encouraged
Schütte—since I had not yet passed my “habilitation” I was not allowed to supervise
diploma students myself—to let Gerhard Jäger work on this problem. This was very
ambitious for a diploma thesis because there were hardly patterns for doing proof
theory directly in the constructible hierarchy.As amatter of course,Gerhardmastered
the problem, starting with a still predicative system. This led to an excellent diploma
thesis partly published as “Beweistheorie von KPN” [21]. Here I should perhaps also
mention the big influence of Barwise’s book [1] on “Admissible sets and structures”
on our discussions. An influence similar to that of Moschovaki’s book “Elementary
induction on abstract structures” [25] on our work on inductive definitions.

Gerhard received his diploma degree with distinction and continued to work in
this direction. In his dissertation “Die konstruktible Hierarchie als Hilfsmittel zur
beweistheoretischen Untersuchung von Teilsystemen der Analysis” [20] he extended
this work further and it culminated in his Habilitationsschrift “Theories for admis-
sible sets. A unifying approach” [23] published by Bibliopolis in 1986. He so laid
the fundament for all further research in this direction.

Already in 1982 we had a joint paper [24] published in the “Sitzungsberichte der
Bayerischen Akademie der Wissenschaften”, unfortunately in German, in which we
gave an ordinal analysis of �1

2–comprehension with the (classical) bar induction via
an ordinal analysis of the impredicative theory KPi, a set theory that axiomatizes an
admissible universe which is also the union of admissible universes.

I mention this result since it may serve as an example for my previous remark
that “you know nearly everything about the meta–mathematics of a theory once you
have an ordinal analysis of it”. Having analyzed KPi and thus also knowing the
proof theoretic ordinal of �1

2–comprehension, Gerhard Jäger succeeded in proving
the open conjecture that Feferman’s theory T0 for explicit mathematics is equivalent
to �1

2 comprehension with bar induction (cf. [22]). A claim which then seemed to be
impenetrable by other means.21 He solved it by giving a well–ordering proof for the
ordinal notation system obtained by the analysis of KPi within the theory T0. There
are of course also other examples of “knowing nearly everything”, mostly connected
with �0

2 analyses and associated combinatorial principles, which I cannot go into
further.

21During the preparation of this article I received a preprint byKentaro Sato “A new model construc-
tion by making a detour via intutionistic theories. II: Interpretability lower bounds for Feferman’s
explicit mathematics T0” in which he establishes the equivalence without use of ordinal analysis.

336 W. Pohlers

4.2 More Recent Developments

Since then many advances took place. Wilfried Buchholz [6] introduced operator
controlled derivations as a simplification of local predicativity. As a matter of fact
this is much more than just a simplification. Local predicativity fails for theories
stronger than �2–reflection. In his analysis of �3–reflection Michael Rathjen [35]
introduced a new technique based on thinning operations on the ordinals. A technique
which led to analyses of theories up to the strength of �1–Separation, a theory that
is equivalent to �1

2–comprehension [36]. Operator controlled derivations play an
important role in these analyses.

There is also progress in extending the elimination procedures to proofs of �0
2–

statements—which were my original aim.
The basis therefor was laid by Andreas Weiermann. There are two papers, one

joint with Adam Cichon and Wilfried Buchholz [8] in which they developed a new
approach to subrecursive hierarchies which is essential for such analyses, the other,
joint with Benjamin Blankertz [4], in which they used such hierarchies to obtain�0

2–
analyses. Benjamin Blankertz later developed the technical details in a very general
setting in his dissertation [3]. Jan Carl Stegert [40] in his dissertation simplified
Blankertz’ work and extended it to axiom systems for reflection and stability.

I myself am busy to collect all these results in a monograph about the proof theory
of stability. This is work in progress.

References

1. J. Barwise, Admissible Sets and Structures, Perspectives in Mathematical Logic (Springer,
Berlin, 1975)

2. A.Beckmann,W.Pohlers,Application of cut-free infinitary derivations to generalized recursion
theory. Ann. Pure Appl. Logic 94, 1–19 (1998)

3. B. Blankertz, Beweistheoretischen Techniken zur Bestimmung von �0
2–Skolem Funktionen,

Dissertation, Westfälische Wilhelms-Universität, Münster, 1997
4. B. Blankertz, A. Weiermann, How to Characterize Provably Total Functions by the Buchholz

Operator Method, vol. 6, Lecture Notes in Logic (Springer, Heidelberg, 1996)
5. W. Buchholz, The �μ+1-rule, in Iterated Inductive Definitions and Subsystems of Analysis:

Recent Proof-Theoretical Studies, vol. 897, Lecture Notes inMathematics, ed. byW. Buchholz,
et al. (Springer, Heidelberg/New York, 1981), pp. 188–233

6. W. Buchholz, A simplified version of local predicativity, in Proof Theory, eds. by P. Aczel et al.
(Cambridge University Press, Cambridge, 1992), pp. 115–147

7. W. Buchholz, Explaining the Gentzen-Takeuti reduction steps: a second order system. Arch.
Math. Logic 40, 37–59 (2001)

8. W. Buchholz, E.A. Cichon, A. Weiermann, A uniform approach to fundamental sequences and
hierarchies. Math. Logic Q. 40, 273–286 (1994)

9. W. Buchholz, S. Feferman, W. Pohlers, W. Sieg (eds.), Iterated Inductive Definitions and Sub-
systems of Analysis: Recent Proof-Theoretical Studies, vol. 897, Lecture Notes in Mathematics
(Springer, Heidelberg/New York, 1981)

10. W. Buchholz, K. Schütte, Proof Theory of Impredicative Subsystems of Analysis, in Studies
in Proof Theory: Monographs, vol. 2 (Bibliopolis, Naples, 1988)

From Subsystems of Analysis to Subsystems of Set Theory 337

11. S. Feferman, Systems of predicative analysis. J. Symbol. Logic 29, 1–30 (1964)
12. S. Feferman, Formal theories for transfinite iteration of generalized inductive definitions and

some subsystems of analysis, in Intuitionism and Proof Theory, Studies in Logic and the
Foundations of Mathematics, ed. by A. Kino, et al. (North-Holland Publishing Company,
Amsterdam, 1970), pp. 303–326

13. S. Feferman, Predicatively reducible systems of set theory, in Axiomatic Set Theory, vol. 2,
ed. by D.S. Scott, T.J. Jech, Proceedings of Symposia in Pure Mathematics, vol. 13, American
Mathematical Society, Providence (1974), pp. 11–32

14. H.M. Friedman, Set theoretic foundations for constructive analysis. Ann. Math. 105, 1–28
(1977)

15. G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion
in der reinen Zahlentheorie. Math. Ann. 119, 140–161 (1943)

16. L. Henkin, A generalization of the notion of ω-consistency. J. Symb. Logic 19, 183–196 (1954)
17. D. Hilbert, Über das Unendliche. Math. Ann. 95, 161–190 (1926)
18. D. Hilbert, Die Grundlagen, der Mathematik. Vortrag gehalten auf Einladung des Mathema-

tischen Seminars im Juli, in Hamburg, Hamburger Mathematische Einzelschriften, vol. 5. Heft
1928, 1–21 (1927)

19. W.A. Howard, A system of abstract constructive ordinals. J. Symb. Logic 37, 355–374 (1972)
20. G. Jäger, Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Unter-

suchung von Teilsystemen derMengenlehre und Analysis, Dissertation, Ludwig-Maximilians-
Universität, Munich, 1979

21. G. Jäger, Beweistheorie von KPN. Archiv für Mathematische Logik und Grundlagenforschung
20, 53–63 (1980)

22. G. Jäger, A well ordering proof for Feferman’s theory T0. Archiv für Mathematische Logik
und Grundlagenforschung 23, 65–77 (1983)

23. G. Jäger, Theories for Admissible Sets: A Unifying Approach to Proof Theory, vol. 2, Studies
in Proof Theory, Lecture Notes (Bibliopolis, Naples, 1986)

24. G. Jäger, W. Pohlers, Eine beweistheoretische Untersuchung von (�1
2 − CA) + (BI) und ver-

wandter Systeme, Bayerische Akademie der Wissenschaften, Sitzungsberichte 1982 (1983),
pp. 1–28

25. Y.N. Moschovakis, Elementary Induction on Abstract Structures, vol. 77, Studies in Logic and
the Foundations of Mathematics (North-Holland Publishing Company, Amsterdam, 1974)

26. S. Orey, On ω-consistency and related properties. J. Symb. Logic 21, 246–252 (1956)
27. W. Pohlers, An upper bound for the provability of transfinite induction, in |= ISILC Proof

Theory Symposium, vol. 500, Lecture Notes in Mathematics, ed. by J. Diller, G.H. Müller
(Springer, Heidelberg/New York, 1975), pp. 271–289

28. W. Pohlers, Ordinals connected with formal theories for transfinitely iterated inductive defini-
tions. J. Symb. Logic 43, 161–182 (1978)

29. W. Pohlers, Cut-elimination for impredicative infinitary systems I. Ordinal analysis for ID1,
Archiv für Mathematische Logik und Grundlagenforschung 21, 113–129 (1981)

30. W. Pohlers, Proof-theoretical analysis of IDν by the method of local predicativity, in Iterated
Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, vol. 897,
Lecture Notes in Mathematics ed. by W. Buchholz et al. (Springer, Heidelberg/New York,
1981), pp. 261–357

31. W. Pohlers, Cut elimination for impredicative infinitary systems II. Ordinal analysis for iterated
inductive definitions. Archiv für Mathematische Logik und Grundlagenforschung 22, 69–87
(1982)

32. W. Pohlers, Proof Theory: The First Step into Impredicativity, Universitext (Springer,
Berlin/Heidelberg/New York, 2009)

33. W. Pohlers, Hilbert’s programme and ordinal analysis, in Concepts of Proof in Mathematics,
Philosophy, and Computer Science, ed. by Dieter Probst, Peter Schuster (DeGryuter, 2016), p.
32

34. W. Pohlers, Semi-formal calculi and their applications, in Gentzen’s Centenary: The Quest for
Consistency,ed. by R. Kahle, M. Rathjen (Springer, New York, 2015), pp. 195–232

338 W. Pohlers

35. M. Rathjen, Eine Ordinalzahlanalyse der �3-Reflexion (Westfälische Wilhelms-Universität,
Münster, Habilitationsschrift, 1992)

36. M. Rathjen, An ordinal analyis of parameter free�1
2-comprehension. Arch.Math. Logic 48(3),

263–362 (2005)
37. K. Schütte, Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten

Typenlogik. Archiv für Mathematische Logik und Grundlagenforschung 7, 45–60 (1965)
38. K. Schütte,Proof Theory, Grundlehren der Mathematischen Wissenschaften, vol. 225 (Springer,

Heidelberg/New York, 1977)
39. S.G. Simpson, Subsystems of Second Order Arithmetic (Springer, Berlin/Heidelberg/NewYork,

1999)
40. J.-C. Stegert, Ordinal proof theory of Kripke-Platek set theory augmented by strong reflection

principles, Ph.D. thesis, Westfälische Wilhelms-Universität, Münster, 2011
41. G. Takeuti, Consistency proofs of subsystems of classical analysis. Ann. Math. 86, 299–348

(1967)

Restricting Initial Sequents: The Trade-Offs
Between Identity, Contraction and Cut

Peter Schroeder-Heister

Abstract In logical sequent calculi, initial sequents expressing the axiom of iden-
tity can be required to be atomic, without affecting the deductive strength of the
system. When extending the logical system with right- and left-introduction rules
for atomic formulas, one can analogously require that initial sequents be restricted to
“uratoms”, which are undefined (not even vacuously defined) atoms. Depending on
the definitional clauses for atoms, the resulting system is possibly weaker than the
unrestricted one. This weaker system may however be preferable to the unrestricted
system, as it enjoys cut elimination and blocks unwanted derivations arising from
non-wellfounded definitions, for example in the context of paradoxes.

1 Introduction

In standard sequent calculi of first-order logic, initial sequents

A � A,

which express the axiom of identity, can be restricted to atomic A. For non-atomic
A, the sequent A � A can then be derived using the right- and left-introduction rules
for the logical constants occurring in A. This way of presenting sequent calculi is
quite common and has certain technical advantages, such as in the area of automated
theorem proving, and also in proof theory itself. For example, arguments establishing

This work goes back to ideas developed during a sabbatical stay as Gerhard Jäger’s guest
at the University of Bern in the winter semester 1993–1994. It was completed within the
French-German ANR-DFG projects “Hypothetical Reasoning—Its Proof-Theoretic Analysis”
(DFG Schr 275/16-2) and “Beyond Logic—Hypothetical Reasoning in Philosophy of Science,
Informatics and Law” (DFG Schr 275/17-1). I am very grateful to Roy Dyckhoff, Thomas
Piecha and an anonymous reviewer for their helpful comments and suggestions.

P. Schroeder-Heister (B)
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Sand 13, 72076 Tübingen, Germany
e-mail: psh@uni-tuebingen.de

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_10

339

340 P. Schroeder-Heister

height-preserving admissibility (see [12]) or arguments concerning rank-preserving
admissibility as in Lemma 2 below depend on it. There is even a philosophical
rationale behind this procedure: If there are specific rules to generate a complex
proposition on the right or left side of the turnstile, these specific rules should be
used. The statement A � A, which is completely unspecific as to the structure of A,
should only be made when no specific way of introducing A is available, that is,
when A is atomic.

This situation changes, when we extend our logical system with rules for atomic
formulas (“atoms”). If right- and left-introduction rules for atoms are available, then
these atoms are still atomic in the logical sense, that is, they do not contain logical
constants, but they are no longer atoms in the semantical sense as they have a specific
meaning given by these rules. This is the case in the theory of definitional reflection
(see [6–8, 14]). There one extends the logical framework with right-introduction
rules for atoms based on the clauses of a definition. This definition has the form of an
extended logic program allowing for logically complex formulas in bodies of clauses.
The rule of definitional reflection complements these rules with a left-introduction
rule based on a kind of inversion principle. However, the points discussed here apply
to any extension of logical systems that provides right- and left-introduction rules
for atoms (see, for example, [1, 11]).

2 The Formal System of Intuitionistic Logic
with Definitional Reflection

We consider intuitionistic propositional logic, which is sufficient to make our point.
Let upper case Latin letters denote formulas in this language, let lower case Roman
letters denote atoms (which in our simplified framework are propositional letters),
and let upper case Greek letters denote finite multisets of formulas. We suppose that
a definition D is given, which consists of finitely many clauses of the form

a ⇐ A

Such a clause is called a (defining) clause for a. We furthermore assume that with
every D its domain dom(D) is associated, which is a set of atoms containing those
atoms for which there is a definitional clause in D, but possibly further atoms. The
elements in dom(D) are called the atoms defined by D. We allow for atoms defined
by D without there being a clause for them. These elements of dom(D) are called
vacuously defined. Atoms that are not defined byD and thus do not belong to dom(D)

are called uratoms. If a ∈ dom(D), let D(a) be the set of defining conditions of a,
that is, the set {A1, . . . , An} if the clauses for a in D are as follows:

⎧
⎪⎨

⎪⎩

a⇐ A1
...

a⇐ An

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 341

If a is vacuously defined, thenD(a) is empty. If a is an uratom, thenD(a) is undefined.
(In other words, if a is not defined by D, then D(a) is undefined in the metalogical
sense.)

Our system of intuitionistic logic with definitional reflection over the definitionD,
called LI(D), has the following rules of inference, where the antecedent of a sequent
is understood as a multiset of formulas.

(I)
Γ, a a

()
Γ

(⊥)
Γ,⊥ A

()
Γ A Γ B

Γ A∧B (∧)
Γ, A,B C

Γ, A∧B C

()
Γ A

Γ A∨B
Γ B

Γ A∨B (∨)
Γ, A C Γ, B C

Γ, A∨B C

()
Γ, A B

Γ A→B
(→)

Γ, A→B A Γ, B C

Γ, A→B C

(D)
Γ C

Γ a
C ∈ D(a) (D)

{Γ, a, C A : C ∈ D(a)}
Γ, a A

a ∈ dom(D)

Without the definitional rules in the last line, this is a standard variant of the intu-
itionistic propositional sequent calculus which we call LI. The last line contains the
rules of definitional closure (�D) and definitional reflection (D�), which for any
atom a which is defined by D, delivers right- and left-introduction rules. The right-
introduction rule says that a can be inferred from each defining condition of a. The
left-introduction rule says that everything that can be inferred from each defining
condition of a can be inferred from a itself. If the clauses defining a are viewed as its
inductive definition, the left-introduction rule for a expresses the extremal clause for
this inductive definition: “Nothing else defines a”. For further discussion see [8, 14].
Note that the rules (�D) and (D�) only apply to those atoms a which are defined by
D (i.e., a ∈ dom(D)) and not to uratoms. In view of (⊥), we can disregard vacuously
defined atoms, if we identify a vacuously defined atom a with an atom a defined by
the clause a ⇐ ⊥.

For LI it is well-known that the structural rules of thinning, contraction and cut

(Thin)
��C

�, A�C (Contr)
�, A, A�C
�, A�C (Cut)

��A �, A�C
��C

are admissible (see, for example, [2, 12]). As thinning is admissible, the version of
cut with separated contexts

342 P. Schroeder-Heister

��A �, A�C
�,��C

is admissible, too.
The admissibility of thinning and contraction extends from LI to LI(D). For

thinning this is obvious, for contraction this is due to the fact that in (D�) the atom
a is repeated in the premisses, which means that we have already built an implicit
contraction into (D�). In fact, this implicit contraction is not even needed. Without
loss of deductive power,we can replace (D�)with its contraction-free variant (D�)cf :

(D�)cf
{�,C�A : C ∈ D(a)}

�, a�A

This can be seen as follows. Consider the system LIcf(D), which results from LI(D)

by replacing (D�) with (D�)cf . For a derivation D in LIcf(D), the D-rank rD(D) is
the maximum number of applications of (D�)cf , where the maximum is taken over
all branches of D. More precisely,

rD(D) = 0, if D is(I), (�) or (⊥),

rD(D) = rD(D1), if D is of the form D1
� � A , and the last step

is different from (D�)cf ,

rD(D) = max{rD(D1), rD(D2)}, if D is of the form D1 D2
� � A , and the last step

is different from (D�)cf ,

rD(D) = maxC∈D(a){rD(DC)} + 1, if D is of the form {DC : C ∈ D(a)}
�, a � A (D�)cf .

Then we can show the following.

Lemma 1 (Invertibility lemma) IfD is a derivation of �, a � A inLIcf(D), then for
each C ∈ D(a)we can find a derivationDC of �,C � A such that rD(DC) ≤ rD(D).

Proof The only non-trivial case obtains when D is an initial sequent �, a � a. Here
rD(D) = 0. We use that for any C we can find a derivation D′

C of �,C � C in LI.
Since (D�)cf is not used in D′

C , we know that rD(D′
C) = 0. Then, for C ∈ dom(D),

let DC be

D′
C

�,C � C

�,C � a
(� D)

Since rD(D′
C) = 0, we know that rD(DC) = 0. �

Now it is easy to show that contraction is admissible in LIcf(D). More precisely,
we can show the following.

Lemma 2 If D is a derivation of �, A, A � C in LIcf(D), then we can find a
derivation D′ of �, A � C in LIcf(D)such that rD(D′) ≤ rD(D).

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 343

Proof by induction on the triple 〈rD(D), deg(A), h(D)〉, where deg(A) is the logical
complexity of A and h(D) is the height ofD (that is, the length of its longest branch).
As an example we present the case in which (D�)cf is applied in the last step and
the atom a introduced by (D�)cf is the contraction formula:

D :

{
DC

Γ, a, C �A
: C ∈ D(a)

}

Γ, a, a�A
(D�)cf

We assume that a is not vacuously defined–otherwise the case is trivial. Obviously,
rD(DC) < rD(D) for every C ∈ D(a). Applying the invertibility lemma (Lemma 1)
to the premiss derivations DC we obtain derivations

{
D′

C

Γ, C, C �A
: C ∈ D(a)

}

such that rD(D′
C) < rD(D) for every C . Therefore, by induction hypothesis, we

obtain derivations

{
D′′

C

Γ, C �A
: C ∈ D(a)

}

such that rD(D′′
C) ≤ rD(D′

C) < rD(D) for everyC . From those we obtain a derivation

D′ :

{
D′′

C

Γ, C �A
: C ∈ D(a)

}

Γ, a�A

such that rD(D′) ≤ rD(D). �

3 The Failure of Cut in LI(D)

The system LI(D) does not enjoy the admissibility of cut. Consider the following
definition:

Dr
{
r ⇐ ¬r

344 P. Schroeder-Heister

(with ¬r abbreviating r → ⊥.) Using the right- and left-introduction rules for r and
the rules for implication, this leads to derivations of both r � ⊥ and of � r :

(I)
r, r→⊥�r (I)

r,⊥ � r
(→�)

r → ⊥, r � ⊥
(Dr�)

r � ⊥

(I)
r, r → ⊥ � r

(I)
r,⊥ � r

(→�)
r → ⊥, r � ⊥

(Dr�)
r � ⊥

(�→)� ¬r
(�Dr)� r (1)

If cut were admissible, � ⊥ would be derivable, which is not the case as there is
no right-introduction rule for ⊥. Note that we impose no restriction on the form of
definitional clauses, in particular no well-foundedness restriction. The definition Dr

may be considered a propositional short form of Russell’s paradox, obtained from
the following clause for comprehension:

t ∈ {x : A(x)}⇐ A(t)

by instantiating A(x) with x /∈ x and t with {x : x /∈ x}, and then abbreviating {x :
x /∈ x} ∈ {x : x /∈ x} by r .

In viewof the fact that (D�) is not stronger than its contraction-free variant (D�)cf ,
instead of (1) we may consider the following pair of derivations in LIcf(D):

(I)
r, r→⊥�r (I)

r, ⊥�⊥
(→�)

r→⊥, r�⊥
(�→)

r→⊥�r→⊥
(�Dr)

r→⊥�r (I)⊥ � ⊥
(→�)

r → ⊥ � ⊥
(Dr�)cf

r � ⊥

(I)
r, r→⊥�r (I)

r, ⊥�⊥
(→�)

r→⊥, r�⊥
(�→)

r→⊥�r→⊥
(�Dr)

r→⊥�r (I)⊥ � ⊥
(→�)

r → ⊥ � ⊥
(Dr�)cf

r � ⊥
(�Dr)� r

(2)

This shows that it is not a particular form of contraction of atoms that needs to be used
in the derivation of the paradox, but rather contraction for implicational formulas,
which is the essential form of contraction in LI(D).

4 The Trade-Off Between Contraction and Cut

We have shown by an example that inLIcf(D), which bymeans of the rules (∧�) and
(→�) implicitly contains contraction, and in which therefore the explicit contraction
rule is admissible (Lemma 2), the rule of cut is not admissible. If we consider a
contraction-free variant, in which (∧�) and (→�) are replaced with

�, A�C
�, A∧B�C

�, B�C
�, A∧B�C and

��A �, B�C
�,�, A→B�C

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 345

respectively, then cut can be eliminated. This is shown in detail in [13]. Therefore
we obtain a trade-off between contraction and cut, when we add definitional rules to
the logical system.

Result 1 If the logical system contains implicit or explicit contraction, then the
admission of cut makes the system inconsistent. If it contains neither implicit nor
explicit contraction, then cut is admissible.

This corresponds to the observation dating back to Fitch [5] that removing
the rule of contraction may be used as a strategy to cope with the paradoxes.
This result can even be refined. The form of contraction used in counterexample
(1) is contraction of an atom defined by Dr with an atom of the same shape used
in an initial sequent. In [15, 16] it was claimed that prohibiting this specific sort of
contraction would be a more specific way of keeping cut admissible in the system
with definitional reflection than abolishing contraction altogether. This claim is not
invalidated by the fact that in LIcf(D) no contraction of atoms is needed, as exam-
ple (2) shows. In fact, it carries over to the present situation mutatis mutandis. The
contraction of r → ⊥, which is implicit in the lowermost application of (→�), is
a contraction of an occurrence of r → ⊥, in which r stems from an initial sequent,
with an occurrence of r → ⊥, in which r is a result of (�Dr). This means that there
is still an identification of occurrences of atoms which are generated by different
(structural vs. meaning-giving) rules, though in example (2) it is not definitional
reflection (Dr�)cf but the introduction of the atom r on the right side according
to (�Dr), which is involved. Identifying such critical forms of contraction can, for
example, be achieved by attaching labels to formulas that indicate when definitional
rules are applied (see [3, 4]). A further elaboration of this topic, which will result in
a more finegrained specification of the rules of contraction, is beyond the scope of
this paper.

5 Restricting Initial Sequents: The Admissibility of Cut

In initial sequents �, a � a of LI(D), a can be an arbitrary atom. According to what
was said in the introduction, we now restrict the atom a in initial sequents to uratoms
by replacing (I) with the following rule:

(I)◦
�, a � a

a /∈ dom(D)

As the rule of definitional reflection we use the contraction-free rule (D�)cf . The
resulting system, with (I)◦ instead of (I) and (D�)cf instead of (D�), is called
LI◦(D). Lemmas 1 and 2 continue to hold for LI◦(D). The proof of Lemma 1 is now
trivial, as initial sequents involving a defined atom a can no longer occur. Due to

346 P. Schroeder-Heister

the restriction on initial sequents, Lemma 2 is easier to prove. Therefore in LI◦(D)

contraction is admissible. The counterexample (2) to cut no longer works, as it uses
initial sequents for r . These initial sequents are not available in LI◦(Dr), because r
is defined in Dr , and is thus not an uratom.

In fact, in the system LI◦(D) we can eliminate cuts. To demonstrate this, we
use as an induction measure the D-weight of a formula occurrence in a derivation.
Unlike the D-rank as used in Lemmas 1 and 2, the D-weight is not a measure of a
derivationD, but ameasure of a formula occurrence at a certain place in (a sequent in)
a derivation D. In the following, upper indices distinguish occurrences of formulas.
For example, C1 and C2 denote different occurrences of the formula C . It is always
assumed that a formula occurrence below an inference line corresponds to or results
from a particular formula occurrence (or from particular formula occurrences) above
the line. For example, in an application of (∨�) of the form

A1
1, . . . , A

1
n, A

1�C1 A2
1, . . . , A

2
n, B

1�C2

A3
1, . . . , A

3
n, (A∨B)1�C3

it is assumed that, for all i (1 ≤ i ≤ n), the occurrence A3
i corresponds to the occur-

rences A1
i and A2

i , the occurrence C
3 corresponds to the occurrences C1 and C2, and

the occurrences of A and B as immediate subformulas of (A∨B)1 correspond to the
occurences A1 and B1, respectively.

Then the D-weight wD(C1) of a formula occurrence C1 in a given derivation is
defined by induction on the construction of the derivation.

Each formula occurrence in (I)◦, (�) or (⊥) has D-weight 0.
If the last step is

(�→)
A1
1, . . . , A

1
n, A

1�B1

A2
1, . . . , A

2
n�(A→B)1

then wD(A2
i) = wD(A1

i) for all i (1 ≤ i ≤ n), and wD((A→B)1) = max{wD(A1),

wD(B1)}. For (∧�) and (�∨) the D-weight is defined in the same way.
If the last step is

(∨�)
A1
1, . . . , A

1
n, A

1�C1 A2
1, . . . , A

2
n, B

1�C2

A3
1, . . . , A

3
n, (A∨B)1�C3

then wD(A3
i) = max{wD(A1

i), wD(A2
i)} for all i (1 ≤ i ≤ n), wD(C3) = max

{wD(C1), wD(C2)} and wD((A∨B)1) = max{wD(A1), wD(B1)}, and analogously
for (�∧).

