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   The mission and  agenda               of fungal systematists are to discover, describe, and 
inventory the  global species   diversity of one of the most diverse groups on earth. 
The circumscription of the fungi has evolved over time. Fungi are most closely 
related to animals and share a more recent common ancestor with them than with all 
other major groups of  eukaryotes  . The majority of the fungal kingdom is composed 
of heterotrophic, non-photosynthetic eukaryotes with cell walls containing chitin 
and β-glucans and, when present, a single fl agellum (Stajich et al.  2009 ). Fungi can 
occur both as  single-celled and multicelled organisms   and can reach sizes typically 
associated with plants and animals. For example, the largest single fungal fruiting 
body on record was found to be nearly 500 kg in weight (Dai and Cui  2011 ), and  th              e 
oldest and largest  mycelium   described covers 15 ha of area and is over 1500 years 
old (Smith et al.  1992 ).  Life cycles   of many fungi include a vegetative growth phase 
that spreads throughout its environment by extension of hyphae and/or release of a 
large number of asexual spores from simple structures and by a more complex, 
transient sexual phase producing smaller numbers of resistant sexual spores from 
well-developed fruiting bodies. Fungal diversity is estimated to comprise 1.5–7.1 
million species. An increasing number of new taxa continue to be reported world-
wide (Blackwell  2011 ; Bass and Richards  2011 ), and fungi have been isolated from 
almost all kinds of ecosystems on Earth (Stajich et al.  2009 ). This fungal diversity 
is described by systematics, which is the science not only of naming fungi but also 
of positioning the species among other existing names to represent their evolution-
ary relationships. To properly describe the substantial diversity of the Kingdom 
Fungi, mycologists have been updating its classifi cation and systematics, based on 
accumulated knowledge of fungal biology interpreted within new concepts and 
approaches that are emerging from evolutionary biology. 

 In contrast to large aboveground organisms that can be easily spotted and 
counted, fungi are major components of underground diversity. Their study is often 
made diffi cult by their microscopic structures and shortage of discriminatory mor-
phological characters. Traditional biological information used for classifying fungi 
into major groups includes morphology, ultrastructure, physiology, tissue biochem-
istry, and ecological traits. Early synthesis of this information yielded major fungal 
groups that have remained comparatively stable over a very long time period in the 
twentieth century. Some morphological and ecological traits, such as the structure 
of the cell wall and hyphal septa, sexual reproduction and meiotic spores, nutri-
tional modes, as well as geographic distribution, have proven to be relatively con-
served and informative, especially for high-level classifi cation. However, phenotypic 
plasticity of traits and fast-evolving traits have caused considerable uncertainty 
regarding lower-level phylogenies based on morphology and ecology (Lutzoni 
et al.  2004 ). Starting in the 1970s, but gaining momentum in the late 1990s, the use 
of  DNA sequence   data to infer phylogenetic relationships among fungal lineages 
brought about a revolution in terms of taxonomic resolution and scientifi c reproduc-
ibility (de Bertoldi et al.  1973 ; Bruns et al.  1991 ; Bridge et al.  2005 ; Blackwell et al. 
 2006 ). Initial molecular studies, typically based on a single gene region, were 
followed by a wave of multilocus phylogenetic studies including all major fungal 
groups. The new phylogenies facilitated several major taxonomic revisions, 
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 including new lineages at the  phylum and class level   (James et al.  2006a ; Hibbett 
et al.  2007 ; Kirk et al.  2008 ; Schoch et al.  2009a ,  b ; Rosling et al.  2011 ; James and 
Berbee  2012 ; Matheny et al.  2007 ). More changes and many new taxa were added 
to lower- level fungal groups. In addition, much novel diversity was revealed in 
sequence data collected from environmental samples and identifi ed as operational 
taxonomic units (OTUs) (Blaxter et al.  2005 ). The quantity of novel OTUs in most 
environmental samples hints at a massive, inconspicuous, undescribed, and  thrivi              ng 
fungal diversity (Hibbett et al.  2011 ). Classifying and naming this huge fungal 
diversity is a necessary step toward understanding the functions of these fungi in the 
ecosystems. Thus, fi nding ways to take full advantage of the power afforded by 
next- generation sequencing approaches to integrate environmental DNA sequences 
has become one of the major challenges for fungal systematics. Simultaneously, a 
complementary aspect of the future of the fungal systematics is the integration of 
systematics, the evolution of complex traits, and functional  genomics   to understand 
the comparative biology of fungi and to create a holistic view of the fungus and how 
it evolves. 

 Currently, effi cient communication regarding fungal species rests upon on the 
use of scientifi c names constructed based on a system of hierarchical ranks. Within 
this system, one of the major purposes of fungal taxonomy and systematics is to 
create and position nomenclatural units unique for each fungal species. While a 
stable name as a symbol for communication is always appreciated by researchers—
especially for the widely used industrial, medical, plant pathogenic, and model 
species—systematics must also continue to refi ne and revise the application of 
names to refl ect continual gains in knowledge about the evolutionary histories of all 
taxa. We make no attempt here to cite all papers on development of fungal taxonomy 
and systematics nor to summarize recent systematic progress within and among the 
major  fungal phyla  . Instead, we have chosen to highlight recent research that enables 
us to illustrate specifi c points about perspectives and challenges of fungal systematics 
in the age of big data.  

