
JOPA: Stay Object-Oriented
When Persisting Ontologies

Martin Ledvinka(B) and Petr Křemen

Czech Technical University in Prague, Technická 2, Prague, Czech Republic
{martin.ledvinka,petr.kremen}@fel.cvut.cz

Abstract. Accessing OWL ontologies from IT systems can bring many
problems unfamiliar to developers used to the more common relational
storage approach. These problems stem from the dynamic nature of
ontologies, their open-world character and expressiveness. In this paper,
we present the Java OWL Persistence API (JOPA), a persistence layer
allowing object-oriented access to semantic web ontologies. It supports
features like caching, transactional processing and a semantically clear
contract between the ontology and the object model. In addition, we
present the OntoDriver, a software layer decoupling storage access from
the object-ontological mapping. We provide an in-depth theoretical com-
plexity analysis of our approach in connection with an analysis and prac-
tical evaluation of the performance of ontological storage with regards
to application access scenario.

Keywords: Ontology · Persistence · Application access · Complexity

1 Introduction

Large expressive ontologies are a powerful tool for knowledge modelling. How-
ever, their complexity requires proper design and development of end-user infor-
mation systems. During information system design, its creators face the challenge
of choosing an appropriate software library that is reasonably easy to use and
maintain, but that allows exploiting the ontology in its complexity [1].

On one side, information systems, that accept closed-world assumption by their
nature, have to deal with distributed and open-world knowledge represented in
ontologies. On the other hand, ontological changes often do not affect the
information system data model assumptions and thus can be smoothly applied
without information system recompilation and redeployment (e.g. taxonomy/
metadata extension). Furthermore, expressive power of semantic web ontologies
is significantly higher than that of relational databases.

For example, an ontology specifies that each Person has a name. Due to the
open world assumption, the ontology is consistent even if a particular Person
does not have recorded his/her name. However, a genealogical application access-
ing the ontology needs the name to be known, which causes the application to
crash whenever it receives (consistent, but application–incompatible) data from
an ontological source, specifying a Person without a name.
c© Springer International Publishing Switzerland 2015
S. Hammoudi et al. (Eds.): ICEIS 2015, LNBIP 241, pp. 408–428, 2015.
DOI: 10.1007/978-3-319-29133-8 20



JOPA: Stay Object-Oriented When Persisting Ontologies 409

This paper presents a solution for these issues – the Java OWL Persistence
API (JOPA), see [2], a persistence layer that allows using the object-oriented
paradigm for accessing semantic web ontologies. Comparing to other approaches,
it supports validation of the ontological assumptions on the object level ([1,3]),
advanced caching, transactions, unification and optimization of repository access
through the OntoDriver component, as well as accessing multiple repository con-
texts at the same time. Additionally, we present a complexity analysis of Onto-
Driver operations that allows optimizing object-oriented access performance for
underlying storage mechanisms. Next, we compare our solution to low level
Sesame API in terms of efficiency. Last, we discuss several challenges of ontology
access stemming from our experience in real-world application design.

Section 2 shows the relationship of our work to the state-of-art research.
Section 3 introduces design and implementation of a prototype system for ontology-
based information system access. Section 4 analyses complexity of operations
defined in the API for storage access. In Sect. 5 we discuss the practical usage
of both JOPA and OntoDriver. We further examine our experience from using
JOPA in real-life application and the lessons we learned in Sect. 6. The paper is
concluded in Sect. 7.

2 Related Work

Some object-oriented solutions try to approximate ontological OWL reasoning [4]
by means of procedural code, like [5], or [6]. However, this significantly limits the
expressive power of the ontology and is memory-consuming on the information
system side.

There is another research direction, not compromising reasoning complete-
ness, while maintaining its scalability – simplifying programmatic access to
semantic web ontologies stored in optimized transactional ontology storages.
This is also where our solution lies. Two main existing approaches are presented
in the next sections.

2.1 Domain-Independent APIs

Many APIs for programmatic access to ontologies make no assumptions about
the particular ontology schema. This paradigm is exploited in frameworks like
OWL API [7], Sesame [8] or Jena [9]. These systems are generic, allowing to
exploit full range of ontological expressiveness, trading it for verbosity and poor
maintainability of the resulting code. Furthermore, using these tools requires
software designers to hold deep knowledge of the underlying ontological struc-
tures. Comparing to these systems, our solution provides object-ontological map-
ping that helps software designers in keeping the design readable, consistent and
short, see Sect. 5.1.



410 M. Ledvinka and P. Křemen

2.2 Domain-Specific APIs

There are already several established solutions, where the ontology schema is
compiled directly into the object model. This paradigm makes use of an object-
ontological Mapping (OOM). Representatives of this paradigm are e.g. Empire [10]
or AliBaba1. Comparing to the former, these systems actually access ontologies in
a frame-based (or object-oriented) manner. Object-ontology mappings bind the
information system tightly to the particular ontology. This significantly simplifies
programmatic access and is less demanding on the developer expertise in semantic
web ontologies. However, it also discards most of the benefits of ontologies. The
object model becomes as rigid as the model of applications based on relational
databases, no difference is made between inferred and asserted knowledge and the
application looses access to knowledge not captured in the domain model.

A thorough discussion of these architectures can be found in [2,3]. JOPA,
introduced in Sect. 3, aims at taking the best of both types, as can be seen in
Fig. 1. It provides compiled object-based mapping of the ontology schema similar
to the domain-specific approaches described above, while also enabling access to
the dynamically changing aspects of the ontology (see Sect. 3).

Fig. 1. JOPA compared to domain-independent and domain-specific approaches. The
complete ontology view is included only partially in JOPA, because although it supports
unmapped properties, accessing concepts not mapped by the object-model is limited
in JOPA. It would require defining an entity mapping the owl:Thing concept, which
would bring problems with object identity, as will be discussed in Sect. 6.1.