If the last step is

(→�)
A1
1, . . . , A

1
n, (A→B)1�A1 A2

1, . . . , A
2
n, B

1�C1

A3
1, . . . , A

3
n, (A→B)2�C2

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 347

then wD(A3
i) = max{wD(A1

i), wD(A2
i)} for all i (1 ≤ i ≤ n), wD(C2) = wD(C1),

and wD((A→B)2) = max{wD((A→B)1), wD(A1), wD(B1)}.
If we consider derivations with cut and if the last step is

(Cut)
A1
1, . . . , A

1
n�A1 A2

1, . . . , A
2
n, A

2�C1

A3
1, . . . , A

3
n�C2

then wD(A3
i) = max{wD(A1

i), wD(A2
i)} for all i (1 ≤ i ≤ n), and wD(C2) =

wD(C1).
If the last step is a D-rule, then wD(a) is increased by 1. More precisely, if this

step is

(�D)
A1
1, . . . , A

1
n�C1

A2
1, . . . , A

2
n�a1

C ∈ D(a)

then wD(A2
i) = wD(A1

i) for all i (1 ≤ i ≤ n), and wD(a1) = wD(C1) + 1. If it is

(D�)cf
{Ai

1, . . . , A
i
n,C

1
i �Ai : 1 ≤ i ≤ k}

Ak+1
1 , . . . , Ak+1

n , a1�Ak+1
where D(a) = {C1, . . . ,Ck},

thenwD(Ak+1
j) = max1≤i≤k{wD(Ai

j)} for all j (1 ≤ j ≤ n), andwD(a1) = max1≤i≤k

{wD(C1
i)} + 1. If D(a) = ∅, and thus k = 0, then wD(A1

j) = wD(A1) = 0 for all
j (1 ≤ j ≤ n) and wD(a1) = 1.

It is important to notice that the weight increases not only at the application
of (D�)cf , but also at the application of (�D). However, the crucial point is that
only the formula a introduced by (�D) or (D�)cf is affected by the increase of
weight, not the parametric context formulas. Putting it another way, wemay consider
theD-rank to be a measure of a sequent within a derivation, namely theD-rank of the
subderivation with this sequent as its end-sequent. In contradistinction to that, the
D-weight is a measure of a formula occurrence within a sequent, namely the D-
weight of this formula occurrence within the subderivation that has this sequent as
its end-sequent.

Now cut can be eliminated even though contraction is admissible. More precisely,
we can show weight-preserving cut elimination in the following sense.

Theorem 1 ConsiderLI◦(D) extended with the cut rule (Cut). Suppose a derivation
D in this system is given that ends with an application

A1
1, . . . , A

1
n�A1 A2

1, . . . , A
2
n, A

2�C1

A3
1, . . . , A

3
n�C2

of cut such that the derivations of its premisses are cut-free. Then we can construct
a cut-free derivation of A4

1, . . . , A
4
n�C3 such that wD(A4

i) ≤ wD(A3
i) for all i (1 ≤

i ≤ n) and wD(C3) ≤ wD(C2).

348 P. Schroeder-Heister

Proof by induction on the triple 〈wD(A), deg(A), h(D)〉, where wD(A) = max(wD

(A1), wD(A2)), and, as before, deg(A) is the logical complexity of A and h(D) is
the height of D. The value wD(A) is also called the weight of the cut formula. The
reduction steps are as usual in cut elimination. We just indicate where theD-rules are
involved, and where the definition of weight comes into play. The main reduction of
the D-rules reduces

D1

Γ �B (�D)
Γ � a

{
DC

Γ, C �A
: C ∈ D(a)

}

Γ, a�A
(D�)cf

Γ �A
B ∈ D(a)

to

D1

Γ �B

DB

Γ, B �A

Γ �A

by reducing a cut with cut-formula a to a cut with cut-formula B of lower weight.
An example of a permutation of cut with an application of a D-rule is the reduc-

tion of

D1

Γ �A

D2

Γ, A�C
(�D)

Γ, A� a
C ∈ D(a)

Γ � a

to

D1

Γ �A

D2

Γ, A�C

Γ �C (�D)
Γ � a

Here it is crucial that even though the weight of the cut formula Amight not decrease,
the weight of a is not increased, as it is solely dependent on the weight of C , which
is untouched by the transformation. A measure such as the rank rD that applies to
sequents in a proof rather than formula occurrences in a sequent could not deliver
this behaviour.

The restriction of initial sequents to uratoms becomes significant, when we con-
sider the situation

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 349

��a1 �, a2�a3
��a4

which is reduced to

� � a1

As the right premiss of the cut is an initial sequent,wD(a2) = wD(a3) = wD(a4) = 0.
According to our restriction on initial sequents, a is an uratom. It is easy to see that
the weight of any occurrence of an uratom is 0, which means that wD(a1) = 0.
Thus wD(a1) = wD(a4) = 0. The latter equation would not necessarily hold if we
admitted initial sequents with defined atoms. If a is not an uratom, then it is possible
that wD(a1) > 0 and thus wD(a1) > wD(a4), contrary to what is claimed in the
theorem. �

The admissibility of contraction and cut in LI◦(D) implies that the unrestricted
rule (I) is not derivable1 in LI◦(D). For if it were derivable, then using the definition
Dr and applying cut to the derivations (2), we could derive � ⊥.

6 The Trade-Off Between Identity and Contraction/Cut

We have shown that by restricting initial sequents to the case where a is an uratom,
we obtain a system in which both contraction and cut are admissible. If we do not
restrict initial sequents, contraction is still admissible, but cut ceases to be admissible.
This means that, in a sense, we have traded identity against contraction and cut.2

Result 2 If identity as expressed by initial sequents is restricted to uratoms, then
the rules of contraction and cut are admissible. If identity is admitted for any atom,
whether defined or not, then the admission of cut makes the system inconsistent.

It should be noted that, in the presence of unrestricted identity, a restriction on cut
is an option which should not be excluded. A way of restricting cut to cases where it
continues to be admissible, consists, for example, in using certain term assignments
and corresponding provisos for the application of cut, as sketched in [17]. Here we
do not want to enter a philosophical discussion on which one of unrestricted identity,
unrestricted contraction or unrestricted cut is the preferential rule, but just point to
the trade-offs between these principles in the presence of definitional reflection.

As the counterexample given in (1) or (2) is from the domain of paradoxes, this
shows that restrictions on any of the principles of identity, contraction and cut can
block paradoxes (see [16]).

1As the rule (I) is an axiom, derivability and admissibility mean the same.
2In the system with unseparated contexts chosen here, unrestricted identity plus cut implies con-
traction, so that cut and contraction cannot be separated. This was pointed out to the author by Roy
Dyckhoff.

350 P. Schroeder-Heister

7 Restricted Initial Sequents in Logic Programming

Within logic, and in particularwithin the discussionof the paradoxes, the restrictionof
initial sequents, and thus of identity, has never been properly considered, in contrast,
for example, to the issue of contraction, which is a strong topic in this debate. How-
ever, in the realmof logic programming, this issue has always been present. In fact, the
idea of definitional reflection has been developed in close parallel with related issues
in logic programming (see [8]). The restriction of initial sequents considered here
was first proposed by Kreuger [10]. He motivated it by considerations concerning
the operational interpretation of definitional reflection in the programming language
GCLA, which implemented definitional reflection. Instead of formally specifying a
domain dom(D), he adds the clause a ⇐ a to D to trivialize the application of (D�)

for every a which in our terminology is an uratom.
In their proof-theoretic framework for logic programming, Jäger and Stärk [9]

use a classical one-sided Schütte-Tait-style sequent calculus, which contains rules
for the evaluation of atoms that correspond to our rules of definitional closure and
reflection. They develop a three-valued semantics for this system and explicitly con-
sider identity-free derivations to be the proof-theoretic approach most faithful to
this semantics. For identity-free derivations they prove a cut elimination theorem by
translating proofs into a system with ramified D-rules, for which the cut elimination
proof is completely standard, and then retranslate cut-free proofs. This translation
and retranslation crucially depends on the fact that identity in the unrestricted form
(I) is lacking. Thismethod can easily be carried over to the situation considered here.
Thus Jäger and Stärk implicitly point to the trade-off between unrestricted identity
and the availability of cut, which was the main topic of this paper.

References

1. J. Brotherston, A. Simpson, Complete sequent calculi for induction and infinite descent, in
Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS) (IEEE
Press, Los Alamitos, 2007), pp. 51–62

2. A.G. Dragalin, Mathematical Intuitionism: Introduction to Proof Theory (American Mathe-
matical Society, Providence, Rhode Island, 1987). Russian original 1979

3. J. Ekman, Normal proofs in set theory, Ph.D. thesis, Unversity of Göteborg, 1994
4. J. Ekman, Self-contradictory reasoning, in Advances in Proof-Theoretic Semantics, ed. by T.

Piecha, P. Schroeder-Heister (Springer, Cham, 2016), pp. 211–229
5. F.B. Fitch, A system of formal logic without an analogue to the Curry W operator. J. Symb.

Log. 1, 92–100 (1936)
6. L. Hallnäs, Partial inductive definitions. Theoret. Comput. Sci. 87, 115–142 (1991)
7. L. Hallnäs, On the proof-theoretic foundation of general definition theory. Synthese 148, 589–

602 (2006)
8. L. Hallnäs, P. Schroeder-Heister, A proof-theoretic approach to logic programming: I. Clauses

as rules. II. Programs as definitions. J. Logic Comput. 1, 261–283, 635–660 (1990/91)
9. G. Jäger, R.F. Stärk, A proof-theoretic framework for logic programming, in Handbook of

Proof Theory, ed. by S.R. Buss (Elsevier, Amsterdam, 1998), pp. 639–682

Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 351

10. P. Kreuger, Axioms in definitional calculi, in Extensions of Logic Programming. 4th Interna-
tional Workshop, ELP’93, St Andrews, U.K., Mar/Apr 1993. Proceedings ed. by R. Dyckhoff.
(Lecture Notes in Computer Science, vol. 798), (Springer, Berlin, 1994), pp. 196–205

11. P. Martin-Löf, Hauptsatz for the intuitionistic theory of iterated inductive definitions, in Pro-
ceedings of the Second Scandinavian Logic Symposium, ed. by J.E. Fenstad (North-Holland,
Amsterdam, 1971), pp. 179–216

12. S. Negri, J. von Plato, Structural Proof Theory (Cambridge University Press, Cambridge, 2001)
13. P. Schroeder-Heister, Cut elimination in logicswith definitional reflection, inNonclassical Log-

ics and Information Processing: International Workshop (Berlin, November 1990), Proceed-
ings, ed. by D. Pearce, H. Wansing, (Lecture Notes in Computer Science, vol. 619) (Springer,
Berlin, 1992), pp. 146–171

14. P. Schroeder-Heister, Rules of definitional reflection, in Proceedings of the 8th Annual IEEE
Symposium on Logic in Computer Science (Montreal 1993) (IEEE Press, Los Alamitos, 1993),
pp. 222–232

15. P. Schroeder-Heister, On the notion of assumption in logical systems, in Selected Papers Con-
tributed to the Sections of GAP5, Fifth International Congress of the Society for Analytical
Philosophy, Bielefeld, 22–26 Sept 2003, ed. by R. Bluhm, C. Nimtz (Mentis, Paderborn, 2004),
pp. 27–48. Online publication: http://www.gap5.de/proceedings

16. P. Schroeder-Heister, Paradoxes and structural rules, in Insolubles and Consequences: Essays
inHonour of Stephen Read, ed. byC.DutilhNovaes, O.Hjortland (College Publications, 2012),
pp. 203–211

17. P. Schroeder-Heister, Proof-theoretic semantics, self-contradiction, and the format of deductive
reasoning, Topoi 31, 77–85 (2012)

http://www.gap5.de/proceedings

Higman’s Lemma and Its Computational
Content

Helmut Schwichtenberg, Monika Seisenberger and Franziskus Wiesnet

Dedicated to Gerhard Jäger on the occasion of his 60th birthday

Abstract Higman’s Lemma is a fascinating result in infinite combinatorics, with
manyfold applications in logic and computer science. It has been proven several
times using different formulations and methods. The aim of this paper is to look at
Higman’s Lemma from a computational and comparative point of view. We give a
proof of Higman’s Lemma that uses the same combinatorial idea as Nash-Williams’
indirect proof using the so-called minimal bad sequence argument, but which is
constructive. For the case of a two letter alphabet such a proof was given by Coquand.
Using more flexible structures, we present a proof that works for an arbitrary well-
quasiordered alphabet.We report on a formalization of this proof in the proof assistant
Minlog, and discuss machine extracted terms (in an extension of Gödel’s system T)
expressing its computational content.

Keywords Higman’s Lemma · Inductive definitions · Minimal bad sequence ·
Program extraction

H. Schwichtenberg (B) · F. Wiesnet
Mathematisches Institut, LMU, Theresienstr. 39, D-80333 Munich, Germany
e-mail: schwicht@math.lmu.de

F. Wiesnet
e-mail: franziskus.wiesnet@gmx.de

M. Seisenberger
Department of Computer Science, Swansea University, Swansea SA28PP, UK
e-mail: m.seisenberger@swansea.ac.uk

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_11

353

354 H. Schwichtenberg et al.

1 Introduction

Without exaggeration it can be said that Higman’s Lemma [15] is one of the most
often proven theorems in Mathematical Logic and Theoretical Computer Science.
The fascination of this theorem is due to the fact that it has various formulations and
is of interest in different areas such Proof theory, ConstructiveMathematics, Reverse
Mathematics, and Term rewriting, as we will briefly discuss further below.

Nash-Williams [19] gave a very concise classical proof using the so-called min-
imal bad sequence argument. In the following we briefly recall well-quasiorderings
and sketch Nash-Williams’ proof.

Definition A binary relation � on a set A is a well-quasiorder (wqo) if (i) it is
transitive and (ii) every infinite sequence in A is “good”, i.e.,∀(ai)i<ω

∃i, j (i < j ∧ ai �
a j).

Let A∗ denote the set of finite sequences (“words”) with elements in A. We call a
word [a1, . . . , an] embeddable (�∗) in [b1, . . . , bm] if there exists a strictly increasing
map f : {1, . . . , n} → {1, . . . , m} such that ai � b f (i) for all i ∈ {1, . . . n}.

Now Higman’s Lemma says
If (A,�) is a well-quasiorder, then so is (A∗,�∗).
Nash-Williams’ proof proceeds as follows. That a bad sequence of words, i.e.,

a sequence that is not good, is impossible is basically a consequence of two facts:
(a) for each bad sequence exists a bad sequence with is smaller in a lexicographical
sense, and (b), if there exists a bad sequence, then exists also a minimal bad sequence
with respect to this lexicographical order. We give the proof in more detail:

(1) In order to show “wqo (A,�) implies wqo (A∗,�∗)” assume for contradiction
that there is a bad sequence of words in A∗.

(2) Among all infinite bad sequences of words we choose (using classical dependent
choice) a minimal bad sequence, i.e., a sequence (wi)i<ω, such that, for all n,
w0, . . . , wn starts an infinite bad sequence, but w0, . . . , wn−1, v, where v is a
proper initial segment of wn , does not.

(3) Since for all i wi 	= [], let wi = ai∗vi . By Ramsey’s theorem and the fact
that our alphabet A is a well-quasiorder, there exists an infinite subsequence
aκ0 � aκ1 � · · · of the sequence (ai)i<ω. This also determines a corresponding
sequence w0, . . . , wκ0−1, vκ0 , vκ1 ,

(4) The sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . must be bad (otherwise also (wi)i<ω

would be good), but this contradicts the minimality in (2).

The computational content of Nash-Williams’ proof was first investigated by
Murthy [17], by applying Friedman’s A-translation in the interactive theorem prover
NuPRL to the classical proof. Murthy represented functions as relations to eliminate
choice, and used second order classical logic. However, due to the size of the trans-
lated proof and program, the resulting program could only be run on trivial input.
In [29], the second author formalized Nash-Williams’ proof in the proof assistant
Minlog, by applying a refined version of the A-translation and, contrary to Murthy,

Higman’s Lemma and Its Computational Content 355

not eliminating the axiom of classical dependent choice, but rather adding com-
putational content to it using bar recursion. This resulted in a considerable smaller
extracted program, but still with infeasible run-times due to the eager evaluation strat-
egy of Minlog’s term language. Reasonable results have been only obtained recently
thanks to a Minlog extension which translates extracted terms to Haskell. Other for-
malizations of the classical proof include Herbelin’s formalization of Murthy’s A-
translated proof in Coq [14] and Sternagel’s formalization of Nash-Williams’ proof
in Isabelle [30] which also provides a proof of Kruskal’s theorem. However, [30]
does not include the extraction of a program. Recently, Powell [21] applied Gödel’s
Dialectica Interpretation to this proof. The interpretation yields a program, but no
formalization has been provided so far.

In this paper, we aim at a constructive proof (without choice) which has the same
underlying construction asNash-Williams’ proof but allows us to directly read off the
program. For a {0, 1}-alphabet such a proof was given by Coquand and Fridlender [6,
7]. Here we provide a proof and a formalization for full Higman’s Lemma, and also
discuss how this proof is related to other constructive proofs. The paper is organized
as follows: We give a constructive reformulation of Nash-Williams’ proof in Sect. 2
and comment on its formalization in Sect. 3. In Sect. 4 we spell out the computational
content of someof the proofs. Each time it comes in the formof a term (in an extension
T + of Gödels T) machine extracted from a formalization of the respective proof. We
give an overview on existing formalizations of the Coquand/Fridlender proof at the
end of Sect. 2 and add a comparison with other constructive proofs in Sect. 5.

2 A Constructive Reformulation of Nash-Williams’ Proof

The objective of this section is to present a constructive proof of Higman’s Lemma
that uses the same combinatorial idea as Nash-Williams’ classical proof and gener-
alizes the proof by Coquand and Fridlender. Such a proof (without formalization)
has been given in [28]. However, if one is interested in the computational content
one has to reformulate this proof and to change it at various places to make the
computational content visible (see also the remark at the end of this section). We
use an inductive characterization of a binary relation satisfying condition (ii) in the
definition of a well-quasiorder; such relations have been called “almost full” in [33].
Our characterization is via a “bar” predicate which comes in two variants, one for
the alphabet and one for words, see below for a definition. Thus, the statement we
are going to prove is

BarA�[] → BarW�[].

Throughout the whole paper we assume� to be a binary relation on a set A which
is decidable in the sense that it is given by a binary total function into the booleans;
transitivity will not be needed. It suffices to let A be the set of natural numbers.
Most of our notions will depend on the �-relation. However, we usually suppress
this dependence, since � will be kept fixed most of the time.

356 H. Schwichtenberg et al.

Notation We use

a, b, . . . for letters, i.e., elements of a A,

as, bs, . . . for finite sequences of letters, i.e., elements of A∗,
v, w, . . . for words, i.e., elements of A∗,
vs, ws, . . . for finite sequences of words, i.e., elements of A∗∗.

Definition (Higman embedding, inductive) The embedding relation �∗ on A∗ is
defined inductively by the following axioms (written as rules):

[] �∗ []
v �∗ w

v �∗ a∗w

a � b v �∗ w

a∗v �∗ b∗w

where ∗ denotes the cons operation on lists.

Definition GoodA as expresses that a finite sequence as of letters is good; note
that finite sequences grow to the left, i.e., a finite sequence is good if there are two
elements such that the one to the left is larger than or equal to w.r.t. � to the one on
the right. A sequence is called bad if it is not good. Furthermore, we use

Ge∃(a, as) := ∃i<|as|a
 (as)i ,

Ge∀(a, as) := ∀i<|as|a
 (as)i ,

Ge∃∀(a, ws) := ∃i<|ws|∀ j<|(ws)i |a
 (ws)i, j .

Afinite sequence as = [an−1, .., a0] is decreasing if a j
 ai whenever j ≥ i . Further,
BSeq as determines the “first” bad subsequence occurring in as:

BSeq [] := [],
BSeq(a∗as) :=

{
a∗BSeq as if ¬Ge∃(a, as),

BSeq as otherwise.

Definition We inductively define a set BarA ⊆ A∗ by the following rules:

GoodA as

BarA as

∀a BarA a∗as

BarA as
.

BarW ws is defined similarly, using the corresponding GoodW ws. However,
since GoodW is a predicate on words, it refers to the embedding relation �∗ on A∗
rather than � directly.

As in the end we are interested in getting a program that for any sequence of
words yields witnesses that this sequence is good we also prove the following.

Proposition (BarWToGoodInit) BarW[] implies that every infinite sequence of
words has a good initial segment.

Proof Let f be a variable of type nat=>list nat. We show, more generally,

Higman’s Lemma and Its Computational Content 357

∀ws, f,n(BarW ws → Rev(f̄ n) = ws → ∃mGoodW(Rev(f̄ m)))

by induction on BarW. The proposition then follows with ws = [].
1. GoodW ws. Assume that there are an infinite sequence f and a number n such

that Rev(f̄ n) = ws (i.e., [f (n − 1), . . . , f 0] = ws). Since ws is good, we can
take m to be n.

2. Using the induction hypothesis

∀w, f,n(Rev(f̄ n) = w∗ws → ∃mGoodW(Rev(f̄ m)))

with f n, f and n + 1, we only have to prove Rev(f̄ (n + 1)) = f n∗ws, which
follows from Rev(f̄ n) = ws. �

Note that the reverse direction expresses a form of bar induction. However, for
the proof below the present direction suffices.

In the following we want to first highlight the idea behind the constructive proof.
This is best done by showing how the steps (1)–(4) in the proof of Nash-Williams
given in the introduction are dealt with in the inductive proof.

(1) Prove inductively “BarA [] → BarW[]”.
(2) The minimality argument will be replaced by structural induction on words.
(3) Given a sequence ws = [wn, . . . , w0] s.t. wi = ai∗vi , we are interested in all

decreasing subsequences [aκl , . . . , aκ0] of maximal length and their correspond-
ing sequences vκl , . . . , vκ0 , wκ0−1, . . . , w0. The sequences [aκl , . . . , aκ0] form a
forest. In the proof these sequences will be computed by the procedure Forest
which takes ws as input and yields a forest labeled by pairs in A∗∗ × A∗. In the
produced forest the right-hand components of each node form such a descending
subsequence [aκi , . . . , aκ0] and the corresponding left-hand component consists
of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0]. If we extend the sequence ws to
the left by a word a∗v, then in the existing forest either new nodes, possibly at
several places, are inserted, or a new singleton tree with root node 〈v∗ws, [a]〉 is
added. Now the informal idea of the inductive proof is: if in Forest ws new nodes
cannot be inserted infinitely often (without ending upwith a good left-hand com-
ponent in a node) and if also new trees cannot be added infinitely often, then ws
can not be extended badly infinitely often. Formally, this will be captured by the
statement:

∀ws(BarW(BSeq(Headsws)) → BarF(Forest ws) → BarW ws).

(4) The first part of item (4) corresponds to GoodWForestToGoodW.

Definition For a finite sequence ws of words let Headsws denote the finite sequence
consisting of the starting letters of the non-empty words. We call a finite sequence
ws of words admissible (Adm ws) if each word in ws is non-empty.

358 H. Schwichtenberg et al.

Notation We use t for elements in T (A∗∗ × A∗), i.e., trees labeled by pairs in A∗∗ ×
A∗, and ts, ss for elements in (T (A∗∗ × A∗))∗, i.e., forests. The treewith root 〈ws, as〉
and list of subtrees ts is written 〈ws, as〉ts. We use the destructors Left and Right for
pairs and the destructors Root and Subtrees for trees. For better readability we set:

Newtree 〈ws, as〉 := 〈ws, as〉[],
Roots [tn−1, . . . , t0] := [Root tn−1, . . . ,Root t0],
Lefts [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [vsn−1, . . . , vs0],
Rights [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [asn−1, . . . , as0].

Definition Letws ∈ A∗∗ be a sequence of words. Then Forest ws ∈ (T (A∗∗ × A∗))∗
is recursively defined by

Forest [] := [],
Forest []∗ws := Forest ws,

Forest(a∗v)∗ws :=
{
InsertF(Forest ws, v, a) if Ge∃(a,BSeq(Headsws)),

Newtree 〈v∗ws, [a]〉∗(Forest ws) otherwise

where

InsertF(ts, v, a) := map

⎛

⎝λt

⎡

⎣
if Ge∀(a,Right (Root t))
InsertT(t, v, a)

t

⎤

⎦

⎞

⎠ ts

and

InsertT(〈vs, as′〉ts, v, a) :=
{

〈vs, as′〉InsertF(ts, v, a) if Ge∃∀(a,Rights(Roots ts)),

〈vs, as′〉(Newtree 〈v∗vs, a∗as′〉∗ts) otherwise.

Example Take as (almost full) relation the natural numbers with ≤. For better
readability we use underlining rather than parentheses to indicate a list. We will
only use one-digit numbers, hence every digit stands for a natural number. Then
Forest [28, 421, 69, 35] is

([8, 421, 69, 35],2)
([21, 5],43) ([9, 5],63)

([5],3)

and Forest [52, 28, 421, 69, 35] is

Higman’s Lemma and Its Computational Content 359

([2, 8, 421, 69, 35],52)
([8, 421, 69, 35],2)

([2, 21, 5],543)
([21, 5],43) ([9, 5],63)

([5],3)

If we “project” each node to its right-hand-side we obtain

2
43 63

3 and 52
2

543
43 63

3

The leaves of e.g. the final tree are themaximal decreasing subsequences of the heads
[52463] of [52, 28, 421, 69, 35]. Recall that the left-hand-side of each leaf consists
of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0], and its right-hand-side is the maxi-
mal descending subsequence [aκi , . . . , aκ0] of [an, . . . , a0]. In the example the leaf
([2, 8, 421, 69, 35,], 52,) has exactly this form: 52 is a maximal descending subse-
quence of 52463, and we have [52, 28, 421, 69, 35] = [(5 ∗ 2), (2 ∗ 8), 421, 69, 35].
Definition Let t ∈ T (A∗∗ × A∗). Then t is a tree with a good leaf (GLT t) if there
is a leaf with a good left side. We inductively define the predicate BarF ⊆ (T (A∗∗ ×
A∗))∗ by the rules

GLT(ts)i

BarFts

∀a,v(Ge∃∀(a,Rights(Roots ts)) → BarF(InsertF(ts, v, a)))

BarFts

Lemma (GoodWProjForestToGoodW, BSeqHeadsEqRhtsRootsForest)

(a) ∀ws,i (i < Lhws → GLT(Forest ws)i → GoodW ws).
(b) ∀ws(Adm ws → BSeq(Headsws) = Heads(Rights(Roots (Forest ws)))).

Proof Both parts follow from the construction of Forest; the proof of (a) is rather
laborious and involves a number of auxiliary notions. However, since we are
mainly interested in computational content and this lemma has none, we do not
give details. �
Lemma (BarFNil, BarFAppd)

(a) BarF[].
(b) ∀t,ts(BarF[t] → BarFts → BarFt∗ts).

Proof (a) BarF[] follows from the second rule of the definition of BarF, using ex-
falso-quodlibet.

(b) This assertion holds since InsertF is defined by a map operation. In more
detail, using # for the concatenation of two lists, we prove

∀ts(BarFts → ∀ss(BarFss → BarFts#ss))

by induction on BarFts. The base case is straightforward as GLT(ts)i implies
GLT(ts#ss)i . In the step case we have

360 H. Schwichtenberg et al.

ih1 : ∀v,a(Ge∃∀(a,Rights(Roots ts)) →
∀ss(BarFss → BarF(InsertF(ts, v, a)#ss)))

and need to prove ∀ss(BarFss → BarFts#ss). Fix ss ∈ A∗ and use induction on
BarFss. The base case again is easy since GLT(ss)i implies that there is j such
that GLT(ts#ss) j . In the step case we have

ih2 : ∀v,a(Ge∃∀(a,Rights(Roots ss)) → BarFts#InsertF(ss, v, a))

as well as its “strengthening”

ih2a : ∀v,a(Ge∃∀(a,Rights(Roots ss)) → BarF(InsertF(ss, v, a))).

To show BarFts#ss, assume v, a with Ge∃∀(a,Rights(Roots ts#ss)) and show BarF
(InsertF(ts#ss, v, a)).

