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Preface

The International Workshop on Lightweight Cryptography for Security and Privacy
(LightSec) was established to promote novel research on the security and privacy issues
for applications that can be termed as lightweight security due to the associated con-
straints on metrics such as available power, energy, computing ability, area, execution
time, and memory requirements. While such applications are becoming ubiquitous in
daily life, they are also affecting a greater portion of society, leading to a plethora of
economic-, security- and privacy-related concerns. The first three editions of LightSec
took place in Turkey. This fourth edition of LightSec was held in Germany and was
organized by the Horst Görtz Institute for IT Security (HGI) at Ruhr University
Bochum (RUB). The workshop had 53 participants from 12 different countries.
LightSec 2015 received generous financial support by the Ruhr University Bochum,
the graduate school Ubicrypt, and eurobits.

LightSec received 17 submissions that underwent a review process. Each paper was
reviewed by three reviewers. The entire double-blinded review process took more than
two months in which the merits and weaknesses of each paper were carefully taken into
account. The Program Committee finally accepted 10 original articles that were pre-
sented at the workshop and published in these proceedings.

LightSec featured four invited talks. On the first day Christian Rechberger from the
Technical University Denmark and Miroslav Knezevic from NXP Semiconductor gave
excellent lectures on “Lightweight Crypto on a Full Circle: From Industry to Academia
and Back” and “Designing Crypto for Low Energy and Low Power,” respectively. The
second day featured invited talks by Roberto Avanzi from QUALCOMM on “What the
Industry Really Needs” in the area of lightweight crypto, and by Meltem Sömez Turan
from the National Institute of Standards and Technology (NIST) about the NIST ini-
tiative on lightweight cryptography.

We thank all the Program Committee members and external reviewers for their
invaluable contribution to the selection process. Their technical comments and insights
ensured the quality of the selected papers in these proceedings. Of course, we would
also like to thank the authors for submitting their original research papers to LightSec
2015. We are very much indebted to our four invited speakers for their extremely
interesting and entertaining presentations.

Last but not least, the successful organization of the event would not have been
possible without the great reliable help of Irmgard Kühn, who took care of all the big
and small issues that arose. Finally, we hope that these proceedings are as interesting to
read as it was to compile them. We are already looking forward to the next editions of
LightSec, wherever they take place.

November 2015 Tim Güneysu
Gregor Leander

Amir Moradi



Organization

LightSec 2015 was organized by Horst Görtz Institute for IT Security at
Ruhr-Universität Bochum, Germany.

Conference General Chair

Tim Güneysu University of Bremen and DFKI, Germany
Amir Moradi Ruhr-Universität Bochum, Germany
Christof Paar Ruhr-Universität Bochum, Germany

Conference Program Co-chairs

Tim Güneysu University of Bremen and DFKI, Germany
Gregor Leander Ruhr-Universität Bochum, Germany
Amir Moradi Ruhr-Universität Bochum, Germany

Program Committee

Mohamed Ahmed
Abdelraheem

Technical University of Denmark, Denmark

Tolga Acar Microsoft Research, USA
Onur Aciicmez Samsung, USA
Zahra Ahmadian University of Shahid Beheshti, Iran
Jean-Phillipe Aumasson Kudelski Security, Switzerland
Reza Azarderakhsh Rochester Institute of Technology, USA
Guido Bertoni STMicroelectronics, Italy
Elif Bilge Kavun Infineon, Germany
Andrey Bogdanov Technical University of Denmark, Denmark
Chris Gaj George Mason University, USA
Berndt Gammel Infineon, Germany
Pascal Junod HEIG-VD, Switzerland
Albert Levi Sabanci University, Turkey
Nele Mentens Katholieke Universiteit Leuven, Belgium
Mehran Mozaffari Kermani Rochester Institute of Technology, USA
Ventzislav Nikov NXP Semiconductors, Belgium
Svetla Nikova Katholieke Universiteit Leuven, Belgium
Erdin Öztürk Istanbul Commerce University, Turkey
Thomas Peyrin Nanyang Technological University, Singapore
Francisco

Rodríguez-Henríquez
CINVESTAV-IPN, Mexico

Mehmet Sabir Kiraz TÜBİTAK BİLGEM, Turkey
Erkay Savas Sabanci University, Turkey
Nitesh Saxena University of Alabama at Birmingham, USA



Peter Schwabe Radboud University, The Netherlands
Kerem Varici UC Louvain, Belgium
Amr Youssef Concordia University, Canada

Additional Reviewers

Riham Altawy
Emrah Karagöz
Patrick Longa
Reza Rezaeian Farashahi
Gokay Saldamli
Maliheh Shirvanian
Prakash Shrestha

Sponsoring Institutions

Rectorate of the Ruhr University Bochum
Cryptography in Ubiquitous Computing (UbiCrypt)
European Competence Center for IT Security (eurobits)

VIII Organization



Contents

Cryptanalysis

Meet-in-the-Middle Attacks on Reduced Round Piccolo. . . . . . . . . . . . . . . . 3
Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef

Differential Factors Revisited: Corrected Attacks on PRESENT
and SERPENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Cihangir Tezcan

Lightweight Constructions

A Light-Weight Group Signature Scheme with Time-Token Dependent
Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Keita Emura and Takuya Hayashi

RoadRunneR: A Small and Fast Bitslice Block Cipher for Low Cost 8-Bit
Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Adnan Baysal and Sühap Şahin

PUF-Based Mutual Multifactor Entity and Transaction Authentication for
Secure Banking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Amanda C. Davi Resende, Karina Mochetti, and Diego F. Aranha

On Lightweight Security Enforcement in Cyber-Physical Systems . . . . . . . . . 97
Yanjiang Yang, Jiqiang Lu, Kim-Kwang Raymond Choo,
and Joseph K. Liu

Implementation Challenges

Fast Software Implementation of QUARK on a 32-Bit Architecture . . . . . . . 115
Roberto Cabral and Julio López

Single-Cycle Implementations of Block Ciphers . . . . . . . . . . . . . . . . . . . . . 131
Pieter Maene and Ingrid Verbauwhede

Improved Power Analysis on Unrolled Architecture and Its Application to
PRINCE Block Cipher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Ville Yli-Mäyry, Naofumi Homma, and Takafumi Aoki

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

http://dx.doi.org/10.1007/978-3-319-29078-2_1
http://dx.doi.org/10.1007/978-3-319-29078-2_2
http://dx.doi.org/10.1007/978-3-319-29078-2_2
http://dx.doi.org/10.1007/978-3-319-29078-2_3
http://dx.doi.org/10.1007/978-3-319-29078-2_3
http://dx.doi.org/10.1007/978-3-319-29078-2_4
http://dx.doi.org/10.1007/978-3-319-29078-2_4
http://dx.doi.org/10.1007/978-3-319-29078-2_5
http://dx.doi.org/10.1007/978-3-319-29078-2_5
http://dx.doi.org/10.1007/978-3-319-29078-2_6
http://dx.doi.org/10.1007/978-3-319-29078-2_7
http://dx.doi.org/10.1007/978-3-319-29078-2_8
http://dx.doi.org/10.1007/978-3-319-29078-2_9
http://dx.doi.org/10.1007/978-3-319-29078-2_9


Cryptanalysis



Meet-in-the-Middle Attacks on Reduced
Round Piccolo

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

youssef@ciise.concordia.ca

Abstract. Piccolo is a lightweight block cipher designed by Sony Cor-
poration and published in CHES 2011. It inherits the Generalized Feistel
Network (GFN) structure and operates on a 64-bit state. It has two ver-
sions; Piccolo-80 and Piccolo-128 with 80-bit and 128-bit keys, respec-
tively. In this paper, we propose meet-in-the-middle attacks on 14-round
reduced Piccolo-80 and 16, 17-round reduced Piccolo-128. First, we build
a 5-round distinguisher by using specific properties of the linear trans-
formation of Piccolo. This 5-round distinguisher is then used to launch a
14-round attack on Piccolo-80. As Piccolo-128 uses a different key sched-
ule than what is used in Piccolo-80, we utilize the key dependent sieving
technique to construct a 7-round distinguisher which is then employed to
mount an attack on 16-round reduced Piccolo-128. To extend the attack
to 17 rounds, we build a different 6-round distinguisher. For Piccolo-80,
the time, data, and memory complexities of the 14-round attack are 275.39

encryptions, 248 chosen plaintexts, and 273.49 64-bit blocks, respectively.
For Piccolo-128, the data complexity of both the 16-round and 17-round
attacks is 248 chosen plaintexts. The time and memory complexities of
the 16-round (resp. 17-round) attack are 2123 (resp. 2126.87) encryptions,
and 2113.49 (resp. 2125.99) 64-bit blocks. To the best of our knowledge,
these are currently the best published attacks on both Piccolo-80 and
Piccolo-128.

Keywords: Cryptanalysis · Meet-in-the-middle attacks · Generalized
type-2 Feistel structure

1 Introduction

Recently, there is a huge demand for deploying resource-constrained devices
such as RFID tags and wireless sensor nodes. To provide cryptographic secu-
rity to such resource-constrained devices, new block ciphers of simple round
function, and modest, or even no, key schedule are developed. As such, the
design and analysis of hardware-oriented lightweight block ciphers have become
a hot topic. HIGHT [16], mCrypton [23], DESL/DESXL [21], PRESENT [6],
KATAN/KTANTAN [8], PRINTcipher [20], and Piccolo [27] are just few exam-
ples of such lightweight block ciphers that are designed to be efficiently deployed
on resource-constrained devices.
c© Springer International Publishing Switzerland 2016
T. Güneysu et al. (Eds.): LightSec 2015, LNCS 9542, pp. 3–20, 2016.
DOI: 10.1007/978-3-319-29078-2 1
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Piccolo [27] is a hardware-oriented lightweight block cipher designed by Sony
Corporation in 2011. It operates on a 64-bit state and has two versions; Piccolo-
80 and Piccolo-128 with 80-bit and 128-bit keys, respectively. The differences
between the two versions are the key schedule and the number of rounds. The
structure of Piccolo inherits the Generalized Feistel Network (GFN) construction
and has 4 branches, each of 16-bit length. Piccolo has been analyzed extensively
where most of the results are reached using the biclique cryptanalysis technique
[18,19,28,30]. The biclique cryptanalysis attack uses weaknesses that exist in
the block cipher to accelerate the brute force attack and so it is regarded as a
bruteforce-like attack.

Meet-in-the-Middle (MitM) attack is a single-key attack and it is the attack
applied to Piccolo-80 and Piccolo-128 in [17] by the authors of Piccolo. The
drawback of these two MitM attacks is that they require the full codebook, i.e.,
264 plaintexts/ciphertexts pairs and as explicitly mentioned in [17] the number
of the attacked rounds would be reduced if the full codebook is not allowed. In
addition, under the single-key setting Piccolo-80 and Piccolo-128 have been ana-
lyzed using the impossible differential attack [4]. Under the related-key setting,
Piccolo has been analyzed using related-key impossible differential attack [25].

The MitM attack was first proposed by Diffie and Hellman in 1977 to be used
in the cryptanalysis of Data Encryption Standard (DES) [13]. This attack splits
the block cipher into two sub-ciphers such that E = GK2 ◦ FK1 , where K1 and
K2 are two distinct key sets which are used in F and G, respectively. Since the
MitM attack requires low data complexity, it is considered as one of the major
cryptanalysis techniques on block ciphers. However, finding two distinct key sets,
K1 and K2, that cover a large number of rounds is quite challenging, especially in
the block ciphers that use nonlinear key schedule. The three-subset MitM attack
proposed by Bogdanov and Rechberger [7] solves this problem by splitting the
key into three-subsets K1, K2, and Kc such that the key sets K1 and K2 may
have common key bits that define the set Kc. The attack is then repeated for
each possible value of the key bits in Kc. This approach succeeded in attacking
the full KTANTAN cipher [7]. In addition to block ciphers, the MitM attack
was applied to hash functions to launch preimage or second preimage attacks on
Whirlpool [26] and Streebog [3], just to name a few.

Another line of research on the MitM attacks was triggered by Demirci and
Selçuk when they were able to attack 8 rounds of both AES-192 and AES-
256 [10]. In this attack, the cipher is split into three sub-ciphers, not just two
as before, such that E = E2 ◦ Emid ◦ E1, where Emid exhibits a distinguish-
ing property that is evaluated offline independently of the middle rounds keys.
Then the keys used in E1 and E2 are guessed and checked in an online phase
whether they verify the distinguishing property or not. The main downside of
this attack is the high memory requirement to save a precomputation table.
Later on, Dunkelman, Keller and Shamir [14] suggested two techniques to tackle
the issue of the high memory requirement; differential enumeration and mul-
tisets which helped reduce the memory requirement but not enough to attack
AES-128, however. Afterwards, Derbez et al. [11] reduced the memory require-
ment further by using a rebound-like idea and succeeded in attacking AES-128.
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Table 1. Summary of the cryptanalysis results on Piccolo-80 (RK: Related-Key Setting
Attack, SK: Single-Key Setting Attack, Pre: Pre-whitening Key, Post: Post-whitening
Key, CC: Chosen Ciphertext, CP: Chosen Plaintext, †: Requires the full codebook or
more)

Attack Setting # Rounds Pre/Post Time Data Memory Reference

Impossible
differential

RK 14 None 268.19 268.19† N.A. [25]

MitM SK 14 None 273 264† 25 [17]

Impossible
differential

SK 12 Pre 255.18 236.34 CC 263 [4]

Impossible
differential

SK 13 None 269.7 243.25 CP 262 [4]

MitM SK 14 None 275.39 248 CP 273.49 Sect. 3

Finally, Li, Jia and Wang proposed a key-dependent sieve [22] to further reduce
the memory complexity of Derbezs attack and presented an attack on 9-round
AES-192 and 8-round PRINCE. The MitM attack is not only applied to Substi-
tution Permutation Network (SPN) block ciphers such as AES, Hierocrypt-3 [1]
or Hierocrypt-L1 [2] but also on Feistel Structure as exemplified by the generic
work presented by Guo et al. [15] and Lin et al. [24]. It is worth noting that
despite its high memory requirement, the MitM attack based on Demirci and
Selçuk technique proves to be quite successful as represented by the recent work
against the SPN structure PRINCE [12] and the Feistel constructions TWINE
[5] and Khudra [29].

In this paper, we present MitM attacks on 14-round reduced Piccolo-80 and
16, 17-round reduced Piccolo-128. In the attack on Piccolo-80, we first construct
a 5-round distinguisher then append 4 rounds at its top and 5 rounds at its
bottom. The time, data, and memory complexities of the 14-round attack on
Piccolo-80 are 275.39 encryptions, 248 chosen plaintexts, and 273.49 64-bit blocks,
respectively. To attack 16-round reduced Piccolo-128, we build a 7-round distin-
guisher then append 3 rounds at its top and 6 rounds at its bottom. Extending
the attack by one round using that 7-round distinguisher would require the whole
key to be guessed. Hence, we construct a 6-round distinguisher, append 4 rounds
at its top and 7 rounds at its bottom. The data complexity of both attacks on 16
and 17-round reduced Piccolo-128 is 248 chosen plaintexts. The time, and mem-
ory complexities of the 16-round attack on Piccolo-128 are 2123 encryptions, and
2113.49 64-bit blocks, respectively. The time, and memory complexities of the 17-
round attack on Piccolo-128 are 2126.87 encryptions, and 2125.99 64-bit blocks,
respectively. Tables 1 and 2 summarize our results and the previous results on
Piccolo-80 and Piccolo-128, respectively.

The rest of the paper is organized as follows. In Sect. 2, we provide the nota-
tions used throughout the paper and a brief description of Piccolo. Our attacks
on 14 rounds of Piccolo-80 and 16, 17 rounds of Piccolo-128 are presented in
Sect. 3 and the paper is concluded in Sect. 4.
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Table 2. Summary of the cryptanalysis results on Piccolo-128 (RK: Related-Key
Setting Attack, SK: Single-Key Setting Attack, Pre: Pre-whitening Key, Post: Post-
whitening Key, CP: Chosen Plaintext, †: Requires the full codebook or more)

Attack Setting # Rounds Pre/Post Time Data Memory Reference

Impossible
differential

RK 21 None 2117.77 2117.77† N.A [25]

MitM SK 21 None 2121 264† 26 [17]

Impossible
differential

SK 15 Post 2125.4 258.7 CP 261 [4]

MitM SK 16 Post 2123 248 CP 2113.49 Sect. 3

MitM SK 17 Post 2126.87 248 CP 2125.99 Sect. 3

2 Specifications of Piccolo

2.1 Notations

The following notations are used throughout the rest of the paper:

– a(b): A word a of length b bits.
– a||b: Concatenation of the two words a and b.
– at: Transposition of the vector or the matrix a.
– ab: Representation of the word a in base b.
– K: The master key.
– ki: The ith 16-bit of K from left, where 0 ≤ i < 5 in Piccolo-80 and 0 ≤ i < 8

in Piccolo-128.
– rki: The 16-bit key used in round �i/2�.
– wki: The 16-bit whitening key, where 0 ≤ i < 4.
– Xi: The 64-bit input to round i, where 0 ≤ i ≤ 26 in Piccolo-80 and 0 ≤ i ≤ 32

in Piccolo-128, X0 is the plaintext P and X26 or X32 is the ciphertext C in
Piccolo-80 and Piccolo-128, respectively.

– Xi[j]: The jth nibble of Xi, where 0 ≤ j < 16.
– Xi[j : l]: The nibbles from j to l of Xi, where j < l.
– Xi[j, l]: The nibbles j and l of Xi.
– ΔXi,ΔXi[j]: The difference at state Xi and nibble Xi[j], respectively.
– Xj

i : The jth state of the 64-bit input to round i.

2.2 Specifications

There are two versions of Piccolo, depending on the key size, Piccolo-80 for 80-bit
keys and Piccolo-128 for 128-bit keys. There are two differences between Piccolo-
80 and Piccolo-128, the first is the number of rounds. Piccolo-80 iterates over 25
rounds, while Piccolo-128 runs 31 rounds. Piccolo’s design employs a Generalized
Feistel Network (GFN) structure and its internal state is divided into 4 words
each of 16-bit length, i.e., we have 4 branches as shown in Fig. 1. Therefore, each
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round has two Feistel Networks (FN). Each FN has two operations: an F-function
(F) and an Add key (AK). The F-function is an unkeyed 16 × 16-bit function
and is applied to the first branch of the FN and, as depicted in the right part of
Fig. 1, consists of three transformations [27]:

1. First S-box layer: A nonlinear layer that applies the same 4 × 4-bit bijective
S-box S to the 16-bit X(16) = x0(4)||x1(4)||x2(4)||x3(4) data of the first branch
of the FN as follows:

(x0(4), x1(4), x2(4), x3(4)) ← (S(x0(4)), S(x1(4)), S(x2(4)), S(x3(4)))

2. Diffusion layer: The internal state is multiplied by a matrix M, where the
multiplication is performed over GF (24) defined by the irreducible polynomial
x4 + x + 1. Hence, the output of the first S-box layer is updated as follows:

(x0(4), x1(4), x2(4), x3(4))t ← M.(x0(4), x1(4), x2(4), x3(4))t,

3. Second S-box layer: It resembles the first S-box layer but applied to the output
of the diffusion layer.

Each round of Piccolo contains two round keys used in the two FNs. Moreover,
there are two pre-whitening keys wk0, wk1 that are xored with the internal state
before the first round and two post-whitening keys wk2, wk3 that are xored with
the internal state after the last round. After applying the two FN operations in
each round, a permutation is performed on the byte level, as shown in Fig. 1.

The key schedule takes an 80-bit master key K in Piccolo-80 such that
K = k0||k1||k2||k3||k4 or an 128-bit master key K in Piccolo-128 such that
K = k0||k1||k2||k3||k4||k5||k6||k7 and generates the 4 16-bit whitening keys wki,
0 ≤ i < 4 and 50 16-bit round keys in Piccolo-80, as per Algorithm 1 or 62 16-bit
round keys in Piccolo-128, as per Algorithm 2.

Data: Key Scheduling(k0, k1, k2, k3, k4)
Result: wki, 0 � i < 4 and rki, 0 � i < 50
wk0 ← kL

0 ||kR
1 , wk1 ← kL

1 ||kR
0 , wk2 ← kL

4 ||kR
3 , wk3 ← kL

3 ||kR
4 ;

for i ← 0 to 24 do

(rk2i, rk2i+1) ← (con80
2i , con

80
2i+1) ⊕

⎧
⎪⎨

⎪⎩

(k2, k3) if i mod 5 = 0 or 2
(k0, k1) if i mod 5 = 1 or 4
(k4, k4) if i mod 5 = 3,

end
Algorithm 1. The Key Schedule employed in Piccolo-80 [27]

In both algorithms, kL
i and kR

i are the left and right half byte of ki. In Algo-
rithm 1, (con80

2i ||con80
2i+1) is calcualted as (con80

2i ||con80
2i+1) ← (ci+1||c0||ci+1||002

||ci+1||c0||ci+1)⊕0f1e2d3c16, where ci is a 5-bit representation of i. In Algorithm
2, we have (con128

2i ||con128
2i+1) ← (ci+1||c0||ci+1||002||ci+1||c0||ci+1) ⊕ 6547a98b16.
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Fig. 1. Structure of Piccolo

Data: Key Scheduling(k0, k1, k2, k3, k4, k5, k6, k7)
Result: wki, 0 � i < 4 and rki, 0 � i < 62
wk0 ← kL

0 ||kR
1 , wk1 ← kL

1 ||kR
0 , wk2 ← kL

4 ||kR
7 , wk3 ← kL

7 ||kR
4 ;

for i ← 0 to 61 do
if (i + 2) mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7) ← (k2, k1, k6, k7, k0, k3, k4, k5);
end
rki ← k(i+2) mod 8 ⊕ con128

i ,;
end

Algorithm 2. The Key Schedule employed in Piccolo-128 [27]

We measure the memory complexity of our attacks as 64-bit Piccolo blocks
and the time complexity in terms of the equivalent number of reduced-round
Piccolo encryptions.

3 MitM Attacks on Reduced Round Piccolo

Generally in the MitM attacks, a reduced round block cipher is split into three
sub-ciphers such that E = E2 ◦ Emid ◦ E1, where Emid exhibits a distinguishing
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property. This distinguishing property is evaluated in the offline phase. Then,
in the online phase, the keys used in the analysis rounds E1 and E2 are guessed
and checked whether they verify the distinguishing property or not. If they verify
it, they are considered as key candidates, otherwise they are discarded. In our
attacks, the distinguishing property is a truncated differential where its input
takes a set of possible values and its output is a parameterized function of the
input. The values of the output corresponding to the input form an ordered
sequence that is used as our property to identify the right key guess. All the
ordered sequences resulting from all the possible combinations of the parameters
are stored in a precomputation table. As the size of this precomputation table
is usually huge, we use two techniques inspired by the MitM attacks on SPN
[12,22] to reduce its size and hence we are able to attack more rounds than what
we can attack without these techniques.

The δ-set concept [9], as captured by Definition 1, is used to build our dis-
tinguishers.

Definition 1 (δ-set, [9]). A δ-set for nibble-oriented cipher is a set of 16 state
values that are all different in one nibble (the active nibble) and are all equal in
the remaining nibbles (the inactive nibbles).

The following subsections contain a detailed description of our attacks on
14-round Piccolo-80 and 16, 17-round Piccolo-128, respectively.

3.1 A MitM Attack on 14-Round Piccolo-80

In Piccolo, by noting that when the δ-set is chosen at the second input branch
of the FN and the corresponding ordered sequence is evaluated at its first out-
put branch, a distinguisher that minimizes the number of parameters can be
constructed. However, such distinguisher does not lead to the best attack on
Piccolo-80 since it can be extended upwards in the plaintext direction by two
rounds only. If a third round is appended, the full codebook is needed due to
the diffusion transformation utilized in Piccolo. Hence, to increase the number
of rounds appended on top of the distinguisher, the δ-set is chosen at the first
(instead of the second) input branch of the FN which, unfortunately, increases
the number of parameters by two additional parameters. Then, in order to reduce
the number of parameters, we exploit the properties of the diffusion operation
M. In particular, we choose the δ-set to be after the first S-box layer of the
first F-function such that after the diffusion transformation, only two nibbles
are active, as shown in Fig. 2. By enumerating all the possible values of three
active input nibbles of the linear diffusion, it was found that such δ-set that has
three active nibbles at the input of the linear transformation, and two active
nibbles at its output contains 15 differences. Such δ-set enables us to build a 5-
round distinguisher and overcome the problem of the two additional parameters
when the δ-set is chosen at the first branch of the FN, as depicted in Fig. 2, and
captured by the following proposition:
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Proposition 1. Consider the encryption of a δ-set {Y 0 = P ′0[0 : 3]||P 0[4 :
15], Y 1 = P ′1[0 : 3]||P 1[4 : 15], · · · , Y 15 = P ′15[0 : 3]||P 15[4 : 15]} through
5 rounds of Piccolo. The ordered sequence [X0

5 [14 : 15] ⊕ X1
5 [14 : 15],X0

5 [14 :
15] ⊕ X2

5 [14 : 15], · · · ,X0
5 [14 : 15] ⊕ X15

5 [14 : 15] is fully determined by the
following 5 16-bit parameters, X0

0 [0 : 3], X0
1 [8 : 11], X0

2 [0 : 3], X0
2 [8 : 11] and

X0
3 [0 : 3].

The above proposition means that we have 25×16 = 280 ordered sequences
out of the 215×8 = 2120 theoretically possible ones.

Fig. 2. 5-Round Distinguisher to attack 14-round Piccolo-80

Proof. The knowledge of the δ-set = {Y 0, Y 1, · · · , Y 15} allows us to determine
[Y 0 ⊕ Y 1, Y 0 ⊕ Y 2, · · · , Y 0 ⊕ Y 15]. In the sequel, we show that the ordered
sequence at X5[14 : 15] can be determined uniquely by the knowledge of the 5
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16-bit parameters mentioned in proposition 1. As the δ-set is chosen at the input
of the linear transformation M, it has to be propagated forward through M and
backward through the first S-box layer to be able to determine the difference
ΔX1[6 : 7, 10 : 11, 13]. To do this, we need to know three nibbles after the first
S-box layer and two nibbles before the second S-box layer of the first F-function
in the first round. However, the knowledge of only 4 nibbles X0

0 [0 : 3] suffices
to bypass the F-function and to compute ΔX1[6 : 7, 10 : 11, 13]. It is to be
noted that only two nibbles are active after the F-function due to the restriction
we place on the choice of our δ-set. Then, we bypass the second round by the
knowledge of X0

1 [8 : 11] which allows us to compute ΔX2[2 : 3, 8 : 11, 14 : 15]. By
repeating the previous steps and propagating the differences further, ΔX5[14 :
15] is computed. It is worth noting that there are nibbles which should have
difference but appear in Fig. 2 as if they do not have any difference, because their
knowledge do not impact the computation of the ordered sequence at X5[14 : 15].
For instance, after the third (resp. fourth) round, the difference at X3[8 : 11]
(resp. X4[0 : 1]) should be non-zero because the difference at X2[2 : 3, 8 : 11]
(resp. X3[0 : 3]) is non-zero.

In what follows we show how to utilize the above described distinguisher to
attack 14-round Piccolo-80 starting from the 5th round (round 4) till the 18th

round (round 17) without the pre-whitening or the post-whitening keys. The
attack relies on the previous proposition and exploits the linearity of the key
schedule to build a 5-round distinguisher and then append 4 rounds above it
and 5 rounds below it, as seen in Fig. 3. The attack has two phases as follows:

Offline Phase. As demonstrated in Proposition 1, we determine all the 280

ordered sequences and store them in a hash table H.

Online Phase. The online phase, as seen in Fig. 3, proceeds as follows:

1. A plaintext P 0 is chosen as a reference to all the differences in the δ-set.
2. The δ-set P 0, P 1, · · · , P 15 is determined by guessing the state variables

X0
6 [8 : 11], X0

6 [6 : 7, 12 : 13], X0
6 [4 : 5, 14 : 15], and X0

8 [1 : 3] to decrypt the
δ-set differences.

3. The corresponding ciphertexts C0, C1, · · · , C15 are requested.
4. The ordered sequence differences [X0

13[14 : 15] ⊕ X1
13[14 : 15],X0

13[14 : 15] ⊕
X2

13[14 : 15], · · · ,X0
13[14 : 15] ⊕ X15

13 [14 : 15]] are determined by guessing the
state variables X0

13[8 : 11], X0
14[0 : 3], X0

14[8 : 11], X0
15[0 : 3], X0

15[8 : 11],
X0

16[0 : 3], X0
16[8 : 11] that are required to decrypt the ciphertext differences

[C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C15].
5. The guessed state variables are filtered by checking if the computed ordered

sequence exists in H or not.

The evaluation of the δ-set and the corresponding ordered sequence as demon-
strated in steps 2 and 4 require the guessing of 43 internal state nibbles. Guess-
ing these 43 internal state nibbles makes the attack complexity exceeds the
exhaustive search. Therefore, we analyze the key schedule searching for relations
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Fig. 3. 14-Round attack on Piccolo-80

between the round keys to reduce the number of guessed parameters. As a result,
we find that starting the attack from the 5th round, i.e., round 4 is the best choice
to reduce the number of the guessed parameters. Indeed, by only guessing k0,
k1, k2, k3 and with the knowledge of P 0, we are able to compute X0

6 [8 : 11],
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X0
6 [6 : 7, 12 : 13], X0

6 [4 : 5, 14 : 15], and X0
8 [1 : 3]. The knowledge of [C0, C1,

· · · , C15], [C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C15] and the same keys guessed above
enables us to evaluate the state variables X0

13[8 : 11], X0
14[0 : 3], X0

14[8 : 11],
X0

15[0 : 3], X0
15[8 : 11], X0

16[0 : 3], X0
16[8 : 11]. Consequently, we have to guess 4

round keys (16 nibbles) instead of guessing 43 internal state nibbles. Moreover
and in order to reduce the memory complexity of the attack even further, we
choose to compute the ordered sequence at only 6-bit instead of 8-bit, where
any arbitrary 6-bit from the 8-bit can be chosen. Therefore, the probability of a
wrong key to be a key candidate is 280−(15×6) = 2−10. As we have 264 keys to be
guessed, we expect that only 264−10 = 254 keys to remain after step 5. Hence, to
recover the master key we guess k4 and test the 254 key candidates along with
k4 with just two plaintext/ciphertext pairs.

Attack Complexity. The memory complexity is determined by the size of
the hash table H created in the offline phase. This table contains 280 ordered
sequences, where each ordered sequence has 15 6-bit differences. Therefore, the
memory complexity is 280 × 90/64 = 280.49 64-bit blocks. To reduce the memory
complexity below 280, we use a simple tradeoff and store a fraction 1/α of H
and repeat the attack α times as now we have decreased the chance to hit one
element in H. We choose α = 27 to reduce the memory complexity while still
having a non-marginal time complexity. Hence, the memory complexity of the
attack is 273.49. As depicted in Fig. 3, we shift the round keys rk8, rk9 from
the 5th round to the 6th round. This round keys shift enable us to append 4
rounds, and not just 3 rounds, on top of our 5-round distinguisher with the
same data complexity and without requiring the full codebook. To illustrate
how this is possible, we choose our plaintexts such that after the 5th round the
words X5[2 : 3, 8 : 9] take a fixed value while the remaining words of X5 take all
the possible values. Hence, the data required can be formed using one structure
that contains 248 states of X5. In order to obtain its corresponding plaintexts,
we simply decrypt this structure as no keys are involved in this round any more.
Accordingly, the data complexity is upper bounded by 248 chosen plaintexts.
Repeating the attack 27 times does not increase the data complexity as we just
choose a different reference plaintext P 0. The time complexity of the offline
phase is determined by the time needed to build the hash table H that now
contains 273, instead of 280, ordered sequences. Therefore, the time complexity
of the offline phase is 273 × 16 × 5/(2 × 14) = 274.51. The time complexity of
the online phase consists of two parts: the time required to filter the key space
which is estimated to be 27 × 264 × 16 × (6 + 9)/(2 × 14) = 274.1 and the time to
recover the master key which is estimated to be 2 × 2(64−10) × 216 = 271. Hence,
the total time complexity of the attack is 274.51 + 274.1 + 271 ≈ 275.39 14-round
Piccolo-80 encryptions.

3.2 A MitM Attack on 16-Round Piccolo-128

Reusing the ideas of the attack on Piccolo-80 does not lead to the best attack on
Piccolo-128 because the key schedule of the latter is different. Therefore, we use
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the key dependent sieving technique in order to build a longer distinguisher with
the least number of parameters. As depicted in Fig. 4, we construct a 7-round
distinguisher, that we employ to attack 16-round Piccolo-128 from the 2nd round
(round 1) to the 17th round (round 16) with the post-whitening keys. The δ-set
of our 7-round distinguisher is chosen to be active at P [7] and our distinguisher
is built using Proposition 2.

Proposition 2. Consider the encryption of a δ-set {P 0, P 1, · · · , P 15} through
7 rounds of Piccolo. The ordered sequence [X0

7 [13 : 15]⊕X1
7 [13 : 15],X0

7 [13 : 15]⊕
X2

7 [13 : 15], · · · ,X0
7 [13 : 15] ⊕ X15

7 [13 : 15]] is fully determined by the following
8 16-bit parameters X0

1 [8 : 11], X0
2 [0 : 3], X0

2 [8 : 11], X0
3 [0 : 3], X0

3 [8 : 11],
X0

4 [0 : 3], X0
4 [8 : 11] and X0

5 [0 : 3].

The previous 5-round distinguisher of our attack on 14-round Piccolo-80 is
independent of the round keys while our 7-round distinguisher that we utilize
to attack 16-round Piccolo-128 uses the round keys to reduce the number of
parameters. Assuming that we know the internal state X0

3 , i.e., 4 parameters,
and the round keys rk6, rk7, we can evaluate X0

4 . Therefore, the 6 F-functions
from the third round to the fifth round of the distinguisher can be bypassed.
To bypass the other two F-functions, we need to know rkL

4 , rkR
5 , rkL

8 , and rkR
9

only. If rk4, rk8 depend on the same ki and rk5, rk9 rely on the same kj then
we can bypass the other two F-functions by guessing only kL

i , and kR
j . In such

case, we can bypass the 8 F-functions of our 7-round distinguisher by guessing 7
parameters only. By placing our distinguisher to cover from the 5th round (round
4) to the 11th round (round 10), the number of parameters in proposition 2 is
reduced to 7 parameters only. In that case, ki is k4 and kj is k5 and the 7 16-
bit parameters of our distinguisher are the state X0

7 , k1, k6, kL
4 , and kR

5 . Our
16-round attack is then built by appending 3 and 6 rounds at the top and the
bottom of our 7-round distinguisher, respectively. As shown in Fig. 5, the attack
follows the same steps as the previous attack on Piccolo-80 while considering the
new position of the δ-set at X4[7] and the different position of the corresponding
ordered sequence at X11[13 : 15]. In the online phase, the knowledge of P 0 and
the guessing of k4, k5, kL

6 , and kR
7 enable us to partially decrypt X4[7] and

determine the δ-set. From the other direction, by the knowledge of [C0, C1, · · · ,
C15], [C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C15] and the guessing of k0, k1, k2, kR

3 , k5,
k6, and k7, we can compute the ordered sequence at X11[13 : 15]. Hence, in total
we need to guess seven and half keys, i.e., k0, k1, k2, kR

3 , k4, k5, k6, and k7, in
order to mount our attack on 16-round Piccolo-128.

Attack Complexity. The memory complexity is estimated to be 27∗16 × (15 ×
12)/64 ≈ 2113.49 64-bit blocks and the data complexity is 248 chosen plaintexts.
The time complexity is 2112 × 16 × 8/(2 × 16) + 2120 × 16 × (5 + 11)/(2 × 16) +
2 × 2(120−68) × 28 = 2114 + 2123 + 261 ≈ 2123 16-round Piccolo-128 encryptions.

3.3 A MitM Attack on 17-Round Piccolo-128

To extend the attack on Piccolo-128 by one more round, we have to build
another distinguisher, as illustrated in Fig. 6 because using the previous 7-round
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Fig. 4. 7-Round distinguisher to attack 16-round Piccolo-128

distinguisher requires the guessing of the whole key space. Using this new 6-
round distinguisher, which needs 8 parameters, we attack 17-round Piccolo-128
from the 5th round (round 4) to the 21st round (round 20) with the post-
whitening keys. We append 4 and 7 rounds at the top and the bottom of our
6-round distinguisher, respectively. To launch the attack on 17-round Piccolo-
128, we need to guess seven and half keys, as shown in Fig. 7. These keys are
kR
0 , k1, k2, k3, k4, k5, k6, k7. The attack procedure follows the same steps of the

previous attacks.

Attack Complexity. The memory complexity is estimated to be 28×16 × (15×
12)/64 ≈ 2129.49 64-bit blocks. Since the memory complexity exceeds 2128, we
store a fraction 1/α of the hash table H. α = 23.5 is chosen so that the memory
complexity does not exceed 2128 while having a non-marginal time complexity.
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Fig. 5. 16-Round attack on Piccolo-128

Therefore, the memory complexity is 2125.99 64-bit blocks. The data complexity
is 248 chosen plaintexts. Regarding the time complexity, since we do not store a
fraction of the hash table, we have to repeat the online attack 23.5 times. The
time complexity of the offline phase is estimated to be 2128−3.5 × 16 × 8/(2 ×
17) ≈ 2126.41. We use the partial computation technique in order to reduce
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Fig. 6. 6-Round distinguisher to attack 17-round Piccolo-128

the time complexity of the online phase. First, guessing the keys kR
0 , kL

3 , k6, k7
enables us to identify the δ-set and the time of this step is evaluated to be
248×16×5/(2×17) ≈ 249.23. By guessing k4, k5 we can partially decrypt through
round 20 and this step is estimated to be 280 × 16 × 2/(2 × 17) ≈ 279.91. Then,
guessing k2 enables us to compute the output of the first F-function in round
19 and is estimated to be 296 × 16 × 1/(2 × 17) ≈ 294.91. Afterwards, guessing
k1 enables us to partially decrypt through round 19 and 18 as well as the first
F-function of round 17 and needs 2112 × 16 × 4/(2 × 17) ≈ 2112.91 encryptions.
Finally, guessing kR

3 enables us to compute the ordered sequence and this step
needs 2120×16×6/(2×17) ≈ 2121.5 encryptions. Accordingly, the time complexity
of the online phase is 249.23 + 279.91 + 294.91 + 2112.91 + 2121.5 ≈ 2121.5 and it will
be repeated 23.5 times so, all in all, it is estimated to be 2125. Recovering the
master key using two plaintext/ciphertext pairs requires 2×2120×2128−180×28 =
277. The total time complexity of the attack is 2126.41 + 2125 + 277 ≈ 2126.87

encryptions.
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Fig. 7. 17-Round attack on Piccolo-128
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4 Conclusion

In this work, we presented MitM attacks on 14-round reduced Piccolo-80 and 16,
17-round reduced piccolo-128. All these attacks on Piccolo-80 and Piccolo-128
require the same data complexity of 248 chosen plaintexts. The time complex-
ities of the MitM attacks on 14-round Piccolo-80 and 16, 17-round Piccolo-128
are 275.39, 2123, and 2126.87, respectively. Their memory complexities are 273.49,
2113.49, and 2125.99 for the 14-round Piccolo-80 and 16, 17-round Piccolo-128,
respectively.
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Abstract. Differential factors, which prevent the attacker to distinguish
some of the guessed keys corresponding to an active S-box during a differ-
ential attack on a block cipher, are recently introduced at Lightsec 2014
and used to reduce the time complexities of the previous differential-
linear attacks on Serpent. Key recovery attacks generally consists of
two parts: Key guess using the distinguisher and exhaustive search on the
remaining key bits. Thus, we show that differential factors can reduce the
time complexity of the former and increase the latter since the attacker
does not need to guess the keys which cannot be distinguished. As an
example for the latter, we show that the best known differential attack on
Present overlooked its six differential factors and the corrected attack
actually requires a time complexity increased by a factor of 64. More-
over, we show that differential factors also reduce data complexity of the
differential attacks since less number of pairs are required to distinguish
the correct key when the key space is reduced. This reduction in data
complexity also reduces the time complexity. By using Serpent’s dif-
ferential factors, we further reduce the data and time complexity of the
differential-linear attacks on this cipher to obtain the best attacks.

