
123

Stephan Sigg
Petteri Nurmi
Flora Salim (Eds.)

Mobile Computing,
Applications, and Services

7th International Conference, MobiCASE 2015
Berlin, Germany, November 12–13, 2015
Revised Selected Papers

162



Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 162

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, Hong Kong

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angels, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Jia Xiaohua
City University of Hong Kong, Kowloon, Hong Kong

Albert Zomaya
University of Sydney, Sydney, Australia

Geoffrey Coulson
Lancaster University, Lancaster, UK



More information about this series at http://www.springer.com/series/8197

http://www.springer.com/series/8197


Stephan Sigg • Petteri Nurmi
Flora Salim (Eds.)

Mobile Computing,
Applications, and Services
7th International Conference, MobiCASE 2015
Berlin, Germany, November 12–13, 2015
Revised Selected Papers

123



Editors
Stephan Sigg
Georg-August-Universität Göttingen
Göttingen
Germany

Petteri Nurmi
University of Helsinki
Helsinki
Finland

Flora Salim
RMIT University
Melbourne, VIC
Australia

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-319-29002-7 ISBN 978-3-319-29003-4 (eBook)
DOI 10.1007/978-3-319-29003-4

Library of Congress Control Number: 2015960216

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland



Preface

On behalf of the Organizing Committee, it is my great pleasure to welcome you to the
proceedings of the 7th International Conference on Mobile Computing, Applications
and Services (MobiCASE 2015) held in Berlin, Germany. This was the first time that
the MobiCASE conference came to Germany and the second time that it was hosted in
Europe (after Paris, France, in 2013). MobiCASE is a leading venue for publication and
presentation of research results on issues in the area of mobile computing, mobile
applications, and mobile services. This year’s program featured 16 exciting papers
embracing a number of perspectives including activity recognition, crowdsourcing,
energy, localization, middleware, mobile frameworks, and intelligent caching. In
addition to the regular full paper sessions, this year’s program was supplemented by a
poster and demo session. The conference was accompanied by the First Workshop on
Situation Recognition by Mining Temporal Information (SIREMTI 2015). Last but not
least, MobiCASE 2015 hosted an exciting keynote speaker: Gabi Zodik, IBM Mobile
First Research Global Leader, provided a stimulating view on the challenges and
opportunities of contextual enterprise mobile computing.

Putting together MobiCASE 2015 has been a huge team effort. I would like to thank
many people for their tireless work, including the local arrangements chair Olga
Streibel, Web chair Shuyu Shi, publicity and social media chair Felix Buesching,
industry track chair Victor Munts-Mulero, sponsorship chair Kai Kunze, and EAI
conference organizers Barbara Fertalova, Ivana Allen, Lucia Kisova, and Sinziana
Vieriu. A special thank you goes to Izumi Takeyama, who provided us with profes-
sional images taken in Berlin. I would like to acknowledge the tremendous efforts
of the Technical Program Committee, including the chair, Petteri Nurmi, in particular,
for putting together an outstanding technical program. In addition, I would like to thank
poster, demo, and PhD track chair Mayutan Arumaithurai and workshop chair Till
Riedel. Our deepest thanks to our publication chairs Flora Salim and Jonathan Liono
for managing and compiling all the details of the proceedings. Finally, I would like to
express my gratitude to the sponsors of MobiCASE 2015.

Regarding the submission and review process for MobiCASE 2015, 43 papers were
submitted for review. Each paper was reviewed by at least three Technical Program
Committee (TPC) members, and reviewers contributed additional discussion together
with the technical program chair to reach a consensus on the papers. This year, 16 papers
were finally selected for presentation at the conference. The topics of the papers reflect the
wide-spectrum research around mobile computing, services, and applications, ranging
from system-oriented challenges to novel applications and algorithms. The technical
program of MobiCASE included six technical sessions centered on the themes of intel-
ligent caching, activity recognition and crowdsourcing, mobile frameworks, middleware,
interactive applications, and mobility. There were three best paper candidates.



We hope that the readers will find these proceedings interesting and thought-pro-
voking and hope that the conference provided participants with a valuable opportunity
to share ideas with other researchers and practitioners from institutions around the
world.

November 2015 Petteri Nurmi
Stephan Sigg

VI Preface



Organization

Steering Committee

Steering Committee Chair

Imrich Chlamtac Create-Net, Italy

Steering Committee Member

Ulf Blanke ETH Zurich, Switzerland
Martin Griss Carnegie Mellon University, USA
Thomas Phan Samsung R&D, USA
Petros Zerfos IBM Research, USA

Organizing Committee

General Chair

Stephan Sigg Aalto University, Finland

Program Chair

Petteri Nurmi University of Helsiki, Finland

Local Chair

Olga Streibel FU Berlin, Germany

Workshops

Till Riedel Karlsruhe Institute of Technology, Germany

Publicity and Social Media

Felix Buesching TU-Braunschweig, Germany

Publications Chair

Flora Salim RMIT University, Australia
Jonathan Liono RMIT University, Australia

Demos, Posters, and PhD

Mayutan Arumaithurai Georg-August-University Göttingen, Germany

Web Chair

Shuyu Shi National Institute of Informatics, Japan



Industry Track Chair

Victor Munts-Mulero CA Technologies, Spain

Sponsorship Chair

Kai Kunze Keio University, Japan

EAI Conference Coordinator

Barbara Fertalova EAI, Slovakia

Photography Berlin Impressions

Izumi Takeyama Tokyo, Japan

Technical Program Committee

Claudio Bettini University of Milan, Italy
Sourav Bhattacharya Bell-Laboratories, Ireland
Henrik Blunck Aarhus University, Denmark
Eduardo Cuervo Microsoft Research, USA
Klaus David University of Kassel, Germany
Denzil Ferreira University of Oulu, Finland
Kaori Fujinami Tokyo University of Agriculture and Technology,

Japan
Hamed Haddadi Qatar Computing Research Institute/QMU London, UK
Tristan Henderson University of St. Andrews, UK
Mikkel Baun Kjaergaard University of Southern Denmark
Shin’ichi Konomi University of Tokyo, Japan
Fahim Kawsar Bell-Laboratories, Ireland
Gerd Kortuem The Open University, UK
Nic Lane Bell-Laboratories, Ireland
Robert LiKamWa Rice University, USA
Eemil Lagerspetz University of Helsinki, Finland
Mirco Musolesi University College London, UK
Santi Phithakkitnukoon Chiang Mai University, Thailand
Daniele Puccinelli University of Applied Sciences of Southern

Switzerland
Thomas Strang German Aerospace Center (DLR), Germany
Kiran Rachuri Samsung Research America, USA
Yoshito Tobe Aoyama Gakuin University, Japan
Moustafa Youssef Egypt-Japan University of Science and Technology,

Egypt

VIII Organization



Additional Reviewers

Aidan Boran Bell-Laboratories, Ireland
Farbod Faghihi University of Helsinki, Finland
Jorge Goncalves University of Oulu, Finland
Samuli Hemminki University of Helsinki, Finland
Enamul Hoque University of Virginia, USA
Jakob Langdal Aarhus University, Denmark
Markus Löchtefeld German Research Centre for Artificial Intelligence

(DFKI), Germany
Akhil Mathur Bell-Laboratories, Ireland
Abhinav Mehrotra University of Birmingham, UK
Abhishek Mukherji Samsung Research America, USA
Ella Peltonen University of Helsinki, Finland
Thor Prentow Aarhus University, Denmark
Teemu Pulkkinen Ekahau Oy, Finland
Shuyu Shi National Institute of Informatics, Tokyo, Japan
Allan Stisen Aarhus University, Denmark
Theofania Tsapeli University of Birmingham, UK
Matthew Williams University of Birmingham, UK
Juan Ye University of St. Andrews, UK
Siwei Zhang German Aerospace Center (DLR), Germany
Yuchen Zhao University of St. Andrews, UK

SIREMTI 2015 Organizing Committee

Organizer

Olga Streibel FU Berlin, Germany
Kia Teymourian Rice University, USA

SIREMTI 2015 Technical Program Committee

Jean-Paul Calbimonte Ecole Polytechnique Federale de Lausanne,
Switzerland

Oscar Corcho Universidad Politecnica de Madrid, Spain
Alessandra Mileo NUI Galway, Ireland
Adrian Paschke FU Berlin, Germany
Stephan Sigg Aalto University, Finland
Olga Streibel National Institute of Informatics, Tokyo, Japan
Roland Sthmer FZI Karlsruhe, Germany
Atsuhiro Takasu National Institute of Informatics, Tokyo, Japan
Kia Teymourian Rice University Houston, Texas, USA
Robert Tolksdorf FU Berlin, Germany
Alexandru Todor FU Berlin, Germany

Organization IX



Contents

Intelligent Caching

Network Data Buffering for Availability Improvement of Mobile
Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Tomoharu Imai, Kouichi Yamasaki, Masahiro Matsuda,
and Kazuki Matsui

Upgrading Wireless Home Routers for Enabling Large-Scale
Deployment of Cloudlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Christian Meurisch, Alexander Seeliger, Benedikt Schmidt,
Immanuel Schweizer, Fabian Kaup, and Max Mühlhäuser

Activity Recognition and Crowdsourcing

Adaptive Activity and Context Recognition Using Multimodal Sensors
in Smart Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Sébastien Faye, Raphael Frank, and Thomas Engel

Characterization of User’s Behavior Variations for Design of Replayable
Mobile Workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim Awwal,
and Tajana S. Rosing

Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks . . . 71
Kevin Emery, Taylor Sallee, and Qi Han

Mobile Frameworks

AppSachet: Distributed App Delivery from the Edge Cloud . . . . . . . . . . . . . 89
Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilovska,
and Karsten Schwan

Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices . . . . . 107
Ryan H. Choi and Youngil Choi

Pervasive Context Sharing in MAGPIE: Adaptive Trust-Based
Privacy Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chenguang Liu and Christine Julien

http://dx.doi.org/10.1007/978-3-319-29003-4_1
http://dx.doi.org/10.1007/978-3-319-29003-4_1
http://dx.doi.org/10.1007/978-3-319-29003-4_2
http://dx.doi.org/10.1007/978-3-319-29003-4_2
http://dx.doi.org/10.1007/978-3-319-29003-4_3
http://dx.doi.org/10.1007/978-3-319-29003-4_3
http://dx.doi.org/10.1007/978-3-319-29003-4_4
http://dx.doi.org/10.1007/978-3-319-29003-4_4
http://dx.doi.org/10.1007/978-3-319-29003-4_5
http://dx.doi.org/10.1007/978-3-319-29003-4_6
http://dx.doi.org/10.1007/978-3-319-29003-4_7
http://dx.doi.org/10.1007/978-3-319-29003-4_8
http://dx.doi.org/10.1007/978-3-319-29003-4_8


Middleware

Panorama: A Framework to Support Collaborative Context Monitoring
on Co-located Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Khaled Alanezi, Xinyang Zhou, Lijun Chen, and Shivakant Mishra

Jouler: A Policy Framework Enabling Effective and Flexible Smartphone
Energy Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Anudipa Maiti, Yihong Chen, and Geoffrey Challen

CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services . . . . . 181
Ahmed Abdel Moamen and Nadeem Jamali

Interactive Applications

Quality Assurance in Additive Manufacturing Through Mobile Computing. . . . 203
Sam Hurd, Carmen Camp, and Jules White

Interactively Set up a Multi-display of Mobile Devices . . . . . . . . . . . . . . . . 221
Peter Barth and Manuel Pras

SURFLogo - Mobile Tagging with App Icons . . . . . . . . . . . . . . . . . . . . . . 239
Chadly Marouane and Andre Ebert

Mobility

Towards Indoor Transportation Mode Detection Using Mobile Sensing . . . . . 259
Thor Siiger Prentow, Henrik Blunck, Mikkel Baun Kjærgaard,
and Allan Stisen

Indoor Navigation with a Smartphone Fusing Inertial and WiFi Data
via Factor Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Michał Nowicki and Piotr Skrzypczyński

Workshop Papers

Using Interaction Signals for Job Recommendations . . . . . . . . . . . . . . . . . . 301
Benjamin Kille, Fabian Abel, Balázs Hidasi, and Sahin Albayrak

A Spatiotemporal Approach for Social Situation Recognition . . . . . . . . . . . . 309
Christian Meurisch, Tahir Hussain, Artur Gogel, Benedikt Schmidt,
Immanuel Schweizer, and Max Mühlhäuser

Managing Wireless Mesh Networks – A Survey of Recent Fault
Recovery Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Akmal Yaqini

XII Contents

http://dx.doi.org/10.1007/978-3-319-29003-4_9
http://dx.doi.org/10.1007/978-3-319-29003-4_9
http://dx.doi.org/10.1007/978-3-319-29003-4_10
http://dx.doi.org/10.1007/978-3-319-29003-4_10
http://dx.doi.org/10.1007/978-3-319-29003-4_11
http://dx.doi.org/10.1007/978-3-319-29003-4_12
http://dx.doi.org/10.1007/978-3-319-29003-4_13
http://dx.doi.org/10.1007/978-3-319-29003-4_14
http://dx.doi.org/10.1007/978-3-319-29003-4_15
http://dx.doi.org/10.1007/978-3-319-29003-4_16
http://dx.doi.org/10.1007/978-3-319-29003-4_16
http://dx.doi.org/10.1007/978-3-319-29003-4_17
http://dx.doi.org/10.1007/978-3-319-29003-4_18
http://dx.doi.org/10.1007/978-3-319-29003-4_19
http://dx.doi.org/10.1007/978-3-319-29003-4_19


Threat Model Based Security for Wireless Mesh Networks. . . . . . . . . . . . . . 325
Freshta Popalyar

Posters

Integrating Wearable Devices into a Mobile Food Recommender System . . . 335
Mouzhi Ge, David Massimo, Francesco Ricci, and Floriano Zini

Upgrading Wireless Home Routers as Emergency Cloudlet: A Runtime
Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Christian Meurisch, Ashwinkumar Yakkundimath, Benedikt Schmidt,
and Max Mühlhäuser

SWIPE: Monitoring Human Dynamics Using Smart Devices . . . . . . . . . . . . 341
Sébastien Faye, Raphael Frank, and Thomas Engel

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Contents XIII

http://dx.doi.org/10.1007/978-3-319-29003-4_20
http://dx.doi.org/10.1007/978-3-319-29003-4
http://dx.doi.org/10.1007/978-3-319-29003-4
http://dx.doi.org/10.1007/978-3-319-29003-4
http://dx.doi.org/10.1007/978-3-319-29003-4


Intelligent Caching



Network Data Buffering for Availability
Improvement of Mobile Web Applications

Tomoharu Imai(&), Kouichi Yamasaki, Masahiro Matsuda,
and Kazuki Matsui

Network Systems Laboratory, Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka,
Nakahara-Ku, Kawasaki, Kanagawa 211-8588, Japan

{imai.tomoharu,yamasaki.koichi,matsuda,

kmatsui}@jp.fujitsu.com

Abstract. In recent years, we have seen an explosion in the use of smart
devices. With several different competing OS platforms on these smart devices,
developers have turned to web applications as an effective way to provide
cross-platform services. However, because many web applications are designed
to handle UI interactions locally on a user’s device and to process data remotely
in the cloud, it is difficult for them to continue running while offline. In this
paper, we propose a data synchronization technology that buffers and minimize
network communications to address problems associated with dropped network
connections as well as low bandwidth and/or high latency environments. To test
the technology’s effectiveness, we applied it to some typical web applications
and compared their performance in environments with dropped connections.

Keywords: Mobile web applications � Data buffering � Synchronization
technology

1 Background

In recent years, we have seen an explosion in the use of smartphones, tablets, and other
smart devices. These smart devices run a variety of operating systems, including
Android, iOS, and Windows Phone. Applications depend on proprietary APIs and
SDKs for each mobile operating system, all of which are incompatible with each other.
The need to build a separate application for each operating system thus drives up
development costs. On the other hand, each operating system also has a browser engine
capable of rendering HTML5 content, allowing a single HTML5 web application to be
run on a variety of different devices. For this reason, web application development for
smart devices has become more popular in recent years.

As shown in Fig. 1, web applications save a variety of data on mobile devices; this
includes audio/video data taken with a device’s built-in cameras and microphones as
well as business data downloaded from the cloud. Consequently, web application
security is sometimes lacking. To address this, systems with stringent security
requirements—such as those in enterprise businesses—have begun to adopt thin client
systems that run applications in the cloud. However, thin client systems can send and
receive a large volume of commands and screen data that may noticeably reduce an
application’s responsiveness on slower network connections (as shown in Fig. 2).

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-29003-4_1



We have a developed a virtualization technology for mobile web applications
(“VMA”) that automatically splits a web application into two parts—UI processing and
data processing—in the cloud. VMA maintains security by processing and storing data
remotely in the cloud; at the same time, it also makes applications highly responsive by
handling UI interactions locally on each device. This technology allows service pro-
viders to offer existing line-of-business web applications that are highly responsive and
secure at a low cost.

2 Issues and Existing Technology

VMA distributes and executes stand-alone web application for smart devices. This
technology distributes a web application’s logic so that smart devices handle UI
interactions locally and servers in the cloud process data remotely. The UI and data
processing parts of the application assume they always have a network connection

Fig. 1. Web application usage

Fig. 2. Reduced responsiveness

4 T. Imai et al.



through which to communicate with each other. Because, the UI and data processing
parts usually executed on same device. However, it’s easy for smart devices, which
often use mobile networks, to get disconnected frequently. If a web application is run
with distributed UI and data processing in this kind of environment, dropped network
connections can cause data loss, unexpected application behavior associated with failed
requests, and reduced responsiveness associated with high network latency.

To address these issues, existing technologies have cached data in local storage for
offline use [2] and also gracefully degraded to limited feature sets while offline [3].

Before an application can use internal storage or graceful degradation, however,
every part of it that sends or receives data over the network needs to be updated
accordingly. Furthermore, every new feature that uses a network connection would also
need to deal with being offline. This additional processing has entailed increased costs.

3 Data Synchronization with VMA

In response to these issues, we developed a data synchronization technology with
VMA that does its best to compensate for dropped network connections. This tech-
nology buffers network traffic and does not require developers to edit existing web
applications’ source code directly. Figure 3 illustrates the data synchronization tech-
nology in more detail while providing an overview of its architecture.

3.1 Overview

The data synchronization technology has a DataCache feature that hooks into the
XMLHttpRequest API through which web applications send data to and receive data
from the cloud. This feature allows requests to be sent from cached data even while

Fig. 3. Data synchronizer architecture

Network Data Buffering for Availability Improvement 5



offline. The data synchronization technology also has a DataShrink feature that detects
duplicate data to minimize network traffic. The data synchronization technology use
transparent proxy technique for unmodified embedding into web application. These
features reduce the amount of data that needs to be sent and received and make
applications pleasantly responsive.

3.2 DataCache

The DataCache feature hooks into the XMLHttpRequest API to cache all upstream and
downstream data.

The DataCache feature replaces the XMLHttpRequest browser API used by web
applications with its own Hooking API. Because the Hooking API presents the same
interface as the XMLHttpRequest API provided by browser engines, web applications
do not need to be modified to use it. A transparent proxy adds the necessary code to
load the Hooking API when a web application is transferred, thus replacing the
XMLHttpRequest API and enabling the DataCache feature without burdening the web
application developers.

The DataCache feature caches data that can largely be classified into two groups.
The first group comprises requests that do not involve fetching data—specifically, GET
(for posting parameters), SET, PUT, and other XMLHttpRequests. These requests are
not considered to affect a web application over short periods of time, even if they are
delayed in reaching the server. The second group comprises requests that involve
fetching data (responses)—specifically, GET, POST, and other XMLHttpRequests.
The DataCache feature handles these requests according to the following algorithm.

(A) While online, all requests (whether or not they involve fetching data) are
immediately sent to the cloud; responses are sent to the web application and the
response data is simultaneously cached.

(B) While offline, requests (whether or not they involve fetching data) cannot be sent
to the cloud and are thus added to a queue. Cached response data is returned to
requests that require a response.

(C) When a network connection is re-established, all queued requests are sent to the
cloud in FIFO order. Cached response data is overwritten by any newer responses
that are received.

By following this algorithm, the DataCache feature does its best to preserve web
application functionality even while a client device is offline. Figure 4 illustrates how
this algorithm works.

3.3 DataShrink

The DataShrink feature minimizes the amount of data that needs to be sent by checking
both the content of requests when they are queued by the DataCache feature and the
content of cached response data when it is sent or updated by the DataCache feature.

6 T. Imai et al.



The DataCache feature queues request data and pre-caches response data as a
precaution against dropped connections. Though the DataCache feature queues and
caches all request and response data, the uniqueness of that data does not necessarily
need to be preserved. For example, a series of periodic requests to get all the latest data
can be saved as a single request (along with its response) without any adverse effects on
a web application’s data integrity. On the other hand, periodic requests to get the latest
data via a series of deltas and requests that contain data must all be run individually and
their responses must be preserved. The DataCache feature sends its queued requests out
to the cloud in FIFO order when a network connection is re-established, but as
explained above the uniqueness of all that request and response data does not need to
be preserved. Sending data without uniqueness constraints thus leads to unnecessary
network traffic, wasted bandwidth, and slower response times.

By automatically identifying and eliminating superfluous requests and responses
when unique copies do not need to be preserved, the DataShrink feature can avoid
wasting network bandwidth and prevent decreased responsiveness. The DataShrink
feature uses the following algorithm to determine which of a web application’s requests
and responses must remain unique.

(A) If a request has one or more mutable parameters, a unique copy of its data must be
preserved.

(B) If a request does not have any mutable parameters, a unique copy of its data does
not need to be preserved.

The following pseudocode shows how a request is checked for mutable parameters.

Fig. 4. Data synchronizer DataCache algorithm

Network Data Buffering for Availability Improvement 7



var history = []; 
var dynamicRequests = []; 
var staticRequests = []; 

if (request == ‘http’) { 
 if (request.hasOnTail(/?||&/) 
  || !history.urlsuffixArray.has(request.urlsuffix) 
  || (history.urlsuffixArray.has(request.urlsuffix) 
     && !history.body.hasKey(request.body.key))) { 
  dynamicRequests += request; 
 } else { 
   staticRequests += request; 
 } 
 history += request; 
} 

The DataShrink feature considers it necessary to preserve the uniqueness of a
request when it has parameters; when it is the first request sent to a particular endpoint
(URI); or when it contains the same data as some other past request (i.e. “A” above).
Uniqueness is not considered a requirement for any other requests (i.e. “B” above).

The following pseudocode shows how the DataShrink feature removes redundant
requests and responses that it has determined it does not need to uniquely preserve.

var mergeRequests = [] 
for (var i = 0; i < staticRequests.length; i++) { 
 if (!mergeRequests.has(staticRequests[i].url) { 
  mergeRequests += staticRequests[i]; 
 } else if (mergeRequests.has(staticRequests[i]) { 
  var oldentry = mergeRequests.has(staticRequests[i]); 
  if (staticRequests[i].requestDate > 
oldentry.requestDate) { 
  mergeRequests[staticRequests[i].key] = 
staticRequests[i].value; 
  } 
} 

This code extracts requests with unique URIs from the set of requests identified in
step “B” of the algorithm above (staticRequests). If more than one request has the same
URI, only the most recent one is selected.

Using these algorithms and procedures, the DataShrink feature minimizes the
amount of data that is sent and received.

8 T. Imai et al.



4 Results

To evaluate our data synchronization technology, we measured the following three
metrics associated with web applications on a mobile data network: data retention rates,
responsiveness, and bandwidth usage.

Specifically, we compared the performance of three different types of web appli-
cations with versions of those applications that dynamically loaded our data syn-
chronization technology. The architecture of a web application that VMA has split into
UI and data processing components is similar to the architecture of a web application
that developers have split into server and client components; as a result, we can
compare performance by applying (or not applying) our data synchronization tech-
nology to an entire web application.

We chose the following three web applications.

• A to-do application.
• A text chat application.
• A video chat application.

We arranged to test these three types of applications because they cover a spectrum
of real-time demands on processing that needs to communicate with the cloud. The
to-do application does not have real-time constraints because it can take a long time to
update a to-do list on a server without any adverse effects. The text chat application has
real-time constraints of several seconds or less because user input intervals are gen-
erally several seconds or more. The video chat application has real-time constraints of
one second or less because on-screen video is updated by at least one frame per second.

We prepared a mobile network environment under simulated conditions in which
devices would be randomly disconnected for 9 s at a time. We assumed that devices
could spend 9 s offline before reconnecting because it takes devices up to about 9 s to
reconnect after entering Sleep Mode and losing their network connection [4].

Figure 5 shows a comparison of the data retention rates measured when network
connections were dropped for both unmodified web applications and web applications
that loaded our data synchronization technology.

Fig. 5. Data retention rates (Color figure online)

Network Data Buffering for Availability Improvement 9



The results show that the to-do and text chat applications achieved 100 % deliv-
erability rates without any data loss when they loaded our data synchronization tech-
nology, regardless of their connection patterns.

We also evaluated the web applications’ responsiveness and bandwidth usage when
they lost and subsequently re-established a network connection. To compare respon-
siveness, we had multiple test subjects try to use each of the three web applications
with a randomly selected set of conditions from the following list. The test subjects
then rated each application’s ease of use on a 5-point scale.

• The original web application on a network connection that would be randomly
dropped for 9 s at a time.

• The original web application with data synchronization on a network connection
that would be randomly dropped for 9 s at a time.

• The original web application on a network connection that was never dropped.

To evaluate bandwidth usage when losing and re-establishing a network connection,
we measured the amount of traffic generated by the three web applications both with and
without dropped connections; we then made a relative comparison of the results.

Fig. 6. Responsiveness survey results (Color figure online)

Fig. 7. Bandwidth usage (Color figure online)

10 T. Imai et al.



Figure 6 shows a comparison of UI responsiveness and Fig. 7 shows a comparison
of bandwidth usage.

The results show that our data synchronization technology was able to reduce the
perceived loss of responsiveness accompanying dropped network connections for both
the to-do application, which has no real-time constraints, and the text chat application,
which has real-time constraints on the order of several seconds. On the other hand, the
results also show that our data synchronization technology was not able to reduce the
perceived loss of responsiveness for the video chat application.

Our evaluation of bandwidth usage revealed savings of approximately 20 % for the
to-do application and 60 % for the text chat application when our data synchronization
technology was loaded.

5 Conclusion, Discussion, and Future Work

The DataCache and DataShrink features of VMA’s data synchronization technology
buffer web applications’ network communications to compensate for frequently
dropped connections on mobile networks. Our experimental results show that web
applications with real-time constraints of several seconds or less remain just as usable
and responsive when they are temporarily offline. On the other hand, we also found that
our data synchronization technology could not compensate for dropped network con-
nections in web applications with real-time constraints of one second or less.

Furthermore, our DataShrink feature was able to reduce bandwidth usage and improve
responsiveness by eliminating redundant web application requests and responses.

In addition to the data synchronization technology introduced in this paper, VMA
also has the ability to dynamically adjust UI and data processing in accordance with
user input. Together, these features allow VMA to make web applications safer and
more responsive.

We plan to apply our data synchronization technology to an even wider range of
web and native applications for further evaluation.

References

1. Fujitsu Laboratories Ltd.: Fujitsu Laboratories Develops Virtualization Technology that
Brings Security and Operability to Web Applications, 29 May 2015. http://www.fujitsu.com/
global/about/resources/news/press-releases/2015/0529-01.html

2. Ijtihadie, R.M., Chisaki, Y., Usagawa, T., Cahyo, H.B., Affandi, A.: Offline web application
and quiz synchronization for e-learning activity for mobile browser. In: 2010 IEEE Region 10
Conference, TENCON 2010, 21–24 November 2010, pp. 2402–2405 (2010)

3. Goncalves, E., Leitao, A.M.: Offline execution in workflow-enabled Web applications. In: 6th
International Conference on the Quality of Information and Communications Technology,
QUATIC 2007, 12–14 September 2007, pp. 204–207 (2007)

4. Chen, W.-P., Licking, S., Ohno, T., Okuyama, S., Hamada, T.: Performance measurement,
evaluation and analysis of Push-to-Talk in 3G networks. In: IEEE International Conference on
Communications, ICC 2007, 24–28 June 2007, pp. 1893–1898 (2007)

Network Data Buffering for Availability Improvement 11

http://www.fujitsu.com/global/about/resources/news/press-releases/2015/0529-01.html
http://www.fujitsu.com/global/about/resources/news/press-releases/2015/0529-01.html


Upgrading Wireless Home Routers for Enabling
Large-Scale Deployment of Cloudlets

Christian Meurisch1(B), Alexander Seeliger1, Benedikt Schmidt1,
Immanuel Schweizer1, Fabian Kaup2, and Max Mühlhäuser1

1 Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
{meurisch,seeliger,schmidt,schweizer,max}@tk.tu-darmstadt.de

2 Peer-to-Peer Systems Engineering Lab, Technische Universität Darmstadt,
Darmstadt, Germany

fkaup@ps.tu-darmstadt.de

Abstract. Smartphones become more and more popular over recent
years due to their small form factors. However, such mobile systems
are resource-constrained in view of computational power, storage and
battery life. Offloading resource-intensive tasks (aka mobile cloud com-
puting) to distant (e.g., cloud computing) or closely located data centers
(e.g., cloudlet) overcomes these issues. Especially, cloudlets provide com-
putational power with low latency for responsive applications due to their
proximity to mobile users. However, a large-scale deployment of range-
restricted cloudlets is still an open challenge. In this paper, we propose a
novel concept for a large-scale deployment of cloudlets by upgrading wire-
less home routers. Beside router’s native purpose of routing data packets
through the network, it can now offer computing resources with low
latency and high bandwidth without additional hardware. Proving our
concept, we conducted comprehensive benchmark tests against existing
concepts. As result, the feasibility of this concept is shown and provide a
promising way to large-scale deploy cloudlets in existing infrastructures.

Keywords: Wireless home router · Mobile cloud computing · Cloudlet ·
Smartphones · Offloading · Edge computing

1 Introduction

Many mobile services require complex computations, e.g., voice processing for a
dialogue system or image processing for an augmenting application. Such services
need to address the performance requirements while considering the short bat-
tery life of mobile devices [22]. To address this challenge most service providers
rely on mobile cloud computing [10,12]: resource-intensive tasks are offloaded to
distant servers [18]. However, latency and network traffic are one of the down-
sides of this approach. Therefore, mobile cloud computing is best suited for
applications with need of high availability and global view like social networks.
Applications with high computing requirements and the need for responsiveness
are not perfectly suited for the cloud computing approach.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 12–29, 2015.
DOI: 10.1007/978-3-319-29003-4 2



Upgrading Wireless Home Routers 13

An alternative to mobile cloud computing is the use of cloudlets [24].
Cloudlets are small-scale servers which are distributed over the environment.
Mobile devices connect to nearby cloudlets to distribute computation tasks and
benefit from a one-hop latency over wireless communication technologies [24].
Thus, cloudlets offer a promising tradeoff between performance gain, low net-
work traffic and especially low latency. This makes cloudlets especially relevant
for applications with high computation and responsiveness requirements like face
or object recognition with the fast processing of big sensor data [17].

A combination of cloud computing and an extensive dissemination of
cloudlets would address the requirements of various types of mobile services.
While mobile cloud computing is well-established, there is no extensive dissemi-
nation of cloudlets, yet. Two different approaches for the realization of cloudlets
have been proposed. First, a grassroots perspective, focusing on the deployment
by local businesses (e.g., cafes or shopping malls) which step-by-step evolves
to a large-scale infrastructure offered and maintained by the businesses [24].
The second perspective is the integration of cloudlets into Internet’s routing
infrastructure at the gateways of ISPs [6] or by combining cloudlets and wire-
less mesh networks, deployed in hotspots [16]. However, each concept requires
the deployment of additional computing hardware by different entities resulting
in deployment and operation costs. Therefore, the realization of a dense and
economic cloudlet infrastructure is still an open challenge.

In this paper, we propose a router-based cloudlet concept to realize an exten-
sive dissemination of cloudlets based on existing infrastructure. Our concept
promises a dense distribution of cloudlets in many countries while avoiding
unpredictable economic risks for the involved parties. On average, 73.0 % of
EU households [27] and 75.6 % of US households [13] have access to the Internet
in 2011, many of them using wireless routers to connect to the Internet. Hence,
in our view, wireless home routers are well-suited for a large-scale, dense and
economic infrastructure [19] to offload computational tasks from mobile systems.

Beside router’s native purpose of routing data packets through the network,
our concept offers its computing resources to mobile devices without deploying
additional hardware. In other words, we treat a wireless home router as cloudlet
with both networking and computing capabilities. Mobile devices connecting to
such nearby located router via wireless technologies (i.e., WLAN) benefit from
offloading capabilities with low latency and high bandwidth. We imagine two
use cases; on the one hand, responsive applications (e.g., face recognition), that
require low latency and fast responses, can be directly served by the router
maintaining a soft state (i.e., temporary cache). On the other hand, contextual
applications, that require historical data in some circumstances, can leverage
the router as intermediate layer to the cloud which preprocesses data and, thus,
reduces network traffic for connections with high latency.

The concept needs to be assessed with respect to two main aspects:
(1) feasibility – what is necessary to use current state of the art routers as cloudlet
(2) performance – do the limited computational capabilities of routers justify
the effort compared to other techniques. In this paper, we report the concept,



14 C. Meurisch et al.

assess the feasibility and conduct performance benchmark tests covering energy
consumption, resource usage, network traffic, latency and processing time for the
following approaches: (1) local mobile processing, (2) cloudlet processing, and (3)
cloud computing.

In summary, the contributions of this paper are twofold:

Concept for Router-based Cloudlets. We propose a novel concept for solv-
ing large-scale, dense and economic deployment issues of range-restricted
cloudlets utilizing existing wireless home routers for mobile cloud comput-
ing. In detail, a nearby located wireless home router can now offer computing
resources to mobile devices without deploying additional hardware, beside
router’s native purpose of routing data packets through the network.

Performance Benchmarks. Proving our concept we conducted compre-
hensive benchmark tests against existing concepts like cloud or common
cloudlets. These tests cover measurements of energy consumption, resource
usage, network traffic, latency, and processing time from the viewpoint of a
mobile device.

The remainder of this paper is organized as follows. First, we give an overview
of related work and work out open issues. Second, we report the concept of
upgrading wireless home routers as cloudlet for enabling large-scale deployment
on existing infrastructure. After reporting, the experimental setup and method-
ology is described. The paper closes with benchmark report, discussion of the
benchmark results, and conclusion.

2 Related Work

The need for offloading computational tasks and storage from resource-
constrained mobile systems (e.g., smartphones, Internet-of-things devices) intro-
duced mobile cloud computing [1,12,15,21] or cyber foraging [3,23] about fifteen
years ago. Since then, various offloading approaches regarding networked com-
puting infrastructures (e.g., cloud computing [18], cloudlets [24,25,30], fog com-
puting [4,28]) and offloading strategies (e.g., MAUI [9], CloneCloud [7]) were
proposed to find a tradeoff between performance, latency and network traffic.

In the following we revisit different strategies to realize computation tasks
with mobile devices [10]:

Mobile Computing. Mobile devices are able to process data locally without
latency issues. However, due to their small form factor and high mobility
mobile devices have limited resources, e.g., battery life, storage and compu-
tational power [22].

Cloud Computing. Resource-intensive tasks are offloaded via the internet from
mobile devices to centralized resourceful data centers, the cloud. The cloud
is a highly scalable computing and storage infrastructure hosted by cloud
providers (e.g., Google, Amazon, and Salesforce) [18]. A cloud serves and
stores personal data of hundreds or thousand users at a time. Security, pri-
vacy and trust are highly critical points. However, clouds are distant to



Upgrading Wireless Home Routers 15

Fig. 1. Original cloudlet concept firstly proposed by [24] and deployment challenges
for a comprehensive computing network infrastructure are marked in red (Color figure
online).

mobile users and have too long WAN latency for responsive applications.
But they are well-suited for applications requiring a global view or historical
data. Moreover, only few data centers are deployed in the world with high
building and operational costs.

Cloudlet. Resource-intensive tasks can also be offloaded from mobile devices via
wireless technologies (e.g., WLAN) to a cloudlet (cf. Fig. 1), a proximate
decentralized computing infrastructure hosted by a local business (e.g., cof-
fee shop) [24] or ISPs [6]. It provides low latency due to its proximity to
mobile users and high bandwidth. Thus, cloudlets are well-suited for real-
time responsive applications like face, gesture or object recognition that only
need temporary caches [20]. Cloudlets only need to serve few users at a time.
However, a large-scale deployment of current approaches is difficult due to
their range restrictions and their high costs.

In summary, we identified three issue groups that need to be considered in
terms of mobile cloud computing: limited mobile resources (e.g., battery life,
storage, computational power), communication issues (e.g., latency, bandwidth,
network traffic) and remote processing issues (e.g., security, privacy, ownership,
scalability, deployment and operational costs). Focussing on cloudlets, the first
two issue groups are overcome by that approach [24], i.e., cloudlets offer offload-
ing resource-intensive tasks with low latency and high bandwidth to overcome



16 C. Meurisch et al.

limited resources on mobile devices. However, we see an open challenge in the
last issue group for cloudlets, especially a deployment concept for establishing a
comprehensive and dense computing infrastructure with cloudlets is still missing.
Figure 1 shows the original cloudlet concept firstly proposed by Satyanarayanan
et al. in 2009 [24], where cloudlets are deployed in local businesses like coffee
shops or shopping malls. Since then, a large-scale and economic deployment
concept does not exist. We also mark the key components in red (cf. Fig. 1)
that are responsible for failure of a large-scale deployment, namely, the need of
deploying additional computing hardware and the deploying in local businesses
which are not geographical dense and comprehensive distributed.

In this paper, we address the main issue of cloudlets: a large-scale deployment.
A comprehensive, dense and highly available but economic cloudlet infrastruc-
ture is essential to make this approach suitable for everyday life.

3 Concept for Router-Based Cloudlets

We propose router-based cloudlets to offload computations from mobile device.
Like most offloading techniques, we strive for saving resources and increase
responsibility for a better user experience. Our concept benefits from the dense
distribution of wireless routers which will result in a large-scale, dense and eco-
nomic cloudlet infrastructure without the need for new infrastructure invests.
This approach can complement existing cloudlet deployment concepts (e.g. ,
local business, ISP gateway). A router-based cloudlet infrastructure will increase
the overall awareness of cloudlets and their benefits. This might also facilitate
the existing deployment concepts with more computational power. In the follow-
ing, we specify our concept for router-based cloudlets. First, we investigate the
feasibility on device level: can routers be used as cloudlets? Second, we investi-
gate the creation of an infrastructure based on cloudlets of routers to be used by
mobile devices. Third, we consider the community environment of the concept
and address legal and social challenges of the process.

3.1 Device (Router)

Inspired by active network research [14,29], our goal is to leverage computational
power from wireless home routers. While these routers are currently only used
as network devices, we also want to use them as cloudlets, i.e., providing com-
putational power in the network (cf. Fig. 2). To add this functionality, a basic
software update or firmware customization is sufficient for many routers (see the
evaluation section of this paper for details). This process can open a socket for
computational task requests. In the future the cloudlet functionality could be
integrated from manufactures or ISPs that provide routers to customers.

Mobile devices can simply connect to wireless routers and benefit either from
high-bandwidth to the cloud for contextual applications that need global or
historical view (Internet latency) or from computational power of routers for



Upgrading Wireless Home Routers 17

Fig. 2. Original cloudlet concept firstly proposed by [24] (left) and our approach for
enabling a large-scale deployment of cloudlets by upgrading wireless home routers
(right).

responsive applications (LAN latency). Depending on the need of mobile appli-
cations, requests are sent to different endpoints: benefiting from cloud, requests
are addressed to cloud’s IP address or hostname. These requests are automati-
cally forwarded by routers (sharing of high-bandwidth Internet connection).

A specific benefit of routers for the intended purpose is that they are always
online (Internet, power grid), have a low latency (near located), and a high band-
width (WLAN). Drawbacks of routers are their low range and low computational
power. It is necessary to address the low range with respective infrastructure pro-
tocol (see next paragraph). For the low computational power, a further inves-
tigation of the performance of modern routers considering the benefit of low
latency is required (see evaluation section).

3.2 Infrastructure

The router-based cloudlets need to be accessible as an infrastructure to be
used by mobile devices. As already mentioned, we assume that the router-based
cloudlet infrastructure will be complemented by dedicated cloudlets. All cloudlet
types need to be integrated on one infrastructure.

The most important challenge is how to access the devices and structure
the use. Next to the discovery, challenges with respect to congestion handling,
failure handling and handover need to be addressed. For most problems, similar
challenges have already been addressed for cellular networks, therefore we plan
to transfer existing solutions to the cloudlet domain. To realize discovery, we
plan to build a router guest network with all routers using a similar SSID.
If computations are not finalized before a device leaves the range, handover
mechanisms are required. Additionally, failure handling mechanisms, which also
take account of the cloud as a fallback solution, will be considered.

3.3 Community

The real world deployment of routers as cloudlets has to address different social
and legal challenges. In the following, we consider three important aspects:



18 C. Meurisch et al.

Willingness and Activation. How could we motivate household owners to
upgrade their private routers as cloudlet and share these resources with oth-
ers? We believe in a “give-and-take concept” similar to established concept
for free mobile Internet like in the research project Mobile ACcess1 by uni-
versity RWTH Aachen or in the commercial sharing product “WLAN TO
GO”2 by Internet provider Deutsche Telekom. Inspired by these concepts,
mobile users sharing and upgrading their own home routers as cloudlets are
allowed to connect to nearby upgraded cloudlet routers of other participants
and benefit from these offloading resources. Activation or upgrading router to
a cloudlet could be simply software-based done by either a firmware update
through owners or already customized firmware of manufactures or Internet
providers.

Security and Privacy. How could both the home network and its resources be
secured? How could we protect the privacy of members of the households and
participating mobile users? Modern customary routers provide the possibility
to setup a home network and an isolated guest network (including our test
router Asus RT-AC87U3). We could utilize such software-based separation
of two networks to isolate home network and the public accessible network
providing cloudlet functionalities. In future, manufacturers can think about
hardware-based separation of both networks and provide dedicated cloudlet
functionalities inherently.

Legal Issues and Digital ID. How is the legal position in crime situation by
sharing resources? How could we identify and authorize users to allow them
access to routers’ resources? The legal position in crime situation is still an
open question in our concept or in common cloudlet deployment (e.g., in
a coffee shop) and depends from country to country. However, we propose
an authorization and an authentication mechanisms to get access to other
routers. First, a household owner upgrades and shares his wireless home
router to other participants. As consequence, he gets the right to access
other routers of participants (authorization). Second, his upgraded router
and his mobile devices exchange device IDs and a digital ID similar to an
authentication token that is unique for each household. Connecting to other
routers this token is sent for checking participating users (authentication).
A centralized instance (e.g., Internet provider) need to maintain digital IDs
and access rights. In this way, every usage of other routers are personalized
and the use can be traced back to specific household and natural person for
law cases.

Nevertheless, to show the feasibility and the high potentials of our concept
to build a dense, comprehensive and economic computing infrastructure that is
highly available, we conducted benchmark tests against current cloudlet concepts
1 http://mobile-access.org (accessed 2015-08-10).
2 http://www.telekom.de/privatkunden/zuhause/zubuchoptionen/internet-optionen/

hotspot/wlan-to-go (accessed 2015-08-10).
3 http://www.asus.com/Networking/RTAC87U/specifications (accessed 2015-08-10).

http://mobile-access.org
http://www.telekom.de/privatkunden/zuhause/zubuchoptionen/internet-optionen/hotspot/wlan-to-go
http://www.telekom.de/privatkunden/zuhause/zubuchoptionen/internet-optionen/hotspot/wlan-to-go
http://www.asus.com/Networking/RTAC87U/specifications


Upgrading Wireless Home Routers 19

and clouds. The tests should show that routers suffice the performance require-
ments; in other words, it is first necessary to show that the comparatively weak
computational power of a home router is of no consequence in processing time
of offloading tasks because of benefiting from the low latency due to the prox-
imity and high bandwidth over wireless LAN technologies. In the next section
we describe the experimental setup, before we report and discuss the results of
conducted benchmark tests.

4 Experimental Setup

In this section the experimental setup, i.e. hardware components and measure-
ment methodology is described. Our experimental setup consists of a mobile
device and different offloading systems (i.e., cloud, cloudlet, our router-based
cloudlet) for comparing. Our goal is to show that modified wireless routers match
performance requirements of a cloudlet. For that, we measure energy consump-
tion and resource usage on mobile device as well as task completion time divided
into network delay and processing delay when offloading computational tasks to
each system.

4.1 Hardware

Mobile Device. We use a LG Nexus 5 smartphone with quad-core ARM
processor (Qualcomm Snapdragon 800) which each core running at 2.26 GHz,
2GB memory and 16GB storage (cf. Table 1). The operating system is updated
to the recent standard Android 5.1.1 ROM, namely Lollipop. All background
services not required for running the operating system are disabled. Nexus 5 is
equipped with 2300mAh Lithium polymer (LiPo) battery by default. We chose
that smartphone because it includes all electronics required for measuring the
battery voltage and the current flowing from battery to the device. Thanks
to integrated MAX170485 fuel-gauge chip4 that provides high-accuracy voltage
measurements and battery level estimation. It has a resolution of 1.25 mV with
an error of 7.5 mV. Accurate enough for our measurement purpose to detect dif-
ferences between the single offloading use cases. Nexus 5 is also equipped with
an IEEE 802.11 a/b/g/n/ac wireless transmitter and supports all digital cellular
networks ranging from 2G (GSM) to 4G (LTE). As result, this smartphone is
able to offload tasks over Internet to the cloud as well as over wireless LAN to
cloudlets or wireless routers.

Cloud. As cloud backend, we deployed three Amazon Elastic Compute Cloud5

(EC2) instances, namely c3.large, hosted at different countries with different
pricing models (cf. Table 2). Each instance provides two compute units, 4GB

4 http://www.maximintegrated.com/en/products/power/battery-management/
MAX17048.html (accessed 2015-08-10).

5 https://aws.amazon.com/en/ec2 (accessed 2015-08-10).

http://www.maximintegrated.com/en/products/power/battery-management/MAX17048.html
http://www.maximintegrated.com/en/products/power/battery-management/MAX17048.html
https://aws.amazon.com/en/ec2


20 C. Meurisch et al.

Table 1. Smartphone specifications

Model LG Nexus 5

Processor Quad-core 2.26 GHz Qualcomm Snapdragon 800 (ARM)

Memory 2GB RAM

Storage 16GB

OS Android v5.1.1 (Lollipop)

Power 3.8 V, 2300 mAh LiPo battery (8.74 Wh)

WLAN IEEE 802.11 a/b/g/n/ac, dual-band (2.4/5 GHz)

Network GSM (2G)/UMTS (3G)/HSDPA (3.5G)/LTE (4G)

RAM and 32GB SSD storage. For deploying our processing code written in
JavaScript, we utilize Amazon Elastic Beanstalk6 to automatically setup an
appropriate runtime environment (i.e., Linux, NodeJS).

One focus of our benchmarking is task completion time, not only computa-
tional power is relevant, but also network latency. Thus, we test three different
located clouds (US West, central Europe, Asia Pacific) with same computa-
tional power to get the impact of network latency [8]. In Table 2, linear distances
between our measurement conducting location (Darmstadt, Germany) and the
cloud data centers are listed. Only considering the distance, clouds are at a
disadvantage compared to nearby located cloudlets regarding latency because
of physical constraints: information cannot propagate faster than the speed of
light (∼3 · 108 m/s) when dealing with long distance. While light is able to use
beeline, information travels through deployed glass fiber infrastructure with a
slightly longer path (let’s assume 20 % longer) and with refractive index of about
1.5. Simple mathematical calculations provide us the result how long light need
only to travel via air and via glass fiber to the cloud and back (cf. Table 2, RTT).
As result of this simple calculations, we can say latency cannot be ignore when
talking about distant clouds. Regarding costs: building and operating a data
center is extremely expensive for a cloud provider; that is the reason why only
few data centers exist worldwide. As user, the setup of a cloud is free but using
resources are expensive, as you see the pricing model (costs per working hour)
in Table 2.

Cloudlet. As cloudlet we use a desktop computer with quad-core x64 processor
(Intel Core i7) running each core at 3.6 GHz, 16 GB RAM, 1TB HDD storage
and linux-based operating system (Table 3). The same processing code as used
for the cloud is also used for the cloudlet. The cloudlet is placed in the near of the
mobile device as well as has one-hop latency and LAN bandwidth. Deploying
such a cloudlet server would cost about 1,000$ acquisition cost and about 11
Cent operational costs per hour. Considering these sums of money and range
6 https://aws.amazon.com/en/elasticbeanstalk (accessed 2015-08-10).

https://aws.amazon.com/en/elasticbeanstalk


Upgrading Wireless Home Routers 21

Table 2. Cloud specifications: Amazon EC2 instances (as of 08/2015)

US West (Oregon) EU (Frankfurt) Asia Pacific (Sydney)

Instance c3.large

Processor 2 vCPU (Intel Xeon E5-2680 v2 2.8 GHz)

Memory 4 GB RAM

Storage 2x 16GB SSD

OS 64 bit Amazon Linux 2015.03 v2.0.0

Distance (beeline) [km] 8,500 30 16,500

RTT (air) [ms] 57 0.2 110

RTT (glass fiber) [ms] 85 0.3 165

Costs (asset/working) [$] –/0.105 –/0.129 –/0.132

Table 3. Cloudlet specifications

Processor Quad-core 3.6 GHz Intel Core i7-4790 (x64)

Memory 16 GB RAM

Storage 1 TB HDD

OS Linux

Power 350 W power adapter

LAN Realtek PCIe 10/100/1000Mbps Gigabit Ethernet

Costs (asset/working) [$] 1000/0.11

restrictions, a comprehensive, dense and economic infrastructure of cloudlets
using this deployment concept becomes unrealistic.

Wireless Home Router as Cloudlet. We built a proof-of-concept prototype
to show the feasibility and explore the performance of our concept. For that,
we use a customary wireless home router (Asus RT-AC87U) with a dual-core
ARM processor, 256MB memory and OpenWRT7, an open-source linux-based
operating system (cf. Table 4). This operation system provides us SSH access
to the router. Taking no account of security and privacy for the first proto-
type, we installed required softwares directly on the router’s system. We chose
NodeJS8 - an open source, lightweight, cross-platform runtime environment -
for building our network application. Three main benefits were decisive: firstly,
the fast and easily developing on high-level programming language (JavaScript).
Secondly, NodeJS is built on C++-written Google’s V8 JavaScript engine9 that
is extremely fast, uses minimal resources and compiles JavaScript source code
7 https://openwrt.org (accessed 2015-08-10).
8 https://nodejs.org (accessed 2015-08-10).
9 https://code.google.com/p/v8 (accessed 2015-08-10).

https://openwrt.org
https://nodejs.org
https://code.google.com/p/v8


22 C. Meurisch et al.

Table 4. Wireless Home Router specifications

Model Asus RT-AC87U

Processor Dual-core 1 GHz Broadcom BCM4709 (ARM Cortex-A9)

Memory 256 MB RAM

Storage 128 MB

OS DD-WRT

Power 19 V, 1.75 A

WLAN IEEE 802.11 a/b/g/n/ac, 4× 4 dual-band (2.4/5 GHz)

Costs (asset/working) [$] 270/0.005

directly to native machine code. Thirdly, we can reuse and easily deploy the
same code for data processing to the servers (e.g., cloud, cloudlet). Thus, NodeJS
matches all requirements to build real-time networking applications. We open
a socket for leveraging computational power of router via wireless technologies
(802.11) by the mobile device. In our first prototype we used established Internet
protocols: TCP as transport protocol and HTTP as application protocol. In this
case, we are able to send and compare same requests to wireless router, cloudlet
or cloud.

While a deployment of cloudlets required additional computing hardware as
proposed by [24] is very expensive, our concept is based on a simple firmware
update of already existing infrastructure components (i.e., wireless home router).
Household owners do not have additional acquisition costs. Due to the fact that
routers as network devices are already continuously online, we recognize minimal
high operational costs for utilizing additional computing power. Nevertheless, for
that, household owners benefit from offloading possibilities to other routers.

4.2 Measurement Methodology

Application Profiler. Program profiling is an obvious approach for optimiza-
tion and comparison systems [5,31]. Thus, an implemented lightweight runtime
profiler (i.e., an Android app running in the background) measures following
metrics for our benchmarks: task completion time, processing time, and net-
work delay time. In addition to them, the profiler permanently monitors and
logs resource usages: CPU usage, memory usage, and energy consumption on
the mobile device. We chose a sampling rate of 500 ms for CPU and memory
monitoring and a sampling rate of 50 ms - a good, empirical determined balance
between accuracy and CPU load - for energy measurements.

Dataset and Computational Task. While our main goal is to compare per-
formance locally against offloading concepts, the choice of the dataset and the
computational task is secondary and replaceable. We chose a set of sensor data,
more precisely raw location values, and evaluate them for place detection uti-
lizing resource-intensive clustering algorithm DBSCAN with an overall average



Upgrading Wireless Home Routers 23

Table 5. Theoretical and measured network configurations

Network Theoretical bandwidth Measured bandwidth

(up-/download) [Mbps]

LAN 100Mbps–1Gbps 310.80 ± 120.39

WLAN (802.11n/ac) 6.5–300 Mbps (4× 4, 20 MHz) 160.95 ± 23.12

DSL (6,000) 6,016 kbps 0.63 ± 0.04/5.44 ± 0.77

GSM (2G) 9.6 kbps 0.24 ± 0.06/0.10 ± 0.01

UTMS (3G) 384 kbps 1.90 ± 0.25/5.75 ± 1.00

LTE (4G) 150Mbps–1 Gbps 2.19 ± 0.28/16.00 ± 1.43

runtime complexity of O(n log n) [11]. But other responsive use cases or dataset
are imaginable, e.g., speak, activity, face, object or gesture recognition [20]. To
ensure repeatability across different benchmark runs, the input data consisting
of location values is fixed and equal, i.e., we ignore the tracking of sensor data
that is not relevant for this paper, but we reference to our previous work for mea-
suring sensor tracking [26]. For our benchmark purpose, we created six datasets
varying in their data size (50 kB, 100 kB, 200 kB, 300 kB, 400 kB, 500 kB) in
advance to measure their impact.

Measurements. We tested 15 different scenarios consisting of local and offload-
ing processing: (1) locally on the device, (2) cloudlet over wireless LAN, (3–14)
three different located clouds (US West, EU, Asia Pacific) over four different
wireless networks (2G, 3G, 4G, wireless LAN/DSL), and (15) our router-based
cloudlet concept over wireless LAN. The theoretical and measured network con-
figuration used in our benchmark tests can be found in Table 5. For measuring,
we disabled all background services not required for running the operating sys-
tem. The display was switched off during the measurement runs. We start to
monitor and log energy consumption, CPU and memory usage. Each measure-
ment scenario was then measured with our six different datasets as follows: first,
we run a baseline measurement for 30 s to get the default average resource usage
of operating system processes and our profiler tool. Second, we executed five
times the same task processing with the same dataset - either locally or on a
remote system depending on the scenario - and measure for each task processing
its completion time consisting of network delay and processing time on the exe-
cutable system. A task processing run works as follows: the smartphone sends the
specific dataset to the offloading system, the offloading system processes these
data by executing the DBSCAN algorithm, and sends the resulting clusters as
well as the processing time back to the mobile device. Finally, the resulting val-
ues of these five runs were averaged to reduce measurement errors. From these
values (i.e., energy consumption, CPU and memory usage) were subtracted the
baseline values to get isolated values only for the offloading tasks. In the next
section, we report these benchmark results and discuss implications.



24 C. Meurisch et al.

5 Benchmark Results

To prove our novel and economic deployment concept of cloudlets in terms of per-
formance and being suitable for daily use, we conducted benchmark tests against
local processing on the mobile device and existing state of the art offloading con-
cepts, i.e., cloud and cloudlets. While all three clouds in our test are equipped
with the same resources (cf. Table 2), we only report one of them in our bench-
mark results for better clarity. For that, we chose the one (US West instance)
with the intermediate latency of the three various distant clouds (cf. Fig. 3).

50 100 150 200 250 300 350 400 450 500
Data size [kB]

100

101

R
T

T
 (

lo
ga

rit
hm

ic
) 

[s
]

Cloud Asia 3G
Cloud US West 3G
Cloud EU 3G

Fig. 3. Comparison of network delays between different located Amazon clouds

Figure 4 shows the entire benchmark results over different computational
tasks, where the computational expense and the network traffic depends on
the data size. We measured completion times consisting of network transmis-
sion delay (except in the case of local processing) and the pure processing time
for analyzing the sensor data (cf. Fig. 4(a)–(c)) as well as resource usages on
the mobile device, i.e., cpu usage, memory usage, and energy consumption (cf.
Fig. 4(d)–(f)).

Considering completion times, cloudlets with additional hardware (compa-
rable to the cloud resources in this benchmark tests) are the best choice in our
computational task use case (cf. Fig. 4(a)). Our router-based cloudlet approach,
that does not need any additional hardware, even outperforms the clouds with
weak Internet access at small data sizes. Local processing on mobile device is
sufficient at small data sizes because of enough computational power for that
task and no network delay. However, if the complexity of the computational
task increases, the need for offloading becomes obvious. In our laboratory test,
the offloading systems are only utilized by one client. But, we need to consider



Upgrading Wireless Home Routers 25

50 100 150 200 250 300 350 400 450 500
Data size [kB]

10-1

100

101

102
C

om
pl

et
io

n 
tim

e 
(lo

ga
rit

hm
ic

) 
[s

]

Locally (Nexus 5)
Cloudlet
Router (Our approach)
Cloud US West 2G
Cloud US West 3G
Cloud US West 4G
Cloud US West WLAN

(a) Completion times

50 100 150 200 250 300 350 400 450 500
Data size [kB]

10-1

100

101

R
T

T
 (

lo
ga

rit
hm

ic
) 

[s
]

(b) Network delays: RTT

50 100 150 200 250 300 350 400 450 500
Data size [kB]

10-3

10-2

10-1

100

101

102

P
ro

ce
ss

in
g 

tim
e 

(lo
ga

rit
hm

ic
) 

[s
]

(c) Processing times

50 100 150 200 250 300 350 400 450 500
Data size [kB]

0

10

20

30

40

50

60

C
P

U
 u

sa
ge

 [%
]

(d) CPU usages (on mobile device)

50 100 150 200 250 300 350 400 450 500
Data size [kB]

54

56

58

60

62

64

66

68

70

72

M
em

or
y 

us
ag

e 
[M

B
]

(e) Memory usages (on mobile device)

50 100 150 200 250 300 350 400 450 500
Data size [kB]

200

250

300

350

400

450

500

550

600

650

700

P
ow

er
 [m

W
]

(f) Energy consumptions (on mobile device)

Fig. 4. Benchmark results over different computational tasks (represented by data
size); where (a)–(c) are metrics to measure the offloading process while (d)–(f) monitor
resources of the mobile device during that process. Our router approach is colored in
green, cloudlet in red, US West cloud with four different network configurations (2G,
3G, 4G, WLAN) is displayed in blue and local processing on mobile device in black
(Color figure online).

performance losses in real world scenario because of having multiple clients con-
necting to offloading systems and using the shared resources. The count of con-
necting clients strongly depends on range restrictions: while clouds are accessible
from everywhere over Internet, cloudlets and wireless routers are only accessible
in their radio range. As expected, cloudlets and our router-based cloudlet app-
roach have lowest network transmission delays over all data sizes due to their
nature of nearby located computing capabilities accessible over wireless LAN
(cf. Fig. 4(b)). Depending on the used network technologies the network delay



26 C. Meurisch et al.

to the clouds increases the smaller the possible bandwidth (i.e., WLAN, cellular
network: 4G, 3G, 2G). While processing times of clouds and cloudlet are almost
the same due to their similar hardware resources, processing times locally on
mobile device and our router-based cloudlet are constantly higher (cf. Fig. 4(c)).

While today’s smartphones are quipped with relative performant hardware
for their small form factor, reasons for offloading becomes directly visible by hav-
ing a look at the resource usages on the mobile device. Unsurprisingly, processing
tasks locally uses much more computational power than the network transmis-
sion process for offloading tasks on average (cf. Fig. 4(d)). The same is true for
the average memory usage on the mobile device (cf. Fig. 4(e)). A high average
utilization on the mobile device dramatically decreases the user experiences.
Interestingly, our approach of router-based cloudlet outperforms local process-
ing and other offloading systems in averaged energy consumption during the
task processing, especially cloud offloading over cellular network technologies
(cf. 4(f)). Offloading systems over wireless LAN connection perform the best,
i.e., high energy consumers are mobile device’s processor and connections over
cellular network. In summary, mobile users benefit from our router-based cloudlet
concept in terms of low network latency, low resource usage and particularly low
energy consumption.

6 Discussion and Future Work

In this section, we discuss our concept considering benchmark results and give
an outlook and potentials of future works.

6.1 Router’s Performance

While the benefits of wireless routers as cloudlets are obvious (e.g., low latency,
high bandwidth, economic), the performance of router is weaker than other state
of the art offloading systems and even local processing. The reason for this is that
typical routers are primarily constructed for routing tasks. Nevertheless, latest
home routers are already equipped with multi-core and offloading processors for
concurrent task processing and will become more and more powerful. We will
also connect neighboring wireless routers of various households to a computing
mesh network and increase both the computational power as well as the range
for connecting to this infrastructure. Such dense and decentralized infrastructure
is well suited for distributed computing (inspired by SETI@Home [2]) and is also
resilient in disaster scenarios, as proposed and proved in our previous work [19].
Additionally, each router can also use its connected existing intranet resources
(e.g., smart tv, laptop) after a software-based upgrade through (wireless) LAN
to overcome performance issues. In this scenario, the router acts as master and
distributes computational tasks over its dynamically online LAN resources.



Upgrading Wireless Home Routers 27

6.2 Offloading Strategy

We see our concept of router-based cloudlets as economic complement to existing
offloading systems to enable large-scale deployment. In this light, while wireless
routers are always connected to Internet, we will research in offloading strategies
where the router decide when and where to offload computational task, e.g., to
the cloud. It is also imaginable that routers accessible through high-bandwidth
WLAN preprocess specific data to reduce network traffic to distant offloading
systems.

6.3 Discovery, Handover, and Failure Handling

How can mobile users discover and connect to router-based cloudlets? is still an
open and important question to make cloudlets suitable for daily use. Inspired
by cellular network technologies that solve some of these issues, e.g., handover of
computational tasks, a failure handling strategy for the case if the mobile user
gets out of range before the task is finished.

7 Conclusion

In this paper, we proposed a novel concept for enabling a large-scale deploy-
ment of cloudlets only using existing infrastructure by software-based upgrading
wireless home routers. Beside router’s native purpose of routing data packets
through the network, it can now offer computing resources with low latency and
high bandwidth without additional hardware.

Proving our concept in terms of performance and being suitable for daily use,
we conducted benchmark tests against local processing on the mobile device and
existing state of the art offloading concepts, i.e., cloud and cloudlets. As result, we
cannot show computational performance gain but low network delays and traffic
towards existing offloading systems by now. Nevertheless, overcoming compu-
tational weaknesses, e.g., through also utilizing connected intranet resources by
software-based upgrade or building computing mesh network with neighboring
wireless routers, this concept provides enormous potentials for real world usage
of in-network computing capabilities.

The feasibility of this concept is already given. Router-based cloudlets pro-
vide a promising and complementary way to enable a large-scale deployment
of cloudlets in existing infrastructures. This also opens an interesting field for
diverse real-time constrained and contextual applications, e.g., assistance sys-
tems or face recognition.

Acknowledgments. This work has been co-funded by the LOEWE initiative (Hessen,
Germany) within the NICER project and by the German Research Foundation (DFG)
as part of project B02 within the Collaborative Research Center (CRC) 1053 – MAKI.



28 C. Meurisch et al.

References

1. Aijaz, A., Aghvami, H., Amani, M.: A survey on mobile data offloading: technical
and business perspectives. IEEE Wireless Commun. 20(2), 104–112 (2013)

2. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

3. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.-I.: The case
for cyber foraging. In: 10th Workshop on ACM SIGOPS European Workshop, pp.
87–92. ACM (2002)

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: 1st Workshop on Mobile Cloud Computing (MCC 2012), pp.
13–16. ACM (2012)

5. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIX Annual Technical Conference, vol. 14 (2010)

6. Chen, Y., Liu, B., Chen, Y., Li, A., Yang, X., Bi, J.: PacketCloud: an open platform
for elastic in-network services. In: 8th International Workshop on Mobility in the
Evolving Internet Architecture (MobiArch 2013), pp. 17–22. ACM (2013)

7. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execu-
tion between mobile device and cloud. In: 6th Conference on Computer Systems
(EuroSys 2011), pp. 301–314. ACM (2011)

8. Clinch, S., Harkes, J., Friday, A., Davies, N., Satyanarayanan, M.: How close is close
enough? understanding the role of cloudlets in supporting display appropriation
by mobile users. In: 10th International Conference on Pervasive Computing and
Communications (PerCom 2012), pp. 122–127. IEEE (2012)

9. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: MAUI: making smartphones last longer with code offload. In: 8th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2010), pp. 49–62. ACM (2010)

10. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless communications and mobile
computing 13(18), 1587–1611 (2013)

11. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: 2th International Confer-
ence on Knowledge, Discovery and Data Mining (KDD 1996), vol. 96, pp. 226–231
(1996)

12. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future
Gener. Comput. Syst., Elsevier 29(1), 84–106 (2013)

13. File, T.: Computer and internet use in the United States. Current Population
Survey Reports, P20–568. US Census Bureau, Washington, DC (2013)

14. Keller, R., Choi, S., Dasen, M., Decasper, D., Fankhauser, G., Plattner, B.: An
active router architecture for multicast video distribution. In: 19th International
Conference on Computer Communications, vol. 3, pp. 1137–1146. IEEE (2000)

15. Khan, A.K., Kiah, M.L.M., Khan, S.U., Madani, S.A.: Towards secure mobile
cloud computing: a survey. Future Gener. Comput. Syst., Elsevier 29(5), 1278–
1299 (2013)

16. Khan, K.A., Wang, Q., Grecos, C., Luo, C., Wang, X.: MeshCloud: integrated
cloudlet and wireless mesh network for real-time applications. In: 20th Interna-
tional Conference on Electronics, Circuits, and Systems (ICECS 2013), pp. 317–
320. IEEE (2013)



Upgrading Wireless Home Routers 29

17. Makris, P., Skoutas, D.N., Skianis, C.: On networking and computing environ-
ments’ integration: a novel mobile cloud resources provisioning approach. In: Inter-
national Conference on Telecommunications and Multimedia, pp. 71-76. IEEE
(2012)

18. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
19. Panitzek, K., Schweizer, I., Schulz, A., Bönning, T., Seipel, G., Mühlhäuser, M.:

Can we use your router, please?: benefits and implications of an emergency switch
for wireless routers. Int. J. Inf. Syst. Crisis Response. Manage. 4(4), 59–70 (2012)

20. Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa:
enabling interactive perception applications on mobile devices. In: 9th International
Conference on Mobile Systems, Applications, and Services (MobiSys 2011), pp. 43–
56. ACM (2011)

21. Sanaei, Z., Abolfazli, S., Gani, A., Buyya, R.: Heterogeneity in mobile cloud com-
puting: taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1),
369–392 (2014)

22. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: 15th Sym-
posium on Principles of Distributed Computing (PODC 1996), pp. 1–7. ACM
(1996)

23. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Com-
mun. 8(4), 10–17 (2001)

24. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

25. Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng, J., Ha, K.: The
role of cloudlets in hostile environments. IEEE Pervasive Comput. 12(4), 40–49
(2013)

26. Schweizer, I., Bärtl, R., Schmidt, B., Kaup, F., Mühlhäuser, M.: Kraken.me mobile:
the energy footprint of mobile tracking. In: 6th International Conference on Mobile
Computing, Applications and Services (MobiCase 2014), pp. 82–89. IEEE (2014)

27. Seybert, H.: Internet use in households and by individuals in 2011. Eurostat Stat.
Focus 66, 2011 (2011)

28. Stojmenovic, I.: Fog computing: a cloud to the ground support for smart things and
machine-to-machine networks. In: Telecommunication Networks and Applications
Conference (ATNAC 2014), Australasia, pp. 117–122. IEEE (2014)

29. Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.:
A survey of active network research. Commun. Mag. 35(1), 80–86 (1997)

30. Verbelen, T., Simoens, P., DeTurck, F., Dhoedt, B.: Cloudlets: bringing the cloud
to the mobile user. In: 3th Workshop on Mobile Cloud Computing and Services
(MCS 2012), pp. 29–36. ACM (2012)

31. Wang, C., Li, Z.: A computation offloading scheme on handheld devices. J. Parallel
Distrib. Comput. 64(6), 740–746 (2004)



Activity Recognition and Crowdsourcing



Adaptive Activity and Context Recognition
Using Multimodal Sensors in Smart Devices

Sébastien Faye(B), Raphael Frank, and Thomas Engel

Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg,

4 rue Alphonse Weicker, 2721 Luxembourg, Luxembourg
{sebastien.faye,raphael.frank,thomas.engel}@uni.lu

Abstract. The continuous development of new technologies has led to
the creation of a wide range of personal devices embedded with an ever
increasing number of miniature sensors. With accelerometers and tech-
nologies such as Bluetooth and Wi-Fi, today’s smartphones have the
potential to monitor and record a complete history of their owners’ move-
ments as well as the context in which they occur. In this article, we
focus on four complementary aspects related to the understanding of
human behaviour. First, the use of smartwatches in combination with
smartphones in order to detect different activities and associated phys-
iological patterns. Next, the use of a scalable and energy-efficient data
structure that can represent the detected signal shapes. Then, the use
of a supervised classifier (i.e. Support Vector Machine) in parallel with
a quantitative survey involving a dozen participants to achieve a deeper
understanding of the influence of each collected metric and its use in
detecting user activities and contexts. Finally, the use of novel represen-
tations to visualize the activities and social interactions of all the users,
allowing the creation of quick and easy-to-understand comparisons. The
tools used in this article are freely available online under a MIT licence.

Keywords: Sensing system · Wearable computing · Activity detection

1 Introduction

In recent years, the growing availability and falling cost of smart devices have
opened up a world of opportunities for new applications. Apart from smartphones,
these connected objects include a wide range of ultra-portable devices that con-
stantly interact with the users and their environment. Among those wearables, the
vast majority are smartwatches and activity trackers. These have become very
diverse and are equipped with high-performance sensors that allow users to mon-
itor their physical activity in a way never possible before. Their sensors can read
metrics from arm or hand movements with an accuracy comparable to specialized
experimental devices [1]. These devices include physical sensors that are perma-
nently in contact with the user’s wrist, such as motion detectors (e.g. accelerome-
ters) and environmental monitoring sensors (e.g. light sensors, microphone). Their
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 33–50, 2015.
DOI: 10.1007/978-3-319-29003-4 3



34 S. Faye et al.

ability to monitor other physiological metrics, such as heart rate, leads to new areas
of research. Further, the recent arrival on the market of major players, like Apple,
Google and Microsoft, has facilitated the development and widespread adoption of
sensing applications, opening the way to many new areas, including health, sport,
andpersonalmonitoring.According toABIResearch, it is estimated that theglobal
market for wearables will reach 170 million in 2017 [2].

At present, whether we are talking about smartphones or wearables, these
connected objects are generally used individually and for specific consumer appli-
cations (e.g. fitness). In most cases, the classic data fusion from sensors is adapted
to be made in real time (e.g. pattern finding). This requires heavy-duty process-
ing algorithms and consumes energy. Moreover, most systems only use smart-
phones, whereas wearables are more suitable for detecting user activities. Finally,
few studies have looked at all types of existing sensors with the intention of arriv-
ing at a scalable and easy-to-implement solution.

In this paper, we intend to go one step further by presenting a sensing system
that combines the data collected by one smartwatch and one smartphone. The
platform that we have developed makes use of commercially-available devices and
can be used to analyse the activity of a monitored user in great detail. Possible
applications range from sports tracking systems to human behaviour modeling.
Our contribution addresses four complementary objectives. (1) The design of
an energy-efficient sensing system, using a streamlined fusion of data collected
on two devices (a smartphone and a smartwatch). (2) The use of a supervised
machine learning model to recognize user activities and their contexts. (3) The
combination of multimodal metrics to obtain more advanced feature sets and
generalize the recognition process. Finally, (4) the comparison of activities and
social interactions of different users using novel 3D visual representations.

In the following section we provide a review of existing literature. Next, in
Sect. 3, we present of our sensing system, which is focused on the devices used
for data collection and on how they communicate to exchange data. Section 4
describes our experimental campaign and how we used the collected metrics
to create the data set used for our analysis. Section 5 focuses on the analysis
of the data set and presents some relationships between metrics and a set of
predetermined activities using a Support Vector Machine (SVM) model. These
relationships form the basis for the recognition of activities and contexts to be
inferred. Finally, two profile comparison methods are introduced in Sect. 6, before
we conclude in Sect. 7.

2 Related Work

The use of mobile devices as key elements in a sensing system has been discussed for
many years, both in industrial and research communities, as an opportunistic [3] or
a participative system [4]. The classic architecture for such a sensing system con-
sists of three parts [5,6]. First, individual devices collect the sensor data. Then,
information is extracted from the sensor data by applying learning methods, gen-
erally on one of the devices or in the cloud, depending on the sensitivity of the data,
the sampling strategy or the privacy level applied. Finally, the data can be shared
and visualized from the cloud.



Activity and Context Recognition Using Smart Devices 35

Smartwatches have their place in this kind of architecture and can open up
new perspectives as they can collect the user’s activity and physiological signals [7],
while smartphones are reserved for recording the user’s context. Smartwatches and
smartphones are usually connected via Bluetooth Low Energy [8], a relatively new
technology standardized under the Bluetooth 4.0 specification [9]. Compared to
smartwatches, smartphones have a better battery capacity and can launch several
tasks at the same time. By using a smartphone as a local gateway to access the
Internet – via Wi-Fi or Cellular – we can turn this local sensing platform into a
connected ecosystem [6].