Case 1. ¬Ge∃∀(a,Rights(Roots ts)), i.e., new nodes are only added to ss; ts
remains unchanged. Then BarFts#ss′ follows by ih2.

Case 2. Ge∃∀(a,Rights(Roots ts))). First assume that new nodes are added to
both ts and ss, i.e., Ge∃∀(a,Rights(Roots ss)). In this case we use with v, a and
InsertF(ss, v, i). We still need to show BarF(InsertF(ss, v, a)), which holds because
of ih2a .

Now assume ¬Ge∃∀(a,Rights(Roots ss)), i.e., new nodes are only added to ts. In
this case we apply ih1 with v, a and ss where we use ih2a and the definition of BarF
to obtain BarFss. �

The next lemma tells us that a forest consisting of only one tree, in which we
continue to insert new nodes by InsertF operations, eventually becomes good.

Lemma (BarFNew) Assume BarA []. Then

∀ws0(BarW ws0 → ∀as0BarF[Newtree 〈ws0, as0〉]).

Proof Ind1(BarW). 1.1. GoodW ws0. Then GLT(Newtree 〈ws0, as0〉), i.e., BarF
[Newtree 〈ws0, as0〉]. 1.2. Assume

ih1 : ∀w,asBarF[Newtree 〈w∗ws0, as〉].

Let as0 ∈ A. Instead of proving BarF[Newtree 〈ws0, as0〉] we show more generally
that this assertion holds for all t with Root t = 〈ws0, as0〉 and (a) Subtrees t in BarF,
and (b) Heads(Rights(Roots(Subtrees t))) in BarA.We do this by main induction on
(b) and side induction on (a), i.e., we prove

∀as(BarA as → ¬GoodA as →
∀ts(BarFts → as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts])).

Higman’s Lemma and Its Computational Content 361

Ind2(BarA). 2.1. GoodA as. Then the conclusion follows immediately by ex-falso-
quodlibet with the premise ¬GoodAas. 2.2. BarA as is obtained by the second rule.
We assume as and

ih2 : ∀a,ts(BarFts → a∗as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts]),

and have to show

∀ts(BarFts → as = Heads(Rights(Roots ts)) → BarF[〈ws0, as0〉ts]).

Ind3(BarF). 3.1. Fix (ts)i such that GLT(ts)i . By the first clause of BarF, for
any t such that Subtrees t = ts, GLT(ts)i implies BarF[t]. 3.2. Fix ts with as =
Heads(Rights(Roots ts)) and assume the induction hypothesis

ih3 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) →
as = Heads(Rights(Roots(InsertF(ts, v, a)))) →
BarF[〈ws0, as0〉InsertF(ts, v, a)])

together with its strengthening

ih3a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) → BarF(InsertF(ts, v, a))).

To show BarF[〈ws0, as0〉ts] we use the second clause, i.e., prove

∀v,a(Ge∃(a,Head[as0]) → BarF(InsertF([〈ws0, as0〉ts], v, a))).

We fix v and a with Ge∃(a, as0) and prove the statement by case distinction on how
a relates to as, i.e., whether nodes in the existing subtrees ts need to be inserted, or
whether a new subtree has to be added.

Case 1. Ge∃(a, as). In this case we have

as = Heads(Rights(Roots ts)) = Heads(Rights(Roots(InsertF(ts, v, a))))

and by applying ih3 we obtain BarF[〈ws0, as0〉InsertF(ts, v, a)].
Case 2. ¬Ge∃(a, as). In this case we need to show

BarF[〈ws0, as0〉Newtree 〈w∗ws0, a∗as0〉∗ts]

which can be obtained by applying ih2 to a and Newtree 〈w∗ws0, a∗as0〉∗ts provided
we can show

BarF(Newtree 〈w∗ws0, a∗as0〉∗ts).

This follows from BarFts and BarF[Newtree 〈w∗ws0, a∗as0〉] via BarFAppd. The
former holds by ih3a , the latter follows by ih1.

362 H. Schwichtenberg et al.

Now, the proof of the general assertion is completed. Since BarA [] by assumption
and BarF[] by BarFNil, we may in the assertion put as = [] and ts = [] and end up
with BarW ws → BarF[Newtree 〈ws0, as0〉]. �

Theorem (Higman) BarA [] → BarW[].
Proof Assume BarA[]. We show more generally

∀as(BarA as →
∀ts(BarFts →
∀ws(Adm ws → BSeq(Headsws) = as → Forest ws = ts → BarW ws))).

Ind1(BarA). 1.1. GoodA as. Then, the result follows by ex-falso-quodlibet since for
any ws, BSeq(Headsws) is bad.

1.2. Let as ∈ A∗ and assume

ih1 : ∀a,ts(BarFts →
∀ws(Adm ws → BSeq(Headsws) = a∗as → Forest ws=ts → BarW ws)).

Ind2(BarF). 2.1. GLT(ts)i . Then, byGoodWProjForestToGoodW, for anyws such
that Forest ws = ts we obtain GoodW ws and hence BarW ws. 2.2. Fix ts and assume

ih2 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) →
∀ws(Adm ws → BSeq(Headsws) = as → Forest ws=InsertF(ts, v, a) →

BarW ws))

as well as the strengthening of the induction hypothesis

ih2a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts))) → BarF(InsertF(ts, v, a))).

Assume that we have ws such that BSeq(Headsws) = as and Forest ws = ts. In
order to prove BarW ws, we fix a word w and show BarWw∗ws by induction on the
structure of w:

Ind3(w). 3.1. BarW[]∗ws holds since the empty word is embeddable in any word.
3.2. Assume that we have a word of form a∗w. We show BarW(a∗w)∗ws by case
analysis on whether or not Ge∃(a, as).

Case 1. Ge∃(a, as).
In this case, we have

BSeq(Heads((a∗w)∗ws)) = as,
Forest((a∗w)∗ws) = InsertF(ts, w, a).

Higman’s Lemma and Its Computational Content 363

By BSeqHeadsEqRhtsRootsForest and the definition of Forest(a∗w)∗ws, we know
that at least one node has been inserted into Forest ws. In this situation, we may
apply ih2 (to InsertF(ts, w, a) and (a∗w)∗ws) and conclude BarW(a∗w)∗ws.

Case 2. ¬Ge∃(a, as). Then we have

BSeq(Heads((a∗w)∗ws)) = a∗as,
Forest(a∗w)∗ws) = Newtree 〈w∗ws, [a]〉∗ts.

By ih2a and ih3, we have BarFts and BarWw∗ws. Hence, by BarFNew applied
to w∗ws and [a], we obtain BarF[Newtree 〈w∗ws, [a]〉]. By BarFAppd we may
conclude

BarF[Newtree 〈w∗ws, [a]〉∗ts].

Nowwe are able to apply ih1 (to a, Newtree 〈w∗ws, [a]〉∗ts and (a∗w)∗ws) and end
up with BarW(a∗w)∗ws. This completes the proof of the general assertion.

Now, by putting as = [], ts = [] and ws = [] and the fact that BarF[] always
holds (by BarFNil) we obtain BarA [] → BarW[]. �

Remark In order to make the computational content behind the inductive proof vis-
ible, it is essential to use a “positive” formulation of a well-quasiorder, that is, a def-
inition using two rules, as was pointed out, e.g., in [10]. Having a proof of BarW ws
implies that the proof yields the information whether BarW ws was obtained by the
first rule or by the second. In the first case the result can be read off, in the second we
continue with looking at a proof of BarW w ∗ ws . If we used a definition consisting
of only one rule, i.e., an acc�-notion as in [28], BarW ws would correspond to

¬∃i (i < Lh ws → (ws)i embeds into ws) → BarWw∗ws

where the test whether or not the premise holds results in a brute-force search; it is
not given by the proof itself.

In the next section we discuss a formalization of this proof. For the special case of
{0,1} there are formalizations in Agda (Fridlender), Minlog (Seisenberger), Isabelle
(Berghofer, [3]) and Coq (Berghofer). The formalization of the general case is much
more elaborate. Such a formalization has been given in Coq, by Delobel.1 However,
its computational content has not been extracted and investigated. Itwould suffer from
the point made in the previous remark, and its usage of the Set/Prop distinction (see
footnote 2) in Coq.Herewewant to demonstrate how to get hold of the computational
content of a (non-trivial) proof by means of an extracted term, and that this term
clearly represents the computationally relevant aspects of the underlying proof.

1http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html.

http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html

364 H. Schwichtenberg et al.

3 Formalization

Why should we formalize the rather clear proof given in the previous section? There
is of course the obvious reason that we want to be sure that it is correct. However,
in addition we might want to get hold of its computational content. We will present
this content in the form of an “extracted term”, in (an extension T + of) Gödel’s T .
This term can be applied to another term representing an infinite sequence of words,
and then evaluated (i.e., normalized). The normal form is a numeral determining a
good finite initial segment of the input sequence.

When formalizing we of course need a theory (or formal system) where this is
done. Now what features of such a theory are essential for our task? First of all, we
have to get clear about (i) what “computational content” is, and (ii) where it arises.
We use the Kleene-Kreisel concept of modified realizability for the former. In fact,
we will have a formula expressing “the term t is a realizer for the formula A” inside
our formal system. For the latter, we take it that computational content only arises
from inductive predicates; prime examples are the Bar predicates introduced in the
previous section. But then a particular aspect becomes prominent: we need “non
computational” (n.c.) universal quantification [1] written ∀nc to correctly express the
type of a computational problem of the form

∀nc
as(BarA as → A).

Its intended computational content is a function f mapping a witness that as is in
BarA into a realizer of A. It is important that f does not get as as an argument.2

On the more technical side, we use TCF [26], a form of HAω extended by induc-
tively defined predicates and n.c. logical connectives. TCF has the (Scott-Ershov)
partial continuous functions as its intended model.

It is also mandatory to use a proof assistant to help with the task of formalization.
We use Minlog3 [2], which is designed to support these features.

Space does not permit to present the full formalization4 of the constructive proof
above of Higman’s Lemma. We restrict ourselves to comment on some essential
aspects.

Most important are of course the basic definitions of the data structures (free
algebras) and predicates involved. Their formal definitions are very close to the
informal ones above and do not need to be spelled out. However, already at this
level computational content crops up: an inductive predicate may or may not have
computational content. Examples for the former are the Bar predicates, and for the
latter theGoodA predicate. It is convenient to define theGoodA predicate inductively,

2A similar phenomenon is addressed in Coq [5] by the so-called Set/Prop distinction. However,
enriching the logic by n.c. universal quantification (and similarly n.c. implication) seems to be more
flexible.
3See http://www.minlog-system.de.
4See http://www.git/minlog/examples/bar/higman.scm.

http://www.minlog-system.de
http://www.git/minlog/examples/bar/higman.scm

Higman’s Lemma and Its Computational Content 365

but—since it is decidable—we can also view it as a (primitive) recursive boolean
valued function.

The first point in the proof above where we have to be careful with n.c. quantifi-
cation is the inductive definition of BarA, with clauses

InitBarA : ∀nc
�,as(GoodA�as → BarA�as),

GenBarA : ∀nc
�,as(∀aBarA�a ∗ as → BarA�as).

The (free) algebra of witnesses for this inductive predicate is called treeA. In
the clause GenBarA the generation tree of BarA�as should have infinitely many
predecessors indexed by a, hence we need ∀a . However, the outside quantifier is
∀nc�,as, since we do not want to let the argument as be involved in the computational
content of BarA�as. Hence treeA has constructors

CInitBarA : treeA,

CGenBarA : (nat ⇒ treeA) ⇒ treeA.

A similar (but slightly more involved) comment applies to the inductive definition
of BarF. For readability we omit the dependency on � here. The clauses are

InitBarF : ∀nc
ts,i (i < Lh ts → GLT (ts)i → BarFts),

and GenBarF :

∀nc
ts (∀tas,a,v(tas = ProjF ts → Ge∃∀(a,Roots tas) →

BarF(InsertF(ts, v, a)) →
BarFts).

We need the concept of the “A-projection” of a tree t , where each rhs of a label
in t is projected out. Here only the A-projection of ts (but not ts) is used compu-
tationally. More precisely, the predecessors of BarFts are all InsertF(ts, v, a) for
v, a with Ge∃∀(a,Rights(Roots ts)). To decide the latter, we need (computationally)
Rights(Roots ts), i.e., the A-projection of ts.

The (free) algebra of witnesses for the inductive predicate BarF is called treeF;
its constructors are

CInitBarF : treeF,

CGenBarF : (list lntree nat ⇒ nat ⇒ list nat ⇒ treeF) ⇒ treeF.

366 H. Schwichtenberg et al.

4 Extraction

We now spell out the computational content of some of the proofs above. Each time
it comes in the form of a term (in T +) machine extracted from a formalization of the
respective proof.

When reading the extracted terms please note that lambda abstraction is displayed
via square brackets; so [n]n+mmeans λnn + m. Our notation 〈ws, as〉ts for the tree
with root 〈ws, as〉 and list of subtrees ts is displayed as (ws pair as)%ts. Also
types are implicit in variable names; for example, n, a both range over natural
numbers. One can also use the display string for a type as a variable name of this
type; for example, treeW is a name for a variable of type treeW.

4.1 BarWToGoodInit

We use typed variable names

f: nat=>list nat

gw: nat=>list nat

hwfa: list nat=>(nat=>list nat)=>nat=>nat

The term extracted from the proof of the proposition BarWToGoodInit is

[treeW]

Rec treeW=>(nat=>list nat)=>nat=>nat)treeW([f,a]a)

([gw,hwfa,f,a]hwfa(f a)f(Succ a))

It takes some effort to understand such an extracted term. The recursion operator on
treeW with value type alpha has type

treeW=>alpha=>((list nat=>treeW)=>(list nat=>alpha)=>alpha)

=>alpha

Let Leaf: treeW and Branch: (list nat=>treeW)=>treeW be the
constructors of treeW. Then� := (Rec treeW=>alpha) is given by the recur-
sion equations

�(Leaf) := G,

�(Branch(g)) := H(g, λv�(g(v))).

Here the value type alpha is (nat=>list nat)=>nat=>nat, and

G := λ f,aa,

H(gw,hwfa) := λ f,ahwfa(f (a), f, a + 1).

Higman’s Lemma and Its Computational Content 367

4.2 BarFNil, BarFAppd

For BarFNil we have the simple extracted term

CGenBarF([tas,a,v]CInitBarF)

For BarFAppd we use the variable names

g: list lntree nat=>nat=>list nat=>treeF

htat: list lntree nat=>nat=>list nat=>treeF=>nat=>treeF

hat: list lntree nat=>nat=>list nat=>nat=>treeF

Then the extracted term is

[wqo,treeF]

(Rec treeF=>treeF=>nat=>treeF)treeF([treeF0,a]CInitBarF)

([g,htat,treeF0]

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]

a)

(hat((Lh tas--a)rest tas)a0 v a)])))

The recursion operator on treeF with value type alpha has type

treeF=>alpha=>

((list lntree nat=>nat=>list nat=>treeF)=>

(list lntree nat=>nat=>list nat=>alpha)=>alpha)=>alpha

LargerARExAl wqo a ws means ∃i<|ws|∀ j<|(ws)i |a
 (ws)i, j . treeF has con-
structors CInitBarF: treeF and CGenBarF: (list nat=>treeF)=>
texttttreeF. Then � := (Rec treeF=>alpha) is given by the recursion equa-
tions

�(CInitBarF) := G,

�(CGenBarF(g)) := H(g, λv�(g(v))).

The value type of the first recursion is treeF=>nat=>treeF, and

368 H. Schwichtenberg et al.

G := λtreeF,aCInitBarF,

H(g,htat) := λtreeF0K (g,htat,treeF0)

with K (g,htat,treeF0) given by

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]

a)

(hat((Lh tas--a)rest tas)a0 v a)]))

The inner recursion is on treeF again, with value type nat=>treeF, and

G1 := λaCInitBarF,

H1(g0,hat) := λaCGenBarF . . .

4.3 BarFNew

With the variable names

gw: list nat=>treeW hw: list nat=>list nat=>treeF

ga: nat=>treeA hatt: nat=>treeF=>treeF

we extract

[wqo,treeA,treeW]

(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)

([gw,hw,v]

(Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)

([ga,hatt,treeF]

(Rec treeF=>treeF)treeF CInitBarF

([g,g0]

CGenBarF

([tas,a,v0]

[if (LargerARExAll wqo a Roots Subtrees Head tas)

(g0 Subtrees Head tas a v0)

(hatt a

Higman’s Lemma and Its Computational Content 369

(cBarFAppd wqo(hw v0(a::v))

(CGenBarF g)Lh Subtrees Head tas))])))

(CGenBarF([tas,a,v0]CInitBarF)))

This time we have three nested recursions: an outer one on treeW with value type
list nat=>treeF, then ontreeAwith value typetreeF=>treeF, and inner-
most on treeF with value type treeF. This corresponds to the three elimination
axioms used in the proof. Notice that the computational content cBarFAppd of the
theorem BarFAppd appears as a constant inside the term.

4.4 Higman

[wqo,treeA]

(Rec treeA=>treeF=>list list nat=>list lntree list nat=>treeW)

treeA

([treeF,ws,tas]CInitBarW)

([ga,ha,treeF]

(Rec treeF=>list list nat=>list lntree list nat=>treeW)treeF

([ws,tas]CInitBarW)

([g,h,ws,tas]

CGenBarW

([v](Rec list nat=>treeW)v(CGenBarW([v0]CInitBarW))

([a,v0,treeW]

[if (LargerAR wqo a(BSeq wqo Heads ws))

(h tas a v0((a::v0)::ws)(InsertAF wqo tas a))

(ha a (cBarFAppd wqo(cBarFNew wqo treeA treeW a:)

(CGenBarF g)Lh tas)

((a::v0)::ws)

((a: %(Nil lntree list nat))::tas))]))))

(CGenBarF([tas,a,v]CInitBarF))

(Nil list nat)

(Nil lntree list nat)

4.5 Experiments

To run the extracted terms we need to “animate” the theorems involved. This means
that the constant denoting their computational content (e.g., cBarFAppd for the
theorem BarFAppd) unfolds into the term extracted from the proof of the theorem.
Then for an arbitrary infinite sequence extending e.g. the example in Sect. 2we obtain
the expected good initial segment.

370 H. Schwichtenberg et al.

In more detail, we first have to animate the computationally relevant propositions
in the proof given above of Higman’s Lemma. Then we need to prove and animate
lemmas relating to the particular relation NatLe:

BarNatLeAppdOne : ∀i,m,as(i + Lh(as) = m + 1 → BarA≤(as#[m])),
BarANilNatLe : BarA≤[],
HigmanNatLe : BarW≤[].

Using these we can prove the final proposition

GoodWInitNatLe : ∀ f ∃nGoodW≤(Rev(f̄ n)).

Let neterm be the result of normalizing the term extracted from this proof. Next
we provide an infinite sequence (extending the example in Sect. 2), e.g. in the form
of a program constant:

(add-program-constant "Seq" (py "nat=>list nat"))

(add-computation-rules

"Seq 0" "5::2:"

"Seq 1" "2::8:"

"Seq 2" "4::2::1:"

"Seq 3" "6::9:"

"Seq 4" "3::5:"

"Seq(Succ(Succ(Succ(Succ(Succ n)))))" "0:")

Finally we run the our normalized extracted term by evaluating

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))

(Here nt means “normalize term” and pt means “parse term”). The result is 4, the
length of a good initial segment of our infinite sequence.

5 Related Work: Other Proofs of Higman’s Lemma

Asmentioned at the beginning of Sect. 2, our constructive proof of Higman’s Lemma
does not need transitivity; it works for arbitrary almost full relations. However, in
the following discussion we disregard this fine point and assume that the underlying
relation is a well-quasiorder. This will make it easier to compare different proofs in
the literature.

Higman’s Lemma and Its Computational Content 371

There are quite a number of constructive proofs of Higman’s Lemma, thus the
natural question arises: are they all different? The number of proofs is due to the
fact that researchers from different areas, algebra, proof theory, constructive math-
ematics, term rewriting, to name a few, became interested in Higman’s Lemma. In
addition, there are various formulations of a well-quasiorder which include different
proof principles. These are for instance proofs using ordinal notation systems and
transfinite induction as used in [24, 25] or inductively defined predicates and struc-
tural induction as used in [9, 18, 23]. Below we argue that these proofs are the same
from a computational point of view.

The proof theoretic strength of Higman’s Lemma is that of Peano Arithmetic,
i.e. ε0, as was shown in [12] using the constructive proof of [25]. Speaking in terms
of Reverse Mathematics, Higman’s Lemma can be proven in the theory ACA0. In
term rewriting theory, Higman’s Lemma and its generalization to trees, Kruskal’s
Theorem, are used to prove termination of string rewriting systems and term rewriting
systems respectively. The orders whose termination is covered by these two theorems
are called simplification orders. They form an important class since the criterion of
being a simplification order can be checked syntactically. A constructive proof, e.g.,
as given in [4], moreover yields a bound for the longest possible bad sequence. In
the case of Higman’s Lemma the reduction length, expressed in terms of the Hardy
hierarchy, Hα , assuming a finite alphabet A, is as follows. If we have a bad sequence
(ti)i<n , fulfilling the condition |ti | ≤ |t0| + k × i , where k is a constant and |t | denotes
the size of t , then the length n of the sequence is bound by �(|t0|) where � is an
elementary function in H

ωω|A| [4, 31]. This bound is optimal since there are term
rewriting systems which “reach” these bounds [32].

5.1 Equivalent Formulations of a Well-Quasiorder

We define the maximal ordertype of a well-quasiorder (A,�) as the supremum of
the ordertypes of all extensions of (A,�) to a linear order. Equivalently, in a more
constructive manner, the maximal ordertype can be defined by the height of the tree
of all bad sequences (Bad�) with elements in A. A reification of a quasi order (A,�)

into a wellordering (σ,<) is a map

r : Bad� → σ,

such that for all a∗as ∈ Bad� we have r(a∗as) < r(as). On the set Bad� of bad
sequences in A we define a relation�A by as′ �A as iff as′ = a∗as for some a ∈ A.
The accessible part of the relation �A⊆ Bad� × Bad� is inductively given by the
rule ∀as′(as′ �A as → acc�A as′)

acc�A as

372 H. Schwichtenberg et al.

It is obvious that the following are equivalent for a quasiorder (A,�):

(i) (A,�) is a well-quasiorder (i.e., Wqo(A,�)).
(ii) (A,�) has a maximal ordertype.
(iii) There is a reification of (A,�) into a wellorder.
(iv) (Bad�,�A) is wellfounded, i.e., acc�A [].
(v) BarA�[].

5.2 A Generic Proof of Higman’s Lemma

In the following we sketch a generic proof of

Wqo(A,�) → Wqo(A∗,�∗).

which differs from the proof presented in the earlier sections. We start by choosing
a characterization of a well-quasiorder, either using ordinal notations ((ii) or (iii)) or
inductive definitions ((iv) or (v)). (Note that in the latter casewe need to generalize the
statement; for instance, in (iv) we prove more generally acc�A as → acc�(Aas)∗ [] and
use this proof with as = [], and in the proof below instead of A[a] we use everywhere
Aa∗as, etc.). Here we define Aas as the set of all elements that extend as badly, i.e.
∀i asi � a. Similarly, we define A[a] to be the set of all elements b such that a �A b.
Assume that for our choice of characterization we are able to prove (with the obivous
extension of � to ∪ and ×):

(a) ∀a Wqo(A[a],�) → Wqo(A,�),

(b) A ⊆ B → Wqo(A,�) → Wqo(B,�),

(c) Wqo(A) ∧ Wqo(B) → Wqo(A ∪ B),

(d) Wqo(A) ∧ Wqo(B) → Wqo(A × B).

Assume Wqo(�). We proceed to prove Higman’s Lemma by using either struc-
tural induction or transfinite induction, depending on our choice. From the induction
hypothesis we get

Wqo(A[a]) → Wqo(A[a]∗). (1)

By (a) it suffices to prove ∀vWqo(A∗
[v]). Let v = [a1, . . . , an]. The main combinato-

rial idea is now contained in the following statement

(A)∗[[a1,...,an]] ⊆
⋃

{(A[a1])
∗ × A × (A[a2])

∗ × · · · × A × (A[al])
∗ | l < n} (2)

Higman’s Lemma and Its Computational Content 373

which holds by a simple combinatorial argument. Using (b) we are done once we
have shown

Wqo(
⋃

{(A[a1])
∗ × A × (A[a2])

∗ × · · · × A × (A[al])
∗ | l < n}).

But this follows immediately from (c), (d) and (1).

Remark Instantiated versions of this proof, using characterizations (ii), (iii), (iv) or
(v) of awell-quasiorder, can be found in the following articles: (ii) is used by de Jongh
and Parikh [8] and Schmidt [24]. (iii) is used in the proof by Schütte and Simpson [25]
(and Hasegawa [13]) (and is the characterization which is most promising in terms
of generalizations beyond Kruskal’s Theorem). (iv) has been used by Fridlender [9],
using an acc notation. His proof is a reformulation of the proof by Richman and
Stolzenberg [23]. To a less formal extent this characterization is also used in [18],
where also structural induction and a similar construction describing the space to
which a sequence can be extended badly are used. Characterization (v): the proof
in [9] can be easily reformulated using (v). Fridlender [10] gives a variant where
he does not need the decidability of �A. His proof is a type theoretic version of an
intuitionistic proof by Veldman, later published in [34].

Finally, the proof of [18] forms the basis of the formalization and proof of Hig-
man’s Lemma in [16], in ACL2. Their work however starts with a program solving
the problem, and then proving its properties rather than extracting the program from
the proof.

Remark Higman’s Lemma extends naturally to Kruskal’s Theorem, the correspond-
ing statement for trees. Constructive proofs of Kruskal’s Theorem have been given
by Schmidt [24] using characterization (ii), by Rathjen and Weiermann [22] and
Hasegawa [13] using (iii), and in [27] using (iv). Finally, also Goubault-Larrecq’s
proof [11] which generalizes the proof in [18] falls under this category.

It remains to compare how the computational content behind this generic proof
of Higman Lemma is related to the constructive proof given in this paper. Although
we have not yet formalized the proof above, it is quite obvious that the construction,
in particular Eq. (2) differs from the construction in our proof, and therefore would
result in a different algorithm.

6 Conclusion and Further Work

We presented and formalized a constructive proof of Higman’s Lemma that contains
the same combinatorial idea as Nash-Williams’ indirect proof, and extracted and
discussed its inherent program in detail.We also argued that a number of constructive
proofs of Higman’s Lemma are based on a combinatorial idea different from ours.
It is still open to make that claim formal, i.e. to formalize the proof presented in the
previous section, and compare the resulting program with our extracted program.

374 H. Schwichtenberg et al.

Similarly, there are a number of formalizations of Nash-Williams’ classical proof
as mentioned in the introduction. It would be worthwhile to confirm that they, in
principle, lead to the same algorithm, which also corresponds to the algorithm in our
extracted program.

Equally interesting is the question which of the discussed proofs are most suitable
for applications such as termination of string- and term rewriting systems, see e.g. [11,
30, 35] for recent discussions on applications to termination proofs. A particularly
promising application has been given in [20]. It will be worth checking how our
alternative proof of Higman’s Lemma and its extracted program can be utilized with
regard to these applications or further generalizations.

Acknowledgments We would like to thank Daniel Fridlender and Iosif Petrakis for helpful con-
tributions and comments.