    Integrative Taxonomy and Current Fungal Systematics 

 Traditionally, morphological and sometimes ecological traits have been used to 
classify fungi into hierarchical ranks and groups. However, evolutionary relation-
ships derived from these traits, whose ontology is often inferred from a phyloge-
netic hypothesis, can be problematic, especially for  lower-level phylogeny  , where 
diverse fungal groups can have plesiomorphic or convergent morphologies. One 
problem in reconstructing fungal evolutionary history is a lack of paleontological 
information due to the scarcity of well-preserved fungal fossils (Bidartondo et al. 
 2011 ). This scarcity makes it extremely diffi cult to evaluate the evolutionary history 
of morphological traits for fungal systematics, especially for morphologically sim-
ple groups. The meager  fos              sil record also makes it diffi cult to precisely calibrate 
molecular phylogenies. Nevertheless, information on molecular evolutionary 
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events, such as mutation and gain or loss of  nucleotide characters  , has been well 
preserved in gene sequences. Molecular phylogenies using single genetic markers 
or multilocus data have led to dramatic advances in the systematics of a range of 
taxonomic levels within the fungal kingdom over the past three decades. However, 
systematic hypotheses based on molecular phylogenetic data alone can be ques-
tioned, especially when in confl ict with morphological evidence. Ideally, evidence 
from different lines, such as morphology, ecology, and molecular data, can be 
evaluated jointly to robustly defi ne taxa at all ranks. This approach has been 
called integrative taxonomy and has  be     en advocated by Will et al. ( 2005 ) and Pante 
et al. ( 2015 ). 

 A major driver of new advances in the molecular phylogeny of fungi was the 
Assembling the Fungal Tree of Life (AFTOL) project, funded by the National 
Science Foundation (NSF) of the United States and organized by mycologists at 
several leading laboratories. This project sprung out of an NSF-funded research 
coordination network known as Deep Hypha and culminated in signifi cant gains in 
the study of evolution and molecular  phylogenetics   of fungi (Lutzoni et al.  2004 ; 
Blackwell et al.  2006 ; James et al.  2006a ; Hibbett et al.  2007 ; Schoch et al.  2009a ). 
Among the very fi rst  multilocus phylogenies   targeting the majority of major fungal 
lineages, Lutzoni et al. ( 2004 )  highli  ghted two major challenges in fungal systemat-
ics in the molecular age. One is achieving a balanced sampling of  taxa and genetic 
markers  . The other is identifying and interpreting inconsistency between the evolu-
tion of morphology and molecular phylogeny. When standard PCR using degener-
ate primers and Sanger sequencing were the major tools for recovering  DNA 
sequences   from fungal tissue, loci such as nuclear and mitochondrial rRNAs and 
several widely used protein-coding genes, including subunits of elongation factors 
and RNA polymerases, were selected by the  AF              TOL project. A six-gene phylogeny 
using these markers, including data from 52 sequenced fungal genomes, was gener-
ated to assess early evolution of fungi, and ecological characters were mapped onto 
the tree. 

 Groups recognized in the six-gene phylogeny were generally consistent with 
traditional views of fungal systematics prior to the molecular systematic age, but 
only for the fungi in  Dikarya  (James et al.  2006a ). Non-monophyly of two of the six 
recognized phyla led to the abandonment of one ( Zygomycota ) and the description 
of two new phyla  Blastocladiomycota , by James et al. ( 2006b ), and 
 Neocallimastigomycota , by Hibbett et al. ( 2007 ).  Simil  ar sequence datasets, which 
were often incomplete with missing sequences, were generated for a more inclusive 
taxon sampling within each major fungal group at class level, and the resulting 
phylogenetic classifi cations were collected in the special Deep Hypha issue of 
Mycologia in 2006 (Blackwell et al.  2006 ). A comprehensive phylogenetic classifi -
cation of the fungi kingdom was later proposed by Hibbett et al. ( 2007 ), featuring 
16 new taxa above the level of order. This classifi cation was adopted by the latest 
version of the Dictionary of the Fungi (Kirk et al.  2008 ). A more taxonomically 
complete six-gene dataset for 420 ascomycetes was subsequently assembled and 
analyzed. Key morphological and ecological characters were evaluated for useful-
ness in ascomycete systematics, and a new class was differentiated for two 
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 earthtongue genera:   Geoglossum  and  Trichoglossum    (Schoch et al.  2009a ,  b ). This 
dataset made it possible to quantify  phylogenetic informativeness   (Townsend et al. 
 2008 ; Townsend and Lopez-Giraldez  2010 ; Lopez-Giraldez and Townsend  2011 ) 
for several widely used genetic markers (Schoch et al.  2009a ,  b ). With the release 
of more fungal genome sequences and the ever-growing availability of data from 
additional genetic markers, several  multilocus phylogenies   inferred using partially 
or solely from genomic data (phylogenomics) have been published (Ebersberger 
et al.  2012 ; Binder et al.  2013 ; Ortiz-Santana et al.  2013 ; Dutilh et al.  2007 ). Updated 
classifi cations for major fungal groups were collected in Mycota VII—Systematics 
and Evolution (McLaughlin et al.  2014 ). 

 The vast majority of molecular systematic studies of fungi have been based on 
annotated (voucher) specimens of primarily sexual (teleomorphic) but also asexual 
(anamorphic) collections. The accuracy of voucher specimens is particularly impor-
tant now,  becau              se in many modern studies, only molecular data are shared and 
examined:  fungal herbaria   thus play important roles in keeping records for well- 
annotated specimens (Bidartondo  2008 ; Schoch et al.  2014 ). Best-practice guide-
lines on how to appropriately use molecular data in mycology are readily available 
(Lindahl et al.  2013 ; Hyde et al.  2013 ; Nilsson et al.  2012 ). Nevertheless, these 
guidelines are not suffi ciently frequently adhered to fungal molecular phylogeneti-
cists. Well-preserved and annotated collections are now mandatorily required by 
journals for newly published morphological and molecular data (Seifert and 
Rossman  2010 ). However, there has been no guarantee of accurate identifi cation of 
fungal collections, especially for microfungi, partially due to the problematic out-
comes of applying species concepts in fungi. 