As the applications need to be running on the devices permanently to collect
and send data, there is an important compromise to be found between sample
rate, rate of transmission and the consumption of energy [8]. The authors of [10]
show, for example, that using all the sensors of a LG Nexus 4 E960 can reduce its
battery from 214.3 h (no sensors) to 10.6 h (all sensors). Some systems attempt
to circumvent this energy limit by offloading data processing onto servers [11].
Others propose sharing the data among neighboring phones [12]. By these means,
cloud computing is widely used with smartphones and allows the creation of
elastic models [13], where applications are launched on the mobile phone, and
the data is processed in the cloud.

In the surveyed literature, accelerometers are the sensors most commonly
used to recognize various physical and upper body activities. Indeed, [1] shows
that specific movements of the arms, the hands and the fingers, generate suf-
ficient energy to be distinguished by the accelerometer and the gyroscope in a
smartwatch with 98 % precision. By correlating different sources of data, other
sensors such as GPS, microphones and Wi-Fi signals can also be used to improve
the classification accuracy and estimate, for example, the mode of transport (e.g.
bike, car) [14]. By continuously recording sound, it is possible to identify differ-
ent user contexts, whether having a conversation, sitting in an office, walking
out on the street or even making coffee [15,16]. SPARK [17] is a framework that
can detect symptoms associated with Parkinson’s disease using a smartwatch
on the wrist (to detect dyskinesia using motion sensors), and a smartphone in
the pocket (gait analysis and sound). Shin et al. [18] study patients with mental
disorders and use smartwatches to help quantify the exercise and the amount of
sunlight wearers have received, using GPS, accelerometer and the light sensor.
Video sensing also permits various activities to be recognized [19]. However, video
analysis is both algorithmically and computationally expensive, especially in a
resource-constrained environment. Finally, social interactions can be identified
using Bluetooth, Wi-Fi, Near-Field Communications (NFC) or cellular [10].

Activity detection involves the recognition of spatio-temporal patterns from
sensor data that is usually incomplete and noisy. There is significant number of
models that are able to characterize human behaviour from different features
(e.g. accelerometer data). The temporal signal shape can be analyzed both in
time and frequency domains. Time-domain features include basic waveform char-
acteristics and signal statistics that can be considered to be features of a given
signal, e.g. the statistical moments, time between peaks, binned distribution,



36 S. Faye et al.

Table 1. Specification of the devices used of our studies.

Devices RAM /
Storage

CPU Battery Network
Interfaces

Collectable Data

Samsung
Gear Live

512 MB
/ 4 GB

Quad-
core 1.2
GHz

300
mAh

Bluetooth 4.0 Heart rate, heart rate accuracy,
pedometer, linear acceleration, time.

LG
Nexus 5

2 GB /
16 GB

Quad-
core 2.3
GHz

2,300
mAh

4G/LTE, GPS,
802.11

a/b/g/n/ac
dual-band

Wi-Fi, NFC,
Bluetooth 4.0

Proximity, ambient light, linear
acceleration, ambient sound, detected

activity, activity confidence, pedometer,
mobile network information, detected

Bluetooth devices, Wi-Fi networks, GPS
(location, altitude, speed, bearing,

distance), local weather (from
OpenWeatherMap.org), time.

mean value of local maxima [20]. Data set reduction techniques such as Principal
Component Analysis and Linear Discriminant Analysis can be used to extract
the most significant discriminating features while reducing the dimensionality
of the data representation [21]. Combining the feature extraction techniques
above, activity recognition can be trained using (semi-)supervised methods in a
controlled setting. These methods include Decision Trees, Neural Networks and
Support Vector Machines, all of which have been successfully used in human
activity recognition [22]. For example, Frame-based Descriptor and multi-class
Support Vector Machine [23] is an approach that can classify a large variety of
gestures. Unsupervised methods (e.g. k-means clustering [24]) can then be used
to find structures in the different activity sequences and durations that were
identified to find common properties or behaviours of user groups.

3 Sensing System

In order to carry out our studies and obtain the results presented in this arti-
cle, we used our own system, SWIPE [7], which is available online1 under a
MIT licence. It is composed of two main parts: an Android application for data
collection and a web platform for data processing.

3.1 Hardware

We used two devices running Android 5.1.1. One was a smartwatch (Samsung
Galaxy Gear Live) that records the wearer’s activity by registering wrist move-
ments and other physiological data (i.e. heart rate). The other, a smartphone
(LG Nexus 5), is responsible for collecting contextual data (e.g. with its micro-
phone) as well as some additional activity data (e.g. accelerometer). The decision
to run SWIPE on Android makes sense because of its maturity and its leading
role in the current generation of smartwatches. Table 1 summarizes the specifi-
cations of the two devices, including details of the data that our system is able
to collect.
1 https://github.com/sfaye/SWIPE/.

https://github.com/sfaye/SWIPE/


Activity and Context Recognition Using Smart Devices 37

Fig. 1. SWIPE overall architecture.

3.2 Architecture

The architecture of SWIPE is shown in Fig. 1 and consists of two parts. First, the
sensing system is composed of a watch (worn on the wrist) and a phone (carried
in the pocket) as introduced in Sect. 3.1. The watch periodically sends the data
it has collected to the smartphone, which acts as a local collection point and as a
gateway to access the SWIPE platform over the Internet (via Wi-Fi or a cellular
network). The SWIPE platform is divided into several modules, which (1) receive
data following authentication and (2) store, (3) analyse and (4) display the data
by means of a web interface. Each user is identified by a unique hash string
and his or her data is stored on an internal University of Luxembourg server,
which is accessible only on the local network. The link between the server and
the sensing system is performed by an intermediate server that acts as a relay.

3.3 Metrics Collected by SWIPE

The main metrics that our system collects are shown in Table 2. The “recording
rate” column indicates the frequency at which a metric is saved in a data file,
while the “sampling rate” indicates the frequency at which the system acquires
raw data from sensors. Since the user is wearing the watch all the time, metrics
associated with the watch include the ability to recognize activity. The average
speed of movement of the user’s arm is recorded every 30 seconds, along with the
maximum speed in order to detect sudden, unusual gestures. Metrics collected
by the phone include contextual data. This includes accelerometer readings that
are complementary to those provided by the watch. We also store microphone
readings to register the level of ambient noise, enabling us to distinguish between
noisy and a quiet places. Network data also enables us to collect information on
both mobility (GPS, Wi-Fi) and interaction with other users (Bluetooth).



38 S. Faye et al.

Table 2. Key metrics collected by SWIPE.

Devices Metrics Sensors
Recording &

Sampling rates

Phone,
watch

Maximum
acceleration

Accelerometer 30 sec. < 1
sec.

Maximum value of α =
√

(x2 + y2 + z2)

m.s−2, where x, y and z are the acceler-
ation along each axis of the device, ex-
cluding gravity.

Average
acceleration

Accelerometer 30 sec. < 1
sec.

Average value of α.

Pedometer Accelerometer,
Android API

60 sec. ∼ Number of steps taken by the user, de-
tected by the Android system as a func-
tion of the accelerometer.

Watch Heart rate Optical heart
rate sensor

60 to 300 sec. Heart rate, in beats per minute, provided
by the optical heart rate sensor.

Phone

Ambient sound Microphone 60 sec. 1 sec. Ambient sound level, from [0 : 100].
Bluetooth
devices

Network 120 sec. Number of Bluetooth devices.

Wi-Fi APs Network 300 sec. Number of Wi-Fi Access Points.
Mobile network

data state
Network 300 sec. Value expressing the use of cell phone

network. A reading of zero indicates that
the phone is connected to a Wi-Fi AP.
For our experiments, only the access
point of our workplace was configured.

Speed GPS 60 sec. Travel speed, in km.h−1.

3.4 Energy Saving Strategy

The provision of a sensing system launched as a background service represents
a potential burden on the batteries of the devices used, which (particularly in
the case of smartwatches) are not renowned for their longevity. It is therefore
critical that we make every effort to save energy. This includes finding the right
compromise between energy consumption and data collection. The proposed
system aims to run uninterrupted for at least 12 h in order to collect enough
data to obtain an overview of daily activities. To achieve this, we implemented
the following optimization strategy.

(1) Data transmission consumes a significant amount of energy. We first con-
figure our application so that the watch, if close enough, uploads its data to
the smartphone every 20 min rather than continuously. This allows the applica-
tion to automatically turn off Bluetooth most of the time and makes the watch
fully autonomous (i.e. the user can wear the watch without having to carry the
phone). Data collected and transmitted by the smartwatch is received and stored
locally by the smartphone to be sent once a day to our servers for later analysis.
The data is sent at a predefined time (at midnight) or when the battery level of
either of the devices drops below a threshold of 5 %.

(2) Another factor that contributes to energy consumption is the frequency
at which the sensors record data. The higher the frequency and the longer the
transmission time, the more energy is consumed. On the other hand, a lower data
acquisition rate will dilute the quality of the resulting data set. Consequently,
each metric is configured with the parameters set out in Sect. 3.3. Note that while
most of the metrics are configured with a fixed and adequate sampling frequency
with respect to the tests carried out, other strategies are set up for specific cases.



Activity and Context Recognition Using Smart Devices 39

Indeed, the acquisition frequency of the heart rate sensor is designed to adapt
to the activity of the user. When the user is making little or no movement,
the sampling frequency is low, since his heart rate should be stable and the
measurements reliable. Conversely, when the user moves, the sensor becomes
more sensitive and his heart rate is likely to change. In this case, the data
acquisition rate increases in order to take more probes.

(3) Finally, the devices are configured to prevent users from interacting with
them. Each is locked with a password and all the unnecessary services managed
by Android, such as notifications, are disabled. This allows us to record the data
without interruption and under the same conditions for every participant.

This energy saving strategy is evaluated by comparing it with the settings
where transmission, harvesting and recording frequencies were high (i.e. all set to
1 second). We find an autonomy gain of about 287 % for the smartwatch (13.5 h
vs. 4.7 h) and on the order of 189 % for the smartphone (15.7 h vs. 8.3 h).

4 Building a Data Set

4.1 Scenario

The studies we conducted involved 13 participants working in the same building
at the University of Luxembourg. These participants were selected as a represen-
tative sample of both genders and of different ages. Each participant was system-
atically subjected to the same requirements: (1) wear the watch and smartphone
for one day, from 10:00 to 23:59; (2) complete a questionnaire2 asking for an exact
description of activities carried out (work, commute and leisure activities); (3)
sign an informed consent form to accept the privacy policy of the study.

4.2 Example

Figure 2 shows data from one of the participants over a period of about 14 h.
The accelerometer data and the level of ambient noise immediately reveal sev-
eral distinct situations. Around 19:00, for example, the participant appears to
perform much faster movements than usual with both his watch and his phone –
indicating that he is carrying both devices. The noise level is also high, indicat-
ing either a noisy place or excessive friction (which is common when the phone
is carried in a pocket). We can easily deduce that the user was running. This is
confirmed by the activity recognition algorithm provided by Android, which is
able to detect basic activities. The situation is similar around 18:00. The envi-
ronmental noise level is high, but both devices detect much less movement and
the GPS records more rapid progress from place to place: the user was driving.
These initial observations form the basis of our intuitive understanding of the
user’s activity.

2 Available online: http://swipe.sfaye.com/mobicase15/questionnaire.pdf.

http://swipe.sfaye.com/mobicase15/questionnaire.pdf


40 S. Faye et al.

Fig. 2. Example of collected metrics for one participant.

Table 3. Identified activity and context classes with their total durations in our data
set, which consists of 157.2 h of recordings.

4.3 Activity and Context Classes

In order to build a data set, we used both the information provided by users
in the questionnaire and the information from the sensing platform. Each par-
ticipant told us about the activities he or she had performed. By gathering all
the information from the 13 participants, we obtained a total of nine activities
(i.e. sitting, standing, walking, running, playing tennis, on a train, on a bus, on
a motorcycle, in a car) that can be classified within five different contexts (i.e.
working in an office, attending a meeting, in a shopping centre, on a break at
work, at home), as represented in Table 3. Since we have the time slots for each
activity (e.g. Figure 2), we are able to assign a set of representative values for
each activity and context considering multiple inputs.



Activity and Context Recognition Using Smart Devices 41

5 Activity and Context Recognition Using SVM

5.1 Parameters

The problem to be solved is how to identify a class based on a set of metrics. We
chose to use SVM (Support Vector Machine) [25], a set of supervised learning
techniques to classify data into separate categories. SVMs have the ability to
deal with large amounts of data while providing effective results. They can be
used to solve problems of discrimination, i.e. deciding which class a sample is in,
or regression, i.e. predicting the numerical value of a variable.

For our evaluation we used the SVM classifier provided by the e1071 package
for R [26]. The default optimisation method – C-classification – is used, as well
as the classic radial kernel. Grid-search with 10-fold cross validation [27] was
used to adjust the cost parameter C (within a range of 1 to 100), as well as γ
(within a range of 0.00001 to 0.1).

5.2 Feature Set

The numerous measurements that we have in our data set were not all recorded
at the same frequency. As shown in Table 2, acceleration was recorded twice as
often as GPS speed. To simplify future operations, we chose to refine the data
for each metric by sampling the same number of values from each. For each of
the known classes selected in Sect. 4.3, we use a sliding window of ten minutes,
moving over the data stream every five minutes. With each movement of the
window, two representative values of data included in the window – referred to
as x – are recorded: their average x̄, which gives an overall view of the data over
the interval; and their standard deviation σ(x), which is fundamental to under-
standing the variations around the average. Finally, each activity and context
class is represented as a set M of m metrics, each of which is represented, for
each 10-minute data interval x, as x̄ and σ(x). The following matrix illustrates
the structure of the data set:

⎛
⎜⎝

Class Mavg
1 Mstd

1 . . . Mavg
m Mstd

m

T1 class1 ¯x1,1 σ(x1,1) . . . ¯x1,m σ(x1,m)
...

...
...

...
...

...
...

Tn classΔ ¯xn,1 σ(xn,1) . . . ¯xn,m σ(xn,m)

⎞
⎟⎠ (1)

This representation is simple and has the advantage of abstracting from the
excessive precision of the data. It also has the advantage of being lighter and
less expensive to treat with a classification algorithm. Assuming we have a set of
data composed of t seconds of recording, that the length of the sliding window
is twindow seconds and that it moves every tstep ≤ twindow seconds, we obtain a
data matrix whose size is:

columns = (2 · m + 1) rows =
t − (twindow − tstep)

tstep
(2)

Our activities database contains, for example, a total of 65.4h of recordings
and is 19 × 784 in size.



42 S. Faye et al.

5.3 Recognition Using Metrics Individually

First of all, we investigate the individual influence that each metric can have on
the recognition of an activity and/or context. Figure 3 represents some selected
normalized metric averages over all participants and for each class. For reasons
of visualization, the vehicle activities are grouped into the “In vehicle” class. The
colour transition between each class represents half the distance that separates
their average. The findings are logical, but they confirm the individual impor-
tance of each metric. For example, on average the GPS speed reading can help
to detect whether the user is traveling in a vehicle, running or at rest. Maximum
accelerometer readings can help us recognize a sport activity, such as tennis.
Noise in a shopping centre seems to be higher than noise during a meeting.

Fig. 3. Selected metric averages for each class.

We want to use streamlined versions of the data set described in Sect. 5.2,
with the aim of representing each metric individually to see whether or not it
can accurately detect a class. Each data set is evaluated in order to discover how
accurately we can predict a class based on a single metric. To do this, each data
set is randomly divided into two parts. The first is the training set, comprising
70 % of instances. The second is the test set, comprising the remaining 30 %. The
training set is subjected to a grid search to find the cost and γ that minimize
the error rate. An SVM model is created from the training set using the best



Activity and Context Recognition Using Smart Devices 43

cost and the best γ. The model is then confronted with the test set with the
aim of predicting the number of instances in the test set whose class is correctly
recognized by the training set. In order to ensure a representative average value
for the error rate, this operation is performed 100 times for each combination and
calculated for each iteration as 1 − Accuracy. The results are shown in Table 4
with Accuracy = true value

total value .
We notice a huge disparity between all combinations of metrics and classes.

The overall findings were quite polarized: some metrics can identify a class with
very high reliability (e.g. the relationship between acceleration and running),
while others cannot. Of course, the combinations shown are representative of
our data set, where activities were taking place in an urban environment. For
example, it is normal to see Wi-Fi sometimes taking particular prominence. This
would probably not be the case if environments were more heterogeneous.

5.4 Recognition Using a Combination of Multiple Metrics

It makes sense to use a classifier such as an SVM when combining multiple
metrics to deduce an activity, which can be seen as a more advanced feature set.
We are interested in minimizing the error rate returned by an SVM model, that
takes a set of metrics as its input, i.e. finding a combination that minimizes the
error rate for both of the activity category and the context category. To do this,
we generate all possible combinations of metrics and create a data set for each
combination (e.g. watch acceleration and heart rate, Wi-Fi access points and
GPS speed and Bluetooth devices, etc.). In the same manner and with the same
parameters as above, for all possible combinations, each data set is randomly
divided into a test set and a training set in order to calculate the average error
rate provided by the combination, over 100 iterations. The combination retained
is the one with the minimum average error rate.

Table 5 represents the best combination of metrics obtained for each class of
activity and context and for three cases: combined watch and phone metrics,
watch metrics, and phone metrics. For each line, the best combination presented
is the one that has the best accuracy. For example, the best combination for
recognizing the “standing” class is a combination of metrics on the watch and
on the smartphone, giving us a 95.3 % average recognition accuracy. We can
also see that, for the “running” and “motorcycle” classes, using the watch alone
provides better accuracy than a combination of the watch and phone sensors.
However, in most cases, the combined use of both devices offers better results
than a phone or a watch alone. On the whole, the conclusions on the dataset
are the same as those of Sect. 5.3. However, we can see that activity classes tend
to be better served by motion metrics, whereas context classes are based more
on Bluetooth, microphone, or network metrics. Finally, the two “Average” lines
indicate a common combination in all classes that minimizes the average error
rate. For example, the average context category combination is the one with the
lowest average error rate for the classes of the category. These two lines are used
in the next section to determine users’ classes.



44 S. Faye et al.

Table 4. Influence of each metric on the recognition of classes. The red to yellow
gradient indicates high to low prediction accuracy. Grey indicates that no data was
available for the performed activity.

Table 5. Best combinations of metrics for each activity. The “Best accuracy” columns
denote the best possible percentage of the test data set which is correctly identified in
the training data set. “Average” rows show the best combination for the entire class.



Activity and Context Recognition Using Smart Devices 45

5.5 Application Example

To illustrate our conclusions on the data set, we have taken as an example
the participant shown in Fig. 2. Each activity and context class is identified
using the average combinations (Table 5). The recognition method is applied
by progressively comparing the individual user’s data with the data in our full
data set using SVM. Figure 4(a) and (b) illustrate the activity and user context
recognition respectively, when the user’s data is not included in the full data set.

Fig. 4. Detected classes. Grey bars and black text are the main activities and contexts
reported by the user.

The participant’s data is divided into ten-minute intervals. For each interval,
we calculate the mean and the standard deviation of each metric. The set of
values for the participant is small and therefore relatively easy to obtain. Each
ten-minute interval consists of 14 values for activity detection and ten values for
context recognition. As we can see from the figures and by consulting the partic-
ipant’s questionnaire, we obtain a very realistic result, which is made possible by
the collaboration of all participants and the pooling of their data. In Fig. 4(a),
for example, we see that at around 18:00 the participant was driving, and at
between about 19:00 and 20:00 he was running. He took a lunch break around
noon, which required him to move (walk) to buy food, as confirmed in Fig. 4(b).
The same figure also indicates that the participant was in his office most of the
afternoon. Some errors are noted around 18:00, where it was detected that the
participant was in a shopping centre, where in fact he was in his car. Similar
findings are noted around 19:00, when the participant was running. The reason
for this is the lack of a corresponding context class, and therefore the closest
alternative is indicated.

Figure 5(a) and (b) respectively show the changes in the number of Wi-Fi
access points and Bluetooth devices that the participant encounters. It is inter-
esting to compare these figures with the previous ones, because they highlight
certain geographic and social characteristics. In Fig. 5(a), for example, there is



46 S. Faye et al.

Fig. 5. Geographic and social characteristics.

a huge difference in the number of Wi-Fi access points encountered before and
after 18:00, suggesting that the participant visited two major places (in this
case, a work environment and a domestic one). It is also interesting to observe
the dip around 12:00, which is when the participant visited the shopping centre.
The participant’s movement, by car around 18:00 and while running between
around 19:00 and 20:00, is also indicated by some slight spikes that we are often
associated with travel: the more a participant moves, the more he comes into
proximity with different access points. However, these figures do not provide
a particularly accurate information base for estimating the participant’s social
interactions. To do this, in the following section, we compare activities and social
interactions among the participants.

6 Comparing Participants

If the recognition of user activity is an essential step that we can approach with
great accuracy, another critical step is to compare several participants. In this
section, we introduce novel visual representations, allowing comparison of the 13
participants in the study.

Figure 6 is a 3D plot showing the distribution of types of activity following
three different axes. The first reflects the proportion of time the participants were
inactive (e.g. sitting). Because the measurements were taken during workdays,
the proportion is very high and goes from 63 % (P13) to 90 % (P8). The second
reflects the proportion of time the participants were active and were performing
an activity (e.g. walking, running). This number distinguishes two categories:
those with a sporting activity outside of work and those who are required to move
(e.g. to meetings). The third axis reflects the proportion of time the participants
were aboard a vehicle. This number is the lowest, and corresponds mainly to
journeys between work and home. However, participants such as P10 or P11
have work activities involving frequent trips during the day (e.g. to move from
one campus to another). Finally, note that the size of a bubble is proportional to
the sum of all acceleration recorded by the watch. Thus, a small bubble indicates



Activity and Context Recognition Using Smart Devices 47

very little sports activity while a larger bubble indicates more frequent, abrupt
movement (e.g. running).

Fig. 6. Comparing activities of the participants.

Figure 7 uses the same principle as the previous figure but is based on three
network metrics. First, the average mobile network data state tends to 0 if the
mobile phone is connected to a Wi-Fi access point and it tends to 1 if the mobile
phone uses cellular data. As the devices are set up only to connect to workplace
access points (Table 2), this value is a good indicator of whether the user is more
likely to be in the workplace or outside. The number of different access points
gives us information about geographic locations visited by the participants. If
two people are working in the same place, the participant with the higher value
is moving around more and coming into contact with more access points. Finally,
the number of distinct devices encountered gives us a measure of the interaction
that the participants have. The higher this number, the more devices (a proxy
for people) the person has encountered during his or her recording session.

Comparing the two graphs allows us to make some interesting observations.
For example, participant P9 seems to perform more physical activity than any-
one else, judging from his relatively high activity rate. Moreover, looking at
Fig. 7, we find that P9 does not spend much time at the workplace, as he or she
encounters the lowest number of access points. Conversely, participant P7 was
mainly working during the study and hardly moved at all. Participant P4 is an
interesting case, since he or she seems to have been in a vehicle and been in the
proximity of a large number of access points. This indicates movement through
many public spaces or buildings.



48 S. Faye et al.

Fig. 7. Comparing interactions of the participants.

7 Conclusion

In this paper, we have described a strategy for recognizing the activities and the
contexts within which a user is located. Our results show that using a condensed
data set, along with energy-efficient sampling parameters, has the advantage of
being easy to use with a classification algorithm such as SVM. Moreover, as such
a structure implies lower transmission, harvesting and recording frequencies, it
allows energy savings (resulting in an autonomy of about one day using our sens-
ing system). We then showed that using a smartwatch in addition to traditional
smartphones leads to better detection accuracy, in particular regarding physical
activities such as running (100 % accuracy over our dataset) or walking (95.8 %).
In addition, as these wearables are permanently on the user’s wrist, they can
detect specific activities without the help of any smartphone (e.g. tennis). Over-
all, the use of multimodal metrics as advanced feature sets for an SVM model
allows the recognition of nine user-defined activities and five contexts, with an
average accuracy greater than 90 %. Finally, we presented a new approach that
graphically compares the activity and social relations of different users, allowing
a better understanding of their behaviour.

The relatively small number of participants and their often vague answers
to the questionnaire prevented us from expanding our data set. However, the
study suggests great potential for the detection of personal activities if carried
out on a wider sample group of users. In future work, in addition to using new
devices and extending our energy saving strategy, we plan to carry out similar
tests on a larger scale, performing new experiments and/or using public data sets.
This will not only allow us to use other learner types and refine our classification
model (e.g. adding FFT-based features), but also to accumulate a more extensive
activity database that can be used as training set. We also plan to extend our



Activity and Context Recognition Using Smart Devices 49

study to capture user activities and contexts on a weekly basis, which would
further help us to recognize patterns and characteristics specific to each user.

References

1. Xu, C., Pathak, P.H., Mohapatra, P.: Finger-writing with smartwatch: a case for
finger and hand gesture recognition using smartwatch. In: Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications, pp. 9–14.
ACM (2015)

2. Tilenius, S.: Will An App A Day Keep The Doctor Away? The Coming Health
Revolution. Forbes CIO Network (2013)

3. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A.: People-
centric urban sensing. In: Proceedings of the 2nd annual international workshop
on Wireless internet, p. 18. ACM (2006)

4. Burke, J.A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Sri-
vastava, M.B.: Participatory sensing. In: Center for Embedded Network Sensing
(2006)

5. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A
survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)

6. Yang, F., Wang, S., Li, S., Pan, G., Huang, R.: MagicWatch: interacting & segue-
ing. In: Proceedings of the ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication, pp. 315–318. ACM (2014)

7. Faye, S., Frank, R.: Demo: using wearables to learn from human dynamics. In: Pro-
ceedings of the 13th Annual International Conference on Mobile Systems, Appli-
cations, and Services, pp. 445–445. ACM (2015)

8. Zheng, X., Ordieres-Meré, J.: Development of a human movement monitoring sys-
tem based on wearable devices. In: The International Conference on Electronics,
Signal Processing and Communication Systems (ESPCO 2014) (2014)

9. Bluetooth, S.: Bluetooth specification version 4.0. In: Bluetooth SIG (2010).
http://www.bluetooth.org/en-us/specification/adopted-specifications

10. Rodrigues, J.G., Aguiar, A., Barros, J.: SenseMyCity: Crowdsourcing an Urban
Sensor. arXiv preprint arxiv:1412.2070 (2014)

11. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: MAUI: making smartphones last longer with code offload. In: Pro-
ceedings of the 8th International Conference on Mobile Systems, Applications, and
Services, pp. 49–62. ACM (2010)

12. Honicky, R., Brewer, E.A., Paulos, E., White, R.: N-smarts: networked suite of
mobile atmospheric real-time sensors. In: Proceedings of the Second ACM SIG-
COMM Workshop on Networked Systems for Developing Regions, pp. 25–30. ACM
(2008)

13. Hussain, S., Bang, J.H., Han, M., Ahmed, M.I., Amin, M.B., Lee, S., Nugent, C.,
McClean, S., Scotney, B., Parr, G.: Behavior life style analysis for mobile sensory
data in cloud computing through MapReduce. Sensors 14(11), 22001–22020 (2014)

14. Han, M., Lee, Y.-K., Lee, S., et al.: Comprehensive context recognizer based on
multimodal sensors in a smartphone. Sensors 12(9), 12588–12605 (2012)

15. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: Sound- Sense: scal-
able sound sensing for people-centric applications on mobile phones. In: Proceed-
ings of the 7th International Conference on Mobile systems, Applications, and
Services, pp. 165–178. ACM (2009)

http://www.bluetooth.org/en-us/specification/adopted-specifications
http://arxiv.org/abs/1412.2070


50 S. Faye et al.

16. Ma, L., Smith, D., Milner, B.: Environmental noise classification for context-aware
applications. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003.
LNCS, vol. 2736, pp. 360–370. Springer, Heidelberg (2003)

17. Sharma, V., Mankodiya, K., De La Torre, F., Zhang, A., Ryan, N., Ton, T.G.N.,
Gandhi, R., Jain, S.: SPARK: personalized parkinson disease interventions through
synergy between a smartphone and a smartwatch. In: Marcus, A. (ed.) DUXU 2014,
Part III. LNCS, vol. 8519, pp. 103–114. Springer, Heidelberg (2014)

18. Shin, D., Shin, D., Shin, D.: Ubiquitous health management system with watch-
type monitoring device for dementia patients. J. Appl. Math. 2014(2014), Article
ID 878741, 8 (2014). http://dx.doi.org/10.1155/2014/878741

19. Porzi, L., Messelodi, S., Modena, C.M., Ricci, E.: A smart watch-based gesture
recognition system for assisting people with visual impairments. In: Proceedings
of the 3rd ACM International Workshop on Interactive Multimedia on Mobile &
Portable Devices, pp. 19–24. ACM (2013)

20. He, Z., Liu, Z., Jin, L., Zhen, L.-X., Huang, J.-C.: Weightlessness feature–a novel
feature for single tri-axial accelerometer based activity recognition. In: 19th Inter-
national Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

21. Kao, T.-P., Lin, C.-W., Wang, J.-S.: Development of a portable activity detector
for daily activity recognition. In: IEEE International Symposium on Industrial
Electronics, ISIE 2009, pp. 115–120 (2009)

22. Qian, H., Mao, Y., Xiang, W., Wang, Z.: Recognition of human activities using
SVM multi-class classifier. Pattern Recogn. Lett. 31(2), 100–111 (2010)

23. Wu, J., Pan, G., Zhang, D., Qi, G., Li, Shijian: Gesture recognition with 3-D
accelerometer. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC
2009. LNCS, vol. 5585, pp. 25–38. Springer, Heidelberg (2009)

24. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

25. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

26. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc
Functions of the Department of Statistics (e1071), TU Wien (2011). http://CRAN.
R-project.org/package=e1071

27. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(1), 281–305 (2012)

http://dx.doi.org/10.1155/2014/878741
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071


Characterization of User’s Behavior Variations
for Design of Replayable Mobile Workloads

Shruti Patil, Yeseong Kim(B), Kunal Korgaonkar, Ibrahim Awwal,
and Tajana S. Rosing

University of California San Diego, San Diego, USA
{patil,yek048,kkorgaon,iawwal,tajana}@ucsd.edu

Abstract. Mobile systems leverage heterogeneous cores to deliver a
desired user experience. However, how these cores cooperate in exe-
cuting interactive mobile applications in the hands of a real user is
unclear, preventing more realistic studies on mobile platforms. In this
paper, we study how 33 users run applications on modern smartphones
over a period of a month. We analyze the usage of CPUs, GPUs and
associated memory operations in real user interactions, and develop
microbenchmarks on an automated methodology which describes real-
istic and replayable test runs that statistically mimic user variations.
Based on the generated test runs, we further empirically characterize
memory bandwidth and power consumption of CPUs and GPUs to show
the impact of user variations in the system, and identify user variation-
aware optimization opportunities in actual mobile application uses.

Keywords: Mobile device · User variation · Heterogeneous cores · GPU
usage

1 Introduction

With growing expectations from mobile platforms, mobile SoCs utilize heteroge-
neous cores to deliver the desired performance within small power budgets. The
compute cores in mobile SoCs comprise of CPUs, GPUs and custom hardware
blocks (IP) such as DSPs, Multimedia Accelerators and Audio/Video decoders.
Mobile CPU and GPU cores together are the second highest power hungry com-
ponents after display components [3,17]. Architectural research efforts seek to
optimize these cores, thus a way to characterize realistic workloads is needed so
as to clarify the possible impacts of optimizations on actual device systems.

However, benchmarking them has been exceedingly challenging since mobile
workloads are inherently interactive in nature. Real-world inputs must be user-
initiated, therefore are subject to large variations in user behavior. User varia-
tions can arise from a number of factors, including differences in content type,
speed and frequency of interactions. The subtle differences in these factors can
affect the workload to a large extent. For example, in our initial study, Facebook
use cases exhibit a 16–93% utilization range in GPU acceleration for different
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 51–70, 2015.
DOI: 10.1007/978-3-319-29003-4 4



52 S. Patil et al.

factor combinations. Thus, to evaluate the effectiveness of an optimization, we
should consider the variations in real user behavior. A popular approach is to
prototype new ideas and deploy them in a user study. However this approach
has several shortcomings. First, a before-and-after comparison is not possible
due to replayability issues. Thus, ideas that cannot be easily prototyped (e.g.
hardware optimizations) could not be rigorously evaluated. Moreover, it is not
always possible to obtain representative samples of users from a user study.

Developing parameterized mobile benchmarks that can encompass a range
of user variations is a viable solution to addressing such challenges. Mobile
benchmark suites with replayable, interactive applications have been proposed
recently [10,11,15]. These suites consist of popular mobile applications, and allow
a small amount of parameterization to change user behavior. They still lack any
model of realistic user behavior or user variation. Tools [9] have been also devel-
oped to capture and replay user touch interactions allowing repeatable and inter-
active runs. However, these alternative cannot reproduce same workload due to
other important factors, e.g., time-dependent content changes of webpages.

In this paper, we propose an analytic way to characterize realistic workloads
in the wild and generate representative workloads of real mobile applications for
replayable evaluation. We first study utilization of compute cores as a way to
study the amount of user variations that is experienced by the system during
a typical user session. To account for actual user variations, we analyze CPU
and GPU usage statistics from 33 real users for seven most frequently used
mobile applications over all applications executed in a month-long study. We
first study the usage of CPUs, GPUs, and their interactions with main memory
to understand how much and when power-intensive compute processors are used
in interactive mobile applications.

We also focus on GPU usage to indicate the intensity of user interaction
in mobile workloads. The use of GPU acceleration in gaming applications has
been well-characterized [13,14,16], but GPU usage in general applications on
modern mobile platforms is not yet well understood. We show that the GPU
is widely used for hardware acceleration for rendering text and images, and
for enabling smooth and responsive user interaction (UI). Thus, the amount
of GPU acceleration during user sessions can be a good indicator of variations
related to both content and interactions. In this study, we find that non-gaming
applications such as browser and facebook utilize GPUs average 51 % of the time
with a standard deviation of 27.5 during an interactive session. This non-trivial
range in GPU acceleration occurs due to user-behavior driven variations.

Using a clustering analysis on our data, we find that the variations can be
reduced to relatively few characteristic groups. We use our analysis to develop a
framework to generate representative test turns that are parameterized for the
intensity of user interactions desired. We complement our automated benchmark
generation efforts with more realistic, replayable test runs, that reproduce user
interactions to actual mobile devices. These runs statistically cluster with the
user runs, maintaining clustering ‘goodness’ within 0.1–3.3 % of the user clusters.

In order to present the practical value of the replayable test runs, we then
show detailed user-accounted analysis on mobile platforms. Through power and



MobiCASE 15 53

memory bandwidth evaluations, we find that user variations have a significant
impact on these metrics. This shows that the use of the proposed replayable test
runs allows realistic evaluations for debugging and testing of mobile systems,
and also gives the guideline for user variation-oriented optimizations, for exam-
ple, those that judiciously use mobile GPU acceleration and clock frequency
adjustment depending on user behavior.

The overall contributions of this paper are as follows:

– We show that the differences in user behaviors result in significant variations
in the utilization of the compute cores. This motivates user-based optimiza-
tions for interactive mobile workloads. This also shows the need to develop
benchmarks that can incorporate and model user variations.

– We formulate an automated methodology to generate representative
microbenchmarks, allowing us to study the specific effects of user variations.
We also create realistic and replayable test runs that allow us to study the
system under realistic usage patterns with user variations.

This paper is organized as follows: Sect. 2 discusses related work. Section 3
describes our experimental setup. Section 4 illustrates analysis from user study
and Sect. 5 describes how test runs are created. Section 6 discusses the results
from our characterization study. Finally, Sect. 7 concludes with the key take-away
from our analysis.

2 Related Work

Numerous user studies have been previously undertaken on mobile systems.
Long-term studies [5,7,19,20,22,25] highlight the diversity of mobile users in
terms of applications, frequency of use, duration, etc. These studies have uncov-
ered traffic patterns, relationships between context and usage, power usage of
mobile SoC units, which have aided optimization strategies. Our user study seeks
to understand CPU and GPU utilization of mobile applications in short-term
user interactive sessions. Previous studies lack information about simultaneous
GPU acceleration used, which is the key to modeling our interaction and the
focus of our study.

Unlike the workload of general multicore architectures [2], prior researches
have shown that mobile systems are likely to be affected by how the user interacts
with their devices [11]. Based on the interactive nature of the mobile device
usage, architectural studies for mobile-specific workloads have also been recently
proposed. Interactive applications covering genres such as browser, game, photo,
video and chat have been designed with automatic scrolling or touch events
[10,11,15]. Although these are interactive benchmarks, the interactions are not
formally related to user behavior and there are no models for user variations. In
this paper, we first study how these benchmarks can be adapted to the range
of user variations that we have observed. For more accurate representation of
user behavior, we create interactions with realistic speeds, which vary based on
content, as expected from real users.



54 S. Patil et al.

Table 1. Mobile Platform Specifications

MSM8660 (45 nm) MSM8960 (28 nmLP)

CPU Up To 1.7 GHz, Dual-core
Scorpion

Up To 1.7 GHz Dual-core Krait

3D GPU Adreno 220 Adreno 225

Memory Single-channel 500 MHz ISM,
333 MHz LPDDR2

Dual-channel 500 MHz LPDDR2

Android OS Ice Cream Sandwich Jelly Bean

Example Devices HTC Evo 3D, LG Optimus, SS
Galaxy Note

SS Galaxy S3, Nokia Lumia
1020, Sony Xperia V

Prior mobile core characterization studies have typically focused on single
cores. Publications presented in [10,11,15,24] utilize proposed workloads for
detailed CPU characterization with performance counters. One recent effort [8]
studies thread-level parallelism in a mobile multi-core environment. Their find-
ings suggest that while two CPU cores are sufficient to parallelize popular use
cases in mobile benchmarks, GPU acceleration is limited. However, a single work-
load is executed for each mobile application to draw conclusions about its nature.
In our study, we find that user variation significantly varies the utilization of mul-
tiple cores, in particular the GPU hardware acceleration significantly influenced
by different factors such as content types and user interactions.

Mobile GPU studies have focused on gaming applications since they are
known to be both GPU-intensive and power-intensive. A few publications
[13,14,16] show the bottlenecks in GPU pipelines, while [1,4,18] propose power
management schemes that trade-off on user experience. Recent efforts have stud-
ied general-purpose benchmarks such as image rendering and computer vision
algorithms using GPGPUs in mobile systems [12,23]. In contrast, this paper
characterizes CPU, GPU and memory interactions focusing on non-gaming appli-
cations. We show the large amount of GPU acceleration used, and its impact on
power consumption. While power characterization could be performed in a field
study, creating replayable test runs tied to user behavior allows comparison of
metrics measured separately, as well as for future architectural research.

3 Experimental Setup

Development phones from two state-of-the-art mobile platforms, Qualcomm’s
MSM8660 and MSM8960 running Android OS (Table 1) were used in our study.
These allowed fine-grained power and memory bandwidth measurements within
the system, normally unavailable on commercial phones. Both phones support
camera, bluetooth and sensors, and have dual-core CPUs, two 2D GPUs for



MobiCASE 15 55

vector graphics and one 3D GPU for 3D graphics. 33 on-campus students1 used
the phones for a month, with full access to Amazon Android App Store. During
the user study, the users were asked to use the device for one month without any
detailed usage direction, so they could use the device and applications as usual.
Sim cards were not used, instead wi-fi network access was available throughout
campus. Since the focus was to observe the range of user variations experienced
by the cores for mobile applications, lack of cellular usage does not significantly
affect the results of compute core usages for the studied applications.

The rooted Android phones were instrumented to record utilization and fre-
quency every 100 ms during short-term interactive sessions, i.e. when a user
engages with the phone for a short duration of either seconds or minutes to com-
plete activities using a mobile application. Unlike long-term user studies [20,22],
e.g. targeted to daily application usage patterns, the short-term analysis allows
to understand fine-grained system activities such as detailed CPU and GPU
usages. The utilization and frequency of the CPUs and GPUs were profiled
during these sessions, using information obtained from the /sysfs and /proc
file system support. Power saving features were active on the phones, includ-
ing DVFS (Dynamic Voltage and Frequency Scaling) and mpdecision daemon,
which power-gates a CPU core when possible. Further detailed characteriza-
tion was performed on the Qualcomm 8960 phone. Power measurements were
obtained using Qualcomm’s Trepn tool [21] which collects power consumption
of system components such as per-core power using hardware sensors. Finally,
memory bus monitoring was carried out using an internal bus monitor tool.

Users ran a total of 125 applications (or ‘apps’) on their devices during the one
month study. Of these, we selected seven highest used applications for detailed
analysis so that collected information of the selected apps sufficiently represent
device usage of the app for each user. These include the interactive applications:
Browser, Facebook and Email, streaming applications: Skype, Camera and Music
and Templerun2 game. Browser, Email, Music and Camera represent widely used
mobile applications. Similarly, Facebook, Skype and Templerun2 feature in the
top 50 Android apps on Google Play.

4 Analysis of User Workloads

To explore the CPU and GPU usage of the applications, we analyze the tem-
poral utilization data from the user study. Different sessions varied in duration,
therefore we analyze the relative amount of time the CPUs and GPUs used
within each session, and classify the quantified workload of compute cores of
each session into different clusters. We first analyze usage into 16 combinations
of the two cores (c0,c1), one 2D GPU (g2) and the 3D GPU (g3) for the target
platforms described in Table 1 (Second 2D GPU showed negligible utilization
and is neglected in the further study). This reduced each session to a 16-valued
1 The study participants include undergraduate and graduate students. Even though

we collected the data from the on-campus students, we could find a wide range of
variations in mobile usages.



56 S. Patil et al.

vector, where each value denotes the proportion of session time when a core
combination had non-zero utilization. For example, combination (c0,g3) is the
proportion of session time with active CPU0 and GPU3D and inactive CPU1
and GPU2D. Using these vectors, characteristic clusters for the sessions can be
derived with k-means clustering analysis [6]. Each cluster is a closely-knit group
of data points, with high separation from other clusters. This translates into a
standard ‘goodness’ metric for clusters:

Goodness =
Variation between clusters
Total Variation in Data

where the variation is computed as sum-of-square distances between groups of
clusters and within each cluster. We select k, which specifies the number of
clusters to identify, such that the clustering goodness is at least 80 % in all of
our analyzes. Thus, we could capture at least 80 % of the variation by choosing
this criterion. The analysis is performed at intra-app and inter-app levels to
study the per application user variations, and overall degree of user variations.

4.1 Intra-App

Figure 1 shows examples of two user runs in each cluster generated for Browser.
This presents the eleven representative clusters of core combinations in order
of the right stacked labels while the other rare combinations are grouped as
‘others’. 105 sessions were grouped into 5 clusters with 81 % clustering ratio.
Since CPU0 is the master core, it is utilized throughout the active portions
of the runs. Browser runs used one or more GPU cores (as ‘GPU Used’ label
denotes) an average 46 % of the session time with a standard deviation of 21.
This shows that mobile browser activities are highly using GPU acceleration,
which varies dramatically with the variation in user behavior. Figure 2 shows the
average proportion of time which the core combinations are utilized in clusters
for the other six most used applications. There are up to 36 sessions within a
cluster. Facebook, Templerun, Skype and Email use GPUs average 50 % time in
sessions. The variance in their use of 3D GPUs show the impact of user behavior
on GPU acceleration exercised. Music and Camera, due to their use of DSP and
Audio/Video accelerators instead of GPU, appear to be CPU dominant.

Typical core usage of applications illustrates their expected energy draw.
Music tends to use a single CPU core (and an accelerator) while Skype or Tem-
plerun require 2–4 cores for majority of the time in their respective sessions.
Thus, a 30-min Skype or Templerun session draws more battery power than a
30-min Music session. We study the power usage in Sect. 6. The user variation as
experienced by the cores is significant. The number of sessions per application
ranged from 24 to 105, with the exception of Camera, which had 9. The user
sessions are distilled into relatively few clusters representing the dominant vari-
ations. We leverage these representative groups to study the applications closely
through detailed characterization and to develop our automated generation of
replayable test runs.



MobiCASE 15 57

Fig. 1. Browser clusters with two different runs for each cluster

Fig. 2. Clusters for user sessions for 6 most used apps out of 125 total

4.2 Inter-App

We next perform clustering analysis on all user sessions to extract patterns in the
resource usage independent of the applications. Goodness ratio of 80 % divides
data into seven clusters using k-means analysis. Figure 3 shows the split of the
sessions of the seven applications in seven clusters. Sessions from different appli-
cations show many similarities with each other. For example, Cluster 1 captures
heavily GPU-accelerated sessions (80 % or more GPU usage) from Browser, Tem-
plerun and Skype. Cluster 4 has the sessions that used GPU3D for an average
76 % of the time, while Cluster 5 grouped sessions that used GPU2D for an
average 52 % of the time. The rest of the clusters represent subtle differences in
their proportions of GPU acceleration.

We make two key observations from these results: First, the clusters with
gaming sessions also contain sessions from non-gaming applications. This shows
that GPU acceleration in non-gaming applications is not negligible. Second,
Templerun, Facebook and Browser sessions split into 5–6 of the total 7 clusters
showing the prevalence of user variations. Thus, in order to thoroughly evaluate



58 S. Patil et al.

Fig. 3. Inter-app clustering analysis for 7 applications

actual workloads interacted with users, this shows that we must take into explicit
account the variation of user behaviors.

4.3 Utilization Values

Next, we analyze CPU and GPU3D utilization to study how loaded the cores
are during short-term interactive sessions. Since DVFS was active on the phones
during the experiment, we first normalize the utilization to the maximum fre-
quency in order to account for the frequency changes. To study CPU utilization,
we add the utilization values from the two cores per sampling period and nor-
malize the total utilization to 100 %. We then analyze histograms of utilization
values observed during all user runs.

Figure 4 shows the histogram of CPU utilization values for all sessions. There
are three peaks around 0 %, 50 % and 100 % utilization. The CPU distributions
for Browser and Facebook are similar to this distribution. Email is also similar
in that it shows the three peaks, but has higher idle values than the other peaks.
The result presents the interactive nature of mobile workloads. For example, the
highest peak for idle periods represent that there were no user interactions to be
processed. Thus, this implies that workloads of compute cores are significantly
affected by how long users interact with applications, reaffirming the observation
that user behaviors highly influence to the system usage.

The GPU distribution of all applications except Templerun are similar to
each other, shown by the example of Skype in Fig. 4c. Skype shows a small spike
at 100 % utilization, not seen in the other applications. This presents that Skype-
like video chat applications use relatively high GPU acceleration compared to
other interactive apps, and therefore chat applications similar to Skype should
be included in GPU characterization studies along with gaming and graphics
applications. Templerun shows a more interesting GPU3D distribution (Fig. 4d).
Although it peaks at 0 %, the game exhibits non-significant utilization over the
full range of GPU3D utilization.

When all applications are considered together, we observe that GPU3D uti-
lization seldom exceeded 60 % as shown in Fig. 4b. Further, the average GPU
utilization across the seven applications was 16 %. The results present that,
although our analysis of active cores shows an average 50 % use of GPUs during
interactive sessions, the actual load experienced by the GPU3D is low. Thus, in



MobiCASE 15 59

Fig. 4. Histograms of core utilizations for all user sessions

order to save GPU power, more intelligent power gating techniques for GPUs will
be effective, such as turning off individual streaming cores and allowing shorter
time scale in power gating.

5 Automated Test Run Generation

To reliably analyze the impact of user behavior on heterogeneous processing,
we require replayable test runs that are representative of the observed diversity.
Previous efforts in mobile benchmarking have proposed workloads with popu-
lar applications [10,11,15], but their inputs have not been associated with user
behavior. We first explore how these interactive benchmarks can be adapted to
exhibit our observed user variations. Then, to simulate more realistic user behav-
ior, we generate new test runs that match the principal characteristics of user
clusters with more than 80 % goodness with an aggregate clustering analysis.
This provides a real user basis and creates representative variations for more
accurate evaluation.

5.1 Automated Generation of Test Runs

The test runs are designed to be replayable using a record- and-replay utility [9].
This allows statistical rigor with multiple runs and collecting data from various



60 S. Patil et al.

counters in separate and low-overhead runs. We first generated test runs in
the lab. Since the analyzed clusters represent usages of compute cores, the key
goal is to generate a replayable test run which closely matchs the cluster of an
actual user session. Through multiple attempts, we identified runs that mimic
the clusters observed so that a small set of test runs can be used as representative
of our larger user study. The runs are more ‘realistic’ in that they are recorded
as a trace of real human interaction with the system.

However, these hand-operated generations are cumbersome and expensive if
we need to mimic user behaviors of more interactive applications, whose clus-
ters exhibit a wide range of variations, such as Browser and Facebook in our
case. Thus, it is required to generate mobile workload with user variations in an
automated way. In order to understand how such interactive app reacts to user
interactions, we investigate core utilizations of Browser by using Bbench3.0 [10].
The Bbench3.0 browser benchmark offers scroll delay, scroll size and page delay
parameters, which may be exploited to create user variations. Figure 5 shows
the utilization breakdown when scroll delay and scroll size is varied. As shown
in the result, changing the parameters results in the variation of core usage. For
example, a 34–78 % range in GPU acceleration is observed. However, the differ-
ent core combinations cannot be tuned easily, thus we could not cover all the
variations that we observed in the user profiles. In reality, typical mobile user
behavior is not restricted to one type of interactions such as scrolling, but often
switches between multiple activities depending on content.

Fig. 5. Core utilization of BBench with different scrolling parameters

Thus, we further profile more detailed characteristics for diverse common
interactions in Browser and Facebook by creating different microbenchmarks.
We explore the actions of scrolling (down), browsing through photos (scrolling
horizontally) and video viewing, and vary the speed of interaction (scrolling
delay, scrolling size) and contents being viewed (images, text, images and text).
Figure 6 describes the experimental results of clusters for different microbench-
marks in the Browser app. The result shows that the speed of interaction (scroll
delay) impacted the amount of GPU acceleration most, however core combi-
nations were impacted by the variation in the content. In addition, the profiled



MobiCASE 15 61

Fig. 6. Clusters for common interactions of two mobile applications

microbenchmarks exhibit a wide range of variations in compute cores. In Fig. 6b,
we show the example of Facebook use cases. Although common interactions vary
for different applications, we found the similar observation that the speed of user
interactions significantly affect GPU usage. We also observed the wide variations,
for example, 10–90 % in GPU acceleration.

Using the profiled microbenchmarks which allow creating different workloads,
we develop a framework to automatically generate mobile test runs to with user
variations. We exploit the CPU-GPU profiles of microbenchmarks as a library of
scenarios. The library creation can be repeated for other applications of interest.
These are then combined in a calculated mix to generate a desired proportion of
CPU-GPU interaction, that represents a target level of user interactions. This
can be framed as the following optimization problem (1):

minimize
x

‖Ax − b‖ + λ|x|
subject to 1 ≥ xi ≥ 0∑

i

xi = 1
(1)

where A is the matrix representing the library of interactions, b is the desired
core utilization profile, and x is the proportion of the test run that each
microbenchmark is used. λ is a regularization constant used to encourage spar-
sity. In our case, the profiled compute core usage of each microbenchmark, which
is a vector for the time percentage of each cluster, is given by a column of the
matrix A, while a cluster profile of an actual user workload is set to b. Then,
this optimization problem computes a vector x that contains the proportion of
each scenario to be executed.

These proportions form the parameters of a MonkeyRunner script that con-
sists of the automated inputs for each microbenchmark. The resultant script
drives the workload on the Android system. Figure 7 shows an example of gen-
erated CPU-GPU profiles for a range of desired GPU acceleration. GPU usage
observed is within ± 3.3% of the desired usage. High GPU acceleration char-
acterizes high user engagement and vice-versa. Thus, the range of inputs can
model the behavior of a vast range of users, from a power user to a light user.



62 S. Patil et al.

Fig. 7. Generating runs with varying intensity of user interactions

5.2 Comparison with User Workloads

Table 2 lists the interactions that comprise each test. The test runs use a combi-
nation of common interactions within a 3–6 min session for the apps. Templerun
is not replayable due to the game dynamics, instead the test constitutes a 4-min
play. We also include the BBench (BB) benchmark in the characterization, which
matches a Browser cluster closely as shown.

Table 2. User Interactions in Test Runs

Interaction

Browser B1 Search for a Video, Play a Youtube video(A), Scroll while
video is playing(B), Scroll while video is stopped(C).

B2 Search for pictures, swipe through full-screen pictures from
Google images(A), Scroll through the image results(B).

BB Display and scroll through webpages from 11 sites provided in
BBench3.0 [3], with 1 s page delay, 0.5s scroll delay, 200px
scroll size in 5 iterations.

Facebook F1 View albums and pictures in a profile

F2 View a video that plays within the app(A), view photos(B),
view a video that plays on an external website in
Browser(C).

Email E1,E2 Quick scrolling through four emails multiple times (two text
emails, one email with inline photos and one email with a
single link that is viewed but not clicked).

Skype S1 5 min Skype call: 1 min guest video on, 2mins host front
camera on, 1 mins host back camera on.

Templerun T1 A 4 min play, with 4–5 instances of lost game lives.

Music M1 Play-Pause-Play music for 2mins each.

Camera C1 3 min video capture with zoom-in/out



MobiCASE 15 63

Fig. 8. Comparing automated test run generation for clusters

Figure 8 illustrates the use of the framework to generate the average clusters
observed with the Browser app in our user study. The GPU usage in the ana-
lytical profile is within ± 2% of the desired profile, while that in the observed
profile is within ± 5% of the desired profile, for all clusters except Cluster-2. In
these clusters, the library of microbenchmarks was also able to closely match the
various core combinations in the desired profile. In Cluster-2, with our current
library profiles, the total GPU usage in the best library combination was 13 %
lower than the average GPU usage in the cluster. With a richer library, such
clusters can be matched better.

Fig. 9. Replayable test runs for 7 apps and clustered with user runs

We cluster replayable runs of all test apps along with user runs for the same
number of clusters as before, ensuring that test runs cluster with user data while
maintaining ≥ 80 % goodness ratio. Figure 9 shows the replayable test runs that
match different clusters as denoted by ‘CLUS’ in short. Test runs are compared
to closest matching data runs according to distance criterion to show similarity
with real user runs. For each application, the difference in goodness ratio after
test runs were added was 0.1–3.3 %, meaning that the replayable test runs can
represent the use of compute cores.



64 S. Patil et al.

6 Analysis with Test Runs

6.1 Resource Characterization for Scenarios

With generated replayable test runs, detailed system analysis becomes possible
under realistic mobile workloads. We first characterize how the system resource
of compute cores are used with respect to different user scenarios. In the experi-
ment, we exploited the distinct scenarios (A, B, C) described in Table 2 to replay
different user interactions.

0 50 100 150 200 250 300 350
0

0.5

1

M
em

or
y 

B
an

dw
id

th

 

 

CPU BW
GPU BW

0 50 100 150 200 250 300 350 400
0

0.5

1

N
or

m
al

iz
ed

 P
ow

er

 

 
CPU All

DigitalCore
LPDDR IO

0 50 100 150 200 250 300 350 400
0

50

100

U
til

iz
at

io
n 

(%
)

 

 
CPU

GPU

Scenario A: Video Playback
(CPU + Video decoder)

Scenario B: Scrolling through 
images (CPU + GPU) Scenario C: 

Video Playback
(CPU + GPU)

Time (s)

Fig. 10. Power, Bandwidth and Utilization in F2

Figure 10 illustrates the correlation between power, bandwidth and utiliza-
tion, best seen with the example of F2. While video playback occurs in both
scenarios A and C, the system experiences lower core usage in A (in-app playable
video) than C (youtube video playback in browser). This translates into lower
memory bandwidth requirements and power dissipation of the cores. GPU mem-
ory bandwidth scales with the GPU utilization. Power measurements include the
power consumption from other digital core components such as video decoder,
but show a similar scaling.

6.2 Memory Bandwidth and User Interaction

We then analyze the memory bandwidth requirements of the applications. Our
systems embed LPDDR memory shared between compute cores, enabling CPU
and GPU interactions. Figure 11 shows the temporal memory bandwidth usage
of test runs measured on LPDDR links with the CPU and GPU. The bandwidth



MobiCASE 15 65

Fig. 11. Memory bandwidth usage by CPU and GPU for six applications and Bbench
scrolling

is normalized to the peak total bandwidth experienced by the system across all
runs. Specific interaction scenarios described in Table 2 are annotated.

We observe that while Templerun game shows a constant use of GPU accel-
eration, even the non-gaming applications show frequent memory transfers. This
suggests fine-grained interactions with the CPU. To probe deeper, we pro-
file memory bandwidth during slow browser scrolling (delay = 2 s) in Bbench.
Figure 11g shows an experiment with two webpages (bbc and slashdot). Each
scroll generates a CPU and GPU spike, highlighting its use of GPU accelera-
tion. User ‘wait’ events in Bbench, B2, E1 and E2 are experienced as bandwidth
dips on GPU ports. When scrolling was profiled at varying speeds (Fig. 11h), the
GPU peak bandwidth did not change significantly, but average GPU bandwidth
experienced by the system decreased by ∼14% as scroll delays doubled. This
suggests that predicting scroll action and its delays could allow for shaving off
GPU bandwidth spikes for slow interactions without affecting user experience.

We make several other observations from these results: One, browser session
B1 and Templerun, T1 show comparable memory bandwidth use. B1 is actively
playing a video, but shows clear peaks in bandwidth when scrolling (events
B,C). Similarly, the GPU bandwidth of email E1 and E2 approach the average
bandwidth of B1 and T1 during routine scrolling events. This indicates that the
GPU bandwidth requirements of UI engine are often higher than those needed
for the gaming application, which presents an opportunity for optimization. Two,
the memory bandwidth of CPU and GPU were quite different during the video
and photo viewing actions in Browser and Facebook. F1 used 3x higher CPU
than GPU bandwidth for photo viewing, while with B2 they were comparable.
This may be imputed to both content and the application differences, however
it is dramatic for essentially a similar type of user interaction. The interactive
Email application also uses 3D UI to render emails, requiring GPU bandwidth



66 S. Patil et al.

Fig. 12. Average power consumption of test runs

comparable to that of the CPU. Lastly, sudden bandwidth jumps are observed
in Templerun at the end of a game, where the GPU bandwidth shoots up for the
entire duration of the ‘play again’ screen, although it displays static content. This
suggests that game computations could be optimized for their use of CPU and
GPU during this time. In all, due to the frequent GPU acceleration during the
highly interactive applications, any optimization of the CPU-GPU interaction
data path would be useful for performance or power improvements.

6.3 Impact on Power and Optimization

Figure 12 shows the relative power expended in the CPUs, GPUs and memory
I/O in test runs. GPU power draw is inferred from Digital Core power rail which
includes the GPUs, video decoder and modem digital core. Power is normalized
to the maximum average battery power observed in all our tests. This occurred
during Skype run due to wi-fi for video call. As conjectured in Sect. 4.1, the
power consumption of the system depends on the types of cores used by the
mobile applications (e.g. Templerun compared to Music) and is impacted by the
user variations within an app.

The power consumption trends are well explained from the usage analysis of
cores. As shown in Fig. 13a, the CPU and Digital Core (DC) power consumption
of test runs is correlated with the proportion of time the CPUs and the 3D GPU
are active respectively. By design, test runs from the same application showed
distinct CPU-GPU usage based on user variation, and these differences clearly
scaled the power consumption. Thus, the large range of GPU utilization observed
due to user variation resulted in significantly large range of power consumption
in GPU (45–100 % with respect to Templerun power.) This motivates the need
to uncover more user behavior based optimizations for better power efficiencies.
Applications at same utilization proportion require deeper analysis of the uti-
lization levels to understand power consumption. For example, B2, F1 and E2
each show about 20 % 3D GPU usage, yet they consume varying amounts of
power due to inter-app differences.



MobiCASE 15 67

Fig. 13. Impact of user variation on optimization

Furthermore, the power consumption of memory I/O is also highly affected
by user interactions. As shown in Fig. 13b, the LPDDR2 IO power is correlated to
the amount of IO accesses. Since memory bandwidth trends are changed by the
speed of user interactions as discussed in Sect. 6.2, this suggests that the memory
system can utilize the remained bandwidth by considering user interactions.

When normalized to their respective average battery power, CPUs, digital
cores and memory consume about 50 % of the average battery power across all
test runs. Since these power measurements include the effect of the on-demand
Linux governor for DVFS and mpdecision, we further investigate how the user
interaction variations affect the optimization policy behavior. Figure 14 shows
three example benchmarks with varied user interaction intensity. Using the Opt-
OFF case, which the frequencies of two cores are maintained at the maximum
level with Performance Governor, as the baseline, we compared to the Opt-ON
case that the two cores are controlled by Android Linux default CPU manage-
ment policy, i.e., Ondemand Governor and Mpdecision daemon. Power measure-
ments on MSM8660 showed 8−15% lower core power due to the effect of DVFS
and mpdecision. This is again an example where replayability helped to compare
power savings given ‘real user-like’ interactive sessions.

Fig. 14. Comparing savings due to power optimizations



68 S. Patil et al.

6.4 Changes in Devices and Platforms

The test run can reproduce the same workload to different devices and platforms.
Figure 15 shows the utilization breakdown of the test runs replayed on three
devices: (A) MSM8660 with Icecream Sandwich(ICS) (B) MSM8960 with ICS
(C) MSM8960 with JellyBeans (JB). The different MSM platforms used different
combinations of accelerators, but the OS differences were not very significant.
The most differences in platforms were seen in the way they handled Browser
tests. Where MSM8660 used other accelerators, MSM8960 used the GPU in
conjunction with the other accelerators. This is also seen in the MobileBench
benchmarks of PhotoView and VideoView. MSM8960 also utilized the GPU
cores more efficiently in that it avoided use of 2DGPU in Email and Bbench in
contrast to MSM8660. Overall, the experiments show that different devices may
use accelerators in different combinations, however, more recent platforms used
higher amounts of GPU acceleration in most of the test runs.

Fig. 15. Utilization breakdown of test runs on three devices

7 Conclusion

Mobile systems must provide rich user experience in extremely low power bud-
gets. The demands placed on these heterogeneous cores in typical user scenarios
are unclear, limiting usage behavior driven power and performance optimiza-
tions. In this paper, we analyze how real users utilize CPUs and GPUs and show
the large amount of GPU acceleration used in non-gaming, interactive mobile
applications. With a detailed study of the CPU-GPU-memory interactions under
user behavior variation, we developed a framework that automatically generates
replayable test runs. Using the replayable test runs which reproduce realistic user
behaviors, we show the impact on memory bandwidth and power consumption,
which suggests the need to optimize GPU acceleration for common interaction
tasks.



MobiCASE 15 69

Acknowledgments. This work was supported in part by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA, National Science Foundation (NSF) award 1344153 and Qual-
comm.

References

1. Arnau, J.-M., et al.: Parallel frame rendering: trading responsiveness for energy on
a mobile GPU. In: PACT 2013 (2013)

2. Bogdan, P., Marculescu, R.: Workload characterization and its impact on multicore
platform design. In: CODES+ISSS, pp. 231–240. ACM (2010)

3. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIXATC (2010)

4. Cho, C.-W., et al.: Performance optimization of 3D applications by opengl es
library hooking in mobile devices. In: ICIS (2014)

5. Do, T.M.T., et al.: Smartphone usage in the wild: a large-scale analysis of appli-
cations and context. In: ICMI (2011)

6. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Willey, New
York (1973)

7. Falaki, H., et al.: Diversity in smartphone usage. In: MobiSys, pp. 179–194 (2010)
8. Gao, C., et al. A study of mobile device utilization. In: ISPASS, pp. 225–234 (2015)
9. Gomez, L., et al.: RERAN: Timing- and touch-sensitive record and replay for

Android. In: ICSE (2013)
10. Gutierrez, A., et al.: Full-system analysis and characterization of interactive smart-

phone applications. In: IISWC, pp. 81–90 (2011)
11. Huang, Y., et al.: Moby: a mobile benchmark suite for architectural simulators. In:

ISPASS (2014)
12. Kim, S., et al.: Computing energy-efficiency in the mobile GPU. In: ISOCC, pp.

219–221 (2013)
13. Ma, X., et al.: Characterizing the performance and power consumption of 3D

mobile games. In: Computer (2013)
14. Mochocki, B., et al.: Signature-based workload estimation for mobile 3D graphics.

In: DAC (2006)
15. Pandiyan, D., et al.: Performance, energy characterizations and architectural impli-

cations of an emerging mobile platform benchmark suite. In: IISWC 2013 (2013)
16. Park,J.-G., et al.: Quality-aware mobile graphics workload characterization for

energy-efficient DVFS design. In: ESTIMedia (2014)
17. Pathak, A., et al.: Where is the energy spent inside my app?: fine grained energy-

accounting on smartphones with eprof. In: EuroSys, pp. 29–42 (2012)
18. Pathania, A., et al.: Integrated CPU-GPU power management for 3D mobile

games. In: DAC (2014)
19. Peters, J.F.: Topology of digital images. In: Peters, J.F. (ed.) ISRL, vol. 63, pp.

1–76. Springer, Heidelberg (2014)
20. Shepard, C., et al.: Livelab: measuring wireless networks and smartphone users in

the field. SIGMETRICS Perform. Eval. Rev. 38(3), 15–20 (2011)
21. Trepn profiler. https://developer.qualcomm.com/mobile-evelopment/

increase-app-performance/trepn-profiler
22. Trestian, I., et al.: Measuring serendipity: connecting people, locations and inter-

estsin a mobile 3G network. In: IMC 2009 (2009)

https://developer.qualcomm.com/mobile-evelopment/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-evelopment/increase-app-performance/trepn-profiler


70 S. Patil et al.

23. Wang, G., et al.: Accelerating computer vision algorithms using opencl framework
on the mobile GPU - a case study. In: ICASSP, pp. 2629–2633 (2013)

24. Wang, R., et al.: Architectural characterization and analysis of high-end mobile
client workloads. In: ICEAC (2013)

25. Xu, Q., et al.: Identifying diverse usage behaviors of smartphone apps. In: IMC,
pp. 329–344 (2011)



Worker Selection for Reliably Crowdsourcing
Location-Dependent Tasks

Kevin Emery(B), Taylor Sallee, and Qi Han

Department of Electrical Engineering and Computer Science,
Colorado School of Mines, Golden, CO 80401, USA

{kemery,qhan}@mines.edu, taylorsallee@gmail.com

Abstract. Obtaining accurate information about specific locations is
of great importance to today’s many crowdsourced smartphone appli-
cations. To verify information about a location, smartphone users are
selected to go to the location and answer a yes/no question about the
location. Our research focuses on the location-aware worker selection
problem, which is the problem of selecting a group of workers who,
together, can give the most accurate answer to the location-based ques-
tion. We define the location-aware worker selection problem, mathemati-
cally formulate it, and then show that an optimal solution is exponential
in time complexity. We present our heuristic solutions that take into
account both the reliability of the users and the level of convenience for
each user to complete the task. We evaluate and compare our approaches
to three other heuristic algorithms via simulation.

Keywords: Crowdsourcing · Mobile sensing · Worker selection

1 Introduction

As the number of smartphone users worldwide continues to grow, the use of
crowdsourcing applications has become increasingly prevalent. One important
problem for many crowdsourcing applications is data verification; that is, when
smartphone users provide information to a crowdsourced application, the data
is not guaranteed to be accurate. One solution to this problem is to select users
that are both willing and reliable enough to provide accurate information.

Many of today’s mobile applications rely heavily on accurate location data.
Take, for example, a coffee shop locator application that allows users to locate the
nearest/cheapest/best coffee shop. In an app such as this, the quality of the user
experience depends on the accuracy of location information. Many other appli-
cations benefit from knowing exactly where certain restaurants, shops, offices,
etc. are located. Our research applies to two classes of location-based problems:
one is location verification, where we believe a specific business is at a specific
address, but we are not certain about the veracity of the information; and the
second is information verification, where we believe a certain event is happening
at an address (or a specific person is there, etc.), but we need to confirm the
information.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 71–86, 2015.
DOI: 10.1007/978-3-319-29003-4 5



72 K. Emery et al.

Both of these classes of applications involve simply verifying information (i.e.
they can be phrased as a yes/no question). Both classes also require someone to
physically go to the address to answer the question. Crowdsourcing can be of
great help in these applications. We propose to ask individuals near the address
to physically go to the address to answer a question. Our research attempts
to solve the “location-aware worker selection problem”, which is essentially the
question of finding the best individuals to select in the interest of answering a
location-dependent question.

Selecting a group of workers to answer a question about a physical location
comes with a set of unique challenges. First, to motivate people to respond to
location-dependent queries, incentives need to be used. However, in the real world
there is always a budget that limits the amount of money available to pay users
as an incentive. We must choose a group of workers to pay in order to get the best
possible answer to the location-based question, while staying under the budget
constraint. Second, users are unlikely to respond to a query unless they are
near the location in question. For this reason, we must consider workers’ current
locations and commute patterns to help us select the best workers. Finally, as
with any worker selection problem, we must consider the reliability of our users
and their responses and find a way to judge the accuracy of responses.

Problem Definition. We assume each worker is associated with a set of
attributes: reliability rating, incentives needed, home location, work location,
and current location. The reliability rating is a simple way to determine a
worker’s past response record. We use the home and work locations to determine
a commute route for the worker, and this information is useful in determining
how convenient completing the task would be for each worker. Informally, the
location-aware worker selection problem can be defined as follows: given a yes or
no question about a specific location, a set of workers that are reasonably near
the location, and a budget to spend on incentives, find a subset of workers to
dispatch to the location such that the answer given by the group as a whole is
as accurate as possible.

Existing works have looked at worker selection, but as of yet, none have
considered the location-aware worker selection problem, which is distinct because
it requires workers to physically go to the location in question to perform a task.
In addition, most previous works have only considered worker reliability in their
selection process. Because our work is specific to physical locations, we consider
a convenience factor for each worker. The addition of convenience to the problem
adds additional complexity. This work makes the following contributions:

– We mathematically define the objective function that serves as a metric for
evaluating solutions to the location-aware worker selection problem.

– We theoretically analyze the time complexity of an optimal solution for the
problem.

– We propose RECON and CORE, two heuristics that seek to choose only
workers that are both highly reliable and can respond to queries with a high
level of convenience.



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 73

– We carry out extensive experiments to evaluate our proposed algorithms, com-
paring them to two other algorithms and showing that RECON out-performs
others.

2 Related Work

Much research has already been done on various versions of the worker selection
problem. Some call this problem the task assignment problem. Both of these
problems involve distributing a set of tasks among a set of workers, hopefully in
a way that gives the tasks to the users best-suited to perform them. Different
worker selection algorithms have different goals. Some seek to maximize the reli-
ability of the workers (this concept is explored in-depth in [8]), while others seek
to minimize budget as in [5]. Our work is focused on maximizing the accuracy
of the answers given by our selected workers. We have no time constraint, but
we do have a budget constraint.

Many previous works focused on online crowdsourcing markets, such as Ama-
zon’s Mechanical Turk [1]. These online markets allow requesters to post tasks
(sometimes called Human Interaction Tasks, or HITs) on the market, and then
workers select the tasks they wish to perform. Many previous works focus specif-
ically on efficient task allocation in online markets. For example, [4] attempted
to allocate workers to tasks in a way that maximizes the benefit to the requester,
and tested their algorithm on Mechanical Turk. In [2], the authors performed
an experiment on CrowdFlower to test their CRITICAI algorithm, which deter-
mines the best human workers to assign a set of tasks to ensure reliable results
while meeting real-time constraints.

Selecting reliable workers to answer a question is one step towards solving the
truth estimation problem. The truth estimation problem is simply the problem
of estimating the ground truth from a crowd-provided answer. Papers such as [3]
discuss the challenges involved with resolving the truth in a crowdsourced appli-
cation. When estimating the truth, choosing reliable workers will increase the
probability of the majority vote being the ground truth. [9] used a streaming
approach to solve the truth estimation problem. [7] studies a slightly differ-
ent version of the truth estimation problem, which they call the “fact-finding
problem”. Both of these papers assume that workers give answers of unknown
reliability, and finding the truth from the many answers may be a little more
complex than simply using the majority vote.

Both the worker selection/task assignment problem and the truth
estimation/fact-finding problem assume that more reliable workers will provide
better responses, and that their responses can be trusted with a high level of con-
fidence. None of the works so far have considered the convenience for the worker
to actually perform the task. This paper shows that we can achieve better results
when the convenience to the worker is considered in the algorithm.

None of the previous works mentioned have studied the location-based worker
selection problem. They assume an online pool of workers that can perform tasks
from their computer, without the need to travel and actually observe a physical



74 K. Emery et al.

location. Adding a physical location to the problem introduces additional com-
plexity. Our work is unique in that it considers a worker’s location, commute
patterns, and historic reliability, and in that it requires workers to actually go to
a physical location to perform the assigned task.

3 Our Approaches

To better formulate the location-aware worker selection problem, we describe
the models we use to define and solve the problem.

3.1 Definition of Accuracy Metric

Since we rely only on the selected workers to determine the ground truth of our
questions, we use a majority voting scheme to determine the “correct” answer
to the location-based question. Other methodologies can be used to determine
ground truth [3,7,9], but majority voting is the most common. In order to judge
the correctness of any solution to this problem, a metric must be used. We
propose to use the following scheme: given a set of workers, W , consisting of
users who have provided an answer to the location-related question, the metric
used to judge correctness is defined as the ratio of the number of users who agree
with the majority vote over the total number of users in W . For example, if W
contains 100 workers, and 78 of them agree that the answer to the given question
is yes, then the metric will have the value .78, or 78 %. This implies that we seek
to maximize the number of users who agree, because our goal is to be as sure as
possible that the group has provided a correct answer. We call this metric the
Majority Agreement Percentage (MAP).