Keywords: S-box · Differential factor · Serpent · Present

1 Introduction

Confusion layer of symmetric cryptography algorithms mostly consists of sub-
stitution boxes (S-boxes) and in order to provide better security against known
attacks, S-boxes are selected depending on their cryptographic properties. Low
non-linear and differential uniformity [24] provide resistance against linear [21]
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and differential cryptanalysis [6], respectively and most of the time these are the
only properties designers focus on. However, it is shown that resistance against
algebraic [11] and cube [12] attacks can be obtained by high algebraic degree
and branch number. Moreover, lack of undisturbed bits [28] provides resistance
against truncated [17], impossible [2], and improbable [27] differential crypt-
analysis. It was shown in [20] that undisturbed bits are actually linear structures
in coordinate functions. Thus, it is better to avoid linear structures to get better
security against these kind of attacks. Resistance against side-channel attacks
like differential power analysis [18] can be obtained depending on the number
of shares [7] in threshold implementations. Implementation invariant resistance
against these attacks can be obtained by S-boxes with a low transparency order
[25] but low transparency order is not sufficient alone to directly achieve a sat-
isfying level of security [10].

Recently it was shown in [29] that S-boxes may have parameters called differ-
ential factors which does not change the output difference of an S-box when they
are XORed with the input pair. Thus, some counters of the guessed keys in a dif-
ferential variant attack become the same, which prevents the attacker from fully
capturing the attacked round keys. This may benefit the attacker because reduc-
tion in the attacked key space reduces the time complexity of many attacks. For
instance, the 10, 11, and 12-round differential-linear attacks of [13] on Serpent
[1] tries to capture 40, 48, and 160 bits of the key, respectively. However, it was
shown in [29] that these attacks can only obtain advantages of 38, 46, and 157 bits
on the key due to differential factors and these attacks can actually be performed
with time complexities reduced by a factor of 4, 4, and 8, respectively.

Most of the statistical attacks on blocks ciphers consists of two steps: Cap-
turing partial information about the key via distinguishers and obtaining the
remaining key bits via exhaustive search. We note that although differential fac-
tors reduce the time complexity of the former, they increase the time complexity
of the latter. In this work we use this observation to correct the differential attack
of [31] on Present [9] which due to six differential factors requires a time com-
plexity of 270 memory accesses instead of 264 memory accesses as it is claimed
in [31].

Moreover, we show that differential factors also reduces the data complexity
of differential attacks since the reduction in the key space allows us to use less
number of pairs to distinguish the correct key. This observation also reduces
the memory required to store the key counters and time complexity since the
attack procedure is repeated for every data. We use our findings to obtain best
differential-linear attacks on Serpent by reducing the data and time complexity
of the previous attacks.

2 Differential Factors

Definition 1 ([29]). Let S be a function from F
n
2 to F

m
2 . For all x, y ∈ F

n
2 that

satisfy S(x)⊕S(y) = μ, if we also have S(x⊕λ)⊕S(y⊕λ) = μ, then we say that
the S-box has a differential factor λ for the output difference μ. (i.e. μ remains
invariant for λ).
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Present’s S-box is given as an example in Table 1 which has λ = 1 as a
differential factor for μ = 5.

Table 1. Present’s S-box ordered in pairs where the output difference is μ = 5. Note
that XOR of any pair with λ = 1 gives another pair that has output difference μ = 5.

x 5 1 E C F D 8 2 B 7 4 0 6 A 3 9
S(x) 0 5 1 4 2 7 3 6 8 D 9 C A F B E

The following theorem shows that the number of differential factors of an S-
box is the same with the number of differential factors of its inverse. Moreover,
it also provides the differential factors of the inverse S-box when we know the
differential factors of the S-box. Hence, there is no need to check the differential
factors of the inverse of S-boxes. This theorem is useful in practice since inverse
of an S-box is used for decryption in substitution permutation networks.

Theorem 1 ([29]). If a bijective S-box S has a differential factor λ for an output
difference μ, then S−1 has a differential factor μ for the output difference λ.

Moreover, differential factors for the same μ form a vector space.

Theorem 2 ([29]). If λ1 and λ2 are differential factors for an output difference
μ, then λ1 ⊕ λ2 is also a differential factor for the output difference μ. i.e. All
differential factors λi for μ form a vector space.

Differential factors are observed mostly in small S-boxes. For instance, 73.3%
of all 3×3 bijective S-boxes contain differential factors. Moreover, a list of ciphers
and hash functions whose 4 × 4 S-boxes contain differential factors are provided
in [29].

2.1 Differential Factors and Time Complexity

We start by recalling the definition of advantage.

Definition 2 ([26]). If an attack on an m-bit key gets the correct value ranked
among the top r out of 2m possible candidates, we say the attack obtained an
(m − log(r))-bit advantage over exhaustive search.

Differential attacks on block ciphers use a differential as a distinguisher and
the attack is performed by adding a few more rounds on the top or bottom of
this differential. Pairs that may satisfy this differential are partially encrypted or
decrypted under the possible subkeys and counters of these keys are incremented
when the differential is satisfied. In a one round attack, one can obtain these
counters just by looking at a precomputed table. However, more complicated
attacks may require to repeat partial encryptions under every possible subkey.
In these cases, differential factors reduce the time complexity of this step as
follows.
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Theorem 3 ([29]). In a block cipher let an S-box S contain a differential factor
λ for an output difference μ and the partial round key k is XORed with the input
of S. If an input pair provides the output difference μ under a partial subkey
k′, then the same output difference is observed under the partial subkey k′ ⊕ λ.
Therefore, during a differential attack involving the guess of a partial subkey
corresponding to the output difference μ, the advantage of the cryptanalyst is
reduced by 1 bit and the time complexity of this key guess step is halved.

Proof. In a differential attack for any key k′, k′ and k′ ⊕ λ would get the same
number of hits since λ is a differential factor. Hence the attacker cannot dis-
tinguish half of the guessed keys with the other half. Therefore during the key
guessing step, the attacker does not need to guess half of the keys. Thus, the
time complexity of this step is halved. ��

From Theorems 2 and 3 we obtain the following Corollary.

Corollary 1 ([29]). During a differential attack involving the guess of a partial
subkey corresponding to the output difference μ of an S-box that has a vector space
of differential factors of dimension r for μ, the advantage of the cryptanalyst is
reduced by r bits and the time complexity of the key guess step is reduced by a
factor of 2r.

Most of the statistical attacks on blocks ciphers first tries to capture partial
information about the secret key and then the full key is obtained by exhaustive
search. Thus, if possible, the attacker tries to balance these two steps to obtain
the optimal time complexity for the attack. Although differential factors reduce
the time complexity of the former, they increase the time complexity of the
latter. We provide our first observation in Corollary 2.

Corollary 2. Differential factors reduce the time complexity of capturing partial
information about the key which uses differentials but they increase the time
complexity of the exhaustive search for obtaining the remaining key bits.

Thus, the attacker should take into account differential factors when trying
to balance the time complexities of these two parts. We show the importance of
Corollary 2 in Sect. 4 by proving that Wang’s differential attack on Present is
actually wrong and the corrected attack requires 270 memory accesses instead
of 264 as it is claimed in [31].

2.2 Differential Factors and Data Complexity

Statistical attacks use a distinguisher which is observed with different probabil-
ities p0 and p for the correct key and the wrong keys, respectively. For instance,
the attacker uses N plaintext pairs in differential attack and counts the times
each subkey satisfies this distinguisher. The correct key is expected to be above
some threshold T since we have p0 > p. Thus, the number of hits a wrong (right)
subkey gets can be seen as a random variable of a binomial distribution with
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parameters N and p (p0). We denote the non-detection error probability, which
is the probability of the counter for the right subkey to be less than T , by pnd;
and the false alarm error probability, which is the probability of the counter for
a wrong subkey to be higher than or equal to T , by pfa.

Theorem 4. Differential factors reduce the key space for the key guess process
and therefore reduce the data complexity of the attack. Thus, memory required
to keep the counters for the guessed keys also reduces. Reduction in the data
complexity may also reduce the time complexity depending on the attack.

Proof. The amount of required plaintext pairs N to perform the attack with the
desired success probability depends also on the number of wrong keys. Because
they determine the number of binomial distributions from which we try to dis-
tinguish the correct key. Since the existence of the differential factors reduces
the wrong subkey space, the number of pairs required to perform the attack also
reduces. Thus, memory required to keep the counters for the guessed keys also
reduces. Moreover, the attack procedure is repeated for every pair in most of
the attacks. Therefore, this reduction in the data complexity further reduces the
time complexity. ��

When differential factors were introduced in [29], their effect on the data and
memory complexity were overlooked. By using differential factors that appear
in the differential-linear attacks on Serpent, we reduce the data complexity of
these attacks in Sect. 5. Since the data and time complexities of these attacks are
directly proportional, we further reduce the time complexities of these attacks.
Moreover, we reduce the data and memory complexity of the differential attack
on Present in Sect. 4 using Theorem 4.

Success probability of differential attacks are generally calculated easily using
Selçuk’s formula [26] and it is used in the original Present attack. However, in
this work we use Blondeau-Gérard-Tillich algorithm [8] since it is valid for
both differential and differential-linear attacks. This algorithm takes p, p0, pnd,
and pfa as input and provides N and T as output.

3 PRESENT and SERPENT

Present [9] is a 31-round SPN (Substitution Permutation Network) type block
cipher with block size of 64 bits that supports 80 and 128-bit secret key. It has
been internationally standardized by ISO/IEC 29192-2:2012 [16] as a lightweight
block cipher. Round function of Present, which is depicted in Fig. 1, is same
for both versions of Present and consists of standard operations such as subkey
XOR, substitution and permutation: At the beginning of each round, 64-bit input
of the round function is XORed with the subkey. Just after the subkey XOR, 16
identical 4 × 4-bit S-boxes are used in parallel as a non-linear substitution layer
and finally a permutation is performed so as to provide diffusion.

Serpent [1] was designed by Anderson, Biham and Knudsen in 1998. It was
submitted to the AES contest and became one of the five finalists. It has a block
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Fig. 1. Round function of Present

size of 128 bits and accepts any key size of length 0 to 256 bits. It is a 32-round
SPN, where each round consists of key mixing, a layer of S-boxes and a linear
transformation.

The 128-bit input value before round i is denoted by B̂i, i ∈ {0, . . . , 31}. Each
B̂i is composed of four 32-bit words X0,X1,X2,X3 where X0 is the leftmost
word.

Three round operations are specified as follows:

1. Key Mixing: At each round Ri, a 128-bit subkey Ki is XORed with the current
intermediate data B̂i.

2. S-boxes: At each round, Ri uses a single S-box Sj , where i ≡ j (mod 8) and
i ∈ {0, . . . , 31}, 32 times in parallel. In this paper, we use the bitsliced version
of Serpent. For example, in the first round the first copy of S0 takes the
least significant bits from X0,X1,X2,X3 and returns the output to the same
bits. Thus, we obtain 32 4-bit slices referred as bi’s, where i ∈ {0, . . . , 31} and
b0 is the right most slice.

3. Linear Transformation: The four 32-bit words X0,X1,X2,X3 are linearly
mixed by the following linear operations:

X0 := X0 ≪ 13
X2 := X2 ≪ 3
X1 := X1 ⊕ X0 ⊕ X2

X3 := X3 ⊕ X2 ⊕ (X0 � 3)
X1 := X1 ≪ 1
X3 := X3 ≪ 7
X0 := X0 ⊕ X1 ⊕ X3

X2 := X2 ⊕ X3 ⊕ (X1 � 7)
X0 := X0 ≪ 5
X2 := X2 ≪ 22

B̂i+1 := X0, X1, X2, X3

where ≪ denotes the left rotation operation and � denotes the left shift
operation.

32-round Serpent cipher may be described by the following equations:

B̂0 := P B̂i+1 := Ri(B̂i), i ∈ {0, . . . , 31} C := B̂32
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where

Ri(X) = LT (Ŝi(X ⊕ Ki)), i ∈ {0, . . . , 30}
R31(X) = Ŝ31(X ⊕ K31) ⊕ K32

and Ŝi is the application of the S-box S(i (mod 8)) 32 times in parallel, and LT
is the linear transformation.

In this paper, we use P , S, I to the denote output of the permutation layer,
output of the substitution layer, and input of a round, respectively.

Differential factors of Present and Serpent’s S-boxes are provided in
Table 2.

Table 2. Differential factors of Present and Serpent’s S-boxes

S-box 0123456789ABCDEF λ μ

Present C56B90AD3EF84712 1x 5x
Present C56B90AD3EF84712 Fx Fx

Serpent S0 38F1A65BED42709C 4x 4x
Serpent S0 38F1A65BED42709C Dx Fx

Serpent S1 FC27905A1BE86D34 4x 4x
Serpent S1 FC27905A1BE86D34 Fx Ex

Serpent S2 86793CAFD1E40B52 2x 1x
Serpent S2 86793CAFD1E40B52 4x Dx

Serpent S6 72C5846BE91FD3A0 6x 2x
Serpent S6 72C5846BE91FD3A0 Fx Fx

4 Differential Attacks on PRESENT

The best known differential attack on Present is obtained in [31] by adding two
rounds to the bottom of the 24 different 14-round differentials which has different
input and same output difference. These differentials hold with probability p =
2−62 and Δ1 is an example for these differentials

Δ1 : 0700000000000700 →14r 0000000900000009

This differential attack captures 32 bits of the key with a time complexity of
233.18 2-round Present encryptions, a data complexity of 264 chosen plain-
texts, and a memory complexity of 232 6-bit counters. This part of the attack
works with a success probability of 99.9999939% and then the remaining 48
bits are obtained via exhaustive search which requires 248 16-round Present
encryptions or equivalently 264 memory accesses.
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It is claimed that these 14-round characteristics activates two S-boxes at the
round 15 and due to the undisturbed bits of the S-box, it activates at most
six S-boxes instead of eight in round 16. If activated, the input difference of
these S-boxes must be 1. Present’s S-box has a differential factor λ = 1 for
μ = 5. Thus, the inverse of the S-box has a differential factor λ = 5 for μ = 1
by Theorem 1. Since μ = 1 coincides with the input difference of these six S-
boxes, the advantage of this attack is actually 26 bits instead of 32 bits. This
theoretical result can easily be observed experimentally by performing this attack
by removing the first few rounds of the 14-round differential so that it remains
within our computational power. This attack is summarized in Table 3.

Table 3. 16-round differential-linear attack of [31]. Output differences μ that contain
differential factors, which is λ = 1 for the inverse S-box, are shown in bold.

Rounds Differences in bits

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

X1,I 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0000

14-Round Differential Δ1

X14,P 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 1001

X15,S 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 0000 0000 0000 0000 ???0

X15,P 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 0000 0000 0000

X16,S 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 0000 0000 0000

This observation reduces the time complexity of the first part of the attack
to 227.18 2-round Present encryptions and the memory complexity to 226 6-bit
counters. However, the time complexity of exhaustive search for the remaining
bits of the key is 254 16-round Present encryptions or equivalently 270 memory
accesses. Therefore, the correct time complexity of Wang’s differential attack on
Present [31] is 270 memory accesses, instead of 264.

Another correction we make for this attack is due to Theorem 4. The original
attack uses the whole codebook and achieves a success probability of 0.999999939.
However, the original attack tries to capture 32 bits of the key. Thus, we need
pfa ≤ 2−33 to have only the correct key counter above the threshold T . Since the
six differential factors used in the attack reduces the key space for the key guess
process, we can choose pfa = 2−27 to prevent any wrong key to get a counter
higher than T . Using the Blondeau-Gérard-Tillich algorithm with parame-
ters p = 2−64, p0 = 24 · 2−62, pnd = 1 − 0.999999939, and pfa = 2−27 shows that

Table 4. Comparison of Wang’s original differential attack on Present and our cor-
rected one. MA - Memory Accesses, b - bits, CP - Chosen Plaintexts.

Rounds Data Time Memory Success Reference

Original 16 264 CP 264 MA 6 · 232 b 99.9999939 % [31]
Corrected 16 263.58 CP 270 MA 6 · 226 b 99.9999939 % Sect. 4
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this attack can be performed with 263.58 data complexity to achieve the success
probability of the original attack. This change reduces the memory required for
the guessed key counters to 6 · 226 bits from 6 · 232 bits. These corrections are
summarized in Table 4.

5 Differential-Linear Attacks on SERPENT

The most successful differential-linear attacks on Serpent were provided by
Dunkelman et al. in [13] for 10, 11, and 12 rounds for the key sizes 128, 192, and
256, respectively. These attacks combine the 3-round differential

Δ : 00000000000000000000000040050000 → 0??00?000?000000000?00?0??0??0?0

Table 5. 12-round differential-linear attack of [13]. Output differences μ that contain
differential factors, which are μ = 4 and μ = E for S1 and μ = 4 for S0, are shown in
bold. Undisturbed bits are shown in italic.

Input X0: ???? ???? 0??? 0??? ???? ???? ???? 00??
X1: ???? ???? 0??? 0??? ???? ???? ???? 00??
X2: ???? ???? 0??? 0??? ???? ???1 ???? 00??
X3: ???? ???? 0??? 0??? ???? ???? ???? 00??

S0 X0: ??0? 00?0 0000 0?00 00?0 0000 00?? 00??
X1: ??0? ???? 00?0 0??? 0??? ???0 0?00 0000
X2: 000? 00?? 0??0 0?00 ??00 ?001 0?00 0000
X3: ?0?? ?0?? 00?? 0??? ??0? 0??0 ?001 0000

LT X0: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X1: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X2: ?000 0000 0000 0??0 0?00 ?000 0000 0000
X3: ?000 0000 0000 01?0 0?00 1000 0000 0000

S1 X0: 0000 0000 0000 0100 0000 0000 0000 0000
X1: 1000 0000 0000 0010 0100 0000 0000 0000
X2: 0000 0000 0000 0000 0100 1000 0000 0000
X3: 0000 0000 0000 0010 0100 0000 0000 0000

LT X0: 0000 0000 0000 0000 0000 0000 0001 0000
X1: 0000 0000 0000 0000 0000 0000 0000 0000
X2: 0000 0000 0000 0000 0000 0000 1001 0000
X3: 0000 0000 0000 0000 0000 0000 0000 0000

9-Round Differential-Linear Characteristic Δ ◦ Λ

Last Round
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Table 6. Summary of attacks on Serpent. Our observations on differential fac-
tors in Theorem 4 convert the attacks of [29] to the best attacks for this cipher.
En - Encryptions, MA - Memory Accesses, B - bytes, AC - Adaptive Chosen Plaintexts,
CP - Chosen Plaintexts, KP - Known Plaintexts.

# Attack Key Data Time Memory Advantage Success Reference

Rounds Type Size

6 Meet-in-the-

middle

256 512 KP 2247 En 2246 B - - [19]

6 Differential All 283 CP 290 En 240 B - - [19]

6 Differential All 271 CP 2103 En 275 B - - [19]

6 Differential 192, 256 241 CP 2163 En 245 B 124 - [19]

7 Differential 256 2122 CP 2248 En 2126 B 128 - [19]

7 Improbable All 2116.85 CP 2117.57 En 2113 B 112 99.9% [30]

7 Differential All 284 CP 285 MA 256 B - - [4]

10 Rectangle 192, 256 2126.3 CP 2173.8 MA 2131.8 B 80 - [5]

10 Boomerang 192, 256 2126.3 AC 2173.8 MA 289 B 80 - [5]

10 Differential-Linear All 2101.2 CP 2115.2 En 240 B 40 84% [13]

10 Differential-Linear All 2101.2 CP 2113.2 En 240 B 38 84% [29]

10 Differential-

Linear

All 2100.55 CP 2112.55 En 240 B 38 84% Sect. 5

11 Linear 256 2118 KP 2214 MA 285 B 140 78.5% [3]

11 Multidimensional

Lineara
All 2116 KP 2107.5 En 2108 B 48 78.5% [23]

11 Multidimensional

Linearb
All 2118 KP 2109.5 En 2104 B 44 78.5% [23]

11 Nonlinear 192, 256 2120.36 KP 2139.63 MA 2133.17 B 118 78.5% [22]

11 Filtered Nonlinear 192, 256 2114.55 KP 2155.76 MA 2146.59 B 132 78.5% [22]

11 Differential-Linear 192, 256 2121.8 CP 2135.7 En 276 B 48 84% [13]

11 Differential-Linear 192, 256 2121.8 CP 2133.7 En 276 B 46 84% [29]

11 Differential-

Linear

192, 256 2120.8 CP 2132.7 En 276 B 46 84% Sect. 5

12 Multidimensional

Linearc
256 2116 KP 2237.5 En 2125 B 174 78.5% [23]

12 Differential-Linear 256 2123.5 CP 2249.4 En 2128.5 B 160 84% [13]

12 Differential-Linear 256 2123.5 CP 2246.4 En 2128.5 B 157 84% [29]

12 Differential-

Linear

256 2122.45 CP 2244.35 En 2128.5 B 156 84% Sect. 5

a [22] shows that this attack requires 2125.81 KP and 2101.44 En +2114.13 MA.
b [22] shows that this attack requires 2127.78 KP and 297.41 En +2110.10 MA.
c [22] shows that this attack requires ≥ 2125.81 KP 2229.44 En +2242.13 MA.

that has an experimental probability of 2−7 with the 6-round linear approxima-
tion

Λ : 20060040000001001000000000000000 → 00001000000000005000010000100001

of [3] that has bias q = 2−27. By performing experiments on the first four rounds
of this 9-round differential-linear distinguisher, it was shown in [13] that for the
full distinguisher, the probability of pairs to have the same parity in the masked
outputs is 1/2 + 2−57.75. The 11-round attack adds one round to the top of
this distinguisher and one round to the bottom. The 12-round attack adds an
extra round to the top, which is provided in Table 5. Since the time complexity
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of the 11-round attack exceeds the exhaustive search of 128 bits, the 10-round
attack removes the last round of the distinguisher so that it becomes applicable
to Serpent with 128-bit keys. These attacks partially encrypt the top rounds
under every possible subkey to obtain the input difference of Δ. Then the last
round is decrypted to check the parity of the correct pairs which is actually
performed by using precomputed lookup tables.

It was claimed that these attacks can capture 40, 48, and 160 bits of the
subkey. Later it was shown in [29] that these attacks overlooked the differential
factors of Serpent’s S-boxes S0 and S1 and the actual advantages are 38, 46, and
157 bits, respectively. Since the attack procedure is repeated for every guess of the
subkey bits, existence of differential factors also reduced the time complexities
of these attacks by a factor of 4, 4, and 8, respectively.

However, we can further improve these attacks using Theorem 4. We also
not that a differential factor was overlooked in the 12-round attack of [29] and
therefore the advantage of the attack is actually 156 bits, not 157. Since the dif-
ferential factors used in the attacks reduce the key space to 38, 46, and 156 bits,
we choose the false alarm probability for these attacks in Blondeau-Gérard-
Tillich algorithm as pfa = 2−39, pfa = 2−47, and pfa = 2−157, respectively.
This analysis shows that these attacks can actually be performed with data com-
plexities 2100.55, 2120.8, and 2122.45 instead of 2101.2, 2121.8, and 2123.5 respectively.
Since the data and time complexities of these attacks are directly proportional,
we further reduce the time complexities of these attacks to 2112.55, 2132.7, and
2244.35 from 2113.2, 2133.7, and 2246.4, respectively. The attacks on Serpent are
summarized in Table 6.

6 Conclusion

Many attacks on ciphers require data, time, and memory complexities that are
beyond our computational powers. Thus, experiments on the reduced versions of
these theoretical attacks are vital to check the validity in practice. For instance,
it was believed that the key bits corresponding to active S-boxes in a differential
attack could be fully captured in a differential attack. However, differential fac-
tors which are introduced in Lightsec 2014 show that this is not always the case.
Differential factors were used to correct the differential-linear attacks on Ser-
pent and the resulting attacks have reduced time complexities. Key recovery
attacks generally consists of two parts and in this work we show that differential
factors reduce the time complexity of the key guess using a distinguisher step
but increase the time complexity of exhaustive search on the remaining key bits
step. As an example, we show that the best differential attack on Present in the
literature overlooked the differential factors and the attack actually requires 270

memory accesses instead of 264. Hence, differential factors affect the attacker
adversely if the exhaustive search step of the attack requires time complexity
more than the key guess step.

Moreover, we further investigate the effects of differential factors and observe
that existence of differential factors in an attack reduces the memory complexity
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required for the key counters and the data complexity. This is because differ-
ential factors reduce the size of the key space for the key guess part of the
attack which allows the attacker to distinguish the correct key from the wrong
ones with a reduced number of data. The reduction in the data complexity may
result in a similar reduction in the time complexity since data and time complex-
ities are directly proportional in most of the attacks. Using these observations,
we further reduce the data and time complexities of the best differential-linear
attacks on Serpent to obtain the best attacks for this cipher. Moreover, we
show that the differential attack on Present actually requires less data and
memory complexity.
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Abstract. Group signature is a central topic of cryptography with
anonymity, and its several applications have been considered so far,
e.g., privacy-preserving vehicle communications. Since anonymity (a.k.a.
unlinkability) is quite strong in certain situations and it requires heavy
cryptographic costs, group signatures with relaxed anonymity also have
been proposed. For example, group signatures with controllable linkabil-
ity was proposed by Hwang et al., (LightSec 2011) where an authority
called Linker can anonymously check whether two group signatures are
made by the same signer or not by using a linking key. However, the link-
ing algorithm requires a heavy computation, i.e., bilinear pairings. In this
paper, we propose the notion group signatures with time-token depen-
dent Linking (GS-TDL), where a signer is unlinkable unless it generates
multiple signatures at the same time period. It is particularly worth
noting that our linking algorithm does not require cryptographic com-
putations (i.e., comparisons to determine two elements are the same).
Moreover, the signature size is 25% shorter than that of the Hwang
et al. scheme, and is 34% shorter than that of the Boneh-Boeyn-Shacham
short group signature scheme. Our GS-TDL scheme supports verifier-
local revocation (VLR), which maintains constant signing and verifica-
tion costs by using the linkable part of signatures. These appear to be
related to independent interests. Finally, we provide our experimental
results (using the TEPLA library on a cheap and constrained computa-
tional power device, Raspberry Pi).

1 Introduction

Group Signature: Digital signature is widely recognized as an important tool
for current information-oriented society, where a verifier can check whether a
signature is made by a specific signer or not. That is, the verifier identifies the
signer. However, in a certain situation, this identification infringes privacy of
signer, and group signature, which was proposed by Chaum and van Heyst [17],
considers such a privacy infringement, where a verifier can anonymously check
the signer whether a signer is a member of the group or not. Bellare, Micciancio,
and Warinschi (BMW) [10] formalized group signature, and showed that full-
anonymity and full-traceability are enough to construct a secure group signature
c© Springer International Publishing Switzerland 2016
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scheme, and the BMW model is widely recognized as a de-facto standard for
group signature. Briefly, full-anonymity requires that no one, except the group
manager, can link whether two group signatures are made by the same signer or
not. Bellare, Shi, and Zhang (BSZ) [11] and Kiayias and Yung (KY) [33] showed
an extension of the BMW model for dynamic group setting, and Sakai et al. [45]
further extended the BSZ model to prevent signature hijacking attack.

Our Motivation: When defining a security-level of a system, it should be
decided whether full anonymity (or more precisely, unlinkability) must be guar-
anteed or not. For example, in a vehicle ad-hoc network (VANET) system with
anonymity, e.g., [48], linkable information (such as travel routes) is also impor-
tant when local information is collected. That is, no such linkable information can
be collected when a full-anonymous group signature scheme is employed as its
building tool. Moreover, system efficiency may be drastically improved if unlink-
ability is not required, because the theoretical gap between a group signature
scheme with unlinkability and one without unlinkability is significantly large [44].
More concretely, group signature without unlinkability can be constructed from
one-way functions, whereas group signature with unlinkability implies chosen-
ciphertext secure public key encryption. Especially, group signature with opening
soundness [45] implies pubic key encryption with non-interactive opening [19].
As another example, Baldimtsi and Lysyanskaya proposed a light-weight ver-
sion of anonymous credentials [6], where no pairing computation is required
under a relaxed anonymity definition. Conversely, continuous linkability (via
pseudonyms, for example) is problematic from the viewpoint of privacy. For
example, a vehicle with continuous linkability is tracked from the time the vehi-
cle is acquired up until the time it is sold, and parking spaces, which may include
the driver’s home and work place, are revealed. Therefore, suitably defining
“moderate” anonymity with practical efficiency is an important issue that must
be resolved.

Our Contribution: In this paper, we propose group signatures with time-token
dependent linking (GS-TDL), where a signer is unlinkable unless it generates
multiple signatures at the same time period, and give a light-weight instantiation.
We assume that a Token Generation Unit (TGU) generates a time-dependent
token tT at a time T and broadcasts it, and each signer, who uses a unique
identity ID, generates a group signature σ by using tT and its signing key sigkID.
In GS-TDL, nobody can distinguish whether two signatures were generated by
the same signer or not if (ID, T ) �= (ID′, T ′) for identities of signers ID and ID′

and time periods T and T ′.
Our GS-TDL is secure in the random oracle model, because we pursue a

light-weight implementation of the system, under the q-strong Diffie-Hellman
(q-SDH) assumption [13] and the strong decisional Diffie-Hellman inversion
(SDDHI) assumption [16,23]. The group signature size in our scheme is shorter
than that of previous schemes owing to time-dependent linkability. Specifically,
a signature contains only 6 group elements, whereas that of the short group
signature scheme [14] contains 9 group elements, that of the short controllable
linkable group signature scheme [29] contains 8 group elements, and that of the



A Light-Weight Group Signature Scheme 39

controllable linkable group signature scheme (for dynamic group setting) [30]
contains 12 group elements. Recently, though a short dynamic controllable link-
able group signature scheme is proposed [28], a signature contains 8 group ele-
ments.1 In addition to the signature size, our linking algorithm does not require
cryptographic computations (i.e., comparisons to determine two elements are
the same).

Our GS-TDL supports verifier-local revocation (VLR) [15,34,38,42,43],
where no signer is involved in the revocation procedure. In particular, our GS-
TDL achieves backward unlinkability [38,42,43], which prevents adversaries from
breaking anonymity, even after signers are revoked. Our time-dependent linking
properties enable us to achieve constant verification costs by using the linkable
part of signatures, whereas those of previous schemes are O(r), where r is the
number of revoked users. This appear to be related to independent interest.

Finally, we provide the experimental results of our GS-TDL scheme, and
show that it is feasible in practice. To implement GS-TDL, we use the TEPLA
library [1]. We note that we employ asymmetric pairing settings ((type III)
Barreto-Naehrig (BN) curves [8]) with 254-bit order due to the recent novel
works for solving the discrete logarithm problem over certain elliptic curves with
symmetric pairing settings, e.g., [7,25].

Application: As an application of GS-TDL, we can construct an anonymous
time-dependent authentication system in the VANET setting, in which two group
signatures become linkable if a signer (vehicle) generates a group signature twice
in the same time period. Time-dependent linking appears to be more suitable
for a VANET system than a system based on message-linkable group signature
(MLGS) [48], where two group signatures become linkable if a signer (vehicle)
generates a group signature for the same message twice. For example, a vehicle
is always linkable if it generates group signatures on the same message, and this
situation might occur when a vehicle is used for work trips and uses the same
road each day. This may infringe privacy of drivers.2 We note that no formal
security definition for MLGS is provided in [48], and therefore the security proofs
are informal. As a result, we can show an attack against the MLGS scheme of Wu
et al., where anyone can generate a valid-but-untraceable group signature with-
out using a secret key. We give the attack and the detailed system construction
based on GS-TDL in the full version of this paper.

Related Work: Nakanishi et al. proposed linkable group signature [41], where
anyone can determine whether two signatures were made by the same signer
or not. As a difference from GS-TDL, no time-dependent token is required
1 We remark that these schemes [14,28–30] also achieve only CPA-anonymity (i.e., no

opening oracle access is allowed in anonymity game) as in ours.
2 Even if a random nonce is included as a part of signed message, no linking algorithm

works and this leads to a wag-the-dog situation. Even if a time T is included, e.g.,
sign M ||T by using a message-dependent linking group signature scheme, anyone can
manipulate T and such a signer-driven anonymous system must be avoided because
vehicles have incentive to hide identity. On the contrary, in GS-TDL, time T is
authorized by TGU and no vehicle can manipulate T .



40 K. Emura and T. Hayashi

for linking. That is, two group signatures made by the same signer are always
linkable. A group signature with a relaxed anonymity (for VANET) has been
considered in [40]. But the link algorithm is not publicly executable, and an
authority called Link Manager is introduced. That is, two group signatures made
by the same signer are always linkable from the viewpoint of Link Manager.
Moreover, pairing computations are required for linking. Abe et al. [2] proposed
double-trapdoor anonymous tags which can generally construct traceable sig-
natures [32]. Since a signer is always linkable after the corresponding token is
broadcasted, we cannot use traceable signatures instead of GS-TDL. As a spe-
cial case of traceable signatures, group signatures with controllable linkability
has been proposed [28–30,47], where a link key is defined for the linking pro-
cedure. However, pairing computations are required for linking, which lead to
inefficiency. Yang et al. [49] considered special unlinkability which has a similar
functionality of time-dependent linking. However, the group manager needs to
publish a token for each group member per a period whereas the group man-
ager just publishes a small-size token (which can be commonly used by group
members) in our scheme.

2 Preliminaries

Complexity Assumptions: Let G be a probabilistic polynomial-time algo-
rithm that takes a security parameter λ as input and generates a parameter
(p,G1,G2,GT , e, g1, g2) of bilinear groups, where p is a λ-bit prime, G1,G2 and
GT are groups of order p, e is a bilinear map from G1 ×G2 to GT , and g1 and g2
are generators of G1 and G2, respectively. Here we use the asymmetric setting,
i.e., G1 �= G2.

Definition 1 (SDDHI Assumption [16]). We say that the SDDHI (Strong
Decisional Diffie-Hellman Inversion) assumption holds if for all PPT adver-

saries A, |Pr[(p,G1,G2,GT , e, g1, g2)
$← G(1λ); x

$← Zp; (T, st) ← AOx(p,G1,

G2,GT , e, g1, g2, g
x
1 ); τ0 = g

1
x+T

1 ; τ1
$← G1; b

$← {0, 1}; b′ ← AOx(τb, st) : b =
b′] − 1

2 | is negligible, where Ox is an oracle which takes as input z ∈ Z
∗
p \ {T},

outputs g
1

x+z

1 .

We remark that the underlying bilinear group must not be symmetric.

Definition 2 (q-SDH Assumption [13]). We say that the q-SDH (q-Strong
Diffie-Hellman) assumption holds if for all PPT adversaries A, Pr[(p,G1,

G2,GT , e, g1, g2)
$← G(1λ); γ

$← Zp; (x, g
1

x+γ

1 ) ← A(p,G1,G2,GT , e, g1, g
γ
1 , . . . ,

gγq

1 , g2, g
γ
2 ); x ∈ Z

∗
p \ {−γ}] is negligible.

Digital Signature: Let (Gen,Sign,Verify) be a digital signature scheme. The
key generation algorithm Gen takes as input a security parameter λ, and out-
puts a pair of verification/signing key (vk, sigk). The signing algorithm Sign
takes as input sigk and a message to be signed M , and outputs a signature Σ.
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The verification algorithm Verify takes as input vk, Σ and M , and outputs 0/1.
We require the following correctness property: for all (vk, sigk) ← Gen(1λ) and
M , Pr[Verify(vk,Sign(sigk,M),M) = 1] = 1 holds. Next, we define existential
unforgeability against chosen message attack (EUF-CMA) as follows. Let C be
the challenger, and A be an adversary. C runs (vk, sigk) ← Gen(1λ) and gives vk to
A. A is allowed to issue signing queries M . C runs Σ ← Sign(sigk,M) and returns
Σ to A. Finally, A outputs (Σ∗,M∗). We say that a digital signature scheme
(Gen,Sign,Verify) is EUF-CMA if the probability, that Verify(vk, Σ∗,M∗) = 1
and A did not send M∗ as a signing query, is negligible.

3 Definitions of GS-TDL

In this section, we give the syntax and security definitions of GS-TDL by adding
the time-dependent linkability to the BMW model [10] which is recognized
as a de-facto standard for group signatures. In order to implement the time-
dependent linkability, we introduce Token Generation Unit who generates time
tokens and broadcasts the tokens. As in the conventional group signatures, an
authority called Group Manager issues signing keys for users. A user generates
a group signature by using own secret signing key and the corresponding time
token. If a user generates two group signatures by using the same time token,
then these signatures are linkable whereas two signatures are unlinkable if two
signatures are generated by different time tokens respectively.