 Morphological, biological, or phylogenetic species concepts all have limitations 
when they are applied to fungal species (Taylor et al.  2000 ,  2006 ). In particular, 
different mycologists often have different quantitative or qualitative interpretations 
of data used to defi ne species boundaries. For example, using several genetic mark-
ers, multiple species were identifi ed within the single morphological and biological 
species commonly known as the “turkey tail” fungus  Trametes versicolor  (Carlson 
et al.  2014 ), and two species were recognized for North American  Heterobasidion 
annosum , which has been considered one of the most important forest pathogens in 
the world (Otrosina and Garbelotto  2010 ). Another extraordinary and exciting 
example would be that of the morel fungi, for which tens, if not hundreds, of new 
species have been recognized within several original common names (Du et al. 
 2012 ; Richard et al.  2014 ). An increasing number of low- lev              el  classifi cations   are 
based on integrative approaches using both morphological and molecular data. 
These approaches have been applied to solve identifi cation issues of several com-
mercially important fungi (Cao et al.  2012 ; Wu et al.  2014 ; Zhang et al.  2005 ). 

 In many cases, the reference molecular data are directly downloaded from vari-
ous databases, assuming accurate identifi cation without checking the resource spec-
imens. Cryptic species complexes are particularly likely for many species of 
microfungi, in which case, dense samples from accurately annotated specimens will 
be especially critical for proper species taxonomy. However, phylogenetic recogni-
tion of fungal species has proved to be reliable, reproducible, and increasingly 

3 Future Perspectives and Challenges of Fungal Systematics in the Age of Big Data



30

widely applicable, facilitating convenient naming of species or strains, especially 
for  microfungi  . The huge undisclosed fungal diversity and the diffi culty of reconcil-
ing species concepts in fungi can make the application of the International Code of 
Nomenclature (McNeill and Turland  2012 ) very challenging—to the extent that it 
can ironically slow down, rather than speed up, mycological progress. Recently, for 
instance, instead of following the code to use the teleomorph genus name for mono-
phyletic groups, mycologists advocated recognizing the genus  Fusarium  as the sole 
name for groups that have been studied under that name but are not monophyletic 
(Geiser et al.  2013 ). Such challenges will become more signifi cant as more invisible 
diversity is discovered within diverse  environmental samples  . These challenges 
should aid the community in pushing for the development of standards for sequence- 
based classifi cation (Hibbett and Taylor  2013 ). A recent review of the impacts of 
the nomenclatural code on the scientifi c names that have been adopted is available 
for plant pathogenic fungi (Zhang et al.  2013 ).  

    Systematics and Classifi cation for Invisible Diversity 

 Fungi are widely distributed in all terrestrial and aquatic ecosystems. About 100,000 
fungal species have been discovered and documented. They play critical roles in 
 inorganic and organic nutrition  , nutrient cycling, and especially in the decay of 
carbon compounds that were fi xed and integrated into complex compounds by 
plants. Furthermore, fungi are frequently intimate partners in coevolving  biotic and 
trophic relationships   with other organisms, notably through mycorrhizal associa-
tions with plants; almost all land plants form symbiotic associations with  mycor-
rhizal fungi   (Stajich et al.  2009 ; van der Heijden et al.  2015 ). However, only a  s              mall 
portion of the total fungal diversity has been documented based on specimens/
strains deposited in herbaria, culture collections, or in personal collections all over 
the world. Indeed, a modest ~1000 new species are described per year (Hibbett et al. 
 2011 ), which would require 5000 years of cataloging at this rate, should the 5.1 mil-
lion estimate of species diversity hold. 

 The challenges to description of this undescribed fungal diversity are threefold. 
First, there are few mycological researchers and little research to study this unde-
scribed diversity. Second, many of these undescribed species whose morphology 
can be characterized are actually cryptic species hidden within species previously 
described on the basis of morphological characters; morphological characters might 
not separate the genetic species, as discussed for  Trametes versicolor  and  Morchella  
spp. above. Third, the majority of the extant fungal diversity produces no distin-
guishing morphological structures that are visible or describable, e.g., these fungi 
carry out their lives mostly or entirely as unculturable and morphologically indistin-
guishable yeasts or vegetative hyphae that cannot be described formally. If these 
fungi are unculturable as well as morphologically and biochemically indistinguish-
able, only can molecular identifi cation be used as a tool to classify this potentially 
huge diversity. This kind of molecular-only identifi cation leads to the absurd 
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 situation where next-generation sequencing efforts of environmental substrates 
reveal the existence of thousands upon thousands of new species of very high rele-
vance to phylogenetic and ecological characterization of the fungal kingdom—and 
yet this huge diversity of species cannot be described. This inability to describe 
these species effectively excludes them from further scientifi c scrutiny. Such 
sequences are typically submitted to sequence databases labeled as “uncultured fun-
gus,” making unambiguous reference to those species across datasets and studies 
problematic at best. This lack of linkage across studies in turn makes it diffi cult to 
assemble data for these species; what countries, hosts, and substrates these indi-
vidual, unnamed species are known from cannot easily be compiled. In turn, this 
lack of synthetic inferential power further complicates the eventual formal descrip-
tion of these species. 