3 JOPA

JOPA stands for Java OWL Persistence API. It is in essence an API for efficient
access to ontologies in Java, designed to resemble its relational-world counterpart
Java Persistence API [11].

In this section, we introduce the architecture of JOPA.
1 https://bitbucket.org/openrdf/alibaba, Accessed 04-08-2015.

https://bitbucket.org/openrdf/alibaba


JOPA: Stay Object-Oriented When Persisting Ontologies 411

Architecture. From the architectural point of view, JOPA is divided into two
main parts:

OOM, realizes the object-ontological mapping and works as a persistence
provider for the user application. The API resembles JPA 2 [11], but provides
additional features specific to ontologies.

OntoDriver, provides access to the underlying storage optimized for the pur-
poses of object-oriented applications. OntoDriver has a generic API which
decouples the underlying storage API from JOPA.

Figure 2 shows a possible configuration of an information system using JOPA,
together with some insight into the architecture of JOPA. The application object
model is defined by means of a set of integrity constraints which guard that
the ontological data are usable for the application and vice versa. Thanks to
the well-defined API between the OOM part of JOPA and OntoDriver, there
can be various implementations of OntoDriver and the user can switch between
them (and between the underlying storages) without having to modify the actual
application code.

Fig. 2. JOPA Architecture. There are clear borders between the application, storage
access layer and the storage itself. It is also visible that the domain model objects
can be used throughout the application. Integrity constraints restrict the ontology so
that it corresponds to the application’s needs and annotations corresponding to these
constraints are used to specify the domain model entity classes.



412 M. Ledvinka and P. Křemen

3.1 JOPA OOM

Let us now briefly describe the main features of the object-ontological mapping
layer of JOPA.

The OOM layer is mainly represented by the EntityManager interface, which
corresponds to its JPA 2 counterpart [11] to a large extent. It contains CRUD2

operations: find, persist, merge and remove, but it enhances them with versions
supporting context descriptors [2]. It also contains operations for transaction
management and cache access.

Mapping. Object-ontological mapping is a mechanism of transforming onto-
logical data, represented by concepts, properties and individuals, into classes,
attributes and instances of the object-oriented paradigm and vice versa. This
mapping enables one to define and use simple classes (called entities) as busi-
ness objects in the application, a mechanism with which developers are familiar.
Such an entity can be seen for example in Listing 1.1.

@OWLClass(iri="http :// example.org/Student ")

class Student {

@Id(generated = true)

URI id;

@DataProperty(iri="http :// example.org/name")

String name;

@DataProperty(iri="http :// example.org/email ")

String email;

@ObjectProperty(iri="http :// example.org/course",

fetch = FetchType.LAZY)

Set <Course > courses;

@Inferred

@Types

Set <String > types;

@Properties

Map <String , Set <String >> properties;

}

Listing 1.1. Example of a business entity class declaration with JOPA annotations
representing the object-ontological mapping.

The mapping is described by a set of integrity constraints, represented as
Java annotations in the entity classes. Such integrity constraints define a clear
contract between the object model and the ontology. The class declaration in
Listing 1.1 reveals the simplicity of the description of the mapping. A class
represents an ontological concept, data properties are attributes of primitive
types (String, Integer etc.) and object properties are references to instances of
other classes. The types field in the example then represents a set of concepts
to which an individual mapped to an instance of this class belongs.
2 Create, Retrieve, Update, Delete.



JOPA: Stay Object-Oriented When Persisting Ontologies 413

An ontological individual is fully identified by its IRI3. However, this is not
the case in object oriented world, where the identity of each instance is tightly
coupled with the class it belongs to. Therefore, JOPA places a constraint to the
identity of individuals represented in it by requiring them to be explicitly stated
to be of the specified ontology concept.

JOPA currently does not support blank nodes and anonymous individuals.

Unmapped Properties. One of the key features that differentiates JOPA from
other ontology persistence frameworks like Empire and AliBaba is its ability to
provide access to properties not captured by the object model. Such property
values are represented by a map where the keys are property IRIs and values are
sets of property values. The map is annotated with the @Properties annotation.
This way the application has, although limited, access to the dynamic part of
ontological data without having to adjust the domain model. See the properties
attribute in Listing 1.1.

Inferred Attributes. Ontologies contain two types of information:

– Explicit (asserted),
– Implicit (inferred).

Inferred information cannot be changed, as it is derived from the asserted
knowledge by a reasoner and can change only by modification of the explicitly
stated information. As a consequence, it is necessary to prevent modification of
inferred data. JOPA supports both asserted (in read/write mode) and inferred
(read-only) attributes. This support is realized by means of the @Inferred and
@Asserted annotations. The @Asserted annotation is optional. Every field not
annotated with @Inferred is considered asserted and allowed to be modified.

Contexts. Another feature of JOPA is its ability to work with ontologies distrib-
uted in several contexts (graphs). When the underlying storage supports this
feature, the application is able to specify not only in which context an instance
should be searched for, but also contexts for individual attributes of the instance.
If the context is not specified, the default one is used.

Transactions and Caching. JOPA supports transactional processing of the onto-
logical data. However, the mechanism is different from standard relational-based
persistence, because reasoning makes it more difficult to reflect pending changes
to the transaction that produced them. For example, when a property value is
changed during a transaction T1, only T1 has to be able to see effects of that
change even before commit. JOPA itself does not employ any reasoning and
offloads this burden to the underlying OntoDriver implementation. The Onto-
Driver is free to choose any strategy for keeping track of transactional changes.
When a business transaction commits, JOPA tells the OntoDriver to make the
pending changes persistent in the storage.
3 Internationalized Resource Identifier.