Design Principle: Because we pursued a light-weight implementation of the
system, there is a room for discussion about whether the open functionality
should be utilized or not. In the open functionality, an authority (called an
opener) can determine the identity of the actual signer by using a secret opening
key. For example, the open functionality is implemented by using public key
encryption (PKE) or non-interactive zero-knowledge proof of knowledge, and
could be an efficiency bottleneck. It has been reported that the signature size of
the Furukawa-Imai group signature scheme [24] can be reduced by 50 % if the
open functionality is removed [20]. It also has been reported that implement-
ing the open functionality without using PKE leads to a short group signature
scheme at the expense of the signature opening costs [12]. Given the above facts,
we do not consider the open functionality (we only consider the linking func-
tionality). Moreover, we assume that the signing key of a signer is embedded
in a device during the setup phase, and therefore we remove an interactive join
algorithm from our syntax. Finally, we consider the revocation functionality,
especially verifier-local revocation (VLR) where no signer is involved in revoca-
tion procedures.

Definition 3 (Syntax of GS-TDL). A group signature scheme with time-token
dependent linking GS-T DL consists of the algorithms (Setup,GKeyGen,TKeyGen,
Join,TokenGen,GSign,Revoke,GVerify, Link) as follows:
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– Setup: The setup algorithm takes as input a security parameter λ, and outputs
a public parameter params.

– GKeyGen: The group key generation algorithm takes as input params, and
outputs a group public key gpk, a group master key gsk, an initial revocation
storage grs := ∅ and an initial revocation list RL0 := ∅.

– TKeyGen: The token key generation algorithm takes as input params, and
outputs a public key tpk and a secret key tsk.

– Join: The join algorithm takes as input gsk, grs and a unique identity ID, and
outputs a signing key sigkID and updated revocation storage. We remark that
this algorithm is not required to be interactive.

– TokenGen: The token generation algorithm takes as inputs tsk and a time T ,
and outputs a token tT .

– GSign: The signing algorithm takes as inputs gpk, tpk, tT , sigkID, and a mes-
sage M to be signed, and outputs a group signature σ.

– Revoke: The revocation algorithm takes as inputs gpk, grs, and a set of revoked
users at a time T {IDT,1, . . . , IDT,nT

}, and outputs RLT . Here, nT is the num-
ber of users that are additionally revoked on T .

– GVerify: The verification algorithm takes as inputs gpk, tpk, RLT , σ, and M ,
and outputs 0 (invalid) or 1 (valid).

– Link: The linking algorithm takes as inputs gpk, tpk, and RLT , and two sig-
natures and messages (σ0,M0, T0) and (σ1,M1, T1), and outputs 1 if two sig-
natures are made by the same signer, and 0 otherwise. We remark that the
Link algorithm outputs 0 does not guarantee two signatures are made by the
different signers. For example, if a signature is invalid, then the algorithm
outputs 0.

We require the following correctness, where any honestly generated signa-
ture is valid, and the Link algorithm correctly links two signatures if these are
generated by the same signing key with the same token, unless the correspond-
ing signer is not revoked. Moreover, we require that a signature is invalid if the
corresponding signer is revoked.3

Definition 4 (Correctness). For any probabilistic polynomial time (PPT)
adversary A and the security parameter λ ∈ N, we define the experiment
Expcorr

GS-TDL,A(λ) as follows.

3 As a remark, the case that an adversary generates a valid signature using a revoked
user’s signing key cannot be captured by unforgeability since the open algorithm is
not defined. Instead, we consider the case that a signature is invalid when the cor-
responding signer is revoked in correctness, though it might be additionally defined
such as revocation soundness.
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Expcorr
GS-TDL,A(λ) :

ms ← Setup(1λ)
(gpk, gsk, grs,RL0) ← GKeyGen(params)
(tpk, tsk) ← TKeyGen(params); GU := ∅
(ID∗, T ∗,M0,M1) ← AAddU(·),Revoke(grs,·)(gpk, tpk)
ID∗ ∈ GU; tT ∗ ← TokenGen(tsk, T ∗)
σ0 ← GSign(gpk, tpk, tT ∗ , sigkID∗ ,M0)
σ1 ← GSign(gpk, tpk, tT ∗ , sigkID∗ ,M1)
Return 1 if the following holds :

[
ID∗ �∈ RLT ∗ ∧ (

(GVerify(gpk, tpk,RLT ∗ ,M0, σ0) = 0
∨ GVerify(gpk, tpk,RLT ∗ ,M1, σ1) = 0)

∨ Link(gpk, tpk,RLT ∗ , (M0, σ0, T
∗), (M1, σ1, T

∗)) = 0
)]

∨ [
ID∗ ∈ RLT ∗ ∧ (

(GVerify(gpk, tpk,RLT ∗ ,M0, σ0) = 1

∨ GVerify(gpk, tpk,RLT ∗ ,M1, σ1) = 1
)]

Otherwise return 0

– AddU: The add user oracle allows an adversary A to add honest users to the
group. On input an identity ID, this oracle runs sigkID ← Join(gsk, grs, ID).
ID is added to GU.

– Revoke: Let T − 1 be the time that the oracle is called. The revocation
oracle allows an adversary A to revoke honest users. On input identi-
ties {IDT,1, . . . , IDT,nT

}, this oracle runs RLT ← Revoke(gpk, grs, {IDT,1, . . . ,
IDT,nT

}). We remark that T ∗ is the challenge time that A outputs
(ID∗,M0,M1).

GS-T DL is said to be satisfying correctness if the advantage Advcorr
GS,A(λ) :=

Pr[Expcorr
GS-TDL,A(λ) = 1] is negligible for any PPT adversary A.

Next, we give our anonymity definition which guarantees that no adversary
who has tsk can distinguish whether two signatures are generated by the same
signer or not, if the corresponding linkable signatures are not generated. In
contrast to the BMW model, A is not allowed to obtain signing keys of challenge
users (selfless anonymity). This is a reasonable setting since A can trivially break
anonymity if A obtains such signing keys. For example, let A have sigkIDi0

. Then,
A can make a signature σ on T0 using sigkIDi0

(with arbitrary message M), and
can check whether Link(gpk, tpk,RLT0 , (M0, σ

∗, T0), (M,σ, T0)) = 1 or not, where
σ∗ is the challenge signature. Instead, A is allowed to access the GSign oracle in
our definition. Moreover, we consider backward unlinkability, where no adversary
can break anonymity even after the challenge signers are revoked.
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Definition 5 (Anonymity). For any PPT adversary A and a security para-
meter λ ∈ N, we define the experiment Expanon-tg-b

GS-TDL,A(λ) as follows.

Expanon-tg-b
GS-TDL,A(λ) :

params ← Setup(1λ)
(gpk, gsk, grs,RL0) ← GKeyGen(params);
(tpk, tsk) ← TKeyGen(params); GU := ∅; STSet := ∅
d ← AAddU(·),Revoke(grs,·),GSign(·,·,·),Ch(b,·,·,·,·,·)(gpk, tpk, tsk)
Return d

– AddU: The same as before.
– Revoke: The same as before. We remark that if T0 �= T1 and assume that

T0 < T1, then IDi0 and/or IDi1 can be revoked after T1. If T0 = T1, then IDi0

and/or IDi1 can be revoked after T0.
– GSign: The signing oracle takes as input ID, tT , and a message M . We

assume that tT is a valid token which means that the GVerify algorithm
outputs 1 for all honestly generated signatures with tT , even though this is
made by A. If ID �∈ GU, then the oracle runs AddU(ID). The oracle returns
σ ← GSign(gpk, tpk, tT , sigkID,M) and stores (ID, T ) in STSet.

– Ch: The challenge oracle takes as input IDi0 , IDi1 , tT0 , tT1 , M∗
0 , and M∗

1

where IDi0 �= IDi1 and IDi0 , IDi1 ∈ GU. Return signature(s) according to the
following cases:
• T0 = T1: If (IDi0 , T0), (IDi1 , T1) �∈ STSet, then compute σ∗ ←

GSign(gpk, tpk, tTb
, sigkIDib

,M∗), and return σ∗. Without loss of general-
ity, we set M∗ = M∗

0 = M∗
1 .

• T0 �= T1: If (IDi0 , T0), (IDi1 , T1), (IDi0 , T1) �∈ STSet, then compute
σ∗
0 ← GSign(gpk, tpk, tT0 , sigkIDi0

,M∗
0 ) and σ∗

1 ← GSign(gpk, tpk, tT1 ,

sigkIDib
,M∗

1 ), and return σ∗
0 and σ∗

1 .
Moreover, we assume that tT0 and tT1 are valid tokens even though these are
made by A, which means that the GVerify algorithm outputs 1 for all honestly
generated signatures with tT0 or tT1 .

4

GS-T DL is said to be satisfying anonymity if the advantage Advanon-tg
GS-TDL,A(λ) :=

|Pr[Expanon-tg-1
GS-TDL,A(λ) = 1] − Pr[Expanon-tg-0

GS,A (λ) = 1]| is negligible for any PPT
adversary A.

When T0 = T1, our definition guarantees that two different signers are unlink-
able even if they generate signatures at the same time period. We note that if
A obtains two signatures even though T0 = T1, then A can break anonymity

4 This condition must be required to exclude the trivially-broken case, e.g., A honestly
generates tT0 and sets tT1 as arbitrary value. Then, A can check whether σ∗ is valid
or not. If yes, then b = 0 and b = 1 otherwise.
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by using the Link algorithm. Therefore, A is allowed to obtain one challenge
signature σ∗ only. When T0 �= T1, our definition guarantees that a signer is still
unlinkable if the signer respectively generates two signatures on different time
periods. That is, when A obtains σ∗

0 , which is generated by IDi0 at a time T0,
and σ∗

1 , which is generated by IDib
at a time T1 �= T0, no A can distinguish

whether two signatures are respectively made by the same user IDi0 or different
users IDi0 and IDi1 . In order to prevent a trivial linking attack, A is not allowed
to obtain a signature for (IDi0 , T1) in this case.

We note that we do not have to consider the case IDi0 = IDi1 and T0 �= T1,
since time T is an input of the verification algorithm. That is, A can easily break
anonymity in this case: A just obtains σ∗ ← GSign(gpk, tpk, tTb

, sigkIDi0
,M∗) and

checks whether GVerify(gpk, tpk,RLT0 ,M
∗, σ∗) = 1 or not.

Next, we define unforgeability which guarantees that nobody who does not
have a signing key or does not have a token can generate a valid signature.

Definition 6 (Unforgeability). For any PPT adversary A and security para-
meter λ ∈ N, we define the experiment Expunf

GS-TDL,A(λ) as follows, where
O := (AddU(·),Revoke(grs, ·),TokenGen(tsk, ·),SetToken(·),GSign(·, ·, ·),USK(·),
TSK(·)).

Expunf
GS-TDL,A(λ) :

params ← Setup(1λ)
(gpk, gsk, grs,RL0) ← GKeyGen(params)
(tpk, tsk) ← TKeyGen(params)
GU := ∅; TSet := ∅; SSet := ∅
(M,σ) ← AO(gpk, tpk)
Return 1 if (1) ∧ (2) ∧ ((3) ∨ (4)) hold :

(1) GVerify(gpk, tpk,RLT ∗ ,M, σ) = 1
(2) (T ∗,M, σ) �∈ SSet

(3) T �∈ TSet ∧ TSK(·) has not been called
(4) TSK(·) has been called with non-⊥ output

Otherwise return 0

– AddU: The same as before.
– Revoke: The same as before. We note that T ∗ is the challenge time that A

outputs (M,σ).
– TokenGen: The token generation oracle takes as input a time T . This oracle

runs tT ← TokenGen(tsk, T ), stores T in TSet, and returns tT .
– SetToken: The token setting oracle takes as input tT , and sets tT as the token

at a time T . Without loss of generality, we assume that if the TokenGen oracle
is called, the SetToken oracle is also called right after calling the TokenGen
oracle. We remark that A can set arbitrary value as tT via this oracle.
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– GSign: The signing oracle takes as input ID, T , and a message M . If ID �∈
GU, then the oracle runs AddU(ID). If tT is not generated via the TokenGen
oracle, then call the oracle TokenGen(tsk, T ) and the SetToken oracle. The
oracle returns σ ← GSign(gpk, tpk, tT , sigkID,M) and stores (T,M, σ) in SSet.

– USK: The user key reveal oracle takes as input ID. If the TSK oracle was
called before, then return ⊥. If ID �∈ GU, then the oracle runs AddU(ID).
Return sigkID.

– TSK: The token key reveal oracle returns ⊥ if the USK oracle was called before
and at least one identity is not revoked.5 Otherwise, return tsk.

GS-T DL is said to be unforgeable if the advantage Advunf
GS-TDL,A(λ) :=

Pr[Expunf
GS-TDL,A(λ) = 1] is negligible for any PPT adversary A.

Finally, we define linking soundness which guarantees that the Link algorithm
does not return 1 when two valid signatures are made by either different signers
or different time tokens.

Definition 7 (Linking Soundness). For any PPT adversary A and security
parameter λ ∈ N, we define the experiment Expsnd

GS-TDL,A(λ) as follows.

Expsnd
GS-TDL,A(λ) :

params ← Setup(1λ)
(gpk, gsk, grs,RL0) ← GKeyGen(params)
(tpk, tsk) ← TKeyGen(params)
(ID0, ID1, T0, T1,M, st) ← A(gpk, tpk)
(ID0, T0) �= (ID1, T1)
sigkID0

← Join(gsk, grs, ID0); sigkID1
← Join(gsk, grs, ID1)

tT0 ← TokenGen(tsk, T0); tT1 ← TokenGen(tsk, T1)
σ0 ← GSign(gpk, tpk, tT0 , sigkID0

,M)

(M∗, σ∗) ← ARevoke(grs,·)(st, sigkID1
, tT1 , σ0)

Return 1 if
Link(gpk, tpk,RLT1 , (M,σ0, T0), (M∗, σ∗, T1)) = 1

Otherwise return 0

– Revoke: The same as before.

A GS-TDL scheme is said to be satisfying linking soundness if the advantage
Advsnd

GS-TDL,A(λ) := Pr[Expsnd
GS-TDL,A(λ) = 1] is negligible for any PPT adver-

sary A.

5 That is, the TSK oracle returns tsk if all identities input in the USK oracle were
revoked.
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4 Proposed GS-TDL Scheme

In this section, we give our GS-TDL scheme. Since we mainly pursue a light-
weight realization of the system, here we do not employ structure preserving
signatures (e.g., [3]) and Groth-Sahai proofs [27] which are typically used for
constructing group signature schemes secure in the standard model, e.g., [4,
5,26,35–37]. We employ the Fiat-Shamir transformation [22] which converts a
three-move Σ protocol to non-interactive zero-knowledge (NIZK) proof as in
group signature schemes secure in the random oracle model, e.g., [12,14,18,24].

The Basic Idea: Our GS-TDL scheme is based on the Furukawa-Imai group
signature scheme [24] which is recognized as one of the most efficient group
signature schemes. First, we exclude the open functionality from the Furukawa-
Imai group signature scheme as in [20]. Next, for the linking property, we apply
the Franklin-Zhang technique [23], where a group signature contains Belenkiy
et al.’s verifiable random function (VRF) [9]. Concretely, the value τ = g

1
x+T is

contained in a signature at a time T , where x is a (part of) signing key. Then,
if a signer computes two or more group signatures at a time T , then the value τ
is the same, and can be linked without any cryptographic operation. Whereas,
τ itself can be seen as a random value (under the SDDHI assumption), and
therefore a signer is still anonymous unless the signer computes two or more
group signatures at the same time. For (verifier-local) revocation, we also apply
τ such that τ is added in a revocation list. Note that the verification cost of VLR-
type group signatures schemes [15,38,42,43] is O(|RLT |), especially, |RLT |-times
pairing computations are required. In order to avoid such an inefficiency, we
use the linkable part τ for revocation and this setting requires no cryptographic
operation.

Construction 1 (Proposed GS-TDL Scheme).

– Setup(1λ): Let (G1,G2,GT ) be a bilinear group with prime order p, where
〈g1〉 = G1, 〈g2〉 = G2, and e : G1 × G2 → GT be a bilinear map. Output
params = (G1,G2,GT , e, g1, g2).

– GKeyGen(params): Choose γ
$← Zp, and h

$← G1, and compute W = gγ
2 .

Output gpk = (params, h,W, e(g1, g2), e(h,W ), e(h, g2),H), gsk = γ, where
H : {0, 1}∗ → Zp is a hash function modeled as a random oracle, grs := ∅ and
RL0 := ∅.

– TKeyGen(params): Let (Gen,Sign,Verify) be a digital signature scheme. Run
(vk, sigk) ← Gen(1λ), and output tpk := vk and tsk := sigk.

– Join(gsk, grs, ID): Choose x, y
$← Zp, compute A = (g1h−y)

1
γ+x , output

sigkID = (x, y,A), and update grs := grs ∪ {(ID, x)}.
– TokenGen(tsk, T ): Assume that T ∈ Zp. Compute WT = gT

2 and Σ ←
Sign(sigk,WT ), and output tT = (T,WT , Σ).

– GSign(gpk, tpk, tT , sigkID,M): Let sigkID = (x, y,A) and tT = (T,WT , Σ). If

Verify(vk,WT , Σ) = 0, then output ⊥. Otherwise, choose β
$← Zp, set δ =
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βx − y, and compute C = Ahβ and τ = g
1

x+T

1 . Choose rx, rδ, rβ
$← Zp, and

compute

R1 =
e(h, g2)rδe(h,W )rβ

e(C, g2)rx
, R2 = e(τ, g2)rx

c = H(gpk, tpk, C, τ, R1, R2,M)
sx = rx + cx, sδ = rδ + cδ, and sβ = rβ + cβ,

and output σ = (C, τ, c, sx, sδ, sβ). This proves that (1) (x, y,A) is a valid
Boneh-Boyen signature under gpk (i.e., sigkID is issued by Group Manager)
and (2) τ is computed by the same x.

Pairing-free Variant: We remark that e(h, g2) and e(h,W ) are pre-
computable and can be contained in gpk. Moreover e(C, g2)rx and e(τ, g2)rx

can be represented as e(A, g2)rxe(h, g2)βrx and e(g1, g2)
rx

x+T , respectively.
Then,

R1 =
e(h, g2)rδ−βrxe(h,W )rβ

e(A, g2)rx
and R2 = e(g1, g2)

rx
x+T

hold. So, by assuming that e(A, g2) is pre-computable (we can simply assume
that e(A, g2) is contained in sigkID), we can remove any pairing computation
from the signing algorithm, instead of adding two exponentiations over GT .

– Revoke(gpk, grs, {IDT,1, . . . , IDT,nT
}): If there exists ID ∈ {IDT,1, . . . , IDT,nT

}
that is not joined to the system via the Join algorithm, then output ⊥.
Otherwise, extract (IDT,1, xT,1), . . . , (IDT,nT

, xnT
) from grs. Output RLT :=

{(IDT,1, g
1

xT,1+T

1 ), . . . (IDT,nT
, g

1
xT,nT

+T

1 )}.
– GVerify(gpk, tpk,RLT ,M, σ): Assume that Verify(vk,WT , Σ) = 1 (if not, out-

put ⊥). Parse σ = (C, τ, c, sx, sδ, sβ). If τ is contained in RLT such that
(ID, τ) ∈ RLT for some ID, then output 0. Otherwise, compute

R′
1 =

e(h, g2)sδe(h,W )sβ

e(C, g2)sx

(e(C,W )
e(g1, g2)

)−c and R′
2 = e(τ, g2)sx

( e(g1, g2)
e(τ,WT )

)−c
,

and output 1 if c = H(gpk, tpk, C, τ, R′
1, R

′
2,M) holds, and 0 otherwise. We

remark that e(h, g2), e(h,W ) and e(g1, g2) are pre-computable and contained
in gpk.

– Link(gpk, tpk,RLT , (M0, σ0, T0), (M1, σ1, T1)): Parse σ0 = (C0, τ0, c0, sx,0,
sδ,0, sβ,0) and σ1 = (C1, τ1, c1, sx,1, sδ,1, sβ,1). If either T �= T0 or T �= T1, then
output 0. Else if either GVerify(gpk, tpk,RLT0 ,M0, σ0) = 0 or GVerify(gpk, tpk,
RLT0 ,M1, σ1) = 0, then output 0. Otherwise, output 1 if τ0 = τ1, and 0 oth-
erwise.6

6 We can assume that two group signatures input are valid. That is, the signature
verification has been done before running the link algorithm. Then our linking algo-
rithm does not require cryptographic computations (i.e., comparisons to determine
two elements are the same).
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Since τ just depends on T and x, and does not contain any randomness, we can
directly use τ for revocation. Since we do not have to run any cryptographic
operation, we can achieve the (almost) constant verification cost by using hash
tables which are made in the Revoke algorithm.

As a remark, the open algorithm, where an authority can identify the actual
signer, also can be implemented (though we do not use it) as follows: let
(ID, gx

2 ) be preserved in the join phase, and the open algorithm checks whether
e(τ, gx

2gT
2 ) = e(g1, g2) or not. If the equation holds, then ID is the identity of the

corresponding signer. This open algorithm is essentially the same as that of the
Bichsel et al. scheme [12].

5 Security Analysis

Theorem 1. The proposed GS-TDL scheme has anonymity in the random ora-
cle model under the SDDHI assumption, where H is modeled as a random oracle.

Proof. We define the following two games: Game 0 is the same as Expanon-tg-b
GS-TDL,A(λ).

Game 1 is the same as Game 0, except τ∗ contained in σ∗ is randomly chosen,
and σ∗ is generated by the simulation of NIZK. Here, we show that there exist
an algorithm B that breaks the SDDHI problem by using A as follows.

Let (p,G1,G2,GT , e, g1, g2) be a bilinear group, and (g1, g2, gx
1 ) is an instance

of the SDDHI problem. Let q be the number of AddU queries. B chooses i∗ ∈ [1, q]

and set x is a part of signing key of the user. B chooses γ
$← Zp, and h

$← G1,
computes W = gγ

2 , and sets gpk = (params, h,W, e(g1, g2), e(h,W ), e(h, g2),H),
where H : {0, 1}∗ → Zp is a hash function modeled as a random oracle. B also
runs (vk, sigk) ← Gen(1λ), and sets tpk := vk and tsk := sigk. B sends gpk, tpk,
and tsk to A.

In the i-th AddU query (with input ID), where i �= i∗, B chooses x, y
$← Zp,

computes A = (g1h−y)
1

γ+x , sets sigkID = (x, y,A), and adds ID to GU. In the
i∗-th AddU query (with input ID∗), B adds ID∗ to GU.

For a GSign query with input (ID, tT ,M), if ID �∈ GU, then B runs the simu-
lation of the AddU oracle. If ID �= ID∗, then B computes a group signature σ as
in the actual GSign algorithm, returns σ to A, and adds (ID, T ) to STSet. Let

ID = ID∗. B sends T to Ox, and obtains τ = g
1

x+T

1 . B chooses sx, sδ, sβ , c
$←

Zp and C
$← G1, computes R1 = e(h,g2)

sδ e(h,W )sβ

e(C,g2)sx

( e(C,W )
e(g1,g2)

)−c and R2 =

e(τ, g2)sx
( e(g1,g2)

e(τ,WT )

)−c
, and patches H such that c := H(gpk, tpk, C, τ, R1, R2,M).

B returns σ = (C, τ, c, sx, sδ, sβ) to A.
In the challenge phase, A sends (IDi0 , IDi1 , tT0 , tT1 ,M

∗
0 ,M∗

1 ) to B. B chooses

b
$← {0, 1}. If IDib

�= ID∗, then B aborts. Let IDib
= ID∗ (this holds with the

probability at least 1/q). Next, we consider the following two cases:

T0 = T1: Let (T,WT ) be contained in both tT0 and tT1 . B sends T := T0 = T1

to the challenger of the SDDHI problem, and obtains τ∗. We remark that
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T was not sent to Ox. B chooses s∗
x, s∗

δ , s
∗
β , c∗ $← Zp and C∗ $← G1, com-

putes R∗
1 = e(h,g2)

s∗
δ e(h,W )

s∗
β

e(C,g2)
s∗

x

( e(C,W )
e(g1,g2)

)−c∗
and R2 = e(τ∗, g2)s∗

x

( e(g1,g2)
e(τ∗,WT )

)−c∗
,

and patches H such that c∗ := H(gpk, tpk, C∗, τ∗, R∗
1, R

∗
2,M

∗). B returns
σ∗ = (C∗, τ∗, c∗, s∗

x, s∗
δ , s

∗
β) to A.

T0 �= T1: Let (T0,WT0) and (T1,WT1) be contained in tT0 and tT1 , respectively.

B sends T0 to Ox, and obtains τ∗
0 = g

1
x+T0
1 . B chooses s∗

x,0, s
∗
δ,0, s

∗
β,0, c

∗
0

$←
Zp and C∗

0
$← G1, computes R∗

1,0 = e(h,g2)
s∗

δ,0e(h,W )
s∗

β,0

e(C∗
0 ,g2)

s∗
x,0

( e(C∗
0 ,W )

e(g1,g2)

)−c∗
0

and R∗
2,0 = e(τ∗

0 , g2)s∗
x,0

( e(g1,g2)
e(τ∗

0 ,WT0 )

)−c∗
0 , and patches H such that c∗

0 :=
H(gpk, tpk, C∗

0 , τ∗
0 , R∗

1,0, R
∗
2,0,M

∗
0 ). Moreover, B sends T1 to the challenger of

the SDDHI problem, and obtains τ∗
1 . We remark that T1 was not sent to

Ox. B chooses s∗
x,1, s

∗
δ,1, s

∗
β,1, c

∗
1

$← Zp and C∗
1

$← G1, computes R∗
1,1 =

e(h,g2)
s∗

δ,1e(h,W )
s∗

β,1

e(C∗
1 ,g2)

s∗
x,1

( e(C∗
1 ,W )

e(g1,g2)

)−c∗
1 and R∗

2,1 = e(τ∗
1 , g2)s∗

x,1
( e(g1,g2)

e(τ∗
1 ,WT1 )

)−c∗
1 , and

patches H such that c∗
1 := H(gpk, tpk, C∗

1 , τ∗
1 , R∗

1,1, R
∗
2,1,M

∗
1 ). B returns σ∗

0 =
(C∗

0 , τ∗
0 , c∗

0, s
∗
x,0, s

∗
δ,0, s

∗
β,0) and σ∗

1 = (C∗
1 , τ∗

1 , c∗
1, s

∗
x,1, s

∗
δ,1, s

∗
β,1) to A.

Finally, A outputs b′. If τ∗ = g
1

x+T (or τ∗
1 = g

1
x+T1 ), then B simulates Game

0, and if τ∗ (or τ∗
1 ) is a random value, then B simulates Game 1. In Game 1,

no information of the challenge bit b is revealed from σ∗, σ∗
0 , and σ∗

1 . So, B
desides the challenge is a random value if b′ �= b, and it is not a random value,
otherwise, and solves the SDDHI problem. We remark that B can revoke ID∗ at
a time T ′ > T (or T ′ > T1) using the Ox oracle. This concludes the proof. �

Theorem 2. The proposed GS-TDL scheme has unforgeability in the random
oracle model if the q-SDH assumption holds and (Gen,Sign,Verify) is EUF-CMA,
where q is the number of signers and H is modeled as a random oracle.

Proof. We consider the following two cases. The first one is A produces a valid
signature although A does not have tT ((1)∧ (2)∧ (3) in the definition), and the
second one is A produces a valid signature although A does not have a signing
key ((1) ∧ (2) ∧ (4) in the definition).

First Case: We construct an algorithm B that breaks EUF-CMA security of
the underlying signature scheme (Gen,Sign,Verify). The challenger of the
signature scheme runs (vk, sigk) ← Gen(1λ), and sends vk to B. B sets tpk :=
vk, runs params ← Setup(1λ) and (gpk, gsk) ← GKeyGen(params), and sends
(gpk, tpk) to A. For a TokenGen query T , B computes WT = gT

2 , sends WT

to the challenger as a signing query, and obtains Σ. B sets tT = (T,WT , Σ),
and sends tT to A. Since B has gsk, B can respond all AddU, GSign, and
USK queries. We remark that A does not access the TSK oracle. Finally, A
outputs (T,M, σ). Since σ is a valid group signature, there exist (Σ,WT )
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such that WT is used in the verification algorithm, and Σ is a valid signature
under vk. That is, A produces tT = (T,WT , Σ), and sets it via the SetToken
oracle. Since WT is not sent to B as a TokenGen query, B outputs (Σ,WT )
as a forgery of the signature scheme.

Second Case: We construct an algorithm B that breaks the q-SDH problem
as follows. Let (g1, g

γ
1 , . . . , gγq

1 , g2, g
γ
2 ) be an SDH instance. Here, q be the

number of AddU queries. B runs (vk, sigk) ← Gen(1λ), and sets tpk := vk. B
chooses x1, . . . , xq, y1, . . . , yq

$← Zp and α, θ
$← Z

∗
p. Let define

f(X) =
q∏

i=1

(X + xq) :=
q∑

i=0

αiX
i

and

fi(X) := f(X)/(X − xi) =
q∏

j=1,j �=i

(X + xi) :=
q−1∑

i=1

βiX
i,

and set g′
1 = (

∏q
i=0(g

γi

1 )α
i )θ = g

θf(γ)
1 . Then, for each i ∈ [1, q]

(
∏q−1

j=0(g
γi

1 )βi)θ = g
θfi(γ)
1 = g′

1

1
γ+xi hold. Set h := g′

1
α. For

each i ∈ [1, q], B computes Ai := (g′
1

1
γ+xi )1−yiα = (g′

1h
−y)

1
γ+xi .

B sets W := gγ
2 , params = (G1,G2,GT , e, g′

1, g2), and gpk =
(params, h,W, e(g′

1, g2), e(h,W ), e(h, g2),H), and gives (gpk, tpk) to A.

For an AddU query, B chooses unselected x ∈ {x1, . . . , xq} and sets the corre-
sponding (x, y,A) as the signing key. Since B has tsk, B can respond TokenGen
and TSK queries. Moreover, B can respond GSign and Revoke queries since
B has all signing keys (xi, yi, Ai) for each i ∈ [1, q].
Finally, A outputs a forge group signature σ = (C, τ, c, sx, sδ, sβ). B rewinds
A and obtains σ′ = (C, τ, c′, s′

x, s′
δ, s

′
β) where c �= c′ with non-negligible

probability (due to the forking lemma). Set

x̃ :=
sx − s′

x

c − c′ , ỹ :=
(sx − s′

x)(sβ − s′
β)− (sδ − s′

δ)(c − c′)

(c − c′)2
, and β̃ :=

sβ − s′
β

c − c′ .

Then, e(C,W )
e(g′

1,g2)
= e(h,g2)

β̃x̃−ỹe(h,W )β̃

e(C,g2)x̃ and e(τ, g2)x̃ = e(g′
1,g2)

e(τ,WT ) hold. That is,

(x̃, ỹ, Ã) can be extracted. If 1 − ỹα = 0, then B aborts. Moreover, if
x̃ ∈ {x1, . . . , xq}, then B aborts. Since α and all x are randomly chosen,
the aborting probability is at most q/p, and is negligible. From now on, we
assume that 1 − ỹα �= 0 and x̃ �∈ {x1, . . . , xq}. Since Ã can be represented
as Ã = (g′

1h
−ỹ)

1
γ+x̃ , B can compute Ã

1
1−ỹα = g′

1

1
γ+x̃ = (gθf(γ)

1 )
1

γ+x̃ . Next, B
computes F (X) and γ∗ ∈ Z

∗
p which satisfy f(X) = (X+x̃)F (X)+γ∗. Finally,

B computes
((

(gθf(γ)
1 )

1
γ+x̃

) 1
θ

∏q−1
i=0 (gxi

1 )−Fi

) 1
γ∗ = g

1
γ+x̃

1 , where F (X) :=
∑q−1

i=0 FiX
i, and outputs (x̃, g

1
γ+x̃

1 ) as a solution of the SDH problem. �
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Theorem 3. The proposed GS-TDL scheme has linking soundness.

Proof. Let (ID0, ID1, T0, T1,M) and (M∗, σ∗) be the output of A, where
(ID0, T0) �= (ID1, T1). Let x0 be contained in sigkID0

and x1 be contained in
sigkID1

, respectively. If Link(gpk, tpk,RLT , (M,σ0, T0), (M∗, σ∗, T1)) = 1, then

g
1

x0+T0
1 = g

1
x1+T1
1 and T = T0 = T1 holds. Then, x0 = x1 holds. Since x0 and

x1 are randomly chosen, this equation holds with probability at most 1/p. This
concludes the proof. �

6 Experimental Results

Here, we show experimental results of our prototype implementations and the
practicality of our GS-TDL scheme. Our implementation uses TEPLA library
(ver. 1.0) [1] for elliptic curve operations and the pairing operation, OpenSSL
(ver. 1.0.1e)7 for standard signing and verifying, and GLib (ver. 2.28.8)8 for the
hash table for (almost) constant-time searching.

Table 1. The number of operations for each algorithms.

Algorithm Operations

GSign 2 Mul (G1) + 1 Mul (G2) + 2 Exp (GT ) + 2 Pairing + Verify

GSign (Pairing free) 2 Mul (G1) + 4 Exp (GT ) + Verify

TokenGen 1 Mul (G2) + Sign

GVerify 6 Exp (GT ) + 4 Pairing + Verify

Revoke |RLT | Mul (G1)

We give the number of operations for each algorithms in Table 1. In the table,
Mul (G1), Mul (G2) and Exp (GT ) denote a scalar multiplication on G1, a scalar
multiplication on G2 and an exponentiation on GT , respectively. Verify and Sign
denote standard verifying and signing. We use RSA signing algorithm for them
because of its efficiency in the verification. We also remark that the Revoke
algorithm depends on the number of revoked signers |RLT |. However, since the
Revoke algorithm is computed by the group manager periodically, like per day,
the dependence does not reduce the practicality of our scheme.

Next, we give running time of basic operations of TEPLA library in Table 2.
Even on Raspberry Pi, a cheap and constrained computational power device,
the operations can be performed in practical running time.

Finally, we give our experimental results of our GS-TDL scheme in Table 3.
We evaluate these results as follows:

7 https://www.openssl.org.
8 https://wiki.gnome.org/Projects/GLib.

https://www.openssl.org
https://wiki.gnome.org/Projects/GLib
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Table 2. Basic Operations on BN curves [8] of 254-bit order. Operations are run over
PC (Core i7-4770 with TurboBoost) and Raspberry Pi (ARM1176JZF-S) respectively.

Operation PC (msec) Raspberry Pi (msec)

Mul (G1) 0.330 9.030

Mul (G2) 0.540 16.620

Exp (GT ) 2.840 78.580

Pairing 2.690 77.330

Table 3. Benchmarks: The signing algorithms (3072-bit RSA sign, 3072-bit DSA sign,
256-bit ECDSA (prime256v1 curve) sign, and GSign) are run over Raspberry Pi (CPU:
ARM1176JZF-S), and other algorithms are run over PC (Core i7-4770 CPU with Tur-
boBoost) respectively. We use OpenSSL for RSA, DSA, and ECDSA, and TEPLA
library for pairing-related operations. The total number of signers is 10,000,000, and
the number of revoked signers is specified in parentheses () in the GVerify algorithm and
the Revoke algorithm. We employ BN curves [8] with 254-bit order for efficient pair-
ings, and the hash table for (almost) constant-time searching. We also employ 3072-bit
RSA as (TokenGen, Sign,Verify) used in our GS-TDL scheme since the verification cost
(which is run by signers in the GSign algorithm) is faster than that of DSA and ECDSA.
We remark that the Link algorithm does not require any cryptographic operation, and
RSA, DSA, and ECDSA do not support anonymity.

Algorithm PC (msec) Raspberry Pi (msec) Entity

GSign (12.573) 408.943 Signer

GSign (Pairing free) (12.105) 400.302 Signer

RSA sign 3.427 233.511 -

DSA sign 1.082 75.135 -

ECDSA sign 0.335 11.702 -

TokenGen 3.763 - Token generation unit

GVerify(1,000) 17.990 - Verifier

GVerify(10,000) 17.997 - Verifier

GVerify(100,000) 17.953 - Verifier

GVerify(1,000,000) 18.049 - Verifier

RSA verify 0.072 5.043 -

DSA verify 1.283 87.913 -

ECDSA verify 0.382 13.719 -

Revoke(1,000) 299.829 - Group manager

Revoke(10,000) 3023.363 - Group manager

Revoke(100,000) 30270.951 - Group manager

Revoke(1,000,000) 301716.554 - Group manager
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(Almost) Constant-Time Verification: First of all, we should highlight
that cryptographic operations in the GVerify algorithm do not depend on the
number of revoked signers (i.e., scalable) due to our time-dependent linkabil-
ity, i.e., τ is deterministic, though we employ VLR-type revocation. In our
implementation, a table preserves (ID, x) in the Join algorithm is regarded as
grs, and ID is set as a searching key (i.e., the table as takes as input ID,
and outputs the corresponding x). In the Revoke algorithm, an array (ID, x, τ)
is made, and τ contained in all arrays are updated on T such that RLT :=

{(IDT,1, g
1

xT,1+T

1 ), . . . (IDT,nT
, g

1
xT,nT

+T

1 )}, and the corresponding hash table is
generated for (almost) constant-time searching. Therefore, the cost of the Revoke
algorithm depends on the number of revoked signers (but we emphasize that
this procedure is run by the group manager and is not related to signers). In the
GVerify algorithm, the verifier can easily check whether τ is contained in RLT or
not by using the hash tables without any cryptographic operation.

Practically Efficient Signing: In a certain situation, a signer has a constrained
computational power compared to the verifier, and moreover the signer needs to
generate signatures in several times. In our implementation result, the signing
cost is still handled millisecond order and just twice as that of the 3072-bit
RSA signing algorithm, though our system additionally supports anonymity.
If a signer has a standard computational power (as in the PC), then the GSign
algorithm can be run at 12.573 msec (and 12.105 msec for its pairing free version).
This result shows that our scheme is feasible in practice.

As a remark, there is a room for improvement of our implementations since
we directly employed cryptographic libraries, TEPLA and OpenSSL, without
any adequate customization. In other word, our GS-TDL scheme is feasible in
practice even under such a naive implementation way. That is, we might apply
some implementation techniques, e.g., [31,46,50], for improvement of the effi-
ciency. Moreover, batch verification techniques [21,39] might be employed.