We use pci to denote the probability of user i providing a correct answer for
a given question. If each worker’s pci value was the same (pc) the distribution of
MAP values for different tasks would be a binomial distribution centered at pc.
Because each user may potentially have a different value for their individual pci, a
binomial distribution cannot be used. However, a binomial distribution is simply
a special case of the more generic Poisson binomial distribution [10]. In a Poisson
binomial distribution, each event in the model can be considered to have a unique
probability, exactly like what we are dealing with when determining MAP(W ).
Furthermore, because a poisson distribution is a normal distribution, the piece of
the distribution that shows the most likely response for a group W is the mean.
For a Poisson distribution, the mean value of the distribution is simply the
sum of all of the individual probabilities that make up the distribution divided
by the total number of probabilities. We now formally define the probabilistic

formulation of MAP: MAP(W ) =
‖W‖∑
i=1

(pci)/‖W‖.

3.2 Formal Problem Statement

Given a location L, a yes or no question Q about the location, a budget B to
spend on incentives, a global set of users U = {u1, ..., un} where user i needs



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 75

incentive Ii to go and find out the answer to the question and has a probability
pci of responding correctly, find a set of workers W = {w1, ..., wm} that contains
at least m workers such that after all users in W have provided their answers to
Q, MAP(W ) is maximized. This is formulated mathematically as follows:

Maximize MAP(W )
subject to
1. W ⊆ U .
2. ‖W‖ ≥ m

3. B ≥ ∑‖W‖
i=1 Ii.

The first constraint basically requires that W must be a subset of U . This
must always be true; we cannot have workers that are not part of the original
user set. The second constraint is due to the fact that if the system was deployed
in the real world, the person seeking the answer to the question would want to
have a certain number of respondents in order to be confident in the response
that they get. This constraint ensures that the set W containers at least as
many workers as their minimum threshold specifies. The third constraint states
that the sum of the incentives Ii paid to each worker in W must not exceed the
budget B.

Time complexity analysis of an optimal solution In order to find the opti-
mal solution to this problem, one must look at all possible subsets W where
‖W‖ ≥ m. If we simplify that statement to only look at cases where ‖W‖ = m,
then we need to look at

(
n
m

)
= n!

m!(n−m)! different subsets. This can be expanded

to (n)(n−1)(n−2)...(n−m+1)(n−m)!
m!(n−m)! when m ≤ n/2, and (n)(n−1)(n−2)...(m+1)(m!)

(n−m)!m!

when m > n/2, and from there they can simplified to (n)(n−1)(n−2)...(n−m+1)
m!

when m ≤ n/2, and (n)(n−1)(n−2)...(m+1)
(n−m)! when m > n/2. The reason for the

split on m = n/2 is because when m ≤ n/2 the (n − m)! term is larger than the
m! term and therefore it is more efficient to cancel that term, while the opposite
is true when m > n/2. The case where m ≤ n/2 has a time complexity of O(nm)
and the case where m > n/2 has a time complexity of O(nn−m).

In order to look at the time complexity required to consider all possible
subsets where ‖W‖ ≥ m, it is just the summation of all of the discrete time
complexities used for each value of ‖W‖. The case where this is largest is where
m = n/2, and this has a time complexity of O(nn/2) which simplifies to O(nn).
The optimal solution, therefore, has an exponential time complexity and cannot
be solved in a reasonable amount of time. For this reason we propose our own
heuristic algorithms.

3.3 Our Algorithms

When considering which users to choose to dispatch to a location, it is useful to
know how reliable each user is. In other words, it is helpful to know their previous



76 K. Emery et al.

answer history. For this reason, we assume each user has a reliability rating, ri.
In addition, when considering which users to choose to answer the location-based
question, it is prudent to choose workers close to the location in question. We
go a step further and consider the overall convenience for the worker to respond,
based on their normal movement patterns and current location. This is useful
because users are more likely to respond to a task if it is very convenient for
them. For each location-dependent task, we calculate a convenience factor, ci,
for each user that captures the convenience of completing the task. Note that
while a user’s reliability rating is an attribute of the user and independent of
any single task, a user’s convenience factor must be calculated for each task.

Model of User Reliability. We use the following scheme to track user reli-
ability, ri. We first assume each user ui begins with a reliability rating of 0.5.
When a task is created, a group of workers W is selected to perform the task.
After getting responses from each of the selected workers in W , majority voting
determines which workers in W gave the correct answer. Each worker’s reliability
is then dynamically adjusted as follows:

– If a worker in W gave a correct answer, he is awarded a reliability of 1 for
that task.

– If a worker in W gave an incorrect answer, he is awarded a reliability of 0 for
that task.

– The worker’s new reliability rating is the average of all the reliability ratings
for all tasks he has performed.

For example, a new worker who starts with a rating of 0.5 and is chosen to
perform one task will have a new rating of 0.75 if he answers the task correctly,
and a rating of 0.25 if he answers incorrectly. We can also take into account the
case when a user does not respond, which does not fundamentally change our
approach. Our reliability model can also be replaced with another such as [9].

Model of User Convenience. We use the following scheme to calculate the
convenience factor, ci, for a given user to perform a given task. This factor will
be calculated for each location-based question. We assume each user ui has a
current location, a work location, and a home location. We then calculate the
diameter of the city in question (the distance from top left to bottom right
corner). The convenience factor ci is then calculated for each worker as follows:

– Calculate the distance from the user’s current location, dc.
– Calculate the distance from the user’s work location, dw.
– Calculate the distance from the user’s home location, dh.
– Calculate the shortest distance from any point along the user’s commute path,

dp.
– Calculate min = MIN(dc, dw, dh, dp).
– Calculate ci = 1 - min/diameter

The convenience factor is clearly based on both the user’s current loca-
tion and their normal commute patterns. Note that because the convenience



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 77

takes into account the diameter of the city in question, convenience values are
always between 0 and 1, which normalizes convenience factors across different-
sized cities. We acknowledge that this is a simplified model of user convenience.
A more realistic model is to incorporate existing work studying people’s com-
mute or mobility patterns using either synthetic models or realistic traces, as
well as map information.

Model of Incentive Scheme. As mentioned, we pay users an incentive to
complete tasks. The sum of the incentives paid for a given task may not exceed
the budget for that task. We use a monetary incentive, but this could easily be
replaced by another type of incentive.

Choosing which users to pay and how much to pay them should be based on
the probability that they will provide a correct response. Therefore, we pay users
with a higher reliability rating more than we would a user with lower reliability.
However, we must also consider the convenience for the user. If a user is very far
away (has low convenience), we want to provide a larger incentive, so they do
not feel like responding is a waste of time. We use the following incentive scheme
that takes into account both user reliability and convenience: Ii = k1 ∗ ri + k2

ci
.

This equation increases a user’s incentive if they have a high reliability ranking
and/or if they have a low convenience factor. This makes sense in a real-world
situation because users who are further away (i.e., have low convenience) are less
likely to give good answers, and users with higher reliability are more likely to
give good answers.

Proposed Heuristics. Considering the NP-completeness of the problem, we
propose two heuristics.

– RECON (REliable and CONvenient). For each location-based question, it first
creates a group of high-convenience workers, with every worker in the group
having a convenience factor no less than a certain threshold α. The value of α
controls how selective RECON will be in choosing workers for W . A higher α
means RECON chooses workers that are very close to the location in question,
which means the incentives paid to those workers will be smaller, allowing the
size of W to be larger. The algorithm then sorts the group in order of reliabil-
ity rating. It then selects users for W in order of highest reliability to lowest,
until the sum of the incentives paid to the users is as large as possible without
exceeding the budget.

RECON avoids picking users that have high reliability but low convenience,
thereby improving the probability of the users in W providing a quality
response. This algorithm chooses the users that are both highly reliable and
conveniently located, so we can be confident they will produce an accurate
response. Also, this algorithm is able to choose more users for each W , because
users with a higher convenience are paid less than those with low convenience,
assuming their reliability ratings are equal. Selecting more users for W is good,
because it makes MAP(W ) more precise. The larger ‖W‖ is, the more confi-
dent we are that MAP(W ) is a trustable number.



78 K. Emery et al.

RECON has a complexity of O(n + nlog(n)), where n is the size of the user
group U . The nlog(n) piece comes from sorting the workers by reliability rat-
ing, and the additional n comes from walking through U and selecting only
workers with a convenience greater than α.

– CORE (COnvenient and REliable). This heuristic is based on a similar model
as RECON, but instead of focusing on selecting workers for W that have a
high reliability rating, CORE instead focuses on using workers for which the
location is most convenient. A subset of workers that have a reliability above
a certain threshold β are selected, and then from those workers those with
highest convenience are selected for W .

Similar to RECON, CORE has a computational complexity of O(n+nlog(n)),
where n is the size of the user group U , because the users still need to be sorted
in nlog(n) by convenience and then in the worst case we need to look at all n
workers to fill W .

4 Performance Evaluation

To evaluate our heuristics to the location-aware worker selection problem, we
built a simulator in Java. We decided to use a simulator instead of a real-world
deployment mainly because of the logistics involved in getting actual workers.
We could not use Mechanical Turk or CrowdFlower, because these services are
just people sitting at their computer, and the workers are not expected to leave
their computer to go visit a location. We envision our algorithms being used
for commercial crowdsourcing applications, where the workers would be users
with a mobile app installed, and the location-based questions are for verifying
that a certain business exists at the location in question, or a certain event is
happening there.

4.1 Simulation Setup

The simulator takes a city (consisting of many locations and workers) and an
algorithm as input. The simulator runs the given algorithm on every location in
the city, pulling workers to populate W from the many workers within the city.
Over time, the reliability ratings of the users change, since some users give good
answers and some give bad answers.

The constants k1 and k2 used in the incentive mechanism are to change
the weight of each factor, and we imposed the following limit on k1 and k2:
k1 + k2 = 10. After running a few preliminary tests, we settled on the values k1
= 7 and k2 = 3. This means that we gave more weight to reliability in deciding
the incentive, but give the convenience term the ability to grow indefinitely as
the ci value gets smaller and smaller. Basically, the smallest incentive a user
can get is 3 cents (when ci = 1 and ri = 0, and although the largest incentive
is uncapped (because ci is in the denominator), our algorithms basically never



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 79

choose a user with really low convenience, because the incentive for that user
would be too high.

Our goal is to maximize the average MAP value for each group of selected
workers W . In a real-world situation, we would know which workers gave correct
responses once they had all responded. In our simulator, we need to model pci.
In a real-world situation, the value of pci for each user would be unknown;
however, in our model we assume that both convenience and reliability affect
the worker’s ability to respond correctly. The probability that each user chooses
correctly for a given task is be determined as this: pci = (1 − k3 ∗ (1 − ci)) ∗
(ri). This equation primarily uses user reliability to determine pci, but it also
takes into consideration the possibility that the user’s convenience factor is low,
which could potentially cause them to go to the wrong location and provide the
wrong information. The frequency with which this occurs is accounted for in the
constant k3, and the value of this constant can be adjusted to add more weight
to the convenience factor. For our simulations, we settled on a k3 value of 1/8.
k3 essentially represents how often the user gets lost, is unable to find the given
location, or gets confused as to where they are and gives the wrong answer.

After a few preliminary tests of RECON, we set α to be 0.7, because we
noticed that anything below 0.7 allowed too many low-convenience workers into
the group. Similarly, after testing CORE the value for β was set to be 0.45. This
allows new workers to be included in the chosen group, but if a worker provides
more incorrect responses than correct responses then they are excluded from all
future selections of W .

We test the performance of five different algorithms with the last three as
baseline comparison. Each algorithm uses the aforementioned incentive scheme
to determine how much each user will be paid for a specific task. The algorithms
are listed below:

– RECON: An algorithm that sorts workers by reliability and then selects work-
ers for W from highest reliability to lowest so long as the worker’s convenience
is greater than α

– CORE: An algorithm that sorts workers by convenience and then selects work-
ers for W from highest reliability to lowest so long as the worker’s convenience
is greater than β

– RELIABLE: An algorithm that sorts the users in order of reliability rating,
and selects workers for W from highest reliability to lowest, until the maximum
number of workers have been selected while still under the budget constraint.

– CONVENIENT: An algorithm that sorts the users in order of convenience
factor, and selects workers for W from highest convenience to lowest, until
the maximum number of workers have been selected while still under the
budget constraint.

– RANDOM: An algorithm that picks users randomly from the group U until
the maximum number of workers have been selected while still under the
budget constraint.

We assume each city contains a finite number of both locations and work-
ers, with the number of workers being greater than the number of locations.



80 K. Emery et al.

We wrote a city creator as part of our simulator. The city creator randomly dis-
tributes locations throughout a 2-dimensional space, and then randomly distrib-
utes workers throughout the same space. Each worker is assigned a permanent
home and work location. Figure 1 shows what a small portion of a generated
city would look like. Locations are red squares, workers are blue circles, home
locations are green pentagons, and work locations are yellow triangles. Note that
some workers are at home, some are at work, some are between their home and
work locations, and some are just randomly distributed. The probability model
we used to decide the workers’ current locations is described below.

Fig. 1. A small portion of a city, showing 6 locations, 13 workers, and the home and
work addresses of each worker (color figure online).

We tested each algorithm on three different cities, each with a different pop-
ulation density. The city width (1077 units), height (1077 units), and number
of locations (1000) remained constant, with the worker population varying for
each city. We decided to use this approach because the ratio of workers to shops
for a given unit area is the most relevant factor for deciding the accuracy of a
selection algorithm. For each city, we used three different budgets (100, 200, and
300 cents). We called these budgets low, medium, and high, respectively. The
four city populations were 5K, 20K, 40K, and 60 K workers. We named these
cities sparse density, low density, medium density, and high density, respectively.
Therefore, every algorithm was run on 12 different city/budget combinations.
For each of the 12 distinct city/budget combinations, we ran 20 trials for each
algorithm. Once the four different-density cities were created, we did not change
them for the rest of the testing. This ensured that we ran the different algorithms
on the same cities every time.

The simulator walks through every location in the city (which are distrib-
uted randomly), and for each location, runs the given algorithm on that loca-
tion. The algorithm selects a group of workers W , and the workers provide a



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 81

response, which is generated based on their pci value. The simulator then cal-
culates MAP(W ) for the group, records it, and moves on to the next location.
As workers provide responses to the location-based questions, their reliability
ratings are updated by the simulator (as previously discussed). Although the
problem as defined only considers one task, any good algorithm will take into
account the outcome of previous tasks, and seek to improve the MAP value of
each task over time.

Simulating Worker Location. Before each location-based question is asked,
each user’s current location is calculated based on the following probability
model:

– 32 % of the time, the worker is at work.
– 9 % of the time, the worker is commuting.
– 22 % of the time, the worker is away from home, but not at work or commuting.

This is for leisure/social activities, travel, etc.
– 37 % of the time, the worker is at home.

We obtained these percentages from estimates we made based on the information
in [6]. We assumed that the average person spent 60 hours per week sleeping, and
so 108 hours in the week were available for them to respond to queries. Of those
hours, we estimated 35 hours would be spent at work, 10 hours in commute, 23
hours away from home, and 40 hours at home. To determine the user’s current
location in our simulator, we generated a random number between 1 and 108,
and chose the worker’s current location based on the interval into which the
random number fell.

4.2 Experimental Results

The following figures highlight the results of our simulations. Figure 2 shows a
scatter of MAP values for all five algorithms, as tested on the high density city
(60,000 workers) with the low budget (100 cents). Each point represents the
average MAP value over 20 trials of the algorithm for one location. As more
locations were processed, worker reliabilities were updated. Figure 3 shows best-
fit lines for each algorithm using the high density city (60,000 workers) with the
low budget (100 cents). Both of these figures show the MAP values for RECON
and RELIABLE increasing as more locations are processed. Both stabilize at
a very high percentage near the end, but RECON outperforms RELIABLE at
almost every location processed. This is because RELIABLE’s biggest flaw is that
it does not consider convenience. Convenience is important because it affects the
worker’s likelihood of providing the correct response.

Figures 4 and 5 show similar trends for the medium (200 cents) and high (300
cents) budgets. As we can see, the CONVENIENT and RANDOM heuristics did
not perform very well, always selecting a W with a MAP value of around 0.5,
and this holds true for every city/budget combination we tested. While CORE
performed better than CONVENIENT and RANDOM, it was not significantly



82 K. Emery et al.

Fig. 2. Scatter plots of MAP values of all five algorithms over time, as the number
of locations processed increases. The budget is fixed at $1, and the city population is
60,000.

Fig. 3. Best-fit trend lines of MAP values of all five algorithms over time, as the number
of locations processed increases. The budget is fixed at $1, and the city population is
60,000.

better than either algorithm. The biggest reason for this was because the thresh-
old β cannot be set any higher than 0.5, otherwise a brand new worker would
never be selected. For these reasons, we omit any further results for these three
heuristics.

Figure 6 shows the MAP values, with 95 % confidence intervals, for each dif-
ferent budget. We show only the results from the high density city (60,000 work-
ers), and the MAP value reported is the trend line value after processing all 1000
locations in the city. This is the most relevant point to report, because it shows
how each algorithm performs after having ample time to update each worker’s
reliability rating. This plot shows that the confidence intervals for RECON at
each tested budget are above those of RELIABLE when the algorithms have



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 83

Fig. 4. Best-fit trend lines of MAP values of all five algorithms over time, as the number
of locations processed increases. The budget is fixed at $2, and the city population is
60,000.

Fig. 5. Best-fit trend lines of MAP values of all five algorithms over time, as the number
of locations processed increases. The budget is fixed at $3, and the city population is
60,000.

processed 1000 locations. This means that we can say, with 95 % confidence,
that RECON outperforms RELIABLE at every budget we tested. The results
from other cities are similar, with MAP consistently outperforming RELIABLE
for every budget/city-density combination.

Figure 7 shows the MAP values, with 95 % confidence intervals, for each of
the cities tested. We show only the results for the low budget (100 cents), and
again we report the MAP value from the trend line, after processing all 1000
locations in each city. This plot shows that the confidence intervals for RECON
at each tested population density are above those of RELIABLE when the algo-
rithms have processed 1000 locations. This means that we can say, with 95 %
confidence, that RECON outperforms RELIABLE at every population density



84 K. Emery et al.

Fig. 6. Impact of budget on MAP value. City population is fixed at 60,000, and number
of locations is 1000.

Fig. 7. Impact of population on MAP values. The budget is fixed at $1, and the number
of locations is 1000.

we tested. The results from other budgets are similar, with RECON consistently
outperforming RELIABLE for every budget/city-density combination.

5 Conclusions

As the number of smartphone users continues to rise, the use of crowdsourcing
has become a standard practice for many applications. Getting quality infor-
mation from the crowd can be a challenge, especially when the ground truth is



Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks 85

unknown. Selecting workers that are both reliable and willing to perform tasks
is hard enough, but verifying the validity of a crowdsourced answer can be even
harder. For all applications that depend on crowdsourcing today, data quality is
of paramount importance.

The location-based worker selection problem is a new frontier in crowd-
sourced worker selection problems. Requiring users to actually go to a physical
location adds a new dimension to the classic task assignment problem. With
location-based tasks, incentives vary with each user’s distance from the location
in question. Consequently, considering a user’s reliability is no longer enough
when choosing the best workers to respond. We have introduced the location-
aware worker selection problem, presented our algorithm, RECON, which con-
siders worker reliability and convenience, and shown that RECON outperforms
three heuristic algorithms for all of our test cases. RECON’s advantage comes
from its consideration of user convenience in addition to reliability, because it
only selects workers with a high convenience factor. This allows more workers
to be chosen for a given task and budget, thus improving the accuracy of the
group’s response.

Future Work. The results we have shown here give us confidence that RECON
is a strong algorithm. In simulation, it is more effective than the RELIABLE
approach for solving the location-based worker selection problem. The natural
next step would be to test RECON in a real-world environment. We would like
to create a smartphone application that pays users for answers to location-based
questions, and deploy the app to as many users as possible in at least one city.
However, we would first like to see how RECON performs with some different
modeling methods. For example, we want to test using other methods than
majority voting to determine the ground truth of worker answers. We would
also like to use a more realistic commute pattern model, instead of simply using
a straight line from the worker’s home location to work location. We would like
to test our algorithm on a model of a real city, using maps of roads, homes,
and businesses. We would also like to try out different worker reliability models.
Our simple model is not bad, but using a more sophisticated model may provide
different results. Eventually we would design experiments to test RECON and
RELIABLE’s performance on real users and locations. Empirically showing that
our model and algorithm is applicable to real-world problems would be very
useful for many companies, organizations, etc. The end goal is to provide a
robust service that allows anyone to pay a small amount of money to get highly
reliable answers to location-based questions, without having to go out and verify
the answers in person.

In the future (and even now), selecting workers to answer location-based
questions will become a standard practice. Smartphone users can make a little
money on their way home from work with just a couple taps on their device,
and organizations can save huge amounts of money by outsourcing their data
gathering to the crowd. Confidence in the collected data will be key, and RECON
can be a first step in verifying the correctness of collected data.



86 K. Emery et al.

References

1. Amazon. https://www.mturk.com/mturk/welcome
2. Boutsis, I., Kalogeraki, V.: On task assignment for real-time reliable crowdsourcing.

In: Proceedings of IEEE 34th International Conference on Distributed Computing
Systems, June 2014

3. Cox, L.P.: Truth in crowdsourcing. IEEE Secur.Priv. 9(5), 74–76 (2011)
4. Ho, C., Vaughan, J.W.: Online task assignment in crowdsourcing markets. In:

Proceedings of 26th Conference on Artificial Intelligence (2012)
5. Karger, D., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowd-

sourcing systems. Oper. Res. 62(1), 1–24 (2014)
6. Bureau of Labor Statistics. http://www.bls.gov/tus/
7. Tejchman, J., Kozicki, J.: Experimental and Theoretical Investigations of Steel-

Fibrous Concrete. SSGG, vol. 3, pp. 3–26. Springer, Heidelberg (2010)
8. Peer, E., Vosgerau, J., Acquisti, A.: Reputation as a sufficient condition for data

quality on amazon mechanical turk. Behav. Res. Methods. 46(4), 1023–1031 (2014)
9. Wang, D., Abdelzaher, T., Kaplan, L., Aggarwal, C.: Recursive fact-finding: a

streaming approach to truth estimation in crowdsourcing applications. In: Proceed-
ings of IEEE 33rd International Conference on Distributed Computing Systems,
July 2013

10. WolframMathWorld. Poisson distribution. http://mathworld.wolfram.com/Poisson
Distribution.html

https://www.mturk.com/mturk/welcome
http://www.bls.gov/tus/
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html


Mobile Frameworks



AppSachet: Distributed App Delivery
from the Edge Cloud

Ketan Bhardwaj(B), Pragya Agrawal, Ada Gavrilovska, and Karsten Schwan

Georgia Institute of Technology, Atlanta, GA 303332, USA
{kbhardwaj6,pragya.agarwal,ada,schwan}@gatech.edu

Abstract. With total app installs touching 100 Billion in 2015, the
increasing number of active devices that support apps are posed to result
in 200 billion downloads by 2017. Data center based App stores offering
users convenient app access, however, cause congestion in the last mile
of the Internet, despite use of content delivery networks (CDNs) or ISP-
based caching. This paper explores the new paradigm of eBoxes, situated
in the ‘edge cloud’ tier beyond the last mile, which can be used to allevi-
ate this congestion. With redesigned app caches – termed AppSachet –
such edge cloud based distributed caching can achieve a hit ratio of up to
83 %, demonstrated on real-world Internet traffic. The redesign leverages
proposed new caching policies, termed p-LRU and c-LRU, specifically
targeted at eBoxes’ limited storage and for the traffic caused by app
installs and updates. A cost benefit analysis shows that the additional
cost required to deploy AppSachet on eBoxes can be recovered within
the first three months of operation.

Keywords: App delivery · Internet traffic measurement · Edge cloud ·
Caching

1 Introduction

The number of active smart phones worldwide is posed to cross 3 billion by 2018,
and additional increases in mobile devices stem from wearable and embedded
devices, like smart watches and glasses, devices supporting smart vehicles, etc.
Coupled with that is a continuing explosion in the number of apps available to
end users, with roughly 100 billion app downloads reported in 2015, set to reach a
staggering 200 billion by 2017. App installs and more so, app updates, therefore,
place measurable pressure on the Internet infrastructure used for their deliv-
ery, currently relying on Internet Service Provider (ISP) links to reach remote
datacenter-based app stores or the Content Delivery Networks (CDNs) they use1.

Specifically, the issue is congestion in the last mile of the Internet, which is
well known to be a bottleneck for delivered service quality [7]. For apps, CDNs
cannot mitigate this bottleneck because they operate behind ISPs and cannot
consolidate app requests on their behalf. At the same time, ISP-based caching
1 Data Source: http://mobithinking.com/.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 89–106, 2015.
DOI: 10.1007/978-3-319-29003-4 6

http://mobithinking.com/


90 K. Bhardwaj et al.

is difficult if apps and updates are flagged as non-cachable content due to their
pay-per-download nature, issues related to intellectual property protection, etc.
Our previous work [11] showed the feasibility of using devices operating at the
‘edge cloud’ tier beyond the last mile of the Internet, to deliver apps/updates.
Examples of such devices – termed eBoxes – include small cells [9,10], WiFi
routers [4,5,8], or cloudlet servers [20], shown useful in recent research for sup-
porting new edge services [12,16,18,20]. In that work, we also developed novel
app streaming technology, which, without any disruption to how apps are cur-
rently developed and used, permits users to install apps or app updates directly
from eBoxes with 2× faster speed, while also reducing last mile congestion by
up to 70 %. Such work, however, focused on the client-facing eBox capabilities,
and its obtained benefits relied on age-based (i.e., LRU-based) eBox-resident
resource management mechanisms. However, that approach leads to compara-
tively inefficient use of limited eBox resources (e.g., storage capacity), limiting
eBox benefits. In comparison, this paper seeks to answer the following questions:

• How to best cache apps and/or updates – AppSachets – on eBoxes?
• How to efficiently use the eBox’s limited resources (i.e., storage capacity) to

maximize hit ratio or minimize caching cost for Internet traffic due to apps
and their updates?

• How to articulate cost vs. benefit of AppSachet deployment on eBoxes?

This paper presents AppSachets – a system for distributed app delivery from
the edge cloud. Based on our analysis of real world Internet traffic due to Android
apps and their updates, we highlight the cacheability characteristics of app traf-
fic. Based on those characteristics, we propose two new caching policies imple-
mented as part of AppSachet: (i) p-LRU which takes into account local app
popularity and (ii) c-LRU which takes into account the cost of caching apps
on eBoxes. We present an end-to-end system design that caters to end client
devices using AppSachets and fits in the existing Android app ecosystem, with-
out requiring any changes from app developers or any changes visible to end
users. Further, we present a cost model for eBox based AppSachets operation
inspired by the pricing model of CDNs. Overall, the technical contributions of
this paper can be summarized as follows:

1. Cacheability of app traffic: We establish cacheability (Sect. 6.2) in app
traffic using real world measurements of Android app install and updates
(Sect. 2). We highlight the long tail in app access and updates, which also
exhibits the peculiar characteristic that the popular apps in the long tail
change on an hourly basis.

2. Efficient app cache: We show experimentally that the proposed p-LRU
cache and c-LRU cache outperform other popular cache policies in terms of hit
ratio (Sect. 6.3). While p-LRU maximizes hit ratio – 83 %, c-LRU minimizes
the cost associated with caching apps on eBoxes.

3. Cost-benefit analysis for AppSachets: We show that the cost of deploy-
ing AppSachets on eBoxes can be fully recovered by app stores within the
first 3 months (Sect. 6.5) of its operation. We estimate the additional cost



AppSachet 91

of deploying AppSachets in terms of the cost of storage required (Sect. 6.4),
while benefit is estimated based on the pricing of CDNs.

2 Internet Traffic Due to App Delivery

To assess the impact of app-related traffic on the Internet and assess the improve-
ment opportunities that can be provided via a solution like AppSachet, we col-
lected data about all users at Georgia Institute of Technology over an extensive,
representative time period (from May 19, 2014 to Aug 21, 2014). We next describe
the methodology of data collection and the findings these measurements that are
most relevant to the design of AppSachet.

2.1 Data Collection Methodology

Android app installs or updates are not directly identifiable in the traffic traces
available to us. Instead, we observed that whenever a device initiates an install or
update of an app from the Google Play store, this leads to a HTTP 301 response
code from the store, which points to the location of the app within Google’s CDN
or server. This 301 response contains a location URL that points to the domain
“play.google.com”, and contains the URL path element “/market/”. The URL
also contains in its parameters the name and the version number of the app being
installed/updated. The version information is either a single version number if
installing a new app or if an app update results in removal of old version and instal-
lation of a newer one, or a colon separated list of two version numbers, i.e., the cur-
rent and new versions. This information is sufficient for determining the overall set
of IP addresses for which play.google.com resolves, as many portions of Google’s
overall infrastructure (including app distribution) are served via their CDNs.

Prior to obtaining the traces, we systematically resolved the IP for play.
google.com over a multi-week period and recorded all resolved IP addresses. We
configure our collection server with this IP information, to collect all packets
that have any of these derived IPs in the source address section of the IP header
and that utilize the TCP source port 80 (HTTP). After collecting all such traf-
fic, we then used tshark to perform TCP packet reassembly, filtering out all
traffic that does not fit the parameters of Google Play HTTP 301 responses.
The resulting set of response codes represent all detectable Google Play app
installs and updates for that two week period within our organization’s net-
work. While traffic collection is ongoing, we used softflowd to generate netflow
information for the network. At the conclusion of the data collection process,
we use nfdump to read in, aggregate, and produce total bandwidth utilization
for the time period of collection. The resulting measurements report a total of
2 Terabytes of 301 requests pcaps for this period from the Google Play Store.
Unfortunately, updates and installs over encrypted connections (e.g., HTTPS)
cannot be detected in this fashion and are not included in the data presented
because the information to detect an app install or update requires the contents
of the HTTP 301 response.



92 K. Bhardwaj et al.

Table 1. Summary of measured traffic due to app intalls and updates.

Per app Per day Per hour Total

Max 90 % Max 90% Max 90 %

Installs 755 10 1377 420 217 11 9536

Updates (raw) 1288 19 4626 1540 443 44 31338

Updates (versioned) 895 20 1377 420 443 44 31338

Fig. 1. Showing CDF of the (i) Size of the apps at the time data was collected;
(ii) caching benefit i.e., number of days between successive app installs and updates
observed in the measurements.

2.2 Observations

Table 1 summarizes our app traffic measurements. The results are further divided
to show the number on app installs or updates observed per app, number of
installs and updates observed per day, and finally, number of apps and updates
seen during a particular hour of a day. Figure 1(i) shows the distribution of app
sizes and the distribution of weighted app sizes where weights for an app is
derived from its access frequency seen in our measurements. Figure 1(ii) shows
the distribution of app access with respect to interval at which apps and/or
their updates are accessed shown for all apps and popular apps separately. We
derive an app’s popularity by ranking apps on their access frequency. It is clear
that all popular app updates are finished within 10 days of the first roll out
suggesting that the app updates occur in cycle of 10 days. We were not able
to find an exact reason for this cycle, but intuitively, it is likely either due
to app store’s scheduling of app updates or a period arising out of different
developers pushing out updates for their apps. In any case, this suggests there
is a significant period for eBoxes to absorb updates. Further, the difference in
max and 90th%ile shown in Table 1, clearly highlights the bursty nature of app
traffic in which app updates outnumber app installs by a factor of 3. The above
observations bolsters our hypothesis about the benefits of caching app traffic on
eBoxes. However, leveraging this redundancy in app traffic, to reduce congestion
in the last mile, requires careful design of the app cache and caching algorithms.
Regarding which we derive the following two hypothesis:



AppSachet 93

1. The gap between popular apps and all apps seen in Fig. 1(ii) leads us to
hypothesize that a caching scheme that explicitly considers app popularity in
its operation can provide the best cache hit ratio.

2. The difference in weighted app size and app size seen in Fig. 1(i) leads us
to hypothesize that a caching scheme based on (a) cost derived from storage
and time an app resides on an eBox and (b) benefit derived from reduction
in bytes transferred, can provide good hit ratio while limiting caching costs
and hence, pave way for a cost model for edge cloud services.

In addition to the above mentioned technical challenges, AppSachet also
requires changes in the way android devices handle app updates. We discuss the
design of AppSachet system that addresses all those concerns next.

3 App Sachet System Design

AppSachet acts as source of the latest apps and their updates to connected end
client devices in similar ways as existing app stores and is placed in the app
eco-system as shown in Fig. 2. AppSachet sees all requests made for apps and/or
their updates to app-stores. Its goal is to leverage redundancy in app traffic and
provide benefits to end-users and reductions in last-mile bandwidth use, while
operating efficiently within limited eBox resources. AppSachet operation starts
as a simple LRU cache of web responses (from the app stores) which contain
the actual binaries of apps and/or updates requested by end clients connected
to the AppSachet enabled eBox. If an end user’s request cannot be fulfilled by
AppSachet i.e., a cache miss is observed then, it proxies the request to remote
app stores and saves the response in its local storage. To ensure high hit ratio,
AppSachet ranks the seen apps after a pre-definded bootstrapp time, and based
on that ranking segments its own cache into two parts. The segment created are
either based on app popularity (i.e., in case of p-LRU cache) or cost of caching (in
case of c-LRU cache) or simple LRU. AppSachet syncs or pre-fetches popular
or cost effective apps and their updates from remote app stores. Thereafter,
the popular or most cost effective apps are updated proactively and pre-fetched
every hour. When an end client device that supports AppSachet connects to that
eBox, the device starts by sharing information about installed apps on-device to
which an eBox response in form of apps and/or updates available at the eBox,
depending on user-preferences.

For completeness sake, we outline a simpler version of our vision for how
AppSachet is integrated in the Android app ecosystem, by focusing only on inter-
actions related to app installs and updates. These mechanisms are useful even
in the context of the existing app download/install/upgrade model, but their
benefits can be further enhanced through systems support for app-streaming,
developed in our previous work [11]. AppSachet achieves its goals via the follow-
ing four components:

1. AppSachet Cache: An eBox resident module that houses a cache containing
apps, updates, and anonymized app-profiles on its local storage.



94 K. Bhardwaj et al.

AppSachet Cache

...

App Usage Monitor

Connection 
Handler

AppSachet 
ServerLocal 

App 
Profile

AppSachet 
Client

App 
Store 
Sync
Service 

App 
Profile 
Sync

update 
handlerapps

app-profile Consolidator 

Contextual 
Selector

AppSachet

Connection 
Handler

eBox

Bootstrap 
app profile on 
connect

Anonymized
App-Profiles

Fig. 2. AppSachet design showing different system components, their interactions and
their placement in app ecosystem.

2. AppSachet Server: An eBox resident server that services end client devices’
request for apps and/or updates, and collects anonymized app-profiles from
the connected devices.

3. AppSachet Sync: An eBox resident module pro-actively fetching apps, han-
dling update notifications from app stores and notifying app stores about the
delivered apps and/or updates.

4. AppSache Client is a module embedded in the Android app framework that
enables handling of app installs and/or updates from an AppSachet server.

3.1 AppSachet Cache

The AppSachet cache is an eBox-resident module that maintains an indexed
repository of app and update binaries fetched from app stores. It houses aggre-
gate app usage information – referred to as app-profile – from all connected
clients, and a list of delivered apps and/or updates mapped to particular user,
used for required app-store notifications. Although the policy used for app cache
management can be as simple as an age-based LRU policy, we demonstrate
significant gains from targeting the cache management policy to the character-
istic of the app traffic. In response, we define two policies – p-LRU and c-LRU
– described in greater detail in Sect. 4. The updates of the app cache rely on
AppSachet’s Sync service.

In addition to apps and their updates, AppSachet also maintains per-app App
Profiles. An App Profile is simply a relational structure containing the state
collected from end user devices on connection. It includes the following user
specific persistent information from device: (i) a list of apps, (ii) their versions
and (iii) usage patterns of installed on end user device. It also contains session
specific device configuration, e.g., current IP address of the device needed to
deliver an app or update, and the current App Sachet user preferences indicating
how user wants his device to interact with AppSachet enabled eBox. For instance,
the preferences can indicate whether a user wants to update all available app
updates or to disable updating specific app from eBoxes, of is a user wants



AppSachet 95

to see new contextual apps available for installation from eBox, etc. An app-
profile is exchanged during the bootstrapping when a device first connects to an
AppSachet-enabled eBox.

App-profiles are also kept on eBoxes in another cache instance. The rationale
behind keeping a cache vs. a persistent copy of app profiles is first based on
the limited amount of storage on eBoxes, and the fact that app-profiles are
synced with app-stores anyway. Second, considering the predictability of human
movement, i.e., we often go the same places at particular times, e.g. office, coffee
shop, etc., creates opportunities for applying proactive and predictive caching
algorithms.

Note, however, that sharing this information about a device poses a potential
privacy threat; it is avoided by sharing only anonymized app profiles with eBoxes.
The anonymization of app profiles is designed to be carried out on the device, in
the App usage monitor, vs. on the eBox, to prevent privacy concerns. Another
concerns is mismatch in app version installed on device and the one known by
backend app stores due to eBox based updates. For the current prototype, it is
a non issue because of the way eBox based AppSachet fetches apps and their
updates on behalf of an end user effectively syncing the current version of app on
device and known by app stores. But we posit that a delegation of authorization
from end user to eBox could be used in real-world deployments.

3.2 AppSachet Server

AppSache server residing on an eBox carries out interaction with a device. It
is responsible for bootstrapping device-eBox interaction on connection by pre-
senting a valid certificate which established that eBox as valid provider of apps
and updates. Another choice is to have remote app stores involved during the
bootstrapping process but that leads to longer bootstrapp process as the device
and eBox have to reach out to app stores, which then can issue a common token
which can be used to verify identity of an eBox. The server interacts with the
cache of apps and shared app profiles, and updates and considers user prefer-
ences, e.g., to create a tailored response for the device.

Actual App Delivery. From an eBox is facilitated by Android Debug Bridge
(ADB) over Wi-Fi to connect to the device and carry out actual app installs and
updates when requested by a device resident AppSachet client, an app at a time.
The decision to not batch multiple app updates from eBox to end client device
is to ensure correctness of updates on a device, and also not to overwhelm the
end user device’s network with large number of updates.

3.3 AppSachet Sync

App-Sachet’s Sync service is responsible interacting with existing app-stores on
behalf of end clients. Its interaction involves (i) fetching apps and/or updates not
cached on an eBox and (ii) periodically checking and pre-fetching updates for
apps based on p-LRU or c-LRU policy. It supports a pull-based mechanism for



96 K. Bhardwaj et al.

update distribution for which AppSachet on eBox registers a push notification
handler, i.e., update handler, listening to push notifications from the app store
for apps present in its app cache. When a notification arrives, the AppSachet
sync service fetches the updates.

App stores transmit app as full apks to end clients devices but updates are
transmitted either (i) as full apks if there exists is a wide gap in version of app
installed on device vs. app version that is currently available app store or (ii) as
incremental updates [22] which are binary diff of previously installed app apk and
the current version of apk submitted by developer at app store. AppSachet sup-
ports incremental updates to end clients and also handles incremental updates
for its own cache. To ensure correctness of incremental updates, app cache fol-
lows a 2 phase commit approach i.e., it commits an update to the app cache
only when there are no current users installing the app or its update to avoid
misalignment of app versions, but once committed, the update is immediately
available to eBox connected devices.

A push-based approach to app cache updates, allowing app stores to dynam-
ically push apps or their updates to a device, could leverage global context, e.g.,
trending apps, important updates, etc. However, given that our current imple-
mentation is limited by the existing unofficial Google Play API, AppSachets are
restricted to a pull-based approach explicitly requesting apps and updates from
the store.

The Sync component is also responsible for aggregating and propagating
to the app store notifications about delivery of an app or an update. These
notifications are sent asynchronously to app stores to avoid causing slowdowns
in AppSachet-end user device interaction but still ensuring consistency in the
versions of apps installed on end user device and what is known to remote app-
stores. The choice of lazy and asynchronous reporting to remote app stores by
eBoxes ensures that devices are not burdened to communicate with remote app
stores. It also avoids making remote interactions between eBoxes and app stores a
bottleneck while eBox updates are ongoing. However, this may be problematic for
apps that require payments. We posit that to support paid apps on AppSachets
app stores, either this communication would have to be made synchronous or
the eBox must be enabled to process payments. We believe there are additional
challenges related to authorization and authentication of eBoxes, which we plan
to explore in our future work.

AppSachet relies on app store-resident functionality to provide the aforemen-
tioned callbacks or eBox-initiated sync operations, and leverages app profiles and
other information gleaned from eBox usage patterns to guide the distribution of
app updates across eBoxes, or to otherwise allow app stores to benefit from the
presence of eBoxes in the end-to-end app ecosystem. Even though this paper has
not yet explored challenges concerning the efficient operation of an eBox-App
Store interface, we believe that with ∼100 apps installed on a average device [2,3]
and an update cycle of 10 days, there are significant opportunities to reduce con-
siderable overhead from app stores. By using eBox based app stores, congestion
is reduced by (i) providing flexibility in scheduling app store interactions and



AppSachet 97

updates, and (ii) by distributing the app and app update delivery load across a
number of eBoxes, which then can handle per device installs/updates.

3.4 AppSachet Client

The AppSachet client resides deep in the Android’s app framework on the end
user device. It is responsible for starting the bootstrapping process when a device
first connects to an AppSachet enabled eBox. Mechanisms like Wi-Fi beacons or
a central registry based service discovery etc. can be used to kick-off bootstrap-
ping. However, our current AppSachet client prototype does this by listening to
wpa supplicant connection notifications and simply querying a AppSachet server
running on pre-defined IP:Port combination. A similar approach is deployed on
most Wi-Fi routers that provide the control panel of that router over a predefined
address, e.g., 192.168.1.0 etc.

On connection, it establishes an eBox’s integrity as a valid supplier of apps
and/or updates by requesting a CA issued certificate from eBox. On successful
verification, the device resident AppSachet client shares an anonymized app
profile with eBox. After successful completion of the bootstrapping, the client
component is also responsible for requesting and acknowledging individual apps
and/or updates from eBox by choosing from those available in list shared by an
eBox as app-profile.

The AppSachet client also includes a App Usage Monitor interfaces with
Android’s package manager to get the list of installed apps and uses native hooks
to app usage APIs [1] to create anonymous app profiles, stored in a separate file
on the device’s file system. It is run lazily in the background when the device
is locked by the end user. The decision to invoke the app usage monitor lazily
ensures that (i) mining relevant information doesn’t impact user experience when
the device is being actively used and (ii) utilizes the period between user locking
the device and system’s decision to put device in a deep sleep state to minimize
its impact on device’s battery usage. The app-profile is anonymized by passing
it through a filter to ensure that information shared with eBox is clear of any
personal information. In the current prototype, this simply removes keywords
provided by users in their preference, but better anonymization techniques could
be deployed for improved privacy guarantees.

4 AppSachet Cache Policy Design

We present the two novel cache policies for managing the cache of apps and
app updates on AppSachet eBoxes. Policies are specifically defined based on
opportunities observed from the app-traffic characteristics captured in our mea-
surements. The two policies – p-LRU and c-LRU – are described next, and the
overall description of the cache management operations with either policy follows
the same operating flow illustrated in Fig. 3.



98 K. Bhardwaj et al.

start

End client
app/update

request

Bootstrapped ? LRU operation

Rank obsolete ?

Calculate
popularity/cost

index of all
cached apps

Scheduled
hourly ranking

p-LRU/c-LRU
operation

choose top k
apps such that
size of those
apps is less

than popularity
metric or cost
index metric.

For each
selected app
remove from

LRU segment.

Pre-fetch
selected

apps/updates
from remote
app store.

Fig. 3. Showing the operation of AppSachet on eBoxes.

4.1 Popularity-Aware Caching: p-LRU

p-LRU cache is designed to operate based on app popularity, observed as an
important characteristics of app traffic. p-LRU divides the available storage space
for caching in two parts: (i) LRU based and (ii) popularity based. The size of
each segment is decided based on popularity metric which is defined as percent
of storage space allocated to popular apps on an eBox. p-LRU cache is similar
to a segmented LRU (SLRU) [19] in the way it keeps two separate segments of
cache, but differs in the eviction strategies in the LRU-vs. the popularity based
segment. The p-LRU cache works as follows:

During p-LRU bootstapp period, e.g., the first 24 hours, p-LRU acts as simple
LRU. After that, apps are ranked according to the apps that were accessed in
the past 24 hours based on the number of times they were accessed or popularity
metric. For instance, if we have a cache of size 1 GB, and we see that 40 % of
apps are being accessed repeatedly, we set popularity metric at 40 %. This will
result in reserving 40 % storage space, i.e., 400 MB, for storing popular apps and
60 %, i.e., 600 MB, for storing recently used apps.

The popular apps and their updates are then pre-fetched until the popular
segment is full. If the app is present in both LRU and popular segment, it is kept
in the popular segment, so that LRU can accommodate more apps. Note that



AppSachet 99

there are many apps that although not popular, not caching them would result in
a considerable reduction in hit ratio, also highlighted by the gap in all apps and
popular apps in Fig. 4(ii). Since, there are considerable number of apps that are
often not popular but not caching them would result in a considerable reduction
in hit ratio also highlighted by the gap in all apps and popular apps in Fig. 4(ii).
Once p-LRU is bootstrapped, app ranking is repeated every hour and popular
apps are pre-fetched for that hour.

4.2 Cost-Aware Caching: c-LRU

Similar to p-LRU cache, c-LRU cache divides the available storage space for
caching in two parts: (i) LRU based and (ii) cost of caching based. It uses a
cost index to quantify the cost of caching an app on eBox. Intuitively, the cost
of caching can be derived from the following metrics: (i) The number of times
it is downloaded when compared to all the apps downloaded from that eBox or
the download ratio; (ii) the time for which a particular app is kept on eBox’s
storage compared to its first download or utilization ratio; (iii) the time an app
has already spent in the cache without actually being requested by end users or
recency ratio; and (iv) the size of the app that needs to be stored. e.g., if any
particular app whose size is 50 MB and is accessed 10 times and we have two
other apps whose sizes are 20MB and 30MB, and are accessed 5 and 8 times
respectively in the same interval, then we should give preference to caching the
two smaller apps than one large app. One exception to this rule is that c-LRU
must handle updates and installs separately because updates are always smaller
than installs and this would lead to installs never being cached on eBox. We
started with giving equal weights to each metric, and the value of each is nor-
malized i.e., varies from 0 to 1. The app with the lowest cost caclulated this way
is considered the most suitable one for caching at an ebox. After experiment-
ing with different combinations of weights and metrics, we zeroed to the below
mentioned definition of cost index of an app stored on eBox:

Cost index = [DR ∗ (1/Appsize) + UR + RR)]−1, where,
Download ratio (DR) = number of downloads of that app / total number
of downloads

Utilization ratio (UR) = hours spent in cache / hours since first download
Recency ratio (RR) = 1/hours since last download

The lower cost index results in lower cost associated with storing and hence,
higher benefit, because the app may be accessed too frequently or uses very little
space or a combination of both. The c-LRU cache works as follows: during c-LRU
bootstrapp process, i.e., the first 24 hours, c-LRU acts as a simple LRU. After
that, apps are ranked according to the cost index of apps accessed in the past
24 hours. The segmentation, pre-fetching and eviction in c-LRU work similarly
to p-LRU except the use of cost index vs. popularity.

The cost function described above tries to maximize the utilization of eBox
resources. However, the model permits for additional cost functions, including



100 K. Bhardwaj et al.

ones that incorporate consideration of different value generated from different
apps. The ability to attach a value to an app in case of AppSachet or generally
a service running on an eBox can pave the way to creating a quantifiable eco-
nomic model for the upcoming ‘edge cloud’ infrastructure, a concern of utmost
importance regarding edge cloud deployment, which hasn’t been addressed in
any of the recent edge cloud research [12,16,18,20].

5 AppSachet Implementation

The implementation of AppSachet uses either available Android platform compo-
nents or open source technologies. Specifically, (i) the eBox-resident elements are
implemented using the node.js and python API on top of an OpenWRT router,
(ii) the device-side AppSachet client elements are implemented as a patch for
Android, and (iii) the additional elements of the eBox-app store interface are
implemented using the unofficial HTTP API of the Google Play Store. With
our limitations to evaluate eBox-AppStore interface owing to it requiring chang-
ing app-store’s internals and its interface, we present detailed evaluations of the
other components of AppSachet mechanisms next.

6 Evaluation

6.1 Experimental Testbed

App traffic measurements are obtained from a network tap that has the capa-
bility of logging all traffic flowing in and out of our institution. We used offline
analysis to filter the data after logging. The AppSachet is deployed on an eBox
emulated with a Core2Duo machine housing apps in its local storage and con-
nected to a Linksys wrt 1900ac router via a Gigabit port. We generate a rep-
resentative app traffic workload for our experiments using captured app traffic.
The AppSachet client is prototyped using a Nexus 5 phone running Android
(CyanogenMod 11.2 ∼ Android KitKat).

6.2 Cacheability of App Traffic

Figure 4(i) shows the number of times a particular app or its update in accessed
from the measured app traffic. The most popular app was accessed 1403 times
and then access frequency decreases exponentially. Specifically, the 100th app
was accessed only 68 times, showing a clear long-tail distribution of apps and
their updates. To gain insights into finer temporal cache characteristics of app
traffic, we divided the complete dataset into 6 equal smaller periods – where
each line in Fig. 4(ii) d i corresponds to a different period – and found that the
caching characteristics persist for small periods as well as for the overall traffic
trace.

Going a step further, we analyse the observed app traffic on a per-hour basis
to capture local popularity of apps on an eBox based cache. Figure 4(iii) shows



AppSachet 101

Fig. 4. For the measured app traffic showing (i) the number of times each app is
accessed in the complete dataset; (ii) temporal caching characteristics of app traffic
workload by dividing observed traffic in 6 small periods; (iii) number of popular apps
vs. other apps accessed from the cache per hour;

that for every hour, 40 %–60 % of apps are accessed from what we call the local
popular app cache. We notice that every hour, the local popularity of apps on an
eBox changes, requiring hourly updates to keep the app cache clear of outdated
apps, also seen from the pattern in the Fig. 4(iii). These results establish that
traffic due to apps and their updates is suitable for caching on an hourly basis
and provided justification for our rationale behind the design of the p-LRU and
c-LRU caching policies.

6.3 p-LRU and c-LRU Cache Performance

We compared the proposed p-LRU and c-LRU with a number of popular cache
policies, i.e., LRU, Random and Belady’s optimal eviction policy. The experi-
mental results, summarized in Fig. 5(i) and Table 2 are obtained using eBoxes
with up to 2.5GB of cache storage.

Table 2. For the measured app traffic, showing comparisons of cache policies with
varying cache sizes.

Cache Size 1 GB 1.5 GB 2 GB 2.5 GB

Cache Policies Oracle 0.8386 0.8558 0.8647 0.8688

p-LRU 0.7837 0.8105 0.8247 0.8352

c-LRU 0.7782 0.8078 0.824 0.8328

LRU 0.7665 0.7965 0.8149 0.8274

Random 0.6266 0.671 0.6994 0.714

It is clear that p-LRU outperforms all other policies and is closest to the
optimal cache closely followed by c-LRU policy. Figure 5(ii) shows the overall
performance of p-LRU cache for varying sizes of app cache which shows that the
best ratio is obtained when the cache size for popularity metric is between 40 %–
60 % which drops drastically after 80 %. This also shows why one segment must



102 K. Bhardwaj et al.

Fig. 5. For the measured app traffic showing (i) the comparison of caching policies;
(ii) p-LRU cache performance with different size of eBox based cache; (iii) the average
cost index observed (i.e., by all the apps stored on eBox at a time) when using p-LRU
and c-LRU caching policy while varying cache size.

be assigned as a LRU cache, i.e., LRU also plays a very important role in main-
taining a high cache ratio whereas the popularity metric or cost index ensures
that the popular apps or apps with high cost index are always cached, even on
their first access. We conclude that efficient use of the capabilities of upcoming
edge cloud platforms (e.g., for caching) would require defining new application
specific metrics (e.g., popularity, cost) and/or implement new mechanisms (e.g.,
p-LRU, c-LRU).

6.4 Storage Requirements on eBox

Figure 5(ii) shows the variation of cache hit ratio of the p-LRU cache with
increasing cache size. Figure 5 shows that using a p-LRU cache on an eBox
with a capacity of 2.5 GB results in the highest hit ratio; this is also closest
to the optimal Belady’s algorithm shown as Oracle. We conclude that with 2.5
GB of additional storage at eBoxes and a p-LRU cache, AppSachet achieves a
83 % hit ratio. Figure 5(iii) shows the average cost index observed, i.e., average
of cost indexes of all apps stored on the eBox, updated hourly, while running
through the complete workload and using p-LRU and c-LRU. As apparent, c-
LRU beats p-LRU consistently in terms of lower cost index and hence, lower cost
of caching resulting in higher benefits, while still slightly sacrificing hit ratio as
seen from Table 2 This highlight a trade off in cache performance vs. cost par-
ticularly for eBoxes with less storage due to cost constraints. Generally, for edge
services (e.g., AppSachet) deployed on edge cloud platforms with resource con-
straints (e.g., storage capacity), designing mechanisms (e.g., c-LRU policy) must
consider other factors (e.g., cost) vs. just performance (e.g., hit ratio).

6.5 Cost Benefit Analysis of Deploying eBox Based AppSachets

Without real world deployments of eBoxes and in the absence of any real cost
models for eBox revenue, we base our cost-benefit analysis on the retail cost
of SSD storage and the benefit of the latest pricing information about content
delivery networks prices. Simply put, the benefit from an AppSachet on an eBox
is directly proportional to the reduction in volume of traffic served by an eBox.
Consider the following:



AppSachet 103

1. There is a wide range on prices offered by CDNs [6], e.g., typically $0.01 per
GB to $0.05 per GB depending on the volume of traffic.

2. Additional storage cost of 2.5 GB flash storage varies from $3-$20 based on
its quality. Assuming that we also add 2GB DDR3 RAM as well to the eBox,
which costs anywhere from $10-$20, this would result in a maximum increase
of $40 in eBox cost.

3. Based on the size of app installs/updates in Sect. 2, the total amount of bytes
served by an app store are ∼2.6TB. With a 83 % hit ratio shown to be achieved
by p-LRU cache would serve ∼2TB from eBoxes.

Conservatively, using $0.01 per GB, an eBox can save ($0.01× 2000 = $20)
in three months, i.e., an eBox would be able to recover the additional cost of
storage within 3 months of its deployment. Even if we consider the additional
RAM as a cost increase in eBoxes, it will be recovered in the first 6 months of
eBox deployment. From this, we want to highlight the value proposition of edge
cloud based services (e.g., AppSachet) in terms of reduced operational costs for
cloud based services.

7 Discussion and Future Work

This paper leaves a number of open questions on the device side, about eBox
deployment models, privacy, and required system software changes. Ones which
we plan to undertake in the future are discussed below:

eBox Deployment Model. Given that realworld deployments of eBoxes don’t
exist as yet, there are open questions about their ownership – individuals, busi-
nesses or public infrastructure? Security and Trust aspects of apps from AppSa-
chet on those eBoxes? Another open area is DRM of the app cache on eBox. We
posit that authentication and authorization methods can be deployed on eBoxes,
theoretically but those authorization and authentication assume a human user
which is authenticated or authorizes which is not the case AppSachet operating
on eBox. We believe that this is an interesting problem which plan to pursue in
future.

Privacy Concerns. Privacy concerns arising out of sharing app profiles and
methods to anonymize app profiles leaves out an open question – First, is it
possible to fingerprint users based on app users and if so, what obfuscation
methods can be applied to avoid those concerns. However, it is important to
note that sharing app profiles is not invasive than use current app usage API
in Android [1] (which AppSachet also uses) which lets developers to track app
usage. However, this aspect certainly needs a detailed evaluation.

System Software on Devices and eBoxes. Without any standard definition
of am eBox, their deployment mechanism and consequently new functionalities,
e.g., app caching etc., provide an wide open space for research. In our future
work, we are exploring additional functionality that can further improve the app
ecosystem and their automatic provisioning eBoxes.



104 K. Bhardwaj et al.

Device Side Evaluation. We also carried out experiments to gauge the benefit
of AppSachets on end client devices. However, we did not observe any significant
benefits or any new finding other than what is already reported in our previous
work [11] so we omitted those results from this paper.

8 Related Work

Previous work on characterizing Internet traffic workload has mainly focussed
on video e.g., youtube access patterns [13,14,17,21,23] etc., and web but, there
has been no work done in collecting the android app access patterns. Our paper
is the first of its kind to capture and analyse the download behaviour of android
apps. Using dynamic caching for prefetching content, Gandhi et al. [17] suggested
that k-means clustering used more intervals while reducing error rate compared
to dynamic programming. However, based on our android app access pattern, k-
means clustering gave a cache-hit ratio of 75 %, which is lower than the cache-hit
ratio of the proposed p-LRU algorithm. Zink et al. [23] observed a similar pattern
for youtube videos and proposed a caching policy based on LRU and popularity
of a movie. The results showed an improvement in the cache-hit ratio. However,
their algorithm depended on a global list of popular movies. Access to a global
list may or may not be there. Also, it might happen that the global popularity
list might differ from local lists [23], where they proved that there is no strong
correlation is observed between global and local popularity and video clips of
local interest have a high local popularity. The p-LRU algorithm addresses these
issues, as it generates the popularity list by learning the access patterns locally.

Prior efforts have considered support app execution via edge-cloud plat-
forms [12,16,18,20] to leverage resource-rich execution environment to partially
or fully offload app execution from resource constrained devices. But none of
them considered use of edge cloud platforms for app delivery which is the focus
of AppSachets approach. Recent work to reduce mobile app update traffic pro-
poses micro app updates [15,22] which would complement AppSachets.

9 Conclusions

AppSachet is a distributed app delivery system for the Android ecosystem that
shows that deploying proposed app caches (p-LRU, c-LRU) on eBoxes in the
‘edge cloud’ tier can recover the already modest additional costs within 3 months
of its deployment. The design of AppSachet is based on extensive experimental
measurements of app traffic and keeping in mind practical deployment concerns,
i.e., not requiring changes to apps by developers and/or changes in how end users
employ these apps. More generally, we conclude that while moving conventional
services to the edge cloud can have benefits in terms of latency and bandwidth
but designing services for edge cloud platforms requires more than just running
existing backend cloud services in the edge cloud. There remains interesting
tradeoffs to be explored and new mechanisms to be developed leading to efficient
use of future edge clouds providing a fertile ground for systems research.



AppSachet 105

Acknowledgement. This work was partially supported through research grants from
Intel, VMware, and NSF CNS1148600.

References

1. Android app usage api @ https://goo.gl/39dqlu
2. Android apps per device - yahoon avaite @ http://goo.gl/3zb3ob
3. Android apps per device @ http://goo.gl/zkaxsx
4. Att small cell deployment plans. http://goo.gl/XdfkfH
5. Att wifi hotspot locations. http://goo.gl/XdfkfH
6. Cdn pricing 2014. http://goo.gl/7l7fkd
7. Level 3 cdn reports last mile as new bottleneck @ http://goo.gl/3ir9kg
8. Mobile world congress -small cells. http://goo.gl/cWaARN
9. Qualcomm small cells. http://goo.gl/HEpudP

10. Qualcomm smart gateways. http://goo.gl/BwPc7f
11. Bhardwaj, K., Agarwal, P., Gavrilovska, A., Schwan, K., Allred, A.: Appflux: Tam-

ing mobile app delivery via app streaming. In: 2015 Conference on Timely Results
in Operating Systems (TRIOS15) Monterey, CA, USA (2015) USENIX Association
(2015)

12. Bhardwaj, K., Sreepathy, S., Gavrilovska, A., Schwan, K.: Ecc: Edge cloud com-
posites. In: Proceedings of the 2014 2Nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering MOBILECLOUD 2014, pp. 38–47.
Washington, DC, USA (2014), IEEE Computer Society (2014)

13. Braun, L., Klein, A., Carle, G., Reiser, H., Eisl, J.: Analyzing caching benefits
for youtube traffic in edge networks x2014; a measurement-based evaluation. In:
Network Operations and Management Symposium (NOMS) 2012, pp. 311–318.
IEEE, April 2012

14. Cheng, X.: Understanding the characteristics of internet short video sharing:
Youtube as a case study. In: Proceedings of the 7th ACM SIGCOMM Conference
on InternetMeasurement, San Diego, CA, USA, vol. 15, p. 28 (2007)

15. Cheung, A., Ravindranath, L., Wu, E., Madden, S., Balakrishnan, H.: Mobile appli-
cations need targeted micro-updates. In: APSys 2013 (2013)

16. Dixon, C., Mahajan, R., Agarwal, S., Brush, A., Lee, B., Saroiu, S., Bahl, P.: An
operating system for the home. In: USENIX conference on NSDI, April 2012

17. Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah, M.: Minimizing data center
sla violations and power consumption via hybrid resource provisioning. In: Pro-
ceedings of the 2011 International Green Computing Conference and Workshops,
Washington, DC, USA, 2011, IGCC 2011, pp. 1–8. IEEE Computer Society (2011)

18. Jang, M., Schwan, K., Bhardwaj, K., Gavrilovska, A., Avasthi, A.: Personal clouds:
sharing and integrating networked resources toenhance end user experiences. In:
INFOCOM, 2014 Proceedings IEEE, April 2014

19. Karedla, R., Love, J.S., Wherry, B.G.: Caching strategies to improve disk system
performance. Computer 27(3), 38–46 (1994)

20. Koukoumidis, E., Lymberopoulos, D., Strauss, K., Liu, J., Burger, D.: Pocket
cloudlets. ACM SIGPLAN Notices 47(4), 171–184 (2012)

21. Krishnappa, D.K., Khemmarat, S., Gao, L., Zink, M.: On the feasibility of prefetch-
ing and caching for online tv services: a measurement study on hulu. In: Spring,
N., Riley, G.F. (eds.) PAM 2011. LNCS, vol. 6579, pp. 72–80. Springer, Heidelberg
(2011)

https://goo.gl/39dqlu
http://goo.gl/3zb3ob
http://goo.gl/zkaxsx
http://goo.gl/XdfkfH
http://goo.gl/XdfkfH
http://goo.gl/7l7fkd
http://goo.gl/3ir9kg
http://goo.gl/cWaARN
http://goo.gl/HEpudP
http://goo.gl/BwPc7f


106 K. Bhardwaj et al.

22. Samteladze, N., Christensen, K.: Delta: Delta encoding for less traffic for apps. In:
Proceedings of the 2012 IEEE 37th Conference on Local Computer Networks (LCN
2012), Washington, DC, USA, 2012, LCN 2012, pp. 212–215. IEEE Computer
Society (2012)

23. Zink, M., Suh, K., Gu, Y., Kurose, J.: Watch global, cache local: Youtube network
traffic at a campus network: measurements and implications. In: Electronic Imaging
2008, p. 681805. International Society for Optics and Photonics (2008)



Typed JS: A Lightweight Typed JavaScript
Engine for Mobile Devices

Ryan H. Choi(B) and Youngil Choi

Software R&D Center, Samsung Electronics, Suwon, South Korea
{ryan.choi,duddlf.choi}@samsung.com

Abstract. Web applications have been gaining huge popularity due to
being platform independent and also enabling fast development. Unfor-
tunately, due to insufficient performance of web applications, they are
generally limited to non-performance-critical use. The performance of
web applications is largely affected by the performance of JavaScript.
To address this problem, modern JavaScript engines such as Google’s
V8 incorporate many state-of-the-art optimization and engineering tech-
niques. In industry, recent approaches are to extend JavaScript to deco-
rate objects with types to better utilize just-in-time (JIT) compilers.

In this paper, we present Typed JS, a subset of JavaScript that utilizes
type-decorated syntax. Unlike previous approaches, Typed JS supports
most of the JS core operations while utilizing the ahead-of-time (AOT)
compilation technique, which was not possible in the existing solution.
Typed JS is specifically designed for running Web applications on mobile
devices with goals of having smaller memory footprint while achieving
high-performance, which is accomplished by utilizing the type informa-
tion and AOT technique. Experiments show that Typed JS requires
significantly much less memory usage while performing better than
industry-leading JavaScript engines on a mobile platform.

Keywords: Typed JavaScript · Static type · Mobile

1 Introduction

JavaScript is the standard Web programming language, commonly integrated to
web browsers to allow users interact on client-side applications. Also, together
with HTML and CSS, it defines the standard Web application framework, which
allows developers to create large-scale and complex Web-based applications.
Some popular web applications include Gmail, Google Docs, Facebook, etc.
In these applications, JavaScript is typically used to execute complex user inter-
action and business logic. The strength of Web applications is, unlike traditional
applications, it does not have platform dependency—any platform including
desktop and mobile that includes a modern web browser can execute web appli-
cations. Furthermore, Web applications are self-maintainable from user’s view in
a way that users do not worry about installing and updating web applications.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 107–121, 2015.
DOI: 10.1007/978-3-319-29003-4 7



108 R.H. Choi and Y. Choi

Due to significant influence of JavaScript in the Web framework, recently,
improving the performance of JavaScript has received much attention from both
industry and academia. Modern industry-leading JavaScript engines including
V8 [9] and JSC [2] have been heavily optimized over the last decade. Some
well known optimization techniques include JIT (just-in-time), hidden class and
inline cache. These optimization techniques are to address one of the fundamental
designs of JavaScript—that is, JavaScript is a dynamic language such that, a
JavaScript’s object layout is unknown during the JavaScript compilation phase,
but gradually known during runtime. For each object, information about the
object layout is collected while executing JavaScript, and when the object layout
is hardly altered, these optimization techniques start to optimize execution steps
by generating machine code for faster execution (i.e., JIT) and caching properties
(i.e., inline cache). A key concept of these techniques is that, object layouts do
not change much after JavaScript executes for a while. Hence, one drawback
is that, when object layout changes frequently, JIT and inline cache are not as
effective. Furthermore, techniques such as JIT is a resource-intensive technique,
so it may not be suitable for platforms with limited CPU and memory resources
such as mobile platforms.

JavaScript, being dynamic by nature, presents many performance and mem-
ory optimization challenges. To address these problems, recently, a few variants
of JavaScript are proposed, and being actively developed in industry. One com-
mon goal among these variants is to restrict JavaScript’s dynamicity without
much affecting JavaScript’s design by adding static types. Objects declared with
static types are not allowed to change types during runtime. Hence, by utilizing
these extra type information, JIT and inline cache can be more effective, and
more aggressive optimization techniques can be applied. TypeScript [14] is one of
the first attempt in this direction. It extends JavaScript to accept type-decorated
syntax. Flow [8] is a subset of JavaScript that also accepts type-decorated syntax.
Unlike TypeScript, Flow is a type-checker such that, it analyzes type-decoration
for consistency and correctness, and relies an existing JavaScript engine for code
execution. They both attempt to fully utilize current optimization techniques
such as JIT already implemented in JavaScript virtual machines (VMs) to max-
imize the performance on desktop by supplying type information and not mod-
ifying object layouts.

Ahead-of-time (AOT) compilation technique, unlike JIT optimization,
requires all object types to be known during the code compilation phase. By
fully understanding object types and not allowing changing object layouts dur-
ing runtime, it can aggressively optimize for maximum performance. But due to
not knowing object types and dynamicity in objects, AOT is not suitable for
JavaScript. However, there is an attempt to integrate the strength of AOT com-
pilation into JavaScript virtual machines. asm.js [15] translates C++ code into
non-dynamic JavaScript code to make it execute faster than typical JavaScript
code with some forms of dynamicity. Unfortunately, functionality of asm.js is
limited in a way that, it cannot represent JavaScript core design such as objects,
prototype, etc. Nevertheless, it proves that, eliminating dynamic behaviors can
significantly increase the performance.



Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 109

In this paper, we propose a design of a subset of JavaScript called Typed
JavaScript (Typed JS), which utilizes type-decorated syntax, and is compiled
by an AOT compiler. Unlike V8 and JSC, Typed JS is specifically designed for
running Web applications on mobile devices with goals of having smaller memory
footprint and binary size while achieving high-performance when integrated to
mobile web applications. Unlike asm.js, which supports only a small set of oper-
ators, Typed JS supports most of JavaScript core design such as object model,
prototype, functions and closures, and garbage collection. In brief, high perfor-
mance is achieved by having fixed object layout, which allows us to access objects
by using memory offsets. Also, by supporting AOT compilation, JavaScript VM
is not required, and thus, the overhead from executing a VM is removed. This also
results in having smaller memory footprint and binary size, as typical JavaScript
virtual machine is replaced by a much compact native runtime library.

Other than the performance and smaller memory footprint, Typed JS pro-
vides additional advantages. Rigorous type checking in Typed JS improves pro-
ductivity especially when implementing a large application, by early detecting
errors and bugs that are caused by type-mismatching in the development phase.
Typed JS is also portable such that, applications written in Typed JS runs on
any platform without modifying the source code. However, it may need to be
recompiled for each target platform. Furthermore, by distributing only binary
files, application source code can be effectively hidden to prevent from unautho-
rized modification, which is often an important requirement in industry.

Finally, Typed JS can become the main language to easily implement effi-
cient mobile applications. A binding mechanism between Typed JS and EFL1

graphics library on Tizen mobile platform is implemented, and we successfully
reimplemented mobile demo applications that came with Tizen SDK 2.3 origi-
nally written in C++ in Typed JS.

Organization: Section 2 presents related literature in the area of script lan-
guages. Section 3 presents design principles of Typed JS. Section 4 gives design,
model, and implementation details of Typed JS. Section 5 shows experiment
results. Lastly, we conclude in Sect. 6.

2 Related Work

JIT Compilers: Self [6] and StrongTalk [5] define many core techniques in
JIT compilers such as polymorphic inline caches [11] and deoptimization [12].
Recent works on JIT are as follows. Bohm et al. [3] propose generalized trace
JIT compilation approach that consider not only the paths through holes, but
all frequently executed paths in a program. Rompf et al. [16] allows programs to
invoke JIT compilation explicitly, as well as the JIT compiler to call back into
the program to perform compile-time computation. In industry, Google’s V8 [9]
and Apple’s JSC [2] are industry-leading VM and JIT compilers for JavaScript.
PyPy [4] is a trace JIT framework written in Python.

1 https://www.enlightenment.org/.

https://www.enlightenment.org/


110 R.H. Choi and Y. Choi

JavaScript with Types. Recently, a few techniques on extending JavaScript
with types for better performance are proposed. TypeScript [14] is a superset of
JavaScript that extends JavaScript with explicit types. Flow [8] is a subset of
JavaScript that adds type-checks. SJS [7] shares the same concept as Flow, but
it generates C++ code and supports AOT compilation. SJS integrates Wala [13]
to perform type inference. Ahn et al. [1] propose how to derive an object type
from its inherited prototype and method binding.

JavaScript VM and a Browser. A few techniques are proposed to run native
code inside a browser. Doppio [17] is a JavaScript-based runtime system that
allows C++ code and JVM programs run inside a browser. asm.js [15] con-
verts C++ code to JavaScript to run on any JavaScript VM. However, it is not
designed to support objects and prototype. Nacl (and PNaCl) [10] runs natively-
compiled C++ code in a Chrome web browser.

3 Design of Typed JS

Typed JS utilizes type annotations, offers the usage of dynamic and static fea-
tures, and an AOT compilation to increase the performance and yet reducing
memory footprint on mobile platforms than current industry-leading JavaScript
engines. The design principles of Typed JS are as follows.

– Type Annotation: Dynamicity of objects is one of major performance bot-
tlenecks of JavaScript, as they require type-checked during runtime. Typed
JS enforces types of objects to be specified when they are declared. It extends
JavaScript syntax to accept type-annotated objects, and do not allow such
objects to change its type during runtime. Figure 1 shows an example of a
function written in Typed JS. In this example, the function is type-decorated.

– Object Model: Dynamically adding/deleting a property causes another
performance decrease during runtime. To support dynamic objects, current
JavaScript engines must check for the existence of a property during runtime.
In addition to traditional dynamic objects in Typed JS, Typed JS supports
sealed classes, which prevents users to change properties declared in sealed
classes during runtime. Hence, sealed classes can be used if one prefers run-
time efficiency over object dynamicity.

– AOT Compilation: Typed JS is compiled to a target-specific, optimized
binary executable. Moreover, Typed JS can utilize modern compiler opti-
mization techniques, as it annotates types and supports static classes. In our
prototype, Typed JS compiler transpiles Typed JS source code into C++11,
and it is natively compiled with g++’s optimization techniques.

– Robust and Secure: Typed JS follows the strict mode of JavaScript, and
redefines a set of dynamic features that can be efficiently implemented. Also,
Typed JS does not support evaluating source code during runtime, i.e., eval(),
eliminating security holes.



Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 111

var hanoi =

function(disc: int, src: string,

aux: string, dst: string): void {

if(disc > 0) {

hanoi(disc-1, src, dst, aux);

console.log("Move disc " + disc +

" from " + src + " to " + dst);

hanoi(disc-1, aux, src, dst);

}

}

hanoi(5, "src", "aux", "dst");

Fig. 1. Tower of Hanoi in Typed JS

4 Architecture of Typed JS

Figure 2 shows the architecture of Typed JS. It consists of two major parts—
compiler and runtime. The compiler part takes Typed JS source code as input,
and generates C++11 code that heavily depends on internal data structure and
Typed JS runtime library. The runtime part provides the implementation of the
internal data structure and runtime library. The auto-generated C++11 code
is compiled, and executed natively on a low-end Samsung mobile phone. This
phone operates with Tizen2 OS. In our implementation, C++ code is compiled
with g++ found in Tizen-SDK-2.3.3 This version of g++ generates binary for
ARM architecture. Additionally, binding API, a selection of Tizen EFL graphics
library wrappers, is also implemented to allow GUI components to be integrated
with Typed JS. Each part further consists of smaller components, and they are
explained in the following sections.

4.1 Compiler

Compilation is a 3-phase process, and each phase is explained as follows.