References

1. U. Berger, Program extraction from normalization proofs, in Typed Lambda Calculi and Appli-
cations, ed. by M. Bezem, J. Groote, LNCS, vol. 664, (Springer, Berlin, 1993), pp. 91–106

2. U. Berger, K. Miyamoto, H. Schwichtenberg, M. Seisenberger, Minlog–A Tool for Program
Extraction Supporting Algebras and Coalgebras, in Algebra and Coalgebra in Computer Sci-
ence, ed. by A. Corradini, B. Klin, C. Cîrstea, CALCO’11, LNCS, vol. 6859, (Springer, Berlin,
2011), pp. 393–399

3. S. Berghofer, A constructive proof of Higman’s lemma in Isabelle, Types for Proofs and Pro-
grams. Lecture Notes in Computer Science, vol. 3085 (Springer, Berlin, 2004), pp. 66–82

4. E.A. Cichon, E.T. Bittar, Ordinal recursive bounds for Higman’s theorem. Theor. Comput. Sci.
201(1–2), 63–84 (1998)

5. Coq Development Team. The Coq Proof Assistant Reference Manual—Version 8.2. Inria
(2009)

6. T. Coquand. A proof of Higman’s lemma by structural induction. Unpublished Manuscript,
April 1993

7. T. Coquand, D. Fridlender, A proof of Higman’s lemma by structural induction. Unpublished
Manuscript (1993), http://www.cse.chalmers.se/~coquand/open1.ps, Nov 1993

8. D. de Jongh, R. Parikh,Well partial orderings and their order types. IndagationesMathematicae
14, 195–207 (1977)

9. D. Fridlender, Ramsey’s Theorem in Type Theory. Licentiate Thesis, Chalmers University of
Technology and University of Göteburg, 1993

10. D. Fridlender. Higman’s Lemma in Type Theory. Ph.D. thesis, Chalmers University of Tech-
nology, Göteborg, 1997

11. J. Goubault-Larrecq, A constructive proof of the topological Kruskal theorem, in Mathemat-
ical foundations of computer science 2013, ed. by K. Chatterjee, J. Sgall, 38th international
symposium, MFCS 2013, LNCS, vol. 8087, (Springer, Berlin, 2013), pp. 22–41

12. J.-Y. Girard, Proof Theory and Logical Complexity (Bibliopolis, Napoli, 1987)
13. R. Hasegawa, Well-ordering of algebra and Kruskal’s theorem, in Logic, Language and Com-

putation, ed. byN.D. Jones,M.Hagiya,M. Sato, Festschrift in Honor of Satoru Takasu. Lecture
Notes in Computer Science, vol. 792, (Springer, Berlin, 1994), pp. 133–172

14. H. Herbelin, A program from an A-translated impredicative proof of Higman’s
lemma (1994), http://www.lix.polytechnique.fr/coq/pylons/contribs/files/HigmanNW/trunk/
HigmanNW.Higman.html

http://www.cse.chalmers.se/~coquand/open1.ps
http://www.lix.polytechnique.fr/coq/pylons/contribs/files/HigmanNW/trunk/HigmanNW.Higman.html
http://www.lix.polytechnique.fr/coq/pylons/contribs/files/HigmanNW/trunk/HigmanNW.Higman.html

Higman’s Lemma and Its Computational Content 375

15. G. Higman, Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2, 326–336
(1952)

16. F.-J. Martín-Mateos, J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo, Proof pearl: a formal proof
of Higman’s lemma in ACL2. J. Autom. Reasoning 47(3), 229–250 (2011)

17. C. Murthy, Extracting constructive content from classical proofs. Technical Report 90–1151,
Department of Computer Science, Ph.D. thesis. Cornell University, Ithaca, New York, 1990

18. C.R. Murthy, J.R. Russell, A constructive proof of Higman’s lemma, in Proceedings of the
Sixth Symposium on Logic in Computer Science, pp. 257–267 (1990)

19. C. Nash-Williams, Onwell-quasi-ordering finite trees. Proc. Cambridge Phil. Soc. 59, 833–835
(1963)

20. M. Ogawa, Generation of a linear time query processing algorithm based on well-quasi-orders,
in TACS ’01 Proceedings of the 4th International Symposium on Theoretical Aspects of Com-
puter Software, LNCS, vol. 2215 (Springer, Berlin, 2001), pp. 283–297

21. T. Powell,ApplyingGödel’sDialectica interpretation to obtain a constructive proof ofHigman’s
lemma, in Proceedings of Classical Logic and Computation (CLAC’12), EPTCS, vol. 97 pp.
49–62 (2012)

22. M. Rathjen, A. Weiermann, Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure a.
Appl. Logic 60, 49–88 (1993)

23. F. Richman, G. Stolzenberg, Well quasi-ordered sets. Adv. Math. 97, 145–153 (1993)
24. D. Schmidt, Well-Orderings and Their Maximal Order Types (Mathematisches Institut der

Universität, Habilitationsschrift, Heidelberg, 1979)
25. K. Schütte, S.G. Simpson, Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche

Folgen von natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung
25, 75–89 (1985)

26. H. Schwichtenberg, S.S. Wainer, Proofs and Computations (Association for Symbolic Logic
(Cambridge University Press, Cambridge, Perspectives in Logic, 2012)

27. M. Seisenberger, Kruskal’s tree theorem in a constructive theory of inductive definitions,
in Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum, ed. by
P. Schuster, U. Berger, H. Osswald, Synthese Library, vol. 306 (Kluwer Academic Publisher,
Dordrecht, 2001), pp. 241–255

28. M. Seisenberger, An inductive version of Nash-Williams Minimal-Bad-Sequence argument for
Higman’s lemma, in Types for Proofs and Programs, LNCS, vol. 2277 (Springer, Berlin, 2001)

29. M. Seisenberger, On the Constructive Content of Proofs. Ph.D. thesis, Mathematisches Institut
der Universität München, 2003

30. C. Sternagel, Certified Kruskal’s tree theorem. J. Formalized Reasoning 7(1), 45–62 (2014)
31. H. Touzet, Propriétés combinatoires pour la terminaison de systèmes de réécriture. Ph.D. thesis,

Université Henri Poincaré, Nancy, 1997
32. H. Touzet, A characterisation of multiply recursive functions with Higman’s lemma. Inf. Com-

put. 178, 534–544 (2002)
33. V. Veldman, M. Bezem, Ramsey’s theorem and the pigeonhole principle in intuitionistic math-

ematics. J. London Math. Soc. 47, 193–211 (1993)
34. W. Veldman, An intuitionistic proof of Kruskal’s theorem. Arch. for Math. Logic 43(2), 215–

264 (2004)
35. D. Vytiniotis, T. Coquand, D. Wahlstedt, Stop when you are almost-full–Adventures, in con-

structive termination, in Proceedings, ITP 2012, ed. by L. Beringer, A. Felty, LNCS, vol. 7406,
(Springer Verlag, Berlin, Heidelberg, New York, 2012), pp. 250–265

How to Reason Coinductively Informally

Anton Setzer

Dedicated to Gerhard Jäger on occasion of his 60th Birthday

Abstract We start by giving an overview of the theory of indexed inductively and
coinductively defined sets. We consider the theory of strictly positive indexed induc-
tive definitions in a set theoretic setting. We show the equivalence between the def-
inition as an indexed initial algebra, the definition via an induction principle, and
the set theoretic definition of indexed inductive definitions. We review as well the
equivalence of unique iteration, unique primitive recursion, and induction. Then
we review the theory of indexed coinductively defined sets or final coalgebras. We
construct indexed coinductively defined sets set theoretically, and show the equiva-
lence between the category theoretic definition, the principle of unique coiteration,
of unique corecursion, and of iteration together with bisimulation as equality. Bisim-
ulation will be defined as an indexed coinductively defined set. Therefore proofs of
bisimulation can be carried out corecursively. This fact can be considered together
with bisimulation implying equality as the coinduction principle for the underly-
ing coinductively defined set. Finally we introduce various schemata for reasoning
about coinductively defined sets in an informal way: the schemata of corecursion,
of indexed corecursion, of coinduction, and of corecursion for coinductively defined
relations. This allows to reason about coinductively defined sets similarly as one
does when reasoning about inductively defined sets using schemata of induction.
We obtain the notion of a coinduction hypothesis, which is the dual of an induction
hypothesis.

A. Setzer (B)
Department of Computer Science, Swansea University, Singleton Park,
Swansea SA2 8PP, UK
e-mail: a.g.setzer@swan.ac.uk
URL:http://www.cs.swan.ac.uk/~csetzer/

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_12

377

378 A. Setzer

1 Introduction

When reasoning about inductive defined sets such as the natural numbers, we are used
to argue informally while referring to the induction hypothesis. When for instance
showing ∀x, y, z ∈ N.(x + y) + z = x + (y + z), we do not define first a relation
R(z) ⇔ ∀x, y.(x + y) + z = x + (y + z) and then argue that R is closed under 0
and successor S. Instead one proves (x + y) + 0 = x + (y + 0) and proves (x +
y) + S(z) = x + (y + S(z)) by using the induction hypothesis (x + y) + z = x +
(y + z).

Although these two versions are obviously equivalent, the version using the induc-
tion hypothesis is much more lightweight, and easier to teach to students.

When referring to coinductively defined sets, i.e. final coalgebras, we are currently
usually followingprincipleswhich are similar to referring to the closure of the relation
R under 0,S in inductive definitions. For instance when showing that two elements
of a labelled transition system are bisimilar, one defines a relation on pairs of states
of the transition system and shows that it is a bisimulation relation.

In this article we will discuss how to argue about coinductively defined sets in
a similar way as we argue about inductive sets. This is made easier by following
the approach in [1, 2, 27, 28] of introducing final coalgebras by their elimination
rules rather than their introduction rules. For instance, instead of defining the set
of streams of natural numbers as a set closed under cons : N → Stream → Stream
(and allowing infinite sequences of cons applications), we define Stream as a set
such that we have head : Stream → N, and tail : Stream → Stream. This makes it
easier to describe what the correct use of the corecursion hypothesis is: we can define
s : A → Stream by defining head(s(a)) ∈ N and tail(s(a)) ∈ Stream. For defining
tail we can use the corecursion hypothesis, i.e. define tail(s(a)) = s(a′) for some a′
(depending on a).

Coinduction is the dual of induction. In Sect. 3 we will review the well-known
fact that the principle of induction is equivalent to the fact that there is only one
solution for the equations defining a function by the principle of iteration. Therefore
the principle of induction is just one way of expressing the fact that the principle of
iteration has a unique solution. Dually, coinduction is a principle expressing that the
principle of coiteration has a unique solution. In Sect. 8, Theorem 8.7 we will show
that this principle is equivalent to the fact that bisimulation on coalgebras implies
equality. Bisimulation can be defined coinductively. Therefore we can give proofs of
bisimilarity by corecursion. Therefore coinduction can be considered as the principle
that we can give proofs of equality by corecursion over the coinductive definition of
bisimulation. The coinduction hypothesis is essentially the corecursion hypothesis
in defining elements of the bisimilarity corecursively.

We hope that such schemata will make arguing about coinductively defined sets
easier and less technical than it is at the moment.

Wewill in this article often use “coinductively defined set” for final coalgebra. The
reason is that we want to use a terminology which suggests the use of corecursion

How to Reason Coinductively Informally 379

and coinduction principles like those developed in this article, and which makes it
clear that coinductively defined sets are the dual of inductively defined sets.

Content of this articleWewill start by introducing some notations in Sect. 2, where
wewill transfer notations from dependent type theory into set theory. Thenwe review
in Sect. 3 the theory of indexed inductive definitions, and prove the equivalence
between the category theoretic definition and the definition by induction. We use
here restricted indexed inductive definitions as introduced in Peter Dybjer’s and the
author’s articles [11, 13]. In Sect. 4 the notions of iteration and primitive recursion
and their equivalence, if uniqueness is added, are reviewed. The main purpose of
Sects. 3 and 4 is to motivate analogous definitions for coinductively defined sets, and
make clear how they are obtained by dualising the concepts related to inductively
defined sets. Our set theoretic definition of inductive definitions is based on defining
its elements as terms, which are well-founded (in most standard examples therefore
finitary) objects, and which can be represented in set theory in a straightforward way.
Defining the elements of coinductively defined sets is more complicated, since the
naïve interpretation using constructors would result in non-well-founded sets [3],
whereas in ZF set theory all sets are well-founded. In Sect. 5 we give one way of
introducing elements of coinductive sets set theoretically. Our construction is defined
in such a way that it reflects the fact that coinductively defined sets are formed by
giving their elimination rules or observations. In Sect. 6 we introduce the notions
of coiteration, corecursion, and show the equivalence of those principles. In Sect. 7
we discuss a more convenient way of introducing elements of coinductively defined
sets corecursively without having for each index to define a function. In Sect. 8
we introduce bisimulation, a principle of coinduction, and show that this principle
of coinduction is equivalent to unique coiteration/corecursion. Finally in Sect. 9 we
introduce various schemata for reasoning about coinductively defined sets informally.
The schemata we introduce are corecursion, indexed corecursion, coinduction, and
coinduction for bisimulation relations. We finish with a conclusion in Sect. 10.

We want to note that most of the material in Sects. 3 and 4 is well known in the
theory of initial algebras and inductively defined sets. The purpose of those sections
is to give an overview over the theory of indexed inductive definitions, so that it is
easier to see in later sections howcoinductively defined sets are the dual of inductively
defined sets. Sect. 5 is the adaption of a well known categorical construction to the
indexed case. We hope the fact that it is rather concrete and reflects the fact that
coinductively defined sets are formed by their elimination rules or observations helps
to get a better understanding of coinductively defined sets. The main contribution
of this article are in Sects. 6–9, where the last section demonstrates, how to reason
informally about coinductively defined sets.

We will work in this article set theoretically. The main reason for this is that the
goal of this article is that ordinary mathematicians, who not necessarily work in type
theory, should be able to use the schemata introduced in this article for reasoning
about coalgebras. We believe that the reasoning principles can be transferred to
extensional type theory, although further work is needed in order to make sure that
all principles type-check. A transfer to intensional type theory, and therefore proof

380 A. Setzer

assistants such as Agda, would require further modifications. The main problem is
that in order to obtain decidable type checking in intensional type theory one needs
to replace final coalgebras by weakly final coalgebras. So coinduction can only be
used to prove that elements are bisimilar rather than equal.

RelatedWork The equivalence between induction principles and category theoretic
definition of initial algebras is well known, in case of inductive-recursive definitions
it has for instance been worked out in [12], although the equivalence of inductive def-
initions has been knownmuch longer. The reduction of indexed inductive-definitions
to Petersson-Synek Trees has been developed in container theory, see esp. [14, 19]
but as well [6, 21]. There are various set theoretic models of final coalgebras, exam-
ples are de Bruin [8], Barr [7] or Aczel [4]. The equivalence between final coalgebras
and bisimulation as equality and iteration is well known in the theory of coalgebras,
see for instance the articles and textbooks by Rutten and Sangiori [24–26] (the the-
ory is much older). The notion of bisimulation of processes was initially defined by
Park [22] and Milner [20] as a greatest fixed point, and therefore as a coinductively
defined relation. Dybjer has defined a set theoretic interpretation of type theory in
[9] and with the author in [10].

In our previous article [27] we introduced coalgebras into type theory by giving
formation-, elimination-, introduction- and equality-rules. There we argued, that
coalgebras are formed by giving their elimination rules, and that the introduction
rules and equality rules are derived. We didn’t explore the principle of coinduction
in that article. The current article elaborates on this, however not in the context of
type theory but in a general set theoretic setting. The difficulty is that in intensional
type theory we obtain only weakly final coalgebras.

2 Notations

In the following, wewill workmainly set theoretically, using for simplicity the theory
of Zermelo Fraenkel set theory with the axiom of choice. Since our inspiration comes
from Martin-Löf type theory, we will simulate basic constructions in type theory in
set theory.

Wewillwork in this article in the set theoreticalmodel of type theory, as introduced
for instance in Sect. 6 of [10]. In this model inductively defined sets are modelled
as sets of terms, introduced by constructors, and function types are modelled as set
theoretic functions. Since the idea of this article is to work directly in set theory, we
will identify inductively defined sets with the least set introduced by constructors,
and function types with the set theoretic function set.

Assumption 2.1 (a) We assume a finite set of constructor symbols C1, . . . ,Cn

together with an arity arity(Ci) ∈ N associated with each of them.
(b) We assume a Gödel number �Ci� ∈ N associated with each Ci such that �Ci� 	=

�C j� for i 	= j .

How to Reason Coinductively Informally 381

(c) We assume some standard encoding of sequences of sets a1, . . . , an as a set
〈a1, . . . , an〉, including the case n = 0. We assume this is done in such a way
that there are functions which obtain from a code 〈a1, . . . , an〉 its length n and
the i th element ai .

Definition 2.2 (a) Let Set be the collection of sets.
(b) Wewill in the following use set theoretic notation for function application, i.e. we

will write f (a) for the application of f to a.
(c) If C is an n-ary constructor we define

C : Setn → Set,
C(t1, . . . , tn) := 〈�C�, t1, . . . , tn〉.

Definition 2.3 (a) Let A ∈ Set and B(x) ∈ Set depending on x ∈ A. We define the
dependent function set as

(a ∈ A) → B(a) := { f ∈ A →
⋃

a∈A

B(a) | ∀a ∈ A. f (a) ∈ B(a)}

and the dependent product as

(a ∈ A) × B(a) := {〈a, b〉 | a ∈ A, b ∈ B(a)}.

Let π0 and π1 be the first and second projections, i.e. π0(〈a, b〉) = a,
π1(〈a, b〉) = b.

(b) (x1 ∈ A1) → (x2 ∈ A2) → · · · → (xn ∈ An) → B
:= (x1 ∈ A1) → ((x2 ∈ A2) → (· · · → ((xn ∈ An) → B) · · ·)).

(c) (x1 ∈ A1) × (x2 ∈ A2) × · · · × (xn ∈ An)

:= (x1 ∈ A1) × ((x2 ∈ A2) × (· · · × (xn ∈ An) · · ·)).

(d) For A, B ∈ Set let A + B := {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}, where inl, inr
are unary constructors.

(e) × binds stronger than + and + binds stronger than →.
(f) Let 1 := {∗} where ∗ is a 0-ary constructor.
(g) Let for a relation R(x1, . . . , xn)

R̂(x1, . . . , xn) :=
{
1 if R(x1, . . . , xn),

∅ Otherwise.

When writing an argument of a function as being an element of a relation, we
write R(x1, . . . , xn) instead of R̂(x1, . . . , xn). For instance
(n ∈ N) → (n > 0) → · · · means more precisely (n ∈ N) → (n >̂ 0) → · · · .

382 A. Setzer

(h) Whenhaving functions f : (x ∈ A) → (y ∈ B(x)) → C(x, y)wewrite f (x, y)
for f (x)(y), similarly for functions with more arguments.

(i) When referring to a function f : (x ∈ A) → (y ∈ B(x)) → C(x, y) in a dia-
gram we sometimes need its uncurried form f̂ : (x ∈ A) × (y ∈ B(x)) →
C(x, y). In order to reduce notational overhead we will usually write f instead
of f̂ .

(j) When defining f :(x ∈ (A × B)) → (c ∈ C(x)) → D(x, c)wewrite f (a, b, c)
instead of f (〈a, c〉, c), similarly for longer products or functions with more
arguments.

Definition 2.4 (a) For I ∈ Set let SetI be the category of I-indexed sets with
objects A ∈ I → Set and morphisms f : A → B being set theoretic functions
f : (i ∈ I) → A(i) → B(i).

(b) For A, B ∈ SetI, Let A +SetI B := λi.A(i) + B(i), A ×SetI B = λi.A(i) × B(i).
Furthermore, let

inlSetI := λi, x .inl(x) : A → A + B

similarly for inr,π0,π1.
(c) For X ⊆ SetI let ⋂

SetI X := λi.
⋂{y(i) | y ∈ X},⋃

SetI X := λi.
⋃{y(i) | y ∈ X}.

(d) For X,Y ∈ SetI let X ⊆SetI Y :⇔ ∀i ∈ I.X (i) ⊆ Y (i).
(e) We will usually omit the index SetI in the notations introduced above.

3 Initial Algebras and Inductively Defined Sets

We consider in the following the theory of simultaneous inductive definitions of sets
D(i) for i ∈ I. We fix I ∈ Set.

In [11, 13] Dybjer and the author introduced indexed inductive-recursive defi-
nitions. We defined an indexed inductively defined set U : I → Set while simulta-
neously recursively defining a function T : (i ∈ I) → U(i) → E[i] for some type
E[i]. U(i) was a universe of codes for elements of a type, and T(i, u) was the type
corresponding to code u. The special case of indexed inductively defined sets (more
precisely strictly positive indexed inductively defined sets) is obtained by taking
E[i] = 1. Therefore T is equal to λi, x .∗. T becomes trivial and can be omitted.
We call the set defined inductively in the following D instead of U and omit in the
following T.

In [11, 13] we considered two versions of indexed inductive(-recursive) defini-
tions, restricted and generalised ones. Generalised inductive definitions have con-
structors of the form

How to Reason Coinductively Informally 383

C : (x1 ∈ A1) → (x2 ∈ A2(x1)) → · · · → (xn ∈ An(x1, . . . , xn−1))

→ D(i(x1, . . . , xn))

whereas in restricted ones the index of the result of C is given by the first
argument, so

C : (i ∈ I) → (x1 ∈ A1(i)) → (x2 ∈ A2(i, x1)) → · · · → (xn ∈ An(i, x1, . . . , xn−1))

→ D(i).

Restricted indexed inductive definitions allow decidable case distinction on ele-
ments of the set D defined inductively: an element of D(i) must be of the form
C(i, x1, . . . , xn) for one of the constructors of D. In case of general indexed induc-
tive definitions we can in general not decide whether C(x1, . . . , xn) forms an element
of D(i), since we can in general not decide whether i(x1, . . . , xn) = i.

We consider in the following only restricted indexed inductive definitions, since
indexed inductive definitions are here mainly treated in order to motivate coinduc-
tively defined sets later, for which restricted ones are the natural choice.

Strictly positive restricted indexed inductive definitions are the least sets closed
under constructors like C as before. In a notation borrowed from the type theoretic
theorem prover Agda we write for the fact that Tree is this least set:

data D : I → Set where
C : (i ∈ I) → (x1 ∈ A1(i)) → · · · → (xn ∈ An(i, x1, . . . , xn−1)) → D(i)
C′ : (i ∈ I) → (y1 ∈ A′

1(i)) → · · · → (ym ∈ A′
m(i, y1, . . . , ym−1)) → D(i)

· · ·

Strict positivity means that Ak(i, �x) are either sets which were defined before
D(i) was introduced (non-inductive arguments), or are of the form (b ∈ B(i, �x)) →
D(j (i, �x, b)) (inductive arguments). Since we do not know anything about D(i), later
arguments cannot depend on previous inductive arguments.1

Therefore we obtain an equivalent inductive definition by moving all induc-
tive arguments to the end. Now we can replace all non-inductive arguments by
one single one by forming a product (and letting the later arguments depend
on the projections). The inductive arguments ((b ∈ B1(i, �x)) → D(j1(i, �x, b))) →
· · · → ((b ∈ Bk(i, �x)) → D(jk(i, �x, b)) → can be replaced by ((b ∈ (B1(i, �x) ×
· · · × Bk(i, �x))) → D(j ′(i, �x, b)) for some suitable j ′ (in the special case where
there is no inductive argument, we obtain an inductive argument ∅ → D). Therefore
an inductive definition can be replaced by one having constructors of the form

Ck : (i ∈ I) → (a ∈ Ak(i)) → ((b ∈ Bk(i, a)) → D(j (i, a, b))) → D(i).

1This holds only in indexed inductive-definitions; in indexed inductive-recursive definitions argu-
ments can depend on T applied to previous inductive arguments.

384 A. Setzer

Assuming we have constructors C0, . . . ,Cn−1 we can replace all constructors by one
single one of type

C : (i ∈ I)
→ (k ∈ {0, . . . , n − 1})
→ (a ∈ Ak(i))
→ ((b ∈ Bk(i, a)) → D(j (i, a, b)))
→ D(i)

which after merging the two non-inductive arguments into one becomes

C : (i ∈ I) → (a ∈ A(i)) → ((b ∈ B(i, a)) → D(j(i, a, b))) → D(i).

This is the Petersson-Synek Tree [23], which is an indexed version of Martin-Löf’s
W-type. ThePetersson-Synek trees subsume all strictly positive inductive definitions.
They are initial algebras of indexed containers in the theory of containers, see [6, 21].
In [14, 19] a formal proof that initial algebras of indexed containers and therefore
Petersson-Synek trees subsume all indexed inductive definitions is given. We write
in the following Tree instead of D and tree for the constructor C. Let us fix in the
following A,B, j:

Assumption 3.1 (a) In the following assume

I ∈ Set,
A : I → Set,
B : (i ∈ I) → A(i) → Set,
j : (i ∈ I) → (a ∈ A(i)) → B(i, a) → I.

(b) Let tree be a constructor of arity 3.

In the above we have

tree : (i ∈ I) → (a ∈ A(i)) → ((b ∈ B(i, a)) → Tree(j(i, a, b)))
→ Tree(i).

In the data-notation introduced above we denote this by:

data Tree : I → Set where
tree : (i ∈ I) → (a ∈ A(i)) → ((b ∈ B(i, a)) → Tree(j(i, a, b)))

→ Tree(i).

We will now repeat the well-known argument, that the categorical definition of
inductive definitions is equivalent to the inductionprinciple. Thedual of this argument
will then be used to determine the equivalence between the categorical definition of
coalgebras and the corresponding coinduction principle.

How to Reason Coinductively Informally 385

Definition 3.2 (a) Let the functor F : SetI → SetI be given by

F(X, i) := (a ∈ A(i)) × ((b ∈ B(i, a)) → X (j(i, a, b)))
and for f : X → Y
F(f) : F(X) → F(Y),

F(f, i, 〈a, g〉) := 〈a,λb. f (j(i, a, b), g(b))〉.

(b) An F-algebra, where F is as above, is a pair (X, f) such that X ∈ SetI and
f : F(X) → X .

(c) The categorical definition2 of Tree is that (Tree, tree) is an initial F-algebra,3

which means:

• (Tree, tree) is an F-algebra.
• For any other F-algebra (X, f) there exists a unique g : Tree → X s.t. the
following diagram commutes

F(Tree)
tree� Tree

F(X)

F(g)
� f � X

∃!g
�

We call g the unique F-algebra homomorphism into (X, f).

(d) The inductive definition of Tree is given by4

• (Tree, tree) is an F-algebra,
• for any formula ϕ(i, x) depending on i ∈ I and x ∈ Tree(i) we have that if

∀i ∈ I.∀a ∈ A(i).∀ f ∈ (b ∈ B(i, a)) → Tree(j(i, a, b)).
(∀b ∈ B(i, a).ϕ(j(i, a, b), f (b)))
→ ϕ(i, tree(i, a, f)) (Prog(ϕ))

then
∀i ∈ I.∀x ∈ Tree(i).ϕ(i, x).

We call the assumption Prog(ϕ) that “ϕ is progressive”.

2Note that we deviate from standard category theory in so far as we fix the function tree: tree is the
curried version of the constructor, which we introduced before. In standard category theory both
the set Tree and the function tree can be arbitrary, and therefore the initial algebra is only unique
up to isomorphism. Note as well that above we had the convention that we identify tree with its
uncurried form t̂ree. Without this convention one would say that (Tree, t̂ree) is an F-algebra.
3Here F is as above, i.e. strictly positive.
4Again tree is the curried version of the constructor defined before.

386 A. Setzer

(e) The set theoretic definition of Tree is given by

Tree = [[Tree]]

where [[Tree]] :=
⋂

{X ∈ SetI | (X, tree) is an F-algebra}.

Lemma 3.3 [[Tree]] is a set.

Proof We repeat the standard argument. Define by induction on the ordinals Fα,

F<α ∈ SetI,
Fα(i) := {tree(i, a, f) | 〈a, f 〉 ∈ F(F<α, i)},
F<α := ⋃

β<αF
β .

F is monotone, and therefore Fα ⊆ Fβ for α < β. Let κ be a regular infinite cardinal,
κ > card(B(i, a)) for i ∈ I and a ∈ A(i) (where card(x) is the cardinality of x).

