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Preface

This volume contains the papers presented at BalkanCryptSec 2015, the Second
International Conference on Cryptography and Information Security in the Balkans,
held September 3–4, 2015, in Koper, Slovenia.

The call for papers was answered by 27 submissions from 15 countries. Each
submission was reviewed by at least three Program Committee members. After the
conference a second round of reviews was held for the revised papers. The committee
decided to select 12 papers for the proceedings.

The Program Committee consisted of 28 members representing 18 countries. These
members were carefully selected to represent academia and industry, as well as to
include world-class experts in various research fields of interest to BalkanCryptSec.

Additionally, the workshop included three excellent invited talks and a tutorial talk.
Kaisa Nyberg from Aalto University, Finland, talked about multidimensional linear
attacks in a presentation entitled “Key-Variance in Statistical Cryptanalysis.”
Alexander Pott from Otto-von-Guericke University of Magdeburg discussed his
research in a talk entitled “Almost Perfect Nonlinear and Planar Functions: A Survey of
(not so) Recent Results and Open Problems.” Billy Bob Brumley from Tampere
University of Technology presented results, techniques, and the evolution of certain
attack methods in “Software-Based Side-Channel Attacks.” Enes Pasalic also held a
tutorial talk titled “Constructing Boolean Functions for Stream Ciphers.”

We would like to thank everyone who made the conference possible. First and
foremost the authors who submitted their papers, in particular the authors of the
accepted papers, and the invited speakers. The hard task of reading, commenting,
debating, and finally selecting the papers for the conference fell on the Program
Committee members. The Program Committee also used two external reviewers, whom
we wish to thank as well.

We would also like to thank the local Organizing Committee and especially Nastja
Cepak, a PhD student in cryptography at University of Primorska, for her enormous
help in arranging and taking care of most of the tasks related to this conference.

This was the second annual BalkanCryptSec conference. The first one was held in
2014 thanks to Svetla Nikova and Tsonka Baicheva’s idea of hosting a cryptography
and security conference in the Balkans. We hope and believe the conference will
continue for many years to come.

November 2015 Enes Pasalic
Lars R. Knudsen
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Boolean Functions with Maximum Algebraic
Immunity Based on Properties of Punctured

Reed–Muller Codes

Konstantinos Limniotis1,2(B) and Nicholas Kolokotronis3

1 Department of Informatics and Telecommunications,
University of Athens, 15785 Athens, Greece

klimn@di.uoa.gr
2 Hellenic Data Protection Authority, Kifissias 1–3, 11523 Athens, Greece

klimniotis@dpa.gr
3 Department of Informatics and Telecommunications,

University of Peloponnese, 22100 Tripolis, Greece
nkolok@uop.gr

Abstract. The construction of Boolean functions with an odd number
of variables and maximum algebraic immunity is studied in this paper.
Starting with any function f obtained by the Carlet–Feng construction,
we develop an efficient method to properly modify f in order to provide
new functions having maximum algebraic immunity. This new approach,
which exploits properties of the punctured Reed–Muller codes, suffices
to generate a large number of new functions with maximum algebraic
immunity through swapping an arbitrary number of elements between
the support of f and its complement.

1 Introduction

Algebraic attacks constitute a powerful cryptanalytic technique having received
great attention over the last decade. Towards designing secure cryptosystems,
the use of Boolean functions having properties like high algebraic degree, bal-
ancedness, and high nonlinearity, does not suffice to resist algebraic attacks. As
a consequence, the cryptographic criterion of algebraic immunity (AI) was intro-
duced to assess the strength of Boolean functions against such cryptanalytic
attacks [19]. Therefore, constructing Boolean functions with the maximum pos-
sible AI is of great importance. Algebraic attacks in stream ciphers were further
improved to the so–called fast algebraic attacks by exploiting linear relations
amongst the keystream bits [10]. Hence, the behavior of cryptographic Boolean
functions against fast algebraic attacks should also be considered.

This work is co–financed by the European Union (European Social Fund) and Greek
national funds through the operational program “Education and Lifelong Learning”
of the National Strategic Reference Framework (NSRF). Research funding program
THALES: investing in knowledge society through the European Social Fund.

c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-29172-7 1



4 K. Limniotis and N. Kolokotronis

Several families of functions with maximum AI have been constructed. The
first one is the majority function [11], which is a symmetric function; other
constructions leading to symmetric or rotation–symmetric Boolean functions
with maximum AI are provided in [8,23,25,27]. However, it was recently shown
that almost all symmetric functions behave badly with respect to fast algebraic
attacks [17]. This result has motivated many new constructions aiming at elim-
inating the majority function’s symmetry by properly modifying its truth table
[6,12,14,26]; these are called secondary constructions. In addition, new (primary)
constructions of functions with maximum AI have been proposed [2,3,11]. How-
ever, all of these families suffer from low nonlinearity. An important construction
proposed by Carlet and Feng [4] achieves maximum degree, high nonlinearity,
and good behavior against fast algebraic attacks [16]. A construction equivalent
to [4] (see [7]) is provided in [30], where an improved lower bound is derived
on the attained nonlinearities. Another construction is presented in [28], based
on the work of [29]; apart from providing functions on even number of variables
with maximum AI, it further improves the lower bound on the nonlinearity of
the Carlet–Feng construction. Suitable modifications of this construction have
also been presented in [13,15,24,31]. In general, constructing functions having
maximum AI, without sacrificing the other cryptographic criteria, still remains
an active research area.

In this paper, we further study the Carlet–Feng construction, aiming at pro-
viding new functions with maximum AI. More precisely, we start from any
function in odd number of variables with maximum AI and we prove general
conditions that ensure maximum AI when many entries of a function’s truth
table are modified simultaneously. Subsequently, it is shown that these condi-
tions can be applied to a function obtained via the Carlet–Feng construction, in
order to get an efficient approach to properly modify f so as to ensure that the
AI does not decrease. When applied to this construction, our work extends the
results of [15], where the truth table of f was modified at only two positions,
instead of arbitrarily many. It is also shown that other important cryptographic
criteria, such as high nonlinearity, maximum algebraic degree, and good behavior
against fast algebraic attacks, can be also attained.

The paper is organized as follow. The basic definitions and notation are intro-
duced in Sect. 2, whilst Sect. 3 revisits the ideas in [15] for modifying the Carlet–
Feng construction. Section 4 describes properties of functions with maximum AI,
which are related to minimal codewords of the punctured Reed–Muller code RM�

(n−1
2 , n). Their application to the Carlet–Feng construction are treated in Sect. 5,

where an algorithm for generating functions with maximum AI is developed.
Finally, concluding remarks and ongoing research work are summarized in Sect. 6.

2 Preliminaries

Let Bn be the set of Boolean functions f : F
n
2 → F2 on n variables, where

F2 = {0, 1} is the binary field and F
n
2 is the n-dimensional vector space over F2.
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Let [n] � {1, . . . , n} and x = (x1 · · · xn); any f ∈ Bn can be uniquely expressed
in its algebraic normal form (ANF) as [18]

f(x) =
∑

I⊆[n]

vI x
I , vI ∈ F2 (1)

where xI =
∏

i∈I xi (by convention x∅ = 1) and the sum is taken modulo 2. The
degree of f , denoted by deg(f), is the highest number of variables that appear
in a monomial of its ANF. The binary vector of length 2n

f =
(
f(0 · · · 0) · · · f(1 · · · 1)

)

comprised by the values of f on vectors of F2n lexicographically ordered, is the
truth table of f ∈ Bn and the set supp(f) = {x ∈ F

n
2 : f(x) �= 0} is called its

support (defined for vectors in a similar manner). The function f ∈ Bn is said
to be balanced if its Hamming weight wt(f) = |supp(f)| is equal to 2n−1. Note
that wt(f) is odd if and only if deg(f) = n.

Let F2n be an extension field of F2 with primitive element α ∈ F2n , and let
N = 2n − 1. Since there is a vector space isomorphism between F

n
2 and F2n , any

f ∈ Bn is also represented by a univariate polynomial, mapping F2n onto F2

f(x) =
N∑

i=0

βi xi, βi ∈ F2n (2)

where β2i = β2
i , for i ∈ ZN = {0, 1, . . . , N − 1} (the indices are taken modulo

N), and it holds β0, βN ∈ F2. A cyclotomic coset γt of t modulo N is defined
as γt = {2it mod N : i = 0, . . . , nt − 1}, where nt is the least integer for which
2ntt ≡ t (mod N); the smallest element of γt is referred to as the coset leader,
and Γ is used to denote the set of all coset leaders modulo N . Using the trace
function trn

1 (x) = x + x2 + · · · + x2n−1
, defined over F2n , we can write (2) as

(see, e.g., [20])
f(x) =

∑

t∈Γ

trnt
1

(
At xt

)
+ ε

(
1 + xN

)
(3)

where At ∈ F2nt and ε = wt(f) mod 2. Moreover, the coefficients At can be
obtained from (3) via the following expression that defines the discrete Fourier
transform (DFT) of the function f

At =
N−1∑

i=0

f(αi)α−it, t ∈ ZN . (4)

If f has even weight, then A0 =
∑N−1

i=0 f(αi) = f(0) and its DFT coincides with
the coefficients of its univariate representation; otherwise we have

∑N−1
i=0 f(αi) �=

f(0) and (2) can be obtained from (3) by setting ε = 1, as 1 + xN is nonzero at
x = 0 only. The degree of f can also be computed by its DFT; if wt(f) is even,
then deg(f) equals the maximum weight of t ∈ ZN for which At �= 0.

It is well–known that if deg(f) ≤ r, then f is a codeword of the rth order
binary Reed–Muller code RM(r, n) [18]. In the sequel, we utilize the punctured
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code RM�(r, n) of length N , which is obtained by deleting the first coordinate
from the codewords of RM(r, n). The code RM�(r, n) is known to be cyclic having
as zeros the elements αt, for all nonzero t ∈ ZN satisfying wt(t) < n − r [18].

Definition 1. The nonlinearity of f ∈ Bn is defined to be

nl(f) = min
g∈RM(1,n)

wt(f + g) .

Definition 2. A function is called an annihilator of f ∈ Bn if and only if it
belongs to

A f = {g ∈ Bn : fg = 0} .

Definition 3. The algebraic immunity AI(f) of f ∈ Bn is the least degree of all
the nonzero annihilators of f and 1 + f .

From the work in [9,19] it is evident that a cryptographic Boolean function
f should have high AI to be resistant against algebraic attacks. A well–known
result is that AI(f) ≤ �n

2 �, for all f ∈ Bn [9]. An important construction of
maximum AI functions, the Carlet–Feng construction, is described below in an
equivalent version (see [24]) that is convenient for our subsequent analysis.

Proposition 1 ([4]). Let n > 1, E = 2n−1 − 1, and f ∈ Bn be defined as

supp(f) =
{
1, α, . . . , αE

}

for a primitive element α ∈ F2n . Then it holds AI(f) = �n
2 � .

The fast algebraic attacks are extensions of the conventional algebraic attacks
whose task is to identify g, h ∈ Bn, for a given function f ∈ Bn, such that fg = h
with deg(g) = e < AI(f), deg(h) = d, and e + d < n ; note that a pair (e, d)
with e + d ≥ n always exists [10]. We say that f admits a (e, d) pair if there
exist functions g, h with the aforementioned properties. Functions that have no
(e, d) pair such that e+d < n are called perfect algebraic immune [16]. Any such
function has maximum AI, while the converse is not true [16,22].

3 Revisiting Secondary Constructions with Maximum AI

In [15, Algorithm 2], an algorithm is developed to modify a function f from
the Carlet–Feng construction so as to retain maximum AI. The algorithm is
called singleswap in the sequel and is described in Algorithm 1 (reformulated to
fit our context). Algorithm 1 simply proceeds by solving a well–defined upper–
triangular linear system over F2 by backward substitution. More precisely, recall-
ing from [15], for any 0 ≤ r < N each column vector vr (see lines 5, 8 of
singleswap) is given by

vr =

{
(er · · · e1 e0 0E−r)T , if r ≤ E

(0r−E eE · · · er−E)T , otherwise
(5)
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Algorithm 1. singleswap (n, f, αm, k)
Input: odd integer n, function f ∈ Bn with supp(f) = {α0, . . . , αE}
Input: element αm /∈ supp(f), and integer k
1: S ← ∅

2: z ← 0 � all–zero vector of length E + 1
3: i ← E
4: while (i ≥ E − k + 1) do
5: zi ← vm

i � from (5)
6: if i �= E then
7: for r = i + 1, . . . , E do
8: zi ← zi + vr

i ∗ zr
9: end

10: end

11: if zi = 1 then
12: S ← S ∪ i
13: end

14: i ← i − 1
15: end

Output: S = {j1, . . . , jr} ⊂ {E − k + 1, . . . , E} : for all 1 ≤ � ≤ r the function
Output: g ∈ Bn with supp(g) = supp(f) ∪ {αm} \ {αj�} has maximum AI

where 0s is the all–zero vector of length s, E is given in Proposition 1, and
ei ∈ F2, i = 0, . . . , E, are the coefficients of the polynomial

∏

i : 1≤wt(i)≤ n−1
2

(x − αi)

whose degree is E - i.e. the generator polynomial of RM�(n−1
2 , n). The columns

of the upper–triangular matrix associated with the above linear diagonal system
are given by vr for r = 0, 1, . . . , E. The algorithm, for a given αm /∈ supp(f),
computes all possible elements αi ∈ supp(f) that if swapped with αm do not
decrease the AI (see the output of Algorithm 1).

Looking into the details of singleswap, the algorithm returns S with the
following property: i ∈ S if and only if zi = 1, where z is the solution vec-
tor of the linear system. As also stated in [15], although the dimension of this
system is (E +1)× (E +1), we may simply find k entries of the unknown vector
z, for any k 
 2n−1, in order to find some - and not all - of the elements of S.
The algorithm computes the last k entries zE , . . . , zE−k+1 in decreasing order,
where the value of k can be arbitrary (as implied by the description of [15,
Algorithm 2]). The above are reflected in line 4 of singleswap, where 2n−1 is the
maximum value of k for getting all possible swaps. The overall complexity of the
algorithm is O(k2) [15]. Algorithm singleswap will next be used as a basis to get
more functions with maximum AI starting from the Carlet–Feng construction.
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4 Codewords of RM�(n−1
2

, n) as Annihilators

In this section, we prove important results towards proceeding with the new
construction of functions with maximum AI. We will next focus on functions
with odd number of variables.

Proposition 2 ([1]). If n is odd, then f ∈ Bn has maximum algebraic immu-
nity n+1

2 if and only if f is balanced and has no nonzero annihilators of degree
at most n−1

2 .

The next result summarizes [15, Proposition 6] and [15, Lemma 1], in a
formulation that is more appropriate for our context.

Proposition 3 ([15]). Let n be odd, α ∈ F2n be a primitive element, and
let f ∈ Bn with supp(f) = {αr0 , αr1 , . . . , αrE } have AI(f) = n+1

2 . Then, for
all αm /∈ supp(f), the function g with supp(g) = supp(f) ∪ αm does not have
maximum algebraic immunity, whereas g + 1 has a unique annihilator u with
deg(u) ≤ n−1

2 . Moreover, the function g̃ whose support is supp(g) \ αj satisfies
AI(g̃) = n+1

2 if and only if αj ∈ supp(u).

It should be pointed out that Proposition 3, which is crucial for our subse-
quent analysis, holds only for n odd.

We next introduce some notation. Let A = (aij) be an n × m matrix; then,
for any I ⊂ [n] we denote by AI the |I|×m matrix obtained from A by removing
all rows except those whose indices belong to I; similarly, for any J ⊂ [m] we
denote by AJ the n×|J | matrix obtained from A by removing all columns except
those whose indices belong to J . The matrix AJ

I is defined in a straightforward
manner. We next introduce a partial ordering of polynomials h, c in the residue
class ring F2[x]/(xN − 1) (see, e.g., [21, p. 25]), given by

h(x) =
N−1∑

i=0

hi xi and c(x) =
N−1∑

i=0

ci xi

as follows: h 
 c ⇔ hi ≤ ci for all i . Based on this ordering, a minimal codeword
of a binary code is defined as any codeword v(x) such that there is no nonzero
codeword v′(x) of the code with v′ ≺ v.

Remark 1. Clearly, for any non–minimal codeword ṽ(x) of a linear code there
exist two codewords v1(x), v2(x), with disjoint supports, such that v1 ≺ ṽ, v2 ≺ ṽ
and v1 + v2 = ṽ.

Theorem 2. Let n be odd, α ∈ F2n be a primitive element, and let f ∈ Bn

be balanced with supp(f) = {αr0 , αr1 , . . . , αrE } and r0 = 0. Then, AI(f) =
n+1
2 if and only if there is no nonzero even weight codeword v(x) of the code

RM�(n−1
2 , n) such that v(x) 
 c(x) = 1 + xr1 + · · · + xrE .
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Proof. Let g ∈ A 1+f , with g �= 0; note that it necessarily holds g(0) = 0. Let
us define the vector G = (g(1) g(α) · · · g(αN−1))T ; then, the DFT coefficients
A0, . . . , AN−1 of g can be computed, according to (4), by

A =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 α−1 · · · α−(N−1)

...
...

...
1 α−(N−1) · · · α−(N−1)(N−1)

⎞

⎟⎟⎟⎠ × G

� V × G , (6)

where A = (A0 A1 · · · AN−1)T and V = (vij) is a N × N Vandermonde matrix
satisfying vij = α−ij , with i, j ∈ ZN .

Let us assume that deg(g) ≤ n−1
2 . Then Ak = 0 for any k such that

wt(k) ≥ n+1
2 ; moreover, g has necessarily even weight (as otherwise we would

have deg(g) = n), thus leading to A0 = 0 (since we have g(0) = 0). Consequently,
due to supp(g) ⊂ supp(f), we get

VJ
I × GJ = 0 (7)

where
I = {l0, . . . , lE} = 0 ∪ {

i ∈ ZN : wt(i) ≥ n+1
2

}

J = {r0, . . . , rE} =
{
i ∈ ZN : αi ∈ supp(f)

}

and 0 is the all–zero column vector AI . Then (7) implies that the sum over F2

of some columns of VJ
I vanishes or, equivalently, there exist c0, . . . , cE ∈ F2, not

all zero, such that the elements α−l0 , . . . , α−lE are the roots of the polynomial
c(x) = c0x

r0 + · · · + cExrE .
On the other hand, if there exists a nonzero v(x) ∈ RM�(n−1

2 , n) with even
weight, such that v(x) 
 c(x), then it is easy to see from the above that the
function g with supp(g) = {αi : xi ≺ v(x)} is an annihilator of f +1 with degree
less than n+1

2 (note that the vector G of such g satisfies (7)). This concludes the
proof. ��
Remark 3. Theorem 2 leads to another proof of the fact that the Carlet–Feng
construction yields functions with maximum AI; indeed, the support of this
function is associated with c(x) = 1 + x + · · · + xE . Since any polynomial v(x)
with v(x) ≺ c(x) has degree less than E + 1, we get that v(x) has at most E
roots over F2n , therefore contradicting the fact that any even–weight codeword
of RM�(n−1

2 , n) has at least E + 1 roots.

Proposition 4. Let n be odd, α ∈ F2n be a primitive element and let f ∈ Bn

have AI(f) = n+1
2 , where supp(f) = {αr0 , . . . , αrE } and r0 = 0. For all

αj /∈ supp(f), there exists a unique nonzero even weight codeword v(x) of
RM�(n−1

2 , n) such that v(x) 
 c(x) = 1 + xr1 + · · · + xrE + xj; in addition,
v(x) is a minimal codeword of the code satisfying xj ≺ v(x).
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Proof. Since the function g with supp(g) = supp(f) ∪ αj is not balanced, it
holds AI(g) < n+1

2 and, thus, Theorem 2 directly implies that there exists a
codeword v(x) of RM�(n−1

2 , n) with even weight such that v(x) 
 c(x). The
uniqueness of v(x) is straightforward from Proposition 3 and Theorem 2 (since
v(x) is uniquely determined by the annihilator of g with degree less than n+1

2
and such annihilator, as Proposition 3 states, is unique). Note that xj ≺ v(x)
since otherwise we would have that v(x) 
 1 + xr1 + · · · + xrE , contradicting
the fact that f has maximum AI (due to Theorem 2). Moreover, if v(x) was
not minimal, we would get that there exists a codeword v′ of RM�(n−1

2 , n) with
v′ ≺ c(x) having disjoint support with v (see Remark 1), and thus xj

⊀ v′(x) -
a contradiction; hence the claim follows. ��

5 Application to the Carlet–Feng Construction

By applying Proposition 4 to the function f obtained by the Carlet–Feng con-
struction, it is straightforward to prove the following result.

Corollary 1. For any polynomial of the form c(j)(x) =
∑E

i=0 xi + xj, where
E < j < N , there exists exactly one nonzero even weight codeword v(x) of
RM�(n−1

2 , n) with v(x) 
 c(j)(x); necessarily v(x) is a minimal codeword satis-
fying xj ≺ v(x). In the sequel, any such codeword of RM�(n−1

2 , n) is denoted as
uj(x), j > E.

Proposition 5. Let c(x) = c1(x) + c2(x), where we have c1(x) 
 ∑E
i=0 xi

and c2(x) 
 ∑N−1
i=E+1 xi. If there exists nonzero even weight codeword v(x) of

RM�(n−1
2 , n) with v(x) 
 c(x), then v(x) necessarily has the form

v(x) =
∑

j∈J

δj uj(x) , δj ∈ F2 (8)

where J ⊆ {E < i < N : xi 
 c2(x)}.
Proof. Note that the existence and uniqueness of uj(x), for E < j < N , is
straightforward from Corollary 1. Clearly, any vector of the form (8) is an even
weight codeword of RM�(n−1

2 , n). Moreover, if it also holds

v(x) =
∑

j∈J

δj uj(x) ≺ c(x)

then v(x) ∈ RM�(n−1
2 , n) is an even weight codeword with v(x) ≺ c(x). We next

show that there exists no other even weight codeword v′(x) of RM�(n−1
2 , n) with

v′(x) 
 c(x), apart from those (if any) given above. Assume that there exists
such v′(x); then v′(x) = v′

1(x) + v′
2(x), where v′

1(x) 
 c1(x) and v′
2(x) 
 c2(x).

Let J ′ = {E < i < N : xi 
 v′
2(x)}; as u′ =

∑
j∈J ′ uj(x) is an even weight

codeword of RM�(n−1
2 , n), we get that u′ + v′ is also an even weight codeword

of RM�(n−1
2 , n). However, it is easy to see that u′ + v′ 
 ∑E

i=0 xi, which leads
to deg(u′ + v′) ≤ E, contradicting the fact that u′ + v′ has at least 2n−1 roots
over F2n (see also Remark 3); this completes the proof. ��
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Theorem 4. With the notation of Proposition 5, let n be odd, α ∈ F2n be a
primitive element of F2n , and let f, g ∈ Bn, where f is a Carlet–Feng function
and supp(g) = {α0, α1, . . . , αE} ∪ A \ B. Let A = {αj1 , . . . , αjr} ⊂ supp(f + 1)
and B = {αi1 , . . . , αir} ⊂ supp(f), where

(a) is �= 0, for all 1 ≤ s ≤ r,
(b) xis ≺ ujs

(x) for all 1 ≤ s ≤ r,
(c) xis ⊀ ujt

(x) for all 1 ≤ t ≤ r with t �= s .

Then AI(g) = n+1
2 .

Proof. Let us assume that AI(g) ≤ n−1
2 . If supp(g) = {α0, αr1 , . . . , αrE }, then

Theorem 2 implies that there exists a nonzero even weight v(x) ∈ RM�(n−1
2 , n)

such that v(x) 
 c(x) = 1 + xr1 + · · · + xrE . Moreover

v(x) =
∑

j∈A′⊆{j1,...,jr}
uj(x)

by Proposition 5. Let js ∈ A′; then, since ujs
(x) contributes to the sum that

determines v(x), our hypothesis implies xis ≺ v(x) - i.e. xis appears exactly
once in

∑
j∈A′ uj(x). By the proof of Theorem2, an annihilator of g +1 (the one

uniquely specified by v(x)) evaluates to 1 at αis - a contradiction, since αis ∈
supp(g + 1). Thus, v(x) is the zero codeword, which contradicts our hypothesis,
and the claim follows. ��
Remark 5. Theorem 4 assumes that, for any given r, there exist sets A, B with
the properties implied therein. However, even if this is not the case, one may
reduce the value of r in order to find such appropriate sets with the desired
properties. Clearly, for r = 1, such sets A, B always exist (it is the case of
Algorithm singleswap).

Theorem 4 forms the basis to construct functions with maximum AI, having
the Carlet–Feng function f as a starting point and appropriately swapping ele-
ments between supp(f) and supp(f + 1). To achieve this goal, the challenging
task is to determine an appropriate set B, given a set A, which in turn rests with
determining ujs

(x) for any js ∈ A. However, it is next shown that the Algorithm
singleswap, described in Sect. 2, suffices to determine ujs

(x).

Corollary 2. Let f ∈ Bn be a Carlet–Feng function, with n odd. Let S be the set
obtained by applying singleswap for arbitrary k, having as inputs the function f ,
and an element αm /∈ supp(f). Then, if j ∈ S, it necessarily holds xj ≺ um(x).

Proof. Let g ∈ Bn with supp(g) = supp(f)∪{αm}. By Proposition 3, there exists
a unique u ∈ A g+1 with deg(u) ≤ n−1

2 . Therefore, recalling the properties of
um(x) from Corollary 1 and Theorem 2, we obtain that u(αs) = 1 for all s if
and only if xs ≺ um(x). Let xj

⊀ um(x); then, we have u(αj) = 0. This implies
that g′ ∈ Bn with supp(g′) = supp(g + 1) ∪ {αj} also has u as an annihilator,
contradicting the fact that g′ has maximum AI as singleswap ensures. ��
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Algorithm 2. modifyCF (n, f,M, k)
Input: odd integer n, function f ∈ Bn with supp(f) = {α0, . . . , αE}
Input: set M = {αm1 , . . . , αmr } ⊂ supp(f + 1), and integer k
1: for i = 1, . . . , r do
2: S(i) ← singleswap (n, f, αmi , k)
3: end

4: S = ∅

5: for i = 1, . . . , r do
6: Choose ji ∈ S(i) \⋃p �=i S(p) so that ∀ p �= i, ∃ j′

i ∈ S(p) with j′
i < ji

7: S ← S ∪ {ji}
8: end

Output: S = {j1, . . . , jr} ⊂ {0, 1, . . . , E} : the function g ∈ Bn with
Output: supp(g) = supp(f) ∪ M \ {αj1 , . . . , αjr } has maximum AI

Corollary 2 states that singleswap can be used for identifying some of the
coefficients of ujs

in Theorem 4 (for k = E + 1 all the coefficients of ujs
are

determined). Thus, by appropriately combining Theorem4 and Corollary 2, we
get Algorithm modifyCF - which utilizes singleswap- in order to efficiently modify
a Carlet–Feng function in many positions so as to ensure maximum AI.

Theorem 6. The Algorithm modifyCF provides functions with maximum
AI, whilst its worst–case computational complexity is O(rkL), for L =
max{k, r log2 k}.
Proof. The fact that any function obtained from modifyCF has maximum AI
is straightforward from Theorem4 and Corollary 2. Note that each execution
of singleswap (line 2) is of computational complexity O(k2), whilst there are r
executions of this algorithm. Moreover, the procedure in line 6 of the algorithm
rests with searching for specific elements within ordered arrays of numbers with
length at most k; hence, for each such element of S(i), we apply binary search
on at most r − 1 arrays (sets). At the worst case, k(r − 1) searches are needed
for choosing ji from S(i), thus the overall complexity for all i is O(kr2 log2 k) for
the worst case, leading to the desired result. ��

Algorithm modifyCF is not deterministic, since in general there are many
choices for selecting ji from S(i) - hence, the initial choice of ji could be random,
with subsequent checking whether it satisfies the desired property.

Proposition 6. For any odd n, there always exists a Boolean function g con-
structed via Theorem4 such that deg(g) = n − 1.

Proof. According to (4), it holds deg(g) = n − 1 if and only AN−1 �= 0 or,
equivalently, if and only if

∑
x∈supp(g) x �= 0. Assume that a function g obtained

by Theorem 4 has degree less than n − 1, i.e.
∑

x∈supp(g) x = 0. Then, with the
notation of Theorem 4, replacing αjr with any element αj′

r ∈ supp(g + 1) so
that the properties stated therein are satisfied, we get that the function g′ with
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Table 1. Application of singleswap to f : supp(f) = {1, α, . . . , αE} with n = 7

mi Set S(i) of all possible ji

80 0 3 6–9 11–15 17 18 21–24 28 29 33 36 38–41 43 45–47 53 54 56 58 61 63

81 0–2 4–7 11 13 14 18 19 21 22 25 26 29 31–33 38–45 49 51 53–55 57 58–61 63

90 0 2 3 7 10 15–17 19 22 24 27 29 32 33 38–40 45 46 48 50 51 53–56 58 60 61 63

91 0–6 9 10 12 15 17 18 20 21 24–26 28 31 32 37–41 43 45 48 52–60 63

supp(g′) = (supp(g) \ {αjr}) ∪ {αj′
r} is also derived from Theorem 4 and clearly

has maximum degree n − 1. If such αj′
r does not exist, then we may consider

the function g̃ with supp(g̃) = (supp(g) \ {αjr}) ∪ {αir}, which clearly satisfies
deg(g̃) = n − 1. ��
Proposition 7. With the notation of Theorem4, it holds nl(g) > 2n−1−(

ln 2
π n+

0.74
)
2n/2 − 2r − 1.

Proof. Since g is obtained from the Carlet–Feng function f by swapping r
elements between supp(f) and supp(f + 1), it holds nl(g) ≥ nl(f) − 2r. The
best known lower bound of nl(f) is 2n−1 − (

ln 2
π n + 0.74

)
2n/2 − 1 as proved in

[28, Theorem 7] and the claim follows. ��
Proposition 7 states that the nonlinearity of g is strongly contingent on the

nonlinearity of f . Hence, since the actual nonlinearity of f seems to be much
higher than the aforementioned lower bound [4,31], it is expected that Algorithm
modifyCF can lead to functions with high nonlinearities. This is also shown in
the subsequent example, where much higher nonlinearities than the above bound
are achieved.

Example 7. Table 1 illustrates, for each mi ∈ {80, 81, 90, 91}, all possible ji

such that the function g ∈ B7 with supp(g) = supp(f) \ {αji} ∪ {αmi}
has maximum AI, with f a Carlet–Feng function on 7 variables. In other
words, Table 1 is obtained by executing singleswap (in line 2 of modifyCF) for
M = {α80, α81, α90, α91} and k = 64 (the maximum possible). Then, a possible
output of Algorithm modifyCF is the set S = {47, 49, 50, 52} (for instance, Line 6
of Algorithm modifyCF may return j1 = 47, since 47 is the largest integer which
lies in S(1) - the first row of Table 1 - and is not present in any S(j), j = 2, 3, 4).
Hence the function g ∈ B7 defined as follows has maximum AI, equal to 4

supp(g) = supp(f) ∪ M \ {α47, α49, α50, α52}

whereas deg(g) = 6 and nl(g) = 52 (while nl(f) = 54). This output could also
be obtained even if singleswap at line 2 was executed for k = 17.

Note that any {s1, s2, s3, s4} with s1 ∈ {8, 23, 36, 47}, s2 ∈ {42, 44, 49}, s3 ∈
{16, 27, 50} and s4 ∈ {20, 37, 52} can be also derived from modifyCF, giving 108
different functions. The number of possible output functions further increases if



14 K. Limniotis and N. Kolokotronis

we allow ourselves to compute functions that differ in less than 8 places from
f . The vast majority of all these functions have nonlinearity 52, that is very
close to the nonlinearity of f (i.e. the nonlinearity is decreased, with respect
to the Carlet–Feng function f , by 2 and not by 2r = 8). It is expected though
that, in general, values equal to or higher than the nonlinearity of f may be also
achieved; for instance, g̃ ∈ B7 with supp(g̃) \ {α50} ∪ {α90} has nonlinearity 54.

Finally, computer experiments show that g behaves the same way as the
Carlet–Feng function f with respect to fast algebraic attacks; namely, g does
not admit any pair (e, d) with e = 1 and e + d ≤ n − 1, whilst for e > 1 there is
no any pair (e, d) satisfying e + d < n − 1. ��

6 Conclusions

A general approach to appropriately modify any function with maximum AI
in odd number of variables without reducing this maximum value is provided.
This approach, when applied to the Carlet–Feng construction, leads to an effi-
cient algorithm to construct new functions with maximum AI. Since Carlet–Feng
functions have good cryptographic properties, it is expected that the proposed
approach leads to functions that also behave well with respect to other crypto-
graphic criteria. This was confirmed by experimental results, and it constitutes
subject of ongoing research.

Acknowledgment. The authors would like to thank the anonymous reviewers for the
helpful comments and suggestions.
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Abstract. Bent and plateaued functions play a significant role in cryp-
tography since they can have various desirable cryptographic properties.
In this work, we first provide the characterizations of plateaued functions
in terms of the moments of their Walsh transforms. Next, we generalize
the characterizations of Boolean bent and plateaued functions in terms
of their second-order derivatives to arbitrary characteristic. Moreover,
we present a new characterization of plateaued functions in terms of
fourth power moments of their Walsh transforms. Furthermore, we give
a new proof of the characterization of vectorial bent functions. Finally, we
present the characterizations of vectorial s-plateaued functions in terms
of moments of their Walsh transforms and the zeros of their second-order
derivatives.
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1 Introduction

The functions over a binary field are called Boolean functions. Boolean bent
functions are a special type of Boolean functions. These functions were intro-
duced by Rothaus in [26], generalized to p-ary bent functions by Kumar et al.
in [19] and further studied in [14,15,17,27]. Plateaued functions over a binary
field are a generalization of Boolean bent functions. They were introduced and
initially studied by Zheng and Zhang in [28]. The Walsh-Hadamard spectrum
is an important tool to define and design plateaued functions. Some plateaued
functions have low Hadamard transform, which provides protection against fast
correlation attacks and linear cryptanalysis. In addition to the useful properties
of bent functions such as high nonlinearity, resiliency, low additive autocorre-
lation, high algebraic degree and satisfy propagation criteria, some plateaued
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-29172-7 2
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functions may have the other desirable cryptographic properties such as bal-
ancedness and correlation immunity. On the other hand, plateaued functions
include three significant classes of Boolean functions: the well-known bent func-
tions (called 0-plateaued functions), the near-bent functions (called 1-plateaued
functions) and the semi-bent functions (called 2-plateaued functions). Boolean
plateaued functions have been widely studied (for example, see in [1,6–8,18,20–
22,29]) due to their cryptographic properties. A complete survey on Boolean
plateaued functions was given by Mesnager in [24].

In characteristic 2, 0-plateaued functions and 2-plateaued functions exist
when n is even, while 1-plateaued functions exist when n is odd. Therefore,
Boolean plateaued functions were generalized to p-ary plateaued functions (for
example, see in [11]). Recently, Mesnager [23] characterized p-ary plateaued func-
tions in terms of the moments of their Walsh transforms. Moreover, in charac-
teristic p, she established a link between the fourth power moment and the
derivative. More recently, interesting characterizations of plateaued functions in
characteristic 2 (different from those exhibited (in characteristic p) in [23]) have
been provided (without proofs) by Carlet in [3].

In this paper, we are motivated by [7,23] and our results are valid in arbitrary
characteristic. After presenting the basic tools in Sect. 2, we give in Sect. 3 the
characterizations of plateaued functions in terms of the moments of their Walsh
transforms. In Sect. 4, we generalize the characterizations of bent and plateaued
functions in characteristic 2 given in [7] to arbitrary characteristic. Moreover,
we present a new characterization of plateaued functions in terms of the fourth
power moments of their Walsh transforms. In Sect. 5, we furthermore provide
a link between the balancedness of the first-order derivatives of vectorial bent
functions and the number of zeros of their second-order derivatives. Finally,
Sect. 6 gives the characterizations of vectorial s-plateaued functions in terms of
the moments of their Walsh transforms and the number of zeros of their second-
order derivatives.

2 Preliminaries

We denote the finite field with pn elements by Fpn where p is a prime number and
n is a positive integer. The set of nonzero elements of Fpn is denoted by F

�
pn .

Notice that the finite field Fpn can be seen as an n-dimensional vector space
over Fp and denoted by F

n
p . The trace function of α ∈ Fpn over Fp is defined as

TrFpn/Fp
(α) = α+αp + · · ·+αpn−1

. In this paper, the absolute trace of α over Fp

is denoted by Trpn

p (α). Let f be a function from Fpn to Fp and εp be a primitive
p-th root of unity in C. The sign function of f from F

n
p to C is denoted by χf

defined as χf (x) = ε
f(x)
p for all x ∈ F

n
p . The Fourier transform χ̂f of the function

χf is defined as

χ̂f :Fn
p → C

ω �−→ χ̂f (ω) =
∑

x∈Fn
p

χf (x)ε−ω·x
p ,
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called the Walsh transform of f at w ∈ F
n
p , where “·” is any scalar product in

F
n
p . As the notion of Walsh transform concerns a scalar product, it is suitable

to take the isomorphism between the scalar product “·” in F
n
p and the trace of

the product ω ·x = Trpn

p (ωx) in Fpn . Thus, the Walsh transform of f at ω ∈ Fpn

can be given as

χ̂f (ω) =
∑

x∈Fpn

ε
f(x)−Trpn

p (ωx)
p .

A function f is called bent if |χ̂f (ω)| = p
n
2 for all ω ∈ Fpn , and f is called s-

plateaued if |χ̂f (ω)| ∈
{

0, p
n+s
2

}
for all ω ∈ Fpn and a fixed integer 0 ≤ s ≤ n. It

is obvious that bent functions are 0-plateaued functions. The following equation
is known as the Parseval identity :

∑

ω∈Fpn

|χ̂f (ω)|2 = p2n. (1)

The following tools were previously introduced in the literature (for example,
see in [4] and [23]). The below Lemma is useful to prove some results in the next
sections.

Lemma 1. Let f be an s-plateaued function from Fpn to Fp. Then for ω ∈ Fpn ,
|χ̂f (ω)| takes pn−s times the value p

n+s
2 and pn − pn−s times the value 0.

For a non-negative integer i, the moment of Walsh transforms of f is defined as

Si(f) =
∑

ω∈Fpn

|χ̂f (ω)|2i.

It is obvious that S0(f) = pn and S1(f) = p2n by (1). For every integer A and
every non-negative integer i, the following equation holds

∑

ω∈Fpn

(
|χ̂f (ω)|2 − A

)2

|χ̂f (ω)|2i = Si+2(f) − 2ASi+1(f) + A2Si(f). (2)

The derivative of f at a ∈ Fpn is the map Daf from Fpn to Fp defined as

Daf(x) = f(x + a) − f(x), ∀x ∈ Fpn .

Let F be a vectorial function from Fpn to Fpm . The derivative of F at a ∈ Fpn

is the map DaF from Fpn to Fpm defined as

DaF (x) = F (x + a) − F (x), ∀x ∈ Fpn .

3 Characterizations of Plateaued Functions

In this section, our results are originated from [23]. We give the characteriza-
tions of s-plateaued functions via the sequence of even moments of their Walsh
transforms. The following seems to be more practical than [23, Theorem 1] in
some applications.
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Theorem 1. Let f be a function from Fpn to Fp. Let s be an integer with 0 ≤
s ≤ n and i, j ∈ Z

+. Then the followings are equivalent:

1. f is s-plateaued for s > 0.

2. Si(f)Sj(f) = Si+1(f)Sj−1(f) for all i ≥ 1 and j ≥ 2.

Moreover, f is bent if and only if (2) holds for all i, j ∈ Z
+.

Proof. Suppose that f is s-plateaued for s > 0. By Lemma 1, it is easily seen
that

Si(f)Sj(f) = Si+1(f)Sj−1(f), ∀i ≥ 1, j ≥ 2.

Conversely, for j = i + 2 and A = Si+1(f)
Si(f)

in (2), the proof is the same as the
proof of [23, Theorem 1]. �

In fact, Theorem 1 is equivalent to [23, Theorem 1], which can be shown as fol-
lows.

Corollary 1. Let f be a function from Fpn to Fp. Then the followings are equiv-
alent:

1. Si(f)Si(f) = Si+1(f)Si−1(f) for all i ≥ 2.
2. Si(f)Sj(f) = Si+1(f)Sj−1(f) for all i, j ≥ 2.

Proof. Suppose that (1) holds. Without loss of generality, we may assume i < j
and fix i ≥ 2. We proceed by induction on j. For j = i + 1 and j = i + 2, then
(2) trivial holds. Let j = i + 3. From (1), we get

Si+1(f)Si+1(f) = Si+2(f)Si(f),
Si+2(f)Si+2(f) = Si+3(f)Si+1(f).

It follows that Si(f)Si+3(f) = Si+1(f)Si+2(f). Then, (2) holds for j = i + 3.
For j = i + k, assume that (2) holds. We then have

Si(f)Si+k(f) = Si+1(f)Si+k−1(f),
Si+k−1(f)Si+k+1(f) = Si+k(f)Si+k(f).

It follows that Si(f)Si+k+1(f) = Si+1(f)Si+k(f). Therefore, (2) holds for
j = i + k + 1. The converse is obvious for j = i. �

For a function f from Fpn to Fp, Mesnager in [23] showed that S2(f) ≥ p3n and
also

S2(f) = p3n if and only if f is bent. (3)

We deduce that, for a bent function f , the sequence Si(f) is a simple geometric
sequence.

Corollary 2. Let f be a function from Fpn to Fp. If f is a bent function, then
for all i ∈ N

Si(f) = p(i+1)n. (4)



Results on Characterizations of Plateaued Functions 21

Proof. By (1) and (3), S1(f) = p2n and S2(f) = p3n, respectively. By Theo-
rem 1, we get Si(f) = Si−1(f)

2

Si−2(f)
= p(i+1)n for all i ≥ 3, recursively. Thus, (4) holds

for all i ∈ N. �

We also deduce from (3) the following characterization of s-plateaued functions
via the moments of their Walsh transforms.

Theorem 2. Let f be a function from Fpn to Fp and s be an integer with 1 ≤
s ≤ n. Then

f is s-plateaued if and only if S2(f) = p3n+s and S3(f) = p4n+2s.

Proof. Assume that f is s-plateaued. By (2) with A = pn+s and i = 0,
∑

ω∈Fpn

(|χ̂f (ω)|2 − pn+s
)2 = S2(f) − 2pn+sS1(f) + p2n+2sS0(f)

= (pn − pn−s)(−pn+s)2
(5)

where the last equality of (5) follows from Lemma 1. Therefore, S2(f) = p3n+s

from (5) and S3(f) = S2(f)
2

S1(f)
= p4n+2s by Theorem 1.

Conversely, suppose that S2(f) = p3n+s and S3(f) = p4n+2s. By (2) with A =
pn+s and i = 1, we get the following:

∑

ω∈Fpn

(|χ̂f (ω)|2 − pn+s)2|χ̂f (ω)|2 = S3(f) − 2pn+sS2(f) + p2n+2sS1(f) = 0.

Therefore, |χ̂f (ω)| ∈
{

0, p
n+s
2

}
for all ω ∈ Fpn , which implies that f is s-

plateaued. �

We deduce that, for an s-plateaued function f , the sequence Si(f) is also a
simple geometric sequence.

Corollary 3. Let f be a function from Fpn to Fp and s be an integer with
1 ≤ s ≤ n. If f is an s-plateaued function, then for all i ∈ Z

+

Si(f) = p(i+1)n+(i−1)s. (6)

Proof. By Theorem 2, S2(f) = p3n+s and S3(f) = p4n+2s. By Theorem 1, we
get

Si(f) =
Si−1(f)2

Si−2(f)
= p(i+1)n+(i−1)s

for all i ≥ 4, recursively. Thus, (6) holds for all i ∈ Z
+. �

4 Characterizations of Bent and Plateaued Functions

The characterizations of bent and plateaued functions in characteristic 2 in terms
of the second-order derivatives were firstly given by Carlet and Prouff in [7]. We
provide the generalization of their characterizations for any characteristic p as
the following.
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Theorem 3. Let f be a function from Fpn to Fp and s be an integer with 0 ≤
s ≤ n. Then, f is s-plateaued if and only if

∑

a,b∈Fpn

εDbDaf(x)
p = θ, ∀x ∈ Fpn (7)

with θ = pn+s. In particular, f is bent if and only if θ = pn for s = 0.

Proof. For a function f ,
∑

a,b∈Fpn

εDbDaf(x)
p =

∑

a,b∈Fpn

εf(x+a+b)−f(x+a)−f(x+b)+f(x)
p = θ, ∀x ∈ Fpn

if and only if
∑

a,b∈Fpn

εf(x+a+b)−f(x+a)−f(x+b)
p = θε−f(x)

p , ∀x ∈ Fpn . (8)

Let a1 = x + a and b1 = x + b for a1, b1 ∈ Fpn . Thus, (8) is equivalent to
∑

a1,b1∈Fpn

εf(a1+b1−x)−f(a1)−f(b1)
p = θε−f(x)

p , ∀x ∈ Fpn . (9)

Let the left-hand side of (9) be G1(x) and its right-hand side be G2(x) for all
x ∈ Fpn , i.e., G1(x) = G2(x) for all x ∈ Fpn . We recall the following well-known
property of the Fourier transform: for a function G from Fpn to C,

G(x) = 0 ∀x ∈ Fpn if and only if Ĝ(ω) =
∑

x∈Fpn

G(x)ε
−Trpn

p (ωx)
p = 0, ∀ω ∈ Fpn

where Ĝ is the Fourier transform of G. Then, for all ω ∈ Fpn the Fourier trans-
forms of G1 and G2 are equal:

Ĝ1(ω) =
∑

x∈Fpn

G1(x)ε
−Trpn

p (ωx)
p =

∑

x∈Fpn

G2(x)ε
−Trpn

p (ωx)
p = Ĝ2(ω).

The Fourier transform Ĝ1 of G1 at ω ∈ Fpn can be computed in terms of χ̂f as
the following:

̂G1(ω) =
∑

x∈Fpn

G1(x)ε
−Trp

n
p (ωx)

p =
∑

x∈Fpn

∑

a1,b1∈Fpn

ε
f(a1+b1−x)−f(a1)−f(b1)
p ε

−Trp
n

p (ωx)
p

=
∑

a1∈Fpn

ε
−f(a1)−Trpn

p (ωa1)
p

∑

b1∈Fpn

ε
−f(b1)−Trpn

p (ωb1)
p

∑

x∈Fpn

ε
f(a1+b1−x)−Trpn

p (−ω(a1+b1−x))
p

= (−χ̂f )(ω)(−χ̂f )(ω)χ̂f (−ω).

Similarly, for all ω ∈ Fpn

Ĝ2(ω) =
∑

x∈Fpn

G2(x)ε
−Trpn

p (ωx)
p =

∑

x∈Fpn

θε
−f(x)−Trpn

p (ωx)
p = θ(−χ̂f )(ω).
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Recall that for all ω ∈ Fpn

(−χ̂f )(ω) =
∑

x∈Fpn

ε
−f(x)−Trpn

p (ωx)
p =

∑

x∈Fpn

ε
f(x)+Trpn

p (ωx)
p =

∑

x∈Fpn

ε
f(x)−Trpn

p (−ωx)
p = χ̂f (−ω).

Then for all ω ∈ Fpn

χ̂f (−ω)χ̂f (−ω)χ̂f (−ω) = θχ̂f (−ω).

Therefore, (7) holds if and only if |χ̂f (ω)|2 ∈ {0, θ} for all ω ∈ Fpn where
θ = pn+s. In particular, for s = 0, (7) holds if and only if |χ̂f (ω)|2 = pn for all
ω ∈ Fpn . �

Theorem 3 can be rewritten as the following.

Corollary 4. Let f be a function from Fpn to Fp and s be an integer with
0 ≤ s ≤ n. Then, f is s-plateaued if and only if

∑

a,b,x∈Fpn

εDbDaf(x)
p = p2n+s.

We remember a link between the second-order derivatives and the fourth power
moments of the Walsh transforms in characteristic p in the following Proposition
(see [23, Proposition 1], [16, Theorem 10] and in [13]).

Proposition 1. Let f be a function from Fpn to Fp. Then

S2(f) =
∑

ω∈Fpn

|χ̂f (ω)|4 = pn
∑

a,b,x∈Fpn

εDbDaf(x)
p .

We deduce a new characterization of s-plateaued functions in terms of the fourth
power moments of their Walsh transforms.

Theorem 4. Let f be a function from Fpn to Fp and s be an integer with 0 ≤
s ≤ n. Then, f is s-plateaued if and only if

S2(f) =
∑

ω∈Fpn

|χ̂f (ω)|4 = p3n+s.

In particular, f is bent if and only if S2(f) = p3n.

Proof. By Corollary 4 and Proposition 1, f is s-plateaued if and only if

S2(f) =
∑

ω∈Fpn

|χ̂f (ω)|4 = pn
∑

a,b,x∈Fpn

εDbDaf(x)
p = p3n+s.

�

Notice that Theorem 2 is also a direct corollary of Theorem 4. Let us introduce
an example of quadratic s-plateaued functions.
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Example 1. Let p be an odd prime and n ≥ 2 be an integer. Let f be an arbitrary
Fp-quadratic form from Fpn to Fp defined as

f(x) = Trpn

p (a0x
2 + a1x

p+1 + a2x
p2+1 + · · · + a�n

2 	xp�n
2 	+1).

The radical of f given by

W = {x ∈ Fpn : f(x + y) = f(x) + f(y),∀y ∈ Fpn}

is an Fp-linear subspace of Fpn . Let dimFp
W = s. It follows from [9, the proof

of Theorem 4.1] that for all ω ∈ Fpn

|χ̂f (ω)|2 = 0 or p2s
∑

y1,...,yn−s∈Fp

∑

z1,...,zn−s∈Fp

εH(y1,...,yn−s)−H(z1,...,zn−s)
p

where H(x1, . . . , xn−s) = 1
2 (x2

1 + · · · + x2
n−s−1 + dx2

n−s) and d ∈ F
�
p. For each

pair yi and zi where i = 1, . . . , n − s, it is easy to see that

∑

yi,zi∈Fp

ε
1
2 (y

2
i −z2

i )
p =

∑

ti1,ti2∈Fp

ε
1
2 (ti1ti2)
p =

∑

ti2∈Fp

(
∑

ti1∈Fp

ε
1
2 ti1
p

)
= p.

Therefore, we conclude that |χ̂f (ω)|2 ∈ {0, pn+s} for all ω ∈ Fpn . Moreover, [10,
Proposition 5.8] gives an algorithm to construct a such quadratic form f with
radical W of dimension s with 0 ≤ s ≤ n−1. In fact, this algorithm holds for any
finite field Fq where q is a prime power. Hence, for each odd prime p, integers
n ≥ 2 and s with 0 ≤ s ≤ n − 1, there exists a quadratic p-ary s-plateaued
function f from Fpn to Fp. For example, for p = 3 and n = 5, we provide the
following s-plateaued functions:

– f1(x) = Tr3
5

3 (x2 + x4 + 2x10) is the quadratic 0-plateaued function,
– f2(x) = Tr3

5

3 (x2 + x4 + x10) is the quadratic 1-plateaued function,
– f3(x) = Tr3

5

3 (ξx2 + x4 + 2x10) is the quadratic 2-plateaued function,
– f4(x) = Tr3

5

3 (ξ2x2 + 2x4 + ξ28x10) is the quadratic 3-plateaued function and
– f5(x) = Tr3

5

3 (x2 + 2x4 + 2x10) is the quadratic 4-plateaued function

where ξ is a primitive element of F35 with ξ5 + 2ξ + 1 = 0.