Parser. First, the parser generates an abstract syntax tree (AST) from Typed
JS source code. The AST is extended from Mozilla JavaScript AST4 to represent
type-specific information as well as Typed JS extensions such as type-annotated
objects and sealed classes. We also extend esprima,5 an open source ECMAScript
5.1 parser to validate Typed JS syntax and generate an AST with Typed JS
extensions. Figure 3 shows an AST of hanoi() from Fig. 1. The figure shows
that new entries are added to type-annotate function parameters and return

2 https://www.tizen.org.
3 https://developer.tizen.org/.
4 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/

Parser API.
5 http://esprima.org/.

https://www.tizen.org
https://developer.tizen.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API
http://esprima.org/


112 R.H. Choi and Y. Choi

Fig. 2. Architecture of Typed JS

types (indicated by <---). Additionally, the Tizen EFL API written in Tizen
IDL (TIDL) is parsed and validated, and corresponding API calls are also added
to the AST (omitted in Fig. 3 due to complexity).

Code Generator. Second, the code generator takes an AST as input, performs
semantics validation, and generates C++11 code. We modified escodegen,6 which
generates JavaScript code from an Mozilla JavaScript AST, to generate C++11
code with Typed JS runtime library. Furthermore, we modified escodegen to per-
form type inference by deriving and applying a set of type inference rules during
the semantics validation to deduce unknown variable types before reporting a
missing/invalid type error. Our type inference algorithm is a simplified version
of Hindley-Milner.

The overview of type inference algorithm in Typed JS is given as follows.
Given an expression of unknown type, its type is determined by deriving the type
of right operand first, and assigning a compatible type (or subtype) to the left
operand. Then, the type of the expression becomes the type of its left operand.
This type resolution step is recursively applied from bottom up by traversing
the AST until root is reached. For example, given an expression, var x = 1,
the type of right operand is derived, which is a number by definition, and the
same type as 1 is assigned to x. For an expression, var y = x, similar resolution
process is performed once the type of its right operand, x, has been determined.
The same process is applied to all different kinds of expressions in Typed JS
6 https://github.com/estools/escodegen.

https://github.com/estools/escodegen


Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 113

...

"body": [{

"type": "VariableDeclaration",

"declarations": [{

"type": "VariableDeclarator",

"id": {

"type": "Identifier",

"name": "hanoi"

},

"init": {

"type": "FunctionExpression",

"params": [{

"type": "VariableDeclarator",

"id": {

"type": "Identifier",

"name": "disc"

},

"idType": { <---

"type": "Type",

"name": "int"

},

},

...

"returnType": { <---

"type": "Type",

"name": "void"

},

...

Fig. 3. An AST of hanoi()

whose types are not explicitly given by users. If the Typed JS function shown in
Fig. 1 were written without explicitly declaring function parameter types, correct
types would still be determined by the type inference rules. The type inference
rules are still in preliminary phase, and further extension is left as future work.

Figure 4 shows a snippet of auto-generated C++ code of hanoi() shown in
Fig. 1. The code shows that it utilizes Typed JS runtime library such as JSValue
and JSStringRef to represent JavaScript number and string, respectively, while
keeping the overall control flow intact (such as recursion and if-statement). A
description of runtime model is provided in detail in Sect. 4.2.

Compilation. Finally, the auto-generated C++ code is compiled with g++ to
produce an object binary (i.e., *.o). This binary is linked with Typed JS runtime
library to produce an executable binary. Furthermore, when Tizen EFL bindings
are required, the EFL wrapper API is also compiled and linked. Note that, the
auto-generated C++ code is not necessarily optimal, but we implicitly apply
compiler optimization (e.g., -O3) by using a state-of-the-art AOT compiler such
as g++.



114 R.H. Choi and Y. Choi

...

JSValue hanoi;

hanoi = JSValue([&](JSValue This, JSValue ___disc,

JSValue ___src, JSValue ___aux,

JSValue ___dst) mutable -> JSValue {

int disc = (___disc).asInt32();

JSStringRef src = (___src).asStringRef();

JSStringRef aux = (___aux).asStringRef();

JSStringRef dst = (___dst).asStringRef(); {

if (disc > 0) {

hanoi(JSValue(disc - 1), (src).asJSValue(),

(dst).asJSValue(), (aux).asJSValue());

console::log((JSStringRef("Move disc ") + disc +

JSStringRef(" from ") + src +

JSStringRef(" to ") + dst).asJSValue());

hanoi(JSValue(disc - 1), (aux).asJSValue(),

(src).asJSValue(), (dst).asJSValue());

}

} return undefined;

});

hanoi(JSValue(5), (JSStringRef("src")).asJSValue(),

(JSStringRef("aux")).asJSValue(),

(JSStringRef("dst")).asJSValue());

console::log((JSStringRef("success")).asJSValue());

...

Fig. 4. hanoi() in C++11 (auto-generated)

4.2 Runtime

Runtime further consists of four components, and each component is explained
below.

Object Model. In Typed JS, two object models are cohesively existed—
dynamic object and sealed class models. Dynamic object model is the typical pro-
totypical model found in ECMAScript 5.1, while sealed class model is the class-
oriented model found in C++. Former is to be compatible with ECMASript 5.1
specification, while latter is designed to give better performance. The difference
between dynamic and sealed class models is that, dynamically adding/deleting
properties is removed in the sealed class model, and all property types are final-
ized in the compilation time. A sealed class is specifically designed to directly
map a JavaScript object to a C++ class to gain further performance.

Typical JavaScript objects cannot be simply transpiled to C++ objects due
to not supporting prototypical models in C++. To support dynamic objects,
additional data structures are required, and these are explained as follows.



Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 115

(a) 32-bit (b) 64-bit

Fig. 5. JSValue

Object Representation. Figure 5 shows a JSValue data structure used to
represent an object in Typed JS. The tagged pointer scheme that JSValue uses
allows either an object (regardless of its type) or a primitive value to be stored
in a 64-bit block. It also allows itself to convert one type to another dynami-
cally in runtime. For example, a variable of type boolean can be converted to a
pointer type by updating the tag and value. JSValue is implemented differently
depending on target machines. For 32-bit machines, it uses two 32-bit spaces.
The first 32-bits are used to store a tag of an object, and the last 32-bits are used
to store an actual value (either a primitive value or a pointer). An exception is
when double is stored. On 64-bit machines, tagging is not explicitly used but
similar approach applies. The physical size of JSValue is 64-bit for both 32 and
64-bit machines.

JS Object, Prototype and Sealed Classes. JS objects are connected to each
other to represent a prototype chain in Typed JS. Figure 6 shows an example of
JS objects, and how they are connected to represent a prototype chain.

An JS object is represented by a combination of JSValue and JSxImpl, where
x is either Object, SealedClass, Function, String or Array, if the object is nei-
ther a number, null nor undefined. As discussed above, JSValue is a generic
data container from which its value is used to retrieve the actual data that
JSValue represents. For example, the JSValue for “tom” object in Fig. 6 points
to an JSObjectImpl where properties of “tom” are implemented. Similarly, the
JSValue for function eat() points to an JSFunctionImpl. For security reasons,
JSxImpl objects cannot be directly accessed from Typed JS.

An JSObjectImpl implements a typical (key, value) map to allow property
reads and writes. The key and value is of type JSValue. Hence, a JSValue of any
type can be stored as a property. For example, in Fig. 6, “tom” object contains
three properties of type string, number and function, and they are all encap-
sulated in JSValues. Every JSObjectImpl contains a special proto as a key



116 R.H. Choi and Y. Choi

Fig. 6. Prototype chain in Typed JS

that points to a parent prototype object. By following proto , a prototypical
model can be implemented. A property lookup of an object o can be performed
as follows. First, a property x is searched in the (key, value) map in o. If a
property x is found, its value is returned. Otherwise, the parent object y as
indicated by proto is retrieved, and the same process is recursively applied.
When proto is null, it indicates that, there is no parent prototype object, so
the process terminates. Furthermore, to optimize property lookup, map is imple-
mented using hidden class and inline caching techniques. Further description is
given in Sect. 4.3.

An JSSealedClassImpl represents non-dynamic object. It contains a pointer
that points to a typical C++ object. A sealed class is generated when a class
is defined in Typed JS. For sealed classes, typical class-based inheritance is
supported.

Function, Closure, and Polymorphic Functions. A function object (i.e.,
closure) is implemented by using the lambda function introduced in C++11.
The lambda function allows us to define an anonymous function object that can
be invoked and passed as an argument to a function. Given a Typed JS function,
our code generator generates a lambda function accordingly. Polymorphic func-
tions are supported by combining JSValue and lambda functions. A polymorphic
function takes JSValues as input parameters, and the operation to perform on
JSValue is determined by the type of the JSValue, which is determined in run-
time. Figure 4 also shows how a function is represented by a C++11 lambda
function with JSValues as input parameters. For the functions in sealed classes,
it is not required to use JSValues, as types are not dynamic.

Supporting Modules. Runtime further consists of a number of supporting
modules, and they are as follows.

– Built-in Object: Typed JS provides a number of built-in objects specified
in ECMAScript 5. Some examples include Math, Date, Global, etc. These
built-in objects can be used from both dynamic and static objects.



Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 117

– Garbage Collector: In Typed JS, automatic memory management is pro-
vided when objects are allocated or deleted. In our prototype, we adopted
Boehm-Demers-Weiser conservative garbage collector,7 when objects are allo-
cated and removed. For future work, we plan to implement reference counting-
based memory management, as it gives less overhead on mobile platforms.

– A Graphics Binding API: The graphics binding API gives us many oppor-
tunities to use Typed JS on mobile devices. In our prototype, the bind-
ing API wraps a number of EFL graphics library on Tizen. This allows us
to access Tizen’s graphics components, and we successfully reimplemented
mobile demo applications that came with Tizen SDK 2.3 originally written in
C++ in Typed JS. This provides a way of writing native Tizen application in
JavaScript-like style. A possible future work is to let the binding API wrap a
web browser’s canvas API to run web applications natively on Tizen.

4.3 Optimization

Noticeable optimization techniques that Typed JS currently implements are as
follows.

– Fast Property Access: For fast property access, we implemented hidden
class and inline caching technique used in V8. This technique caches a property
offset when a property in an object is accessed frequently, and when the same
property is accessed after caching, it improves the property access performance
by quickly reading the value located in the offset without performing any string
operation, as long as the layout of the object that contains the property is
not changed. This allows us not to perform string hashing every time when a
property is accessed.

– Fast String Operation: Poor string implementation significantly affects the
overall performance of Type JS. Currently, we implemented string interning
and rope string to improve basic string operations.

4.4 Limitations

Current implementation of Typed JS poses the following limitations.

– Debugging Symbols: Since Typed JS transpiles JavaScript code into C++
code and compiles using g++, generating and maintaining debugging symbols
and supporting a debugger becomes a challenging problem. To address this
problem, in future work, we are planning to generate LLVM8 IR instead of
C++ code from Typed JS. In this way, we can maintain a debugging symbol
table and add debugging information between LLVM IRs to allow us to use
any LLVM-supported debugger.

7 http://www.hboehm.info/gc.
8 http://llvm.org.

http://www.hboehm.info/gc
http://llvm.org


118 R.H. Choi and Y. Choi

– Supporting Existing JavaScript Libraries: While Typed JS supports
most of JavaScript operations, it is often insufficient to support existing
JavaScript libraries as-is such as the libraries found in node.js.9 This is because
many libraries use unsupported patterns such as eval(), which requires the
code to be rewritten without using such patterns. To address this problem, in
future work, we are planning to generate a Typed JS pattern analyzer that
can detect unsupported patterns in existing JavaScript code and even suggests
valid code for Typed JS.

– Security: The current approach of generating and compiling C++ code from
Typed JS can pose a security risk, as the auto-generated code can be altered
before it is compiled. Using LLVM instead of g++ can solve this problem, as
LLVM IR is not written to disk when it is compiled.

5 Experimental Results

We now present experimental results. Experiments were conducted on a prepro-
duction, low-end Samsung mobile phone running Tizen 2.3. Tizen is an open
source mobile operating system currently developed by Samsung Software R&D
Center. In addition, to compare the performance and memory usage of Typed JS
in an unlimited-resource environment, the same set of experiments were repeated
on a 3.5 GHz Linux desktop with 16 GiB of memory. Typed JS is compiled using
Tizen SDK 2.3 and executed on the Samsung mobile phone. For Linux desktop,
g++ was used to compile Typed JS.

For performance measurement, Sunspider JavaScript Benchmark10 was used.
Memory usage was measured by checking the RSS size used by each test suite
process. Binary size was measured by adding all shared libraries required to run
each test suite. To compare the performance and memory usage of Typed JS
against existing JavaScript engines, the same test suites were executed on V8
and JSC. When measuring the performance of V8 and JSC, the initial loading
time for JavaScript virtual machine were excluded. Furthermore, the same test
suites were also ported to C and executed. The ported C test suites were compiled
with -O3 optimization. In the experiments, this C implementation defines the
practical upper bound for both performance and memory usage.

Figure 7 shows the runtime performance and memory usage of Typed JS
against V8, JSC, and C on the Tizen mobile phone (Note the log scale in
Fig. 7(b)). Typed JS outperforms V8 and JSC by up to 3.5x while consum-
ing up to 20x less memory. Smaller memory usage is largely due to not using a
virtual machine unlike others. Typed JS is outperformed by JSC (and V8) on
recursive and math test suites due to inefficient lambda functions in C++11
and lack of JIT compilation, respectively.

Figure 8 repeats the same experiments on the Linux desktop. Similar results
are observed, but the performance gap between Typed JS and other engines
are much reduced due to more powerful CPU. Furthermore, we observe that,
9 http://nodejs.org.

10 http://www.webkit.org/perf/sunspider/sunspider.html.

http://nodejs.org
http://www.webkit.org/perf/sunspider/sunspider.html


Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 119

 0
 10
 20
 30
 40
 50
 60
 70

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

R
un

tim
e 

(m
s)

Sunspider Testsuites

Typed JS
V8

JSC
C

(a) Runtime

100
101
102
103
104
105
106
107
108

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

M
em

or
y 

U
sa

ge
 (

kb
)

Sunspider Testsuites

Typed JS
V8

JSC
C

(b) Memory

Fig. 7. Tizen phone

 0
 2
 4
 6
 8

 10
 12
 14

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

R
un

tim
e 

(m
s)

Sunspider Testsuites

Typed JS
V8

JSC
C

(a) Runtime

100
101
102
103
104
105
106
107
108

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

M
em

or
y 

U
sa

ge
 (

kb
)

Sunspider Testsuites

Typed JS
V8

JSC
C

(b) Memory

Fig. 8. Linux desktop

100
101
102
103
104
105
106
107
108

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

S
iz

e 
(k

b)

Sunspider Testsuites

Typed JS
V8

JSC
C

(a) Tizen phone

100
101
102
103
104
105
106
107
108

fannkuch

nsieve

bitops1

bitops2

recursive

m
ath

geom
ean

S
iz

e 
(k

b)

Sunspider Testsuites

Typed JS
V8

JSC
C

(b) Linux desktop

Fig. 9. Binary size



120 R.H. Choi and Y. Choi

in general, the same test suite runs up to 10x slower on a mobile phone than
desktop.

Figure 9 shows the binary size of Typed JS against V8, JSC, and C. The
binary size of Typed JS is orders of magnitude smaller than that of V8 and JSC.
Smaller binary size is also related to not using a virtual machine and utilizing
C library, which is generally more compact than JavaScript library.

6 Conclusion

In this paper, we have presented Typed JS, a memory efficient but yet high-
performance JavaScript engine for mobile devices. By utilizing type-decoration,
Typed JS can be compiled ahead-of-time, which results in achieving smaller
memory footprint and high-performance than traditional virtual machine-based
JavaScript engines without scarifying much of core JavaScript concepts, such as
objects, prototype, etc. Experiments show that Typed JS is memory-efficient and
achieves better performance compared to industry-leading JavaScript engines on
Tizen mobile platform.

There are several possibilities for future work. First, we plan to update
C++11 code generator to generate LLVM IR to enhance performance, usabil-
ity, and security. Second, implementing more rigorous type inference rules is
planned. Third, power consumption evaluation and performance measurements
on other mobile platforms are planned. Lastly, reference counting-based memory
management is also planned.

Acknowledgment. We thank our group members Junyoung Cho, Eunji Jeong,
Saebom Kim, Wonyong Kim, Sanggyu Lee, Seungsoo Lee, Jaeman Park, and Young-
soo Son for their contributions to this paper. We are also grateful to the anonymous
reviewers for their constructive comments on this paper.

References

1. Ahn, W., Choi, J., Shull, T., Garzarán, M.J., Torrellas, J.: Improving javascript
performance by deconstructing the type system. In: Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
p. 51. ACM, Edinburgh, United Kingdom, June 2014

2. Apple.Javascriptcore (2005). http://trac.webkit.org/wiki/JavaScriptCore
3. Böhm, I., von Koch, T.J.K.E., Kyle, S.C., Franke, B., Topham, N.P.: Generalized

just-in-time trace compilation using a parallel task farm in a dynamic binary trans-
lator. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 74–85. ACM, San Jose, CA, June 2011

4. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: Pypy’s
tracing JIT compiler. In: Proceedings of the 4th Workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, pp. 18–25. ACM, Genova, Italy (2009)

http://trac.webkit.org/wiki/JavaScriptCore


Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices 121

5. Bracha, G., Griswold, D.: Strongtalk: typechecking smalltalk in a production
environment. In: Proceedings of the Eighth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 215–230. ACM,
Washington, DC, October 1993

6. Chambers, C., Ungar, D., Lee, E.: An efficient implementation of SELF, a
dynamically-typed object-oriented language based on prototypes. Lisp Symb. Com-
put. 4(3), 243–281 (1991)

7. Choi, P.W., Chandra, S., Necula, G., Sen, K.: SJS: a typed subset of javascript
with fixed object layout. Technical report UCB/EECS-2015-10, EECS Department,
University of California, Berkeley, March 2015

8. Facebook.flow (2014). http://flowtype.org/
9. Google.Chrome v8 (2008). https://developers.google.com/v8/

10. Google.NaCl and PNaCl (2013). https://developer.chrome.com/native-client/
nacl-and-pnacl/

11. Hölzle, U., Chambers, C., Ungar, D.: Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In: Proceedings of European
Conference on Object-Oriented Programming, pp. 21–38. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Geneva, Switzerland, July 1991

12. Hölzle, U., Chambers, C., Ungar, D.: Debugging optimized code with dynamic
deoptimization. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 32–43. ACM, San Francisco CA,
June 1992

13. IBM.Wala (2006). https://wala.sourceforge.net
14. Microsoft.TypeScript (2012). http://www.typescriptlang.org/
15. Mozilla.asm.js (2013). http://asmjs.org/
16. Rompf, T., Sujeeth, A.K., Brown, K.J., Lee, H., Chafi, H., Olukotun, K.: Surgical

precision JIT compilers. In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, p. 8. ACM, Edinburgh,
United Kingdom, June 2014

17. Vilk, J., Berger, E.D.: Doppio: breaking the browser language barrier. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 52. ACM, Edinburgh, United Kingdom, June 2014

http://flowtype.org/
https://developers.google.com/v8/
https://developer.chrome.com/native-client/nacl-and-pnacl/
https://developer.chrome.com/native-client/nacl-and-pnacl/
https://wala.sourceforge.net
http://www.typescriptlang.org/
http://asmjs.org/


Pervasive Context Sharing in Magpie: Adaptive
Trust-Based Privacy Protection

Chenguang Liu(B) and Christine Julien

Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX, USA

{liuchg,c.julien}@utexas.edu

Abstract. Today’s mobile and pervasive computing devices are embed-
ded with increasingly powerful sensing capabilities that enable them to
provide exceptional spatio-temporal context acquisition that is not pos-
sible with traditional static sensor networks alone. As a result, enabling
these devices to share context information with one another has a great
potential for enabling mobile users to exploit the nearby cyber and physi-
cal environments in participatory or human-centric computing. However,
because these mobile devices are owned by and sense information about
individuals, sharing the acquired context raises significant privacy con-
cerns. In this paper, we define Magpie, which implements an alternative
to existing all-or-nothing sharing solutions. Magpie integrates a decen-
tralized context-dependent and adaptive trust scheme with a privacy pre-
serving sharing mechanism to evaluate the risk of disclosing potentially
private data. The proposed method uses this assessment to dynamically
determine the sharing strategy and the quality of the context shared.
Conceptually, Magpie allows devices to actively obfuscate context infor-
mation so that sharing is still useful but does not breach user privacy.
To our knowledge this is the first work to take both trust relationships
and users’ individual privacy sensitivities into account to balance sharing
and privacy preservation. We describe Magpie and then evaluate it in a
series of application-oriented experiments running on the Opportunistic
Network Environment (ONE) simulator.

Keywords: Context sharing · Privacy preserving · Adaptive trust

1 Introduction

With the rapid development of the Internet of Things (IoT), everyday consumer
devices have become more connected to one another [1]. This offers a chance
for these devices to collaborate, which brings opportunities for new applications
that can exploit the surrounding environment, especially when these devices are
carried by people. By sharing local contextual information, mobile devices can
help us to avoid traffic on the road (e.g., Waze1), improve recreational sports
experiences (e.g., BikeNet [2]), and even monitor air pollution (e.g., P-Sense [3]
1 https://www.waze.com/.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 122–139, 2015.
DOI: 10.1007/978-3-319-29003-4 8

https://www.waze.com/


Pervasive Context Sharing in Magpie 123

and Citisense [4]). With this shift in the usage comes a shift in how pervasive
computing applications view context beyond simple egocentric views [5], col-
lected by a single device or user for consumption by a that device or user. The
collective or cumulative feature of a set of shared contexts is increasingly valued
because of applications in participatory or human-centric sensing [6]. However,
sharing the context information sensed by a user’s personal mobile device poses
a significant threat to the user’s privacy if it is not under proper control.

Given the privacy concerns raised when collecting and sharing information
using personal devices, there has been substantial research on two related top-
ics: dynamic trust management and schemes to obfuscate and protect potentially
personal data. The goal of dynamic trust management in pervasive computing
is to select generally reliable candidates with which to interact (i.e., share infor-
mation) based on previous experience or general recommendations [7–9]. On
the privacy preservation side, the focus is identifying and perturbing sensitive
information to protect an individual from being identified [10–12]. In isolation,
neither of these is effective enough for a context-sharing scenario like Social
Cycling [2], where the mobile devices carried by a group of cyclists should be
able to efficiently provide context data to other participants in the group in order
to share up-to-date and reliable information about the availability (and potential
availability) of shared bicycles. Such an application requires sharing individual’s
location traces with other users; most people are not eager to share detailed raw
information about their spatiotemporal trajectories with just anyone.

We introduce Magpie, a trust-adaptive and privacy-preserving approach for
pervasive context sharing applications in which mobile and heterogeneous sensor-
equipped devices opportunistically work together to increase awareness of the
environment. Magpie facilitates device-to-device context sharing (i.e., without
assistance from an infrastructure), as opposed to an approach that relies on
dedicated sensors deployed in the environment that are often designed to inten-
tionally provide context information for users without raising privacy concerns.
In Magpie, the interaction experience that comes from sharing context informa-
tion also serves as evidence for later trust establishment. Magpie provides an
alternative to traditional all-or-nothing sharing approaches by potentially dis-
closing some obfuscated but still useful context information. A key challenge is
to address the privacy concerns of the participants about whom the context is
collected while ensuring that the quality of context shared is sufficient. Therefore
our approach leverages trust relationships established among pervasive comput-
ing participants and privacy sensitivities of the individuals together to design the
obfuscating process into our context sharing mechanism. Magpie also utilizes
context similarity factors and situational trust to fit the context sharing behavior
to the situations of the pervasive computing devices and their users.

To our knowledge this is the first work to use both trust relationships and
an individual’s privacy sensitivities to estimate the risk of context sharing; we
use this risk to dynamically select sharing strategies and to affect the qual-
ity of shared context. To evaluate Magpie, we perform application-oriented
experiments on the Opportunistic Network Environment (ONE) simulator [13].



124 C. Liu and C. Julien

We evaluate the effectiveness of our trust establishment scheme and privacy pro-
tection by analyzing the changes in participation in sharing activities as well as
the empirical error percentage in the information shared. In Sect. 2 we outline
the related works addressing privacy and trust issues in pervasive computing.
The overview, design, and implementation details of Magpie are presented in
Sect. 3, followed by the evaluation of our work in Sect. 4.

2 Related Work

By sharing context information acquired by a set of devices, a group of oppor-
tunistically interconnected devices with disparate sensing capabilities is able to
be more adaptive to its nearby physical and cyber environments [14,15]. Magpie
is motivated by this new type of application, and we aim to provide a balance
between preserving privacy and facilitating context sharing participation. Before
describing our approach in detail, we overview related projects establishing trust
among distributed pervasive computing participants, addressing privacy in per-
vasive computing, and supporting context sharing in these environments.

Establishing Trust Among Pervasive Computing Participants. Users
distinguish their expectations of their systems into familiarity, confidence, and
trust [16], where the latter uniquely depends not on actual or inherent danger
but on the user’s perceived risk. These perceptions emerge as a part of decision
and action. With respect to expectations for sharing context in pervasive com-
puting, trust is fundamental for establishing the sharing relationship between
the participants and for selecting the means of the sharing behavior.

Our setting demands a decentralized approach to trust management that can
operate without persistent connectivity to the Internet infrastructure. Three
branches of decentralized trust management systems exist in the literature:
(1) approaches that rely on encounters with trusted third parties and focus
largely on cryptographic issues in the authorization process [17]; (2) reputation
mechanisms that use social control to store and disseminate reputation informa-
tion [18–20]; and (3) purely decentralized trust management systems that estab-
lish trust relationships between the devices in pervasive environments based only
on inter-device interactions [7,9]. Because we do not wish to limit the applicabil-
ity of our approach, we target situations like the latter. However, these existing
trust schemes are not tied to determining when and how to share context infor-
mation, so they require some updating to address the needs of Magpie.

Privacy Preservation in Pervasive Computing. On the other hand, pro-
tecting privacy of users’ personal information is also a well-studied area. One of
the widely accepted works is to use k-anonymity [21] for statistical disclosure
control; k-anonymity aims to render a particular piece of data indistinguishable
among the aggregation of k − 1 other pieces. These approaches are commonly
used to protect individuals from being identified given a large amount of aggre-
gated information like medical record data. Approaches that are perhaps more
appropriate to pervasive computing environments are based on the idea of adding



Pervasive Context Sharing in Magpie 125

noise to personal data on the client-side to ensure individual privacy. These sys-
tems then use community-wide reconstruction techniques to restore knowledge
about a shared group context [11,22]. Even these latter approaches assume one
or more dedicated and honest aggregators within the network, which is limiting
for general-purpose pervasive computing environments.

Distributed differential privacy methods [10], derived from classical differen-
tial privacy [12], can be applied to allow applications to learn only some impor-
tant statistics but no additional information and thus satisfy privacy guarantees.
These approaches generally require a very large number of data items to be able
to provide reasonable privacy while maintaining correct information. Therefore
differential privacy based approaches do not suit our needs for sharing context
among sparsely connected devices.

More recently, efforts related to data preprocessing in smart grids has demon-
strated the ability to obfuscate individual users’ behaviors [23]. Magpie is
inspired by the latter and by distributed differential privacy, but we introduce
new noise models to eliminate the characteristics of individual data without los-
ing its inherent meaning. We do assume the availability of a context specific
privacy sensitivity manager [24,25] on each user’s device. This privacy manager
is able to offer a quantified sensitivity value ε ∈ (0, 1) for each type of con-
text, which provides an individualized perception of how private the particular
context type is. For instance, a particular user may deem his location context
information to be highly private while his ambient sound level context may be
less private.

Sharing Context. Magpie provides capabilities that allow mobile devices to
share their sensed context with one another. The potential applications of this
work include systems like BikeNet [2] or P-Sense [3], or generally mobile and
pervasive computing applications that take advantage of directly sharing context
information (e.g., workout companion applications like “Run with a buddy”).
Our approach can also be used to extend participatory sensing systems (e.g.,
a crowd-sourced transit information system [26] or CarTel [27]), especially the
ones collaborating in a device-to-device fashion [28–30]. Magpie is primarily
motivated by our own previous work on the Grapevine context framework [5],
which was developed for succinctly summarizing and efficiently sharing context
information in pervasive computing environments.

3 Magpie: Adaptive Trust- and Privacy-Based Context
Sharing

We consider a network of users with smart devices that are connected to one
another by an opportunistic mobile network of device-to-device links2. Users’
applications collect and act on context information that describes the user’s
state and situation; this information comes both from the user’s own device

2 We use “device” and “user” interchangeably because we assume that every partici-
pant is associated with a single device through which he collaborates.



126 C. Liu and C. Julien

and through opportunistic sharing with connected devices of other users. For
example cyclists can increase energy efficiency or data accuracy if their devices
are wisely and effectively sharing information about the riders’ trips [2] (e.g.,
sharing compass information with users in a traveling group whose devices lack
that particular sensing capability or taking turns collecting motion statistics to
distribute sensing costs). We assume devices operate under a shared context
ontology, i.e., we assume that there is a well known set of context types and that
the names of these types are shared among all of the participants a priori.

We introduce Magpie, which facilitates context sharing activities to make
it possible for users to adjust their behavior based on the sensed context while
maintaining the privacy of the users about whom the context information is col-
lected. Consider a classic context-awareness scenario [31] in which smart devices
are able to adjust themselves and thereby the ambient environment by collecting
and actuating on high-level situational knowledge (e.g., the start of a meeting or
a social event like a coffee break) inferred from the shared context acquired from
multiple devices. Magpie has two key components: adaptive trust evaluation
and privacy preserving context sharing.

A key principle of Magpie is that users share multiple types of context
information with several other users. For this reason, both the trust evaluation
scheme and the privacy sensitivity are context-dependent. This reflects the fact
that, simply because a coordinating partner is a good source for one type of con-
text information (e.g., local weather) does not necessarily imply he is trustworthy
with some particularly personal data (e.g., raw location). Magpie assumes that
each user is associated with an individualized specification of their privacy sensi-
tivities for each type of context information shared and maintained by a privacy
sensitivity manager (see Sect. 2). These sensitivity values range over (0, 1], where
larger values indicate higher privacy requirements.

Figure 1 shows an overview of Magpie, specifically in the process of respond-
ing to a neighboring device’s request for a piece of context. Upon receiving a
request from user ui for a specific type of context information, m (top center
of the figure), the request passes to the adaptive trust management module to
evaluate how trustworthy ui is regarding the type m. Intuitively, the device

Fig. 1. System Overview



Pervasive Context Sharing in Magpie 127

determines whether ui is trustworthy enough to share the raw context informa-
tion with. If not, the device needs to determine whether it is possible to share
any knowledge about this context type with ui, e.g., in an obfuscated form. The
quantified result τi,m of trust evaluation is considered, together with the user’s
privacy sensitivity for the context type m (εm) and the local context possession
Cm, to assess the potential risk of sharing the requested context information
with ui. The context sharing module uses this risk to select a sharing strat-
egy that maximizes the possibility of participation while keeping any potential
privacy breach under control. Figure 1 shows three possibilities: (1) there is no
risk, so the request can be fully satisfied with the raw data; (2) there is some
mitigable risk, and Magpie shares some obfuscated context data; and (3) the
risk is intolerable, and the request is discarded. The rest of this section provides
the details of Magpie’s two essential components.

3.1 Adaptive Trust Management

In Magpie, the sharing decision is made based on several factors as described
earlier, but the foundation is an established level of trust between the recipient
of the request and the peer initiating the request. Magpie makes it possible to
potentially disclose some obfuscated but still useful context information, even if
the requesting peer is not fully trustworthy. Therefore the trust a potential sharer
of context information has in the requesting peer not only partially determines
which option to take, but also relates to how useful the information will be. As
such, having an expressive and effective mechanism to dynamically evaluate the
trust that a participant has in some requesting peer is essential to Magpie. We
define trust (as perceived by a particular user ui) as follows:

Definition 1. Trust. For a given user ui, the value of Trust, τ i
j,m ∈ (0, 1) indi-

cates to which extent a context requester uj can be trusted with respect to a
particular context type, m.

We build on the wealth of mathematical models of trust and incorporate
decentralization, personalization, and specificity to the type of context informa-
tion being shared. To start, we use the Pervasive Trust Management model [7]
based on Luhmman’s idea [16] as a foundation. This definition of trust relies on
a log of user i’s satisfaction (or dissatisfaction) in his historical interaction expe-
rience ai

j,k with a particular peer uj . To account for these dynamics, we extend
the above definition of trust with a notion of timestep. In this extended model,
user i’s trust in user j for context type m after interaction k is defined as:

τ i
j,m,k =

{
τ i
j,m,k−1 + ω · Vai

j,k
(1 − τj,m,k−1) Vak

> 0

τ i
i,m,k−1(1 − ω + ω · Vai

j,k
) else

(1)

where Vai
j,k

is the product of the satisfaction (a+) and dissatisfaction (a−) of
the past behaviors. Satisfaction and dissatisfaction can be measured in a variety
of ways. In Magpie, we count satisfaction (a+) as the percentage of times in



128 C. Liu and C. Julien

which a request from i to j for context type m resulted in a response and
dissatisfaction as the percentage of times in which such an interaction did not
result in any response. This is a simple scheme that could easily be extended,
but this is not the primary focus of this work. The updated trust value is also
weighted according to a user- or system-defined weight (ω).

In Magpie, the actions through which users can learn about others’ trustwor-
thiness involve context requesting and sharing, thus it is natural to make Vai

j,k

also be context dependent. Specifically, with regard to context type m, a Vai
j,m,k

can be calculated independently for each type of context that may be requested
(and context-specific satisfaction measures) using the equation below3:

Vai
j,m,k

= Θm · (a+ − a−)((a+ − a−) · δ)2s

(a+ + a−)((a+ − a−) · δ)2s + 1
(2)

where δ and s are inversely proportional values that determine the individual-
ized trust increment or decrement based on satisfaction and dissatisfaction with
interactions. Based on the general frequency of the sparse interactions in an
opportunistic network [7] and the empirical evidence from our experiments, this
δ should be in the range of (0, 0.05], and it is mapped to the individualized pri-
vacy sensitivity of the context type m, εm, (δ ∈ (0, 0.05] �→ εm). The value Θm

weights the value for context m as shared by j based on the cost of retrieving the
particular context value. Intuitively, this gives more “credit” to users or devices
that share context that is more expensive to acquire in the first place.

As the topology of a pervasive computing network can be sparse and fre-
quently changing, there is a considerable chance that no previous interaction
will have occurred between two users regarding the context type m. It is also
possible that the resulting trust level is a value that will likely lead to an unde-
sired sharing option later in Eq. 4. To bootstrap sharing in such circumstances,
Magpie considers a context-similarity parameter �(m,n). This metric provides
a measure of similarity between m and n, a second type of context; such a met-
ric could be based on the comparison of the distinct keywords used to describe
them [19]. As an example, school information and field-of-study could be con-
sidered similar because they both relate to one’s educational background. Thus,
Eq. 2 can be refined as:

V ′
ai

j,m,k
= �(m,n) · Θn · (a+ − a−)((a+ − a−) · δ)2s

(a+ + a−)((a+ − a−) · δ)2s + 1
(3)

where a+ and a− are the interaction satisfactions with user uj regarding to
context type n. Of course, a given context type m may be “similar” to more than
one other context type; we capture this in Magpie through multiple applications
of Eq. 3 for different values of n.

At last, we provide support for situational trust as a short term trust
boost [32,33]. This short-term situational trust is applied to increase the trust-
worthiness between a group of users by some adaptive percentage βk when they
3 In the equation, a+

j,m and a−
j,m haven been replaced with a+ and a− for simplicity.



Pervasive Context Sharing in Magpie 129

are perceived to be in some special shared situation. For example two users with
a mutual friend may both attend a party hosted by this friend where their joint
attendance at the party can bootstrap sharing some context types when the
interacting parties are in the same situation.

Considering this last piece of trust determination, Algorithm 14 shows the
complete procedure of calculating the trust value of a context requester.

Algorithm 1. Instantaneous Trust Calculating Procedure
input : j, peer making request; m, context type; k, current time step
output: τ∗

j,m, instantaneous trust value for peer j

1 initialization: τ∗
j,m, τmax ← 0;

2 Vaj,m,k
= Θm · (a+

j,m−a−
j,m)((a+

j,m−a−
j,m)·δ)2s

(a+
j,m+a−

j,m)((a+
j,m−a−

j,m)·δ)2s+1
;

3 if Vaj,m,k
> 0 then

4 τj,m,k−1 + ω · Vaj,m,k
(1 − τj,m,k−1) ;

5 else
6 τj,m,k−1(1 − ω + ω · Vaj,m,k

);
7 end
8 τmax ← τj,m,k ;
9 if sharing option oi,m < 2 then

10 foreach cn where �(m,n) > thld do

11 Vaj,n,k
= �(m,n) · Θn · (a+

j,n−a−
j,n)((a+

j,n−a−
j,n)·δ)2s

(a+
j,n+a−

j,n)((a+
j,n−a−

j,n)·δ)2s+1
;

12 τ ′ ← τj,n,k−1(1 − ω + ω · Vaj,n,k
) ;

13 if τ ′ > τmax then
14 τmax ← τ ′

15 end
16 end
17 end
18 if Situation k perceived then
19 τ∗

j,m ← (1 + βk)τmax

20 else
21 τ∗

j,m ← τmax

22 end
23 return τ∗

j,m

Line 2 of Algorithm 1 applies Eq. 2 to compute the aggregate prior satisfac-
tion and dissatisfaction of user i sharing context type m with peer j. Based on
whether this prior is positive, i computes a preliminary trust value for j (spe-
cific to context type m) based on Eq. 1 (lines 3–8). If this value is likely lead
to an undesired sharing option later in Eq. 4 (line 9), the algorithm successively
applies Eq. 3 for each context type n that is “similar” to m (with a similar-
ity value above some specified threshold, thld). If this results in a larger trust

4 We omit the i as super script for variables; each step in Algorithm 1 shows the
perspective of the user i who is responding to a request from peer user j.



130 C. Liu and C. Julien

value than the calculation based on the experiences just with context type m,
Algorithm 1 updates the working trust value for peer j. Finally, Algorithm 1
checks whether i and j are in any special shared situation that would boost the
trust level that i has computed for j (lines 18–22).

The instantaneous trust value τ∗
j,m returned from the last step (line 16 to

20) is different from the stored trust value that user i maintains for peer j. This
returned trust value may indirectly impact the stored trust value in the long
term, since it will be used to support interactions, and the user’s satisfaction (or
dissatisfaction) may cause an update to τ i

j,m,k for some later value of k.

3.2 Privacy Preserving Sharing of Context

Above, we described how Magpie expressively determines a trust value for a col-
laborating peer requesting access to a potentially sensitive piece of context infor-
mation. In this section, we describe how Magpie uses this value to determine
what strategy to use when sharing the particular type of context information
with the given requester. Magpie’s options range from the best possible sharing,
which shares the complete raw context information, to sharing no information
at all, with Magpie’s novel privacy-preserving sharing mechanisms providing
a middle ground. The latter can share an obfuscated version of context that
considers both the device’s context-dependent privacy sensitivity and the trust
level that the device has in the particular requesting peer.

Intuitively, the only way to completely avoid any risk of privacy breach is to
reject every request for context sharing. But this negates any possible advan-
tage that may come from sharing context information, including learning more
broadly about one’s surroundings or distributing the costs associated with con-
text sensing. To balance the potential for leaking private information with the
benefit to be garnered by sharing context information requires a rational calcu-
lation to keep the risk within acceptable limits. Magpie achieves this balance
by exposing options that disclose blurred versions of context information when
the recipient is not trusted enough to receive the raw data.

Consider a simple example in which a lunchtime line forms at a food truck
outside a large office building. Someone still inside the building wonders how
long the line currently is in an effort to determine whether it is a good time
to get lunch. The device of someone in line could respond to this request in a
variety of ways. A näıve user might choose benevolence and be perfectly willing
to share information about the line. However, even sharing just this simple piece
of information might leak very sensitive private information. For instance, if the
user is in line, he is obviously not in his office. This could be sensitive if his
coworkers or supervisers expect that he is in a meeting right now. On the other
hand, someone else who also knows where his office is might know that now is
a good time to steal some of his candy stash. A more cautious user may then
want to carefully consider whether the risk of sharing the context information
is worth the benefit. There are a few things to consider before participating
in the potentially risky behavior. First is the question of who is making the
request. In real life, if the requester is a buddy of the person in line, they may



Pervasive Context Sharing in Magpie 131

be completely trustworthy. In the digital world of Magpie, we assume that if
the requester is another user who has proven to be a reliable information source
for similar types of information in the past, then a user is may be more willing
to reciprocate and provide the requested context information. This is a basic
overview of how Magpie’s adaptive trust management component informs the
context sharing actions that users’ devices take. As described previously, this
process also depends on the particular type of context being requested and how
sensitive the owner of that data is to sharing it. Magpie introduces a privacy
sensitivity factor to capture this notion.

These first two aspects (i.e., the identity of the requester and the type of
context information requested) relate only to the request for the context infor-
mation. Determining what and how to share also depends on how well Magpie
can obfuscate the context information that is shared. In Magpie, we achieve
obfuscation by adding noise to context information, which can be better achieved
when a device has similar context values from other users into which it can blur
the individual data. In Magpie, all such noise additions are computed entirely
on the user’s personal device using only context information the device has col-
lected or received through other device-to-device interactions. Such an approach
is inspired by differential privacy and enables Magpie to share a blurred version
of data with the requester only if the system has enough data to blend the raw
data in and make its individual presence appear irrelevant. A similar approach
has been used to solve the problem of indirect inference [34], where a composi-
tion of pieces of context information that have individually low sensitivity but,
when associated with one another could jeopardize a user’s privacy. By demand-
ing strict trust in context recipients and offering somewhat inaccurate values,
Magpie makes it harder to infer such knowledge.

Magpie’s process for determining what context information to share and
how to share it starts with the reception of a request from a peer. Consider the
situation when the local Magpie system has received a request rj,m from user uj

asking about context type m. Using the algorithm in the previous section, assume
that the trust management component determined an instantaneous trust value
for this request to be τ∗

j,m.
Given a privacy sensitivity for the context type m of εm, Magpie compares

the inner product of τ∗
j,m to εm to determine the sharing option:

oi,m =

⎧⎪⎨
⎪⎩

2 if 〈τi,m, 1 − εm〉 ≥ θ,

1 if 〈τi,m, 1 − εm〉 ≥ η,

0 if 〈τi,m, 1 − εm〉 < η.

(4)

where θ is the threshold for being considered as trustworthy as possible for the
context type m and η is the threshold for accepting the request; θ, η ∈ (0, 1),
and θ ≥ η. In Eq. 4, option codes 1 and 2 indicate that the system will try
to accept the sharing request, while code 0 indicates that the request will be
discarded. In option 2, the requester exceeds θ, and Magpie will simply share
the raw context data with the requester. For option 1, meeting or exceeding
the threshold η indicates that the requester can be trusted with an obfuscated



132 C. Liu and C. Julien

form of the data, where the level of obfuscation will be further based on the
magnitude of the trust in user j for context type m. For the purposes of this
paper, Magpie uses a straightforward approach for both options 1 and 2. For
option 2, Magpie simply shares the values generated by the context sensors
directly. For option 1, Magpie shares some locally generated statistics, which
include aggregating information from other nearby users and adding randomly
generated noise.

Magpie’s approach builds a trust development ladder, which is important
in preventing the overall performance of the Magpie (distributed) system from
degrading because devices do not learn to trust one another. Without support
from third party relationship sources like social networks [35,36] (which we aim
to avoid), this trust development ladder is essential. That is, an essential compo-
nent of Magpie is the fact that users can learn to trust each other in semi-trust
situations as long as the risk can be kept within acceptable limits.

Next we show the basic algorithm that Magpie uses to generate obfuscated
context based on aggregating the user’s local information with others’ informa-
tion for the same context type and adding random noise. In the end, as we will
show, the amount of obfuscation is dependent on the trust value generated for
the particular requester and particular context type. Given the sensing neigh-
borhood at the time, let N be the number of recently connected participants for
which a reasonably up to date value of context type m is known by the local
device; we assume that these peers have identifiers 1 . . . n. Let cm be the device’s
value for context type m and C

′m = (cm
1 , cm

2 , . . . , cm
n ) be the vector of values

of context type m for the N peers. Let Cm = C
′m ∪ c represent an aggregate

of the local context value with the values of the neighboring nodes. In [11] the
authors emphasized that knowledge of the exact community distribution (which
they refer to as fe

k(x)) is unrealistic because it requires an infinite population.
We use a similar notation fm

k (x) to represent the approximate neighborhood
distribution of the local knowledge of context m with limited population at the
time instance k. That is, fm

k (x) is a statistic that is representative of Cm. To
ensure obfuscation commensurate with the required instantaneous trust level for
peer j, we further obfuscate fm

k (x) as shown in Algorithm 2. Our goal here is
to perturb the aggregation to achieve context-dependent privacy protection and
then randomly select a context value to share given a range whose size is deter-
mined by the trust value τ∗

j,m, while ensuring the noise being added is controlled
by the privacy sensitivity εm, which is particular to the context type m.

Algorithm 2 computes the distribution of local context aggregation fm
k (x|μ, σ)

in its initialization stage, where μ and σ are the mean and standard deviation,
as usual. For example, a continuous context temperature (shown in Fig. 2, where
cm is the self-perceived context) results in the fm

k (x) shown in Fig. 3. At line 2
Algorithm 2 first determines how many pieces of noisy context (np), based on the
product of a perturbing factor λ ∈ (0, 2] and the cardinality of local aggregation
|Cm|, should be mixed into the perturbed distribution. In the next step (lines 3–
8), np pieces of white Gaussian noised contexts will be independently generated
and added into the perturbed set. In line 9 the algorithm calculates the new sta-
tistic of the blurry distribution fm

k (y) before selecting a random variable from the
perturbed distribution within the range of 2(1 − τi,m) in line 10.



Pervasive Context Sharing in Magpie 133

Algorithm 2. Obfuscating Procedure
input : Cm, set of context values for type m;

τ∗
j,m, instantaneous trust value for peer j and context type m;

εm, privacy sensitivity for context type m
output: cmo , obfuscated context value of type m

1 initialization: fm
k (x|μ, σ) ∼ Cm;

2 np = λ|Cm|;
3 while np �= 0 do
4 ρ ← E

np

W (0, 1) ;

5 cg = μ + (1 + εm)σ
√

2erf −1
pn

(2ρ − 1) Cm ← Cm ∪ cg ;

6 np = np − 1 ;

7 end
8 fm

k (y|μ′, σ′) ∼ Cm ; // perturbed pdf

9 co = μ′ + σ′√2erf −1
y (2EW (0, 1 − τi,m) − 1) ;

10 return co

Fig. 2. Local Contexts Fig. 3. Empirical Distribution

The loop in lines 3–8 adds np pieces of noisy data into the aggregation. Within
this perturbed aggregation, the scale of the noise is calibrated to the device’s
privacy sensitivity for context type m. The error function used in line 5 is from
the standard Gaussian statistical noise model except the standard deviation is
stretched to (1 + εm):

PN (n) =
1

σ′√2π
e− (n−μ)2

2σ′2 , where σ′ = (1 + εm)σ (5)

Note that in the process of generating noise, we use the Weibull distributed
random numbers [37] (EWeibull ∈ (0, 1)); however using other transformation
methods should work as well. We also tried the Laplacian noise with b = Δf/ε
to determine which perturbation suits our purpose better (Fig. 4). The result
complies with the findings in [38] in the sense that the level of noise generated by
using the Laplacian model may be so large as to make responses meaningless for
many queries for small data sets such as a set of evanescent context information;
this is why we evaluate Magpie using the Gaussian noise model.



134 C. Liu and C. Julien

Fig. 4. Perturbed Contexts

4 Experimental Evaluation

To evaluate our proposed approach, we implemented a pervasive context-sharing
application as an application protocol in the Opportunistic Network Environ-
ment ONE simulator [13]. Each of the Delay-Tolerant Networking (DTN) hosts
in the simulation simulates a mobile computing device with embedded sensors,
Magpie’s adaptive trust evaluation module and privacy sensitivity manager, and
an application that periodically consumes context information for its own task.
When the application’s context need cannot be satisfied locally (e.g., because the
local host does not have the required sensor) the application generates a context
request that it sends to the locally running Magpie system, which disseminates
the request to any connected Magpie devices.

Our contributions are two-fold: (1) Magpie facilitates participation in con-
text sharing activities by implementing an adaptive trust scheme; and (2) Mag-
pie protects a context provider’s privacy by adding controllable noise into the
context being shared according to provider’s privacy sensitivity policy and the
level of trust between provider and the peer initiating the request. We performed
two sets of experiments to evaluate these two contributions.

In our first experiments, we compare the sharing participation of four differ-
ent schemes: (a) traditional all-or-nothing sharing based on a static trust policy;
(b) traditional all-or-nothing sharing with privacy consideration based on a static
trust policy; (c) traditional all-or-nothing sharing with Magpie’s dynamic trust
establishing mechanism; and (d) the full Magpie approach, with both privacy
preserving sharing and dynamic trust establishment. To capture the performance
in real pervasive computing environments, we conducted the experiments under
two settings that entail heterogeneous connectivity protocols, mobility models,
and transmit ranges. Table 1 gives the detailed simulation settings.

We ran two different situations: one with 30 nodes and one with 60 nodes.
In each, the set of nodes was divided into six equally sized groups as indicated
in the table. Nodes were allowed to communicate with other nodes regardless of
group. In the table, BT refers to the BlueTooth connection protocol, WiFi refers
to standard WiFi links, and highspeed indicates a high-speed and long range
wireless interface. The mobility models listed are all built into the ONE simula-
tor, and their names are relatively self-descriptive. The world size parameter in



Pervasive Context Sharing in Magpie 135

Table 1. Simulation Settings

Protocols Mobility TX range (m) Speed (m/s) Description

Group 1 BT Roads 10 (0.5, 1.5) Slow pedestrian

Group 2 BT Pedestrian-path 10 (2.7, 13.9) Car

Group 3 BT &WiFi tram4 20 (0.5, 1.5) Pedestrian

Group 4 BT &Highspeed Mainroads 500 (7, 10) Super connectivity

Group 5 BT tram10 10 (7, 10) Commuter

Group 6 BT Shops 10 (6, 12) Shop runner

ONE was set to the same size in both settings (4500 m × 3400 m), resulting in
a denser network in the second (i.e., 60 node) case.

We first demonstrate the success of Magpie in facilitating the sharing of
context information among peer devices. We recorded the sharing interactions
of the experiments under the four schemes described above to compare how
different aspects of Magpie affect the community participation in the sharing
activity. During the experiment, we simulated five types of context information
including three that are continuous measures of ambient context (temperature,
light intensity, and noise level), one that is categorical data (power switch) and
one that is discrete data (office floor). We run the experiments for 20,000 s to
ensure that the schemes with trust establishing mechanisms run for a period of
time after reaching their stable stages.

In Fig. 5, we show the sum of the number of completed sharing interactions in
an experiment lasting 20,000 s. There is a noticeable increase (approximately 4×)
when Magpie’s dynamic trust is used (schemes c and d). This suggests that our
dynamic trust establishing mechanism explores significantly many more sharing
interactions for upper-layer context-aware applications. We can also see that the
schemes that employ Magpie’s privacy sensitivity metrics have slightly lower
participation than their counterparts. This indicates that Magpie is succeeding
in reducing the sharing for privacy preservation by making the decision of select-
ing the best possible sharing strategy context-dependently harder. Finally, it can
also be seen that context sharing becomes approximately 10 % more frequent
in the more densely connected community, which hints at situations in which
Magpie will be particularly useful.

We next plot the evolution of trust values during the above experiments to
understand how the increase in interactivity occurs. We measured the mean trust
levels of the context recipients of the same sharing interactions recorded by a
single experiment in 10 s intervals. The result is shown in Fig. 6. As this graph
shows, the trust level in schemes a and b stays constant throughout the experi-
ment as expected (they both use a static trust model). In schemes c and d, the
trust levels oscillate at the beginning and then gradually rise until relatively sta-
bilizing. This observed trends indicate that Magpie’s privacy preserving sharing
helps pervasive devices to become familiar with their surroundings and to estab-
lish meaningful trust relationships; this matches our daily social experience: we



136 C. Liu and C. Julien

Fig. 5. Sharing Activity Participation Fig. 6. Trust Establishing Process

need to be a little extroverted when we arrive in a new place in order to know
those who can we get along with and those with whom we cannot.

Magpie’s primary goal is to balance an individual’s privacy protection
against the community’s context availability. In our second set of experiments,
we take a joint view of a two day long simulation with 60 devices in a larger area
(6000 m × 4500 m). We recorded changes in trust levels, sharing interactions, and
quality of shared contexts (as measured by the empirical error [10]) for three con-
text types (with privacy sensitivity (i.e., ε) selected from among {0.4, 0.6, 0.8})
to investigate how these settings affect each other from an application’s view.

Figure 7 shows the results. The x-axis of all three plots show the elapsed time
of the simulation. The middle plot shows the sum of the number of interactions
that happened for each type of context in the immediately preceding 600 s. The
context for which the provider has a low privacy sensitivity (red in Fig. 7) is
shared more frequently than medium (green) or high (blue). They have been
shared 7.0486, 6.8625, and 5.4722 times per interval on average, respectively.
By comparing to the trust level graph in the top of Fig. 7, we can explain this
difference as it is apparent that the context with high privacy sensitivity requires
a higher level of trust for the provider to participate in this risky behavior.

If we take a closer look at the corresponding trends in the context quality
graph (at the bottom of Fig. 7), the least shared type of context (blue in the
figure) also results in the highest percentage of error when it is shared. This is
because Magpie shares the obfuscated version of this context in lieu of sharing
the raw data, and the privacy sensitivity requires a higher degree of obfuscation
than for the other two context types. Note also that the error percentage for all
three context types declines over time; this is a result of the gradually increasing
trust levels, which result in higher quality sharing as the participants get to know
one another better.5

5 Code and full results at: https://github.com/liuchg/OneSim PCSharing.git.

https://github.com/liuchg/OneSim_PCSharing.git


Pervasive Context Sharing in Magpie 137

Fig. 7. Joint results from Experiment 2 (Color figure online)

5 Conclusions and Future Research

Through collaboration, mobile and pervasive computing devices can enjoy
unprecedented context availability and help users to exploit the nearby environ-
ment. However, sharing context information sensed by a user’s personal device
poses threats to the user’s privacy and must be controlled. We introduced Mag-
pie which, by dynamically evaluating the risk of disclosing potentially private
data based on the level of trust between the participants and the individual-
ized context-dependent sensitivity, helps users to select sharing strategies for
context. In Magpie we assumed trustworthiness to be reciprocal relationship.
Future work will explore additional factors to determining the trustworthiness
of a collaborating peer, including relaxing this assumption. In our initial work
with Magpie, we have demonstrated that there are context types amenable to
our simple data perturbation mechanisms. This may not be true for all types
of context information; future work will look at specialized ways to add noise
to common types of context data to increase the applicability of Magpie. Cur-
rently, Magpie responds to each context request individually; it is possible that
multiple neighboring devices may request the same or similar information from a
user. Optimizations to Magpie’s behavior could save some processing overhead
by using results of previous computations.

In this paper, we built a prototype of our current vision of Magpie. Given
this prototype, we performed a series of application-oriented experiments per-
formed on the ONE simulator. Even without the enhancement discussed above,
this evaluation validated that Magpie can effectively facilitate context sharing
activities by implementing an adaptive trust scheme and can protect a context
provider’s privacy by adding controllable noise into the context. We expect that



138 C. Liu and C. Julien

future work will enhance Magpie’s capabilities and extend the types of context
to which it is applicable.

References

1. Shilton, K.: Four billion little brothers?: Privacy, mobile phones, and ubiquitous
data collection. Commun. ACM 52(11), 48–53 (2009)

2. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell,
A.T.: Bikenet: a mobile sensing system for cyclist experience mapping. ACM Trans.
Sens. Netw. 6(1), 6 (2009)

3. Mendez, D., Perez, A.J., Labrador, N., Marron, J.J., et al.: P-sense: a participatory
sensing system for air pollution monitoringand control. In: Percom Workshops, pp.
344–347 (2011)

4. Bales, E., Nikzad, N., Quick, N., Ziftci, C., Patrick, K., Griswold, W.: Citisense:
Mobile air quality sensing for individuals and communitiesdesign and deployment
of the citisense mobile air-quality system.In Proceedings of PervasiveHealth (2012)

5. Grim, E., Fok, C.-L., Julien, C.: Grapevine: efficient situational awareness in per-
vasive computingenvironments. In: Proceedings of Percom Workshops (2012)

6. Srivastava, M., Abdelzaher, T., Szymanski, B.: Human-centric sensing. Philos.
Trans. Royal Soc. Lond. Math. Phys. Eng. Sci. 370(1958), 176–197 (2012)

7. Almenarez, F., Marin, A., Dı́az, D., Sanchez, J.: Developing a model for trust
management in pervasive devices. In: Proceedings of Percom Workshops (2006)

8. Wang, X., Cheng, W., Mohapatra, P., Abdelzaher, T.: Artsense: anonymous rep-
utation and trust in participatory sensing. In: Proceedings of INFOCOM (2013)

9. Xiong, L., Liu, L.: Building trust in decentralized peer-to-peer electronic commu-
nities. In: Proceedings of ICECR-5 (2002)

10. Shi, E., Chan, T.-H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: Proceedings of NDSS (2011)

11. Ganti, R.K., Pham, N., Tsai, Y.-E., Abdelzaher, T.F.: Poolview: stream privacy
for grassroots participatory sensing. In: Proceedings of SenSys, pp. 281–294 (2008)

12. Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security,
pp. 338–340 (2011)

13. Keränen, A., Ott, J., Kärkkäinen, T.: The one simulator for dtn protocol evalua-
tion. In: Proceedings of SimuTOOLS, pp. 55 (2009)

14. Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in
mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)

15. Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding
in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44(11), 134–141
(2006)

16. Luhmann, N.: Familiarity, n.confidence, trust: problems and alternatives. Trust
Mak. Breaking Coop. Relat. 6, 94–107 (2000)

17. Li, H., Singhal, M.: Trust management in distributed systems. IEEE Comput.
40(2), 45–53 (2007)

18. Babu, S.S., Raha, A., Naskar, M.K.: Trust evaluation based on nodes characteris-
tics and neighbouring nodes recommendations for WSN. In: Wireless Sensor Net-
work 2014 (2014)

19. Uddin, M.G., Zulkernine, M., Ahamed, S.I.: Cat: a context-aware trust model for
open and dynamic systems. In: Proceedings of SAC, pp. 2024–2029 (2008)



Pervasive Context Sharing in Magpie 139

20. Selcuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management
system for p2p networks. In: Proceedings of CCGrid, pp. 251–258 (2004)

21. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

22. Bilogrevic, I., Freudiger, J., De Cristofaro, E., Uzun, E.: What’s the gist? privacy-
preserving aggregation of user profiles. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS
2014, Part II. LNCS, vol. 8713, pp. 128–145. Springer, Heidelberg (2014)

23. Reinhardt, A., Englert, F., Christin, D.: Averting the privacy risks of smart meter-
ing by local data preprocessing. Pervasive Mob. Comput. 16, 171–183 (2015)

24. Pallapa, G., Das, S.K., Di Francesco, M., Aura, T.: Adaptive and context-aware
privacy preservation exploiting user interactions in smart environments. Pervasive
Mob. Comput. 12, 232–243 (2014)

25. Hengartner, U., Steenkiste, P.: Avoiding privacy violations caused by context-
sensitive services. Pervasive Mob. Comput. 2(4), 427–452 (2006)

26. Tomasic, A., Zimmerman, J., Steinfeld, A., Huang, Y.: Motivating contribution in
a participatory sensing system via quid-pro-quo. In: Proceedings of CSCW (2014)

27. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A. Shih, E.,
Balakrishnan, H., Madden, S.: Cartel: a distributed mobile sensor computing sys-
tem. In: Proceedings of SenSys, pp. 125–138 (2006)

28. Shokri, R., Theodorakopoulos, G., Papadimitratos, P., Kazemi, E., Hubaux, J.:
Hiding in the mobile crowd: locationprivacy through collaboration. IEEE Trans.
DSC 11(3), 266–279 (2014)

29. Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y., Zhang, S.: xshare:
supporting impromptu sharing of mobile phones. In: Proceedings of MobiSys (2009)

30. Golrezaei, N., Molisch, A., Dimakis, A.G., Caire, G.: Femtocaching and device-to-
device collaboration. IEEE Commun. Mag. 51(4), 142–149 (2013)

31. Oulasvirta, A.: Finding meaningful uses for context-aware technologies: thehu-
manistic research strategy. In: Proceedings of the SIGCHI Conference on Human
Factors in ComputingSystems, pp. 247–254 (2004)

32. Stephen, M.: Formalising trust as a computational concept. Ph.D. dissertation.
University of Stirling, Scotland (1994)

33. Duma, C., Shahmehri, N., Caronni, G.: Dynamic trust metrics for peer-to-peer
systems. In: Proceedings of DESA, pp. 776–781 (2005)

34. Jiang, X., Landay, J., et al.: Modeling privacy control in context-aware systems.
IEEE Pervasive Comput. 1(3), 59–63 (2002)

35. Lu, Y., Wang, Z., Yu, Y.-T., Fan, R., Gerla, M.: Social network based security
scheme in mobile information-centric network. In: Proceedings of MED-HOC-NET
(2013)

36. Parris, I., Bigwood, G., Henderson, T.: Privacy-enhanced social network routing in
opportunistic networks. In: Proceedings of Percom Workshops, pp. 624–629 (2010)

37. Belyaev, Yu.K., Chepurin, E.V. (originator): Weibull distribution.http://www.
encyclopediaofmath.org/index.php?title=Weibull distribution&oldid=18906

38. Sarathy, R., Muralidhar, K.: Evaluating laplace noise addition to satisfy differential
privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)

http://www.encyclopediaofmath.org/index.php?title=Weibull_distribution&oldid=18906
http://www.encyclopediaofmath.org/index.php?title=Weibull_distribution&oldid=18906


Middleware



Panorama: A Framework to Support
Collaborative Context Monitoring

on Co-located Mobile Devices

Khaled Alanezi1(B), Xinyang Zhou2, Lijun Chen1,2, and Shivakant Mishra1

1 Department of Computer Science, University of Colorado,
Boulder, CO, USA

{Khaled.Alanezi,mishras}@colorado.edu
2 Interdisciplinary Telecom Program, University of Colorado,

Boulder, CO, USA
{Xinyang.Zhou,Lijun.Chen}@colorado.edu

Abstract. A key challenge in wide adoption of sophisticated context-
aware applications is the requirement of continuous sensing and context
computing. This paper presents Panorama, a middleware that identifies
collaboration opportunities to offload context computing tasks to nearby
mobile devices as well as cloudlets/cloud. At the heart of Panorama is
a multi-objective optimizer that takes into account different constraints
such as access cost, computation capability, access latency, energy con-
sumption and data privacy, and efficiently computes a collaboration plan
optimized simultaneously for different objectives such as minimizing cost,
energy and/or execution time. Panorama provides support for discov-
ering nearby devices and cloudlets/cloud, computing an optimal col-
laboration plan, distributing computation to participating devices, and
getting the results back. The paper provides an extensive evaluation of
Panorama via two representative context monitoring applications over a
set of Android devices and a cloudlet/cloud under different constraints.

Keywords: Collaborative computing · Pervasive computing ·
Multi-objective optimization

1 Introduction

In the field of context-aware computing, a wealth of clever mobile applications
that monitor user environment to detect and react to events of special interest
have recently been proposed; see, e.g., [11,19,20]. However, a major obstacle
towards wide adoption of context-aware applications is the requirement of con-
tinuous context monitoring. User context can change at any time and it is crucial
for the application to detect those changes promptly. This requirement is difficult
to accommodate due to limited smartphone resources, particularly the battery
resource. Moreover, despite significant advances in smartphone processing power,
context computation latencies remain prohibitively high for several interesting
applications such as cognitive assistance [17]. For these reasons, users tend to
avoid using context-aware applications.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 143–160, 2015.
DOI: 10.1007/978-3-319-29003-4 9



144 K. Alanezi et al.

Different offloading techniques have been proposed recently to address these
issues of limited battery life and long computation latency. These techniques
fall into two broad categories. In the first category, resource-hungry tasks are
off-loaded to powerful servers residing in the cloud, leading to both computation
speedup and energy efficiency. However, accessing the cloud incurs additional
cost for the user in terms of cloud access fee and cellular data plan. In addition,
access latency for cloud can be quite high. To address this, researchers are intro-
ducing cloudlets, acting as a middle-tier to bridge the gap between the mobile
devices and the cloud [17].

In the second category, mobile applications use nearby mobile devices to
share tasks, thereby minimizing the need for accessing cloud resources [6,10].
This helps with avoiding cloud and ISP charges, as nearby resources can be
personal devices, or mobile devices of family members and coworkers. This also
eliminates redundant sensing and computation, if several nearby mobile devices
are interested in the same (shareable) context [10]. In addition, collaborative
context monitoring extends sensor modalities and tackles the smartphone posi-
tion problem [1]. However, this technique suffers from uncertainties due to the
ad hoc nature of the network, lack of any apparent incentives for participation,
security and privacy, varying device capabilities and device mobility.

It is clear that both of these offloading techniques have their pros and cons
with one of them suitable for one scenario and the other one for a different sce-
nario. At present, offloading solutions to cloud, cloudlet or nearby mobile devices
exist in isolation. With proliferation of mobile devices, increased availability of
(nearby) computing servers that can operate as cloudlets, and improved con-
nectivity to the cloud, a highly likely scenario is one where a user has access to
multiple computing resources whenever she/he needs to perform a context com-
putation. Figure 1 illustrates four common scenarios in a typical user’s (Alice)
life. In the morning, Alice takes a bus to go to her work (Bus scenario). Dur-
ing her bus ride, she can perform collaborative computing with mobile devices of
other bus riders. Later, in her work place (Work Place scenario), she can perform
collaborative computing with mobile devices of co-workers as well as an office
server (cloudlet) accessible within one network hop. During lunch time (Lunch
Break scenario), Alice goes to a restaurant, where she can perform collabora-
tive computing with mobile devices of other restaurant customers as well as a
cloudlet provided by the restaurant. Finally, in the evening or on weekends, Alice
goes for shopping in a mall with her family members and friends (Shopping Mall
scenario), where she can use their mobile device for collaborative computing.

In this paper, we present a middleware framework called Panorama that
enables mobile applications to reap the benefits of every computing opportu-
nity (cloud, cloudlets, and other mobile devices) available at runtime. Panorama
runs on multiple mobile nodes, and builds an optimized collaboration plan tak-
ing into consideration the users’ performance objectives and the participants’
preferences and constraints. A key challenge addressed in Panorama is to ensure
an optimal partitioning of the computation task among available mobile devices,
cloudlet, and cloud. Panorama considers important and practical constraints in



Collaborative Context Monitoring on Co-located Mobile Devices 145

Fig. 1. Alice’s typical day Fig. 2. Panorama’s architecture

collaboration planning, such as the energy constraints of mobile devices, and
their computation and communication capabilities. It also considers the costs
involved in accessing nearby mobile devices vs. cloudlets/cloud. It also takes
into consideration security, privacy, and trust relationship of the participating
devices. At the heart of collaboration planning in Panorama is a versatile multi-
objective optimization framework that takes into account various constraints of
available computing opportunities and efficiently computes a collaboration plan
that optimally trades off different performance objectives such as minimizing the
overall cost, minimizing the energy consumption, and minimizing the execution
time. Panorama provides support for both parallel and sequential (pipeline) task
structures, two most common structures in context monitoring applications.

We have prototyped and extensively evaluated Panorama under a variety of
scenarios in the presence of several different network configurations of mobile
devices, cloudlet and cloud and under different device constraints. We have
experimented with two representative context-aware applications: speech recog-
nition (a parallel task) and ambiance sound monitoring (a sequential task).
Experimental results show that Panorama can achieve both reduced compu-
tation time and decreased energy consumption while working within the con-
straints set by the collaborators, such as limits on the contributed energy, cost
budget, and privacy requirement. Experimental results also show that Panorama
is expressive and flexible in realizing different tradeoffs between completion time,
energy consumption, and/or cost. Panorama is completely automated with no



146 K. Alanezi et al.

user intervention needed after installation. A device with Panorama can auto-
matically join a collaboration network when needed, and run tasks that are
suitable for it.

2 Design

2.1 Overall Architecture

Panorama is designed according to the current mobile application development
standards, and can be easily adopted without incurring much change to the
current mobile software stack. It provides APIs to allow applications to discover
nearby devices, cloud and cloudlets, build a network, and delegate tasks to them.
It also provides APIs to allow other mobile devices to discover local resources
and to accept task delegation. The overall architecture of Panorama is shown in
Fig. 2. A device acts as an initiator and triggers the network creation phase when
it needs to compute a costly context and is looking for collaborators. Panorama’s
design supports diverse network interfaces like Bluetooth, Wi-Fi Direct, and
connections with IPs where cloudlets/cloud reside. Bluetooth standard allows
creation of Piconets where the initiating device connects to multiple devices
in a star topology. The initiating device can connect to another device using
WiFi-Direct and to previously defined IPs for cloudlets/cloud.

Panorama is implemented as a background service that exposes the middle-
ware APIs to applications looking for collaboration opportunities. The main com-
ponent is the middleware APIs component. This component contains the APIs
that the applications can call to use the framework’s services. The Bluetooth
Manager and Wi-Fi Direct Manager components implement technical details
of short-range communication channels. Panorama defines the behavior that
every communication channel must provide to support task collaborations like
searching for other devices, connecting to other devices, accepting connections
from other devices, accepting and responding to resource inquiry messages, and
finally accepting and processing task delegation. Panorama currently supports
two communication interfaces with other mobile nodes: Bluetooth and Wi-Fi
Direct. With this design, it would be easy to plug in new communication inter-
faces (e.g., NFC or ZigBee) without any significant change in Panorama.

The Cloud(let) Manager component implements technical details of connect-
ing with cloudlets/cloud. Currently, we pre-configure the IP addresses where
the implementation for specific context monitoring task exists. However, we
expect that network resource discovery techniques can be utilized to discover
cloudlets/cloud efficiently.

The Profiler component gathers collaboration-relevant information about the
mobile node Panorama is running on and provides it to other nearby mobile
devices through Panorama’s APIs. The initiating node delegates different con-
text sub-tasks to different devices based on the profiler information. Currently,
this component provides two types of information: available set of services on
the device along with their performance metrics and constraints of the mobile
device. Available services here refer to context derivation code that applications



Collaborative Context Monitoring on Co-located Mobile Devices 147

expose so that other mobile devices can execute their context-aware task on
the device. In the current design, the required code should be available on the
device before collaboration can take place. Device constraints include energy
quota, time quota, and incentives, etc.

The Multi-Objective Optimizer component employs multi-objective optimiza-
tion to find the best collaboration plan that conforms to the device constraints
and achieves the initiator’s objectives. Currently, we optimize for energy con-
sumption, execution time, and cost. However, due to its flexibility, the opti-
mization model can be easily extended to accommodate for other parameters
when required. Details of this component are discussed in Sect. 2.3. Finally, the
Opportunity Finder component performs regular scanning for nearby devices
using Bluetooth and maintains a list of recently discovered devices to be utilized
whenever collaboration is required.

2.2 Application Partitioning and Profiling

Collaborative context monitoring involves changing the application execution
model from standalone execution on a single mobile device to distributed execu-
tion on multiple mobile devices, clouds and cloudlets. This requires partitioning
the application and making the code for calculating context available on collab-
orating nodes before the collaboration. Panorama’s design requires the context
code to be available on other mobile devices before the collaboration. This design
choice is reasonable since Panorama targets shareable contexts that will be of
common interest. For example, a programmer will write a speech recognition
component that takes an audio as input and returns text as a result. This com-
ponent can then be made available for other applications running on the device
as well as for nearby collaborators by being exposed as a service through the
operating system. Note that this design choice is consistent with research in the
field that proposes contextual data units [4] and envisions sharing them among
collaborators [8]. Technically, Panorama utilizes the Android service component
to support this design (see Sect. 3). For servers, we envision a future where pop-
ular shareable context is exposed by server APIs analogous to web APIs.

For application profiling, Panorama tracks the required execution time and
energy consumption for exposed services and provides this information through
the API to other mobile devices. Panorama uses information gathered from pre-
vious invocations to build a linear regression model similar to the work in [7] that
predicts the execution time and energy consumption for future tasks delegated to
the node. We choose to use file size as the input to this regression model. This choice
has proven accurate for speech recognition tasks in our current implementation.
The energy profiling is done manually by taking measurements from an external
power source. This workaround solution is required due to the lack of an accurate
API that exposes energy consumption of the device to solutions like Panorama.

2.3 Optimization Models

Consider a system where n devices, indexed by i = 1, · · · , n, collaborate on
a certain task with a total workload of w. Let x = (x1, · · · , xn) denote the



148 K. Alanezi et al.

allocation of the task, with device i being allocated an amount xi ≥ 0 of work-
load. Obviously,

∑n
i=1 xi = w. Denote by ei the energy consumption for process-

ing one unit of workload by device i. We assume that each device i has an energy
budget bi that it is willing to expend for collaboration, i.e., eixi ≤ bi. Denote by
ci the payment received by device i for processing a unit of workload, and B the
initiator’s total budget on payment. So,

∑n
i=1 cixi ≤ B. We further assume that

each device i takes an amount fi of time to process one unit of workload. We
aim to minimize both the energy consumption and the completion time, which
is formulated as the following multi-objective optimization problem:

min
x�0

(w.r.t Rn
+) (

n∑

i=1

eixi, max
i

{fixi}) (1)

s.t. eixi ≤ bi, i = 1, · · · , n (2)
n∑

i=1

xi = w (3)

n∑

i=1

cixi ≤ B. (4)

Introducing a weight γ ≥ 0 to specify the tradeoff between energy consump-
tion and execution time, we can solve the above problem by scalarization, which
can be reformulated as a linear program (LP):

min
x�0

n∑

i=1

eixi + γt (5)

s.t. eixi ≤ bi, i = 1, · · · , n (6)
fixi ≤ t, i = 1, · · · , n (7)
n∑

i=1

xi = w,
n∑

i=1

cixi ≤ B. (8)

A larger (smaller) γ means a higher preference/priority on short completion
time (low energy consumption). In practice, the value of γ is set based on the
initiator’s preference.