We show that (F<κ, tree) is an F-algebra. Assume 〈a, f 〉 ∈ F(F<κ, i). Then a ∈
A(i), f ∈ (b ∈ B(i, a)) → F<κ(j(i, a, b)). Therefore, for b ∈ B(i, a) there existβ <

κ s.t. f (b) ∈ Fβ(j(i, a, b)). By the regularity ofκ andκ > card(B(i, a)) there exists a
γ < κ s.t. for all b ∈ B(i, a)we have f (b) ∈ Fγ(j(i, a, b)). Therefore tree(i, a, f) ∈
Fγ+1(i) ⊆ F<κ(i).

It follows [[Tree]] ⊆ F<κ which is a set.
In fact [[Tree]] = F<κ, since one can show by induction on α that for any F-

algebra (X, tree)we have Fα ⊆ X , and therefore F<κ ⊆ X , so (Fκ, tree) is the initial
algebra.

The following theorem is well known. We show it since it provides the key idea
for the coinduction principle introduced later.

Theorem 3.4 The following is equivalent:

(a) The categorical definition of Tree.
(b) The inductive definition of Tree.
(c) The set theoretic definition of Tree.

Proof (a) implies (b): Let ϕ(i, x) be progressive. Define E ∈ SetI, E(i) := {x ∈
Tree(i) | ϕ(i, x)}. By progressivity of ϕ we obtain tree : F(E) → E , therefore
(E, tree) is an F-algebra. Let h := λi.x .x : E → Tree be the embedding function, g
the unique F-algebra homomorphism E → Tree, and consider

F(Tree)
tree� Tree

F(E)

F(g)
� tree� E

∃g
�

F(Tree)

F(h)
� tree� Tree

h
�

How to Reason Coinductively Informally 387

The upper diagram commutes by definition of g. The lower diagram obviously
commutes. h ◦ g : Tree → Tree and the identity function id : Tree → Tree are two
functions which make the outer diagram commute. By uniqueness of this func-
tion we get that h ◦ g = id, i.e. ∀i ∈ I.∀x ∈ Tree(i).g(i, x) = x , and therefore
∀i ∈ I.∀x ∈ Tree(i).x ∈ E(i), ∀i ∈ I.∀x ∈ Tree(i).ϕ(i, x).

Proof of (b) implies (a): Let (X, f) be an F-homomorphism. The existence of a
unique g follows as for the recursion theorem in set theory: One first defines for i ∈ I
and t ∈ Tree(i) TC(i, t) as the least set such that,

• if t = tree(i, a, g), b ∈ B(i, a) then 〈j(i, a, b), g(b)〉 ∈ TC(i, t),
• if 〈i ′, tree(i ′, a, g)〉 ∈ TC(i, t) and b ∈ B(i ′, a) then 〈j(i ′, a, b), g(b)〉 ∈ TC(i, t).

So Tree(i, t) contains all proper subtrees of t and contains for every tree its subtrees.
Then it follows that we have course of value induction on Tree, i.e. if ϕ is course

of value progressive, written Progcoursevalue(ϕ), i.e.

∀i ∈ I.∀t ∈ Tree(i).(∀〈i ′, t ′〉 ∈ TC(i, t).ϕ(i ′, t ′)) → ϕ(i, t)

then ∀i ∈ I.∀t ∈ Tree(i).ϕ(i, t). When showing this one shows first by induc-
tion on i ∈ I, t ∈ Tree(i) that ∀i ∈ I.∀t ∈ Tree(i).∀〈i ′, y〉 ∈ TC(i, t).ϕ(i ′, y), which
implies∀i ∈ I.∀t ∈ Tree(i).ϕ(i, t). Let TC′(i, t) ∈ SetI, TC′(i, t, i ′) = {t ′ | 〈i ′, t ′〉 ∈
TC(i, t)}. Then one shows by course of value induction that for every i ∈ I,
t ∈ Tree(i) there exists a unique function g : TC′(i, t) → X which fulfils the condi-
tion of the iteration principle given by the categorical diagram, restricted to TC′(i, t).
We now obtain a function g : Tree → X fulfilling the same equations, and show eas-
ily its uniqueness.

Proof of (c) implies (b): Assume ϕ is progressive. Define E as in the direction
“(a) implies (b)”. (E, tree) is an F-algebra, therefore Tree ⊆ E .

Proof of (b) implies (c): We show first by induction on Tree that ∀i ∈ I.∀x ∈
Tree(i).x ∈ [[Tree]](i), therefore Tree ⊆ [[Tree]]. Furthermore, (b) implies that
(Tree, tree) is an F-algebra, and therefore [[Tree]] ⊆ Tree.

4 Iteration, Recursion, Induction

In Sect. 6 we will introduce the principles of coiteration and corecursion. In order to
see that these principles are the dual of iteration and primitive recursion, we repeat in
this section the definition of those principles as well as the principle of type theoretic
induction. We will give as well the (well-known) proof that the principles of being
an initial F-algebra, of unique iteration, of unique primitive recursion, and of type
theoretic induction are equivalent, which will as well be dualised in Sect. 6.

388 A. Setzer

Definition 4.1 Assume Tree : I → Set and tree : F(Tree) → Tree.5

(a) By “(Tree, tree) satisfies the principle of unique iteration” we mean the follow-
ing: Assume

X : I → Set,
f : (i ∈ I) → ((a ∈ A(i)) × ((b ∈ B(i, a)) → X (j(i, a, b))))

→ X (i).

Then there exists a unique g : Tree → X such that

g(i, tree(i, a, h)) = f (i, 〈a,λb.g(j(i, a, b), h(b))〉).

(b) By “(Tree, tree) satisfies the principle of unique primitive recursion” we mean
the following: Assume

X : I → Set,
f : (i ∈ I) → ((a ∈ A(i))×

((b ∈ B(i, a)) → (Tree(j(i, a, b)) × X (j(i, a, b)))))
→ X (i).

Then there exists a unique g : Tree → X such that

g(i, tree(i, a, h)) = f (i, 〈a,λb.〈h(b), g(j(i, a, b), h(b))〉〉).

(c) By “(Tree, tree) satisfies the principle of unique type theoretic induction” we
mean the following: Assume

X : (i ∈ I) → Tree(i) → Set,
f : (i ∈ I) → ((a ∈ A(i))×

(h : (b ∈ B(i, a)) → ((t ∈ Tree(j(i, a, b))) × X (j(i, a, b), t))))
→ X (i, tree(i, a,π0 ◦ h)).

Then there exists a unique g : (i ∈ I) → (t ∈ Tree(i)) → X (i, t) such that

g(i, tree(i, a, h)) = f (i, 〈a,λb.〈h(b), g(j(i, a, b), h(b))〉〉).

(d) By “(Tree, tree) satisfies the principle of iteration, primitive recursion or type
theoretic induction” we mean that it satisfies the corresponding principle as
above, but omitting the condition that g is unique.

Theorem 4.2 Assume Tree is a set s.t. tree : F(Tree) → Tree. The following are
equivalent

5Note that in contrast to other sections, tree can be an arbitrary function of this type, and Tree is
assumed just to be an element of SetI.

How to Reason Coinductively Informally 389

(a) (Tree, tree) is an initial F-algebra.
(b) (Tree, tree) satisfies the principle of unique iteration.
(c) (Tree, tree) satisfies the principle of unique primitive recursion.
(d) (Tree, tree) satisfies the principle of type theoretic induction.
(e) (Tree, tree) satisfies the principle of unique type theoretic induction.

Proof (a) and (b) are equivalent since the principle of iteration is nothing but the
commutativity of the diagram spelt out.

(a) implies (e): Define for X , f as in the definition of type-theoretic induction

X ′ : I → Set,
X ′(i) = (t ∈ Tree(i)) × X (i, t),

h : F(X ′) → X ′,
h(i, 〈a, k〉) = 〈tree(i, a,π0 ◦ k), f (i, 〈a, k〉)〉.

Consider the diagram

F(Tree)
tree� Tree

F(X ′)

F(g′)
�

h � X ′

∃!g′
�

F(π0 ◦ g′),F(id)

�
F(Tree)

F(π0)

� tree� Tree

π0

�

π0 ◦ g′, id

�

There exists a unique g′ such that the upper part of the diagram commutes. The lower
part of the diagram commutes trivially. Both π0 ◦ g′ and id : Tree → Tree make the
outer diagram commute. By uniqueness we get π0 ◦ g′ = id. Therefore g′(i, t) =
〈t, g(i, t)〉 for some g : (i : I) → Tree(i) → X ′(i, t), and we see immediately that
g satisfies the equations for type-theoretic induction.

Assume g0 is another solution for the equations for type theoretic induction in the
theorem. Let g′

0 : Tree → X ′, g′
0(i, t) = 〈t, g0(i, t)〉. Then the upper diagram above

with g′ replaced by g′
0 commutes as well. By uniqueness of g′ it follows g′

0 = g′ and
therefore g0 = g.

Obviously, (e) implies (d).
(d) implies (c). We immediately obtain (d) implies the principle of primitive

recursion, since it is a special case of type theoretic induction. We get as well unique
primitive recursion: Assume X, f as in the definition of unique primitive recursion,
and let g, g′ : Tree → X be two solutions for the primitive recursion equation. Let

X ′ : (i ∈ I) → Tree(i) → Set,
X ′(i, t) = g(i, t) =̂ g′(i, t).

390 A. Setzer

Let f ′ be of the type of the function underlying the principle of type-theoretic
induction w.r.t. X ′, f ′(i, 〈a, h〉) = ∗ ∈ X ′(i, t), where t := tree(i, a,π0 ◦ h).
f ′(i, 〈a, h〉) ∈ X ′(i, t), since for b ∈ B(i, a) we have, with j ′ := j(i, a, b), that
π1(h(b)) ∈ X ′(j ′,π0(h(b))), therefore g(j ′,π0(h(b))) = g′(j ′,π0(h(b))), and
therefore g(i, t) = g′(i, t). Let g′′ be defined by the principle of induction w.r.t. X ′
and f ′. Then we have g′′ : (i ∈ I) → (t ∈ Tree(i)) → X ′(i, t), and therefore for
i ∈ I, t ∈ Tree(i) we have g(i, t) = g′(i, t).

(c) implies (b) since iteration is a special case of primitive recursion.
When dualising inductive definitions, we will not obtain a direct dual of type the-

oretic induction. We obtain only duals of iteration and recursion. So when dualising
the current theorem, we need to omit (d) and (e) and therefore dualise a proof that
(a) implies (c). But a proof that (a) implies (c) is essentially the same as the proof
that (a) implies (e), where one omits the dependencies of X ′ on Tree(i).

5 Modelling Coinductive Sets in Set Theory

In case of inductive definitions it was easy to model inductively defined sets set-
theoretically, since we could simply model the well-founded trees set theoretically.
When defining coinductively defined sets (or final coalgebras) we obtain non-well-
founded trees. If we define the elements as terms introduced by the constructor
tree as used before (which was fixed function), then the coinductively defined set
would need to be defined as a non-well-founded sets [3]. This can be overcome by
introducing coinductively defined sets by their eliminators, and in the following we
will give one concrete way of defining them. We can then define a constructor for
introducing elements, this constructor is not the function tree defined before.We note
that there are many different ways known for defining non-well-founded trees in set
theory, our approach here is inspired by Aczel [4]. It can be considered as an indexed
explicit version of the standard limit construction of coalgebras. This construction
is a category theoretic construction, it is essentially the ω-limit of Fn . One of the
earliest versions of such a construction seems to be [5], which is an extension of [3].

One advantage of this concrete representation of coinductively defined sets over
other more abstract constructions is that because it is very concrete it is easy to have
a feeling of what the elements of the coinductively defined sets are. As one can see
the elements of coalgebras are descriptions of the result of applying the eliminators
to them (several times in case of the eliminator E2 which returns an element of the
coalgebra). So this construction follows the slogan “an element of a coalgebra is
determined by the result of applying the eliminators to it”.

Assume I,A,B, j, F as before.

Definition 5.1 • An F-coalgebra (X, f) is given by X ∈ SetI and f : X → F(X).
• An F-coalgebra (X, f) is a final F-coalgebra if for any F-coalgebra (Y, g) there
exists a unique h : Y → X s.t.

How to Reason Coinductively Informally 391

Y
g� F(Y)

X

∃!h
� f� F(X)

F(h)
�

Wewill in the following construct a final F-coalgebra ([[Tree∞]],E). So we have

E : (i ∈ I) → [[Tree∞]](i)
→ ((a ∈ A(i)) × ((b ∈ B(i, a)) → [[Tree∞]](j(i, a, b)))).

We can replace the eliminator (or case distinction) E by two eliminators

E1 : (i ∈ I) → [[Tree∞]](i) → A(i),
E2 : (i ∈ I) → (t ∈ [[Tree∞]](i)) → (b ∈ B(i,E1(i, t)))

→ [[Tree∞]](j(i,E1(i, t), b)).

E1 returns the label of the tree and E2 its subtrees. Since E1,E2 are the two
components of E we will in the following freely switch between E and E1,E2.

We summarise that [[Tree∞]] is an F-coalgebra as follows:

[[Tree∞]] : I → Set,
E1 : (i ∈ I) → [[Tree∞]](i) → A(i),
E2 : (i ∈ I) → (b ∈ B(i,E1(i, t))) → [[Tree∞]](j(i,E1(i, t), b)).

The idea for defining [[Tree∞]] : I → Set and Ei as follows: An element of
[[Tree∞]] is anything which, when applying E1 and E2 to it, returns meaningful
results. When applying E1 we obtain an element of A(i), which we can observe
directly. When applying E2 (with an argument in B(i, a)) we obtain an element
of [[Tree∞]](j) for some j , which we cannot observe directly. However we can
continue applying E2 several times and then E1 to obtain an observable result. The
observations we have are therefore that we apply several times E2 to it and then E1

to it and obtain an element of A(i) for some i .
This means that the observations from an element of [[Tree∞]](i) are if we set

i0 = i , an element a0 ∈ A(i0) which would be the result of applying E1; we can
then continue by choosing an arbitrary b0 ∈ B(i0, a0), have now a new index i1 =
j(i0, a0, b0). For this index we could apply E1 to it and obtain an element a1 ∈ A(i1),
or apply for an arbitrary b1 ∈ B(i0, a0), an element corresponding to index i2 =
j(i0, a0, b0) and so on.

The observations are therefore a set of sequences 〈i0, a0, b0, i1, a1, b1, . . . , in, an〉,
where i0 = i , ak ∈ A(ik), bk ∈ B(ik, ak) and ik+1 = j(ik, ak, bk). Here, bk can be cho-
sen freely, whereas ak is defined uniquely depending on previous occurrences of bk ′ .
An element of [[Tree∞]] is determined by those observations and therefore identified
with those observations. This gives rise to the following definition of [[Tree∞]] as a
set of such sequences:

392 A. Setzer

Definition 5.2 (a) Let for i ∈ I

Seq[[Tree∞]](i) := {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
n ≥ 0, i0 = i,
(∀k ∈ {0, . . . , n − 1}.bk ∈ B(ik, ak) ∧ ik+1 = j(ik , ak, bk)),

∀k ∈ {0, . . . , n}.ak ∈ A(ik)}.

(b) Let [[Tree∞]](i) be the set of t ⊆ Seq[[Tree∞]](i) such that the following holds:

• 〈i0, a0, b0, . . . , in+1, an+1〉 ∈ t → 〈i0, a0, b0, . . . , in, an〉 ∈ t,
• ∃!a.〈i, a〉 ∈ t ,
• 〈i0, a0, b0, . . . , in, an〉 ∈ t ∧ bn ∈ B(in, an) ∧ in+1 = j(in, an, bn)

→ ∃!an+1.〈i0, a0, b0, . . . , in, an, bn, in+1, an+1〉 ∈ t.

(c) Define
E1 : (i ∈ I) → [[Tree∞]](i) → A(i),
E1(i, t) := a if 〈i, a〉 ∈ t.

(d) Define

E2 : ((i ∈ I) → (t ∈ [[Tree∞]](i)) → (b ∈ B(i,E1(i, t)))
→ [[Tree∞]](j(i,E1(i, t), b)),

E2(i, t, b) := {〈i1, a1, b1, . . . , in+1, an+1〉
| 〈i,E1(i, t), b, i1, a1, b1, . . . , in+1, an+1〉 ∈ t}.

(e) Define

E : (i ∈ I) → (t ∈ [[Tree∞]](i))
→ ((a ∈ A(i)) × ((b ∈ B(i, a)) → [[Tree∞]](j(i, a, b)))),

E(i, t) = 〈E1(i, t),λb ∈ B(i,E1(i, t)).E2(i, t, b)〉.

Lemma 5.3 E1,E2,E in the previous definition are well defined.

Proof Straightforward by definition.

Lemma 5.4 Assume

G : I → Set,
â : (i ∈ I) → G(i) → A(i),
ĝ : (i ∈ I) → (g ∈ G(i)) → (b ∈ B(i, â(i, g))) → G(j(i, â(i, g), b)).

Then there exists a unique f : (i ∈ I) → G(i) → [[Tree∞]](i) such that for all i ∈ I,
g ∈ G(i), b ∈ B(i, â(i, g)) we have

E1(i, f (i, g)) = â(i, g),
E2(i, f (i, g), b) = f (j(i,E1(i, f (i, g)), b), ĝ(i, g, b)).

How to Reason Coinductively Informally 393

Proof Define for i ∈ I, g ∈ G(i),

f (i, g) = {〈i0, a0, b0, i1, a1, b1, . . . , in, an〉 |
〈i0, g0, a0, b0, i1, a1, g1, b1, . . . , in, gn, an〉 ∈ Y (i, g)} where

Y (i, g) = {〈i0, g0, a0, b0, i1, a1, g1, b1, . . . , in, gn, an〉 |
g0 = g, i0 = i
(∀ j ∈ {0, . . . , n}.a j = â(i j , g j)),

∀ j ∈ {0, . . . , n − 1}.b j ∈ B(i j , a j) ∧ i j+1 = j(i j , a j , b j)

∧g j+1 = ĝ(i j , g j , b j)}.

One easily sees that f (i, g) ∈ [[Tree∞]](i).
〈i, g, â(i, g)〉 ∈ Y (i, g), therefore 〈i, â(i, g)〉 ∈ f (i, g), therefore
E1(i, f (i, g)) = â(i, g).
Furthermore,

E2(i, f (i, g), b) = {〈i1, a1, b1, . . . , in, an〉 |
〈i,E1(i, f (i, g)), b, i1, a1, b1, . . . , in, an〉 ∈ f (i, g)}

= {〈i1, a1, b1, . . . , in, an〉 |
〈i, g,E1(i, f (i, g)), b, i1, g1, a1, b1, . . . , in, gn, an〉 ∈ Y (i, g)}

= f (j(i,E1(i, f (i, g)), b), ĝ(i, g, b)).

Therefore f fulfils the required equations.
Assume now

f ′ : (i ∈ I) → G(i) → [[Tree∞]](i) s.t.
E1(i, f ′(i, g)) = â(i, g),
E2(i, f ′(i, g), b) = f ′(j(i,E1(i, f ′(i, g)), b), ĝ(i, g, b)).

Then

〈i ′, a′〉 ∈ f ′(i, g) ⇔ i ′ = i ∧ a′ = â(i, g) ⇔ 〈i ′, a′〉 ∈ f (i, g).

Therefore sequences of length 2 in f ′(i, g) and f (i, g) coincide. Furthermore,

E2(i, f ′(i, g), b) = f ′(j(i, â(i, g), b), ĝ(i, g, b)).

Therefore

E2(i, f ′(i, g), b) = {〈i1, a1, b1, . . . , in, an〉 |
〈i, â(i, g), b, i1, a1, b1, . . . , in, an〉 ∈ f ′(i, g)}

= f ′(j(i, â(i, g), b), ĝ(i, g, b))

which is the same equation as fulfilled by f (i, g). This equation reduces sequences
in f ′(i, g) of length >2 to sequences of shorter length in some f ′(i ′, g′) for some

394 A. Setzer

i ′, g′, similarly for f . Together with the statement about sequences of length 2 above
it follows by induction on length(σ)

∀σ.∀i, g.σ ∈ f ′(i, g) ⇔ σ ∈ f (i, g)

therefore ∀i, g. f (i, g) = f ′(i, g), f = f ′.

Main Theorem 5.5 ([[Tree∞]],E) is a final F-coalgebra.

Proof ([[Tree∞]],E) is an F-coalgebra. Assume (G, g) is an F-coalgebra. Let
g(i, x) = 〈̂a(i, x), ĝ(i, x)〉. Lemma 5.4 implies that there exists a unique f : G →
[[Tree∞]] s.t. the following diagram commutes:

G
g � F(G)

[[Tree∞]]

∃! f
� tree� F([[Tree∞]])

F(f)
�

Abovewe used the notationwith keyword data for denoting an inductively defined
set as given by its constructors. A similar notation expressing that [[Tree∞]] is a final
coalgebra with eliminators E1, E2, would be:

coalg [[Tree∞]] : I → Set where
E1 : (i ∈ I) → [[Tree∞]](i) → A(i),
E2 : (i ∈ I) → (b ∈ B(i,E1(i, t))) → [[Tree∞]](j(i,E1(i, t), b)).

6 Coiteration and Corecursion

Wewill in this section introduce the dual of iteration and primitive recursion, namely
coiteration and corecursion. We do not know how to directly formulate the dual of
type theoretic induction (or dependent primitive recursion), since one cannot directly
invert the arrow in a dependent function type. In Sect. 8 we will introduce a principle
of coinduction, which can be considered as the dual of induction, although it is not
its direct dual.

We show as well that the principles of being a final F-coalgebra, of unique coiter-
ation, and of unique corecursion are equivalent. The definitions and the proof in this
section are the exact dual of Sect. 4 (omitting type theoretic induction). Note that the
dual of the product × is the disjoint union +. In the principle of primitive recursion
we can make use of both the inductive argument and the recursion hypothesis, cor-
responding to the product (×). In the principle of corecursion we can either return
a given element from Tree∞ or recursively call the function in question, which is a
call to the corecursion hypothesis, corresponding to the disjoint union (+).

How to Reason Coinductively Informally 395

Definition 6.1 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2 be
the two components of E as defined before.

(a) By “(Tree∞,E) satisfies the principle of unique coiteration” we mean the fol-
lowing: Assume

X : I → Set,
â : (i ∈ I) → X (i) → A(i),
x̂ : (i ∈ I) → (x ∈ X (i)) → (b ∈ B(i, â(i, x)))

→ X (j(i, â(i, x), b)).

Then there exists a unique f : X → Tree∞ such that

E1(i, f (i, x)) = â(i, x),
E2(i, f (i, x), b) = f (j(i,E1(i, f (i, x)), b), x̂(i, x, b)).

(b) By “(Tree∞,E) satisfies the principle of unique corecursion” we mean the fol-
lowing: Assume

â : (i ∈ I) → X (i) → A(i),
x̂ : (i ∈ I) → (x ∈ X (i)) → (b ∈ B(i, â(i, x)))

→ X (j(i, â(i, x), b)) + Tree∞(j(i, â(i, x), b)).

Then there exists a unique f : X → Tree∞ such that

E1(i, f (i, x)) = â(i, x),

E2(i, f (i, x), b) =
{

f (j(i,E1(i, f (i, x)), b), x ′) if x̂(i, x, b) = inl(x ′),
x ′ if x̂(i, x, b) = inr(x ′).

(c) By “(Tree∞,E) satisfies the principle of corecursion or coiteration” we mean
that it fills the corresponding principle as above, but omitting the condition that
f is unique.

Lemma 6.2 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2 be the
two components of E as defined before.

The following are equivalent

(a) (Tree∞,E) is a final F-coalgebra.
(b) (Tree∞,E) satisfies the principle of unique coiteration.
(c) (Tree∞,E) satisfies the principle of unique corecursion.

Proof (a) and (b) are equivalent since â, x̂ are the two components of a morphism
g : X → F(X), so the unique existence of f as in (b) is equivalent to the unique
existence of f in the diagram for defining final coalgebras.

Obviously, (c) implies (b), since coiteration is a special case of corecursion.
(a) implies (c): Define for X , â, x̂ as in the definition of corecursion

396 A. Setzer

X ′ : I → Set,
X ′(i) = X (i) + Tree∞(i),

h : (i ∈ I) → X ′(i) → F(X ′, i),
h(i, inl(x)) = 〈̂a(i, x),λb.̂x(i, x, b)〉,
h(i, inr(t)) = 〈E0(i, t),λb.inr(E1(i, t, b))〉.

Consider the diagram

Tree∞ E� F(Tree∞)

X ′

inr
�

h � F(X ′)

F(inr)
�

g′ ◦ inr, id

�
Tree∞

∃!g′
� E� F(Tree∞)

F(g′)
�

F(g′ ◦ inr),F(id)

�

There exists a unique g′ such that the lower part of the diagram commutes. The
upper part of the diagram commutes trivially. Both g′ ◦ inr and id : Tree∞ → Tree∞
make the outer diagram commute. By uniqueness we get g′ ◦ inr = id. Let g :=
g′ ◦ inl : X → Tree∞. By g′(inr(x)) = x we have that g satisfies the desired equa-
tion. Assume g0 is another solution for the corecursion equation in the lemma. Let
g′
0 : X ′ → Tree∞, g′

0(i, inl(x)) = g0(x), g′
0(i, inr(x)) = x . Then the lower diagram

above with g′ replaced by g′
0 commutes as well. By uniqueness of g′ follows g′

0 = g′
and therefore g0 = g.

7 Indexed Corecursion

When defining elements of coinductively defined sets, we often want to define for
some X ∈ Set and î : X → I a function f : (x ∈ X) → Tree∞(̂i(x)) corecursively.
This can be reduced to corecursion as follows:

Lemma 7.1 Let (Tree∞,E) be a final F-coalgebra, where F is as before.
Assume

X ∈ Set,
î : X → I,
â : (x ∈ X) → A(̂i(x)),
x̂ : (x ∈ X) → (b ∈ B(̂i(x), â(x)))

→ {x ∈ X | î(x) = j(̂i(x), â(x), b)} + Tree∞(j(̂i(x), â(x), b))).

How to Reason Coinductively Informally 397

Then there exists a unique f : (x ∈ X) → Tree∞(̂i(x)), such that

E1(̂i(x), f (x)) = â(x),

E2(̂i(x), f (x), b) =
{

f (y) if x̂(x, b) = inl(y),
t if x̂(x, b) = inr(t).

Proof Let Y : I → Set, Y (i) := {x ∈ X | î(x) = i}. f satisfying the equations as
stated in the lemma is equivalent to the function

f ′ : (i ∈ I) → Y (i) → Tree∞(i),
f ′(i, x) = f (x).

satisfying the equations.

E1(i, f ′(i, x)) = â(x),

E2(i, f ′(i, x), b) =
{

f ′(j(i, â(x), b), y) if x̂(x, b) = inl(y),
t if x̂(x, b) = inr(t).

By existence and uniqueness of f ′ satisfying those equations follows existence and
uniqueness of f .

8 Bisimulation and Coinduction

Definition 8.1 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2 be
the two components of E as defined before.

(a) Let for i ∈ I, t, t ′ ∈ Tree∞(i)

IBisim := (i ∈ I) × Tree∞(i) × Tree∞(i),

ABisim : IBisim → Set,
ABisim(i, t, t ′) := (E0(i, t) = E0(i, t ′)) (more precisely (E0(i, t) =̂ E0(i, t ′))),

BBisim : (i ∈ IBisim) → ABisim(i) → Set,
BBisim(i, t, t ′, a) := B(i, a),

jBisim : (i ∈ IBisim) → (a ∈ ABisim(i)) → (b ∈ BBisim(i, a)) → IBisim,
jBisim(i, t, t ′, ∗, b) = 〈j(i,E0(i, t), b),E1(i, t, b),E1(i, t ′, b)〉,

FBisim : SetIBisim → SetI
Bisim

,

FBisim(X, i) = (a ∈ ABisim(i)) × ((b ∈ BBisim(i, a)) → X (jBisim(i, a, b)).