414 M. Ledvinka and P. Křemen

Since applications often manipulate the same data, it is reasonable to use
cache to reduce the necessity to query the storage. JOPA contains a second-level
cache [11], which is shared between all open persistence contexts and enables
quick entity lookup. Another performance improving feature is the support for
lazily loaded attributes4.

3.2 OntoDriver

OntoDriver is a software layer designed to decouple the object-ontological map-
ping done by JOPA from the actual access to the underlying storage. The goal
for such decoupling is on the one hand the ability to switch between different
storages without having to modify the application code. On the other hand, such
layer enables vendor-specific optimizations of the storage access.

The concept of OntoDriver is similar to a JDBC5 driver known from the
relational world. But in contrast to JDBC, where all operations are done using
SQL6 statements, OntoDriver provides dedicated CRUD operations, which give
the implementations more opportunity for optimizations, since they know before-
hand what operation is executed.

However, the OntoDriver API does not eliminate the possibility of using
SPARQL [12] queries for information retrieval and SPARQL Update [13] state-
ments for data manipulation.

OntoDriver API. The key idea behind OntoDriver is a unified API providing
access to ontology storages. To formally describe the API, let us first define basic
ontological terminology:

Theoretical Background. We consider programmatic access to OWL 2 DL ontolo-
gies, corresponding in expressiveness to the description logic SROIQ(D)7. In
the next sections, consider an OWL 2 DL ontology O = (T ,A), consisting of
a TBox T = {τI} and an ABox A = {αI}, where αI is either of the form
C(i) (class assertion), or P (i, j) (object property assertion), where i, j ∈ Ni are
OWL named individuals, C ∈ Nc is a named concept, P ∈ Nr is a named object
property. Other axiom types belong to T . W.l.o.g. we do not consider C(i) and
P (i, j) for complex C and P here. We do not consider anonymous individuals
either. See full definition of OWL 2 DL [4] and SROIQ(D) [14].

In addition to ontological (open-world) knowledge, a set SC = {γi} of integrity
constraints is used to capture the contract between an ontology and an informa-
tion system object model. Each integrity constraint γi has the form of an OWL
axiom with closed-world semantic, as defined in [15].

4 Lazily loaded attribute values are retrieved from the data source only upon applica-
tion request.

5 Java Database Connectivity.
6 Standard Query Language.
7 For the sake of compactness, we neglect datatypes and literals (D) and use descrip-

tion logic notation.



JOPA: Stay Object-Oriented When Persisting Ontologies 415

By multi-context ontology we denote a tuple M = (Od,O1, . . . ,On), where
each OI is an ontology identified by a unique IRI and is called context, Od denotes
the default ontology (default context) which is used when no other context is
specified. This structure basically corresponds to an RDF dataset with named
graphs [16]. An ontology store is a software layer that provides access to M.

An axiom descriptor δa is a tuple (i, {(r1, b1) . . . (rk, bk)}), where i ∈ Ni,
rm ∈ Nr, bm ∈ {0, 1} and m ∈ 1 . . . k. The bms specify whether inferred values
for the given role should be included as well. The axiom descriptor is used to
specify for which information the OntoDriver is queried.

An axiom value descriptor δv is a tuple (i, {(r1, v1) . . . (rk, vk)}), where i ∈
Ni, rm ∈ Nr, vm ∈ Ni and m ∈ 1 . . . k. The vms represent property assertion
values for the given individual and property. The axiom value descriptor specifies
information which shall be inserted into the storage.

Please note that for the sake of readability we have omitted context infor-
mation from the formal definitions. In reality, a context can be specified for the
whole descriptor and for each role.

OntoDriver API. The core operations of the OntoDriver API are as follows:

– find(M, δa): 2M × Ni × Nk
r × {0, 1}k → 2Ni×Nr×Ni , where δa is an axiom

descriptor,
• Given an individual, load values for the specified properties,
• Used by EntityManager.find() in OOM,

– persist(M, δv) = Od ∪ {α1 . . . αs}, where α1 . . . αs are property assertion
axioms created from role-value pairs in δv,
• Persist axioms representing entity attribute values,
• Used by EntityManager.persist() in OOM,

– remove(M, δa) = Od \ {α′
1 . . . α′

t}, where α′
1 . . . α′

t are property assertion
axioms for the roles specified in δa,
• Remove axioms representing entity attribute values,
• Used by EntityManager.remove() in OOM,

– update(M, δv) = (Od \ {α′
1 . . . α′

t}) ∪ {α1 . . . αs}, where α′
1 . . . α′

t are original
property assertion axioms for the roles r1 . . . rk defined in δv and α1 . . . αs are
new property assertion axioms created for role-value pairs in δv,
• Remove old and assert new values for entity attributes,
• Used by EntityManager.merge() or on attribute change during transaction

in OOM,
– getTypes(M, i, b): 2M × Ni × {0, 1} → 2Nc , where the resulting axioms rep-

resent types of the specified individual i, b specifies whether inferred types
should be included as well,
• Get types of the specified named individual,
• Used by EntityManager.find() in OOM,

– updateTypes(M, i, {c1 . . . ck}) = (Od \ {α′
1 . . . α′

t}) ∪{α1 . . . αk}, where cm ∈
Nc, the α′

m are original class assertion axioms and the αo are the new class
assertion axioms for the given individual i,
• Updates class assertion axioms for the given individual by removing obsolete

types and adding new ones,



416 M. Ledvinka and P. Křemen

• Used by EntityManager.persist(), EntityManager.merge() or on attri-
bute change during transaction in OOM,

– validateIC(M, {γ1 . . . γk}) : 2M × 2Ni×Nr×Ni × Sc → {0, 1}, where γm ∈ Sc

and m ∈ 1 . . . k,
• Validate the specified integrity constraints, verifying reasoning-time

integrity constraints which cannot be validated at runtime [1],
• Called on transaction commit in OOM.