Notice that in the above optimization problems, we impose a hard constraint
on the initiator’s budget; see Eq. (4). But we can also make the payment an
objective to optimize. For example, we can optimize both the initiator payment
and the completion time under the energy budget constraint, i.e.,

min
x�0

n∑

i=1

cixi + γt (9)

s.t. eixi ≤ bi, i = 1, · · · , n (10)
fixi ≤ t, i = 1, · · · , n (11)
n∑

i=1

xi = w. (12)



Collaborative Context Monitoring on Co-located Mobile Devices 149

The above modeling framework can be easily extended to incorporate differ-
ent performance objectives or concerns. For example, for certain reason such as
privacy concern, we may require certain portion of workload u to be processed
at a subset i = 1, · · · ,m of devices such as those that can be trusted. This
can be ensured by imposing an additional constraint

∑m
i=1 xi = u to the above

optimization problems.
In practice, the values of ei and fi can be measured/estimated as described

in Sect. 2.2. The value of ci will be determined by each device/collaborator based
on its resource scarcity or abundance as well as incentive. The total number n
of collaborating devices is usually a small number less than 10, resulting in a
small LP problem. The LPs (5), (6), (7), (8), (9), (10), (11) and (12) can be
solved on smartphone using existing LP solvers, e.g., Apache for Java, in tens of
millisecond. We have implemented a customized solver especially for Panorama.

2.4 Discovery Protocol

For collaboration, Panorama needs to know what devices are available nearby
and how long those devices are expected to stay within the collaboration range.
Under Bluetooth v3.0, Panorama needs to scan its surroundings regularly, which
results in significant energy overhead. To minimize this overhead, Panorama uti-
lizes adaptive scanning based on discovered number of peers as described in [9].
The new Bluetooth Low Energy (BLE) protocol provides lightweight mecha-
nism for broadcasting device capability beacons in a connectionless mode called
advertising. Panorama can leverage this feature for efficient service discovery and
switch to classic Bluetooth for sending files at higher rates. Unfortunately, none
of our Android devices support BLE peripheral mode required for advertising.
We plan to incorporate BLE in Panorama as part of future work.

3 Implementation

We have implemented Panorama as a background service on the Android
platform, which can be installed as a user-space application. After installing
Panorama, context-aware applications running on the same mobile device can
use Android IPC to call its APIs. Panorama’s simple interface has a start/stop
button that can be used by users to indicate their willingness to engage in col-
laboration. Once Panorama is started, it can automatically accept Bluetooth
connections from co-located devices that also run Panorama. Bluetooth con-
nection between Panorama copies running on different mobile devices can take
place automatically without user intervention. In order to support this require-
ment, Panorama uses a specific Bluetooth UUID as an identifier and connects
using Bluetooth insecure channel. This design allows for automatic creation of
connections with co-located devices which is a mandatory requirement for sys-
tems such as Panorama to work. However, it introduces security risk from an
adversary with access to the UUID. Techniques to secure mobile ad hoc net-
works such as reputation systems [2] and secure key management [3] can be



150 K. Alanezi et al.

employed to secure Panorama. We are considering implementing these tech-
niques in Panorama as part of future work. Panorama also utilizes Wifi-Direct
as an additional communication channel. However, the connection has to be
accepted by the receiving party since this is the only supported scheme on
Android implementation of Wifi-Direct. When the communication network is
established, devices can discover resources and delegate tasks to each other.

3.1 Panorama’s Programming Interface

Method signatures of Panorama’s APIs are defined using the Android Inter-
face Definition Language. In order for third-party applications developers to
call Panorama’s APIs, they will need to include a copy from the .aidl file in
their application package and bind to Panorama’s middleware service. Table 1
lists method signatures from this file. The group of APIs handling Bluetooth,
Wifi-Direct and Cloudlet perform the required functions for creating the net-
work using the communication channels. To create the Bluetooth network, a
device checks the freshness of recently discovered devices list using get bt devices,
then invokes the create piconet API. The latter API automatically connects to
nearby devices running Panorama. An application can also connect to a device
through WiFi-Direct and a cloudlet/cloud server through Wi-Fi using the Wifi-
Direct APIs and cloudlet APIs respectively. For generic APIs, the discover nw
API sends a discovery message for all connected devices with the required ser-
vice name. Panorama’s design utilizes the Android service component for code
discovery. That is, application developers will write context derivation code
in an Android service and expose it under a unique identifier through the
Android OS. Accordingly, whenever a device receives a discovery message, it
triggers the get local API, which checks whether the required service is installed
on the device by checking exposed services against the provided service name
string. After gathering information about connected devices, the application
can trigger the optimization process and perform the collaboration using the
perform optimization and the execute optimization APIs respectively. Upon
receiving task delegations, collaborating devices can process their portions of
the task using the process local API.

Table 1. Method signatures from Panorama’s aidl file

Generic APIs Bluetooth, Wifi-Direct & Cloudlet APIs

List<Device> discover nw(service name) List<Device> get bt devices

Device get local(service name) create piconet

Plan perform optimization(task) start wd discovery

Result execute optimization List<Device> get wd devices

Result process local(task) connect wd(device name)

connect to cloudlet



Collaborative Context Monitoring on Co-located Mobile Devices 151

In the description above, we have provided detailed APIs from Panorama for
clarity. However, we note that these APIs can be combined to shield collaboration
logic from the application logic and make task delegations happen automatically.
For example, we have implemented an API that both connects to nearby devices
and discovers them for a specific service in one step.

3.2 Experiment Testbed

To evaluate the utility of Panorama, we have implemented two context-aware
applications representing two different application structures: parallel struc-
ture and pipeline structure. A speech recognition application that is based on
PocketSphinx [15] to perform speech recognition from a dictionary represents
a parallel task. This task is computation-intensive, making it a good candidate
for collaboration. For the pipeline structure, we implement the sound ambiance
monitoring task from [12]. We define three stages and run them in three differ-
ent Android services components to distribute the application. First, an audio
recording stage, which represents the sensing stage. Second, a stage that cal-
culates FFT for the audio window and generates features to classify sound as
either music or speech. Finally, a third stage that takes the FFT as input and
generates MFCC vector, which is then used to identify the gender of the speaker.
This is only used when the sound is detected as speech. We also implement both
applications using Java to be able to run them on cloudlets and clouds. We inte-
grate these applications with Panorama and run experiments on four Android
mobile devices running different versions of the Android OS and a laptop to
emulate a cloudlet compute box. We also rent an Amazon EC2 server to use
for experiments involving the cloud. The Android devices used are Galaxy S4,
Galaxy Note, Galaxy Tab 3, and Galaxy Nexus. Galaxy Note, Galaxy Tab 3
and Galaxy Nexus have dual-core processor while Galaxy S4 has a quad-core
processor.

4 Evaluation

4.1 Methodology

We have evaluated Panorama for a variety of scenarios under different collab-
oration opportunities, resource restrictions, and incentives. The experimental
settings are chosen to reflect real-life scenarios that a system like Panorama
may face. Collaboration opportunities include cloudlets/cloud as well as multi-
ple mobile devices belonging to the user, his/her friends and family members,
and/or strangers. The initiator may have different objectives, and the collabo-
rators may have different constraints in terms of energy, time, cost, and privacy.

The execution time reported in the experiments is the total time to execute
the required task using a collaboration, including the time for connecting with
other devices or cloudlet, devising an optimal task partitioning plan, shipping
subtasks, and gathering the results back. The energy consumption reported is



152 K. Alanezi et al.

Fig. 3. Tradeoff between energy con-
sumption and execution time by
Multi-objective optimizer (3 collabo-
rators).

Fig. 4. Impact of privacy on energy and
time optimization (3 collaborators).

the sum of energy consumed in all mobile devices (not cloudlet) that partici-
pate in the collaboration. It takes into consideration the energy consumed in
all stages from the creation of network for collaboration to the gathering of the
results back to the initiating device. To measure energy consumption of different
activities, we log the device electric current drain indicated by the power supply
unit, and then subtract the average current drain observed before the measured
activity starts in order to obtain the additional current drain caused by the col-
laboration activity. We multiply the additional current with the voltage applied
at the battery terminals of the mobile device to get the instantaneous power
consumption of the activity in Watt and then integrate it over time to obtain
the energy consumption of the activity in Joule. We ensure that there are no
other applications running in the background. We repeated each experiment five
times and report the average of the measurements from these five trials. We also
report standard deviation, which is rather low in all experiments.

4.2 The Utility of Multi-objective Optimizer

We use speech recognition to evaluate the adaptability of Panorama to different
participant preferences and resource restrictions. Speech recognition is a good
candidate for task collaboration because of its compute-intensive nature, and
is used as an example context-aware task that can be distributed in parallel.
We envision Panorama integrating with context-aware applications that require
general speech recognition. In the experiments, we consider a scenario where an
audio file of 4 MB is recorded and requires performing speech recognition.

Tradeoff Between Energy Consumption and Execution Time. We first
demonstrate that Panorama provides support for appropriate partitioning to
achieve the desired tradeoff between energy consumption and execution time.
Such a tradeoff is needed in a Bus or a Shopping Mall scenario described in



Collaborative Context Monitoring on Co-located Mobile Devices 153

Fig. 1, where only mobile devices may be available for collaboration and the
user does not have access to a power source. Due to the lack of access to power
source, the remaining battery level dictates how important it is to minimize
energy consumption during computation.

In this experiment, we assume that there are two mobile devices available in
the user’s vicinity in addition to the user’s own mobile device. We also assume
that the speech data does not contain any sensitive information and so pri-
vacy is not a factor in optimization. In the next experiment, we will take into
consideration the privacy concern when certain parts of the speech data are
sensitive in nature. Recall from Subsect. 2.3 that different choices of weight γ
correspond to different tradeoffs between energy consumption and execution
time. Figure 3 shows the comparison between γ = 0 (minimize energy consump-
tion, corresponding to a situation with relatively low remaining battery level),
γ = ∞ (minimize execution time, corresponding to a situation with relatively
high remaining battery level), and γ = 1 (equal preference over energy and time,
corresponding to a situation with moderate remaining battery level). We also
contrast this with a naive partitioning strategy that divides the task evenly over
all the participants. Figure 7 shows the corresponding partitioning of speech data
for each of the collaborators for these different cases. For brevity, we report in the
same figure the file partitioning of speech recognition tasks for other experiments
as well that are described later.

We see that in the case of minimum energy (low remaining battery level),
bigger chunks of file are sent to the participating device with low energy con-
sumption without any emphasis on exploiting parallelism to achieve computa-
tion speedup, leading to slow execution. The opposite trend is observed for the
case of minimum time (high remaining battery level). Here, the total execution
time is minimized at the expense of increased energy consumption. The equal
preference case represents a compromise between the previous two cases, with
execution time and energy consumption in between those of these two cases.
Finally, the even partitioning scenario is able to exploit parallelism to achieve
a good performance in time. However, it consumes the most energy because of
the lack of any planning in this aspect.

Notice that in the previous experiment, the task distribution is same whether
the user is in a Bus scenario or a Shopping Mall scenario, because the speech
data does not contain any sensitive information. We now consider the case where
some parts of the speech data contain sensitive information (1.5 MB out of the
total 4 MB is sensitive). In the Bus scenario, since the mobile devices other than
the initiator’s are untrusted, the sensitive parts of the data cannot be shipped
to them. As a result, only 2.5 MB of (non-sensitive) speech data is available for
collaboration in this case and the remaining 1.5 MB of (sensitive) data must be
processed at the initiator’s device. Figure 4 shows the results of this case. We
see that in both time and energy priority cases, the achieved time gain from
exploiting other mobile nodes is more than 50%. In the case of energy priority,
27% energy is saved compared to local execution due to shifting of the (non-
sensitive) portion of the task to a more efficient mobile node. Also, when we



154 K. Alanezi et al.

Fig. 5. Impact of the initiator’s willing-
ness to pay (3 collaborators & 1 per-
sonal low end device).

Fig. 6. Impact of the collaborators’
energy budget (3 collaborators & 1 per-
sonal low end device).

compare the energy priority and time priority cases, we see that Panorama is
able to devise the best plan for executing the non-sensitive part of the file. For
the time priority, Panorama divides the file efficiently (see Fig. 7) to save 20%
of time when comparing to the energy priority case. As for the energy priority,
Panorama sends the file chunks to the more energy efficient device thereby saving
7% more energy. For the Shopping Mall scenario, since all devices are trusted, the
presence of any sensitive data does not make any difference in task distribution.
The results are same as those reported in Fig. 3.

Impact of Collaborator Constraints. We now evaluate the capability of
Panorama to optimize for different objectives under different constraints speci-
fied by the participants. Consider the Bus or the Shopping Mall scenario with
three mobile device collaborators and an additional mobile device (which is a
tablet in the experiment) that belongs to the initiator. This corresponds to a
situation where the initiator has two mobile devices, one of which is a low end
device that has poor performance but is “free” in terms of cost and energy. The
user may want to use the low end device to save time and energy or meet a cap
on cost. We consider a situation where the initiator pays the collaborators, and
the payment is proportional to the amount of work done.

We first consider a scenario in which the initiator has a budget on the total
amount she is willing to pay. We experiment with two budget levels: a low budget
of 2 units of payment and a high budget of 4 units of payment.1 We consider two
situations, one that aims to minimize energy consumption, and the other that
aims to minimize execution time. The preference/priority on energy or time is
represented by choosing a small or large weight γ in problem (5), (6), (7) and (8).
Figure 5 shows the results of this experiment, and the corresponding partitioning
can be found in Fig. 7.

1 Notice that here the word “payment” is used in a general sense. It can be a monetary
payment, or virtual payment such as credit for reputation.



Collaborative Context Monitoring on Co-located Mobile Devices 155

Fig. 7. File distribution for the 4MB task in experiments of Figs. 3, 4, 5, 6, 8 and 9.

We see that, with low budget and if energy is of high priority, Panorama
sends most of the task to the free initiator-owned low end device, in order to
save energy in other devices and meet the payment cap while incurring a long
execution time. When execution time is of high priority, Panorama sends the task
more to the devices that are fast, which leads to 25% reduction in time while
costing much more energy. On the other hand, with high budget, if time is of high
priority, Panorama achieves a large reduction in time by shifting larger portion
of job to fast but costly devices. When energy is of high priority, the energy
consumption goes up compared to the low budget case. This is because the large
reduction in time from faster computing allowed by higher budget compensates
the increase in energy consumption. As expected, compared to local execution,
collaboration reduces execution time and saves energy.

We now consider a scenario where the collaborators have a restriction on the
amount of energy they are willing to expend for collaboration, and investigate
the tradeoff between execution time and initiator’s cost/payment under different
energy budgets; see problem (9), (10), (11) and (12). Figure 6 shows the results
of an experiment with a low, 100 Joules energy budget for each mobile device,
and a high, 200 Joules energy budget for each device; and the corresponding
partitioning of speech data can be found in Fig. 7. We see that, compared with
low energy budget case, high energy budget leads to shorter execution time
when comparing both the cost and time priority cases to their corresponding
low energy cases. This is because higher energy budget allows for longer use of
faster devices. Also, notice that, with low energy budget and if the cost is of high
priority, Panorama sends larger portion of the task to the free initiator-owned
low end device, resulting in large execution time and the lowest cost. We also
compare with the case of local execution. As expected, collaboration leads to
shorter execution time while incurring cost as a result of utilizing other nodes.

Presence of Cloudlets. We now consider scenarios where a cloudlet is available
in addition to some mobile devices for collaboration, as in the Work Place and
Lunch Break scenarios shown in Fig. 1. In a Work Place scenario, a user has
high trust in the available mobile devices as they belong to her/his co-workers.
In addition, in some Work Place scenarios, the user may also trust the cloudlet,



156 K. Alanezi et al.

Fig. 8. Impact of privacy requirement
of the task (3 collaborators & cloudlet).

Fig. 9. Impact of collaborators cost
budget requirement of the task (3 col-
laborators & cloudlet).

while in other cases, she/he may not trust it. On the other hand, in the lunch
break scenario, neither the cloudlet nor the other mobile devices may be trusted.

In the first experiment reported here, we consider a Work Place scenario
that involves three mobile devices and an untrusted cloudlet. An audio file is
divided into sensitive and insensitive parts. We consider two cases here: a high
privacy case with 2.5 MB out of the total 4 MB file marked as sensitive, and a
low privacy case with only 1.5 MB marked as sensitive. As shown in Fig. 8 (and
Fig. 7), imposing higher privacy leads to higher energy consumption and higher
cost. This is because only a small portion of the speech data is sent to the faster
and energy-cost-free cloudlet. For lower privacy case, a much larger portion of
the speech data is sent to the cloudlet, thus reducing energy consumption and
execution time. We conduct two additional experiments for the cases when the
cloudlet is trusted and when there is no sensitive data in the audio file. In both
cases, Panorama offloaded almost the entire file to the cloudlet. This is because
the cloudlet is significantly faster than the mobile devices and does not contribute
to energy overhead. We do not report the results of these experiments here due
to space limitation.

Next, we consider the Lunch Break scenario where both the cloudlet and
the collaborating mobile devices are untrusted and there may be a cost asso-
ciated with using them. In such a situation, the user has no choice other than
executing sensitive parts of the task locally. Yet, Panorama can still optimize
for the remaining non-sensitive portion of the task to devise an efficient plan,
thereby, minimizing the burden on the initiator as much as possible. Figure 9
reports the results of an experiment where the user would like to process 4 MB
of insensitive speech while minimizing the execution time (i.e., γ = ∞); and
the corresponding partitioning of data can be found in Fig. 7. In contrast to the
previous experiment, we gave the cloudlet here a higher cost of 4x compared to
1x for other nodes. In the case “high-budget,” the user allocates a budget of 10
units to the task, whereas, in the “low-budget” case only 5 units are allocated.
We see from the figures that when the budget is high, Panorama was able to shift
a big portion of the task to the cloudlet achieving better computation speedup



Collaborative Context Monitoring on Co-located Mobile Devices 157

Fig. 10. Benefits of collaboration for
sound ambiance monitoring.

Fig. 11. Impact of leaving node on
Panorama’s performance.

compared to low budget scenario. However, the low budget scenario was not as
slow as we expected when compared to the high budget scenario. The reason is
that Panorama was able to exploit parallel execution (see Fig. 7 for file distribu-
tion) with other collaborators within the allocated low budget without worrying
about energy consumption since it is not considered in this scenario.

4.3 Benefits of Collaboration for Sequential Tasks

To demonstrate the utility of Panorama in handling sequential task structures,
we have implemented the sound ambiance monitoring application proposed in
[12], and employed Panorama to enable collaboration. The results of the col-
laboration experiments are then compared to the local execution on a single
device with Panorama turned off. For collaboration, we conducted three exper-
iments. In the first experiment, the initiator collaborates with two other mobile
devices, and in the second and third experiments, the initiator collaborates with
a cloudlet sitting on the same network and a cloud server accessed through a
Wi-Fi Internet connection. Recall from Sect. 3.2 that the sound ambiance mon-
itoring task can be viewed as a pipeline consisting of three subtasks. Those can
be split among collaborators. From Fig. 10, we see that in case of collaboration
with two other mobile devices, there is a reduction in power consumption at the
initiator’s device from 541 mW to 202 mW, a more than 50% energy reduction
by delegating the calculation to the other collaborator. However, this comes at
the cost of an increased completion time from 261 ms to 378 ms. Completion time
here is the time between when the audio recording is completed and when the
gender classification result has arrived at the initiator from the collaborator (or
calculated locally in case of local execution). The increase in completion time is
due to the time needed to set up the collaboration task and transfer the data
and results between the collaborators.

Interestingly, the second experiment involving cloudlet does not show an
increase in completion time. Instead, a time saving of 40% is achieved in addition
to the energy saving of 27%. Here, the overhead introduced by Panorama is offset
by the significant gain in execution time when delegating the compute-intensive



158 K. Alanezi et al.

parts to the cloudlet. We also ran the same experiment to engage in a collabora-
tion with an Amazon EC2 sever over a Wi-Fi Internet connection. The achieved
result is worse both in terms of energy and time when compared to the cloudlet
case. However, when we compare this result to a nearby node collaboration, we
see that cloud can be a better alternative, depending on the intensity of the task,
in terms of time while the opposite was true for energy.

4.4 Handling Mobility

There are two main challenges when it comes to handling node mobility: how
to detect that a node is moving away, and how to ensure smooth migration of
unfinished sub-task to other devices when a node leaves. For detection, we use a
method proposed in [13] where we sense the accelerometer during collaboration
to detect the starting of a physical activity as an indicator for a collaborator
eventually leaving the scene. Once Panorama detects such activity, it sends a
message to the initiator to handle mobility. We use accelerometer due to its
relatively cheap energy cost and the fact that it can detect mobility promptly.
Handling of interrupted collaborations depends heavily on the nature of the
computation. In some situations a partial result can be migrated back to the
initiator, whereas in others the whole computation need to be reprocessed. We
performed two experiments with the aforementioned cases and report the results
in Fig. 11 to reflect the impact of each on performance. The experiment considers
a scenario where a node delegates a 4 MB task equally to two other nodes and
one node moves away from the initiator. In the first case, we deliberately divided
the received file and let the moving node finish the first 1 MB before moving
away. Upon moving away, the node sends the partial result back to the initiator,
which processes the remaining 1 MB locally. In the second case, we let the moving
node report its movement without sending any partial results, so the initiator will
process the whole 2 MB. Figure 11 reports the total time for completing the 4 MB
task and the consumed energy at the initiator. As expected, the first scenario
of partial result migration is better in terms of both energy and time when
compared to the second scenario, since the initiator only needed to process half of
the load assigned to the moving node. Notice that in our current implementation,
when a collaborating node is leaving, the initiator picks up the unfinished work.
We can also re-distribute the unfinished work among the remaining devices,
which we plan to explore in future.

5 Related Work

Our work is closely related to [10,14]. However, [10] focuses on collaborative
context monitoring between co-located mobile devices only, while Panorama
leverages more opportunities by involving not only co-located devices but also
cloudlets/cloud and performing an optimization to devise an optimal collabora-
tion plan for the task. The main goal of [14] is to enhance the reliability of the
application, while the goal of Panorama is to automate and optimize collabora-
tion for continuous context monitoring.



Collaborative Context Monitoring on Co-located Mobile Devices 159

The work in [18] studies generic computation offloading between co-located
mobile devices, and presents three algorithms to serve three different possible
applications’ structures while taking into consideration connectivity in distrib-
uting jobs. The implementation in [18] is limited to a prototype that performs
offloading between two devices only. Panorama’s design involves more opportu-
nities by including cloudlets/cloud in addition to co-located mobile devices. We
also provide an extensive Android implementation and evaluate it on multiple
mobile nodes and a cloudlet/cloud. The recent work in [8] focuses on building a
conceptual model to facilitate context sharing between groups of mobile devices.
Such model can be leveraged by Panorama to increase the chances of meeting
peers and building more beneficial collaborations.

There are several vision papers that advocate the concept of collaboration
among co-located mobile devices [6,13,21] and we have used some of their ideas
to motivate our work. Also, a rich body of literature exists for augmenting smart-
phones with resources from cloud and cloudlets; see, e.g., [5,7,16,17]. The ideas
in these works have helped in guiding our design.

6 Conclusion

Panorama is a middleware framework that addresses a key question in offloadling
computations to nearby mobile devices and cloudlets/cloud: when should a device
offload its context computing task and how? Panorama utilizes all available col-
laboration opportunities from co-located mobile devices and cloudlets/cloud, and
devises a collaboration plan to optimize for and trade off different objectives such
as minimizing execution time or minimizing energy consumption. The optimiza-
tion algorithm considers limits set by participants such as contributed energy, paid
incentives, and privacy exposure. Evaluation results show that Panorama is rather
practical, is able to cope up with varying device constraints, and devises collabo-
ration plans within those constraints to optimally trade off multiple objectives.

There are a number of future directions we plan to pursue. First, we plan to
incorporate Bluetooth Low Energy in our opportunity discovery protocol. While
none of the Android devices we test run in peripheral mode at present, we expect
that Bluetooth-enabled smartphones will increasingly support Bluetooth LE. Sec-
ond, we plan to expand on handling node mobility. At present, Panorama provides
basic support for ensuring that the context computation task is completed despite
some of the devices moving away. We plan to explore smart ways to efficiently cope
with various mobility patterns. Third, a limitation in Panorama is to rely on col-
laborators to come up with privacy and efficiency requirements. An interesting
research direction we plan to pursue is to automate the process of generating these
requirements to enhance the practicality of Panorama. Finally, we plan to conduct
user studies to evaluate Panorama in the real-world setting.

References

1. Alanezi, K., Mishra, S.: Enhancing context-aware applications accuracy with posi-
tion discovery. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MOBIQUITOUS 2013.
LNICST, vol. 131, pp. 640–652. Springer, Heidelberg (2014)



160 K. Alanezi et al.

2. Buchegger, S., Le Boudec, J.-Y.: A robust reputation system for mobile ad-hoc
networks. Technical report (2003)

3. Buttyán, L., Capkun, S., Hubaux, J.-P.: Self-organized public-key management for
mobile ad hoc networks. IEEE Trans. Mob. Comput. 2(1), 52–64 (2003)

4. Kansal, A., Liu, J., Chu, D., Zhao, F.: Mobile apps: it’s time to move up to condos.
In: HotOS (2011)

5. Chun, B.-G., Maniatis, P.: Augmented smartphone applications through clone
cloud execution. In: HotOS (2009)

6. Conti, M., Kumar, M.: Opportunities in opportunistic computing. Computer 43(1),
42–50 (2010)

7. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: Maui: making smartphones last longer with code offload. In: MobiSys
(2010)

8. de Freitas, A.A., Dey, A.K.: The group context framework: an extensibletoolkit for
opportunistic grouping and collaboration. In: CSCW (2015)

9. Han, B., Srinivasan, A.: eDiscovery: energy efficient device discovery for mobile
opportunistic communications. In: ICNP (2012)

10. Lee, Y., Ju, Y., Min, C., Kang, S., Hwang, I., Song, J.: Comon: cooperativeam-
bience monitoring platform with continuity and benefit awareness. In: MobiSys
(2012)

11. Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G., Campbell, A.T.,
Gatica-Perez, D., Choudhury, T.: Stresssense: detecting stress in unconstraineda-
coustic environments using smartphones. In: UbiComp (2012)

12. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: Soundsense: scalable
sound sensing for people-centric applications onmobile phones. In: MobiSys (2009)

13. Miluzzo, E., Cáceres, R., Chen, Y.-F.: Vision: mClouds-computing on clouds of
mobile devices. In: MCS (2012)

14. Miluzzo, E., Cornelius, C.T., Ramaswamy, A., Choudhury, T., Liu, Z., Campbell,
A.T.: Darwin phones: the evolution of sensing and inference on mobilephones. In:
MobiSys (2010)

15. CMU PocketSphinx
16. Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa:

enabling interactive perception applications on mobiledevices. In: MobiSys (2011)
17. Satyanarayanan, M., Chen, Z., Ha, K., Hu, W., Richter, W., Pillai, P.: Cloudlets:

at the leading edge of mobile-cloud convergence. In: MobiCASE (2014)
18. Shi, C., Lakafosis, V., Ammar, M.H., Zegura, E.W.: Serendipity: enabling remote

computing among intermittently connectedmobile devices. In: MobiHoc (2012)
19. Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev,

D., Campbell, A.T.: Studentlife: assessing mental health, academic performance
andbehavioral trends of college students using smartphones. In: UbiComp (2014)

20. You, C.-W., Montes-de Oca, M., Bao, T.J., Lane, N.D., Lu, H., Cardone, G.,
Torresani, L., Campbell, A.T.: Carsafe: a driver safety app that detects dangerous
driving behaviorusing dual-cameras on smartphones. In: UbiComp (2012)

21. Zhang, W., Wen, Y., Wu, J., Li, H.: Toward a unified elastic computing platform
for smartphones with cloud support. IEEE Netw. 27(5), 35 (2013)



Jouler: A Policy Framework Enabling Effective
and Flexible Smartphone Energy Management

Anudipa Maiti(B), Yihong Chen, and Geoffrey Challen

University at Buffalo, Buffalo, USA
{anudipam,ychen78,challen}@buffalo.edu

Abstract. Smartphone energy management is a complex challenge.
Considerable energy-related variation exists between devices, apps, and
users; and while over-allocating energy can strand the user with an empty
battery, over-conserving energy can unnecessarily degrade performance.
But despite this complexity, current smartphone platforms include “one-
size-fits-all” energy management policies that cannot satisfy the diverse
needs of all users. To address this problem we present Jouler, a frame-
work enabling effective and flexible smartphone energy management by
cleanly separating energy control mechanisms from management poli-
cies. Jouler provides both imperative mechanisms that can control all
apps, and cooperative mechanisms that allow modified apps to adapt
to the user’s energy management goals. We have implemented Jouler for
Android and used it to provide three new energy management policies to
203 smartphone users. Results from our deployment indicate that users
appreciate more flexible smartphone energy management and that Jouler
policies can help users achieve their energy management goals.

Keywords: Smartphone energy management · Smartphone platforms

1 Introduction

Effective smartphone energy management requires responding to an enormous
amount of diversity. Devices have different battery capacities, users have dif-
ferent battery lifetime expectations determined by their charging habits, and
apps consume1 different amounts of energy depending on what they do and how
well they are developed. Despite these differences, today’s smartphone platforms
manage energy using “one-size-fits-all” policies. For some users, the result is bat-
tery lifetimes that are too short, and this has remained a top complaint about
smartphones [1,15]. For other users, the result is battery lifetimes that are unnec-
essarily long and degraded performance due to unneeded energy conservation.

Recent research efforts have succeeded in improving smartphone energy mea-
surement [4,20], characterization [16] and modeling [5,6,12,24]. They have also
provided new energy control hardware [9,10] and software [17,21] mechanisms.
1 To avoid confusion between device usage and energy usage, we use consumption to

denote energy usage and usage to denote user-device interaction.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 161–180, 2015.
DOI: 10.1007/978-3-319-29003-4 10



162 A. Maiti et al.

However, more accurate measurements and more effective mechanisms will not
improve smartphone energy management if they are not joined with a range of
different policies reflecting the differences between devices, users, and apps.

This paper introduces Jouler, a system enabling effective and flexible smart-
phone energy management. Jouler delegates the energy management policy deci-
sions currently embedded in smartphone platforms to unprivileged apps called
energy managers. Energy managers use Jouler’s interface to access energy mea-
surements and energy control mechanisms. Because energy managers encapsulate
energy management policies inside normal smartphone apps, they are easy for
developers to create and distribute, and for users to find, try, and rate. They
can also interact with the user, monitor the environment, and access all other
capabilities provided to apps.

To enable flexible policies, Jouler provides energy managers with a variety
of information about running apps. Energy models provide overall and per-app
energy consumption measurements, broken down by component and between
foreground and background operation. Jouler also provides information about
how apps use the device, such as the amount of time they spend in the foreground
and their usage of the network, output devices, and sensors.

To enable effective policies, Jouler provides energy managers with both
energy control carrots (cooperative mechanisms) and sticks (imperative mecha-
nisms). Jouler’s cooperative mechanisms enable cooperation with modified apps
that can adapt their own energy consumption when needed, making existing
energy-aware apps simpler and more effective by allowing them to offload energy
management policy decisions to the energy manager. When cooperation fails,
energy managers can utilize imperative mechanisms—such as per-app processor
frequency throttling—to force unmodified or uncooperative apps to adjust their
energy consumption. Imperative mechanisms also help encourage developers to
modify their apps to take advantage of Jouler’s cooperative mechanisms.

After motivating our approach using results from a detailed energy consump-
tion measurement study, we present Jouler’s design and several potential energy
managers. We then evaluate an Android implementation of Jouler in two ways.
First, we demonstrate the effectiveness of Jouler’s imperative and cooperative
control mechanisms on a benchmark app. Second, we present the results of
deploying Jouler and three energy managers to 203 PhoneLab participants.
Our results show that Jouler is effective and that users appreciate more flexible
energy management.

2 Motivation

Jouler’s design is motivated by the results of two IRB-approved measure-
ment studies performed on the PhoneLab public smartphone platform test-
bed [13] located at the University at Buffalo. PhoneLab consists of several
hundred students, faculty, and staff who carry instrumented Android smart-
phones. PhoneLab participants are balanced between genders and distributed
across ages, and thus are representative of the broader smartphone user popula-
tion. Our study both (1) logged battery level changes for 105 users for 6 months



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 163

User
0

10

20

30

40

50

60

70

80

P
ow

er
(%

pe
r

ho
ur

)

(a)

0 500 1000 1500 2000

Power (mW)

Kik Messenger
Android Phone

Snapchat
Android Messaging

WhatsApp Messenger
GO SMS Pro

Instagram
Maps

Android Browser
Viber

Android Gallery
Android Mail

Android Clock
Chrome Browser

Tumblr
Facebook

Gmail
Google Voice

Google Search
Twitter

A
pp

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Power (mW)

Android Messaging (Low)
Android Messaging (OK)

Facebook (Low)
Facebook (OK)

Android Phone (Low)
Android Phone (OK)

Android Browser (Low)
Android Browser (OK)

WhatsApp Messenger (Low)
WhatsApp Messenger (OK)

Gmail (Low)
Gmail (OK)

Android Gallery (Low)
Android Gallery (OK)
Kik Messenger (Low)
Kik Messenger (OK)
Google Search (Low)
Google Search (OK)
Android Mail (Low)
Android Mail (OK)

A
pp

(c)

Fig. 1. Aspects of Energy Consumption Diversity. In all plots the white line
shows the median, shaded bars show upper and lower quartiles, whiskers are positioned
at 1.5 times the inner quartile range, and small dots show outliers. Plots show large
amounts of interuser (a) and interapp (b) variation, and that apps are not successfully
adapting to low battery conditions (c).

and (2) modified the Android platform to record more detailed per-app energy
consumption statistics for 107 users for 2 months. Because our results largely
match a previous measurement study [3], we summarize them only briefly:

– Interuser variation. Figure 1a shows per-user distributions of discharging
rates (in percent per hour) for all discharging sessions in the six-month trace.
A factor of four separates the fastest and slowest users, and a great deal of
intrauser variation is visible.

– Interapp variation. Figure 1b shows user distributions of per-app energy
consumption for the top 20 apps used by PhoneLab users. Because many
apps include background services, we compute power by dividing each app’s
total energy consumption—including both background and foreground—by
its foreground time. The data shows a large amount of interapp variation,
and, for many apps, a great deal of interuser variation.

– Apps don’t adapt. To investigate whether apps adapt to low battery levels,
we separate measured app energy consumption into low battery (< 10 %) and
OK battery states and compared these two distributions for the top 10 apps.



164 A. Maiti et al.

Fig. 2. The Jouler Energy Management Framework. Jouler provides energy
managers with the information needed to make energy management policy decisions
and the mechanisms needed to enforce them.

Because we consider it reasonable for apps to maintain interactive perfor-
mance even when the battery is low, we only examined background energy
consumption for this comparison. Figure 1c shows that in most cases the dis-
tributions are very similar, indicating that most apps are not adapting to low
battery levels.

In summary, analysis of our two datasets confirms the well-known energy
consumption differences between users and apps, and motivates the need for
more flexible smartphone energy management to respond to this diversity.

3 Design

We continue by describing Jouler’s design. Jouler consists of two parts: unprivi-
leged apps called energy managers that implement energy management policies,
and a privileged platform service providing an interface to the information and
mechanisms used by energy managers to accomplish their goals. We describe
each in turn.

3.1 Energy Managers

Enabling flexible energy management requires allowing policies to be easily cre-
ated and distributed by developers and easily installed, configured, and evalu-
ated by end users. To accomplish this, Jouler utilizes the same solution that has
worked so successfully for millions of smartphone apps: app marketplaces like
the Google Play Store. Jouler removes energy management policies from within
the platform where they cannot be altered and replaces them with category of



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 165

apps called energy managers implementing a variety of different energy man-
agement policies. As shown in Fig. 2, energy managers use Jouler’s interface to
access app usage and energy consumption statistics and control per-app and
overall device energy consumption.

Because Jouler energy managers are just normal smartphone apps, we have
similar expectations for their development and use. We expect a small group of
app developers to develop a variety of energy managers to be used by millions
of smartphone users. We expect both good, user-friendly, effective as well as
complicated, ineffective, malicious energy managers to co-exist. We also expect
users to try different energy managers before deciding on one or more making
few energy managers more popular than others.

Energy managers are only distinguished from other smartphone apps in two
ways. First, they must request and be granted permission to use Jouler’s inter-
face. During installation, energy managers request permission to access these
features using the platform’s standard permission dialog. Second, to prevent
multiple energy managers from interfering with each other, Jouler enforces that
only one energy manager can be active at any point in time—even if the user
has installed several.

To continue, we provide two vignettes presenting energy managers first from
the perspective of an energy manager developer and second from that of an end
user.

Energy Manager Developer Experience. Alice is an experienced app devel-
oper. From personal experience she noticed that while traveling a user is most
likely to decrease smartphone usage due to limited charging opportunities to
avoid running out of energy too quickly. So she developed a Jouler energy man-
ager that prompts an user to enter her travel plans when it detects her arriving
at an airport. It uses her predicted arrival time to determine an appropriate life-
time target, while also prioritizing energy consumption by travel-related apps
such as navigational aids. Once Alice is satisfied with her new energy manager,
she publishes it to the Google Play Store for other travelers to try.

End User Experience. Dave and Bob are coworkers who travel together fre-
quently. Dave is a heavy smartphone user and frequent charger and normally uses
an energy manager that adapts to his charging habits to provide high perfor-
mance. Bob, on the other hand, is a light user and forgetful charger and normally
uses an energy manager that meters out energy to meet his target lifetime and
aggressively reminds him to charge when his battery is low.

Both users, however, have been frustrated by their smartphones’ energy con-
sumption when traveling. Searching on the Google Play Store, Bob locates Alice’s
energy manager which has become popular with travelers. On their next trip, he
tries it and finds it effective enough to recommend to Dave, who begins to use it
regularly as well. While traveling they enable Alice’s energy manager, and when
they return home they again enable their normal energy managers.



166 A. Maiti et al.

3.2 Energy Manager Inputs

To enable a variety of effective energy management policies, Jouler provides
energy managers with as much information about app usage and energy con-
sumption as possible. To measure energy consumption, Jouler tracks total system
and per-app energy consumption, breakdowns of energy consumption between
device components (processor, network interfaces, screen, GPS), and breakdowns
of energy consumption between screen foreground, audio foreground, and back-
ground sessions. While some of this information can be obtained by Android
apps through Java introspection, this approach is brittle and not officially sup-
ported. Jouler’s interface standardizes access to detailed energy consumption
information.

To measure interaction, Jouler tracks the number of and length of each app
foreground session; rates of click, type, and swipe interactions; screen redraw and
audio sampling rates; and notification delivery and click times. This collection
of information is sufficient to support the variety of energy managers described
later, but Jouler may eventually provide more information if it proves useful to
promising new energy management approaches.

3.3 Cooperative Mechanisms

To enable effective energy management policies, Jouler provides energy managers
with two types of mechanisms: cooperative mechanisms that rely on collabora-
tion with apps, and imperative mechanisms that do not. Cooperative mecha-
nisms allow apps to guide the process of aligning their own energy consumption
with the energy manager’s and user’s goals. Jouler’s collaborative mechanisms
combine a simple set of signals with a library of useful energy management
primitives based on common app design patterns.

However, imperative mechanisms can always be used to control the energy
consumption of apps that either have not been modified to use Jouler or are
not cooperating effectively. As a result, no changes to existing apps are required
to use Jouler. In addition, because apps have no control over the imperative
mechanisms applied to them by the energy manager, imperative mechanisms also
serve to incentivize developers to modify their apps to use Jouler’s cooperative
mechanisms.

Cooperative Signals. Jouler’s cooperative mechanisms are driven by three
simple signals that energy managers can send to apps:

– Reduce indicates the app must reduce its energy consumption. If it does not,
the energy manager may apply an imperative mechanism. This signal is also
sent whenever an imperative mechanism is applied.

– OK indicates that the app’s energy consumption is acceptable to the energy
manager.

– Increase indicates that the app can increase its energy consumption. This
signal can be sent when an imperative mechanism is removed or the device
begins charging.



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 167

So a cooperative app should immediately reduce its energy consumption on
receiving single or repeated Reduce signal. Unmodified apps that have chosen
not to cooperate with the energy manager will ignore these signals, and it is safe
for any app to do so—except for the fact that cooperative mechanism will be
followed by imperative ones if the app’s energy consumption remains at odds
with the energy manager’s policy. Once we gain more experience with Jouler,
we may consider delivering more information along with cooperative signals—
such as the apps’ current energy consumption rate and the energy manager’s
target—if cooperative apps find additional information useful.

Cooperative apps may connect cooperative signals to app-specific choices
affecting energy consumption. For example, an email client may reduce the num-
ber of folders that are periodically synchronized and a browser may request
lower-quality content. Because Jouler’s cooperative signals directly reflect a
user’s energy manager’s policies, they are much more powerful than ad-hoc
triggers—such as low battery level—at enabling app energy awareness. A user
may want an infrequently-used app to always limit its energy consumption and
a frequently-used app to never limit its energy consumption, regardless of the
current battery level.

Cooperative Library. Apps are free to respond to cooperative signals directly,
but there are also a set of energy-aware design patterns common across many
apps. To further encourage apps to collaborate with the energy manager, Jouler
includes a library of cooperative mechanisms driven by its cooperative signals.

– Energy-adaptive timers. Background operations performed by smartphone
apps are often driven by timers. For example, an email client may periodically
contact a server to check for new mail. Unfortunately, the energy consump-
tion resulting from a static rate may not be appropriate for all users or in all
scenarios.

Jouler provides energy-adaptive timers that adjust their firing rate in
response to cooperative signals. Apps configure a maximum and minimum
firing rate and step size when initializing the energy-adaptive timer. When
they receive the Reduce signal, energy-adaptive timers reduce their firing rate
by one step until they reach the minimum; when they receive the Increase
signal, they increase their firing rate by one step until they reach the maxi-
mum.

Using adaptive timers is easy. Developers can simply replace calls to exist-
ing timer interfaces with the new adaptive timers provided by Jouler.

– Energy-delayed tasks. Some tasks performed by smartphone apps are delay
tolerant and can be deferred until conditions are favorable. For example, a
music client may only download requested music to add to a local cache when
an energy-efficient Wifi network is available and not over 4G. Unfortunately,
it is difficult for apps to determine under what conditions tasks should be
delayed.



168 A. Maiti et al.

Jouler’s provides energy-delayed tasks that use cooperative signals to deter-
mine when to run. Apps register an energy-delayed task with a maximum
delay. The task will not run until the app receives the OK or Increase signal
or the maximum delay is reached.

Using energy-delayed tasks is also easy. Assuming that developers already
have their task in a separate module so that it can be deferred, they need only
to wrap the task in the new energy-delayed task object provided by Jouler.

We do not claim either of these mechanisms to be novel, and Jouler’s
cooperative library borrows freely from previous systems, such as Eon, which
also adjusted timer rates to control sensor network node energy consump-
tion [19]. However, to our knowledge Jouler is the first system to integrate these
approaches into a smartphone energy management framework. The coopera-
tive library also allows apps to factor out complicated and error-prone decision
making concerning when to conserve energy, and instead focus on responding
effectively to signals issued by the energy manager.

3.4 Imperative Mechanisms

Jouler’s cooperative features encourage apps to manage their own energy con-
sumption. However, there are many cases where cooperation will fail. First,
as Jouler is introduced, most apps will not have been modified to cooperate
with the energy manager. Second, some apps may not want to cooperate, either
to selfishly gain performance or to maliciously waste energy. Finally, an app’s
attempts to cooperate may be insufficient to meet the energy manager’s and
user’s goals. These limitations require that Jouler provide imperative mecha-
nisms that force—rather than ask—apps to reduce their energy consumption.
Imperative mechanisms both ensure that energy managers can control all apps
while also encouraging apps to cooperate with the energy manager to manage
their energy consumption more intelligently.

Jouler ties all imperative mechanisms to cooperative signals. Any time an
energy manager applies an imperative mechanism to an app it is also sent the
Reduce signal. When the imperative mechanism is removed, the app is sent the
Increase signal—but only after a delay to avoid feedback loops. Coupling coop-
erative signals to imperative mechanisms allows cooperative apps to continue to
attempt to adjust their energy consumption while imperative mechanisms are
applied.

To enable effective energy management policies, Jouler provides energy man-
agers access to as many imperative mechanisms as possible to limit overall and
per-app energy consumption. Most of these mechanisms other than screen bright-
ness cannot be accessed by unprivileged apps in general.

Jouler currently provides energy managers with the following imperative
mechanisms reflecting energy-saving features available on current smartphones:

– CPU tuning. Energy managers can change CPU governors and adjust the
CPU frequency of dynamic voltage and frequency scaled (DVFS) processors



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 169

by selecting either performance-boosting higher frequency or energy-efficient
lower frequency.

– App priorities. Energy managers can set app scheduling priorities which
affect the relative performance of multiple running apps. For example, an
unthrottled app may achieve equivalent performance at a lower CPU frequency
if its priority is increased relative to a throttled app.

– Bandwidth throttling. Energy managers can control per-app and global
usage of available network interfaces.

– Brightness adjustment. Energy managers can control per-app and global
screen brightness.

To allow energy managers to apply per-app policies, Jouler delivers a signal
to the energy manager each time any app comes to the foreground. Energy
managers can use this signal to adjust global settings such as the CPU frequency
on a per-app basis while also enforcing background settings. Energy managers
may also want to adjust per-app settings such as priorities to distinguish between
foreground and background operation.

In some cases imperative mechanisms may have varied effects on apps. For
example, slowing the CPU frequency may cause certain apps to consume more
energy due to other components being active for a longer period of time. These
complicated app interactions argue for the increased policy flexibility provided by
Jouler, particularly given that default platform policies frequently ignore these
complexities.

Intentionally Omitted Imperative Mechanisms. Because Jouler’s goal is
to enable flexible and effective energy management of apps that users want to
continue using, it does not allow energy managers to uninstall apps or kill app
services, which can cause apps to misbehave. Jouler energy managers are free to
suggest these actions to users if they could be beneficial.

3.5 Privacy Concerns

To manage energy effectively, energy managers have access to information about
the apps running on their smartphone that some users may prefer not to reveal.
Currently, Jouler uses a single permission mechanism to inform users of this
risk during installation, but we are exploring more fine-grained permissions that
could allow users to anonymize the app information provided to energy man-
agers. This would affect policies that rely on identifying apps, but might alleviate
some privacy concerns.

4 Example Energy Managers

Jouler is designed to allow flexible and innovative energy management policies
to be implemented as energy managers. In this section, we describe few such
policies.



170 A. Maiti et al.

Lifetime Targeting. Many previous approaches to energy management focus
on meeting a target lifetime. By monitoring energy consumption and the remain-
ing battery level, the energy manager can determine whether the user’s lifetime
target will be met. If their smartphone may run out of energy too soon, the
energy manager can decide to use Jouler mechanisms in a way that reduces
energy consumption with minimal performance degradation. On the other hand,
if their smartphone may run for hours more than the expected target lifetime,
due to less usage or short term unexpected charging sessions in between, then
the manager can use Jouler mechanisms to boost performance for better user
experience.

While lifetime targeting is conceptually simple, dynamically deciding the
trade off between conserving energy and boosting performance is difficult. It is
also hard to predict hours before if the target can be met or not due to possible
fluctuations in app usage. Although we are not sure what lifetime targeting
approach will prove most effective, by enabling the distribution and testing of
new approaches Jouler accelerates the process of developing effective solutions.

App Based Throttling. Smartphone users generally install a large number of
apps over the time they use their device, some of which they use regularly and
are clear favorites—such as a default email client, browser, messaging app and
social networking client. There are also those apps which a user has installed but
has hardly used or would not care if there is a slight performance degradation to
reduce energy consumption. An energy manager can allocate a major chunk of
energy to the regular apps and monitor the energy consumed by most favorite
apps and least favorite apps. If the non-favorite apps consume more energy than
desired, the energy manager can start throttling them to allow the user to access
the regular apps for longer period. By observing users’ app usage over a period
of time, the energy manager may be able to suggest what apps should be on
their list of favorites.

Reward Efficient Content Delivery. To determine appropriate per-user set-
tings the energy manager needs better understanding of app energy consumption.
A common challenge faced by many energy management approaches is distin-
guishing between two apps: one that uses a great deal of energy because it is
poorly written, and a second that inherently needs a great deal of energy to func-
tion properly. Without more information about what the apps are doing, these
two very different apps are indistinguishable. Moreover app background energy
consumption varies widely between apps, and between the same app used by
different users. Whether legitimate or not, the variation in background energy
consumption weakens the connection between how much the smartphone is used
and how much energy it consumes.

For this reason, Jouler provides energy managers with app usage and inter-
action information. An energy manager could combine energy consumption with
the amount of data delivered through the screen and audio port to determine
how efficiently the app is delivering content to the user. In the example above,



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 171

this would allow the energy manager to distinguish between a streaming video
client (inherently-high consumption) and a poorly-written chat client (buggy
consumption). This will also help the manager to determine whether the energy
consumed for background work is required or is a waste. We anticipate that the
Jouler framework will lead to more intelligent energy management policies that
observe a variety of aspects of app and user behavior.

5 Implementation

We have implemented the design, we just discussed, by modifying the Android
Open Source Platform (AOSP) version 4.4.4 named KitKat. The detailed infor-
mation about app usage and energy consumption are collected by a lightweight
privileged service JoulerPolicyService running in the platform from boot
time. This information includes overall, per-app, per-component, foreground and
background breakdown of usage and energy consumption. These inputs can be
accessed by the energy managers through the custom apis JoulerStatistics
and JoulerPolicy. The later api also provides an interface for using all the
imperative mechanisms discussed in Jouler design. For example, AOSP in LG
Nexus 5 uses the online governor as a default CPU governor which jumps
between low and high CPU frequencies based on predetermined workload thresh-
olds. Using Jouler, an energy manager, if it chooses, can select the userspace
governor and set the highest frequency to boost performance of a heavyweight
app which is also a favorite of the user. But in order to access Jouler’s framework,
the energy manager apps need to use the new CAN MANAGE ENERGY android per-
mission. For stability reasons, Jouler allows only one energy manager to run at
any given time even if multiple energy managers are installed in a single device.

The cooperative signals and mechanisms are also implemented in a manner
that is intuitive and easy-to-use for existing community of app developers. The
easiest way to send signals in an Android environment is to broadcast intents.
So, we defined a new intent ACTION ENERGY ALERT having three separate lists
of package names of installed apps, each list corresponds to apps who need to
reduce energy consumption, or apps who are doing okay or apps who can boost
their performance as they are below the threshold determined by a particular
energy manager. Cooperating apps only have to register to listen to this broad-
cast intent and decide whether they should reduce their energy consumption
or not. For other cooperative mechanisms like adaptive timers, we have stayed
true to the current AlarmManager implementation in Android. We added a new
setAdaptive method to the existing android.app.AlarmManager that is simi-
lar to existing methods like setInexactRepeating but accepts an extra input to
determine the longest deadline till which the work can be delayed if needed. On
the other hand the wrapper for delayed task is found in the Jouler api we have
mentioned earlier.

Overall our experience of implementing Android Jouler suggests that it
should be straightforward to implement Jouler for other smartphone platforms,
allowing cross-platform distribution of effective energy management policies.



172 A. Maiti et al.

Jouler’s cooperative library will need to be reimplemented, but the service mainly
exposes statistics and control mechanisms provided by operating systems for
decades. However, without access to sources for iOS or Windows Mobile we
can only speculate about the development burden on these other smartphone
platforms.

5.1 Energy Manager Implementation

We implemented and distributed three simple and straightforward energy man-
agers:

– The Favorites Manager allows users to select a list of favorite apps. Peri-
odically, it compares the total energy consumption of the favorite apps and
that of the other apps. If the later is higher, then the energy manager restricts
network usage by the non-favorite apps when they run in the background and
reduces brightness to reduce screen energy consumption when they run in the
foreground.

– The Blacklist Manager is identical to the Favorites manager except that
it asks users to choose the apps they like the least. Accordingly, it tries to
reduce energy consumption by the blacklisted apps when they run in the
screen foreground or background.

– The Lifetime Manager attempts to achieve at least the target lifetime hours
configured by the user. With every alternate battery level drop, the manager
compares the current battery discharge rate with the expected discharge rate.
Accordingly, the manager gradually throttles the CPU, app priorities, network
usage and screen brightness. If it is still unable to reach the target, it notifies
the user how many hours left before the device runs out of energy. Currently
the energy manager does nothing if the achieved lifetime is much more than
what the user has asked for.

6 Evaluation

Our evaluation of the Android prototype demonstrates that Jouler provides both
effective and flexible energy management policies. We evaluate Jouler in two
steps. First we use energy benchmarks to show that Jouler’s mechanisms are
effective. Second, we perform a ten day deployment of Jouler’s platform modi-
fications and of three simple but different energy managers on the PhoneLab
testbed.

6.1 Energy Benchmark

First, we wanted to test if Jouler’s privileged system service, running continu-
ously in the platform to collect detailed app usage and energy consumption infor-
mation, causes any overhead. We fully charged two LG Nexus 5 smartphones,
flashed a clean Android build on one of them and flashed an image with Jouler



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 173

0 50 100 150 200

C
ur

re
nt

(m
A
)

CPU Hog Application

0 50 100 150 200

Time(s)

C
ur

re
nt

(m
A
)

Network Hog Application

(a) Effect of CPU Throttling.

0 100 200 300 400 500

C
ur

re
nt

(m
A
)

Adaptive Timer

0 20 40 60 80 100 120 140
Time (s)

C
ur

re
nt

(m
A
)

Energy Delayed Task

(b) Controlling Cooperative Apps.

0 5 10 15 20 25 30 35 40

Time (minutes)

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

D
at
a
E
ne

rg
y

Default Policy

Bandwidth Throttle Policy

(c) Effect of Bandwidth Throttling.
5 10 15 20 25 30

Time (minutes)

C
P
U
E
ne

rg
y
(m

A
-m

s)

Changing Priorities

(d) Effect of Priority Adjustment.

Fig. 3. Effects of few Jouler Mechanisms on Energy

modifications on the other. We kept these phones unplugged with display screen
off for 8 hours. The same battery level drop for both phones assured us that there
is no perceptible overhead for Jouler. Next, we wrote a simple Android energy
benchmark which is configurable to hog the processor and network either con-
tinuously in the screen foreground or periodically in the background. We tested
the imperative mechanisms using this benchmark and some of those results are
presented in this section. To test the cooperative mechanisms, we wrote one
client app which uses both adaptive timer and energy delayed task wrappers
to cooperate with our simple energy manager which can send Reduce, OK and
Increase signals to the client app.

6.2 Jouler Mechanisms

To verify that Jouler’s mechanisms were having the intended effect on our bench-
mark, we measured the current output of a Samsung Galaxy Nexus smartphone
using a Monsoon Power Monitor [2]. Figure 3a shows the effect of reducing the
processor frequency in steps when the benchmark is hogging both the CPU and
network. As expected, CPU throttling reduces the power consumption of both
hogs.

Figure 3d shows the effect of adjusting the Linux priorities of four instances
of our energy benchmark running as CPU hogs and competing together for the
processor. As the priorities of two hogs are raised—the yellow hog to the highest
priority and the red hog to an intermediate level—their share increases, and the
shares of the two other hogs are decreased as their priorities are lowered.



174 A. Maiti et al.

It is important that Jouler’s imperative mechanisms do not force existing,
non-cooperative apps to misbehave. In a Nexus 5 with pre-installed apps, we
ran a whitelist energy manager that throttles bandwidth of all non-favorite apps
running in the screen background. Figure 3c shows that bandwidth throttling
saves power consumption by limiting Gmail background energy consumption.
During the experiment, we verified that Gmail continued to behave normally
and did not crash, confirming our expectation that well-written apps can handle
resource limitations.

Our evaluation of Jouler’s cooperative mechanisms is shown in Fig. 3b. The
power monitor output confirms that Jouler’s cooperative mechanisms work as
expected, slowing the energy-aware timer and stopping energy-delayed tasks
when receiving the Reduce signal and restarting energy-delayed tasks when
receiving the Increase signal.

6.3 Deployment

Our final step of evaluation consists of distributing platform modifications for
implementing Jouler and an integrated app which provides a selection of energy
managers to the participants of the PhoneLab testbed as an over-the-air
update. The integrated app offers 4 choices to users - Lifetime Energy Manager,
Favorites Energy Manager, Blacklist Energy Manager and No Energy Manager.
The last choice allows users to continue using or go back to the default Android
energy management. These energy managers are chosen because they are simple
to use and understand. Users can also switch between energy managers multiple
times. We did not advertise or try to influence the testbed participants to use
the app or configure it in a particular way. This is done to evaluate if the energy
managers are intuitive and easy to understand and use. 203 participants received
the update and 173 participants access the app at least once. Table 1 shows the
breakdown of users who used one energy manager for the longest period during
the experiment lifetime. After 10 days a short survey was distributed to collect
their overall impressions of the Jouler system. PhoneLab’s built-in platform
instrumentation and logging capabilities were used to collect data generated by
the platform and energy managers. The entire experiment was reviewed and
approved by the University at Buffalo’s Institutional Review Board (IRB).

Table 1. Energy Managers preferred by Users.

Preferred Energy Manager Users
Lifetime Energy Manager 44

Favorites Energy Manager 31

Blacklist Energy Manager 10

Default Android Energy Manager 88



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 175

Longer Same Shorter

Users

10

20

30

40

50
L
if
et
im

e
H
ou

rs
Requested Lifetime

Achieved Lifetime

Fig. 4. Lifetime Energy Manager Comparison. The red line shows the median
while the upper and the lower edges of each box shows upper and lower quartiles of the
expected lifetime hours distribution for each user. The different colored boxes labeled
as longer, same and shorter signify users requesting lifetime hours greater than, equal
to or slightly less than and much lesser than the median respectively. This analysis
aims to compare the expected, requested and achieved lifetimes for each
user (Color figure online).

Lifetime Energy Manager. To understand the lifetime expectations of dif-
ferent users, first we need to know for how long can a device stay off the plug
on any given day. We have recorded battery related details for all PhoneLab
participants since September 2014. Using this data, we computed the average
battery drain per hour for each user and the expected lifetime hours based on
that rate. In Fig. 4 for all the participants who selected the lifetime manager we
show the distribution of expected lifetime hours. Users did not always request
lifetime hours close to what is expected of their device. So we group the users
based on whether the requested lifetime hours is shorter, longer or equal to
the lifetime hours they usually experience. It needs to be pointed out that the
energy manager has a constraint that does not allow users to select a lifetime
goal beyond 24 hours. The energy manager failed badly for most of the users
in the first group, who requested a comparatively longer lifetime. Thus, our
Lifetime energy manager is not a good fit for users running heavyweight apps
frequently or having heavy device usage because this manager cannot decrease
the discharge rate by only following global policies. Rather Blacklist or Favorites
energy manager can be a better choice in these cases. The energy manager fared
slightly better for the group of users who requested similar lifetime hours. In the
last group, a large number of users requested a shorter lifetime either due to the
constraint imposed by the energy manager or because they do not care about
very long lifetime hours. In these cases, a good energy management policy will
be one which can boost performance instead of being too conservative about
saving energy while reaching the lifetime target. Though our energy manager
did not fare well across all categories of users, it provided us with interesting
insights to improve lifetime management policies in future.



176 A. Maiti et al.

Table 2. Configuring Blacklist and Favorites Energy Managers.

Rank App Name Occurrences

1 Google Play Newsstand 10
1 Google Play Books 10
2 Google Play Games 9
2 Android Movie Studio 9
3 Google Play Music 8
3 Google Wallet 8
4 Superuser 7
5 Earth 6
5 News & Weather 6
5 Google 6

(a) Most Common Blacklisted Apps.

Rank App Name Occurrences

1 Chrome 17
2 Facebook 12
2 Hangouts 12
2 Dialer 12
2 Camera 12
3 Youtube 11
3 Maps 11
4 Gallery 10
4 Clock 10
5 Gmail 9

(b) Most Common Favorite Apps.

Blacklist and Favorites Energy Manager. The other two energy managers
we distributed are app based. At the beginning, users, who selected one of these
managers, are prompted to choose one or more apps to put in the blacklist or
whitelist for Blacklist and Favorites energy managers respectively. In Table 2
we found pre-installed google apps to be most commonly blacklisted. On the
other hand, users were more likely to select browsers and social media apps as
favorites.

Survey. Continuing with the evaluation, we distributed a short survey among
the participants. Our goal is to determine if users are interested in using energy
manager apps in the future. We asked users if they found understanding and
configuring our energy managers easy and if they appreciated having more con-
trol over how energy is managed in their devices. We asked users to list which
energy manager they preferred the most and to state problems they faced while
using any of the energy managers. We also asked for any suggestion they might
have to improve our energy managers. 88 participants responded, 80 % of whom
appreciated having this extra control over energy management. But 25 % of
the participants reported facing problems while the energy manager was run-
ning. The most common complaint was about the harsh decrease in the display
screen’s brightness by the energy managers which hampered user-experience.
Some users did not find the energy managers to be perceptibly effective. Many
users also pointed out lack of instructions from our end to be a key factor for not
knowing how to use the app, which might be the reason why a majority of the
participants did not use any of the three energy managers. Some also suggested
instead of their having to select their favorite apps manually, it would be more
helpful if the energy manager could internally decide which are the preferred
apps from usage related information.



Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 177

7 Related Work

We divide related work into projects related to Jouler’s inputs, its mechanisms,
its policies, before briefly discussing other Android apps that attempt to help
users manage their smartphone’s energy consumption. While some portions of
Jouler draw on similar work in the sensor network and mobile systems areas,
to our knowledge no existing system provides the capabilities and flexibility of
Jouler.

Jouler Inputs. Effective energy management relies on accurate energy mea-
surement and attribution. Previous tools such as PowerTutor [24] have demon-
strated model-driven approaches to determining per-component and per-app
energy usage, with this approach being largely replicated by Android’s inter-
nal Fuel Gauge component. Because many modeling approaches struggle with
limited visibility of aggregate energy consumption, VEdge [20] uses only mea-
surement of the battery voltage to infer current draw and therefore energy con-
sumption. Other recent projects have provided improved approaches incorporat-
ing temporal variation in exogenous factors such as network signal strength into
models to make them more accurate [5]. Jouler’s energy managers will benefit
from future improvements in this area.

Jouler Mechanisms. Multiple systems have attempted to establish new oper-
ating system energy management mechanisms or encourage more adaptive app
energy consumption. ECOSystem proposed a system where each process was
given an energy budget to spend and would use this “currentcy” to schedule
tasks [23]. Both Pixie [11] and Eon [19] provided the ability for sensor net-
work programs to adapt to changing energy availability, but did so by relying
on special languages or program structure that would be infeasible to apply to
smartphones. Odyssey [7] focuses largely on enabling per-app resource adapta-
tion, a capability complementary to Jouler. Recently the Cinder [18] OS based
on HiStar [22] proposed new mechanisms enabling explicit resource allocation
and accounting which would help Jouler control uncooperative apps. The bat-
tery virtualization proposed by PowerVisor [25] would also be useful as a Jouler
mechanism but does not by itself address the policy problem.

Jouler Energy Managers. Recent work on smartphone energy management
has used measurements from large user communities to categorizing apps based
on energy consumption. Carat has been installed by over 500,000 devices, and
attempts to identify two energy anomalies: bugs and hogs [14]. Carat is a notable
attempt to address smartphone energy management but suffers from several
drawbacks that Jouler could help address. First, Carat’s app generalizations
fail to consider the differences in smartphone users our data has demonstrated,
which render an app that one user considers acceptable a hog to another user.
Second, Carat has the same heavy-handed mechanisms available to it as all other



178 A. Maiti et al.

current energy management approaches: remove the app or stop using it. Jouler’s
mechanisms would provide Carat with more tools to enforce its classification.
PowerLet [8] is another system that suffers a similar weakness in that it relies on
users to take energy saving actions, rather than creating an interface as Jouler
does which allow these actions to be performed programmatically.

Existing Energy Management Apps. The Google Play Store provides
Android users with multiple options for controlling their energy consumption
but many of them require root privileges. JuiceDefender2 controls the under-
lying smartphone hardware such as enabling and disabling wireless interfaces
to attempt to keep energy consumption under control. Easy Battery Saver3

offers users the choice of multiple energy modes and a variety of battery lifetime
estimation tools. Unfortunately, both these apps have to apply policies across
the entire phone and cannot control individual apps. The mechanisms currently
available to these tools are too blunt to effectively control apps with varying
usage patterns. But we expect that such approaches may be more effective with
the additional app information and fine-grained mechanisms Jouler provides.
Tools such as Mr. Nice Guy4 which allows per-app priority adjustments, force
users to manually fiddle with priorities and act as energy managers to implement
specific policy goals.

8 Future Work and Conclusions

To conclude we have presented the Jouler policy framework which enables flexible
and effective smartphone energy management benefiting both developers and
end users. With the Jouler service running on the PhoneLab testbed, we are
planning several next steps. Based on the lessons learned from our evaluations, we
plan to improve our energy managers by having policies that do not hinder user
experience. For example, brightness level needs to be changed more intuitively.
We also plan to add new mechanisms to the existing framework that allow the
energy manager to effectively enhance device performance for users who do not
mind shorter lifetime hours. Lastly, we are working to modify several apps with
sources available as part of the AOSP to allow them to use Jouler’s cooperative
library. We expect that the continued evaluation on the PhoneLab testbed will
lead to new results and hope to eventually prepare a patch allowing Jouler to
be considered for inclusion in the AOSP.

References

1. Battery Life: Is That All There Is? http://www.jdpower.com/resource/
jd-power-insights-i-battery-life-all-there

2. Monsoon power monitor. http://www.msoon.com/LabEquipment/PowerMonitor/

2 http://www.juicedefender.com.
3 http://goo.gl/GfcI2q.
4 http://goo.gl/8utSxe.

http://www.jdpower.com/resource/jd-power-insights-i-battery-life-all-there
http://www.jdpower.com/resource/jd-power-insights-i-battery-life-all-there
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.juicedefender.com
http://goo.gl/GfcI2q
http://goo.gl/8utSxe


Jouler: A Policy Framework Enabling Effective and Flexible Smartphone 179

3. Banerjee, N., Rahmati, A., Corner, M.D., Rollins, S., Zhong, L.: Users and batter-
ies: interactions and adaptive energy management in mobile systems. In: Krumm,
J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol.
4717, pp. 217–234. Springer, Heidelberg (2007)

4. Brouwers, N., Zuniga, M., and Langendoen, K. Neat: a novel energy analysis toolkit
for free-roaming smartphones. In: Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems, pp. 16–30. ACM (2014)

5. Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y. C., Rice, A.: Characterizing and
modeling the impact of wireless signal strength on smartphone battery drain. In:
Proceedings of the ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems SIGMETRICS 2013, New York, pp. 29–40.
ACM (2013)

6. Dong, M., Choi, Y.-S.K., Zhong, L.: Power modeling of graphical user interfaces on
oled displays. In: Proceedings of the 46th Annual Design Automation Conference,
DAC 2009, New York, pp. 652–657. ACM (2009)

7. Flinn, J., Satyanarayanan, M.: Energy-aware adaptation for mobile applications.
SIGOPS Oper. Syst. Rev. 33(5), 48–63 (1999)

8. Jung, W., Chon, Y., Kim, D., Cha, H.: Powerlet: an active battery interface for
smartphones. In: Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp 2014, New York, pp. 45–56. ACM
(2014)

9. Lin, F.X., Wang, Z., Zhong, L.: K2: a mobile operating system for heterogeneous
coherence domains. In: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2014, New York, pp. 285–300. ACM (2014)

10. Liu, J., Priyantha, B., Hart, T., Ramos, H.S., Loureiro, A.A., Wang, Q.: Energy
efficient gps sensing with cloud offloading. In: Proceedings of the 10th ACM Con-
ference on Embedded Network Sensor Systems, pp. 85–98. ACM (2012)

11. Lorincz, K., Chen, B.R., Waterman, J., Werner-Allen, G., Welsh, M.: Resource
aware programming in the pixie OS. In: ACM Conference on Embedded Networked
Sensor Systems, SenSys 2008, November 2008

12. Mittal, R., Kansal, A., Chandra, R.: Empowering developers to estimate app energy
consumption. In: Proceedings of the 18th Annual International Conference on
Mobile Computing and Networking, Mobicom 2012, New York, pp. 317–328. ACM
(2012)

13. Nandugudi, A., Maiti, A., Ki, T., Bulut, F., Demirbas, M., Kosar, T., Qiao, C., Ko,
S.Y., Challen, G.: Phonelab: a large programmable smartphone testbed. In: Pro-
ceedings of 1st International Workshop on Sensing and Big Data Mining, SenseM-
ine 2013, November 2013

14. Oliner, A.J., Iyer, A.P., Stoica, I., Lagerspetz, E., Tarkoma, S.: Carat: collaborative
energy diagnosis for mobile devices. In: Petrioli, C., Cox, L.P., Whitehouse, K.
(eds.) SenSys (2013), p. 10. ACM (2013)

15. Punzalan, R.: Smartphone Battery Life a Critical Factor for Customer Satisfaction.
http://www.brighthand.com/default.asp?newsID=18721

16. Qian, F., Sen, S., Spatscheck, O.: Characterizing resource usage for mobile web
browsing. In: Proceedings of the 12th Annual International Conference on Mobile
systems, Applications, and Services, pp. 218–231. ACM (2014)

17. Ravindranath, L., Agarwal, S., Padhye, J., Riederer, C.: Procrastinator: pacing
mobile apps usage of the network. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 232–244. ACM
(2014)

http://www.brighthand.com/default.asp?newsID=18721


180 A. Maiti et al.

18. Rumble, S.M., Stutsman, R., Levis, P., Mazières, D., Zeldovich, N.: Apprehending
joule thieves with cinder. In: Proceedings of the 1st ACM Workshop on Networking,
Systems, and Applications for Mobile Handhelds, MobiHeld 2009, New York, pp.
49–54. ACM (2009)

19. Sorber, J., Kostadinov, A., Brennan, M., Garber, M., Corner, M., Berger, E.D.:
Eon: a language and runtime system for perpetual systems. In: ACM Conference
on Embedded Networked Sensor Systems, SenSys 2007 (2007)

20. Xu, F., Liu, Y., Li, Q., Zhang, Y.: V-edge: fast self-constructive power modeling
of smartphones based on battery voltage dynamics. In: Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation, NSDI
2013, Berkeley, pp. 43–56. USENIX Association (2013)

21. Xu, F., Liu, Y., Moscibroda, T., Chandra, R., Jin, L., Zhang, Y., Li, Q.: Optimizing
background email sync on smartphones. In: Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, pp. 55–68. ACM
(2013)

22. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in histar. In: Proceedings of the 7th Symposium on Operating systems
Design and Implementation (2006), pp. 263–278. USENIX Association (2006)

23. Zeng, H., Fan, X., Ellis, C.S., Lebeck, A., Vahdat, A.: ECOSystem: managing
energy as a first class operating system resource. In: Proceedings of the Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
San Jose, CA, October 2002

24. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.:
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In: Proceedings of the 8th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
CODES/ISSS 2010, New York, pp. 105–114. ACM (2010)

25. Zhang, N., Ramanathan, P., Kim, K.-H., Banerjee, S.: Powervisor: a battery vir-
tualization scheme for smartphones. In: Proceedings of the Third ACM Workshop
on Mobile Cloud Computing and Services, MCS 2012, New York, pp. 37–44. ACM
(2012)



CSSWare: A Middleware for Scalable Mobile
Crowd-Sourced Services

Ahmed Abdel Moamen and Nadeem Jamali(B)

Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
ama883@mail.usask.ca, jamali@cs.usask.ca

Abstract. The growing ubiquity of a variety of personal connected com-
putational devices – each with a number of sensors – has created the
opportunity for a wide range of crowd-sourced services. A busy pro-
fessional could find a restaurant to go to for a quick lunch based on
information available from smartphones of other people already there.
Sensors on smartphones could detect whether their owners are having
lunch, waiting to be seated, or even heading there.

Although the programming required for offering a new service of this
sort can be significant if done from scratch, we identify core communi-
cation mechanisms underlying such services, which can be implemented
as part of a middleware. Service designers can then launch novel services
over this middleware by plugging in small pieces of service-specific code.

This paper describes the multi-origin communication mechanism
which we believe to underlie many crowd-sourced services. It presents
our design and prototype Actor-based implementation of middleware for
crowd-sourced services, CSSWare. We present the code for a realistic
crowd-sourced service to illustrate the ease with which new services can
be specified and launched. Finally, we present our experimental results
demonstrating scalability, performance and data-contributor side energy
efficiency of the approach.

Keywords: Crowd-sourced · Middleware · Actors · Programmability ·
Power

1 Introduction

With the growing ubiquity of personal computational devices such as smart-
phones and wearable devices, has also come the ubiquity of sensors on these
devices, as well as the potential for triggering actions virtually anywhere. This
opens up an opportunity to offer a variety of services which rely on the state of
the context in which devices are located, such as a person or a group of people
carrying the devices, their geographical location, etc. We broadly refer to these
as crowd-sourced services.

Consider a restaurant recommendation service which samples data collected
about experiences of clients at a number of restaurants in a neighborhood and
ranks them according to the service experience of these clients. The source of
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 181–199, 2015.
DOI: 10.1007/978-3-319-29003-4 11



182 A.A. Moamen and N. Jamali

the data could be sensor feeds on clients’ smartphones, used to guess whether
they are waiting, seated, enjoying their meals, paying or leaving. There could
be a similar service for recommending hospital emergency services to people.
Social media applications (Twitter, etc.) also appear to follow a similar pattern,
where crowds contribute to collective messages by contributing free-form short
messages.