398 A. Setzer

We note that, if (Bisim,EBisim) is an FBisim-coalgebra, and EBisim
0 ,EBisim

1 are the
two components of EBisim, then

EBisim
0 (i, t, t ′) ∈ (E0(i, t) = E0(i, t ′))

i.e. the existence of EBisim
0 (i, t, t ′) is equivalent to E0(i, t) = E0(i, t ′)

and for a ∈ ABisim(i, t, t ′), b ∈ BBisim(i, t, t ′, a) = B(i, a)

EBisim
1 (i, t, t ′, b) ∈ Bisim(j(i,E0(i, t), b),E1(i, t, b),E1(i, t ′, b)).

Definition 8.2 For X ∈ Set which is considered as a relation we will in formulae
write X instead of (∃x .x ∈ X)

Lemma 8.3 Assume the axiom of choice. Assume X : IBisim → Set.
There exists a g s.t. (X, g) is an FBisim-coalgebra iff

∀i, t, t ′.X (i, t, t ′)
→ E0(i, t) = E0(i, t ′)

∧∀b ∈ B(i,E0(i, t)).X (j(i,E0(i, t), b),E1(i, t, b),E1(i, t ′, b)).

Proof “⇒” is obvious. For “⇐” define g : X → FBisim(X), g(i, t, t ′, x) = 〈∗, h〉
where h(b) = some y ∈ X (j(i,E0(i, t), b),E1(i, t, b),E1(i, t ′, b)).

Induction is a proof principle which is equivalent to the principle that an F-algebra
is an initial F-algebra, or, as we have seen, the principle of unique iteration or unique
primitive recursion. Dually coinduction should be a proof principle which is equiv-
alent to the principle that an F-coalgebra is a final F-coalgebra, or equivalently, that
it satisfies the principle of unique coiteration or the principle of unique corecursion.

We will see below that the principle of being a final F-coalgebra is equivalent
to the fact that bisimulation implies equality. The latter is a proof principle. As it
stands it does not seem to be of the same character as the principle of induction as
a proof principle. However, bisimulation is a coalgebra, and proofs of bisimulation
can therefore be carried out corecursively, and that will give rise to the dual of an
induction hypothesis, namely a coinduction hypothesis. This way we obtain proof
principle which we believe is of similar character as induction. We will elaborate
this in Sect. 9.3 where we will introduce schemata for coinduction.

We therefore call the fact that bisimulation implies equality the principle of coin-
duction:

Definition 8.4 Let (Tree∞,E) be an F-coalgebra.
By “(Tree∞,E) satisfies the principle of coinduction” we mean that it satisfies

the principle of corecursion and for the final FBisim-coalgebra (Bisim,E′) we have

∀i, t, t ′.Bisim(i, t, t ′) → t = t.

Remark 8.5 Note that since proofs by bisimulation can be carried out by corecursion
on Bisim(i, t, t ′) the principle of coinduction becomes a proper proof principle.

How to Reason Coinductively Informally 399

Lemma 8.6 Let (Tree∞,E) be an F-coalgebra. The following is equivalent

(i) (Tree∞,E) is a final F-coalgebra.
(ii) (Tree∞,E) satisfies the principle of corecursion and for any FBisim-coalgebra

(X, h) we have
∀i, t, t ′.X (i, t, t ′) → t = t ′.

(iii) (Tree∞,E) satisfies the principle of coinduction.

Proof By Lemma 6.2, in (i)–(iii) the principle of corecursion is satisfied.
(i) implies (ii): Assume (X, h) is a FBisim-coalgebra.

Let
G : I → Set,
G(i) := {〈t, t ′〉 ∈ Tree∞ × Tree∞ | X (i, t, t ′)}.

Define
g : G → F(G),

g(i, 〈t, t ′〉) = 〈E1(i, t),λb.〈E1(i, t, b),E1(i, t ′, b)〉〉}.

Consider

G
g� F(G)

Tree∞

∃!h
� E� F(Tree∞)

F(h)
�

There exists a unique h whichmakes this diagram commute. Both the first and second
projection (lifted to SetI) make this diagram commute. By uniqueness follows they
are equal and therefore the assertion follows.

(ii) implies (iii) is obvious since by the previous section there exist such a coal-
gebra.

(iii) implies (ii) since for any FBisim-coalgebra (X, h) we obtain a function
f : X → Bisim. Therefore that X (i, t, t ′) is inhabited implies that Bisim(i, t, t ′)
is inhabited.

(ii) implies (i): Let (X, g) be an F-coalgebra and assume h, h′ are two solutions
which make the following diagram commute:

X
g � F(X)

Tree∞

h
�

h′
� E� F(Tree∞)

F(h)
�

F(h′)
�

Let g(i, x) = 〈̂a(i, x),λb.̂x(i, x, b)〉.

400 A. Setzer

Let
H : (i ∈ I) → Tree∞(i) → Tree∞(i) → Set,
H(i, t, t ′) = {x ∈ X (i) | t = h(i, x), t ′ = h′(i, x)}.

It follows for i ∈ I, x ∈ X (i) and therefore x ∈ H(i, h(i, x), h′(i, x)) that

E0(i, h(i, x)) = π0(F(h)(i, g(i, x))) = π0(g(i, x)) = E0(i, h′(i, x))

and for b ∈ B(i,E0(i, h(i, x)))

E1(i, h(i, x), b) = π1(F(h)(i, g(i, x)))(b)

= h(j(i,π0(g(i, x)), b),π1(g(i, x))(b))

= h(j(· · ·), x̂(i, x, b)),

E1(i, h′(i, x), b) = h′(j(· · ·), x̂(i, x, b)),

x̂(i, x, b) ∈ H(j(· · ·),E1(i, h(i, x), b),E1(i, h′(i, x), b)),

〈∗,λb.̂x(i, x, b)〉 ∈ FBisim(H)(i, x, b),

λi, x .〈∗,λb.̂x(i, x, b)〉 ∈ H → FBisim(H).

Therefore (H, h) is an FBisim-coalgebra, H(i, t, t ′) inhabited implies t = t ′, and
therefore ∀x ∈ X (i).h(i, x) = h′(i, x).

Main Theorem 8.7 Assume Tree∞ is a set, E : Tree∞ → F(Tree∞), and let E1,E2

be the two components of E as defined before. The following are equivalent

(a) (Tree∞,E) is a final F-coalgebra.
(b) (Tree∞,E) satisfies the principle of unique coiteration.
(c) (Tree∞,E) satisfies the principle of unique corecursion.
(d) (Tree∞,E) satisfies the principle of coinduction.

Proof By Lemmata 6.2 and 8.6.

9 Schemata for Corecursive Definitions and Coinductive
Proofs

9.1 Schema for Corecursion

By Lemma 6.2 we can introduce elements of the coinductively defined set (final
F-coalgebra) ([[Tree∞]],E) as follows:

How to Reason Coinductively Informally 401

Assume A : I → Set, [[Tree∞]],E1,E2 as before. We can define a function

f : (i ∈ I) → X (i) → [[Tree∞]](i)

corecursively by defining for i ∈ I, x ∈ X (i)

• a value a′ := E1(i, f (i, x)) ∈ A(i)
• and for b ∈ B(i, a) a value E2(i, f (i, x), b) ∈ [[Tree∞]](i ′, b)
where i ′ := j(i, a′, b)
and we can define E2(i, f (i, x), b)

– as an element of [[Tree∞]](i ′) defined before
– or corecursively define E2(i, f (i, x), b) = f (i ′, x ′)
for some x ′ ∈ X (i ′).
Here, f (i ′, x ′) will be called the corecursion hypothesis.

As a simple example we consider Streams. Streams are the final F-coalgebra on
Set with F(X) = N × X . So we have I = 1, A(∗) = N, B(∗, x) = 1. Omitting the
arguments in 1 we obtain F(X) as above. Let (Stream,E) be the final F-coalgebra,
and let head, tail be the two components of E. Then we get

head : Stream → N,

tail : Stream → Stream.

The above schema is instantiated as follows:

Let A ∈ Set. We can define
f : A → Stream

corecursively by defining for a ∈ A

• head(f (a)) ∈ N and
• tail(f (a)) ∈ Stream,
where for defining tail(f (a)) we can

– either return an element of Stream defined before or
– corecursively define tail(f (a)) = f (a′) for some a′ ∈ A.
Here, f (a′) will be called the corecursion hypothesis.

So we can for instance define by corecursion

s ∈ Stream s.t.
head(s) = 0,
tail(s) = s.

402 A. Setzer

(Here, A = 1, and we omit the argument in A.) Or we define

s ′ : N → Stream s.t.
head(s ′(n)) = 0,
tail(s ′(n)) = s ′(n + 1).

or define
cons : N → Stream → Stream s.t.
head(cons(n, s)) = n,
tail(cons(n, s)) = s.

(Here, A = N × Stream, and we curried the function.)

9.2 Schema for Corecursively Defined Indexed Functions

By Lemma 7.1 we have the following schema:

Assume X ∈ Set, ĵ : X → I.
We can define

f : (x ∈ X) → [[Tree∞]](̂i(x))

corecursively by determining for x ∈ X with i := ĵ(x),

• a := E1(i, f (x)) ∈ A(i)
• and for b ∈ B(i, a) with i ′ := j(i, a, b) the value
E2(i, f (x), b) ∈ [[Tree∞]](i ′)
where we can define E2(i, f (x), b) as

– a previously defined value of [[Tree∞]](i ′)
– or corecursively define E2(i, f (x), b) = f (x ′) for some x ′ such that î(x ′) = i ′.

f (x ′) will be called the corecursion hypothesis.

As an example consider the coinductively defined set of stacks of a certain height,
Stack : N → Set with destructors

top : (n ∈ N) → (n > 0) → Stack(n) → N,

pop : (n ∈ N) → (n > 0) → Stack(n) → Stack(n − 1).

We can define empty : Stack(0), where we do not need to define anything since
(0>̂0) = ∅. Furthermore, we can define

push : (n,m ∈ N) → Stack(n) → Stack(n + 1) s.t.
top(n + 1, ∗, push(n,m, s)) = m,

pop(n + 1, ∗, push(n,m, s)) = s.

How to Reason Coinductively Informally 403

More complicated examples of indexed coinductively defined sets are state-dependent
interactive programs, see [15–18], or bisimulation relations as defined below.

9.3 Schema for Coinduction

When proving that elements of a coinductively defined set are bisimilar one usually
defines certain elements which should be shown to be bisimilar simultaneously. This
amounts to having

J : Set,
î : J → I,
x0, x1 : (j ∈ J) → [[Tree∞]](̂i(j))

and showing ∀ j ∈ J.x0(j) = x1(j) by proving ∀ j ∈ J.Bisim(̂i(j), x0(j), x1(j)).
Using the same method as in the previous subsection, and using the fact that

b ∈ Bisim(i, x, x ′) implies equality, we can show this statement by coinduction by
showing the following:

∀ j ∈ J.E0(̂i(j), x0(j)) = E0(̂i(j), x1(j)) ∧
∀b ∈ B(i,E0(̂i(j), x0(j))).E1(̂i(j), x0(j), b) = E1(̂i(j), x1(j), b) ∨

∃ j ′ .̂i(j ′) = j(̂i(j),E0(̂i(j), x0(j), b)) ∧
x0(j ′) = E0(̂i(j), x0(j), b) ∧
x1(j ′) = E0(̂i(j), x1(j), b).

This means that we have the following principle of coinductive proofs:

Assume
J : Set,
î : J → I,
x0, x1 : (j ∈ J) → [[Tree∞]](̂i(j)).

We can show ∀ j ∈ J.x0(j) = x0(j ′) coinductively by showing

• E0(̂i(j), x0(j)) and E0(̂i(j), x1(j)) are equal
• and for all b that
E1(̂i(j), x0(j), b) and E1(̂i(j), x0(j), b) are equal,
where we can use either the fact that

– this was shown before,
– or we can use the coinduction-hypothesis, which means using the fact
E1(̂i(j), x0(j), b) = x0(j ′) and E1(̂i(j), x1(j), b) = x1(j ′) for some j ′ ∈ J .

404 A. Setzer

Examples of proofs by coinduction in the example of streams with s, s ′, cons are
as follows:

• We show ∀n ∈ N.s = s ′(n) by coinduction: For using the schema above we have
J = N, x0(j) = s, x1(j) = s ′(n). The argument is as follows:
We show ∀n ∈ N.s = s ′(n). Assume n ∈ N. head(s) = head(s ′(n)) and tail(s) =
s = s ′(n + 1) = tail(s ′(n)), where s = s ′(n + 1) follows by the coinduction
hypothesis.

• We show cons(0, s) = s by coinduction:
head(cons(0, s)) = 0 = head(s) and tail(cons(0, s)) = s = tail(s), where we did
not use the coinduction hypothesis.

9.4 Schema for Coinductively Defined Relations

The previous example can be generalised to arbitrary coinductively defined sets
relating elements of an indexed set. A typical example would be the bisimulation
relation on a labelled transition system, which we consider below. Assume I ∈ Set,
D : I → Set (not necessarily a coinductively defined set). Let

I+ := (i ∈ I) × D(i) × D(i).

Assume

A : (i ∈ I) → D(i) → D(i) → Set,
B : (i ∈ I) → (d ∈ D(i)) → (d ′ ∈ D(i)) → A(i, d, d ′) → Set,
j : (i ∈ I) → (d ∈ D(i)) → (d ′ ∈ D(i)) → (a ∈ A(i, d, d ′))

→ B(i, d, d ′, a) → I,
d0, d1 : (i ∈ I) → (d ∈ D(i)) → (d ′ ∈ D(i)) → (a ∈ A(i, d, d ′))

→ B(i, d, d ′, a) → D(j (i, d, d ′, a)).

Define

F : SetI+ → SetI
+
,

F(X, i, d, d ′) = (a ∈ A(i, d, d ′))
×((b ∈ B(i, d, d ′, a))

→ X (j (i, d, d ′, a, b), d0(i, d, d ′, a, b), d1(i, d, d ′, a, b))).

Let (B̂,E) be the final F-coalgebra, E1,E2 be the two components of E.
Assume

Ĵ : Set,
ĵ : Ĵ → I,
d̂0, d̂1 : (j ∈ Ĵ) → D(ĵ(j)).

How to Reason Coinductively Informally 405

A schema of corecursion (which may be called, if B̂ is a bisimulation relation and
therefore an equality like relation as a coinduction principle) is as follows:

In the above situation we can define a function

b̂ : (j ∈ J) → B̂(ĵ(j), d̂0(j), d̂1(j))

coinductively by determining for j ∈ J

• an element â(j) ∈ A(ĵ(j), d̂0(j), d̂1(j)),

• and for b ∈ B(ĵ(j), d̂0(j), d̂1(j), â(j))
with i ′ := j (̂j(j), d̂0(j), d̂1(j), â(j), b),

d ′
i := di (̂j(j), d̂0(j), d̂1(j), â(j), b),

an element b̂′ ∈ B̂(i ′, d ′
0, d ′

1),

where for defining b̂′ we can use

– an existing element of B̂(i ′, d ′
0, d ′

1)

– or corecursively define b̂′ = b̂(j ′) for some j ′
such that ĵ(j ′) = i ′, d̂0(j ′) = d ′

0, d̂1(j ′) = d ′
1.

b̂(j ′) will be called the corecursion-hypothesis.

As an example we consider bisimulation for a labelled transition system. A
labelled transition system is given by set of states S, a set of labels L a rela-

tion −→⊆ S × L × S where we write s
l−→ s ′ for 〈s, l, s ′〉 ∈−→. Bisimulation

Bisim(s, s ′) in a transition system can be given by the coalgebraically defined relation
Bisim(s, s ′) for the eliminators

E1 : (s, s ′ ∈ S) → Bisim(s, s ′) → (l ∈ L) → (s0 ∈ {s0 ∈ S | s
l−→ s0})

→ ((s ′
0 ∈ {s ′

0 ∈ S | s ′ l−→ s ′
0}) × Bisim(s0, s ′

0)),

E2 : (s, s ′ ∈ S) → Bisim(s, s ′) → (l ∈ L) → (s ′
0 ∈ {s ′

0 ∈ S | s ′ l−→ s ′
0})

→ ((s0 ∈ {s0 ∈ S | s
l−→ s0}) × Bisim(s0, s ′

0)).

The existence of E1 and E2 is equivalent to

∀s, s ′ ∈ S.Bisim(s, s ′) → ∀l ∈ L.∀s0 ∈ S.(s
l−→ s0)

→ ∃s ′
0 ∈ S.s ′ l−→ s ′

0 ∧ Bisim(s0, s ′
0),

∀s, s ′ ∈ S.Bisim(s, s ′) → ∀l ∈ L.∀s ′
0 ∈ S.(s ′ l−→ s ′

0)

→ ∃s0 ∈ S.s
l−→ s0 ∧ Bisim(s0, s ′

0).

406 A. Setzer

Note that the type of E1 is equivalent to

E′
1 : (s, s ′ ∈ S) → Bisim(s, s ′)

→ (s ′
0 ∈ (l ∈ L) → {s0 ∈ {s0 ∈ S | s

l−→ s0} → S)

×((〈l, s0〉 ∈ ((l ∈ L) × {s0 ∈ S | s
l−→ s0})) → Bisim(s0, s ′

0(l, s0)))

similarly for E2 and both constructors can be unified into one. Therefore this relation
is an instance of a strictly positive indexed coinductively defined set as defined in
this article.

Aproof of bisimulation by corecursion canbe done byusing the following schema:
Let I ∈ Set, s, s ′ : I → S.

We can prove ∀i ∈ I.Bisim(s(i), s ′(i)) coinductively by defining for any i ∈ I

• for any l ∈ L, s0 ∈ S s.t. s(i)
l−→ s0 an

s ′
0 ∈ S s.t.

– s ′(i) l−→ s ′
0

– and s.t. Bisim(s0, s ′
0)

where one can for prove the latter by invoking the Coinduction Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′

0.

• for any l ∈ L, s ′
0 ∈ S s.t. s ′(i) l−→ s ′

0 an
s0 ∈ S s.t.

– s(i)
l−→ s0

– and s.t. Bisim(s0, s ′
0)

where one can prove the latter by invoking the Coinduction Hypothesis
Bisim(s(i ′), s ′(i ′)) for some i ′ such that s(i ′) = s0, s ′(i ′) = s ′

0.

As an example consider S = {∗} ∪ N, L = tick with transitions∗ tick−→ ∗ andn
tick−→

(n + 1). We show ∀n ∈ N.Bisim(∗, n) by coinduction on Bisim. Assume n ∈ N.

Assume ∗ l−→ s. Then l = tick, s = ∗, n
tick−→ (n + 1) and by co-IH

Bisim(∗, n + 1).

Assume n
l−→ s. Then l = tick, s = n + 1, ∗ tick−→ ∗ and by co-IH

Bisim(∗, n + 1).

10 Conclusion

Wehave investigated indexed inductive and coinductively defined sets and shown that
induction is equivalent to the initial algebra definition and coinduction, corecursion
and coinduction are equivalent. We have developed schemata for defining informally
elements of coinductively defined sets corecursively and for proving equality of

How to Reason Coinductively Informally 407

elements by coinduction. We have seen that examples how to actually carry out such
definitions and proofs informally.

We belief that carrying out such arguments about coinductively defined sets by
corecursion and coinduction informally while referring to the coinduction and core-
cursion hypothesis makes it more intuitive to carry out such arguments. We hope that
it will in the future become as natural to carry out such arguments as it has become
natural to define functions into inductively defined sets by primitive recursion and
to prove properties by induction in an intuitive way.

Acknowledgments The authorwants to thank the anonymous referee for valuable commentswhich
greatly have improved this article. The diagrams in this article were typeset using the diagrams
package by Paul Taylor.

References

1. A. Abel, B. Pientka, Wellfounded recursion with copatterns: a unified approach to termination
and productivity, in ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA, 25–27 Sept 2013, ed. by G. Morrisett, T. Uustalu (ACM, 2013),
pp. 185–196

2. A. Abel, B. Pientka, D. Thibodeau, A. Setzer, Copatterns: programming infinite structures
by observations, in Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’13, ed. by R. Giacobazzi, R. Cousot (ACM,
New York, NY, USA, 2013), pp. 27–38

3. P. Aczel, Non-wellfounded Set Theory, vol. 14, CSLI Lecture Notes (Stanford University,
Center for the Study of Language and Information, Stanford, CA, 1988)

4. P. Aczel, Algebras and coalgebras, Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, vol. 2297, Lecture Notes in Computer Science, ed. by R. Backhouse,
R. Crole, J. Gibbons (Springer, 2002), pp. 79–88

5. P. Aczel, N. Mendler, A final coalgebra theorem, in Category Theory and Computer Science,
vol. 389, Lecture Notes in Computer Science, ed. by D.H. Pitt, D.E. Rydeheard, P. Dybjer,
A.M. Pitts, A. Poigné (Springer, Berlin/Heidelberg, 1989), pp. 357–365. doi:10.1007/
BFb0018361

6. T. Altenkirch, P. Morris, Indexed containers, in 24th Annual IEEE Symposium on Logic in
Computer Science, 2009. LICS’09, pp. 277–285 (2009)

7. M. Barr, Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114(2), 299–315
(1993)

8. P.J. de Bruin, Inductive types in constructive languages. Ph.D. thesis, Faculty of
Mathematics and Natural Sciences, University of Groningen, Groningen, The Nether-
lands, Mar 1995. https://www.rug.nl/research/portal/publications/pub%2887db58af-1fd6-
4030-a862-98b5651d6be8%29.html and http://www.peterdebruin.net/

9. P. Dybjer, Inductive sets and families inMartin-Löf’s type theory and their set-theoretic seman-
tics, in Logical Frameworks, ed. by G. Huet, G. Plotkin (Cambridge University Press, 1991),
pp. 280–306

10. P.Dybjer, A. Setzer, Afinite axiomatization of inductive-recursive definitions, inTyped Lambda
Calculi and Applications, vol. 1581, Lecture Notes in Computer Science, ed. by J.-Y. Girard
(Springer, Apr 1999), pp. 129–146

11. P. Dybjer, A. Setzer, Indexed induction-recursion, in Proof Theory in Computer Science, vol.
2183, Lecture Notes in Computer Science, ed. by R. Kahle, P. Schroeder-Heister, R. Stärk
(Springer, 2001), pp. 93–113

http://dx.doi.org/10.1007/BFb0018361
http://dx.doi.org/10.1007/BFb0018361
https://www.rug.nl/research/portal/publications/pub%2887db58af-1fd6-4030-a862-98b5651d6be8%29.html
https://www.rug.nl/research/portal/publications/pub%2887db58af-1fd6-4030-a862-98b5651d6be8%29.html
http://www.peterdebruin.net/

408 A. Setzer

12. P. Dybjer, A. Setzer, Induction-recursion and initial algebras. Ann. Pure Appl. Logic 124, 1–47
(2003)

13. P. Dybjer, A. Setzer, Indexed induction-recursion. J. Logic Algebraic Program. 66, 1–49 (2006)
14. P. Hancock, C. McBride, N. Ghani, L. Malatesta, T. Altenkirch, Small induction recursion, in

Typed Lambda Calculi and Applications, vol. 7941, Lecture Notes in Computer Science, ed.
by M. Hasegawa (Springer, 2013), pp. 156–172

15. P. Hancock, A. Setzer, Interactive programs in dependent type theory, in Computer Science
Logic, vol. 1862, Lecture Notes in Computer Science, ed. by P. Clote, H. Schwichtenberg
(Springer, 2000), pp. 317–331

16. P. Hancock, A. Setzer, Specifying interactions with dependent types, inWorkshop on Subtyping
and Dependent Types in Programming, Portugal, 7 July 2000. Electronic Proceedings. http://
www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html

17. P. Hancock, A. Setzer, Interactive programs and weakly final coalgebras (extended version),
in Dependently Typed Programming, Number 04381 in Dagstuhl Seminar Proceedings, ed. by
T. Altenkirch, M. Hofmann, J. Hughes. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany, 2004. http://drops.dagstuhl.de/opus/volltexte/2005/176/

18. P. Hancock, A. Setzer, Interactive programs and weakly final coalgebras in dependent type
theory, in From Sets and Types to Topology and Analysis, Towards Practicable Foundations for
Constructive Mathematics, ed. by L. Crosilla, P. Schuster (Clarendon Press, Oxford, 2005), pp.
115–134

19. L. Malatesta, T. Altenkirch, N. Ghani, P. Hancock, C. McBride, Small induction recur-
sion, indexed containers and dependent polynomials are equivalent. Submitted for publica-
tion (2012). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.3934&rep=rep1&
type=pdf

20. R. Milner, Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25(3), 267–310 (1983)
21. P.Morris, T. Altenkirch, N. Ghani, Constructing strictly positive families, in Proceedings of the

Thirteenth Australasian Symposium on Theory of Computing, CATS’07, vol. 65, Darlinghurst,
Australia (Australian Computer Society Inc, Australia, 2007), pp. 111–121

22. D. Park, Concurrency and automata on infinite sequences, in Theoretical Computer Science,
vol. 104, Lecture Notes in Computer Science, ed. by P. Deussen (Springer, Berlin, Heidelberg,
1981), pp. 167–183

23. K. Petersson, D. Synek, A set constructor for inductive sets in Martin-Löf’s Type Theory, in
Category Theory and Computer Science, vol. 389, Lecture Notes in Computer Science, ed. by
D.H. Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts, A. Poigné (Springer, London, UK, 1989), pp.
128–140

24. J. Rutten, Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)
25. D. Sangiorgi, Introduction to Bisimulation and Coinduction (Cambridge University Press,

Cambridge, 2011)
26. D. Sangiorgi, J. Rutten, Advanced Topics in Bisimulation and Coinduction, vol. 52 (Cambridge

University Press, Cambridge, 2011)
27. A. Setzer, Coalgebras as types determined by their elimination rules, in Epistemology versus

Ontology, vol. 27, Logic, Epistemology, and the Unity of Science, ed. by P. Dybjer, S. Lind-
ström, E. Palmgren, G. Sundholm (Springer, Netherlands, 2012), pp. 351–369. doi:10.1007/
978-94-007-4435-6_16

28. A. Setzer, A. Abel, B. Pientka, D. Thibodeau. Unnesting of copatterns, in Rewriting and Typed
Lambda Calculi. Proceedings RTA-TLCA 2014, vol. 8560, Lecture Notes in Computer Science,
ed. by G. Dowek (Springer, 2014), pp. 31–45

http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
http://drops.dagstuhl.de/opus/volltexte/2005/176/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.3934&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.3934&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-94-007-4435-6_16
http://dx.doi.org/10.1007/978-94-007-4435-6_16

Pointwise Transfinite Induction and a
Miniaturized Predicativity

Stanley S. Wainer

For Gerhard Jäger at his 60th.

Abstract The basis of this work is Leivant’s [6] theory of ramified induction over
N, which has elementary recursive strength. It has been redeveloped and extended in
various ways by many people; for example, Spoors andWainer [13] built a hierarchy
of ramified theories whose strengths correspond to the levels of the Grzegorczyk
hierarchy. Here, a further extension of this hierarchy is developed, in terms of a
predicatively generated infinitary calculus with stratifications of numerical inputs
up to and including levelω. The autonomous ordinals are those below�0, but they are
generated according to a weak (though quite natural) notion of transfinite induction
whose computational strength is “slow” rather than “fast” growing. It turns out that the
provably computable functions are now those elementary recursive in theAckermann
function (i.e. Grzegorczyk’s ωth level). All this is closely analogous to recent works
of Jäger and Probst [5] and Ranzi and Strahm [9] on iterated stratified inductive
definitions, but their theories have full, complete induction as basis, whereas ours
have only a weak, ramified form of numerical induction at bottom.