The actual programming interface written in Java contains, besides methods
representing the above operations, also methods for issuing statements (presum-
ably SPARQL and SPARQL Update) and transaction managing methods. We
omit these here for the sake of brevity.

Prototype of OntoDriver. To evaluate our design of OntoDriver, we have
created a prototypical implementation. For this prototype, we have chosen to
use Sesame API. One of the main reasons for such decision was that there
exist Sesame API connectors for some of the most advanced ontology reposi-
tories including GraphDB (successor of OWLIM, see [17]) and Virtuoso [18].
The implementation can thus be used to access a variety of storages. More opti-
mized implementations of OntoDriver which would exploit specific features of
the underlying storages can be created, but the prototype was intended as a
general proof of concept for the layered design of JOPA.

The Sesame OntoDriver uses neither SPARQL nor the SeRQL [8] language to
perform data manipulation. We use the Sesame filtering API, which filters state-
ments according to subject, predicate and object (i.e. it basically corresponds to
triple pattern matching in a SPARQL query). On the one hand, this requires for
example asking for each property of an individual separately (or asking for all of
them by making the property unbound). On the other hand a SPARQL query
that would correspond to the find operation (see above) would be a union of
triple patterns. In addition, we have a more fine-grained control over the oper-
ation itself, because we are able to specify whether inferred statements should
or should not be included in the query result. This is an important feature of
JOPA and can generally not be done in standard SPARQL statements.

Another important point is how the Sesame OntoDriver deals with trans-
actions. As was mentioned in Sect. 3.1, JOPA transfers the burden of making
changes done in a transaction visible to the transaction itself to the Onto-
Driver. The prototype handles this task by creating local graphs of added and
removed statements. When the store is queried for some knowledge, the added
and removed transactional snapshots are used to enhance the results returned by
the storage to reflect the transactional changes. These local graphs are of course
unique to every transaction on the OntoDriver level. Currently, this approach
is handicapped by the fact that such local graphs do not provide any reasoning
support, so they represent only explicit assertions. A solution to this drawback
would be for example using an in-memory reasoner, e.g. Pellet [19], for the local
graphs.



JOPA: Stay Object-Oriented When Persisting Ontologies 417

We are also considering another possible solution for keeping the transac-
tional changes. This solution would require temporary contexts created by the
store, which would hold the transactional changes kept currently in the local
graphs. This would enable us to transfer the reasoning task over to the under-
lying storage. This solution remains as an idea for the future development.

4 Operation Complexity Analysis

The OntoDriver API enables us to examine the complexity of operations it
consists of. In this section we consider this complexity with regards to sev-
eral selected ontology storages. A careful reader may have noticed that some of
the operations in the API could share the same implementation, for instance
update(M, δv) can be implemented using remove(M, δa) and persist(M, δv).
Thus, we concentrate the analysis on the following operations:

– find(M, δa),
– persist(M, δv),
– remove(M, δa).

When done with theoretical complexity analysis, we will proceed to experi-
mental evaluation of our theoretical assumptions.

4.1 Complexity Analysis

For the theoretical complexity analysis, we have selected two well known stor-
ages, each representing a different approach to reasoning – one performing total
materialization on data insertion, the other reasoning at query time and doing no
materialization (the difference being similar to forward and backward chaining
strategies in rule systems):

GraphDB, formerly known as OWLIM [17], is a Sesame SAIL8 with rule-based
reasoner using forward chaining,

Stardog,9 performs real-time model checking with no materialization.

Each of these strategies has its pros and cons. Total materialization is fast
in querying, as there is no reasoning performed at query execution time. On the
other hand, statement removal and insertion are slow. In addition it is necessary
to specify reasoning expressiveness before any data is inserted. Total materializa-
tion can also cause significant inflation of the dataset size. Real-time reasoning
keeps the dataset compact and it is fast on insertion, however performing rea-
soning at query time can be time consuming.
8 Storage And Inference Layer.
9 http://www.stardog.com, Accessed 02-12-2014.

http://www.stardog.com


418 M. Ledvinka and P. Křemen

A Note on Indexes. The most important part of every ontology storage is
its index – it determines how quickly the data can be accessed. Ontology repos-
itories follow the trend of data storages from other domains and use B-trees
[20]. GraphDB uses a modified version of B-trees – a B+ tree [21]. There is not
much information about the indexing strategies of Stardog, but we were able to
determine that it also uses a B+ tree from a post in Stardog forum10.

To efficiently access data which are statements consisting of three parts –
subject (S), predicate (P) and object (O), the storages usually contain multiple
indexes. Since there exist six combinations of the three statement parts, there
could be up to six different indexes. With increasing number of indexes the space
required to store the data and the indexes obviously grows. Another problem of
multiple indexes is their updating when the data is modified. Given the fact that
most storages also support contexts, the number of possible indexes grows even
more.

Therefore, storages usually restrict themselves to only a few indexes, based
on the structure of the most frequent queries. It is often the case that property
is bound in such queries. Thus, storages mostly use PSO and POS indexes,
with others optionally available. The PSO index searches statements first by
predicate, then by subject and last by object. The POS index is similar, only
switching object and subject. Although the indexes are designed for generic
RDF statements, they are adequate in our setup, as the ontological axioms
manipulated by OntoDriver have the form of atomic class assertions, or atomic
property assertions, both being serialized as single RDF triples. The PSO and
POS indexes are also the default ones used by GraphDB [22] and Stardog [23].