5 Characterization of Vectorial Bent Functions

The present section provides a new proof of characterization of vectorial bent
functions given in [23]. The vectorial bent function is defined as the following.

Definition 1. Let F be a vectorial function from Fpn to Fpm . For every λ ∈ F
�
pm ,

the component function fλ from Fpn to Fp is defined as fλ(x) = Trpm

p (λF (x))
for all x ∈ Fpn . Then, F is called vectorial bent if fλ is bent for all λ ∈ F

�
pm .
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In [25, Theorem 2.3], vectorial bent functions were characterized by using their
derivatives: A vectorial function F is bent if and only if DaF is balanced for all
a ∈ F

�
pn . Recently, Mesnager characterized the vectorial bent functions in [23,

Theorem 6] by using the number of zeros of second-order derivatives: A vectorial
function F is bent if and only if

N(F ) = |{(a, b, x) ∈ F
3
pn : DbDaF (x) = 0}| = p3n−m + p2n − p2n−m.

It would be interesting to prove directly that DaF is balanced for all a ∈ F
�
pn if

and only if N(F ) = p3n−m +p2n −p2n−m without using the bentness of vectorial
function F . Before proving it, we start with a well-known result.

Lemma 2. Let x1, x2, . . . , xm be positive real numbers such that x1 +x2 + · · ·+
xm = n. We then have

x2
1 + x2

2 + · · · + x2
m ≥ n2

m
(10)

and the equality in (10) holds if and only if x1 = x2 = · · · = xm.

The following Lemma is similar to Proposition 1, items (1) and (2) in [5], but it
is valid in arbitrary characteristic.

Lemma 3. Let G be a vectorial function from Fpn to Fpm . Then

|{(x1, x2) ∈ F
2
pn : G(x1) = G(x2)}| ≥ p2n−m (11)

and the equality in (11) holds if and only if G is balanced.

Proof. Let Aj = {x ∈ Fpn : G(x) = yj ∈ Fpm} and zj = |Aj | for j ∈ {1, . . . , pm}.
Then we have

|{(x1, x2) ∈ F
2
pn : G(x1) = G(x2)}| =

∣

∣

∣

pm
⋃

j=1

{(x1, x2) ∈ F
2
pn : x1, x2 ∈ Aj}

∣

∣

∣ =

pm
∑

j=1

|Aj |2 =

pm
∑

j=1

z
2
j .

By Lemma 2, for
∑pm

j=1 zj = pn and zj ≥ 0, we get
∑pm

j=1 z2j ≥ p2n−m. Thus, (11)
holds. Notice that G is balanced if and only if z1 = z2 = · · · = zpm . The final
assertion also follows from Lemma 2. �

Proposition 2. Let F be a vectorial function from Fpn to Fpm . Then

DaF is balanced for all a ∈ F
�
pn ⇐⇒ N(F ) = p3n−m + p2n − p2n−m (12)

where N(F ) = |{(a, b, x) ∈ F
3
pn : DbDaF (x) = 0}|.

Proof. The second-order derivative of F at (a, b) ∈ F
2
pn is

DbDaF (x) = F (x + a + b) + F (x) − F (x + b) − F (x + a).

Notice that for (a, b, x) ∈ F
3
pn , DbDaF (x) = 0 if and only if

DaF (x) = DaF (x + b). (13)
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First, for n = m, let us prove that DaF is balanced for all a ∈ F
�
pn if and only if

N(F ) = 2p2n − pn. For a = 0, it is easy to see that (13) holds for all b, x ∈ Fpn

since DaF is zero map. Then, |{(0, b, x) ∈ F
3
pn : DbDaF (x) = 0}| = p2n. For

a �= 0, by Lemma 3, the number of pairs (b, x) ∈ F
2
pn satisfying (13) is equal to

pn if and only if DaF is balanced. Then, |{(a, b, x) ∈ F
3
pn : a �= 0,DbDaF (x) =

0}| = p2n − pn. Therefore, DaF is balanced for all a ∈ F
�
pn if and only if N(F ) =

2p2n − pn.
Now, let n �= m. For a = 0, we get |{(0, b, x) ∈ F

3
pn : DbDaF (x) = 0}| = p2n.

For a �= 0, by Lemma 3, the number of pairs (b, x) ∈ F
2
pn satisfying (13) is

equal to p2n−m if and only if DaF is balanced. Then, |{(a, b, x) ∈ F
3
pn : a �=

0,DbDaF (x) = 0}| = (pn − 1)p2n−m. Thus, (12) holds. �

In [23, Corollary 1], F is vectorial bent if and only if N�(F ) = (pn−1)(p2n−m−pn)
where

N�(F ) = |{(a, b, x) ∈ F
�
pn × F

�
pn × Fpn : DbDaF (x) = 0}|.

Then, DaF is balanced for all a ∈ F
�
pn if and only if N�(F ) = (pn−1)(p2n−m−

pn). This can be easily seen by Lemma 3.

6 Characterizations of Vectorial s-Plateaued Functions

In this section, we are interested in a special class of vectorial plateaued func-
tions, which are called vectorial s-plateaued functions where s ∈ N. We provide
their characterizations in terms of the moments of their Walsh transforms and
the number of zeros of their second-order derivatives.

The notion of vectorial plateaued functions in characteristic 2 were defined
by Carlet in [2]. This can be given in arbitrary characteristic.

Definition 2. Let F be a vectorial function from Fpn to Fpm . For every λ ∈ F
�
pm ,

the component function fλ from Fpn to Fp is defined as fλ(x) = Trpm

p (λF (x))
for all x ∈ Fpn . Then, F is called vectorial plateaued if fλ is plateaued for all
λ ∈ F

�
pm .

The notion of vectorial s-plateaued functions in arbitrary characteristic can
be given as the following (for example, see in [12]).

Definition 3. Let F be a vectorial function from Fpn to Fpm and s be an integer
with 0 ≤ s ≤ n. For every λ ∈ F

�
pm , the component function fλ from Fpn to Fp

is defined as fλ(x) = Trpm

p (λF (x)) for all x ∈ Fpn . Then, F is called vectorial
s-plateaued if fλ is s-plateaued with the same amplitude s for all λ ∈ F

�
pm .

Notice that F is said to be vectorial s-plateaued if and only if fλ is s-plateaued
with the same amplitude s for all λ ∈ F

�
pm .

We can extract from Theorem 2 the following characterization of vectorial
s-plateaued functions.
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Theorem 5. Let F be a vectorial function from Fpn to Fpm . Then, F is a
vectorial s-plateaued function if and only if

∑

λ∈F
�
pm

S2(fλ) = p3n+s(pm − 1) and
∑

λ∈F
�
pm

S3(fλ) = p4n+2s(pm − 1). (14)

Proof. Suppose that F is vectorial s-plateaued. By Theorem 2 for all λ ∈ F
�
pm ,

fλ is s-plateaued if and only if S2(fλ) = p3n+s and S3(fλ) = p4n+2s. Thus,
(14) holds.

Conversely, suppose that (14) holds. By (2) with A = pn+s and i = 1, for all
λ ∈ F

�
pm

Dλ =
∑

ω∈Fpn

(|χ̂fλ(ω)|2 − pn+s)2|χ̂fλ(ω)|2 = S3(fλ) − 2pn+sS2(fλ) + p2(n+s)S1(fλ).

Then by (1) and (14),
∑

λ∈F
�
pm

Dλ = p4n+2s(pm − 1) − 2pn+sp3n+s(pm − 1) + p2n+2sp2n(pm − 1) = 0.

Since Dλ ≥ 0 and
∑

λ∈F
�
pm

Dλ = 0, we get Dλ = 0 for every λ ∈ F
�
pm . Then,

for every λ ∈ F
�
pm , |χ̂fλ

(ω)| ∈
{

0, p
n+s
2

}
for all ω ∈ Fpn . Therefore, F is vectorial

s-plateaued function. �

For a vectorial function F , the relation between the sum of S2(fλ) for all
λ ∈ F

�
pm and N(F ) was given by Mesnager in [23] as follows.

Proposition 3. Let F be a vectorial function from Fpn to Fpm . Then
∑

λ∈F
�
pm

S2(fλ) = pn+mN(F ) − p4n

where N(F ) = |{(a, b, x) ∈ F
3
pn : DbDaF (x) = 0}|.

We conclude the following characterization of vectorial s-plateaued functions.

Theorem 6. Let F be a vectorial function from Fpn to Fpm . Then, F is vectorial
s-plateaued if and only if S3(fλ) = p4n+2s for all λ ∈ F

�
pm and

N(F ) = p3n−m + p2n+s − p2n+s−m

where N(F ) = |{(a, b, x) ∈ F
3
pn : DbDaF (x) = 0}|.

Proof. By Proposition 3 and Theorem 5, we get p3n+s(pm − 1) = pn+mN(F ) −
p4n. Thus, we obtain

N(F ) = p3n−m + p2n+s − p2n+s−m.
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Conversely, by Proposition 3, we get
∑

λ∈F
�
pm

S2(fλ) = pn+m(p3n−m + p2n+s − p2n+s−m) − p4n = p3n+s(pm − 1).

By assumption,
∑

λ∈F
�
pm

S3(fλ) = p4n+2s(pm − 1). Therefore, by Theorem 5, F

is vectorial s-plateaued functions. �

Let us give an example of vectorial quadratic s-plateaued functions.

Example 2. Let p be an odd prime, m ≥ 2 and r ≥ 2 be integers and q = pm.
Let f be an arbitrary Fq-quadratic form from Fqr to Fq given by

f(x) = Trqr

q (a0x
2 + a1x

q+1 + a2x
q2+1 + · · · + a� r

2	x
q� r

2	+1).

As in Example 1, by [9,10], we have an algorithm to construct f with radical

W = {x ∈ Fqr : f(x + y) = f(x) + f(y),∀y ∈ Fqr} (15)

of prescribed dimension s over Fq for each given integer s with 0 ≤ s ≤ r − 1.
For λ ∈ F

�
pm , the component function gλ from Fpn to Fp given by gλ(x) =

Trpm

p (λf(x)) is an Fp-quadratic form with radical

Wλ = {x ∈ Fpn : gλ(x + y) = gλ(x) + gλ(y),∀y ∈ Fpn} (16)

where n = mr. For a Fq-quadratic form f on Fqr and λ ∈ F
�
q , the radical W in

(15) is the set of the roots of the equation

a0x + a1x
q + (a1x)q−1

+ a2x
q2

+ (a2x)q−2
+ · · · + a� r

2 �xq� r
2 �

+
(
a� r

2 �x
)q

−� r
2 �

(17)

in Fqr and Wλ in (16) is the set of the roots of the equation

λa0x + λa1x
q
+ (λa1x)

q−1
+ λa2x

q2
+ (λa2x)

q−2
+ · · · + λa⌊ r

2

⌋x
q

⌊

r
2

⌋

+
(

λa⌊ r
2

⌋x
)q

−
⌊

r
2

⌋

(18)

(for example, see [10, Lemma 2.1]). As λ ∈ F
�
q , it is easy to observe from (17)

and (18) that W = Wλ. Therefore, we obtain vectorial s-plateaued function F
from Fpn to Fpm (notice that F (x) = f(x) for all x ∈ Fpn). This shows existence
of an algorithm to construct vectorial s-plateaued functions F for any integer s
with 0 ≤ s ≤ r − 1. For example, if p = 3, m = 2 and n = 6, then

– f1(x) = Tr3
6

32(x
2 + x10) is the vectorial 0-plateaued function and

– f2(x) = Tr3
6

32(x
2 + 2x10) is the vectorial 1-plateaued function.

Example 3. Let p be an odd prime and n be a positive even integer. Let f1 and
f2 be the quadratic p-ary s1-plateaued and s2-plateaued functions from Fpn to
Fp with s1 �= s2, respectively. For any θ ∈ Fp2 \ Fp, a function F given as

F (x) = f1(x) + θf2(x)
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is the vectorial plateaued function from Fpn to Fp2 , but it is not the vectorial
s-plateaued function for any integer s. This shows that the vectorial plateaued
functions are strictly more general than the vectorial s-plateaued function for
any s.

7 Conclusion

This paper studies the characterizations of (vectorial) bent and plateaued func-
tions in arbitrary characteristic. First, we provide the results on characterizations
of bent and plateaued functions. Next, we generalize their characterizations in
characteristic 2 in terms of the second-order derivatives given in [7] to arbitrary
characteristic. Moreover, we present a new characterization of plateaued func-
tions in terms of fourth power moments of their Wash transforms. Furthermore,
we give a direct proof between the balancedness of the first-order derivatives of
vectorial bent functions and the number of zeros of their second-order deriva-
tives. Lastly, we present the characterizations of vectorial s-plateaued functions.

Acknowledgment. The third author is partially supported by the Scientific and
Technological Research Council of Turkey (TÜBİTAK)-BİDEB 2211 program.
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Abstract. S-boxes play an important role in ensuring the resistance
of block ciphers against cryptanalysis as often they are their only non-
linear components. The cryptographic properties of S-boxes and a vari-
ety of constructions have been studied extensively over the past years.
Techniques for S-box generation include algebraic constructions, pseudo-
random generation and heuristic approaches. The family of artificial
immune algorithms is a particular example of a heuristic approach.
In this paper we propose an S-box generation technique using a spe-
cial kind of artificial immune algorithm, namely the clonal selection
algorithm, combined with a slightly modified hill climbing method for
S-boxes. Using this special algorithm we generate large sets of highly
nonlinear bijective S-boxes of low differential uniformity in a reasonable
search time.

Keywords: Immune algorithms · S-boxes · Nonlinearity · Differential
uniformity

1 Introduction and Motivation

Most block ciphers in modern cryptography contain one or more non-linear com-
ponents that have the ability to provide the effect of confusion [26], which is of
vital importance for the strength of the cipher. Often these components are n
to m Boolean mappings, the so called S-boxes. Among the whole set of S-boxes
the bijective ones are particularly interesting.

In order to improve the resistance of a block cipher to linear and differential
cryptanalysis [2,3,17], two main approaches are used - either by increasing the
number of active S-boxes or by using S-boxes with strong cryptographic proper-
ties. The most important cryptographic properties an S-box should possess are
regularity, high nonlinearity, high algebraic degree, low differential uniformity
and low autocorrelation. The known techniques for the construction of S-boxes
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can be divided into three main streams: algebraic constructions, pseudo-random
generation and heuristic techniques.

The first approach is the most popular one, where the S-boxes are designed
according to some proven mathematical relations and principles. The most
famous representatives of this approach are the bijective (n × n) S-boxes based
on inversion in the finite field GF (2n). They are the best S-boxes found and are
simultaneously optimal with respect to most of the desired criteria. The best
values achieved for nonlinearity and differential uniformity using algebraic con-
structions are Ninv = 2n−1 − 2

n
2 and δinv = 4, [21]. The (8 × 8) S-box of AES

[10] is such an S-box, which has high algebraic degree - 7, high nonlinearity -
112, low autocorrelation - 32 and low differential uniformity - 4. Although these
S-boxes are often preferred because of their excellent cryptographic properties,
there are some concerns related to their simple algebraic structure and possible
future vulnerability to algebraic attacks [9]. Furthermore, the number of these
S-boxes is small and all of them are affine equivalent.

The pseudo-random S-box generation technique consists of constructing the
S-box from a table of random numbers followed by its conformity testing. This
approach is doomed to failure from the very beginning as most of the desired
cryptographic criteria are often contradictory to each other, which greatly
reduces the number of S-boxes that are good with respect to all criteria and
diminishes the probability of picking up a good S-box.

Heuristic algorithms are used for S-box generation in a process of iteratively
improving an S-box or a whole set of S-boxes with respect to one or more prop-
erties. In contrast to the algebraic constructions, heuristic techniques are able
to produce big sets of S-boxes as they use direct search methods. Most com-
monly the cryptographic properties of S-boxes obtained by heuristic algorithms
are not as good as the ones of the algebraically constructed S-boxes. However,
in recent years the difference between these properties is getting more and more
indistinguishable. The latter is achieved by using some specific heuristic tech-
niques like the hill climbing method, the simulated annealing method, the genetic
algorithms or different combinations of these. With respect to nonlinearity, the
highest value achieved in the case of (8 × 8) bijective S-boxes by: the hill climb-
ing method is 100 [18]; the simulated annealing method is 102 [8]; and by a
special genetic algorithm is 104 [27]. Recently, in [16], values of 104 for nonlin-
earity were achieved by a method, referred to as the modified gradient descent,
based on swapping certain number of values in a permutation. In [15], values of
112, equal to the ones of the S-box of AES, for nonlinearity were achieved by a
method, referred to as the reversed genetic algorithm, starting from initial popu-
lation full of S-boxes based on inversion in the finite field and obtaining large sets
of non-equivalent S-boxes. As regards to differential uniformity, the lowest value
achieved in the case of (8 × 8) bijective S-boxes is 4, [15,22,23]. Although most
of the methods described give good results for constructing bijective S-boxes
with respect to only one of the main criteria, it becomes much more challenging
when both nonlinearity and differential uniformity should be considered simul-
taneously. In [8,18,27] differential uniformity is not considered at all. In [16] the
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S-box reported has nonlinearity 104 and differential uniformity 8. In [22,23] the
best value obtained for differential uniformity is 4, while the respective nonlin-
earity value is 98. In [15] combinations (112, 6) and (110, 4) for nonlinearity and
differential uniformity are reported.

1.1 Contribution

In this paper we propose a new heuristic method for generation of big sets of
(n × n) bijective S-boxes possessing a good combination of the target properties
like: high nonlinearity, high algebraic degree, low differential uniformity and
low autocorrelation. The method, referred to as the SpImmAlg, is based on
using a specific artificial immune algorithm (Sect. 7.2 of [4]) combined with a
modification of the hill climbing method for S-boxes [18]. The input of SpImmAlg
is an (n × n) bijective S-box, which can either be pseudo-randomly generated
or some other S-box possessing specific properties. In the case of random input
and n = 8, the output of the algorithm after 10 days work on a cluster with 32
cores is a large set of thousands of (8 × 8) bijective S-boxes with nonlinearity
104 and differential uniformity 6. Compared to the finite field inversion-based
S-boxes and the ones obtained in [13,15], these S-boxes seem to be worse, but
after considering the fact that the former either are affine equivalent to the finite
field inversion-based S-boxes or at least share to a certain extent their algebraic
structure, then the latter S-boxes appear to be much more attractive due to
their random origin and the expected better resistance to algebraic attacks [9].

2 Preliminaries

In this section we recall some basic definitions and properties of Boolean func-
tions. We refer to [5,6] for a comprehensive survey on Boolean functions.

Let S : Bn → B
m be an n-binary input m-binary output mapping, referred

to as an (n × m) S-box. Then, to each x = (x1, x2, . . . , xn) ∈ B
n some

y = (y1, y2, . . . , ym) ∈ B
m is assigned by S(x) = y, where B = {0, 1} is

the 1-dimensional Boolean space. The (n × m) S-box S can be considered
as a vectorial Boolean function comprising m individual Boolean functions
f1, f2, . . . , fm : B

n → B, where fi(x) = yi for i = 1, 2, . . . ,m. These func-
tions are referred to as the coordinate Boolean functions of the S-box. It is
well known that most of desirable cryptographic properties of the S-box can
be defined also in terms of all non-trivial linear combinations of the coordinate
functions, referred to as the S-box component Boolean functions: gc : Bn → B,
where gc = c1f1 ⊕ c2f2 ⊕ . . . ⊕ cmfm and c = (c1, c2, . . . , cm) ∈ B

m \ {0}.

2.1 Boolean Functions

A Boolean function f : Bn → B can be represented by its binary output vector
containing 2n elements, referred to as the truth table. The function can also be
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represented by its polarity truth table, where instead of f the signed function
f̂ = (−1)f is considered.

Another way of representing f is by its algebraic normal form, denoted by
ANFf :

ANFf = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . . ⊕ anxn ⊕ a1,2x1x2 ⊕ . . . ⊕ a1,2,...,nx1x2 . . . xn,

where aI ∈ B, I ⊆ {1, 2, . . . , n}. The algebraic degree of f , denoted by deg(f), is
the number of variables of the largest product term of ANFf having a non-zero
coefficient.

The Walsh-Hadamard transform (WHT) of an n-variable Boolean function
f , represented by its polarity form f̂ , is denoted by F̂f (w) and defined as:

F̂f (w) =
∑

x∈Bn

f̂(x)(−1)<w,x> =
∑

x∈Bn

(−1)f(x)⊕<w,x> =
∑

x∈Bn

f̂(x)l̂w(x),

where l̂w(x) is the signed function of the linear function lw(x) =< w, x >.
F̂f (w) ∈ [−2n, 2n], ∀w ∈ B

n, and F̂f (w) is known as a spectral Walsh coef-
ficient, while the real-valued vector of all 2n spectral coefficients is referred to
as the WHT Spectrum. The maximum absolute value, taken by F̂f , is given by:
WHTmax(f) = max(w∈Bn) |F̂f (w)|.

The autocorrelation transform (ACT), taken with respect to α ∈ B
n, of an

n-variable Boolean function f , represented by its polarity form f̂ , is denoted by
r̂f (α) and defined as:

r̂f (α) =
∑

x∈Bn

(−1)f(x)⊕f(x⊕α) =
∑

x∈Bn

f̂(x)f̂(x ⊕ α)

Thus, r̂f (α) ∈ [−2n, 2n], ∀α ∈ B
n, and r̂f (0) = 2n. r̂f (α) is known as a spectral

autocorrelation coefficient of the function, while the real-valued vector of all 2n

autocorrelation coefficients is referred to as its ACT Spectrum.
Three of the important cryptographic properties that any n-variable Boolean

function f should possess are balance, high nonlinearity and low autocorrelation.
f is balanced if wH(f) = 2n−1, where wH(f) denotes the Hamming weight

of f .
The nonlinearity of f , denoted by Nf , is the Hamming distance between f

and the set A(n) containing all n-variable affine Boolean functions. It is given
by:

Nf = 2n−1 − 1
2
WHTmax(f) = 2n−1 − 1

2
max(w∈Bn)|F̂f (w)|

The absolute indicator of f , denoted by AC(f)max, is defined as the maxi-
mal non-trivial absolute autocorrelation value. It is given by: AC(f)max =
max(α∈Bn\{0}) |r̂f (α)|.

Two n-variable Boolean functions f and g are affine equivalent if and only
if there exist some invertible (n × n) binary matrix A, vectors b, c ∈ B

n and a
scalar d ∈ B, such that g(x) = f(Ax ⊕ b) ⊕ < c, x > ⊕ d.
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2.2 Vectorial Boolean Functions

All Boolean function properties discussed so far can be extended to the case of
vectorial Boolean functions (S-boxes). The important difference in the manner
the S-box properties are derived consists in that it is necessary the properties
of the S-box component Boolean functions to be considered rather than the
coordinate Boolean functions only.

Any good S-box should be regular (balanced) in order to avoid trivial statis-
tical attacks. An (n × m) S-box S with n ≥ m is said to be regular if, for each
its output y ∈ B

m, there are exactly 2n−m inputs that are mapped to y. Clearly,
each bijective (n×n) S-box S is always regular since it represents a permutation.
It is well known that an (n × m) S-box with n ≥ m is regular if and only if all
its component Boolean functions are balanced [25].

In order to improve the cipher immunity against linear cryptanalysis, [17],
any (n × m) S-box S should have small magnitude entries in its linear approx-
imation table LATS , which is shown to be equivalent in [24] to the statement
that the nonlinearity of each component Boolean function of S should be high.
Thus, the nonlinearity of S, denoted by NS , is given by the minimal nonlinearity
among the nonlinearities of the component Boolean functions:

NS = min(c∈Bm\{0}) gc = min(c=(c1,c2,...,cm)∈Bm\{0}) Nc1f1⊕c2f2⊕...⊕cmfm

In order to resist low order approximation attacks each (n × m) S-box S should
have an algebraic degree as high as possible, [14,20]. The (minimal) algebraic
degree of S, denoted by deg(S), is defined as the minimal algebraic degree among
the degrees of the component Boolean functions. It can be expressed as follows:

deg(S) = min(c∈Bm\{0}) deg(gc) = min(c=(c1,c2,...,cm)∈Bm\{0}) deg(c1f1⊕c2f2⊕. . .⊕cmfm)

In order to improve the cipher immunity against differential cryptanalysis, [2],
any (n × m) S-box S with n ≥ m should have small entries in its difference dis-
tribution table DDTS , not counting the first entry in the first row [1,7,11]. That
is, S should have as low differential uniformity as possible, where differential or
δ-uniformity, denoted by δ, is defined by:

δ = max(α∈Bn\{0}) max(β∈Bm) |{x ∈ B
n|S(x) ⊕ S(x ⊕ α) = β}|

It is well known that δ takes always only even values in [2n−m, 2n]. Then, the
smallest possible value of δ in the case of bijective S-boxes (n = m) is 2. Such
S-boxes are referred to as the almost perfect nonlinear (APN) permutations.

In order to improve the avalanche effect of the cipher, [12], any (n × m)
S-box S should have low autocorrelation, that is, the absolute indicators of the
component Boolean functions of the S-box should be as small as possible. In
other words, the maximal absolute indicator among all the absolute indicators,
denoted by AC(S)max, should be as small as possible.

Thus, we are looking in this paper for (n × n) bijective S-boxes possessing
high nonlinearity and high algebraic degree as well as low differential uniformity
and low autocorrelation.
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Both (n×n) bijective S-boxes S1 and S2 are said to be affine equivalent if there
exist invertible affine permutations A(x) and B(x), such that S1 = B ◦ S2 ◦ A.

3 Heuristic Techniques

There are different types of heuristic methods suitable for solving computational
problems. Some of them are inspired by a physical process (simulated annealing),
some - by the process of biological evolution (genetic algorithms), while other
methods are inspired by the process and mechanisms of the biological immune
system (immune algorithms). Related to S-box generation, all types of heuristic
techniques share the same approach. It involves a process, where given S-box or
a set of S-boxes are iteratively improved with respect to one or more of their
properties until either some reasonable number of iterations is reached or some
chosen in advance specific threshold values for these properties are achieved.

Hill climbing method consists in applying some small modifications of a cer-
tain number of distinct elements of a function in order one or more its cryp-
tographic properties iteratively to be improved. Simulated annealing method
involves a sort of extension to the hill climbing technique, allowing the searching
process to move out of a local optimum in order to continue. Genetic algorithms
work with populations of candidate solutions. Being iteratively subject to the
three main operations inspired by the natural evolution - crossover, mutation
and selection, these populations transform into better ones, possessing all the
properties desired. Each new generation is formed by those individuals from
the previous one that have passed the fitness test. The fitness test is based on
using a fitness or a cost function, responsible for taking the decision whether
the evaluated individuals will survive to the next generation or not. Only the
fittest individuals (those of maximal fitness or of low cost respectively) survive.
In contrast to genetic algorithms, immune algorithms work only with one can-
didate solution, corresponding to the most appropriate type of general immune
cells (lymphocytes) that will fight a specific pathogen. Once the initial solu-
tion is selected, it starts proliferating. During the proliferation process the ini-
tial solution is subject to some small copying errors, referred to as the somatic
hypermutation. The main goal of the combined process is by this duplication
and variation the adaptation and the fighting power of the initial solution to be
improved or in other words, the genetic variation preventing from falling into a
local optimum to be present. Then, the process is iterated by replacing the initial
solution with a new one, which is selected as the fittest solution from the new
generation by a fitness or a cost function like in the case of genetic algorithms.
At the end, the fittest solution (the one of maximal fitness or respectively of the
lowest cost) of the final generation is the best solution.

4 New Method

The proposed new method is based on a heuristic algorithm, denoted by SpIm-
mAlg, which combines a modified algorithm from the artificial immune algo-
rithms family, referred to as clonal selection algorithm (Sect. 7.2 of [4]), with a
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modification of the known hill climbing method for S-boxes [18]. The basic idea
is to start from an S-box and iteratively to improve its cryptographic properties.
The main goal of the algorithm is rapidly to be constructed a variety of strong
(n × n) bijective S-boxes, which possess target cryptographic properties such
as: high nonlinearity, high algebraic degree, low differential uniformity and low
autocorrelation.

4.1 Algorithm Description

SpImmAlg has as input an (n × n) bijective S-box S0. The initial S-box S0 can
be of any type - either a pseudo-randomly generated S-box or a specific one
possessing certain cryptographic properties. The modified hill climbing method
is applied to S0. It consists of repeatedly swapping any two elements of S0 and
calculating the cost of the newly obtained S-box S by a cost function cost(·).
If cost(S) < cost(S0), the process iteratively continues form S on. Otherwise, a
new S-box S is obtained and so on. The output S of the modified hill climbing
method, possessing the lowest cost, is then forwarded as an input to the modified
clonal selection algorithm. By means of two different somatic mutation functions
- mutation1(·) and mutation2(·) it produces 4 new S-boxes S1, S2, S3 and S4.
We use 4 S-boxes in order to speed up the execution, however any other number
of “children” is also possible. Each of these S-boxes is then transformed into
a better new one by the modified hill climbing method. The best S-box of the
four with respect to the respective cost function is then forwarded to the input
of the modified clonal selection algorithm and the process starts all over. The
algorithm makes use of 5 main functions, all having as an input argument any
(n × n) bijective S-box S. These are the three distinct cost functions - cost1(·),
cost2(·) and cost3(·), forming as a product the final cost function cost(·) that has
to be minimized, and both mutation functions - mutation1(·) and mutation2(·)
used in order to guarantee the wide variety of the new generations:

1. The first cost function cost1(·) calculates the cost of S by the rule:

cost1(S) =
∑

c<d∈Bn\{0}

∑

ω∈Bn

| |F̂c1f1⊕c2f2⊕...⊕cnfn (ω)|3 − |F̂d1f1⊕d2f2⊕...⊕dnfn (ω)|3 |7.

The goal of this cost function is to increase the S-box nonlinearity by making
the absolute WHT spectrum as flat as possible.

2. The second cost function cost2(·) calculates the cost of S by the rule:

cost2(S) =
∑

c=(c1,c2,...,cn)∈Bn\{0}

∑

ω∈Bn

|F̂c1f1⊕c2f2⊕...⊕cnfn
(ω) − 21|7.

The cost function
∑

c=(c1,c2,...,cn)∈Bn\{0}
∑

ω∈Bn |F̂c1f1⊕c2f2⊕...⊕cnfn
(ω)−X|R

for X,R real was first proposed in [8]. Later in [27] many pairs of parameters
have been investigated for (8 × 8) S-boxes and the pair X = 21, R = 7 was
shown to achieve the best results.
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3. The third cost function cost3(·) calculates the cost of S by the rule:

cost3(S) =
∑

δ11 �=δij∈DDTS

(δij − 1)2.(δij − 2)2.(δij − 4)2, where

δij (i, j = 1, 2, . . . , 2n) are the elements of the difference distribution table
DDTS of S. Naturally this cost function achieves its minimum when the
δ-uniformity is 2 or 4.

4. The final cost function cost(·) calculates the overall cost of S by the rule:

cost(S) = cost1(S).cost2(S).cost3(S),

i.e. by combining (and minimizing) the 3 cost functions.
5. The first mutation function mutation1(·) transforms S into S′ by the rule:

S′ = mutation1(S), where

S′ is obtained from S by swapping two its neighboring elements. The positions
p and p−1 of the elements that are going to be swapped depend on the number
p in the range from 2 to 2n, which is chosen at random at each execution of
the function. The latter serves as a guarantee that whenever the mutation
function mutation1(·) is being executed, the resulting S-box will be different
from the previous ones.

6. The second mutation function mutation2(·) transforms S into S′′ by the rule:

S′′ = mutation2(S), where

S′′ is obtained from S in the following manner: a block of an arbitrary length
q in the range from 2 to 8 of neighboring elements is modified in S. If q is
an even number, then the elements that are symmetric with respect to the
position p, which splits the block into two parts of equal length, are swapped.
Otherwise, the element in the middle of the block stays in place, while all the
other elements that are symmetric with respect to this element are swapped.
In both cases, due to the random choice of q and p, the resulting S-box again
will differ all the previous ones at each execution of the function. It should be
noted that mutation2 is an extension of mutation1 (case q = 2). In general
different values of q can be used, our experiments for (8 × 8) S-boxes show
that the best results can be expected when q is upper bounded by 8.

4.2 Algorithm Pseudo-code

STEP 1 (Initialization)
– Define an integer n, representing the dimensions of desired (n×n) bijective

S-boxes.
– Generate a random (n × n) bijective S-box S0.

STEP 2 (Initial selection)
– Start the modified hill climbing method (MHCM) with S0 as an input.
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– In result, obtain the (n × n) bijective S-box S, which has the lowest cost:
cost(S) = cost1(S).cost2(S).cost3(S), S = MHCM (S0).

STEP 3 (Somatic hypermutation)
– Twice apply the mutation function mutation1(·) with S as an input:

S1 = mutation1(S) and S2 = mutation1(S).
– Twice apply the mutation function mutation2(·) with S as an input:

S3 = mutation2(S) and S4 = mutation2(S).
– Obtain 4 different (n × n) bijective S-boxes S1, S2, S3 and S4.

STEP 4 (Selection)
– Start the modified hill climbing method for each of S1, S2, S3 or S4 as

an input.
– In result, obtain four low-cost (n × n) bijective S-boxes S′

1, S′
2, S′

3 and
S′
4 : S′

1 = MHCM (S1), S′
2 = MHCM (S2), S′

3 = MHCM (S3) and S′
4 =

MHCM (S4).
– Compare the overall cost, cost(·), of each of the four S-boxes S′

1, S′
2, S′

3,
S′
4 and set S′ to be the one with the lowest cost.

STEP 5 (Stopping criterion)
– If some chosen in advance threshold number of iterations or execution

time e.g. 10 days is reached, then STOP.
– Otherwise, set S to S′ and go to step 3.

5 Experimental Results

In this section the results obtained by SpImmAlg are provided. The goal was
to produce a variety of (8 × 8) bijective S-boxes with main cryptographic prop-
erties as close as possible to the finite field inversion-based S-boxes starting
from a random S-box. For the sake of simplicity, we chose as a criterion to stop
the algorithm after it runs for 10-days (instead of some threshold number of
iterations).

5.1 Results Obtained by SpImmAlg in the Case of (8 × 8) Bijective
S-boxes

We ran SpImmAlg with a randomly generated (8 × 8) bijective S-box S0. As a
result, in 10 days neither APN permutations nor S-boxes better than the finite
field inversion-based ones were found. The majority (35 000) of the obtained
(8 × 8) bijective S-boxes have nonlinearity 104 and differential uniformity 6. As
far as we know, such variety of S-boxes, possessing such a good combination
of both properties, has not been obtained yet by any other heuristic method,
when starting from a random S-box. We compare our results with all other
generation methods we know in Table 1. The comparison is with respect to the
target properties: nonlinearity, algebraic degree, autocorrelation and differential
uniformity. Whenever the value for one of these properties was not reported, we
assumed that it had not been considered and we put “-” in the table. Most of the
previous works do not consider differential uniformity but only nonlinearity as
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a target criterion. Therefore, it is hard to compare with their results. From one
side it is to be expected that if one more property is targeted that property will
possess better values than if neglected. However, the other properties usually
get worse since there are vast connections between those parameters and they
cannot be independently optimized. Since most of the previous works do not
publish the best S-boxes they have found it is impossible to compare the results.
In AppendixA we provide one of the best (8×8) S-boxes obtained by SpImmAlg.

Table 1. Known methods for generation of (8 × 8) bijective S-boxes

Generation methods/properties NS deg(S) AC(S)max δ-uniformity

Pseudo-random generation [18,19] 98 - - -

Finite field inversion [21] 112 7 32 4

Hill climbing method [18] 100 - - -

Genetic algorithm/hill climbing [19] 100 - - -

Simulated annealing method [8] 102 - 80 -

Special genetic algorithm [27] 104 - - -

Tweaking method [13] 106 7 56 6

Gradient descent method [16] 104 7 80 8

4-uniform permutations method [22,23] 98 - - 4

Reversed genetic algorithm [15] 110 7 40 4

Reversed genetic algorithm [15] 112 7 32 6

SpImmAlg [this paper] 104 7 88 6

6 Conclusions

The proposed new method produces repeatedly and reasonably fast thousands
of bijective S-boxes, possessing a very good combination for nonlinearity and dif-
ferential uniformity - (104, 6). Such values have only been achieved by finite field
inversion-based S-boxes and the methods described in [13,15]. However, these
methods either belong to algebraic constructions, meaning a limited number of
solutions and possible vulnerability to algebraic attacks [9], or by heuristic algo-
rithms working in a reverse way, i.e., “skiing-down” from finite field inversion-
based S-boxes and obtaining new ones possessing similar or worse properties.
The algorithm presented in this paper follows the classical “climbing-up” app-
roach starting from random S-boxes and improving their properties. The results
obtained are the best known compared to all previously published works that
consider the properties nonlinearity and differential uniformity and use the same
or similar approach [8,18,19,27].

The work presented in this paper can be extended in several directions. The
most promising one is to apply some changes in the number of the mutation
functions and in the functions themselves aiming at producing S-boxes with
N > 104 and δ = 4 that are different from the finite field inversion-based ones.
At least, from [15] we know that such S-boxes exist.
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A Appendix

Here we present in hex notations the generated by the SpImmAlg (8×8) bijective
S-box S. It was described in Table 1 and has nonlinearity 104, algebraic degree
7, maximal autocorrelation 88 and differential uniformity 6:

70 C6 7C D9 97 5D C2 23 D8 CF E7 6E BA D5 88 F2
68 47 25 6 C 2B 5B 7A AB 69 B5 C1 8D A6 57 A2 C9
7F FA 67 5C A7 FF 81 8E 09 A4 80 28 14 FE 56 F7
15 13 91 AA AC 3B FC DA 9B 37 D2 46 C3 00 45 AF
10 90 6D B1 D0 5E C7 A1 61 E4 12 F0 F4 38 76 FD
BE E1 59 EB 3F 87 4 A 4B E9 54 DB 2A AD D3 29 83
CD 3D 4D DF B0 4E 0E 22 75 F9 03 27 19 8C 3A 1F
B2 66 73 0C 7E 1E 85 8F E2 E8 39 16 94 E0 1C DE
5F 58 7B 44 DD 24 60 95 C5 6 A 7D 40 2E EA 64 21
92 F5 26 48 08 B4 01 4C 34 93 79 8B CC 0A B3 98
ED B6 CE 77 63 B8 9D 51 05 F1 11 2C 72 E5 C8 DC
F3 78 4F E3 2D E6 02 9F 18 8A CA CB 82 62 31 2F
41 17 1A BF EC 1B 04 0B 99 32 3E 71 AE 33 A3 53
42 49 D6 BC D4 30 6B A9 FB EE BB 07 EF A5 96 74
5A D1 50 84 43 6F 36 D7 89 A0 65 BD B9 06 C4 9A
A8 3C B7 F8 9E 1D 0F 0D 52 F6 35 86 C0 9C 20 55
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Abstract. We present several new observations on the CAESAR candi-
date MORUS (v1). First, we report a collision on its StateUpdate(S, M)
function. Second, we describe a distinguisher in a nonce-reuse scenario
with probability 1. Finally, we observe that the differences in some words
of the state after the initialization have probabilities significantly higher
than the random case. We note that the presented results do not threaten
the security of the scheme. This is the first external analysis of the
authenticated cipher MORUS.
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1 Introduction

In 2013 the Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) was announced [2]. It is initiated by the Univer-
sity of Illinois at Chicago, USA and is supported by the US National Institute
of Standards and Technology (NIST). CAESAR is similar in nature to widely
successful previous competitions such as AES [3] and SHA-3 [4]. While the lat-
ter were about standardizing dedicated algorithms for confidentiality [5] and
integrity [6] respectively, the goal of CAESAR is to select algorithm/s that can
ensure both confidentiality and integrity within a single primitive. It is very likely
that these algorithms will end up in standardization and will be implemented
and used by the industry worldwide. In total 56 candidates have been submitted
to CAESAR and as of March 15, 2014, the competition has entered its public
evaluation phase.

In this paper we present the first public analysis of one of the algorithms
submitted to CAESAR – the authenticated cipher MORUS [1]. The latter is
c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 45–59, 2016.
DOI: 10.1007/978-3-319-29172-7 4
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a very promising design – both efficient and secure – on which no weaknesses
have been reported so far. We describe several new observations on MORUS as
summarized below:

1. Distinguisher with probability 1 in a nonce-reuse scenario.
2. Differential biases in some words of the state after the initialization.
3. Collision on the StateUpdate(S,M) function of MORUS.

We note that the presented results do not threaten the security of MORUS.
The rest of the paper is organized as follows. We begin with a brief description

of MORUS in Sect. 2. A distinguisher on MORUS is presented in Sect. 3, followed
by a description of differential biases in some words of the state after the initializa-
tion (Sect. 4). In Sect. 5 we describe a collision on the StateUpdate function and
we briefly comment on the possibility of using it for a tag forgery attack (Sect. 6).
Section 7 concludes the paper. Theorem proofs and equation derivations are pro-
vided in Appendix A and Appendix B. Notation is given in Table 1.

Table 1. Notation.

Symbol Meaning

⊕ Bit-wise exclusive OR

∧ Bit-wise AND

|| Concatenation

≪ Bit rotation to the left

≫ Bit rotation to the right

b(n) A sequence of n binary digits b ∈ {0, 1}
|X| Length of the bit string X (in bits)

x Negation of all bits of x i.e. x = x ⊕ 1(n)

Rotl xxx yy(x, b) Divide the xxx-bit block x into 4 yy-bit words and rotate
each word left by b bits. Example: Rotl 128 32(x, b) is
used in MORUS-640 and Rotl 256 64(x, b) is used in
MORUS-1280

Rotr xxx yy(x, b) Analogous to Rotl xxx yy(x, b) with a right rotation

LSB, MSB Least Significant Bit, Most Significant Bit

IV Initialization Vector (Nonce)

2 Description of MORUS

MORUS is a very efficient family of authenticated encryption schemes using
only bitwise operations: bit shift, AND and XOR. The size of the internal state
is 640 or 1280 bits resp. for MORUS-640 and MORUS-1280 and is represented
as five 128 or 256 bit registers respectively. MORUS supports 128 and 256 bit
keys which are loaded into the input state together with a public 128 bit IV and
three specified constants.
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The main building block of MORUS is the state update function StateUpdate
(S,M), where S is the state, and M is a message block with length |S|/5. This
function consists of 5 rounds with similar operations that update the state S.
In each round, only two state elements are modified: one with left rotation with
coefficients wi, and other with Rotl xxx yy operation with coefficients bi, where
i ∈ {0, 1, 2, 3, 4}. The StateUpdate function is shown in Fig. 1.

MORUS operates in four phases: (1) Initialization, (2) Processing of asso-
ciated data, (3) Encryption and (4) Finalization. In the initialization phase of
MORUS-640, five state elements are initialized with an initialization vector IV ,
a key K, a 128 bit string of ones 1(128), and two constants const0 and const1.
Next the state is updated by 16 applications of the round function StateUpdate
and the result is XOR-ed with the key K.

In the second phase the associated data AD is processed using again the
StateUpdate function. In the third phase the plaintext P is encrypted in blocks of
128 bits. In the final phase the authentication tag is generated by 8 applications
of StateUpdate using the length of associated data adlen and the length of the
message msglen as additional inputs. The output of the full process in encryption
mode is a ciphertext together with an authentication tag of size at most 128 bits.

For the detailed specification of MORUS we refer the reader to the original
proposal [1].

3 Distinguisher

In this section we describe a distinguisher on MORUS-640 in a nonce-reuse
scenario. An analogous distinguisher also exists for MORUS-1280. We begin
with a more formal description of the four phases of MORUS: initialization,
processing of associated data, encryption and finalization.

Let S0 = (s0, s1, s2, s3, s4) be the output of the initialization phase. Let the
size of the associate data (AD) be 128 bits: |AD| = 128 and let the plaintext P
consist of a single 128-bit block M . Then the output after the second phase is
expressed as:

S1 = (x0, x1, x2, x3, x4) = StateUpdate(S0,AD), (1)

and the output of the third phase is the ciphertext C and the state S2:

C = M ⊕ x0 ⊕ (x1 ≪ 96) ⊕ (x2 ∧ x3), (2)

S2 = (z0, z1, z2, z3, z4) = StateUpdate(S1,M). (3)

In the final (fourth) phase the authentication tag T is obtained through the
following steps:

1. tmp = z3 ⊕ (adlen || msglen)
2. z4 = z4 ⊕ z0
3. For i = 2 to 9 do Si+1 = StateUpdate(Si, tmp)
4. T = ⊕4

i=1 S10
i
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Fig. 1. The StateUpdate(S, M) function of MORUS.
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The following theorem is instrumental in the construction of the distin-
guisher:

Theorem 1. Let S0 = (s0, s1, s2, s3, s4) be the state of MORUS-640 after ini-
tialization under 128 bit secret key K and 128 bit public IV. Let AD1 = 0(128) and
AD2 = 0(127)||1 be two 128 bit blocks of associated data that differ only in their
least significant bit. Finally, let X and Y be the internal states of MORUS after
the second phase (processing of associated data) under AD1 and AD2 respec-
tively:

X = (x0, x1, x2, x3, x4) = StateUpdate(S0,AD1) , (4)

Y = (y0, y1, y2, y3, y4) = StateUpdate(S0,AD2) . (5)

Then the following statements are true:

1. x0 = y0.
2. x1 and y1 differ only in the 33-th bit.
3. x2 and y2 differ only in the 89-th bit.
4. x3 and y3 differ only in the 106-th and 107-th bit.
5. x4 and y4 differ only in the 108-th and 115-th bit (with probability 1) and in

the 33-th bit with probability 1/2.

Note: all bits within the 128 bit words X and Y are counted starting from MSB
(bit 1) down to LSB (bit 128).

Proof. Appendix A.

Next we describe the construction of the distinguisher. Let AD1, AD2, X =
(x0, x1, x2, x3, x4) and Y = (y0, y1, y2, y3, y4) be as in Theorem 1 and denote
xj = (xj0, xj1, xj2, xj3) and yj = (yj0, yj1, yj2, yj3), where |xji| = |yji| = 32 bits
and 0 ≤ j ≤ 4, 1 ≤ i ≤ 3. Further let M be a 128 bit message block. Then,
according to the encryption function of MORUS (see Eq. (2)) the two ciphertexts
C1 and C2 resp. under AD1 and AD2 are expressed as:

C1 = M ⊕ x0 ⊕ (x1 ≪ 96) ⊕ (x2 ∧ x3), (6)
C2 = M ⊕ y0 ⊕ (y1 ≪ 96) ⊕ (y2 ∧ y3). (7)

Note that

(x1 ≪ 96) = ((x10, x11, x12, x13) ≪ 96) = (x13, x10, x11, x12). (8)

Due to Statement 2 of Theorem 1 (see also Eq. (44) in Appendix A) it holds
that:

y1 = (y10, y11, y12, y13) = (x10, x11 ⊕ (1||0(31)), x12, x13) . (9)

Therefore

(y1 ≪ 96) = ((x10, x11 ⊕ (1||0(31)), x12, x13) ≪ 96)

= (x13, x10, x11 ⊕ (1||0(31)), x12) . (10)
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It follows that (x1 ≪ 96) and (y1 ≪ 96) differ only in the 65-th bit. Further,
in (6) note that

(x2 ∧ x3) = (x20 ∧ x30, x21 ∧ x31, x22 ∧ x32, x23 ∧ x33) . (11)

Due to Statement 3 of Theorem 1 (see also Eq. (57) in Appendix A) it holds
that:

y2 = (y20, y21, y22, y23) = (x20, x21, x22 ⊕ (0(24)||1||0(7)), x23) , (12)

and due to Statement 4 of Theorem 1 (see also Eq. (67) in Appendix A) it holds
that:

y3 = (y30, y31, y32, y33) = (x30, x31, x32, x33 ⊕ (0(9)||11||0(21))) . (13)

From the last two equations it follows that

(y2 ∧ y3) = ((x20, x21, x22 ⊕ (0(24)||1||0(7)), x23)∧
(x30, x31, x32, x33 ⊕ (0(9)||11||0(21)))) (14)

= (x20 ∧ x30, x21 ∧ x31, ((x22 ⊕ (0(24)||1||0(7))) ∧ x32),

(x23 ∧ (x33 ⊕ (0(9)||11||0(21))))) . (15)

From Eqs. (11) and (15) it follows that (x2 ∧ x3) and (y2 ∧ y3) differ at most in
the 89-th, 106-th and 107-th bit (counting from MSB to LSB), each with prob-
ability 1/2.

From the above analysis it follows that C1 and C2 differ in 4 bits in total.
Namely, they differ in the 65-th bit with probability 1 and in the 89-th, 106-th
and 107-th bit with probability 1/2 (for each of the three bits). Therefore given
the ciphertext C1 under message (AD1,M), an attacker can predict 125 bits of an
(unknown) ciphertext C2 under a different message (AD2,M) with probability
1. The same probability for a random oracle is 2−125 and can therefore clearly
be used as a distinguisher.

The same technique can also trivially be extended to distinguish pairs of
plaintexts (AD1,M1) and (AD2,M2) that contain also differences in the message
words, i.e., AD1 �= AD2 and M1 �= M2 and such that the messages M1 and M2

have the same length as a single block: |M1| = |M2| = 128. In this case a
difference in any k bits of M1 and M2 (other than bits 89, 106 and 107) results
in a difference in the corresponding k bits of the ciphertexts C1 and C2 with
probability 1.

In conclusion, we would like to stress that the described distinguisher relies
on the re-use of the same IV under the same message M . We note that this
scenario is explicitly forbidden in the design document, where it is stated: In
MORUS, each key and IV pair should be used to protect only one message
[1, Sect. 3]. Therefore the results in this section do not directly harm the security
of the algorithm. Nevertheless they remain of high importance in scenarios in
which the IV is involuntarily re-used e.g. due to an implementation or human
error.
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4 Differential Biases After Initialization

In this section we describe differential biases in the words of the state after
initialization in reduced word versions of MORUS.

We analyze versions of MORUS with 8 bit and 10 bit words (resp. 160 bit
and 200 bit state), denoted resp. MORUS-160 and MORUS-200. In the latter,
the rotation constants are the same as in the original version modulo the word
size. For both small versions we initialize the input state to a fixed random value.
Next we try all differences in one word of the IV and we measure the probabilities
with which differences in the words of the state after the initialization appear.

For MORUS-160 the best observed probability is 2−4.19 (see Example 1
below), while for MORUS-200 it is 2−6. These values are higher than what
is expected in the random case resp. 2−8 and 2−10. Due to the bitwise nature of
the cipher, these results also suggest that for the original 32 and 64 bit versions
of MORUS resp. MORUS-640 and MORUS-1280 we can expect probabilities
significantly higher than resp. 2−32 and 2−64.

Example 1 (Differential bias in MORUS-160). Let X be an input state initialized
to the following random values (in hexadecimal) for MORUS-160:

X = (3B, 77, E3, DE, F0, EC, D9, DD, 2F, D0, F5, C7, DF, 7E, C8, DD, E7, 1D, 3A, 73) , (16)

where the first (i.e. leftmost) four entries correspond to the IV and the next four
entries correspond to the key K i.e. IV = 3B77E3DE and K = F0ECD9DD. Let
X

′
= X ⊕ ΔX be a second input state that differs from X only in the first (i.e.

leftmost) word of the IV by the difference:

ΔX = (AB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) . (17)

Then the sixth word of the output difference ΔY between the corresponding
output states Y and Y

′
after initialization is expected to be 4 with probability

2−4.19. The latter can be expressed as the following truncated differential:

P (ΔX = (AB, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) Init.−−−→
ΔY = (∗, ∗, ∗, ∗, ∗, 4, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)) = 2−4.19 ,

where ∗ denotes an unknown difference. 	