1 Introduction

The theory EA(I;O) of Ostrin and Wainer [8] is a stripped-down version of the
ramified intrinsic theories of Leivant [6], designed to incorporate the “normal/safe”
variable discipline of Bellantoni and Cook [1], which has its origins in an earlier
analysis of primitive recursion given by Simmons [12]. A two-sorted analogue of

S.S. Wainer (B)
University of Leeds, Leeds, UK
e-mail: S.S.Wainer@leeds.ac.uk

© Springer International Publishing Switzerland 2016
R. Kahle et al. (eds.), Advances in Proof Theory, Progress in Computer Science
and Applied Logic 28, DOI 10.1007/978-3-319-29198-7_13

409

410 S.S. Wainer

Peano arithmetic is developed, with a weaker, “pointwise” or “predicative” induction
scheme:

A(0) ∧ ∀a(A(a) → A(a + 1)) → A(x)

where a is a safe variable and x is normal. We prefer to call them “output” variables
and “input” variables respectively; hence the I;O notation. Input variables are not
(at this stage) quantified, so they act as uninterpreted constants. The usual proof
theoretic methods apply just as for PA (e.g. embedding and cut elimination in an
infinitary arithmetic with ω-rule). But now, because the inductions are only “up to
x”, which cannot be substituted for, the natural bounding functions are supplied
by the “slow growing” hierarchy rather than the “fast growing” one. Since the slow
growing functions below ε0 are the exponential polynomials, and those belowωω are
just polynomials, it follows (as Leivant had already previously shown, by different
methods) that the provably computable functions of EA(I;O) are the elementary
functions (Grzegorczyk’s E3) and those provably computable in its �1-inductive
fragment are the sub-elementary E2 functions, i.e. those Turing–machine computable
in linear space. (By shifting to a binary, rather than our unary, representation of
numbers, one sees that the �1-inductive fragment then characterizes polytime.)

Though quite simple in its formulation, EA(I;O) is not very “user friendly”, as it
does not permit quantification over inputs x, y, z, and therefore one cannot even show
straightforwardly that the provably computable functions—as functions on inputs—
are closed under composition. Of course it is true, and Wirz [15] supplies a variety
of delicate proof theoretic analyses enabling the derivation of such results, but they
also serve to highlight the awkwardness of the logic of EA(I;O). One way to rectify
this, as in Spoors and Wainer [13], is to extend the theory conservatively to a new
theory EA(I;O)+ allowing quantification over inputs and incorporating also a certain
“�1 Reflection Rule” previously employed by Cantini [3]: from ∃a A(�x, a) derive
∃y A(�x, y) provided all the free parameters �x are inputs. The induction however,
continues to apply only to formulas of the base theory EA(I;O). One then sees that
EA(I;O)+ forms just the first level of a ramified hierarchy of input/output theories,
whose provably computable functions coincide, level-by-level, with theGrzegorczyk
hierarchy. We first briefly review the main content of Spoors and Wainer [13].

1.1 Input-Output Arithmetic EA(I;O)+

EA(I;O) has the language of arithmetic, with quantified “output” (or “safe”) variables
a, b, c, . . . and unquantified “input” (or “normal”) variables x, y, z, For conve-
nience other terms and defining axioms are added, for a pairing function π(a, b)

(:= 1/2(a + b)(a + b + 1) + a + 1) with inverses π0, π1, from which sequence
numbers can be constructed using π(s, a) to append a to s, and deconstructed by
functions (s)i extracting the i th component. All of these initial functions are subele-
mentary, in fact quadratically bounded. The induction axioms are:

Pointwise Transfinite Induction and a Miniaturized Predicativity 411

A(0) ∧ ∀a(A(a) → A(a + 1)) → A(t)

where t = t (�x) is a term on inputs only, controlling induction-length. Note that if
A(a) is progressive then so is ∀b ≤ a.A(b) ≡ ∀b(b ≤ a → A(b)), and so a more
revealing instance of induction is

A(0) ∧ ∀a(A(a) → A(a + 1)) → ∀b ≤ t.A(b) .

In other words, EA(I;O) is essentially a theory of bounded induction, the (implicit)
boundsbeing terms t (�x)dependent on inputs �x which cannot beuniversally quantified
and then later re-instantiated, as they can be in PA. Call this “input” or “predicative”
induction. Note however that there is no restriction on the quantifier complexity of
the formula A.

Definition 1.1 A numerical function f : N k → N is “provably computable” or
“provably recursive” in EA(I;O) if there is a �1 formula C f (�x, a) (i.e. a bounded
formula prefixed by unbounded existential quantifiers) such that f (�n) = m if and
only if C f (�n, m) is true, and EA(I;O) 	 ∃!aC f (�x, a), i.e. f is provably total on
inputs. We shall occasionally use the shorthand f (�x) ↓ for the formula ∃aC f (�x, a).

Theorem 1.2 (Leivant, Ostrin-Wainer) The provably computable functions of
EA(I;O) are exactly the Csillag-Kalmar elementary functions.

Note 1.3 By carefully restricting the witnessing terms in the existential introduction
rule and in induction, to the so-called “basic” ones (i.e. those built out of unary term
constructors only: successor, predecessor, πi) one may also characterize the sub-
elementary functions as those provably computable in the �1 inductive fragment.
Then increasing induction complexity in EA(I;O) characterizes the successive levels
of the Ritchie-Schwichtenberg hierarchy between sub-elementary and elementary.

One sees immediately the deficiencies in the logic of EA(I;O) if one tries to
show, simply and directly, that the provably computable functions are closed under
composition. For suppose one has proved that f (x) ↓ and g(x) ↓, i.e. ∃aCg(x, a).
Then one needs first to reflect the value a of g(x) as an input—the guiding principle
here, is that values a computable from inputs only may themselves be used as inputs.
Thus one obtains ∃yCg(x, y) and by generalizing over inputs, ∀y(f (y) ↓). Then by
logic,

∃yCg(x, y), ∀y(f (y) ↓) 	 ∃a, b(Cg(x, b) ∧ C f (b, a))

so by two cuts one immediately derives ∃a, b(Cg(x, b) ∧ C f (b, a)) which is the
desired ∃aC f ◦g(x, a).

We therefore now extend EA(I;O) to the new theory EA(I;O)+ by adding Input-
quantifier rules (in Tait style):

�, A(t)

�, ∃x A(x)

�, A(y)

�, ∀x A(x)

412 S.S. Wainer

(provided t contains only input variables and y is not free in �) and also the �1

Reflection rule:
�(�x), ∃�a A(�x, �a)

�(�x), ∃�y A(�x, �y)

where �(�x), ∃�a A(�x, �a) is a set of�1 formulas all of whose free variables are inputs.
The induction in EA(I;O)+ is the same as that of EA(I;O), it only applies to

formulas without input quantifiers. This extension of EA(I;O) is conservative, in
that no new provably recursive functions are produced. Upper bounds on provable
recursiveness in EA(I;O)+, and its various extensions below, will be obtained by the
usual proof theoretic process—embedding into a suitable infinitary system which
admits cut elimination.

1.2 EA(I2; I1,O)+, EA(Ik; …I2, I1,O)+ Etc

We now introduce a new level of input variables, and a new tier of inductions over
EA(I; O)+ formulas. Henceforth denote I by I1, and call x, y, z the I1 variables. Then
the I2 variables are new variables, denoted u, v, w. Add to EA(I1; O)+ these new I2
variables and the new induction principle:

A(0) ∧ ∀x(A(x) → A(x + 1)) → A(t)

where A is an EA(I1; O)+-formula, possibly with free I2 parameters, and t = t (�u) is
a term containing only I2 variables. This theory is denoted EA(I2; I1, O). Its extension
EA(I2; I1, O)+ is obtained by further adding I2-quantifier rules and a �1 reflection
rule at level 2:

�(�u), ∃�x A(�u, �x)

�(�u), ∃�vA(�u, �v)

where �(�u), ∃�x A(�u, �x) is a set of �1 formulas all of whose free variables are I2
inputs.

Definition 1.4 A function f is provably computable in EA(I2; I1, O)+ if, on level-2
inputs �u, it has a�1 defining formulaC f forwhich f (�u)↓ ≡ ∃aC f (�u, a) is provable.

Note 1.5 Every function provably computable inEA(I1;O)+ is provably computable
in EA(I2; I1, O), for by trivial applications of the level-2 induction principle above,
one proves ∃x(u = x) (that is I2 is contained in I1). Hence if ∃aC f (�x, a) is provable
in EA(I1;O)+ then so is ∃aC f (�u, a) in EA(I2; I1, O).

Lemma 1.6 The functions of Grzegorczyk’s E4 are all provably computable in
EA(I2; I1, O)+.

This is because 2a↓ → 2a+1↓ is provable in EA(I1; O), and therefore so is 2x↓ by I1
induction. Then by �1 reflection, ∃y(2x = y) is EA(I1; O)+-provable and then so is

Pointwise Transfinite Induction and a Miniaturized Predicativity 413

∀x∃y(2x = y). Now define the superexponential function 2a by 20 = 1 and 2a+1 =
22a . Then (2a = x) → ∃y(2a+1 = y) and hence ∃y(2a = y) → ∃y(2a+1 = y) are
provable in EA(I1; O)+. So by I2 induction in EA(I2; I1, O) one obtains ∃y(2u = y),
and then ∀u∃v(2u = v) becomes provable in EA(I2; I1, O)+. This enables finite
iterations of the superexponential, and these provide computational resource-bounds
for all E4 functions.

Adding a new tier of inductions to EA(I2; I1, O)+ produces EA(I3; I2, I1, O)
and then new I3 quantifier and reflection rules generate EA(I3; I2, I1, O)+. The
provably recursive functions are now those of E5, allowing one further level of
primitive recursion. Repeating this process produces a hierarchy of finitistic theories
exhausting primitive recursive arithmetic. The aim here is to investigate the effect of
introducing a new input level Iω “on the top”. In order to explore its full potential,
a predicatively generated infinitary logic EA(Iω; …I2, I1, O)∞, with an autonomy
condition based on correspondingly (very) weak principles of transfinite induction,
seems to be needed.

2 Weak, Pointwise Transfinite Induction

For us, ordinals α, β, γ,...,will be countable “tree ordinals”, meaning that each limit
λ comes equipped with a uniquely determined fundamental sequence {λi }i∈N . We
shall only be concerned, here, with relatively small initial segments of the recur-
sive ordinals (in particular �0) so coding them up as ordinal notations will not be a
problem, and we regard that as having been done. Thus we’ll continue to use lower-
case greek letters as variables for ordinals, although they will actually denote their
numerical codes. The various functions and relations—e.g. determining whether a
number is an ordinal notation, a limit, or a successor, and (if it’s a limit) computing
the i th member of its fundamental sequence, etcetera—will all be at least primi-
tive recursive, and almost always elementary. See e.g. Feferman [4] for a detailed
treatment.

A basic version of transfinite induction up to α is

A(0) ∧ ∀β(A(β) → A(β + 1)) ∧ ∀λ(∀i A(λi) → A(λ)) → A(α) .

Weak, pointwise-at-x transfinite induction up to α is the following principle:

A(0) ∧ ∀β(A(β) → A(β + 1)) ∧ ∀λ(A(λx) → A(λ)) → A(α)

where x is a numerical input variable. We denote this principle PT I (x, α, A) or just
PT I (x, α) when the formula A is understood.

Using this, we can immediately prove, with only a small amount of basic coding
apparatus, that the pointwise-at-x descending sequence from α exists. That is

∃s D(s, x, α)

414 S.S. Wainer

where D(s, x, α) is the bounded formula saying that s is the sequence number of
ordinal notations such that (s)0 = 0 and (s)lh(s)−1 = α and for each i < lh(s) − 1
either (s)i+1 is a limit λ, in which case (s)i = λx , or (s)i+1 is a successor β + 1, in
which case (s)i = β.

Thus ∃s D(s, x, α) expresses the pointwise-at-x well-foundedness of α, and we
often abbreviate it as PW F(x, α). The contrast between this �0

1 notion and full
�1

1 well-foundedness is stark, but even here there are interesting analogies to be
drawn with classical proof theory. Whereas the natural subrecursive hierarchies of
proof-theoretic bounding functions are “fast” growing in the classical case, they
are “slow” growing in the pointwise case. For detailed comparisons between the
two, see Schwichtenberg and Wainer [11], Weiermann [14]. Schmerl [10] was the
first to formulate such weak, pointwise induction schemes in the context of Peano
Arithmetic.

Definition 2.1 The functions Lx and Gx are defined as follows:
Lx (α) = a iff ∃s(D(s, x, α) ∧ a = lh(s) − 1),
Gx (α) = a iff ∃s(D(s, x, α) ∧ a = #(s))
where #(s) is the number of successor ordinals in the descending sequence s.

Lemma 2.2 Lx and Gx satisfy the following recursive definitions:
Lx (0) = 0, Lx (β + 1) = Lx (β) + 1, Lx (λ) = Lx (λx) + 1.
Gx (0) = 0, Gx (β + 1) = Gx (β) + 1, Gx (λ) = Gx (λx).

These functions, being given “pointwise-at-x”, are alternative versions of the slow
growing hierarchy, and they are both provably defined as immediate consequences
of pointwise well-foundedness. They each have their uses, though Lx will be the one
used mostly here. For natural systems of ordinal notations Lx and Gx both preserve
addition, and in fact they collapse the arithmetic of tree ordinals homomorphically
onto ordinary arithmetic, aswill be seen inSect. 4.Oneusually hasGx (α) ≤ Lx (α) ≤
Gx+1(α).

Of course, even to call PT I (x, α) a transfinite induction principle requires a
stretch of the imagination, because it is really just a collection of finitary inductions
indexed by x and uniformized by α. The following lemma brings this out more
clearly.

Lemma 2.3 In any arithmetical theory containing the basic coding apparatus,
PT I (x, α) is provably equivalent to Numerical Induction up to Lx (α).

Precisely, given any formula F(a), let A(α) ≡ ∀a ≤ Lx (α).F(a) where ∀a ≤
Lx (α).F(a) stands for ∃b(Lx (α) = b ∧ ∀a ≤ b.F(a)). Then one may prove

PT I (x, α, A) → (F(0) ∧ ∀b(F(b) → F(b + 1)) → ∀a ≤ Lx (α).F(a)) .

Conversely, given any formula A(β) let F(b) ≡ ∀β �x α(Lx (β) = b → A(β))

where β �x α means ∃s(D(s, x, α) ∧ ∃i < lh(s)((s)i = β)). Then

(F(0) ∧ ∀b(F(b) → F(b + 1)) → ∀a ≤ Lx (α).F(a)) → PT I (x, α, A) .

Pointwise Transfinite Induction and a Miniaturized Predicativity 415

Proof For the first part, it is only necessary to show that the progressiveness
of F implies A(0) and ∀β(A(β) → A(β + 1)) and A(λx) → A(λ) for limits λ.
But F(0) implies ∀a ≤ Lx (0).F(a) ≡ A(0). And if ∀b(F(b) → F(b + 1)) then
∀β(∀a ≤ Lx (β).F(a) → ∀a ≤ Lx (β + 1).F(a)) and so ∀β(A(β) → A(β + 1)).
The limit case A(λx) → A(λ) follows similarly. Therefore PT I (x, α, A) gives
A(α) ≡ ∀a ≤ Lx (α).F(a).

For the converse, assume A is progressive, i.e. A(0) and ∀β(A(β) → A(β +
1)) and A(λx) → A(λ) for limits λ. Then one easily proves F(0) and for any b,
F(b) → F(b + 1). For assume F(b). Then if β �x α and Lx (β) = b + 1, β is either
a successor or a limit and its immediate predecessor in the �x -sequence, call it δ,
satisfies Lx (δ) = b. Therefore A(δ) holds and, by the progressiveness of A one
immediately gets A(β). Hence F(b + 1), and so by numerical induction up to Lx (α)

we then have F(Lx (α)) and therefore A(α). This proves PT I (x, α, A).

Note 2.4 Since PW F(x, α) implies both Lx (α) and Gx (α) are defined, and clearly
Gx (α) ≤ Lx (α), it immediately follows that PT I (x, α) implies numerical induction
up to Gx (α). The converse in this case, however, seems to require also a numerical
induction up to Lx (α). In this respect Gx is a little weaker than Lx .

3 The Infinitary System EA(Iω, …I2, I1, O)∞

The infinitary system derives Tait-style sequents with numerical input declarations:

nω:Iω, . . . n j :I j , . . . n1:I1, n0:I0 	α � abbreviated �n: �I 	α � .

� is a finite set of closed formulas in the language of arithmetic augmented by
elementary term constructors for coding sequences and ordinal notations, and the
addition of two new “input predicates”: a unary one Iω(..) and a binary one written
I j (n), together with their complements Īω(..) and Ī j (n). The “level” of � is the
greatest j such that I j (..) or Ī j (..) occurs. It is said to be of “finite level” if Iω does
not occur. Level O = I0 is to be thought of as the domain of all possible “output”
values. An important convention will be that a declaration n j :I j where n j = 0 will
often be suppressed (i.e. assumed and not explicitly stated). Of the declared inputs,
only finitely-many will be non-zero. An obvious principle is that n:I j 	α A means
	α I j (n) → A but the declarations n j :I j will be kept separate from formulas. The
ordinal bounds α on derivations will be notations below �0 but it is not necessary to
be too specific about that at this stage. The I j predicates now distinguish the different
levels of input.

The guiding principles are: (Refinement) these become more and more “rarified”
or “refined” versions of N as the level j increases; (Stratification) inductions on
formulas of finite level are controlled/bounded by inputs declared at a higher level;
and (Computation) values computed only from inputs of level≥ j maybe regarded as

416 S.S. Wainer

residing at level j . (The Top Level) Iω is to be thought of as the diagonal intersection:
Iω(n) ⇒ I j (n) for all j ≤ n. Note that in such infinitary systems, �1 reflection
becomes a derived rule (see the comment in Sect. 3.5 below, or Lemma 7 of Spoors
and Wainer [13]).

3.1 Logic Rules

Ordinal assignment. To ensure appropriate levels of stratification, the ordinal
bounds β on the premises of the logic rules below, bear the following relation-
ship to the ordinal bounds α assigned to the conclusions: (i) β ≺k α where k:Ii is
a declared input at a level higher than the levels of all formulas in the premises
and conclusion; (ii) otherwise, if Iω(..) occurs in a formula, then α is a successor
of β. (Recall that β ≺k α means that β occurs in the k-descending chain from α:
0 ≺ 1 ≺ · · · ≺ γ ≺ γ + 1 ≺ · · · ≺ αk,k ≺ αk ≺ α and so Lk(β) < Lk(α)).

The Axioms are �n: �I 	α � where the set � contains a true atom (e.g. an equation
or inequation between closed terms, or s �= s ′, t �= t ′, Īs(t), Is ′(t ′)).

The Cut rule, with cut formula C , is

�n: �I 	β0 �,¬C �n: �I 	β1 �, C

�n: �I 	α �

The ∃-rules are:
�n: �I 	β0

k,C I j (m) �n: �I 	β1 A(m), �

�n: �I 	α ∃x(I j (x) ∧ A(x)), �

where, in addition, β0 + 1 �k β1. Here the left-hand premise “computes” witness m
according to the computation rules given below.

The ∀-rules are versions of the ω-rule:

nω:Iω, . . .max(n j , m):I j , . . . n0:I0 	β A(m), � for every m in N

nω:Iω, . . . n j :I j , . . . n0:I0 	α ∀x(I j (x) → A(x)), �

but note that here, the ordinal bound β on the premises does not vary with m. This
helps to keep the theory “weak”.

The ∨,∧ rules are unsurprising and we don’t list them.
The final logic rule allows interaction with computation in the form:

nω:Iω, . . . n j :I j 	β0
k,C I j (m) nω:Iω, . . . m:I j , . . . n0:I0 	β1 �

nω:Iω, . . . n j :I j , . . . n0:I0 	α �

Pointwise Transfinite Induction and a Miniaturized Predicativity 417

3.2 Computation Rules

Here, the relation	α
k,C denotes computation relative to≺k . In each rule, the premise(s)

have ordinal bounds β ≺k α. The notation simply makes explicit the fact that k is
the maximum of all declared inputs at levels higher than the value being computed.

The Computational Axioms are �n: �I 	α
k,C I j ′() provided (i) n:I j occurs in the

declaration and ≤ n + 1 and j ′ ≤ j ; or (ii) n:Iω occurs in the declaration and
 ≤ n + 1 and j ′ ≤ n. Thus 	α I j (n) → I j ′(), so I j is progressive and is contained
in I j ′ when j ′ < j .

The Lifting Rule, from I j ′ to I j when j ′ < j , is:

nω:Iω, . . . n j :I j 	β

k ′,C I j ′(m)

nω:Iω, . . . n j :I j 	α
k,C I j (m)

where k ′ = max(k, n j), recalling that, in the declaration, the blank after n j :I j means
zeros.

When j = ω the Lifting Rule is, with k = n,

n:Iω 	β

k,C I j (m) with j ≤ n

n:Iω 	α
C Iω(m)

The Computation Rules (call-by-value) are:

nω:Iω, . . . n j :I j 	β0
k,C I j (m) nω:Iω, . . . m:I j 	β1

k,C I j ()

nω:Iω, . . . n j :I j 	α
k,C I j ()

3.3 Alternative Ordinal Assignment

Alternatively, in each rule above one could simply take α = max(β0, β1) + 1 or =
β + 1. But then, in order to make use of the ∀-rule, which requires a uniform bound
on all premises, one needs to add an Accumulation Rule, as in Buchholz [2]: from
�n: �I 	β � derive �n: �I 	α � provided β ≺k α where k : Ii is declared and i> the level
of any input predicate I j occurring in �. (It is also a suitably modified version of
Mints’ Repetition Rule [7].) One easily sees that “predicative” or “ramified” induc-
tion follows straight away, whichever method of ordinal assignment is used, since
by m cuts on A, m : Ii 	m A(0) ∧ ∀a(A(a) → A(a + 1)) → A(m) and so, if i >

the level of A, the accumulation/repetition rule gives m : Ii 	ω A(0) ∧ ∀a(A(a) →
A(a + 1)) → A(m) because m ≺m ω for every m. Then an application of (∀) gives
	ω+1 A(0) ∧ ∀a(A(a) → A(a + 1)) → ∀x(Ii (x) → A(x)).

418 S.S. Wainer

3.4 Basic Lemmas

Lemma 3.1 If �n: �I 	α
k,C I j (m) by the computation rules alone, then

m ≤ f 2
Lk (α)

j (max(�n)) ≤ f j+1(max(�n))

where f = f (L(α)) is a functional version of Ackermann: f0(n) = n + 1, f j+1(n) =
f 2

Ln (α)

j (n) and fω(n) = fn+1(n) .

Proof If �n: �I 	α
k,C I j (m) comes about by a computational axiom then m ≤ max �n +

1 ≤ f0(max �n) and the result follows from the majorisation properties of f (this
applies also when j = ω). If it arises by Lifting from �n: �I 	β

k ′,C I j ′(m)where j ′ < j ,
then inductively on j − 1 one may assume that m ≤ f j (max(�n)) and therefore m ≤
f 2

Lk (α)

j (max(�n)) since f j is a positive, strictly increasing function. When j = ω the

lifting will be from a premise n:Iω 	β

k,C In(m) and so m ≤ fn+1(max(Lk(β), n)) ≤
fω(max(Lk(α), n). If the given derivation comes about by the Computation Rule
from premises nω:Iω, . . . n:I j 	β0

k,C I j (m ′) and nω:Iω, . . . m ′:I j 	β1
k,C I j (m) then

m ≤ f 2
Lk (β1)

j (max(�n, m ′))by the induction hypothesis, and alsom ′≤ f 2
Lk (β0)

j (max(�n)).

Composing, m ≤ f 2
Lk (β0)+2Lk (β1)

j (max(�n)) and the result follows because 2Lk (α) ≥
2Lk (β0) + 2Lk (β1). This applies similarly when j = ω.

Lemma 3.2 (Cut elimination) (i) Suppose �n: �I 	γ �,¬C and �n: �I 	α �, C, both
with cut-rank (maximum size of cut formulas) ≤ r . Suppose also that C is either an
atom, or a disjunction D0 ∨ D1 or of existential form ∃x(I j (x) ∧ D(x)) with D of
size r (the “size” of input predicates is defined to be zero). Then �n: �I 	γ+α � again
with cut-rank r . This applies also when j = ω.

(ii) Hence if �n: �I 	α � with cut-rank r + 1 then �n: �I 	ωα

� with cut-rank ≤ r
and (repeating this) �n: �I 	α∗

� with cut-rank 0, where α∗ = expr+1
ω (α).

Proof (i) The proof is fairly standard, by induction on α. We only do the case
C ≡ ∃x(I j (x) ∧ D(x)). First, suppose �n: �I 	α �, C comes about by the ∃ rule on
C , with premises �n: �I 	β0

k,C I j (m) and �n: �I 	β1 �, D(m), C . Then by the induc-
tion hypothesis (and a weakening of � to �, D(m)) one obtains a rank-r deriva-
tion of �n: �I 	γ+β1 �, D(m). But ∀-inversion applied to the other assumption gives
nω:Iω, . . .max(n j , m):I j , . . . 	γ �,¬D(m). Combining this with the first (com-
putational) premise of the ∃-rule (with ordinal bound raised to γ + β0) gives
�n: �I 	γ+β1 �,¬D(m) since β0 ≺k β1 and hence γ + β0 ≺k γ + β1. Now a Cut of
rank r on the formula D(m) gives �n: �I 	γ+α �. A similar argument works when I j

is Iω.
Second, suppose �n: �I 	α �, C arises from any other rule. Then C plays no active

role in that rule, and occurs only as a side formula. Applying the induction hypoth-
esis to each premise then removes the C and adds γ to the ordinal bound. Then
re-application of that final rule gives the desired result since, as noted above, if
β ≺k α then γ + β ≺k γ + α.

Pointwise Transfinite Induction and a Miniaturized Predicativity 419

(ii) Proceed by induction on α. First suppose �n: �I 	α � arises by a cut of rank
r + 1 with cut formula C . If β0 and β1 are the ordinal bounds on the two premises,
then applying the induction hypothesis to each premise reduces their cut-ranks to r
and increases their ordinal bounds respectively to ωβ0 and ωβ1 . Say, without loss of
generality, that β0 �k β1. Then the sub-derivation with bound ωβ0 can be brought
up to a bound of ωβ1 . By part (i) above, a rank-r derivation of � is therefore obtained
with tree-ordinal bound ωβ1 + ωβ1 , and since β1 ≺k α the ordinal assignment allows
this to be raised to ωα as required.

Second, if any other rule is the one last used in deriving �, suppose the premises
have ordinal bounds β0 and β1 (the single-premise cases are similar). Then applying
the induction hypothesis to the premises, one again reduces their cut-ranks to r , and
increases their ordinal bounds to ωβ0 and ωβ1 . But since β0, β1 ≺k α it follows that
ωβ0 , ωβ1 ≺k ωα and so this final rule may be re-applied to get a rank-r derivation of
� with ordinal bound ωα .

3.5 Note on �1 Reflection

The (∃) and “lifting” rules combine to derive the following version of �1-reflection:
Suppose one has a cut-free derivation of k : Ii+1 	α � where � is a set of �1

formulas of level < i . Then k : Ii+1 	2·α �′ where �′ results from � by lifting (some
or all) existential quantifiers to level i .

The proof is by induction on α. Briefly, suppose the premises of the last ∃-
rule are k : Ii+1 	β0 I j (m) and k : Ii+1 	β1 �, B(m) where � contains the formula
∃x(I j (x) ∧ B(x)). Then by the induction hypothesis, k : Ii+1 	2·β1 �′, B ′(m), and
by lifting, k : Ii+1 	2·β0+1 Ii (m). Since β0 + 1 �k β1 ≺k α we have 2 · β0 + 2 �k

2 · β1 ≺k 2 · α. Therefore by reapplying the ∃-rule and accumulation, k : Ii+1 	2·α
�′, ∃x(Ii (x) ∧ B ′(x)) as required.