 The UNITE database for molecular identifi cation of fungi recently presented a 
solution to this problem (Kõljalg et al.  2013 ). All fungal ITS sequences are clus-
tered to approximately the species level based on sequence similarity, and each such 
OTU—called a  species hypothesis —is assigned a unique, stable name of the acces-
sion number. Thus, regardless of whether the OTU has a formal Latin name or not, 
unambiguous reference across publications—as well as data  assem              bly for individ-
ual species—is possible and even automated. A recent study, based on 365 soil 
samples collected from across the globe, identifi ed 80,486 fungal OTUs and used 
the UNITE species hypothesis system to analyze them. Although a very modest 
4353 of the OTUs could be linked to highly similar reference sequences from  her-
barium specimens   or described culture collections, the underlying sequences of the 
full results of the study are now integrated in UNITE for standardized reference 
(Tedersoo et al.  2014 ; Wardle and Lindahl  2014 ). At the time of this writing, 
 GenBank   has a collection of more than 600,000 fungal sequences from  environ-
mental samples  , chiefl y the nuclear ribosomal internal transcribed spacer (ITS) 
region. Among these, there are about 200,000 that have been identifi ed as stemming 
from an “uncultured fungus,” without an affi liation to any existing ranks. 

 It is hard to estimate how inclusion of this huge invisible diversity would affect 
the fungal systematics that so far encompassed only just over 100,000 accepted 
fungal species. Despite the challenges, it is clear that not including these extant but 
unnamed species in molecular studies of fungi and fungal communities is detrimen-
tal to mycology. Nilsson et al. ( 2011 ) examined the topological effects of including 
such environmental sequences in phylogenetic analyses that featured only sequences 
from vouchered fruiting bodies and cultures. Their inclusion made a signifi cant dif-
ference to the inferred topology and to the support of internodes. Similarly, the rela-
tively recent realization that aquatic ecosystems abound with uncharted fungal 
diversity, particularly in the  Chytridiomycota  and  Cryptomycota , could provide 
taxonomic sampling that might provide resolution of this part of the fungal tree of 
life, which has been plagued by low resolution and poor branch support (Wurzbacher 
and Grossart  2012 ; Ishii et al.  2015 ). Recently a whole new class,  Archaeorhizomycetes , 
comprising hundreds of cryptically reproducing culturable fi lamentous fungi of 
poorly understood ecology, has been discovered from  soil samples   (Rosling et al. 
 2011 ). Using multilocus analyses, they have been phylogenetically placed into the 
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species-poor group  Taphrinomycotina  of the  Ascomycota . The recognition of the 
 Archaeorhizomycetes  represents a major step forward in our understanding of soil 
fungi, as these fungi seem to be common in soil samples throughout the world 
(Porter et al.  2008 ; Rosling et al.  2013 ). At an even higher rank, the new  fungal 
phylum    Cryptomycota , rich particularly in aquatic environments, is also known 
almost exclusively from environmental DNAs (James and Berbee  2012 ; Jones et al. 
 2011 ). The systematics of the  Archaeorhizomycetes  and  Cryptomycota  will remain 
hindered by the absence of complete genome sequences, which will be challenging 
to obtain from these minute fungi. On the other hand, recent advances in obtaining 
near-complete  genome    sequen              ces from single cells hold promise for both placing 
uncultured fungal lineages on the tree of life and for inferring their ecological roles 
(Rinke et al.  2013 ). 

 For the majority of fungal lineages, ITS sequences provide a powerful and effi -
cient means of identifi cation. Therefore, the ITS has been proposed and accepted as 
a universal DNA barcode marker for fungi (Schoch et al.  2012 ). A  DNA barcode  , 
however, is nothing more than a sequence that can be unambiguously linked to a 
taxonomic label for a species. DNA barcodes do not promise a solution for nomen-
clatural classifi cation of diversity. Such a solution might arise from digital codes 
such as PhyloCode (de Queiroz and Gauthier  1994 ). However, this concept still 
lacks a standardized real-life implementation (de Queiroz and Gauthier  1994 ; De 
Oliveira Martins et al.  2014 ; Money  2013 ). While ITS is generally considered as 
only informative for species recognition and low-lever phylogenetic analysis, clas-
sifi cation of the environmental diversity typically relies on observations of high 
sequence similarity to reference sequences from annotated specimens (Schoch et al. 
 2014 ). However, with the use of new tools to address some serious alignment issues 
regarding the ITS region (Liu et al.  2009 ,  2012 ), ITS alignments have shown prom-
ise in use for intermediate-level phylogeny (Koetschan et al.  2010 ), providing com-
parable classifi cation accuracy to some other frequently used  gene markers  , such as 
the large subunit of rRNA sequence (Wang et al.  2011 ). Including proper reference 
sequences would provide insights into evolutionary history and ecology for these 
so-called invisible fungi (Wang et al.  2011 ; Porras-Alfaro et al.  2014 ; Del Olmo- 
Ruiz and Arnold  2014 ). Automatic phylogenetic approaches, such as those imple-
mented in MOR (Hibbett et al.  2005 ) and WASABI (Kauff et al.  2007 ) would be 
able to effi ciently fi lter and classify environmental sequence  da           ta. Still, there might 
be many  environmental species   that have no comparable characterized lineages, 
such that they cannot be morphologically defi ned or easily systematically posi-
tioned. Moreover, the absence of barcodes of the ITS region associated with this 
phylum is also an impediment, as many barcodes that cannot be assigned to a phy-
lum may belong to these poorly sampled basal lineages, which exist in databases 
primarily as 18S rDNA sequences. To incorporate these taxa into fungal systemat-
ics requires developing methods for gathering informative sequence data that link 
barcodes to darker regions of the fungal phylogeny and performing effi cient phylo-
genetic analysis on large datasets. 