Analysing Complexity of Typical Operations. In the following paragraphs
we will examine time complexity of each of the operations enumerated at the
beginning of this section with regards to the selected storages, with a short
comment on possible implementations of these operations in OntoDriver.

Table 1. Asymptotic time complexity of the selected operations for GraphDB and
Stardog. b is branching factor of the index B+ tree, n is the size of the dataset. The
complexity of processing B+ trees is described in [20]. CR is the reasoning cost, which
depends on the selected language expressiveness and m is the number of reasoning
cycles performed in materialization of statements inserted into GraphDB.

Storage Tfind Tpersist Tremove

GraphDB O(logbn) O(
m∑

i=0

CRi × logbn) O(
m∑

i=0

CRi × logbn)

Stardog O(CR) + O(logbn) O(logbn) O(logbn)

find(M, δa) Multiple strategies can be employed to realize the find operation,
but in essence they all perform a search for property assertion axioms where the
10 The post is available at http://tinyurl.com/ke4ozf7, accessed 25-01-2015.

http://tinyurl.com/ke4ozf7


JOPA: Stay Object-Oriented When Persisting Ontologies 419

individual and property are bound. Therefore, the PSO index will be triggered.
However, while GraphDB will proceed directly to finding the corresponding data,
Stardog must first perform reasoning and rewrite the query according to the
schema semantics. The complexity can be seen in Table 1.

We would like to stress here that the find operation is theoretically very
favourable in terms of possible performance, because it does not require any
joins, as it is supposed to return a simple union of property values for a single
individual. Therefore it is straightforwardly mappable to the PSO index.

persist(M, δv). Persisting assertion values specified in δv requires insertion of
the corresponding statements into the storage’s indexes (in our case the PSO
and POS indexes).

In addition, in GraphDB, a materialization of statements inferred from the
inserted knowledge is performed. Thus, from a set of statements KE , inserted
into the database, a new set K0

I of statements is derived, K0
I being in turn

inserted into the dataset, triggering more materialization, until a set Km
I is

inserted, from which no additional knowledge can be deduced. This, of course,
makes the persist operation in GraphDB more complex than in Stardog. Again,
the theoretical complexity is shown in Table 1.

remove(M, δa). Doing remove in an ontology requires knowledge of what exactly
should be removed. Thus, JOPA performs epistemic remove, i.e. only values of
properties mapped in the object model are removed. Therefore if the dataset
contains property values which are not mapped by the object model managed
by JOPA, these values are retained. In case the entity contains a field gathering
unmapped asserted properties (see Sect. 3.1), the unmapped values are contained
in this attribute and, to be consistent with the epistemic remove, JOPA deletes
all statements where the removed individual is the subject.

remove in Stardog is again relatively straightforward. Since JOPA does allow
only removal of explicit statements, there is no reasoning required. The procedure
thus consists of finding the relevant statements and removing them from the
index.

The situation is more interesting in GraphDB, because with the removal of
explicit statements, some inferred knowledge may become irrelevant. GraphDB
resolves the operation with a combination of forward and backward chaining [17].
In short, all possible inferred data is found from the removed statements first
(this is the forward chaining part). From the results, backward chaining is per-
formed to determine whether the implicit knowledge is backed by explicit knowl-
edge other than that being removed. If not, the inferred statements are removed
as well. Asymptotically, the complexity of remove in GraphDB is the same as
persist, see Table 1.

The asymptotic complexities suggest that GraphDB is more suitable for read-
oriented applications, especially when the expressiveness of reasoning increases.
In these cases the cost of inference in GraphDB is paid when the dataset is loaded
and at the actual runtime the queries will presumably be much faster. On the
other hand, applications performing a lot of data modifications can benefit from
the non-materializing approach of Stardog.



420 M. Ledvinka and P. Křemen

4.2 Experimental Complexity Evaluation

The theoretical complexity analysis provides information about asymptotic
behaviour of the operations in the selected storages. However, there are hid-
den constants not visible in the formulas which may play a significant role for
working with real-world data volumes. These hidden constants are mostly con-
nected with the internal implementation of the storages. Hence, we decided to
verify our conclusions with measurement.

Existing Storage Benchmarks. There exist several benchmarks for ontology
storages. The key differences between them is expressiveness of their ontology
and the queries. The Berlin SPARQL Benchmark (BSBM) [24] is purely RDF-
oriented and used for testing of SPARQL endpoints. The well known Lehigh
University Benchmark (LUBM) [25] contains basic OWL constructs, however, its
schema is still missing more expressive features like nominals or number restric-
tions. The University Ontology Benchmark (UOBM) [26] is built upon LUBM,
but adds more expressiveness, including transitive and equivalent properties or
cardinality restrictions.

However, the queries used in the aforementioned benchmarks are general-
purpose queries and they are not suitable for the object-oriented access scenario,
which we primarily want to explore. Indeed, the operations required by JOPA (or
any other OOM-supporting framework) are, as the reader already knows from
Sect. 3.2, relatively straightforward and are focused on working with properties
of a single individual. Therefore, we decided to create our own benchmark.

Object-UOBM. The benchmark we created exploits the existing schema and
dataset generator of the UOBM benchmark. But instead of the generic queries
of UOBM, it contains a set of eight queries tailored to the application access
scenario. The queries are written in SPARQL and SPARQL Update in order to
be interoperable for different storages, but they capture the essence of operations
defined in the OntoDriver API.

We used this benchmark to evaluate performance of GraphDB and Stardog
storages in order to verify our theoretical results.