4 Autonomous EA(Iω, …I2, I1, O)∞

The autonomous part of EA(Iω, …I2, I1, O)∞ is that part which is allowed only to
use ordinal bounds generated “predicatively” according to the following rules: ω is
allowed, and α is allowed provided there is a derivation k:Ii ; 	γ PW F(k, α) for
some i and some γ (independent of k) whose set-theoretic ordinal rank ‖γ ‖ is less
than ‖α‖.

It is not difficult to check that ω is enough to “get started”, for the coding appa-
ratus assumed to be built into the system will enable first, ω + m to be generated
for any finitem, and then k:I1;max(β, s):O 	ω ¬D(s, k, β), D(s ′, k, β + ω)where
k:I1;max(β, s):O 	ω+1

C O(s ′). Hence by the ∃-rule,

420 S.S. Wainer

k:I1;max(β, s):O 	ω+2 ¬D(s, k, β), ∃s D(s, k, β + ω)

and by the ∀-rule,

k:I1;β:O 	ω+3 ∀s¬D(s, k, β), ∃s D(s, k, β + ω)

which is
k:I1;β:O 	ω+5 PW F(k, β) → PW F(k, β + ω).

A final ∀-rule then gives k:I1; 	ω+6 ∀β(PW F(k, β) → PW F(k, β + ω)). Thus
from ω one may autonomously generate multiples of ω, and then exponents of them:
2ω·2, 2ω·3,

It becomes clear from this example, that different levels of pointwise well-
foundedness are going to arise, as more and more iterated inductions are needed
to derive it. So we define:

PW F I j (k, α) ≡ ∃s(I j (s) ∧ D(s, k, α)) .

4.1 Ordinal Notations Below �0

Following Feferman [4], with slight modifications, a fundamental sequence {λx } is
assigned to each λ = ϕα(β) in the Veblen hierarchy of normal functions (where ϕα

enumerates the common fixed points of all ϕγ with γ < α). Write αx to denote either
the x th member of the fundamental sequence to α if it is a limit, or α − 1 if α is a
successor.

Definition 4.1 • If λ = ϕ0(β) = ωβ with β > 0 then λx = ωβx · (x + 1).
• If λ = ϕα(β) with α > 0 and β = 0 then λx = ϕx

αx
(1).

• If λ = ϕα(β) with α > 0 and β a successor then λx = ϕx
αx

(ϕα(β − 1) + 1).
• If λ = ϕα(β) with α > 0 and β a limit then λx = ϕα(βx)

where ϕx
αx

is the x-times iterate of ϕαx .

By repeated application of ϕ and addition, one builds up finite terms repre-
senting all the ordinals below �0. In particular �0 = sup γx where γ0 = ω and
γx+1 = ϕγx (γx). These terms can be coded, and the fundamental sequences com-
puted, by elementary, or at worst low-level primitive recursive, functions. So they
can be proved to exist in EA(I, O) or EA(I2, I1, O).

Theorem 4.2 Assume PW F Iω (k, α) is autonomously derivable from max(k, α):Iω
with ordinal bound independent of k. Then so is :

∀β(PW F Ia (k, β) → PW F Ia (k, ϕα(β)))

where a = Lk(α) + 1.

Pointwise Transfinite Induction and a Miniaturized Predicativity 421

Proof In the background will be the declaration max(k, α):Iω which will remain
suppressed for reasons of legibility. The main component of the required derivation
is computational. Let s(β) denote the sequence number s making D(s, k, β) true.
We show

s(β) : Ia 	γa

k,C Ia(s(ϕα(β)))

by induction on a, for a suitable γa .

When a = 1 we have α = 0 and ϕα(β) = ωβ . In this case there will be an expo-
nential function which computes s(ωβ) from s(β) so that s(β) : Ia 	γ1

k,C Ia(s(ωβ))

with γ1 �k ω2.
For the induction step, assume a = Lk(α) + 1 ≥ 2 and for every β,

s(β) : Ia−1 	γa−1
k,C Ia−1(s(ϕαk (β))) .

The “call-by-value” computation rule enables us to apply this repeatedly k times,
starting with β = 1, to obtain 	γa−1+k−1

k,C Ia−1(s(ϕk
αk

(1))). Then, since ϕk
αk

(1)) is the
kth member of the assigned fundamental sequence to ϕα(0), one further step gives
	γa−1+k

k,C Ia−1(s(ϕα(0))). Now since k is declared at level ω, and k ≺k ω, an accumu-

lation gives 	γa−1+ω

k,C Ia−1(s(ϕα(0))).
This process may now be applied again, but starting with β = ϕα(0) + 1. Since

ϕk
αk

(ϕα(0) + 1) is the kth member of the fundamental sequence to ϕα(1), one obtains

	γa−1+ω·2
k,C Ia−1(s(ϕα(1))).
Continuing in this way, but with an arbitrary s(β) now declared at level Ia , one

sees that after = Lk(β) iterations the end-result is

s(β) : Ia 	γa−1+ω·(+1)
k,C Ia−1(s(ϕα(β)))

after which an accumulation (as s(β) ≥ + 1) gives

s(β) : Ia 	γa−1+ω·ω
k,C Ia−1(s(ϕα(β)))

and then a lifting gives the desired

s(β) : Ia 	γa

k,C Ia(s(ϕα(β)))

where γa = γa−1 + ω2 + 1. This completes the induction.

Now from this one may derive the following, where s is an arbitrary number and
d depends only on the “size” of the formula D:

max(β, s) : Ia 	γa+d ¬D(s, k, β), PW F Ia (k, ϕα(β)) .

422 S.S. Wainer

This is because: Either s is not the correct sequence number for D(s, k, β),
in which case ¬D(s, k, β) may easily be derived along with the side formula
PW F Ia (k, ϕα(β)). Or else D(s, k, β) is true, in which case s = s(β) and hence,
letting s0 = s(ϕα(β)), we have s:Ia 	γa

k,C Ia(s0) and s0:Ia 	γa+d−2 ¬D(s, k, β),

D(s0, k, ϕα(β)). Therefore an (∃) rule with computed witness s0 again yields
max(β, s):Ia 	γa+d ¬D(s, k, β), PW F Ia (k, ϕα(β)).

A (∀) rule gives β:Ia 	γa+d+1 ∀s(Ia(s) → ¬D(s, k, β)), PW F Ia (k, ϕα(β))

which immediately yields β:Ia 	γa+d+2 PW F Ia (k, β) → PW F Ia (k, ϕα(β)) and
hence 	γa+d+3 ∀β(PW F Ia (k, β) → PW F Ia (k, ϕα(β))).

Corollary 4.3 If PW F Iω (k, α)and PW F Iω (k, β)are autonomously derivable, then
so is PW F Iω (k, ϕα(β)).

Proof Suppressing the ordinal bounds, a cut-free derivation of max(k, α):Iω 	
PW F Iω (k, α) provides an s0 such that max(k, α):Iω 	k,C Iω(s0) where lh(s0) =
Lk(α) + 1 = a. Similarly, a cut-free derivation of max(k, β):Iω 	 PW F Iω (k, β)

entails computation of s1 such thatmax(k, β):Iω 	k,C Iω(s1) and	 D(s1, k, β). Then
if s = max(s0, s1) we have max(k, α, β):Iω 	k,C Iω(s). But a computational axiom
yields s:Iω 	k,C Ia(s1) since a, s1 ≤ s, so max(k, α, β):Iω 	 PW F Ia (k, β). Hence
by the theorem a derivation of PW F Ia (k, ϕα(β)) is obtained and one may assume
that to be cut-free also. Since the numerical bounds on the (non-zero) inputs are all
declared at level Iω, the existential witnesses may be lifted from Ia to Iω, thus giving
a derivation of PW F Iω (k, ϕα(β)).

4.2 Computing Lx(ϕα(β)) and Gx(ϕα(β))

Definition 4.4 Another version of Ackermann: for each fixed x ∈ N define fa

(x, b) = fa(b) where

f0(b) = (x + 1)b, fa+1(b) = (f x
a ◦ succ)b+1(0) .

Now recall the recursive definitions of Lx and Gx in Sect. 2.

Lemma 4.5 For each fixed x and all α, β,

Lx (ϕα(β)) ≤ fLx (α)(x + 1, Lx (β)) and fGx (α)(x, Gx (β)) ≤ Gx (ϕα(β)) .

Proof Both parts are similar, so we only do the first. Assuming x fixed throughout,
denote fa(x + 1, b) simply as fa(b). Then proceeding by induction on α and, within
that, by induction on β, one has (recalling that αx also denotes α − 1 when α is a
successor):

(i) If α = 0 then Lx (ϕα(β)) = Lx (ω
β) = Lx (ω

βx · (x + 1)) + 1. But, as is easily
shown, Lx preserves addition, and therefore Lx (ϕα(β)) = Lx (ω

βx) · (x + 1) + 1.

Pointwise Transfinite Induction and a Miniaturized Predicativity 423

By the induction on β, this in turn is less than or equal to f0(Lx (βx)) · (x + 2) =
f0(Lx(βx) + 1) = f0(Lx (β)).
(ii) If α > 0 and β = 0 then Lx (ϕα(β)) = Lx (ϕ

x
αx

(1)) + 1 and by the induction
hypothesis on αx this is less than or equal to f x

Lx (αx)
(1) + 1 ≤ f x+1

Lx (αx)
(1) and this is

fLx (αx)+1(0) = fLx (α)(0).
(iii) If α > 0 and β is a successor, the computation is as in (ii) but with 0 replaced

by ϕα(β − 1). One has Lx (ϕα(β)) = Lx (ϕ
x
αx

(ϕα(β − 1) + 1)) + 1. By the induction
hypothesis and since fa(b) > b, this is ≤ f x+1

Lx (αx)
(Lx (ϕα(β − 1) + 1)) and this is ≤

f x+1
Lx (α)−1 ◦ succ(fLx (α)(Lx (β) − 1)) = fLx (α)(Lx (β)).
(iv) If α > 0 and β is a limit then Lx (ϕα(β)) = Lx (ϕα(βx) + 1. By the induction

on βx , this is ≤ fLx (α)(Lx (β) − 1) + 1 ≤ fLx (α)(Lx (β)) as required.

Lemma 4.6 For ordinal notations δ < �0 built up from ω by addition and α, β �→
ϕα(β) one has

Lx (δ) ≤ Gx+1(δ) ≤ Lx+1(δ)

and for each fixed δ these functions, as functions of x, are bounded by finite compo-
sitions of the Ackermann function.

Proof First, as previously stated, it is easy to check that both Lx and Gx preserve
addition. Further, suppose δ is built up from α and β by δ = ϕα(β). Then we may
inductively assume the result for both α and β and so from the above lemma we
immediately obtain (using basic majorisation properties of f):

Lx (δ) ≤ fLx (α)(x + 1, Lx (β)) ≤ fGx+1(α)(x + 1, Gx+1(β)) ≤ Gx+1(δ) .

That Gx (δ) ≤ Lx (δ) for all x is immediate from their definitions.
Now, recalling the version of Ackermann used in Lemma3.1 (any other version

would do, since they are all elementarily reducible to one another) it is easy to see
that f1(x · (b + 1)) ≥ 2x ·(b+1) ≥ (x + 1)b and for a > 0, fa+1((x + 1) · (b + 1)) =
f 2

(x+1)·(b+1)

a ((x + 1) · (b + 1)) ≥ (f x+1
a ◦ succ)b+1((x + 1) · (b + 1)). Comparing

this with fa(x + 1, b) of the lemma above, one sees that if a(x) and b(x) are
finite compositions of Ackermann which bound Lx (α) and Lx (β) respectively, then
fa(x)+1((x + 1) · (b(x) + 1)) is another finite composition of Ackermann bounding
Lx (ϕα(β)).

4.3 The Strength of EA(Iω, …I2, I1, O)∞

Theorem 4.7 If PW F Iω (k, α) is autonomously derivable then so is Weak Transfinite
Induction PT I (k, α, A) for any formula A of finite level.

Proof Assume max(k, α) is declared at level Iω. From a cut-free derivation 	γ

PW F Iω (k, α) one can read off (a bound on) the value a = Lk(α) and a derivation of
Iω(a). By a sequence of cuts on the formula F , assumed to be of “size” r , one easily

424 S.S. Wainer

derives	r+a ¬F(0), ∃x ≤ a.(F(x) ∧ ¬F(x + 1)),∀x ≤ a.F(x) and then, since the
formula is of finite level and a is computed at level Iω, the ordinal bound may be
lifted to max(γ, r) + ω. This proves numerical induction up to Lk(α):

max(k, α):Iω 	max(γ,r)+ω F(0) ∧ ∀x(F(x) → F(x + 1) → ∀x ≤ Lk(α).F(x)

and by Lemma2.3 this, with an appropriate F , in turn yields PT I (k, α, A).

Theorem 4.8 The provably computable functions of Aut.EA(Iω, …I1, O)∞ are
exactly those elementary recursive in the Ackermann function.

Proof Suppose f is provably computable and let C f be a �1 formula such that for
every k, f (k) = iff C f (k,) holds and k:Iω 	δ ∃zC f (k, z) with δ autonomously
generated. We may assume that this derivation is cut-free, and so correct witnesses
w for the existential quantifiers in ∃zC f (k, z) are derived along the way by k:Iω 	δ

k,C
Iω(w). By the last Lemma and 3.1 thesewitnesses are bounded by finite compositions
of Ackermann, because if L(δ) is bounded by a finite Ackermann term, so is the
functional version f (L(δ)) of 3.1 which bounds w. Therefore f (k) = the least

such that C f (k,) is elementary recursive in the Ackermann function.
Conversely, if f is elementary in the Ackermann, it is computable within time, or

space, bounded by some finite composition of Ackermann, and therefore by a finite
composition of the function fa(x)(x, b(x)) in Definition4.4. But then by Lemma4.5
this in turn is bounded (as a function of x) by Lx (ϕα(β)) where a(x) ≤ Lx (α)

and b(x) ≤ Lx (β). Since, by the last proof, numerical induction up to Lx (ϕα(β))

is available in Autonomous EA(Iω, …I2, I1, O)∞, and the progressiveness of the
formula expressing the step-by-step computability of f is easily verified, it follows
that f is provably defined.

Theorem 4.9 �0 is the supremum of the autonomous ordinals.

Proof �0 = sup γi where γ0 = ω and γi+1 = ϕγi (γi). As shown above, each γi is
autonomous. However if �0 itself were autonomous then Gx (�0) would be bounded
by a finite composition of the Ackermann function. But it is not, for Gx (�0) =
Gx (γx) and by induction one has Gx (γx) ≥ fω(x)x (x) where fω(x) is the function
a �→ fa(x, a) from Definition4.4. This has an additional unbounded x-times iterate
in its computation, so cannot be bounded by any finite composition of Ackermann,
no matter which version of Ackermann one chooses.

Remark 4.10 The finite stages of the hierarchy of input-output theories all embed
naturally into the various levels of EA(Iω, …I2, I1, O)∞ and one may similarly read
off upper bounds on their provable ordinals (i.e. those for which pointwise well-
foundedness is provable). Bounds for EA(I1, O), EA(I2, I1, O) etc. are ϕ1(0), ϕ2(0)
etc., and the bound for the union of these (which amounts to PRA) is the first primitive
recursively closed ordinal ϕω(0).

Pointwise Transfinite Induction and a Miniaturized Predicativity 425

References

1. S. Bellantoni, S. Cook, A new recursion theoretic characterization of the polytime functions.
Comput. Complex. 2, 97–110 (1992)

2. W. Buchholz, An independence result for �1
1-CA+BI. Ann. Pure Appl. Logic 33, 131–155

(1987)
3. A. Cantini, Polytime, combinatory logic and positive safe induction. Arch. Math. Logic 41,

169–189 (2002)
4. S. Feferman, Systems of predicative analysis II: representations of ordinals. J. Symbolic Logic

33(2), 193–220 (1968)
5. G. Jäger, D. Probst, A proof theoretic analysis of theories for stratified inductive definitions

in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer,
Cham, 2015), pp. 425–454

6. D. Leivant, Intrinsic theories and computational complexity, in Logic and Computational Com-
plexity, ed. by D. Leivant, Springer Lecture Notes in Computer Science 960, pp. 177–194
Springer (1995)

7. G. Mints, Finite investigations of transfinite derivations. J. Sov. Math. 10, 548–596 (1978).
Translated from Zapiski Nauchnykh Seminarov. Steklova Akademii Nauk SSSR (LOMI), vol.
49, pp. 67–122 (1975)

8. G.E. Ostrin, S.S. Wainer, Elementary arithmetic. Ann. Pure Appl. Logic 133, 275–292 (2005)
9. F. Ranzi, T. Strahm, A note on the theory SID≤ω of stratified induction. Math. Logic Quart.

60(6), 487–497 (2014)
10. U. Schmerl, Number theory and the Bachmann-Howard ordinal, in Logic Colloquium ’81, ed.

by J. Stern, North-Holland, pp. 287–298 (1982)
11. H. Schwichtenberg, S.S. Wainer, Proofs and Computations, ASL Perspectives in Logic (Cam-

bridge University Press, Cambridge, 2012)
12. H. Simmons, The realm of primitive recursion. Arch. Math. Logic 27, 177–188 (1988)
13. E.J. Spoors, S.S. Wainer, A hierarchy of ramified theories below PRA, in Logic, Construction,

Computation, ed. by U. Berger, H. Diener, P. Schuster, M. Seisenberger, Ontos Mathemaical
Logic, vol. 3 (Ontos Verlag, 2012) pp. 475-499

14. A. Weiermann, What makes a (pointwise) subrecursive hierarchy slow growing?, in Sets and
Proofs, Logic Colloquium ’97, ed. by S.B. Cooper, J.K. Truss, LMS Lecture Notes, vol. 258
(Cambridge University Press, 1999), pp. 403–423

15. M. Wirz, Wellordering two sorts: a slow-growing proof theory for variable separation, Ph.D.
thesis, Universität Bern (2005)

	Preface
	Contents
	Contributors
	A Survey on Ordinal Notations Around the Bachmann-Howard Ordinal
	1 Introduction
	2 Fundamental Sequences and the Bachmann Hierarchy
	3 Characterization of φα via Kα
	4 Comparison of φα,overlineφα with θα,overlineθα
	5 The Unary Functions mathbbX and ψmathbbX
	6 Exact Comparison of and ψ
	7 Defining the Bachmann Hierarchy by Functionals of Higher Type
	References

	About Truth and Types
	1 Introduction
	2 Truth and Types I
	2.1 Abstract Truth Over Combinatory Structures
	2.2 Ground System: Language and Notations
	2.3 Ground System: Applicative and Compositional Axioms
	2.4 Conservativity and Upper Bound
	2.5 Elementary Types

	3 Truth and Types II
	3.1 Strengthening CT: The Theory AT
	3.2 Generating an AT-Model: Propositions
	3.3 Generating an AT-Model: Truth
	3.4 On the Strength of AT
	3.5 Adding a Weak Power Type Operation

	4 Truth and Types III
	4.1 Strengthening CT: The System PT
	4.2 Generating PT-Models
	4.3 Upper Bounds for PT"4264306 and PT
	4.4 Adding the Join Operator

	5 Truth and Types IV
	5.1 Abstract `Kripke-Feferman'
	5.2 Partial Truth with Minimality
	5.3 Explicit Types and Name Induction

	References

	Lindenbaum's Lemma via Open Induction
	1 Introduction
	2 Open Induction
	3 Lindenbaum's Lemma
	3.1 Types of Theories
	3.2 Lindenbaum's Lemma with Open Induction
	3.3 Intuitionistic Logic

	4 Related Results for Lattices
	4.1 Distributive Lattices
	4.2 Complete Lattices

	References

	Ordinal Analysis of Intuitionistic Power and Exponentiation Kripke Platek Set Theory
	1 Introduction
	1.1 Intuitionistic Set Theories and the Existence Property
	1.2 Intuitionistic Power and Exponentiation Kripke-Platek Set Theories
	1.3 Outline of the Paper

	2 The Case of IKP
	2.1 A Sequent Calculus Formulation of IKP
	2.2 An Ordinal Notation System
	2.3 The Infinitary System IRSΩ
	2.4 Cut Elimination for IRSΩ
	2.5 Embedding IKP into IRSΩ
	2.6 An Ordinal Analysis of IKP

	3 The Case of IKP(mathcalP)
	3.1 A Sequent Calculus Formulation of IKP(mathcalP)
	3.2 The Infinitary System IRSΩmathcalP
	3.3 Cut Elimination for IRSΩmathcalP
	3.4 Embedding IKP(mathcalP) into IRSΩmathcalP
	3.5 A Relativised Ordinal Analysis of IKP(mathcalP)

	4 The Case of IKP(mathcalE)
	4.1 A Sequent Calculus Formulation of IKP(mathcalE)
	4.2 The Infinitary System IRSΩmathbbE
	4.3 Cut Elimination for IRSΩmathbbE
	4.4 Embedding IKP(mathcalE) into IRSΩmathcalP
	4.5 A Relativised Ordinal Analysis of IKP(mathcalE)

	References

	Machine-Checked Proof-Theory for Propositional Modal Logics
	1 Introduction
	2 Preliminaries
	2.1 Sequents Built from Multisets Versus Sets
	2.2 Our Modal Logics
	2.3 Interactive Proof Assistants

	3 A Deep Embedding of Formulae, Sequents and Rules
	4 Implicit and Explicit Derivations
	4.1 Defining Derivability (Implicitly) in Isabelle
	4.2 Inductive Proofs via Automated Inductive Principles
	4.3 Further Implicit Derivability Predicates
	4.4 Explicit Derivation Trees: A Deep Embedding of Derivations
	4.5 To and Fro Between Explicit and Implicit Derivations

	5 Subformula Relation, Rule Skeletons and Extensions with Contexts
	6 The Weakening, Inversion and Contraction Properties
	7 Generalising Cut-Admissibility Proofs
	7.1 A General Framework for Reasoning About Implicit Derivations
	7.2 Induction for Two-Premise Subtrees
	7.3 Induction Principles for Explicit Derivation Trees

	8 Statement of Cut-Admissibility in Isabelle
	9 Weakening, Contraction and Cut Admissibility for S4
	9.1 Calculus for S4
	9.2 Weakening for S4
	9.3 Invertibility and Contraction for S4
	9.4 Cut-Admissibility for S4

	10 Weakening, Contraction and Cut Admissibility for S4.3
	10.1 Calculus for S4.3
	10.2 Weakening for S4.3
	10.3 Invertibility and Contraction for S4.3
	10.4 Cut-Admissibility for S4.3

	11 Weakening, Contraction and Cut Admissibility for GTD
	11.1 Calculus for GTD
	11.2 Weakening-Admissibility for GTD
	11.3 Inversion and Contraction-Admissibility for GTD
	11.4 Cut-Admissibility for GTD

	12 Weakening, Contraction and Cut Admissibility for Dynamic Topological Logic S4C
	12.1 Calculus for S4C
	12.2 Weakening for S4C
	12.3 Inversion and Contraction-Admissibility for S4C
	12.4 Cut-Admissibility for S4C
	12.5 Comparing Our Proofs and the Proofs of Mints

	13 Related Work
	14 Further Work and Conclusion
	References

	Intuitionistic Decision Procedures Since Gentzen
	1 Introduction
	2 Gentzen's Calculus, LJ
	2.1 Calculi of Ono, Ketonen and Kleene, Troelstra's G3i
	2.2 Maehara's Calculus, m-G3i

	3 Vorob'ev's Calculus, G4ip
	3.1 Hudelmaier's Refinements of Vorob'ev's Calculus
	3.2 Dyckhoff's Refinements of Vorob'ev's Calculus
	3.3 Proof Theory of Vorob'ev's Calculus

	4 Weich's Thesis
	5 Easy Optimisations
	6 Goal-Directed Pruning
	7 Mints' Classification
	8 Ensuring the Subformula Property
	8.1 Underwood's Calculus
	8.2 Intercalation Calculus of Sieg and Cittadini
	8.3 Implication-Locking (Franzén's approach)
	8.4 Loop-Checking (The Bern Approach)
	8.5 Loop-Checking (The St Andrews Approach)
	8.6 System LJpm* of Mints
	8.7 System IGr of Corsi and Tassi
	8.8 The Calculus SIC of Corsi and Tassi
	8.9 The Calculus LSJ of Ferrari, Fiorentini and Fiorino
	8.10 The Calculus GLJ

	9 Labelled Calculi
	9.1 Calculus G3i

	10 Focused Calculi
	11 Challenges and Open Problems
	References

	The Operational Perspective: Three Routes
	1 The Operational Perspective
	2 Explicit Mathematics
	3 Operational Set Theory
	4 The Unfolding Program
	References

	Some Remarks on the Proof-Theory and the Semantics of Infinitary Modal Logic
	1 Introduction
	2 The Infinitary Modal Language mathcalLω1
	3 Tait-Style Infinitary Modal Calculi
	4 Generalized (and Standard) Kripke Frames
	5 Completeness Theorems for TKω1 and TKω1
	6 TKω1 does not admit cut-elimination
	7 Concluding Remarks
	References

	From Subsystems of Analysis to Subsystems of Set Theory
	1 Introduction
	2 Ordinal Analysis for Predicative Systems
	2.1 Ordinal Analysis
	2.2 Ramified Analysis

	3 Ordinal Analyses for Impredicative Axiom Systems
	3.1 ν--fold Iterated Inductive Definitions
	3.2 Buchholz' Ω--Rule
	3.3 A Remark on Hilbert's Programme
	3.4 Π02--Analysis
	3.5 A Brief Résumé of Inductive Definitions
	3.6 Infinitary Logic for Inductive Definitions
	3.7 Semantical Cut--Elimination
	3.8 Local Predicativity

	4 Towards Set Theory
	4.1 Ramified Set Theory
	4.2 More Recent Developments

	References

	Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut
	1 Introduction
	2 The Formal System of Intuitionistic Logic with Definitional Reflection
	3 The Failure of Cut in LI(mathbbD)
	4 The Trade-Off Between Contraction and Cut
	5 Restricting Initial Sequents: The Admissibility of Cut
	6 The Trade-Off Between Identity and Contraction/Cut
	7 Restricted Initial Sequents in Logic Programming
	References

	Higman's Lemma and Its Computational Content
	1 Introduction
	2 A Constructive Reformulation of Nash-Williams' Proof
	3 Formalization
	4 Extraction
	4.1 BarWToGoodInit
	4.2 BarFNil, BarFAppd
	4.3 BarFNew
	4.4 Higman
	4.5 Experiments

	5 Related Work: Other Proofs of Higman's Lemma
	5.1 Equivalent Formulations of a Well-Quasiorder
	5.2 A Generic Proof of Higman's Lemma

	6 Conclusion and Further Work
	References

	How to Reason Coinductively Informally
	1 Introduction
	2 Notations
	3 Initial Algebras and Inductively Defined Sets
	4 Iteration, Recursion, Induction
	5 Modelling Coinductive Sets in Set Theory
	6 Coiteration and Corecursion
	7 Indexed Corecursion
	8 Bisimulation and Coinduction
	9 Schemata for Corecursive Definitions and Coinductive Proofs
	9.1 Schema for Corecursion
	9.2 Schema for Corecursively Defined Indexed Functions
	9.3 Schema for Coinduction
	9.4 Schema for Coinductively Defined Relations

	10 Conclusion
	References

	Pointwise Transfinite Induction and a Miniaturized Predicativity
	1 Introduction
	1.1 Input-Output Arithmetic EA(I;O)+
	1.2 EA(I2; I1,O)+, EA(Ik; �I2, I1,O)+ Etc

	2 Weak, Pointwise Transfinite Induction
	3 The Infinitary System EA(Iω, �I2, I1, O)infty
	3.1 Logic Rules
	3.2 Computation Rules
	3.3 Alternative Ordinal Assignment
	3.4 Basic Lemmas
	3.5 Note on Σ1 Reflection

	4 Autonomous EA(Iω, �I2, I1, O)infty
	4.1 Ordinal Notations Below Γ0
	4.2 Computing Lx(α(β)) and Gx(α(β))
	4.3 The Strength of EA(Iω, �I2, I1, O)infty

	References