We are interested in an opportunity created by the similarity in the pat-
terns of communication required for many of these services, which we refer to as
multi-origin communication. This is the type of communication where a group
of senders contribute to a group message, without any of them necessarily tak-
ing the lead. Contrast this with a single-origin (multi-sender) communication [7],
which is initiated by a single party which solicits interest from other parties to
join together in sending a particular message. An example of the latter would be
a workplace petition drafted by an individual and presented to others to sign.
In multi-origin (implicitly also multi-sender) communication, the expectation is
that there is no single party that takes the lead. In other words, multiple parties
may autonomously launch messages which could then be aggregated in order to
create a group message.

It turns out that unlike single-origin multi-sender messages, multi-origin mes-
sages require a setup in advance. Consider a public square where a number of
citizens spontaneously begin to gather to party or protest. In this context, the
physical space of the square serves as part of a setup which allows mutual obser-
vation, an opportunity to join in or leave, to endorse, reject or refine the collective
message or experience over time. The closest electronic equivalent of such a phys-
ical space would be social media services such as Twitter, which allow people
to observe others’ tweets in an aggregate form (which is quite natural in phys-
ical space, but requires filtering and counting mechanisms in electronic space),
endorse them by adopting hashtags, improve upon the message, and so on. In
general, for a crowd (or mass) - conceived communication to happen, there is a
need for a mechanism to be in place to coordinate the generation of the group
message by soliciting individual messages, receiving them, and then aggregating
them into a group message. The solicitation lays out the rules to be followed
for selection of the potential senders, receiving their messages, and aggregating
them. The communication could be one-time, periodic, or continual. There may
or may not be a time-out for responding to the solicitation. All these aspects
would be laid out in the original solicitation.

Multi-origin communication [1] serves as the core mechanism underlying
many such crowd-sourced services. In other words, key coordination mechanisms
can be provided in a platform over which a class of crowd-sourced services could
be implemented relatively easily. Here, we present our efforts in realizing that
potential by implementing a middleware for crowd-sourced services, CSSWare.
Using CSSWare, all that a service designer needs to do to launch a new service is
to identify a constituency of potential contributors, and to provide a few lines of
service-specific code for specifying the nature of contributions and for aggregat-
ing them when they arrive. Additionally, we try to (opportunistically) optimize



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 183

the data contributor side energy consumption of crowd-sourced services for the
situation where a number of services are being contributed to simultaneously. An
optimizing sampling scheduler schedules the sampling of sensors based on the
sensing requirements received from services running concurrently. The scheduler
opportunistically optimizes the effective sampling rate of each sensor, exploiting
opportunities for different services to share sensor samples when possible.

The rest of paper is organized as follows: Sect. 2 presents the related work.
Section 3 describes our general approach to supporting crowd-sourced services
using multi-origin communication. Sections 4 and 5 present our design and pro-
totype implementation respectively. Section 6 evaluates the work by illustrating
the ease with which new services can be implemented over our platform. It also
presents our experimental results showing scalability, performance and energy
efficiency of the approach. Finally, Sect. 7 concludes the paper.

2 Related Work

The term crowd-sourced can refer to two types of services: participatory sensing
services and crowdsensing services. Participatory sensing involves explicit partic-
ipation of human beings in possession of mobile devices, whereas crowdsensing
relies on sensor feeds automatically flowing from devices to servers.

Participatory crowd sensing has been used in applications ranging from assist-
ing drivers in making routing decisions based on real-time data (e.g., Waze [11] and
TrafficPulse [12] to helping response to medical emergencies (e.g., CrowdHelp [5])
to disaster relief (e.g., in the aftermath of the 2010 Hatian earthquake [18]).

Among crowdsensing services, the real-time traffic information displayed on
Google Maps is arguably the most widely used one, which now also has a par-
ticipatory sensing aspect since Google’s acquisition of Waze [11] in 2012. Uga et
al. [15] have used crowdsensing to develop an earthquake warning system, which
uses data from accelerometers present in many modern mobile devices to detect
seismic vibrations.

Our work is more closely related to research focused on supporting crowd-
sourced applications. Existing efforts have taken different approaches to sup-
porting such applications in terms of programmability and generality.

Medusa [14] is a programming framework for crowd-sourced applications.
A task (such as video documentation or citizen journalism) is launched by a
requester, and workers are solicited through Amazon’s Mechanical Turk (AMT)
service. These workers – volunteering smartphone users – then provide raw or
processed data to be used as part of a social or technical experiment. An XML-
based programming language, MedScript, is used to specify the required task
as a series of several stages, from the initial recruitment of volunteer workers,
to the workers’ (say, for a video documentation task) recording videos on their
smartphones, summarizing them, and then sending them back. The stages can
involve actions selectable from a library of executables, which are downloaded to
mobile devices from a cloud server. Because Medusa requires that tasks pick from
a limited set of activities, it suffers from limited programmability and generality,
and is not applicable to a large class of crowd-sourced services.



184 A.A. Moamen and N. Jamali

AnonySense [6] is another framework for collecting and processing sensor
data, which pays particular attention to privacy concerns. AnonySense allows a
requester to launch one of a selected group of applications with their parame-
ters. The application then distributes sensing tasks across anonymous partici-
pating mobile devices (referred to as carriers), and finally aggregates the reports
received from the carriers. Achieving anonymity relies on separating sensor data
from identifying features (such as homes or workplaces in GPS traces) to obscure
individual identities. Similarly to Medusa, AnonySense has limitations in pro-
grammability and generality because of its limited focus on collection of sensor
data and in-network processing.

CDAS [13] is an example of participatory crowd-sensing frameworks. It
enables deployment of various crowd-sensing applications which require human
involvement for simple verification tasks to deliver high accuracy services. Sim-
ilar to CDAS, MOSDEN [10] is a collaborative mobile sensing framework that
operates on smartphones to capture and share sensed data between multiple
distributed applications and users.

The MECA (Mobile Edge Capture and Analysis) middleware for social sens-
ing applications [16] focuses on efficient data collection from mobile devices.
It uses a multi-layer architecture to take advantage of similarities in the data
required for different applications to lower the demand on devices on which data
is being collected. MECA’s focus is limited to a narrow class of applications,
and does not address wider programmability challenges. Furthermore, MECA –
like other similar frameworks – uses the smartphone as a dumb data generator,
offloading all processing to the server layer. This increases communication cost
and does not allow applications to take advantage of data collected while the
mobile device is not connected.

In summary, existing frameworks for crowd-sourced applications focus on
narrow application areas or specific concerns, making it difficult to utilize them
for a wider class of services. Also, none of them support concurrent execution
of multiple services from within one service platform, which precludes taking
advantage of opportunities to optimize for shared sensing requirements.

3 Supporting Crowd-Sourced Services

It turns out that a large class of crowd-sourced services exhibit a similar pattern
of interaction, where members of a crowd contribute bits of information from
their respective contexts, which are then aggregated to create useful information
for clients. We have identified this pattern of interaction as multi-origin (multi-
sender) communication, which involves aggregation of the messages received
from a group of senders (referred here to as the constituency) into a group
message to be sent on behalf of the group to one or more intended recipients.

Most examples of crowd-sourced services fit the continual type of multi-origin
communication, where members of the constituency send messages on a continual
basis rather than just once; this would be useful for a service provided over the
web or through a mobile application where site visitors or application users seek



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 185

up-to-date information (say) on restaurant waiting times in a neighborhood. The
one-off type of interaction soliciting only one message from each member of the
constituency is a special case of this general case; this would be the type of
communication used to serve one-time requests, such as to hold a census or an
election, or to satisfy a one-off request to recommend a restaurant with a short
waiting time. For some services, such as the one for restaurant recommendations,
the choice between the continual and the one-off type of communication would
depend on the frequency of requests, the number of potential senders of messages,
etc. For instance, it would not be useful to be maintaining up-to-date information
about all restaurants when there are very few requests for recommendations;
however, it would be wasteful to solicit one-off communications for frequent
requests.

From here on, we will refer to continual multi-origin communication as simply
multi-origin communication.

3.1 Multi-origin Communication

To be precise in our presentation of continual multi-origin communication, we
specify it in terms of the Actor model [3]. Actors are autonomous concurrently
executing primitive agents (i.e., active objects) which communicate using asyn-
chronous messages.1 We represent the different parties involved in a multi-origin
communication using actors, and define the required communication in terms of
asynchronous actor messages.

The requester of a multi-origin communication makes a function call in order
to launch the communication. The call passes two parameters, the first specifying
the potential contributors – the constituency – to be invited to participate in the
communication, and the second specifying an aggregation method. As illustrated
in Fig. 1, an invocation of this function results in the creation of a new coordinator
actor capable of coordinating the communication, which is next told to invite the
constituency to participate. The coordinator then sends invitations to the mem-
bers of the constituency (the contributors) to send their messages; when applica-
ble, it also sends them parameters advising on how to construct their contributions
(such as by tapping into a set of sensors, or soliciting input from the user), how
often to send them (once or periodically, how frequently), etc.

As the contributors send their messages, the messages are aggregated by the
coordinator as specified in its own behavior, to generate group messages on behalf
of the contributors. When a contributor’s message arrives at the coordinator, it
checks whether the message warrants an update, or whether the interval for
which it was to collect messages has passed. In both cases, it forwards an aggre-
gate of messages received since the beginning of the interval to the requester.
For example, a restaurant recommendation service available over the web would
collect periodically sent updates from various restaurants and offer up-to-date
information to site visitors.
1 Actors are emerging as the model of choice for large-scale communication systems.

Among others, Twitter and Facebook Chat have been implemented using Actor
systems [4].



186 A.A. Moamen and N. Jamali

requester
messagesaggr

create

coordinator
constituency

invite
CommSetup()

Fig. 1. Multi-origin communication setup

4 Middleware Design

Our design of a crowd-sourced service (CSSWare) middleware builds on the
mechanism for multi-origin communication described in the previous section. As
illustrated in Fig. 2, the sensing crowd becomes the constituency whose input is
solicited. The service continually aggregates the feeds arriving from the crowd to
create up-to-date custom views for various types of clients. For example, if the
service were for recommending restaurants, one interface could be for prospective
diners, another for the restaurant managers making real-time staffing plans,
yet another could be for a vehicular routing system interested in improving
downtown traffic flow at lunch time.

...

service

. .
 . 

. .

se
ns

in
g 

cr
ow

d
...

.

interface

interface
clients

clients...

Fig. 2. Crowd-sourced service

Figure 3 illustrates how the distributed run-time system for the middleware
is organized with parts executing on the service platform, on devices of members
of the constituency, as well as client devices. In the rest of this section, we discuss
these three parts separately.

4.1 Service Platform Side

The service designer uses the service creation API to create and launch a new
crowd-sourced service. A set of parameters stating service specifications is passed
through the API. These specifications identify the contributors to be invited



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 187

CSSWare platform ...

event receptionist

service
specs

manager
servicerequest

client app

...
.

coordinators

interface
service viewrequest

manager

aggregator
event

coordinator
service

client app

client app

interface
manager

creation
API

service

API
request
service

service designer

client

detector

contributor app

...
...

contributor app

contributor app

event sensor sampling
listener scheduler

event

Fig. 3. System architecture

to participate in the service, the aggregation method to be used, as well as a
description of the feeds solicited from the contributors in terms of specific events
of interest, such as arrival at a restaurant, being seated at the table, etc.

To launch a new service, the service manager (see server in Fig. 3) creates
a new service coordinator to coordinate the communication between the con-
tributors and the CSSWare platform, which is capable of coordinating the com-
munication between the contributors and the CSSWare platform. Next, it sends
invitations to the contributors to send their events – when one is detected – to
the coordinator. It also sends them parameters advising on how to detect events,
construct their messages, and how often to send them (once or periodically, how
frequently, etc.).

Contributor events received by a service coordinator are handled by its event
aggregator, which in turn reports the events in aggregate form to the CSSWare
platform’s event receptionist. The aggregated events are then passed on to the
service manager, which processes them to update the service’s state, which is
forwarded to the service interface manager to deliver appropriate views requested
by clients through custom interfaces.

4.2 Contributor Side

To launch a service, the platform’s service manager sends invitations to contrib-
utors to participate in the service. It also sends them parameters advising on how
to detect events and construct their messages (i.e., sensing parameters). Event
detection is carried out by dedicated event detection actors, who generate event
feeds using relevant sensor feeds, which are then sent to the service coordinator.

An optimizing sampling scheduler schedules the sampling of each sensor
based on the sensing requirements received from the service coordinator for each
service being served at the time.



188 A.A. Moamen and N. Jamali

Sampling Scheduler
The scheduler attempts to optimize the sampling rate of each sensor exploiting
opportunities for different services to share sensor samples when possible.

When the scheduler receives a new sampling request, it checks if the current
sampling rate – sufficient for serving all currently served requests – can also sat-
isfy the new sampling rate being requested; if so, it uses the existing sampling
stream; otherwise, it changes the sampling rate to be high enough to accommo-
date the new request. The new sampling rate can be computed by finding the
greatest common divisor of the existing and the newly requested sampling rates.

The sensor listener is responsible for sampling sensor data according to the
sampling rate received from the sampling scheduler. However, because sensor
samples are for all apps, there is a filter to extract the required samples to be
sent to the different apps.

Algorithm 1 shows the steps followed by the scheduler to find the optimal
sampling rate for sensing requests being served at the time. Each sensing request
specifies the sensor to be sampled, as well as the rate at which it should be
sampled. When a new request is received, the scheduler checks if the sensor is
already scheduled; if so, it merges the current sampling rate with the GCD of
the inverse of the current sampling rate and the new rate; otherwise, it sets up
a new sensor listener to the requested sensor.

A more detailed presentation of the sampling scheduler can be found in [2].

Algorithm 1. Sampling Rate Adaptation Algorithm
1: procedure Sensor Scheduling
2: Input: sensor name (s) and sampling rate (r)
3: Output: sensor data stream
4: /* check if s is already scheduled */
5: if SamplingScheduler.isSensorFound (s, r) is false then
6: SamplingScheduler.add(s, r);
7: create a new sensor listener actor for s
8: else /* if s is already scheduled */
9: /*find the GCD between r and current sampling rate*/

10: newRate = GCD(SamplingScheduler.currentRate, r);
11: /* adapt the sampling rate */
12: SamplingScheduler.adaptSamplingRate(s, newRate);
13: end if
14: filter sensor data
15: send sampling streams to services when the sensor listener detects an event

4.3 Client Side

A service can have various types of clients subscribed to different views of the
service’s state, each provided by a custom interface. When a client requests
subscription to a particular type of view, the request manager inside the client



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 189

app constructs a custom view subscription request. This request is passed on to
the service view interface, which is transmitted through the service request API
of the CSSWare platform (see Fig. 3). The platform adds the client to a list of
subscribers to that view of the service, and begins sending it all updates.

5 Middleware Implementation

A prototype of CSSWare has been implemented as an actor system. The pro-
totype has two parts: a server implementing a crowd-sourced service platform
(about 7,500 lines of code), and a mobile app supporting both client and con-
tributor functionalities (about 4,600 lines of code).

Our implementation is built using the CyberOrgs [8] extension of Actor
Architecture (AA) [9], a Java library and runtime system for distributed
actor systems. Crowd-sourced services run over CSSWare, which runs over the
CyberOrgs runtime system.

For the client and contributor side, we have ported AA to Android OS for
supporting the mobile app.

5.1 Service Platform Side

To launch a new service, first, the requested service’s meta data (i.e., its title and
description) is added to the list of published services, which lists active services
visible to contributors. Next, the service manager creates a service actor which
invites potential contributors to send their events to the service’s coordinator.
It also sends them parameters advising on how to construct their contribution
messages. After inviting the contributors, a new service view is created in the
service request API in order to serve clients’ requests.

As contributors to a service detect and send events, the events are aggre-
gated by the coordinator and reported to the service manager through the event
receptionist (see Fig. 3). The service manager collects aggregated events until a
sufficient number of them have been received (as determined by a sufficiency
condition provided by the service designer in the form of a function) and then
updates the service state, revising the custom service views available to the
clients.

5.2 Contributor Side

For the contributor (and client) side, we have ported CyberOrgs to Android
OS, and implemented a self-contained application over it which runs on the
Android OS (ver. 5.1). The current implementation supports contributions based
on feeds from the GPS, accelerometer, microphone, magnetometer, gyroscope,
pressure, humidity, temperature and light sensors. A set of high-level sensor
events has been pre-implemented in terms of these (low-level) sensor events
– as executable specifications – which a service designer can draw from and
customize by providing parameters. These high-level events form the basis for



190 A.A. Moamen and N. Jamali

service events. For each high-level sensor event feed, the list of required low-
level feeds is provided in the form of a list, where each entry identifies a sensor
and specifies the rate at which it should be sampled. These specifications are
typically only a few lines of code, varying between 7 and 18 lines of code for
the triggers used in the example service prototypes. The code for using high-
level sensor events to generate the service events is typically even shorter. The
current prototype does not have a way for a service designer to add completely
new high-level sensor or service event types; ongoing work is developing a way
to allow that.

As shown in Fig. 4, the runtime system executing on the Android device has
two components: the sampling scheduler and the event detector.

Sampling Scheduler. As described in Sect. 4.2, the sampling scheduler sets a
sampling rate for each sensor based on the received sensing parameters. The
scheduler first parses the service parameters to extract the coordinator name
and the list of the service’s event feeds.

Sensor listeners are responsible for sampling sensor data according to the
sampling rate received from the sampling scheduler. The scheduler optimizes
sensor sampling feeds by opportunistically sharing them between different service
feeds.

Event Detector. Because the data sampled from a sensor can be for multiple
event feeds, the data is filtered to extract the sub-feed pertinent to each event
feed being served, and only that sub-feed is forwarded to the relevant event
detection actor. An event detection actor monitors the sensor feed it receives for
event triggers; when it sees one, it fires the event off to its service coordinator.

event actor

...
.

platform
service

schedulerparameters

sensing
filtersampling

mobile app

coordinator

event

event...
.

sensor listener event detector

samples

samplesrate

rate event

requirements
sampling

Fig. 4. Contributor side

An event detector does not maintain a local record of the triggered events
itself; all events are sent to the service coordinator.

Because the contributor side of the system will likely execute on battery-
operated mobile devices, it is important that contributors have the ability to
either develop or adopt simple resource consumption policies to avoid undesired
battery drain. We hope to utilize the fine-grained resource management features
already present in the CyberOrgs [8] extension of Actor Architecture which we
have used in our prototype. For now, we have implemented a feature allowing a
service designer to specify resource limits after reaching which the contributor
device would stop contributing feeds.



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 191

5.3 Client Side

Client side of the platform is implemented as part of the Android application
implementing the contributor side. When a new service is launched, each client
receives a notification about the launch. Multiple views are supported through
custom interfaces installed by the service designer. A client interested in sub-
scribing to a service can examine available views using the service view interface
(see Fig. 3), and then use the service request API to subscribe to the desired
view.

There is a collection of four general purpose view interfaces pre-implemented
in the platform, which average at about 85 lines of code (the largest at about
100 and the smallest at 75 lines).2 Although these interfaces are sufficient for
the examples we have implemented, and for services with similar client side
requirements, additional interfaces would need to implemented for different types
of services. In our current prototype, there is no way for service designers to
program these interfaces themselves; however, we plan to provide a way for
new (general purpose or custom) interfaces developed by service designers or
other parties to be installed or added to a repository from which they could be
installed.

6 Evaluation

In this section, we present our evaluation of CSSWare for both the programma-
bility of new services, as well as our experimental evaluation for performance,
scalability and energy efficiency.

6.1 Programmability

The main programmability advantage of using CSSWare is in the orders of mag-
nitude lower number of lines of code required for launching a new service. The
prototype restaurant recommendation service presented in this section required
41 lines of code for the server and contributor side combined; in comparison,
an equivalent standalone service we implemented required 6,142 lines of code. A
twitter-like messaging service we implemented, which is not discussed in greater
detail because of space constraints, similarly required 46 lines of code instead
of 4,768 lines for an equivalent standalone service. For reference, the server and
contributor end of the CSSWare platform required 7,473 and 4,622 lines of code
respectively.

Restaurant Recommendation Service
Consider the type of restaurant recommendation service previously described in
Sect. 1, where mobile devices of people visiting restaurants in a neighborhood
automatically send real-time updates about the service they are receiving to a

2 These 350 lines of code are included in the previously mentioned roughly 4600 lines
of code for the Android application’s implementation.



192 A.A. Moamen and N. Jamali

service provider, which then aggregates this information for people searching
for restaurants. We assume that information required for generating these feeds
can be gathered automatically by the devices by tapping into various sensors to
determine when someone arrives at a restaurant, when they are waiting to be
seated, when they sit down, when they are served, when they finish eating, and
when they leave. The information could be coarser or finer grained depending on
the device, usage habits, quality of the behavior detecting software, etc. These
updates from personal mobile devices could then be aggregated by a service
provider to rank restaurants according to criteria such as the amount of wait
time before being seated, the length of time taken dining (shorter or longer,
as preferred), the total amount of time that the user could expect to travel
to the restaurant, dine, and be back at work. The ranking could also consider
the server’s meta-knowledge about the number of people being sent to various
restaurants by the service.

Figure 5 presents our code implementing such a service as a createSensor-
Service() method. First, a number of service variables are initialized: the list
of restaurants (i.e., their names and coordinates), restaurantList, a method
to be used by the coordinator to aggregate contributions, aggrMethod, and the
sampling rate to be used for sensor feeds when a rate is not explicitly speci-
fied, Default SamplingRate. aggrMethod is initialized here to a general purpose
method for computing the average; it is to be used by the coordinator to com-
pute average waiting time. Other services could use other available aggregation
methods; our prototype provides a selection of them. There is currently no way
for a service designer to add a new aggregation method, but we plan to provide
that functionality in the future. Although here we hardcode the restaurants,
functionality can be easily added to the mobile app to allow contributors to add
previously unknown restaurants.

A sensor is set up for each of the sensor feeds required for any of the ser-
vice feeds, following which the two types of service events are defined. The
first, locationEvent, is defined to require the GPS sensor feed and is defined
in terms of a number of parameters. The “trigger” parameters identify high-
level sensor events, which become the basis for service events. For example
enterPlace recognizes entering a location (a restaurant in this service). The
“output” parameters identify the service events to be sent to the coordinator;
here, visitTime computes the difference between enterPlace and departPlace.
Additional parameter types are parameters that are available to the various
methods; for example, updateInterval is available to visitTime as a parame-
ter to decide the frequency of feeds to send to the coordinator.

Similarly, activityEvent specified a different sensor feed related to observa-
tions of the restaurant client’s activity. It uses various sensor feeds. The triggers
detect activities of “sitting down” or “being still,” the latter using the stillTime
parameter, which are then used as the basis for a waitingTime service event to
be sent to the coordinator.

Finally, the service is created as an instance of the CrowdService class, and
launched. The constructor for CrowdService takes as parameters a title, a



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 193

Fig. 5. Restaurant recommendation service



194 A.A. Moamen and N. Jamali

description, the list of events (i.e., locationEvent and activityEvent) and
the aggregation method aggrMethod. Once the service has been created, launch
is called to launch the service.

6.2 Experimental Evaluation

We experimentally evaluated CSSWare in terms of performance, scalability and
energy efficiency. Our experiments were conducted on a prototype Actor-based
implementation of CSSWare. On the contributor side, we used a Samsung Galaxy
Note II phone with a 1.6 GHz quad-core processor and 2 GB of RAM running
Android OS ver 5.1. The server ran on a Windows 7 laptop equipped with a
2.6 GHz quad-core Intel i7 processor and 8 GB of RAM.

We installed instrumentation in the server and mobile application (i.e., con-
tributor and client) parts of our prototype restaurant recommendation service to
measure the processor time taken to perform various tasks. Instrumentation was
also added to the contributor side to measure energy consumption of sensing.

Performance and Scalability
Service Platform Processing Demand. To evaluate the scalability of the server,
we measured the resources required to host a service.

We created and launched a set of instances of the previously described restau-
rant recommendation service with their required frequencies of event feeds dis-
tributed over a normal distribution function. Specifically, we picked 150 random
values with an average of 6.7, which added up to 1,000. We created 150 services
with the randomly chosen feed frequency requirements, adding up to a cumula-
tive feed frequency of 1,000 feeds per second. Each service received feeds from
10 restaurants. Note that the event feeds here are feeds of higher level events
detected at the contributor end; these are not the raw data received at a high
frequency from the sensors. In other words, the average frequency of 6.7 events
per second per service would mean that something interesting is observed at
some contributor device related to the service at the rate of 6.7 per second. Fur-
thermore, we used a window size of 20 for recently received feeds for any window,
this is the number of recent feeds which were used to compute a score for the
restaurant. For this local aggregation, we simply maintained the average wait
time for the restaurant, which required O(1) amount of time to maintain. These
local aggregates for restaurants fed into the creation of a global aggregate in the
form of a ranked list of the restaurants based on their scores, which amounted
to a single step of insertion sort to maintain a sorted list, with an O(n) cost.3

Table 1 separately shows the one-time processing costs involved in creation of
a new service as well as on-going processing costs as each event feed is received
and processed. Creating service and coordinator actors – the former also includ-
ing parsing the service’s meta data (i.e., title and description) and adding the
new service to the published service list – took 13.04 ms and 11.67 ms on average,

3 Although this performs well for the small number of restaurants, it would be more
efficient to use a binary search tree to keep a large number of restaurants sorted.



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 195

respectively. Initializing the global view for the service required 7.84 ms. In terms
of on-going costs, receiving and parsing an incoming event feed required 7.35 ms
on average. The cost of local aggregation to keep track of the average of the last
20 waiting times for a restaurant was 0.024 ms on average. This aggregation has
O(1) complexity. We also measured costs for O(log n), O(n) and O(n2) complex-
ity local aggregation functions as shown in the table. The global aggregation for
ranking the 10 restaurants incurred an average processing cost of 0.95 ms.

To put these numbers in some context, given the 8.325 ms required per feed
on an on-going basis, about 120 event feeds could be processed by a server of our
configuration per second. This could support a single service where 120 events
are being collectively detected by the contributors every second, or 10 services
which are each receiving about 12 feeds per second on average, and so on. In
a broader context still, assuming 40 % of the population dines out at a meal
time4, assuming the diners are distributed somewhat evenly over a period of
two hours, and each diner’s device is sending 3 events over the course of their
meal (indicating arrival, seating, departure) a server of our modest configuration
could process 288,288 diners’ data, equivalently data for a city of about 720,720
people. In practice, data from a small fraction of the diners could be used,
allowing service for an order of magnitude higher population.

That said, our global aggregation function assumed only 10 restaurants.
Although this may be reasonable because individuals requiring restaurant rec-
ommendations are not likely to be close to hundreds of restaurants, narrowing
down the selection before aggregation would mean custom global aggregations,
each costing the 0.95 ms. However, this custom aggregation could happen on the
client’s own device, without impacting the server’s scalability. Alternatively, for
a truly global aggregate for a city with (say) 10,000 restaurants, an O(log n)
binary search tree could be used to keep the restaurants sorted; only the top few
would ever need to be fetched, limiting the fetching cost.

Contributor Processing Demand. On the contributor side, again, we separately
measured the initial cost of handling a new service’s request for contribution, as
well as the on-going cost of serving the service. The average total of measured
one-time cost was 54.87 ms (SD 3.57). The on-going costs measured were per
sensor feed: every time a piece of raw data was received from a server, its average
total processing cost amounted to 8.68 ms (SD 1.02).

To put this on-going cost in perspective, about 115 sensor feeds per second
could be handled on a device of our configuration (assuming no other compu-
tations executing). If an average service requires as many as 10 data samples
per second (from a variety of sensors), 11.5 of such services could be supported;
if an average of 1 data sample per second is required per service, a more likely
scenario, 115 services could be simultaneously contributed to.
Client Processing Demand. For the client side as well, we measured the one-time
processing costs of accessing a new service, as well as the on-going costs of receiv-

4 Zagat 2014 restaurant survey reported that an average American ate out or bought
47% of their lunches or dinners.



196 A.A. Moamen and N. Jamali

Table 1. Average processing time at the server side in ms

One-Time Per-Service Costs Mean SD

Create a service actor 13.04 2.63

Create a coordinator actor 11.67 1.74

Create a service view 7.84 0.98

Total processing time 32.55 5.35

Per-Event-Feed Costs Mean SD

Process an event feed 7.35 1.11

Local aggregation (O(1) cost) 0.024 0.0021

Local aggregation (O(log n) cost) 0.078 0.0083

Local aggregation (O(n) cost) 0.280 0.0349

Local aggregation (O(n2) cost) 0.680 0.0987

Global aggregation (10 Restaurants) 0.95 0.17

Total processing time (O(1) local aggregation) 8.325 1.28

ing updates. The average total of measured one-time costs was 35.53 ms. The
total of measured per-refresh on-going costs amounted to 60.9 ms on average,
with 28.7 ms (SD 3.9) for processing the update, and 32.2 ms (SD 6.4) for dis-
play. In other words, a client could be simultaneously subscribed to and receive
updates from 16 services every second. This is not very meaningful consider-
ing that more than half of the processing cost is for graphically displaying the
update, which is not likely to happen simultaneously for more than only a few
services. If we assume that only one service’s updates are actually displayed
at a time, more than 30 services could be supported in the background where
interesting updates could lead to notifications, invitations to display, etc.

Energy Consumption of CSSWare vs. Standalone Services
Finally, a set of experiments was carried out to measure the overall improve-
ment achieved in energy consumption by using CSSWare’s sampling scheduler
on the contributor device. We used the PowerTutor software [17] for our energy
measurements.

To measure the overall improvement in energy consumption, we made mea-
surements of energy used by CSSWare and identical standalone services imple-
mented without using CSSWare. The sampling scheduler improved energy con-
sumption of accelerometer and gyroscope sensors by up to 24.60 % and 26.63 %,
respectively. However, the percentage savings depend entirely on the number of
requests being served, because although the energy used is roughly linear in the
cumulative sampling rate of all requests for the standalone services, for CSS-
Ware, it depends almost entirely on the highest frequency being requested at
the time, from which other requests are also served.



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 197

Overhead Analysis. In order to determine the non-sensing overhead of CSS-
Ware, we measured the energy consumed by the contributor device side of the
framework, albeit without the actual sensing. The average energy consumed was
measured to be 72.9 mJ for the accelerometer, and a very similar 81 mJ for the
gyroscope sensor. In percentage terms, this was roughly 4 % of the total energy
consumed in the accelerometer experiments, and 0.8 % for the gyroscope sensor,
the difference explained by the order-of-magnitude larger overall energy demand
of the gyroscope sensor itself.

7 Conclusions

With the growing ubiquity of sensors and mobile devices, it is more possible
than ever to offer innovative services based on both what the millions of sen-
sors on people’s devices are sensing, as well as what individuals are willing to
actively contribute. However, the barriers to offering such services continue to be
prohibitive for most: not only must these services be implemented, they would
inevitably compete for resources on people’s devices.

We have argued in this paper that many crowd-sourced services, includ-
ing prominent social media services (if we consider their role of helping evolve
collective messages), require similar communication mechanisms. We focus on
one such mechanism – multi-origin communication – which allows a number of
autonomous participants to contribute messages which can then be aggregated
to create group messages on behalf of all. We introduced an approach to sup-
porting crowd-sourced services using multi-origin communication, and presented
our design and implementation of an Actor-based middleware for crowd-sourced
services as a platform for launching such services. We illustrated the ease with
which new services can be launched by presenting code for a prototype imple-
mentation for a crowd sensed restaurant recommendation service requiring fewer
than 50 lines of main service specification code, with less than 100 lines of addi-
tional relevant code from available libraries of aggregation functions, feed spec-
ifications and service view interface. Finally, we experimentally evaluated the
scalability of the approach. Most notably, even our modestly configured server
could potentially provide a restaurant recommender service to a population of
millions; contributor devices could contribute to tens if not hundreds of services
simultaneously; client devices could monitor tens of services.

We have additionally addressed the challenge of satisfying the energy needs
of a potentially large number of services requiring sensor data continuously. Use
of the sampling scheduler takes advantage of the overlap in sensing requirements
of various applications to achieve significant energy savings when there are over-
lapping requirements, with minimal overhead.

In on-going work, we are developing mechanisms for service designers and
third parties to add new service feed specifications, custom service view inter-
faces, and aggregation functions. This will allow a larger variety of services to
be implemented. We are also working on further simplifying programmability of
services through web-based graphical interfaces. Finally, we would like to apply



198 A.A. Moamen and N. Jamali

our approach for fine-grained resource coordination to refining the sensor sam-
pling scheduler, and more generally to manage the resource demands that a
larger number of services may place on resource-constrained mobile devices.

Acknowledgments. Support from NSERC and CFI is gratefully acknowledged.

References

1. Abdel Moamen, A., Jamali, N.: Coordinating crowd-sourced services. In: Proceed-
ings of IEEE Mobile Services, Alaska, pp. 92–99 (2014)

2. Abdel Moamen, A., Jamali, N.: ShareSens: an approach to optimizing energy con-
sumption of continuous mobile sensing workloads. In: Proceedings of IEEE Mobile
Services, NY, USA, pp. 89–96, June 2015

3. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

4. Agha, G.: Actors programming for the mobile cloud. In: Proceedings of ISPDC,
pp. 3–9, June 2014

5. Besaleva, L., Weaver, A., CrowdHelp,: a crowdsourcing application for improving
disaster management. In: Proceedings of GHTC, California, USA, pp. 185–190
(2013)

6. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.,
AnonySense: privacy-aware people-centric sensing. In: Proceedings of MobiSys,
Breckenridge, USA, pp. 211–224 (2008)

7. Geng, H., Jamali, N.: Supporting many-to-many communication. In: Proceedings
of AGERE!@SPLASH, Indiana, USA, pp. 81–86 (2013)

8. Jamali, N., Zhao, X.: Hierarchical resource usage coordination for large-scale multi-
agent systems. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS
(LNAI), vol. 3446, pp. 40–54. Springer, Heidelberg (2005)

9. Jang, M.-W., Ahmed, A., Agha, G.: Efficient agent communication in multi-agent
systems. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS
2004. LNCS, vol. 3390, pp. 236–253. Springer, Heidelberg (2005)

10. Jayaraman, P., Perera, C., Georgakopoulos, D., Zaslavsky, A.: Efficient oppor-
tunistic sensing using mobile collaborative platform MOSDEN. In: Proceedings
of the 2013 International Conference on Collaborative Computing: Observation of
Strains: Networking, Applications and Worksharing (2011). Infect Dis Ther. 3(1),
35–43

11. Levine, U., Shinar, A., Shabtai, E., Shmuelevitz, Y.: Condition-based activa-
tion, shut-down and management of applications of mobile devices. United States
Patents, US 8,271,057 (2009)

12. Li, R.-Y., Liang, S., Lee, D.-W., Byon, Y.-J.: TrafficPulse: a mobile gisystem for
transportation. In: Proceedings of MobiGIS, California, USA, pp. 9–16 (2012)

13. Liu, X., Lu, M., Ooi, C., Shen, Y., Wu, S., Zhang, M.: CDAS: a crowdsourcing
data analytics system. J. PVLDB 5(10), 1040–1051 (2012)

14. Ra, M.-R., Liu, B., La-Porta, T., Govindan, R.: Medusa: a programming framework
for crowd-sensing applications. In: Proceedings of MobiSys, pp. 337–350 (2012)

15. Uga, T., Nagaosa, T., Kawashima, D.: An emergency earthquake warning system
using mobile terminals with a built-in accelerometer. In: Proceedings of the 2012
IEEE Conference on ITS Telecommunications (2012)



CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services 199

16. Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., Calo, S.: MECA: mobile edge
capture and analysis middleware for social sensing applications. In: Proceedings of
the Conference Companion on WWW, pp. 699–702. ACM, Lyon (2012)

17. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accu-
rate online power estimation and automatic battery behavior based power model
generation for smartphones. In: Proceedings of CODES+ISSS, Arizona, USA, pp.
105–114 (2010)

18. Zook, M., Graham, M., Shelton, T., Gorman, S.: Volunteered geographic infor-
mation and crowdsourcing disaster relief: a case study of the Haitian earthquake.
World Med. Health Policy 2(2), 7–33 (2010)



Interactive Applications



Quality Assurance in Additive Manufacturing
Through Mobile Computing

Sam Hurd(B), Carmen Camp, and Jules White

Vanderbilt University, Nashville, TN 37235, USA
{sam.p.hurd,carmen.camp}@vanderbilt.edu, jules@dre.vanderbilt.edu

Abstract. The increase in use of consumer 3D printers for in-home or
small business manufacturing may signal the start of an additive man-
ufacturing revolution, but unfortunately these printers are often error
prone. In order to remedy the time and materials lost when a failed print
continues on a low-end 3D printer, a cost-effective method is needed to
monitor the quality of a print and stop it when an error occurs. This
paper presents an approach to using a commodity smartphone and com-
puter vision to perform quality assurance on selected layers of a 3D print.
Our results indicate that a commodity mobile device using our technique
is capable of accurately detecting printing errors and then effectively
determining whether or not a print should continue.

Keywords: Consumer 3d printers · Cost-effective · Quality assurance ·
Computer vision

1 Introduction

Emerging Trends and Challenges. Additive Manufacturing (AM) is the
process of constructing a 3D object from a model design file by joining together
solid materials [12]. A 3D model of the object is created and then translated
into a series of instructions, such as GCode, which dictate the movements of an
AM machine to construct the physical object layer by layer [1]. For example, a
Fused Filament Fabrication 3D printer (FFF) works by moving a heated nozzle
that extrudes thin layers of plastic to build a 3D object layer by layer as shown
in Fig. 1.

AM machines are being used increasingly as their capabilities develop. They
minimize waste and can create lighter, yet sturdy, parts more quickly for some
applications. Additionally, they provide a method of building objects with com-
plex interiors, a challenging task that few machines can accomplish accurately.
For example, General Electric is creating a new fuel nozzle for aircraft engines,
and these parts are being created using AM machines to make the fuel noz-
zles lighter, simpler to craft and more durable [2]. In addition to creating useful
parts for aircrafts, AM machines are also beginning to be used for medical pur-
poses. For example, researchers are beginning to create organs through the AM
of human tissue [4] which would allow for failed organs to be replaced. As AM
machines continue to develop, their potential continues to grow.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 203–220, 2015.
DOI: 10.1007/978-3-319-29003-4 12



204 S. Hurd et al.

Fig. 1. The heated nozzle extruding filament to produce the sides of a square.

Recently, inexpensive AM machines have become more available allowing
consumers to bring manufacturing into the home [3]. While printing is still not
fast as it can take over an hour to print even a small box, consumer 3D printing
is increasingly becoming a viable option for the future of small-scale, in-home
manufacturing. There is a large and growing “maker” community that is using
consumer AM machines to design and print complex parts at home and in small
businesses.

Open Problem ⇒ Low-cost Quality Assurance for 3D Printers. Low-
cost AM machines that are used by consumers for in-home or similar small scale
printing are error-prone. With current consumer-focused devices, when an error
occurs, the machine continues working wasting time and materials. Additionally,
errors that occur early may not be detectable on the finished product and could
compromise the structural integrity of the final object, especially in machines
that are lower-cost, but also not necessarily professional or commercial grade [10].

Quality assurance and detection for 3D printing is still in early stages, and
while some processes have been developed for industrial uses [5] or for analyzing
the instructions’ data points for correctness before the print [6], there are no
automated mid-print quality control processes for low-end or home scale 3D
printers. This paper focuses on addressing this gap in low-cost quality assurance
systems.

Solution Approach ⇒ Mid-print Quality Assurance with a Commod-
ity Mobile Device. To address the print quality detection problem with 3D
printing, we created a cost effective mid-print quality assurance process using a
mobile device that can easily be utilized alongside commercial FFF printers to
detect when the printer has made an error through the use of image analysis.
This solution uses a mobile device mounted above a 3D printer to capture images
of selective layers after their completion, perform computer-vision based analysis
of the layers, and if an error has occurred, stop the print and notify the user.
The approach relies on automated pre-print analysis of the 3D model to predict
what each layer should look like when printed and rewriting of the GCode sent
the printer to insert quality assurance checks in the print instructions.



Quality Assurance 205

In Sect. 5, we present empirical data that we have gathered from experiments
with a MakerGear M2 printer showing that our solution is able to effectively iden-
tify errors through a smartphone or tablet’s camera with a high level of accuracy.
These experiments centered on examining the accuracy of smartphone-based
visual quality control for AM. This paper provides the following contributions
to the study of using mobile computing for mid-print quality control in AM:

– We provide a method for extracting a 2D representation of what layer should
be printed and where this layer should be printed.

– We provide an image based analysis of the printed object that can pinpoint
errors through use of a mobile device’s camera.

– We present empirical data comparing the accuracy and speed of two different
image analysis approaches for AM quality assurance.

– Overall, we provide a mobile device-based architecture for quality control on
consumer AM machines.

The remainder of the paper is organized as follows: Sect. 2 describes typical
problems that arise during a 3D print, which we use as a motivating example
throughout the paper; Sect. 3 describes the challenges of creating an effective
mid-print quality assurance process; Sect. 4 presents our technique for analyzing
a manufactured object mid-print and determining when an error has occurred;
Sect. 5 presents empirical results demonstrating the ability of our process to
effectively distinguish between failed prints and good prints; Sect. 6 compares
our work with related research; and Sect. 7 presents concluding remarks.

2 Motivating Example

The need for a quality assurance process can easily be demonstrated using a
commercial 3D printer using Polylactic Acid (PLA) as the printing filament [17].
Several types of errors can occur when printing with this setup and watching the
print to manually catch errors is time consuming. To print a very basic one-inch
cube takes approximately two hours, resulting in much lost time and effort if the
print must be redone.

Figure 2 illustrates two errors that are common in commercial 3D printing.
When printing a curved area, the PLA sometimes does not effectively stick to
the previous layer and creates a chord between two points on the curve. Addi-
tionally, present in the figure is an internal error caused by the filament not
properly sticking to the printerbed and being pushed around by the nozzle as it
continues to print. 3D printing is becoming increasingly utilized in areas from
manufacturing aircraft parts to printing organs, but unfortunately errors still
occur often during prints. It is important that an effective error detection mech-
anism is developed to locate the error, save materials and prevent structurally
unsound objects from being printed.

3 Challenges

In order to develop a mobile image-based approach to quality control, a number
of key challenges must be overcome:



206 S. Hurd et al.

Fig. 2. The beginning of a failed print. Internal error caused by PLA not sticking to
the printerbed, and external error caused by PLA not sticking to the previous layer.

3.1 Challenge 1: Generating a 2D Representation of a Print Layer

In order to effectively detect errors in a 3D printed object, the monitoring device
must know what the object should look like at different stages of the manufac-
turing process. That is, the imaging process must be able to predict what the
3D model will look like in the physical world when printed on a specific 3D
printer’s bed with the chosen printing materials. For example, different plastics
may be varying colors and printer beds vary in design and color. However, the
image analysis must be able to predict what a layer is expected to look like while
taking into consideration each of these factors. Figure 2 illustrates internal and
external errors in printing, but without the monitoring device knowing what is
supposed to be printed, it would not be able to identify this error. This challenge
appears in all prints. With the extensive variety of objects available to print, it
is impossible to assume internal gaps or thin filaments around the outline are
errors.

3.2 Challenge 2: Time Synchronization with the Printer

During printing, the printerbed moves constantly along two axises as filament
is extruded to build the object. Because the object’s position relative to the
monitoring device is constantly changing, it is difficult to know where the object
will be at any given time to begin the quality analysis. To perform effective
quality analysis, it is crucial that the monitoring device and the printer are
time-synchronized so that the monitoring device runs the quality analysis check
at the right time.

The challenge of synchronization manifests itself in every print as the move-
ment of the printer bed occurs during every print to build the object. If the
printer and the monitoring device are not in sync, error could be detected sim-
ply because the object is not where the monitoring device expects it to be due
to printerbed movement.



Quality Assurance 207

3.3 Challenge 3: Accurate Positioning of the Monitoring Device

Effective quality analysis of a 3D print relies on the print monitoring device
knowing where the print should occur. If the monitoring device is not aligned
perfectly with the printer bed, a good print could be deemed erroneous simply
because the print is not where the device believes it should be. Errors identified
through the incorrect positioning of the monitoring device manifest themselves
in various manners. If the device is too close or too far from the print, it may
believe the print is an incorrect size. If the device is tilted or not in line with the
printer bed, it may believe the print is warped or printed askew.

3.4 Challenge 4: Identifying When a Print has Failed

Identifying where an error has occured in the print is only one step towards
generating effective quality assurance. All prints may contain some level of error
due to natural process variation. An effective monitoring solutions needs to be
able to differentiate between prints that have an acceptable amount of error and
prints that should be stopped.

A failed print from commercial 3D printers is typically easily detectable to
the human eye since we can see large internal gaps or filament outside the area
the object should be printed in. While it is easy for humans to visually process
whether a print is good or bad, it is difficult for a monitoring device to know
how much error is too much. Section 4 describes how we address this challenge
by running experiments to arrive at accepted threshold values.

4 Print Quality Assurance with a Mobile Device

The solution we propose is a process for detecting the print quality using a mobile
device. Developers can utilize our approach to remotely monitor the quality of
a 3D print, and the process can autonomously stop a failed print. The basic
setup for the approach is shown in Fig. 3a. A small stand is used to position
a mobile device’s camera over the printer bed. As the printer constructs the
3D object, time-synchronized quality control checks are performed to verify the
integrity of printed layers. The overall architecture is based on 4 components: (1)
the 3D printer, (2) the host computer that is controlling the printer by sending
GCode commands over USB, (3) a mobile device performing the visual quality
assurance using an Android app, and (4) a back-end server that coordinates
communicating between the host computer and the mobile device.

The workflow of the approach is shown in Fig. 3b. The initial step in the
process is to generate 2D representations of the layers that are being checked for
quality. The set of 2D reference images, rit ∈ R, is produced by analyzing the 3D
model, which is typically an STL file, at a monotonically increasing series of time
steps St, and producing a 2D rendering of the expected top-down perspective
on the model at each time step sti:

∀sti ∈ St, rti = r(M,P, St)



208 S. Hurd et al.

(a) Mobile device positioned
above printerbed for analy-
sis.

(b) Step-by-step description of analysis process.

Fig. 3. The effectiveness of the analysis relies on device positioning and a nine step
process.

A set of process parameters, P , provides information about the printer and
materials being used, such as the color of the plastic filament. With these R
2D reference images, the mobile device will be able to compare the printed
layers to what the printed layers should look like and then determine if they are
acceptable. To implement fx(M,P, St) and extract a 2D image from a 3D file,
we used a transcoder provided by the Batik library. During step 1 of Fig. 3b,
this transcoder turns a SVG file into a 2D format, such as PNG or JPEG [7].
These files are used for comparison to the actual imagery of the printed layers
later in the process.

The most common standard for controlling AM equipment is GCode. In order
to print an object, a 3D model, M , needs to be converted into a series of “slices”
or layers that the printer is instructed to print:

G = slice(M,P )

These successive layers are represented as a series of GCode instructions, G,
that tell the printer how to move the print head, how much material to extrude,
etc. to produce the layer. The combined GCode for all of the layers is sent to the
printer to produce the final object. The slicing process also relies on the process
parameters, P , in order to calculate appropriate GCode for the print.

Another parameter that must be determined is the offset, oi ∈ O, where the
ith layer will be printed on the printer bed. The same 3D object can be printed
at different offsets on the printer bed and this must be accounted for in the visual
quality control process. To determine the print offset information, an extraction



Quality Assurance 209

function is applied to the GCode that finds the offset of the layer printed at
time sti:

oi = o(G,P, sti)

The next step in the process is to setup the mobile device, which is not
assumed to be permanently attached to the printer, so that it can capture
imagery of the print. An important step in this process is aligning the mobile
device’s camera with the print bed so that accurate image analysis can be per-
formed. We added a white rectangle to the camera viewfinder fragment used in
our Android quality control application. This white rectangle’s dimensions are
proportional to the dimensions of the printerbed, so during step 3 of Fig. 3b the
user can adjust the position of the mobile device using a stand like the one pic-
tured in Fig. 3a until the printerbed lies inside the rectangle when the printerbed
is in the resting position.

To solve the time synchronization issue of coordinating the printer and the
mobile device imaging, we apply a program transformation to the GCode, G,
to generate a modified set of instructions that include specific synchronization
points. The modified GCode, G′, stops the printer at specific points in time,
sti, and moves the printer bed to specific coordinates for imaging and waits for
feedback from the image analysis process (described later) that the print should
proceed. The transformed GCode is produced via a program transformation
function that takes the original GCode and a series of synchronization time
steps as input:

G′ = ω(G,St)

At each of these synchronization points, the printer moves the printer bed
into positioning for imaging and the host computer controlling the printer sends
a message to the back-end server in the cloud to send a push notification to
the mobile device to begin the imaging process. The mobile device captures an
image, It, of the printer bed and then runs one of the image analysis algorithms,
δ(R, I, L), described in Sect. 4.1, to calculate an error value, e:

e = δ(rit, It, oi, P )

β = b(M,oi, It)

If e is above a configurable threshold, β, then the device sends a message back
to the back-end server to notify the host computer to stop the print. Optionally,
the back-end server also can send a notification to the user’s mobile device (one
not being used for the quality control) to allow for a decision on whether or not to
continue the print. If the print is stopped, the host computer sends terminating
GCode instructions to the printer to end the print.

4.1 Algorithm to Discover Misprinted PLA

To begin addressing the challenge of identifying when a print should fail, which is
discussed in Sect. 3.4, we developed two algorithms to implement δ(rit, It, oi, P )
that would be able to find and highlight error in an image of the 3D printed



210 S. Hurd et al.

object during step 7 of Fig. 3b. The first algorithm we used to implement δ
involves image subtraction and the second algorithm we use involves searching
a single picture. These two algorithms use a similar process at the end to arrive
at the number of erroneous pixels, and they both depend on using black PLA
and a blue or dark gold background.

Image Subtraction. The first algorithm to detect errors in a print involves an
image difference method, which is applied following the completion of a layer that
should be analyzed for error. The error detection by image subtraction involves
two input images It−x(oi, P ) and It(oi, P ) taken x seconds apart where x is the
print time up to the point the analysis is run. A classical image subtraction is
performed to identify where PLA has been printed:

Id(oi, P ) = |It−x(oi, P ) − It(oi, P )|
The obtained image, Id(s), is a light color where the object has been printed

while the remainder of the printerbed is dark. We can then compare the light
spot in this image to rit, the corresponding 2D slice, to produce the image If :

If = ρ(Id, rit)

This function iterates through Id and inserts the slice rit into the image by
changing the appropriate pixels in Id to white. At the conclusion of this function,
where the object should be located is entirely white, while error appears as a light
color and the background remains white. As this function runs, another function
to determine internal error, ey is performed concurrently. This function analyzes
all pixels pab in Id that should contain PLA according to slice rit. If this pixel
is dark and therefore does not contain PLA, it is perceived as erroneous. The
function to determine the number of internal errorneous pixels can be defined as:

sy = φ(Id, rit, pab)

After these methods have finished running, the mobile device iterates through
image If . Since the background is dark and where the object should be is white,
the device can use a function sx to find external error by searching all pixels pcd
in the image for light, but not white pixels. This function to find the number of
external erroneous pixels can be defined as:

sx = υ(If , rit, pcd)

The total number of erroneous pixels, S, can then be defined as:

S = sx + sy

Image Searching. The second algorithm to detect errors in printed objects is a
simple image searching algorithm. This algorithm initially inserts the correlating
slice, rit, into the image It(oi, P ) by iterating through the pixels of the image



Quality Assurance 211

and changing pixels where PLA should be printed to white. This function creates
a new image, If :

If = ϕ(It, rit)

While this algorithm runs, the mobile device concurrently searches for inter-
nal error, sy by searching each pixel pab that should have PLA according to rit
but does not. This error is identified by checking if the pixel pab is black before
changing it to white per ϕ(It, rit):

sy = ψ(It, rit, pab)

After ϕ(It, rit) has completed, a new function iterates through If and searches
the image for external error sx. Since the printerbed is blue, the allocated loca-
tion for the object is now white, and the PLA is black, we can search each pixel
pcd of the image and count the number of black pixels as those indicate PLA
outside of the acceptable area:

sx = 
(If , rit, pcd)

The total number of erroneous pixels, S, can therefore be defined as:

S = sx + sy

While the image searching algorithm is similar to the subtraction algorithm,
the subtraction algorithm provides the benefit of the background being very dark
if not black. When simply searching the image of the object, a color similar to
the color of the PLA may be present in the image and cause the mobile device
to falsely detect that as error.

4.2 Identifying Failed Prints

As discussed in Sect. 3.4, a necessity for effective quality assurance is determining
a threshold value for β when the print should fail. In Sect. 4.1 we began to address
this challenge by describing two processes to discover the number of pixels that
contain error in an image of the printed object. The mobile device calculates the
error value e using the number of pixels that contain error and the total number
of pixels in the slice rit:

e = δ(rit, It, oi, P ) =
S∑
pab

While calculating this error value is a crucial first step towards determining
the quality of a print, this value alone is not enough. The device needs to know
what error values should be passing and what error values should be failing, and
then it can compare the calculated error value of a print to these reference values
β to determine the quality of the print during step 8 of Fig. 3b.

By visually determining whether or not a print should pass and recording
the calculated error value as well as the analysis parameters used, we could



212 S. Hurd et al.

experimentally discover threshold values that marked the line between a passing
print and a failing print. After discovering these values and reporting them to the
mobile device, a simple comparison between the calculated error e for any given
print and the appropriate reference value β based on the analysis parameters
can determine whether or not the print should continue.

5 Empirical Results

5.1 Experimental Platform

An important consideration in this research was the real-world performance
of a mobile device in detecting errors on 3D prints. We conducted a series of
experiments to compare the performance, in terms of accuracy and speed, of
both image analysis approaches. We also provide data on how effective functions
for calculating the error threshold, β, can be determined.

To conduct the experiments, we used a Samsung Galaxy Tab 3 running
Android 4.4.2. The device has 8.0 GB of ROM and 1.0 GB of RAM and features
a 3.0 megapixel camera. The screen is 7 in. and 1280 pixels by 800 pixels [18].
To hold the device over the printerbed, we used a modified desk lamp.

The 3D printing device we used for making the objects is a Makerbot M2
printing with black PLA. The nozzle was set to 200◦C and the printerbed tem-
perature was set to 70◦C for all of the tests. The glass of the printerbed was also
covered with blue painters tape that has gold lettering to easily contrast with
the black PLA.

5.2 Experiment 1: Image Subtraction Analysis

First, we tested our algorithm that uses image subtraction on various prints of
differing qualities to experimentally discover threshold error values that indicate
when an object has too much error. Discovering these values allows us to solve
Challenge 6 presented in Sect. 3.4 as we can compare a calculated error value
to our threshold error values to determine the quality of a printed object. The
data collected in this experiment will also show the ability of the subtraction
algorithm to consistently produce similar error values for similar quality prints.

Hypothesis: Threshold Error Values. Our hypothesis was that there is a
threshold error value for each permutation of subtraction analysis parameters
that can be used to distinguish between passing and failing prints.

Experiment 1 Results. To experimentally discover the various error threshold
values for different parameters, we collected data by executing the image sub-
traction algorithm on objects we printed and recording the calculated error value
as well as whether or not the print should pass. Figure 4a illustrates the results of
varying the buffer parameter while keeping the internal search parameter false.
While there is not a clear division between accepted prints and not accepted
prints, we were able to determine a threshold line, indicated by the dotted line



Quality Assurance 213

on the graph, that most accurately divides the two. When performing subtraction
analysis not searching for internal error, we found that error = −0.0057x+.0365,
where x is the buffer value, is a good indication of print quality with error values
below that line passing and error values above that line not passing.

(a) Only searching for external error. (b) Searching for internal and external
error.

Fig. 4. Passing and failing prints when using the subtraction algorithm

Similarly, we collected data to discover the threshold error values when run-
ning the subtraction algorithm, processing the image for internal error and vary-
ing the error buffer. Figure 4b shows the results of these tests. Once again, there
is not a clear division between accepted prints and not accepted prints, but we
are able to determine a threshold line, the dashed line on the graph, that most
accurately divides the two. When performing subtraction analysis and process-
ing for internal error, we found that error = −0.0074x + .055, where x is the
buffer value, is a good indication of the print quality. Prints with error values
above this line are not accepted, and prints with error values below this line are
passing.

From this experiment we discovered that we can use our subtraction algo-
rithm to distinguish between good and bad prints with some accuracy. Table 1
contains various percent error values that signify that the algorithm is most suc-
cessful when a 5 pixel buffer is added. This buffer allows our algorithm to be
more robust to account for positioning errors discussed in Sect. 3.3. Addition-
ally, Table 1 also indicates that false positives are not very likely when using this
algorithm meaning that prints that should fail typically do fail, which indicates
that this algorithm effectively stops failed prints.

5.3 Experiment 2: Image Searching Analysis

Next, we tested our algorithm that uses an image searching process to find error
in printed objects to experimentally discover threshold error values that indicate



214 S. Hurd et al.

Table 1. Percent errors when using the subtraction algorithm with at least 25 samples
for each calculation.

0 Error Pixels

False negative 0.214286

False positive 0.125

Overall 0.173077

5 Error Pixels

False negative 0.074074

False positive 0

Overall 0.040816

Average

False negative 0.178947

False positive 0.101266

Overall 0.156069

when an object has too much error. We are also able to compare the results of
using this algorithm to the results of using the image subtraction algorithm
discussed in Sect. 5.2 to see which algorithm does a better job identifying the
quality of a print. The data collected in this experiment will also help to solve
Challenge 6 presented in Sect. 3.4 as we are experimentally finding values that
can help us determine the quality of a print.

Hypothesis: Error Threshold Values. Our hypothesis was that there is a
threshold error value for each permutation of searching analysis parameters that
can be used to distinguish between passing and failing prints and that the results
of using the searching analysis will be similar to results when using the subtrac-
tion analysis.

Experiment 2 Results. To experimentally discover the various error threshold
values for different parameters when using the image searching algorithm, we
printed out various objects and ran the image searching algorithm on them.
By varying the parameters of the search - whether or not to search inside the
object for internal error and adding an error buffer - we were able to collect data
that helps us to determine the threshold values that indicate an erroneous print.
Initially we ran tests where the image searching algorithm did not search for
internal error, and we only varied the error buffer parameter, and by recording
whether or not a print should pass as well as the calculated error value, we
were able to generate the graph pictured in Fig. 5a. While accepted prints and
not accepted prints are not clearly divided from each other, we were able to
determine a threshold line, indicated by the dotted line n the graph, that can
be used to most accurately predict the quality of a print. When running the
image searching algorithm and not searching for internal error, we found that
error = −0.0063x + 0.039 where x is the buffer value, is a good indication of



Quality Assurance 215

print quality with error values below that line passing and error values above
that line not passing.

(a) Only searching for external error. (b) Searching for internal and external
error.

Fig. 5. Passing and failing prints when using the searching algorithm

After collecting the appropriate data for figuring out threshold values when
not searching objects for internal error, we then conducted the same tests, but
this time we did search for internal error. Figure 5b illustrates the results of
searching the internal and external areas of the object for error using the image
searching algorithm and varying the error buffer. Once again, the accepted prints
and not accepted prints are not clearly separate, but we can find a threshold
line - the dotted line in the graph - that most accurately defines an appropriate
boundary. We found that error = −0.007x + 0.05, where x is the error buffer,
is a good indication of print quality where error values above this line are not
accepted and error values below this line are accepted

From this experiment, we did discover threshold values that can be used with
some accuracy to differentiate between prints that should be accepted and prints
that should not be accepted. Table 2 contains various percent error values that
help show the accuracy of this method. Similarly to the results found in Experi-
ment 1 in Sect. 5.2, using the image searching algorithm produces relatively low
percent error especially in terms of false positives meaning that this algorithm
only rarely continues a print that is of low quality. These results also indicate
that both the image subtraction analysis and the image searching analysis are
valid ways to detect errors in a print.

5.4 Experiment 3: Correlations Between Size and Analyzation
Speed

Finally, we determined the cost of running the analysis program and whether
the searching or subtraction method was faster. Each time a test is run over the



216 S. Hurd et al.

Table 2. Percent errors when using the searching algorithm with at least 25 samples
for each calculation.

0 Error Pixels

False negative 0.285714286

False positive 0.125

Overall 0.2115

5 Error Pixels

False negative 0.148148148

False positive 0

Overall .08

Average

False negative 0.242105

False positive 0.088608

Overall 0.201149

printed object, x amount of time is added to the process, with x being dependent
upon the size of the object printed and the parameters for error allowance entered
by the user.

Hypothesis: Time Increase with Added Size and Error Pixels. We
hypothesized that through running these experiments, we would find that more
error pixels and larger objects result in a slowing down of the analysis.

Experiment 3 Results. There are three main components that consume time:

1. Moving from the final location of printing to the home position required to run
analysis provides a constant, baseline amount of time that does not change
with variation of the parameters. The average time during our experiments
was 4.718 s, with a range from 4.24 s to 5.16 s.

2. Actually running the analysis may vary based on the size of the object, and
the number of error pixels added to the outside of the object. The graphs
shown in Fig. 6a and b detail results of the time taken to perform search and
subtraction, with varying size and parameters. Our results indicate that, from
a time standpoint, simply using the searching algorithm is better, especially
for larger objects.

3. Lastly, returning to the print after analysis provides another constant time.
The average time calculated during our experiments was 9.145 s with a range
from 7.94 s to 10.56 s.

Adding each of the formerly stated three process steps together returns the
total time cost of the entire procedure. Figure 6a and b show the distinct corre-
lation between the upward trends of both the search and subtraction methods
based upon increasing numbers of error pixels that must be searched during the
analyses. Comparing the two graphs also leads to the conclusion that the image



Quality Assurance 217

(a) Subtraction Algorithm. (b) Searching Algorithm.

Fig. 6. Algorithm execution times based on object size and error buffer.

searching algorithm is faster than the image subtraction algorithm, especially
on larger prints and when the error buffer increases.

5.5 Analysis of Results

The data we collected during testing indicates that our process can effectively
and consistently identify error location in a print. Additionally, using this iden-
tification, it can then identify with fairly high accuracy whether or not a print
should continue.

We experimented with two different algorithms, and the results of those
experiments indicate that the image searching algorithm is a better algorithm
than the image subtraction algorithm. While comparison of the results from
Experiment 1 in Sect. 5.2 and Experiment 2 in Sect. 5.3 leads to the conclusion
that the two algorithms produce similar results in determining the quality of a
print, Experiment 3 in Sect. 5.4 indicates that the image searching algorithm is
a faster method.

In all experiments we printed out objects of different shapes and sizes to
run the tests. While the different sizes had a large impact on execution time as
outlined in Sect. 5.4, the size of the object seemingly had very little bearing on
the calculated error value. Results from Experiments 1 and 2 in Sects. 5.2 and
5.3 show that all sizes of objects have the same error threshold value that can
be used to determine the quality of a print.

We completely solved the problem because we were able to develop an easy
to use process that accurately identified 3D printing errors. While some prints
during testing stopped when they could have continued, very few failed prints
continued, and this was the goal of our work. We are able to stop failed prints
with our work.

Our data also shows that we are better than existing approaches. Most quality
assurance processes are either industrial solutions or analyze finished product,
but we were able to design a cost-effective mid-print quality assurance process.



218 S. Hurd et al.

While our solution works in many instances, there are places that it does not
perform as well. As the print approaches its last layers, it sometimes creates a
shadow and this shadow is sometimes perceived as error by the mobile device.
Additionally, it is time consuming to perform analysis, and the break in printing
that occurs during the analysis can occasionally cause improper extrusion when
the device returns to printing.

6 Related Work

Although three dimensional printers have been available since the late 20th cen-
tury, little research has been done to ensure the quality of a product while
printing [13].

Though the taxonomy of our research is nebulous on account of the many uses
and possibilities for additive manufacturing, it is clear that all research utilizing
three dimensional printers face the same issue of security and needing a guarantee
that precious time and resources will not be wasted in making a faulty object.
Other examples of similar work number very few, revealing the necessity for a
sort of quality assurance when printing [14]. Developers have begun to integrate
sensors into their additive manufacturing processes to maintain constant, perfect
conditions. Others detect structural insecurities in designs and fix them prior to
printing. Areas such as those in the medical industry troubleshoot until theyve
built a quality product, then design it with renewing chemicals to repair itself
should any damage occur after its been created.

Monitoring Manufacturing Conditions During Print. Sigma Labs [5]
patented a program in spring 2014 that balances the amount of energy entering
the powder layer of an additive manufacturing machine to maintain a constant,
ideal temperature for the product. While their controlling sensor monitors the
object and fabricating conditions throughout the process, our analyzation runs
after a certain time interval or number of layers, depending upon user input.
Instead of controlling situational parameters, we test the freshly manufactured
hardware to determine whether or not it is a quality product and thus whether
the build should be terminated.

Structural Security in Design. Benes [8] collaborated with Adobes Advanced
Technology Labs to develop a software that detects weaknesses in initial STL-
type files that are sent to printers. Instead of spending time and resources to
fabricate large, layered designs, their program identifies weak and structurally
unsound areas on the design template, then fixes these frailties so that the printer
is sent a stronger, more durable construction.

Self Renewing Materials Post-construction. Lewis and White et al. [9]
began researching printable materials to self-healing organs or vessels made of
tissue similar to that found naturally in the human body [19]. Their approach
to mending damaged or flawed printed products is to implant chemicals within
them to detect a change in the structure and release healing cells when erosion
occurs. Though our project detects flaws during the building process to create



Quality Assurance 219

an ideal result, it is not specific to a need such as medical implantation, and
thus does not require a self-mending feature.

Optical Assessment of Print with Robot. The most similar design to ours
appeared recently from Alcona in the form of a multi-axis robot attached to a
sensor [20]. This setup requires the purchase of the robot and sensor, and is not
mobile as ours is; however, the design allows a live, constantly updating look at
the quality of a print throughout the printing process. While printers are not
updated as to whether the print is performing well or not if they are not present
and observing the setup, it is indeed a powerful tool to quickly and accurately
provide quality assurance without pausing the print after a certain number of
layers or amount of time as ours does.

7 Concluding Remarks

It is challenging to determine the quality of a 3D printed object. This paper
describes how we were able to use a mobile device and computer vision to identify
errors in a print and then distinguish between prints that should be continued
and prints that should stop.

The following are lessons learned from our efforts thus far:

– By adding an error buffer, we created a robust analysis process that could
accurately identify printing errors and then determine the quality of a print
even when the mobile device’s positioning is slightly off.

– In future work, we plan to develop a faster algorithm for determining error to
reduce the time cost of using the analysis during a print.

This research has been supported in part by the National Science Foundation
and Department of Homeland Security through Grant #CNS1446303.

References

1. Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies: 3D Print-
ing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd edn. Springer, New
York (2015)

2. 3D Printing Creates New Parts for Aircraft Engines. GE Global Research, Web.
13 July 2015

3. Rega, S.: How 3D Printing Will Revolutionize Our World. Business Insider. Busi-
ness Insider Inc., 22 August 2014, Web. 27 July 2015

4. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R.: Organ printing:
computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21(4), 157–161
(2003)

5. Sigma Labs, Inc.: Announces Patent Filing of Unique Sensor Invention That Helps
Both Process Development and Quality Assurance in Additive Manufacting of
Metal Components. Sigma Labs Inc. , 25 March 2014, Web. 10 July 2015

6. Millsaps, B.B.: Trinckle 3Ds Free Error Detection Service: No More Misprints!.
3DPrintcom, 17 October 2014, Web. 10 July 2015



220 S. Hurd et al.

7. DeWeese, T., Hardy, V.: Introduction to the Batik Project [PDF document].
http://old.koalateam.com/ftp/batik/apacheCon.pdf

8. Walton, Z.: Purdue University Professor Fixes Major Flaw In 3D Printing -
WebProNews. WebProNews. 19 September 2012, Web. 21 July 2015

9. Groopman, J.: Print Thyself. New Yorker, 24 November 2014, Web. 7 July 2015
10. Cel Robox 3d Printer Review. IT Pro, Web. 29 July 2015
11. FAQ: CubeX 3D Printer. Cubify, Web. 28 July 2015
12. Gibson, I., Stucker, B., Rosen, D.: Additive Manufacturing Technologies, 2nd edn.

Springer, New York (2015)
13. History of 3D Printing: 3D Printing Industry. May 2015, Web. 29 July 2015
14. Molitch-Hou, M.: EOS Partnership Signals 3D Printing Quality Assurance for

Aerospace. 3D Printing Industry, 21 January 2015, Web. 29 July 2015
15. Parse: Parse, Web. 29 July 2015
16. PrintRun: Pronterface, Web. 29 July 2015
17. Royte, E.: Corn Plastic to the Rescue. Smithsonian. August 2006, Web. 29 July

2015
18. Samsung Lays Out Which Devices Will Get Android 4.4.2 KitKat. Android Cen-

tral, Web. 29 July 2015
19. Soft Tissue Repair and Healing Review. Electrotherapy, Web. 29 July 2015
20. Woodcock, J.: 3D Metrology Robot for Automated Optical Quality Assurance.

TCT, 27 July 2015, Web. 30 July 2015

http://old.koalateam.com/ftp/batik/apacheCon.pdf


Interactively Set up a Multi-display
of Mobile Devices

Peter Barth(B) and Manuel Pras

Hochschule RheinMain, University of Applied Sciences,
Kurt-Schumacher-Ring 18, Wiesbaden 65197, Germany

peter.barth@hs-rm.de, mail@manuelpras.de

Abstract. We provide a method to interactively set up a multi-display
using a combination of multi and single device gestures. An initial setup
provides a coarse grained model. Test pictures and user judgement based
on the human visual system then guide a fine grained interactive process.
This allows the user to move and rotate single screens until differences
between physical and model position are no longer perceived. To this end,
a central computer holds the model and connects among all participating
smartphones and tablets with different physical dimensions and display
resolutions. In addition, it evaluates gestures and prepares as well as
distributes images on the multi-display.

Keywords: Multi-display · Interaction · Smartphone · Visual system ·
Network graphics

1 Introduction

The sheer number of smartphones and tablets pushed into the market makes
mobile devices available in large quantities. Each device has a high resolution
display and provides touch interaction. However, each individual display is still
comparatively small and typically supports interaction with one user only. With
a comparatively small investment or being a group of people, many devices are
available. These devices may be joined to provide one large display, a multi-
display, for interactive applications or just the visualisation of single screens. To
set up a flexible multi-display, we need to know the position of each individual
device that constitutes the multi-display.

We propose an interactive method to quickly reconstruct the position of many
devices that form a multi-display. Instead of relying on cameras and computer
vision techniques [8], we employ the error detection capabilities of the human
visual system until perceived accuracy satisfies the user. We can then display
any image on the modelled multi-display. Typical applications include image and
slide shows as depicted in Fig. 1, as well as tickers, games and videos [9]. These
applications all depend on having a single canvas where each devices shows just
a portion of one large image.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 221–238, 2015.
DOI: 10.1007/978-3-319-29003-4 13



222 P. Barth and M. Pras

Fig. 1. Multi-display showing an image

2 Related Work

Most often multi-displays are found in fixed installations where the location and
position of the often homogeneous displays are known. Systems range from the
Nintendo DS over laptops with slide out screens such as the Gscreen Spacebook
to expensive commercial multi-displays to be used in fairs and exhibitions con-
sisting of many large monitors or even many projectors joined together [8]. While
these setups offer an harmonic user experience, they require dedicated hardware
and do not support spontaneous scenarios or reusing a multitude of different
displays at hand.

Traditionally, forming multi-displays relies on computer vision techniques [2,
3,5–7]. These techniques suffer from external conditions of the surrounding envi-
ronment and can most often not be used in sunlight or other direct light from
above. In contrast, they do not require interacting with the device and are thus
less likely to change the position of the devices during setup.

Schmitz et al. [8] were first to realise that smartphones and tablets are well
suited to support multi-displays. They propose to combine a collection of hetero-
geneous devices to form a single screen multi-display. Their main contribution
is a calibration process relying on computer vision combined with manual fine
tuning and supporting any possible distribution of the devices on a flat surface.
They have already realised, that a manual calibration procedure using gestures
is not only useful, but may be sufficient. Although they favour the automatic
camera based calibration, they support skipping it altogether. They chose com-
munication over Wi-Fi instead of Bluetooth to achieve acceptable latency and
high bandwidth. As test image during manual calibration they use a checker
board which has concentric circles as overlay. User tests indicated that centring



Interactively Set up a Multi-display of Mobile Devices 223

Fig. 2. Model of a multi-display with position and rotation angle

the test image on the device currently being adjusted helps the users to focus.
They provide user evaluation setting up a multi-display consisting of four devices
and report using up to seven mobile devices with displays using different reso-
lutions.

3 Interactive Multi-Display Setup

We support any non-overlapping distribution of mobile devices on a flat surface.
We distribute an image on the devices constituting the multi-display once the
layout is known. Here, we concentrate on setting up the model. An accurate
representation needs to know the exact position of each device as depicted in
Fig. 2. For each device we need to know the physical width and height as well
as the number of pixels in x and y direction of its screen, assuming classical
portrait mode. Using any origin on the surface, it is sufficient to know the x and
y coordinates of the centre of each display as well as its rotation angle. We opted
for right rotation with 0 degrees for a device in upright portrait mode. We always
use an origin such that all mobile devices are to the right and under the origin.
Thus, each centre point has positive values in millimetres and rotation angles are
between 0 and 360 degrees. We differentiate between the device model and one
physical instance of it. Of the device model we know the physical dimensions and
pixels. Of the physical instance we know its centre point position and rotation.
Thus, to alter a model we adjust only three values per participating device
instance.

Our main contribution is an interactive procedure to adjust the computer
model of the position of the participating devices to the actual physical setup.