We note that the above analysis is different than the analysis described by

the designers in [1, Sect. 4.1]. There, for a given difference in the IV, the designers
estimate the probability of a full state after the initialization as opposed to a
state truncated to a single word. Finally, we stress that the described observation
does not directly threaten the security of MORUS. Nevertheless its full security
implications should further be investigated.
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5 Collisions in the StateUpdate(S,M) Function

In this section we present a collision on the internal StateUpdate(S,M) func-
tion. We begin by describing an alternative representation of the state update
function.

Proposition 1. Let M, xi ∈ Z
n
2 , i ≥ 0 and n ∈ {128, 256}, and let wi ≤ n and

bi ≤ n/4 be some rotation constants. Then the following function FM : (Zn
2 )5 →

(Zn
2 )5 is a permutation on (Zn

2 )5:

FM (xi, xi+1, xi+2, xi+3, xi+4)
= (Rotl xxx yy(xi ⊕ (xi+1 ∧ xi+2) ⊕ xi+3 ⊕ M, bi),

xi+1, xi+2, (xi+3 ≪ wi), xi+4) . (18)

Each round of StateUpdate(S,M) can be represented as five applications of the
function Fmi

, where mi = M for i = {1, 2, 3, 4} and mi = 0(n) for i = 0:

(si, s(i+1), s(i+2), s(i+3), s(i+4)) = Fmi
(si, s(i+1), s(i+2), s(i+3), s(i+4)) , (19)

and the additions (i + 1), . . . , (i + 4) in the indices of s are performed modulo
5. From the fact that StateUpdate(S,M) is a composition of permutations on
(Zn

2 )5 it follows that for fixed M ∈ Z
n
2 , the function is a permutation on (Zn

2 )5.
Next, we describe a collision on the FM function.

Proposition 2. Let wi ≤ n and bi ≤ n/4, where i ≥ 0 and n =
{128, 256}, be some rotation constants. For all M1,M2 ∈ Z

n
2 and each vector

(x0, x1, x2, x3, x4) ∈ (Zn
2 )5, the following holds:

FM1(x0, x1, x2, x3, x4) = FM2(M1 ⊕ M2 ⊕ x0, x1, x2, x3, x4) . (20)

Proof.

FM2(M1 ⊕ M2 ⊕ x0, x1, x2, x3, x4)
= (Rotl xxx yy(M1 ⊕ M2 ⊕ x0 ⊕ (x1 ∧ x2) ⊕ x3 ⊕ M2, bi),

x1, x2, (x3 ≪ wi), x4) (21)
= (Rotl xxx yy(M1 ⊕ x0 ⊕ (x1 ∧ x2) ⊕ x3, bi), x1, x2, (x3 ≪ wi), x4) (22)
= FM1(x0, x1, x2, x3, x4) . (23)

	

Proposition 2 is extended to a collision on the state update function due to the
following corollary:

Corollary 1. For all M1,M2 ∈ Z
n
2 , n = {128, 256} and each vector

(x0, x1, x2, x3, x4) ∈ (Zn
2 )5, the following holds:

StateUpdate((x0, x1, x2, x3, x4),M1) =
StateUpdate((x0, M1 ⊕ M2 ⊕ x1,M1 ⊕ M2 ⊕ x2 ,M1 ⊕ M2 ⊕ x3,

M1 ⊕ M2 ⊕ x4), M2) . (24)

In the following section we briefly comment on the possibility of using the
collision (24) to construct a tag forgery attack in a nonce-reuse scenario.
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6 On Producing a Tag Forgery

Let (M1,AD1) be a pair of a 128 bit message block and a 128 bit associ-
ated data block encrypted by MORUS under key K and IV. Let S0 =
(s0, s1, s2, s3, s4) be the output of the initialization phase and let the output
of the next phase (processing of associated data) be S1 = (x0, x1, x2, x3, x4) =
StateUpdate(S0,AD1). We want to find a 128 bit block ΔM and a 128 bit
associated data block AD2 �= AD1 that will relate StateUpdate(S0,AD1) to
StateUpdate(S0,AD2) as follow:

StateUpdate(S0,AD2) = (x0, x1 ⊕ ΔM,x2 ⊕ ΔM,x3 ⊕ ΔM,x4 ⊕ ΔM) (25)

= (x0, x1, x2, x3, x4) ⊕ (0(n),ΔM,ΔM,ΔM,ΔM) (26)

= StateUpdate(S0,AD1)⊕
(0(n),ΔM,ΔM,ΔM,ΔM) . (27)

If such AD2 and ΔM exist, then using Corollary 1 (Eq. (24)) we can construct
the message M2 = M1 ⊕ ΔM that will produce a collision in the internal state
after the encryption phase:

StateUpdate(StateUpdate(S0,AD1),M1) (28)
= StateUpdate((x0, x1, x2, x3, x4),M1) (29)
= StateUpdate((x0,M1 ⊕ M2 ⊕ x1,M1 ⊕ M2 ⊕ x2,M1 ⊕ M2 ⊕ x3,

M1 ⊕ M2 ⊕ x4),M2) (30)
= StateUpdate((x0,ΔM ⊕ x1,ΔM ⊕ x2,ΔM ⊕ x3,ΔM ⊕ x4),M2) (31)

= StateUpdate(StateUpdate(S0,AD2),M2) (32)

Therefore, under the same IV the two messages M1 and M2 = M1⊕ΔM produce
the same internal state after the encryption phase. Furthermore, since both pairs
(AD1,M1) and (AD2,M2) have the same adlen and msglen, the above collision
ultimately results in the same tag for the messages M1 and M2.

As to finding the required blocks ΔM and AD2, in Appendix B we
show that this is equivalent to solving the following system of equations for
(x0, x1,ΔA,ΔM), where ΔA = AD1 ⊕ AD2:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rotr xxx yy(ΔM ≫ w3, b1) = ΔA

Rotr xxx yy(ΔM ≫ w4, b2) = ΔA

Rotr xxx yy(ΔM, b3) = (ΔM ≫ w3) ⊕ ΔA

Rotr xxx yy(ΔM, b4) = (x0 ∧ x1) ⊕ (x0 ∧ (x1 ⊕ ΔM)) ⊕ (ΔM ≫ w4)

(33)

We exhaustively searched for a solution to a reduced version of the system (33)
composed of the first three equations with 8 bit variables and rotation constants
equal to the original ones modulo 8. No solution was found apart from the trivial
one: (ΔM,ΔA) = (0, 0).
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7 Conclusions

In this paper we presented the first external analysis of the authenticated cipher
MORUS. In particular we reported the following new observations: (1) distin-
guisher with probability 1 in a nonce-reuse scenario, (2) differential biases in
the words of the state after initialization and (3) collision on the StateUpdate
function of MORUS. Our results do not threaten the security of the scheme and
indicate that MORUS is a well-designed cipher and a good candidate for the
second round of the CAESAR competition.

Acknowledgments. We would like to thank the anonymous reviewers for their time
and valuable comments. In particular, we thank Reviewer 2 for pointing out the nat-
ural extension of our technique to the case where differences in the message blocks are
allowed. Finally, we extend our thanks to the organizers of WG4 Meeting on Authen-
ticated Encryption, COST CryptoAction IC1306, co-located with Eurocrypt 2015, for
giving us the opportunity to work on this topic.

A Proof of Theorem 1

Proof. The state update function of MORUS-640 under AD1 is expressed as
follow:

(x0, x1, x2, x3, x4) = StateUpdate((s0, s1, s2, s3, s4),AD1) , (34)

where

x0 = Rotl xxx yy(s0 ⊕ (s1 ∧ s2) ⊕ s3, 5) ≪ 96 , (35)
x1 = Rotl xxx yy(s1 ⊕ (s2 ∧ (s3 ≪ 32)) ⊕ s4 ⊕ AD1, 31) ≪ 64 , (36)
x2 = Rotl xxx yy(s2 ⊕ ((s3 ≪ 32) ∧ (s4 ≪ 64))⊕

(x0 ≫ 96) ⊕ AD1, 7) ≪ 32 , (37)
x3 = Rotl xxx yy((s3 ≪ 32) ⊕ ((s4 ≪ 64) ∧ x0)⊕

(x1 ≫ 64) ⊕ AD1, 22) , (38)
x4 = Rotl xxx yy((s4 ≪ 64) ⊕ (x0 ∧ x1) ⊕ (x2 ≫ 32) ⊕ AD1, 13) . (39)

We recall that each element xj and yj of the states X = (x0, x1, x2, x3, x4) and
Y = (y0, y1, y2, y3, y4) is of size 128 bits organized in an array of four 32 bit words.
Denote these words as xj = (xj0, xj1, xj2, xj3) and yj = (yj0, yj1, yj2, yj3), where
|xji| = |yji| = 32 bits for 0 ≤ j ≤ 4, 1 ≤ i ≤ 3.

Proof of Statement 1: x0 = y0. Since Eq. (35) does not depend on the associated
data block, it will be the same for both AD1 and AD2. It follows that x0 = y0.
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Proof of Statement 2: Difference Between Words x1 and y1. In Eq. (36) denote

a1 = s1 ⊕ (s2 ∧ (s3 ≪ 32)) ⊕ s4 , (40)
b1 = (b10, b11, b12, b13)

= Rotl xxx yy(a1 ⊕ AD1, 31)
= Rotl xxx yy(a1, 31) . (41)

After rotation by 64 (see Eq. (36)) we have

x1 = (x10, x11, x12, x13) = (b12, b13, b10, b11) . (42)

For the second associated data block AD2 = (0(127)||1) denote

c1 = (c10, c11, c12, c13)
= Rotl xxx yy(a1 ⊕ AD2, 31)

= Rotl xxx yy(a1 ⊕ (0(127)||1), 31) . (43)

Analogously to AD1, after rotation by 64 (see Eq. (36)) we get

y1 = (y10, y11, y12, y13) = (x10, x11 ⊕ (1||0(31)), x12, x13) . (44)

For the words of b1 and c1, the following equalities hold:

c10 = b10 = x12 , (45)
c11 = b11 = x13 , (46)
c12 = b12 = x10 , (47)

c13 = b13 ⊕ (1||0(31)) = x11 ⊕ (1||0(31)) . (48)

Therefore x1 and y1 differ only in the 33-th bit (counting from MSB to LSB).

Proof of Statement 3: Difference Between Words x2 and y2. In Eq. (37) denote

a2 = s2 ⊕ ((s3 ≪ 32) ∧ (s4 ≪ 64)) ⊕ (x0 ≫ 96) , (49)
b2 = (b20, b21, b22, b23)

= Rotl xxx yy(a2 ⊕ AD1, 7)
= Rotl xxx yy(a2, 7) . (50)

After rotation by 32 (see Eq. (36)) we have

x2 = (x20, x21, x22, x23) = (b21, b22, b23, b20) . (51)

For the second associated data block AD2 = (0(127)||1) denote
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c2 = (c20, c21, c22, c23)
= Rotl xxx yy(a2 ⊕ AD2, 7)

= Rotl xxx yy(a2 ⊕ (0(127)||1), 7) . (52)

For the words of b2 and c2, the following equalities hold:

c20 = b20 = x23 , (53)
c21 = b21 = x20 , (54)
c22 = b22 = x21 , (55)

c23 = b23 ⊕ (0(24)||1||0(7)) = x22 ⊕ (0(24)||1||0(7)) , (56)

and so

y2 = (y20, y21, y22, y23) = (x20, x21, x22 ⊕ (0(24)||1||0(7)), x23) . (57)

Therefore x2 and y2 differ only in the 89-th bit (counting from MSB to LSB).

Proof of Statement 4: Difference Between Words x3 and y3. In Eq. (38) denote

a3 = (s3 ≪ 32) ⊕ ((s4 ≪ 64) ∧ x0) . (58)

For x3 we have

x3 = Rotl xxx yy(a3 ⊕ (x1 ≫ 64) ⊕ AD1, 22) (59)
= Rotl xxx yy(a3 ⊕ (x12, x13, x10, x11), 22) (60)
= ((a30 ⊕ x12) ≪ 22, (a31 ⊕ x13) ≪ 22, (a32 ⊕ x10) ≪ 22,

(a33 ⊕ x11) ≪ 22) (61)
= (x30, x31, x32, x33) . (62)

For y3 we have

y3 = Rotl xxx yy(a3 ⊕ (y1 ≫ 64) ⊕ AD2, 22) (63)

= Rotl xxx yy(a3 ⊕ (x12, x13, x10, x11 ⊕ (1||0(31))) ⊕ (0(127)||1), 22) (64)

= Rotl xxx yy(a3 ⊕ (x12, x13, x10, x11 ⊕ (1||0(31)) ⊕ (0(31)||1)), 22) (65)
= ((a30 ⊕ x12) ≪ 22, (a31 ⊕ x13) ≪ 22, (a32 ⊕ x10) ≪ 22,

(a33 ⊕ x11 ⊕ (1||0(31)) ⊕ (0(31)||1)) ≪ 22) (66)

= (x30, x31, x32, x33 ⊕ (0(9)||11||0(21))) . (67)

Therefore x3 and y3 differ only in the 106-th and 107-th bit (counting from MSB
to LSB).

Proof of Statement 5: Difference Between Words x4 and y4. In Eq. (39) denote

a4 = s4 ≪ w1 . (68)
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Then x4 can be expressed as:

x4 = Rotl xxx yy(a4 ⊕ (x0 ∧ x1) ⊕ (x2 ≫ 32) ⊕ AD1, 13) (69)
= Rotl xxx yy(a4 ⊕ (x0 ∧ x1) ⊕ (x23, x20, x21, x22), 13) (70)
= ((a40 ⊕ (x00 ∧ x10) ⊕ x23) ≪ 13, (a41 ⊕ (x01 ∧ x11) ⊕ x20) ≪ 13,

(a42 ⊕ (x02 ∧ x12) ⊕ x21) ≪ 13, (a43 ⊕ (x04 ∧ x14) ⊕ x22) ≪ 13) (71)
= (x40, x41, x42, x43) , (72)

and y4 is expressed as:

y4 = Rotl xxx yy(a4 ⊕ (y0 ∧ y1) ⊕ (y2 ≫ 32) ⊕ AD2, 13) (73)
= Rotl xxx yy(a4 ⊕ (x0 ∧ y1)⊕

(x23, x20, x21, x22 ⊕ (0(24)||1||0(7))) ⊕ (0(127)||1), 13) (74)
= ((a40 ⊕ (x00 ∧ x10) ⊕ x23) ≪ 13,

(a41 ⊕ (x01 ∧ (x11 ⊕ (1||0(31)))) ⊕ x20) ≪ 13,

(a42 ⊕ (x02 ∧ x12) ⊕ x21) ≪ 13,

(a43 ⊕ (x04 ∧ x14) ⊕ x22 ⊕ (0(24)||1||0(6)||1)) ≪ 13) (75)
= ((a40 ⊕ (x00 ∧ x10) ⊕ x23) ≪ 13,

(a41 ⊕ (x01 ∧ (x11 ⊕ (1||0(31)))) ⊕ x20) ≪ 13,

(a42 ⊕ (x02 ∧ x12) ⊕ x21) ≪ 13,

(a43 ⊕ (x04 ∧ x14) ⊕ x22) ≪ 13 ⊕ (0(11)||1||0(6)||1||0(13))) (76)

= (x40, x
′
41, x42, x43 ⊕ (0(11)||1||0(6)||1||0(13))) , (77)

where x′
41 differ from x41 at most in the first (i.e. most significant) bit with

probability 1/2. Therefore x4 and y4 differ only in the 108-th and 115-th bit,
and the 33-th bit is different with probability 1/2. 	


B Derivation of the System of Equations (33) in Sect. 6

Let X = (x0, x1, x2, x3, x4) = StateUpdate(S0, AD1), and Y =
(y0, y1, y2, y3, y4) = StateUpdate(S0, AD2). Let x1 ⊕ y1 = x2 ⊕ y2 = x3 ⊕ y3 =
x4 ⊕ y4 = ΔM . Clearly x0 = y0.

For x1 ⊕ y1 we derive:

x1 ⊕ y1 = Rotl xxx yy(s1 ⊕ (s2 ∧ (s3 ≪ w0)) ⊕ s4 ⊕ AD1, b1) ≪ w3⊕
Rotl xxx yy(s1 ⊕ (s2 ∧ (s3 ≪ w0)) ⊕ s4 ⊕ AD2, b1) ≪ w3 (78)

Rotr xxx yy((x1 ⊕ y1) ≫ w3, b1) = s1 ⊕ (s2 ∧ (s3 ≪ w0))⊕
s4 ⊕ AD1 ⊕ s1 ⊕ (s2 ∧ (s3 ≪ w0)) ⊕ s4 ⊕ AD2 (79)

Rotr xxx yy((x1 ⊕ y1) ≫ w3, b1) = AD1 ⊕ AD2 (80)
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For x2 ⊕ y2 we derive:

x2 ⊕ y2 = Rotl xxx yy(s2 ⊕ ((s3 ≪ w0) ∧ (s4 ≪ w1))⊕
(x0 ≫ w2) ⊕ AD1, b2) ≪ w4⊕
Rotl xxx yy(s2 ⊕ ((s3 ≪ w0) ∧ (s4 ≪ w1))⊕
(y0 ≫ w2) ⊕ AD2, b2) ≪ w4 (81)

Rotr xxx yy((x2 ⊕ y2) ≫ w4, b2) = s2 ⊕ ((s3 ≪ w0) ∧ (s4 ≪ w1))⊕
(x0 ≫ w2) ⊕ AD1 ⊕ s2 ⊕ ((s3 ≪ w0) ∧ (s4 ≪ w1))⊕
(y0 ≫ w2) ⊕ AD2 (82)

Rotr xxx yy((x2 ⊕ y2) ≫ w4, b2) = AD1 ⊕ AD2 (83)

For x3 ⊕ y3 we derive:

x3 ⊕ y3 = Rotl xxx yy((s3 ≪ w0) ⊕ ((s4 ≪ w1) ∧ x0) ⊕ (x1 ≫ w3)⊕
AD1, b3) ⊕ Rotl xxx yy((s3 ≪ w0) ⊕ ((s4 ≪ w1) ∧ y0)⊕
(y1 ≫ w3) ⊕ AD2, b3) (84)

Rotr xxx yy(x3 ⊕ y3, b3) =
(s3 ≪ w0) ⊕ ((s4 ≪ w1) ∧ x0) ⊕ (x1 ≫ w3)⊕
AD1 ⊕ (s3 ≪ w0) ⊕ ((s4 ≪ w1) ∧ y0) ⊕ (y1 ≫ w3) ⊕ AD2 (85)

Rotr xxx yy(x3 ⊕ y3, b3) = (x1 ≫ w3) ⊕ (y1 ≫ w3) ⊕ AD1 ⊕ AD2 (86)

For x4 ⊕ y4 we derive:

x4 ⊕ y4 = Rotl xxx yy((s4 ≪ w1) ⊕ (x0 ∧ x1) ⊕ (x2 ≫ w4)⊕
AD1, b4) ⊕ Rotl xxx yy((s4 ≪ w1) ⊕ (y0 ∧ y1)⊕
(y2 ≫ w4) ⊕ AD2, b4) (87)

Rotr xxx yy(x4 ⊕ y4, b4) = (s4 ≪ w1) ⊕ (x0 ∧ x1) ⊕ (x2 ≫ w4)⊕
AD1 ⊕ (s4 ≪ w1) ⊕ (y0 ∧ y1) ⊕ (y2 ≫ w4) ⊕ AD2 (88)

Rotr xxx yy(x4 ⊕ y4, b4) = (x0 ∧ x1) ⊕ (y0 ∧ y1) ⊕ (x2 ≫ w4)⊕
(y2 ≫ w4) ⊕ AD1 ⊕ AD2 (89)

From Eqs. (80), (83), (86) and (89) we obtain the following system that is equiv-
alent to the system (33) from Sect. 6:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Rotr xxx yy((x1 ⊕ y1) ≫ w3, b1) = AD1 ⊕ AD2

Rotr xxx yy((x2 ⊕ y2) ≫ w4, b2) = AD1 ⊕ AD2

Rotr xxx yy(x3 ⊕ y3, b3) = (x1 ≫ w3) ⊕ (y1 ≫ w3) ⊕ AD1 ⊕ AD2

Rotr xxx yy(x4 ⊕ y4, b4) = (x0 ∧ x1) ⊕ (y0 ∧ y1) ⊕ (x2 ≫ w4)⊕
(y2 ≫ w4) ⊕ AD1 ⊕ AD2

(90)
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Abstract. It is a common belief that the presence of linear relations in
the S-boxes of some block cipher algorithm facilitates its linear crypt-
analysis and related attacks towards. In the present work, we clarify that
claim in respect to a linear cryptanalysis (in the very spirit of Matsui’s
classic one) applied to modified DES algorithm with S-boxes having par-
ity check bits. The results of our investigations show that embedding
parity checks in the outputs of these S-boxes does not generally guaran-
tee more suitable for that kind of cryptanalysis best multi-round linear
characteristics. Their structure, the corresponding bias and the number
of effective bits depend crucially on the parity position chosen, and may
lead not only to reduction but as well to growth in complexity of suc-
cessful linear cryptanalysis compared to that towards the original DES.

1 Introduction

Around 1993 two general techniques to mount attacks against the modern sym-
metric block ciphers have appeared in the public domain: the so-called differ-
ential and linear cryptanalysis [2,11]. Both of them were applied to the Data
Encryption Standard (DES) and showed that the standard is breakable faster
than an exhaustive key search in corresponding attack scenarios. Although the
primary target of these attacks was the DES, the wide applicability of them to
numerous other block ciphers is out of any doubt. Moreover, today, one of the
first questions which the members of cryptographic community pose to each new
proposal for block cipher algorithm is whether it outstands those kind of crypt-
analysis [8,17]. Another recent contribution [4] concerns both kinds of crypt-
analysis with respect to affine equivalence of the employed S-boxes.

Roughly speaking, the idea of linear cryptanalysis of block ciphers, is to
employ linear probabilistic relations of the following type:

P[χP ] + C[χC ] = K[χK ],

where P,C and K denote the plaintext, the corresponding ciphertext and the
secret key, respectively, while B[χB ] stands for Bb1 ⊕ Bb2 ⊕ · · · ⊕ Bbm with
χB = {b1, b2, . . . , bm} a subset (or mask) of bit positions in B. Among these rela-
tions (also called characteristics), the most valuable for cryptanalysis are those,
effective ones, that hold true with probability deviating significantly from 1/2.
In practice, for the iterative block ciphers based on S-boxes, e.g. Feistel or SP
c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 60–78, 2016.
DOI: 10.1007/978-3-319-29172-7 5
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networks, effective characteristics can be obtained by fixing, at first, the generic
firmed correlations between the inputs and outputs of the individual boxes, and
then concatenating these local 1-round linear dependencies through the involved
round F -functions in multi-round ones valid for the global cipher structure.

The experience gained in carrying out that method has enabled the develop-
ment of its modifications and extensions, and improving of the respective encryp-
tion algorithms in order to be more resistant against it (see, e.g. [1,7,12,14] and
definitely this list of references is not exhaustive).

In this paper, we are focused on linear cryptanalysis towards one of the pos-
sible modifications of DES. Our aim is to clarify more comprehensively the intu-
ition behind the claim that introducing some strict linear relation in the S-boxes
of this algorithm will weaken the cipher facilitating significantly a cryptanaly-
sis of that kind. Though there are other possibilities for inserting such relations
which deserved to be explored in respect to the aforementioned claim (e.g. setting
an output bit to be equal to a linear function of the input bits of an S-box), we
elaborate only on a modification for which chosen in advance position of output
of the original S-boxes is changed to the parity check of the other three positions
that are kept unchanged. The reason for studying this particular variant of the
algorithm is twofold. On the one hand, an S-box obtained in the described way
preserves the nonlinearity between the input and output, and simultaneously
meets the requirements of other desirable criteria, see e.g. [10, p. 301]. (In par-
ticular, such S-box satisfies automatically the criteria concerning spectrum of
Hamming distances between its outputs, relevant in case of differential crypt-
analysis [5].) On the other hand, in regard to the kind of cryptanalysis we are
interested, it turns out that this modification does not worsen half of the local
characteristics and even improves upon the bias of the maximum effective one
with nonempty input mask. But of course, by all means it is not clear whether
the change of these local characteristics leads to global ones that do spoil the
resistance of cipher.

The outline of the present paper is as follows. In Sect. 2, we introduce the
needed notations and definitions, recall some of Matsui’s results and describe
briefly the settings of our experiment. Section 3 is devoted to study of the prop-
erties of the new linear approximation tables and some consequences. In Sect. 4,
we prove that effectiveness of the optimal 3-round characteristic decreases. In
Sect. 5, we describe in more detail our algorithm for construction of best char-
acteristics including the case when a parity check has been embedded. We see
that the presence of parity increases the number of the possible combinations
between 1-round characteristics in consecutive rounds. The final results, their
analysis and conclusions are presented in Sects. 6 and 7.

2 Preliminaries

2.1 Notations and Definitions

For easier comparison of the results we use in our work the Matsui conventions for
bit indexing and S-boxes [11–13]. Each S-box is represented as one-dimensional
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array with input of the S-box as index. The index of the S-boxes themselves
remains the same as in the standard. Everywhere the less significant bit is the
right most bit and its index is 0.

Let us consider a family of Feistel type cryptographic algorithms with n
rounds and denote:

P , C – the plaintext and the ciphertext, both 2b bits long;
K,Kj – the secret key and the corresponding j-th round subkey;
Xj , Fj – the j-th round transformation data input/output;
fj(Xj ,Kj) – the j-th round transformation;
Sk – the k-th S-box; S(j) – the active S-box in the j-th round, when there is at
most one such S-box; S(j) = φ means no active S-box is chosen;
IX(j), IK(j), IF (j) – sets of indices of all bits of Xj , Kj and Fj respectively,
that take part in the j-th round linear approximation;
IX(Sk, j), IX(S(j)), IK(Sk, j), IK(S(j)), IF (Sk, j), IF (S(j)) – sets of indices of
all bits of Xj , Kj and Fj respectively, that are part of the input and the output
of Sk/S(j) respectively in the j-th round;
A[i] – the i-th bit of the vector A; A[i, j, . . . , k] = A[i] ⊕ A[j] ⊕ · · · ⊕ A[k];
A[B] – the XOR-sum of all bits of A with indices in the set B.

Definition 1. An 1-round linear characteristic for the round j of a Feistel
cipher is a pair (IX(j), IF (j)) of sets of bit indices from the input and the output
of this round, respectively. An n-round linear characteristic for rounds 1, . . . , n,
n ≥ 3, is an n-tuple ((IX(1), IF (1)), . . . , (IX(n), IF (n))) of 1-round linear char-
acteristics with the property

IF (j + 1) = (IF (j − 1) ∪ IX(j))\(IF (j − 1) ∩ IX(j)) (1)

for all 2 ≤ j ≤ n − 1 (i.e. if IF (j + 1) is the symmetric difference of IF (j − 1)
and IX(j)).

Every characteristic is associated with a given pair of chosen subsets of indices
of input/output bits and the corresponding probability of coincidence of their
respective sums.

Definition 2. For given S-box Sk with a-bit input and c-bit output and given
numbers α and β, such that 0 ≤ α ≤ 2a − 1 and 0 ≤ β ≤ 2c − 1, we define
NSk(α, β) as the number of times out of 2a input patterns of Sk, such that an
XOR-ed value of the input bits masked by α coincides with an XOR-ed value of
the output bits masked by β. In other words NSk(α, β) = #{x|0 ≤ x ≤ 2a − 1
and ⊕s(x[s] ◦ α[s]) = ⊕t(Sk(x)[t] ◦ β[t])}, where the symbol ◦ denotes bitwise
AND operator. The table, where the vertical and the horizontal axes indicate α
and β respectively, and each entry contains the value

NS∗
k(α, β) = NSk(α, β) − 2a−1

is referred to as linear approximation table (LAT) for Sk.
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For the purpose of comparing different characteristics we consider approxi-
mations of type

P [i1, . . . ., ip] ⊕ C[j1, . . . , jq] ⊕ f1(P, K1)[u1, . . . , us]⊕
⊕ fn(C, Kn)[v1, . . . , vt] = K[k1, . . . , kr],

(2)

that can be drawn from an (n−2)-round characteristic combined with the struc-
tural dependencies in the first and final round, respectively. (In fact, that kind
of approximations are the main used in Algorithm 2, the second out of the two
cryptanalytic algorithms suggested in [12], which requires a lower amount of
plaintext/ciphertext pairs and is more efficient than the first Algorithm 1.)

Definition 3. If a linear approximation holds with probability p �= 1/2 for ran-
domly given plaintext P and the corresponding ciphertext C, the absolute value
of the bias p − 1/2 represents the effectiveness of that approximation.

Definition 4. A linear characteristic is called best characteristic when the
effectiveness of corresponding linear approximation is maximal. Respectively, its
probability will be called best probability.

Example 1. There is an unique best 1-round characteristic for DES (see, e.g.,
[16]), namely corresponding to the global minimum NS∗

5 (16, 15) = −20 with
effectiveness 0.31.

Definition 5. All key bits and text (plaintext and ciphertext) bits, that affect
the left side of the Eq. (2) are referred to as effective bits.

2.2 A Brief Overview of Matsui’s Work

In his corner-stone papers, Matsui [11,13] has analyzed LATs, found best char-
acteristics for 3 to 20 rounds and studied some approaches for mounting attacks
against different rounds of DES cipher.

The main properties of LATs are given in the next proposition that is stated
as lemma in [11].

Proposition 1. (i) NSk(α, β) is even.
(ii) If α = 1, 32 or 33, thenNSk(α, β) = 32 for all Sk and β.

The effectiveness of an 1-round approximation is deduced directly from the
LATs, while for multi-round approximation the so-called Piling-up Lemma [11]
is applied.

The first experimental cryptanalytic attack on DES, carried out by Matsui
[13], is based on approximations of type (2) derived from best 14-round charac-
teristics. He has found two such characteristics, that are symmetric to each other
but can be considered as statistically independent, and possess effectiveness of
1.19 × 2−21. Each of the exploited linear approximations has also two active S-
boxes and can recover 13 effective key bits. After fixing the values of these key
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bits (and consequently a total of 26 secret key bits) using a maximum likelihood
method, the remaining 30 unknown key bits are found by an exhaustive search.

Matsui has shown [13] that the complexity of a linear attack, based on
approximation of type (2), practically depends only on the effectiveness e of
that approximation and the output bits u1, . . . , us, v1, . . . , vt. The latter bits
themselves depend on the effective text and key bits. The number of plain-
text/ciphertext pairs needed for an attack to be successful with high probability
is proportional to e−2. As a result, by that approach the DES becomes breakable
with complexity 243 at success rate of 85% if 243 known plaintexts are available.

2.3 Our Experiment

During the experiment we carry out the following steps:

1. Embedding parity check bit in all S-boxes of the original DES cipher and
analyzing the newly obtained LATs.

2. Finding best characteristics for 3 to 20 rounds of the modified cipher when
the parity bit position is the same in all S-boxes.

3. Comparing the results obtained to that for the original cipher.
4. Studying in details the 16-round linear approximations based on the best

14-round characteristics found for modified DES.

Without loss of generality we assume embedding of odd parity. We associate
the index of the parity bit in S-box Sk with its mask πk. Parity bit masks can
take values 0, 1, 2, 4 and 8 or their 4-bit representations. A mask with value 0
will mean no parity is embedded. When all S-boxes have a parity bit at the same
position, we will call this “case”. For example “case 1000” means all S-boxes have
a parity bit at left-most position in their outputs. In addition, we will use the
following notation: Sk(π) for the S-box, obtained from Sk by embedding a parity
bit with mask π, and NSk(π;α, β) and NS∗

k(π;α, β) for the corresponding values
in the LATs.

Example 2. The result from embedding the parity check with mask 0100 on the
output of S7 in hexadecimal format is given in Table 1. For reader’s convenience,
we remind that the chosen parity embedding is odd.

Table 1. S7 and S7(0100) (first 16 elements)

index 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

S7 4 d b 0 2 b e 7 f 4 0 9 8 1 d a

S7(0100) 4 d b 4 2 b e 7 b 4 4 d 8 1 d e



Linear Cryptanalysis and Modified DES with Embedded Parity Check 65

3 Properties of LATs of S-boxes with Embedded Parity
Check

In this section, we describe the relations between elements of the LATS of newly
obtained S-boxes that are due to parity check embedded.

For the sake of clarity, we study separately the case of simultaneously non-
zero input and output mask and the remaining case, i.e. when at least one of
these masks equals 0.

3.1 The Part of LATs with Non-zero Input and Output Masks

In this subsection, we assume that both input mask α and output mask β are
�= 0. The properties of corresponding part of the new LATs are summarized in
the next proposition.

Proposition 2. Let Sk be an S-box of DES. Let π �= 0 be an odd parity bit mask
on the output of Sk and & denotes tuple-wise AND operator. Then with small
abuse in notations:

(i) NS∗
k(π;α, 15) = 0 for all α;

(ii) NS∗
k(π;α, β) = NS∗

k(α, β) for all α and β such that β &π = 0;
(iii) NS∗

k(π;α, β) = −NS∗
k(α, 15−β) for all α and β < 15 such that β &π �= 0.

Proof. We use the expressions in Definition 2 introducing the following notations:
gα[x] = ⊕s(x[s] ◦ α[s]) and hπ

β [x] = ⊕t(Sk(π)(x)[t] ◦ β[t]). When π is fixed then
hπ

β [x] is well defined. Due to the odd parity relation, we have: hπ
15[x] = 1 for any

x when π �= 0.
(i) According to Definition 2, for α �= 0, we have:

NSk(π;α, 15) = #{x|0 ≤ x ≤ 63, gα[x] = hπ
15[x]}

= #{x|0 ≤ x ≤ 63, gα[x] = 1} = 32

and therefore NS∗
k(π;α, 15) = NSk(π;α, 15) − 32 = 0.

(ii) The only difference between h0
β [x] and hπ

β [x] is in the component with
the index of the parity bit, say tπ. Hence, if β &π = 0, then β[tπ] = 0 and
hβ [x] = hπ

β [x]. Thus NSk(π;α, β) = NSk(α, β) and NS∗
k(π;α, β) = NS∗(α, β).

(iii) Let us denote β = 15 − β. It holds that β[t] ⊕ β[t] = 1 for any t. Since
by assumption β & π �= 0, it follows that β & π = 0 and the assertion (ii) is
applicable to β. Using the parity identity we can derive the following relation:

1 = ⊕tSk(π)(x)[t] = ⊕t(Sk(π)(x)[t] ◦ (β[t] ⊕ β[t]))

= ⊕t(Sk(π)(x)[t] ◦ β[t]) ⊕ ⊕t(Sk(π)(x)[t] ◦ β[t]) = hπ
β [x] ⊕ hπ

β
[x].

This means that for every x the sum gα[x] coincides with exactly one of the sums
hπ

β [x] and hπ
β
[x]. Hence

#{x|0 ≤ x ≤ 63, gα[x] = hπ
β [x]} + #{x|0 ≤ x ≤ 63, gα[x] = hπ

β
[x]} = 64
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Table 2. NS∗
7(0100) part

β/α 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02 0 2 −6 0 0 −2 −2 2 2 0 0 6 −2 0 0

03 0 −2 6 4 4 −2 −2 2 2 −4 −4 −6 2 0 0

04 0 2 2 −2 −10 −4 −4 4 4 10 2 −2 −2 0 0

05 0 2 10 2 −6 8 0 0 −8 6 −2 −10 −2 0 0

06 4 0 −4 −2 2 6 2 −2 −6 −2 2 4 0 −4 0

and thus NSk(π;α, β) − 32 = −(NSk(π;α, β) − 32), so NS∗
k(π;α, β) =

−NS∗
k(π;α, β) and finally NS∗

k(π;α, β) = −NS∗
k(α, β). �

Example 3. Table 2 represents partially that part of LAT with non-zero
input/output masks when the parity bit mask 0100 is applied to the output
of S7.

3.2 The Part of LATs Containing Zero Masks

The properties of particular interest in this case are given by the following
proposition.

Proposition 3. For any S-box Sk of DES and an odd parity bit mask π �= 0
applied to its output, we have:

(i) NS∗
k(π; 0, β) = 0 for all β : 15 > β > 0;

(ii) NS∗
k(π; 0, 15) = −32 while NS∗

k(π; 0, 0) = 32;
(iii) NS∗

k(π;α, 0) = 0 for all α �= 0.

Sketch of Proof. In case of (i) the proof follows from the fact that three amongst
the coordinate functions of the modified S-box coincide with coordinate functions
of the original box and the remaining fourth function is a negation of the sum
of those three. Therefore the nontrivial linear combinations of all coordinate
functions, except their sum, are balanced functions like in DES itself. The first
part of (ii) follows by the generic feature of modified S-box, namely because the
sum of bits in each output equals to 1. The rest follows by the usual assumption
that the S-box input is generated uniformly at random. �

Remark 1. We would like to emphasize that by contrast to the original DES
for every modified S-box there exists an 1-round linear characteristic with zero
input mask and non-zero (namely, 15) output mask having non-zero bias (in fact
it has probability 1). But that characteristic is useless within the framework of
linear cryptanalysis with “at most one active S-box per each round” because it
does not contribute anything more to the multi-round approximate expression
compared to the trivial zero-to-zero characteristic except an additive constant.
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Based on the above reasoning, we exclude from further consideration the
1-round linear characteristics with zero masks, like Matsui has done this for
the original DES (of course, in his case all such characteristics are unbiased).
However, we have to admit that for linear cryptanalysis which exploits more than
one active S-box at some rounds, the issue whether such kind of characteristics
are useful is an entirely different matter explored in ongoing research whose first
results are briefly reported in AppendixD.

4 The Decreasing Effectiveness for Small Number
of Rounds

First, for the sake of completeness, we recall that trivial linear expressions used
in linear cryptanalysis of Feistel ciphers are those obtained by exploiting the
shift of the right half of input into the left half of output at given round (see,
e.g. [6, Ch. 6.3]). Let us stress again that non-trivial characteristics considered
here have non-zero masks.

Next, we state and briefly sketch some arguments in support of a proposition
whose first claim will be referred further on as modified Knudsen observation
(see, [9]).

Proposition 4. (i) The number of non-trivial 1-round characteristics needed to
create a multi-round characteristic for the considered Feistel ciphers is (at least)
two for every three rounds;
(ii) One can construct best 3-round characteristic making use two times of best
1-round non-trivial characteristic.

Sketch of Proof. To show (i), we remark that the chains “L−−”, “−L−”, “−−L”
and “−−−” where L stands for non-trivial 1-round characteristic while “−” for
subset of trivial expressions, cannot cancel the intermediate variables.

To prove (ii) notice that due to the special Feistel structure of the considered
ciphers, “L−L” is a 3-round characteristic for any 1-round non-trivial character-
istic L. Now, taking into account (i) and using the Piling-up Lemma, one deduce
that characteristic “A − A” for any A being best 1-round non-trivial character-
istic, becomes best 3-round characteristic with effectiveness e3 = 2(e1)2 where
e1 is the effectiveness of A. �

Finally, we are in position to prove the following theorem.

Theorem 1. Any non-zero parity mask applied to the S-boxes of DES leads
to a reduction of the highest effectiveness of the 1-round and 3-round linear
characteristics obtained within the framework of linear cryptanalysis with “at
most one active S-box per round”.

Proof. By Proposition 2(i), the global extremum of all entries of the LATs of
DES (see, Example 1) is replaced in the modified S5 by 0 regardless of the
non-zero parity mask applied. Thus the non-zero absolute values of all entries
in the interesting part of new LATs form a proper subset (not including that
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extremum) of those from the original cipher. Hence for any box Sk, k �= 5, it
holds the following:

max
(α,β)

|NS∗
k(π;α, β)| ≤ max

(α,β)
|NS∗

k(α, β)| < max
(α,β)

|NS∗
5 (α, β)| = |NS∗

5 (16, 15)|,

that together with the decreased effectiveness on S5 completes the proof with
respect to 1-round characteristics. Finally, the overall proof follows by using
Proposition 4(ii). �

Remark 2. An additional fact of interest concerning DES is that we can eliminate
the second maximal value of the LATs in case of applying the parity mask
π = 0100.

5 Construction of Best Characteristics

For constructing best characteristics in case of the considered ciphers, one could
use the original algorithm proposed by Matsui in [14, Sect. 4] because the tech-
nique described there can be applied also to various block ciphers having S-box-
like tables. However, for the purpose announced, we develop our own version
which incorporates the modified Knudsen observation and will be referred as
Basic Search Algorithm.

5.1 Basic Search Algorithm (BSA)

5.1.1 Approach for Construction
The aim of the BSA is to construct all n-round (n ≥ 3) characteristics with
non-zero linear bias. The algorithm includes two main phases: (1) Initialization
and (2) Round chaining with finalization in the last round.

5.1.2 Construction Phases

Initialization.

Input : Empty sequence.

Output : Completely constructed IF (1), IX(1) and IF (2) and partially con-
structed IX(2).

Round chaining (one step; consecutively executed for j = 2, 3, . . . , n − 1).

Input : Completely constructed IF (j − 1) and IF (j) and partially constructed
IX(j).

Output : Completely constructed IX(j) and IF (j + 1), partially constructed
IX(j + 1) if j + 1 < n and completely constructed IX(j + 1) if j + 1 = n.
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5.1.3 Construction Logic
The main care at joining consecutive 1-round characteristics is to decide whether
the relation (1) between Fj−1, Xj and Fj+1 holds true (see Fig. 1). Another
compact representation of the relation (1) is by so-called masks [14], but we
use sets of indices for more convenient description of the BSA. In our case the
modified Knudsen observation means that at least two of the sets IF (j − 1),
IX(j) and IF (j + 1) are nonempty for every j. This property can be easily
derived from the relation (1). Making use of the last and taking into account
that we consider only characteristics, based on at most one active S-box per
round, we can deduce a few useful internal relations (intensively exploited in the
algorithm) and summarized as follows.

Fig. 1. Round j and its neighbor rounds

Proposition 5. Any multi-round characteristic, based on at most one active
S-box per round, has the following properties (for all relevant indices):

(i) If S(j) = φ then S(j − 2) �= φ, S(j − 1) �= φ, S(j +1) �= φ and S(j +2) �= φ.
(ii) If S(j) = φ then S(j + 1) = S(j − 1) and IF (j + 1) = IF (j − 1).
(iii) If S(j − 1) �= S(j + 1) then IX(j) = IF (j − 1) + IF (j + 1).

Proof. (i) Follows from the modified Knudsen observation, applied to (j − 2)-th
till (j + 2)-th round.

(ii) Using Eq. (1), we see that IX(j) = φ implies IF (j+1) = IF (j−1) whence
S(j + 1) = S(j − 1).

(iii) The condition S(j−1) �= S(j+1) implies IF (j−1)∩IF (j+1) = φ. Using
this and applying again (1), we consecutively get IF (j − 1) ∩ IX(j) = IF (j − 1),
IF (j − 1) ⊆ IX(j), IF (j − 1) ∪ IX(j) = IX(j), IF (j + 1) = IX(j)\IF (j − 1) and
finally IX(j) = IF (j − 1) + IF (j + 1). �

Detailed description of the BSA logic is given in AppendixA. This algorithm
could be applied to a wide family of ciphers that we call “Generalized Cipher”
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and describe in AppendixB. Also, it can be easily adapted and optimized in
specific settings as we point out bellow.

5.2 Application to the DES Cipher

Searching best characteristics in case of the DES cipher we make two additional
changes in the BSA. First, when choose IX(1) and IX(n), we optimize the choice
by selecting only optimal configurations, i.e. configurations with maximal bias.
Second, after finding a new full-round characteristic, we calculate its bias and
if it is the maximum one till now, we save the characteristic and the bias as
currently best found.

For the purposes of our experiment we implement the search algorithm in
C++. It turns out that implementation takes about 217 recursive calls to find
the best 14-rounds characteristics for the original DES cipher.

5.3 Adaptation in Case of S-boxes with Embedded Parity Check

The idea behind relation (1) is to assure a presence only of bits of P , C and
K in the final sum of all bits participating in the characteristic. If there are
some additional internal bit dependencies, they could lead to new cases, when
the requirement regarding the final sum is fulfilled. Embedding parity check
in the S-boxes is exactly such a case. Therefore we need to modify the search
algorithm to take into account the parity. First, because of the symmetry of
LATs we can restrict the choices of IF (j) to half of all possibilities (for instance,
excluding only those combinations with parity bit). Second, when checking the
intermediate value of IF (j + 1) in point 2.2 of “round chaining” phase of BSA,
we must check not only for IF (j + 1) �= φ, but also for

IF (j + 1) �= IF (S(j + 1)).

This new condition relaxes restrictions to the structure of the “valid” char-
acteristics, taking into account the presence of parity. In the general case
IF (j + 1) = φ is the only condition which assures that there is no interme-
diate bit remaining to “compensate” in the current local sum. When parity is
embedded, there exists a second possibility to have such a situation, namely
when the condition IF (j + 1) = IF (S(j + 1)) holds true. In both cases the cur-
rent local sum takes a constant value, 0 or 1 respectively, and this is the only
necessary condition that must be checked regarding the logic of the algorithm
at this stage.

Remark 3. In our investigation, including the search algorithm, we restrict the
search for best characteristics only to the first found optimal configurations for
IX(1) and IX(n) when IF (1) and IF (n) are already fixed. There may exist
another optimal choices for IX(1) and IX(n), which we do not examine, because
the active S-boxes remain the same. The reason for doing this is that our goal is
mainly to compare the best probabilities and the best characteristics structure.
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6 Results and Their Analysis

6.1 Effects of Embedding Parity Check

When parity check is embedded in the S-boxes, it influences the linear approx-
imations in two main aspects – their structure and their probabilities. Some of
the non-zero biases of 1-round approximations become zero and these approxi-
mations can not participate in a multi-round characteristic anymore. Next, some
zero biases become non-zero and give a possibility to construct a completely new
multi-round characteristics. Third, some non-zero biases change their absolute
values and consequently their contribution to the bias of multi-round character-
istics is changed. In addition the presence of parity check increases the inter-
nal possibilities for chaining consecutive 1-round approximations and gives an
opportunity to get more multi-round approximation with non-zero bias.

6.2 Best Probabilities

The probability biases corresponding to best characteristics are given in Table 3.

Table 3. Probability biases corresponding to best characteristics

n ↓ 0000 0001 0010 0100 1000

3 +0.781 · 2−2 +0.632 · 2−2 +0.632 · 2−2 +0.5 · 2−2 +0.632 · 2−2

4 −0.976 · 2−4 −0.562 · 2−4 −0.820 · 2−5 −0.984 · 2−5 −0.957 · 2−5

5 +0.610 · 2−5 +0.562 · 2−5 +0.878 · 2−7 +0.861 · 2−6 +0.598 · 2−6

6 −0.976 · 2−8 −0.703 · 2−8 −0.562 · 2−10 −0.656 · 2−8 −0.527 · 2−10

7 +0.976 · 2−9 +0.527 · 2−9 −0.820 · 2−13 +0.820 · 2−10 −0.615 · 2−12

8 −0.610 · 2−10 +0.703 · 2−11 −0.738 · 2−15 −0.75 · 2−12 +0.769 · 2−14

9 −0.953 · 2−13 +0.878 · 2−13 +0.562 · 2−17 +0.656 · 2−13 +0.692 · 2−16

10 −0.762 · 2−14 −0.659 · 2−14 +0.562 · 2−20 −0.984 · 2−15 +0.703 · 2−19

11 +0.953 · 2−15 +0.988 · 2−16 +0.861 · 2−22 +0.861 · 2−16 +0.968 · 2−21

12 −0.596 · 2−16 +0.659 · 2−17 −0.562 · 2−24 −0.656 · 2−18 −0.605 · 2−22

13 +0.745 · 2−18 +0.878 · 2−19 −0.711 · 2−27 +0.820 · 2−20 +0.757 · 2−24

14 −0.596 · 2−20 −0.617 · 2−20 −0.830 · 2−30 −0.75 · 2−22 −0.527 · 2−27

15 +0.596 · 2−21 +0.926 · 2−22 +0.562 · 2−31 +0.656 · 2−23 −0.527 · 2−29

16 −0.745 · 2−23 +0.617 · 2−23 −0.830 · 2−34 −0.984 · 2−25 +0.527 · 2−31

17 −0.582 · 2−25 +0.772 · 2−25 +0.968 · 2−37 +0.861 · 2−26 −0.988 · 2−34

18 −0.931 · 2−27 −0.579 · 2−26 −0.562 · 2−38 −0.656 · 2−28 +0.791 · 2−36

19 +0.582 · 2−27 +0.869 · 2−28 +0.968 · 2−41 +0.820 · 2−30 +0.988 · 2−38

20 −0.727 · 2−29 +0.579 · 2−29 +0.889 · 2−44 −0.75 · 2−32 +0.988 · 2−40

It can be seen from Table 3 that, despite of decreasing the effectiveness of
best 1-round approximations, the effectiveness associated with best multi-round
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Table 4. Number and type of the best characteristics

n → 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0000 1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2

0001 1 2 1 22 2 2 11 22 11 2 1 22 2 2 11 22 11 2

0010 1 2 11 2 2 22 11 2 1 2 211 22 11 22 2 2 1 22

0100 11 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2

1000 1 2 1 2 22 2 2 2 1 2 1 2 22 2 2 2 1 2

Table 5. 16-round and 19-round best linear approximations details

16-round approximations 19-round approximations

π Effectiveness appr S-boxes Effectiveness appr S-boxes

0000 0.596 · 2−20 appr1, appr2 2 0.582 · 2−25 appr15, appr16 10

0001 0.617 · 2−20 appr3, appr4 7 0.772 · 2−25 appr17 2

appr5, appr6 3 appr18 2

0010 0.830 · 2−30 appr7, appr8 9 0.968 · 2−37 appr19, appr20 9

appr9, appr10 8

0100 0.75 · 2−22 appr11, appr12 2 0.861 · 2−26 appr21 12

1000 0.527 · 2−27 appr13, appr14 3 0.988 · 2−34 appr22, appr23 10

characteristics can grow (π = 0001 and n = 14, 17 and 18) or diminish (the
remaining cases), depending on the parity bit position.

6.3 Best Characteristics: Number and Type

The number and structure of the best characteristics are given in Table 4. The
notations used are: ‘1’ – for one symmetric characteristic, ‘2’ – for a pair dif-
ferent and symmetric to each other characteristics. For example “211” means
“one pair symmetric to each other characteristics and two individual symmetric
characteristics”.

Table 4 clearly shows that the number and the structure of the best char-
acteristics strongly depend on the presence and the place of the parity bit. In
almost all cases in our experiment the number of best characteristics in the mod-
ified cipher is at least equal to that in the original one. However, there exists
also an exception in case 0100, n = 17.

6.4 Comparison of Best Multi-round Approximate Expressions

We summarize some details concerning best 16-round and 19-round linear
approximate expressions of type (2) in Table 5. The table includes notation of
approximations, their effectiveness and the number of the active S-boxes for the
expressions.
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This table shows that there is no clear rule for dependence of complexity of a
potential attack from the presence of parity. When parity is embedded there are
cases of lower or higher effectiveness combined with more or less active S-boxes
comparing with the original cipher. Some more details and comments about best
16-round linear approximate expressions are given in AppendixC.