 Given the deep divergence of the major fungal lineages, plodding through taxa 
using PCR with degenerate primers to fi sh for loci is a challenging, if not  impossible, 
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approach toward recovering an effective diversity of  protein-coding genes   that will 
prove informative for deep phylogeny. Moreover, establishing linkages among 
multiple independent genes that derive from the same OTU defi ned from environ-
mental DNA is nearly impossible at present. Thus, with the development of single- 
cell genome sequencing, phylogenomic approaches might provide an alternative 
and more powerful means to reconstruct a systematics of both the visible and the 
invisible fungal diversity.  

    Fungal Genomes, Phylogenomics, and Phylotranscriptomics 

 The very fi rst sequenced fungal genome was also the fi rst sequenced eukaryotic 
genome: that of the wine yeast  Saccharomyces cerevisiae , an important genetic 
model and an industrial workhorse. This comparatively small genome was pub-
lished in 1996 (Goffeau et al.  1996 ). Since then, following the technical progress in 
 genome sequencing  , fungal genomes have been released at an ever-accelerating 
rate. The number of available fungal genome sequences has increased by another 
order of magnitude (Galagan et al.  2005 ). In GenBank (  http://www.ncbi.nlm.nih.
gov    ) alone, there are currently fungal genomes representing 451 species. The 
recently launched 1000 Fungal Genomes (1KFG) project (  http://1000.fungalge-
nomes.org    ) plans to sequence representatives from more than 650 recognized fami-
lies of fungi (Kirk et al.  2008 ; Hibbett et al.  2013 ). The released genomes facilitate 
assembly of closely related genomes against the reference genomes even in small 
laboratories, and the sampled genomes of closely related organisms are designed to 
enable comparative studies. Comparative genomics of closely related organisms 
can  pr              ovide a powerful approach to ascertain the genetic basis of diverse pheno-
types, such as fungi-host associations, secondary metabolic pathways, morphologi-
cal development, and fungal responses to  environmental signals   (Galagan et al. 
 2005 ; Hibbett et al.  2013 ; Sikhakolli et al.  2012 ; Andersen et al.  2011 ; Lehr et al. 
 2014 ; Nishant et al.  2010 ; Rodriguez-Romero et al.  2010 ; Heitman  2007 ). Many 
comparative genomic studies focus on the biology and evolution of model fungi to 
make inferences about basic biological processes in all eukaryotes. Studies that 
analyze genomes in the context of their phylogenetic and evolutionary relationships 
are accelerating research into the fundamental aspects of eukaryotic biology. As 
 st  ated in Delsuc et al. ( 2005 ) “…nothing in genomics makes sense except in the 
light of evolution.”—large numbers of genomes alone do not provide much insight 
into organismal biology, however. Many features of genomes need to be related to 
organismal knowledge and understood in the context of their evolutionary history. 

 How can these fungal genomes empower fungal systematic research? The 
genome itself comprises all informative  genetic markers   that could be sampled for 
any individual. Access to this scale of genomic data for phylogenetic purposes 
could potentially alleviate previous and present problems of phylogenetics that arise 
from insuffi cient or biased sampling of genetic markers. With this massive increase 
of potentially useful characters, the focus of phylogenetic inference must shift 
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toward development of new methodologies that can effi ciently, accurately, and reli-
ably handle big data and toward approaches that facilitate a powerful sampling of 
taxa (Philippe et al.  2011 ). Basic approaches and future challenges in phylogenom-
ics toward reconstruction of the larger tree of life were addressed 10 years ago 
(Delsuc et al.  2005 ), and phylogenomic approaches and tree reconstruction methods 
have been tested using different sets of fungal genomic data (Ebersberger et al. 
 2012 ; Dutilh et al.  2007 ; Medina et al.  2011 ). Development of phylogenomic 
approaches for fungal phylogenetic inference has been addressed recently (Hibbett 
et al.  2013 ; Taylor and Berbee  2014 ) and is beyond the scope of this review. Current 
genome projects have sampled representative taxa in major lineages across fungal 
kingdom, providing extensive datasets for  re              solving relationships between major 
lineages of higher fungi. The current genomic projects might provide suffi cient 
taxon sampling to resolve some of the unsolved  polytomies   within  Basidiomycota  
and  Ascomycota , as  summarize  d in Hibbett et al. ( 2007 ). However, to resolve the 
phylogeny of the earliest fungal lineages, it is already clear that densely sampled 
genomes and the development of novel culture-independent methods will be criti-
cal. Recent phylogenomic analyses support the supergroup  Opisthosporidia  ( Micro
sporidia  +  Cryptomycota  +  Aphelida ) as the basal branch of all sequenced fungi 
(Capella-Gutierrez et al.  2012 ; Haag et al.  2014 ; James et al.  2013 ; Karpov et al. 
 2014 ). This group is known to be highly diverse on the basis of environmental DNA 
studies (Jones et al.  2011 ; Karpov et al.  2014 ) and also completely unculturable in 
the absence of a host. Suffi cient sampling of genomes is also important for under-
standing divergence and recent adaptation among very closely related species, espe-
cially to reveal cryptic species and enable genome-wide population studies (Ellison 
et al.  2011 ; Park et al.  2011 ; Padamsee et al.  2012 ; Neafsey et al.  2010 ). Taking 
advantage of next-generation sequencing techniques, genome-wide expressed 
mRNA sequences can be easily generated without previous knowledge of genome 
sequence or of specifi c gene regions. Phylotranscriptomics, the use sequences of 
expressed messenger RNA sequences to infer phylogeny, has been shown to be a 
promising approach to infer phylogenies in several non-fungal groups (Breinholt 
and Kawahara  2013 ; Wickett et al.  2014 ). Similar applications in the fungal king-
dom are certainly looming on the horizon. 