224 P. Barth and M. Pras

We rely exclusively on gestures and the human visual system as well as human
judgement to achieve sufficient perceived accuracy. We differentiate between two
modes of interaction. First, we compute a coarse grained model capturing align-
ment of the participating devices. We assume a row based layout, such that
each device is a member of a row. With a simple series of multi-device ges-
tures – swiping row-wise from left to right – we compute an initial model. We
update the model each time the swiping finger leaves a device and refresh the
test image. Then, we use a series of gestures on single devices to express move-
ment or rotation of an individual device. We use these gestures to adjust the
modelled position of this device. The user sees the result of the interaction with
each currently touched device immediately. Therefore, the user can employ the
human visual system to identify errors and cognitive abilities to improve the
model.

3.1 Test Images

Users shall decide whether the model represents the actual setup based on test
images shown on the multi-display. The test images used during both the coarse
grained and fine grained calibration step serve two purposes: identify a device
that needs to be adjust and correct the positional error of that device. To identify
a device that needs to be adjusted, we need a global test image, that allows
to spot any offset in position or rotation. We propose to use intersecting lines
combined with coloured concentric circles such as in Fig. 3. The concentric circles
help best to spot position offsets as even small errors are identified as oval by
the visual system. In addition, the lines serve to identify rotation errors, which
appear as bend. Test images are always shown on all devices and if necessary
centred to the barycentre and scaled in advance to cover the entire multi-display.
Furthermore, the central computer visualises the current model on its screen to
mimic the setup. Thus, the user may compare again visually the current model
to what is laid out on the surface as in Fig. 3. This is helpful to spot very large
offsets.

In the correction phase the current position in the model of the individual
devices is manually corrected. We propose an alternative test image as in Fig. 4.
A collection of equidistant coloured lines is used, that intersect on the first touch
point of the device to be adjusted. Thus, the user can concentrate on the device
being positioned and perceives errors in its position and rotation angle more
easily.

3.2 Coarse Grained Initial Position

For initial setup, we assume that all devices are members of a row, but the
devices need not be aligned. For the gesture, the user swipes over all devices
from left to right, row by row from top to bottom. For each device, we compute
a straight line from the touch points using linear regression. Based on the entry
and exit points on each device of a row, we can compute its absolute position
as in Fig. 5. For this, we postulate that the user performed a straight line with



Interactively Set up a Multi-display of Mobile Devices 225

Fig. 3. Test image of coloured concentric circles and intersecting lines (Color figure
online)

Fig. 4. Test image to adjust single device



226 P. Barth and M. Pras

Fig. 5. Swipe across two devices

constant speed between each pair of devices. Although this assumption will not
hold exactly, it gives us a near enough approximation and allows to build our
initial model quickly. Thus, the devices are always in the correct relative position.
Showing a test image allows to start the fine grained calibration on a good basis.
The horizontal position is never off more than half the dimension of the device
screen.

To guess the distance between exit point on one device and entry point on
its right neighbour, we need to measure the duration between these two events.
We compute time differences of each device against the central computer and
thus adjust device times to an absolute time. This adjustment uses standard
techniques [4] and is not visible to the user. It is performed before any multi-
display calibration starts. Note, that during adjustment, we do not send images
or other bulk binary data in order to keep the variance of the round trip time
low. Typically, we experience maximal errors within a single digit millisecond
range.

We need to detect when we reach the right end of a row and after that the
next row starts. One option is to measure the (adjusted) absolute time between
device exit and device entry. We only support initial layouts where neighbouring
devices have no huge gaps in between, which is sensible for a multi-display. We
set the maximal gap to 7 cm. This means that if two devices are more than 7 cm
apart horizontally, we assume that the second device marks the start of the next
row.

However, while this works in practice, the approach is not always adequate.
An alternative is changing the direction at each row. Although that approach
is very stable, it implicitly assumes that orientation of all devices is upright
portrait mode. If a device is flipped, an incorrect row change may be detected.
This may be compensated by using the compass.

With these two options we only have information about each individual row
but no information about the distance between two rows. Assuming that the
multi-display does not have huge gaps between rows, the left-most device of
each row gets vertically aligned using the lower border of the previous row as in



Interactively Set up a Multi-display of Mobile Devices 227

Fig. 6. Vertical alignment using row borders

Fig. 6. This means that the upper border of the left-most device equates with
the lower border of the previous row. To accommodate for frames of the mobile
devices, we can either assume a fixed average frame border or use dedicated
device specific information. Note, that we assume the left-most devices to be left
aligned in order to determine the horizontal position of the left-most device of
each row. Again, we think that this is a plausible assumption for most multi-
display setups.

We may relax that assumption and only require that there is a left-most
column. Then we would add as final step a swipe on the left-most column of
the devices from top to bottom as in Fig. 7. The computation is similar to the
one we did per row. With the resulting distance between the centre points of all
devices in vertical direction, the initial model can be build again.

3.3 Fine Grained Absolute Position

Given a model, we rely on the visual system of the user to spot errors and his
or her cognitive abilities to manually improve the model. These two steps are
repeated until the final model matches the physical setup with good enough
perceived accuracy. To do so, the user can adjust the position and the rotation
angle of each individual device. It is important, that the feedback of gestures
happens immediately in order to employ the visual system of the user. Thus, we
do not distribute images over the network. Instead, we compute the corrected
image on the device that is being adjusted and show the correction effects locally
as quickly as possible. Therefore, we do not suffer from lagging screen updates
impairing the direct interaction cycle. We visualise a dedicated device centred
test image as in Fig. 4 on the entire multi-display as soon as a manipulation
gesture starts on a device. To save bandwidth, we currently only distribute the



228 P. Barth and M. Pras

Fig. 7. Additional vertical swipe for row detection and alignment

image to the nearest four neighbours as they are the ones the visual system
most likely uses as reference to detect errors. Typically, the test image with
device centred lines on the four nearest neighbours allows users to spot and
quantify offsets accurately.

We support changing position or rotation with different gestures as depicted
in Fig. 8. We change position using a single touch point as in Fig. 8 left and
rotation using two touch points as in Fig. 8 right.

To this end, we evaluate the gestures on the device and translate and rotate
the image on the device. During a gesture, we need to cover the entire display
with a single test image. Therefore, we use a test image that is 100 percent
larger in each direction than the actual screen of the device. This allows to show
complete images during all single stroke adjustments.

The translation gesture is straightforward. The user touches the device and
moves the image around until the image fits the idealised image. After releasing
the finger, we compute the offset and send the offset to the central computer.
There, the model is updated and freshly generated parts of the test image are
distributed. Note, that the model visualised on the central computer screen is



Interactively Set up a Multi-display of Mobile Devices 229

Fig. 8. Translation and rotation gesture

not updated during adjustment. This is not necessary. The user shall concentrate
on the manipulated and nearest devices while having the finger on the device.

The rotation gesture is slightly more complex. We may use two fingers of
different hands or two fingers of one hand as with a typical pinch gesture. To
fluently switch between translation and rotation we suggest to use one finger
of one hand to translate. To rotate, keep on finger on the screen and touch it
with a finger of the other hand. Moving the second touch point while holding
the first manipulates the rotation angle. The distance between the two fingers
is used to calibrate the effect of rotation. Bringing them closer together allows
for a more coarse grained rotation, while moving them apart allows for a finer
grained rotation adjustment. We amplified this natural effect to allow for better
control. The further apart the two fingers are, the less is the effect of the circular
arc on the rotation angle.

3.4 Differentiate Among Gestures

One challenge is to differentiate among the different gestures. We have three dif-
ferent gestures in two phases. In the initial phase there is swiping entire devices.
In the correction phase there is translation with one finger and rotation with two
fingers. We differentiate between the translation and the rotation gesture using
the current finger count. As long as there is only one finger touching the screen
it is a translation gesture. As soon as another finger joins the device screen the
gesture changes to a rotation gesture.



230 P. Barth and M. Pras

Fig. 9. Display sections to differentiate between initial and fine grained gestures

We may want to differentiate between the coarse grained initial phase and
the fine grained correction phase. Note, that after the start of a fine grained
phase there won’t be a coarse grained phase again. This may only happen, if
the user wants to start over because the device layout has changed dramatically,
was wrong to start with, additional devices have joined, or the results are unsat-
isfactory. Based on the location of the first touch point (as shown in Fig. 9), we
can reliably recognise coarse a grained setup during the entire gesture. Note,
that we expect the user to swipe the complete screen of the device in the coarse
grained phase. Thus, the user will start a swipe gesture on the border of the
mobile device. Furthermore, the user will naturally – and if not by training –
put a translation or rotation start point in the centre of the device to retain
more degrees of freedom. Thus, we can partition the device screen into an inner
and an outer area. We recognise a coarse grained calibration in the outer area
and a fine grained calibration in the inner area. A working setup is to divide the
display area into three equally sized parts in horizontal and vertical direction
as depicted in Fig. 9, but that may be changed. Therefore, users can do a fine
grained adjustment or start over by executing at any time any gestures they
have in mind without being forced to use meta commands.



Interactively Set up a Multi-display of Mobile Devices 231

Fig. 10. Single steps for creating an image portion

4 Image Preparation and Distribution

The central computer holds the multi-display model and the image to be shown
on the multi-display. The image will be shown on the bounding box of the
individual displays of the multi-display. First, the bounding box and thus the
individual display positions are scaled to fit the image. For example, we start
with the left-most image in Fig. 10. Next, we need to construct the correctly
sized and rotated image parts per individual display. To this end, we cut out
rectangular pieces. We make sure that any later rotation will be covered by
using the diameter as side length of the rectangular piece. This results in the
second picture in Fig. 10. Next, we rotate the image by the screen’s negated
rotation angle to compensate for the device rotation in the physical setup. This
gives the third picture in Fig. 10. Finally, we cut out the rectangular image and
scale it to the resolution of the target device. We get the right-most picture
in Fig. 10. This image is then sent to the device and there shown without any
further processing.

We base our data communication on Blaubot [1], which provides distributing
messages among a collection of mobile devices and potentially connected central
machines. Blaubot supports both Bluetooth and Wi-Fi out of the box and the
underlying transmission technology can be selected by configuration. During the
production phase most often high resolution images are regularly distributed to
all devices. Because of the high bandwidth requirements, we rely on Wi-Fi.

5 Evaluation

We evaluated the simplicity and accuracy of the proposed calibration method
through user tests. With adequate test images an accuracy within a 1–2 mm
error margin is routinely attainable by untrained users in 2 min on average.

5.1 Participants and Setup

We run the tests with six participants, two female and four male. All participants
own a smartphone for at least two years and are between 21 and 29 years old.



232 P. Barth and M. Pras

The different tasks of the evaluation are performed using three different smart-
phone models running Android 4.0 or higher (HTC Desire, HTC Legend, and
Motorola Milestone). The mobile devices were released between 2009 and 2010
and represent the low end of the currently running Android devices. While the
screens of those devices have about the same dimension, they vary in resolution.

5.2 Tasks

The participants had to solve three different tasks, two of which were divided
into two sub tasks. This gives a total of five sub tasks. As part of the first task
the participants were asked to build a 2 × 3 device matrix and set up a multi-
display as in Fig. 11 left. After the participants had finished the calibration, the
multi-display showed a checker board pattern, which allowed them to rate the
accuracy.

Fig. 11. 2×3 matrix for a checker board (left) and swapped and flipped devices (right)

The second task focused on the ability to detect and fix large errors between
physical setup and the multi-display model using different test images. The
coloured concentric circles image was compared with an alternative image, con-
sisting of a coloured grid as in Fig. 12 left. In order to compare those two test
images the second task was divided into two sub tasks. In both sub tasks the
participants were asked to identify and fix two large errors in the multi-display
as in Fig. 11 right. The first error consisted of a random swap of two devices in
the setup. The second error was a 180◦ rotation of one of the remaining devices.



Interactively Set up a Multi-display of Mobile Devices 233

While the first sub task used the concentric circles as test image, the second sub
task used the alternative grid image.

Fig. 12. The two test image alternatives used in the evaluation

The third task evaluated the adequacy of the test image for the fine grained
calibration step. We compared equidistant coloured lines with monochrome con-
centric circles as in Fig. 12 right. The participants were asked to build a 2 × 2
matrix for displaying a picture showing buildings as in Fig. 13.

Due to its geometric patterns, this type of subject is suitable for judging the
accuracy of the multi-display setup. Again, this task consisted of two sub tasks.
One sub task used the equidistant coloured lines as test image, the other sub
task used monochrome concentric circles.

5.3 Procedure

After filling in personal background information, the participants watched a
tutorial video in order to learn the basic steps of the multi-display setup. To
familiarise themselves with this process, they set up a 2 × 2 matrix under the
supervision of an expert before processing the five sub tasks. Following each
processed sub task the participants rated the difficulty of solving the task as
well as the accuracy of the multi-display setup. The accuracy rating of the multi-
display setup was done for all participants by one neutral observer. The rating
was done on a Likert scale between one (least agreement) and four (most agree-
ment).

In addition to those subjective ratings we were also interested in the measured
offsets between the physical setup and the multi-display model. After the test
was over, we measured the remaining offsets of the multi-display. We showed a
generated test pattern consisting of horizontal and vertical lines with a distance
of 1 cm as in Fig. 14. We then took a picture of the multi-display setup and used



234 P. Barth and M. Pras

Fig. 13. Final image shown in production phase

it to measure the offset using image processing tools between each neighbouring
pair of devices.

5.4 Results

The evaluation of the first and the third task shows that the resulting model
of the actual physical layout can be adjusted to satisfy users for most common
visualisation tasks. To achieve such a result, it is crucial to use adequate test
images for both the coarse as well as for the fine grained calibration phase.
This claim is supported by the results of the second (Fig. 15) and the third task
(Fig. 16). The test image consisting of equidistant coloured lines is best suited for



Interactively Set up a Multi-display of Mobile Devices 235

Fig. 14. Test pattern for measuring the offsets of the multi-display setups

the fine grained phase. The test image consisting of coloured concentric circles
is best suited for the coarse grained calibration phase.

With the test image consisting of equidistant coloured lines all participants
found the calibration of a multi-display to be easy or very easy (Fig. 17). In
addition, they rated the perceived quality of the display setup to be accurate or
very accurate (Fig. 16). With the monochrome concentric circles as test image the
participants found calibration to be hard or very hard. They rated the quality of
the display setup to be only 2–3. These results reflect the need of using adequate
test images for an easy to use and accurate interactive setup of a multi-display.

As the results of the second task show this does not only apply for the fine
grained calibration step but also for the coarse grained calibration step. With
the test image consisting of coloured concentric circles the participants found
the task of identifying the permutation and rotation of the devices to be very
easy. But with the test image consisting of coloured grids the participants only
identified and fixed half of the offsets (Fig. 15). In this case they found the task
of identifying the offsets to be hard or very hard. Moreover the participants only
identified and fixed half of the offsets in the multi-display setup compared to the
test image consisting of coloured concentric circles.



236 P. Barth and M. Pras

E
rr

or
s

0

2

4

6
Task 2a

identified fixed

Task 2b

Fig. 15. Identified and fixed errors, second task (Color figure online)

V
ot

es

0

2

4

6

very inacc. inaccurate accurate very acc.

Task 3a Task 3b

Fig. 16. Perceived accuracy, third task (Color figure online)

V
ot

es

0

2

4

6

very hard hard easy very easy

Task 1 Task 2a Task 2b
Task 3a Task 3b

Fig. 17. Complexity of solving the five tasks (Color figure online)

In addition to evaluating perceived accuracy we also photographed the gen-
erated test pattern and measured accuracy of the multi-display model. The mea-
sured offsets between model and physical setup for each pair of individual devices
were mostly between 1 and 2 mm. There have been few exceptions of up to 8 mm,
depending on participant and task (Fig. 18). With the proposed test images the
offsets turned out to be significantly smaller compared to the multi-displays
which were set up using one of the alternative patterns.

The average processing time of the three tasks was 116 s as in Table 1. The
individual processing time not only depends on the participant but also on the
task as well as the test image used for setting up the multi-display. With the
alternative test image the processing time was 15–50 % higher in comparison to
the proposed test images.



Interactively Set up a Multi-display of Mobile Devices 237

O
ff

se
t (

m
m

)

0

2

4

6

8

P1 P2 P3 P4 P5 P6

Task 1 Task 3a Task 3b

Fig. 18. Measured accuracy per participant (Color figure online)

Table 1. Average processing times in seconds

Task 1 2a 2b 3a 3b

min 55 43 63 68 54

Ø 102 107 164 98 113

max 142 300 256 181 241

Note, that the user may unintentionally move the device physically while
applying the gestures. This may happen if the friction between device and surface
is very small, which is not the case for typical office tables (medium-density
fibreboard), or the users applies too much force. We have experienced these
issues only during the coarse grained phase, if the devices are too far apart. If
that happens, the users adjust the physical layout to the intended layout by
moving the devices physically. After that the fine-grained gestures are applied,
which is possible without unintentionally moving the devices physically.

6 Conclusion

The visual system of human users paired with their cognitive capabilities can be
used to quickly build a multi-display consisting of heterogeneous mobile devices
including smartphones and tablets. The resulting model of the actual physi-
cal layout on a flat surface can be adjusted to comply with enough perceived
accuracy for most common visualisation tasks.

The main contribution is a two phased interactive method to first build a
coarse grained model followed by a fine grained correction phase. Users do not
need to leave the interaction mode and can continuously use any of the three
offered gestures. This allows them to quickly set up a multi-display consisting
of many devices and correct them accurately with dedicated test images and
immediate feedback on their actions. The setup is limited to multi-displays that



238 P. Barth and M. Pras

are at least in the initial phase almost row-based and left-aligned. In the opinion
of the authors this covers most multi-display scenarios.

In the future, we plan to use additional sensors for setting up the multi-
display. For example, magnetic sensors provide a compass which already gives
at least coarse grained rotation information. In addition to touch points, we may
use light sensors or approximation sensors instead of touch points for computing
the initial layout. This might not be as accurate as the touch points, but it is
contactless and thus prevents modifying the physical layout during the initial
phase. In addition, we plan to enhance the framework to allow touch interac-
tions on the set up multi-display. Thus, we use the multi-display not only for
visualisation but for interaction as well.

References

1. Barth, P., Groß, H., Pras, M.: Blaubot middleware, March 2015. https://github.
com/Blaubot

2. Chen, H., Sukthankar, R., Wallace, G., Li, K.: Scalable alignment of large-format
multi-projector displays using camera homography trees. In: IEEE Visualization,
pp. 339–346 (2002)

3. Chen, Y., Clark, D. W., Finkelstein, A., Housel, T.C., Li, K.: Automatic alignment
of high-resolution multi-projector displays using an uncalibrated camera. In: IEEE
Visualization, pp. 125–130, October 2000

4. Cristian, F.: Probabilistic clock synchronization. Distrib. Comput. 3(3), 146–158
(1989)

5. Li, M., Kobbelt, L.: Dynamic tiling display: building an interactive display surface
using multiple mobile devices. In: 11th International Conference on Mobile and
Ubiquitous Multimedia, MUM 2012, pp. 24:1–24:4. ACM, New York (2012)

6. Rädle, R., Jetter, H.C., Marquardt, N., Reiterer, H., Rogers, Y.: Huddlelamp:
Spatially-aware mobile displays for ad-hoc around-the-table collaboration. In: Pro-
ceedings of the Ninth ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2014, pp. 45–54. ACM, New York (2014). http://doi.acm.org/10.
1145/2669485.2669500

7. Raskar, R., Brown, M. S., Yang, R., Chen, W. C., Welch, G., Towles, H., Seales,
W., Fuchs, H.: Multi-projector displays using camera-based registration. In: IEEE
Visualization, pp. 161–168 (1999)

8. Schmitz, A., Li, M., Schönefeld, V., Kobbelt, L.: Ad-hoc multi-displays for mobile
interactive applications. In: Eurographics, vol. 29, p. 8 (2010)

9. Shen, G., Li, Y., Zhang, Y.: Mobius: enable together-viewing video experience
across two mobile devices. In: Knightly, E., Borriello, G., Cceres, R. (eds.) MobiSys,
pp. 30–42. ACM (2007)

https://github.com/Blaubot
https://github.com/Blaubot
http://doi.acm.org/10.1145/2669485.2669500
http://doi.acm.org/10.1145/2669485.2669500


SURFLogo - Mobile Tagging with App Icons

Chadly Marouane1(B) and Andre Ebert2

1 Virality GmbH - Research and Development,
Rauchstraße 7, 81679 Munich, Germany

marouane@virality.de
2 Ludwig-Maximilians-Universität München,
Oettingenstraße 67, 80538 Munich, Germany

andre.ebert@ifi.lmu.de

Abstract. Mobile tagging became more and more popular in commer-
cials, magazines, newspapers, and other applications during the last
years. In context of commercials, a bar code containing the advertis-
ers internet address is often used to refer a customer to related online
content. Due to their robustness as well as their comparably high fault-
tolerance in case of low quality pictures, QR-Code systems are commonly
used for that task. Connected to that topic we present a special proce-
dure for mobile tagging, which uses a distinct logo or image in order to
refer to certain information instead of a QR-Code. Our procedure was
optimized to work with a conventional smartphone – the only prerequi-
site for usage is the possession of a smartphone capable of capturing and
analyzing the different logos with our smartphone application. To match
the logos with related information and to determine their uniqueness we
introduce a new similarity measure on basis of SURF feature points and
a contour comparison.

Keywords: Mobile tagging · Mobile marketing · QR-code · Computer
vision · App stores

1 Introduction

When talking of mobile tagging, an advanced process of associating real world
items with digital information is meant [11]. In this context, this association
represents an exciting as well as complex section in the area of current media
developments [1,5,24]. Therefore, objects marked with tags are scanned with
a smartphone’s camera and the information encrypted within the tag can be
processed. 2D codes, e.g., QR-Codes or Data-matrix codes are enriched with
information which can be used and displayed on mobile devices like mobile
phones, smartphones, or tablets. Hereby, new chances for enriching advertise-
ments on posters, for pointing to localities on Google Maps, or to apps in app
stores as well as for linking to profiles in social media networks are opened – the
physical world becomes linked to its virtual counterpart. Contents of mobile tags
are mostly conventional unique resource identifiers (URL) which get recognized
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 239–256, 2015.
DOI: 10.1007/978-3-319-29003-4 14



240 C. Marouane and A. Ebert

as the corresponding hyperlink though they are only represented by a simple
string. Moreover, mobile tags also get used more and more for the advertisement
of mobile apps by displaying a QR-Code in range of the app’s print or its digital
advertisement. As soon as a customer is curious about the app, he can become
linked directly into the app store for downloading it.

But despite all of these advantages, there are major issues with the usage of
QR-Codes. Besides their lack of an attractive visual appearance there is also a
shortage of customer acceptance. A QR-Code often looks misplaced, especially
when it takes up more space than the actual commercial. Related to that, there
were developments for encoding additional information without a visual tag, e.g.,
under the usage of radio transmission technologies. Near Field Communication
(NFC) is often used as a mobile tag in the tourism business [14], as well as in
the smart home area [7] and the mobile payment sector [22]. Furthermore, the
Bluetooth 4.0 standard became more attractive due to its energy efficient func-
tioning. Technologies like Apple’s iBeacons and Google’s Eddystone are already
deployed in the range of proximity marketing with great success [8,9].

But there are also disadvantages coming with these technologies. Compared
to visual procedures, they tend to be expensive in purchase and their operational
area is limited, e.g., they cannot be printed on a commercial poster or being
displayed in a television advertisement. Another way for mobile tagging are
Microsoft’s Custom Tags. These are offering the possibility to use individual
logos, brandings or photographies for mobile tags. Therefore, with the help of
a specifically for this purpose developed treatment they are repainted with a
matrix of dots. This treatment enables a special image scanner, which can be
installed on a smartphone in form of an app, to recognize the custom tag [15].
Thus, the usage of QR-Codes can be prevented completely and the question is
raised, if an app logo itself could be enough for linking additional content.

Driven by that idea and related to Microsoft’s concept, we present an app-
roach which enables us to identify apps distinctly by only analyzing their app
logo. Similar to a bar code scanner for smartphones, a mobile application was
developed to accomplish this. Therefore, we developed a multi-layered decision-
ing process for app logo identification, which is introduced and evaluated in
the frame of this work. Additionally we present SURFLogoApp, a smartphone
application consisting of a request server and a smartphone application which is
capable of implementing our multi-layered decisioning process.

The contribution of this work is a system that can identify logos of an app
store distinctly. Especially when using images of poor quality, taken by a smart-
phone camera, the system still returns a unique result. In this context, we present
and evaluate a scanner that provides an easy and fast identification of app logos
as well as a method that returns a unique result. Therefore, it uses a fine granu-
lar search and comparison process, a so-called multi-layered decisioning process.
In contrast to a conventional search of images, such as Google Image Search,
the method can also be applied to poor image quality. This paper is struc-
tured as follows: In Sect. 2 we explain some fundamentals of image processing
relevant for the following application. Subsequently, we elucidate our general



SURFLogo - Mobile Tagging with App Icons 241

concept in Sect. 3, consisting of the multi-layered decisioning process as well as
the SURFLogoApp system. Section 4 evaluate our approach and provide some
insights into our test results. Afterwards, we sum up our findings in Sect. 5 and
give and outlook towards open issues and possible future work.

2 Image Processing

In the following we present some conceptual fundamentals concerning the main
components of SURFLogo, i.e., image representation, feature point extraction
and image comparison.

2.1 Representing Images with Feature Points

Many tasks and applications in the computer vision domain require a represen-
tation of images, which is detached from their raw pixels. For example, recogniz-
ing objects or identifying similar images based on raw pixel values gets unusable
when images differ in color, illumination, scaling, or rotation. A solution to this
problem is to compute so-called feature points which represent very characteris-
tic and therefore highly distinctive points or areas of an image. Depending on the
employed algorithm, feature points are robust against common transformations
and varying contrast situations.

The Speeded Up Robust Features (SURF) algorithm by Bay et al. [3] can
be used to compute feature points. It applies an approximation of the Gaussian
blur filter to the image and then looks for local extrema to identify scale- and
rotation-invariant feature points. Subsequently, these points are described via
a 64-dimensional vector which, is computed from the Haar-Wavelet response of
the feature point’s surrounding region. Similarities between two feature points
can be calculated with the help of the Euclidean Distance between them.

There are also techniques for identifying and describing feature points
[6,17,18]. Recently, there is a trend towards binary descriptors (e.g., [2,4,13,19]),
which can be compared to each other more efficiently (e.g., using Hamming Dis-
tance).

2.2 Image Comparison

In order to select the image out of the test set, which is most similar to a test can-
didate, image comparison techniques are necessary. All images are represented
by feature points which are pre-computed in the first and become stored in a
database in the following. In general, there are two different classes of matching
techniques: Those working directly on feature points and those using so-called
visual words.



242 C. Marouane and A. Ebert

Comparison Directly Based-on Feature Points. These approaches com-
pare images using their respective feature points. Each feature point of the query
image votes for a reference image out of the database, which contains the most
similar feature point. The image with the most votes is selected as the one with
the highest similarity [16,20].

A disadvantage of this concept is its inefficiency due to a huge amount of fea-
ture points to be considered as well as the high dimensionality of their descrip-
tors. Even with moderately large databases, comparisons to a complete set of
reference images can be unfeasible. Thus, a scalability to big amounts of data is
not given.

Based on Visual Words. The second class of algorithms tries to overcome this
shortcomings by virtually pre-computing matches of individual feature matching
by quantizing feature descriptors. For that purpose, the existing feature points
or a subset of them are clustered, e.g., with the k-Means algorithm. Thus, every
feature point is assigned to its nearest cluster center. As a consequence, an image
is represented by a histogram of cluster frequencies, whose comparison can be
undertaken much more efficiently. Since most of these approaches originate from
domains of text processing and document retrieval, the clusters are also called
visual words, a set of all words is called the vocabulary and an image represen-
tation is called bag-of-words. One of the first approaches in that category was
introduced by Sivic and Zisserman [21]. Additionally, Turcot and Lowe showed
that it is possible to discard up to 96 % of all feature points without reducing
the matching precision [23].

3 Concept

In the following we introduce our system’s components as well as further informa-
tion about these. Moreover, our multi-layered decisioning approach is explained
in detail.

3.1 Control Concept

The core idea of SURFLogoApp is to link additional content, e.g., a hyperlink to
an app store, to a physical as well as to a digital advertisement while completely
resigning conventional methods like QR-Codes. Instead, we only use the apps
own logo. The logo is detected and scanned by the smartphone’s built-in camera
and links the user to the commercials counterpart in the app store as well as it
enables its download. In the following, we call this referencing logos SURFlogo.

The control concept of SURFLogo from the user’s point of view is designed
as follows (see Fig. 1): (1) the users recognizes a SURFLogo related to a specific
app in a commercial, which is bounded by a quadratic twin framed box, (2) if
SURFLogoApp was downloaded and installed on the user’s device, the SURFL-
ogo gets scanned with it and, (3) the user becomes redirected to an app store
with the opportunity to download the associated app.



SURFLogo - Mobile Tagging with App Icons 243

Fig. 1. Control concept of the SURFLogoApp - the SURFLogo which links to an
associated app becomes scanned with the smartphone application

3.2 Components of SURFLogoApp

The distributed SURFLogoApp system consists of three different components,
which are a request server, a database and a smartphone application. The com-
munication between these components is established by the use of a conventional
internet connection.

Database. The database components contains all registered SURFLogos in the
form of a sequence of feature points SeqFeature, a quantized vector of these
feature points Quant(SeqFeature) (bag-of-words), a sequence of contour points
SeqContour, and a uniform resource identifier URLApp associated with an app in
an app store.

AppIci =

⎛
⎜⎜⎝

SeqFeature

Quant(SeqFeature)
SeqContour

URLApp

⎞
⎟⎟⎠ , i ∈ DatabaseAppIc

Furthermore, the database component contains a vocabulary, which enables the
calculation of a quantized vector out of an image’s sequence of feature points
(bag-of-words). This procedure as well as the extraction of feature points and
the contour extraction is undertaken for every SURFLogo in the database.

The vocabulary consists of all clustered feature points’ cluster centers, which
are available in the database. Related to that, the component can possess mul-
tiple vocabularies bound to specific areas of operation. The database’s creation
takes place in the so-called offline phase, scheduled prior to the system’s opera-
tional phase. Still, the database can always be extended during the operational
phase (online phase). On updating an existing SURFLogo, all related references
in the database are also replaced.

Request Server. The request server receives and processes all requests for the
SURFLogo system via a REST service.

A request consists of a sequence of feature points as well as of a sequence of
contour points, which represent and describe a SURFLogo image. The sequences



244 C. Marouane and A. Ebert

are needed by the request server for searching the database with a matching
algorithm. The algorithm’s result is distinct and is represented by a direct hit or
no existing associated representation. In case of a successful search, the server
responses to the SURFLogoApp with an URL pointing to information related
to the identified SURFLogo, else no result is returned.

Smartphone Application. The smartphone application’s duty is to identify
images marked as SURFLogos with its camera, to scan them and in the follow-
ing to analyze them. In order to support a SURFLogo’s distinct an automatic
identification, it is marked with a quadratic, black, twin frame (see Fig. 2).

Fig. 2. Example of a SURFLogo – an app icon and a black twin frame for automated
recognition by the smartphone’s camera

For recognizing a SURFLogo, the frames needs to comply with the following
requirements: (1) the corner points of one quadratic frame need to be within the
other quadratic frame’s corners, (2) the ratio of both of the quadratic frames
needs to be within a defined area, and (3) both of the quadratic frames need to
have a minimum size.

As soon as a SURFLogo becomes detected by a smartphone application, it
gets scanned and rotated in dependence of its surrounding frames. The time
needed to scan a SURFLogo is comparable to the time needed by a conventional
QR-Code scanner.

After the frame became removed, all feature points are extracted out of
the image and consolidated in a sequence SeqFeature. In the next step, all two
dimensional coordinates which are describing the images contour are also becom-
ing aggregated in a sequence SeqContour. These sequences are now sent to the
request server, which responds with an URL URLApp if the database search was
successful. The URL references to the an apps download page within an app
store.

3.3 Matching Algorithm

The matching algorithm serves for comparison of features and therefore dis-
tinct recognition of SURFLogos – it is one of the most important components



SURFLogo - Mobile Tagging with App Icons 245

for the SURFLogoApp. During the comparison process it determines individual
characteristics of a SURFLogo on basis of the given features. These characteris-
tics allow a explicit distinction between different SURFLogos and false positive
results in context of the searching process can be suspended. In a positive case,
a distinct data entry related to the given features is found in the database, in a
negative case no entry is available. The algorithm consists of two different steps:
a preprocessing step followed by a matching step.

Fig. 3. Preprocessing: (1) Extraction of feature points and vectors, (2) quantization of
feature vectors, (3) extraction of contour points. At least all information from (1), (2)
and (3) will be used for the multi-layered decisioning process.

Preprocessing. The preprocessing step is needed during the offline phase at
the database’s creation as well as afterwards during the online phase. Especially
for the extraction of an image’s features and the SURFLogo’s appending to the
database, an effective preprocessing is crucial (see Fig. 3). Therefore, all feature
points and their corresponding vectors are extracted out of a SURFLogo and
saved temporarily. For the extraction routine the robust SURF process is used
[3]. Subsequently, the extracted feature vectors become quantized with the help
of a vocabulary which was created at the forefront. The quantization itself is



246 C. Marouane and A. Ebert

crucial for the process of searching in order to speed it up. The vocabulary
is created by computing clusters, e.g., with the k-Means algorithm, out of a
large range of feature points. Ideally this range represents the full number of
all SURFLogos contained by the database. During the quantization each feature
vector is matched with the cluster center it has the least distance to. Thus,
each SURFLogo can be represented by a histogram of cluster frequencies. These
histograms - so-called bag-of-words - are easy and efficient to compare to each
other. Because of the fact that lots of these and related processing concepts
are originated in text processing and document retrieval, the resulting clusters
are also referred to as visual words, the number of all words is referred to as
dictionary, and the associated image representation is referred to as bag-of-words.
The quantized vector also gets saved temporarily. In the last step, the contour
of the SURFLogo described by SURF feature points and consisting of x- and y-
coordinates gets extracted and temporarily saved as a sequence. Afterwards, all
temporarily saved data gets either transferred into the database for permanent
storage together with an URL and the SURFLogo or is handed over to the multi-
layered decisioning process for further analysis. During the online phase, requests
from a smartphone application already contain feature and contour points, which
is why the first and the third step can be skipped.

Matching: Multi-layered Decisioning Process. The multi-layered decision-
ing process is only necessary during the operational online phase. Thereby, tem-
porarily saved information from the preprocessing step as well as the database
are used for data input. All in all, the matching step consists of three compar-
ing processes (see Fig. 4). The first comparing process considers the quantized
vector. For this purpose, all quantized vectors out of the database are compared
to the given quantized feature vector. The k closest possible matches are used
for the second comparison process k ∈ {2, .., 25}. The value k is defined as a
chosen threshold THRESHOLDQuant, which is evaluated in Sect. 4.3. Otherwise,
the k next possible matches are compared on basis of their feature points and are
ranked descending by their number of successful matched features. For the last
comparison process, which considers the contours of both of the entries, only
the first two entries out of the ranked list are used. Is the number of feature
matches for both entries below a chosen threshold THRESHOLDSurf , the whole
process is canceled again. Else, the sequences containing the contour points are
analyzed by the Hausdorff distance. The winning sequence is the one with the
smallest Hausdorff distance. Again, if the Hausdorff distance is above a chosen
threshold THRESHOLDHausdorff for both contours, the comparison process is
canceled without a successful result.

4 Evaluation

In this section, we evaluate our SURFLogoApp system concerning its perfor-
mance and provide detailed information about the evaluation’s results.



SURFLogo - Mobile Tagging with App Icons 247

Fig. 4. Multi-layered decisioning process: (1) Find k nearest matches with quantized
feature vectors, (2) rerank all matches with his feature points, (3) compare reranked
matches with contour points.

4.1 Setup Configuration

We used one set of test data during the whole evaluation phase. Therefore,
a database containing 5541 different SURFLogos was created. The logos itself
were crawled and downloaded randomly out of Google’s PlayStore and all in all
we extracted more than 2118240 SURF feature points and stored them in our
database.

A higher number of SURFLogos - so e.g., all 1.6 million logos from the Google
PlayStore - has only a small influence on the duration of the query of the first
sub-process of the multi-layered decisioning process and increases linearly with
increasing number of SURFLogos.

In order to evaluate the multi-layered decisioning process, we generated 759
test images. In this context, a browser-based JavaScript application for sequen-
tial displaying of different SURFLogos in different sizes within one browser tab
was developed. Additionally, the displayed SurfLogos were noted in a log file. The



248 C. Marouane and A. Ebert

counterpart of this setup is a modified version of the Android-based SURFLo-
goApp, which is capable of scanning the logos and storing them on a smartphone.
Subsequently, the client-side Android application notifies the Javascript appli-
cation via a REST-interface that a new picture was scanned and needs to be
displayed in the browser. The test images were created by overall 6 volunteers
equipped with a Samsung Galaxy S5 mini smartphone. The clustering calcula-
tions as well as the time measurement were conducted with a Mac Book Air 2013
(1,7 GHz Dual-Core i7, 4 MB on-chip L3 Cache, 8 GB 1600 MHz LPDDR3).

4.2 Critical Quantization Variables

The quantization of the feature vectors is dependent from different variables,
which are important for a successful search process during the multi-layered
decisioning process. That is why number and selection of feature vectors for
generating a vocabulary as well as the number of words within a vocabulary are
crucial for quantization. In general, quantization leads to a loss of information,
which is why it is not sufficient to only consider the best suiting vector alone.
Moreover, the next best candidates k also need to be examined. The correct
result can be chosen out of this candidate range by a further selection step.

Subset Size and Feature Vector Selection. Because of the fact, that the
vocabulary is crucial for the feature vector quantization, the following conditions
must apply for the feature vector subset at the moment of the vocabulary cre-
ation: (1) the subset must be as big as possible; ideally it represents all feature
vectors stored in the database and (2) it contains a broad spectrum of feature
vectors; they are different compared to each other and their euclidean distance
is as big as possible.

In order to create the vocabulary, the subset of feature vectors needs to be
clustered. Therefore, a simple k-Means algorithm capable of clustering the whole
subset is used [10]. When analyzing a large amount of vectors, placed in a vast
vector space, e.g., a SURF feature vector with 64 dimensions, the clustering
tends to be CPU- and time-intensive. That is why we evaluated different sizes
of subsets while generating the vocabulary.

Table 1 shows the different time spans for subsets containing 10 %, 20 %, and
100 % of the existing feature vectors which complies to the whole amount of
existing feature points.

Table 1. Time needed for clustering - 3 cluster sets with a subset of 10 %, 20%, and
100 % from the database’s feature vectors with a cluster size of 512.

Subset 10% 20% 100 %

Time 4 h 1 m 11 s 15 h 39 m 37 s 4d 12 h 2 m 29 s

The larger the vector amount for the vocabulary’s generation is selected,
the longer takes the process of clustering. The time span between the usage



SURFLogo - Mobile Tagging with App Icons 249

of 10 %, which was 4 h, 1 min, and 100 %, which was 4 days, 12 h and 2 min, is
extraordinarily significant. Furthermore, when examining the results from Fig. 5,
it is clearly visible that the success rate of clusters generated with a subset of
20 % of all feature points is not particularly better than the one corresponding
to clusters generated with a 100 %. In case of our 20 % subset, it is even worse.
That is why for our evaluation we generated the clusters with a subset of only
10 % of all existing feature points from our database.

Fig. 5. Success rate of different vocabularies with increasing k – k is the number of
possible result candidates. Vocabularies are created with a subset of 10%, 20 %, and
100% from the database’s feature vectors and with a cluster size of 512.

Vocabulary Size. Besides the right amount of feature vectors for vocabulary
generation, the number of clusters, which are representing a word, is also vital
for the result’s quality. If the size of a cluster is chosen to be to small, the loss
of information due to the quantization process is larger and the quality of the
results is smaller. In contrast, if the cluster size was chosen to be to large, the
desirable time-saving due to the quantization process is narrowed.

Figure 6 shows, that with a rising number of clusters the result’s quality is
comparably high, even with a lower ranked k candidate. It is notable, that the
discrepancy between the cluster sizes of 32 and 512 with k = 1 is already almost
30 %. Admittedly, it decreased with a growing k, but even with a candidate size
of k = 20 it is still 10 %. Subsequently, we use a cluster size of 512 because of
the superiority of its result’s quality compared to cluster sizes of 32, 64, 128, and
256.

4.3 Multi-layered Decisioning Process

In context of our multi-layered decisioning process, we first examined some
vital factors and variables within the procedure’s sub-processes because of their



250 C. Marouane and A. Ebert

Fig. 6. Success rate of different vocabularies with increasing k - k is the number of
possible result candidates. Vocabularies are created with a subset of 10 % from the
database’s feature vectors and with a cluster size of 32, 64, 128, 256 and 512.

influence onto our final results. Later on, we present an evaluation covering and
examining our whole system and the quality of its results.

Quantization: Numbers of k Candidates. The identification of the right
number of k candidates, which are the output of the quantization process, influ-
ences the following sub-process of feature vector comparison significantly. More-
over, the number of k candidates is heavily influencing the search and comparison
time while matching the features of the SURF vectors. Because of the fact that
all feature vectors are compared for each single candidate, a high number of can-
didates can slow down this sub-process noticeable. That is why it is important
to identify the right amount of candidates in order to acquire an accurate result
within an appropriate time span.

Figure 6 shows distinctly, that an increasing k also raises the success rate,
independently from the chosen cluster sizes. The success rate itself already con-
verges towards a maximum value for all different cluster sizes if k = 18. E.g., for
a cluster size of 512, an amount of k = 18 candidates converges to an average
of 94 %. That is why we use a candidate number of k = 18 with an additional
buffer of 2 for the following evaluation, so we use all in all a k = 20. This k
represent the THRESHOLDQuant like in Sect. 3.3 is described.

SURF Feature Matching. The following sub-process is a comparison search
based on the actual SURF feature vectors. Therefore, the SURF feature vectors
of all k candidates, which where determined in previous subprocesses are exam-
ined. In the easiest case all SURF feature vectors of the SURFLogo we want to
analyze are compared to all k candidates and their feature vectors, respectively.



SURFLogo - Mobile Tagging with App Icons 251

Fig. 7. Threshold’s evaluation with different values of 0, 5, 10, 15, 20, 25 and 30. The
sum of false positives and true negatives has its minimum between a threshold of 10
and 20. In order to have a small number of true negatives, a threshold of 10 is most
ideal.

In contrast to the comparison process used during the quantization, the proce-
dure used at this step of the analysis is much more complex. In that context,
the complexity of the quantization’s comparison procedure is about O(1), the
complexity of SURF’s comparison procedure is O(n). For that reason, a small
number of comparison candidates is desirable at this step. As stated before, we
use a candidate input of k = 20 for our evaluation. After comparing the 20 can-
didates on basis of their SURF feature descriptors, they are sorted anew with
the goal of bringing the candidate with the most similar feature descriptors to
the top. Our results are, that the correct logo is placed on the first two positions
with a probability of 93 %, the correct result is on top of the list with a probabil-
ity of 91 %. All in all it turned out, that after a quantization and the subsequent
comparison search under the usage of feature points leads to a positioning of
correct results in first place with a probability of 99 %. That is why the input for
the last sub-process is limited to the first two results of the newly ordered can-
didate list. This limitation has positive effects in regarding the last sub-process,
which is the process with the most computational costs. Furthermore, the 1 % of
results ordered aback in our list can be neglected because of their little impact
onto the overall result.

In order to better the result additionally, all possible false positives are about
to be eliminated in the forefront. Therefore, candidates become rated false pos-
itive as soon as the sum of the number of all matched feature points is below
a threshold of 10. This value represent the THRESHOLDSurf like in Sect. 3.3 is
described.

An additional evaluation showed, that a value of 10 is already sufficient in
order to exclude as much false positive candidates as possible. Figure 7 provides



252 C. Marouane and A. Ebert

information about a suitable threshold’s evaluation with different values of 0, 5,
10, 15, 20, 25 and 30. It becomes apparent, that a threshold of 10 is suitable
to sort out only a few number of valid candidates, but a large number of false
positives and at the same time a small number of true negatives. If there are no
candidates below this threshold, the procedure is canceled without a return value,
which also means that the whole multi-layered decisioning process terminates.

Fig. 8. Histogramms of all computed hausdorff distances: all distances with a true
recognition are placed below a threshold of 75 (Black vertical line). Except for of a few
outliers, the most of the true recognized results are in a range below a distance of 5.

Contour Detection and Hausdorff Distance. The last and thereby third
sub-process consists of a contour comparison between two SURFLogos. The con-
tour comparison itself is realized by using the Hausdorff distance [12]. In that
context it measures the distance between two contours in a metric space, which
allows us to compare them. Goal of this sub-process is the identification of the
candidate among all candidates with the least contour distance – it is winning
the comparison process and regarded as the correct result. For the contour we
use the x- and y- coordinates of the SURF feature points which where matched
in both images. With this approach it is guaranteed, that contour points cre-
ated by noise or other camera effects are not included in the computation of the
Hausdorff distance.

In order to prevent a better outcome for pairs with a small amount of common
feature points, the distances itself become normalized. Thereby the Hausdorff
distance is calculated as follows.

distancehausdorff

#matchesfeaturepoints

(1)

If there is no common feature point for a pair of candidates which is about to
be compared, a maximum distance MAXfloat is returned.



SURFLogo - Mobile Tagging with App Icons 253

Fig. 9. A free and a purchasable ver-
sion of an app logo. The hausdorff dis-
tances are really similar and difficult to
distinguish.

Fig. 10. Example of a printed SURFL-
ogo on the left side and a scanned SUR-
FLogo with poor quality on the right
side.

An evaluation on basis of this defined comparison procedure provided the
following results. Figure 8 displays distinctly, that all distances are placed below
a threshold of 75. So we set this value as THRESHOLDHausdorff like in Sect. 3.3
is described.

Moreover, SURFLogos with small distance differences between candidate one
and two are only logos which differ in small details. Figure 9 shows an example for
those, where an app logo exists two times for a free and also for a purchasable
version of the same application. This means, that in general the same app is
referenced, but there are two existing versions of it. One which is about to be
payed for and one which is available for free.

On basis of this insights, the third sub-process was extended by the following
conditions:

– All distances placed above a threshold of 75 are neglected and not considered
as a possible result.

– If the difference of the two comparison pair’s distances is within a range from
0.5 to 1, both candidates are considered to be the correct SURFLogo.

Hence, the whole decisioning procedure of the sub-process is defined as fol-
lows: (1) the distances of the candidates 1 and 2 to the SURFlogo are computed.
If both distances are placed above of a defined threshold in (2), the whole process
terminates and no result is returned, else it continues. If the distances of two
comparison pairs are placed within a range from 0 to 1 in (3), the process termi-
nates and both associated candidates are returned, else the candidate with the
smallest distance to the logo on the captured image is returned.

Results. After we reviewed the three sub-processes of our multi-layered deci-
sioning process individually, the evaluation of the complete procedure is provided
in the following. Therefore, the identified thresholds of the individual processes
were used, the candidate pool delivered from sub-process 1 to sub-process 2 and
from sub-process 2 to sub-process 3 was kept consistent.

All analysis requests with the multi-layered decisioning process are resulting
a correct response in 92 %.



254 C. Marouane and A. Ebert

If the results for apps which possess two logo versions, e.g., for a free version
and a purchasable version, are also taken into account the overall result rises to
93 %. Another significance of the overall result is the fact that there are no false
positives occurring in the result quantity. This means, in the best case a distinct
result is delivered by the multi-layered decisioning process, in the worst case no
result is returned.

5 Conclusion

In the context of this paper we presented a procedure capable of replacing QR-
Codes in their functionality of mobile tagging for commercials in print and digital
media. Instead, the applications logo itself is used for automated identification
and referral to the app store. For realization we introduced and evaluated a
multi-layered decisioning process. Furthermore, we provided a distributed sys-
tem called SURFLogo, which implements the procedure in form of a mobile
application, a request server and a database, which supports the process’s spe-
cial requirements.

The evaluation of all three subprocesses of our multi-layered approach was
undertaken separately for each subprocess. The first subprocess indicates, that
a cluster size of 512 is suitable for the feature vectors’ quantization and in order
to reach a success rate of 82 % when searching for the associated SURFLogos.
Because of the fact that such a result is not sufficient, we use the 20 best result
candidates from subprocess 1 as input for subprocess 2. The second subprocess
shows, that a search based on basis of feature points results in a better result
set, which enables us to only use the two best candidates out of the second
step for the third subprocess. Additionally, we introduced a threshold, which
considers the sum out of successful created feature points for both candidates
and cancels the process without return value if this value is placed below 10.
The third subprocess identifies the correct candidate on basis of the SURFLogo
contour. Therefore, we calculated the Hausdorff distance on basis of the x- and
y-coordinates of all matched feature points and returned the candidates with the
least distance as the correct result. In that context, we used another threshold
capable of identifying distances larger than 75 as belonging to wrong candidates.

All in all, the multi-layered decisioning process has a success rate of 93 %.
In 7 % of all cases we were not able to identify the right SURFLogo. There
was no case of a false positive result being returned, which proves that the
procedure is relatively distinct. Compared to the QR-Code procedure with a
success rate of nearly 100 %, our approach is still very robust. Additionally it is
based on a visually more individual content, which is easy assignable to a specific
app. In contrast to image searching approaches (e.g., Google Image Search), a
SURFLogo with a comparably poor quality is still identifiable (Fig. 10).

Despite the high success rate, there were some SURFLogos, which were not
detected. Reasons for that may be a bad image quality due to the smartphone’s
camera, which can lead to interferences and inaccuracies due to noise or to blur
effects conditioned by ambiguous movements. Furthermore, the procedure is col-
orblind, which means that it is not capable of distinguishing between SURFLogos



SURFLogo - Mobile Tagging with App Icons 255

with identical content displayed in different contrasts or intensities of colors. An
advantage of that is a higher robustness during different lighting conditions.
However, because of that there are restrictions regarding the discriminability of
similar contours. Thereto, the procedure could be extended by a color detector.

References

1. Al-Khalifa, H.S.: Utilizing QR code and mobile phones for blinds and visually
impaired people. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I.
(eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1065–1069. Springer, Heidelberg (2008)

2. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR 2012), pp. 510–517
(2012)

3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

5. Canadi, M., Hpken, W., Fuchs, M.: Application of QR codes in online travel distri-
bution. In: Gretzel, U., Law, R., Fuchs, M. (eds.) Information and Communication
Technologies in Tourism 2010, pp. 137–148. Springer, Vienna (2010)

6. Chandrasekhar, V., Chen, D.M., Lin, A., Takacs, G., Tsai, S.S., Cheung, N.-M.,
Reznik, Y., Grzeszczuk, R., Girod, B.: Comparison of local feature descriptors for
mobile visual search. In: 17th IEEE International Conference on Image Processing
(ICIP 2010), pp. 3885–3888 (2010)

7. Darianian, M., Michael, M.: Smart home mobile RFID-based internet-of-things
systems and services. In: International Conference on Advanced Computer Theory
and Engineering, ICACTE 2008, pp. 116–120, December 2008

8. Gast, M.S.: Building Applications with iBeacon: Proximity and Location Services
with Bluetooth Low Energy. O’Reilly Media, Sebastopol (2014)

9. Goosen, C.A.: Design and implementation of a bluetooth 4.0 le infrastructure for
mobile devices, June 2014

10. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Appl. Stat. 28, 100–
108 (1979)

11. Hegen, M.: Mobile Tagging: Potenziale für das Mobile Business. Diplom.de (2010)
12. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the

hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)
13. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable

keypoints. In: IEEE International Conference on Computer Vision (ICCV 2011),
pp. 2548–2555. IEEE (2011)

14. Madlmayr, G., Scharinger, J.: Neue dimension von mobilen tourismusanwendun-
gen durch near field communication-technologie. In: Egger, R., Jooss, M. (eds.)
mTourism, pp. 75–88. Gabler (2010)

15. Microsoft: Mircosoft Tag - Creating Custom Tags (2011). http://tag.microsoft.
com/what-is-tag/custom-tags.aspx. Accessed 16 July 2015

16. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In:
Proceedings of Eighth IEEE International Conference on Computer Vision, ICCV
2001, vol. 1, pp. 525–531. IEEE (2001)

http://tag.microsoft.com/what-is-tag/custom-tags.aspx
http://tag.microsoft.com/what-is-tag/custom-tags.aspx


256 C. Marouane and A. Ebert

17. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

18. Miksik, O., Mikolajczyk, K.: Evaluation of local detectors and descriptors for fast
feature matching. In: 21st International Conference on Pattern Recognition (ICPR
2012), pp. 2681–2684 (2012)

19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative
to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV
2011), pp. 2564–2571 (2011)

20. Schaffalitzky, F., Zisserman, A.: Automated scene matching in movies. In: Lew, M.,
Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 186–197. Springer,
Heidelberg (2002)

21. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching
in videos. In: Proceedings of Ninth IEEE International Conference on Computer
Vision, pp. 1470–1477 (2003)

22. Tan, G.W.-H., Ooi, K.-B., Chong, S.-C., Hew, T.-S.: NFC mobile credit card: the
next frontier of mobile payment? Telematics Inform. 31(2), 292–307 (2014)

23. Turcot, P., Lowe, D.G.: Better matching with fewer features: the selection of useful
features in large database recognition problems. In: IEEE 12th International Con-
ference on Computer Vision Workshops (ICCV Workshops 2009), pp. 2109–2116
(2009)

24. Walsh, A.: Blurring the boundaries between our physical and electronic libraries.
Electron. Libr. 29(4), 429–437 (2011)



Mobility



Towards Indoor Transportation Mode Detection
Using Mobile Sensing

Thor Siiger Prentow, Henrik Blunck, Mikkel Baun Kjærgaard,
and Allan Stisen(B)

Department of Computer Science, Aarhus University, Aarhus, Denmark
{prentow,blunck,mikkelbk,allans}@cs.au.dk

Abstract. Transportation mode detection (TMD) is a growing field of
research, in which a variety of methods have been developed, foremost
for outdoor travels. It has been employed in application areas such as
public transportation and environmental footprint profiling. For indoor
travels the problem of TMD has received comparatively little attention,
even though diverse transportation modes, such as biking and electric
vehicles, are used indoors. The potential applications are diverse, and
include scheduling and progress tracking for mobile workers, and man-
agement of vehicular resources. However, for indoor TMD, the physical
environment as well as the availability and reliability of sensing resources
differ drastically from outdoor scenarios. Therefore, many of the meth-
ods developed for outdoor TMD cannot be easily and reliably applied
indoors.

In this paper, we explore indoor transportation scenarios to arrive at
a conceptual model of indoor transportation modes, and then compare
challenges for outdoor and indoor TMD. In addition, we explore methods
for TMD we deem suitable in indoor settings, and we perform an exten-
sive real-world evaluation of such methods at a large hospital complex.
The evaluation utilizes Wi-Fi and accelerometer data collected through
smartphones carried by hospital workers throughout four days of work
routines. The results show that the methods can distinguish between six
common modes of transportation used by the hospital workers with an
F-score of 84.2 %.

Keywords: Transportation mode detection · Indoor positioning ·
Mobile sensing

1 Introduction

Transportation mode detection is a growing field of research, in which a variety
of methods have been developed for detecting transportation modes foremost
for outdoor travels. It has been employed in application areas such as pub-
lic transportation, environmental footprint profiling, and context-aware mobile
assistants. For indoor travels the problem of transportation mode detection
has received comparatively little attention, even though diverse transportation
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 259–279, 2015.
DOI: 10.1007/978-3-319-29003-4 15



260 T.S. Prentow et al.

modes, such as biking, electric vehicles, and scooters, are used indoors, especially
in large building complexes.

The potential applications are diverse, and may also extend beyond indoor
variants of the above outdoor applications, and include, e.g., scheduling and
progress tracking for mobile workers, management of vehicular resources, and
navigation support. However, for indoor transportation mode detection, both the
physical environment as well as the availability and reliability of sensing resources
differ drastically from outdoor scenarios. Owing to these differences, many of the
methods developed for outdoor transportation mode detection cannot be easily
and reliably applied indoors.

In this paper, we explore indoor transportation scenarios to arrive at a con-
ceptual model of indoor transportation modes, and then compare challenges for
outdoor and indoor transportation mode detection. In addition, we explore meth-
ods for transportation mode detection we deem suitable in indoor settings, and
we perform an extensive real-world evaluation of (combinations of) such meth-
ods at a large hospital complex. The evaluation presented here utilizes Wi-Fi
and accelerometer data collected through smartphones carried by several hos-
pital workers throughout four days of work routines. The results show that the
methods can distinguish between six common modes of transportation used by
the hospital workers with an F-score of 84.2%.

2 Indoor Versus Outdoor Settings

In this section we discuss the challenges and opportunities provided by respec-
tively indoor and outdoor settings, and how they relate to a representative selec-
tion of the many methods for outdoor TMD.

2.1 Transportation Infrastructure

There are significant differences between outdoor and indoor transportation
infrastructures, which may influence the results of TMD. Outdoor road net-
works are often practically unbounded in size, and the possible distance that
a tracked person or vehicle may travel is practically unlimited. Indoor travels
on the other hand, are bound by a building infrastructure, which greatly limits
the sensible travels that may be performed. A result of this difference is that
indoor travels are typically much shorter in both distance and time, compared
to outdoor travels. For TMD this means that there is less time to determine
a specific transportation mode, and that changes in transportation mode will
typically happen more often in an indoor setting. In addition the smaller indoor
route networks are likely to cause different acceleration profiles through, e.g.,
more turns and more stops.

Another significant difference between indoor and outdoor transportation
infrastructures, is the availability of additional information on the route net-
works. For outdoor route networks, data is publicly and easily available on roads,
biking paths, railways as well as bus stops and routes. This information is very



Towards Indoor Transportation Mode Detection Using Mobile Sensing 261

useful for position-based TMD, as it can help limit the number of likely trans-
portation modes [15]. For indoor settings however, this kind of information is
much harder to achieve. Floor plans for buildings are only publicly available
for a very limited set of buildings, typically large shopping malls and public
places, e.g. railway stations. For other types of buildings, the floor plans may
only be available in simple digital formats, such as pictures, which are ill suited
for extracting e.g. the route network of hallways in a building [11].

2.2 Transportation Modes

In outdoor scenarios a variety of modes of transportation are common-place; sim-
ilarly, also indoors, especially in large-scale environments and scenarios, several
modes are available some of which overlap with outdoor equivalents. Figure 1
lists what we consider relevant indoor transportation modes. The color of the
modes listed indicates, whether they are specific exclusively to indoor (green)
or outdoor settings (orange), or whether they occur in variations both in- and
outdoors (blue).

Note, that many of the transportation modes (and respectively vehicles)
listed could be divided further: e.g. specializations exist for some of them for
indoor and outdoor settings, respectively, such as electric versus fossil-fueled
forklifts. Indoor transportation modes include various and sometimes specialized
electric vehicles which are used as transportation aid in places such as hospitals,
airports, or factories, e.g. small electric buses and luggage carts, scooters, bed-
pushers and forklifts. These may be designed for and used only indoor, or may
be vehicles which can be used in both indoor and outdoor settings.

A significant challenge inherent in most indoor settings relative to outdoor
settings is the significantly lower difference in speed profiles of different trans-
portation modes—which is due to foremost the lower top speeds in indoor envi-
ronments. While it’s possible to distinguish between e.g. a bicycle and a car based
on maximum speed [15], it’s significantly harder to distinguish a bike from an
indoor electric vehicle, as the typical speeds fall in similar intervals.

A second challenge in distinguishing indoor transportation modes is that the
various modes (resp. vehicles) share the same route network (in contrast to trains
versus cars for outdoor travels); additionally most indoor route networks do not
cause significant halting patterns during travels such as traffic lights and train
stops do.

A further challenge for TMD is the lack of combustion engines in indoor vehi-
cles. Combustion engines in vehicles vibrate at specific frequencies, for exam-
ple when idling. Distinguishing (fossil-fueled) motorized from other transport
modes can thus be facilitated—even when speed profiles for mode candidates are
similar—through picking up engine frequencies, which can be achieved even by
low-grade, and sub-optimally placed accelerometers, as they are common-place
in people’s smart phones [23]. Note though that while most indoor vehicle types
are not fossil-fueled, recent research reports that electric vehicle motors emit
high-frequency sounds which can be picked up by smartphone microphones [19].
This may help in distinguishing electrical vehicles from, e.g., human-powered
bikes.



262 T.S. Prentow et al.

Figure 1 also shows a hierarchical model of transportation modes which we
discuss in this paper. Such a hierarchical model gives raise to subdividing the
problem of distinguishing (groups of) transportation modes—which brings the
advantage of allowing dedicated classifiers for detection decisions on individual
nodes, as exploited, e.g. by Hemminki et al. [7] for outdoor TMD. In the hierarchy
in Fig. 1 higher entries group similar transportation modes, and consequently
neighboring modes in the lower tiers are expected to be more challenging to
distinguish.

The root of the hierarchical models resembles the distinction between station-
ary from moving activities. For moving activities we distinguish two main cat-
egories, namely motorized and unmotorized transport. This distinction is made
due to their different qualities with regards to speed and movement patterns,
where motorized vehicles typically have a different acceleration and speed pro-
file when compared to unmotorized vehicles. For motorized indoor transports, we
consider foremost electric vehicles. This category contains general vehicles such
as electric scooters and bikes, but also specialized vehicles for specific settings
and applications, e.g., electric forklifts for warehouses or bed-pushers for moving
beds around at hospitals. For unmotorized transportation, several modes, using
e.g. vehicles such as bicycles and scooters, as well as walking, are to be distin-
guished. The stationary activity category is further subdivided into stationary
active, which covers activities not involving transportation, e.g. performing a
stationary work task, while resting covers idling, i.e. the absence of significant
physical activity.

Fig. 1. Hierarchy of transportation modes. Orange: Outdoor-only modes. Green:
Indoor-only modes (Color figure online).

As part of the exploration of indoor transportation modes, we collected trans-
portation mode statistics in a real-world example scenario involving a variety of
transportation mode choices, namely the daily work routines of a group of hospi-
tal orderlies throughout four days on a large modern hospital complex, covering
150, 000 square meter on three floors. The statistics were collected by an assis-
tant assigned to follow the orderlies (without interfering) throughout their work
and keep record of the transportation modes they used. In total 300 transporta-
tion mode changes were collected, from 6 different modes (as marked in Fig. 1):



Towards Indoor Transportation Mode Detection Using Mobile Sensing 263

(a) Scooter (b) Bus (c) Bedpusher

Fig. 2. Common indoor transportation vehicles.

Stationary, walking, scooter, bike, e-bus and e-bedpusher, of which the last two
are hospital-specific electric vehicles. The vehicles can be seen in Fig. 2. Table 1
shows the collected statistics. The upper part shows the number of transitions
occurring between different transportation modes as a transition matrix, with
transitions occurring from rows to columns in the matrix. The lower part lists
the total number of trips made with each transportation mode, the total and
relative time spent for each transportation mode, as well as the average time for
a trip of the given mode.

Table 1. Number of transitions between different modes of transportation.

Transition Stationary Walking Scooter Bike E-bedpusher E-bus

Stationary 0 35 2 1 14 3

Walking 29 0 2 3 64 24

Scooter 2 1 0 0 1 0

Bike 1 4 0 0 0 0

E-bedpusher 16 61 0 0 0 6

E-bus 6 22 0 1 4 0

Total 54 123 4 5 83 33

Time 08:01:30 11:53:21 00:10:32 00:05:01 05:57:27 03:21:55

Percentage 27 % 40 % 0.6 % 0.3 % 20% 11 %

Average 00:08:27 00:05:47 00:02:38 00:01:00 00:04:15 00:06:07

The table reveals that for all of the transportation modes the average trip
duration is rather short (below ten minutes) as compared to typical outdoor
scenarios. The mode the persons observed spent most time on during their
work routine was walking, with almost 12 h over four work days. For motor-
ized transportation, the bed pusher is used most often, with about 6 h, followed
by the electric bus, with about 3 h. The motorized vehicles are clearly preferred



264 T.S. Prentow et al.

compared to the non-motorized bikes and scooters, with in summation only
15 min. A significant amount of time is also spend stationary, about 8 h in total.

Furthermore, the transition matrix reveals that the mode most often transi-
tioned to is walking. This is as expected since walking often serves as an inter-
mediary transportation mode. Direct transitions do occur however, for example
when changing between bed pushers and buses. When comparing with results
for outdoor settings as presented, e.g., by Zheng et al. [24] the latter transitions
occur less often: Distinguishing the four transportation modes walking, driving,
bus, and biking, the authors report about that more than 99% of transitions
from modes other than walking occurred towards walking. Indoors the amount
of direct transitions between non-walking modes is higher, which is likely due
to the fact that outdoors the different transportation vehicles are spatially more
separated, e.g., in roads, pavement and biking paths, as well as with regards to
parking areas, which means that it is rarely possible to park right next to a bus
stop. Indoors the different transportation modes share the same hallways, and
to some degree also the same storage places, e.g. electric recharging stations for
the electric buses and bed-pushers.

2.3 Available Sensing Technologies

As elaborated above, the sensing capabilities usable for TMD differ significantly
between indoor and outdoor scenarios. Table 2 provides a generalised view of the
availability and applicability of sensors in indoor and outdoor environments. In
the following, we elaborate on these and their benefits and limitations. Further-
more, we provide pointers into how outdoor TMD make use of sensor modalities,
before we overview in Sect. 3 methods which utilize respective sensor data meth-
ods for inferring transportation modes indoors.

Global Navigation Satellite Systems. GPS and similar satellite based sys-
tems provide—at least in most outdoor environments—ubiquitously available
and precise positioning and speed estimates, on which many methods for TMD
rely. GPS is not reliably available in indoor settings however, where direct signals
from satellites are attenuated, refracted, and reflected by building infrastructure
[9]. GPS as a data source is popular within TMD, see .e.g. [12,24], due to its com-
paratively reliable and direct speed data coming with accurate position samples
in outdoor scenarios [22].

Radio-Based Sensing. Many radio-wave based systems, e.g., WiFi, GSM,
Bluetooth and RFID, which are commonly available, e.g. on smartphones, give
raise to position estimations. Apart from their use for communication, their
signal’s strength can be measured by the participating devices, beacons and
mobile clients alike. The resulting RSSI (received signal strength indicator) data
allows for coarse positioning, proximity detection, and for computing further fea-
tures capturing motion characteristics of mobile clients. The technologies differ
in wavelength and emission power, and thus also in range and accuracy. GSM



Towards Indoor Transportation Mode Detection Using Mobile Sensing 265

provides very long ranges, up to 34 km, and is almost ubiquitously available,
which makes it useful for both indoor and outdoor settings. However, as GSM
also has comparatively little spatial variability, the accuracy is typically less
than for shorter-range signals, such as Bluetooth or WiFi [10,21]. With a maxi-
mum range of about 50 m the use of WiFi measurements require a nearby (and
preferably dense) network, which makes it most useful for indoor (and urban)
settings. Bluetooth and RFID have even lower maximum ranges, which makes
them mostly useful for indoor settings or for use with specific gateways, as many
beacons, resp. readers, are required to cover a large area. RFID is often used
for proximity detection, and can provide very accurate positions, but only for
the specific gateway locations where a reader is located. For these technologies
the actual RSSI measurements can be performed either by the device or by the
network. This makes it possible to track devices with no additional setup on the
device, and potentially without the knowledge of the device owner. Maintenance
and installation cost is an additional issue that may differ for indoor versus out-
door settings with regards to radio-based infrastructure. For covering outdoor
settings, the infrastructure may need to cover a larger area, and beacons to be
placed outside need to be resilient to the outdoor environment, potentially at a
larger cost.

Kinetic Sensors. This covers sensors which are capable of sensing motion in
different forms, e.g., accelerometers, gyroscopes and magnetometers. As these
are common-place in, e.g., most modern smartphones, they can be used for a
variety of application scenarios. They can help to identify movement and acceler-
ation profiles of users to match with transportation modes, as well as be used for
dead reckoning in addition to other positioning methods. Specifically for mag-
netometers however, issues usually arise when using it as a compass indoor, due
to significant disturbances in the magnetic field caused by man-made building
infrastructure.1 Notwithstanding such issues, kinetic sensors are of use in TMD
both for outdoor as well as for indoor scenarios, as they do not rely on any envi-
ronmental sensor infrastructure and do not make strict assumptions about the
environment. Thus, the respective TMD methods for outdoor scenarios [5,7,12]
are useful and comparatively easy to adapt also for indoor scenarios.

Environmental Sensors. Within this category we group in-device sensors
which inform about the user’s (resp. the device’s) current environment, e.g.,
microphone, light detectors and cameras. These may provide useful information
relating to the transportation mode, e.g., microphones can be used to detect
specific sounds of vehicles [19], as well as be used for positioning [20], while
cameras can be used for positioning and object detection [2]. Such sensors are
1 In fact, these disturbances are sufficiently significant that they give rise to position-

ing via fingerprinting instead: given a magnetic field fingerprint collection, a phone’s
location can subsequently be estimated within the fingerprinted environment by the
local characteristics of the magnetic field as measured by the phone’s magnetome-
ter [1].



266 T.S. Prentow et al.

generally available in smartphones and may be used both indoors and outdoors.
However, outdoor settings may provide additional challenges as the environment
is less restricted and there are more potential sources of, e.g., noise and light;
conversely, distinguishing vehicles outdoors is often easier than indoors due to
the noisy engines in, e.g., most cars and buses, c.f. Sect. 2.2.

Table 2. Sensor types and their applicability for TMD in indoor and outdoor environ-
ments.

GNSS Radio-based Kinetic Environmental

Outdoor � � (�) (�)

Indoor (-) � � �

2.4 Existing Approaches for TMD

This section discusses a representative selection of the many available methods
for outdoor TMD, in order to determine their applicability for general indoor set-
tings. Table 3 provides an overview of the selected methods, which are discussed
in detail in the following.

Table 3. Selected related work on transportation mode detection.

Name Reddy et al. [12] Sohn et al. [14] Stenneth et al. [15] Hemminki et al. [7]

Modes Stationary,

walking,

running,

biking,

motorized

Stationary,

walking,

driving

Stationary,

walking,

biking, car,

bus, train

Stationary, walking,

bus, train,

metro, car

Sensors GPS, accelerom-

eter,

(GSM)

GSM GPS Accelerometer

External

Data

- - Bus locations, rail

lines, bus stops

-

Reddy et al. [12] evaluate the usefulness of several sensors and methods for
detecting five different transportation modes. They show that the methods can
distinguish between those five modes with an overall accuracy of 93%. However,
these results are computed using ten-fold randomized cross-validation, which
has a tendency to produce overly optimistic results, as we will elaborate on
in Sect. 4. The authors conclude furthermore that the best trade-offs between
energy-efficiency and accuracy are obtained by choosing GPS and accelerometer
as sensors, and that supplying with WiFi and GSM sensor data is not improving
accuracy significantly. Their results are instead for employing GPS for speed
estimates and the accelerometer for basic statistical and frequency features. The



Towards Indoor Transportation Mode Detection Using Mobile Sensing 267

chosen two complement each other well, since using only speed or frequency fea-
tures does not allow for distinguishing between all transportation modes: E.g.,
distinguishing stationary mode from motorized transport moving at constant
speed may be similar in acceleration patterns, but distinguishable by speed.
On the opposite, running and biking can be similar in speed, but have differ-
ent acceleration variances and dominating frequencies. Their methods are not
directly applicable to indoor settings, due to the reliance on speed from GPS.
However, on can (and we will) apply the accelerometer features they recommend
also in indoor settings.

Hemminki et al. [7] rely solely on the accelerometer sensor for distinguish-
ing still, walking, and four different motorized transport modes. They attribute
their improvements in accuracy over related work mostly to a novel method for
detecting the direction of gravity, and thereby of the phone’s orientation. Know-
ing the latter is useful as it eases the comparison of acceleration patterns across
phones with different orientations.

Sohn et al. [14] distinguish between three transportation modes: stationary,
walking and driving. Their methods are based on collecting consecutive GSM
fingerprints, between which the Euclidean distance in signal space is computed.
They show that these distances correlate closely with the speed of a device,
and achieve an accuracy of up to 90% in distinguishing between the three
modes. Their methods takes advantage of large expected speed differences of
the considered modes—and thus it is not clear how their results generalize to
further modes, and especially to indoor settings where most modes are similar in
expected speed, c.f. Sect. 2.2. Their methods, however, are more or less directly
applicable to WiFi fingerprints as well.

Stenneth et al. [15] use only GPS measurements, but utilize both speed and
position estimates. In combination with external information on real-time bus
locations, bus stop locations, and railway layouts, they are able to distinguish
the motorized transportation modes into further detail, as either car, bus or
train, which they are able to do with an accuracy of up to 93.5%. The external
information which they take advantage of is specific to outdoor settings, however
it may be possible to employ some similar information from indoor settings, e.g.,
on locations of electric vehicle charging stations.

3 Features for Indoor Transportation Mode Detection

This section considers the sensing modalities which we consider most useful for
indoor transportation mode detection, and presents features which we recommend
to extract from the respective sensor data. While we will evaluate the respec-
tive features’ usefulness solely in indoor scenarios, note that all of them are also
applicable in non-indoor or mixed scenarios. Thus, the listed features can be
deployed for outdoor settings without modification, by using the relevant tech-
nologies as input, e.g. GPS-retrieved positions instead of positions based on indoor
positioning for the position-based features and GSM instead of WiFi for the signal-
strength based features. In addition, further features will be applicable for outdoor
settings, such as speed-based features from GPS speed-measurements [12].



268 T.S. Prentow et al.

The following description of features assumes that the input measurements
are aggregated into time windows of a certain duration. We will discuss the size
of the windows and other parameter values in Sect. 4.

3.1 Signal Strength Based Features

As described in Sect. 2.2, radio infrastructures allows clues about the user’s posi-
tion, proximity, and motion via measuring incoming signal strengths over time
(either on the user device or by the beacons receiving the user device’s radio
messages). The signal strength measurements can stem from various sources,
e.g., WiFi, Bluetooth or GSM beacons and are structured in scans, containing
all the received signal strength values from all incoming radio transmitters mea-
sured in a single scanning. The frequency of scans, as well as the transmission
power, depends on the technology and the specific device settings.