7 Conclusions

In this work, from the linear cryptanalysis perspective, we have examined the
effect of inserting a bit of additional linearity in the round’s output of DES by
embedding parity check in the outputs of its S-boxes. Similar to [11,13], our
research is focused on best characteristics obtained on the base of “at most one
active S-box per each round”, since its primary goal is to compare the results
with those for the original cipher.

We prove that such embedding reduces the effectiveness of optimal 1-round
and 3-round characteristics. However, as shown by experiments based on our
search algorithm, this is not true for greater number of rounds. So, in general, a
modification of this type does not necessarily mean a reduction or growth in the
effectiveness of interest. Also, the number of yielded best characteristics varies
depending on the choice of the parity position. So does the number of active
S-boxes in the respective to them linear approximations with highest probability
that in turn implies differences in the number of resultant effective key and
text bits.

Therefore, we could conclude that successful attacks based on this app-
roach have varying magnitude of complexity and at the same time they are
not inevitably more efficient than the corresponding primary attacks towards
the original cipher.
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Appendix

A Basic Search Algorithm

1. Notations and Definitions. For description of the BSA we make use of the
following additional notations and definitions.

Definition 6. The set of indices Icom(j) = IF (S(j)) ∩ IX(S(j + 1)), where
S(j) �= φ and S(j + 1) �= φ, is called compatibility set regarding the j-th round.
The set of indices Irev(j) = IF (S(j)) ∩ IX(S(j − 1)), where S(j) �= φ and
S(j − 1) �= φ, is called reverse compatibility set regarding the j-th round.
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Definition 7. Let S(j) �= φ and S(j + 1) �= φ. If Icom(j) �= φ, then we say that
S(j) and S(j + 1) are compatible. If Irev(j + 1) �= φ, the S(j) and S(j + 1) are
reversely compatible.

Remark 4. Applying the BSA to the DES we always have |Icom(j)| ≤ 1 and
|Irev(j)| ≤ 1.

We use NS(IX(j), IF (j)) to denote NS∗
k(α, β), where Sk = S(j) and α and

β are masks on the input and the output of Sk, corresponding to IX(j) and
IF (j).

2. Algorithm Description
Initialization.

1) Set S(1) and S(2).
1.1) Choose S(1): S(1) �= φ or S(1) = φ.
1.2) If S(1) = φ, then choose S(2): S(2) �= φ.
1.3) Else (i.e. S(1) �= φ) choose S(2): S(2) = φ or S(2) �= φ.

2) Construct IF (1), IX(1) and IF (2) and partially construct IX(2):
2.1) If S(1) = φ:

2.1.1) Set IF (1) ← φ, IX(1) ← φ.
2.1.2) Set IX(2) ← φ.
2.1.3) Choose IF (2): IF (2) ⊆ IF (S(2)), IF (2) �= φ.

2.2) Else (i.e. S(1) �= φ):
2.2.1) If S(2) = φ:

2.2.1.1) Set IF (2) ← φ, IX(2) ← φ.
2.2.1.2) Choose IF (1): IF (1) ⊆ IF (S(1)), IF (1) �= φ.

2.2.2) Else (i.e. S(2) �= φ):
2.2.2.1) Check for compatibility:

2.2.2.1.1) If Icom(1) = φ, then return.
2.2.2.1.2) Choose IX(2): IX(2) ⊆ Icom(1), IX(2) �= φ.

2.2.2.2) Choose IF (2): IF (2) ⊆ IF (S(2)), IF (2) �= φ.
2.2.2.3) Check for reverse compatibility:

2.2.2.3.1) If Irev(2) = φ, then set IF (1) ← IX(2).
2.2.2.3.2) Else (i.e. Irev(2) �= φ)

choose IF (1): IF (1) ⊆ IF (S(1)), IF (1) �= φ.
2.2.3) Choose IX(1): NS(IX(1), IF (1)) �= 0.

Round chaining.
1) Set j ← 2.
2) Finalize IX(j) and construct IF (j + 1):

2.1) Calculate IF (j +1): IF (j +1) ← (IF (j −1)∪ IX(j))\(IF (j −1)∩ IX(j)).
2.2) If IF (j + 1) �= φ:

2.2.1) If IX(j) �= φ and NS(IX(j), IF (j)) = 0, then return.
2.2.2) Set S(j + 1) ← S(j − 1).

2.3) Else (i.e. IF (j + 1) = φ):
2.3.1) If IX(j) = φ:

2.3.1.1) Choose S(j + 1): S(j + 1) �= φ, Irev(j + 1) �= φ.
2.3.1.2) Choose IX(j): IX(j) ⊆ Irev(j + 1), IX(j) �= φ.
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2.3.1.3) If NSS(j)(IX(j), IF (j)) = 0, than return.
2.3.2) Else (i.e. IX(j) �= φ):

2.3.2.1) Set S(j + 1) ← φ or choose
S(j + 1): S(j + 1) �= φ, S(j + 1) �= S(j − 1), Irev(j + 1) �= φ.

2.3.2.2) If S(j + 1) �= φ:
2.3.2.2.1) Choose IX : IX �= φ, IX ⊆ Irev(j + 1).
2.3.2.2.2) If NSS(j)(IX(j) ∪ IX , IF (j)) = 0, than return.
2.3.2.2.3) Recalculate IX(j): IX(j) ← IX(j) ∪ IX .

2.3.3) Recalculate IF (j + 1):
IF (j + 1) ← (IF (j − 1) ∪ IX(j))\(IF (j − 1) ∩ IX(j)).

3) Process IX(j + 1):
3.1) If (j + 1) < n, partially construct IX(j + 1):

3.1.1) If S(j) = φ or S(j + 1) = φ, then Set IX(j) ← φ.
3.1.2) Else (i.e. S(j) �= φ and S(j + 1) �= φ) check for compatibility:

3.1.2.1) If Icom(j) = φ, then return.
3.1.2.2) Else (i.e. Icom(j) �= φ) choose

IX(j + 1): IX(j + 1) ⊆ Icom(j), IX(j + 1) �= φ.
3.1.3) Increment j: j ← j + 1.
3.1.4) Go to 2).

3.2) Else (i.e. (j + 1) = n)
if S(n) �= φ, then choose IX(n): NS(IX(n), IF (n)) �= 0.

Initialization completely constructs a linear characteristic for the first round
and partially constructs one for the second round. Round chaining consists of
repetition of a group of operations in each step until final round is reached. Each
execution of this group of operations creates a characteristic for the current
round and partially constructs a characteristic for next round. When the next
round is the last, its characteristic is constructed completely. During the search
each return is to the point of the last choice made and requires another choice to
be made. For finding all characteristics, all possible choices must be exhaustively
checked in every point of choice in the algorithm.

B Generalized Cipher

Generalized Cipher is a family of Feistel type ciphers with block length of 2b and
j-th round function

fj(Xj ,Kj) = Prm(Sub(Exp(Xj) ⊕ Kj)),

where:

– Exp is an expansion function from b bits to e bits, i.e. for every s Exp(X)[s] =
X[i] for some i;

– Sub is a substitution function, Sub(X) = S1(X)‖S2(X)‖ . . . ‖Sm(X), as Sk is
an S-box from (e/m) bits to (b/m) bits, 1 ≤ k ≤ m, and ‖ is concatenation
of binary vectors;

– Prm is a permutation of b bits.
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In order the BSA to be applicable to such a cipher, we assume that it possess
LATs with no valuable biases with zero input masks and non-zero output masks.

C More Details About 16-round Best Approximations

Table 5 from Sect. 6.4 contains some details concerning best 16-round linear
approximate expressions of type (2). In Example 1, two of the underlying best
characteristics are described thoroughly. X ′, F ′ and K ′ denote the input data,
output data and the round key for an individual round.

Example 1 (The best characteristics used in appr5 and appr11).

appr5: -ABC-CBA-ABC-D,
A: X ′[29] ⊕ F ′[1, 15] = K ′[44], B: X ′[15] ⊕ F ′[29] = K ′[22], C: X ′[29] ⊕ F ′[1] =
K ′[44], D: X ′[0, 30] ⊕ F ′[1] = K ′[45, 47].

appr11: -EG-GE-EG-GE-H,
E: X ′[22] ⊕ F ′[16] = K ′[33], G: X ′[16] ⊕ F ′[22] = K ′[25], H: X ′[23] ⊕ F ′[16] =
K ′[34].

It can be seen from Table 5 that in three out of all four cases the complexity
is higher than for the original cipher. So, there is a case, namely of parity mask
(0001), when the complexity is lower. It can be seen as well that the number
of active S-boxes varies from 2 till 9. Also, in the case of parity mask (0100)
the number of active S-boxes equals to, while in the remaining three cases it
prevails over that of the original cipher. In general, more active S-boxes mean
more effective bits and consequently this complicates the maximum likelihood
method applied, simplifying at the same time the subsequent exhaustive search.

The number of best approximations varies as well providing different pos-
sibilities for combining them in an attack. Indeed, a suitable combination of
such approximations may result in a significant reduction in the cost of the
attack. For instance, one possible approach is firstly to apply the maximum like-
lihood method with those approximations having fewer effective bits and then to
employ the fixed bits in another approximation to reduce its number of remain-
ing effective bits. This approach is applicable in the case (0001), as follows. After
analyzing the dependencies, we see that both approximations appr5 and appr6
have 16 effective key bits and 19 effective text bits. For appr3 the relevant facts
are as follows: 39 effective key bits and 35 effective text bits, while for appr4 they
are 38 and 35, respectively. Following the general technique described above, we
can apply the maximum likelihood method at first with appr5 and appr6 and
subsequently with appr3 and appr4. Thus, we can get the remaining effective
bits: for appr3 – 17 key and 21 text bits, and for appr4 – 15 key and 21 text bits,
respectively. This greatly simplifies the use of appr3 and appr4, and represents a
way of exploiting multiple linear relations to extract several bits of information
about the key (see, e.g., [3,15]).
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D Two-Round Iterative Characteristics Based on Two
or More Active S-boxes Per Round

In case of the DES cipher there are 1-round approximations containing no input
variables and having valuable probability that could be found taking into account
two S-boxes approximations in a single round. Using such an approximation a
2-round iterative characteristic can be constructed, where every second round
is a trivial expression. Matsui has shown such approximations (based on the
pairs of adjacent S-boxes) in [12, Ch. 5.4] giving a warning that resultant global
probability is worse than in the case of at most one active S-box per round.
When parity bit is embedded the same type of approximations exist, too. S-
boxes approximations, whose combination give best 1-round approximations of
the type considered, are given in Table 6 with their corresponding values in the
LATs. From this table one can see that in the cases of proper embedded parity
bits these characteristics have lower effectiveness compared to the original cipher.

Table 6. Best combinations for getting a characteristic with zero input mask

Parity 0000 0001 0010 0100 1000

LAT NS∗
7 (3, 15) = 8 NS∗

2 (3, 5) = 8 NS∗
7 (3, 3) = 6 NS∗

6 (3, 6) = 6 NS∗
4 (3, 3) = 8

Values NS∗
8 (48,13) = −12

(Matsui [12])

NS∗
3 (48, 2) = −6 NS∗

8 (48, 2) = 12 NS∗
7 (48, 6) = −8 NS∗

5 (48, 5) = −6

Bias −0.0469 −0.0234 0.0352 −0.0234 −0.0234

In addition, we observed that embedding of parity bits gives rise to yet
another class 1-round approximations of that particular interest which then could
be used for constructing 2-round iterative approximations. Roughly speaking,
their corresponding characteristics involve as input all four output bits of some
S-boxes applied in the previous round and transposed by the round permutation.
However, the effectiveness of these characteristics can be bounded from above
by 0.0352, which is again worse. We will consider the details elsewhere.
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Abstract. Security of cryptographic primitives is quantified by bound-
ing the probability ε that an adversary with certain resources t win the
security game. We derive a clear formula showing how the security mea-
sured as the worst time-to-success ratio changes under a broad class of
reductions. Applications include comparisons of (a) bounds for pseudoen-
tropy chain rules, (b) leakage resilient stream ciphers security, and (c)
security of weak pseudorandom functions fed with weak keys.

Keywords: Reduction-based proofs · Time-to-advantage ratio · Time-
to-succcess ratio · Leakage-resilient cryptography

1 Introduction

1.1 Reduction-Based Security Proofs

In cryptography one typically constructs more complicated object P (a scheme,
protocol) from a more standard and better understood primitive P ′. A stan-
dard way to argue about security in such a case is to proceed by a reduction
argument: assume that an adversary with certain time resources t (which may
be running time, circuit complexity, or number of oracle queries...) can break a
scheme/protocol P with probability ε, and then construct another adversary who
using t′ resources can break a building primitive P ′ with probability ε′. Turn-
ing this statement around, we obtain that the security of P against adversaries
with bounded time or success probability is implied by the security of P ′ against
somewhat stronger adversaries. Assume, for the sake of this discussion, that the
security of P reduces to the security of P ′ in the following quantitative way:

Security Reduction: If P can be broken by an adversary running in
time t with success probability ε, then P ′ can be broken by an adversary
running in time t′ with success probability ε′ where

t′ = p(t, ε),
ε′ = q(t, ε) (1)

for some functions p(·), q(·).
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In the simplest case, the functions p(·) and q(·) are algebraic functions of original
parameters, like ε′ = ε2 or t′ = tε−2 (the latter case appears particularly often as
a result of the Chernoff Bound applied). In leakage-resilient cryptography these
formulas are more complicated and typically involve some additional parameters,
like the leakage length or the number of queries.

1.2 Quantifying Security for a Given Adversary

Time-to-Success Ratio. Intuitively, the security of a primitive measures the com-
putational resources needed by any adversary to break it. There are two natural
resources to consider here: the time resources t and the success probability ε
and the standard tool for evaluating security is the simple time-success ratio
t
ε , introduced by Luby. Since the adversary may want to trade time for success
probability, one takes here the minimum over the pairs (t, ε).

Example. For example, the strongest block ciphers like AES are believed to
satisfy t/ε � 2k for any adversary with running time t and success probability ε,
where k = 256 is the length of the key. If such an inequality holds for a primitive
P and some number k, we say that P is 2k-secure or that is has k bits of security
(see Definition 6).

1.3 Quantifying Security Losses in Reductions

How Much Security do We Lose in Reductions? The natural question here is
how the security, understood as the time-success ratios t

ε and t′
ε′ , of P and P ′

are related to each other. Suppose that we know that (for instance by Eq. (1))

t′

ε′ = O

((
t

ε

)c)

holds for every pair (t, ε) such that t/ε � 2k and some constant c � 11. Then we
have t′

ε′ � 2k′
where k′ = ck. Turning this statement around we obtain k = 1

c ·k′.
Such a reduction is called poly-preserving if c > 1 or linear if c = 1 [LM94]. All
the reductions considered in this paper will be poly-preserving. Note that the
smaller c is, the more of the original security in P ′ is transferred to the security
of P ; more concretely, the security level measured in bits decreases by the factor
c. In general, determining the relation between k and k′ is not so simple, as t

ε′
is not necessary a function of t

ε .

1.4 Problem Statement

The discussion above motivates the following question.

1 The constant is at least 1 because one cannot increase the security level by black-box
reductions.
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Question: Consider the reduction in Eq. (1). Suppose that P ′ has k′

bits of security. How much secure is P , if we know the concrete form of
p(·) and q(·)?

We would like to obtain a clear formula which allows us to compute k such that
P is 2k-secure, given k′, p(·) and q(·). Of course, no general formula can exists
if we do not assume anything specific about p(·) and q(·). Our goal is therefore
to abstract a possibly wide class of functions and obtain a possibly clear bound
within this class.

2 Our Results and Techniques

Summary of Our Results. We obtain a clear formula showing how the time-
success ratio changes, valid for reasonably large class of functions p(·), q(·).
The result is elementary, yet very useful as shown in the following concrete
applications:

(a) A comprehensive analysis of security for pseudoentropy chain rules, by the
time-success ratio analysis.

(b) A comprehensive analysis of provable security for leakage-resilient stream
ciphers, by the time-success ratio analysis.

(c) A comparison of known bounds for security of weak pseudorandom functions
on weak keys.

2.1 The Time-Success Ratio Under Reductions

We need the following result, which is a direct consequence of definitions and is
stated without a proof.

Theorem 1 (Time-Success Ratio Under Reductions). Let P and P ′ be
related as in Eq. (1). Suppose that K, K ′ satisfy

K ′ = max
t,ε

p(t, ε)
q(t, ε)

(2)

where the maximum is over the set of pairs (t, ε) satisfying the constraints

1 � t, 0 < ε � 1,
t

ε
� K. (3)

Then the fact that P ′ is K ′-secure implies that P is K-secure.

In general, when the functions p(·), q(·) are arbitrary, we cannot say much more.
However, the most typical case is when they are polynomial in t, ε, possibly with
some extra parameters.
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Theorem 2 (Time-Success Ratio Under Simple Reductions). Suppose
that the following holds: if P can be broken with running time t and success
probability ε then P ′ can be broken with running time t′ and success probability
ε′ where

t′ = c1t
α1ε−β1 + c3ε

−β3

ε′ = c2t
−α2εβ2 .

(4)

and α1, α2, c1, c2, c3, β1, β2, β3 are positive constants. Then the following holds:
if P ′ is K ′-secure then P is K-secure where K ′ and K satisfy

K ′ = (1 + ψ) · max
(

c1
c2

· Kmax(α1+α2,β1+β2),
c3
c2

· Kmax(α2,β2+β3)

)
(5)

for some parameter 0 � ψ � 1.

2.2 Application to Pseudoentropy Chain Rules

Introduction. Information-theoretic entropy notions take into account
unbounded parties. For example, Shannon entropy gives a tight bound (over all
algorithms) on the compression rate of a given distribution for every algorithm,
and min-entropy gives a tight bound (over all algorithms) on the probability of
predicting a sample from a given distribution. Most entropy notions satisfy a
property called chain rule, which roughly capture the fact that when addition-
ally conditioning on a variable Z, the entropy H(·) of X goes down at most by
the length of Z

H(X|Z) � H(X) − |Z|.
In modern cryptography, one considers computational generalizations of the clas-
sical entropy notions. These so called pseudoentropy notions capture the fact
that a given distribution only appears to have high entropy for computationally
bounded parties. For pseudoentropy notions not only quantity matters but also
its quality is important. The quality measures how close is the given distribution
to a high-entropy distribution. Pseudoentropy found a lot of applications, includ-
ing leakage-resilient cryptography [DP08,Pie09,YSPY10,FPS12,YS13], deter-
ministic encryption [FOR15], memory delegation [CKLR11], computational
complexity [RTTV08,Sko15b], hardness amplification [Sko15a] and foundations
of cryptography [VZ13]. The most important pseudoentropy notion is HILL
entropy. Informally, we say that X given Z has n bits of HILL pseudoent-
tropy of quality (t, ε) if X is indistinguishable from a distribution Y of n-bits of
min-entropy, given Z (for a formal definition see Definition 2). Chain rules for
HILL pseudoentropy are central tools in security proofs, in particular in leakage-
resilient stream ciphers [DP08,Pie09,YSPY10,FPS12,YS13]. They are similar to
chain rules for information-theoretic entropies except one detail: they involve a
loss in quality, as stated below.

Pseudoentropy chain rules. If X has n bits of pseudoentropy of qual-
ity (t′, ε′) then X given Z ∈ {0, 1}λ has n − λ bits of pseudoentropy of
quality (t, ε) provided that t′ = poly

(
t, ε−1, 2λ

)
and ε′ = poly(ε, 2−λ).
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Our Result: A Time-Success Ratio Analysis of the Known Chain Rules. Prov-
ing chain rules is a challenging task and many techniques were proposed. This
resulted in a different quality tradeoffs between (t, ε) and (t′, ε′). Different quan-
titative bounds, known in the literature, are summarized in Table 1. In addition,
based on Theorem 2, we compare them in the important setting where the ratio
t/ε of quality parameters is constant for any choice of t. This is, for example,
the case of AES256 when t/ε ≈ 2256 for all adversaries (t, ε), or more generally
any weak PRF with a k-bit key2; in particular this is how the chain rules are
often used.

Table 1. Qualitative bounds on chain rules for HILL entropy. To compare different
chain rules, we consider a (t′, ε′)-secure weak PRF where t′/ε′ = 2k′

(for any choice of
t′), then after λ bits of leakage on the key, the PRF is t/ε = 2k secure (for any choice
of t), where depending on the chain rule used, k can take the values as indicated in the
table.

From this comparison we obtain the following corollaries:

Corollary 1 (How Tight Are Chain Rules?). For the all known chain rules,
the reduction is polynomial of degree 3, with some extra loss of a factor depending
(exponentially) on the leakage length λ.

Unfortunately, this loss is really big in practice. Consider for example the AES
as weak PRF. It has roughly 2256 security. But with leakage of just one bit, we
cannot prove more security than 2

256
3 ≈ 285!

Corollary 2 (Which Chain Rule Is Best?). The best chain rule is (g) when
we want to keep ε possibly small (comparing to ε) and (c) when we want to keep
s possibly big (with respect to s′). The gain, comparing to other chain rules, is
by a factor exponential in λ.

This clear analysis may be useful for authors interesting in chain rules (for
example, those working in leakage-resilient crypto), as different and complicated
bounds for chain rules are considered confusing in folklore.

2 We consider the security of AES256 as a weak PRF, and not a standard PRF,
because of non-uniform attacks which show that no PRF with a k bit key can have
s/ε ≈ 2k security [DTT09], at least unless we additionally require ε � 2−k/2.
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2.3 Application to Leakage-Resilient Stream Ciphers

Introduction. Traditional security notions in cryptography consider adversaries
who can interact with a primitive only in a black-box manner, observing its
input/output behavior. Unfortunately, this assumption is unrealistic in prac-
tice. In fact, information might leak from cryptograms at the physical imple-
mentation layer. The attacks that capture information this way are called
side-channel attacks, and include power consumption analysis [KJJ99], timing
attacks [Koc96], fault injection attacks [BBKN12] or memory attacks [HSH+08].
Searching for countermeasures against side-channel attacks, one can try to pre-
vent them modifying software or further secure hardware. However, these tech-
niques are more ad-hoc than generic. A completely different viewpoint is to
provide primitives which are provably secure against leakage. The research field
following this paradigm is called leakage-resilient cryptography, and has become
very popular in recent years. A lot of work and progress has been done in this
topic so far, since the breakthrough paper on resilient stream ciphers [DP08],
much more than we could mention here. We refer the reader to [ADW10,Mol10]
for good surveys, and focus now on leakage-resilient stream ciphers. Intuitively,
leakage-resilient stream ciphers generate a bitstream to encrypt data bit by bit,
similarly to standard stream ciphers, but need to tolerate some information leak-
age in every round.

Design Based on Weak PRFs. On Fig. 1 below we present a simplified version
of the first leakage-resilient stream cipher [DP08], which is due to [Pie09]. The
construction is based on a weak pseudorandom function (wPRF), which “looks”
like a random function when queried on random inputs (see Definition 3). Leak-
age is modeled in the so called continuous bounded leakage model, where the
overal execution of a cryptographic protocol is divided into time frames, and in
every round leakage comes only from the parts of the internal state which are
touched by computations. This way the amount of leakage is bounded in every
round but unbounded overall. This is perhaps the most popular line of research
restricting the leakage type, based on the only computation leaks information
axiom introduced by Micali and Reyzin [MR04]. A drawback of this modeling
approach is the fact that it allows for working only with relatively short leakage.
However, no good alternative has been found so far. More general models, like
“security against auxiliary inputs”, are very hard to work with. Here one should
mention the follow-up works [YSPY10,FPS12,YS13] which use essentially the
same design with some changes, trying to reduce the randomness in secret keys
at the cost of using public randomness [YSPY10,FPS12], or further reduce the
length of the public key [YS13].

Our Contribution: An Analysis of Security Bounds. We provide a time-success
ratio analysis of security bounds for leakage-resilient stream ciphers (in the stan-
dard model, that is without random-oracle based assumptions). We compare the
security of the underlying weak PRF (quantified by (t′, ε′)) and the security of the
cipher (quantified by (t, ε)); the exact security loss is obtained by putting reduc-
tion parameters from related works (columns t′, ε′) into Theorem2. In addition,
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Fig. 1. The EUROCRYPT’09 stream cipher (adaptive leakage). F denotes a weak
PRF. By Ki and xi we denote, respectively, values of the secret state and keystream
bits. Leakages are denotted in gray with Li.

we discuss the limitations of best known proof techniques. From this comparison
we obtain the following corollaries.

Corollary 3 (How Good Are Security Bounds for Leakage-Resilient
Stream Ciphers?). For the all known constructions, the reduction from the
cipher to the underyling weak PRF is polynomial of a degree varying from 4
to 6 (depending on the technique), with some extra loss of a factor depending
(exponentially) on the leakage length λ.

Unfortunately, all these bounds are not practical. Consider for example the
cipher where the weak PRF is instantiated with AES. It has roughly 2256 secu-
rity. But with leakage of just one bit, we cannot guarantee more security for the
cipher than 2

256
5 ≈ 251 (the cipher (3) provides 2

256
4 ≈ 264 security but under

non-standard assumptions)!

Table 2. Different bounds for wPRF-based leakage-resilient stream ciphers. The under-
lying weak PRF(s) has k′ bits of security, and the cipher has k bits of security,
understood in terms of the time-success ratio. The numbers denote: (1) The EURO-
CRYPT’09 cipher, (2) The CSS’10/CHESS’12 cipher, (3) The CT-RSA’13 cipher.
The dream bound refers to better bounds claimed in [JP14b] which remain unproven
because of a subtle flaw [Pie].



86 M. Skórski

Corollary 4 (Which Technique Is Best?). The most promising proof tech-
nique is the so called “auxiliary inputs simulator” introduced in [JP14b]. If we
proved the dream bound in Table 2, it would offer a significant increase in the
(provable) security level.

The analysis we provide may be useful for authors interesting in leakage-resilient
stream ciphers, and important for future research as we identify promising
research directions (the proposed dream bound conjecture offers a massive
improvement in security bounds). For the sake of completeness we state this
conjecture below.

Conjecture 1 (Dream Bounds for Simulating Auxiliary Inputs). Let X ∈ {0, 1}n,
Z ∈ {0, 1}m be random variables. Then there exists a simulator h of complexity
O(t · poly(2m) · ε−2) such that (X,Z) and (X,h(X)) are (t, ε)-indistinguishable.

This tool can be directly applied to prove security of the cipher (1). Unfor-
tunately, for now we only know how to construct this simulator with complexity
O(t · poly(2m) · ε−4) or O(t · poly(2m) · ε−2 + poly(2m) · ε−4) which yield compa-
rably bad bounds (see Table 2). The dream bound would improve massively the
security of the cipher, as shown in the table.

2.4 Applications to Weak Pseudorandom Functions

Weak pseudorandom functions are key components of the leakage-resilient design
we discussed in the previous section. The following fact, which states that weak
PRFs are secure not only with uniform but also high-entropy keys, is the main
technical ingredient in these proofs.

Lemma 1 (Weak PRFs with High-Entropy Keys). Let F : {0, 1}k ×
{0, 1}n → {0, 1}m be a (t′, ε′, q)-secure weak PRF. Then for K and auxiliary
information Z such that H̃∞(K|Z) � n − λ we have that F is (t, ε)-secure with
the key K given Z, if either of the following holds

(a) q = λ · (ε′)−2, t = t′ · (ε)2, ε = 2λε′ [Pie09].
(b) q = 2, t ≈ t′, ε =

√
2λε′ [DY13].

Below in Table 3 we give a comparison of these two bounds, arguing by Theorem2
that the second bound is better and quantifying the gain.

Corollary 5. The bound (b) is better, as it guarantees roughly 1
2 of the original

security, whereas (a) gives only 1
3 of the original security.

Table 3. Different bounds for wPRFs with weak keys. A weak PRF which has k′ bits of
security with the uniform keys, has k bits of security for keys with entropy deficiency λ.
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3 Preliminaries

3.1 Min-Entropy

We say that X has k bits of min-entropy given Z if the value of X cannot be
guessed with probability better than 2−k.

Definition 1 (Conditional Min-Entropy). X has k bits of min-entropy
given Z, denoted by H̃∞(X|Z) ≥ k, when Ez←Zmaxx Pr[X = x|Z = z] � 2−k.

3.2 Computational Distance and Computational Entropy

We say that two distributions X,Y are (s, ε)-close and denote by X ≈(s,ε) Y
if for every circuit D of size s we have |Pr[D(X) = 1] − Pr[D(Y ) = 1]| � ε. We
also say that X and Y are (s, ε)-indistinguishable (note that with s = ∞ we
recover the standard notion of the statistical distance). Based on the concept of
computational indistinguishability, we define pseudoentropy

Definition 2 (HILL Pseudoentropy [HLR07]). Let (X,Z) be a joint distri-
bution of random variables. Then X has conditional HILL entropy k con-
ditioned on Z, denoted by HHILL

ε,s (X|Z) ≥ k, if there exists a joint distribution
(Y,Z) such that H̃∞(Y |Z) � k, and (X,Z) ∼s,ε (Y,Z).3

3.3 Leakage-Resilient Stream Ciphers

The notion of weak pseudorandom function capture the idea of a function which
looks randomly on random inputs.

Definition 3 (Weak Pseudorandom Functions). A function F : {0, 1}k ×
{0, 1}n → {0, 1}m is an (s, ε, q)-secure weak PRF if its outputs on q random
inputs are indistinguishable from random by any distinguisher of size s, that is

|Pr [D ((Xi)
q
i=1 ,F((K, Xi)

q
i=1) = 1] − Pr [D ((Xi)

q
i=1 , (Ri)

q
i=1) = 1]| � ε

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and Ri ← {0, 1}m conditioned on Ri = Rj if
Xi = Xj for some j < i.

Stream ciphers generate a keystream in a recursive manner. The security requires
the output stream should be indistinguishable from uniform4.

3 Let us stress that using the same letter Z for the 2nd term in (X, Z) and (Y, Z)
means that we require that the marginal distribution Z of (X, Z) and (Y, Z) is the
same.

4 We note that in a more standard notion the entire stream X1, . . . , Xq is indistin-
guishable from random. This is implied by the notion above by a standard hybrid
argument, with a loss of a multiplicative factor of q in the distinguishing advantage.
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Definition 4 (Stream Ciphers). A stream-cipher SC : {0, 1}k → {0, 1}k ×
{0, 1}n is a function that need to be initialized with a secret state S0 ∈ {0, 1}k

and produces a sequence of output blocks X1,X2, ... computed as

(Si,Xi) := SC(Si−1).

A stream cipher SC is (ε, s, q)-secure if for all 1 � i � q, the random variable Xi

is (s, ε)-pseudorandom given X1, ...,Xi−1 (the probability is also over the choice
of the initial random key S0).

Now we define the security of leakage resilient stream ciphers, which follow the
“only computation leaks” assumption.

Definition 5 (Leakage-Resilient Stream Ciphers). A leakage-resilient
stream-cipher is (ε, s, q, λ)-secure if it is (ε, s, q)-secure as defined above, but
where the distinguisher in the j-th round gets λ bits of arbitrary deceptively
chosen leakage about the secret state accessed during this round. More pre-
cisely, before (Sj ,Xj) := SC(Sj−1) is computed, the distinguisher can choose
any leakage function fj with range {0, 1}λ, and then not only get Xj, but also
Λj := fj(Ŝj−1), where Ŝj1 denotes the part of the secret state that was modified
(i.e., read and/or overwritten) in the computation SC(Sj−1).

3.4 Time-Success Ratio

The running time (circuit size) t and success probability ε of attacks (practical
and theoretical) aggainst a particular primitive or protocol may vary. For this
reason Luby [LM94] introduced the worst case time-success ratio t

ε as a universal
measure of security. This model is widely used to analyze provable security, cf.
[BS04,BN10,BL13] and related works.

Definition 6 (Security by Time-Success Ratio [LM94]). A primitive P is
said to be 2k-secure if for every adversary with time resources (circuit size in
the nonuniform model) t, the success probability in breaking P (advantage) is at
most ε < t · 2−k. We also say that the time-success ratio of P is 2k, or that is
has k bits of security.

For example, AES with a 256-bit random key is believed to have almost 256 bits
of security as a weak PRF5.

4 Proof of Theorem2

For shortness, denote by S the set of pairs (t, ε) satisfying (3). According to
Theorem 1 we want to find the maximum of

t′

ε′ =
c1t

α1ε−β1 + c3ε
−β3

c2t−α2εβ2

=
c1
c2

tα1+α2ε−β1−β2 +
c3
c2

tα2ε−β3−β2

5 We consider the security of AES256 as a weak PRF, and not a standard PRF, because
of non-uniform attacks which show that no PRF with a k bit key can have s/ε ≈ 2k

security [DTT09], at least unless we additionally require ε � 2−k/2.
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where t/ε � K, 0 < ε � 1 and 1 � t. Consider first the term tα1+α2ε−β1−β2 .
Note that

tα1+α2ε−β1−β2 = (t/ε)α1+α2 · εα1+α2−β1−β2 = (t/ε)β1+β2 · tα1+α2−β1−β2 .

From this we can see that the maximum over S equals Kα1+α2 when α1 + α2 >
β1 + β2 (achieved at t = K, ε = 1), and equals Kβ1+β2 otherwise (achieved at
t = 1, ε = 1

K ). Equivalently, this is simply Kmax(α1+α2,β1+β2). Similarly, we write

tα2ε−β2−β3 = (t/ε)α2 · εα2−β2−β3 = (t/ε)β2+β3 · tα2−β1−β2 .

and see that the maximum over S equals Kα2 when α2 > β2 + β3 (achieved
at t = K, ε = 1 and equals Kβ2+β3 otherwise, which is simply Kmax(α2,β2+β3).
Therefore we have

max
(t,ε)∈S

[
c1
c2

· tα1+α2

εβ1+β2
+

c3
c2

· tα2

εβ2+β3

]

� c1
c2

max
(t,ε)∈S

tα1+α2

εβ1+β2
+ max

(t,ε)∈S
c3
c2

· tα2

εβ2+β3

� c1
c2

· Kmax(α1+α2,β1+β2) +
c3
c2

· Kmax(α2,β2+β3)

and clearly

max
(t,ε)∈S

[
c1

c2
· tα1+α2

εβ1+β2
+

c3

c2
· tα2

εβ2+β3

]
� max

(
c1

c2
· Kmax(α1+α2,β1+β2),

c3

c2
· Kmax(α2,β2+β3)

)
.

and the proof follows.

5 Conclusion

The formula for the security loss in reductions we derived is simple, yet useful
in applications. We will provide some additional applications in the full version
of this paper, available online.
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Abstract. Designers of modern IT networks face tremendous security
challenges. As systems grow ever more complex and connected it is essen-
tial that they resist even previously-unknown attacks. Using formal mod-
els to analyse the security of cryptographic protocols is a well-established
practice. However, the security of complex networks is often still evalu-
ated in an ad-hoc fashion. We analyse the applicability of formal security
models for complex networks and narrow the gap between security proofs
for abstract cryptographic protocols and real-world systems. Specifically
we use the Universal Composability framework together with Katz et al.’s
extensions for synchronous computation and bounded-delay channels [15].
This allows us to model availability guarantees. We propose a 5-phase par-
adigm for specifying protocols in a clear representation. To capture redun-
dant formalisms and simplify defining network topologies, we introduce
two functionalities Fwrap and Fnet. Demonstrating the applicability of our
approach, we re-prove Lamport et al.’s well-known solution to the Byzan-
tine Generals Problem [16] with four parties. We further complete a result
of Achenbach et al. [1], proving that a “firewall combiner” for three net-
work firewalls is available.

Keywords: Network firewalls · Universal composability · Security
architectures · Formal models

1 Introduction

Information Technology (IT) systems are at the heart of most automated systems
today. Not only cars and airplanes rely on networked computer systems, but
also factories, water supply plants, and nuclear facilities. At the same time,
IT systems have never faced more serious threats—national and foreign secret
services, criminal organisations, and even corporate hacker groups threaten the
integrity and availability of services society relies on.

The aim of research in provable security is to construct IT systems that are
invulnerable to attack. Because one faces an intelligent adversary when construct-
ing IT systems it is not sufficient to test for known vulnerabilities before shipping a
security solution. One needs a method for defending against previously-unknown
attacks. To achieve this goal, formal security models are used. However, since
c© Springer International Publishing Switzerland 2016
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proofs in these models are naturally very technical, they only exist for indi-
vidual system components like secure channels [8] or simple protocols such as
fair coin tosses [2]. However, since modern IT networks are very complex, they
are usually not proven secure in a formal security model but only empirically
tested for known security weaknesses. This constitutes a significant gap between
systems which are proven to be secure and those which are actually in use.

This gap can be somewhat narrowed by security notions that offer composabil-
ity : When the cryptographic framework ensures that the composition of secure
components yields a secure system, security analysis can be broken down into
analysing components with manageable complexity. Specifically, when one analy-
ses computer network components, the secure composability property allows to
focus on one sub-network without specifying the rest of the network. (One essen-
tially proves the security of the component for any surrounding network.)

Achenbach et al. [1] use the Universal Composition (UC) framework intro-
duced by Canetti [3] to analyse and rigorously prove the security of a combina-
tion of multiple—possibly untrusted—network firewalls. As a setup assumption
they use a trusted hardware “packet comparator” that compares incoming net-
work packets from several sources and blocks them if they don’t match. Using
this assumption, they show how to combine multiple untrusted firewalls to yield
a provably secure firewall “combiner”. Their result does not provide a formal
availability guarantee, however.

In this work, we address the research question whether established formal
security models can be used to analyse real computer networks. We specifically
focus on the Universal Composability framework and provide a “recipe” for
modeling and analysing networks. Our model covers availability. It is our belief
that this work demonstrates the actual usability of the UC framework and formal
security models for computer networks.

1.1 Our Contribution

In this paper we investigate the analysis of computer networks in the UC frame-
work. We show how to obtain rigorous proofs of security for real network systems
and narrow the gap between provably secure functionalities and real systems.
We propose a methodology consisting of two generalized functionalities Fwrap

and Fnet for modeling network functions and a 5-step paradigm to model proto-
cols. By abstracting various technical details of the framework, our methodology
allows protocol designers to give a natural description of the network and its
functionality and thus greatly simplifies its analysis. By incorporating a result
of Katz et al. [15] our model also covers availability. Using our methodology, we
restate a well known result from Lamport et al. [16] and complete the work of
Achenbach et al. [1] by modeling availability.

1.2 Related Work

Universally Composing Security. There are various approaches to secure pro-
tocol composition. One of the best known is Canetti’s Universal Composability
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(UC) framework [3,4]. Other models are Hofheinz’ and Shoup’s GNUC [10],
Pfitzmann’s and Waidner’s Reactive Simulatability framework [21], Maurer’s
and Renner’s Abstract Cryptography [18], and Maurer’s Constructive Cryp-
tography [17]. Among these models, the UC framework has received the most
attention. Many protocols for cryptographic building blocks are proven as UC
secure. As we base our work on the UC framework as well, these protocols are
compatible with our results.

Synchronous Universal Composition. The UC framework is asynchronous—
exactly one machine is running at any given moment. This convention greatly
simplifies analysis but at the same time makes modeling the progression of time
difficult. More concretely, one cannot simultaneously prove input completeness
(the inputs of all honest parties are considered) and guaranteed termination
(the protocol does not “hang”). There have been various approaches to mod-
eling synchrony in the UC framework [9,13,19]. They, however, either lack in
expressiveness or modify the foundations of the framework. The recently pro-
posed approach by Katz, Maurer, Tackmann, and Zikas [15] generalises previous
results. It hinges on two ideal hybrid functionalities FBD and Fclock that do not
change the framework.

UC Proofs for Practical Protocols. The UC framework is the quasi state-of-the-
art framework for proving the security of cryptographic building block protocols
like Commitments [5] or Oblivious Transfer [20]. Because it has a composition
theorem, it is argued that more complex protocols can then be composed of
these components. However, the UC framework has also been used to prove the
security of more complex schemes, such as TLS [8], OAuth [6], disk encryption
[7], and robust combinations of network firewalls [1]. Our contribution falls in
line with this work. We investigate composing large computer networks.

Formal Analysis of Computer Networks. While network security is considered
a practical field, formal methods have also been applied to computer networks.
Research generally concentrates on modeling attacks and vulnerabilities [12] and
on generating verififation policies [11] While such approaches help in configuring
specific network components and in mitigating threats, they do not have the
advantages of cryptographic security models.

2 Universally Composable Computer Networks

In this section we introduce our methodology for modeling computer networks
with the Universal Composability framework. We first give a brief introduction
to Universal Composability and its extension for synchronous computation. We
then describe the tools we developed and show how to use them by giving a
concrete example.
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2.1 Universal Composability

Due to space constraints, we only give a brief review of the Universal Compos-
ability (UC) framework. For details, we refer the reader to Canetti’s original work
[3] and the updated version [4]. Using the framework, one proves the security
of multi-party protocols by comparing their execution with an idealised version
of the protocol. If there is no efficient means of distinguishing the real protocol
from its idealised version, we say the protocol securely realises the ideal protocol.

All machines are modeled as Interactive Turing Machines (ITMs). A protocol
is a number of interacting ITMs. The execution of a protocol π in the UC
framework is in the context of two additional ITMs: the adversary A and the
environment Z. (The environment represents the “surrounding network”.) There
may be other ITMs realising ideal hybrid-functionalities F.

The execution of the protocol is turn-based. If an ITM is activated, it can
perform computations and write to tapes of other ITMs. Then its turn ends. If
an ITM receives input on one of its tapes, it is the next to be activated. The
first ITM to be activated is the environment machine Z.

The output of the whole protocol is the output of Z and we assume, without
loss of generality, that it consists of one bit. The distribution of all outputs of
Z is a random ensemble based on the two parameters z (the input) and k (the
security parameter), denoted by EXECπ,A,Z .

The security of a protocol execution in the UC framework is based on a com-
parison with an execution of an idealised version of the protocol. In the ideal
protocol, the ideal functionality Fideal completely realises the desired properties
of the analysed protocol. There, all parties only act as dummies which directly
hand their input to the ideal functionality and receive back their output without
performing any computation themselves. The ideal functionality may communi-
cate with the adversary in order to model the influence A is allowed to have. We
call this adversary the “adversary simulator” S. Note that this does not model
an absolute security guarantee but a guarantee relative to the defined ideal func-
tionality. We denote the output of Z interacting with the ideal protocol IDEALF
and simulator S as EXECIDEALF ,S,Z .

Informally, a protocol π is UC secure if, for every adversary A there is an
adversary simulator S such that no environment Z can distinguish if it is inter-
acting with π or with the ideal protocol implementing π:

∀A∃S∀Z : EXECπ,A,Z ≈ EXECIDEALF ,S,Z

where ≈ denotes computational indistinguishability.
The composition theorem states that if π securely realises an ideal function-

ality Fideal, one can use π instead of Fideal in hybrid protocols without losing the
security guarantee.

Universally Composable Synchronous Computation. The Universal
Composability framework is inherently asynchronous. Exactly one machine can
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run at any given moment. This simplification guarantees that the result of an exe-
cution is non-ambiguous. We perceive reality to be concurrent, however. Specif-
ically, time passes and can be measured independently of the actions of any
network component. To model a synchronised network with bounded latency we
make use of the results of Katz, Maurer, Tackmann, and Zikas [15]. Specifically,
we use their Fclock functionality (Fig. 1) as a synchronisation primitive. Fclock

allows the parties to wait for each other at synchronisation points. A party can
signal when its round is complete. When all parties have completed their round,
the round counter is reset.

Further, we use Katz et al.’s bounded-delay channels to model our network
function Fnet (Fig. 2). Each channel has an incoming queue. The idea is that
the adversary may increase the channel delay up to a predefined limit. When a
party polls the incoming queue for a channel, the counter is decreased. When it
reaches zero, the party receives the next element from the channel queue.

Fclock together with bounded-delay channels are sufficient to prove guaranteed
termination for multi-party protocols [15], i.e. the protocol does not “hang”
indefinitely. We express the availability of networks using this property.

The clock function Fclock

Initialise for each party pi a bit di := 0.

– Upon receiving message (RoundOK) from party pi set di = 1. If for all honest
parties di = 1, then reset all di to 0. In any case, send (switch, pi) to A.

– Upon receiving message (RequestRound) from pi, send di to pi.

Fig. 1. The ideal Fclock functionality by Katz et al. [15]. Parties can signal that they
are done for the current round. When all honest parties have signalled RoundOK the
round counter is reset. Further, parties can request the status of the round counter,
learning whether the round has changed.

2.2 How to Model a Computer Network

We use the notion of computer networks in a very general way: a computer
network consists of multiple machines performing packet based communication
with each other. We therefore abstract from concrete network layers, but point
out that our results hold for any networking layers in the protocol stack. We focus
on sub-networks of larger networks, i.e. a network has connections to outside
components. We connect these connections to the environment machine Z. The
environment in the model represents “any surrounding network”. Machines on
the network are modeled as protocol parties in the UC framework. Their channels
for communication are hybrid functionalities.
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Corruption and Communication Model. We assume the communication channel
between two parties to be authenticated (e.g. a party will always know from
which other party it received a message) but not secure (e.g. the adversary can
eavesdrop on the communication). This model represents the scenario where one
is communicating with known partners over an insecure line—for example over a
network cable. Networks can also have connections to the “outside world”—e.g.
the Internet. According to our communication model, we assume an adversarial
entity might compromise hosts on the network but not physically control the
communication channels or insert messages without compromising the corre-
sponding host first. How machines are connected in a network can be expressed
by a directed graph. Nodes of the graph represent physical machines and edges
represent physical links. In our (hybrid) model, we provide an ideal network
functionality FG

net which routes packets according to a predefined network graph
G = (V,E).

To simplify the exposition, we do not use the adaptive corruption messages of
the UC framework. Instead we assume a static corruption model i.e. the adver-
sary chooses which parties to corrupt before the start of the protocol execution.

The Basic Tools for Modeling a Computer Network. Ideally, modeling and
analysing a network would require four steps: (1) Specify what the wanted func-
tionality of the network is, (2) draw a graph of the network layout, (3) specify the
protocol the machines in the network adhere to, and (4) prove that the protocol
does achieve what the wanted functionality does.

We designed tools that capture various technical details of the UC framework
and allow to use it in a way that is close to the intuitive approach. Specifically,

1. By defining Fwrap, we simplify the specification of an ideal network function-
ality.

2. We provide an ideal network functionality FG
net that routes messages according

to a given network topology induced by a network graph G.
3. We propose a 5-phase paradigm which allows for an easy and structured

modeling of the behaviour of machines in the network.

The Ideal Network Functionality. We model the network as a directed graph
G = (V,E), while V is the set of machines in the network and E ⊆ V 2 is a
relation on V . (We model the network as a directed graph to account for unidi-
rectional links [14].) To model bidirectional links, one requires that (v, v′) ∈ E
iff (v′, v) ∈ E. There is a delivery queue for each edge in the graph. Nodes
can send messages for each outgoing edge and can poll incoming messages
from each incoming edge. To send a packet, a party src can call the network
functionality FG

net with a (finite) set of packets with corresponding recipients
{(dest1,msg1), (dest2,msg2), . . . }. Each packet in the set will then be appended
to the queue associated with the edge between nodes src and desti, if it exists.
Further, modeling Katz et al.’s bounded delay channels [15], we associate two
counters with each edge in the graph—one for the total delay and one for the
accumulated delay of the channel. The adversary can increase the delay of a



Synchronous Universally Composable Computer Networks 101

channel up to a fixed maximum amount. When a machine polls a queue the
delay counter is decreased. When the delay has reached 0, a message is taken
from the queue and handed to the machine. This allows for explicit modeling of
different network latencies across different communication channels and allows
the adversary to take advantage of that. This functionality makes it easy to
define the communication channels for a network since one provides a graph
of the network and the corresponding channel topology for the UC framework
is generated automatically. We point out that we implicitly use Katz et al.’s
“multisend” functionality where parties send multiple packets in one atomic call
to the network. Because we do not consider adaptive corruption, the adversary
cannot preempt parties during a send operation.

The 5-Phase Paradigm. We propose a 5-phase paradigm for modeling network
protocols. We require each honest party to follow this paradigm. An honest party
will need exactly five explicit activations by the environment machine to finish
its round. During its first activation (“input phase”), the party will accept input
by the environment. Upon the second activation (“fetch phase”), it will issue a

The ideal parameterised network function FG,δ
net

Interpret G = (V, E) with E ⊆ V 2 as a directed graph. For each edge e ∈ E,
initialise a queue Qe and two variables de and d′

e which represent the current and
the accumulated delay for the queue.

– Upon receiving a message (send, M) with M =
{(dest1, msg1), (dest2, msg2), . . . } from party src, for each tuple
(dest, msg) ∈ M do:

• Check if src, dest ∈ V and (src, dest) ∈ E. If so, continue. Else, ignore
this tuple and start processing the next message.

• Append msg to queue Q(src,dest). Hand msg to the adversary.
– Upon receiving message (delay, e, T ) from A: Let (de, d

′
e) be the delay variables

for the queue of edge e. If d′
e + T ≤ δ, set de = de + T and d′

e = d′
e + T and

return (delay-set) to the adversary. Else halt.
– Upon receiving message (fetch, Q) from party P and if Q ⊆ V :

• Initialise a set of responses r := ∅ and for every party P ′ ∈ Q ⊆ V with
(P ′, P ) ∈ E:

∗ Let (d(P ′,P ), d
′
(P ′,P )) be the delay variables for edge (P ′, P ).

∗ Set d(P ′,P ) = d(P ′,P ) − 1. If d(P ′,P ) = 0, remove the first message msg
from Q(P ′,P ), set d′

(P ′,P ) = 0, and set r = r ∪ (msg, (P ′, P )).
• If r �= ∅, send r to P . Else halt.

Fig. 2. The generalised ideal network function. It is parameterised with a graph that
features protocol participants as nodes and expresses links as edges. We model the
network as a directed graph to accommodate for specialised connection types as for
example optical fibres or data diodes [14]. We also implemented Katz et al.’s bounded
delay-channel [15] to model links with a delay.



102 D. Achenbach et al.

fetch request to the network to get its input which it will process and possibly
send to other parties in one single call during the third activation (“send phase”).
The fourth activation (“output phase”) is the only activation in which a party
will produce output to the environment. The fifth activation is used to signal
“RoundOK” to Fclock: all work is done for this round.

Upon further activations the party will wait for the next round to begin. We
stress that an honest party will poll the network exactly once per round while
a compromised party might poll the network more often. We assume that every
party will initialise and update a round counter and further maintain state for
the number of activations per round and whether (RoundOK) has already been
signaled. This requires sending Fclock a (RequestRound) request on activation and
accordingly updating state information, but imposes no limitations for the party.

The Wrapper Functionality. To simplify the definition of ideal functionalities,
we introduce an ideal “wrapper” functionality Fwrap (see Fig. 3 (a)). It “wraps
around” the ideal functionality and moderates its communication with the
dummy parties in the ideal world. Its main task is to count activations of dummy
parties. Since honest parties adhere to the 5-phase paradigm, it will only notify
the ideal functionality if the environment gives input to a party (during the first
activation), if a party could create output in the real model (during its fourth
activation), and when a round is complete. It also ensures that the adversary is
activated at least as often as in the real model.

Specifying Ideal Functionalities. The tools introduced above allow for a natural
description of ideal functionalities. Fwrap will send a notification for important
events (e.g. inputs, outputs and round changes) and the ideal functionality reacts
to them appropriately. Specifically, the ideal functionality will not be required
to count activations itself or activate the adversary sufficiently often. Since the
network functionality provides a bound for the maximum delay a channel can
have, it is also easily possible to model availability. The ideal functionality only
has to maintain a counter corresponding to the delay δ of the channel for each
packet and reduce this counter by one every time a round is complete. When
the counter reaches zero, the packet can be output immediately when output is
requested by Fwrap. Since all honest parties will poll for new packets once per
round the adversary can delay a packet delivery for a maximum of δ rounds
per channel.