Acknowledgement. We would like to thank anonymous reviewers of LightSec 2015
and Dr. Ryo Nojima for their helpful comments and suggestions.
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39. Malina, L., Vives-Guasch, A., Castellà-Roca, J., Viejo, A., Hajny, J.: Efficient group
signatures for privacy-preserving vehicular networks. Telecommun. Syst. 58(4),
293–311 (2015)

40. Mamun, M.S.I., Miyaji, A.: Secure VANET applications with a refined group sig-
nature. In: PST, pp. 199–206 (2014)



A Light-Weight Group Signature Scheme 57

41. Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its
application to secret voting. JIP 40(7), 3085–3096 (1999)

42. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

43. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature
scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–
32. Springer, Heidelberg (2006)

44. Ohtake, G., Fujii, A., Hanaoka, G., Ogawa, K.: On the theoretical gap
between group signatures with and without unlinkability. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 149–166. Springer, Heidelberg (2009)

45. Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the security of
dynamic group signatures: preventing signature hijacking. In: Public Key Cryp-
tography, pp. 715–732 (2012)
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Rodŕıguez-Henŕıquez, F.: Software implementation of an attribute-based encryp-
tion scheme. IEEE Trans. Comput. 64(5), 1429–1441 (2015)



RoadRunneR: A Small and Fast Bitslice Block
Cipher for Low Cost 8-Bit Processors

Adnan Baysal1,2(B) and Sühap Şahin2
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Abstract. Designing block ciphers targeting resource constrained
8-bit CPUs is a challenging problem. There are many recent lightweight
ciphers designed for better performance in hardware. On the other hand,
most software efficient lightweight ciphers either lack a security proof or
have a low security margin. To fill the gap, we present RoadRunneR
which is an efficient block cipher in 8-bit software, and its security is
provable against differential and linear attacks. RoadRunneR has lowest
code size in Atmel’s ATtiny45, except NSA’s design SPECK, which has
no security proof. Moreover, we propose a new metric for the fair com-
parison of block ciphers. This metric, called ST/A, is the first metric to
use key length as a parameter to rank ciphers of different key length in
a fair way. By using ST/A and other metrics in the literature, we show
that RoadRunneR is competitive among existing ciphers on ATtiny45.

Keywords: Lightweight · Cryptography · Block cipher · Bitslice ·
8-bit CPU · Wireless sensor network · ATtiny45

1 Introduction

As the price of small electronic devices decreases, notions like ubiquitous com-
puting, Internet of things, and smart buildings become more popular each day.
RFID tags and low cost 8-bit CPUs are commonly deployed in these applica-
tions. Atmel’s ATtiny45, one of commonly used 8-bit CPUs, costs less than $1
[1]. This availability and programmable nature make these CPUs a good choice
for many applications such as wireless sensor networks (WSNs).

One of the main problems in such applications is the security and privacy
of information shared between devices. In many applications, data is shared
between the nodes and the server over the air. Hence, an attacker can possibly
get private information, or even change it for her/his benefit. For this reason,
it is required to use cryptographic algorithms in these applications. Since the
nodes are resource constrained in terms of memory, frequency and energy, use
of lightweight cryptography becomes the best option in these applications.

Block ciphers are one of the main primitives for cryptographic applications.
Therefore, the design of lightweight block ciphers has attracted many researchers’
c© Springer International Publishing Switzerland 2016
T. Güneysu et al. (Eds.): LightSec 2015, LNCS 9542, pp. 58–76, 2016.
DOI: 10.1007/978-3-319-29078-2 4
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attention, especially in the last 10 years. There are many designs, some with
innovative ideas, such as LBlock [45], LED [26], PRESENT [10], PRINCE [12],
PRINTcipher [32], SEA [41], TEA [44], SIMON and SPECK [5], ITUbee [28],
PRIDE [3], and RECTANGLE [47]. Most of these algorithms used building
blocks to optimize hardware implementations. For this reason, many of these
algorithms are not a good choice for software applications in 8-bit CPUs. On
the other hand, some more recent designs such as ITUbee, SPECK, PRIDE, and
RECTANGLE are focused on performance in software to be an alternative in
low cost CPUs. Some of these recent ciphers use bitslice substitution layers (S-
boxes) where Boolean operations on CPU words are used to describe the S-box.
By this approach, look-up-tables can be avoided which saves code size and CPU
clock cycles. Moreover, since bitslice ciphers use small S-boxes, their hardware
areas are small.

Another problem in block cipher design is the comparison of efficiencies of
different ciphers for an application, and sometimes for academic purposes. Each
platform and application has its own constraints and a simple comparison of area
or throughput values are neither enough nor fair. Formulas for ranking block
ciphers using the area-speed characteristics are needed, since implementation
methods affect both values.

Throughput
area is one metric offered in [11] to make a fair comparison of block

ciphers in different hardware implementation methods (serial, parallel, pipe-
lined, etc.). Badel et al. [4] expanded this definition by considering the possibility
to trade-off throughput for power in energy-critical applications. Their formula is
called Figure Of Merit (FOM) and defined as Throughput

Area2 . This formula is further
improved by Khoo et al. [29] by calculating throughput at the minimum round
number that the cipher is secure according to a security metric, and called this
comparison metric as Figure Of Adversarial Merit (FOAM). In their paper, this
security metric is the number of active S-boxes in differential and linear trails.

In [20], a new definition of FOM for software implementations was given. In
that paper, authors suggested summing each performance indicator (code size,
ram size, cycle counts) divided by the minimum of that value in the compared
ciphers in a weighted manner, i.e., by multiplying each indicator with its corre-
sponding weight. In this approach, hardest part is to find reasonable and useful
weights, and they selected all weights as 1. None of the metrics above use key
size in their formula. Therefore, there is no fair way of comparing ciphers of
different key sizes using the metrics in the literature.

1.1 Our Contribution

We designed a new lightweight block cipher, RoadRunneR, with the goal of
efficiency (especially in 8-bit low cost CPUs) and provable security in terms of
minimum number of active S-boxes in differential and linear trails. The cipher is
especially designed to have a very low code size, while having high throughput.
Simulation results showed that on ATtiny45, our cipher have the least code size
among other compared lightweight ciphers, except NSA’s design SPECK which
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has no provable security properties to determine the round number. Our pre-
liminary cryptanalysis showed that RoadRunneR have a relatively high security
margin in contrast to most lightweight ciphers. RoadRunneR has variable area-
time-security trade-off characteristics with different implementation methods so
that it can fit the needs of specific application it may be used in.

Moreover, we defined a new efficiency comparison metric for block ciphers
which (to the best of our knowledge for the first time) takes into account the key
size of the cipher. Using this metric, we could compare block ciphers with differ-
ent key sizes in a fair way. To compare RoadRunneR with existing lightweight
ciphers, we used this metric and the classical ones. We gave comparison results
for both the original round numbers and in the round numbers as suggested in
FOAM approach. We used ATtiny45 for benchmarking, since it is one of the
lowest cost 8-bit CPUs and there are many recent ciphers implemented in this
device in the literature.

The organization of the rest of the paper is as follows: In Sect. 2, we define our
new cipher RoadRunneR and give the design criteria of it. Preliminary crypt-
analysis of RoadRunneR against known attacks is presented in Sect. 3. Our new
comparison metric for block ciphers is given in Sect. 4. We give performance
results of RoadRunneR and compare it with existing block ciphers using our
new metric and other known metrics in Sect. 5. Section 6 concludes the paper.

2 Definition and Design Rationale of RoadRunneR

In the design of RoadRunneR, our main objectives were the following:

1. Implementation efficiency in 8-bit CPUs,
2. No table and SRAM usage,
3. Low decryption overhead,
4. Provable security like in wide trail design strategy [17].

We could achieve these objectives as shown in the rest of the paper. Our main
focus was on reducing memory. This is because low cost 8-bit CPUs have program
memory of only a few kilobytes (KB). In most applications this memory is shared
by some other algorithms (such as interrupt service routines) and possibly a real
time operating system. So reducing memory footprint is beneficial in our target
platform.

In [39], it is stated that a hardware implementation of a lightweight block
cipher targeting RFID tags and WSNs should cost less than 2000 gate equiva-
lent (GE). For software implementations there is no stated bound, but we believe
that 1KB memory should not be exceeded for a lightweight block cipher imple-
mentation.

2.1 General Structure

RoadRunneR is a Feistel-type block cipher, shown in Fig. 1, with 64-bit block
size and 80-bit or 128-bit key lengths. 80-bit key requires 10 rounds and 128-bit
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version is 12 rounds. Initial and final round whitening is used which XOR’s the
whitening keys (WK0 and WK1) to the left part of the state. There is no swap
operation in the final round. Decryption uses the same round function where the
order of whitening keys, round keys and constants are reversed.

Fig. 1. Figures of functions in RoadRunneR. Feistel structure on left, F function on
top right, and SLK function on bottom right.

If the state is shown as x0‖x1‖ . . . ‖x7, each round function F takes most sig-
nificant (leftmost) 4 bytes of the state, that is x0‖x1‖x2‖x3, as input data, 1-byte
Ci as constant, and 96-bit round key. Output of F is XORed to x4‖x5‖x6‖x7. F
is a 4 round substitution-permutation-network (SPN) type function as shown on
top right of Fig. 1. In that figure, SLK is the consecutive application of S-box
layer (S), diffusion layer (L), and key addition (K), as shown on the bottom
right. The last function S is the same S-box layer in SLK. After the second
SLK function, round constant is XORed to the least significant byte (rightmost
byte, i.e., x3) of the state. For round i = 0, 1, . . . , NR − 1, the round constant
is Ci = NR − i, where NR is the number of rounds, and Ci is represented as
8-bit little endian integer, that is 12 = 00001100, 11 = 00001011, etc. Round
constants prevent simple slide attacks [8] and makes the round function to be
different for different rounds. 4-round SPN-like structure ensures high number
of active S-boxes for an active F .
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In the SLK function, first a bitslice S-box layer is applied on 4 words of 8
bits. This layer can be seen as parallel application of 4-bit S-boxes to the ith bit
of each word, and writing the outputs to the same location (ith bit) again. This
is the best S-box in terms of security and efficiency (on CPUs) found in [42].
S-box layer is described in Sect. 2.2. After the S-box layer, a diffusion matrix
L is applied to each byte independently to ensure diffusion inside the bits of a
byte. L is designed such that it provides good diffusion and can be efficiently
implemented even on the simplest CPUs. Definition and design criteria of L will
be described in Sect. 2.3.

2.2 S-Box Layer

Using bitslice S-boxes has become more popular in the last 10 years, especially
with the recent advances in lightweight cryptography. Block ciphers such as
NOEKEON [16], SEA [41], PRIDE [3], and RECTANGLE [47] use bitslice
S-boxes with different S-box layer design strategies. Bitslice S-box structure has
advantage in both hardware and software implementations. In software, the per-
mutations before and after the S-boxes disappear. In hardware, on the other
hand, they can be implemented by a simple wiring which consumes no extra
area. Since S-boxes of large bit size and high non-linearity have a complicated
circuit representation, 3-bit and 4-bit S-boxes are used in bitslice ciphers.

In RoadRunneR, an efficient bitslice S-box is used so that it can be imple-
mented in a small number of bit-wise operations on CPU words. The table of
S-box is given below:

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output 0 8 6 D 5 F 7 C 4 E 2 3 9 1 B A

This S-box was found in [42] by a brute force search on possible assembly
code combinations. The search space was restricted to 4 input words, a single
temporary word, and following instructions: AND, OR, XOR, NOT, and MOV. For
the best 4-bit S-boxes, maximal correlation and differential probabilities are 2−2.
They experimentally found that the minimum number of instructions to generate
such a bitslice S-box layer is 9. The selected S-box in RoadRunneR satisfies this
property. The assembly code of the S-box for Atmel’s 8-bit CPU’s is as follows
(X0 is the most significant byte entering the S-box layer):

; S-box layer
mov T0,X3 ; State words : X0,X1,X2,X3
and X3,X2 ; Temporary word : T0
eor X3,X1
or X1,X2
eor X1,X0
and X0,X3
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eor X0,T0
and T0,X1
eor X2,T0

2.3 Diffusion Layer

After the bitslice S-box layer, we used a linear function on each byte of the state
to provide diffusion inside 8-bit words. So we needed an efficient linear function
operating on bytes. One classical solution for such a linear function for CPUs is
using XOR of shifted and rotated values of the input word.

On ATtiny45 (and on most low cost 8-bit CPUs), there is no parametric shift
or and no rotation instruction. So, to shift and/or rotate a byte for parametric
values multiple cycles are necessary which consumes program memory and clock
cycles. 1-bit left rotation can be done in 2 instructions if ADC instruction is
used, whereas 1-bit right rotation can be done in 3 cycles using BST and BLD
instructions. There is another instruction that swaps halves of a byte, which
results in a 4-bit rotation.

Using these instructions, we try to build linear functions of the form L(x) =
(x ≪ i) ⊕ (x ≪ j) ⊕ (x ≪ k) to use in RoadRunneR, where x ≪ i represents
i-bit rotation of the CPU word x to the left. Linear layers of this form are
guaranteed to be invertible and all have branch number 4. Branch number of a
matrix L is defined as follows:

BN(L) = minx�=0{hw(x) + hw(L(x))}

where hw(x) denotes the Hamming weight of a binary vector x. This number
gives the minimum number of active S-boxes in two consecutive rounds. Besides
the branch number, we calculated the minimum number of active S-boxes in 4
round SPN structure of F with each L matrix candidate. Table 1 shows the best
linear functions (less then 15 instructions for two matrix multiplications) found
in our search:

From the Table 1, we have chosen L1 as our diffusion layer matrix since it
provides good diffusion and performance. The minimum number of differentially
active S-boxes in an active F using the above linear layers is calculated in a

Table 1. Best L matrices under given constraints.

Matrix i, j, k # of instructions (for Minimum # of active

two matrix mult.) S-boxes in F

L1 0,1,2 13 10

L2 0,1,4 11 8

L3 0,1,5 11 8

L4 0,4,5 11 8

L5 1,4,5 11 8
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truncated manner, i.e., it is independent of the selected S-box. We could analyze
this using an observation in [25] which gives:

α = x0 ∨ x1 ∨ x2 ∨ x3 � L[x0] ∨ L[x1] ∨ L[x2] ∨ L[x3] = β (1)

where xi’s are 8-bit words, set bits in α and β gives the active S-box positions
entering into the S-box layer and after the linear layer respectively. Since there
are multiple choices for xi’s to produce the same α, some input truncated active
S-box pattern will have multiple possible outputs, which we call transitions.
α � β means that there is a transition from α to β. Since word size is 8 bits
and there are 4 words, we could search for all possible transitions of active S-box
positions while passing an SLK using an exhaustive search of 232 complexity.
Here we tried all possible values of x0‖x1‖x2‖x3 to generate α � β transitions.

Using the truncated transitions, we generated a directed graph of 256 vertices.
In this graph, vertices are 8-bit numbers representing active S-box positions. If
vertices α and β satisfy α � β, this is shown as a directed edge from the
vertex α to vertex β. Using that graph, starting from all possible vertices (except
0), we tried all possible directed paths of 4 vertices, summing the Hamming
weights as the number of active S-boxes. Minimum weight in these paths give
the minimum number of active S-boxes in an active F . Linear characteristics
follow very similar patterns because of the definition of matrices and F function’s
symmetric structure.

The selected matrix have single non-trivial fixed point which is FF in hexadec-
imal notation. In truncated active S-box transition notation, we have the follow-
ing fixed points: 77,7F,BB,BF,DD,DF,EE,EF,F7,FB,FD,FE,FF. So we can say
that there are at least 6 active S-boxes whenever an analysis require to use the
same active S-box positions before and after SLK.

The AVR assembly code for 2 matrix multiplication is given below. The
rationale behind using two matrix multiplication is to use single cycle 16-bit
copy operation MOVW on inputs of our matrix (lsb and msb denotes least and
most significant bits respectively).

; State registers : X0,X1
; Temporary registers : T0,T1,ZERO (value in ZERO is 0)
movw T0,X0 ; T0,T1 <- X0,X1
lsl T0 ; msb of T0 is moved to carry flag
adc T0,ZERO ; Since ZERO is 0, this moves msb in carry to lsb
eor T0,X0
lsl T0
adc T0,ZERO
eor X0,T0
lsl T1
adc T1,ZERO
eor T1,X1
lsl T1
adc T1,ZERO
eor X1,T1
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2.4 Key Schedules

RoadRunneR can take 80-bit or 128-bit keys. RoadRunneR-80 and
RoadRunneR-128 denotes 80-bit and 128-bit key versions respectively. For both
key sizes, key schedules have the same simple description: Start from the begin-
ning of the master key, whenever a new 32-bits of key material is required,
continue on the master key in a circular way.

For example, if master key is 128-bit, it will be divided into 4 words of 32-bit
as A‖B‖C‖D. Initial whitening key is A, first round key is B-C-D, second round
key is A-B-C, etc. Same key words appear in the same place in a period of 4
rounds. For 80-bit key schedule, master key is divided into 5 words of 16-bit :
A‖B‖C‖D‖E. In this nomenclature, whitening key is A‖B; first round key is
(C‖D)-(E‖A)-(B‖C); second round key is (D‖E)-(A‖B)-(C‖D), etc. There is
a 5-round period in this schedule, so round number is chosen as a multiple of 5.
Complete list of master key words used in rounds is given in Table 2.

Table 2. Key Schedules of RoadRunneR.

80-bit key schedule 128-bit key schedule

Master key = A‖B‖C‖D‖E Master key = A‖B‖C‖D
Initial whitening : A‖B Initial whitening : A

Rounds Key words Rounds Key words

0, 5 (C‖D)-(E‖A)-(B‖C) 0, 4, 8 B-C-D

1, 6 (D‖E)-(A‖B)-(C‖D) 1, 5, 9 A-B-C

2, 7 (E‖A)-(B‖C)-(D‖E) 2, 6, 10 D-A-B

3, 8 (A‖B)-(C‖D)-(E‖A) 3, 7, 11 C-D-A

4, 9 (B‖C)-(D‖E)-(A‖B)

Final whitening : C‖D Final whitening : B

3 Security of RoadRunneR

For the attacks on reduced round numbers, we assume that there is an initial
and final whitening in reduced versions on the left hand side of the cipher, and
no swap is applied in the last round. Final whitening is the next key word in the
key schedule.

Whitening is only applied to left sides to prevent attackers from using known
bits of the cipher’s intermediate round values. There is no need to XOR whitening
key on right halves to provide this property. In most of the attacks, extending
the attack by even one round is not possible since this requires to search for all
128-bit keys (in 128-bit key version) because of the whitening. So, we can say
that whitening keys play a crucial security role in RoadRunneR, and cannot be
omitted in the attacks.
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Since the key schedule uses the master key without any change while using
in the rounds, we have no security claim against related key attacks. Related key
attacks are easier to defend on the protocol level, and some of the lightweight
ciphers do not consider this attack as well, such as PRINCE and PRIDE. Hence
we used this assumption in RoadRunneR. In fact, each F can be passed with
only two active S-boxes in a related key attack, with total of 24 active S-boxes.
This total number may be further reduced in a more detailed analysis.

3.1 Differential and Linear Attacks

Differential attack [6] and linear attack [37] are two most successful attacks on
block ciphers. RoadRunneR has provable bounds on minimum number of dif-
ferentially active S-boxes, which shows that there is no useful differential char-
acteristic for 5 rounds or more. Since the transpose of our diffusion layer have
similar properties and F function have a symmetric structure, differential and
linear properties (in a truncated manner) of RoadRunneR are the same. So
whenever we mention active S-boxes, we mean both differentially and linearly
active S-boxes.

As we have mentioned in Sect. 2.3, the minimum number of active S-boxes in
an active F is 10. Note that this number is better than the value suggested by
branch number, which is 8 for 4 rounds (since branch number is 4). There are 8
truncated trails of 10 and 11 active S-boxes, and all of them start with 1 active S-
boxes. Moreover, the characteristics starting with the same input pattern follow
the same path for round 2 and 3, that is only the last round is different for
minimal weight paths. These paths are given below.

Weight 10: Weight 11:
01 --> 07 --> 1B --> 41 01 --> 07 --> 1B --> 49
02 --> 0E --> 36 --> 82 02 --> 0E --> 36 --> 92
04 --> 1C --> 6C --> 05 04 --> 1C --> 6C --> 25
08 --> 38 --> D8 --> 0A 08 --> 38 --> D8 --> 4A
10 --> 70 --> B1 --> 14 10 --> 70 --> B1 --> 94
20 --> E0 --> 63 --> 28 20 --> E0 --> 63 --> 29
40 --> C1 --> C6 --> 50 40 --> C1 --> C6 --> 52
80 --> 83 --> 8D --> A0 80 --> 83 --> 8D --> A4

We experimentally checked some high probability differential characteristics
of F starting with one active S-box to see if the probability of characteristics and
differentials are close or not. In our experiments, we did not see any significant
increase in differential probability, from the theoretically calculated characteris-
tic probability. So we assumed that each active S-box multiplies the probability
with 2−2, and an active F has approximately 2−20 probability.

We also calculated the minimum number of active S-boxes in r-round Road-
RunneR for 4 ≤ r ≤ 6, again in a truncated manner. This is done by an exhaus-
tive search, thanks to the graph we mentioned in Sect. 2.3. Utilizing that graph,
we could generate all possible truncated active S-box transitions on F function,
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together with their minimum number of active S-boxes. In our search of min-
imum number of active S-boxes in r-rounds RoadRunneR, we try all possible
truncated input difference patterns to the cipher and follow an r-round path
using branching over F and Feistel XORs, counting number of active S-boxes in
all F functions. Whenever two truncated difference meet in an XOR of Feistel
scheme, we tried both cases with a difference and without difference. Table 3
shows minimum number of active S-boxes for rounds from 4 up to 6, together
with the percentage of active S-boxes.

Table 3. Minimum number of truncated active S-boxes for rounds.

Round 4 5 6

# of Active S-boxes 26 36 48

Percentage 20.3 % 22.5 % 25 %

Note that these bounds are better than the classical bounds on Feistel ciphers
with invertible F function, which gives 2, 3 and 4 active F functions in 4, 5, and
6 consecutive rounds respectively. In that classical approach, since an active F
has at least 10 active S-boxes, the bound is 20, 30 and 40 active S-boxes for 4,
5, and 6 rounds, whereas we found 26, 36, and 48 active S-boxes for these round
numbers in our search. We believe that the active S-box percentage values are
very good for such a lightweight linear layer. Table 3 proves that there is no useful
differential characteristic (or linear trail) in 5 or more rounds of RoadRunneR,
since the probability is at least 2−72.

We listed all paths with minimum number of S-boxes in our search. By
observing the trails, we saw that there were no clustering in best trails, i.e.
no paths starting and ending with the same active S-box positions in 5 rounds.
This gives confidence that characteristic and differential probabilities are very
close in the whole cipher. Hence, we believe that 5 round RoadRunneR is secure
against classical differential and linear attacks.

There are many attacks derived from differential attack and linear attack.
Some examples are: higher order differential attack [34], boomerang attack [43],
multidimensional linear attack [13], differential-linear attack [35], etc. In general,
these extension attacks do not give better results then classical differential and
linear attacks. We think that the same is true for RoadRunneR. Since all key
material is used in the first and last rounds with the use of whitening keys, it is
hard to apply 1R and 2R attacks.

3.2 Impossible Differential Attack

In impossible differential attack [7], truncated differentials with probability 1
are used to find a difference contradiction in middle rounds. This contradiction
is then used to eliminate wrong keys in the extra rounds added before and
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after the characteristic. For Feistel ciphers, there is a generic 5 round impossible
differential characteristic [31] as follows:

(0,Δα) 5
� (0,Δα)

Since the round function of RoadRunneR has a four round SPN structure,
we could not find impossible differential characteristic for more than 5 rounds.
On the other hand, all key material is used in the first and last round when
whitening keys are considered, so we believe that impossible differential attack
cannot be applied to more than 6 rounds of RoadRunneR.

3.3 Integral Attack

The integral attack (or square attack) was demonstrated in [14] as a custom
attack to SQUARE block cipher. It was also applied to Rijndael which become
AES, and many other ciphers. In this attack, all possible values are given to
specific bit blocks in the plaintext, and other bits are kept constant. After some
rounds of encryption, fixed sum (generally zero) in specific ciphertext bit loca-
tions are expected.

Because of the 4 round SPN structure in F function, giving all possible values
to a single S-box do not give too many rounds in an integral attack. The best
attack can be achieved by 32-bit active block on the right half of the plaintexts
as in the following:

(0, A) → (A, 0) → (A,A) → (B,A) → (?, B)

Here, A denotes an active 32-bit block where all possible values are seen. B is
a balanced block, that is XOR sum of values are zero. An undetermined block is
represented by a ? mark. This characteristic cannot be extended to more rounds.
Therefore, we do not think that square attack threatens RoadRunneR for more
than 6 rounds.

3.4 MITM-type Attacks

All state bits are affected by all key bits after 3 rounds of RoadRunneR encryp-
tion. Moreover, when the matching variable in a Meet-In-The-Middle (MITM)
attack is selected in the right half of the state at the output of round 3, it is
not possible to add even 2 rounds because of the fact that all key bits affect
that variable in the decryption direction after 2 rounds. Same ideas apply for 2
rounds at the beginning and 3 rounds at the end case due to the Feistel structure.
Hence, MITM attack cannot be applied to more than 4 rounds.

There are some extensions of MITM attack such as multidimensional MITM
[48], Demirci-Selçuk attack [18], and MITM attacks with tabulation and dif-
ferential enumeration techniques [22]. These attacks generally uses truncated
differential characteristics with high probability over multiple rounds. In the
case of RoadRunneR, since round function F is a 4-round SPN, we believe that
these attacks are not more effective than basic MITM attack.
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3.5 Side-Channel Attacks

Lightweight ciphers are vulnerable to side-channel attacks. The attacker can
access low cost devices that have the secret key, and can measure encryption
time, power dissipation, radiation, etc. Therefore, mechanisms to protect the
cipher against such attacks may be necessary in some applications.

It is shown in [15] that ciphers with bitslice nonlinear layer are easier to
defend against side-channel attacks such as differential power analysis (DPA)
[33]. Since RoadRunneR has a bitslice non-linear layer, we can say that the
additional overhead caused by DPA protecting mechanisms is low for our cipher.

4 A New Efficiency Metric for Block Ciphers : ST/A

In this section, we propose a new metric called ST/A, which we read as Secu-
rity times Throughput over Area. In this new metric, we insert key size to the
efficiency metric formulae since there is no fair way to compare block ciphers of
different key length in the literature. We extend Throughput

Area metric by multiplying
it with the key size, so we have:

ST/A =
KeySize × Throughput

Area

where KeySize is the bit size of key used in the cipher, Throughput is given in
bit-per-second, and Area is gate equivalent (GE) in hardware or memory usage
in software.

We inserted the key size by multiplication, hence increase in the key size
increases the efficiency of a cipher. Moreover, other parameters affect the metric
in a multiplicative manner. So another mathematical operation, such as addition,
would have less meaning. In our metric, algorithms with equal round function
and round number for different key sizes, such as PRESENT, will have better
efficiency in higher key size. On the other hand, existing metrics in the literature
do not differentiate these key sizes. This is an other evident that our metric makes
more fair comparison even in this specific case.

In [20], the metric is calculated in an additive manner. On the other hand, all
previous methods and ST/A are multiplicative, that is all performance value are
multiplied. We think that multiplying is a more useful technique. For example,
let E1 and E2 be two ciphers which will be compared. Also assume that all
performance indicators are the same for both cipher except area values, where
E1 has area A and E2 has area 2×A. By the multiplication method, we can say
that E1 is two times better than E2. In the summation case, however, even if the
weights are equal, we would not have this ratio in efficiency values. Therefore, we
multiply each indicator as in the classical Throughput

Area formula (here throughput
is multiplied by 1

Area ) in ST/A.
We believe that the throughput should be defined as in FOAM, but we leave

this to the user of this metric. Weighting approach as in [20] can be used in ST/A
by taking weights as powers of area, speed and key size values, since we use a
multiplicative approach. Again, this is left to the user, and we use all powers
as 1.
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In Sect. 5, we use our metric for the comparison of the efficiency of some
lightweight block ciphers and our new design RoadRunneR.

5 Performance Analysis

We have simulated RoadRunneR for ATtiny45 processor using AVR assembly
language in Atmel Studio 6.2. Implementations are encryption only, where mas-
ter key and plaintext are read from SRAM, plaintext is encrypted, and written
back to the same place again. There is no SRAM usage besides master key and
plaintext, so only code size is given as the area performance. Loading of key and
plaintext, and storing back ciphertext is included in the single block encryp-
tion time. Various optimization methods are applied. In Table 4, we give the
performance result of RoadRunneR block cipher.

Table 4. Performance values of RoadRunneR-80 and RoadRunneR-128 for different
optimization methods. Compact-1 and Compact-2 are in between methods, shown as
signs of possible trade-offs.

Key Size Optimization Code Size (Byte) Time (cycle)

80 Area 202 3279

80 Speed 386 2091

128 Area 196 3819

128 Compact-1 228 2461

128 Compact-2 402 2171

128 Speed 502 2025

Area optimized 80-bit key version has slightly more area than 128-bit key
version. This is because of the more complex key schedule in 80-bit key. Opti-
mization column in Table 4 shows the various implementation methods we apply.
Area optimization method gives the smallest code size we could achieve. This is
done by extensive use of subroutines which saves program memory. Speed opti-
mization, on the other hand, use no subroutines to avoid extra cycles required
by branching to subroutines. Compact methods are described below:

– Compact-1 : This is derived from area optimized version. Some subroutines
are removed and repeating codes are written for them.

– Compact-2 : Derived from speed optimized version. Key selection part in speed
optimized version changed to a subroutine.

There are more trade-offs with different code size/clock cycle properties but
we did not include them in the paper. From this and Table 4, we see that Road-
RunneR have good throughput/area/security trade-off properties. If we start
from the speed optimized version, we can reduce the area more than half and
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pay a speed penalty of less than half. Fastest implementation is still relatively
small, and the smallest implementation is not that slow.

Comparison of RoadRunneR with some other ciphers is given in Table 5. We
show four comparison metric values for each cipher. Metrics are explained below:

– T/A is the classical Throughput
Area metric.

– T/A-FOAM is the same metric with the throughput definition in FOAM.
– ST/A is calculated by multiplying the T/A by the key size.
– ST/A-FOAM is calculated by multiplying the T/A-FOAM by the key size.

Instead of using Throughput
Area , we chose to use Area × Time product (time

to produce 1 byte, i.e., Cycle/Byte) as in the comparisons in [28], which gives
the same order. Here, in contrast to Throughput

Area , small values are better. We
also normalize each comparison metric column for better understanding. For the
normalization, we divide all numbers in the column with the smallest value in
that column.

In the calculation of FOAM values, we searched for the best attack on each
cipher in terms of round number, and used that as round number to calculate
encryption time. This calculation done by multiplying the original encryption
clock count by NR∗/NR, where NR is the original round number and NR∗ is
the round numbers calculated by the above idea. We do not exclude any initial
setup since we do not know each implementation in detail. We also excluded
related-key attacks since we have no security claim for this type of attack. For
NOEKEON and SEA, we use the bounds found by the designers because of the
lack of cryptanalysis in the literature on these ciphers.

In Table 5, (A) and (S) stands for area optimized and speed optimized imple-
mentations, respectively. (C1) and (C2) are compact implementations as defined
previously. We write RRR as an abbreviation of RoadRunneR. We did not
include SERPENT-128 and CLEFIA-128 in the list since they were far behind
any of the other ciphers in the table in terms of efficiency metrics.

Table 5 shows that, the best cipher in terms of our metrics and classical
metrics is SPECK family. But this family follows the Addition-Rotation-XOR
(ARX) design principle and lacks the provable security properties. So, the round
number selection of SPECK have no scientific rationale. Moreover, in an attack
paper on Simon [38], authors claim that truncated differential characteristics to
be found in the future may extend their 26 round attack to more rounds on
the cipher. Therefore, if we exclude SIMON and SPECK, we have the following
picture among remaining implementations:

RoadRunneR is the best algorithm in terms of code size (except speed opti-
mized and C2 implementations) and security margin. When FOAM approach is
not considered, i.e., in T/A and ST/A metrics, PRIDE outperforms all others,
RoadRunneR implementations follow PRIDE. When we take into account secu-
rity margins, T/A-FOAM and ST/A-FOAM metrics show that (A) and (C1)
implementations have the highest rank, PRIDE and other implementations of
RoadRunneR follow them. Throughput of RoadRunneR is not the best in any
implementation but the fastest implementation of it has the rank 3 among 8
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Table 5. Comparison of some block ciphers implemented on ATtiny45. RRR stands
for RoadRunneR, (A), (S), (C1), and (C2) are implementations methods. Comparison
metrics are normalized where small values are better.

Cipher Block Key Attacked Mem. Enc. Cyc./ T/A T/A ST/A ST/A

size size rounds [byte] Clks Byte FOAM FOAM

AES [24] 128 128 7/10 [19] 1570 3159 197 11.83 12.35 11.11 12.38

PRESENT [24] 64 128 26/31 [9] 660 10792 1349 33.97 42.51 31.91 42.58

SEA [3] 96 96 72/93 [41] 386 17745 1479 21.78 25.43 27.26 33.96

NOEKEON [23] 128 128 9/12 [16] 364 23517 1470 20.41 22.84 19.17 22.88

PRINCE [3] 64 128 12/12 [27] 1108 3614 451 19.01 28.49 19.94 28.54

ITUbee [28] 80 80 10/20 [40] 716 2607 261 7.13 5.32 10.72 8.53

PRIDE [3] 64 128 19/20 [46] 266 1514 189 1.92 2.72 1.80 2.73

RRR-80 (A) 64 80 6/10 202 3279 410 3.16 2.83 4.75 4.53

RRR-80 (S) 64 80 6/10 386 2091 261 3.85 3.45 5.78 5.53

RRR-128 (A) 64 128 6/12 196 3819 477 3.57 2.66 3.35 2.66

RRR-128 (C1) 64 128 6/12 228 2461 308 2.68 2.00 2.51 2.00

RRR-128 (C2) 64 128 6/12 402 2171 271 4.16 3.10 3.91 3.11

RRR-128 (S) 64 128 6/12 502 2025 253 4.85 3.62 4.55 3.62

SIMON [5] 64 128 26/42 [2] 282 2000 250 2.69 2.37 2.53 2.37

SPECK [5] 64 96 18/26 [21] 182 1152 144 1.00 1.03 1.28 1.38

SPECK [5] 64 128 17/27 [21] 186 1200 150 1.06 1.00 1.00 1.00

ciphers. We think that RoadRunneR is fast enough for most applications with
low cost 8-bit CPUs. Bold numbers show the best values in their column except
SIMON and SPECK family. Multiple values in RoadRunneR implementations
are written bold if they are better then all previous results.

6 Conclusion and Future Work

A very efficient Feistel type bitslice block cipher, RoadRunneR, with 64-bit block
size and 80-bit or 128-bit key length is presented. RoadRunneR is a perfect
choice for devices with very restricted memory resources and for applications
requiring reasonable throughput expectations. Our cipher has a high security
margin in contrast to most of other lightweight block ciphers. We simulated
RoadRunneR on ATtiny45 devices by using Atmel Studio 6.2, for which there
are implementation results of recent lightweight ciphers in the literature.

To compare our cipher and other ciphers with different key lengths, we pro-
posed a new comparison metric which considers throughput, area and key size.
When two ciphers of similar area and throughput values are achieved, the one
with larger key size will have a higher rank in this metric. Our metric is the first
one to use key length in the literature.

Implementation results show that RoadRunneR is a competitive candidate
in all metrics in the literature and in our new metric. In our comparisons, only
SPECK and PRIDE performed better than RoadRunneR in some metrics, but
SPECK lacks a security proof and there is a 19 out of 20 round differential attack
on PRIDE. In this sense, we think that RoadRunneR is a good alternative to
current lightweight block ciphers.
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Future Work : Methods for counting minimum number of active S-boxes in an
r-round (r > 2) bitslice SPN cipher (like PRIDE and RECTANGLE) for larger
than 8-bit word size is a challenge. If an efficient method can be found, this
may be used to generate and evaluate binary matrices used in bitslice ciphers,
together with their efficiency. Moreover, general frameworks for determining
power weights for area, throughput, and key size (security) in ST/A for var-
ious implementation platforms is necessary. In the current state, we take all
powers as 1, but some implementations may require very constrained area or
time characteristics. How to find most useful powers is an open problem. We
also leave efficient hardware implementations of RoadRunneR as a future work.

A Test Vectors for 80-Bit Key Length

Plaintext Key Ciphertext

0000 0000 0000 0000 0000 0000 0000 0000 0000 7F0B 3486 640D 2F5E

0000 0000 0000 0002 8000 0000 0000 0000 4FA2 5EF2 64CE C6E4

FEDC BA98 7654 3210 0123 4567 89AB CDEF 0123 328C 798A 0EB2 5A3B

B Test Vectors for 128-Bit Key Length

Plaintext Key Ciphertext

0000 0000 0000 0000 0000 0000 0000 0000 3B07 DE72 9642 54AC

0000 0000 0000 0000

0000 0000 0000 0002 8000 0000 0000 0000 C168 C69A C195 845E

0000 0000 0000 0000

FEDC BA98 7654 3210 0123 4567 89AB CDEF D9DF 068F 5993 8882

0123 4567 89AB CDEF
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Triathlon of lightweight block ciphers for the internet of things. IACR Cryptology
ePrint Archive, 2015:209 (2015)

21. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. Cryptology
ePrint Archive, Report 2014/320 (2014). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/


RoadRunneR: A Small and Fast Bitslice Block Cipher 75

22. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. J. Cryptology 28(3), 397–422 (2015)

23. Eisenbarth, T., et al.: Compact implementation and performance evaluation
of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

24. Engels, S., Kavun, E.B., Paar, C., Yalçin, T., Mihajloska, H.: A non-linear/linear
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Abstract. In this work we propose a protocol combining a Physical
Unclonable Function (PUF) with Password-based Authenticated Key
Exchange (PAKE). The resulting protocol provides mutual multifac-
tor authentication between client and server and establishes a session
key between the authenticated parties, important features that were not
found simultaneously in the literature of PUF-based authentication. The
combination can be adapted to support a panic password which allows
the client to notify the server in case of emergency. Moreover, a novel pro-
tocol for two-factor transaction authentication is proposed. This ensures
that only parties authenticated in the current session can realize valid
bank transactions.