Object-UOBM Results. Complete results of the experiments we conducted
and a detailed description of Object-UOBM can be found in [27], we give just
a brief overview here. The first observation that can be made from the results
is that the price of real-time reasoning in Stardog is very high. The perfor-
mance of a query representing the find operation with reasoning in Stardog is
less than one query per second, while without reasoning it is able to answer
nearly one thousand queries per second (see Fig. 3). A more surprising result
is that SPARQL Update queries representing the persist and update were per-
forming better in GraphDB than Stardog, although GraphDB has to perform
materialization on insertion. Only for a delete query (representing the remove



JOPA: Stay Object-Oriented When Persisting Ontologies 421

1 University 5 Universities 20 Universities 80 Universities 200 Universities 600 Universities

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980

1000
1020
1040

UOBM Query 1 (Server)

Dataset

Q
P

S

Stardog SL
Stardog
GraphDB OWL−MAX
GraphDB

Fig. 3. Performance of Stardog and GraphDB for a select query representing the
find operation. Both storages were evaluated with reasoning (the Stardog SL and
GraphDB OWL-Max lines, see [27] for explanation of the reasoning levels) and without
it. GraphDB failed to answer the query for the largest dataset when using reasoning.
One can cleary see the performance penalty of real-time reasoning in Stardog.

operation) the combination of forward and backward chaining made GraphDB
slower than Stardog.

Another interesting result of the benchmark is that when loading an entity,
it appears to be more efficient to filter the statements only by subject without
specifying the properties to load. We had three variations of the same loading
query, the first using unbound property and value, the second using a union of
triple patterns specifying properties to load and the third doing the same, but
using optional. While the query using optional performed decidedly worst,
the query with unbound property performed the best, although it was loading
unnecessary values of properties which were not mapped in the object model.
Despite the fact that this situation could change in cases where the object model
would map only a small portion of properties and values related to an individual,
it seems to be more reasonable to use the unbound property strategy rather than
specifying the properties to load explicitly.



422 M. Ledvinka and P. Křemen

Overall, it appears that GraphDB is more suitable for application access than
Stardog. One has only to accept the fact that bulk loading is significantly faster
in Stardog and that he has to specify repository expressiveness when creating
it. The application-specific performance of GraphDB, which consists of querying
and modifying existing data and inserting relatively small portions of new data,
is better than that of Stardog.

5 Practical Evaluation of JOPA and OntoDriver

In this section we first evaluate the performance of OntoDriver when compared
to a low-level approach represented by the Sesame API. Then we discuss our
experience from developing a real-life IT system using JOPA.

5.1 Performance and Code Metrics Evaluation

In this section we briefly evaluate the performance of OntoDriver and compare
it to approaches which directly use the native API of the underlying storage.

Performance of JOPA with OntoDriver. While we have already exam-
ined the theoretical complexity of operations present in the OntoDriver API
and experimentally verified them on existing storages, we also need to validate
that our implementation is efficient. The goal of this evaluation is to determine
performance differences between ontology access using JOPA and OntoDriver
and using Sesame API directly. Since the OntoDriver prototype internally uses
Sesame API, we hardly expect JOPA to outperform pure Sesame API solution,
instead we will concentrate on the possible performance penalties stemming from
the additional logic that JOPA has to do. The test machine setup is as follows:

– Linux Mint 17 (64-bit)
– Java 8 update 31 (HotSpot), -Xms6g -Xmx6g
– Sesame API 2.7.14, GraphDB 6.0 RC6
– Intel i5 2.67 GHz
– 8 GB RAM

A class diagram of the benchmark schema is shown in Fig. 4. The application
model is rather small, but sufficient to exercise a large part of the features
supported by JOPA. The application model and the datasets are based on the
UOBM benchmark [26], which we already used in our storage benchmark [27],
and the datasets were generated using a generator application [28].

Results of the benchmark are shown in Table 2. The find operation was load-
ing approximately 450 instances of UndergraduateStudent. Each of them was
connected to three courses in average. Thus, the total number of loaded individ-
uals with properties was more than 1800, representing over 5000 statements. The
persist test inserted 500 new instances of UndergraduateStudent, connected to
four existing courses and a new paper, into the ontology. The update evaluation
updated the name and telephone of each of the previously persisted student,
removed reference to one of his courses and added another one instead. Finally,
the remove benchmark removed the 500 persisted undergraduate students.



JOPA: Stay Object-Oriented When Persisting Ontologies 423

Fig. 4. Benchmark application model. Although small in size, it exercises most of the
concepts supported by JOPA, including inferred entity types and data and object
properties with lazy loading.

Table 2. Benchmark results. The times are average from 100 runs of the benchmark.

Dataset Tpersist/s Tfind/s Tupdate/s Tremove/s

JOPA Sesame JOPA Sesame JOPA Sesame JOPA Sesame

UOBM 1 4.158 2.209 13.738 13.353 32.28 9.571 36.456 2.740

UOBM 5 4.245 2.252 13.830 13.366 32.461 9.993 36.718 2.918

UOBM 10 4.255 2.260 13.840 13.293 32.625 10.077 36.433 3.024

Benchmark Results Discussion. The benchmark results show that JOPA per-
forms comparably when loading and persisting entities. It is important to point
out that to mimic the behaviour of JOPA on entity loading, the Sesame API
runner was verifying that the object property values were of the correct type.
However, there is a significant performance gap between Sesame API and JOPA
in update and remove. Major part in this gap is given by the fact that JOPA
first has to load the entities before updating or removing them. For Sesame
API, we simply removed (and inserted) the required statements without load-
ing them first. Of course, the benchmark is skewed in this regard, because a
real world application would most likely require the entity loading anyway. Also,
JOPA currently does not support the getReference method [11], which would
be suitable for the update and remove scenarios. Still, there is a large margin for
improvement in JOPA for these operations.

In the future, we would like to try comparing different strategies of imple-
menting OntoDriver.