Note that we only specify the behaviour for input by honest parties. We
implicitly assume that messages from the adversary to corrupted parties or vice
versa are delivered immediately.

2.3 Example: Byzantine Generals

As an example, we will use the presented methodology to model a popular exam-
ple from the literature: the Byzantine Generals problem. We will then restate a
popular result concerning this problem by giving a proof in our framework.
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The wrapping function for
ideal functionalities Fwrap

Maintain an activation counter cp

for each of the honest dummy par-
ties. Relay all communication from
Fideal directly to the environment.
Upon activation by the environ-
ment, i.e. upon receiving input m
through a dummy party p:

– If cp < 5 increase the activa-
tion counter of the party.

– If cp = 1 send message
(input, m, p) to Fideal.

– If cp = 2 or cp = 3, send mes-
sage (activated, p) to the adver-
sary.

– If cp = 4 send message
(output, p) to Fideal.

– If ∀p′ : cp′ = 5 reset all
activation counters and send
(RoundComplete) to Fideal.

(a)

Z

D1 D2 D3

Fwrap

Fideal

S

(b)

Fig. 3. The ideal “wrapper” functionality Fwrap acts as a relay between the dummy
parties and the ideal functionality. It counts activations of parties and notifies the ideal
functionality of important events like round changes, thus simplifying the formulation
of ideal functionalities.

The Byzantine Generals Problem. The Byzantine Generals problem was first
introduced by Lamport, Shostak, and Pease [16]. The motivation is as follows:
suppose that a commanding general wants to give orders (for the sake of sim-
plicity he will only use “attack” or “retreat”) to his lieutenants but he does not
know which of them are trustworthy. Also, the lieutenants do not know whether
the general himself is trustworthy. Now suppose that each of the participants
can communicate with each other participant via “oral” messages. The Byzan-
tine Generals problem is to find an algorithm that, given a number of parties n
(one of them is the general), ensures that:

1. All loyal lieutenants obey the same order, and
2. If the general is loyal, then every loyal lieutenant obeys the order he sends.

Note that a disloyal (corrupted) lieutenant can arbitrarily lie about messages
he received and try to deceive other lieutenants. He can also refuse to send any
messages. However, it is assumed that loyal parties will notice when messages
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G

L1 L2 L3

Fig. 4. The network graph byz = (V, E) for the Byzantine Generals problem with
V = {G, L1, L2, L3} and E = V 2. It is fully connected—each party can communicate
with every other party.

are missing. Lamport et al. [16] show that there can not be a generic solution
to the problem for three parties, but there is a solution for four parties. We
will now model the Byzantine Generals problem with four parties according to
our methodology and give a formal security proof for a specific solution to the
problem.

Modeling the Byzantine Generals Problem. The network in this example is fully
connected. Every party can transmit messages to every other party. There is a
maximum latency of 2δ until a packet is output by one of the parties: a possible
delay of δ from the general to the lieutenants and another possible delay of δ for
a packet from one lieutenant to reach the others.

The Byzantine Generals problem statement implies that a party notices if it
will not receive any message from another party anymore so that it will not wait
indefinitely. In reality this is usually realised by timeouts—we will use the same
mechanism here.

Figure 5 shows the protocol which implements a solution to the generals
problem. Figure 6 shows the corresponding ideal functionality. This functionality
fulfills the requirements for a solution to the Generals problem given earlier.

We will now show that this protocol realises the ideal functionality.

Theorem 1. πbyz realises Fbyz-ideal in the Fbyz,δ
net -hybrid model.

Proof. We prove the theorem by giving a step-wise transformation from the
real model to the ideal model. We argue that the individual transformation
steps are indistinguishable for the environment, and thus, by the transitivity
of indistinguishability, the real model is indistinguishable from the ideal model.
Start with the real protocol.

Regroup all parties into a new machine S. The adversary simulator S will
simulate the real network in all transformation steps. Introduce dummy parties
DG, DL1 , DL2 , DL3 for all protocol parties and relay messages from and to Z
appropriately. Introduce a new machine Fbyz-ideal. Route all communication from
the dummies to S and vice versa through Fbyz-ideal. The regrouping of parties
is indistinguishable for the environment. In the upcoming transformation steps,
we will gradually expand Fbyz-ideal’s functionality:
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A solution to the Byzantine Generals problem with four parties πbyz

Each party maintains a local round counter r.

– Party G:
• “Input”: Upon first activation this round and input m by Z, save m and

ignore further inputs.
• “Send”: Upon third activation, call Fbyz

net (send, (L1, m), (L2, m), (L3, m)) if
m was saved.

• “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.
– Party Ln:

• “Fetch”: Upon second activation,
∗ call Fbyz

net (fetch, {G, Lk, Lj}) for k �= j �= n. If the call was successful,
save the messages for the corresponding parties.

• “Send”: Upon third activation,
∗ if there is a message m by party G which has not been broadcast yet,

broadcast it: call Fbyz
net (send, (Lk, m), (Lj , m)) with k, j �= n.

• “Output”: Upon fourth activation,
∗ if r < 2δ and there are two identical messages m from two different

parties (other than G), output m. If there are three different messages
from the different parties, output the message from party 1;

∗ if r = 2δ output retreat.
• “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

Fig. 5. The protocol for the Byzantine Generals problem with four parties. The ideal
network functionality allows for a maximum delay of δ for each message and messages
have to be sent from the general first and from the lieutenants afterwards. Thus a party
will assume a timeout after 2δ rounds.

1. Initialise variables mL1 , mL2 , and mL3 . When receiving a message m from
dummy party G, set mL1 := m, mL2 := m and mL3 := m. Also initialise and
save a round counter d := 2δ. This modification is indistinguishable, since it
only stores information and does not alter the communication.

2. If G is corrupted, accept a message (set,m1,m2,m3) from S. Check if there
are i �= j such that mi = mj . If so, set mL1 ,mL2 ,mL3 to mi. Else set mL1 =
m1,mL2 = m2,mL3 = m3. This modification again only stores information.

3. When S attempts to pass output m from an uncorrupted party p in the
simulation back to the dummy party, only allow it to pass through Fbyz-ideal

if either
(a) m has been stored as mp in Fbyz-ideal, or
(b) the message is retreat.
We have to argue the indistinguishability of this modification. A real protocol
party will only output a message other than retreat when it has received two
identical messages. This will only happen if
(a) G is honest—then, m will have been provided by Z through dummy

party G and thus saved for every party in the ideal functionality, or
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The ideal functionality of the Byzantine Generals problem with four
parties Fδ

byz-ideal.

Upon initialisation store a delay value d := (2δ) and initialise three variables
mL1 := ⊥, mL2 := ⊥, mL3 := ⊥.

– Upon receiving message (input, m, G) from Fwrap and if G is honest: store
mLp := m for p ∈ {1, 2, 3} and send (input, m, G) to the adversary.

– Upon receiving message (set, m1, m2, m3) from the adversary and if G is cor-
rupted: if mL1 = ⊥, mL2 = ⊥, mL3 = ⊥, and there are two identical messages
mi, mj with i �= j, set mL1 , mL2 , mL3 := mi, else set mL1 , mL2 , mL3 := mj

where j is the smallest index for which mj �= ⊥.
– Upon receiving message (output, p1, p2, p3) from the adversary: mark messages

mp1 ,mp2 ,mp3 as ready for output.
– Upon receiving message (output, p) from Fwrap:

• If d = 0: output retreat to p.
• if d �= 0 and if mp is marked as ready for output, output mp to p.

– Upon receiving message (RoundComplete) from Fwrap, decrease d by 1 and send
(RoundComplete) to the adversary.

Fig. 6. The ideal functionality of the three generals problem. If the general is honest,
all honest parties will obey his order. If he is corrupted, all parties will obey the same
order. As in the real protocol the adversary can not delay the output for more than 2δ
rounds.

(b) G is corrupted and sent two identical messages. In this case, S will have
used the set-message to provide these messages and they will also have
been saved for every party.

4. Introduce Fwrap as a wrapper around Fbyz-ideal. For each notification that a
round is complete from Fwrap decrease the delay value d and notify S that
the round is complete. Fwrap will not notify S about activations in phase 4
(“output”), but Fbyz-ideal instead. The simulator is thus not able to accurately
simulate the exact order of outputs. However, the simulator is still able to
determine the set of messages to output for each party in each round: he still
is notified about the input to the protocol, when a party sends a message,
and when a round is complete. We alter the strategy of S to make the mod-
ification indistinguishable: in each round, observe which parties will output
a message and notify the ideal functionality that these parties are ready for
output. Now, when Z activates a party and expects output, the ideal func-
tionality will output possible messages for that specific party. This allows
for all messages other than retreat to be output correctly. So, if d = 0 after
the fourth activation of a party, Fbyz-ideal just outputs retreat, mimicking the
behaviour in the real model. Fbyz-ideal and S now behave as specified in the
ideal model, perfectly emulating the real model.

This concludes the proof. �	
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3 Firewalls Revisited

In this section, we improve upon the result of Achenbach, Müller-Quade, and
Rill [1]. They show that a quorum of three firewalls realises a secure firewall
under the condition that at most one firewall is corrupted. Their analysis lacks
an availability guarantee though. We prove this guarantee for their construction
in our improved model. First, we briefly restate their construction. We refer to
the original publication by Achenbach et al. [1] for details.

hw1

fw1

fw2

fw3

hw2

Fig. 7. The three-firewall network of Achenbach et al. [1]. The graph directly serves as
the network model for FG

net: G = (V, E) with V = {hw1, hw2, fw1, fw2, fw3} and
E′ = {(hw1, fw1), (hw1, fw2), (hw1, fw3), (hw2, fw1), (hw2, fw2), (hw2, fw3)}, E =
E′ ∪ {(v, u) | (u, v) ∈ E′}.

A firewall network connects an “outside” network (e.g. the Internet) to an
“inside” network (e.g. a Local-Area Network). The model completely abstracts
from defining what kind of network traffic is harmful. It follows the idea that
uncompromised firewalls will behave identical with exception of the order of
packets. Further, there is a trusted hardware device that “distributes” network
traffic in one direction and merges it in the other, realising a quorum (majority)
decision. Then, assuming only one firewall is compromised, a quorum of three
firewalls behaves like the compromised firewall was not present.

In a two-firewall quorum a single non-compliant firewall can completely shut
down the network. Intuitively, a three-firewall quorum does not suffer this weak-
ness. Achenbach, Müller-Quade, and Rill introduce a combination of three fire-
walls shown in Fig. 7 in an effort to improve the availability of the network.
Because the plain UC model cannot represent synchrony, they cannot prove
their intuition. We give a proof using our methodology.

Definition 1 (The functionality of an ideal firewall Ffwj
).

Ffwj
: P × V × S → (P ∪ ⊥) × (V ∪ ⊥) × S
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The protocol πfw

party hwk:

– “Input”: Upon first activation by message (input, m) from Z, save m.
– “Fetch”: Upon second activation by message (output) from Z,

• call Ffw-net(fetch, {fw1, fw2, fw3}), save the message m corresponding to
fwi as (m, i);

• if there are two entries (m, i) and (−m, i) on the tape, delete both.
– “Send”: Upon third activation by message (output) from Z, call

Ffw-net(send, (fw1, m), (fw2, m), (fw3, m)) if m was saved previously. Delete m.
– “Output”: Upon fourth activation by message (output) from Z, if there are two

saved entries (m, i) and (m′, i′) with m ≡ m′ and i �= i′: delete both messages
and output m. If i, i′ �= 1, save (−m, 1), else if i, i′ �= 2, save (−m, 2), else if
i, i′ �= 3, save (−m, 3).

– “RoundOK”: Upon fifth activation by message (output) from Z, send
(RoundOK) to Fclock.

party fwk:

– “Fetch”: Upon second activation by message (output) from Z,
• call Ffw-net(fetch, hw1, hw2) and save the message m corresponding to hwi

as (m, i);
• for all saved messages (m, i): compute Ffwk(m, i, s) = (m′, i′, s′) and

replace that (m, i) with (m′, i′).
– “Output”: Upon fourth activation by message (output) from Z, if there are

two messages (m, i) and (m′, i′), call Ffw-net(send, (hwi, m), (hwi′ , m′)).
– “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

The ideal functionality of the firewall architecture Fδ
fw-ideal

Maintain a list of scheduled packets for each direction: Q1,Q2. Let w.l.o.g fw3 be
the corrupted party. In each case, if there are multiple entries to choose from, pick
the first.

– Upon receiving (input, m, hwk) from Fwrap: Compute the firewall functions and
update the internal states. Let the outputs of Ffw1 and Ffw2 be p′ and p′′.
Store (in, 1, p′, 2δ) and (in, 2, p′′, 2δ) in Qk if there is no entry (missing, 1, p′, 0)
or (missing, 2, p′′, 0) respectively. Send (input, m, hwk) to the adversary.

– Upon receiving (output, hwk) from Fwrap:
• If there are two entries (in, 1, p′, 0) and (in, 2, p′, 0) in Qk, erase the corre-

sponding entries from the queue and output p′ to hwk.
• Else: if there is an entry (deliver, i, p, d) in Qk remove it. Check if there is

another entry (in, i′, p, d′) in Qk with i �= i′. If so, remove that entry too,
if not, add an entry (missing, |i − 3|, p, 0) to Qk.

– Upon receiving (RoundComplete) from Fwrap: Replace each entry (in, i, p, d) (or
deliver, i, p, d) with d > 0 in Q with (in, i, p, d − 1) (or (deliver, i, p, d) and send
(RoundComplete) to the adversary.

– Upon receiving (output, p, hwk) from the adversary: if there is an entry
(in, i, p, d) in Qk, replace it by (deliver, i, p, d).

Fig. 8. The parallel network protocol of Achenbach et al. [1] and their ideal functional-
ity, expressed using our tools (see Sect. 2.2). Parties hw are responsible for distributing
incoming and merging outgoing packets. They will output a packet to the environment
not more than once per round.
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Ffwj
(p, v, s) =

{
(p′, v′, s′) if output is generated,

(⊥,⊥, s′) else.

Definition 1 provides a modified definition of the firewall function used by
Achenbach et al. [1], adapted to work with our graph based network model
(Fig. 2). The function accepts a packet p from the set of all packets P , a node
from the network graph v ∈ V and a state s ∈ S and outputs another packet,
another node (the receiver of that packet) and a new state.

Figure 8 shows the protocol of the three firewall solution as expressed using
our tools as well as the corresponding ideal functionality.

Theorem 2 πparallel realises Ffw-ideal in the F fw,δ
net -hybrid model.

Due to space constraints, we omit the proof here. See AppendixA for the full
proof.

4 Conclusion and Directions for Future Research

In this work we investigate the application of a formal security model to real net-
work systems. More concretely, we use the Universal Composability framework
to analyse a protocol for the Byzantine Generals problem and a combiner for
network firewalls. We define two ideal functionalities Fwrap and Fnet that capture
redundant formalisms and facilitate an easier modeling. Further, we propose a
5-phase paradigm to allow for a clear presentation of network protocols. We con-
clude that analysing computer networks in the UC framework is indeed feasible.

In future work, our methodology should be improved to ease the handling
of adaptive corruptions. Another important direction for future research is to
simplify the representation of protocols and guarantees further. Enclosing tech-
nicalities in the framework instead of the protocol description facilitates a simpler
exposition of core ideas while still yielding a formally sound security analysis.
It is our belief that an intuitive access to formal security notions increases their
acceptance in practice and thus helps improve the security of systems in use.

A Firewalls Revisited

We give the full proof for Theorem2 here.

Theorem 2 πparallel realises Ffw-ideal in the F fw,δ
net -hybrid model.

Proof We prove the lemma via game hopping, starting from the real model. In
each step we will modify the ideal functionality and argue that the modification
is indistinguishable. We will w.l.o.g. assume that fw3 is corrupted. Encapsulate
the network in a new machine S, introduce dummies for all fwi and hwi, and
construct a new machine Ffw-ideal which connects the dummy machines with their
counterparts in the (now simulated) real network. Modify Ffw-ideal step-wise:
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1. Introduce variables to keep state for the firewalls. When receiving (input,m)
through hwk, evaluate the firewall functionalities Ffw1 and Ffw2 , update the
respective firewall states and save the output packets p1 and p2 in a list Qk as
(in, 1, p1, 2δ) and (in, 2, p2, 2δ). This modification stores additional information
but does not alter the communication and is thus indistinguishable.

2. When being advised to output a message p for a party hwk by the simulator,
only do so if there is an entry (in, i, p, d) in Qk and delete that entry. Every
message scheduled by the simulator in this manner was output by one of the
firewalls in its simulation. Consequently, this message is also stored in Qk.
The real protocol party fwk will internally delete all messages it outputs.
Thus, this modification is indistinguishable.

3. When a packet p is output based on any entry (. . . , i, p, d) in Qk, check if there
is another entry (. . . , j, p, d) with i �= j. If so, delete that entry as well. If not,
add an entry (missing, |i − 3|, p, d) to Qk. Further, when receiving (input,m)
through hwk and evaluating the firewall functionalities, before saving the
resulting packets p1 and p2, check if there is an entry (missing, 1, p1, 2δ) or
(missing, 2, p2, 2δ) in Qk. If there is, remove that entry and do not save the
resulting packet. This modification is indistinguishable as Ffw-ideal now imple-
ments the exact behaviour of hw1 and hw2.

4. Add Fwrap as a wrapper around Ffw-ideal. When receiving (RoundComplete)
from Fwrap, decrease the delay value d of each entry in Q1 and Q2 by 1. Send
(RoundComplete) to the simulator. When being advised to output a packet p
for party hwk by the simulator, instead of outputting the packet immediately,
replace the corresponding entry in Qk by (deliver, i, p, d). When being asked
to provide output for party hwj by Fwrap, check if there is an entry in Qj with
d = 0. If so, output that packet. If not, check if there is an entry marked for
delivery. If so, output the corresponding packet. Always perform the output
according to the mechanism described in Step 3.

The simulator’s simulation of the real network is not perfect after transformation
step 4. Concretely, S is not notified of the fourth activation (“output”) of honest
protocol parties. However, as we argued in the proof of Theorem1, the output
decision is made during prior activations. Hence, by S announcing output early
to Ffw-ideal, S and Ffw-ideal perfectly emulate the real protocol. (Fwrap delivers
output after the fourth activation only.) �	
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Abstract. We propose a Key-policy Attribute-based Encryption (KP-
ABE) scheme for general Boolean circuits, based on secret sharing and
on a very particular and simple form of leveled multi-linear maps, called
chained multi-linear maps. The number of decryption key components
is substantially reduced in comparison with the scheme in [7], and the
size of the multi-linear map (in terms of bilinear map components) is
less than the Boolean circuit depth, while it is quadratic in the Boolean
circuit depth for the scheme in [7]. Moreover, the multiplication depth of
the chained multi-linear map in our scheme can be significantly less than
the multiplication depth of the leveled multi-linear map in the scheme
in [7]. Selective security of the proposed scheme in the standard model
is proved, under the decisional multi-linear Diffie-Hellman assumption.

Keywords: Attribute-based encryption · Multi-linear map · Boolean
circuit

1 Introduction

Attribute-based encryption (ABE) was introduced in [11] as a generalization of
identity-based encryption [12]. There are two forms of ABE: key-policy ABE (KP-
ABE) and ciphertext-policy ABE (CP-ABE) [2,9]. A KP-ABE scheme encrypts
messages taking into consideration specific sets of attributes; decryption keys are
distributed for an entire access structure build over the set of attributes so that
correct decryption is allowed only to authorized sets of attributes (defined by
the access structure). A CP-ABE scheme proceeds somehow vice-versa than a
KP-ABE scheme: messages are encrypted together with access structures while
decryption keys are given for specific sets of attributes. In all these cases, the
access structures are defined by Boolean circuits [13].

This paper focuses on KP-ABE. The first KP-ABE scheme was proposed
in [9], where the access structures were specified by monotone Boolean formu-
las (Boolean circuits of fan-out one with no negation gates). An extension to
c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 112–133, 2016.
DOI: 10.1007/978-3-319-29172-7 8
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non-monotonic Boolean formulas has later been proposed [10]. A direct extension
of these schemes to the general case (access structures defined by general Boolean
circuits) faces the backtracking attack [5,7]. The first KP-ABE scheme for gen-
eral Boolean circuits was proposed [7], based on leveled multi-linear maps. Later
soon, another KP-ABE scheme for general Boolean circuits has been proposed
[8]; its construction is based on lattices and on the Learning With Errors (LWE)
problem. Inspired by [8], Boneh et.al. [3] have proposed a KP-ABE scheme for
functions that can be represented as (polynomial-size) arithmetic circuits. The
scheme is based on the LWE problem as well. Its decryption key size is quadratic
in the circuit depth, while for the schemes proposed in [7,8] it is linear in the
number of Boolean gates or wires in the circuit. On the other side, the size of
its public parameters is quadratic, while for the schemes in [7,8] is linear, in the
number of input wires.

Contribution. In this paper we propose a new KP-ABE scheme for general
Boolean circuits based on secret sharing and a very particular and simple form
of leveled multi-linear maps, called chained multi-linear maps. We can think of
our approach as a bridge between the simple and elegant approach in [9] based
on secret sharing and just one bilinear map (but limited to Boolean formulas),
and the more complex one in [7] based only on leveled multi-linear maps (which
works for general Boolean circuits). This novel approach leads to a scheme more
efficient than the one in [7], both in terms of the decryption key size and of the
multi-linear map size and graded encoding multiplication depth. The size of the
chained multi-linear maps we use is less than the circuit depth, while the leveled
multi-linear maps used in [7] have a quadratic size in the circuit depth. To define
a chained multi-linear map one has just to define k bilinear maps from Gi × G1

into Gi+1, 1 ≤ i ≤ k, and a generator of the group G1. In the case of leveled
multi-linear maps, supplementary constraints regarding the groups generators,
are needed.

Our construction works for general Boolean circuits. For a clear understand-
ing of the construction, the logic gates of fan-out two or more are split into
logics gates of fan-out one and fanout-gates (FO-gates) whose role is to mul-
tiply the output of the logic gates (we emphasize that this splitting is just for
the easiness of the presentation and has no technical reasons). Then, a secret
sharing procedure works top-down to share some secret, and a bottom-up pro-
cedure reconstructs a “hidden” form of the secret by using chained multi-linear
maps. The generator of the chained multi-linear map is changed each time a
FO-level (level that contains FO-gates) is reached. Decryption key components
are assigned to input wires, FO-gates, and circuit FO-levels. The size of the
decryption key is at most a third of the size of the decryption key in the con-
struction in [7]. Using graded encoding systems [6] to define multi-linear maps as
in [7], the multiplication depth of the chained multi-linear maps in our scheme
is exactly the number of FO-levels (and does not depend on the circuit depth).
As the number of FO-levels can be significantly less than or equal to the circuit
depth minus three, we conclude that the multiplication depth of the chained
multi-linear maps in our scheme can be significantly less than the multiplication
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depth of the leveled multi-linear maps in [7] (where it is given by the circuit
depth). In other words, a chained multi-linear map of multiplication depth r can
be used with any Boolean circuit with r FO-levels, no matter its depth. This is
not possible for the construction in [7].

The selective security of our KP-ABE scheme is proved in the standard model
under the decisional multi-linear Diffie-Hellman assumption.

Paper Organization. The paper is organized into eight sections. The next
section fixes the basic terminology and notation used throughout the paper.
The third section discusses the scheme in [7] and how it thwarts the backtrack-
ing attack, and gives an informal overview of our solution. Our construction is
presented in the fourth section, its security is discussed in the fifth one, while
the sixth section presents some comparisons between our scheme and the one
in [7]. Section seven proposes some extensions of our scheme, and the last one
concludes the paper.

2 Preliminaries

Access Structures. It is customary to represent access structures [13] by
Boolean circuits [1]. A Boolean circuit consists of a number of input wires (which
are not gate output wires), a number of output wires (which are not gate input
wires), and a number of OR-, AND-, and NOT-gates. The OR- and AND-gates
have two input wires, while NOT-gate has one input wire. All of them may have
more than one output wire. That is, the fan-in of the circuit is at most two,
while the fan-out may be arbitrarily large but at least one. A Boolean circuit is
monotone if it does not have NOT-gates, and it is of fan-out one if all gates have
fan-out one. In this paper all Boolean circuits are monotone and have exactly
one output wire. Boolean circuits of fan-out one correspond to Boolean formulas.

If the input wires of a Boolean circuit C are in a one-to-one correspondence
with the elements of a set U (whose elements will be called attributes) we will
say that C is a Boolean circuit over U . Each A ⊆ U evaluates the circuit C to one
of the Boolean values 0 or 1 by simply assigning 1 to all input wires associated
to elements in A, and 0 otherwise. We will write C(A) for the value obtained
by evaluating C for A. The access structure defined by C is the set of all A that
evaluates C to 1.

Attribute-Based Encryption. A KP-ABE scheme consists of four probabilis-
tic polynomial-time (PPT) algorithms [9]:

Setup(λ): this is a PPT algorithm that takes as input the security parameter λ
and outputs a set of public parameters PP and a master key MSK;

Enc(m,A,PP ): this is a PPT algorithm that takes as input a message m, a
non-empty set of attributes A ⊆ U , and the public parameters, and outputs
a ciphertext E;

KeyGen(C,MSK): this is a PPT algorithm that takes a Boolean circuit C and
the master key MSK, and outputs a decryption key D (for the entire Boolean
circuit C);
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Dec(E,D): this is a deterministic polynomial-time algorithm that takes as input
a ciphertext E and decryption key D, and outputs a message m or the special
symbol ⊥.

The following correctness property is required to be satisfied by any KP-ABE
scheme: for any (PP,MSK) ← Setup(λ), any Boolean circuit C over a set U
of attributes, any message m, any A ⊆ U , and any E ← Enc(m,A,PP ), if
C(A) = 1 then m = Dec(E,D), for any D ← KeyGen(C,MSK).

Security Models. We consider the standard notion of selective security [9].
Specifically, in the Init phase the adversary (PPT algorithm) announces the set
A of attributes that he wishes to be challenged upon, then in the Setup phase he
receives the public parameters PP of the scheme, and in Phase 1 oracle access to
the decryption key generation oracle is granted for the adversary. In this phase,
the adversary issues queries for decryption keys for access structures defined by
Boolean circuits C, provided that C(A) = 0. In the Challenge phase the adversary
submits two equally length messages m0 and m1 and receives the ciphertext
associated to A and one of the two messages, say mb, where b ← {0, 1}. The
adversary may receive again oracle access to the decryption key generation oracle
(with the same constraint as above); this is Phase 2. Eventually, the adversary
outputs a guess b′ ← {0, 1} in the Guess phase.

The advantage of the adversary in this game is P (b′ = b)−1/2. The KP-ABE
scheme is secure (in the selective model) if any adversary has only a negligible
advantage in the selective game above.

Leveled Multi-linear Maps [7]. Given G1, G2, and GT three multiplicative
cyclic groups of prime order p, a map e : G1 × G2 → GT is called bilinear if it
satisfies:

– e(xa, yb) = e(x, y)ab, for any x ∈ G1, y ∈ G2, and a, b ∈ Zp;
– e(g1, g2) is a generator of GT , for any generator g1 (g2) of G1 (G2).

Given k multiplicative groups G1, . . . , Gk of prime order p with generators
g1, . . . , gk, resp., a set e = {ei,j : Gi × Gj → Gi+j |i, j ≥ 1, i + j ≤ k} of bilinear
maps is called a leveled multi-linear map if ei,j(ga

i , gb
j) = gab

i+j , for all i, j ≥ 1
with i + j ≤ k and all a, b ∈ Zp.

Leveled multi-linear maps defined as above should be viewed generically.
Practical constructions have also been obtained: [6] proposes a construction
based on ideal lattices, while [4] proposes a construction based on integers. Both
of them are developed inside the formalism called graded encoding systems.

The Decisional MDH Assumption [7]. The decisional Multi-linear Diffie-
Hellman (MDH) problem for a leveled multi-linear map e as given above is
the problem to distinguish between gsc1···ck

k and a random element in Gk given
g1, g

s
1, g

c1
1 , . . . , gck

1 , where s, c1, . . . , ck are randomly chosen from Zp. The deci-
sional MDH assumption for e states that no PPT algorithm A can solve the
decisional MDH problem for e with more than a negligible advantage.



116 C.C. Drăgan and F.L. Ţiplea

3 An Informal View of Our Construction

Our approach to construct a KP-ABE scheme uses both secret sharing as in [9]
and multi-linear maps as in [7]. To clearly understand how these two techniques
are combined, let us briefly recall them. The approach in [9] works only for
Boolean formulas. The main idea is quite simple and elegant:

– choose a bilinear map e : G1 × G1 → G2 and a generator g of G1;
– to encrypt a message m by a set A of attributes, just multiply m by e(g, g)ys,

where y and s are random integers chosen in the setup and encryption, respec-
tively, phases. Moreover, an attribute dependent quantity is also computed for
each i ∈ A;

– the integer y is then top-down shared on the Boolean circuit, and the shares
associated to attributes are used to compute the decryption key (which con-
sists of a key component for each attribute);

– in order to decrypt me(g, g)ys, one has to compute e(g, g)ys. This can be done
only if A is an authorized set of attributes. The computation of e(g, g)ys is
bottom-up on the Boolean circuit, starting from the key components associ-
ated to the attributes in A.

It was pointed out in [7] that the construction in [9] cannot directly be
used to design KP-ABE schemes for general Boolean circuits. The reason is the
backtracking attack [7]. In case of OR-gates, any value computed at an input
wire should be the same with the value computed at the other input wire (this is
because of the way secrets are shared at OR-gates). Therefore, knowing the value
at one of the input wires of an OR-gate implicitly leads to the knowledge of the
value at the other input wire (although these values are computed by different
workflows), and this value can further “migrate” to other gates if the gate fan-out
is two or more. This aspect leads to the possibility of computing the value at the
output wire of the circuit starting from values associated to some unauthorized
set of attributes. The backtracking attack cannot occur when access structures
are defined by Boolean formulas as in [9] because, in such cases, the input wires
of OR-gates are not used by any other gates.

To thwart the backtracking attack, [7] uses a “one-way” construction in eval-
uating general Boolean circuits (the encryption technique is almost the same as
the one in [9]):

– consider a leveled multi-linear map (as the one in the previous section);
– the decryption key components are associated to the input wires of the circuit

and to each gate output wire (in [7], each gate has one output wire which may
further be used by more than one gate);

– the circuit is evaluated bottom-up and the values associated to output wires
of gates on level j are powers of gj+1;

– as the mappings ei,j work only in the “forward” direction, it is not feasible
to invert values on the level j + 1 in order to obtain values on the level j,
defeating thus the backtracking attack.
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Our approach combines secret sharing and a simpler form of leveled multi-
linear maps. To clearly understand the secret sharing procedure, we split each
logic gate of fan-out two or more into a logic gate of fan-out one and a fanout-
gate (FO-gate) which multiplies the output of the logic gate. We emphasize that
this splitting is just for the sake of clearness and has no other technical reasons.
Then, the secret sharing procedure works top-down and:

1. the shares associated to the output wires of a FO-gate are processed via a
random value associated to the input wire of the gate, and this random value
is passed down to the logic gate for sharing;

2. the share associated to the output wire of a logic gate is shared to its input
wires by taking into consideration the input wire level of the gate.

When all input wires of the circuit get their shares, a “reconstruction” procedure
evaluates the circuit bottom-up by computing values to each wire. Each value
is the power of some group generator, and the generator is changed only when
a FO-level (level that contains FO-gates) is reached. Due to the way secrets
are shared, the multi-linear map we need consists of just r + 1 bilinear maps
ei : Gi × G1 → Gi+1 (1 ≤ i ≤ r + 1) with no other constraints (r is the number
of FO-levels). As the maps ei work only in the forward direction, our scheme
defeats the backtracking attack.

4 Our Construction and Its Security

We begin the description of our scheme by fixing first the terminology and nota-
tion regarding the way Boolean circuits are used in our construction:

1. each Boolean circuit has a number of circuit input gates, but at least one.
Each input gate has no input wire and exactly one output wire (called a
circuit input wire);

2. each Boolean circuit has exactly one circuit output gate, which has one input
wire (called the circuit output wire) and no output wire;

3. each Boolean circuit has a number of logic gates of two types: OR-gates and
AND-gates. Each of them has exactly two input wires and exactly one output
wire;

4. each Boolean circuit may have a number of FO-gates. Each FO-gate has
exactly one input wire and at least two output wires. Their role is to propagate
(multiply) the logic gate outputs;

5. no two FO-gates are directly connected (no output wire of a FO-gate is the
input wire of another FO-gate).

The restriction to monotone Boolean circuits does not constitute a loss of gen-
erality (see page 7 in [7]). Figure 1 pictorially represents a Boolean circuit under
our conventions.

Assuming that the wires are labeled, we may write the gates as tuples
(w1, w2, OR,w), (w1, w2, AND,w), and (w,FO,w1, . . . , wj), by specifying the
input wires, the gate name, and then the output wires. The output wire of a
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Fig. 1. Boolean circuit with FO-gates

Boolean circuit will always be denoted by o, and the input wires by 1, . . . , n
(assuming that the circuit has n input wires).

All gates of a Boolean circuit are distributed on levels:

1. the 0th level, also called the input level, consists of all circuit input gates
together with all FO-gates directly connected to them;

2. if the (i − 1)st level has been defined and there are logic gates whose input
gates are on the first (i− 1) levels but at least one input gate on the (i− 1)st
level, then the ith level consists of all such logic gates together with all FO-
gates directly connected to them;

3. if the (i−1)st level has been defined and there is no logic gates as above, then
the ith level consists only of the output gate (this is also called the output
level of the circuit).

Figure 1 illustrates the way levels are counted in our Boolean circuits.
By level(Γ ) we denote the level of the gate Γ . The depth of a Boolean circuit

C, denoted depth(C), is the number of C’s output level. A level is called an FO-
level if it contains FO-gates. Remark that the input level may be an FO-level,
but the output level as well as its direct predecessor cannot be FO-levels (in fact,
assuming that no logic gate has an FO-gate as input gate for both its inputs,
each FO-level i satisfies i ≤ depth(C) − 3).
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Let Γ be a logic gate and Γ ′ be a gate such that Γ and Γ ′ are directly
connected and i = Level(Γ ) > Level(Γ ′) = j (that is, Γ ′ is an input gate of Γ ).
The FO-level sequence from Γ to Γ ′ is a sequence, possible empty, of FO-level
indexes defined as follows:

1. if Γ ′ is an input or logic gate, then the FO-level sequence from Γ to Γ ′ is the
sequence of all FO-level numbers taken in decreasing order from i − 1 to j;

2. if Γ ′ is a FO-gate, then the FO-level sequence from Γ to Γ ′ is the sequence
of all FO-level numbers taken in decreasing order from i − 1 to j + 1.

As an example, in the Boolean circuit in Fig. 1, (2,0) is the FO-level sequence
from Γ7 to the input gate 1, and (2) is the FO-level sequence from Γ8 to Γ0.

To each logic gate Γ , two FO-level sequences are associated: the left one,
from Γ to its left input gate, and the right one, from Γ to its right input gate. It
is clear that both of them can be empty and one of them is a prefix of the other
one. These two sequences will play an important role in the sharing procedure
described below.

Now, we need to fix the terminology on multi-linear maps.

Definition 1. A chained multi-linear map is a sequence of bilinear maps (ei :
Gi ×G1 → Gi+1|1 ≤ i ≤ k), where G1, . . . , Gk+1 are multiplicative groups of the
same prime order.

Remark 1. Let (ei|1 ≤ i ≤ k) be a chained multi-linear map as above. If g1 ∈ G1

is a generator of G1, then gi+1 = ei(gi, g1) is a generator of Gi+1, for all 1 ≤ i ≤ k
(because ei is a bilinear map). Therefore, (ei|1 ≤ i ≤ k) can be regarded as a
special form of leveled multi-linear map.

Chained multi-linear maps will be used in our construction as follows. Assume
that r is the number of FO-levels in the Boolean circuits we consider, and (ei|1 ≤
i ≤ r + 1) is a chained multi-linear map as above. A message m ∈ Gr+2 will be
encrypted by mgys

r+2, where y is a random integer chosen in the setup phase and
s is a random integer chosen in the encryption phase. To decrypt this message,
one needs to compute gys

r+2, and this will be done by using a secret sharing
procedure and a secret reconstruction procedure.

The secret sharing procedure Share(y, C) below inputs a Boolean circuit C
and a value y ∈ Zp, and outputs three functions S, P , and L with the following
meaning:

1. S assigns to each wire of C an element in Zp;
2. P assigns to each output wire of a FO-gate an FO-key in G1;
3. L assigns to each FO-level an FO-level-key in G1.

Share(y, C)

1. Initially, all gates of C are unmarked and S(o) := y;
2. For each FO-level i, 0 ≤ i < depth(C)−2, choose uniformly at random ai ∈ Zp

and assign L(i) := gai
1 ;
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3. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) = x, then mark
Γ and assign S(w1) := xa−1

i1
· · · a−1

iu
mod p and S(w2) := xa−1

j1
· · · a−1

jv
mod p,

where i1 · · · iu and j1 · · · jv are the left and right FO-level sequences of Γ ,
respectively (if the left FO-level sequence is empty, then S(w1) := x, and
similarly for the other case);

4. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) = x, then mark
Γ and do the followings:
(a) choose x1 uniformly at random from Zp and compute x2 such that x =

(x1ai1 · · · aiu
+x2aj1 · · · ajv

)mod p, where i1 · · · iu and j1 · · · jv are the left
and right FO-level sequences of Γ , respectively (if i1 · · · iu is the empty
sequence then ai1 · · · aiu

= 1, and similarly for the other case);
(b) assign S(w1) := x1 and S(w2) := x2;

5. If Γ = (w,FO,w1, . . . , wj) is an unmarked FO-gate and S(wi) = xi for all
1 ≤ i ≤ j, then mark Γ and do the followings:
(a) choose uniformly at random x ∈ Zp and compute bi such that xi =

xbi mod p, for all 1 ≤ i ≤ j;
(b) assign S(w) := x and P (wi) := gbi

1 , for all 1 ≤ i ≤ j;
6. repeat the last three steps above until all gates get marked.

We will write (S, P, L) ← Share(y, C) to denote that (S, P, L) is an output
of the probabilistic algorithm Share on input (y, C). S(i) will be called the share
of the input wire i associated to the secret y, for all 1 ≤ i ≤ n, where n is
the number of input wires of C. The procedure Share is illustrated in Fig. 2 in
AppendixA.

The secret reconstruction procedure Recon(C, P, L,A, VA) reconstructs a
“hidden form” of the secret y starting from “hidden forms” of shares associ-
ated to some set A of attributes. This procedure is deterministic and outputs an
evaluation function R which assigns to each wire either a value in some group
G1, . . . , Gr+2 or the undefined value ⊥, where r is the number of FO-levels of C.
The notation and conventions here are:

– C is a Boolean circuit with n input wires and A ⊆ {1, . . . , n};
– (S, P, L) is an output of Share(y, C), for some secret y;
– VA = (VA(i)|1 ≤ i ≤ n), where VA(i) = gαi

2 for all i ∈ A and some αi ∈ Zp,
and VA(i) = ⊥ for all i 	∈ A;

– ⊥ is an undefined value for which the following conventions are adopted: ⊥ 	∈
∪r+2

i=1Gi, ⊥ < x, ⊥ · z = ⊥, z/⊥ = ⊥, and ⊥z = ⊥, for all x ∈ ∪r+2
i=1Gi and

z ∈ (∪r+2
i=1Gi) ∪ {⊥}, where r is the number of FO-levels of C.

Before describing the procedure Recon, we need one more notation. Given
gα

i ∈ Gi for some i and α, an FO-level sequence i1 · · · iu, and an output L of the
Share procedure, denote by Shift(gα

i , i1 · · · iu, L) the element g
αai1 ···aiu

i+u ∈ Gi+u

obtained as follows:

g
αai1 ···aiu

i+u :=

{
gα

i , if i1 · · · iu is empty
ei+u−1(· · · ei(gα

i , L(iu)) · · · , L(i1)), otherwise

(recall that iu < · · · < i1). Moreover, define Shift(⊥, i1 · · · iu, L) = ⊥.



Key-Policy Attribute-Based Encryption for General Boolean Circuits 121

Recon(C, P, L,A, VA)

1. Initially, all gates of C are unmarked and R(i) := VA(i), for each input wire
i of C;

2. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and both R(w1) and R(w2)
were defined, then mark Γ and assign R(w) by

R(w) := sup{Shift(R(w1), i1 · · · iu, L), Shift(R(w2), j1 · · · jv, L)},

where i1 · · · iu and j1 · · · jv are the left and right FO-level sequences of Γ ,
respectively.
Remark: either Shift(R(w1), i1 · · · iu, L) or Shift(R(w2), j1 · · · jv, L) is ⊥ in
case that Shift(R(w1), i1 · · · iu, L) 	= Shift(R(w2), j1 · · · jv, L);

3. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and both R(w1) and
R(w2) were defined, then mark Γ and assign R(w) by

R(w) := Shift(R(w1), i1 · · · iu, L) · Shift(R(w2), j1 · · · jv, L),

where i1 · · · iu and j1 · · · jv are the left and right FO-level sequences of Γ ,
respectively.
Remark: there exists i such that both Shift(R(w1), i1 · · · iu, L) and Shift(R
(w2), j1 · · · jv, L) are powers of gi;

4. If Γ = (w,FO,w1, . . . , wj) is an unmarked FO-gate and R(w) was defined,
then mark Γ and assign R(wi) = eu(R(w), P (wi)) for all 1 ≤ i ≤ j, where
R(w) is of the form gα

u for some u and α.
Remark: P (wi) is of the form gbi

1 for all i and some bi. Therefore, R(wi) is of
the form gαbi

u+1, for all i;
5. repeat the last three steps above until all gates get marked.

The procedure Recon is illustrated in Fig. 3 in AppendixA.
We are now in a position to define our KP-ABE scheme.

KP-ABE Scheme

Setup(λ, n, r): the setup algorithm uses the security parameter λ and the para-
meter r to choose a prime p, r + 2 multiplicative groups G1, . . . , Gr+2 of
prime order p, a generator g1 ∈ G1, and a sequence of bilinear maps (ei :
Gi × G1 → Gi+1|1 ≤ i ≤ r + 1). Let gi+1 = ei(gi, g1), for all i. Then, it
defines the set of attributes U = {1, . . . , n}, chooses y ∈ Zp and, for each
attribute i ∈ U , chooses ti ∈ Zp. Finally, the algorithm outputs the public
parameters

PP = (n, r, p,G1, . . . , Gr+2, g1, e1, . . . , er+1, Y = gy
r+2, (Ti = gti

1 |i ∈ U))

and the master key MSK = (y, t1, . . . , tn);
Encrypt(m,A,PP ): the encryption algorithm encrypts a message m ∈ Gr+2 by

a non-empty set A ⊆ U of attributes as follows:
– s ← Zp;
– output E = (A,E′ = mY s, (Ei = T s

i = gtis
1 |i ∈ A));
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KeyGen(C,MSK): the decryption key generation algorithm generates a decryp-
tion key D for a Boolean circuit C with n input wires and r FO-levels, as
follows:
– (S, P, L) ← Share(y, C);
– output D = ((D(i)|i ∈ U), P, L), where D(i) = g

S(i)/ti

1 , for all i;
Decrypt(E,D): given E and D as above, the decryption works as follows:

– compute VA = (VA(i)|i ∈ U), where

VA(i) = e1(Ei,D(i)) = e1(gtis
1 , g

S(i)/ti

1 ) = g
S(i)s
2

for all i ∈ A, and VA(i) = ⊥ for all i ∈ U − A;
– R := Recon(C, P, L,A, VA);
– compute m := E′/R(o).

It is straightforward to prove the correctness of our KP-ABE Scheme.

Theorem 1. The KP-ABE Scheme above satisfies the correctness property. That
is, using the notation above, for any E = (A,mY s, (Ei|i ∈ A)), any circuit C with
n inputs wires and r FO-levels and C(A) = 1, and any (S, P, L) ← Share(y, C), the
valuation R returned by Recon(C, P, L,A, VA) satisfies R(o) = Y s.

Proof. By an inspection of the Share and Recon procedures. ��
Translation to Graded Encoding Systems. Our KP-ABE Scheme can be
translated into the graded encoding system formalism [4,6] exactly as in [7] and,
therefore, the details are omitted. We only emphasize that:

1. the Share procedure is unchanged except for the following aspects:
(a) for the P and L functions it returns level-1 encodings (similarly computed

as in [7]);
(b) for each input wire i it returns an integer S(i). The sampling procedure (in

the graded encoding system) outputs a level-0 encoding for such integers;
2. the Recon procedure, as well as the KP ABE Scheme, are adapted to graded

encoding systems in a similar way to that in [7] (starting with the first level
in our construction, any FO-level, and only them, corresponds to an encoding
level in increasing order).

Security Issues. To show that our scheme defeats the backtracking attack we
remark first that the “migration” of a value gα

i associated to an input wire w1

of a logic gate Γ1 to an input wire w2 of another logic gate Γ2 is possible only
if w1 and w2 are output wires of some FO-gate Γ . If w is the input wire of
Γ , the value associated to w cannot be computed from gα

i (because of the one-
wayness property of the chained multi-linear map), whereas the value of w1 can
be computed only by using the value associated to w. Therefore, to compute the
value for w2, one has to evaluate bottom-up the circuit and to obtain first the
value of w.

The decisional MDH problem can be formulated for chained multi-linear
maps as well, with generators as in Remark 1. Then we have:
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Theorem 2. The KP-ABE Scheme is secure in the selective model under the
decisional MDH assumption.

Proof. It can be found in AppendixB. ��

5 Complexity of the Construction

We will discuss in this section the complexity of our KP-ABE Scheme in terms
of size of the decryption key and chained multi-linear map, and we will compare
it with the complexity of the construction provided in [7].

The approach in [7] associates two keys to each input wire, four keys to each
OR-gate output wire, and three keys to each AND-gate output wire. Therefore,
the total number of keys is bounded from below by 2n + 3q and from above by
2n + 4q, where n is the number of inputs and q is the number of gates of the
Boolean circuit. If depth(C) = �, then the size of the leveled multi-linear map is
�(� + 1)/2 and its graded encoding multiplication depth is � + 1 [6].

Assuming that the Boolean circuit in our approach has n inputs, r FO-levels,
and the total number of outputs of the FO-gates is f , our KP-ABE Scheme
involves n+r+f decryption key components and r+1 bilinear maps. To compare
the two approaches (the one in [7] and ours), we need to examine the complexity
of the conversion of Boolean circuits as used in [7] to Boolean circuits as used in
our paper. Assume that C is a Boolean circuit as considered in [7], with n inputs
and q logic gates. Let n = n1 + n2 and q = q1 + q2, where n1 (q1) is the number
of input (logic) gates of fan-out one (called type 1 input (logic) gates) and n2

(q2) is the number of input (logic) gates of fan-out greater than one (called type
2 input (logic) gates). Each type 1 input gate “consumes” one input wire and
“produces” one output wire, each type 2 input gate “consumes” one input wire
and “produces” at least two output wires, each logic gate “consumes” two input
wires and “produces” one output wire, and each type 2 logic gate “consumes”
two input wires and “produces” at least two output wires. As C has n input
wires and one output wire, it follows

n − n2 − q1 − 2q2 + f = 1,

where f is the total number of output wires of type 2 input and logic gates. We
can easily transform C into a Boolean circuit C′ according to our notation by
simply adding a FO-gate to each type 2 input and logic gate. This leads to n2+q2
FO-gates with a total of f output wires. This FO-gates may be distributed on at
least two levels and on at most 1+q2 levels (remark that the FO-gates associated
to input gates are all on the 0th level). Therefore, the number of decryption key
components (that is, n + r + f) satisfies

n2 + q + q2 + 3 ≤ number of key components ≤ n2 + q + 2q2 + 2

Now, let us estimate the depth � of a Boolean circuit as in [7]. The number
of logic gates needed to “consume” n input wires and to generate just one input
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wire is at least log n and at most n − 1. If the Boolean circuit has n2 type 2
input gates and q2 type 2 logic gates (see the notation above), then the wires
produced by them is

n − n2 − 2q2 + f = n1 − 2q2 + f = q1 + 1

To consume these wires by type 1 logic gates, at least log (q1 + 1) and at
most q1 levels are needed. The q2 type 2 logic gates can be distributed on at
least one level and at most q2 levels. Therefore, the number � satisfies

1 + log (q1 + 1) ≤ � ≤ q1 + q2 = q (remark that q1 ≥ n + n2)

Our constructions, using the notation above, needs a chained multi-linear
map with r + 1 components, where r is the number of FO-levels. According to
the estimate above, 1 ≤ r ≤ q2 if n2 = 0, and 2 ≤ r ≤ q2 +1 if n2 	= 0. Moreover,
r ≤ � − 2.

Another main difference between our KP-ABE Scheme and the one in [7] is
with respect to the multi-linear map these schemes use. Given k multiplicative
groups of the same prime order p, any k − 1 bilinear maps ei : G1 × G1 →
Gi+1, 1 ≤ i ≤ k − 1, define a chained multi-linear map. This is simply seen by
taking any arbitrary generator g1 of G1 and recursively defining gi+1 = ei(gi, g1),
for any 1 ≤ i ≤ k − 2. On the contrary, not any k(k − 1)/2 bilinear maps
ei,j : Gi × Gj → Gi+j define a leveled multi-linear map. This is because of the
constraint ei,j(gi, gj) = gi+j , for all i, j ≥ 1 with i + j ≤ k − 1.

The graded encoding multiplicative depth of the leveled multi-linear map
in [7] is � + 1, while in our scheme is r + 1, which does not depend on the
circuit depth �. Therefore, a chained multi-linear map of multiplicative depth
r +1 can be used with all Boolean circuits with r FO-levels. This is not possible
for the construction in [7] where the depth of the Boolean circuits dictates the
multiplicative depth of the leveled multi-linear map.

More on the complexity of our construction will be provided in the table in
the next section.

6 Extensions and Improvements

It is straightforward to see that our scheme can be extended to Boolean circuits
with logic gates of fan-in more than two, without increasing the size of the
decryption key or of the chained mutilinear map. Such an extension could be
useful in order to reduce the size of the Boolean circuit, resulting in a possible
smaller decryption key.

Our KP-ABE Scheme is defined for a fixed number r of FO-levels. How-
ever, we can easily extend it to correspond to an arbitrary but upper bounded
number of such levels. The main idea is to add FO-level-keys for the “missing
FO-levels”. More precisely, let r be an upper bound of the number of FO-levels.
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Define two procedure Share′ and Recon′ by modifying Share and Recon as
follows:

1. Share′(y, C) outputs (S, P, L,H) and it is obtained from Share by changing
the second and third steps into
“2 ′. For each FO-level i, 0 ≤ i ≤ depth(C) − 3, choose uniformly at random

ai ∈ Zp and assign L(i) := gai
1 . For each 1 ≤ i ≤ h, where h = r − r′ and

r′ is the number of FO-levels in C, choose uniformy at random ci ∈ Zp

and assign H(i) := gci
1 , 1 ≤ i ≤ r − r′;”

“3 ′. S(o) := yc−1
1 · · · c−1

h mod p if h > 0, and S(o) = y, otherwise;”
2. Recon′(C, P, L,H,A, VA) is obtained from Recon by simply adding one more

step
“7. R(o) := Shift(R(o), h · · · 1,H)”

The new scheme is the next one:
KP-ABE Scheme 1

Setup(λ, n, r): the same as in KP-ABE Scheme;
Encrypt(m,A,PP ): the same as in KP-ABE Scheme;
KeyGen(C,MSK): the decryption key generation algorithm generates a decryp-

tion key D for a Boolean circuit C with n input wires and r′ ≤ r FO-levels,
as follows:
– (S, P, L,H) ← Share′(y, C);
– D = ((D(i)|i ∈ U), P, L,H), where D(i) = g

S(i)/ti

1 , for all i;
Decrypt(E,D): given E and D as above, the decryption works as follows:

– compute VA = (VA(i)|i ∈ U), where

VA(i) = e1(Ei,D(i)) = e1

(
gtis
1 , g

S(i)/ti

1

)
= g

S(i)s
2

for all i ∈ A, and VA(i) = ⊥ for all i ∈ U − A;
– R := Recon′(C, P, L,H,A, VA);
– compute m := E′/R(o).