 Despite increasing sequencing capacity, it remains the case that for the majority 
of fungal species, genome-scale sequence is unlikely to be available soon. In most 
of these cases, a  multilocus phylogeny   is now realistically affordable and is expected 
to be informative enough for most systematic questions about these taxa. However, 
previously used genetic markers for phylogenetic analysis were originally identifi ed 
by a  trial and error process   based on very limited data and often subsequently 
sequenced in other taxa solely motivated by the desire for completion of particular 
datasets. Thus, the  p              hylogenetic usefulness of some genetic markers can be far from 
optimal (Robert et al.  2011 ). Sequenced genomes make it possible to assess the 
potential phylogenetic utility of many genetic markers as well as to enable more 
successful primer design and PCR effi ciency (Ye et al.  2012 ). Knowledge regarding 
gene ontology and substitution rates is also critical for selecting proper markers for 
resolution of divergences occurring on diverse time scales during disparate epochs. 
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Approaches for selecting robust sets of  phylogenetic markers   based on sequenced 
genomes are starting to emerge and are urgently needed. For example, ranking 
genes for their usefulness in phylogenetic inferences showed promise as a means of 
solving phylogenies for some problematic fungal groups (Schoch et al.  2009a ; 
Binder et al.  2013 ; Robert et al.  2011 ; Hyde et al.  2014 ; Capella-Gutierrez et al. 
 2014 ).  

    Experimental Design and Analysis for Systematics Using 
Genome Data 

 Phylogenetic inference can be improved either by use of better models or by obtain-
ing better data. For phylogenetic problems corresponding to short, deep internodes, 
quality of data is often the limitation to successful resolution (Townsend et al.  2008 ; 
Philippe et al.  2011 ; Su et al.  2014 ). Early fungal phylogenetic research expanded 
the repertoire of genetic markers beyond the common  rRNA markers   by testing and 
developing gene markers that had been found useful in other organisms. The fi rst 
AFTOL project selected six markers to sample from major fungal groups after 
attempting to widely amplify more than 10 markers (Lutzoni et al.  2004 ; James 
et al.  2006a ; Hibbett et al.  2007 ; Matheny et al.  2007 ; Liu and Hall  2004 ). Testing a 
small number of genetic markers on a small number of taxa using degenerate PCR 
amplifi cation is laborious but feasible; however, its use for evaluating a genome- 
scale pool of genes for diverse taxonomic sampling would be infeasible. Identifying 
the most informative candidate loci across the genome in advance can provide a 
prioritized list for identifi cation by degenerate PCR of novel promising markers or 
for use in deciding on reference gene sets for genome-scale targeted capture  meth-
              odologies (e.g., Li et al.  2013 ). By adopting relaxed assumptions regarding the 
model of molecular evolution and deriving theory based on asymptotic interest in 
resolving short  deep internodes   of four taxon trees, a method for profi ling  phyloge-
netic informativeness   over time of diverse gene markers was developed (Townsend 
 2007 ) and applied to the task of identifying better markers during the second 
AFTOL project (Schoch et al.  2009a ; Townsend et al.  2008 ). 

 This theory was generalized to resolve nodes based on rates of evolution of indi-
vidual characters or sets of characters onto the molecular evolutionary or chrono-
logical time scale of interest, weighing the accumulation of signal with internode 
length versus the loss of signal on subtending branches of the  phylogenetic tree   
(Taylor and Berbee  2014 ; Su et al.  2014 ; Townsend et al.  2012 ; Feau et al.  2011 ; 
Miadlikowska et al.  2014 ; Walker et al.  2012 ). Binder et al. ( 2013 )  perform  ed a 
thorough analysis of candidate loci to identify optimal experimental design for reso-
lution of phylogenetic hypotheses. In this comprehensive study, among 356 single- 
copy genes, 25 markers ranked at the top for phylogenetic informativeness and 
probability to resolve key epochs were selected to resolve the problematic phylog-
eny of wood-decay fungi. As demonstrated in that study, gene markers selected 
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from sequenced genomes should be evaluated for their site rate distributions, phy-
logenetic informativeness, and predicted signal and noise. Markers then can be 
quantifi ed for predicted utility compared to the worst possible performance or ran-
dom sampling of taxa and genes. For a given phylogenetic hypothesis, the process 
should rank additional taxa whose genome sequences would provide the most 
power for resolving these nodes and then predict which taxon-gene elements of a 
presumed data matrix would provide the most power for resolving these nodes. The 
result minimizes the effort for resolving the given nodes (and simultaneously mini-
mizes the probability of error) by assessing phylogenetic performance for top  taxon- 
gene   combination until a robust phylogeny is reached. 