Keywords: PUF · PAKE · Multifactor authentication · Secure banking

1 Introduction

One of the main concerns in modern cryptography is that one or both communi-
cating parties can prove its identity to the other party. Authentication protocols
can be used for this purpose and generally depend on the knowledge of a long
cryptographic key of exclusive possession by the legitimate holders. For this rea-
son, it is common to employ a device to store this key securely, since human
memory, in most cases, is unable to memorize it without errors. Protocols for
Password-based Authenticated Key Exchange (PAKE) relax this requirement to
the extent that they require the knowledge of a much shorter key (password).

Authentication protocols can be applied to several scenarios, ranging from
simply obtaining access to a computer, to securing a bank transaction. The
applicability of these protocols in the banking environment is extremely impor-
tant, since many features are provided to the client via the Internet and ATMs, in
which the bank primarily needs to confirm the authenticity of the client’s iden-
tity. Conversely, the client must verify the authenticity of the bank’s identity
before providing credentials or sharing financial information. In practice, most
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banking security solutions for client authentication involve a token producing
one-time passwords generated by a synchronized timer and/or some keyed func-
tion. Server authentication is performed in parallel, through certificates in the
SSL/TLS protocol. The main limitations of these client-side solutions are vulner-
ability against reverse engineering for key extraction, lack of challenge-response
mechanisms, and difficult integration with other authentication factors. In this
work, we argue that exploring unpredictable physical effects improves security
by removing the need to explicitly store secrets that may leak or be captured by
an adversary.

Several works in the literature employ Physical Unclonable Functions (PUF)
[1,2] for constructing leakage-resilient block ciphers [3], performing device
authentication [4], generating cryptographic keys [5], among others. Some works
aim to replace the possession of a long-term cryptographic key with a PUF in
authentication protocols. Delvaux et al. [6] recently reviewed lightweight authen-
tication protocols and presented desirable requirements and attacks against
many protocols in this solution space. Tuyls and Škorić [7] proposed a PUF-
based protocol for authentication in banking applications with establishment of
a session key. However, this protocol is not secure against server impersonation
attacks in a realistic adversarial model, in which the adversary has physical access
to the PUF, as shown by Busch et al. [8]. In Sect. 3, we show that the correction
proposed by Busch et al. [8] for the Tuyls and Škorić protocol [7] still retains the
vulnerability against server impersonation. Another work by Frikken et al. [9]
employs a zero-knowledge proof of possession of a PUF for client authentication
through a bank-issued device and an additional password. Besides not estab-
lishing a session key and offering only client authentication, instead of mutual
authentication, this protocol is also vulnerable to offline dictionary attacks, as
discussed in Sect. 3. As a result, these protocols cannot be considered secure for
a realistic attacker, who has temporary possession of the PUF and colludes with
an attacker able to monitor network traffic between client and server.

This paper proposes PUF+PAKE, a secure protocol resulting from the com-
bination between PUF and PAKE. This combination is sound, because the
PAKE only requires knowledge of a small shared password, and the PUF out-
put is usually not large enough to be comparable to a cryptographic key. The
general construction uses the PUF output as the shared password required by
the PAKE, ensuring that the shared session key produced by the PAKE will
only be available under possession of the PUF, and improving leakage resistance
by eliminating any long-term secrets stored explicitly. The protocol is also pro-
tected against dictionary offline attacks by employing the PAKE. In particular,
the session key can be used to protect subsequent communications involving
financial information of the client. In particular, our protocols provably satisfy
the following security requirements: (i) no long-term secret needs to be stored;
(ii) a user should be unable to successfully authenticate without his/her device;
(iii) a stolen device cannot be used to impersonate the user; (iv) and the protocol
must have protection of additional credentials against offline attacks, a property
hard to obtain with a lightweight protocol. The contributions of this paper are:
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– A server impersonation attack against the Busch et al. protocol [8] which
shows that the correction suggested by the authors for the protocol by Tuyls
and Škorić [7] is not sufficient. This is a new attack not discussed in previous
work.

– Dictionary attacks against the protocol proposed by Frikken et al. [9] that
depend only on the temporary possession of the PUF and observation of a
single trace of client-server communication.

– A protocol combining PUF and PAKE for mutual multifactor1 (using the
output of the PUF and the user’s password) authentication and session key
establishment between authenticated parties. The protocol combines several
important features present in other protocols but that were not found together
in previous protocols and offers an interesting security trade-off when com-
pared to related work: lower resistance against internal agents, but enhanced
security against dictionary attacks. The proposed solution is particularly
applicable to the banking sector, where clients are already used to have an
additional authentication device. Current devices could then be augmented
with a PUF to provide multifactor authentication based on both computa-
tional and physical assumptions.

– Formal security analysis of the protocol, considering standard security notions
for authenticated key exchange.

– An adaptation of the proposed protocol to allow the client to notify the server
in case of emergency.

– A novel protocol for two-factor authentication of bank transactions, requiring
knowledge of the session key and a fresh proof of possession for the PUF as
authentication factors.

This paper is organized as follows. In Sect. 2, we present the definitions used
during the development of this work. In Sect. 3, we show attacks against two
known protocols. The proposed protocol and its formal security analysis are
described in Sects. 4 and 5, respectively. Section 6 presents a simple adaptation of
the protocol to support panic passwords. Section 7 presents our PUF-based solu-
tion for transaction authentication and its security analysis. Finally, in Sect. 8,
we present the conclusions and point out directions for future work.

2 Preliminary Definitions

2.1 Physical Unclonable Functions

A Physical Unclonable Function [1,2] is usually implemented through an unpre-
dictable physical effect intrinsically linked to each individual instantiation. By
assumption, PUFs cannot be easily duplicated or manipulated without changing
their behavior considerably. Despite the existence of PUFs with certain security
properties being contested in the literature [10–12], our work depends on a suit-
able choice of a PUF that satisfies rigorous security properties. Although PUF
1 We consider any additional credential as another authentication factor (such as bio-

metric information).
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behavior may be influenced by environmental factors, such as changes in the tem-
perature, we argue that there is a good PUF candidate that can be made reliable
enough for actual deployment [13]. In this work, we do not specify a PUF to not
lose generality and for simplifying the security analysis. Notice that a strong
PUF natively supporting a physically complex challenge-response mechanism is
required.

Since these physical effects are rarely completely stable, a PUF can gen-
erate slightly different outputs for queries with the same input at two distinct
points of time. This noisy aspect hinders the direct use of PUFs in cryptographic
applications, but fuzzy extractors [14] enable the conversion of PUF outputs to a
close-to-uniform distribution of binary strings. A fuzzy extractor is a pair of prob-
abilistic procedures to generate (Gen : {0, 1}n → {0, 1}�×{0, 1}∗) and reproduce
(Rep : {0, 1}n × {0, 1}∗ → {0, 1}�) PUF outputs, where the generation process
produces auxiliary information ω for which its output can be recovered with
the Rep procedure. More formally, we fix a (m, �, t, ε)-fuzzy extractor equipped
with these procedures that are able to receive any distribution of inputs d with
min-entropy m and generate (r, ω) ← Gen(d) with statistical difference between
(r, ω) and (U�, ω) at most negligible ε. The correctness property requires the Rep
procedure to exactly reproduce r ← Rep(d′, ω) when dist(d, d′) ≤ t.

Given its unpredictable behavior, PUFs can be mathematically modeled as
a function PUF : {0, 1}m → {0, 1}n, for which one can define the following
response game against a polynomial adversary A [9]:

– Phase 1: The adversary A requests and receives responses (ri, ωi) for any
PUF challenge di of its choice.

– PUF challenge: A chooses a PUF challenge d not queried previously and
receives auxiliary information ω produced by Gen(PUF (d)), but not its out-
put.

– Phase 2: A can do more requests for the PUF for any other PUF challenges
different from d.

– Responde: Eventually, A outputs its guess r′ for r = Rep(PUF (d), ω).

The adversary A wins if r = r′. For an unpredictable PUF, A has the winning
probability AdvPUF

A (�) = Pr[r = r′] as a negligible function of the security
parameter �. For the PUF response game above, a decisional version can be
defined as the PUF response indistinguishability game as follows [9]:

– Enroll: A executes the enrollment phase for any value di of its choice, receiv-
ing the corresponding ωi. Define the set of such pairs (di, ωi) as W.

– Phase 1: A requests and receives PUF responses ri for any (di, ωi) ∈ W of
its choice.

– PUF challenge: A chooses a PUF challenge d that has been queried during
the Enroll phase but not in Phase 1. A random bit b is chosen. If b = 0, A
receives r = Rep(PUF (d), ω), where (d, ω) ∈ W, otherwise it receives a string
uniformly chosen from {0, 1}�.

– Phase 2: A is allowed to query the PUF for challenges in W other than (d, ω).
– Response: Eventually, A outputs a bit b′.
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The adversary A wins if b = b′. Let AdvPUF−ind
A = Pr[b = b′] be the prob-

ability of A winning the game. It is assumed that AdvPUF−ind
A (�) − 1

2 is also
negligible.

2.2 Password-Based Authenticated Key Exchange

A Password-based Authenticated Key Exchange protocol establishes a shared
key over an insecure channel depending only on a small shared secret, called a
password. This is a very useful feature because an extra device is not required
for storing a long cryptographic key, but only the ability of human memory to
store a short secret.

The first PAKEs arised in the 90s, with the Diffie-Hellman Encrypted Key
Exchange (DH-EKE) protocol in 1992 [15] and the Simple Password Exponen-
tial Key Exchange (SPEKE) protocol in 1996 [16]. More recently, an important
PAKE was proposed as the AuthA protocol [17] that provides the same security
properties of previous protocols, but is simpler, has a lower cost of communi-
cation and is more versatile. Other PAKE protocols can be found in the litera-
ture [18,19], with some based on the AuthA protocol [20,21]. In this paper, we
employ a simplified variant of a AuthA protocol [20,22] as choice of PAKE for
the purpose of illustration, but any secure PAKE protocol can be used instead.

Semantic Security. Protocols are subject to various attacks, because the mes-
sage exchanges occur over an insecure channel. The information transmitted is
subject to various types of threats such as eavesdropping and tampering. A mali-
cious agent can eavesdrop honest conversation between two entities and record
all exchanges of messages for later impersonating one of the two parties. This
type of attack is called a replay or repetition attack.

One way to avoid this type of attack is to ensure that the protocols provide
the property of freshness. This property ensures that the messages probably
belong to the current execution, and do not constitute repetitions of previous
messages exchanged in some other honest execution. The freshness property
can be obtained in various ways, such as the use of clocks like in the Kerberos
authentication system [23,24] or the use of challenges-response operations [25].

Challenge-response mechanisms are commonly used because they do not
require clock synchronization between the entities making them robust and popu-
lar in cryptographic protocol design. In this method, an entity A sends a random
value (challenge) to an entity B and requires this value to be in the next message
(response) received from B, and vice versa. The challenge must be protected so
that it can only be read by the legitimate recipient. This can be done in several
ways [16,18,20]. For example, the client can choose a random value x ∈ [1, q −1]
where q is the size of a finite cyclic group G, compute the value of gx for a gen-
erator g ∈ G and send it to the server, which in turn, chooses a random value
y ∈ [1, q − 1], computes gy, encrypts the result using a shared secret and sends
the result to the client. Afterwards, each party verifies implicitly if the other
party received the correct nonce.
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Authentication. One of the goals of authenticated key exchange protocols is
to ensure the authentication property, which guarantees that the shared crypto-
graphic key is obtained only by parties that satisfy the authentication require-
ments. The probability of an adversary A to impersonate the client or the server
in a protocol run P is denoted by Advm−auth

A,P (�) and thus, the protocol P is said
to be secure if this probability is negligible in the security parameter �.

3 Protocol Vulnerabilities

In this section we present a dictionary attack against the protocol proposed by
Frikken et al. [9], which depends only on the temporary possession of the PUF
and observation of a single trace of client/server communication. We also present
a server impersonation attack against the protocol proposed by Busch et al. [8],
which shows that the correction suggested by the authors is insufficient. Due to
space constraints, we omit the protocol descriptions and refer the reader to the
original versions [8,9], conserving most of the notation for compatibility.

3.1 Robust Authentication Using PUFs [9]

In their work, Frikken et al. [9] implement client authentication through a bank-
issued device and an additional password. They employ a zero-knowledge proof
of possession of an integrated PUF (I-PUF), assumed to be inseparably bound to
a chip able to perform computation [26]. The protocol does not provide mutual
authentication between client and server, and does not establish a session key.

Since the challenge c is fixed, the PUF challenge d = H(H(c||pwd), g, P ) is
also fixed, for some auxiliary information P . With possession of the PUF, the
adversary computes a set R of values gri corresponding to the PUF challenges
di = H(H(c||pwdi), g, P ), where pwdi is a candidate password (a dictionary
attack). Observe that the I-PUF assumption does not allow the attacker to
obtain the responses ri directly, but the result of the computation gri , similar to
the one performed during the enrollment phase, could be captured without the
client’s knowledge. Afterwards, the adversary replays to the client the challenge
c, the group description 〈Gq, q〉, auxiliary information P and nonce N observed in
a previous honest communication. The user then sends (H(c||pwd), 〈Gq〉, q, P,N)
to the device that computes d = H(H(c||pwd), g, P ) and executes the Rep pro-
cedure to obtain r. The device chooses a random value v ∈ Zq and computes
t = gv. Following the protocol, the device computes c = H(g, gr, t, N) and
w = v − c′r mod q, and returns c′ and w to the client, which sends these values
to the adversary. The adversary then computes a set T of values ti = gwgric

′
,

because he knows the values of g, w, c′, and if c′ = H(g, gri , ti, N) for some value
of i, learning therefore the user password if pwd = pwdi.

Furthermore, an insider who steals the authentication records in this pro-
tocol [9] recovers the value gr for some user, being able to mount an offline
attack by obtaining to the device and making queries to the PUF with several
challenges di = H(H(c||pwdi), g, P ) in hope of receiving gri = gr as response.
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This observation directly contradicts a security claim against insider attacks
stated in the Abstract and Introduction of the paper [9].

3.2 Strong Authentication with PUFs [8]

Tuyls and Škorić proposed a lightweight PUF-based authentication proto-
col [7] providing session key establishment, but without a security analysis. This
protocol is divided into two parts: the first is called the enrollment phase, in
which an identifier IDPUF is assigned to the PUF, a random sequence rd is
chosen, and a set of challenges C is created. Then for each challenge ci ∈ C, the
output si and auxiliary information ωi are generated, forming the sets S and W,
respectively. The memory of the card is initialized with IDPUF , n = 0 (number
of previous authentication attempts), m = rd; and the server stores IDPUF ,
n = 0, m′ = rd and {C,W,S} in a database.

In [8], Busch et al. suggested a different attacker model, introducing physical
control of the PUF and of its respective reader to the attacker for a short time.
This type of attacker is quite realistic in an authentication setting, for example,
in the situation where the employee of a business establishment takes the client’s
credit card away from the client’s view for billing. During this time the employee
(adversary) can read data stored in the card memory or perform some queries
to obtain challenge-response pairs. Under this attacker model, an attack where
the adversary A can impersonate the server by first choosing a small number of
challenges C∗ and computing their respective responses R∗. Afterwards, A reads
the identifier IDPUF , the usage counter n and the current hash value hn(m)
that are stored on the memory of card. With this information, the adversary
can compute the value M∗ = hn−n∗

(m) for n∗ > n, since the counter n and
the hash value m = h(m) are directly stored in memory. Then A calculates
K∗

1 = h(M∗||IDPUF ), generates a random nonce β∗ and chooses a challenge
c∗
i ∈ C∗ to generates its respective output si together with auxiliary informa-

tion ωi. Then A computes a MAC on (α||c∗
i ||ω∗

i ||β∗) using the key K∗
1 , encrypts

the MAC with K∗
1 and sends EncK∗

1
[(α||c∗

i ||ω∗
i ||β∗)||MACK∗

1
(α||c∗

i ||ω∗
i ||β∗)] to

the reader. The reader subsequently calculates K1 = (m||IDPUF ), decrypts
EncK∗

1
[(α||c∗

i ||ω∗
i ||β∗)||MACK∗

1
(α||c∗

i ||ω∗
i ||β∗)] and verifies if the MAC is valid.

Thus, since the MAC and decrypted nonce α are valid, the protocol does not
abort with an error condition and a symmetric key K∗ (respectively K) is estab-
lished between the reader and the adversary, proving that the adversary can
impersonate the server with success.

In order to mitigate this problem, the authors propose the use of Bloom
filters [27] or hash trees [28] for storing the subset of challenges which were
initially queried by the server in the card memory. This storage is done com-
pactly and does not allow an adversary with limited computational power to
gain useful information about the challenges. We shall see now that the addi-
tional storage overhead imposed on the client does not solve the vulnerabil-
ity against server impersonation. Consider an adversary A who has access to
the credit card including the PUF only once. With access to the card, A can
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read from the card’s memory the identity IDPUF , the usage counter n and
the current value of hash of m. Then, the adversary establishes a honest con-
nection with the server to determine α∗, n∗, IDPUF , EncK∗

1
[T ∗||MACK∗

1
(T ∗)],

where T ∗ = α∗||c′∗
i ||ω∗

i ||β∗. Thus, A can find the challenge as follows: A calcu-
lates the value of M∗ = hn−n∗

(m), which is possible, because A has the usage
counter n and the value of m = H(m), computes K∗

1 = h(M∗||IDPUF ) and can
thus decrypt EncK∗

1
[T ∗||MACK∗

1
(T ∗)]. With the value of T ∗, the adversary can

obtain the ci and ωi that were used in the eavesdropped conversation. With a
valid challenge ci and its corresponding auxiliary information ωi, the adversary
can impersonate the server successfully in the same way as Busch et al. [8].

This attack works because the client does not verify the reuse of the same
ci. For this “verification” to work, the client must remove each ci used from
the card’s memory from either the Bloom filter B or the hash tree, introducing
additional complexity and storage costs [29].

4 PUF+PAKE Protocol

The protocol presented in this section uses the combination of a PUF with a
PAKE. The main idea is to use the PUF output as the shared password required
by the PAKE. This protocol is divided into two phases: enrollment and authen-
tication. In the enrollment phase, the server uses the PUF to generate tuples
(ci, ωi, si) that will be used during the authentication phase. At this stage the
server obtains a challenge di generated from a nonce ci concatenated with the
user’s password pwd, and then uses the PUF output as input in the generation
process Gen, presented in the Sect. 2.1, to obtain the output si and auxiliary
information ωi that are stored along with ci. Notice that other authentication
factors can be concatenated to ci as input to the PUF, as suggested by Frikken
et al. [9]. The server discards the tuple (ci, si, ωi) after using it in an authenti-
cation attempt.

The authentication phase is composed of three steps. In the first step, a
shared secret is reproduced (which is the output of the PUF queried with the
challenge di) between client and server. In the second step, a PAKE protocol
satisfying the semantic secutity (freshness) and authentication properties is used
to establish a new session key. Finally, in the third step, an additional key confir-
mation step is executed for ensuring mutual authentication, following the generic
transform [17].

4.1 Enrollment Phase

The enrollment phase of a client’s device D, performed according to Fig. 1, is
a step where the server generates and stores challenges for a client and their
corresponding responses. We consider N as a set of nonces ci ∈ {0, 1}128, H as a
hash function and the notation ci

R← N indicates that ci was sampled randomly
from a set N . We assume that this phase is physically secured, because in
banking applications there is a trust relationship between client and bank, and
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Fig. 1. Physically secure enrollment phase performed to generate a tuple (ci, si, ωi) ∈ C.

the client can participate in this phase in person. Each iteration of the enrollment
phase generates a tuple (ci, si, ωi) in C.

4.2 Authenticated Key Exchange Phase

During the authentication, generation and verification of the session key are
performed as in Fig. 2. As mentioned before, this phase is divided into three steps,
so the role of each feature, the PUF, the PAKE and the server authentication can
be clear. The first part reproduces the value Ki and K ′

i used in the combination
between PUF and PAKE, in which the server randomly chooses a tuple from set
C, assigns si as value of his key Ki, sends ci and ωi to the client, which in turn,

Fig. 2. Authenticated key exchange phase, divided into three parts, where we use the
secure PAKE protocol.
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employs the PUF and password to generate the value for key K ′
i. Notice that

for the protocol to be performed successfully, Ki must be equal to K ′
i.

The second part is flexible and can be performed by any secure
PAKE [15,16,20]. In Fig. 2, we use an One-Encryption Key Exchange protocol
(OEKE) [20,22], which is a simplified variant of the PAKE protocol proposed
by Bellare et al. [17] with slight adaptations. This PAKE protocol has proofs
of semantic security and authentication properties [20,22], the two necessary
requirements for a PAKE protocol to be considered secure. Client authentica-
tion happens in this stage.

The third part is also flexible and there are other choices of protocols for
key confirmation, as discussed by Jablon [16]. In this part, server authentica-
tion occurs and, hence, the mutual authentication between client and server is
established. Functions H0,H1 represent cryptographic hash functions that can
be constructed from a hash function H with different prefixes and E,D rep-
resent the encryption and decryption functions of an authenticated symmetric
primitive (such as AES-GCM [30]), respectively.

5 Security

At any instant of time, the adversary does not have simultaneous access to all
authentication factors, otherwise an attack becomes trivial. Thus, the adversary
is unable to capture Ki directly. In order to prevent progressively leaking Ki

by continuous interaction, a different tuple in C is used in each authentication
attempt. We assume the bank has enough capacity for storing thousands of
nonces ci, and corresponding responses si with auxiliary information ωi. This
is different from other works that assume the existence of a I-PUF [26]. In this
case, communication between the PUF and the chip is inaccessible to an attacker
and thus cannot be tampered with.

Accordingly, we consider that the adversary A has temporary access to the
PUF when he can perform a limited number of queries to build a set of PUF
challenge-response pairs. If the number of authentication attempts is exceeded,
the server can impose a limit of time that prevents an online exhaustive search
attack in the password without blocking completely the client/server. The adver-
sary also has access to network traffic between the client and server, correspond-
ing to successful authentication attempts.

5.1 Security Intuition

We analyze three scenarios in which the attacker tries to impersonate the client
and the server.

Adversary does not have Access to the PUF and to the Password. In
this scenario the adversary does not have access to PUF at any moment and
does not know the client’s password. The adversary only has access to previous
honest communication traffic between the client and server.
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– Client and Server: Since the PAKE is secure and satisfies the freshness
property, the probability of an adversary impersonating the client or the server
is the same probability as guessing Ki. For this to work, the adversary must
be able to guess the response generated by the PUF, which happens with
negligible probability, following Sect. 2.1.

Adversary does have Access to the PUF, but does not Know the
Password. This scenario is the most realistic for authentication, where the
adversary has access to the PUF for a limited time but does not have knowledge
of the client’s password pwd.

– Client and Server: The adversary is able to impersonate the client success-
fully if he can guess the user’s password. The probability for the adversary
to impersonate the server successfully is considered negligible either if the
distribution of passwords is nearly uniform or if there is a limited number
of unsuccessful authentication attempts. Notice that the PAKE requires each
authentication to involve interaction between client and server, allowing the
client and the server to limit the number of unsuccessful attempts. Addition-
ally, recall that the probability distribution of passwords is usually far from
uniform, due to the fact that some passwords are commonly chosen and prone
to dictionary attacks.

Adversary does not have Access the PUF, but has Access to the Pass-
word. In this case the adversary cannot obtain PUF responses, but knows the
client’s password.

– Client and Server: For the adversary to impersonate the client or the server,
he needs to guess the output Ki of the PUF under input di. The probability
of the adversary guessing this value is negligible, according to Sect. 2.1.

5.2 Formal Analysis

A protocol for authenticated key exchange must satisfy two security notions:
semantic security (also called freshness property in this context) and the authen-
tication property. The first security notion ensures that the protocol produces
a new shared cryptographic key as result. The second security notion ensures
that the shared cryptographic key is obtained only for parties who meet certain
authentication requirements.

Theorem 1. The combined PUF+PAKE protocol using a semantically secure
PAKE protocol remains semantically secure under the assumptions of the PAKE
protocol and assuming a close to uniform statistical distribution of the PUF
outputs.

Proof. A PAKE protocol is semantically secure given a set of computational
assumptions and uniformly random choice of a shared password. A PUF mod-
eled as an unpredictable function postprocessed by a fuzzy extractor satis-
fies this requirement. Therefore, the combined construction only transfers the
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semantic security and other security properties from the PAKE protocol to the
PAKE+PUF protocol under the same computational assumptions that guaran-
tee the semantic security of the PAKE protocol isolated.

Theorem 2. A polynomial adversary with access to the PUF (with security
parameter �) has negligible probability of success in the PUF+PAKE authenti-
cation protocol for a previous user enrollment, assuming that H is a random
oracle, the PAKE protocol satisfies the property of authentication and passwords
are chosen from a set large enough for the probability of guessing to be also
negligible.

Proof. This security reduction is an adaptation of Theorem 1 as seen in the
work from [9]. Assuming that an adversary A with non-negligible success prob-
ability exists for the authentication property, we construct an adversary B for
the PUF indistinguishability using A as a black box. The adversary B chooses
a random challenge c and a random password pwd, computes d = H(c||pwd)
and chooses d as his PUF challenge for the game of indistinguishability. The
adversary B receives a pair (rb, ω) determined by the random bit b such that
r0 = Rep(PUF (d), ω) and r1 is randomly chosen; and instantiates the adver-
sary A with values (c, ω) giving oracle access to H and PUF . To simulate the
random oracle H, B creates a set of tuples initialized as HS = (c||pwd, h) for
a randomly chosen value h. When A queries the oracle with input x, B verifies
if a pair (x, y) already exists in HS and returns y, otherwise adds (x, h′) to set
HS and returns the randomly chosen value h′ as result. To simulate the PUF
for a query (d′, ω′), B checks if d = d′ and returns FAIL if positive. Otherwise,
B returns (r′, ω′) = Gen(d′) as a result. Thus, A has a view indistinguishable
from the real protocol and eventually produces a proof of authentication for the
possibly shared key. If this proof of authentication is correct, B returns 0 as a
result, or an random bit b′ otherwise.

First, let’s analyze the probability Pr[b = b′]. Let F be the event that B
returns FAIL. This event occurs with only negligible probability, since it requires
that the adversary A guess the password pwd or the PUF challenge d to query
the PUF. One can divide the remaining case Pr[b = b′|F ] for the two values of b:

Pr[b = b′|F ] =
1
2

Pr[b = b′|F , b = 0] +
1
2

Pr[b = b′|F , b = 1].

Let G be the event that A produces a correct proof of authentication. We con-
dition both of the above cases on G. For the case b = 1:

Pr[b = b
′|F, b = 1] = Pr[b = b

′|F, b = 1, G] Pr[G|F, b = 1] + Pr[b = b
′|F, b = 1, G] Pr[G|F, b = 1].

We have that Pr[b = b′|F , b = 1, G] = 0, because b = 0 for the event G;
Pr[b = b′|F , b = 1, G] = 1

2 , because b = 1 occurs with 50% for the event G, and
Pr[G|F , b = 1] is a negligible function by the security of the PAKE protocol.
Hence, for some negligible function λ(�):

Pr[b = b′|F , b = 1] >
1
2

− λ(�).
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The case b = 0 is similar:

Pr[b = b
′|F, b = 0] = Pr[b = b

′|F, b = 0, G] Pr[G|F, b = 0] + Pr[b = b
′|F, b = 0, G] Pr[G|F, b = 0].

Here, Pr[b = b′|F , b = 0, G] = 1,Pr[b = b′|F , b = 0, G] = 1
2 and Pr[G|F , b = 0] >

1
f(�) for some polynomial f , by the assumption that A breaks the authentication
property with non-negligible probability. Therefore:

Pr[b = b′|F , b = 0] >
1

f(�)
+

1
2

·
(

1 − 1
f(�)

)

=
1
2

+
1

2f(�)
.

Substituting the terms, we have:

Pr[b = b′|F ] >
1
2

(
1
2

+
1

2f(�)

)

+
1
2

(
1
2

− λ(�)
)

.

In summary, if we have Pr[b = b′|F ]− 1
2 non-negligible then, Pr[b = b′]− 1

2 is
also non-negligible and the attacker A must exist, contradicting the hypothesis
that the PAKE protocol is secure.

5.3 Checklist Analysis

Delvaux et al. [6] were the pioneers in enumerating a set of ten requirements
that PUF-based protocols should possess. In the following, we do a brief analysis
about how our protocol fits into each one these requirements.

1. Complete Specification: The PUF+PAKE protocol has a complete unam-
biguous specification with graphical representation of both enrollment and
authentication phases, showing details of all computations and exchanged
messages between client and server. Also, we loosely recommend a PUF can-
didate [13], noting that the protocol can be used with any PUF satisfying
the security properties.

2. Leakage Resilience: The PUF+PAKE protocol does not impose secure
data storage on the client, hence, leakage of information does not occur.
Data is only stored at server-side in a non-volatile memory that is assumed
secure.

3. Able to Handle Noisiness: The PUF+PAKE protocol handles noisiness
and also non-uniform distribution of PUF outputs using a fuzzy extractor,
as discussed in Sect. 2.1.

4. Counteracting Strong PUF Modeling Attacks: The adversary is
unable to capture PUF challenges, because the challenges di are not trans-
mitted or stored in the server. The challenges are correctly generated only
if the adversary knows the user’s password. Hence, collecting pairs (di, si)
for mounting machine learning modeling attacks requires physical access to
the PUF.

5. Strong PUF: The PUF+PAKE protocol requires a strong PUF providing
a large set of challenges. Hence, we can use any PUF that has response space
expansion.
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6. Low-Cost and Resource-Constrained: The PUF+PAKE protocol only
requires symmetric primitives and few public key operations. The latter can
be instantiated with elliptic curves to benefit from efficient implementations
and reduced parameter sizes.

7. Easy-to-Instantiate: The PUF+PAKE protocol is easy-to-instantiate
because we designed the protocol to not depend on a specific PUF, but
any PUF that satisfies the security requirements.

8. Resistance Against Protocols Attacks: The PUF+PAKE protocol has
a formal analysis of security (Sect. 5.2) and no attacks are currently known.

9. Scalability: In banking applications, identification is easy and clients pro-
vide the bank branch and account number before performing the authenti-
cation protocol.

10. On the Mutual Authentication Order: In PUF+PAKE client authenti-
cation happens first, because in banking applications client impersonation is
more common. Changing the order of the messages at the end of the second
part (PAKE) is enough to adapt the protocol for applications in which the
server authenticates first.

5.4 Comparison

Considering the scenarios discussed in Sect. 5.1 the protocol developed by Frikken
et al. [9] has the same security properties as the protocol proposed in this paper,
with a notable exception when the adversary has temporary access to the PUF,
but does not know the user’s password. In the PUF+PAKE protocol, the adver-
sary successfully impersonates the client or the server under these circumstances
with negligible probability for each authentication attempt. In Sect. 3.1, we pre-
sented a server impersonation attack that allows the server to discover the user
password with higher probability. This happens because the adversary only needs
to impersonate the server one time to check if the user password is included in
the set of candidate passwords queried through the PUF and the remaining work
can be done offline. The PAKE in our protocol forces the adversary to imper-
sonate the client/server to check a single password candidate per authentication
attempt, further allowing either the client or the server to monitor the malicious
behavior of the other party. Comparing our protocol to Frikken et al. provides
an interesting security trade-off: while our protocol provides stronger resistance
against dictionary attacks, an insider attack is easier to mount in PUF+PAKE
because the PUF response is stored in the server.

Delvaux et al. [6] present many attacks against lightweight authentication
protocols. Our attack in Sect. 3.2 against the protocol proposed by Tuyls and
Škorić [7] is new, and illustrates the inherent limitations of lightweight proto-
cols for our target application. In short, lightweight protocols are not designed
to receive and protect additional credentials (multifactor feature) against offline
attacks. For attaining this goal, more computationally expensive protocols forc-
ing client-server interaction in every authentication attempt are needed.
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6 Emergency

Panic passwords are mechanisms that allow users to use a special kind of pass-
word, called panic password, to signal the server (or any other communicant
party) that his password is being inserted as a result of coercive action [31]. They
are also known as help passwords or codes in the literature. A popular example
of the use of panic passwords was employed in older versions of the RSA SecurID
device [32]. This device is intended to perform two-factor user authentication for
accessing network resources using both a personal identification number and a
one-time password generated by the token.

The protocol shown in Fig. 2 can easily support panic passwords, by using an
adaptation of a known technique [9]. There are two valid passwords for each user,
both with a fixed-length shared prefix (pwd1) and distinct suffixes that indicate
normal situation (pwd2) and emergency (pwd3). Let pwd∗ represent one of the
two valid suffixes. The server is able to distinguish between the two situations by
checking what session key was derived by the protocol execution. The enrollment
phase undergoes some changes and proceeds as shown in Fig. 3.

Fig. 3. Physically secure panic enrollment phase performed to generate a tuple
(ci, ωi, pi, p

∗
i ) ∈ C∗.

In the authentication phase, the roles for the client and server are reversed
in the illustrative PAKE, which causes no security impact when the generic
transformation of mutual authentication is applied [17]. This reversion is needed
to transfer the encryption step to the client, which will send the encryption under
one of the two possible keys, indicating normal or emergency situation. The
server can then decrypt the received message and check what kind of situation
the next message from the client corresponds.

When the server detects an emergency situation, it executes the protocol
normally, so that the adversary does not notice that the panic password has
been used, therefore, both executions must be indistinguishable. In this case, the
server can send a signal to the authorities, warning that something suspicious is
happening or even limit the amount of money available for withdrawal.

In most cases, when there is no emergency situation, the server continues
normally and sends its message to mutual authentication. The resulting protocol
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is described in Fig. 4. Naturally, when notification of emergency is desirable, all
clients in any situation should use the adjusted protocol so that normal instances
of the protocol have the same communication pattern as emergency situations.
The formal analysis of security of this variant follows directly from the formal
analysis of the Sect. 5.2, since only simple modifications were required in the
protocol.

Fig. 4. Authenticated key exchange phase with support for panic passwords, where
pwd∗ represent one of the two valid suffixes (normal (pwd2) or emergency (pwd3)
situation).

7 Transaction Authentication Protocol

In banking applications, ensuring that both parties, server and client, are authen-
ticated in the beginning of a session is not enough. It is also important to ensure
that the client remains connected and with access to the authentication fac-
tors at the time when transactions are performed. Protocols with this feature
are called transaction authentication protocols. The Fig. 5 shows our transaction
authentication protocol, to be executed for each new transaction in a session. The
protocol is linked to the PUF+PAKE protocol shown in Sect. 4, since the same
session key is used here (skS and skU ) to ensure that the transaction is indeed
occurring in the current session. For this reason, it is a two-factor transaction
authentication protocol, implicitly authenticating participation in the current
session and access to the previously enrolled PUF.
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The protocol is performed as follows: first, the client encrypts the transaction
data T with the session key (skU ) and then sends it to the server. The server
then decrypts the transaction with its session key (skS), randomly chooses a
tuple on the set C and generates a new key Kj based on the concatenation of
the PUF output (for a new nonce cj and consequently a new dj to the client)
and the session key. The server then chooses a 4-digit one-time password z,
that is concatenated with T ′ as (z||T ′) and then encrypted using Kj , and sent
together with the nonce cj and the auxiliary information ωj . The client compares
the received transaction data with the requested transaction, and if positive
calculates the value of K ′

j using the PUF, his password pwd and the session key
skU . Then, the client decrypts the message Z∗ and returns the decrypted one-
time password for verification2. Finally, the server remove the tuple (ci, ωi, si)
from C.

To reduce the size of C, one can employ the same tuple (ci, ωi, si) on all
transactions in the same session, one for entity authentication and another for
transaction authentication. Because of this, only two tuples of C are necessary
per session. In the Fig. 5, E and D are defined as previously.

Fig. 5. Transaction authentication protocol using the same tuple (ci, ωi, si) on all trans-
actions in the same session.

7.1 Security Analysis

The security analysis is restricted to the scenario where the adversary does not
have access to the PUF. Consider that the PUF+PAKE protocol was performed
2 This is the only user interaction with the protocol, besides making the transaction

request. The other operations are done by software.
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successfully and securely, and consequently the session key is only known by
authenticated parties. Assume that the adversary does not have access to the
PUF and/or user’s password at any moment. Otherwise, and if the adversary
had authenticated successfully in the PUF+PAKE protocol, an attack is trivial.
The adversary thus only has access to previous traffic of honest communications
between the client and server.

For an adversary to impersonate the client successfully, he would have to
guess the values of skU (client’s session key) and the output of the PUF for the
challenge dj that can only be computed if the adversary knows the client’s pass-
word. As the PUF+PAKE protocol is secure, the advantage of the adversary in
guessing skS is negligible and the probability of guessing the output of the PUF,
according to Sect. 2.1, is also negligible. Thus, the advantage of the adversary
successfully impersonating the client is negligible.

8 Conclusions and Future Work

In this paper, we proposed a flexible authentication protocol based on a combina-
tion of PUF with PAKE that provides mutual authentication between the client
and the server establishing a session key, some of the main features for a useful
authentication protocol. This protocol can be used in various environments, for
example authentication in banking applications, in which the session key can
be used to authenticate subsequent transactions or protect financial informa-
tion in transit. In particular, the PUF+PAKE combination improves the state
of the art of authentication solutions based on PUFs, according to the formal
analysis presented. Additionally, a variant of the protocol is proposed to support
panic passwords for emergency situations where the client is compelled to deliver
the PUF and reveal his password, and a two-factor authentication solution for
transaction authentication is discussed. We also presented server impersonation
attacks on two PUF-based authentication protocols proposed in the literature,
motivating the need for mutual authentication in such applications.

For future work, we plan to develop an alternate protocol that provides secu-
rity against both insider agents and offline dictionary attacks, satisfying both of
the security properties. Finally, it is important to implement the proposal with a
real PUF candidate for obtaining performance/reliability measures and studying
its practical feasibility.
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Abstract. Cyber-physical systems (CPS) are a key component in
industrial control systems (ICS), which are widely used in the critical
infrastructure sectors. The increasing reliance on CPS, however, affords
exploitative opportunities for malicious actors targeting our critical
infrastructure. The real-time requirement of control systems, coupled
with the deployment of resource-constrained field devices, complicate
efforts to secure our critical infrastructure. A key technical limitation for
security solutions is that they should be lightweight. While lightweight
cryptography is useful to some extent, enforcement of asymmetric key
cryptographic primitives in control systems is known to be problem-
atic. In this paper, we suggest investigating the enforcement of light-
weight security solutions in ICS from a different perspective. Rather
than focusing on designing lightweight (individual) cryptographic prim-
itives, we propose taking a whole-of-system approach to (1) achieve
system/collective lightweightness, (2) outsource expensive computations
from resource-constrained field devices to neighboring devices and equip-
ments that have more computational capacity, and (3) selectively protect
critical data (partial/selective protection of Data of Interest).