An important improvement of our scheme consists of using the FO-level-key
of a FO-level as a FO-key for the first output wire of each FO-gate on that level.
More precisely, define the procedure Share′′ by modifying the fifth step of Share
into:

5′. If Γ = (w,FO,w1, . . . , wj) is an unmarked FO-gate and S(wi) = xi for all
1 ≤ i ≤ j, then mark Γ and do the followings:
(a) compute x such that x1 = xalevel(Γ ) mod p;
(b) compute bi such that xi = xbi mod p, for all 2 ≤ i ≤ j;
(c) assign S(w) := x, P (w1) = g

alevel(Γ )
1 , and P (wi) := gbi

1 , for all 2 ≤ i ≤ j;

Now, define the scheme KP-ABE Scheme 2 as the scheme obtained by replacing
Share by Share′′ in KP-ABE Scheme.
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The main benefit of this new KP-ABE scheme consists of the fact that the
number of decryption key components is decreased by the number of FO-gates.
Thus, according to our notation in Sect. 5, the size of the key provided by
KP-ABE Scheme 2 is

n2 + q + 3 ≤ number of key components ≤ n2 + q + q2 + 2

Of course, the extensions and the improvement above can be combined. Their
security can be proved as for the KP-ABE Scheme.

The efficiency of our scheme (the improved version), in comparison with the
scheme in [7] which falls in the same class of schemes as ours, is presented in the
following table.

Boolean circuits with
– n1 input gates of fan-out 1

– n2 input gates of fan-out > 1

– q1 logic gates of fan-out > 1

– q2 logic gates of fan-out > 1

– r FO-levels and depth �

No of keys
Multi-linear map
(type, size, and

mult. depth)

KP-ABE scheme in [7]
2(n1 + n2) + 3(q1 + q2) ≤

no. keys ≤
2(n1 + n2) + 4(q1 + q2)

• leveled

• �(� + 1)
2• � + 1

Our KP-ABE Scheme 2 n2 + q1 + q2 +3 ≤ no. keys ≤
n2 + q1 + 2q2 + 2

• chained
• r + 1 < �
• r + 1

7 Conclusions

We have proposed in this paper a KP-ABE scheme for general Boolean circuits.
The scheme is based on secret sharing and a particular and special form of leveled
multi-linear maps, called chained multi-linear maps. It can be viewed as a bridge
between the approach in [9] based on secret sharing and just one bilinear map
(but limited to Boolean formulas), and the more complex one in [7] based only on
leveled multi-linear maps (which works for general Boolean circuits). We have
shown that our scheme is more efficient than the one in [7], both in terms of
the decryption key size and of the multi-linear map size and graded encoding
multiplication depth. We have stressed several times in the paper that the use of
FO-gates is just for the sake of clarity. We can avoid these gates by merging two
consecutive steps of the Share and Recon procedures whenever they are to be
applied to logic gates of fan-out more than one (the details can be easily fixed).
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A Appendix 1

This appendix illustrates the Share and Recon procedures on the Boolean circuit
in Fig. 1.
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x1 + x2a1 ≡ y mod p,

x12 + x13a2 ≡ x3 mod p,
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x11 ≡ x14b3 mod p,

x4 ≡ x14b4 mod p,

Fig. 2. Share(y, C)
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B Appendix 2

In this appendix we prove the security of our KP-ABE Scheme.

Theorem 2. The KP-ABE Scheme is secure in the selective model under the
decisional MDH assumption.

Proof. It is sufficient to prove that for any adversary A with an advantage η in
the selective game for KP-ABE Scheme, a PPT algorithm B can be defined, with
the advantage η/2 over the decisional MDH problem. The algorithm B plays the
role of challenger for A in the selective game for KP-ABE Scheme. Taking into
account that
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1. any leveled multilinear map {ei,j |i, j ≥ 1, i + j ≤ k} includes a chained
multilinear map (ei,1|1 ≤ i < k);

2. if some PPT algorithm can decide the decisional MDH problem with chained
multilinear map instances then it can decide, with at least the same advan-
tage, the decisional MDH problem with leveled multilinear map instances,

we conclude that it is sufficient to give the algorithm B a chained multilinear
map instance of the decisional MDH problem consisting of r + 2 multiplicative
groups G1, . . . , Gr+2 of the same prime order p, r + 2 generators g1, . . . , gr+2

of these groups, respectively, r + 1 bilinear maps ei : Gi × G1 → Gi+1 such
that ei(ga

i , gb
1) = gab

i+1 for all 1 ≤ i ≤ r + 1 and a, b ∈ Zp, and the values gs
1,

gc1
1 , . . . , g

cr+2
1 , Z0 = g

sc1···cr+2
r+2 , and Z1 = gz

r+2, where s, c1, . . . , cr+2, z are chosen
uniformly at random from Zp.

Now, the algorithm B runs A acting as a challenger for it.

Init. Let A be a non-empty set of attributes the adversary A wishes to be
challenged upon.

Setup. B chooses at random ri ∈ Zp for all i ∈ U , and computes Y = g
c1···cr+2
r+2

and Ti = gti
1 for all i ∈ U , where

ti =

{
ri, if i ∈ A

c2ri, otherwise

(B can compute Y by using gc1
1 , . . . , g

cr+2
1 and e1, . . . , er+1, as well as Ti by using

ri and gc2
1 ). Then, B publishes the public parameters

PP = (n, r, p,G1, . . . , Gr+2, g1, e1, . . . , er+1, Y, (Ti|i ∈ U))

The choice of Ti in this way will be transparent in the next step.

Phase 1. The adversary is granted oracle access to the decryption key generation
oracle for all queries C with n input wires and r FANOUT-levels and C(A) = 0.
Given such a query, the decryption key is computed by the following general
methodology. First, the algorithm B uses a procedure FakeShare which shares
gc1
1 by taking into account a set A of attributes and using FANOUT-level-keys

based on gc3
1 , . . . , g

cr+2
1 . Then, B delivers decryption keys based on gc2

1 . Two
requirements are to be fulfilled:

1. from the adversary’s point of view, the secret sharing and distribution of
decryption keys should look as in the original scheme;

2. the reconstruction procedure Recon, starting from the decryption keys and
an authorized set of attributes, should return g

c1···cr+2s
r+2 .

In order to describe the procedure FakeShare we adopt the following nota-
tion: given a wire w of C, denote by Cw(A) the truth value at w when the circuit
C is evaluated for A. The main idea in FakeShare is the following:
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1. if the output wire w of a logic gate Γ = (w1, w2,X,w) satisfies Cw(A) = 0,
where X stands for “OR” or “AND”, then the value to be shared at this wire
is of the form gx

1 , for some x ∈ Zp; otherwise, the value to be shared at this
wire is an element x ∈ Zp;

2. the shares obtained by sharing the value associated to w, and distributed
to the input wires of Γ , should satisfy the same constraints as above. For
instance, if Cw1(A) = 0 and Cw2(A) = 1, then the share distributed to w1

should be of the form gx1
1 while the share distributed to w2 should be of the

form x2;
3. the same policy applies to FANOUT-gates as well.

The procedure FakeShare is as follows (for the sake of simplicity we adopt
the convention ai1 · · · aiu

= 1 = a−1
i1

· · · a−1
iu

whenever i1 · · · iu is the empty
sequence):

FakeShare(gc1
1 , gc3

1 . . . , g
cr+2
1 , C, A)

1. Initially, all gates of C are unmarked;
2. Assuming that the FANOUT-levels in C are h1 < · · · < hr, we denote cj by

c′
hj−2

, for all 3 ≤ j ≤ r + 2. The aim of this notation is just technical, in
order to have a correspondence between the c’s and the FANOUT-levels (see
below).
Now, for each FANOUT-level i, 0 ≤ i < depth(C) − 2, choose uniformly at
random ai ∈ Zp and assign L(i) := g

aic
′
i

1 ;
3. S(o) := gc1

1 ;
4. If Γ = (w1, w2, OR,w) is an unmarked OR-gate and S(w) was defined, then

mark Γ and do the followings:
(a) compute i1 · · · iu and j1 · · · jv the left and right FANOUT-level sequences

of Γ , respectively;
(b) if Cw(A) = Cw1(A) = Cw2(A) = 0, then S(w1) := S(w)a−1

i1
···a−1

iu and
S(w2) := S(w)a−1

j1
···a−1

jv ;
(c) if Cw(A) = Cw1(A) = Cw2(A) = 1, then S(w1) := S(w) · a−1

i1
· · · a−1

iu
and

S(w2) := S(w) · a−1
j1

· · · a−1
jv

;
(d) if Cw(A) = 1 = Cw1(A) and Cw2(A) = 0, then S(w1) := S(w) · a−1

i1
· · · a−1

iu

and S(w2) := g
S(w)·a−1

j1
···a−1

jv

1 ;

(e) if Cw(A) = 1 = Cw2(A) and Cw1(A) = 0, then S(w1) := g
S(w)·a−1

i1
···a−1

iu

1

and S(w2) := S(w) · a−1
j1

· · · a−1
jv

.
Remark that S(w) ∈ Zp in the cases (c), (d), and (e);

5. If Γ = (w1, w2, AND,w) is an unmarked AND-gate and S(w) was defined,
then mark Γ and do the followings:
(a) compute i1 · · · iu the left FANOUT-level sequence of Γ and j1 · · · jv the

right FANOUT-level sequence of Γ ;
(b) choose x1 uniformly at random from Zp;
(c) if Cw(A) = 1, then:
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i. compute x2 such that

S(w) = (x1ai1 · · · aiu
+ x2aj1 · · · ajv

)mod p;

ii. assign S(w1) := x1 and S(w2) := x2;
(d) if Cw(A) = 0 = Cw2(A) and Cw1(A) = 1 then assign S(w1) := x1 and

S(w2) =
(
S(w)/g

x1ai1 ···aiu

1

)a−1
j1

···a−1
jv

(e) if Cw(A) = 0 = Cw1(A) and Cw2(A) = 1 then do as above by switching w1

and w2;
(f) if Cw(A) = Cw1(A) = Cw2(A) = 0 then S(w1) := gx1

1 and S(w2) is com-
puted as in the case (d);

6. If Γ = (w,FANOUT,w1, . . . , wj) is an unmarked FANOUT-gate and S(wi)
was defined for all 1 ≤ i ≤ j, then mark Γ and do the followings:
(a) choose uniformly at random x ∈ Zp;
(b) if Cw(A) = Cw1(A) = · · · = Cwj

(A) = 1 then S(w) := x and

P (wi) := g
c′

level(Γ )S(wi)x
−1

1

for all 1 ≤ i ≤ j;
(c) if Cw(A) = Cw1(A) = · · · = Cwj

(A) = 0 then S(w) := g
c′

level(Γ )x

1 and
P (wi) := S(wi)x−1

, for all 1 ≤ i ≤ j;
7. repeat the last three steps above until all gates get marked.

Let (S, P, L) ← FakeShare(gc1
1 , gc3

1 , . . . , g
cr+2
1 , C, A). The algorithm B deliv-

ers to A the decryption key D = ((D(i)|i ∈ U), P, L), where

D(i) =
{

(gc2
1 )S(i)/ri , if i ∈ A

S(i)1/ri , if i 	∈ A

for any i ∈ U . The key component D(i) is of the form g
yi/ri

1 = g
c2yi/c2ri

1 for all
i 	∈ A (for some yi ∈ Zp) because the shares of i 	∈ A are all powers of g1 (remark
that Ci(A) = 0).

The distribution of this decryption key is identical to that in the original
scheme. Moreover, it is straightforward to see that the reconstruction procedure
Recon, applied to VA(i) = g

S(i)c2s
2 for all i ∈ A, where A is an authorized set,

returns g
c1···cr+2s
r+2 . Indeed, in the reconstruction process each FANOUT-level hj

changes the generator (by applying a bilinear map) and multiplies the exponent
by c′

hj
. As c3 · · · cr+2 = c′

h1
· · · c′

hr
, the claim follows.

Challenge. The adversary A selects two messages m0 and m1 (of the same
length) and sends them to B. The algorithm B encrypts mu with Zv, where
u ← {0, 1}, and sends it back to the adversary (recall that Zv was randomly
chosen from {Z0, Z1}). The ciphertext is

E = (A,E′ = muZv, {Ei = T s
i = gsri

1 }i∈A)

If v = 0, E is a valid encryption of mu; if v = 1, E′ is a random element from G2.
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Phase 2. The adversary may receive again oracle access to the decryption
key generation oracle (with the same constraint as in Phase 1).

Guess. Let u′ be the guess of A. If u′ = u, then B outputs v′ = 0; otherwise, it
outputs v′ = 1.

We compute now the advantage of B. Clearly,

P (v′ = v) − 1
2

= P (v′ = v|v = 0) · P (v = 0) + P (v′ = v|v = 1) · P (v = 1) − 1
2

Both P (v = 0) and P (v = 1) are 1/2. Then, remark that

P (v′ = v|v = 0) = P (u′ = u|v = 0) =
1
2

+ η

and P (v′ = v|v = 1) = P (u′ 	= u|v = 1) = 1
2 . Putting all together we obtain

that the advantage of B is P (v′ = v) − 1
2 = 1

2η. ��
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Abstract. We study formal privacy notions for data outsourcing
schemes. The aim of our efforts is to define a security framework that is
applicable to highly elaborate as well as practical constructions. First,
we define the privacy objectives data privacy, query privacy, and result
privacy. We then investigate fundamental relations among them. Second,
to make them applicable to practical constructions, we define generali-
sations of our basic notions. Lastly, we show how various notions from
the literature fit into our framework. Data privacy and query privacy
are independent concepts, while result privacy is consequential to them.
The generalised notions allow for a restriction on the number of the
adversary’s oracle calls, as well as a “leakage relation” that restricts the
adversary’s choice of challenges. We apply the generalised notions to
existing security notions from the fields of searchable encryption, private
information retrieval, and secure database outsourcing. Some are direct
instantiations of our notions, others intertwine the concepts. This work
provides a privacy framework for data outsourcing schemes from vari-
ous cryptographic fields with an unified view, from which several new
interesting research questions emerge.

Keywords: Formal security notions · Searchable encryption · Private
information retrieval · Database outsourcing

1 Introduction

The IT industry has seen numerous trends in the last two decades, yet a majority
of them seem to revolve around a common paradigm shift: Data is stored less
and less locally, but is outsourced to a data processing centre and accessed over
the Internet. To retrieve parts of the outsourced data, clients submit queries to
the servers which then execute them and return the result. Applications that fit
into this paradigm are not restricted to relational databases, but to any infor-
mation that can be structured meaningfully—be it searchable documents, SQL
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databases, or image archives. Data outsourcing promises significant advantages,
particularly for organisations that do not specialise in data management. But
entrusting private data to a service provider also introduces a security risk.
While an IT service provider can be trusted to provide the contractually agreed-
on services faithfully, one can easily imagine that a curious employee might try to
learn confidential information from the outsourced data. Cryptographic methods
promise to secure confidentiality in such a scenario.

Many cryptographic schemes have a custom security notion. While a tailored
security notion helps accurately express a scheme’s security properties, it makes
comparing security properties difficult. This work introduces a framework that
allows for modelling the privacy guarantees of data outsourcing schemes on a
common level of abstraction. We identify three conceptually different privacy
goals: keeping the outsourced data itself private, keeping the queries to the data
private, and keeping the result of the query private. Our results are applica-
ble to constructions from seemingly disparate fields of cryptographic research,
e.g. private information retrieval, searchable encryption, and secure database
outsourcing.

We show that data privacy and query privacy are independent concepts,
while result privacy is consequential to them. What is more, we found that many
existing privacy notions, e.g. for searchable encryption, mix these concepts.

In general, strong privacy can be bought with communication and compu-
tation complexity or a non cost efficient distribution among many servers. Such
schemes find no use in practice, however. On the other hand, existing formal
security notions are often not applicable to schemes used in practice. Thus,
we want to design security notions applicable to both practical (i.e. O(log(n))
complexity, single server, single client) and highly elaborate (i.e. PIR, ORAM)
outsourcing schemes. Therefore our framework allows to independently specify
bounds for the level of privacy for queries, the outsourced data, and the query
result. We showcase the applicability of our formal notions by expressing existing
notions in our framework.

1.1 A Model for Outsourced Data

Our basic object of interest is a data set—be it a database, an e-mail archive or
a collection of images. One can execute queries on this data. The result of the
execution of a query on a data set can be any function of the data.

In this work, we focus on queries that only return a function of the data they
are executed on. Note, however, that updating data is also an area worthy of
investigation.

In an outsourcing scenario, a client transfers the data to a server for storage.
Before the data is transferred, the client encrypts it using a private key. Instead of
executing queries locally, the client transforms them into an interactive protocol
that it runs with the server. The client’s input into the protocol is its private
key, the server’s input is the encrypted data. See Fig. 1 for an illustration of our
outsourcing model.
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Preprocessor Server

d, K

...q(d)

Enc(d, K)

(a) initialisation phase

Client Server

q, K

q(d)

Enc(d, K)πq

...

(b) query phase

Fig. 1. We model the interaction of the client with the server in two phases. In the
initialisation phase (a) a preprocessing agent receives a data set d and an encryption
key K, prepares the encrypted data Enc(d, K) and uploads it to the server. In the query
phase (b) the client issues queries q using encryption key K by running protocol πq

with the server. The server’s input is the encryption Enc(d, K). After the interaction
the client outputs the query result q(d).

We assume the server may be under adversarial influence. We restrict the
adversary to honest-but-curious behaviour however—he may not deviate from
the protocol as to interfere with its correct execution, but he may try to learn
private information from the interaction.

Efficiency. We are particularly interested in capturing the security properties
of efficient schemes within our framework. In practice, the size of outsourced
data sets can easily measure terabytes. Since data is uploaded to the server only
once while queries get executed repeatedly, it is not practical to use encryption
schemes which process the whole data set on each query—or even a fraction
of it. Therefore, we consider schemes efficient which have strictly logarithmic
communication and computation complexities per query—for the client as well
as for the server. This is in contrast to many schemes in the literature which are
considered efficient even though they have a polynomial overhead.

Privacy. There are three privacy objectives: Keeping the data private, keeping
the queries private, and keeping the results private.

Keeping the Data Private. Bob runs an e-mail service. Alice uses the service
and is concerned Bob might snoop through her private e-mail. Data Privacy
guarantees that Bob does not learn anything about the content of Alice’s e-mail.

Keeping the Queries Private. In this scenario, Bob runs a patent search service.
Clients can submit construction plans and Bob’s service looks for any patents
the construction is infringing. Alice is worried that Bob might learn her ideas
and register them as patents himself. If the query protocol has query privacy,
Bob cannot learn the content of Alice’s requests.

Keeping the Results Private. Bob also owns a database of DNA markers that
are a sign of genetic diseases. He offers his customers the possibility to check
blood samples against the database. Alice runs a clinic and is interested in
Bob’s services. She has no interest in disclosing to Bob whether her patients
suffer from any genetic diseases. If the method of accessing Bob’s database has
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result privacy, the results to Alice’s requests are hidden from Bob. As we will
show, result privacy implies database privacy as well as query privacy and vice
versa.

1.2 Related Work

In this work, we distinguish between data privacy, query privacy, and result
privacy, the latter implying the former two. Therefore, we divide the related work
concerning security notions for data outsourcing schemes into three categories:
notions which only consider the privacy of the outsourced data, notions which
only consider the privacy of the queries, and those which intertwine both.

Security Notions for Data Privacy. There is a rich body of literature on data
outsourcing schemes which only consider the privacy of the outsourced data
in both static and adaptive settings. There are game-based notions [10,12,16],
simulation-based notions [4,5,17], and notions that use the Universal Compos-
ability framework [3,19,24]. A well-known example for an adaptive security
notion is IND-CKA established by Goh [12]. The intuition is that an adver-
sary should not be able to distinguish two sets of data of his choosing based on
the generated index even if he can issue and observe queries. However, in Goh’s
notion, the queries the adversary can choose are strongly restricted: he is not
allowed to query for words that are exclusive two one of the two sets he chooses
as challenge.

An example for a notion which only considers static security is Huber et al.’s
IND-ICP [16]. Here, the idea is that an adversary should not be able to distin-
guish the encryptions of two databases. However, the databases the adversary is
challenged on are restricted to being independent permutations of one another.

Security Notions for Query Privacy. Hiding queries on outsourced data on a
single server has been studied in the context of Single-Server Private Information
Retrieval [7] (PIR). The PIR notion requires that an adversary who observes
access patterns cannot distinguish any two queries. PIR does not guarantee that
the data itself is kept private [7] There is a rich body of literature on PIR schemes
which have sublinear communication complexity ([2,11,20]). However, all PIR
schemes inherently have a computational complexity for the server which is linear
in the size of the data [23]. The PIR security notion is thus not applicable to
efficient schemes.

The privacy of queries on data has also been investigated in the context of
Oblivious RAMs (ORAMs) first introduced by Goldreich and Ostrovsky [13]
and further explored and improved upon by others [9,21,22]. Similar to PIR,
an “oblivious” RAM is one that cannot distinguish access patterns—the data
itself is not required to be private. As is the case with PIR, all ORAM construc-
tions can not be considered efficient in our sense. They either have polylogarith-
mic computation cost while requiring the client to store a constant amount of
data [22] or have logarithmic computation cost, but require the client to store
at least a sublinear amount of data dependent on the size of the RAM [14].
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Security Notions for Data Privacy as well as Query Privacy. There are secu-
rity notions in the literature which consider both data privacy as well as query
privacy. Chase et al. [6] introduce the simulation-based notion of “chosen query
attacks” which models both the privacy of queries and that of the data. How-
ever, in their notion, the concepts of privacy for data and privacy for queries are
intertwined. Haynberg et al. [15] try to separate both properties: they introduce
the notion of “data privacy” and complement it with “pattern privacy”, which is
similar to PIR. However, their notion for data privacy only allows the adversary
to observe the execution of one query. While the notion works for their scheme,
this limitation is too strict for other schemes.

Modeling Information Leakage. A reoccurring pattern in security notions for
practical schemes is the use of a leakage function which describes the informa-
tion the scheme leaks to the adversary during execution. A certain amount of
leakage seems necessary in order for schemes to be efficient. Cash et al. investi-
gate the construction of efficient and practical schemes that also have a formal
security analysis [4,5]. Their analyses follow a simulation-based approach. The
constructions leak information about the plaintext and the query which they
explicitly model by a leakage function L. This is similar to Chase et al. [6], whose
notion allows to describe the information that leaks through the encryption itself
(L1) and the information about the ciphertext and the queries combined that is
leaked by evaluating queries (L2). Stefanov et al. [24] employ the same technique
in the Universal Composability Framework. In game-based notions such leakage
is modelled by restricting the challenges the adversary can choose. Thus, in our
framework we define “leakage relations” that model information leakage.

1.3 Our Contribution

In this paper, we investigate formal security notions for data outsourcing. We
close the gap between strict formal security notions (e.g. PIR) which are not
applicable to schemes used in practice and security notions for practical schemes
that are tailored specifically to the scheme. To that end, we first precisely define
security notions for three seemingly disparate privacy objectives: data privacy,
query privacy, and result privacy. We show how these notions are related. Second,
we give generalisations of these notions to make them applicable to both highly
elaborate and practical schemes. We show that several notions from the literature
are specialisations of one of our notions, others intertwine them. Our framework
allows to express and compare the security of outsourcing schemes from diverse
areas of cryptographic research. We hope to inspire future work in this direction
of research as we believe a common umbrella for various outsourcing schemes
is an important aid in constructing, selecting, and implementing protocols for
practical applications.

2 Security Notions for Data Outsourcing Schemes

In this section we define precise terminology for securely outsourcing data and
establish fundamental relations.
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2.1 Notation and Conventions

We use the probabilistic-polynomial time (PPT) model, i.e. we assume all
machines, algorithms, parties and adversaries to be restricted to a polynomial
number of computation steps (in the security parameter). We denote the set of
all PPT two-party protocols with Π. Our definitions can be extended to allow for
the interaction of multiple servers with multiple clients. For the sake of clarity,
we focus on the single-server-single-client case and leave a further generalisation
of the definitions for future work.

We define our algorithms and protocols to operate on a domain. In this work,
a domain is the set of all possible values in the given context—for example, in
a database context, a domain would be the set of all databases. Our algorithms
and protocols operate on three domains: a domain of the data to be encrypted
(i.e. plaintexts) Δ, a domain of ciphertexts Γ , and a domain of results P .

2.2 Outsourcing Data

In this section, we define the elementary concepts used in the rest of the paper.

Definition 1. A data set d ∈ Δ is an element of a domain Δ. By |d| we denote
the length of its (unique) binary representation.

For example, in the scenario of an outsourced e-mail archive, Δ is the set of
all mailboxes and a concrete data set (mailbox) d ∈ Δ is a set of e-mail messages.
To outsource data, one requires an algorithm that makes the data ready to be
uploaded to a server. We call this process “encrypting” the data, as we will
require later that no adversary can learn the original data from the outsourced
data.

Definition 2. An outsourcing scheme for data sets is a tuple (Gen,Enc) such
that

Gen : 1k → {0, 1}n

Enc : Δ × {0, 1}n → Γ

We call an outsourcing scheme for a data set retrievable if there is a function
Dec : Γ × {0, 1}n → Δ such that ∀K ∈ {0, 1}n, d ∈ Δ : Dec(Enc(d,K),K) = d.

We do not require that encrypted data sets be decryptable. The main purpose
of outsourcing data in this work is to remotely execute queries on it.

Definition 3. A query q is a PPT algorithm that, on input of a data set d ∈ Δ
returns a result set q(d) ∈ P and an updated data set dq ∈ Δ.

We point out that, to simplify notation, we do not model parameters for
queries explicitly. Our model supports parameterised queries nevertheless, as for
each pair of a query q with parameters p, there is an equivalent query q(p) that
has the parameters “hard coded”. Without loss of generality we assume that
queries are functions of the data, i.e. ∀q∃d1, d2 ∈ Δ : q(d1) �= q(d2), and the
query result is the same if evaluated twice.

Our idea of the “correctness” of a protocol is relative to a given query q.
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Definition 4. A two-party protocol πq ∈ Π between a Server S and Client C
executes a query q for a outsourced data set Enc(d,K) if

– The Client, on input of a key K, outputs the result set q(d) =
πC

q (K,Enc(d,K)).
– The Server, on input the outsourced data set Enc(d,K), outputs an updated

outsourced data set Enc(dq,K) = πS
q (Enc(d,K)).

Note that although “update” queries are outside the scope of this work,
Definition 4 also models protocols that update the outsourced data set.

Definition 5. A queryable outsourcing scheme for data sets is a tuple
(Gen,Enc,Q) such that

– (Gen,Enc) is an outsourcing scheme for data sets, and
– Q ⊆ Π is a non-empty set of efficient two-party protocols that execute a query

for outsourced data sets.

We stress that the client has no direct access to the data when interacting
with the server in order to execute a query. To be able to argue about privacy
in the presence of queries to outsourced data, we require a notion of what a
protocol party “sees” during the execution of a protocol.

Definition 6. A view of a protocol party is the totality of its inputs, received
messages, sent messages and outputs. To denote the view of protocol party P ∈
{C,S} in protocol π with inputs c and K, we write

viewπ
P(c,K).

In particular, the encrypted data is part of the server’s view.

2.3 Privacy Notions for Outsourced Data Sets

Static Security. The static notion of privacy for outsourced data captures the
intuition that no adversary may deduce any information about the data from
its ciphertext alone. We model it closely after the IND-CPA [18] notion. Due to
space constraints, we omit it here. See the full version for the definition.

Privacy in the Presence of Queries. When outsourced data sets are queried
three conceptually different privacy goals can be distinguished: keeping the data
private, keeping the queries private, and keeping the results private. We model
these privacy goals as security games. The adversary is supplied an oracle for
views on the interaction between client and server and tries to discern the chal-
lenge bit b. In all three security experiments, in addition to a challenge oracle,
the adversary is supplied with an “open” view oracle. The oracle provides views
for arbitrary queries executed on an encryption of arbitrary data sets using the
challenge key. It implies that the scheme must have a probabilistic property in
the sense that two identical queries on two different encryptions of the same
plaintext will not access the same parts of the ciphertext. This can either be
done by randomizing the structure of the encrypted ciphertext (as in the work
of Haynberg et al. [15]) or by randomizing the protocol which realises the query.
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Security Game 1 (D-INDA
(Gen,Enc,Q)(k))

1. The experiment chooses a key K ←
Gen(1k).

2. A receives access to an oracle for
viewπ·

S (Enc(·, K)), and continues to
have access to it. The oracle takes a
query q and a data set d as input and
returns view

πq

S (Enc(d, K)).
3. A outputs two data sets d0 and d1 of

equal length to the experiment.
4. The experiment draws a random bit

b ← {0, 1}.
5. Challenge oracle: A is given access

to an oracle for viewπ·
S (Enc(db, K)).

That is, the oracle takes any query q
such that πq ∈ Q as input, internally
runs the protocol πq on Enc(db, K),
and outputs view

πq

S (Enc(db, K)) to
the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b
and 0 else.

Security Game 2 (Q-INDA
(Gen,Enc,Q)(k))

1. The experiment chooses a key K ←
Gen(1k).

2. A receives access to an oracle for
viewπ·

S (Enc(·, K)), and continues to
have access to it. The oracle takes a
query q and a data set d as input and
returns view

πq

S (Enc(d, K)).
3. A outputs two queries q0 and q1 to the

experiment. q0 and q1 must yield pro-
tocols πq0 and πq1 with the same num-
ber of protocol messages.

4. The experiment draws a random bit
b ← {0, 1}.

5. Challenge oracle: A is given access to
an oracle for view

πqb
S (Enc(·, K)). That

is, the oracle takes any data set d ∈
Δ as input, internally runs the pro-
tocol πqb on Enc(d, K), and outputs
view

πqb
S (Enc(d, K)) to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b
and 0 else.

Definition 7 (Data Privacy). An outsourcing scheme (Gen,Enc,Q) has Data
Privacy, if

∀A, c ∈ N∃k ∈ N : |Pr[D-INDA,Rd

(Gen,Enc,Q)(k) = 1]| ≤ 1
2

+ k−c

The privacy notion of Query Privacy captures the goal of hiding the queries
themselves from the server. The notion is equivalent to Private Information
Retrieval (see Sect. 4.1 for a discussion and proof).

Definition 8 (Query Privacy). An outsourcing scheme (Gen,Enc,Q) has
Query Privacy, if

∀A, c ∈ N∃k ∈ N : |Pr[Q-INDA,Rq

(Gen,Enc,Q)(k) = 1]| ≤ 1
2

+ k−c

The third privacy goal, Result Privacy, captures the idea that the adversary
must not learn the result of any query executed on any data. To formulate this
idea formally, we allow the adversary to output two data-set-query pairs (d0, q0)
and (d1, q1), as a result is always determined by a query and a data set on which
it is evaluated. We then challenge the adversary on the view of query qb executed
on data set db.
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Security Game 3 (R-INDA
(Gen,Enc,Q)(k))

1. The experiment chooses a key K ← Gen(1k).
2. A receives access to an oracle for viewπ·

S (Enc(·,K)), and continues to have
access to it. The oracle takes a query q and a data set d as input and returns
view

πq

S (Enc(d,K)).
3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment.

(|d0| = |d1| and q0 and q1 must yield protocols πq0 and πq1 with the same
number of protocol messages).

4. The experiment draws a random bit b ← {0, 1}.
5. Challenge: The experiment runs the protocol πqb on Enc(db,K) and outputs

view
πqb

S (Enc(db,K)) to the adversary.
6. A receives oracle access to viewπ·

S (Enc(db,K)) and view
πqb

S (Enc(·,K)).
7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 9 (Result Privacy). An outsourcing scheme (Gen,Enc,Q) has
Result Privacy, if

∀A, c ∈ N∃k ∈ N : |Pr[R-INDA,Rd,Rq

(Gen,Enc,Q)(k) = 1]| ≤ 1
2

+ k−c

Fundamental Relations among the Basic Security Notions. We establish
fundamental relations among the three concepts of Data Privacy, Query Privacy,
and Result Privacy.

Theorem 1 (D-IND �=⇒ Q-IND). If a data outsourcing scheme that has Data
Privacy exists, there is a data outsourcing scheme that has Data Privacy but no
Query Privacy.

Proof. Let (Gen,Enc,Q) be a data outsourcing scheme that has Data Privacy. We
modify it in a way that we violate Query Privacy, but keep Data Privacy intact.
To this end, we amend the protocols that execute queries to have the client
transmit the executed query in the clear after the actual protocol is complete.
We have to show that the modification violates Query Privacy, but does not
violate Data Privacy.

With the modification, the adversary in experiment Q-IND can easily extract
the executed query from any view and thus determine the challenge bit with
certainty. Thus the modification violates Query Privacy. To see that this modifi-
cation does not violate Data Privacy, first note that the modified scheme retains
its Data Privacy up until the point of the modification. We argue that the trans-
mission of the query in the clear does not break Data Privacy. Consider experi-
ment D-IND. Because the experiment draws the key K after the scheme is fixed,
the scheme is independent of the actual key used to encrypt the data set d.
Further, because the query is supplied by the adversary in the experiment and
the adversary has learned neither db nor K up to this point, the query is also
independent of db and K. This concludes the argument. �
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Theorem 2 (Q-IND �=⇒ D-IND). If there is a retrievable data outsourcing
scheme that has Static Security, there is a data outsourcing scheme that has
Query Privacy and Static Security, but no Data Privacy.

Proof. Let (Gen,Enc,Q) be a retrievable data outsourcing scheme that has Static
Security. We construct a modified scheme (Gen,Enc,Q′) that suits our purposes.
By adopting Gen and Enc, we retain static security. We design Q′ such that it
has Query Privacy, but trivially loses Data Privacy. Q′ is constructed iteratively,
starting with an empty set. For each protocol πq ∈ Q that realises a query q, we
define a protocol π′

q to Q′ as follows:

1. Client: Transfer K to the Server.
2. Server: Decrypt Enc(d,K) and send d = Dec(Enc(d,K),K) back to the Client.
3. Client: Execute query q locally on d and output q(d).

Protocol π′ transmits the data set d in the open, violating Data Privacy. Because
the client executes q locally and never transmits any information that depends
on q, π′ does have Query Privacy. �

The following theorems show that Result Privacy is equivalent to both Data
Privacy and Query Privacy (at the same time).

Theorem 3 (R-IND =⇒ D-IND). There is no data outsourcing scheme that
has Result Privacy but no Data Privacy.

Proof. Assume a data outsourcing scheme (Gen,Enc,Q) for which there is an
efficient adversary A against experiment D-IND. We give an efficient reduction
for A that breaks the Result Privacy (experiment R-IND) of the scheme, con-
tradicting the assumption. The reduction is straightforward. It has to provide
a challenge oracle viewπ·

S (Enc(db,K)). Such an oracle is provided by experiment
R-IND and only has to be “passed through”.

Theorem 4 (R-IND =⇒ Q-IND). There is no data outsourcing scheme that
has Result Privacy but no Query Privacy.

The proof of Theorem 4 is similar to the proof of Theorem 3 and omitted here.

Theorem 5 (D-IND ∧ Q-IND =⇒ R-IND). Data Privacy and Query Privacy
together imply Result Privacy, i.e. there is no data outsourcing scheme that has
Data Privacy and Query Privacy but no Result Privacy.

We prove the statement using a game-hopping technique. Assume any adversary
against R-IND. We replace both view oracles for db and qb, respectively, with an
oracle for fixed challenges d0 and q0. We argue the indistinguishability of these
steps with Data Privacy and Query Privacy. Finally, in the now-transformed
experiment, the adversary has no advantage since his input is independent of b.
Concluding, given a scheme with Data Privacy and Query Privacy, no adversary
against Result Privacy has a non-negligible advantage.
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Proof. We define two game transformations, R-IND′ and R-IND′′, starting
from the Result Privacy experiment R-IND. In the unmodified experiment
R-IND, the adversary is supplied with two view oracles viewπ·

S (Enc(db,K)) and
view

πqb

S (Enc(·,K)). In R-IND′ we replace the viewπ·
S (Enc(db,K)) oracle by an

viewπ·
S (Enc(d0,K)) oracle. In R-IND′′ we further replace view

πqb

S (Enc(·,K)) by
view

πq0
S (Enc(·,K)). In R-IND′′ the adversary receives no input that is dependent

on the challenge bit b. He thus has no advantage over guessing b. We have to
argue that R-IND′′ is indistinguishable from R-IND for the adversary. To this
end, we prove the indistinguishability of R-IND from R-IND′ in Lemma 1 and
the indistinguishability of R-IND′ from R-IND′′ in Lemma 2. �

Lemma 1. An adversary who can distinguish between running in experiment
R-IND and experiment R-IND′ yields a successful adversary against database pri-
vacy.

The proof of Lemma 1 is omitted here. It is included in the full version.

Lemma 2. An adversary who can distinguish between R-IND′ and R-IND′′ is
also a successful adversary on Query Privacy.

The proof of Lemma 2 is analogous to that of Lemma 1. We omit it.

Corollary 1 (R-IND ⇐⇒ D-IND ∧ Q-IND). Result Privacy is equivalent to
both Data Privacy and Query Privacy (at the same time).

3 Generalised Security Notions for Data Outsourcing
Schemes

In this section, we generalise the security notions introduced in Sect. 2 to make
them applicable to practical schemes. Protocols that—for the sake of efficiency—
base decisions on the content of the queried data are bound to leak information
about it [4–6] or are only secure for a limited number of queries [15]. Therefore,
we first introduce bounds for the number of oracle calls. A special case is a bound
of 1 that renders the notions non-adaptive.

Second, we define “leakage relations” Rd and Rq. Challenges the adversary
can choose are subject to equivalence under these relations. This way, one can
explicitly rule out specific distinction advantages. To model the leakage of the
length of a data set for example, one would define Rd ⊂ Δ2 as the set of all data
set pairs with equal length.

Third, we explicitly model the issuing of queries independently of handing
out the results. This allows us to capture security notions where the adversary
can alter the state of the database, but can not see the immediate result (e.g.
he can only observe the result of the last issued query).

Goh [12] introduces restricting parameters into his security notion as well.
They allow for a bound on the running time, the advantage, and the number
of oracle calls. Our work in this section can be seen as a generalisation of his
concept.
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We only give the security definitions here and defer discussion to Sect. 4 where
we showcase case studies that are direct applications of our generalised notions.

Security Game 4 (IND-CDAA,Rd

(Gen,Enc)(k))

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
2. The adversary A is given input 1k and oracle access to Enc(·,K).
3. A outputs two data sets d0 and d1 to the experiment. The choice of d0 and d1

is restricted to data set pairs that are equivalent with regard to equivalence
relation Rd ⊆ Δ2, i.e. (d0, d1) ∈ Rd.

4. A is given Enc(mb,K).
5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 10 (Static Security). An outsourcing scheme (Gen,Enc) has
indistinguishable encryptions under chosen-data-attacks (IND-CDA) or static
security with respect to Rd, if

∀A, c ∈ N∃k ∈ N : |Pr[IND-CDAA,Rd

(Gen,Enc) = 1]| ≤ 1
2

+ k−c

Definition 11 (n1, n2, n3-Data Privacy). An outsourcing scheme (Gen,
Enc,Q) has n1, n2, n3-Data Privacy with respect to Rd, if

∀A, c ∈ N∃k ∈ N : |Pr[D-INDA,Rd,n1,n2,n3
(Gen,Enc,Q) (k) = 1]| ≤ 1

2
+ k−c

Definition 12 (n1, n2, n3-Query Privacy). An outsourcing scheme (Gen,
Enc,Q) has n1, n2, n3-Query Privacy with respect to Rq, if

∀A, c ∈ N∃k ∈ N : |Pr[Q-INDA,Rq,n1,n2,n3

(Gen,Enc,Q) (k) = 1]| ≤ 1
2

+ k−c

Result Privacy can be generalised in the same way. As we do not investigate
Result Privacy any further, we defer the definition to the full version.

4 Case Studies

In this section we review security notions from the literature and examine how
they fit into our framework. To that end, we translate these notions to our for-
malisms. We discuss Private Information Retrieval, a privacy notion for search-
able encryption and a notion for secure database outsourcing. We refer to the
appendix for a discussion of the well established security notions IND-CKA [12]
and Ind∗

SSE [8].
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Security Game 5
(D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k))

1. The experiment chooses a key
K ← Gen(1k).

2. A receives access to an oracle for
viewπ·

S (Enc(·, K)), and continues to
have access to it. A is only allowed
to query the oracle for a total num-
ber of n1 times.

3. A outputs two data sets d0 and d1

to the experiment. The choice of d0

and d1 is restricted to pairs of data
sets that are equivalent with regard
to equivalence relation Rd ⊆ Δ2,
i.e. (d0, d1) ∈ Rd.

4. The experiment draws a random
bit b ← {0, 1}.

5. Challenge oracle: A is given access
to an oracle for viewπ·

S (Enc(db, K)),
and continues to have access to it.
A may call the challenge oracle for
a total number of n2 times.

6. Run oracle: A is given access to an
oracle runπ·

S (Enc(db, K)). The run
oracle executes queries just as the
view oracle does, but has no out-
put. A is allowed to call the run
oracle for a total number of n3

times.
7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ =
b and 0 else.

Security Game 6
(Q-IND

A,Rq ,n1,n2,n3
(Gen,Enc,Q) (k))

1. The experiment chooses a key K ←
Gen(1k).

2. A receives access to an oracle for
viewπ·

S (Enc(·, K)), and continues to
have access to it. A is only allowed to
query the oracle for a total number of
n1 times.

3. A outputs two queries q0 and q1 to
the experiment. The choice of q0 and
q1 is restricted to query pairs that are
equivalent with regard to equivalence
relation Rq ⊆ Π2, i.e. (q0, q1) ∈ Rq.

4. The experiment draws a random bit
b ← {0, 1}.

5. Challenge oracle: A is given access
to an oracle for view

πqb
S (Enc(·, K)). A

may call the challenge oracle for a
total number of n2 times.

6. Run oracle: A is given access to an ora-
cle run

πb
S (Enc(·, K)), and continues to

have access to it. The run oracle exe-
cutes queries just as the view oracle
does, but has no output. A is allowed
to call the run oracle for a total num-
ber of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b
and 0 else.

4.1 Private Information Retrieval

We give a definition of the original (single-server) Computational Private Infor-
mation Retrieval (cPIR) [20] notion using our conventions.

Definition 13 (Private Information Retrieval). A queryable outsourcing
scheme (Gen,Enc,Dec, {π}) exhibits Computational Single-Server Private Infor-
mation Retrieval (PIR) when two conditions hold for any n ∈ N, any security
parameter k ∈ N, and any data set d over Σ = {0, 1}n:

1. Correctness: ∀i ∈ {0, . . . , n − 1} : πC
i (d) = d[i].

2. Privacy: ∀c ∈ N, i, j ∈ {0, . . . , n − 1},∀A∃K ∈ N such that ∀k > K

|Pr[A(viewπi
S (Enc(d, K))) = 1] − Pr[A(view

πj

S (Enc(d, K))) = 1]| <
1

max(k, n)c
.
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Theorem 6. Private Information Retrieval is equivalent to Query Privacy.

Due to space constraints, we refer to the full version for the proof.

4.2 Searchable Encryption Using Directed Acyclic Word Graphs

Haynberg et al. [15] construct an efficient scheme for symmetric searchable
encryption and a corresponding security notion. Their construction is not based
on a dictionary, but realises incremental pattern matching.

Security Game 7 (PrivKcppa
A,Enc(k))

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
2. The adversary receives oracle access to viewπ·

S (Enc(·,K)), and continues to
have access to it.

3. A outputs two plaintexts m0 and m1 of the same length to the experiment.
4. A outputs a number of queries x0, . . . , xq and an integer i ∈ {0, . . . , q} to the

experiment.
5. The queries x0, . . . , xq are evaluated in that order.
6. A is given the view on the challenge ciphertext to query i:

view
πxi

S (Enc(mb,K)).
7. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
The security notion can be directly instantiated in our framework.

Theorem 7. PrivKcppa is equivalent to Data Privacy.

Proof. PrivKcppa
A,Enc(k) can be directly instantiated from D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k)
with parameters Rd = {d0, d1}, |d0| = |d1|, n1 = poly(k), n2 = 1, and
n3 = poly(k). �

4.3 Indistinguishability Under Independent Column Permutations

Huber et al. [16] present a provably-secure database outsourcing scheme which
is es efficient as the underlying database. In their notion the encryptions of two
databases must be indistinguishable if they can be transformed into each other
by permuting attribute values within columns. Since our generalised notions
allow for defining a restriction on the plaintexts, this database-specific security
notion also fits into our framework.

Definition 14 (Independent Column Permutation [16]). Let Φ be the set
of database functions p : Δ → Δ such that each p ∈ Φ permutes the entries within
each column of a database. We call p an independent column permutation.
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Security Game 8 (IND-ICPA
Gen,Enc,Φ(k))

1. The experiment chooses a key K ← Gen(1k).
2. A outputs one plaintext m and an independent column permutation p ∈ Φ

to the experiment.
3. The experiment chooses m0 := m and m1 := p(m) draws b ← {0, 1} uniformly

at random.
4. A is given Enc(mb,K).
5. A submits a guess b′ for b.

Theorem 8. IND-ICP is equivalent to static security.

Proof. IND-ICP is a direct instantiation of IND-CDAA,RICP
(Gen,Enc)(k), where RICP ⊂

Δ2 is the set of all pairs of databases that are independent column permutations
of each other: We set Δ = DB and RICP = Δ/Φ(Δ). Then, each adversary that
has a non-negligible advantage in IND-ICPA

Gen,Enc,Φ(k) can efficiently be reduced
to an adversary that has non negligible advantage in IND-CDAA,RICP

(Gen,Enc)(k) and

vice versa. The reduction from IND-ICP to IND-CDAA,RICP
(Gen,Enc)(k) sets m0 := m

and m1 := p(m), while the reduction from IND-CDAA,RICP
(Gen,Enc)(k) to IND-ICP deter-

mines p with p(m0) = m1. �

5 Conclusion and Future Work

We presented a framework that unifies the security notions of outsourcing
schemes. To this end we precisely defined outsourcing schemes with queries and
introduced the security notions Data Privacy, Query Privacy, and Result Pri-
vacy. While Data Privacy and Query Privacy capture independent objectives,
we showed that both Data Privacy and Query Privacy are necessary for keeping
the results of a query to an outsourced data set private. We defined generalised
versions of these notions to capture constructions with weaker security proper-
ties. Finally, we showcased how security notions for existing outsourcing schemes
fit into our framework.

Our work provides directions for several interesting new research topics. In
particular, the relations between concrete instantiations of our generalised secu-
rity notions (e.g., if a weaker instantiation of Data Privacy is still strictly sep-
arable from a weaker instantiation of Query Privacy) remain an open question,
as well as giving a complete hierarchy of instantiations of one security notion
(e.g., if Data Privacy with two queries is weaker than Data privacy with three
queries). In particular, a precise characterisation of schemes which fit into each
hierarchy class would be of interest.

Further, our security notions are game-based. Investigating simulation-based
techniques for our purposes might lead to further insights. Since game-based
and simulation-based formulations of the same security notion are not necessarily
equivalent (as it is in the case with Selective Opening Security [1]), analysing the
relations between our framework and a simulation-based variant could further
deepen the understanding security notions for outsourcing schemes.
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A Further Case Studies

A.1 Semantic Security against Adaptive Chosen Keyword Attacks

Goh [12] presents a security notion for index-based searchable encryption
schemes. We give a translation into our formalisms. Trapdoors are translated
to a view oracle.

Security Game 9 (IND-CKAA
(Gen,Enc,Q))

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
2. The adversary A is given input 1k and access to an oracle viewπ·

S (Enc(·,K)).
3. A outputs two plaintexts m0 and m1 of the same length to the experiment.

The adversary must not have queried the oracle for words that are only in
one of the two plaintexts.

4. A is given EncK(mb) and access to an oracle viewπ·
S (Enc(mb,K)).

5. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
IND-CKA is a weaker form of Data Privacy. Were the adversary not restricted

in choosing queries (Line 3. in Security Game 9), the notions would be equivalent.
As in the case of Curtmola et al.’s notion (Sect.A.2), we prove the relation of
Goh’s notion to our model without considering this restriction. Our security
notions could easily be further generalised to include this restriction, however,
we decided against this, as the applications of such restrictions seem limited.

Theorem 9. IND-CKA implies static security.

The proof is a straightforward reduction and we omit it here.

Theorem 10. Database privacy implies IND-CKA.

Due to space constraints, the proof is only included in the full version.

A.2 Adaptive Security for Symmetric Searchable Encryption

Curtmola et al.’s notion adaptive indistinguishability security for SSE [8] is also
a security notion for symmetric searchable encryption based on indices.

Security Game 10 (Ind∗
SSE,A,(Gen,Enc,Q)(k) [8])

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.
2. The adversary A is given input 1k and outputs two plaintexts m0 and m1 of

the same length to the experiment.
3. A is given EncK(mb).
4. A can output polynomially many pairs of queries (q0, q1) and is given

view
πqb

S (Enc(db,K)).
5. A submits a guess b′ for b.
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The result of the experiment is 1 if b′ = b and 0 else. Note that in Curtmola et
al.’s notion, Query Privacy and Data Privacy are intertwined. Thus, it can not
be directly instantiated from our framework. We instead show how his notion
relates to our notions. Ind∗

SSE also requires the adversary to only choose plaintexts
and corresponding search queries which have the same views for both databases.
This is a very strict restriction which we do not take into consideration here. We
instead focus on the more general notion.

Theorem 11. (Q-IND∧D-IND =⇒ Ind∗
SSE). If a queryable outsourcing scheme

has Query Privacy, Data Privacy implies Ind∗
SSE.

Theorem 12. (Ind∗
SSE =⇒ D-IND). Ind∗

SSE implies database privacy.

Due to space constraints, the proofs are omitted here. They are included in
the full version.
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1. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
Cryptology ePrint Archive, Report 2011/678 (2011). http://eprint.iacr.org/2011/
678

2. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
http://dx.doi.org/10.1007/3-540-48910-X 28

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, pp. 136–145. IEEE (2001)

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: Network and Distributed System Security Symposium, NDSS, vol.
14 (2014)

5. Krawczyk, H., Jarecki, S., Steiner, M., Jutla, C., Cash, D., Roşu, M.-C.: Highly-
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Abstract. Polynomial multiplication is the most time-consuming part
of cryptographic schemes whose security is based on ideal lattices. Thus,
any efficiency improvement on this building block has great impact on
the practicability of lattice-based cryptography. In this work, we inves-
tigate several algorithms for polynomial multiplication on a graphical
processing unit (GPU), and implement them in both serial and parallel
way on the GPU using the compute unified device architecture (CUDA)
platform. Moreover, we focus on the quotient ring (Z/pZ)[x]/(xn + 1),
where p is a prime number and n is a power of 2. We stress that this
ring constitutes the most common setting in lattice-based cryptography
for efficiency reasons. As an application we integrate the different imple-
mentations of polynomial multiplications into a lattice-based signature
scheme proposed by Güneysu et al. (CHES 2012) and identify which
algorithm is the preferable choice with respect to the ring of degree n.