 The advent of big data in phylogenomics has brought renewed attention not only 
to issues of  phylogenetic signal   but also to issues of phylogenetic noise and bias 
(Townsend and Lopez-Giraldez  2010 ; Lopez-Giraldez and Townsend  2011 ; Lopez- 
Giraldez et al.  2013 ). In data-limiting analyses, it was always possible to quiet con-
cerns about the relative effi cacy of some data over other data with a plaintive call 
for more data. In the genomic era, with the availability of big data, due to known 
 iss              ues such as inconsistency of substitution rates, horizontal gene transfer, and 
unclear gene ontology, it has become clear that big data results bulwarked by the 
traditional hallmarks of strong support are sometimes in confl ict with each other 
(Salichos and Rokas  2013 ). The resolution of this confl ict requires rigorous thought 
about the sources of noise and consequently the relative power of data to address 
phylogenetic hypotheses. At the same time, the growing resource of publicly avail-
able sequenced genes and genomes should in principle provide some guidance as to 
how to optimally design a phylogenetic sequencing study. For example, genes can 
be chosen from sequenced genomes of known phylogeny and then ranked for their 
performance in accurately inferring phylogenetic relationships—this approach is an 
extension of the practice of traditional marker selection facilitated by automatic 
computer programs (Capella-Gutierrez et al.  2014 ). Performance of these analyses 
is facilitated by the web application PhyDesign (Fig.  3.1 ) (Lopez-Giraldez and 
Townsend  2011 ). PhyDesign evaluates gene performance based on sequence align-
ment and a chronogram to predict signal and noise and the best-possible perfor-
mance, where the metric of interest is the amount of support provided for the given 
nodes. Providing a means for prioritizing  gene sequencing and taxon sampling   and 
for sorting the “wheat from the chaff” in large phylogenomic studies, this applica-
tion of the theory for phylogenetic study design would robustly improve the scope 
of data collection and analysis, the overall cost-effectiveness, and the probability of 
correct inference of a phylogenetic study. In addition, phylogenetic inferences are 
increasingly required to be robust to differential gene divergence under the multi-
species coalescent, necessitating informed choices not only on what genetic mark-
ers to employ but also on what analysis approaches to take (Hyde et al.  2013 ).

   Theoretical tools are still needed to address long-standing controversies in 
experimental design that have occasionally engendered contentious academic 
debate, including (1) the power of different genetic markers, (2) the relative utility 
of taxon sampling versus gene sampling, (3) the differentiation between soft and 
hard polytomies, and (4) the design of taxonomically dense phylogenetic studies 
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  Fig. 3.1    Utility to phylogenetics of extraction of informative genes from genome sequence data. 
( a ) Phylogenetic informativeness can be estimated and compared among different genes for given 
epochs (modifi ed from López-Giráldez et al.  2013 ). Phylogenetic informativeness profi les for 
simulated sequence alignments on a single molecular evolutionary unit. Each of the ten different 
colors represents a different mean rate, from 0.0001 (slowest, bottom) to 0.001 (fastest, top) sub-
stitutions per site per time unit.  Dashed lines  are profi les from alignments simulated with gamma 
rate heterogeneity ( α  = 0.5, 1, 2, and 3). ( b ) Cumulative proportionate likelihood-ratio support 
(PLRS), averaged across nodes for simulated amino acid datasets. Genes are ranked by differential 
phylogenetic informativeness encompassing all branches in the tree. The  upper dashed line  and the 
 lower dashed line  separately represent cumulative PLRS when loci are prioritized, post hoc, from 
highest to lowest PLRS values and from lowest to highest PLRS values. The  intermediate dashed 
line  is the hypothetical average one would achieve sampling at random from loci available. The 
 solid line  is the performance when genes are selected by their phylogenetic informativeness based 
on inferred rates of sites only       
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optimized by taxonomically sparse genome-scale data (Lopez-Giraldez et al.  2013 ; 
Moeller and Townsend  2013 ). A robust fungal phylogeny would provide a solid 
framework for fungal systematics that would, in turn, be of increasing signifi cance 
in modern mycological research.  

    Fungal Systematics in the Future: Integration of Fungal 
Systematics and Fungal Evolutionary Biology 

 Systematics is fundamental to organismal biology and is the discipline that synthe-
sizes achievements from all of biology and ultimately underlies all research in evo-
lutionary biology. Arising in part from systematics, the theory of evolution is the 
basis of modern biology. A robust phylogeny and reliable classifi cation is the fi rst 
step for the development of fungal  systema              tics, and systematists should not be satis-
fi ed only with describing the evolutionary history of fungal lineages (Hibbett and 
Taylor  2013 ). More importantly it is our responsibility to qualitatively and quanti-
tatively explain how this history led to the diversity we observe today, a question 
that brings us to the integration of systematics and evolutionary biology. In fact, 
from taxonomy, diversity, molecular phylogeny, to the tree of life, the study of 
systematics of all  organism groups   has itself been evolving, and new contents from 
evolutionary biology have been continually if controversially incorporated into 
modern systematics (Losos et al.  2013 ). 

 Fungal systematics is critical for understanding the evolution of genes and their 
functions in fungal genetics, and multigene analysis provides an opportunity to 
avoid the pitfalls associated with assuming a single-gene phylogeny represents a 
true species phylogeny. Genetics has long focused on gene behavior and function 
within species, especially for model organisms, until recently the availability of 
sequenced genomes and robust fungal phylogeny made data available to trace gene 
ontology among different lineages within a long evolutionary history. Like many 
other eukaryotic organisms, horizontal gene transfer and gene/genome duplication 
are main contributors for new genes and gene functions in many fungal species 
(Bruto et al.  2014 ; Cohen-Gihon et al.  2011 ; Fitzpatrick  2012 ; Wapinski et al. 
 2007 ), and horizontal transfer of  toxic gene clusters   among fungal species was dis-
covered based on sequenced fungal genomes across lineages of fungal tree of life 
(Slot and Rokas  2011 ; Wisecaver et al.  2014 ). For many fungi, the dominant form 
of their life history is haploid, and mitotic and meiotic recombination can happen 
via parasexual and sexual reproductions in fungal species (Schoustra et al.  2007 ; 
van de Vondervoort et al.  2007 ). Thus, the reconciliation of gene phylogeny and 
species phylogeny in low-level species taxonomy in fungi could provide insights 
into the modeling  of               speciation events (Taylor et al.  2000 ). 