1 Introduction

Cyber-physical systems (CPS) are engineered systems where the computer-based
subsystem controls and monitors the field devices (which form the physical
subsystem). Field devices provide measurements and operational data to the
computer-based control subsystem. CPS form the core of industrial control sys-
tems (ICS), which are the backbone of many aspects of the critical infrastructure
sectors, particularly in technologically advanced countries. Examples of criti-
cal infrastructure sectors include the 16 critical infrastructure sectors identified
by the United States Department of Homeland Security (http://www.dhs.gov/
critical-infrastructure-sectors).
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There are two broad categories of ICS, namely: distributed control systems
(DCS) and supervisory control and data acquisition (SCADA) systems [48]. DCS
are generally used in a small geographic area, such as a single power generation
plant. SCADA systems, on the other hand, are typically deployed in a much
larger, geographically dispersed area, such as a power grid. While both cate-
gories differ in scale and complexity, DCS and SCADA perform similar control
and data collection functionalities. Figure 1 shows the basic architecture of a
SCADA system – the control center commands and monitors the remote field
devices through communication networks, and the field devices send measure-
ments/operational data back to the control center.

Fig. 1. Basic architecture of SCADA

ICS (and CPS) will be increasingly open, coordinated, distributed, and inter-
connected. Laplante, Michael and Voas [33] remarked that “providing assurance
that critical infrastructures and the information infrastructure on which they
rely are trustworthy is challenging [due to their] interdependence when they are
integrated vertically (such as the electric power grid in North America) or hor-
izontally (as with emergency services relying on transportation systems) into
systems of systems”. Therefore, guaranteeing the security of ICS (and CPS) is
of paramount importance [30,40,43].

There have been recent incidents of ICS being reportedly targeted by both
cyber criminals and nation state actors. One of the most high-profile incidents
is Stuxnet - a malware targeting SCADA systems in Iran’s nuclear facilities.
Subsequent investigations indicated that this attack was the work of the United
States and Israel [44]. Unsurprisingly, critical infrastructure resilience and pro-
tection have been identified by countries, such as Australia and United States,
as national security priorities [14,15].

Cardenas et al. [8] outlined the various challenges in enforcing security mea-
sures in ICS. For example, ICS needs to be able to send commands to field
devices in real-time to carry out critical functions. It is also essential to guar-
antee the real-time acquisition of the field data by the control system for mon-
itoring purposes. Therefore, security solutions for ICS must be efficient, and
satisfy the real-time requirement. However, field devices (e.g. sensors, actuators,
valves, switches, and brakes) and equipments used in such a setting are typically
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resource constrained (e.g. computation, communication and storage). In addi-
tion, field devices are usually operated through remote terminal units (RTUs)
and programmable logic controllers (PLCs) at the field. Both RTU and PLC are
microprocessor-controlled electronic devices that act as the interface between
the field devices and the control system. Although RTUs and PLCs are typi-
cally equipped with industry-grade processors and installed with several MBs
of memory, these devices do not have the computational capacity necessary for
running full-fledged security solutions without affecting performance.

Security solutions for ICS must be lightweight, and a natural solution is to use
cryptographic primitives which provide fundamental security features, such as
confidentiality, authenticity, and non-repudiation. Considerable research efforts
have been expended in designing lightweight cryptographic primitives, both
symmetric (see [2,4,20–22,27,28,47]) and asymmetric (see [16,18,23,29,34–38]),
suitable to be deployed in systems, such as ICS. The design of lightweight cryp-
tographic primitives typically involves tradeoffs among security, cost, and perfor-
mance [41]. A good design would strike a fine balance among these three metrics,
and at the same time fulfill the needs of the underlying application.

1.1 Contributions

While advocating the ongoing study of (monolithic) lightweight cryptographic
primitives, we propose to investigate lightweight security enforcement in ICS
from a broader perspective. More specifically, rather than solely focusing on
individual cryptographic primitives, we posit that it is also important to achieve
“system/collective lightweightness” without compromising on either security or
efficiency. To achieve this aim, we make the following propositions.

1. Proposition 1 (System/Collective Lightweightness): We consider crypto-
graphic primitives collectively, seeking to understand lightweightness beyond
individual cryptographic primitives. The rationale is that cryptographic
primitives are not deployed in isolation and they are interconnected to attain
certain functionalities. Therefore, rather than seeking to achieve the light-
weightness of individual primitives, it would be more sensical to aim at
achieving system lightweightness.

2. Proposition 2 (Outsourcing of Expensive Computations): To achieve light-
weight security enforcement, we need to leverage the architecture of the
underlying control system(s). In particular, this idea relates to offloading
computationally expensive security enforcement workload from the resource-
constrained devices to more powerful devices or equipments in the vicinity. In
a SCADA system, for example, there is usually a slave workstation perform-
ing local control/monitoring and data collection in a geographic area. Such
a slave workstation is a potential powerful-device candidate to the resource-
constrained devices within its territorial area.

3. Proposition 3 (Selective Protection of Data of Interest): The data sent from
the side of field devices to the control subsystem may be large in quantity; if
protected (e.g. encrypted) in entirety, then it may fail to meet the real-time
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requirement of the underlying system. To alleviate this problem, we suggest
a partial protection strategy, e.g., instead of encrypting all data needed to
be communicated, the field devices can choose certain segments of the data
(Data of Interest) to encrypt while leaving the remaining data unprotected.
The objective of the partial protection strategy is to reduce the number of
security enforcement operations (e.g. encryption) to be committed by the
field devices, so as to attain better system performance.

1.2 Organization

The remaining of the paper is organized as follows. Section 2 reviews related
work. In Sects. 3, 4 and 5, we discuss in detail our approaches/strategies men-
tioned above for security enforcement in CPS, respectively. Section 6 concludes
the paper.

2 Related Work

Historically, ICS, such as SCADA, were stand-alone systems and not connected
to the Internet. Such systems are typically designed to achieve reliability and
performance, rather than security. Increasingly, ICS are connected to corporate
networks and the Internet. Consequently, they are being exposed to threats and
vulnerabilities that they are ill-equipped to protect against. This situation is
exacerbated by the fact that ICS is now tightly integrated into business and
economic processes [42].

In recent years, the research and practitioner communities and international
organizations (e.g. American Gas Association, National Institute of Standards
and Technology, Centre for the Protection of National Infrastructure, North
American Electric Reliability Corporation, International Electrotechnical Com-
mission, and IEEE) have published international standards, guidelines, and best
practices, in an attempt to secure ICS, particularly for the critical infrastruc-
ture sectors. The majority of existing international standards provide guidance
on general security protection for ICS, and we refer the interested reader to
[10,25,46] for an overview and comparative studies of existing standards and
initiatives.

Wright et al. [51] proposed a low latency Cyclic Redundancy Checks (CRC)
mechanism to ensure the integrity of SCADA communications, which was
included in the first draft of AGA standard [1]. This scheme was later found
to be vulnerable by Wang et al. [48]. Wang et al. [48] then presented a suite of
security mechanisms for SCADA, which include point-to-point secure channels,
authenticated broadcast channels, and authenticated emergency channels. These
mechanisms were built on symmetric key cryptographic primitives.

It is not a surprise that symmetric key cryptographic primitives have been
proposed to protect control systems, as symmetric key cryptographic primitives
achieve better performance relative to asymmetric key cryptographic primitives.
Further, lightweight symmetric key cryptographic primitives have also been the
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subject of research inquiry. For example, the international standard, ISO/IEC
29192-2 [28], recommends two lightweight block ciphers, while ISO/IEC 29192-5
is an on-going initiative in standardizing lightweight cryptographic hash func-
tions. A number of lightweight cryptographic primitives suitable for resource-
constrained wireless sensors have also been presented, such as the block ciphers
Katan & Kantan [9], Kline [20], Led [22], Piccolo [47], Prince [4], and Simon &
Speck [7]. A benchmarking exercise was undertaken in [19], which reported per-
formance (on certain resource-constrained device) of several lightweight block
ciphers. Additional specially-crafted lightweight hash functions include Quark
[2], Keccak [32] and LHash [53].

Symmetric key cryptographic primitives may have better performance, but
they alone are not adequate for security enforcement in ICS. In a typical sys-
tem, we would require both symmetric and asymmetric cryptographic primi-
tives to achieve the necessary security. For example, asymmetric cryptographic
primitives can address the shortcomings of symmetric key cryptographic primi-
tives, such as scalability in key establishment, and provision of non-repudiation.
In a number of studies, researchers have attempted to deploy asymmetric key
cryptography in ICS for sectors, such as smart grid (see [3,17,39,52]), and on
resource-constrained devices (see [5,11,54]). In addition, three entity authentica-
tion mechanisms using asymmetric key cryptographic primitives [35] were stan-
dardized in ISO/IEC 29192-4 (Information technology – Security techniques –
Lightweight cryptography – Part 4: Mechanisms using asymmetric techniques).

Despite these initiatives, designing lightweight cryptographic primitives suit-
able for real-world ICS deployment remains a research challenge, mainly due to
the operational challenges in such an environment. This is a gap that we aim to
address in this paper. We are partly inspired by the concept of computation out-
sourcing – resource-constrained devices utilizing computational resources from
other powerful machines, such as cloud servers, for computationally expensive
operations [12,24,50]. Therefore, in this paper, we explore the feasibility of such
an approach in achieving lightweight implementation of asymmetric key crypto-
graphic primitives in ICS by leveraging the underlying architecture.

3 System/Collective Lightweightness

Existing efforts focus on designing individual lightweight cryptographic primi-
tives. This is necessary, but alone cannot provide a comprehensive solution. In
practice, to realize a certain security functionality, several cryptographic primi-
tives are required. For example, an entity authentication protocol often involves
both asymmetric key primitive (e.g. digital signature and asymmetric encryp-
tion), and symmetric key primitives (e.g. hash function and pseudo-random func-
tion) [13].

Therefore, in our first approach to achieve lightweight security enforcement
in ICS, we consider cryptographic primitives collectively. In signcryption, for
example, the encryptor uses a public key encryption scheme followed by a digital
signature scheme. This allows the encryptor to trivially achieve non-repudiation,



102 Y. Yang et al.

confidentiality and integrity. Signcryption is intended as a more effective alterna-
tive to the combination of public key encryption and digital signature schemes.

Proposition 1. In addition to achieving lightweightness of individual crypto-
graphic primitives, system designer should attempt to achieve system/collective
lightweightness.

We use a lightweight implementation of crypto-GPS [29] as an example to
explain Proposition 1. The crypto-GPS offers a range of parameters for different
security-performance trade-offs. The example we are using, adapted from [41],
is about the implementation of an elliptic curve-based variant of crypto-GPS.
This particular implementation generates smaller keysizes.

Figure 2 describes the implementation, where h denotes the length of the
hash function, HASH.

Fig. 2. Lightweight implementation of crypto-GPS

The implementation is discussed in the context of a RFID Tag and a Reader.
To achieve a lightweight implementation, several optimization measures are
taken. The first is a storage-computation trade-off that uses t coupons; each con-
sists of a pair (ri;xi) for 1 ≤ i ≤ t. These coupons are stored on the Tag before
deployment. The on-tag computation is, therefore, reduced to y = ri + (s · c),
where c is a challenge of δ bits long provided by the Reader and s is a σ-bit
secret that is stored on the Tag.

The second optimization measure is the Low Hamming Weight challenge.
Specifically, to avoid the computationally expensive (σ × δ)-bit multiplication,
the multiplication is “transformed” into a series of simple additions. To do this,
we would need to transform the challenge c into a Low Hamming Weight (LHW)
challenge, such that at least σ − 1 zero bits are between two subsequent 1 bits.
When using binary representations of the multiplicands, it is easy to see that
multiplications can be performed using the basic Shift-And-Add multiplication
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algorithm1. Therefore, a multiplication operation can be reduced to simple shift-
ing and addition operations.

A compact encoding of the Low Hamming Weight challenge represents the
third optimization. The basic idea is that since the challenge is sparse (most of
the bits are zeros), it is possible to use less bits to encode the original challenge.
Indeed, the encoding scheme in [41] allows one to use only 40 bits to encode the
848-bit challenge c.

To achieve a security level of 80 bits, Poschmann [41] uses the following
parameters:

– σ = |s| = 160, and
– a challenge c of length δ = |c| = 848 with a Hamming weight of 5.

These parameters enable crypto-GPS to achieve a soundness level equivalent
to a probability of impersonation of 2−32.

We acknowledge the effectiveness of the above discussed optimization mea-
sures. However, in the context of our proposed Proposition 1, the above imple-
mentation fails to consider the hash function, HASH. In fact, the hash function
directly relates to the soundness of the protocol. We remark that with a sound-
ness level of 2−32, it is actually wasteful to use regular hash function with a
digest size of 128 bits, 160 bits or more. A hash function with a smaller digest
size could suffice to meet the soundness level of 2−32. In addition, hash functions
with small digest sizes are much easier to be designed efficiently. This is evident
from the observation that ISO/IEC 29192-5 standardizes lightweight hash func-
tions of 80 or 128 bits, but lightweight hash functions of 160 bits and above are
still not achieveable.

In this particular case, the choice of HASH does not affect the performance
of Tag. However, the choice of HASH has an impact on the Reader’s perfor-
mance, which matters in a real-world ICS deployment. For example, a server
may need to simultaneously authenticate a large number of resource-constrained
field devices. We also remark that to achieve an optimal level of system/collective
lightweightness, further fine-tuning and better integration of the cryptographic
primitives are required. This, however, may have the undesirable effect of invali-
dating existing security proof for the cryptographic primitives. Therefore, extra
caution must be taken when investigating the security of the collective crypto-
graphic primitives, to ensure that the system/collective lightweightness does not
come at the price of a weaken or invalid security guarantee.

4 Outsourcing of Expensive Computations

Our second approach in achieving lightweight security enforcement in ICS is
to allow resource-constrained devices (e.g. field devices, RTUs and PLCs) to

1 If a bit of the input challenge c is 0, then the multiplicand s is shifted to the left by
one position. Otherwise (i.e. the bit of the input challenge c is 1), the multiplicand
s is shifted to the left and the result is added (with carry) to the multiplicand s.
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outsource expensive computations to other devices or equipments. It is realistic
to find such powerful devices or equipments in an ICS.

Figure 3 illustrates a simple SCADA system, where the control center com-
mands multiple geographically dispersed subordinate control centers. In each
subordinate control center, there is often one or more SCADA slave workstations
performing local control/monitoring over the field devices within its territory.
The slave workstations can serve as powerful devices to which the field devices
can outsource their computations.

Fig. 3. A typical SCADA system

Proposition 2. To make security enforcement operations affordable, resource-
constrained field devices should attempt to offload expensive computation
operations to neighboring devices and equipments that have more computational
capacities (hereafter, referred to as computation servers).

It is important to note that for security reason, resource-constrained devices
should not simply place full trust on the computation servers. In other words,
appropriate trust assumptions need to be made in the context of the particu-
lar application. These computation servers may be subject to cyberattacks, or
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targeted by disgruntled employees - for example, in the case of the Australian
Maroochy water hacking incident2.

Outsourcing of Modular Exponentiations. We use asymmetric key primi-
tives as an example to explain Proposition 2. We know that modular exponenti-
ation is the fundamental operation in asymmetric key primitives, for example, in
RSA-, discrete-logarithm- and ECC-based cryptography. It is, thus, highly desir-
able to have ways to outsource modular exponentiation, which would address the
main challenge in using asymmetric key cryptographic primitives in ICS.

There have been some preliminary attempts to outsource modular expo-
nentiation in the context of cloud computing (i.e. the cloud acts as computa-
tion servers) - see [12,24,31,50]. In existing literature, a computation server
is assumed not to be fully trusted, and it may deviate from the protocol by
deducing additional information from the data given by the user or dishon-
estly providing the user with the wrong computation output. Thus, the main
security requirements are to ensure the privacy of the user’s secret input and to
ensure the checkability of the server’s output. The formalization of these security
requirements is discussed in [24].

In general, three types of modular exponentiations are to be considered,
namely: public-base & private-exponent, private-base & public-exponent, and
private-based & private-exponent. These modular exponentiation types are use-
ful in practice, depending on the specific cryptographic primitives being used.
For instance, Schnorr signature is public-base & private-exponent outsourcing,
while RSA blind signature involves private-base & private-exponent outsourcing.

Shortcomings of Existing Schemes. We now summarize the key shortcom-
ings of the existing modular exponentiation outsourcing literature. Due to these
shortcomings, existing schemes are unlikely to be suitable for real-world deploy-
ment, although it also implies that there are research opportunities in this area.

To better convey our ideas, we refer to the scheme proposed by Kiraz and
Uzunkol [31]. This scheme appears to be one of the most efficient solutions to
outsourcing of modular exponentiation currently. In particular, the main algo-
rithm of the scheme (cf. Algorithm 1) invokes a sub-algorithm SubAlg, which
allows the client to outsource the computation of modular exponentiation gz

to the computation server. Note that neither the base g nor the exponent z
are necessarily private in this sub-algorithm, and the main objective of the algo-
rithm is to achieve adjustable checkability, governed by c1 and c2 which are small
numbers. For the reader’s convenience, we list the SubAlg algorithm from [31]
in Fig. 4. Let G be a multiplicative group (it could be a modular group or an
elliptic curve group), and m be the order of G; Exp(a, u) denotes an algorithm

2 This infamous incident highlighted the reality of the inadequate security and vul-
nerability of SCADA systems and ICS. The accused person, a disgruntled employee,
allegedly issued radio commands to the sewage equipment, which resulted in
800,000 L of raw sewage to spill out into local parks and rivers, killing marine life.
The accused person was sentenced to two years’ imprisonment. Subsequent appeal
to the Australian High Court was unsuccessful - see R v Boden [2002] QCA 164.
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EnSubAlg:
Input: (z, g, c) - where z ∈ Z/mZ, g ∈ G, c ∈ N is an arbitrary small number
Output: gz ∈ G

Precomputation: computes and stores the following quantities, which
are re-usable:

– (s, gs) ∈ Z/mZ × G
– (t1, t

−1
1 , gt1), (t2, t

−1
2 , gt2) ∈ (Z/mZ)2 × G

– I = {1, · · · , c}, I−1 = {1−1, · · · , c−1} ⊆ Z/mZ

1. Picks a random number c1, c2 ∈ I, and the corresponding c−1
1 , c−1

2 ∈ I−1,
where c1 = c2.

2. Computes z1 ← (z − s) · c−1
1 and z2 ← (−z + 2s) · c−1

2 .
3. Runs

(a) Z1 ← Exp(z1.t
−1
1 , gt1).

(b) Z2 ← Exp(z2.t
−1
2 , gt2).

4. Verifies Zc1
1 · Zc2

2
?
= gs, and returns Z2c1

1 · Zc2
2 .

Fig. 4. The SubAlg algorithm in [31]

through which the Client queries a ∈ Z/mZ, u ∈ G to the computation server,
who returns ua to the Client. In addition, c is a small number, determining the
level of checkability.

1. The majority of existing literature use two or more computation servers, and
to the best of our knowledge, the only schemes using one single computa-
tion server were those proposed in [31,50]. This highlights the challenges in
designing schemes that use only one server, although one-server scheme is
more suitable and preferable for practical deployment.

2. Existing schemes are not shown to achieve full checkability. More specifically,
in these schemes, when given the computation output returned by the com-
putation server(s), the resource-constrained client device can only detect with
a certain probability whether the output is genuine or not, with respect to
its secret input. As far as we know, the best result on verifiability is the work
described in [31], which achieves adjustable verifiability of 1 − 1

c1c2
in Fig. 4.

That is, a malicious computation server has to correctly guess the values of c1
and c2 in order to cheat the Client. Thus the probability of the computation
server’s success in cheating is 1

c(c−1) , and in turn the checkability is 1 − 1
c1c2

.
For example, if c = 4, then the scheme has a checkability of 11/12.
Checkability is an important property to attain in practice; thus, full check-
ability is an open problem for future research.

3. We observe that all existing schemes consist of a pre-computation step, which
involves multiple modular exponentiations, e.g. gs, gt1 , gt2 in Fig. 4. In other
words, outsourcing of one (online) modular exponentiation comes at the cost
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of several precomputed modular exponentiations. These precomputed modu-
lar exponentiations are often one-use only. That is, for each outsourcing ses-
sion, a different set of precomputed modular exponentiations are needed. We
believe that this invocation of modular exponentiations, although assumed
to be precomputed, is not satisfactory in practice. It is better to avoid having
pre-computed modular exponentiations; or if it is unavoidable, ways should
be explored to reuse these precomputed modular exponentiations. Reusable
precomputed quantities would be less problematic in practice, as they can
be preinstalled on resource-constrained devices (e.g. as regular secrets). In
Fig. 4, gs is one-use, while gt1 , gt2 can be used multiple times. We leave the
avoidance of (one-use) pre-computed modular exponentiations as an open
problem.

5 Selective Protection of Data of Interest

In a cyber-physical system such as SCADA, the field devices need to send mea-
surement/operational data back to the control subsystem at fixed time intervals
or responding to the data acquisition requests from the control subsystem. The
data to be communicated uplink may be large in quantity. If a field device pro-
tects all the data (e.g. encrypts the data), then it may still fail the real-time
requirement of the underlying system, even in the case where the above two
strategies are in place.

To alleviate this problem, we propose another proposition which is a partial
protection strategy – instead of putting all data to be communicated under
protection, the field devices can choose certain critical segments of the data to
encrypt while leaving non-critical data unprotected, in an attempt to minimize
the overhead incurred due to data protection. We call the critical data to be
protected Data of Interest (DoI).

Proposition 3. Depending on applications, data sent by the field devices could be
classified as critical or non-critical with respective to the sensitivity of the data.
Whenever possible, it should choose to protect the critical data (referred to as
Data of Interest) only, which could enormously improve the system performance
by reducing the overhead due to security enforcement.

For this strategy to be implemented, it is important to differentiate critical
and non-critical data. Sometimes, it may even be required to deliberately re-
format the data to make the differentiation possible. Suppose that the field
devices in a cyber-physical system sent to the control subsystem their sensed
temperature data at a fixed time interval – a possible strategy is to partition the
time into epochs, where each epoch consists of a definite number of intervals; for
each epoch, only the actual temperature reading for the first interval of the epoch
needs to be sent in an encrypted form, while for each subsequent interval, the
difference between the actual reading and the first reading is sent unprotected.
The control subsystem can certainly recover those readings with the first reading
in its possession, while for eavesdroppers they cannot deduce the actual readings
of any time interval without the knowledge of the first reading. It is apparent
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that such a partial protection approach greatly reduces the number of protection
enforcement computations.

When the protection mechanism is encryption, the partial protection app-
roach is quite similar to Selective Encryption for multimedia content, such as
image and video [26,45,49]. For an image or a video frame, a large amount of
redundancy exists in the content. It was, thus, found that complete encryption is
unnecessary and a waste of resources, and it suffices to encrypt only the partial
yet significant data that can reconstruct the image or the video frame. Selec-
tive encryption generally has much faster performance than complete encryp-
tion because of the reduced encryption workload. In the same vein, selective
encryption of DoI in CPS promises the same advantage. However, data in a
cyber-physical system may not offer obvious redundancy, and it is crucial to
identify the DoI of a specific cyber-physical system. Furthermore, it is equally
important to ensure that the redundant data (unprotected) does not lead to the
compromise of the system’ security.

Finally, the downlink communications from the control subsystem to the
field devices in CPS mostly comprise control or data acquisition instructions.
These instructions are normally short or have special format. Format preserving
encryption [6], thus, seems a suitable tool for encrypting the download com-
munications. Studying format preserving encryption, which is lightweight and
affordable to field devices in CPS, will be another interesting research topic.

6 Conclusion

The diversity of cyberthreats and threat actors necessitates ongoing efforts
to secure our critical infrastructure and the underlying systems (e.g. CPS).
Although we may never be able to completely eradicate cyberattacks target-
ing our CPS, we should aim to maintain persistent pressure on criminals and
actors with malicious intent to safeguard our cyber and national interests [15].

In this paper, we proposed three general approaches to achieve lightweight
security enforcement in industrial control systems (ICS). In the first approach,
we explained how we should seek to achieve system/collective lightweightness
(i.e. efficiency) by considering cryptographic primitives collectively, rather than
individually. In the second approach, we sought to leverage the architecture of
ICS and offload computationally expensive operations from resource-constrained
field devices to neighboring powerful devices or equipments (e.g. SCADA slave
workstations). We also highlighted three key limitations in existing outsourc-
ing of modular exponentiation literature. In the third approach, we suggested
partially protecting data of interest while without compromising the security
guarantee, in order to reduce the security enforcement workload as much as
possible.

Future work will include materializing and applying these general approaches
to developing concrete techniques that are applicable to real world CPS. It
includes conducting extensive security testing and validation under controlled
and reproducible conditions, such as in a testbed environment simulating emer-
gency services alarm management system (in the emergency sector), traffic light
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and railway control systems (in the transport sector), water pump system (in the
water sector), electric grid system (in the energy sector), and centrifuge system
which is the target of the Stuxnet malware.
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Abstract. Secure applications for the Internet of Things (IoT) are con-
stantly increasing and many of them require some lightweight crypto-
graphic algorithms. Most lightweight cryptographic algorithms were not
designed to be efficient in software platforms. As a result the throughput
in software of these algorithms is low on recent IoT devices. In this paper
we present optimization techniques for improving the software implemen-
tation of the QUARK functions. QUARK is a family of lightweight hash
functions that is efficient in hardware but its design was not oriented for
software platforms. We obtained a reduction on the number of binary
operations required in each iteration of QUARK, and by computing in
parallel some internal functions we achieved a further speed up. In addi-
tion, we also present the results of our optimized implementations of
S-QUARK and D-QUARK on the 32-bit Intel Galileo platform.

Keywords: Hash functions · Lightweight cryptography · QUARK
family · Fast software implementation · Intel Galileo

1 Introduction

Hash functions are used in several security applications like generation and veri-
fication of digital signatures, key derivation, pseudo-random number generation,
and so forth. Hash functions map an arbitrary-size bit string to a fixed-length
bit string commonly known as a message digest or hash value.

The large growth of System on Chip (SoC) devices aimed at the Internet
of Things (IoT) has increased the need of lightweight cryptographic algorithm
implementations for resource-constrained devices. On those scenarios, the soft-
ware implementations should be fast, compact, low-power and secure against side
channel attacks. For the past few years, strong candidates of lightweight hash
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functions have appeared, such as PHOTON [11], QUARK [3], SPONGENT [6],
among others.

QUARK was proposed by Aumasson, Henzen, Meier and Naya-Plasencia
[3]. This family of lightweight hash function has high performance in hardware;
however its design was not oriented for a software implementation, as it was
noted by its authors.

Related Works. For platforms that do not have a dedicated hardware imple-
mentation of hash algorithms, the only option is to implement in software a
hash algorithm that takes advantage of the instruction set of the processor. In
recent years, cryptographic lightweight functions have been implemented in soft-
ware for an 8-bit microcontroller; in [4] it was shown a software implementation
of the lightweight hash functions QUARK, PHOTON and SPONGENT for 80
and 112 bit security levels and in [9] it was shown a software implementation of
lightweight block ciphers. For 32-bit architectures there are just few optimized
implementations of lightweight hash functions; in [12] is given a table-based
implementation of PHOTON is given for five different security levels.

Our Contribution. In this work, we faced the challenge to optimize the
QUARK algorithm for a software implementation; to achieve this, we rewrite
the internal functions in order to make them more suitable to a software imple-
mentation, reducing the number of binary operations by about 25 %. We present
some techniques that enable a software implementation with a high speedup and
a small code size on a 32-bit architecture. In particularly, we show the perfor-
mance for the recent platform Intel Galileo. The proposed techniques can also
be used on 8 or 16-bit architectures.

2 Description of QUARK

The family of lightweight hash functions QUARK was firstly presented in [3] and
further it was published an extended version in 2013 [1], where the parameter n
was added to address a flaw in the initial analysis.

2.1 Sponge Function

The sponge function is a generalization of the concept of cryptographic hash
function, since it takes an input bit stream of any length and produces an out-
put bit stream of any desired length [5]. The structure of the sponge function
can be seen in Fig. 1. The family QUARK uses the sponge construction and a
permutation function P , which will be defined in Sect. 2.2.

The sponge function, given in Fig. 1, operates on a state of b = r + c bits.
The value r is the bitrate and the value c is the capacity. The state of b bits is
defined as S = (S0, . . . , Sb−1), where S0 is the most significant bit and Sb−1 is
the least significant bit.
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Fig. 1. Sponge construction [5].

Given an initial state of b bits1 S and a message M , the message is padded
to ensure that the size of the message be a multiple of r. Thereafter, the message
is processed in two phases:

1. Absorption. The message is divided into k blocks of r bits (m1, . . . ,mk).
Then, in each iteration is performed an XOR operation between the block of
the message and the first r bits of the current state. After that, the state will
be processed by the permutation function P .

2. Squeezing. The first r bits from the state are used as output; if the digest
size is bigger than r the state is processed through a permutation function
again and the first r bits are concatenated with the previous r bits; this
process is repeated until all the n bits required are squeezed.

In the absorbing phase of the QUARK family, the message blocks are XORed
to the last r bits of the internal state, instead of the first. According to [1], this
provides a better diffusion than if the first r bits were used, because differences
introduced in the last bits remain in the register, while those in the first quickly
disappear due to the bit shifts. In the squeezing phase, digest bits are also
extracted from the last r bits of the state. According to [1], the motivation is
simple: these are the last bits computed by the permutation; extracting from the
first bits would make the computation of the last rounds useless.

2.2 The Permutation Function P

The design of the permutation function P was inspired by the Grain stream
cipher [13] and the KATAN block cipher [8]. Internally, the function P is com-
posed of three Feedback Shift Register (FSR), being one of them linear (L) and
the other two nonlinear (X and Y ); these FSRs use the update functions p, f
and g, defined in Appendix A.

1 The state of each instance of QUARK is initialized with the first b bits of the SHA-
256 digest of their name.
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The permutation function P is the critical function in terms of performance
of the algorithm; its input is a state of b bits and its output is the state updated.
The computation of the function P (S) can be divided into three basic steps,
described as follows:

1. Initialization: In this step, the register X is initialized with the “most sig-
nificant half” of the state S and the register Y is initialized with the “least
significant half”. The register L, which has a size of q = �log 4b� bits, is
initialized with all ones.

S =X||Y.
L =(1, 1, . . . , 1).

2. Update: In each iteration, the i -th bit of X, Y and L, denoted by Xi, Yi

and Li, is updated as follows:

Xi =f(X) ⊕ h(X,Y, L) ⊕ Yi.

Yi =g(Y ) ⊕ h(X,Y, L).
Li =p(L).

3. Output: After the update step, the output is the state S, which is composed
of the values of X and Y , where X = (S0 . . . S b

2−1) is the most significant half
of S and Y = (S b

2
. . . Sb−1) is the least significant half of S.

In Fig. 2 it is shown how the state is updated. The permutation function P
runs 4b iterations and in each iteration only two bits of the state are updated.

Algorithm 1. Permutation Function P

Input: State S of b bits.
Output: State updated S′.

1: X = (S0, . . . , S(b/2)−1)
2: Y = (Sb/2, . . . , Sb−1)
3: for j = 0 to 7 do
4: for i = 0 to (4b/8) − 1 do
5: h′ = h(X,Y, L)
6: Xi = f(X) ⊕ h′ ⊕ Yi

7: Yi = g(Y ) ⊕ h′

8: Li mod q = p(L)
9: end for

10: end for
11: (S′

0, . . . , S
′
(b/2)−1) = X

12: (S′
b/2, . . . , S

′
b−1) = Y

13: return S′.

The LFSR L is deterministic, so it can be precomputed. The steps used to
compute the permutation function P can be seen in Algorithm 1. The functions
p, f , g and h of the QUARK family are defined for every QUARK instance in
Appendix A.
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Fig. 2. Diagram of the permutation function P .

2.3 QUARK Family

There are three different flavors of the QUARK family: U-QUARK, D-QUARK
and S-QUARK. Each one has different values of bitrate (r), capacity (c), digest
(n), and functions f , g and h. The parameters of each one are shown in Table 1.

Table 1. Parameters of the QUARK family.

Instance Security
level

Bitrate
(r)

Capacity (c) Rounds (4b) Digest (n) Parallelism
degree

U-QUARK 64 8 128 544 136 8

D-QUARK 80 16 160 704 176 8

S-QUARK 112 32 224 1024 256 16

The functions f and g are the same for each instance of the QUARK family,
but with different indexes. On the other hand, the function h is different for each
instance of QUARK.

3 Algorithmic Optimizations

In each iteration of the permutation function P , 13 bits of the vectors X and
Y are used as input of the functions f and g. These functions are performed 4b
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times in each call of the permutation function P and the computation of them
requires 100 binary operations (58 AND’s and 42 XOR’s); thus, an optimization
in these functions will have a high impact on the whole computation.

We observed that the number of binary operations required to compute the
functions f and g can be simplified using some algebraic properties. Since the
functions f and g of all instances of QUARK process the same binary operations,
we will present the optimized version of these functions just for the S-QUARK
algorithm.

By optimizing these functions, the number of binary operations required for
evaluating them was reduced to 32 AND’s, 38 XOR’s and 4 NOT’s; this implies
a saving of 26 % on the number of binary operations. The optimized functions f
and g are shown in Functions 1 and 2, respectively.

Optimized Function f : Given a 128-bit vector X, the function f returns one
bit, computed as:

f(X) = X0 ⊕ X16 ⊕ X26 ⊕ X39 ⊕ X52 ⊕ X61 ⊕ X69 ⊕ X84 ⊕ X94 ⊕ X97

⊕ X103(X111¬(X28X39) ⊕ X97(X84 ⊕ X69(X61 ⊕ X84X111)))
⊕ X52(X16X84X111 ⊕ X39X61¬(X16X28 ⊕ X69X84X97))
⊕ X16X28 ⊕ X61X69 ⊕ X103. (1)

Optimized Function g: Given a 128-bit vector Y , the function g returns one
bit, computed as:

g(Y ) = Y0 ⊕ Y13 ⊕ Y30 ⊕ Y37 ⊕ Y56 ⊕ Y65 ⊕ Y69 ⊕ Y79Y92 ⊕ Y96

⊕ Y101(Y109¬(Y28Y37) ⊕ Y96(Y79 ⊕ Y69(Y65 ⊕ Y79Y109)))
⊕ Y56(Y13Y79Y109 ⊕ Y37Y65¬(Y13Y28 ⊕ Y69Y79Y96))
⊕ Y13Y28 ⊕ Y65Y69 ⊕ Y101. (2)

For each instance of the QUARK family, the function h can also be opti-
mized by simplifying the binary operations. We obtain a reduction of about
25 % on the number of instructions for the function h. The optimized functions
h for U-QUARK, D-QUARK and S-QUARK are shown in Functions 3, 4 and 5,
respectively.

Optimized U-QUARK h: Given two 68-bit vectors X and Y and a constant
vector L, the function h returns one bit, computed as:

h(X,Y, L) = X1 ⊕ Y2 ⊕ X4 ⊕ Y10 ⊕ X31 ⊕ Y43 ⊕ X56 ⊕ L0 ⊕ X25 ⊕ Y59

⊕ X25(L0 ⊕ Y3X46) ⊕ X55(Y3 ∨ X46 ⊕ Y59)
⊕ Y59(X46(Y3 ⊕ L0X25)). (3)

Optimized D-QUARK h: Given two 88-bit vectors X and Y and a constant
vector L, the function h returns one bit, computed as:

h(X,Y, L) = X1 ⊕ Y2 ⊕ X5 ⊕ Y12 ⊕ X40 ⊕ Y55 ⊕ X72 ⊕ L0 ⊕ Y24 ⊕ Y61

⊕ X48 ⊕ X35 ⊕ X35(L0 ⊕ Y4X57) ⊕ Y79 ⊕ X68(Y4 ∨ X57 ⊕ Y79)
⊕ Y79(X57(Y4 ⊕ L0X35)). (4)



Fast Software Implementation of QUARK on a 32-Bit Architecture 121

Optimized S-QUARK h: Given two 128-bit vectors X and Y and a constant
vector L, the function h returns one bit, computed as:

h(X,Y, L) = X1 ⊕ Y3 ⊕ X7 ⊕ Y18 ⊕ X58 ⊕ Y80 ⊕ X105 ⊕ L0 ⊕ Y34 ⊕ Y71

⊕ X90 ⊕ Y91 ⊕ X47 ⊕ X47(L0 ⊕ Y8X72) ⊕ Y111

⊕ X100(Y8 ∨ X72 ⊕ Y111) ⊕ Y111(X72(Y8 ⊕ L0X47)). (5)

The computation of the permutation function P with the new functions f ,
g and h uses approximately 25 % less binary operations. These optimizations
directly affect the software implementation, allowing a gain of efficiency and
code size of approximately 20 % and 10 %, respectively, as it will be shown in
Sect. 4.4.

4 Implementation

In this section we will describe our software implementation of Algorithm 1 on
the Intel Galileo Platform. We will present the main features of the Galileo
architecture, the optimization techniques for S-QUARK and D-QUARK and
the results. Our codes were written using the programming language C.

4.1 Galileo Architecture

Galileo is a microcontroller board based on the Intel Quark SoC X1000 proces-
sor, that is a 32-bit processor designed for lower power consumption. It is x86
compatible with Pentium opcode instructions but implements features like ACPI
(Advanced Configuration and Power Interface) and includes several interfaces that
provide connections with external peripherals. Intel Quark is the first Intel initia-
tive to merge into the “Internet of Things” (IoT) and the wearable market [14].

The Intel Quark SoC X1000 has eight 32-bit general purpose registers named
EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP [15]. This processor can not
perform out-of-order processing, but has two pipelines for executing instructions
and under certain conditions can execute two consecutive instructions simulta-
neously by an instruction pairing mechanism described in [10].

The main features of the processor Quark SoC X1000 are: a frequency of
400 MHz, single core, 32-bit Intel Pentium instructions set, 16 KB of L1 cache,
512 KB on-die of SRAM and 256 MB of DRAM.

4.2 S-QUARK

Each call to the permutation function P of S-QUARK corresponds to 1024 calls
to the functions f , g and h. Our first optimization to implement S-QUARK in
software was to process groups of consecutive bits (words) instead of scattered
bits.

The S-QUARK algorithm allows a parallelization degree of 16 [1], that is, it is
possible to compute the first 16 rounds without data dependency. This feature
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of the algorithm allows us to join blocks of 16 bits and work on them. Thus,
after organizing the input bits, we can process 16 rounds of functions f and g
in parallel.