Keywords: Lattice-based cryptography · GPU implementation · CUDA
platform · Polynomial multiplication · Fast Fourier transform · cuFFT ·
NTT · Schönhage-Strassen

1 Introduction

Lattice-based cryptography has gained a lot of attention since the breakthrough
work by Gentry [10] who constructed the very first fully homomorphic encryption
scheme, answering a problem posed in 1978 and thought by many to be impos-
sible to resolve. The security of lattice-based cryptographic schemes depends
on the hardness of lattice problems which are believed to be intractable even
against quantum attacks, as opposed to classical cryptographic schemes which
are based on the hardness of factoring or computing discrete logarithms. Indeed,
Shor [26] has shown that quantum computers can solve the latter computational
c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 155–168, 2016.
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problems in polynomial time, and thus making it plain to the community that
alternatives are necessary once efficient quantum computers are omnipresent.

Additional reasons for the current popularity of lattice-based cryptography
lies in their asymptotic efficiency. While classical cryptographic schemes deal with
very large finite fields and/or require to perform expensive exponentiations, the
efficiency of lattice-based schemes is dominated mainly by “cheap” matrix-vector
multiplications. Moreover, even more efficient instantiations of lattice-based cryp-
tographic schemes are derived if they are based on ideal lattices corresponding
to ideals in rings of the form Z[x]/(f), where f is a degree n irreducible polyno-
mial (usually f = xn + 1). The most common ring used in lattice-based cryp-
tography (e.g., [6,12,17]) is the quotient ring (Z/pZ)[x]/(xn + 1) for which we
know quasi-logarithmic multiplication algorithms, namely via the Fast Fourier
Transform (FFT). We stress that polynomial multiplication still constitutes the
bottleneck of lattice-based cryptography with respect to its performance. Hence,
efficient implementations of the multiplication operation impact positively and
directly the performance of lattice-based cryptosystems.

In the past there has been a great interest for the implementation of lattice-
based cryptography on FPGAs [4,11–14,21–23,25]. The main inducement lies here
in running the arithmetic operations in parallel. Pöppelmann et al. [20] showed
how the arithmetic involved in lattice-based cryptography can be efficiently imple-
mented onFPGAs. Specifically, they gave the details on the implementation of how
to parallelize the Number Theoretic Transform (NTT) algorithm for the precom-
puted values. Due to the memory requirements of finding those values, the pre-
computation step was not performed on the FPGA but were given to the system
directly. In [4], Aysu et al. presented a low-cost and area efficient hardware archi-
tecture for polynomial multiplication via NTT with applications in lattice-based
cryptographic schemes. In contrast to [20], Aysu et al. computed all values for pre-
computation also on the FPGA.

Interestingly, the literature offers far less studies on the efficiency of polyno-
mial multiplication on graphical processing units (GPU) in the quotient ring
(Z/pZ)[x]/(xn + 1). While GPUs are already a tool to cryptanalyze lattice
problems [15,16,24], only few works use GPUs to accelerate lattice-based cryp-
tosystems [5,28]. To the best of our knowledge, Emeliyanenko [8], Akleylek and
Tok [1–3] are the only ones dealing with the efficiency of algorithms for polyno-
mial multiplication on GPUs from which only the latter emphasizes on settings
relevant for lattice-based cryptography.

Our Contribution. The contribution of this paper is three-fold: We propose mod-
ified FFT algorithm for sparse polynomial multiplication. With the proposed
method we improve the complexity results almost 34% for the sparse polyno-
mial multiplication in the lattice-based signature scheme by Güneysu et al. [12].
Second, we provide the first efficient implementation of the Schönhage-Strassen
polynomial multiplication algorithm on GPU using the CUDA platform and
discuss its efficiency in comparison with well-known polynomial multiplication
algorithms, namely iterative/parallel NTT and cuFFT. Our implementations are
designed to the given GPU, namely the NVIDIA Geforce GT 555M GPU. Last,
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as an application we have implemented the lattice-based signature scheme by
Güneysu et al. [12] on GPU and measured running times of the signature and
verification algorithm while using different polynomial multiplication methods.
Originally, this signature scheme was implemented on FPGAs [12].

Roadmap. In Sect. 2 we recall well-known algorithms for polynomial multiplica-
tion, show their efficient implementations in GPU and modify FFT algorithm
to be used in sparse polynomial multiplication efficiently. In Sect. 3 we recall
the lattice-based signature scheme by Güneysu et al.. We show the experimen-
tal results of our implementations in Sect. 4. We also show the performance of
the selected lattice-based signature scheme with respect to the chosen algorithm
for polynomial multiplication. In Sect. 5 we impose further discussion on our
observation. We conclude in Sect. 6.

2 Multiplication over the Ring (Z/pZ)[x]/(xn + 1)

In this section, we give an overview of selected algorithms for polynomial mul-
tiplication, namely NTT in serial and parallel type, and CUDA-based FFT
(cuFFT). We also discuss improved version of FFT for sparse polynomial multi-
plication. We focus on the arithmetic over the quotient ring (Z/pZ)[x]/(xn + 1)
whose importance in lattice-based cryptography that we emphasized in the previ-
ous section. Recall that polynomial multiplication by using FFT mainly consists
of three steps:

– conversion of coefficients of polynomials to Fourier domain with FFT algo-
rithm having O(n log(n)) complexity,

– coefficient wise multiplication of elements in Fourier domain having O(n) com-
plexity,

– converting the result into the integer domain with inverse FFT algorithm
having O(n log(n)) complexity.

2.1 Number Theoretic Transform

The NTT algorithm was proposed in [19] to avoid rounding errors in FFT. NTT
is a discrete Fourier transform defined over a ring or a finite field and is used
to multiply two integers without requiring arithmetic operations on complex
numbers. The multiplication complexity is quasi-linear (i.e., O(n log n)).

The NTT algorithm can be applied if both of the following requirements are
fulfilled:

– The degree n of the quotient ring (Z/pZ)[x]/(xn + 1) must divide (p − 1).
– ∃w ∈ (Z/pZ) such that wn ≡ 1 (mod p) and for each i < n it holds wn �= 1

(mod p).
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In order to multiply two ring elements via NTT, those elements have to
transformed into NTT form. Let w be the primitive n−th root of unity, and
a(x) =

∑n−1
i=0 aix

i ∈ (Z/pZ)[x] be given. The ring element a is transformed into
the NTT form by algorithm NTTw(a) which is defined as follows:

NTTw(a) := (A0, . . . , An−1) where Ai =
n−1∑

j=0

ajw
ij (mod p),

for i ∈ {0, 1, . . . , n − 1}. The inverse transform NTT−1
w (A) for A =

(A0, . . . , An−1) is given as:

NTT−1
w (A) := (a0, . . . , an−1) where ai = n−1

n−1∑

j=0

Ajw
−ij (mod p),

with i ∈ {0, 1, . . . , n−1}. By using the Convolution theorem, arbitrary polynomi-
als can be multiplied and then reduced according to chosen reduction polynomial.
However, appending n 0’s to the inputs doubles the size of the transform. To use
NTT for the multiplication of two elements in (Z/pZ)[x]/(xn + 1) the condition
is that p ≡ 1 (mod 2n) due to wrapped convolution approach. In Algorithm 1
the parallel version of the iterative NTT method is given. To make it efficient, we
make use of “for” loops in the algorithm. Parallelization is achieved by determin-
ing the required number of threads. This algorithm needs data transfer between
CPU and GPU. This may cause a delay and potentially defined the bottleneck
in the performance. In Algorithm 2 we show how the parallelism is performed.

Algorithm 1. Parallelized iterative NTT method (CPU and GPU side)
Input: a(x) =

∑n−1
i=0 aix

i, b(x) =
∑n−1

i=0 bix
i ∈ (Z/pZ)[x]/(xn + 1)

Output: c(x) = a(x) · b(x) =
∑n−1

i=0 cix
i

1: f = BitReverseCopy(a)
2: f = SumDiff(f)
3: rn = Element of order(n)
4: if reverse NTT then
5: rn = r−1

n (mod p)
6: end if
7: for i = 2 to log(n) do
8: m = 2i

9: mh = m/2

10: dw = r2
log(n)−i

n

11: Create block and grids
12: Call the GPU NTT procedure (grids, blocks) (f, dw)
13: end for
14: Return f
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Algorithm 2. GPU procedure
1: thread idx = block id.x · block dimension.x + threadidx.x
2: thread idy = block id.y · block dimension.y + threadidx.y
3: if thread idx > 0 or thread idy = 0 then
4: Return
5: end if
6: for i = 2 to thread idy do
7: w = w · dw (mod p)
8: end for
9: t1 = thread idx · mh + thread idy

10: t2 = t1 · mh

11: v = at2 · w (mod p)
12: u = at1
13: at1 = (u + v) (mod p)
14: at2 = (u − v) (mod p)

2.2 Modified Fast Fourier Transform for Sparse Polynomial
Multiplication

In this section, we present FFT algorithm for sparse polynomials. In Algorithm 6
multiplications in Step 3 and 4 can be considered as sparse polynomial multipli-
cation since the coefficients of s1 and s2 are in the set {−1, 0, 1} and the number
of nonzero coefficients with {−1, 1} is at most 32 in c. Thus, it’s important to find
such a specialized method for that kind of multiplications to improve the timing
results. The most time consuming part in FFT-based polynomial multiplication is
FFT, i.e., conversion of coefficients of polynomials to Fourier domain. Therefore,
we focus on modifying FFT algorithm for sparse polynomials. In Algorithm 3 we
modify FFT algorithm [19] for sparse polynomials.

Remark 1. Our observation is that in original FFT algorithm in [19] for each
coefficient of polynomial is used in each step. Moreover, computing the powers
of w (n−th root of unity) is computed in each step. There is no need to compute
the corresponding power of w for the 0 coefficients.

In Table 1, we compare FFT and Algorithm 3 in view of the required number
of arithmetic operations. n is the number of elements in the polynomial to be
converted in Fourier domain. The parameter m << n depends on the number
of nonzero coefficients in the polynomial. � stands for the number of nonzero
elements in the polynomial. According to Table 1, the required number of arith-
metic operations is significantly reduced. Improvement is almost same for each
operation for a fixed n = 1024. So, by using Algorithm 3 one can improve the
conversion operation to/from FFT with the given percentages in Improvement
column in Table 1.

2.3 CUDA Fast Fourier Transform Based Multiplication

The NVIDIA CUDA Fast Fourier Transform (cuFFT) library enables the users
to have very fast FFT computations with an interface on the GPU by using
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Algorithm 3. Modified FFT for sparse polynomials
Input: a(x) =

∑n−1
i=0 aix

i ∈ (Z/pZ)[x]/(xn + 1), size of n and forward or inverse.
w2n ≡ 1 (mod p).

Output: FFTw(a)
1: a = BitReverseCopy(a)
2: for i = 0 to log(n) − 1 do
3: Compute the positions of all nonzero elements of a and d is an array of the

position of nonzero elements. � is the number of elements in d.
4: for j = 0 to � − 1 do
5: if d[j] is even then

6: Pid[j]/2 ← � d[j]/2

2log(n)−1−i �2log(n)−1−i

7: A d[j]
2

← ad[j] + ad[j]+1w
Pid[j]/2 (mod p)

8: A d[j]
2 +n

2
← ad[j] − ad[j]+1w

Pid[j]/2 (mod p)

9: else
10: if ad[j]−1 = 0 then

11: Pi(d[j]−1)/2 ← � (d[j]−1)/2

2log(n)−1−i �2log(n)−1−i

12: A d[j]−1
2

← ad[j]−1 + ad[j]w
Pi(d[j]−1)/2 (mod p)

13: A d[j]−1
2 +n

2
← ad[j]−1 − ad[j]w

Pi(d[j]−1)/2 (mod p)

14: end if
15: end if
16: end for
17: if i �= log(n) − 1 then
18: a ← A
19: end if
20: end for
21: Return A

Table 1. Complexity comparison of FFT and modified FFT for sparse polynomials

Operation [7] and [19] Algorithm 3 Improvement

Multiplication 3n
2

log(n) 3m
2

log(n) � = 32 m = 338, 34 %

� = 64 m = 391, 24 %

Add/Sub n log(n) m log(n) � = 128 m = 440, 14 %

Mod p n log(n) m log(n) � = 256 m = 484, 5 %

the CUDA platform [18]. cuFFT is optimized for a wide range of application
areas from computational physics to signal processing. Unlike previous parallel
programming languages, CUDA provides an alternative way for an easy devel-
opment of parallel computing and finding application on different fields such as
in cryptographic protocols. In this work, we use cuFFT to obtain an efficient
polynomial multiplication over the quotient ring. In Algorithm 4 we give the
parallel version of the polynomial multiplication method using CUDA. In Step 5
the schedule is planned to have FFT value on GPU and then in Step 6 and 7 the
computed values are stored. The component-wise multiplication is performed in
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Algorithm 4. cuFFT-based multiplication
Input: a(x) =

∑n−1
i=0 aix

i, b(x) =
∑n−1

i=0 bix
i ∈ (Z/pZ)[x]/(xn + 1)

Output: c(x) = a(x) · b(x) =
∑n−1

i=0 cix
i

1: allocate cuda memory(cuda a)
2: allocate cuda memory(cuda b)
3: cuda copy(a, cuda a)
4: cuda copy(b, cuda b)
5: cufftPlanId(planForward, n, CUFFT D2Z, 1)
6: cufftExecD2Z(planForward, cuda a, cuda a)
7: cufftExecD2Z(planForward, cuda b, cuda b)
8: multiply complex(cuda a, cuda b, cuda a)
9: cufftPlanId(planInverse, n, CUFFT Z2D, 1)

10: cufftExecD2Z(planInverse, cuda a, cuda a)
11: Copy the results form GPU to host
12: cuda copy(cuda a, c)
13: for i = 0 to n do
14: ci = ci/n
15: end for
16: Return c

parallel in Step 8. Forward FFT is achieved in Step 9. The result is sent to host
in Step 11. From Step 13 to Step 15 normalization of the computed values is
performed by simply dividing the result to the polynomial degree n.

2.4 Schönhage-Strassen Polynomial Multiplication

In Algorithm 5 we describe the Schönhage-Strassen polynomial multiplication
algorithm in (Z/pZ)[x]/(xn + 1) where n is of the form n = 2k. This algorithm
has complexity O(n log n log log n) [9]. The main idea of this approach is to split
the input polynomials into t blocks of length m. This allows us to obtain convo-
lution properties of the quotient ring (Z/pZ)[x]/(xn + 1). These relatively small
size polynomials are then multiplied with an efficient polynomial multiplication
method such as FFT-based techniques. From Step 5 to 12, the polynomials are
decomposed. In Step 18–21, the elements are prepared for the multiplication
operation; it can also be considered as change of variables. Note that there is no
computational cost for this mapping.

3 An Application: The Signature Scheme
by Güneysu et al.

In the following we recall the construction of the lattice-based signature scheme
proposed by Güneysu et al. [12]. A signature scheme consists of three algo-
rithms, namely a key-generation algorithm, a signature, and a verification algo-
rithm. In key-generation phase, secret keys s1, s2 are chosen uniformly from
(Z/pZ)[x]/(xn + 1) with coefficients in the set {−1, 0, 1} and the public key is
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Algorithm 5. Schönhage-Strassen polynomial multiplication
Input: a(x) =

∑n−1
i=0 aix

i, b(x) =
∑n−1

i=0 bix
i ∈ (Z/pZ)[x]/(xn + 1), with n = 2k

Output: c(x) = a(x) · b(x) =
∑n−1

i=0 cix
i (mod (xn + 1))

1: Set coefficients of a(x) to a
2: Set coefficients of b(x) to b

3: m = 2� k
2 �

4: t = n
m

5: for i = 0 to t − 1 do
6: A[i] = 0
7: B[i] = 0
8: for j = 0 to m − 1 do
9: A[i] = A[i] + a[i · m + j]xj

10: B[i] = B[i] + b[i · m + j]xj

11: end for
12: end for
13: if t = 2m then
14: w = x
15: else
16: w = x2

17: end if
18: for i = 0 to t − 1 do
19: Ã = Ã + A[i]wiyi (mod (x2m + 1))
20: B̃ = B̃ + B[i]wiyi (mod (x2m + 1))
21: end for
22: C̃ = Polynomial multiplication(Ã, B̃) (mod (x2m + 1)) (mod (yt − 1))
23: for i = 0 to t − 1 do
24: for j = 0 to m − 1 do
25: c = c + C̃[i · m + j]xj

26: end for
27: end for
28: c = c (mod (xn + 1))
29: Return c

a uniformly chosen polynomial a ← (Z/pZ)[x]/(xn + 1) and polynomial t where
t ← a · s1 + s2. We note that parameters p, n are determined beforehand to
satisfy a certain security level. The signature scheme makes use of a the hash
function H and its security is shown in the random oracle model which assumes
that hash function H behaves ideally.

The signature algorithm is presented in Algorithm 6. Note that multiplica-
tions in Step 3 and 4 can be considered as sparse polynomial multiplication since
the coefficients of s1 and s2 are in the set {−1, 0, 1} and the number of nonzero
coefficients with {−1, 1} is at most 32 in c. Since Step 3 and Step 4 are indepen-
dent operations, these can be performed in parallel. As discussed in [12], k is a
power of 2 with k ≈ √

p. For sake of simplicity we omit the presentation of the
compression step.
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Algorithm 6. The signature generation algorithm
Input: s1(x) =

∑n−1
i=0 s1ix

i, s2(x) =
∑n−1

i=0 s2ix
i ∈ (Z/pZ)[x]/(xn+1) where s1i , s2i ∈

{−1, 0, 1} and a message m ∈ {0, 1}∗

Output: z1(x) =
∑n−1

i=0 z1ix
i, z2(x) =

∑n−1
i=0 z2ix

i ∈ (Z/pZ)[x]/(xn + 1) where
z1i , z2i ∈ {−(k − 32), . . . , (k − 32)} and hash value c ∈ {−1, 0, 1} (c has at most 32
{−1, 1})

1: Sample y1, y2 ← (Z/pZ)[x]/(xn + 1) whose coefficients are in the set {−(k −
32), . . . , (k − 32)}.

2: c ← H(a · y1 + y2, m)
3: z1 ← s1 · c + y1 //sparse polynomial multiplication (s1 · c)
4: z2 ← s2 · c + y2 //sparse polynomial multiplication (s2 · c)
5: if any coefficients of z1 or z2 are not in the set {−(k − 32), . . . , (k − 32)} then
6: goto Step 1.
7: end if
8: Return (z1, z2, c)

The verification algorithm is presented in Algorithm 7. The control of coef-
ficients of z1, z2 and the multiplication t · c can be performed in parallel. We
refer the reader to [12] for the proof of correctness and security of the signature
scheme.

Algorithm 7. The verification algorithm
Input: z1(x) =

∑n−1
i=0 z1ix

i, z2(x) =
∑n−1

i=0 z2ix
i ∈ (Z/pZ)[x]/(xn+1) where z1i , z2i ∈

{−(k − 32), . . . , (k − 32)}, a, t ∈ (Z/pZ)[x]/(xn + 1), hash value c ∈ {−1, 0, 1} and
a message m ∈ {0, 1}∗

Output: valid or invalid
1: if the coefficients of z1 and z2 are in the set {−(k − 32), . . . , (k − 32)} and c =

H(a · z1 + z2 − t · c, m) then
2: Return “valid”
3: else
4: Return “invalid”
5: end if

4 Experimental Results

In this section, we give cycle counts of the multiplication algorithms and signa-
ture generation and verification processes. To obtain more consistent results the
algorithms are run 1000 times for the uniformly random polynomials in the mul-
tiplication operation. To compare the multiplication operation on the GPU using
CUDA platform we fix p = 8383489 satisfying p ≡ 1 (mod 2n). We implement
the algorithms using the NVIDIA Geforce GT 555M GPU having 144 CUDA
cores on a notebook with the Intel Core i7-2670QM processor and 4GB memory.
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4.1 Experimental Results for Polynomial Multiplication

In Table 2 we list the performance results of different multiplication algo-
rithms which multiply two elements in (Z/pZ)[x]/(xn + 1) for n = 2k with
k ∈ {8, . . . , 13}. The polynomials are generated randomly whose coefficients are
in the set {−1, 0, 1}. For NTT-based implementations, we prefer to compute
w and related values online in contrast to [20]. This, of course, gives a timing
penalty.

Table 2. Timings for different multiplication methods

Degree n 256 512 1024 2048 4096 8192

Iterative NTT 11475 24524 54407 125332 274217 719816

Parallelized iterative NTT 16589 32569 72713 231960 689075 1860731

cuFFT-based multiplication 13970 26885 61089 134909 245964 450917

Schönhage-Strassen method 14684 29163 75942 167857 331857 799078

According to the timing results, we observe that for the polynomials of degree
n ∈ {256, 512, 1024, 2048}, the iterative NTT method is the most efficient one.
However, for n > 2048, there is enough workload such that cuFFT-based mul-
tiplication outperforms the other methods since the library is designed to work
with large data sets. The parallelization of cuFFT library is very effective when
working with large data sets. Note that other parallelized methods, such as
iterative NTT, do not give the expected improvement since the data transfer
between CPU and GPU happens multiple times and increases the execution
time affecting the efficiency negatively. cuFFT-based multiplication has a better
performance since data transfer is performed merely once. This decreases the
latency versus the other methods. Recall that cuFFT is an optimized library for
GPU. The Schönhage-Strassen method improves in performance with larger n
since we prefer to use cuFFT-based multiplication for decomposed polynomials
instead of schoolbook multiplication.

4.2 Experimental Results for the Signature Scheme

Here, we give the timing results of our implementation of the signature scheme
proposed in [12] and described in Sect. 3. It is defined over the polynomial ring
(Z/pZ)[x]/(xn+1). Again, we run the signature generation and verification algo-
rithm 1000 times and list in Table 3 our respective timing results under consid-
eration of various multiplication algorithms. In the signature generation process
the most time-consuming part is the polynomial multiplication. Hence, we make
similar observations as in the previous section. That is, according to the tim-
ing results, the signature generation process with iterative NTT for polynomial
multiplication performs best for n < 4096 as in Table 2. For n ∈ {4096, 8192}
the signature generation with cuFFT-based multiplication is most efficient.
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Table 3. Cycle counts for the signature generation algorithm with different multipli-
cation methods

Degree n 256 512 1024 2048 4096 8192

Iterative NTT 73866 158703 325530 702773 1534303 3808258

Parallelized iterative NTT 102804 234901 472159 1850947 4975280 19548904

cuFFT-based multiplication 92816 206719 359664 726804 1371674 2561705

Schönhage-Strassen method 97085 219485 405977 857904 1964071 5081130

Table 4. Cycle counts for the signature verification algorithm with different multipli-
cation methods

Degree n 256 512 1024 2048 4096 8192

Iterative NTT 40746 82331 171857 366431 815838 1971789

Parallelized iterative NTT 58015 114089 295402 856910 2142230 1097502

cuFFT-based multiplication 53618 90526 201976 424451 707590 1239700

Schönhage-Strassen method 56419 99217 218006 480731 824003 2698207

The Schönhage-Strassen method is of the same magnitude as the cuFFT-based
multiplication and is a preferable choice for higher security levels where the
degree n is chosen large. The timing results of the signature verification process
with various multiplication algorithms is given in Table 4.

5 Further Discussion

In the following we list some of potential ideas which may yield better perfor-
mance and are subject of future work:

– The general method of polynomial multiplication is to first multiply the poly-
nomials and then reduce the coefficients according to the prime p. In this
work, we focus on the polynomial multiplication modulo (xn + 1). Therefore,
we merely use CUDA’s modular reduction function. However, one might speed
up the modular reduction step by choosing prime numbers in a special form
such as pseudo Mersenne prime or generalized Mersenne prime. Those primes
enable very efficient modular reduction with merely additions [27].

– We precompute the n-th root of unity w and other related values if needed
in NTT or FFT conversion. On the other hand, if we proceed without a
precomputation phase, the computation of w and its powers could be done
online. Since there is no need to compute them in each round, this decreases
the performance.

– In the Schönhage-Strassen method, we use cuFFT-based multiplication
method for the multiplication operation in Step 22 of Algorithm 5, i.e.,
C̃ = Polynomial multiplication(Ã, B̃) (mod x2m+1 and yt−1). We believe that
this multiplication can be optimized in this method. Note that this method
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uses the benefit of a divide-and-conquer idea. Thus, these polynomials mul-
tiplied have low degrees compared with the first form. Moreover, a specific
structure for the convolution phase might be used.

– The GPU used for our experiments has far less cores than, for example,
NVIDIA Geforce GTX980 having 2048 cores, NVIDIA Geforce TITAN Z
having 5760 cores. The performance of our implemented algorithms will be
improved if run on those GPUs due to the large number of CUDA cores. How-
ever, there is a trade-off between the number used cores and efficiency. If the
number of transactions between GPU and CPU is relatively large, then the
use of so many cores maybe counterproductive. Moreover, GPUs differ signif-
icantly with respect to the latency between GPU and CPU. Therefore, one
should implement these algorithms preferably almost without data transfer
between GPU and CPU.

– The algorithms discussed in this paper are generic. That is, they work with
any polynomials with essentially the same running time. In [12,20,21], polyno-
mials with low Hamming weight are considered as required by their signature
scheme. Thus, if we are able to find an efficient method for sparse polynomial
multiplication like Algorithm 3, we might outperform all the generic polyno-
mial multiplication methods we analyzed in this work.

6 Conclusion

In this paper, we propose modified FFT algorithm for sparse polynomial mul-
tiplication with applications in the lattice-based cryptography. We improve the
complexity results by 34% with the proposed method. Then, we discuss the
computational aspects of polynomial multiplication algorithms for lattice-based
cryptographic schemes. Specifically, we investigate how these algorithms perform
when run on GPU. We show that some of the multiplication methods which
efficiently run in the CPU platform do not give the expected performance on
GPU. Data latency between CPU and GPU causes inefficient implementations,
in particular, for small data sets since the CUDA platform is designed to work
with large data sets. Every kernel call causes latency since kernel initialization
is done for each call specific to CUDA platform. We obtain the highest efficiency
of cuFFT-based multiplication method for the polynomial degree larger than
4096. We conclude that for an efficient GPU implementation of cryptographic
schemes using the CUDA platform more effort is required to optimize modular
arithmetic operations.
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cuHE: A Homomorphic Encryption
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Abstract. We introduce a CUDA GPU library to accelerate evalua-
tions with homomorphic schemes defined over polynomial rings enabled
with a number of optimizations including algebraic techniques for effi-
cient evaluation, memory minimization techniques, memory and thread
scheduling and low level CUDA hand-tuned assembly optimizations to
take full advantage of the mass parallelism and high memory bandwidth
GPUs offer. The arithmetic functions constructed to handle very large
polynomial operands using number-theoretic transform (NTT) and Chi-
nese remainder theorem (CRT) based methods are then extended to
implement the primitives of the leveled homomorphic encryption scheme
proposed by López-Alt, Tromer and Vaikuntanathan. To compare the
performance of the proposed CUDA library we implemented two appli-
cations: the Prince block cipher and homomorphic sorting algorithms
on two GPU platforms in single GPU and multiple GPU configura-
tions. We observed a speedup of 25 times and 51 times over the best
previous GPU implementation for Prince with single and triple GPUs,
respectively. Similarly for homomorphic sorting we obtained 12–41 times
speedup depending on the number and size of the sorted elements.

Keywords: Homomorphic evaluation · GPU acceleration · Large poly-
nomial arithmetic

1 Introduction

Fully homomorphic encryption (FHE) has gained increasing attention from cryp-
tographers ever since its first plausible secure construction was introduced by
Gentry [18] in 2009. FHE allows one to perform arbitrary computation on
encrypted data without the need of a secret key, hence without knowledge of
original data. That feature would have invaluable implications for the way we
utilize computing services. For instance, FHE is capable of protecting the privacy
of sensitive data on cloud computing platforms. We have witnessed amazing num-
ber of improvements in fully and somewhat homomorphic encryption schemes
(SWHE) over the past few years [2–4,11,19,20]. In [21] Gentry, Halevi and Smart
(GHS) proposed the first homomorphic evaluation of a complex circuit, i.e. a
full AES block. The implementation makes use of batching [32,33], key switch-
ing [2] and modulus switching techniques to efficiently evaluate a leveled circuit.
c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 169–186, 2016.
DOI: 10.1007/978-3-319-29172-7 11
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In [28] a leveled NTRU [25,34] based FHE scheme was introduced by López-
Alt, Tromer and Vaikuntanathan (LTV), featuring much slower growth of noise
during homomorphic computation. Later Doröz, Hu and Sunar (DHS) [12] used
an LTV SWHE variant to evaluate AES more efficiently. More recently, Ducas
and Micciancio [16] presented an efficient implementation of the bootstrapping
algorithm.

At the same time researchers have also started investigating how to best
put these new homomorphic evaluation tools to use in privatizing applications.
In particular, in [29] Lauter et al. analyzed the problems of evaluating aver-
ages, standard deviations, and logistical regressions which provide basic tools
for a number of real-world applications in the medical, financial, and advertising
domains. Later in [26], Lauter et al. demonstrated the viability of privatized
computation of genomic data. In [15], Doröz et al. used an NTRU based SWHE
scheme to construct a bandwidth efficient private information retrieval scheme.
Bos et al. in [1] showed how to privately perform predictive analysis tasks on
encrypted medical data. Graepel et al. in [22] showed that it is possible to execute
machine learning algorithms on privatized data. Cheon et al. [7] presented an
implementation to homomorphically evaluate dynamic programming algorithms
such as Hamming distance, edit distance, and the Smith-Waterman algorithm on
encrypted genomic data. Çetin et al. [6] analyzed the complexity and provided
implementation results for homomorphic sorting.

Despite the rapid advances, HE evaluation efficiency remains as one of the
obstacles preventing it from deployment in real-life applications. Given the com-
putation and bandwidth complexity of HE schemes, alternative platforms such
as FPGAs, application-specific integrated circuits (ASIC) and graphics processor
units (GPU) need to be employed. Over the last decade GPUs have evolved to
highly parallel, multi-threaded, many-core processor systems with tremendous
computing power. Compared to FPGA and ASIC platforms, general-purpose
computing on GPUs (GPGPU) yields higher efficiency when normalized by
price. For example, in [13] an NTT conversion costs 0.05 ms on a $5, 000 FPGA,
whereas takes only 0.15 ms on a $200 GPU (NVIDIA GTX 770). The results of
[9,10,35] demonstrate the power of GPU-accelerated HE evaluations. Another
critical advantage of GPUs is the strong memory architecture and high commu-
nication bandwidth. Bandwidth is crucial for HE evaluation due to very large
evaluation keys and ciphertexts. In contrast, FPGAs feature much simpler and
more limited memory architectures and unless supplied with a custom memory
I/O interface design the bandwidth suffers greatly.

For CPU platforms Halevi and Shoup published the HElib [23], a C++ library
for HE that is based on Brakerski-Gentry-Vaikuntanathan (BGV) cryptosystem
[2]. More recently, Ducas and Micciancio [16] published FHEW, another CPU
library which features encryption and bootstrapping. In this paper, we propose
cuHE: a GPU-accelerated optimized SWHE library in CUDA/C++. The library
is designed to boost polynomial based HE schemes such as LTV, BGV and
DHS. Our aim is to accelerate homomorphic circuit evaluations of leveled circuits
via CUDA GPUs. To demonstrate the performance gain achieved with cuHE,
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by employing the DHS scheme [12], along with many optimizations, to implement
the Prince block cipher and a homomorphic sorting algorithm on integers.

Our Contributions

– The cuHE library offers the feasibility of accelerating polynomial based homo-
morphic encryption and various circuit evaluations with CUDA GPUs.

– We incorporated various optimizations and design alternative methods to
exploit the memory organization and bandwidth of CUDA GPUs. In partic-
ular, we adapted our parameter selection process to optimally map HE eval-
uation keys and precomputed values into the right storage type from fastest
and more frequently used to slowest least accessed. Moreover, we also utilized
OpenMP and CUDA hybrid programming for simultaneous computation on
multiple GPUs.

– We attain the fastest homomorphic block cipher implementation, i.e. Prince
at 51 ms (1 GPU), using the cuHE library which is 25 times faster than the
previously reported fastest implementation [9]. Further, our library is able to
evaluate homomorphic sorting on an integer array of various sizes 12–41 times
faster compared to a CPU implementation [6].

2 Background

2.1 The LTV SWHE Scheme

In this section we briefly explain the LTV SWHE [28] with specializations
introduced in [12]. We work with polynomials in ring R = Z[x]/(m(x)) where
deg m(x) = n. All operations are performed in Rq = R/qR where q is an
odd modulus. Elements of Zq are associated with elements of {− ⌊

q
2

⌋
, . . . ,

⌊
q
2

⌋}.
A truncated discrete Gaussian distribution χ is used as an error distribution from
which we can sample random small B-bounded polynomials. The primitives of
the public key encryption scheme are Keygen, Enc, Dec and Eval.

Keygen. We generate a decreasing sequence of odd moduli q0 > q1 > · · · > qd−1

where d denotes the circuit depth and a monic polynomial m(x). They define
the ring for each level. m(x) is the product of l monic polynomials each of which
defines a message slot. In [12] more details about batching are explained. Keys
are generated for the 0-th level, and are updated for every other level.

The 0-th level Sample α, β ← χ, and set sk(0) = 2α + 1 and pk(0) =
2β(sk(0))−1 in ring Rq0 = Zq0 [x]/〈m〉 (re-sample if sk(0) is not invertible in
the this ring). Then for τ ∈ Z��log q0�/w� where w � log qd−1 is a preset value,
sample s

(0)
τ , e

(0)
τ ← χ and publish evaluation key {ek

(0)
τ | τ ∈ Z��log q0�/w�} where

ek
(0)
τ = pk(0)s

(0)
τ +2e

(0)
τ +2wτsk(0). The i-th level Compute sk(i) = sk(0) (mod qi)

and pk(i) = pk(0) (mod qi) in ring Rqi = Zqi [x]/〈m〉. Then compute evaluation
key {ek

(i)
τ | τ ∈ Z��log qi�/w�} where ek

(i)
τ = ek

(0)
τ (mod qi).

Enc. To encrypt a bit b ∈ {0, 1} with public key (pk(0), q0), sample s, e ← χ, and
set c(0) = pk(0)s + 2e + b in Rq0 .
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Dec. To decrypt a ciphertext c(i), multiply the ciphertext with the corresponding
private key sk(i) in Rqi and then compute the message by modulo two: b =
c(i)sk(i) (mod 2).

Eval. We perform arithmetic operations directly on ciphertexts. Suppose c
(i)
1 =

Enc(b1) (mod qi) and c
(i)
2 = Enc(b2) (mod qi). The XOR gate is realized by adding

ciphertexts: b1 + b2 = Dec(c(i)1 + c
(i)
2 ). The AND gate is realized by multiplying

ciphertexts. However, polynomial multiplication incurs a much greater growth in
the noise. So each multiplication step is followed by relinearization and modulus
switching. First we compute c̃(i) = c

(i)
1 ×c

(i)
2 in Rqi . To obtain c̃(i+1) from c̃(i), we

perform relinearization on c̃(i). We expand it as c̃(i) =
∑��log qi�/w�

τ=0 2τ c̃
(i)
τ where

c̃
(i)
τ takes its coefficients from Z2w . Then set c̃(i+1) =

∑��log qi�/w�
τ=0 ek

(i)
τ c̃

(i)
τ in Rqi .

To obtain c(i+1) in Rqi+1 , we perform modulus switching: c(i+1) =
⌊

qi+1
qi

c(i)
⌉

2

and then we have m1 × m2 = Dec(c(i+1)).

2.2 Arithmetic Tools

Schönhage-Strassen’s Multiplication. Here we very briefly introduce the
polynomial multiplication scheme by Schönhage-Strassen [30]. Given two poly-
nomials f =

∑n−1
k=0 akxk and g =

∑n−1
k=0 bkxk, we compute f̂ =

∑2n−1
k=0 âkxk,

where [â0, â1, . . . , â2n−1] = NTT ([a0, a1, . . . , an−1, 0, . . . , 0]). One multiplication
of two degree n polynomials consists of two 2n-point NTTs, one coefficient-wise
multiplication and one 2n-point inverse transform (INTT):

– Inputs: f =
∑n−1

k=0 akxk, g =
∑n−1

k=0 bkxk;
– NTT Conversion: f → f̂ =

∑2n−1
k=0 âkxk, g → ĝ =

∑2n−1
k=0 b̂kxk;

– Output: f × g = INTT
(∑2n−1

k=0 âk b̂kxk
)
.

CRT. We introduce the CRT to handle large integer computation. We generate
t prime numbers {p0, p1, . . . , pt−1} with Bp < 32 bits. We further compute,
for each level, qi = p0p1 · · · pti where 0 < ti < ti−1 < t as in [21]. Then, we
have Rqi

∼= Rp0 × · · · × Rpti
. Given a polynomial f =

∑n−1
k=0 akxk in ring Rqi ,

we compute a vector of polynomials F = [f(0), f(1), . . . , f(ti−1)] as its CRT
representation: f(j) =

∑n−1
k=0 ak(j)x

k ∈ Rpj
, where ak(j) = ak (mod pj), j ∈ Zti .

For all f, g ∈ Rqi where i ∈ Zd, and F = CRT(f), G = CRT(g), we have
f ◦ g = ICRT(F ◦ G), where F ◦ G = [f(0) ◦ g(0), . . . , f(ti−1) ◦ g(ti−1)]. Given a
polynomial modulus m and M = CRT(m), for all f , we have f (mod m) =
ICRT(F (mod M)). Other than CRT and ICRT, no large integer operation is
needed.

2.3 CRT, NTT

In our implementations, the degree of modulus m is 8192, 16384 or 32768. And q0
has more than 256, 512 or 1024 bits, respectively. Coefficient independent oper-
ations, e.g. polynomial addition, can provide sufficient parallelism for a GPU
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realization. Still, two problems remain to be solved: how to compute large inte-
gers on CUDA GPUs; and how to efficiently implement operations that are not
coefficient independent, e.g. polynomial multiplication. Those problems are han-
dled by using CRT and NTT together.

3 GPU Basics

GPUs are powerful but highly specialized devices that require careful coding to
take full advantage of the massive parallelism offered. Specifically, the program-
ming model and memory organization is much different from in CPUs. Here we
present a concise overview.

3.1 Programming Model

In general, a GPU-accelerated scheme offloads compute-intensive portions of
the application to the GPU, while the remainder of the code still runs on the
CPU. A GPU has its own on-chip memory. We call the CPU and memory
“host”, while GPU and its on-chip memory “device”. A normal GPU compu-
tational task includes 3 operations: copying essential data from host to device
(memcpy h2d), initializing computation (a kernel) on device, copying result from
device to host (memcpy d2h) when necessary. A CUDA kernel is executed by
an array of sequential threads. All threads run the same code, with an ID to
compute memory addresses and make control decisions. On a GPU with warp
size of 32, the kernel is executed in groups of 32 threads. Threads are further
grouped into blocks. Only threads within a block can cooperate or synchronize.
A kernel launch defines a grid of thread blocks. The dimension of a grid and that
of each block determine how computing resource is assigned to program. The
computation complexity of a kernel and the amount of data transferred between
host and device depend on the details of an implementation.

3.2 Stream Management

A stream is a sequence of operations that execute in issue-order on the device.
A default stream is created by CUDA on each device when no stream is spec-
ified. On a single stream, any operation will wait until the previous one com-
pletes. However, some operations, e.g. a kernel and a memcpy (without data
dependency), are not necessarily sequential. We create extra streams so that
operations on different streams can run concurrently and be interleaved. This
not only allows a more flexible execution order, but also improves performance.
Figure 1 gives an example of how using multiple streams makes a difference. We
can hide the latency of memcpy behind a kernel execution. Alternatively, we may
further break down one kernel launch into several parts in order to create con-
currency. Every stream belongs to its own device. To have streams on different
devices run concurrently and synchronize as needed is multi-GPU computing.
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memcpy_h2d (hd) memcpy_d2h (dh)

hd1 k1 dh2
hd2 k2 dh2

hd3 k3 dh3
hd4 k4 dh4

Speedup = 2

Single 
Stream

Multiple 
Streams

time

time

hd1 k1 dh2 hd2 k2 dh2 hd3 k3 dh3 hd4 k4 dh4

Kernel (k)

Fig. 1. Improving performance by using multiple streams

Table 1. GPU memory organization

Memory Cached Access Scope Lifetime

Register N/A R/W One thread Thread

Constant Yes R All thread + host Application

Texture Yes R All thread + host Application

Shared N/A R/W All threads in a block Block

Local No R/W One thread Thread

Global No R/W All thread + host Application

However, merely using streams to launch tasks on different devices creates expen-
sive latency. Using OpenMP along with streams is a better solution. The goal
of stream management is to achieve the best possible utilization of computing
resources.

3.3 Memory Management

A significant ingredient to the performance of a program is memory management.
The effect is particularly strong on GPUs since there are many different types
of memory to store data and since the GPU-CPU interface tends to be slow.
The GPU memory architecture is represented in Table 1. Memory types are
listed from top to bottom by access speed from fast to slow. Before executing a
kernel, we need to feed constant memory and global memory with data, and bind
texture memory if needed. Other than using streams to overlap data transfer and
computation, we optimize these data transfers in following methods: minimizing
the amount of data transferred between host and device when possible, batching
many small transfers into one larger transfer, using page-locked (or pinned)
memory to achieve a higher bandwidth. Towards an efficient application, kernels
should be designed to take advantage of the memory hierarchy properties:

– Constant memory is cached and fast. Due to its limited size, e.g. 64 KB, it is
only suitable for repeatedly requested data.
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– Global memory is not cached, expensive to access, and huge in size, e.g. 2 GB.
Data that is only read once, or is updated by kernels is better allocated in
global memory. The pattern of memory access in kernels also matters. If each
thread in a warp accesses memory contiguously from the same 128 B chunk, it
is called coalesced memory access. A non-coalesced (strided) memory access
could make a kernel hundreds of times slower.

– Texture memory is designed for this scenario: a thread is likely to read from an
address near the ones that nearby threads read (non-coalesced). It is better to
use texture memory when the data is updated rarely but read often, especially
when the read access pattern exhibits a spatial locality.

– Shared memory is allocated for all threads in a block. It offers better per-
formance than local or global memory and allows all threads in a block to
communicate. Thus it is often used as a buffer to hold intermediate data, or
to re-order strided global memory accesses to a coalesced pattern. However,
only a limited size of shared memory can be allocated per block. Typically
one configures the number of threads per block according to shared memory
size. The shared memory is accessed by many threads, so that it is divided
into banks. Since each bank can serve only one address per cycle, multiple
simultaneous accesses to a bank result in a bank conflict. If all threads of a
half-warp access a different bank (no bank conflict), the shared memory may
become as fast as the registers.

4 Our Contribution: A CUDA Polynomial
Arithmetic Library

In this section we explain how the basic polynomial arithmetic operations, such
as multiplication, addition and polynomial modular reduction are implemented
efficiently on CUDA GPUs. Our design is optimized for the device NVIDIA
Geforce GTX 680, one of the Kepler architecture GPUs. It has 1536 CUDA
cores, 2 GB memory, 64 KB constant memory, 48 KB shared memory per block,
CUDA Capability 3.0 and warp size of 32. On a device with better specifications,
the program is believed to provide a better performance, yet has room to improve
if configured and customized for the device.

4.1 Overview

Interfacing with NTL. We build our library to interface with the NTL library
by Shoup [31]. Most implementations of polynomial based HE schemes are built
on NTL. We provide an interface to NTL data types, in particular to the poly-
nomial class ZZX so that GPU acceleration can be achieved with very little
modification to a program. Another reason is that we only support very limited
types of polynomial operations. Therefore, until non performance critical opera-
tions, e.g. a polynomial inversion in a polynomial ring, are implemented we may
still utilize the NTL library.
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Table 2. Polynomial representation on a GPU.

Domain Word type # of words

RAW unsigned int 32-bit n ��log qi� /32�
CRT unsigned int 32-bit nti

NTT unsigned int 64-bit nti

RAW

CRTNTT

RAWZZX

MUL
ADD

RELIN

C
RT

IC
RT

NTT
INTT

To GPU

GPUCPU

Fig. 2. Four representation domains
for polynomials

Polynomial Representation. Suppose we work within the i-th level of a cir-
cuit. To store an n-degree polynomial in Rqi in GPU memory, we use an array of
n 		log qi
 /32
 32-bit unsigned integers, where every 		log qi
 /32
 integers denote
a polynomial coefficient. We call a polynomial of this form in RAW domain. In the
background section, we introduced two techniques: CRT and NTT, which give a
polynomial CRT and NTT domain representations. Table 2 lists the structure and
storage size of a polynomial in each domain. Figure 2 illustrates basic routines of
operations on polynomials.Due tomathematical properties, each domain supports
certain operations more efficiently as shown in Fig. 2. In other words, to perform
a certain operation, the polynomial should first be converted to a specific domain
unless it is already in thedesireddomain.As shown inTable 2, theCRTdomain rep-
resentation requires more space than the RAW domain. However, having polyno-
mials stay in the CRT domain saves one CRT conversion in every polynomial oper-
ation and one ICRT conversion in every operations except relinearization. More-
over, the sequence of operations might also create unnecessary latency if there are
conversions that could have been spared.

4.2 CRT/ICRT

CRT prime numbers are precomputed based on the application settings and are
stored in constant memory. ICRT conversion for a coefficient x is x =

∑ti−1
j=0

qi
pj

·
(( qi

pj
)−1·x(j) (mod pj)) (mod qi)where qi =

∏ti−1
j=0 pj . To efficiently compute ICRT,

constants: qi, { qi
pj

} and {( qi
pj

)−1 (mod pj)}, where j ∈ Zti , are also precomputed
and stored in constant memory. Given the coefficients of a RAW domain polyno-
mial [a0, . . . ,an−1], the number of 32-bit unsigned integers we use to represent
each coefficient ak ∈ Zqi is |ak| = n 		log qi
 /32
. Its CRT domain representa-
tion is {[a0(j), . . . ,an−1(j)] | j ∈ Zti}. A straightforward CRT kernel design is to
have every thread handle the CRT of one coefficient ak, as in Fig. 3a. However, that
exhibits strided global memory access. Instead, we use shared memory to build a
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Fig. 3. Using shared memory to avoid strided access to global memory.

buffer as in Fig. 3b. Not only do we reorder all accesses to global memory as coa-
lesced, but also we avoid bank conflicts when reading or writing to shared memory.
The ICRT kernel operation is designed similarly. Moreover, we make wide use of
registers in ICRT kernel with assembly code for a better performance.

4.3 NTT/INTT

NTT is performed on a polynomial in Rpj
. We take an array of 2n elements,

A = [a0, . . . , an−1, 0, . . . , 0], which are n coefficients appended with n zeros, as
input. We obtain a new array Â = [â0, . . . , â2n−1] by performing a 2n-point
NTT on A. Given ti CRT prime numbers, to convert a CRT domain polynomial
to NTT domain, we need ti NTTs. We follow the approach of Dai et al. [9]
to build an NTT scheme on GPU. According to FHE scheme settings, we only
support NTTs of 16384, 32768 and 65536 points. Let N = 2n be the size of
NTT. We construct three CUDA kernels to adopt the four-step Cooley-Tukey
algorithm [8]. As shown in Algorithm 1, an N -point NTT is computed with
several smaller size NTTs. What is not shown in Algorithm 1 is that a 64-point
NTT is computed with 8-point NTTs. In [17] the benefit of working in finite field
FP is demonstrated where P = 0xFFFFFFFF00000001. In such a field, modulo
P operations may be computed efficiently. Besides, 8 is a 64-th primitive root
of P . By using 〈8〉 ⊂ FP , 64-point NTTs can be done with shifts rather than
requiring 64-bit by 64-bit multiplications. We build inline device functions for
arithmetic operations in FP in assembly code. In kernels we use shared memory
to store those points. That ensures coalesced global memory accesses and fast
transpose computation. We precompute 2N twiddle factors and bind them to
texture memory since they are constant and are too large for constant memory.
INTT is basically an NTT with extra steps. Given Â = [â0, . . . , â2n−1], we
first re-order the array as Â′ = [â0, â2n−1, â2n−2, . . . , â1]. Then we compute
A = 1

N NTT(Â
′
) (mod pj).
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Algorithm 1. N -point NTT
1: N samples: 4096 rows (consecutive) by N/4096 columns
2: for N/4096 columns do � 1st kernel
3: 4096 samples: 64 rows by 64 columns
4: for 64 columns do
5: 64-point NTT
6: end for
7: Transpose
8: Multiply twiddle factors of 4096-point NTT
9: for 64 columns do � 2nd kernel

10: 64-point NTT
11: end for
12: end for
13: Transpose
14: Multiply twiddle factors of N -point NTT
15: for 4096 columns do � 3rd kernel
16: N/4096-point NTT
17: end for

Algorithm 2. Polynomial Multiplication

1: Input NTT domain polynomials F̂ and Ĝ
2: Ĥ = F̂ · Ĝ � coefficient-wise multiplication
3: H ← INTT(Ĥ) � convert to CRT domain
4: Output H (mod M) � polynomial modular reduction

4.4 Polynomial Multiplication

Polynomial multiplication takes NTT domain inputs or first converts inputs to
NTT domain. Algorithm 2 shows the four steps needed to compute a multiplica-
tion. The coefficient-wise multiplication DOTMUL has high parallelism, which is
very suitable for GPU computing. Compared to NTTs and INTTs, DOTMUL
is almost negligible in terms of overhead. Since the product is a (2n − 2)-degree
polynomial in CRT domain, it is followed by modular reductions over Rpj

, for
all j ∈ Zt.

4.5 Polynomial Addition

Polynomial addition is essential for two functions in homomorphic circuit eval-
uation. One is in the homomorphic evaluation of an XOR gate which is simply
implemented as a polynomial addition. For this the addition operation is carried
out in the CRT domain. It provides sufficient parallelism for a GPU to process
and also yields a result in the ring Rqi without the need of coefficient modu-
lar reduction. The other computation that needs polynomial addition is in the
accumulation part of relinearization. We will discuss this in detail later.
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Algorithm 3. Polynomial Barrett Reduction
1: procedure Precomputation(m)
2: u = �x2n−1/m�
3: Store M = CRT(m)
4: Store M̂ = NTT(M)
5: Store Û = NTT(CRT (u))
6: end procedure
7: procedure BarrettReduction(F)
8: Q = trunc(F , n − 1) � input in CRT domain
9: Q̂ = NTT(Q) � 1st multiplication

10: Q̂ = Q̂ ∗ Û
11: Q = INTT(Q̂)
12: Q = trunc(Q, n)
13: Q̂ = NTT(Q) � 2nd multiplication
14: Q̂ = Q̂ ∗ M̂
15: Q = INTT(Q̂)
16: R = F − Q � subtraction
17: if deg R � deg M then
18: R = R − M
19: end if
20: Return R � output in CRT domain
21: end procedure

4.6 Polynomial Barrett Reduction

Polynomial computation is in ring Rqi = Zqi/m, where deg m = n. Given a
computation result f with deg f � n, a polynomial reduction modulo m is
needed. In fact, deg f � 2n − 2 always holds in our construction. We implement
a customized Barrett reduction on polynomials by using our polynomial multi-
plication schemes as in Algorithm 3. We precomputed all constant polynomials
generated from the modulus, and stored them in the GPU memory as described
in the procedure “Precomputation”. The goal of Barrett reduction is to compute
r = f (mod m). We take the CRT domain polynomial as input and return CRT
domain polynomial as output.