JOPA and OntoDriver versus Sesame API. One of the most important
advantages of using JOPA with OntoDriver is the ability to treat ontological
individuals with their properties as coherent objects with attributes and possibly
add behaviour to those objects, thus increasing readability and maintainability
of the application. Such task cannot be accomplished using domain-independent
APIs like Sesame API or OWL API without writing a large amount of boilerplate
code. This difference is very similar to what the developer gains when using JPA
instead of pure JDBC. Consider the example in Fig. 5. The difference in the
amount of code written is clear, and the Sesame code does not even make any
checks for correct types (for instance that a property value is another individual
and not a literal) or integrity constraints.



424 M. Ledvinka and P. Křemen

JOPA and OntoDriver versus Domain-Specific Frameworks. The basic
idea of JOPA and OntoDriver and domain-specific solutions like Empire or
AliBaba is very similar – enable programmers to work with ontological data
in object-oriented fashion. However, JOPA adds to this basic concept features
which enable the user to exploit the nature of ontologies to more extent. JOPA
supports working with unmapped properties, types and explicit distinction bet-
ween inferred and asserted knowledge. In addition, the OntoDriver and its API
enables JOPA to supports a wide range of ontological storages. AliBaba, on
the other hand, is tied to storages supporting the Sesame API. Empire does
have support for custom storage connectors, which are used by the framework
via dependency injection. JOPA also offers better isolation of transactions and
more advanced caching.

Fig. 5. Find an entity. On the left hand side using JOPA. Entity definition is omitted,
but it corresponds to the one shown in Listing 1.1. On the right hand side using Sesame
API. The difference in the amount of code is clear.

6 Experience Using JOPA and OntoDriver

We have had an opportunity to use JOPA in a real-world application. This
application is used to create reports about safety occurrences in aviation and is
developed as part of the INBAS project 11. We will now briefly summarize our
experience.
11 http://www.inbas.cz, Accessed on 07-08-2015.

http://www.inbas.cz


JOPA: Stay Object-Oriented When Persisting Ontologies 425

Positives. One of the main positives of using JOPA stems from the frame-based
approach and has already been discussed in great detail – it is the fact that the
application works with coherent and logically defined objects. The objects can
be, in addition to having behaviour of their own, easily passed over system
boundaries, so for example we use the same domain objects when communicat-
ing with a JavaScript-based front end via REST web services, where they are
serialized into JSON and deserialized back.

The support for operation cascading further reduces the amount of code by
automatically carrying out the operation over relationships marked for cascading.

Another benefit of using JOPA and OntoDriver is the clear separation of
storage access. Thus, we are able to use fast in-memory storage in tests and
during development and switch to server based GraphDB solution when running
in production. The only change that has to be made is modifying repository URL
in a configuration file.

Deficiencies. The code imprint could be further reduced by integration with
application frameworks like Spring. With that integration, transactions could be
marked declaratively using annotations, persistence context injected automati-
cally by the container and capabilities like Spring repositories used to minimize
the data layer code that has to be written.

A feature that is missing in JOPA is the support for bidirectional relation-
ships. Unless the relationship is explicitly defined using an inverse object prop-
erty, there is currently no way of specifying a backwards reference to another
object.

However, the greatest deficiency of JOPA and other domain-specific frame-
works like Empire or AliBaba is the lack of support for ontology concept sub-
sumption. Ontologies rely heavily on class hierarchies and it is very cumbersome
to work around the lack of their support in persistence frameworks. For instance,
in our application, we have a concept called RunwayIncursion, which describes
an event when an object intrudes on a runway. This intruding object can be of
the following types: Aircraft, Vehicle or Person. In ontology, this can modelled
using the following hierarchy:

T = {Aircraft � AerodromeAgent,

V ehicle � AerodromeAgent,

Person � AerodromeAgent,

RunwayIncursion ≡ ∀hasIntruder.AerodromeAgent}

It would be very convenient to be able to map such hierarchy to the domain
model shown in Fig. 6. However, due to the lack of support for concept subsump-
tion, this cannot be achieved in JOPA and we have to model such structure using
an entity with fields of types Aircraft, Vehicle or Person, where only one of the
fields can be non-null.



426 M. Ledvinka and P. Křemen

Fig. 6. Domain model, which would model an ontological concept hierarchy and range
restriction.

6.1 Ontology Concept Subsumption

Let us now describe why it is difficult to represent concept subsumption in
object-ontological mapping frameworks. Concept subsumption [29] is used to
create hierarchies of classes12 and can be used to model the is a relationship
between the subsumed class and its subsumer (parent). Individuals of the sub-
sumed class are also instances of the parent class, inheriting all of its properties.
Unfortunately, such model cannot be straightforwardly transformed into the
object-oriented paradigm. The is a relationship is realized through class inher-
itance in object-oriented languages. One problem with the Java language, in
which most of the frameworks for working with ontologies are written, is that
is supports only single-parent inheritance. However, ontological classes can be
subsumed by multiple other classes.

A more crucial problem with ontological class hierarchies is the identity of the
individuals. Consider the concept hierarchy described above and an individual
John which belongs to the Person concept.

A = {Person(John)}

Because John is an instance of Person, he is also an instance of Aero-
dromeAgent. Now consider the object model in Fig. 6, which reflects the
aforementioned concept hierarchy in object-oriented paradigm. If we load our
individual Adam first as an AerodromeAgent and then as a Person, they will be
two completely separate objects with the same IRI. However, it is still the same
individual in the ontology.

This identity mismatch can lead to situations where for example the appli-
cation changes the affiliation of the AerodromeAgent instance of John and at
the same time changes the affiliation of the Person instance of John, but in the
ontology, whichever modification comes first will be overwritten by the latter.
12 Class is a term used in the OWL 2 language specification [4] and it corresponds to

the term concept, used in description logics underlying the OWL language. We will
use the terms interchangeably, unless a disambiguation between ontological classes
and object-oriented paradigm classes is necessary.