Working with blocks of 16 bits enables an implementation in software using
16-bit registers, since operations on words are faster than operations on scattered
bits. Benefiting of this characteristic of the algorithm, we can join blocks of
16 bits to be executed by the function f , and analogously by the function g.
However, even with this optimization, we are not taking advantage of the 32
bits available on Galileo platform, since we are only processing 16 bits at a time.

Analyzing the functions f and g we realized that they are symmetric, in
the sense that they perform the same operations on a different data set. Thus, the
second optimization was to use the upper part of a 32-bit register to process
the function f while in parallel computing the function g in the lower part. This
allows us to join the functions f and g in a new function u, defined in Function 6,
which receives as input 13 words of 32 bits (t) and return one word of 32 bits.
We will use a vector of 13 words of 32 bits t = [t0, t1, . . . , t12] to represent the
input of the function u.

Function u: Given a vector of 13 words of 32 bits t, the function u computes a
32-bit value as follows:

u(t) = t0 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6 ⊕ t7 ⊕ t8 ⊕ t1 ⊕ t9 ⊕ t10(t11¬(t12t4)
⊕ t9(t8 ⊕ t7(t6 ⊕ t8t11))) ⊕ t5(t2t8t11 ⊕ t4t6¬(t2t12 ⊕ t7t8t9))
⊕ t2t12 ⊕ t6t7 ⊕ t10. (6)

In Fig. 3 we can see the initial state of each one of the 13 words needed to
perform the first round of the function u; in the following rounds the value of the
bits in each word t will be the bit index added by 16 modulo 128; for instance,
the t0 in the subsequent step will be composed of the values X16 to X31 in the
higher part and Y16 to Y31 in the lower part. On other hand, the word t11 will
have the values X127 to X14 in the higher part and Y125 to Y13 in the lower part.
This optimization allows us to take advantage of the 32 bits available on the
Galileo architecture.

Given two vectors X and Y of 128 bits, we use 8 words of 32 bits (x0 to x3

and y0 to y3) to store X and Y. The amount of work employed to organize the
words in Fig. 3 varies according to the position of the involved bits; for example,
to initialize t0 the processing is very simple, we only need to zero-out the lower
part of x0 and perform an XOR with the result of a 16-bit left shift of word y0.
However, for other words the initialization could be more complex; for instance,
the word t5 joins bits from x1, x2, y1 and y2. The steps for computing t5 are
shown below:

aux1 = (x1 � 16) ⊕ (x2 � 16);
aux2 = (y1 � 16) ⊕ (y2 � 16);

t5 = ((aux1 � 4) ∧ 0xFFFF0000) ⊕ ((aux2 � 8) ∧ 0x0000FFFF);
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t0 = X0, . . . . . . . . . . . . . . . , X15 Y0, . . . . . . . . . . . . . . . , Y15

t1 = X94, . . . . . . . . . . . . . . . , X109 Y30, . . . . . . . . . . . . . . . , Y45

t2 = X16, . . . . . . . . . . . . . . . , X31 Y13, . . . . . . . . . . . . . . . , Y28

t3 = X26, . . . . . . . . . . . . . . . , X41 Y92, . . . . . . . . . . . . . . . , Y107

t4 = X39, . . . . . . . . . . . . . . . , X54 Y37, . . . . . . . . . . . . . . . , Y52

t5 = X52, . . . . . . . . . . . . . . . , X67 Y56, . . . . . . . . . . . . . . . , Y71

t6 = X61, . . . . . . . . . . . . . . . , X76 Y65, . . . . . . . . . . . . . . . , Y80

t7 = X69, . . . . . . . . . . . . . . . , X84 Y69, . . . . . . . . . . . . . . . , Y84

t8 = X84, . . . . . . . . . . . . . . . , X99 Y79, . . . . . . . . . . . . . . . , Y94

t9 = X97, . . . . . . . . . . . . . . . , X112 Y96, . . . . . . . . . . . . . . . , Y111

t10 = X103, . . . . . . . . . . . . . . . , X118 Y101, . . . . . . . . . . . . . . . , Y116

t11 = X111, . . . . . . . . . . . . . . . , X126 Y109, . . . . . . . . . . . . . . . , Y124

t12 = X28, . . . . . . . . . . . . . . . , X43 Y28, . . . . . . . . . . . . . . . , Y43

Fig. 3. Initialization of the words t0, . . . , t12 used as input of the first round of function
u on S-QUARK algorithm.

Once the functions f and g were optimized, the next step is to optimize the
implementation of the function h. The S-QUARK allows us to join blocks of 16
bits, as is shown in Table 1; however, since we have a 32-bit register machine,
the implementation would be wasting half of the available bits.

Unlike f , the function h is not symmetric and therefore we can not use the
previous optimization. Analyzing the inputs, we realized that 14 from the 17
inputs allow a parallelism of degree 32. This allows us to split the function h
into two functions h1 and h2, where h(X,Y, L) = h1(X,Y, L) ⊕ h2(X,Y, L).
The function h1 processes 32 bits, where the first 16 bits will be used on the
i -th iteration and the last 16 bits will be used on the (i +1)-th iteration. The
function h2 processes 16 bits and it is computed at each iteration. The functions
h1 and h2 are defined in Functions 7 and 8, respectively.

Function h1: Given two vectors X and Y of 128 bits and one vector of constants
L, the output of the function h1 is:

h1(X,Y, L) = X1 ⊕ Y3 ⊕ X7 ⊕ Y18 ⊕ X58 ⊕ Y80 ⊕ L0 ⊕ Y34 ⊕ Y71

⊕ X90 ⊕ Y91 ⊕ X47 ⊕ X47(L0 ⊕ Y8X72). (7)

Function h2: Given two vectors X and Y of 128 bits and one vector of constants
L, the output of the function h2 is:

h2(X,Y, L) = X105 ⊕ Y111 ⊕ X100(Y8 ∨ X72 ⊕ Y111)
⊕ Y111(X72(Y8 ⊕ L0X47)). (8)
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Algorithm 2. S-QUARK Optimized
Input: State S of 256 bits.
Output: State S′.

1: x0 = (S0, . . . , S31), x1 = (S32, . . . , S63);
2: x2 = (S64, . . . , S95), x3 = (S96, . . . , S127);
3: y0 = (S128, . . . , S159), y1 = (S160, . . . , S191);
4: y2 = (S192, . . . , S223), y3 = (S224, . . . , S255);
5: for j = 0 to 7 do
6: for i = 0 to 3 do
7: Compute the input values of u, h1 and h2

8: aux1 = (xi ⊕ yi) ∧ 0xFFFF0000

9: aux1 = aux1 ⊕ u(t)
10: aux2 = h1(x, y, l)
11: aux3 = h2(x, y, l)
12: aux3 = aux2 ⊕ aux3

13: aux3 = (aux3 ∧ 0xFFFF0000) ⊕ (aux3 � 16)
14: aux1 = aux1 ⊕ aux3

15: Compute the input values of u and h2

16: aux4 = (xi ⊕ yi) � 16
17: aux4 = aux4 ⊕ u(t)
18: aux3 = h2(x, y, l)
19: aux3 = aux2 ⊕ aux3

20: aux3 = (aux3 ∧ 0x0000FFFF) ⊕ (aux3 � 16)
21: aux2 = aux4 ⊕ aux3

22: xi = xi ⊕ ((aux1 ∧ 0xFFFF0000) ⊕ (aux2 � 16))
23: yi = yi ⊕ ((aux1 � 16) ⊕ (aux2 ∧ 0x0000FFFF))
24: end for
25: end for
26: (S′

0, . . . , S
′
31) = x0, (S′

32, . . . , S
′
63) = x1, (S′

64, . . . , S
′
95) = x2

27: (S′
96, . . . , S

′
127) = x3, (S′

128, . . . , S
′
159) = y0, (S′

160, . . . , S
′
191) = y1

28: (S′
192, . . . , S

′
223) = y2, (S′

224, . . . , S
′
255) = y3

29: return S′.

For the computation of h1 and h2 we need to precompute the 17 inputs;
however we do not need keep all the 17 inputs saved, since most of them will
be used only once, so this allows us to compute the value on the fly. Thus, the
number of words required can be decreased from 17 to 5. The optimized version
of algorithm S-QUARK is shown in Algorithm2.

4.3 D-QUARK

The same techniques applied to S-QUARK implementation can be also applied
to D-QUARK. However, the level of their parallelism is different, the S-QUARK
algorithm allows to process 16 bits concurrently, while D-QUARK can handle
only 8 bits in parallel.

Using the same techniques of Sect. 4.2, we organize the words t0 to t12 as
follows: the bits to compute the function f are on the first 8 bits of the lower
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part of the register and on the next 8 bits are the necessary bits to perform the
function g. Thereafter, we can perform the algorithm using 16-bit register and
with a level of parallelism of 8.

The version that processes 8 bits at the same time and uses 16-bit registers
has a good efficiency when compared to the reference version2. However, this
version does not use all the processing power available in the architecture, since
we are using only 16 of the 32 bits available.

Analyzing the D-QUARK functions we realized that is possible to use the
same techniques used in the implementation of the function h on the S-QUARK
for the functions f and g; this is possible because from the 13 inputs of both,
12 inputs have a level of parallelism of 16. Thus, we can split f and g into two
smaller functions, f(X) = f1(X) ⊕ f2(X) and g(Y ) = g1(Y ) ⊕ g2(Y ).

By taking advantage of the symmetry of the functions f1 and g1, they can
be joined into a function u1, which receives 13 words of 32 bits as input and
outputs 32 bits, where the first 16 bits are used on the i -th iteration and the
remaining bits are used on the (i +1)-th iteration. The remaining processing is
computed by the function u2. The functions u1 and u2 are defined as follows:

Function u1: Given a vector of 13 words of 32 bits t, the function u1 computes
a 32-bit output as follows:

u1(t) = t0 ⊕ t2 ⊕ t4 ⊕ t5 ⊕ t6 ⊕ t7 ⊕ t8 ⊕ t9 ⊕ t10 ⊕ t6(t7 ⊕ (t10t7t9)
⊕ (t5t4)¬(t12t2 ⊕ t9t8t7)) ⊕ (t12t2) ⊕ (t10t9t8). (9)

Function u2: Given a vector of 13 words of 32 bits t, the function u2 computes
a 32-bit output as follows:

u2(t) = t11 ∧ t10(¬(t4t12) ⊕ (t7t9t8)) ⊕ (t8t5t2). (10)

Using this optimization we can take advantage, in most of the time, of the
power processing of the 32-bit machine. The initial state of each one of the 13
words needed to perform the first round of the functions u1 and u2 is shown in
Fig. 4. From these words, only t11 needs to be computed at each iteration to be
used in the function u2 in the next round; in Fig. 5 is shown the 32 bits of t11
on the (i +1)-th iteration.

The function h of D-QUARK uses the same optimization used in the function
h of S-QUARK, processing 16 bits in each iteration.

4.4 Performance Results

In this section we describe the performance results of our implementations3. The
target machine used was the 32-bit Intel Galileo using the compiler i586-poky-
linux-uclibc-gcc (GCC) 4.7.2.

2 The reference code is available in [2] and has not any optimization.
3 Our implementations are available in https://github.com/rbCabral/QUARK 32bits.

https://github.com/rbCabral/QUARK_32bits
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t0 = X0, . . . . . . . . . . . . . . . , X15 Y0, . . . . . . . . . . . . . . . , Y15

t1 = X64, . . . . . . . . . . . . . . . , X79 Y20, . . . . . . . . . . . . . . . , Y35

t2 = X11, . . . . . . . . . . . . . . . , X26 Y9, . . . . . . . . . . . . . . . , Y24

t3 = X18 . . . . . . . . . . . . . . . , X33 Y63, . . . . . . . . . . . . . . . , Y78

t4 = X27, . . . . . . . . . . . . . . . , X42 Y25, . . . . . . . . . . . . . . . , Y40

t5 = X36, . . . . . . . . . . . . . . . , X51 Y38, . . . . . . . . . . . . . . . , Y53

t6 = X42, . . . . . . . . . . . . . . . , X57 Y44, . . . . . . . . . . . . . . . , Y59

t7 = X47, . . . . . . . . . . . . . . . , X62 Y47, . . . . . . . . . . . . . . . , Y62

t8 = X58, . . . . . . . . . . . . . . . , X73 Y54, . . . . . . . . . . . . . . . , Y69

t9 = X67, . . . . . . . . . . . . . . . , X82 Y67, . . . . . . . . . . . . . . . , Y82

t10 = X71, . . . . . . . . . . . . . . . , X86 Y69, . . . . . . . . . . . . . . . , Y84

t11 = X79, . . . . . . , X86, 0, . . . , 0 Y78, . . . . . . , Y85, 0, . . . , 0

t12 = X19, . . . . . . . . . . . . . . . , X34 Y19, . . . . . . . . . . . . . . . , Y34

Fig. 4. Initialization of the words t0, . . . , t12 used as input of the first round of function
u1 on D-QUARK algorithm.

t11 = 0, . . . , 0, X87, . . . . . . , X6 0, . . . , 0, Y86, . . . . . . , Y5

Fig. 5. Word t11 on the (i +1)-th iteration.

Table 2. Performance of C-Code reference using the optimized functions.

Function Optimization flag O2 Optimization flag Os

Size code Cycles per byte Size code Cycles per byte

S-QUARKref 2000 78370 1602 88778

*S-QUARKref 1808 61650 1469 70816

In Table 2 is shown the performance results of the C-code reference when only
the algorithmic optimization of Sect. 3 were applied. In the first row, we have
the C-code (S-QUARKref ) provided by the authors in [2] and in the next row
we have the same code using the optimized functions presented in Sect. 3, called
(*S-QUARKref ). The use of this optimization allows us to reduce in about 10 %
the code size and 20 % the number of cycles per byte.

In Table 3 are shown the code size and the cycles per byte of the light-
weight hash functions for 112-bit security level with the optimization flags -
O2 or -O3 (the fastest) and -Os. The **S-QUARKopt is the implementation of
Algorithm 2, *S-QUARKopt is also an implementation of Algorithm 2, but with
the loop unrolled, PHOTON-224 is a table-based implementation from the
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authors available in [12] and SPONGENT-224 is a reference implementation
from the authors available in [7]. The fastest implementation is the PHOTON-
224 compiled with -O3, but for achieving that performance it needs a storage
of 13450 bytes. On the other hand, our *S-QUARKopt implementation compiled
with -O3 was 2.3× slower than PHOTON-224, but with a code size 5.3× smaller.
Using the compiler flag -Os (for size code optimization), our *S-QUARKopt was
the fastest and most compact implementation.

Table 3. Performance of hash function at 112-bit security level.

Function Optimization flag O2–O3 Optimization flag Os

Size code Cycles per byte Size code Cycles per byte

*S-QUARKopt 2518 5671 2107 5832

**S-QUARKopt 7078 5138 3298 8015

PHOTON-224 13450 2366 2612 7678

SPONGENT-224 5030 1040014 3016 2311836

In Table 4 are shown the code size and the cycles per byte of the lightweight
hash functions for 80-bit security level with the optimization flags -O2 or -O3
(the fastest) and -Os. D-QUARKref is the C code reference from the authors
available in [2], D-QUARKopt is our implementation, PHOTON-160 is a table-
based implementation from the authors available in [12] and SPONGENT-160
is a reference implementation from the authors available in [7]. The D-QUARK
implementation was slower than S-QUARK implementation even with less secu-
rity level, this happened because D-QUARK needs to perform the permutation
function P more times than the S-QUARK, since the S-QUARK splits the mes-
sage in blocks of 32 bits and the D-QUARK in blocks of 16 bits.

Table 4. Performance of hash function at 80-bit security level.

Function Optimization flag O2–O3 Optimization flag Os

Size code Cycles per byte Size code Cycles per byte

D-QUARKref 1990 102997 1592 117462

D-QUARKopt 3326 9628 3114 10319

PHOTON-160 13795 1651 2698 12625

SPONGENT-160 4901 562337 3016 1255905

5 Conclusions

This work contributes with a fast software implementation of the QUARK family.
We introduced some techniques for improving the performance of two variants of
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the QUARK family. In particular, for the 32-bit Intel Galileo Platform, our soft-
ware implementation of S-QUARK (for 112-bit security level) and D-QUARK
(for 80-bit security level) obtained a significant speedup of 15× and 10×, respec-
tively, when compared to the reference implementation. Our techniques can also
be applied to implement QUARK on 8-bit or 16-bit platforms.

Acknowledgments. This research was partially supported by Intel and CNPq. The
authors would like to thank the anonymous reviewers for their helpful suggestions
and comments. Additionally, they would like thank Armando Faz Hernández for his
comments that greatly improved the manuscript.

A QUARK Family

Here is presented the definition of the QUARK family and the functions p, f , g
and h for each member of the family. The function p, used by L, is the same for
all three instances: given a vector L, p(L) = L0 ⊕ L3.

U-QUARK. It is the lightest flavor of QUARK. It was designed to provide a
136-bit hash value and has a security level of 64 bits. The functions f , g and
h used in this instance are defined as follows.

Function f : Given a 68-bit vector X, the function f returns 1 bit computed as:

f(X) =X0 ⊕ X55 ⊕ X14 ⊕ X21 ⊕ X28 ⊕ X33 ⊕ X37 ⊕ X45 ⊕ X50 ⊕ X52

⊕ X9X28X45X59 ⊕ X9 ⊕ X33X37X52X55 ⊕ X21X28X33X37X45X52

⊕ X55X59 ⊕ X9X15X21X28X33 ⊕ X45X52X55 ⊕ X21X28X33

⊕ X37X45X52X55X59 ⊕ X15X21X55X59 ⊕ X9X15 ⊕ X33X37.

Function g: Given a 68-bit vector Y , the function g returns 1 bit computed as:

g(Y ) = Y0 ⊕ Y7 ⊕ Y15 ⊕ Y20 ⊕ Y30 ⊕ Y35 ⊕ Y37 ⊕ Y42 ⊕ Y49 ⊕ Y51

⊕ Y7Y30Y42Y58 ⊕ Y35Y37Y51Y54 ⊕ Y7Y16 ⊕ Y20Y30Y35Y37Y42Y51

⊕ Y54Y58 ⊕ Y35Y37 ⊕ Y7Y16Y20Y30Y35 ⊕ Y42Y51Y54 ⊕ Y20Y30Y35

⊕ Y54 ⊕ Y37Y42Y51Y54Y58 ⊕ Y16Y20Y54Y58.

Function h: Given two 68-bit vectors X and Y and a constant vector L, the
function h returns 1 bit computed as:

h(X,Y, L) = L0 ⊕ X1 ⊕ Y2 ⊕ X4 ⊕ Y10 ⊕ X25 ⊕ X31 ⊕ Y43 ⊕ X56 ⊕ Y59

⊕ Y3X55 ⊕ X46X55 ⊕ X55Y59 ⊕ Y3X25X46 ⊕ Y3X46X55

⊕ Y3X46Y59 ⊕ L0X25X46Y59 ⊕ L0X25.

D-QUARK. D-QUARK is the intermediary version of the QUARK family.
It provides a hash value of 160 bits and has 80 bits of security level. The
functions f, g, and h, are defined below:
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Function f : Uses the same function f of U-QUARK, but with taps, 0, 11, 18,
19, 27, 36, 42, 47, 58, 64, 67, 71, 79 instead of 0, 9, 14, 15, 21, 28, 33, 37, 45,
50, 52, 55, 59, respectively.

Function g: Uses the same function g of U-QUARK, but with taps, 0, 9, 19,
20, 25, 38, 44, 47, 54, 63, 67, 69, 78 instead of 0, 7, 15, 16, 20, 30, 35, 37, 42,
49, 51, 54, 58, respectively.

Function h: Given two 88-bit vectors X and Y and a constant vector L, the
function h returns 1 bit computed as:

h(X,Y, L) = L0 ⊕ X1 ⊕ Y2 ⊕ X5 ⊕ Y12 ⊕ Y24 ⊕ X35 ⊕ X40 ⊕ X48 ⊕ Y55

⊕ Y61 ⊕ Y79 ⊕ Y4X68 ⊕ X57X68 ⊕ X68Y79 ⊕ Y4X35X57

⊕ X72 ⊕ Y4X57X68 ⊕ Y4X57Y79 ⊕ L0X35X57Y79 ⊕ L0X35.

S-QUARK. The S-QUARK is the version that provides the highest level of
security in the family QUARK. It provides a hash value of 256-bits and
has 112 bits of security level. Like the other versions of QUARK, it uses
essentially three functions, f , g and h, which are defined below:

Function f : Uses the same function f of U-QUARK, but with taps, 0, 16, 26,
28, 39, 52, 61, 69, 84, 94, 97, 103, 111 instead of 0, 9, 14, 15, 21, 28, 33, 37,
45, 50, 52, 55, 59, respectively.

Function g: Uses the same function g of U-QUARK, but with taps, 0, 13, 28,
30, 37, 56, 65, 69, 79, 92, 96, 101, 109 instead of 0, 7, 15, 16, 20, 30, 35, 37,
42, 49, 51, 54, 58, respectively.

Function h: Given two 128-bit vectors X and Y and a constant vector L, the
function h returns 1 bit computed as:

h(X,Y, L) = L0 ⊕ X1 ⊕ Y3 ⊕ X7 ⊕ Y18 ⊕ Y34 ⊕ X47 ⊕ X58 ⊕ Y71 ⊕ Y80

⊕ X90 ⊕ Y91 ⊕ X105 ⊕ Y111 ⊕ Y8X100 ⊕ X72X100 ⊕ X100Y111

⊕ Y8X47X72 ⊕ Y8X72X100 ⊕ Y8X72Y111 ⊕ L0X47X72Y111

⊕ L0X47.
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Abstract. Security mechanisms to protect our systems and data from
malicious adversaries have become essential. Strong encryption algo-
rithms are an important building block of these solutions. However, each
application has its own requirements and it is not always possible to find
a cipher that meets them all. This work compares unrolled combina-
tional hardware implementations of six lightweight block ciphers, along
with an AES implementation as a baseline. Up until now, the majority
of such ciphers were designed for area-constrained environments where
speed is often not crucial, but recently the need for single-cycle, low-
latency block ciphers with limited area requirements has arisen to build
security architectures for embedded systems. Our comparison shows that
some designers are already on this track, but a lot of work still remains
to be done.

Keywords: Block ciphers · Lightweight cryptography · Single-cycle ·
Synthesis

1 Introduction

Software applications have always been vulnerable to attacks from malicious
actors. One research topic in the trusted computing community is Protected
Module Architecture (PMAs), where applications can be automatically pro-
tected against them. For example, Intel’s Software Guard Extensions (SGX)
provide architectural support to isolate applications [3]. Software runs in so-
called enclaves, which have special hardware features to protect code and data
from unauthorised access. When sensitive data leaves or enters the enclave, it
is automatically encrypted and decrypted, and this requires a fast algorithm.
Finding suitable low-latency cryptographic algorithms is one of the biggest chal-
lenges when bringing these isolation techniques to area-constrained embedded
systems.

As smaller silicon technology nodes make it possible to place more and more
transistors on a single die, modern Systems-on-Chip (SoCs) have become many-
core devices. High-bandwidth, packet-switched Networks-on-Chip (NoCs) have
replaced slower buses [15]. Protection of these networks is an open research ques-
tion. The underlying ideas of security mechanisms for traditional networks can
be used, but will require fast and efficient cryptographic primitives.
c© Springer International Publishing Switzerland 2016
T. Güneysu et al. (Eds.): LightSec 2015, LNCS 9542, pp. 131–147, 2016.
DOI: 10.1007/978-3-319-29078-2 8



132 P. Maene and I. Verbauwhede

In both these applications, data elements should be processed as fast as
possible and it is not necessary that the cipher has high throughput. Additionally,
design constraints often limit the clock frequency of these circuits. Therefore,
only a limited number of cycles will be available to finish the encryption within
a given delay and in some cases a single-cycle implementation will be the only
alternative. One approach to achieve this, is by unrolling existing iterative block
ciphers. However, this results in long combinational paths, which have a high
associated delay. As will be shown in our work, they can only operate at such low
clock frequencies, the operating speed of the architectures they are integrated
with will be limited. Of course, introducing pipeline registers would increase the
throughput and maximum clock frequency, but at the cost of additional latency.
Another advantage of fully combinational implementations is that they can be
easily integrated with existing designs, because of the lack of control logic.

Our work gives synthesis results for unrolled implementations of six families
of lightweight ciphers, where the same approach is used for all of them. Whenever
possible, algorithms are grouped by block and key size to make a fair compari-
son with regard to the security they offer. The different algorithms are AES [14],
KATAN [16], PRESENT [8], PRINCE [11], RECTANGLE [33], SIMON [5] and
SPECK [5]. These ciphers were chosen because they cover a wide range of algo-
rithm types and possible design choices. A similar analysis was done by Knežević
et al. in 2012 [23]. This paper includes some of the same ciphers, but also adds
results for several recent designs that were introduced since. A short summary of
the best known cryptanalysis results is given for each algorithm. Section 2 first
introduces some general concepts and terminology. Synthesis results for FPGA
and ASIC are given in Sect. 3. Finally, Sect. 4 compares our results, followed by
a conclusion in Sect. 5.

2 Preliminaries

2.1 Block Cipher Structure

A block cipher (Definition 1 [24]) is a basic cryptographic building block offering
confidentiality of data. It is used in a wide variety of applications, from protecting
communication to generating pseudo-random numbers.

Definition 1. An n-bit block cipher is a function E : Vn × K → Vn, such that
for each key K ∈ K, E(P,K) is an invertible mapping (the encryption function
for K) from Vn to Vn, written EK(P ). The inverse mapping is the decryption
function, denoted DK(C). C = EK(P ) denotes that ciphertext C results from
encrypting plaintext P under K.

Algorithm designers typically use established design techniques when creat-
ing new algorithms. Most current block ciphers are iterated ciphers (Definition 2
[24]). Feistel ciphers (Definition 3 [24]) are a special instance with a particular
structure.
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Definition 2. An iterated block cipher is a block cipher involving the sequential
repetition of an internal function called the round function. Parameters include
the number of rounds r, the block bit-size n, and the bit-size k of the input key
K from which r subkeys Ki (round keys) are derived. For invertibility (allowing
unique decryption), for each value Ki the round function is a bijection on the
round input.

Definition 3. A Feistel cipher is an iterated cipher mapping a 2t-bit plaintext
(L0, R0), for t-bit blocks L0 and R0, to a ciphertext (Rr, Lr), through an r-round
process where r ≥ 1. For 1 ≤ i ≤ r, round i maps (Li−1, Ri−1)

Ki−−→ (Li, Ri) as
follows: Li = Ri−1, Ri = Li−1 ⊕ f (Ri−1,Ki), where each subkey Ki is derived
from the cipher key K.

Hardware implementations of iterated block ciphers usually have logic for
a single round and a controller that manages the round function iterations.
Consequently, several clock cycles will be required before the result is ready.
It is important to note that the number of clock cycles needed to encrypt a
block is a property of the implementation. One way to reduce the number of
cycles is by unrolling the iterations, and in doing so, we obtain single-cycle
implementations. When all rounds are fully unrolled, this process results in the
same basic structure for all of them (see Fig. 1).

It can be seen from Definition 2 that each round has two components: the key
expansion and round function. The former generates the subkeys Ki based on
the original key, a previous one or a combination of both. The latter transforms
the input data using the key. In general, the function is identical for each round,
but some algorithms introduce small variations (e.g. a different constant could
be added in each round). The total number of rounds depends on the algorithm
and can vary widely. An operation is sometimes applied to the plaintext before
using it as an input to the first round. The last round’s output can be similarly
modified before using it as the ciphertext.

key

pt

Key
Expansion

Round
Function

. . .

Key
Expansion

Round
Function

ct

Round 1 Round n

Fig. 1. Structure of unrolled block ciphers (pt: plaintext, ct: ciphertext).

2.2 Logic Depth

The logic depth [27] of a path is defined as the number of combinational gates
between input and output. Since each level of the path has a specific delay
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associated with it, the logic depth will be linked to the latency of the circuit.
However, some operations will have a longer intrinsic delay than others, so that
a deep circuit of low-latency gates will have a lower delay than a shallow circuit
with high-latency gates. The logic depth is a property of the implementation,
which is influenced by the design.

Section 3 will give the logic depth of the critical path on FPGA for each
algorithm. The critical path of a circuit is the path for which it takes the longest
for the output to stabilize [28], i.e., the one with the longest delay.

2.3 Fan-Out

The fan-out denotes the number of load gates N that are connected to the output
of the driving gate [28]. When the fan-out of a gate is large, it will deteriorate
performance because the load on that gate will be very high. This impacts its
dynamic performance and will slow down the circuit. The fan-out of a gate is
influenced by the design of the algorithm and how it is implemented. Therefore,
a designer should be careful not to reuse a single intermediate result in a next
step too often.

3 Synthesis Results

We will now discuss the design criteria and specifications of each block cipher,
as well as its most important results. The best cryptanalysis results known to
us are given as well. An overview of the properties of all discussed algorithms
is given in Table 1. Tables 2 and 3 give an overview of all FPGA and ASIC
results respectively. A diagram of the critical path for each cipher is also given.
Note that these figures do not show the algorithm’s full data flow, but rather a
simplified version for clarity.

The regular structure (Sect. 2.1) of block ciphers makes it possible to use
a generic approach for unrolling each algorithm. Only the encryption mode of
each cipher was implemented. The area cost of adding decryption will depend
on the design: this requires less overhead compared to encryption for some than
others. Both FPGA and ASIC results are listed, because although most real-
world applications will eventually be produced as ASIC, FPGAs are sometimes
introduced in products (e.g., because they can be upgraded in the field). They
are also heavily used in the development of new chips.

The FPGA results were obtained after Place and Route (PAR) on a Xilinx
Virtex 6 in Xilinx ISE. More specifically, the configuration of the Xilinx ML605
development board was selected (xc6vlx240t-2ff1156). All syntheses for ASIC
were done with UMC’s 0.13 µm technology in Synopsys Design Vision.

3.1 AES

In 1998, Daemen and Rijmen submitted their Rijndael algorithm [14] to
the Advanced Encryption Standard (AES) competition, organised by NIST.
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Table 1. Properties of all implemented algorithms.

Cipher Key size Block size Rounds Type Characteristics

AES 128 128 10 SP Network 8-bit S-box

KATAN 80 32 254 Non-Linear Boolean
Functions (AND and
XOR)

64

PRESENT 80 64 31 SP Network 4-bit S-box

128

PRINCE 128 64 12 Unrolled 4-bit S-box, Matrix
Layer

RECTANGLE 80 64 25 SP Network 4-bit S-box

SIMON 64 32 32 Feistel XOR and Left Cyclic
Shift

128 64 44

SPECK 64 32 22 XOR, Addition and
Cyclic Shift

128 64 27

Three years later, the design won and it is now known as AES. The implemen-
tation criteria for the AES contest were high throughput, low memory require-
ments, and hardware and software suitability [6]. It is used for confidentiality in
a wide range of applications: among others to protect Wi-Fi connections, secure
web traffic, or encrypt hard drives. The Rijndael family can accommodate any
block and key size from 128 to 256 bits, with steps of 32 bits. NIST fixed the
block size at 128 bits, but the key size can be chosen depending on the required
level of security (128, 192, or 256 bits) [26].

The algorithm has the following three basic operations: SubBytes, ShiftRows
and MixColumns. SubBytes substitutes a state byte with the result of an S-
box look-up. ShiftRows cyclically shifts the state’s rows. MixColumns applies
an invertible linear transformation to each column. AES was not specifically
designed as a low-area or low-latency hardware cipher, but it is included here as
a reference because its algorithm is well-understood and generally known.

The best known shortcut attack that works on the full versions of AES is
a biclique attack from 2011 [9]. It breaks all 10 rounds of AES128 with a time
complexity of 2126.18 and data complexity of 288. These numbers are still high
enough to have no practical value.

Our implementation for 128-bit keys uses 8,984 LUTs and has a 24.7 ns
combinational delay. On FPGA, logic is responsible for 21.94 % of the delay
and routing for 78.06 %. The logic depth (Sect. 2.2) of the critical path consists
of 52 levels. The S-box look-up of each round accounts for three levels, or 30
for our design (10 rounds). A diagram of the critical path for one round is
shown in Fig. 2. The S-box look-up and finite field multiplication are the most
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Fig. 2. Diagram of the critical of one unrolled AES round (RCi: round constant, �: cir-
cular shift, ×: finite field multiplier). The dashed part is the key expansion, which does
not impact the critical path.

expensive components in terms of delay. However, note that the multiplication
can be implemented efficiently and without a full multiplier. Although the key
expansion for each round is done in parallel with the calculations of the round
itself and therefore does not appear on the critical path, it is shown to give an
idea of its cost.

The big difference between the logic and routing delay has two causes. First,
the main operations on the critical path are look-ups in big 8-bit S-boxes, which
have long delays. They incur a total delay (both logic and routing) of 11.2 ns,
or 45.24 %. Second, the input signal to each round has a large fan-out, slowing
down the circuit. This is not caused by a design decision here, but rather an
effect of how the S-box was synthesized.

All S-boxes were implemented with 8-bit to 8-bit Look-Up Table (LUTs).
This explains the large ASIC area, because LUTs do not map well to ASIC. Note
that implementations which rely on composite field arithmetic yield significantly
better area results, especially in ASIC [20,29].

3.2 KATAN

De Cannière et al. designed KATAN and KTANTAN [16] to be used in RFID
tags. Their goal was to build an algorithm with an efficient hardware imple-
mentation, while still achieving reasonable throughput. The family of ciphers
has a fixed key size of 80 bits, but the block size is a parameter (32, 48 or 64
bits). KATAN uses a Linear Feedback Shift Register (LFSR) for the key expan-
sion. Encryption is done by splitting the state into two parts of different length
and applying a non-linear function to each in every round of the algorithm.
The only difference between KATAN and KTANTAN is that the latter has a
hard-coded key.

Bogdanov and Rechberger [10] first broke the KTANTAN family of ciphers
with a meet-in-the-middle attack that has a time complexity of 275.170 and data
complexity of 3. So far, there are only known attacks against reduced-round
versions of KATAN, the best of which is a related-key boomerang attack by
Isobe et al. [21]. It breaks 174 out of 254 rounds of KATAN32 with a time
complexity 278.8 and data complexity 227.6.
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Fig. 3. Diagram of the critical path of one unrolled KATAN round (ctri: LFSR round
counter, �: regular shift). The dashed part is the key expansion, which does not impact
the critical path.

Two versions of KATAN were built: KATAN32 and KATAN64 use 32-bit and
64-bit blocks respectively. The former requires 1,064 LUTs and has a critical path
of 41.2 ns. Although it has a very small area, its practical use is limited by the
long delay, which is caused by the large number of rounds. The results for the
latter are similar, with 2,550 LUTs and 47.3 ns. On FPGA, 91 % of the delay is
caused by routing, and 9 % by logic for both variations. The logic depth consists
of respectively 62 and 72 levels for the 32- and 64-bit states.

Figure 3 shows a diagram of the critical path. The signal runs in parallel
through the paths with the left shift and XOR and AND gates respectively. Since
it does not cost much to implement a shift in hardware, only the latter will be in
the critical path. Both the key expansion and LFSR round counter (ctri, which
is not shown) can be calculated in parallel and are therefore not part of the
critical path. Although the round function has a small delay, the large number
of rounds explains why a combinational implementation of the overall algorithm
is slow.

The XOR gates have a 9 to 1 delay ratio. In the Virtex 6 FPGA, they are
implemented with 6-input LUTs, which have a constant look-up time of 0.061 ns
(the logic delay). The routing delay accounts for the time needed to get the result
to the next LUT. Contrary to the constant logic delay, it varies slightly depending
on the fan-out (Sect. 2.3) and placement of the design on the fabric.

3.3 PRESENT

Like KATAN (Sect. 3.2), PRESENT [8] was created as a lightweight block
cipher for constrained environments. They have very similar characteristics, but
PRESENT has a higher throughput with lower area. In each encryption round,
the state’s nibbles are run through a 4-bit S-box. This is followed by a permu-
tation layer which moves bits to different positions. The block size is fixed at
64 bits, but both 80- and 128-bit keys can be used. The variation with 80-bit
keys takes up 2,089 LUTs and has a 29.2 ns delay. The one with 128-bit keys
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Fig. 4. Diagram of the critical path of one unrolled PRESENT round. The dashed part
is the key expansion, which does not impact the critical path.

uses 2,203 LUTs and has a critical path of 32.6 ns. Increasing the key size has a
small impact on area and critical path.

No known attacks break the full version of PRESENT. The best one was
published by Joo Yeon Cho [13] and breaks 25 out of 31 rounds of the 80-bit
variation with a time complexity of 264 and data complexity of 262.4.

On FPGA, 9.0 % of the delay is caused by logic and 91.0 % by routing for
both key sizes. A diagram of the critical path for one round is shown in Fig. 4. In
each round, it first passes through the XOR with the key, followed by the S-box
look-up and finally the permutation layer. The latter is a very cheap operation
in hardware, as it only requires reordening wires. The XOR gates have the same
characteristics that were mentioned earlier, but the smaller 4-bit S-boxes have
a logic and routing delay similar to other gates. The critical path of the former
has a logic depth of 48 levels, while the latter comes in at 52 levels.

3.4 PRINCE

PRINCE [11] is the first lightweight block cipher design that focuses on reducing
latency. Traditional block ciphers are iterated algorithms with almost identical
round functions (Sect. 2.1). This similarity is a big advantage to build compact
multi-cycle algorithms, but becomes problematic when the ciphertext needs to
be ready in a single cycle. By deciding on an unrolled structure from the start,
the design space greatly increases, as there is no need for each round to be
identical. An additional requirement for PRINCE was negligible overhead for
the decryption mode.

The algorithm has a symmetric design about a center matrix multiplication.
Aside from the addition of the expanded key and round constants, the rounds
have two basic operations: a 4-bit S-box and matrix multiplication. The latter is
constructed so that every output bit is influenced by three input bits. The matrix
multiplication is implemented as an XOR of the selected bits. Three different
matrices are used: the construction of the symmetric matrix M ′ is given in the
original paper. The matrix M is derived from M ′ by first shifting the input state
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Fig. 5. Critical path diagram of one regular PRINCE round (RCi: round constant).
The dashed part is the key expansion, which does not impact the critical path.

similarly to AES’ ShiftRows before the multiplication. Both the block and key
size are fixed to 64 and 128 bits respectively. The 128-bit key input is expanded
to 192 bits, so that three different 64-bit keys are available. k0 and k′

0 are used
for pre- and post-whitening respectively, and k1 as the round subkey.