4.7 Supporting HE Operations

To evaluate a leveled circuit, besides operations introduced above, we need other
processes to reduce the introduced noise, e.g. by multiplication. An AND gate is
followed by a relinearization. All ciphertexts are processed with modulus switch-
ing to be ready for next level. In our implementation Keygen is modified for
a faster relinearization and parameters are selected to accommodate our GPU
implementation.

Relinearization. A relinearization computes products of ciphertexts and eval-
uation keys. It then accumulates the products. By operating additions in the
NTT domain we reduce the overhead of INTT in each multiplication. Given
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Algorithm 4. Modulus Switching

1: A = {a(0), . . . , a(ti−1)} ← CRT(a(i))
2: for k ← 1, do
3: a∗ ← a(ti−k)

4: if a∗ = 1 (mod 2) then
5: if a∗ > (pti−k − 1)/2 then
6: a∗ = a∗ − pti−k

7: else
8: a∗ = a∗ + pti−k

9: end if
10: end if
11: A = (A − a∗)/pti−k (mod pti−k)
12: end for
13: a(i+1) = ICRT(A) = ICRT

({a(0), . . . , a(ti+1−1)}
)

a polynomial c(i) in RAW domain we first expand it to c̃
(i)
τ where τ ∈ Zηi

and ηi = 		log qi
 /w
. We call w the size of relinearization window. Then we
need to compute c̃(i+1) =

∑ηi

τ=0 ek
(i)
τ c̃

(i)
τ in Rqi which is equivalent to com-

puting C̃(i+1) = INTT
(∑ηi

τ=0 ÊK(i)

τ
ˆ̃C(i)
τ

)
. We find a way to precompute and

store evaluation keys for all levels. In Keygen, we convert evaluation keys of
the 0-th level to NTT domain and store them. For every τ ∈ Zη0 compute

ek
(0)
τ

CRT−−−→ EK(0)
τ

NTT−−−→ ÊK(0)

τ . Then {ÊK(0)

τ | τ ∈ Zη0} is stored in GPU global
memory. We no longer need to update the evaluation keys for any other level,
observing that ÊK(i)

τ ⊆ ÊK(0)

τ , for all i ∈ Zd and τ ∈ Zηi
. Here what matters the

most is the overhead of expanding and converting the ciphertexts. To convert
c̃
(i)
τ to ˆ̃C(i)

τ for all τ ∈ Zηi
, we need ηi CRTs and ηiti NTTs. However, if we set

w < log pj , then for all j ∈ Zt0 we have c̃
(i)
τ ∈ R2w ⊂ Rpj

, i.e. C̃(i)
τ = {c̃

(i)
τ }. In

such a setting, we only need ηi NTTs to convert c̃
(i)
τ to the NTT domain.

Based on these optimizations, we build a multiplier and accumulator for
NTT domain polynomials. Suppose we have sufficient memory on GPU to hold
all ÊK(0)

τ . Only one kernel that uses the shared memory to load all ˆ̃C(i)
τ will

suffice. We also provide solutions when the evaluation keys are too large for the
GPU memory to hold. On a multi-GPU system, we evenly distribute the keys
on devices. When the keys on another device are requested, copy them from
that device to the current device. This is the best solution for two reasons: the
bandwidth between devices is much larger than that between the device and
host; accesses to memory on another device in a kernel yield roughly 3 times less
overhead, compared to accessing the current device’s memory.

Double-CRT Setting. According to [12], to correctly evaluate a circuit of
depth d and to reach a desired security level, we can determine the lower bounds
of n and log q0, and that δq � log qi

qi+1
=

∏ti−1
j=ti

pj where i ∈ Zd. Let Bp be the size

of CRT prime numbers, i.e. Bp = log pj . Then we know that 2Bp <
√

P/n < 232.
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To simplify, we set ti = d−i−1, Bp � δq. Then we have δq � Bp < log
√

P/n. We
select Bp = δq. Then we select the relinearization window size such as w < Bp.
In these settings, we reach the desired security level with minimal computation.

Modulus Switching. In [21] Gentry et al. proposed a method to perform
modulus switching on ciphertexts in CRT domain (double-CRT), by gener-
ating qi = p0p1 · · · pti−1 where i ∈ Zd. Since modulus switching is a coeffi-
cient independent operation, to simplify, we represent it on a single coefficient.
Given a coefficient a(i) ∈ Zqi where i ∈ Zd, modulus switching is designed
as in Algorithm 4 to obtain a(i+1) ∈ Zqi+1 such that a(i+1) = a(i) (mod 2)
and ε = |a(i+1) − qi+1

qi
a(i)| where −1 � ε � 1 always holds. We precompute

p−1
j (mod pk) for all k ∈ Zt0 \ Ztd−1 and j ∈ Zk. These values are stored as a

lookup table in constant memory.

Table 3. Precomputation

Item Memory type Size (Bytes)

Equation Prince Sorting(8) Sorting(32)

P constant 4d 100 52 60

qi constant 4�(d − i)Bp/32� � 80 � 36 � 44

Q∗
i constant 4(d − i)�(d − i − 1)Bp/32� � 1, 900 � 416 � 600

Q†
i constant 4(d − i) � 100 � 52 � 60

P−1 constant 2d(d − 1) 1, 200 312 420

M texture 4dn 1, 638, 400 425, 984 491, 520

M̂ texture 16dn 6, 553, 600 1, 703, 936 1, 966, 080

Û texture 16dn 6, 553, 600 1, 703, 936 1, 966, 080

ÊK(i)
τ global 16dn�dBp/w� 262, 144, 000 28, 966, 912 41, 287, 680

Precomputation Routine. For a circuit with depth d, we select parameters
with a sequence of constraints: d → n → δq → Bp → w. We generate a set of d
prime numbers with Bp bits P = {p0, . . . , pd−1} as CRT constants. For each level
i ∈ Zd of the circuit we generate ICRT constants: qi =

∏i−1
j=0 pj , Q∗

i = { qi
pj

| j ∈
Zi} and Q†

i = {( qi
pj

)−1 (mod pj) | j ∈ Zi}. We also generate Modulus Switching
constants for all levels: P−1 = {p−1

j,k = p−1
k (mod pj) | j ∈ Zi \ {0}, k ∈ Zj}. P

and P−1 are stored in GPU constant memory. However, we store Q = {qi |
i ∈ Zd}, Q∗ = {Q∗

i | i ∈ Zd} and Q† = {Q†
i | i ∈ Zd} in CPU memory at first.

We update ICRT constants for ICRT conversions in a new level by copying qi, Q∗
i

and Q†
i to GPU constant memory. We generate an n degree monic polynomial m

as polynomial modulus and compute u = x2n−1/m ∈ Rq0 for Barrett reduction.
Their CRT and NTT domain representations M, M̂ and Û are computed and
bound to GPU texture memory. Table 3 is a summary of precomputed data,
showing storage memory types and sizes. Besides general expressions of size in
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bytes, we also list the memory usage of three target circuits: Prince stands for
the Prince block cipher that has [d = 25, n = 16384, Bp = 25, w = 16].
Sorting(8) is a sorting circuit of 8 unsigned 32-bit integers, with parameters set
to [13, 8192, 20, 16]. Similarly, Sorting(32) sorts 32 unsigned integers and has
parameters [15, 8192, 22, 16].

Keygen. As explained in background, for all levels, we generate secret keys
sk(i) and public keys pk(i). Based on those, we compute ekτ(i) as evaluation
keys. We then convert and store their NTT domain representations ÊKτ(i) in
GPU memory.

5 Implementation Results

We implemented the proposed algorithms on two target GPU platforms:
NVIDIA GeForce GTX770 and GTX690. Note that the GTX690 consists of two
GTX680 GPUs. We programmed the GTX690 in both single GPU, i.e. GTX 680,
and in multi-GPU modes. The testing environment is summarized in Table 4.
We show performance of our library and compare it to CPU implementations
using the NTL library (v9.2.0) which is adopted by DHS-HE [12] and HELib [24].

Table 4. Testing Environment

Item Specification Item Specification

CPU Intel core i7-3770K GPU NVIDIA GeForce GTX690

# of cores 4 # of cores 1536 × 2

# of threads 8 GPU core freq 1020 MHz

CPU freq 3.50 GHz GPU memory 2 GB × 2

Cache 8 MB GPU NVIDIA GeForce GTX770

System memory 32 GB DDR3 # of cores 1536

NTL 9.2.0 GPU core freq 1163 MHz

GMP 6.0.0a GPU memory 2 GB

5.1 Performance of GPU Library Primitives

Table 5 shows the latency of the basic polynomial operations. MULADD stands
for the multiplier and accumulator for NTT domain polynomials. ADD denotes
polynomial addition in CRT domain. The latencies in the table of NTT conver-
sions, whose speed is solely affected by n, consist of d iterations. Figure 4a shows
the performance of relinearization. Doröz et al. [12] use the NTL library with an
optimized polynomial reduction method. As shown in Fig. 4b, the speedup is at
least 20 times, and increases as the coefficient size increases, up to 160 times for
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Table 5. Performance of basic operations on polynomials (d, n, dBp) where Bp = 24

Functions Latency (ms)

(15, 8192, 360) (25, 16384, 600) (40, 32768, 960)

CRT / ICRT 0.70 / 0.54 4.00 / 3.73 21.31 / 17.94

NTT / INTT 0.84 / 0.98 1.78 / 2.09 6.24 / 6.86

MULADD 0.06 0.11 0.19

BARRETT 5.10 10.00 32.63

ADD 0.10 0.67 0.92

Fig. 4. Performance of relinearization (a) latency with growing coefficient size (b)
speedup over [12]

960 bit coefficients. Note that Dai et al. [9] did not fully implement relineariza-
tion on the GPU but rather relies on NTL/CPU for coefficient and polynomial
reduction. For instance, for Prince parameters with coefficient size of 575 bits,
our relinearization takes only 18.3 ms whereas Dai et al.’s takes 890 ms on GPU
plus an additional 363 ms for reduction on the CPU. This yields a speedup of
68 times.

5.2 Performance of Sample Algorithms

To demonstrate the performance gain obtained by the cuHE library we imple-
mented the Prince block cipher, and homomorphic sorting algorithms with array
sizes 4, 8, 16, 32. The homomorphic evaluation performance is summarized in
Table 6. We updated and reran Doröz et al.’s homomorphic Prince [14] with a
16-bit relinearization window. With cuHE library, we achieve 40 times speedup
on a single GPU, 135 times on three GPUs simultaneously, over the Doröz et al.
CPU implementation. Also compared to Dai et al.’s [9] the speedup is 25 times
on the same GPU device.

Finally we would like to note that the proposed Prince implementation is
the fastest homomorphic block cipher implementation currently available. For
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Table 6. Performance of Implemented Algorithms (“1/1024” means this is an amor-
tized performance achieved by computing 1024 operands simultaneously, so does
“1/630”; “×” marks the speedup achieved)

Platform Prince Sorting 8 Sorting 16 Sorting 32

1/1024 × 1/630 × 1/630 × 1/630 ×
CPU (1-bit) [14] 3.3 s 1 n/a n/a n/a n/a n/a n/a

GTX 680 (1-bit) [9] 1.28 s 2.6 n/a n/a n/a n/a n/a n/a

CPU (16-bit) [5,14] 1.98 s 1.7 944 ms 1 4.28 s 1 18.60 s 1

GTX 680 (1 GPU) 51 ms 64 62 ms 15 291 ms 15 1.52 s 12

GTX 770 (1 GPU) 45 ms 72 55 ms 17 256 ms 17 1.35 s 14

GTX 690 (2 GPUs) 32 ms 103 34 ms 27 162 ms 26 864 ms 22

GTX 690/770 (3 GPUs) 24 ms 134 23 ms 41 108 ms 39 678 ms 27

instance, Lepoint and Naehrig evaluated homomorphic SIMON-64/128 in 2.04 s
with 4 cores on Intel Core i7-2600 at 3.4 GHz [27] for the n = 32, 768 setting.
Our homomorphic Prince is 40 times faster for n = 16, 384, and 20 times for
n = 32, 768.

Acknowledgment. Funding for this research was in part provided by the US National
Science Foundation CNS Award #1319130.
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Abstract. When outsourcing the storage of sensitive data to an
(untrusted) remote server, a data owner may choose to encrypt the data
beforehand to preserve confidentiality. However, it is then difficult to
efficiently retrieve specific portions of the data as the server is unable to
identify the relevant information. Searchable encryption well studied as
a solution to this problem, allowing data owners and other authorised
users to generate search queries which the server may execute over the
encrypted data to identify relevant data portions.

However, many current schemes lack two important properties: verifi-
ability of search results, and expressive queries. We introduce Extended
Verifiable Searchable Encryption (eVSE) that permits a user to verify
that search results are correct and complete. We also permit verifiable
computational queries over keywords and specific data values, that go
beyond the standard keyword matching queries to allow functions such
as averaging or counting operations. We formally define the notion of
eVSE within relevant security models and give a provably secure instan-
tiation.

1 Introduction

It is now common for data owners to outsource their data to public servers
providing storage on a pay-as-you-go basis. This can reduce the costs of data
storage compared with that of running a private data center (e.g. hardware,
construction, air conditioning and security costs), making this a cost effective
solution. If the server is not fully trusted and the data is of a sensitive nature,
the data owner may wish to encrypt it to ensure confidentiality. This, however,
prevents the efficient retrieval of specific portions of the data as the server is
unable to identify the relevant information.

J. Alderman—Supported by the European Commission under project H2020-644024
“CLARUS” and acknowledges support from BAE Systems Advanced Technology
Centre.
S.L. Renwick—Supported by Thales UK and EPSRC under a CASE Award.

c© Springer International Publishing Switzerland 2016
E. Pasalic and L.R. Knudsen (Eds.): BalkanCryptSec 2015, LNCS 9540, pp. 187–205, 2016.
DOI: 10.1007/978-3-319-29172-7 12



188 J. Alderman et al.

Searchable Encryption (SE) [11,16,19,21,22,24,26,32] addresses this issue
by indexing the encrypted data in such a way as to allow a server to execute
a search query (formed by the data owner or an authorised data user) over the
encrypted data and return the identifiers of any file that satisfies the query.

To preserve confidentiality of the data, the server must not learn anything
about the underlying data from the encrypted data and the data indexes; namely
ciphertext indistinguishability and index indistinguishability. In the presence of
a search query the only information leaked to the server is the search results.
Query indistinguishability is also a desirable property although, due to the offline
keyword guessing attack [12], this is not always easy to achieve in the public key
setting (where indexes are generated using the data owner’s public key).

The majority of existing work on SE focusses on efficiently preserving confi-
dentiality in the presence of an honest-but-curious server. This means that the
server is trusted to follow the search protocol honestly but may try to infer
information about data or search queries that it is unauthorised to know.

Verifiable Searchable Encryption (VSE) [13,25,30,35,37] assumes a stronger
semi-honest-but-curious adversarial model in which the server might execute
only a fraction of the search, or return a fraction of the search results in order
to preserve its resources. To ensure the completeness and correctness of search
results in this scenario, it is required that the server is able to prove to the
querier that the search was computed honestly.

The current approaches to VSE in the literature do not support a wide range
of expressive search queries. We address this issue by extending the types of
queries that can be executed and verified by a VSE scheme to include more
expressive search queries, as well as some computations. Most VSE schemes in
the literature also require that the verification of query results be performed by
the entity that issued the query whereas eVSE is publicly and blindly verifiable.

1.1 Our Contributions

We adapt and apply new techniques from the area of Publicly Verifiable Out-
sourced Computation to VSE in a novel way to enable a wider family of queries,
and some types of computations, to be performed over outsourced encrypted
data with verifiable query results. In summary, our contributions are:

– More expressive queries: Our scheme supports queries such as boolean formu-
lae involving conjunctions, disjunctions and negations, threshold operations,
polynomials, arbitrary CNF and DNF formulae, and fuzzy search1.

– Evaluation of computations: Our scheme supports the evaluation of some com-
putations over the encrypted data, such as averaging and counting operations.
As well as assigning keywords to label data, we propose to also assign key-
words representing certain data values that may be computed over (either in
the form of single keywords or as a string of keywords encoding binary data,
see Sect. 3.3).

1 Depending on the choice of underlying ABE scheme; see Sect. 4.1.
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– Blind public verifiability of query results: Any entity is able to verify the
correctness and completeness of query results without any knowledge of either
the underlying query or the results themselves.

The remainder of this paper is organised as follows. Section 2 gives some
background information on SE and verifiable computation. Section 3 formally
defines eVSE and its security model, Sect. 4 gives an instantiation of eVSE and
Sect. 5 concludes the paper, highlighting possible avenues of future research.
The Appendix provides more details on the security models and gives a security
proof sketch as well as a discussion comparing our scheme with the ones in the
literature. Additional details can be found in the full version [3].

2 Background

Searchable Encryption (SE) allows data to be outsourced in encrypted form
and for keyword search queries to be performed remotely. Methods based on
oblivious RAM [20] provide a high level of security (hiding both the access and
search patterns) at the expense of slow search times and high communication
costs. Song et al. [28] achieve a scheme with fewer rounds of communication,
but which leaks the access pattern and requires each word of a document to
be encrypted separately, so compression is not possible. Goh [19] introduced
meta data (indexes) describing the content of each document, and enabled con-
stant time searches using Bloom filters over the index only. Curtmola et al. [16]
extended the system model to allow multiple users to query the data, using
broadcast encryption to manage user access privileges. SE schemes that allow
many users to upload data can be built using public key encryption, however
the data can only be searched by the holder of the corresponding secret key (or
a derivative thereof) [11]. Most SE schemes assume an honest-but-curious server
model.

Verifiable Searchable Encryption (VSE) schemes assume a semi-honest-
but-curious server model. The first VSE scheme was presented by Chai et al.
[13], where they extend the paradigm of searchable symmetric encryption (SSE)
[16] to create a verifiable SSE (VSSE) scheme that allows verification of search
results from a single keyword equality query. Another approach by [25] extends a
public key encryption with keyword search scheme [11] to support verification of
search results from a single keyword equality query, where the indexes are created
using a public key. Sun et al. [30] and Wang et al. [34] detail VSE schemes with
enhanced functionality; verifiable multi-keyword ranked search and verifiable
fuzzy keyword search, respectively.

Verifiable Computation (VC) allows a client with limited resources to effi-
ciently outsource a computation to a more powerful server, and to verify the
correctness of results. Gennaro et al. [18] considered the use of garbled circuits,
whilst Parno et al. [27] introduced publicly verifiable computation (PVC) built
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from key policy attribute based encryption (KP-ABE), where a single client com-
putes an evaluation key for the server and publishes information enabling other
clients to outsource computation to the server. Any client may verify the correct-
ness of a result. Alderman et al. [2] considered an alternative system model that
used ciphertext policy attribute based encryption (CP-ABE) to allow clients to
query computations on data held by the server (or initially outsourced by a
client) called Verifiable Delegable Computation (VDC). This can naturally be
applied to problems like querying on remote data, as well as MapReduce. Data
remains statically stored on the server and may be embedded in a server’s secret
key, whilst the computation of many different functions can be requested by
creating ciphertexts using only public information. Other notable approaches in
the realm of querying remote data can be found in [4–6,8–10,15].

3 Extended Verifiable Searchable Encryption

3.1 System Model

We consider a system comprising a data owner, a remote storage server, and a set
of authorised data users. The data owner sets up the system to generate a master
secret and holds a set of data D (e.g. a database) that they wish to encrypt
and outsource to the remote server. The data owner controls which additional
users are able to query their encrypted data. Queries may be formulated over
these keywords (e.g. to identify records associated with a given set of keywords)
as usual in SE, but we also allow computational queries of functions in the
class NC1, which consists of Boolean functions computable by circuits of depth
O(log n) where each gate has a fan-in of two, over encoded data values.

For example consider workgroups within an organisation. The manager or
system administrator acts as the data owner for the organisation and outsources
a shared database to a remote server. Authorisation is granted by issuing a
secret key to each user, which is required when creating a query token QTQ for
a particular query Q. The token is sent to the server who performs the query
on the encoded index to generate a result R. We allow any entity to verify the
correctness and completeness of the result2, but we restrict the ability to read
the value of the result to only authorised data users (holding a retrieval key).

Throughout this work, we assume a strict separation between queriers (the
data owner and users) and the remote server – the server may not issue queries
itself, else it will trivially be able to learn the encoding of the index and queries
(legitimate queriers must know this encoding to gain meaningful results).

3.2 Formal Definition

We now formally define a scheme for eVSE. We use the following notation.
Data to be outsourced is denoted D and is considered to be a collection of
2 We also permit the server to verify correctness to avoid the rejection problem, where

a server may learn some useful information by observing if results are accepted.
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n documents. Prior to outsourcing, the data owner specifies a pre-index for
D, denoted δ(D), which assigns a set of descriptive labels to each document
e.g. keywords contained in the document or specific data values that may be
computed upon. The encoded form of the data, including the descriptive labels,
is referred to as the index of D, denoted ID, and is stored by the server. Queries
for functions in the class NC1 are denoted by Q and to make such a query, a
data user creates a query token QTQ for Q, a verification key V KQ which allows
any entity to blindly verify the result, R, of the query, and a retrieval key RKQ

which is issued to authorised data users to enable the query result to be learnt.

Definition 1. An Extended Verifiable Searchable Encryption (eVSE) scheme
comprises the following algorithms:

– (MK,PP) $← Setup(1κ,U): Run by the data owner and takes as input the
security parameter and a universe of attributes (keywords and data values).
It outputs the data owner’s master secret key MK that is used for further
administrative tasks and public parameters PP, both of which are provided
to the remaining algorithms where required.

– (ID, sts, sto)
$← BuildIndex(δ(D), G,MK,PP): Run by the data owner and

takes as input the pre-index of the data δ(D) and the set G of authorised
users, and outputs a searchable index ID for the data D, as well as a server
and data owner state.

– (SKID, sts)
$← AddUser(ID, G,MK,PP): Run by the data owner to authorise

a user ID to perform queries by issuing them a secret key SKID and outputs
an updated server state.

– (QTQ, V KQ, RKQ) $← Query(Q, sts, sto, SKID,PP): Run by a data user using
its secret key and both states to generate a query token QTQ for a query Q,
a verification key V KQ and an output retrieval key RKQ.

– R
$← Search(ID, QTQ, sts, SKS,PP): Run by the server to execute a query

given in the query token QTQ on the index ID. It generates a result R which
can be returned to the querying user or published.

– r ← Verify(R, V KQ, RTQ, RKQ,PP): Verification consists of two steps:
1. RTQ ← BVerif(R, V KQ,PP): Run by any party to verify the correctness

and completeness of the result R. It takes the verification key V KQ and, if
the result is accepted, it outputs a retrieval token RTQ which can be used
to learn the result. Otherwise a distinguished failure symbol RTQ =⊥ is
returned.

2. r ← Retrieve(V KQ, RTQ, RKQ,PP): Run by a data user to read the value
of the result. It takes as input the retrieval token RTQ, the retrieval key
RKQ and the user’s secret key. If the user holds a valid retrieval key for Q
and the computation was performed correctly, then it returns the actual
result r = Q(ID), otherwise it returns r = ⊥.

– (sts, sto)
$← RevokeUser(ID, G,MK,PP): Run by the data owner using its

master secret key to revoke a user’s authorisation to make queries and read
results. It does so by updating the server and data owner state.
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An eVSE is correct if there is a negligible probability that verification does
not suceed when all algorithms are run honestly. A formal definition can be
found in [3].

3.3 Types of Query

We consider a broader range of verifiable queries than many prior schemes. In
particular, we consider two main types:

– Keyword matching queries: Queries of this type have formed the basis
of most prior work in SE. Suppose there exists a universe (dictionary) of
keywords. Each encrypted data item is associated with an index of one or
more keywords to describe the contents. Queries are formed over the same
universe of keywords. In this work, we permit Boolean formulae over sets of
keywords (e.g. ((a∧b)∨c) where a, b, c are keywords). We return an identifier
for each file whose associated keywords in the index satisfy this formula. Thus
we can perform very expressive search queries over keywords.

– Computational queries: Queries of this type are similar to the operations
commonly discussed in the context of outsourced computation. We allow sta-
tistical queries over keywords (e.g. counting the number of data items that
satisfy a keyword matching query), as well as operations over selected data val-
ues that have been encoded using additional portions of the keyword universe.
It is possible to encode the entire database in such a way as to enable com-
putations over all data fields, but it would usually be more efficient to select
a (small) subset of fields that are most useful or most frequently queried.
Clearly, keyword matching queries can be seen as a special case of computa-
tional queries where the function operator is equality testing.

– Mixed queries: Queries of this type combine both the functionalities of the
aforementioned query types (e.g. finding the average of data values contained
in all documents associated with a particular keyword).

All types of query are performed in a verifiable manner to ensure that results
are correct and complete.

3.4 Security Model

We now formalise several notions of security as a series of cryptographic games.
The adversary against each notion is modelled as a probabilistic polynomial
time (PPT) algorithm A run by a challenger, with input parameters chosen to
represent the knowledge of a real attacker as well as the security parameter κ.
The adversary algorithm may maintain state and be multi-stage; we refer to each
stage as A for ease of notation. The notation AO denotes the adversary being
provided with oracle access to the following algorithms: BuildIndex(·, ·,MK,PP),
AddUser(·, ·,MK,PP), Query(·, ·, ·, ·,PP) and Search(·, ·, ·, ·,PP). We assume that
oracle queries are performed in a logical order such that all required information
is generated from previous queries. For each game, we define the advantage and
security of A as:
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Game 1. ExpPubVerif
A [eVSE , 1κ]:

1: (Q, δ(D�)) ← A(1κ)
2: (PP,MK)F ← Setup(1κ, U)

3: G ← ∅
4: ID

$← Users
5: (SKID, sts) ← AddUser(ID, G,MK,PP)

6: (ID� , sts, sto) ← BuildIndex(δ(D�), G,MK,PP)

7: (QTQ, V KQ, RKQ) ← Query(Q, sts, sto, SKID,PP)

8: R� ← AO(QTQ, V KQ, RKQ, ID� ,PP)
9: RTQ ← BVerif(R�, V KQ,PP)

10: r ← Retrieve(V KQ, RTQ, RKQ,PP)
11: if (r �=⊥) and (r �= Q(ID� )) then return 1
12: else return 0

Definition 2. The advantage of a PPT adversary A is defined as follows, where
X ∈ {PubVerif , IndPriv ,QueryPriv}:

AdvX
A (eVSE , 1κ) = Pr[ExpX

A [eVSE , 1κ] = 1].

An eVSE scheme is secure against Game X if for all PPT adversaries A,
AdvXA(eVSE, 1κ) ≤ negl(κ) where negl is a negligible function.

Public Verifiability. In Game 1, we capture the notion of public verifiability
such that a server may not cheat by returning an incorrect result without being
detected. This is a selective notion of security where, at the beginning of the
game, the adversary chooses the challenge query and pre-index. The challenger
then initialises the system, runs AddUser for a randomly chosen ID from the
userspace, runs BuildIndex for the challenge pre-index to create the index, and
finally runs Query. The adversary is given the resulting parameters, as well as
access to the above specified oracle queries, and outputs R�, which it believes
to be an incorrect result that will, nevertheless, be accepted by the verifier.
The challenger runs the verification steps on this output. The adversary wins if
verification succeeds, yet the result is not Q(ID�).

Index Privacy and Query Privacy. In Appendix A, we provide notions of
index indistinguishability against a selective chosen keyword attack and query
privacy, which ensure that no information regarding the keywords is leaked from
the index or query tokens respectively.

4 Construction

4.1 Overview

We base our instantiation on a CP-ABE scheme. As shown by Alderman
et al. [2], CP-ABE can be used to verifiably request computations to be per-
formed on data held by a server, referred to as VDC. In VDC, a trusted Key



194 J. Alderman et al.

Distribution Center (KDC) initialises the system and issues a CP-ABE decryp-
tion key to the server pertaining to the data it holds. We use a similar technique,
but have the data owner act as the KDC (so the data need not be revealed to an
external KDC, as in VDC). The index for a set of data is a CP-ABE decryption
key for a set of attributes encoding the pre-index, and is sent to the server. The
method of encoding is described in Sect. 4.2.

We consider the family B of Boolean functions closed under complement –
that is, if F ∈ B then F , where F (x) = F (x) ⊕ 1, is also in B. A function
F : {0, 1}n → {0, 1} is monotonic if x � y implies F (x) � F (y), where x =
(x1, . . . , xn) ≤ y = (y1, . . . , yn) if and only if xi � yi for all i. For a monotonic
function F , the set AF = {x : F (x) = 1} defines a monotonic access structure.

A query Q is represented as a Boolean function of keywords and compu-
tational data points. If a monotonic CP-ABE scheme is used then queries can
be comprised of AND and OR gates (and negation can inefficiently be handled
by including both a positively and negatively labelled attribute in the universe
and requiring the presence of exactly one of them). A non-monotonic CP-ABE
scheme enables queries formed from AND, OR and NOT gates, which is a universal
set of gates, and fuzzy CP-ABE enables fuzzy keyword search. We can achieve
all functions in the class NC1, which includes common arithmetic and compar-
ison operators useful in queries. An n-bit result can be formed by performing n
Boolean queries, each of which returns the ith bit of the output.

The query token for a Boolean function Q ∈ B comprises two CP-ABE cipher-
texts for access structures representing Q and Q ∈ B respectively. To perform
the search, the server attempts to decrypt each ciphertext under the secret key
(associated with the pre-index) and outputs the result. Each decryption succeeds
if and only if the query evaluates to True on the index. Any entity may perform
the blind verification operation using the verification key to learn only whether
the operation was performed correctly or not. Only entities holding the retrieval
token can read the value of the result.

4.2 Data Encoding

Defining the Index. Suppose the data D to be outsourced comprises n doc-
uments. We now discuss how to form a pre-index δ(D), which represents the
keywords and data fields that may be queried over.

Let D be a dictionary of keywords that describe the documents. D alone
suffices for keyword matching queries but for computational queries, we also
need to be able to encode data values such that they can be input to queries
represented as access structures encoding Boolean functions.

For each data field x that may be input to a computational query, let the
maximum size of the data value be mx bits. We define mx additional attributes
Ax,1, Ax,2, . . . , Ax,mx

, and define the universe C =
⋃

x∈D ∪mx
i=1Ax,i to be the

union of these attributes over all data fields. Let y be a value stored in the data
field x and let the binary representation of y be y1, . . . , ymx

. We view y as a
characteristic tuple of an attribute set Ay ⊆ C, where Ay = {Ax,i : yi = 1} – we
include an attribute for position i in the set if and only if the ith bit of y is 1.
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Finally, to enable the index for all n documents to be encoded within a single
CP-ABE key (and hence for computations to be performed simultaneously on
all documents), and to ensure that the correct index data is used for each query,
we must encode a labelling of the document that each attribute pertains to. We
define our attribute universe U for the CP-ABE scheme to be U = {D∪C}× [n].
Thats is, we take n copies of D and C. Each element of {D ∪ C} describes a
particular keyword or data value, and each copy relates to a different document
in D - if we index each copy of an attribute w ∈ {D ∪ C} as {wi}n

i=1, then wi

denotes the presence of w in document i. In practice, it may be desirable to use a
‘large universe’ CP-ABE scheme, wherein arbitrary textual strings are mapped
to attributes (group elements), e.g. using a hash function H. Thus, for a keyword
or data value w in document i, the attribute could be defined as H(w||i).3

The pre-index of the data D is a set of attributes δ(D) ⊆ U . The index that
is outsourced will be a CP-ABE key generated over this attribute set.

Hiding the Index. In general, CP-ABE schemes do not hide the attributes
within the decryption key. This is usually expected behaviour since CP-ABE is
often used to cryptographically enforce access control policies and it is natural
to assume that an entity is aware of their access rights.

However, in this setting we are using CP-ABE not to protect objects from
unauthorised access, but instead to prove the outcome of a function evaluation.
The keys in our setting are formed over attributes encoding the index of out-
sourced data, as opposed to encoding access rights. Since the server should not
learn any information about the data, including the index, we must implement
a mechanism by which the decryption key hides the associated attributes.

In many CP-ABE schemes, the public parameters comprise an ordered set
of group elements [36], each associated with an attribute from the universe;
that is, ∀i ∈ U , choose ti

$← Zp, then form the encoded attribute set {gti}i∈U .
Thus, given a key (or ciphertext) that comprises gti , it is possible, based on the
ordering of this set, to determine the attribute i ∈ U it relates to. In addition,
the attributes may be listed in the clear, and attached to keys and ciphertexts
to indicate which group elements should be applied at each point. Clearly, this
is unsuitable for our requirement for a hidden index.

To this end, we first apply a random permutation to U such that the position
of the group elements within the ordered set does not reveal the attribute string
(unless the permutation is known). We then use a symmetric encryption scheme
to encrypt each attribute x ∈ U under a key k, and then instantiate the CP-
ABE scheme on this universe of encrypted attributes. Thus, without knowledge
of the key k, the server should be unable to determine the attribute string x. We
assume that only the keywords or data items being computed over are considered
sensitive, and not the logical makeup of the Boolean function (in terms of gates).

3 In this case, it may be possible to avoid the use of symmetric encryption in our
construction by letting the secret k be the key for this cryptographic hash function.
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4.3 Formal Details

The data owner initialises the system and encodes the data as an index which is
pushed to the server. Each (authorised) user will be issued with a personalised
secret key enabling them to form queries. To make a query Q, a user chooses a
random message from the message space M to act as a verification token, and
encrypt this using the CP-ABE scheme under the access structure encoding Q.
The server attempts to decrypt the ciphertext and recovers the chosen message
if and only if Q(ID) = 1. By the indistinguishability security of the CP-ABE
scheme, the server learns nothing about the message if Q(ID) = 0 since this
corresponds to an access structure not being satisfied. Thus, if a server returns
the correct message, the user is assured that the query evaluated to 1 on the
data. If, however, Q(ID) = 0, then decryption will return ⊥. This is insufficient
for verification purposes since the server can return ⊥ to convince a user of a
false negative search result. Thus, the user must, in fact, produce two CP-ABE
ciphertexts. As above, one corresponds to the function Q, whilst the other cor-
responds to Q, the complement query of Q. Hence, the server’s key will decrypt
exactly one ciphertext and the returned message will distinguish whether Q or Q
was satisfied, and therefore the value of Q(ID). A well-formed response (d0, d1)
from a server, therefore, satisfies the following:

(d0, d1) =

{
(m0,⊥), if Q(ID) = 1
(⊥,m1), if Q(ID) = 0.

(1)

Public Verifiability is achieved by publishing a token comprising a one-way func-
tion g applied to both plaintexts. Any entity can apply g to the server’s response
and compare with this token to check correctness. To achieve blind verification,
a random bit b permutes the order of the ciphertexts. Thus, verifiers that do not
know b cannot determine whether a plaintext is associated with Q or Q.

Our adversarial model allows the adversary (and hence servers in our system)
to hold more than one key (for multiple datasets); we must ensure that a key can-
not produce a valid looking response to a query on a different index. We achieve
this by labelling each pre-index with a label l(δ(D)) and define an attribute for
each label. Then, for a pre-index δ(D), the decryption key is formed over the
attribute set (δ(D) ∪ l(δ(D))). Recall that encoded data stored on the server’s
side is a collection of n documents, which we label D1, . . . , Dn. When making a
query Q(ID), a sub-query Qi may be formed for each document (e.g. to check
if a given keyword is contained in each document). In this case, the encryption
algorithm takes the access structure encoding of the conjunction (Di ∧ l(δ(D)))
for i ∈ [n]. A valid result can only be formed by applying the sub-query to the
specified document, which is also labelled by Di ∈ D – decryption succeeds if
and only if the function is satisfied and the label l(δ(D)) is matched in the key
and ciphertext. Note that a key for a different pre-index will not include the
correct label. Inputs to the Query algorithm are assumed to be in this form.

Let CPABE = (ABE.Setup, ABE.KeyGen, ABE.Encrypt, ABE.Decrypt) define
a CP-ABE encryption scheme over the universe U . Let SE= (SE.KeyGen,
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SE.Encrypt, SE.Decrypt) be an authenticated symmetric encryption scheme
secure [7] in the sense of IND-CPA. Let BE = (BE.KeyGen, BE.Encrypt, BE.Add,
BE.Decrypt) be a broadcast encryption scheme that retains IND-CPA security
against a coalition of revoked users. Finally, let g be a one-way function and
let Π and φ be pseudo-random permutations (PRPs) (which pad their inputs if
required). Then Algorithms 1–8 define an eVSE scheme for a class of queries Q.

Algorithm 1. (MK,PP) ← Setup(1κ,U)
1: mk ← BE.KeyGen(1κ)

2: k ← SE.KeyGen(1κ)

3: for i ∈ U do

4: ui ← SE.Encrypt(i, k)

5: U ′ ← {ui}i∈U
6: Ũ ← Π(U ′)
7: (MSKABE, MPKABE) ← ABE.Setup(1κ, Ũ)

8: PP ← (MPKABE, Ũ)

9: MK ← (MSKABE, mk, k, Π)

Algorithm 2. (ID, sts, sto) ← BuildIndex(δ(D), G,MK,PP)
1: ID ← ABE.KeyGen((δ(D) ∪ l(δ(D))), MSKABE, MPKABE)

2: j
$← {0, 1}κ

3: sts ← BE.Encrypt(G, j, mk)

4: sto ← j

Algorithm 3. (SKID, sts) ← AddUser(ID,G,MK,PP)
1: ukID ← BE.Add(ID, mk)

2: if ID is a user then SKID ← (ukID, k, Π)

3: else SKID ← ukID

4: sts ← BE.Encrypt(G ∪ ID, j,mk)

Algorithm 4. (QTQ, V KQ, RKQ) ← Query(Q = {Qi}, sts, sto, SKu,PP)
1: j̃ ← BE.Decrypt(sts, ukID)

2: if (j̃ �= sto) then return ⊥
3: for i = 1 to |Q| do
4: (m0i , m1i )

$← M × M
5: bi

$← {0, 1}
6: cbi

← ABE.Encrypt(mbi
, Qi, MPKABE)

7: c1−bi
← ABE.Encrypt(m1−bi

, Qi, MPKABE)

8: QTQi
← (cbi

, c1−bi
)

9: γi ← φj(cbi
‖c1−bi

)

10: V KQi
← (g(m0i), g(m1i ))

11: RKQi
← bi

12: QTQ ← {γi}, V KQ ← {V KQi
}, RKQ ← {RKQi

}
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Algorithm 5. R ← Search(ID, QTQ = {γi}, sts, SKS,PP)
1: j̃ ← BE.Decrypt(sts, ukS)

2: if (j̃ �= sts) then return ⊥
3: for i = 1 to |Q| do
4: (cbi

‖c1−bi
) ← φ−1

˜j
(γi)

5: dbi
← ABE.Decrypt(cbi

, ID, MPKABE)

6: d1−bi
← ABE.Decrypt(c1−bi

, ID, MPKABE)

7: Ri = (dbi
, d1−bi

)

8: R = {Ri}

Algorithm 6. RTQ ← BVerif(R = {(di, d
′
i)}, V KQ = {(V Ki, V K ′

i)},PP)
1: for i = 1 to |Q| do
2: if V Ki = g(di) then RTQi

= di

3: else if V K′
i = g(d′

i) then RTQi
= d′

i

4: else RTQi
=⊥

5: RTQ = {RTQi
}

Algorithm 7. r ← Retrieve(V KQ = {(g(mbi
), g(m1−bi

))}, RTQ = {RTQi
},

RKQ = {bi},PP)
1: for i = 1 to |Q| do
2: if g(RTQi

) = g(m0) then ri = 1

3: else if g(RTQi
) = g(m1) then ri = 0

4: else ri =⊥
5: r = {ri}

Algorithm 8. (sts, sto) ← RevokeUser(ID, G,MK,PP)

1: j′ $← {0, 1}κ

2: sts ← BE.Encrypt(G \ ID, j′,mk)

3: sto ← j′

Theorem 1. Given a selective IND-CPA secure CP-ABE scheme, an authen-
ticated symmetric encryption scheme and a broadcast encryption scheme, both
secure in the sense of IND-CPA, pseudo-random permutations Π and φ, and
a one-way function g. Let eVSE be the extended verifiable searchable encryption
scheme defined in Algorithms 1–8. Then eVSE is secure in the sense of Public
Verifiability, Index Privacy and Query Privacy.

In Appendix A.1 we provide a proof sketch. Full proofs can be found in [3].
In Appendix B we discuss the trade-off between efficiency and functionality of
our scheme. Note that we can add additional contextual access control following
Alderman et al. [1] by replacing φ with a key assignment scheme.
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5 Conclusion

With this work we have begun to consider the application of VC techniques in the
setting of searchable encryption. On the searchable encryption side, this enables
additional functionality in the form of computational queries (e.g. computing the
average of outsourced data fields that are linked to a specific set of keywords),
whilst on the VC side, this introduces additional privacy concerns regarding the
outsourced data and computations. The choice of using VC techniques based on
ABE stems from the natural correspondence between attributes and keywords in
an index. However, future work should investigate other forms of VC to achieve
different classes of functionality and (especially) improve efficiency.

In future work, we would like to consider a model whereby multiple data own-
ers can store data on a server without each having to initialise their own scheme.
In practice, this could result in the Key Distribution Center from VDC [2] set-
ting up the system and publishing public parameters that any data owner can
use, but enabling each data owner to generate their own CP-ABE decryption
keys for the data they hold.

A Security Models

Index Privacy. In Game 2, we formalise the notion of index indistinguisha-
bility against a selective chosen keyword attack, which ensures no information
regarding the keywords is leaked from the index. Firstly the adversary outputs
two sets of attributes (D0,D1 ⊆ U) that they wish to be challenged on, with
the restriction that |D0| = |D1| (this is required as the CP-ABE used to pro-
duce the index does not conceal the index length). The challenger runs Setup to
produce the public and secret parameters. The challenger selects a bit b ∈ {0, 1}
uniformly at random to select which set of attributes to encode into the index.
Before the index is created, the challenger needs to create the pre-index from
the set of attributes Db (line 4 of Game 2). This is done using an Encode mech-
anism that takes the elements of Db as input and outputs the pre-index δ(Db).
Encode is not required in our instantiation as the pre-indexes can be chosen
directly from Ũ as the user knows the mapping from U to U ′ and the permu-
tation Π; the adversary however does not. The challenger then runs BuildIndex
using δ(Db) to produce the index IDb

, which is given to A. The adversary is
then given PP and oracle access, with the restriction that the query results are
identical for each index ID0 , ID1 , i.e. if R0 ← Search(ID0 , QTQ, sts, SKS,PP)
and R1 ← Search(ID1 , QTQ, sts, SKS,PP) then we need R0 = R1. After this
query phase, A outputs a guess b′ and wins the game if the comparison operator
== returns 1 which indicates that b′ = b. Hence A wins the game if they can
identify which attribute set (D0 or D1) was encoded into the index IDb

.

Query Privacy. The queries themselves should not leak any information
about the corresponding keywords that make up the query. Our construction
of the queries leaks the gates, but not the keywords themselves. This notion of
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Game 2. ExpIndPriv
A [eVSE , 1κ]:

1: (D0, D1, Q) ← A(1κ, U)

2: if (|D0| �= |D1|) then return ⊥
3: b

$← {0, 1}
4: (MK,PP) ← Setup(1κ, U)
5: G ← ∅
6: ID

$← Users
7: (SKID, sts) ← AddUser(ID, G,MK,PP)
8: δ(Db) ← Encode(Db)

9: (IDb
, sts, sto) ← BuildIndex(δ(Db), G,MK,PP)

10: b′ ← AO(IDb
, sts,PP)

11: return (b′ == b)

Game 3. ExpQueryPriv
A [eVSE , 1κ]:

1: (Q0, Q1) ← A(1κ, U)
2: if (GQ0 �= GQ1 ) then return ⊥
3: b

$← {0, 1}
4: (MK,PP) ← Setup(1κ, U)

5: G ← ∅
6: ID

$← Users
7: (SKID, sts) ← AddUser(ID, G,MK,PP)

8: δ(Db)
$← Ũ

9: (ID, sts, sto) ← BuildIndex(δ(D), G,MK,PP)
10: Q̃b ← Encode(Qb)

11: (QTQb
, V KQb

, RKQb
) ← Query(Q̃b, sts, sto, SKID,PP)

12: b′ ← AO(QTQb
, V KQb

, RKQb
, ID, sts,PP)

13: return (b′ == b)

query indistinguishability against a selective chosen query attack is formalised
in Game 3. The game runs similarly to that of Game 2, subject to the following
restrictions: the challenge queries (Q0, Q1) must use the same gates. We denote
the gate structure of a query Q by GQ, and hence require that GQ0 = GQ1 .

A.1 Security Proofs

Proof (Public Verifiability). Here we provide a proof sketch; full details can
be found in [3]. We start by assuming that AeV SE is an adversary with non-
negligible advantage δ. We begin by defining the following three games:

– Game A. This is the selective Public Verifiability game as defined in Game 1.
– Game B. This is the same as Game A with the modification that in Query,

we no longer return an encryption of m0 and m1.
Instead, we choose another random message m′ 
= m0,m1 and, if Q(ID) = 1,
we replace c1 by ABE.Encrypt(Q,m′,MPKABE). Otherwise, we replace c0 by
ABE.Encrypt(Q,m′,MPKABE).

– Game C. This is the same as Game B with the exception that instead of
choosing a random message m′, we implicitly set m′ to be the challenge input
w in the one-way function game.
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We show that an adversary with non-negligible advantage against the selective
Public Verifiability game can be used to construct an adversary that may invert
the one-way function g.

We begin by showing that there is a negligible distinguishing advantage
between Game A and Game B. We construct an adversary AABE that creates
an eVSE instance by executing Algorithms 1–8 and uses AeV SE as a sub-routine
to break the selective IND-CPA security of the CP-ABE scheme. The advantage
of our constructed adversary is AdvAABE

� δ
2 . Hence, if AeV SE has advantage

δ at distinguishing these games then AABE can win the sIND-CPA game for
CP-ABE with non-negligible probability. Thus since we assumed the CP-ABE
scheme to be secure, we conclude that AeV SE cannot distinguish the games with
non-negligible probability. The transition from Game B to Game C is simply
to set the value of m′

i to no longer be random but instead to correspond to the
challenge w in the one-way function inversion game. We argue that the adver-
sary has no distinguishing advantage between these games since the new value
is independent of anything else in the system bar the verification key g(w) and
hence looks random to an adversary with no additional information. Finally we
show that using AeV SE in Game C, AABE can invert the one-way function g –
that is, given a challenge z = g(w) we can recover w. Now, if AeV SE is successful,
it will output a forgery comprising the plaintext encrypted under the unsatis-
fied query (Q or Q). By construction, this will be w and AABE can therefore
forward this result to C in order to invert the one-way function with the same
non-negligible probability that AeV SE has against the public verifiability game.

We conclude that if the ABE scheme is sIND-CPA secure and the one-way
function is hard-to-invert, then eVSE as defined by Algorithms 1–8 is secure in
the sense of selective Public Verifiability. ��

The remaining proofs can be found in the full version [3].

B Discussion

Our scheme extends the expressiveness of queries that can be achieved in VSE.
No other VSE schemes to our knowledge are able to perform the range of search
queries or include negation of keywords in their search queries. Additionally
our scheme leaks neither the access pattern (AP) or the search pattern (SP)
to the server whilst executing a search. Our combination of search queries with
computational queries is also a novel functionality in the field of VSE.

The search time and size of the queries are both linear in n (the amount of
data items stored on the remote server). Due to this eVSE may be more suited to
smaller databases to prevent these features from being prohibitively expensive.
The VSE scheme of [13] has a search time that is linear in the number of letters in
the queried keyword (which is usually much smaller than n). This faster search is
achieved using a tree-based index, however only a single keyword equality search
can be performed. Another scheme built using ABE [37] is able to achieve multi-
level access, where users can be restricted to searching only certain parts of the
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Table 1. Comparison of schemes

Scheme Data type Query type Publicly
Verifiable

Leakage Computations

[33] Static Ranked equality No AP,SP No

[23] Dynamic Equality No AP No

[30] Static Conjunctive, Disjunctive No AP No

[31] Dynamic Conjunctive No AP No

[29] Dynamic Equality No AP, SP No

[37] Static Equality No AP No

[34] Static Fuzzy No AP, SP No

[17] Static Semantic No AP, SP No

[13] Static Equality No AP, SP No

[14] Static Conjunctive Yes AP, SP No

Our
scheme

Static Conjunctive, Disjunctive,
Arbitrary CNF/DNF
formulae, NC1

Yes None Yes

database. Keywords are grouped with respect to their access control policies, and
the search time is linear in the number of groups. This scheme also only achieves
a single keyword equality search. The scheme of [35] achieves verifiable fuzzy
keyword search with a search time that is linear in the size of the fuzzy keyword
set (which varies depending on the level of fuzziness required i.e. searching for
data items that contain keywords of edit distance two will require a larger fuzzy
keyword set than searching for keywords with an edit distance of one from the
queried keyword [24]). Again, this is likely to be less than n. In terms of the
number of rounds of communication required per search, our scheme is optimal
requiring only one round of communication. The size of the search results in our
scheme is also linear in n. Most VSE schemes in the literature return results of
a size that is linear in the number of data items that match the query, however
this method leaks the access pattern which in turn may leak information about
the query. Our scheme hides the access pattern as all search results are of the
same form, regardless of what query was submitted.

Our scheme achieves public verifiability, index privacy and query privacy (in
terms of the keywords searched for), which is comparable to the security of other
VSE schemes. Overall, our scheme sacrifices efficiency when compared to existing
VSE schemes, but gains much increased functionality and query expressiveness.

Table 1 gives a brief comparison between our scheme and those in the litera-
ture as discussed above and throughout the paper.



Extended Functionality in Verifiable Searchable Encryption 203

References

1. Alderman, J., Janson, C., Cid, C., Crampton, J.: Access control in publicly ver-
ifiable outsourced computation. In: Bao, F., Miller, S., Zhou, J., Ahn, G. (eds.)
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS 2015. ACM, pp. 657–662 (2015)

2. Alderman, J., Janson, C., Cid, C., Crampton, J.: Hybrid publicly verifiable com-
putation. IACR Cryptol. ePrint Arch. 2015, 320 (2015)

3. Alderman, J., Janson, C., Martin, K.M., Renwick, S.L.: Extended functionality in
verifiable searchable encryption. IACR Cryptol. ePrint Arch. (2015)

4. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014)

5. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium
on Security and Privacy, SP 2015, pp. 271–286. IEEE Computer Society (2015)

6. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, pp. 863–874.
ACM (2013)

7. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

8. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from rams
to delegatable succinct constraint satisfaction problems: extended abstract. In:
Kleinberg, R.D. (ed.) Innovations in Theoretical Computer Science, ITCS 2013,
pp. 401–414. ACM (2013)

9. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

10. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) Innovations in Theoretical Computer Science 2012, pp. 326–
349. ACM (2012)

11. Boneh, D., Persiano, G., Di Crescenzo, G., Ostrovsky, R.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

12. Park, H.-A., Rhee, H.S., Lee, D.-H., Byun, J.W.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
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