 Fungal systematics and genome-enabled mycology are linked through evolu-
tionary biology. Sequenced genomes provide a huge amount of data that can be 
brought to bear on all branches of fungal research. Recent progress has been espe-
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cially interesting in effi ciently addressing the genetic basis of various phenotypes 
(Hibbett et al.  2013 ; Taylor and Berbee  2014 ). Genomic research based on fungal 
models, such as  S. cerevisiae ,  Neurospora , and  Aspergillus  species, has been 
focused on fundamental biology with implications that extend toward many non- 
fungal branches of the tree of life, including meiosis, cell cycle, and internal oscil-
lation (Galagan et al.  2005 ). In contrast, with an increase of released fungal genomes, 
genome-enabled mycology has emerged: early studies have focused either on spe-
cifi c ecology or on metabolic pathways or  functional gene families   and their evolu-
tion (Spanu et al.  2010 ; Vogel and Moran  2013 ; O’Connell et al.  2012 ; Stajich et al. 
 2010 ; Pel et al.  2007 ; Martin et al.  2010 ; Morin et al.  2012 ). In most of these early 
studies, fungal systematics generally serves not only as a guide for what taxa to 
sample and study independently but also as a reference for tracking gene history. 
With the expected robust phylogeny and well-sampled genomes that could come as 
an outcome from the 1000 Fungal Genome project, a reliable gene ontology should 
be inferred that would facilitate inference of how fungal morphologies and ecolo-
gies have evolved, knowledge of which is one of the overarching goals of fungal 
systematics. For example, one-celled (yeast) stages are distributed throughout the 
fungal kingdom, and comparative genomics has revealed that yeast forms arose 
early and independently in multiple fungal clades via parallel diversifi cation of a 
fungal-specifi c transcription factor family involved in regulating yeast-fi lamentous 
switches (Nagy et al.  2014 ). Reliable gene ontology is critical to the reconstruction 
of gene networks and the assessment of gene functions, especially for systems biol-
ogy investigation that attempt to answer how complexity can be developed while 
essential  fun              ctions are maintained. 

 The importance of robust phylogenies to infer the evolution of fungal ecology is 
clear, but fungal systematics is also an essential component of any complete under-
standing of fungal ecology.  Inorganic and organic components   of the environment 
impose signifi cant selection on fungal phenotypes (Tedersoo et al.  2014 ). Ecological 
factors, such as host types, nutrient resources, or geographic distribution, have long 
been considered characters that are important for fungal classifi cation. With well- 
resolved molecular phylogenies, we could evaluate the role of ecology in fungal 
evolution, reconcile the ontology of specifi c gene function groups, and infer the 
genetic basis of ecological success. Recent discoveries on the evolution of wood 
decay among polypore species and mushroom-forming fungi have demonstrated 
how this strategy can work (Binder et al.  2013 ; Floudas et al.  2012 ; Eastwood et al. 
 2011 ). Applying principles of systematics to metagenomics makes it possible to 
monitor the dynamics of biological processes involving diverse fungal species on 
both spatial and temporal scales to understand the contributions of those fungal spe-
cies to the process of interest. For instance, a study on global soil sampled by 
(Tedersoo et al.  2014 ) demonstrates direct and indirect effects of climatic and 
edaphic variables on plant and fungal richness. The National Science Foundation 
has launched a program called Dimensions of Biodiversity, which “takes a broad 
view of biodiversity and focuses on the intersection of genetic, phylogenetic, and 
functional dimensions of biodiversity.” 
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 Further extension of the broad impacts of fungal systematic research requires 
experienced mycologists with broad training in traditional fungal classifi cation, 
molecular systematics, and bioinformatics/genomics. Mycologists have long been 
considered as naturalists. Training of fungal systematics has been provided in many 
institutes, especially in colleges or departments for plant pathology. Fungal classifi -
cation and taxonomy training usually via monographic work require a lot of time in 
both fi eld and laboratory, while molecular systematic training requires a decent 
facility for sequencing and/or computation. Signifi cant computational needs are 
especially required for  phylogenomics  . Funding resources are heavily biased toward 
molecular research, leading to a scarcity of high-quality training in traditional fun-
gal systematics, especially at the graduate level (Pearson et al.  2011 ). In the long 
run, the lack of well-trained mycological systematists would be a problem not only 
holding back the  de              velopment of fungal systematics but also impeding many other 
research fi elds that rely on knowledge of fungal biodiversity and evolutionary biol-
ogy. Well-trained mycologists are also critical for helping the public to understand 
the gaps between the quickly developing “omics” sciences and the long-developed 
traditional senses of fungi and fungal biology. 

  The greatest challenge for fungal systematics has always been to be able to 
take disparate pieces of knowledge from diverse kinds of studies of fungi to make 
synthetic biological inference, and only in this way will fungal systematics be of 
maximum benefi t to the whole community conducting research on fungi and the 
scientifi c community at large.      
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