The key k0 and a round constant are added first. Then, there are five rounds
in which the S-box is applied to the state, followed by multiplication with M ,
and again the addition of a round constant and the key k1 (see Fig. 5). The
center part of the algorithm applies the S-box, multiplies the result with M ′,
and applies the inverse S-box. This is followed by five inverse rounds (the order
of the operations is reversed, and the inverse S-box and M−1 are used). The
final step is again the addition of a round constant and key k′

0.
Since its publication, the resistance of PRINCE against different attacks has

been investigated. The most recent ones are due to Morawiecki [25], Derbez and
Perrin [17], Canteaut et al. [12] and Zhao et al. [34]. The best known attack so
far is the one by Morawiecki [25]. His meet-in-the-middle approach compromises
10 out of 12 rounds with (online) time complexity 268 and data complexity
257. When the reflection parameter α can be chosen, the cipher core, i.e. the
algorithm without the pre- and post-whitening keys, is fully broken with a time
and data complexity of 241 [22].

PRINCE only needs 1,244 LUTs and has a short critical path of 16.4 ns.
It first passes through the three initial XORs, which are combined in a single
LUT. In the five regular rounds that follow (see Fig. 5), the S-box look-up and
matrix multiplication are also synthesized to a single LUT, as well as the two
remaining XORs. The signal then runs through another S-box look-up and the
matrix multiplication at the center. The rest of the path is symmetric, due to
the cipher’s design. On FPGA, routing is responsible for 91.0 % of the delay and
logic for 9.0 %, which can again be explained by the general gate characteristics
given earlier. The logic depth of the critical path is 26 levels.

The absence of a complicated key expansion does not impact the critical path,
as it can be processed in parallel with the data processing. This was observed
for the other algorithms, where the key expansion never shows up in the critical
path. However, it does lower the area requirements of the cipher.

3.5 RECTANGLE

Published in 2014, RECTANGLE [33] is the most recent cipher discussed here.
It was designed to have good hardware and software performance. The round
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Fig. 6. Critical path diagram of one unrolled RECTANGLE round (�: circular shift,
RCi: round constant). The dashed part is the key expansion, which does not impact
the critical path.

function is very simple: first, there is an XOR with the round subkey, followed
by the application of a 4-bit S-box substitution to the state’s columns and a
cyclic shift of its rows over different offsets. The key expansion also has these
two operations (the S-box is only applied to the 0th column of the key state)
and the addition of a round constant, which is generated by an LFSR. The block
size is fixed at 64 bits, but there are two possible key sizes (80 and 128 bits).

Since it was only published very recently, few analyses have been published
on RECTANGLE. Currently, there is only one report about the variation with
80-bit keys by Shan et al. [30]. Their differential attack breaks 19 out of 25
rounds with a time complexity of 267.42 and data complexity of 262.

The variation with 80-bit keys takes up 1,682 LUTs and has a 19.4 ns delay.
The one with 128-bit keys requires 1,730 LUTs and has a critical path of 19.3 ns.
Notice that the latencies for both key sizes are almost identical, confirming that
the key expansion is not part of the critical path. For each round, the critical
path runs through the XOR with the round key, S-box look-up and circular shift
(see Fig. 6). The key expansion can be done in parallel and is only shown to give
an idea of its cost. On FPGA, one LUT combines the XOR, S-box look-up, and
shift. However, the synthesis cannot merge the three operations in some cases
(probably due to placement constraints). The final component is the XOR with
the last subkey (not shown on Fig. 6). On FPGA, 8.2 % of the delay is caused by
logic and 91.8 % by routing, which is expected given the general characteristics
of the gates. The logic depth of the critical path is 41 levels.

3.6 SIMON

The designers of SIMON and SPECK (Sect. 3.7) [5] focused on flexibility. Most
lightweight block ciphers have a small number of possible block and key sizes.
This can make it hard to find a suitable algorithm for a specific application. In
contrast, the parameters of SIMON and SPECK give rise to 10 variations. The
block size ranges from 32 to 128 bits and the key size from 64 to 256 bits.

SIMON is a Feistel cipher (Sect. 2.1) where the cipher’s state is split in half
and in each round, the upper part of the input is left unchanged and becomes
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Fig. 7. Critical path diagram of one unrolled SIMON round (∼: inverter, �: circular
shift, zi: bit from a predefined constant vector). The dashed part is the key expansion,
which does not impact the critical path.

the lower part of the output. The round function is applied to the lower part
and assigned to the upper part of the output. SIMON’s round function is very
straightforward: it has just three cyclic shifts, three XOR gates, and one AND gate.
The key expansion is slightly more complicated, but uses similar building blocks
as the round function.

SIMON and SPECK have been analysed for mathematical weaknesses using
a variety of techniques [1,2,4,7,31,32], but none have broken the full cipher so
far. Note that some publications are limited to a set of specific parameter pairs.
The best result for SIMON 32/64 at this time is a linear super-trail attack by
Ashur [4] which breaks 24 out of 32 rounds with a time complexity of 263.57 and
data complexity of 231.57.

We implemented two parameter pairs: one with 32-bit blocks and 64-bit keys
and one with 64-bit blocks and 128-bit keys. The former needs 960 LUTs and
has a critical path of 20.4 ns. The latter uses 2,688 LUTs and the output is ready
after 27.3 ns. The critical path runs through a circular shift, AND and XOR gate
(see Fig. 7). Again, the key expansion is not part of the critical path, but is only
included in the diagram to show its cost. The XOR and AND operations in each
round are combined in a single LUT. On FPGA, 90 % of the delay is caused by
routing and 10 % by logic for both variations, which is the ratio we’ve seen for
the other designs as well. The logic depth of the smallest variation consists of 34
levels and 46 levels for the other one.

3.7 SPECK

SPECK was published together with SIMON (Sect. 3.6), and although both per-
form well in general, SIMON was optimised for hardware implementations and
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SPECK for software. The state is also split in half in SPECK’s design, but it is
not a Feistel cipher, so both halves change in each round. The round function
has even fewer operations than SIMON’s, but a very important difference is that
one adder is now being used. Although trivial in software, this design decision
has a big impact on hardware performance, as can be seen from the results.

Of all reports on SIMON, only Biryukov et al. [7] also analysed SPECK, but
improved results were obtained by Dinur [18]. The best attack breaks 14 out of 22
rounds of SPECK 32/64 with a time complexity of 263 and data complexity of 231.

di−1

� ‖
di

+

ki−1

�
ki

+ li

li−1

� i

Fig. 8. Critical path diagram of one unrolled SPECK round (�: circular shift, i: round
counter). The dashed part is the key expansion, which does not impact the critical path.

Implementations were built for the same two parameter pairs as were used
with SIMON (Sect. 3.6). SPECK 32/64 requires 1,513 LUTs and has a 40.3 ns
delay. SPECK 64/128 uses 3,594 LUTs and has a critical path of 50.3 ns. The
components of the critical path differ between the rounds depending on the
possible optimizations after placement. In general, it runs through the circular
shift, adder chain, and finally the XOR gates (see Fig. 8). Comparing the delay
for both variations, we can clearly see the impact of the adder. On FPGA, logic
is responsible for 33 % and the wiring for 67 % for both variations. This is due
to the adders introducing longer logic delays than the basic gates that were used
in all other algorithms. The critical path of SPECK 32/64 has a logic depth of
124 levels, while SPECK 64/128 comes in at 197 levels. The total delay caused
by the adders is 26.4 ns (65.53 %) and 32.8 ns (65.28 %) respectively.

4 Comparison

Table 2 summarizes all FPGA results from the previous section, grouped by
block and key size. Looking at the ciphers with 32-bit blocks, SIMON 32/64
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has the best performance both in terms of area and throughput. An important
disadvantage are the 64-bit keys which only offer very short-term protection
against small organizations [19]. While KATAN 32/80 uses stronger keys and
has similar area requirements, its large number of rounds results in a long critical
path.

Among the algorithms with 64-bit blocks and 80-bit keys, RECTANGLE is
the smallest and has the shortest latency too. PRESENT has similar characteris-
tics because they use the same techniques. The difference between the two is only
caused by the actual S-box design and permutation layer. Although KATAN’s
area is still quite small for these parameters, its latency is the second-highest of
all implementations. The reason for the higher throughput is the bigger block
size.

Comparing the results for the last parameter pair (64-bit blocks, 128-bit
keys), PRINCE’s performance really stands out. It is by far the smallest in its
category and not even that far off SIMON 32/64. The latency is the lowest of all
implemented ciphers, which confirms its main design requirement. The numbers
for PRESENT and SIMON are similar, with PRESENT having a slightly smaller
footprint and SIMON being a bit faster. However, as the area increases with the
parameter size, the variations with small parameters are most interesting. The
circuit is compounded by a large number of additional rounds when the size of
the parameter goes up. SPECK’s results don’t make it an attractive alternative.
The critical path is particularly long because of the adders in its design.

Looking at the different lightweight ciphers, the performance of AES is sur-
prisingly good. It has a very large area because of the big S-boxes (8-bit to
8-bit), but its latency is competitive, given the small number of rounds and effi-
cient permutation layer. Combined with the 128-bit blocks, this results in high
throughput.

Most ASIC results are in line with the expectations from FPGA. The biggest
surprise is SPECK’s area being smaller than SIMON’s, both for 32- and 64-
bit blocks. A possible explanation for this difference is that the adders can be
mapped better on ASIC than FPGA. Also note that the latency for SPECK
64/128 is very high on ASIC.

It is now possible to make some observations on the design of lightweight
ciphers. Unrolling the rounds of an iterated cipher places all data operations of
the round function on the critical path. Therefore, when an algorithm has more
rounds, the critical path will often be longer as well (see Fig. 9). This is clear
from the results for KATAN, which has a very large number of rounds. It is well
known that regular arithmetic does not perform well in hardware, especially in
terms of latency. SPECK’s performance is a clear indication of this. Big S-boxes
are also expensive, and as can be seen from the AES implementation, they have
a large area requirement, especially in ASIC. Additionally, because they don’t
map well to the FPGA fabric, they have very long delays. The number of S-boxes
used in the round function is of less importance, as they are working in parallel.
Depending on the platform, using multiple-input gates could also negatively
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Table 2. Size, critical path and throughput on FPGA (italics: best result in a security
class, bold: best result overall)

Cipher Size Critical path Throughput

[LUTs] [ns] [Gbit/s]

32/64 SIMON 960 20.4 1.46

SPECK 1,513 40.3 0.74

32/80 KATAN 1,064 41.2 0.72

64/80 KATAN 2,550 47.3 1.26

PRESENT 2,089 29.2 2.04

RECTANGLE 1,682 19.4 3.08

64/128 PRESENT 2,203 32.6 1.83

PRINCE 1,244 16.4 3.64

RECTANGLE 1,730 19.3 3.08

SIMON 2,688 27.3 2.18

SPECK 3,594 50.3 1.19

128/128 AES 8,984 24.7 4.82

Table 3. Size, critical path and throughput on ASIC (italics: best result in a security
class, bold: best result overall)

Cipher Size Critical path Throughput

[GE] [ns] [Gbit/s]

32/64 SIMON 8,432.00 29.6 1.00

SPECK 5,893.25 82.1 0.36

32/80 KATAN 11,939.50 61.2 0.49

64/80 KATAN 24,766.50 75.8 0.79

PRESENT 22,063.50 39.4 1.51

RECTANGLE 18,160.75 34.87 1.71

64/128 PRESENT 23,005.75 38.1 1.57

PRINCE 9,522.75 22.9 2.60

RECTANGLE 18,935.00 34.68 1.72

SIMON 23,584.00 41.7 1.43

SPECK 16,371.00 182.4 0.33

128/128 AES 1,26,571.00 61.6 1.93

impact the latency (e.g. a four-input XOR can be implemented in a single LUT
on FPGA, while it will result in a cascade of three XORs in ASIC).

Finally, recommendations for the design of low-latency algorithms follow from
these remarks. When focusing on low latency, having an unrolled design, like
PRINCE, gives significantly better results. Iterated SP networks also perform well:
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Fig. 9. Plot of the critical path on FPGA in function of the number of rounds.

the delay of small S-boxes is not very high and the permutation layer can essen-
tially be implemented for free. The number of rounds should be as low as possible,
while still maintaining an acceptable level of security. Small S-boxes are a nice
component, as they have low latency as well as good area performance. Lastly,
the general design rule to use boolean operations in hardware designs also applies
here.

5 Conclusion

In this paper, we have given synthesis results for unrolled implementations of
six families of lightweight block ciphers, along with AES for reference. It was
shown that PRINCE, the only cipher specifically designed to have low latency,
is the fastest of all implemented algorithms, and also has a very competitive area.
For smaller block sizes, which are useful for some applications, SIMON has the
smallest area and offers good throughput. However, the latency of most ciphers
is too high to be useful in practice. For example, PRINCE runs at 61.039 MHz
on Virtex 6, which is fast compared to the other ciphers, but is suitable only for
small embedded applications. The speed in a microcontroller will be even lower
once it is integrated with other components that add to the critical path. The
search for new ciphers is therefore an important future research topic.
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Abstract. This paper explores the feasibility of power analysis attacks
against low-latency block ciphers implemented with unrolled architec-
tures capable of encryption in a single clock cycle. Recently, low-latency
block ciphers are attracting much attention due to the increasing require-
ment of real-time cryptosystems. Unrolled architectures have been
expected to be somewhat resistant against side-channel attacks com-
pared to typical loop architectures because of no memory (i.e. register)
element storing intermediate results in a synchronous manner. In this
paper, we present a systematic method for selecting Points-of-Interest for
power analysis on unrolled architectures as well as calculating dynamic
power consumption at a target function. Then, we apply the proposed
method to PRINCE, which is known as one of the most efficient low-
latency ciphers, and evaluate its validity with an experiment using a set
of unrolled PRINCE processors implemented on an FPGA. Finally, a
countermeasure against such analysis is discussed.

Keywords: Low latency cipher · Cryptographic hardware · Side-channel
attacks · Unrolled architecture · Power analysis

1 Introduction

In recent years, interest in lightweight ciphers has increased greatly as the need
for encryption of communication among embedded devices has grown. Many pos-
sible applications can be expected in the contexts of the Internet-of-Things (IoT)
and Machine-to-Machine (M2M) communication. Lightweight ciphers have been
generally designed to be efficient with respect to size and power consumption.
The standardization of such ciphers has already begun with ISO/IEC29192-2,
and a number of lightweight ciphers were introduced for use in environments
with strictly limited resources.

A new direction in lightweight ciphers is to achieve a lower latency, that is,
a lower response time to output the first encrypted/decrypted data. Possible
applications that require such a lower response time include automotive authen-
tication systems and high-speed storage. Some ciphers suitable for a low-latency
c© Springer International Publishing Switzerland 2016
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implementation such as Noekeon [5], mCrypton [13], and PRINCE [3] have been
proposed, as explored in [10]. Among these for example, PRINCE achieves a
more efficient design in delay-area (or delay-power) product in comparison with
AES.

For achieving such lower latency in a block cipher, processing all rounds
of the cipher in one clock cycle is an obvious choice of implementation. This
kind of implementation technique is called round unrolling or unfolding, and
the corresponding hardware architecture is called an unrolled or an unfolded
architecture. In general, conventional block ciphers are often implemented with
a “loop” architecture which usually processes one round in one or a few clock
cycles and repeats the process until the last round of the cipher. This makes it
possible to re-use a logic circuit for a round function and leads to a compact
implementation.

On the other hand, when implementing cryptographic algorithms, the side-
channel security of their physical implementation has to be also taken into
consideration. In the last decade, side-channel attacks have become a serious
threat to cryptographic modules. It has been shown that several types of side-
channel leakage (e.g., power consumption, emitted electromagnetic radiation,
and processing time) can be leveraged by an adversary to recover a secret key
used in a cryptographic operation [6,11,12,15]. Most widely known side-channel
attacks on cryptographic hardware have usually assumed that the target cipher
is implemented with a loop architecture storing intermediate results (i.e., round
outputs) into registers in a synchronous manner. This implies that hypothesis
leakage models, such as Hamming weight (HW) model in DPA [12] and Ham-
ming distance (HD) model in CPA [4], are satisfied at a specific timing during
the encryption/decryption operation. Thus far, due to the popularity of loop
architectures in hardware implementations, not much research has been done
about the security of unrolled architectures with respect to side-channel attacks.
In addition, unrolled architectures have been expected to be somewhat resis-
tant to side-channel attacks because of no memory (i.e. register) element storing
intermediate results such as in loop architectures [1]. However in the future,
as the possible applications of low-latency ciphers increases, a further study on
their side-channel security is highly demanded.

With the above background and motivation, we explore the feasibility of
power analysis attacks against low-latency blocks ciphers implemented with
unrolled architectures. In this paper, we focus on the application of a CPA-like
attack without profiling to unrolled architectures. While a known-input tech-
nique has been reported for calculating dynamic power consumption in unrolled
architectures [1], our challenge considered here is to find appropriate timings
(i.e., Point-of-Interest (POI) samples in time domain) that make it possible to
perform CPAs more efficiently under the condition that an adversary knows
the inputs of obtained traces. Note here that we should search for a number of
POIs to succeed in CPAs on unrolled architectures due to the asynchronous gate
switching. For this purpose, we present a method for finding POI samples by
exploiting the characteristics of power traces from unrolled architectures with
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Welch’s t-test. The conventional methods in the context of side-channel analysis
have mainly exploited such statistical tests to verify the presence of leakage.
For example, such a test was used for examining whether a class of plaintexts
encrypted with a constant key differs significantly from the same class that has
been encrypted with a randomized key in [8]. In contrast, we employ it to find
the best POIs for performing side-channel attacks more efficiently, assuming that
a leakage exists in observed power traces. In this paper, we then apply the pro-
posed method to PRINCE, and evaluate its validity with an experiment using
a set of PRINCE processors implemented with an unrolled architecture on an
FPGA. Finally, a countermeasure against our method is discussed.

Fig. 1. Examples of power traces obtained from PRINCE processor with unrolled
architecture (Color figure online).

The rest of this paper is organized as follows: Sect. 2 describes the character-
istics of power traces in unrolled architectures and then presents our method to
find POI samples in power traces. Usages of obtained POIs are also presented
to perform power analysis attacks efficiently on unrolled architectures. Section 3
shows an application of our method to PRINCE with an unrolled architecture.
Section 4 demonstrates the validity of our attack by an experiment using a set
of PRINCE implementations on an FPGA. Also, a countermeasure against our
attack is discussed. Section 5 concludes this paper with a summary of findings
and discussion on future work.

2 Proposed Method on Unrolled Architectures

This section first describes the characteristics of power traces from unrolled
architectures, and then presents the proposed method to find appropriate POIs
for improving CPAs on unrolled architectures.

In unrolled architectures, since all of the round functions are executed in suc-
cession without writing intermediate values to registers, the power consumption
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of a single encryption/decryption operation is mainly derived from the amount of
gate switching that occurs in the circuit according to the input data values. That
is to say, the power consumption depends on the inside values being changed.

Figure 1 shows examples of power traces for one encryption operation in an
unrolled architecture, where the difference of power traces came from the input
variations. This suggests that a relationship between two successive encryption
operations is critical to such dynamic power consumption. From the observation,
we can find a way to characterize power consumption by knowing the relation-
ship. Such a characterization technique was first explored and shown to be valid
in [1].

Another characteristic of the power traces is that the placement and routing
of logic gates have a significant effect on the timing of functions inside the circuit
and indeed the output of individual functions (e.g., S-boxes) may vary greatly in
the time domain due to the differences of signal path lengths. This also causes
data hazards and/or glitches in the circuit, which contribute to the overall power
consumption and make it harder for an adversary to formulate an accurate power
model. As a result, a naive CPA, which estimates the key candidate from the
maximal correlation coefficient at a single POI sample over the whole range of the
observed power traces, becomes less effective because the above time differences
including glitches scatter the power consumption over multiple samples. Figure 2
shows an example of such a naive CPA result on an FPGA implementation
of PRINCE with an unrolled architecture (whose power traces are given as in
Fig. 1), where the red and blue lines indicate the resulting correlation coefficients
of the correct key guess and the wrong key guesses, respectively. Here, the correct
key guess will produce highest correlation coefficients only at specific timings,
but picking the maximum coefficient over the whole trace will lead to an incorrect
key estimation.

Fig. 2. Example of naive CPA results on an unrolled architecture (Color figure online).
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Addressing the above difficulty, we present a method to find a set of POI
samples that can be exploited in power analysis attacks. As shown in Fig. 1,
the timing of a certain function in an unrolled architecture cannot be easily
recognized from the power trace by a visual inspection. Our idea for finding
the timing is to employ Welch’s t-test [17] that examines whether a statistical
difference between two sets of data exists. The difference between the sets is
given as a value t, which is the confidence level of this finding. In addition, the
t-test gives a probability for the null hypothesis that the two data sets belong
to the same population.

The reason for using the t-test is that the power consumption of an unrolled
architecture is mainly caused by gate switching activities during the encryption.
If no switching occurs in a function, the corresponding power consumption is
close to zero, and should differ from other power traces with switching activity.
If the secret key stays constant during encryptions, an adversary can find specific
input pairs where all the input bits of a target function stay constant. Such input
pairs cause a slight drop in the power trace at a time indices where the target
function is processed. Given a large amount of observed power traces, our method
conducts a t-test with such specific traces and other traces, and finds the time
indices of the targeted function from high t-values.

For selecting the specific traces above, we assume that an adversary knows a
list of inputs (i.e. plaintexts) P and can measure the corresponding power trace
data T . Let pi and ti be the ith input and the ith power trace data. Let pi,j be
the jth part (e.g., nibble or byte) of the ith input that contributes to the input
of the target function. We define Tequal as the set of power traces given by

Tequal = {tj ∈ T |tj , when pi−1,j = pi,j}. (1)

Welch’s t-test is then conducted for two data Tequal and T \ Tequal.
From the t-test results, the adversary searches for an area (i.e. time indices)

indicating a sufficient confidence level. Note however that the threshold value
of t should be changed flexibly depending on the condition and results. In the
proposed method, we first smooth the t-test result by a low-pass filter, and
search for a convex part with significant t-values. We then select a set of time
indices in the convex part as the POIs for the target function. Figure 3 shows
an example of a t-test result and a selected convex part, where the black and
blue lines indicate the smoothed and raw t-test results, respectively. The left and
right red vertical lines indicate the beginning and ending sample indices of the
selected convex part, respectively. The tested power traces were obtained from
a PRINCE processor described in Sect. 4. Algorithm 1 outlines the proposed
method for finding POIs.

Finally, we perform a power analysis attack exploiting the obtained POIs.
The usage of obtained POIs would be selected depending on the shape and
distribution of t-test results. In this paper, we introduce three typical methods
for calculating the correlation coefficient value used in CPA: (i) the highest
value in POIs, (ii) the average value among POIs, and (iii) the weighted-average
value among POIs. The first method is to calculate the correlation coefficient
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Fig. 3. Points-of-interest selected from t-test result (Color figure online).

Algorithm 1. Proposed method for choosing Points-of-Interest
Input:
plaintexts P = {p0, p1, ...pn},
power traces T = {t0, t1, ...tn},
targeted key part (e.g., nibble or byte) j,
t-value threshold for picking POIs threshold
Output: Points-of-Interest for the function being attacked
for 0 ≤ i ≤ n do

if pi−1,j == pi,j then
Tequal = Tequal ∪ ti

for 0 ≤ k ≤ max sample do
rk = t-test(Tequal, T \ Tequal, k)

R = {r0, r1, ...rmax sample}
(indexbegin, indexend) = findConvexPart(lowPassFilter(R))
for indexbegin ≤ s ≤ indexend do

if rs ≥ threshold then
POIs = POIs ∪ s

return POIs

for each sample of POIs and select the highest value from the set of correlation
coefficients. Note that the sample of the highest value might change with the
targeted key part (e.g., S-box number). This method assumes that the critical
sample point exists depending on the target function and the t-test result in
the convex part is peaked. The second method is to calculate the average value
of the samples at POIs and use it to calculate the correlation coefficient. This
method assumes that the target function has an effect at every POI equally and
the t-test result in the convex part is fairly flattened. The third method is to
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give a weight to each POI sample and use the weighted average value where the
weight is proportional to the t-value to calculate the correlation coefficient. This
method assumes that the target function has an effect at POIs broadly but the
t-test result in the convex part is not so pronounced.

3 Application to the PRINCE Block Cipher

This section shows an application of the proposed method to the PRINCE block
cipher implemented with an unrolled architecture. We first present our CPA
attack on PRINCE with unrolled architecture and then apply our POI selection
method to the attack.

Recent works on the security of PRINCE deal with cryptanalysis [9], and
in general the protection of block ciphers from side-channel analysis [7]. To our
best knowledge, in the domain of side-channel analysis, a power analysis on
PRINCE has been conducted only on a loop architecture [16], but not an unrolled
architecture.

3.1 PRINCE Design

PRINCE is a block cipher to be implemented with an unrolled architecture that
allows for one encryption/decryption operation in a single clock cycle without
any initialization phase. Figure 4 depicts the overview of the unrolled PRINCE
architecture. The block size and key size of PRINCE are 64 bits and 128 bits (two
64-bit keys k0 and k1), respectively. Due to the reversible design, the encryption
and decryption functions are performed by the same operation flow. The encryp-
tion/decryption operation consists of initial key addition, 10 round functions
(R), and final key and round constant additions. Each round function consists
of five sub-functions: S-Layer (S), M-Layer (M), ShiftRows (SR), AddRound-
Constants and AddRoundKey. The first 5 rounds perform the five sub-functions
in the above order, while the last 5 rounds perform their inverses in the reverse
order. There is an intermediate function block consisting of S-Layer, M-Layer
and inversed S-Layer (S−1) in order of execution between the first and last
5 rounds.
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3.2 Performing CPA on PRINCE with an Unrolled Architecture

What makes PRINCE different from usual CPA targets is the use of a whitening
key k0, which is added to the input before the first round function begins. The
output of the first round function is determined by two 64-bit keys: the whitening
key k0 and the round key k1. Therefore, an attack to the first round function
will give an adversary an XORed key k′ represented by

k′ = k0 ⊕ k1. (2)

An adversary knowing only k′ still cannot recover the individual key parts
k0 and k1, and thus another attack is required for the second round function to
separate k′ into them. We can obtain the two keys k0 and k1 because the second
attack gives the value of k1. In the presented CPA, the first and second attack
phases are called Phases 1 and 2, respectively.

In Phase 1, we target the S-layer function output in the first round. Since
the input/output length of an S-box in S-layer is 4 bits, the whole secret key k′

can be estimated from the 16 S-boxes. Let k′
j , k0,j and k1,j be the jth nibble of

k′, k0, and k1. We repeat nibble-wise attacks to obtain the whole k′. For each S-
box output, we calculate the Hamming distance determined by two consecutive
input data pi−1 and pi, assuming that a nibble of the secret key k′

j is constant.
The hypothesized power for the jth S-box M1

j is given as

M1
j = HD

[
Sbox(pi−1,j ⊕ k′

j), Sbox(pi,j ⊕ k′
j)

]
, (3)

where pi−1,j and pi,j correspond to the jth nibble (0 ≤ j ≤ 15) of the i − 1th
and ith input data being encrypted, respectively. The estimation of k′

j is changed
from 0 to 15. The position for deriving the hypothesized power values in Phase 1
is depicted in Fig. 5.

Once k′ is estimated, the adversary can use the value for Phase 2 where the
whitening key k0 is separated from k′. In Phase 2, we target the S-Layer function
output in the second round. The hypothesized power for the jth S-box M2

j is
given as

M2
j = HD

[
Sbox(Round1(pi−1,j ⊕ k′

j , k1,j)), Sbox(Round1(pi,j ⊕ k′
j , k1,j))

]
, (4)

where Round1(pi−1,j ⊕ k′
j , k1,j) and Round1(pi,j ⊕ k′

j , k1,j) correspond to the
jth nibble of the first round output under the condition that the estimated jth
round key is k1,j . The estimation of k1,j is changed from 0 to 15. The position
for deriving the hypothesized power values in Phase 2 is also depicted in Fig. 5.

3.3 Applying POI Selection to PRINCE

Let T 1
equal,j be the set of power traces where the input stays constant for the jth

S-box in the first round, that is

T 1
equal,j = {tj ∈ T |tj , when pi−1,j = pi,j}, (5)
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where pi−1,j and pi,j indicate the jth nibble of the i−1th and ith inputs, that is,
the i− 1th and ith inputs of the jth S-box whose POIs are searched in Phase 1.
We perform the t-test with T 1

equal,j and T \ T 1
equal,j , and find POIs for the jth

S-box in Phase 1 according to the algorithm described in Sect. 2.
For Phase 2, let T 2

equal,j be the set of power traces where the input stays
constant for the jth S-box in the second round as follows:

T 2
equal,j = {tj ∈ T |tj , when Round1(pi−1,j ⊕ k′

j , k1,j) = Round1(pi,j ⊕ k′
j , k1,j)}, (6)

where Round1(pi−1,j⊕k′
j , k1,j) and Round1(pj,i⊕k′

j , k1,j) correspond to the jth
nibble of the first round output. Note here that we can evaluate the equivalence
if we obtain the value of k′

j in Phase 1 (and even if we do not know the value of
k1,j). After the classification, we perform the t-test with T 2

equal,j and T \T 2
equal,j ,

and find POIs for the jth S-box in Phase 2 as described above. Finally, we
calculate the correlation coefficient values using the timings of POIs for the
proposed CPA.

4 Experiments

4.1 Setup

The validity of the proposed method is demonstrated by an experiment using
a set of unrolled PRINCE processors implemented on an FPGA. In particu-
lar, we synthesized eight implementations of PRINCE with different placement
and routing configurations in order to evaluate the robustness of the proposed
method. To make the differences, we used three optimization flags available in
Xilinx ISE (version 9.2i): optimization effort (normal, high), optimization goal
(speed, area) and keep hierarchy (yes, no). The placement and routing of each
setup is slightly different from each other. Table 1 shows the design names and
their settings.
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Fig. 6. Setup for experiments.

Table 1. Implementations used in experiments

Optimization flags Design label

Effort Goal Keep hierarchy

High Area No high-area-no

High Area Yes high-area-yes

High Speed No high-speed-no

High Speed Yes high-speed-yes

Normal Area No normal-area-no

Normal Area Yes normal-area-yes

Normal Speed No normal-speed-no

Normal Speed Yes normal-speed-yes

Figure 6 shows the experimental setup, where we used a SASEBO-G II board
for implementing the eight variations of unrolled PRINCE processors on an
FPGA (Xilinx Virtex II Pro) and acquiring the power traces from the power
line by an digital oscilloscope (Tektronix DPO7254, 5Gsamples/s). Table 2 shows
the experimental equipment and conditions. For each implementation, we used
250,000 power traces obtained from randomly generated plaintexts. Figure 1
shows examples of power traces measured from the design “speed-normal-yes”
as described above. We also obtained similar power traces for different designs.

Table 2. Experimental environment

Digital oscilloscope Tektronix DPO7254

Sampling Frequency 5Gsamples/s

Sampling point Resistor (1Ω) attached to VDD

Power source Kikusui PMC18-2A, 3.3V 2.0A

Implementation platform Xilinx Virtex II PRO XC2VP7

4.2 Results and Discussion

Figures 7 and 8 show examples of t-test results for Phases 1 and 2 in the pro-
posed CPA, respectively. The power traces of “speed-normal-yes” were tested
for both figures. In each figure, the black and blue lines indicate the smoothed
and raw t-test results, respectively. The left and right red vertical lines indicate
the beginning and ending samples of the selected convex part, respectively. The
results show that we can obtain a convex part for any S-box from the smoothed
result. Note that a convex part (i.e., sample indices) of an S-box is different from
that of another S-box for both Phases 1 and 2.
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Fig. 7. Examples of POI selection results in Phase 1.

For comparison, we first show the results of the naive CPAs at a single sample
point without using the proposed POI selection. Figure 9 shows the success rate
of the CPA for Phase 1, where the vertical and horizontal axes indicate the
number of successfully-estimated key nibbles and the number of power traces.
Here, we performed the naive CPAs for all the observed sample points from index
0 to index 350. If the highest correlation coefficient value was finally obtained
from the correct key guess, we took it to be successfully estimated. As a result,
all the key nibbles were not estimated for all the implementations given 250,000
traces.

Figure 10 shows the success rate of the proposed CPAs with the POI selection
for Phase 1, where the obtained POIs was processed by the usage (i) described
in Sect. 2, that is, the maximal coefficient was simply selected from all the coef-
ficients given at POI sample indices. Figure 11 shows the corresponding success
rate with the usage (ii), where the averaged POI samples was used to calculate
correlation coefficient for the proposed CPA. Figure 12 shows the corresponding
success rate with the usage (iii), where the weighted-average values were used to
calculate correlation coefficient for the proposed CPA and each weight was sim-
ply given by the normalized t-value in POIs. As a result, we confirmed that the
efficiency of the proposed CPA was significantly improved for all the usages of
the obtained POIs in comparison with the naive CPA without our POI selection
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Fig. 8. Examples of POI selection results in Phase 2.

shown in Fig. 9. These results suggest that our selection method successfully find
good POIs for various implementations in a robust manner.

On the other hand, the results also suggest that each usage of POIs is not a
conclusive solution to maximize the efficiency of the proposed CPA. The usage
of (i) works best on S-boxes where the output switching is concentrated heavily
on one sample, but does not take into consideration cases where the target func-
tion output is affected by glitches and its power consumption is scattered onto
multiple samples. The usage of (ii) would be suitable for the above cases. But
an adversary using POIs greedily (including those with relatively-low t-values)
will have a reduced signal-to-noise ratio if a concentrated output switching is
observed. In the above sense, the usage of (iii) compromising between (i) and
(ii) seems to be the best among the three usages because samples with higher
confidence levels by the t-test, that is, with higher probability of performing the
target function, are weighted more highly in calculating the correlation. How-
ever, it still does not leave the other two methods in the dust in this experiment.
Considering the above properties of the three usages, the optimal strategy might
be to switch them depending on the shape and distribution of the convex part
selected by the t-tests. A more adaptive weighting (or sophisticated thresholding
in POI selection) is being conducted for future works.
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Fig. 9. Success rate of naive CPAs
without POI selection for Phase 1
(Color figure online).

Fig. 10. Success rate of proposed
CPAs with POI usage (i) for Phase 1
(Color figure online).

Fig. 11. Success rate of proposed
CPAs with POI usage (ii) for Phase 1
(Color figure online).

Fig. 12. Success rate of proposed
CPAs with POI usage (iii) for Phase 1
(Color figure online).

Table 3 shows the summarized results of the naive and proposed CPAs for
Phase 1. We have successfully estimated the correct key nibbles with a higher suc-
cess rate for Phase 1 in comparison with the naive CPA. Though there were some
nibbles that could not be estimated with 250,000 traces even by the proposed
CPAs, the results showed our POI selection method improved the efficiency of
CPAs.

One note in Phase 2 is that the probability for finding specific input pairs
that an S-box input does not change is dramatically reduced since the second
round S-box inputs depend on 16 input bits. In such cases, an adversary requires
to observe a substantial set of power traces for the t-test. In our experiments,
we found only 20–30 power traces from 250,000 randomly-generated inputs (e.g.,
power traces). Obviously if the probability of finding suitable data from randomly
generated ones is low, the total number of required power traces for the CPA
will increase significantly. Therefore, the efficiency of the proposed CPA would
be improved if specific inputs suitable for the t-tests were chosen. In addition,



Unrolled Architecture and Its Application to PRINCE Block Cipher 161

Table 3. Number of key nibbles recovered with 250000 traces.

Phase 1

Design label w/o POIs (i) (ii) (iii)

high-area-no 13 16 16 16

high-area-yes 10 12 16 16

high-speed-no 14 16 15 15

high-speed-yes 10 15 14 16

normal-area-no 11 16 16 16

normal-area-yes 13 14 13 15

normal-speed-no 11 16 16 16

normal-speed-yes 9 16 13 16

the accuracy of POI samples’ position would be increased by a larger number
of such chosen inputs. Such improvement based on a chosen-input scenario is
being left for the future study. Due to this, the recovered key bits in the attack’s
second phase are considerably lower than that of the first phase and full recovery
of the key bits was not possible with the used 250,000 traces.

4.3 Countermeasure

A simple countermeasure against CPAs, such as the proposed method, was pre-
sented in [1], where random values were introduced to the data inputs between
encrypted inputs. This countermeasure removes the relationship between two
inputs, and therefore makes it harder for an adversary to know how much gate
switches occur in some certain parts of the circuit. On the other hand, such a
countermeasure is unattractive in the context of low-latency applications because
it essentially doubles the cipher’s latency by one additional clock cycle which is
required to drive random values into the circuit. When considering countermea-
sures, it is worth noting that every round function can be implemented inde-
pendently of other rounds in unrolled architectures, and the area-wise cost of
protecting only targeted S-boxes with tamper-resistant implementation (e.g., a
threshold implementation [14]) is relatively low compared to the implementation
without such a countermeasure. In the case of PRINCE, only the first and second
round S-boxes need to be protected by the threshold implementation whereas the
rest of the rounds’ S-boxes can implemented as-is. With regard to the threshold
implementation of PRINCE, we note that according to S-box classification done
in [2], a 5-share threshold implementation exists for the “default” S-box given
in PRINCE [3].

5 Summary

In this paper, we explored the feasibility of power analysis attacks against
low-latency block ciphers designed based on unrolled architectures which are
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expected be inherently more resistant to such attacks. In particular, we pre-
sented a method for selecting POIs by a statistical test under the condition that
the adversary knows input data. We also presented a two-phase CPA attack on
PRINCE and applied the proposed POI selection method for the attack.

The validity of the proposed CPA including the POI selection method was
demonstrated through an experiment using eight variations of unrolled PRINCE
implementations on an FPGA. The results showed that our method can improve
the efficiency of the proposed CPAs in comparison with the naive CPAs with-
out such POI selection. On the other hand, a more efficient usage of obtained
POIs still remains for future work. One possible strategy would be an adaptive
weighted-averaging depending on the shape and distribution of the convex part
which is given by the t-test. A further improvement of the proposed attack in
the case of chosen-input scenarios would be valuable for future study.

Also, this paper briefly discussed a countermeasure against the proposed
CPAs. A partial threshold implementation would be a possible solution. How-
ever, a study into an efficient countermeasure focusing on the minimum overhead
in latency would be an interesting topic in the field of lightweight cryptosystems.
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