JOPA: Stay Object-Oriented When Persisting Ontologies 427

As the astute reader may have noticed, the concept subsumption problem is
not restricted to situations when the corresponding domain classes are related
via inheritance. The same problem would occur if AerodromeAgent and Person
were unrelated.

7 Conclusions

We have introduced JOPA as a solution for application access to ontologies,
along with the OntoDriver, which separates the object-ontological mapping layer
from the actual storage access, providing more opportunities for storage-specific
optimizations and preventing vendor lock-in. We have examined the theoretical
complexity of the operations defined in the OntoDriver API and tested two of
the most advanced ontology storages for their suitability for application access.

We have also discussed our experience with JOPA as persistence provider in a
real-world application, its benefits and deficiencies. We paid particular attention
to the lack of support for class subsumption, which is a problem not specific to
JOPA, but to all frameworks providing any form of object-ontological mapping.

In the future, we plan to thoroughly research the possibility of supporting
some form of concept subsumption and domain class inheritance respectively
in object-ontological mapping frameworks. We would also like to study possible
optimizations of operations required by ontology-based applications.

Acknowledgements. This work was supported by the grant No. SGS13/204/OHK3/
3T/13 Effective solving of engineering problems using semantic technologies of the
Czech Technical University in Prague and No. TA04030465 Research and development
of progressive methods for measuring aviation organizations safety performance of the
Technology Agency of the Czech Republic.

References

1. Křemen, P., Kouba, Z.: Ontology-driven information system design. IEEE Trans.
Syst. Man Cybern. Part C 42, 334–344 (2012)

2. Ledvinka, M., Křemen, P.: JOPA: developing ontology-based information systems.
In: Proceedings of the 13th Annual Conference Znalosti 2014 (2014)

3. Křemen, P.: Building ontology-based information systems. Ph.D. thesis, Czech
Technical University, Prague (2012)

4. Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 web ontology language struc-
tural specification and functional-style syntax. In: W3C Recommendation, W3C
(2009)

5. Meditskos, G., Bassiliades, N.: A rule-based object-oriented OWL reasoner. IEEE
Trans. Knowl. Data Eng. 20, 397–410 (2008)

6. Poggi, A.: Developing ontology based applications with O3L. WSEAS Trans. Com-
put. 8(8) August 2009

7. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. In:
Semantic Web - Interoperability, Usability, Applicability (2011)



428 M. Ledvinka and P. Křemen

8. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

9. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson,
K.: Jena: implementing the semantic web recommendations. In: Proceedings of
the 13th International World Wide Web Conference (Alternate Track Papers &
Posters), pp. 74–83 (2004)

10. Grove, M.: Empire: RDF & SPARQL Meet JPA. semanticweb.com (2010)
11. JCP: JSR 317: JavaTM Persistence API, Version 2.0 (2009)
12. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Technical report, W3C

(2013)
13. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Technical report, W3C

(2013)
14. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceed-

ings of the 10th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2006), pp. 57–67 (2006)

15. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
Fox, M., Poole, D. (eds.): AAAI. AAAI Press (2010)

16. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax.
Technical report, W3C (2014)

17. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: a family of scalable semantic repositories. In: Semantic Web - Inter-
operability, Usability, Applicability (2010)

18. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.
35, 3–8 (2012)

19. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5, 51–53 (2007)

20. Comer, D.: The Ubiquitous B-Tree. Comput. Surv. 11, 121–137 (1979)
21. Hepp, M., de Leenheer, P., de Moor, A., Sure, Y.: Ontology Management: Seman-

tic Web, Semantic Web Services, and Business Applications. Springer, New York
(2007)

22. Ontotext: GraphDB-SE-GraphDB6-Ontotext Wiki (2014) http://owlim.ontotext.
com/display/GraphDB6/GraphDB-SE+Indexing+Specifics

23. Stardog: Stardog Docs (2014). http://docs.stardog.com/
24. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Seman. Web Inf.

Syst. 5(2), 1–24 (2009)
25. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-

tems. J. Web Semant. 3, 158–182 (2005)
26. Qiu, Z., Liu, S., Pan, Y., Ma, L., Xie, G.T., Yang, Y.: Towards a complete OWL

ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol.
4011, pp. 125–139. Springer, Heidelberg (2006)

27. Ledvinka, M., Křemen, P.: Object-UOBM: an ontological benchmark for object-
oriented access. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2015. CCIS, vol. 518,
pp. 132–146. Springer, Heidelberg (2015)

28. Zhou, Y., Grau, B.C., Horrocks, I., Wu, Z., Banerjee, J.: Making the most of your
triple store: query answering in OWL 2 using an RL reasoner. In: Proceedings of
the 22nd International Conference on World Wide Web (2013)

29. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

http://owlim.ontotext.com/display/GraphDB6/GraphDB-SE+Indexing+Specifics
http://owlim.ontotext.com/display/GraphDB6/GraphDB-SE+Indexing+Specifics
http://docs.stardog.com/

	JOPA: Stay Object-Oriented When Persisting Ontologies
	1 Introduction
	2 Related Work
	2.1 Domain-Independent APIs
	2.2 Domain-Specific APIs

	3 JOPA
	3.1 JOPA OOM
	3.2 OntoDriver

	4 Operation Complexity Analysis
	4.1 Complexity Analysis
	4.2 Experimental Complexity Evaluation

	5 Practical Evaluation of JOPA and OntoDriver
	5.1 Performance and Code Metrics Evaluation

	6 Experience Using JOPA and OntoDriver
	6.1 Ontology Concept Subsumption

	7 Conclusions
	References