The general idea behind these signal strength based features is that due to the
spatial variability of radio signals–and specifically their power loss over distance
and when being attenuated by building infrastructure, the signal strength mea-
surements received will vary when moving about—with greater variance when
moving fast, e.g., on vehicles. However, variance in signal strength may also stem
from other sources such as other people moving in vicinity, opening of doors, etc.

Variance. For each window of signal strength measurements, we compute the
variance of the signal strength measurements for each beacon. Based on this we
use as feature for the window the minimum, maximum and mean values over all
beacons.

We compute variance in three forms, differing on the handling of beacons
that do not occur in all scans in the window: (i) we remove beacons that are
not in all scans in the window, (ii) we use a low default value for a beacon’s
signal strength when the beacon is missing in a scan, and (iii) we complete the
computation using the values that are available, with no specific handling of
missing values.

Access Points. For each window, we compute the number of beacons from which
signal strength measurements have been received. To normalize for different
beacon densities in different buildings or different parts of the same building,
we also compute the number of beacons divided by respectively the average
and total number of received signal strength measurements during each scan.
The motivation behind these features is that the number of beacons from which
measurements have been received serves as a measure of the size of the area
covered in the time window at hand. In addition, we compute the number of
changes in beacons, as the total number of either appearing or disappearing
beacons in consecutive scans in the window. Given the fixed duration of the
time window at hand, the above features serve as a proxy for speed.

Distance in Signal Space. For each pair of consecutive scans in each window, we
compute the Euclidean distance in signal space between the samples. This is done



Towards Indoor Transportation Mode Detection Using Mobile Sensing 269

by treating each access point as a dimension in the Euclidean distance formula,
as described by Bahl et al. [3]. As features we extract the mean, minimum and
maximum of the distances computed within a window.

3.2 Position Based Features

When a positioning system is available, we can use the (sequence of) timestamped
position estimates to extract features. The usefulness of these features obviously
depends on the accuracy of the positioning system used.

Movement Speed. We can compute an estimate of the current speed from (con-
secutive) position estimates. To mitigate the effects of positioning inaccuracies,
we smooth the position sequence by computing the median trajectory of the
given positions [4]. We then use these smoothed positions to compute the speed
between each consecutive position estimates, from which we for each window
compute the mean, maximum, minimum and end-to-end speed in the window,
which are used as features.

3.3 Kinetic Features

Time Domain. The kinetic sensors we used include time-domain features which
have been used for human activity recognition (HAR) in multiple systems, as
described by Figo et al. [5]. The time-domain features include statistical measures
such as mean, standard deviation, minimum and maximum values and root mean
square. The full list of features used here is given by Figo et al. [5, Table 2].

For the time domain features, as for the following two classes of kinetic
features, we employ accelerometer measurements from each axis x, y, z as well
as the orientation-independent magnitude

√
x2 + y2 + z2.

Frequency Domain. The kinetic features subsumed here are based on frequency
analysis, which is useful for detecting (especially periodic) patters of movement,
such as walking. These features include the normalized spectral coefficients from
0 to 20 Hz, the entropy of coefficients and the dominating frequency, see Figo et
al. for a full list of features used here [5, Table 3].

ECDF Features. Additional to the explicitly chosen kinetic features above, we
also employ feature learning in the form of empirical cumulative distribution
function (ECDF) features, as described by Hammerla et al. [6] for accelerometer
measurements. Note that while the kinetic features above can also be employed
for kinetic sensors other than accelerometers, such as gyroscopes or magnetome-
ters, ECDF features are expected to generalize even better—as they adapt to
the patterns in the provided training data.



270 T.S. Prentow et al.

4 Evaluation

This section details the evaluations we have performed of the methods for indoor
TMD described in Sect. 3. We evaluate the methods based on real-world data
collected from a large hospital, as described in Sect. 4.2.

For evaluating approaches for indoor TMD, we undertook a real-world eval-
uation in a concrete case setting where accurate TMD provides significant value.
Advantages of this choice includes the evaluation in the face of both real-world
challenges, varying use-case scenarios and user behaviours, as well as a discussion
of the real-world impacts of shortcomings in TMD accuracy and reliability.

4.1 Evaluation Setting

The scenario in which we evaluate indoor TMD methods lies within mHealth,
specifically within hospital task logistics and focuses on the automatic scheduling
and registering of tasks of orderlies. To this end, various prototypes have been
evaluated in cooperation with hospital stakeholders and staff at several hospitals,
including the one chosen as environment for this investigation [17]. To further
improve the support of hospital work logistics, the automatic detection of which
transportation modes the orderlies use promises the following improvements for
the overall hospital logistics:

– Travel time estimation: Inferring transportation modes from collected data
in real-time will provide more accurate travel time estimates for the current
as well as for potential future tasks. That will in turn render task scheduling
more efficient.

– Navigation: The available routes through a building are restricted by the
transportation mode used, e.g., stairs cannot be used when on a vehicle. Thus,
for navigational aids knowing the user’s current mode is essential.

– Task registration: For automatic registration of tasks, detecting changes in
transportation mode provides valuable clues for automatic trip detection—
and may thus serve to detect the begin or ending of a task, or a task phase,
or for determining which (sequence of) task types are being performed.

– Vehicle management: For managing upkeep for a fleet of vehicles, the amount,
rate, and areas of use that each individual vehicle and each type of vehicle
has seen can provide valuable input, both for scheduling maintenance as well
as for optimizing the size of and default locations for the vehicle fleet.

4.2 Dataset

The dataset used comprises the activities of several orderlies throughout their
daily work routines for four days—which include maintenance work, transporting
patients, and similar tasks, which may require different transportation means, c.f.
Sect. 2.2. When collecting data with an orderly, we supplied him with a smart-
phone which logged accelerometer and WiFi-scan signal-strength measurements,
at the highest available frequencies. This was approximately 0.5 Hz for WiFi, and



Towards Indoor Transportation Mode Detection Using Mobile Sensing 271

200 Hz for accelerometer. The smartphone was carried in a shirt pocket where the
orderlies would normally carry their phones, so we do not evaluate for different
phone placement locations.2

Meanwhile, ground truth with regards to used transportation means was
collected by a person following the orderly throughout his work. The person was
following on an independent vehicle such as a bike, so as to influence neither
the orderlies (and specifically: their choice of transportation means), nor the
collected sensor measurements. We also had access to the WiFi network of the
hospital, which allowed us to collect all signal-strength measurements made by
the network for signals from the phone carried by the orderly.

4.3 Evaluation Methodology

For the evaluation, in line with standard practices in activity recognition research,
we use the F1-score, which is the harmonic mean of precision and recall [13].

The evaluations are performed using 10-fold cross-validation. However, we
do not use random folds for the cross-validation, as random folding is prone
to provide overly optimistic results when dealing with time-series data. Due to
being collected close in time, neighbouring measurements will often be similar,
but may be selected for different folds. Thus the classifier will be trained on
measurements that are similar to those which are tested on. Instead we split
folds on time, so that the first fold will be the first tenth of the data time-wise,
etc. This ensures that the folds are completely independent, as they will stem
from different trips made by the orderlies. For comparison we performed the
evaluation of Sect. 4.4 also using random-fold cross-validation which resulted in
an unrealistically high F-score of 99.2%, as compared to the F-score of 84.2%
when using time-folded cross-validation.

We evaluate four different classifiers that are popular for use in human activ-
ity recognition, namely nearest neighbour classifier with k = 5, C4.5 decision
tree, support vector machines (SVM), and random forest.

4.4 Detecting Transportation Means

In this section, we present overall accuracies for detecting different transporta-
tion modes, in different layers of the transportation mode model, as shown
in Fig. 3. Two hospital-specific vehicles are included: The e-bus and the e-
bedpusher. Both are electric vehicles which serve two different purposes. The
e-bus is used for fast transport by an orderly, as well as up to two passengers
which are typically patients at the hospital. The bed-pusher is designed for use
by an orderly for fast and easy transportation of bed-bound patients - however
the orderly may also use it for transporting just himself.
2 While the assumptions of homogeneity in device placement and smartphone model

are valid in the use scenario of this study, such homogeneity may be missing in other
scenarios and lead to lower accuracies for distinguishing transportation modes, see,
e.g., [7,16].



272 T.S. Prentow et al.

Fig. 3. Accuracy in detecting different levels of transportation means.

For the evaluation we used a random forest learner, parametrized to train
100 trees, and a window size of 10 s for accelerometer measurements, and for Wi-
Fi measurements we use a hierarchy of window sizes: a short one of 10 s and a
large one of 60 s. Later on we will discuss the influence of the chosen parameters,
specifically for various classifiers in Sect. 4.6, and for various window sizes in
Sect. 4.8. Complementing Figs. 3 and 4 shows the resulting confusion matrix.
Figure 3 shows the accuracy in the different layers of the transportation mode
model. Note that F-scores given at each node refer to the task of distinguishing
that node’s mode from just its siblings’ modes. It is visible, that when only
distinguishing between categories of upper-level layers, distinguishing is done
accurately, e.g., for the top-level categories “transporting” and “stationary”—
with an F-score of 98.6%. Considering more specific transporting subclasses, for
distinguishing between motorized and unmotorized transportation, the accuracy
falls to an F-score of 92.8%. This fall continues when distinguishing between the
two quite similar motorized vehicles considered: bus and bedpusher—with an
F-score of only 61.0%. For distinguishing unmotorized transportation, results
are better: walking is detected correctly 98.7% of the time, whereas the scooter
and bike transportation - for which we have only little data - are harder to detect.
This may also be due to that the movements may look similar to walking, e.g.
for powering a scooter. In total the modes of the unmotorized category can be
detected with an F-score of 97.5%.

To a large degree the results match the expectations. The features can accu-
rately determine whether the user is moving or not, since the typical values
of both WiFi and kinetic features are well separated for these two cases. The
motorized and unmotorized categories can also be distinguished quite clearly,
likely due to the fact that a person riding a motorized vehicle will be standing
still on the vehicle, while a person riding a unmotorized vehicle will move in
order to power the vehicle, or in order to walk - causing characteristic (and usu-
ally: periodic) movement patterns. The distinction between bus and bed-pusher,
however, was likely to be hard—as both vehicles are quite similar, specifically
they are both electrically-powered and drive at about the same speeds.

4.5 Evaluating Different Sensor and Feature Types

In this section, we evaluate the usefulness of the different feature and sensor
types, as well as of individual features, for indoor TMD.



Towards Indoor Transportation Mode Detection Using Mobile Sensing 273

Fig. 4. Confusion matrix based on accelerometer and WiFi features

Comparing the Usefulness of Different Feature Types. We will do so by
evaluating—for all the transportation modes for which we have collected data—
various candidates using different combinations of feature types. Figure 5a shows
the resulting confusion matrix when using only WiFi features, while Figs. 5b, c
and d show confusion matrices for employing solely accelerometer features of
one of the three kinetic feature types, respectively: ECDF, time-domain and
frequency-domain features. Table 4 shows F-scores for use of individual feature-
types as well as for any combination of features, ordered by F-scores.

For individual feature types the results show that the type providing the best
results for classification of these indoor transportation modes are the kinetic
time-domain features with an F-score of 78.9%, the next best being WiFi fea-
tures with an F-score of 76.0%, followed by ECDF and frequency-domain fea-
tures. These results are mirrored in the combined features, where the best results
are achieved by a combination of time-domain accelerometer features and the
WiFi features, with an F-score of 84.2%. Interesting to note is that for all combi-
nations of accelerometer-based features, the inclusion of WiFi features improves
the results.

The individual figures show that accelerometer has better performance than
WiFi when distinguishing walking from the motorized vehicles. As the vehicles
may at times drive at speeds close to walking, it may be hard to distinguish
them based on WiFi features, while the accelerometer features will be much
more distinct due to the specific movement patterns from walking. On the other
hand, WiFi features are significantly better for distinguishing stationary from
walking, as they can distinguish shifting weight between legs or shuffling around
from walking a distance. In this way the ability of accelerometers to detect
very small-scale movements complement the ability of WiFi to detect major
movements.

Comparing the Importance of Individual Features. In order to evaluate
which particular features appear most useful, we measured accuracy changes



274 T.S. Prentow et al.

(a) Detected from WiFi features (b) Detected from ECDF features

(c) Detected from time-domain features (d) Detected from frequency-domain features

Fig. 5. Confusion matrices holding F-scores when using a single feature type.

Table 4. The results for different combinations of feature types

ECDF - - - � � � � - - � � � - - �
Frequency - � � � - - � - � - � � - � -

Time � � - - � - � � � � � - - - -

WiFi � � � � � � � - - - - - � - -

Result 84.2 83.9 83.5 83.1 83.0 82.8 82.8 78.9 78.9 78.6 78.6 77.7 76.0 75.9 75.7

resulting from including (vs. excluding) individual features. Figure 6 shows for
each of the features types—WiFi, ECDF, time-domain, and frequency-domain
features— the five features which by themselves cause the highest accuracy gains.
The most important ones among the WiFi features we used, are based on the
number of unique access points seen in a time window—which is a rather crude
proxy of the area covered in that window, and in turn for speed. Less well per-
forming are WiFi features based on variance in signal strength measurements,
or on the estimation of speed via WiFi positioning data (likely due to the inac-
curacy of the latter). For the ECDF features notably the higher bins appear
important, suggesting that the values in the high end of the histogram are best
for distinguishing transportation modes. From the time domain kinetic features,
variance and standard deviation, as well as the 75 percentile of the normal-
ized measurements show high importance. As with the well performing ECDF



Towards Indoor Transportation Mode Detection Using Mobile Sensing 275

features, the feature values’ independence of phone orientation is likely to be
helpful. Although, also useful appear the variance and standard deviation of
measurements on the y-axis—which is for normal phone orientation the axis
which captures upwards and downwards movement best, and is thus helpful for
detecting, e.g., steps during walking. For the frequency domain features, features
covering movements in the frequency range from 0 to 2 Hz are dominating, which
is a bandwidth which captures well the characteristics of many common human
movement patterns [18].

Fig. 6. Computed feature importance for the 5 most important features of each type.
Blue: WiFi, Orange: Accelerometer-ECDF, Green: Acc-Time, Yellow: Acc-Frequency
(Color figure online)

4.6 Evaluating Different Classifiers

We evaluate several candidate classifiers in regards to their usefulness for indoor
TMD when using combined accelerometer and WiFi features. We selected candi-
dates that are often used in similar classification tasks such as activity detection
and TMD, as described in Sect. 3. For each candidate, we have experimented
with the relevant parameters; we obtained best results, e.g. for C4.5 tree classi-
fier when setting a max-depth of 10, and for the random forest, results did not
improve when using more than 150 trees. For the K-nearest neighbours algo-
rithm, we found K = 3 to work best. Table 5 presents F-scores of time-folded
cross-validation for each of the classifiers. We see that random forests seem to be
superior to support vector machines and K-nearest neighbour classifiers in this
setup, while all are superior to the C4.5 classifiers. A likely reason is that the
setup is prone to overfitting, and that thus the more resilient classifiers perform
better; e.g. random forests profit from the several trained trees voting to reach a
common verdict. These results and explanations are in line with those reported
by Sagha et al. [13] for indoor activity recognition.

4.7 Network- Versus Client-Based Wi-Fi Signal Strength
Measurements

Access to the WiFi network infrastructure at the hospital site allowed us to eval-
uate also (the differences between) using network-based and client-based WiFi



276 T.S. Prentow et al.

Table 5. F-scores when using different classifiers.

Learner C4.5 K-NN SVM Random forest

F1-score (%) 78.6 81.2 81.6 84.1

signal strength data collection. The results showed an only marginal F-score
decrease of 0.2 when using network-collected instead of on-phone-collected
measurements—and thus, that accurate TMD is also possible when using network-
based WiFi, i.e., without requiring the users’ mobile devices to perform measure-
ments. Note that in the network-based setup evaluated here we do however depend
on the mobile device to frequently send out WiFi signals, through WiFi scans or
other data communication.

4.8 Evaluating Different Wi-Fi Window Size

Table 6 presents the F-scores when varying the time window size over which we
aggregate signal strength data to obtain WiFi feature values from 10 up to 640 s.
The accuracy improves significantly when increasing a smaller window size, but
the increase lessens once sizes reach a minute, and using a window size of 10 min
provides for worse results than for 5 min. The optimal choice for a window size
relates to the expected trip length. As shown in Table 1, the trips performed
are on average below 9 min for all transportation modes. Increasing the window
size beyond yields high chances that several transportation modes are covered
in a given time window. Additionally, increased window sizes also increase the
response-time for detecting transportation mode changes in a real-time setting.

Table 6. F-scores for the different window sizes of WiFi features.

Window size 10 s 20 s 40 s 1 min 20 s 2min 40 s 5 min 20 s 10min 40 s

F1-score (%) 66.8 69.1 72.6 77.1 78.1 81.4 80.3

4.9 Evaluating the Usefulness of Additional Tagging of Vehicles

For cases where the transportation modes are hard to distinguish due to similar
movement profiles, e.g., for bus versus bed-pusher vehicles, the accuracy can
be improved by fitting WiFi tags onto such vehicles. To evaluate the usefulness
of WiFi tags, we fitted a bus and a bed-pusher with tags that performed WiFi
scans every 10 s. These scans were collected by the WiFi infrastructure during our
observation of the orderlies. From the collected scans we computed as features
the Euclidean distance in signal space of the orderlies’ WiFi measurements to
those of respectively the bus and the bed-pusher WiFi tags—the intuition here
being that when the order drives, e.g. a bus, he will be in close proximity to the
bus tag, resulting in a low signal space distance. Figure 7 shows an example of the



Towards Indoor Transportation Mode Detection Using Mobile Sensing 277

computed signal space distance before, during, and after a trip on a bed-pusher.
It shows how the distance decreases when the user approaches the tag, and it is
consistently low while he drives the bed-pusher. Our evaluation showed that with
the addition of tags, the distinction between bus and bedpusher improved from
an F-score of 49.3% to an F-score of 82.3%. However, this approach may not
work in situations where several types of vehicles are driven in closer proximity—
in which case co-movement detection could be used on sequences of position
estimates for further disambiguation [8].

 0

 50

 100

 150

 200

 250

D
is

ta
nc

e 
in

 s
ig

na
l s

pa
ce

Time

Bed-pusher tag distance
Driving bed-pusher

Fig. 7. Distance in signal space between the user and tag placed on bed-pusher.

5 Conclusions

Through the performed evaluations we have shown that automatic detection of
transportation modes using mobile devices such as smartphones is possible also
in indoor settings. The results show that accelerometer or WiFi measurements
can be used individually to detect transportation modes, but that a combina-
tion of both provides for improved results: Accelerometer-based features show
strength in distinguishing between walking and vehicles, while WiFi is especially
useful for determining whether a user is moving or not, and for distinguishing
between vehicles used in case those are WiFi-tagged. Future work includes auto-
matic detection of transportation modes also in mixed indoor and outdoor set-
ting, in order to support e.g., logistics in such settings. Furthermore, also addi-
tional sensors and respective fusion techniques, e.g. orientation-aware motion
sensor features, may provide further accuracy gains. Finally, it is left as future
work to explore the impact of different device placements and models on the
classification accuracy.

References

1. Indoor Atlas. http://www.indooratlas.com. Accessed 3 August 2015
2. Asmar, D.C., Zelek, J.S., Abdallah, S.M.: Smartslam: localization and mapping

across multi-environments. In: Proceedings of International Conference Systems,
Man and Cybernetics (2004)

http://www.indooratlas.com


278 T.S. Prentow et al.

3. Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and
tracking system. In: Proceedings of IEEE Conference Computer Communications,
pp. 775–784 (2000)

4. Buchin, K., Buchin, M., van Kreveld, M., Lffler, M., Silveira, R., Wenk, C.,
Wiratma, L.: Median trajectories. Algorithmica 66(3), 595–614 (2013)

5. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.P.: Preprocessing techniques
for context recognition from accelerometer data. Pers. Ubiquit. Comput. 14(7),
645–662 (2010)

6. Hammerla, N.Y., Kirkham, R., Andras, P., Plötz, T.: On preserving statistical
characteristics of accelerometry data using their empirical cumulative distribution.
In: Proceedings of ISWC 2013 (2013)

7. Hemminki, S., Nurmi, P., Tarkoma, S.: Accelerometer-based transportation mode
detection on smartphones. In: ACM SenSys 2013, pp. 13:1–13:14. ACM (2013)

8. Kjærgaard, M.B., Blunck, H.: Tool support for detection and analysis of following
and leadership behavior of pedestrians from mobile sensing data. Pervasive Mob.
Comput. 10, 104–117 (2014)

9. Kjærgaard, M.B., Blunck, H., Godsk, T., Toftkjær, T., Christensen, D.L.,
Grønbæk, K.: Indoor positioning using GPS revisited. In: Floréen, P., Krüger,
A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 38–56. Springer,
Heidelberg (2010)

10. LaMarca, A., et al.: Place lab: device positioning using radio beacons in the wild.
In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol.
3468, pp. 116–133. Springer, Heidelberg (2005)

11. Prentow, T.S., Thom, A., Blunck, H., Vahrenhold, J.: Making sense of trajectory
data in indoor spaces. In: IEEE 16th International Conference Mobile Data Man-
agement (2015)

12. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using
mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6(2),
13:1–13:27 (2010)

13. Sagha, H., Digumarti, S., del R. Millan, J., Chavarriaga, R., Calatroni, A., Roggen,
D., Tröster, G.: Benchmarking classification techniques using the opportunity
human activity dataset. In: IEEE Systems, Man, and Cybernetics (SMC) (2011)

14. Sohn, T., et al.: Mobility detection using everyday GSM traces. In: Dourish,
P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer,
Heidelberg (2006)

15. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using
mobile phones and gis information. In: Proceedings of 19th ACM GIS, pp. 54–63.
ACM (2011)

16. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T.S., Kjærgaard, M.B., Dey,
A., Sonne, T., Jensen, M.M.: Smart devices are different: assessing and mitigating
mobile sensingheterogeneities for activity recognition. In: ACM SenSys 2015. ACM
(2015)

17. Stisen, A., Verdezoto, N., Blunck, H., Kjærgaard, M.B., Grønbæk, K.: Accounting
for the invisible work of hospital orderlies: designing for local and global coordina-
tion. In: ACM CSCW 2016. ACM (2016)

18. Sun, M., Hill, J.: A method for measuring mechanical work and work efficiency
during human activities. J. Biomech. 26(3), 229–241 (1993)

19. Takagi, M., Fujimoto, K., Kawahara, Y., Asami, T.: Detecting hybrid and electric
vehicles using a smartphone. In: ACM UbiComp 2014, pp. 267–275 (2014)



Towards Indoor Transportation Mode Detection Using Mobile Sensing 279

20. Tarzia, S.P., Dinda, P.A., Dick, R.P., Memik, G.: Indoor localization without
infrastructure using the acoustic background spectrum. In: Proceedings of MobiSys
2011 (2011)

21. Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: GSM indoor
localization. Pervasive Mob. Comput. 3(6), 698–720 (2007)

22. Witte, T., Wilson, A.: Accuracy of non-differential GPS for the determination of
speed over ground. J. Biomech. 37(12), 1891–1898 (2004)

23. Wüstenberg, M., Blunck, H., Grønbæk, K., Kjærgaard, M.B.: Distinguishing elec-
tric vehicles from fossil-fueled vehicles with mobile sensing. In: IEEE MDM (2014)

24. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.: Understanding transportation modes
based on GPS data for web applications. TWEB 4(1) (2010)



Indoor Navigation with a Smartphone Fusing
Inertial and WiFi Data via Factor

Graph Optimization

Micha�l Nowicki(B) and Piotr Skrzypczyński

Institute of Control and Information Engineering, Poznań University of Technology,
Ul. Piotrowo 3A, 60-965 Poznań, Poland

{michal.nowicki,piotr.skrzypczynski}@put.poznan.pl

Abstract. Mobile devices are getting more capable every year, allowing
a variety of new applications, such like supporting pedestrian navigation
in GPS-denied environments. In this paper we deal with the problem of
combining in real-time dead reckoning data from the inertial sensors of
a smartphone, and the WiFi signal fingerprints, which enable to detect
the already visited places and therefore to correct the user’s trajectory.
While both these techniques have been used before for indoor navigation
with smartphones, the key contribution is the new method for including
the localization constraints stemming from the highly uncertain WiFi
fingerprints into a graphical problem representation (factor graph), which
is then optimized in real-time on the smartphone. This method results
in an Android-based personal navigation system that works robustly
with only few locations of the WiFi access points known in advance,
avoiding the need to survey WiFi signal in the whole area. The presented
approach has been evaluated in public buildings, achieving localization
accuracy which is sufficient for both pedestrian navigation and location-
aware applications on a smartphone.

Keywords: Navigation · Localization · Factor graph · Data fusion ·
WiFi · IMU · Smartphone · Android

1 Introduction

Nowadays smartphones became a viable computation platform to implement
indoor localization in GPS-denied environments. Indoor localization functional-
ity for mobile devices is commercially available using services provided by such
companies as Skyhook [22], which maintain WiFi and cellular fingerprint data-
bases for specific locations. However, such solutions require to survey the area
in order to obtain a signal strength map, which is time consuming and expen-
sive. Moreover, the user has to have a persistent Internet connection to the
database provider. Therefore, we are interested in self-localization solutions for
smartphones that do not require laborious surveying of the locations, but use
opportunistic sensing of signals from the ubiquitous wireless networks to enable
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 280–298, 2015.
DOI: 10.1007/978-3-319-29003-4 16



Indoor Navigation with a Smartphone 281

pedestrian navigation in unknown, cluttered environments. One of the possi-
ble approaches is to use WiFi fingerprinting without a presurveyed database of
places. This solution can be then combined with visual appearance-based loca-
tion verification algorithm, as in [19]. However, such a system is able to tell the
user only his discrete location, and cannot provide a continuous pose estimate
to a pedestrian. Thus, we propose a solution that combines WiFi fingerprinting
with the Pedestrian Dead Reckoning (PDR) for continuous localization.

The problem we have to deal with is how to combine the user’s trajectory
estimate obtained from a dead reckoning algorithm exploiting the inertial sen-
sors and magnetometer of a smartphone, and the WiFi signal fingerprinting
method, which allows for detection of already visited places. Thus, the system
has the ability to close a loop, if the user re-visits a location that was previ-
ously associated with a fingerprint. The information coming from both sources
is very different as to the spatial uncertainty characteristics, but both sources
define useful constraints as to the current location of the user. We formulate the
smartphone localization problem in a graphic model, as optimization of a graph
of constraints that are related to the sensory observations. The resulting factor
graph has a sparse structure and can be optimized in real-time on the smart-
phone using the Android port of the g2o general graph optimization library [15]
applying the Preconditioned Conjugate Gradient (PCG) algorithm.

Our solution assumes that only a small fraction of the WiFi networks existing
at the given area has been pre-labeled and anchored to the floor plan. We do
not assume a dense distribution of the WiFi Access Points (APs), and we can
work with few APs in the area. The proposed system does not need an off-
line learning or calibration stage. Although full simultaneous localization and
mapping (SLAM) solutions based on WiFi signals that enable to obtain a map
of the APs in the area are known from the literature [9], they usually assume
an environment densely populated by the WiFi networks and are computation
intensive, thus they are unsuitable for implementation on a smartphone. Thus, a
solution which requires to know only few APs in the area is advantageous, as the
APs can be easily anchored to a known floor plan uploaded to the smartphone
(we use standard building blueprints digitized to images). The WiFi nodes may
be attached to known locations in the global coordinates, or can be discovered
opportunistically, and treated as labelled poses. All computations are performed
on a smartphone.

2 Related Work

The rapid proliferation of high-end smartphones has brought a growing inter-
est among the researchers in using these devices for indoor navigation. One of
the possibilities is to use the camera of a smartphone and a monocular visual
odometry algorithm implemented on Android platform to estimate user motion.
However, existing research [6] demonstrated that real-time operation of a simple
visual odometry pipeline is only possible if there is no significant motion blur
and there are not sudden orientation changes, which makes it an impractical
solution.



282 M. Nowicki and P. Skrzypczyński

Therefore, we are interested in exploring other sensing modalities for
smartphone-based navigation. Various forms of dead reckoning have been con-
sidered for mobile devices, e.g. as an aid to visually impaired users [21]. Reli-
able pedestrian dead reckoning may be obtained by combining robust attitude
estimation of a smartphone [7] with a smartphone-based pedometer [25]. The
literature is also rich in papers concerning using WiFi for indoor localization.
A survey of the possible localization methods is given in [17]. The WiFi triangu-
lation uses three or more line-of-sight AP positions to determine position of the
receiver based on the measured signal strength of each network [1]. To localize in
areas where the signal strength from particular APs may vary due to occlusions
and attenuation the WiFi fingerprinting approach is more appropriate [2]. This
technique was already demonstrated to be feasible in smartphones [16], and was
applied to localize elderly patients by means of Android application [10].

Also systems employing more than one sensor type and localization method
have been investigated. Some researchers used sensors that were equivalent to
those employed in mobile devices, but did not perform the experiments on actual
smartphones/tablets, like Quigley et al. [20], who investigated combination of
vision, accelerometer, and WiFi signal-strength measurements for localization.
This approach required also to build a priori map of the environment using a
mobile robot equipped with a laser scanner. The WiFi fingerprinting technique
is a basis for the multimodal localization solution for smartphones presented in
[18]. Dead reckoning from smartphone-embedded inertial sensors is used together
with an independent position estimate from WiFi fingerprinting and a pre-built
environment map to localize the user in [14]. In this system a particle filter
is applied to obtain the final pose estimate. Similarly, Wu et al. [24] applied
off-line a particle filter to fuse WiFi and inertial data from a smartphone for
indoor localization. To implement SLAM relying on the WiFi strength signals
also other off-line optimization frameworks have been applied. Ferris et al. [5]
used Gaussian processes to obtain a map of WiFi signal strength in a given area,
avoiding to model explicitly the radio signal propagation. A GraphSLAM-like
algorithm is employed in [9] for localization using only the WiFi signal strength.
However, the off-line approaches cannot be implemented on a smartphone and
used for real-time indoor navigation. A more computation efficient approach for
the fusion of WiFi and inertial data from a smartphone was demonstrated in [4].
This approach employs Kalman filtering and estimates the user location with
respect to the WiFi APs by computing the distances upon a signal propagation
model. Unfortunately, using such a model in real indoor environments usually
yields highly inaccurate distance measurements, which renders this approach
rather impractical.

Recently, factor graphs became an increasingly popular framework for solv-
ing real-time SLAM and similar navigation problems [8]. Although most of the
applications of this framework to navigation assume a single sensor type, there
are notable works demonstrating that factor graphs are also a viable solution
for multi-sensor integration. Indelman et al. [11] used factor graph formulation
for information fusion in IMU-based navigation systems with constrained com-
putation resources. Research within the DARPA All Source Positioning and



Indoor Navigation with a Smartphone 283

Navigation project demonstrated that the extended, sliding-window factor
graphs can be used to integrate data from many sensor types in a plug-and-play
manner [3]. However, none of these works tackled the problem of modelling WiFi
fingerprinting constraints in the factor graph framework, neither demonstrated
real-time performance on such a low-power and resource constrained device as
a smartphone.

3 Indoor Localization in a Smartphone

Modern smartphones provide a variety of sensors, but the proposed graph-based
localization scheme focuses on the use of inertial sensors (accelerometer, mag-
netometer and gyroscope) and data from the WiFi signal scanning. The overall
structure of the processing pipeline is presented in Fig. 1. The main modules
include: the stepometer that uses data from accelerometers, orientation estima-
tion based on the Adaptive Extended Kalman Filter (AEKF) that fuses data
from inertial sensors and mangnetometer, and WiFi fingerprints matching that
exploits WiFi signal scans provided by the Android OS. The user poses and
localization-relevant constraints estimated by these modules are then used to
build a factor graph, which is optimized providing to the user the current pose
estimate in real-time.

Fig. 1. Processing pipeline of the proposed navigation system

3.1 Stepometer

The stepometer, called also pedometer, is a subsystem that measures the user
movement by detecting user’s steps. Smartphones are a perfect platform to run
stepometer processing, as the modern devices contain accelerometers and enough
processing power, while the users keep them close to their bodies. In the pre-
sented system, the step detection is performed by computing the FFT of the
accelerometer signal in a moving window, which is a simplified version of the



284 M. Nowicki and P. Skrzypczyński

algorithm presented in [12]. To reduce the influence of the device orientation on
the step detection, the magnitude of the accelerometer signal is processed. The
steps are considered to be detected if the dominant frequency f found by the
FFT is between the values of 1.3Hz and 2.0Hz. Knowing the person’s step length
s (default value measured in tests for an adult male person was 0.65 m), it is
possible to compute the covered distance using:

di = s · fi · n

nw
, (1)

where di denotes the covered distance in i-th iteration, fi is the found dominant
frequency for the moving window in i-th iteration, n is the number of new
accelerometer measurements since the last stepometer output computation, and
nw is the number of accelerometer measurements in the processing window. If
the total covered distance value d is sought, it is computed by summing up the
partial distances di from each processing iteration.

The precision of the stepometer defined by (1) depends on the precision of
step size s estimate and the moving window size nw. Larger window sizes result
in more precise frequency estimation, but with greater latency in the detection
of user movement or even inability to detect sudden motion. Smaller window
size gives an ability to detect those rapid movements, but results in more false-
positive step detections. In the proposed system the window size is equal to
512 measurements. On the Android-based device this value allowed to easily
utilize DFT computations, as the window size is a power of 2, and resulted in
the computation time-window of 2.5 sec. The settings allowed to detect sudden
movements, while providing satisfactory precision in step recognition.

3.2 Orientation Estimation

The orientation estimation of the smartphone is performed by fusing data from
the accelerometers, magnetometer and gyroscope, which are present in any mod-
ern mobile device. The method used for orientation estimation is based on the
AEKF algorithm implemented using quaternions, and has been presented in [7].
The state of the AEKF subsystem consist of four quaternion values and esti-
mates of three gyroscope biases. The magnetometer and accelerometer data are
combined to estimate the smartphone coordinate system in the ENU global ref-
erence system (X – East, Y – North, Z – Up). The covariance matrices used
in the system were estimated by the PSO optimization algorithm [13], and the
AEKF parameter values used here are consistent with the optimal parameters
presented in [7].

3.3 WiFi Fingerprinting

In the proposed system, the WiFi fingerprint matching approach is utilized [1].
It is possible to: (i) compare the current WiFi scan to a pre-existing database
of fingerprints taken at known locations, (ii) compare the current WiFi scan to



Indoor Navigation with a Smartphone 285

the WiFi fingerprints recorded earlier during the system operation. The former
method assumes that before the start of a navigation task a small set of WiFi
scans is taken in known poses of the user, and these fingerprints are stored in
the memory of the smartphone. The procedure to obtain these WiFi fingerprints
is straightforward and fast, as only WiFi scans in few selected locations are
needed. The latter operation mode assumes no prior knowledge of the environ-
ment as only the WiFi scans taken during the system operation are compared.
The matching of WiFi fingerprints provides localization constraints equivalent to
the loop closure mechanism in SLAM, as it detects previously visited locations
(either known a priori or discovered) and allows to reduce the dead reckoning
drift.

Both of the proposed modes rely solely on comparing the two WiFi scans
X and Y. One of the scans X is the currently scanned, and the second scan Y
comes from the stored database, either created in advance, or discovered during
the system operation. The Euclidean norm between signal strength values of
networks found in both scans is used to compare the fingerprints:

d(X ,Y) =

√∑N
i=1(Xi − Yi)2

N
, (2)

where Xi and Yi are the strengths of i-th shared network between both scans,
X and Y, while N is the number of shared networks found in both scans. It is
assumed that if the Euclidean distance d(X ,Y) is less than a threshold dWiFi

then the fingerprints match. In the proposed solution dWiFi = 8 dBm was used.
If the Euclidean distance test was passed, the number of networks N shared
between the two scans X and Y is compared to the number of WiFi networks
detected in each scan, NX and NY , respectively. If N > p×NX and N > p×NY

then the WiFi fingerprint matching is considered to be correct, where p denotes
an experimentally set parameter, which may vary between environments. In the
proposed system it is set to 0.75.

If the WiFi scans taken during system operation are added to the data-
base, the number of necessary comparisons grows linearly with the number of
records in the database. We deal with this problem by having a dedicated thread
responsible for WiFi place recognition, which compares WiFi scans prioritized
in a queue according to the difference in their IDs. If the database has grown to
a size that prevents real-time operation, the fingerprints with lowest priority are
omitted in the comparison.

4 Factor Graph Representation

The main contribution of this paper is the data fusion scheme using the factor
graph representation and non-linear least-squares optimization. This formulation
of the SLAM problem is considered the state of the art in mobile robotics [8], but
is novel in the context of pedestrian navigation with sparse WiFi fingerprints,
and in the context of real-time, Android-based implementation.



286 M. Nowicki and P. Skrzypczyński

To find the most plausible sequence of the nodes (user poses or map positions
with known WiFi scans) pi ∈ SE(2), i = 1 . . . n satisfying k constraints existing
in the factor graph the following function is minimized:

argmin
p

F =
n∑

i=1

k∑
j=1

ej(pi,mij)TΩijej(pi,mij), (3)

where ej(pi,mij) is the error function of j-th constraint j = 1 . . . k, evaluated
for the estimated pose of the node and the measured pose of the node stemming
from the j-the measurement mij related to this pose. The poses p for known
WiFi scans are anchored to the map coordinate system and cannot be moved by
optimization process. The measurement means either the user motion estimate
(from PDR) or the measurement resulting from two matching WiFi fingerprints.
The information matrix Ωij models uncertainty of the computed error.

4.1 PDR Motion Constraints

To represent the motion constraints imposed by the PDR-estimated motion of
the user, it was decided to use the EDGE:SE2 factor graph edge defined in
the g2o library. This edge represents the measurement between two 2D poses
as: EDGE:SE2 = (Δx,Δy,ΔΘ), where Δx and Δy are the measured distances
along the X and Y axis w.r.t. the local coordinate system. The ΔΘ is the
difference between the orientations of both connected user poses. Because the
PDR employs two independent subsystems to estimate the covered distance and
the orientation change, the information matrix Ωpdr was assumed to have the
form:

Ωpdr =
[

I2×2 02×1

01×2 k

]
, (4)

where the k parameter was determined experimentally, to allow the g2o optimiza-
tion software to trust more in the pedometer distance than in the orientation
estimate, which can degrade due to very sharp turns or in presence of magnetic
fields in the vicinity. We got best results with k ≥ 10.

4.2 WiFi Fingerprint Constraints

The WiFi fingerprint information represents some belief that the user is located
in a vicinity of an already visited or previously mapped location, but such a
constraint cannot be easily converted into an existing g2o edge, due to its topo-
logical relation rather than metric measurement nature. Therefore, we propose
a novel factor graph edge, which directly represents any information that can be
understood as vicinity measurement. Such vicinity measurement is represented
as an edge with the error function:

Err(x) =

⎧⎪⎨
⎪⎩

0 derr(x) < dmin

Errmax derr(x) > dmax

Errmax
derr(x)−dmin
dmax−dmin

otherwise.
(5)



Indoor Navigation with a Smartphone 287

The error function (5) is presented in Fig. 2. The edge formulated this way is
deactivated in case of small distances, which means that two nodes are close
enough to be indistinguishable by means of WiFi fingerprint matching. Then,
when the error considered as the Euclidean distance between the nodes is greater
then the dmin threshold, the edge is activated. The error increases and the opti-
mization procedure tries to reduce that error by moving the two considered nodes
closer. As the uncertainty in matching WiFi fingerprints is isotropic, we set the
information matrices of the WiFi-related constraints Ωwifi to identity.

Fig. 2. The error function used for WiFi edge in graph-based optimization

4.3 Implementation Details

The proposed system was implemented for mobile devices with the Android
OS (versions above 4.0), and finally tested on a Samsung Galaxy Note 3 with
Android 4.4.4. The program is divided into 4 threads: (i) processing inertial data
for orientation estimation and stepometer; (ii) fingerprints matching processing
the WiFi scans and finding corresponding scans in the database and in the
queue of scans taken in-motion; (iii) factor graph management polling data from
subsystems and performing optimization; (iv) user interface. The inertial sensors
data used in orientation estimation are processed with the maximal available
frequency of 200 Hz whereas stepometer processing is performed at 5 Hz. The
WiFi scans are performed as fast as possible (0.75 Hz). The implementation of
the system is divided between JAVA and C++ (NDK) parts as it allowed us to
combine C++ efficiency and possibility to use existing code with Java ease to
create GUI and access available sensors.

5 Experiments

5.1 Experimental Setup

The experiments to evaluate the proposed fusion scheme were performed in two
public buildings at the Poznań University of Technology (PUT) campus – the



288 M. Nowicki and P. Skrzypczyński

Lecturing Center and the Mechatronics Center, shortly abbreviated to “LC” and
“MC”, respectively. The user equipped with a smartphone was asked to move
around a building and the Android-based system was estimating the trajectory.
It should be noted that the user was not stopping while moving along the tra-
jectory to obtain the data, and therefore the WiFi scans taken in-motion cannot
be easily associated with a single user position. However, the experiments con-
ducted this way closely simulate real-life use cases of the pedestrian navigation
system. The resulting trajectories are presented against the building floor plans,
which allows for easy visual assessment of the correctness of the trajectories.

5.2 Pedestrian Dead Reckoning Results

The experiments started with tests focusing on evaluating the accuracy of the
proposed PDR subsystem. The first test was performed inside the LC building,
which hosts a large lecturing auditorium surrounded by an open space (lobby
area) at the ground floor. The planned user path made a semi-loop around the
auditorium, which however could not be closed by the user due to the restricted
access to the area of auditorium’s backstage. The user moved almost from the
staircase on the left side, to the exit of the building on the right side of the floor
plan (Fig. 3A). The trajectory obtained using the PDR subsystem (stepometer
with orientation estimate) is presented in red, whereas the approximate ground
truth trajectory, obtained by referencing to the known objects in the vicinity
is depicted in yellow. The total covered distance was approximately 92 m. The
trajectory obtained from the PDR subsystem is relatively good, although it can
be observed that the user motion estimate is getting worse with the increasing
operation time. This drift is caused by the nature of the dead reckoning princi-
ple, which accumulates small errors in estimation of the relative displacements
along the trajectory. It is also evident, that even a small angle error can have
a significant impact on the trajectory, and leads to large error in the Cartesian
position of the user.

Due to the limited scale of the experiments in the LC building, it was decided
to perform an experiment inside the MC building, which has a considerably dif-
ferent structure, with narrow corridors and less amount of open space. The user
was asked to move twice along a rectangular trajectory and finish the experi-
ment at the starting position, thus closing a loop. The obtained trajectory (red)
is presented in Fig. 3B whereas the approximate ground truth path is denoted
by the thicker yellow line. The total covered distance was approximately 178 m.
This time the trajectory yielded by the PDR alone is much worse than in the LC
case, due to inaccurate orientation estimation at sharp turns, and perhaps more
noisy magnetometer readouts that were influenced by various electric equipment
in the labs surrounding the area. The resulting PDR trajectory suffers from large
drift and the second loop of the rectangular trajectory apparently does no match
the first one.



Indoor Navigation with a Smartphone 289

Fig. 3. PDR trajectories (red) estimated in the LC (A) and MC (B) buildings com-
pared to the estimated pedestrian movement (yellow). The discovered WiFi-fingerprint
matches (black lines) are shown for the MC trajectory (Color figure online).

5.3 PDR Supported by Matching of Discovered WiFi Fingerprints

To alleviate the odometry drift, the proposed system introduces the factor graph
representation of the trajectory, which can accommodate additional information
from WiFi fingerprints. The constraints stemming from WiFi fingerprints are
discovered between the poses where WiFi scans were taken while the user was
in motion. Unfortunately, those scans cannot be precisely associated to unique
poses on the trajectory due to the long scanning time on the smartphone used in
experiments. The Samsung Galaxy Note 3 scans 2.5 GHz and 5 GHz WiFi fre-
quencies looking for WiFi APs, which takes about 4 sec. for a full scan. Therefore,
for the discovered WiFi edges the deadzone parameter ddiscmin of the error function
(5) was increased to 6 meters. This value captures the additional uncertainty in
the location of the pose to which the fingerprint is anchored on the trajectory.
Also, a discovered WiFi constraint can be spawned only to an already existing
user pose. Therefore, those constraints cannot reduce the trajectory estimation
drift that has mounted before the reference (revisited) pose was added to the
trajectory (and the factor graph). However, the discovered constraints can keep a
multi-loop trajectory more consistent, reducing the drift for motion along already
covered paths. The discovered WiFi links are presented as black lines in Fig. 3B
whereas the trajectory obtained after optimization is presented in Fig. 4.

From the presented trajectory, it is evident that the in-motion discovered
WiFi constraints, which do not need any a priori knowledge of the environment
nor the layout of the APs, reduce the trajectory estimation drift in case of
longer operation with the smartphone. Unfortunately, these constraints do not
guarantee a trajectory estimate that reasonably matches the ground truth path,
due to the PDR errors that mounted before the first local loop closure between
the fingerprints was discovered.



290 M. Nowicki and P. Skrzypczyński

Fig. 4. Optimized trajectory estimate from PDR and WiFi links discovered in the MC
experiment

5.4 Constraints from WiFi Fingerprints with Known Positions

Due to the inability of the in-motion discovered WiFi constraints to completely
cancel the drift of the estimated trajectory other constraints related to the WiFi
were considered. It is pretty evident that the drift in the PDR trajectory cannot
be reduced significantly without prior knowledge of the locations of the APs in
the environment. While these locations may be estimated by a SLAM algorithm,
such an approach requires to survey the site prior to using the smartphone
navigation system. We consider this too laborious and time consuming, and
therefore we investigate an approach which uses only a minimal set of few APs
at known positions. Those APs should be located in areas critical for PDR
navigation, e.g. right-angle turns of corridors or crossroads. The few AP with
known WiFi fingerprints and positions were determined prior to the experiment
by a person who took 4 scans for each area of interest, and then simply pinpointed
that location on the provided floor plan. The reference scans were taken with the
user standing still, therefore they could be precisely associated to poses/places.

The experiments started with a trajectory taken inside the LC building as
presented in Fig. 5A, where the PDR estimate (red) was presented with positions
of the known WiFi fingerprints (blue crosses) and the discovered WiFi finger-
print matches (green lines) between scans taken in-motion and the known WiFi
fingerprints stored in a database. The user was asked to keep moving continu-
ously and therefore the WiFi constraints to known places could not always be
detected, as in real-life scenarios.

When the factor graph of nodes and constraints is created, it is optimized
on the smartphone by using the g2o library. The resulting graph, representing
the best estimate of the trajectory, is presented in Fig. 5B. To distinguish the
graphs before and after optimization, the used colors were reversed – the blue
circles represent estimated user position whereas red crosses correspond to the
positions of the WiFi fingerprints stored in database.

The obtained, optimized trajectory is similar to the PDR estimate in the ini-
tial part, as from the beginning the odometry estimate is accurate and therefore,



Indoor Navigation with a Smartphone 291

Fig. 5. PDR trajectory prior to optimization with found WiFi links (A) compared with
resulting, and optimized trajectory with dmap

min = 6 meters (B) in LC building

Fig. 6. Optimization trajectories obtained for differently tuned deadzone values:
3 meters (A) and 4.5 meters (B) in LC building

the WiFi constraints in the factor graph are not active. When the user moves fur-
ther from the starting point, the odometry suffers from the accumulating errors,
and the WiFi constraints get activated. The performed optimization results in a
trajectory estimate which is close to the ground truth.

The critical parameter that needs to be properly tuned is the deadzone radius
of the constraint related to the known WiFi fingerprint dmap

min . Results for alter-
native deadzone values are presented in Fig. 6. The choice of dmap

min =3 m (Fig. 6A)
results in an optimized trajectory that is artificially curved around positions of
the known APs. If a too strict deadzone value is selected, the WiFi constraint
returns a non-zero error value even though there is no need to additionally cor-
rect the PDR estimate. A similar effect can be observed for dmap

min = 4.5 meters
where a single WiFi fingerprint match curves the trajectory at the beginning
resulting in a trajectory estimate worse than the one using only the PDR. The
proper choice of the deadzone radius dmap

min should depend on the environment



292 M. Nowicki and P. Skrzypczyński

Fig. 7. Trajectory obtained with PDR and discovered WiFi links inside the MC build-
ing while moving twice along a rectangular trajectory

Fig. 8. Optimized trajectory with PDR and WiFi database edges inside MC building

characteristics, as in more cluttered environments smaller deadzone radius values
result in better trajectories.

A similar experiment with the known WiFi fingerprints was performed in the
MC building. The found WiFi constraints are visualized in Fig. 7. On the trajec-
tory of the user, six places were chosen to record WiFi scans that can be used by
the WiFi fingerprint localization system. In this experiment the in-motion dis-
covered WiFi constraints between poses along the trajectory were neglected, in
order to clearly present the benefits due to the constraints between the user pose
and the WiFi fingerprints at known locations. The post-optimization trajectory
is presented in Fig. 8. Again, the colors were reversed to represent optimized
trajectory.

The optimized trajectory obtained from the proposed system almost perfectly
resembles the real trajectory of the user. The WiFi fingerprint measurements
with known positions placed on the crossroads allowed to properly constrain
the trajectory. Even though the presented results are sufficient when it comes
to pedestrian navigation, it is also possible to constraint the trajectory with



Indoor Navigation with a Smartphone 293

additional in-motion discovered WiFi edges. Such a system should combine all
of the possible sources of information and therefore provide a better trajectory.
The trajectory recorded in the previous experiment repeated with the additional
discovered WiFi links (denoted using black color) is presented in Fig. 9. In this
experiment, it was decided to reduce the number of known WiFi fingerprints to
four places and therefore create a more challenging environment for the proposed
system.

Fig. 9. Created graph with PDR edges (red), discovered WiFi edges (black), and WiFi
edges to places found in the floor plan (green) (Color figure online).

Before performing the optimization, it is also important to set proper, differ-
ent deadzone values of the in-motion discovered constraints and constraints to
WiFi fingerprints of known position. Different parametrization has to be made
due to the fact that both WiFi scans establishing a discovered constraint are
taken in-motion, whereas one scan in the constraint related to a known WiFi
location is static, and thus located more precisely. Therefore, we assumed and
experimentally tested that the ratio of the discovered WiFi deadzone dmotion

min to
the WiFi of known location deadzone dmap

min should be equal to 2. The resulting
optimized trajectory with both types of WiFi constraints is presented in Fig. 10.
The resulting system performs slightly better than the one using only the known
WiFi locations. The discovered WiFi constraints allowed to improve the result-
ing trajectory, which is believed to come from the fact that the trajectory is
more constrained between the repeated loops of similar shape.

The precision of the proposed system depends on the number and the location
of the known WiFi positions used for smartphone localization. To demonstrate
the difference in trajectory estimate, the user was asked to move for 119 meters
in MC building and different configurations on known WiFi APs were tested in
four experiments. The first trajectory with 15 known WiFi positions is presented
in Fig. 11A. The obtained trajectory is very close to the real trajectory as there



294 M. Nowicki and P. Skrzypczyński

Fig. 10. Comparison of a trajectory obtained with a factor graph created using PDR
and WiFi edges to known places (green), and trajectory obtained with a factor graph
including constraints from PDR, WiFi edges to known places, and discovered WiFi
edges (blue) (Color figure online).

is enough known WiFi scans to correct the trajectory from PDR. The same tra-
jectory with 6 known WiFi APs (Fig. 11B) still resembles the real path, although
it is possible to observe increasing error drift in these parts where WiFi informa-
tion is unavailable. The important factor is also the location of the WiFi known
positions on the path. Randomly choosing 6 WiFi APs (as in Fig. 11C) results in
a useless trajectory as the WiFi information is not available in situations when
PDR has the greatest error (especially just after sharp turns at the junctions
of the corridors). Therefore, it is important to have WiFi information on possi-
ble crossroads. It is also important to have enough locations with known WiFi
scan as insufficient number of those positions results in imprecise trajectory as
presented in Fig. 11D. The PDR system of the proposed solution can be used
to estimate the trajectory between two locations with known WiFi scans, but
the lack of WiFi information (as in the end of trajectory in Fig. 11D) results in
accumulation of error, mostly due to the imprecise orientation estimation inside
a building.

To enable quantitative comparison between the obtained trajectories we
apply the translational trajectory error metric, which is similar in concept to
the ATE (Absolute Trajectory Error) proposed in [23] and commonly used in
robotics. Similarly to the ATE our translational trajectory error compares the
absolute distances between the estimated P and the ground truth Q trajectory.
At first we map the estimated trajectory onto the ground truth trajectory by
computing the rigid-body transform S that is the least-square solution to the
alignment problem [23]. Then, the trajectory error is computed as Fi = Q−1

i SPi,
for each i-th trajectory node. We extract the translational component of Fi and
compute the Root Mean Square Error (RMSE) or mean error, along with the
standard deviation. However, while the ATE error is computed over all time
indices of Fi for the matching (i.e. time-synchronized) nodes of the reference
and the estimated trajectory, we compute Fi as the error between the given
node of P and the closest (in the Euclidean sense) point on the Q trajectory.
This difference is caused by the fact, that working over long paths in natural



Indoor Navigation with a Smartphone 295

Fig. 11. Trajectories obtained with factor graphs created using PDR and WiFi edges:
15 known WiFi points (A), 6 known WiFi points anchored in critical locations of the
floor plan (B), 6 randomly chosen known WiFi points (C), only 4 known WiFi points
in critical locations (D)

indoor environments we cannot use an external motion capture system or GPS
to obtain the ground truth trajectory, thus we cannot establish direct corre-
spondence between the nodes of the estimated trajectory, and the ground truth
path, which is surveyed manually by referencing to the walls and objects of
known positions in the floor plan. The quantitative results for the experiment
demonstrated in Fig. 11 are shown in Table 1.

Table 1. Accuracy of the recovered user paths with different choice of the number and
location of the known WiFi Access Points

Choice of the known WiFi scan locations Translational trajectory error

RMSE [m] mean [m] std. dev. [m] max. [m]

15 (all known) 1.18 0.87 0.80 3.71

6 at critical places 2.33 1.74 1.54 5.38

6 chosen randomly 11.93 7.42 9.36 29.04

4 at critical places 5.60 3.88 4.05 14.92

The lowest RMSE error of 1.18 m is observed for the experiment with 15
know WiFi scans. Reducing the number of known WiFi scans to 6 yields a
trajectory of RMSE error equal to 2.33 m, which is still acceptable for most of
pedestrian navigation purposes. However, the maximal error increases to 5.38 m
as the system depends for much longer periods on the noisy PDR estimate.
The choice of 6 random locations of known WiFi scans results in the RMSE
trajectory error of 11.93 m, which is useless for any application. More precise
results are observed for a smaller number of known WiFi APs (only 4), but
placed at locations critical for localization.



296 M. Nowicki and P. Skrzypczyński

Fig. 12. Visualization of the user trajectory (cyan) on the Samsung Galaxy Note 3 in
the MC experiment with places of known WiFi scans (red): during the experiment (A),
and after g2o optimization (B) (Color figure online).

All of the presented results were obtained on the real smartphone as presented
in Fig. 12 and the code of the solution is publicly available.1

6 Conclusions

The presented graph-based representation of data coming from inertial and WiFi
sensors presents an alternative, flexible and computation efficient way of data
fusion when compared to typical approaches based on EKF or particle filters. The
factor graph representation allows to easily model the error function to suit the
uncertainty characteristics of measurements. In our system this representation
allows to model the deadzone in the localization of places by using the WiFi
fingerprint matching technique. The experiments proved that the stepometer
with orientation estimation make a reasonable PDR system on the Android
platform, but the user’s position estimate from dead reckoning inevitably has a
drift. The WiFi fingerprint matching approach allows to alleviate the negative
effects of odometry drift and therefore provides much more precise trajectory
estimates, even for long paths in complicated indoor environments.

The proposed system was evaluated when merging inertial and WiFi informa-
tion, but it can be easily extended to incorporate information from additional
sources, such like the smartphone’s camera, which will be the main focus of
further research.

Acknowledgment. This work is financed by the Polish Ministry of Science and
Higher Education in years 2013–2015 under the grant DI2012 004142.

References

1. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and
tracking system. In: Proceedings of Joint Conference of the IEEE Computer and
Communications Societies, pp. 775–784 (2000)

1 https://github.com/LRMPUT/DiamentowyGrant.

https://github.com/LRMPUT/DiamentowyGrant


Indoor Navigation with a Smartphone 297

2. Biswas, J., Veloso, M.: WiFi localization and navigation for autonomous indoor
mobile robots. In: Proceedings of IEEE International Conference on Robotics &
Automation, Anchorage, pp. 4379–4384 (2010)

3. Chiu, H.-P., Zhou, X., Carlone, L., Dellaert, F., Samarasekera, S., Kumar, R.:
Constrained optimal selection for multi-sensor robot navigation using plug-and-
play factor graphs. In: Proceedings of IEEE International Conference on Robotics
and Automation, Hong Kong, pp. 663–670 (2014)

4. Chen, Z., Zou, H., Jiang, H., Zhu, Q., Soh, Y., Xie, L.: Fusion of WiFi, smartphone
sensors and landmarks using the Kalman filter for indoor localization. Sensors 15,
715–732 (2015)

5. Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent vari-
able models. In: Proceedings of International Joint Conference on Artificial Intel-
ligence, pp. 2480–2485 (2007)

6. Fularz, M., Nowicki, M., Skrzypczyński, P.: Adopting feature-based visual odom-
etry for resource-constrained mobile devices. In: Campilho, A., Kamel, M. (eds.)
ICIAR 2014, Part II. LNCS, vol. 8815, pp. 431–441. Springer, Heidelberg (2014)

7. Gośliński, J., Nowicki, M., Skrzypczyński, P.: Performance comparison of EKF-
based algorithms for orientation estimation on Android platform. IEEE Sens. J.
15(7), 3781–3792 (2015)

8. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: Tutorial on graph-based
SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

9. Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., Aggarwal, A.: Effi-
cient, generalized indoor WiFi GraphSLAM. In: Proceedings of IEEE International
Conference on Robotics & Automation, Shanghai, pp. 1038–1043 (2011)

10. Husen, M.N., Lee, S.: Indoor human localization with orientation using WiFi fin-
gerprinting. In: Proceedings of ACM International Conference on Ubiquitous Infor-
mation Management and Communication, Siem Reap (2014)

11. Indelman, V., Williams, S., Kaess, M., Dellaert, F.: Information fusion in navi-
gation systems via factor graph based incremental smoothing. Rob. Auton. Syst.
61(8), 721–738 (2013)

12. Inoue, S., Hattori, Y.: Toward High-level activity recognition from accelerometers
on mobile phones. In: Proceedings of IEEE International Conference on Internet
of Things, and Cyber, Physical and Social Computing, Dalian, pp. 225–231 (2011)

13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)

14. Kothari, N., Kannan, B., Dias, M.B.: Robust indoor localization on a commer-
cial smart-phone. Technical report CMU-RI-TR-11-27, Carnegie-Mellon Univer-
sity, Pittsburgh (2011)

15. Kümerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general
framework for graph optimization. In: Proceedings of IEEE International Confer-
ence on Robotics & Automation, Shanghai, pp. 3607–3613 (2011)

16. Liu, H., et al.: Accurate WiFi based localization for smartphones using peer assis-
tance. IEEE Trans. Mob. Comput. 13(10), 2199–2214 (2013)

17. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning:
techniques and systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6),
1067–1080 (2007)

18. Martin, E., Vinyals, O., Friedland, G., Bajcsy, R.: Precise indoor localization using
smart phones. In: Proceedings of ACM International Conference on Multimedia,
pp. 787–790 (2014)

19. Nowicki, M.: WiFi-guided visual loop closure for indoor localization using mobile
devices. J. Autom. Mob. Rob. Intell. Syst. (JAMRIS) 8(3), 10–18 (2014)



298 M. Nowicki and P. Skrzypczyński

20. Quigley, M., Stavens, D., Coates, A., Thrun, S.: Sub-meter indoor localization in
unmodified environments with inexpensive sensors. In: Proceedings of IEEE/RSJ
International Conference on Intelligent Robots & Systems, Taipei, pp. 2039–2046
(2010)

21. Riehle, T., Anderson, S., Lichter, P., Whalen, W., Giudice, N.: Indoor inertial
waypoint navigation for the blind. In: Proceedings of International Conference on
IEEE Engineering in Medicine and Biology Society, pp. 5187–5190 (2013)

22. Skyhook. http://www.skyhookwireless.com/
23. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for

the evaluation of RGB-D SLAM systems. In: IEEE/RSJ International Conference
on Intelligent Robots & Systems, Vilamoura, pp. 573–580 (2012)

24. Wu, D., Xia, L., Mok, E.: Hybrid location estimation by fusing WLAN signals and
inertial data. In: Liu, C. (ed.) Principle and Application Progress in Location-Based
Services. LNGC, pp. 81–92. Springer, Berlin (2014)

25. Wu, S.-S., Wu, H.-Y.: The design of an intelligent pedometer using Android. In:
Proceedings of International Conference on Innovations in Bio-inspired Computing
and Applications, pp. 313–315 (2011)

http://www.skyhookwireless.com/


Workshop Papers



Using Interaction Signals for Job
Recommendations

Benjamin Kille1(B), Fabian Abel2, Balázs Hidasi3, and Sahin Albayrak1

1 Berlin Institute of Technology, Berlin, Germany
benjamin.kille@tu-berlin.de, sahin.albayrak@dai-labor.de

2 XING AG, Hamburg, Germany
fabian.abel@xing.com

3 Gravity Research, Budapest, Hungary
hidasi.balazs@gravityrd.com

Abstract. Job recommender systems depend on accurate feedback to
improve their suggestions. Implicit feedback arises in terms of clicks,
bookmarks and replies. We present results from a member inquiry con-
ducted on a large-scale job portal. We analyse correlations between rat-
ings and implicit signals to detect situations where members liked their
suggestions. Results show that replies and bookmarks reflect preferences
much better than clicks.

Keywords: Job recommendation · Interactions · Reciprocity · Survey ·
Ratings

1 Introduction

Online job portals are becoming more and more popular among professionals
as well as recruiters. They facilitate exchanging information. Professionals gain
instant access to newly added job offers. Recruiters can spread their job adver-
tisements to a larger base of recipients. Increasingly simple access to larger col-
lections of data induces an information overload problem. Professionals struggle
to discover interesting job offers. Recruiters struggle to discover suited candi-
dates. The portals seek to support their members to overcome these issues. They
incorporate mechanisms matching professionals and job offers based on available
data. The vast set of professionals reduces to few candidates. The overwhelming
collection of job offers reduces to few positions. The quality of the reduction
depends on how well the system estimates recipients’ preferences. Professionals
expect the system to display relevant positions. Recruiters expect the system to
display candidates best suited for the respective position. We refer to systems
automatically learning users’ preferences as recommender systems. Research on
recommender systems has introduced a plethora of algorithms. Collaborative Fil-
tering (CF) (cf. Koren and Bell [2]) and Content-based Filtering (CBF) (cf. Lops
et al. [4]) represent two wide-spread paradigms. CF takes a collection of prefer-
ences and infers unknown (user, item)-pairs thereof. CBF additionally considers
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 301–308, 2015.
DOI: 10.1007/978-3-319-29003-4 17



302 B. Kille et al.

features describing items. Both techniques require data expressing the prefer-
ences between user and items. Professionals include information on their general
preferences in their profiles. Still, job portals lack preferences directed toward
specific job offers. They have to infer such information from implicit signals.
Whether professionals appreciate recommended job offers depends on a variety
of aspects. For instance, they may like the job description but be unwilling to
move to another location. We collaborate with the job portal XING1. XING is
the leading job portal in the German speaking world with millions of members.
There we observe professionals interacting with job postings in different ways.
Types of interactions include clicking, bookmarking, and replying. Interactions
have a time stamp assigned. This gives rise to temporal analysis. We look for pat-
terns indicating situations in which professionals show interest in a job posting.
Alternatively, we search for activities indicating interest toward a job posting.
Our contributions are three-fold:

– we analyse interaction signals on a job portal,
– we conducted an inquiry providing ratings for job recommendations,
– we investigate the correlation between interaction signals and ratings.

First, we present previous works on job recommendation in Sect. 2. Section 3
illustrates the data we observed on a large-scale job portal. Section 4 describes
the notion of relevance and how we learn correlations with interaction signals.
We conclude and discuss future research in Sect. 6.

2 Related Work

Malinowski et al. [5] investigated how to automatically match professionals and
open positions. Matching professionals and jobs requires a bilateral perspective.
They argue that combining two recommenders promises high matching quality.
On the one hand, we ought to determine relevant positions for a given profes-
sional. On the other hand, we should find the most promising candidates for an
open position. Combining both yields matches satisfying both professionals and
recruiters needs. Malinkowski et al. [5] conduct a user study to determine how
well their recommender matches professionals and open positions. However accu-
rate results such a study yields, a large-scale system will lack resources to apply
similar evaluation protocols. Mine et al. [6] extend the idea as they consider inter-
actions between professionals and recruiters. Their approach iteratively updates
matching lists of recruiters and professionals as they exchange messages. The
evaluation considers the time taken to establish matchings along with match-
ing quality. Mine et al. [6] simulate the actions of professionals and recruiters.
Behaviours of professionals and recruiters are prone to change over time. Hence,
we expect to observe a more representative picture of interactions in a real,
large-scale system. Paparrizos et al. [7] modell the problem as a supervised
machine learning task. They take a data set of job transitions. Their method

1 www.xing.com.

www.xing.com


Job Recommendations 303

predicts which position a given professional will accept next. The data com-
prise a selection of large companies. They measure the classification accuracy.
Contrarily, we consider a more comprehensive view on the labour markets. Our
ability to represent the problem as classification task depends on the cardinal-
ity of potential class labels. Paparrizos et al. [7] obtain a manageable set of
labels focusing on few companies. A large-scale job portal offers thousands of
companies. Therefore, the classification problem would become too complex to
manage. Recommender systems matching people to one another are referred to
as reciprocal recommender systems. Online dating websites matching partners
have been subject to many studies (cf. Akehurst et al. [1], Kunegis et al. [3],
Pizzato et al. [8], and Zhao et al. [9]). Online dating matches exactly two per-
sons. On the other hand, recruiters might be looking for several candidates at
once to fill several positions. Thus, we face a slightly different problem. We col-
lect observations from a large-scale job portal. Thereby, we expect to discover
new insights enlightening interactions between professionals and job offers. In
particular, we investigate correlations between explicitly stated preferences and
implicitly observed signals.

3 Data Description

In this section, we describe the observable signals. Our data capture profes-
sionals, job offers, and interactions between both. Professionals create profiles
describing themselves and their careers. These profiles include demographics,
education, and interests. The job portal can track activities by identifying mem-
bers. Recruiters create job offers. These offers outline required skills and portray
a candidate’s characteristics. In addition, they introduce the hiring company.
We can track interactions with such job offers as they can be identified. Job por-
tals let their members interact with offered jobs in different ways. Professionals
may click, bookmark, or reply to suggested job postings. Additionally, they can
query an integrated search engine. Details refer to random sample of more than
one million members of XING. The sample has been taken over a period of sev-
eral weeks in early 2015. Note that clicks, bookmarks, and replies may occur in
any order. For instance, members may bookmark job postings without clicking.
We highlight actions from the perspectives of professionals, job offers, and their
combinations.

3.1 User Activity

We observe varying levels of activity among members. Professionals can either
click, bookmark, or reply to a recommended job offer. Replies comprise three
actions. First, professionals can access the job offering company’s website to
apply for the position. Second, professionals can request additional information
about the offered position. Third, professionals can message the recruiter. Clicks
require fairly low levels of cognitive effort. Conversely, replies force professionals
to carefully study job offers. Our data reflect this aspect. We observe on average



304 B. Kille et al.

95.7 % clicks, 3.3 % replies, and 1.0 % bookmarks. Our data cover a range of
3 months. Therein, professionals click on average 6.5 (standard deviation σ =
15.6) job postings. They bookmark on average 2.0 (σ = 3.4) job postings. They
reply on average to 3.1 (σ = 6.9) job offers.

3.2 Item Activity

Job postings attract varying numbers of members. On average job offers obtain
87.6 (σ = 219.5) clicks. The large standard deviation indicates a popularity bias.
Some job offers appear to receive much more clicks than others. Similarly, job
positions obtain on average 4.2 (σ = 7.2) bookmarks. Finally, job offers attract
on average 6.3 (σ = 11.6) replies.

3.3 Interaction Activity

Professionals spread limited spans of attention across the collection of job post-
ings. Similarly, job offers target varying subsets of professionals according to
their skills. Both phenomena combined cause a sparse pattern of interactions
between professionals and offered jobs. We compute the density for each type
of interaction. Let I refer to the number of interactions. Further, let U and J
refer to the numbers of members and open positions. The density is defined as
ρ = I/UJ. We observe densities of ρclicks = 0.01% for clicks, ρbookmarks = 0.01%
for bookmarks, and ρreplies = 0.01% for replies. In other words, if we were to pick
a pair of professional and job posting at random, chances of observing any type
of interactions are ≈ 1 in 10000. This implies that the job portal will struggle
to estimate relevance of most combinations of members and open positions.

We notice that we observe sparse signals. We do not expect to obtain a clear
picture of preferences from professionals by observing their interactions with job
postings. Job portals depend on preferences to filter the most promising posi-
tions. Thus, we have to avoid misinterpreting interactions. Members might click
on suggestions due to curiosity. Further, professionals might like some aspects
of the position. Simultaneously, they may object to other aspects. For instance,
a given position’s description sounds interesting. At the same time, the position
is located far from the current residence. Consequently, the position as a whole
becomes irrelevant.

4 Relevance Prediction

Previous research determined the relevance of suggested jobs by simulation and
small scale user studies (see Sect. 2). Large-scale job portals cannot rely on few
individuals. We cannot expect preferences of thousands of members to conform
to pre-defined simulation parameter. Hence, we propose to estimate preferences
from signals derived from interactions between professionals and job postings. As
a first step, we validate the information conveyed by these signals. We analyse the



Job Recommendations 305

clicks

ra
tin

gs

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5

Fig. 1. Relation between clicks and ratings. The size of the circles encodes the propor-
tion of data points. We observe that few clicks fail to indicate high relevancy. Profession-
als clicking once express both dislike and like toward recommended jobs. Professionals
tend to click more often on relevant positions.

correlation between observed signals and ratings obtained via member inquiry.
We asked professionals how they perceive job recommendations in form of an
online survey. Professionals assigned stars from 1 to 5 or selected a 0 indicating
they were unable to quantify their preference. Subsequently, we analysed how
the responses correlate with professionals’ interactions.

4.1 Clicks ∼ Ratings

First, we relate clicks and ratings. We filtered all clicks of suggested job offers
which professionals had rated. Figure 1 illustrates the relation. We encode pro-
portions by the size of the circle. We observe the largest proportion referring
to few clicks. Additionally, we observe that ratings vary throughout the scale
with a limited number of clicks. We conjecture that few clicks fail to indicate
a high level of relevance. Higher ratings dominate the range of 5 to 10 clicks.
We conclude that as professionals increasingly click on suggested job offers, they
become more relevant.

4.2 Bookmarks ∼ Ratings

Why would professionals bookmark job postings? We suppose that bookmarking
indicates a higher level of relevance than clicking. Figure 2 confirms our intuition.
We filtered ratings assigned to bookmarked job offers. We observe that these
job postings obtained on average 3.6 out of 5 stars. The distribution is skewed



306 B. Kille et al.

Ratings for Bookmarked Jobs (µ = 3.6)

rating

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 2. Distribution of Ratings for bookmarked Job Offers. We observe that book-
marked job offers obtain rather positive ratings. Professionals rated bookmarked job
offers on average with 3.6 out of 5 starts.

in favour of higher ratings. Hence, we conclude that bookmarks better reflect
relevance than clicks do.

4.3 Replies ∼ Ratings

Replying refers to three possible actions. Professionals can either message the
recruiter, request additional information, or access an external application form
for the position. The systems allows multiple actions for an offered position.
Figure 3 relates the number of replies with the ratings. We observe that few
replies with high ratings collect the largest proportion. Thereby, we conclude
that replies reliably indicate relevance.

5 Discussion

Recommending jobs is subject to vastly different requirements than recommend-
ing movies, music, or products. Recruiters require open positions to be filled
within a specified time. In addition, positions are frequently open to at most
one professional. In contrast, arbitrarily many users can consume movies, music,
and products. Some items allow re-consumption, for instance, watching a movie
several times. Users interact with recommender systems with varying motiva-
tion. Some interactions are due to information needs or decision support. Other



Job Recommendations 307

replies

ra
tin

gs

1 2 3 4 5 6 7 8

1
2

3
4

5

Fig. 3. Relation between Replies and Ratings. The figure encodes proportions by the
size of the circle. We observe the largest proportion for a single reply and the rating 5.
In addition, the next largest proportions gather around high ratings and few replies.

interactions occur as users satisfy their curiosity in exploratory fashion. Movie
recommender systems tend toward explorative use. On the other hand, job rec-
ommender systems deal much more with decision support. As a result, they
face users with interchanging periods of activity and absence thereof. Looking
for a new position, professionals intensively interact with the system. Satisfied
with their working environment, professionals scarcely interact with the system.
Conversely, movie recommender systems face a more stable condition with users
regularly visiting. Furthermore, movie recommender systems observe the effect
of their recommendations. They can track how long their users watch a movie.
Job recommender systems cannot monitor the interactions between employer
and candidate outside their platform.

6 Conclusion and Future Work

Determining situations where professionals deem suggested job offers relevant
is crucial to improve job recommender systems. We analysed observable sig-
nals incurring as professionals interact with job postings. We showed results of
a member inquiry providing explicit preferences. We investigated how observ-
able signals and responses from the inquiry correlate. Although, clicks are more
common than bookmarks and replies, they convey less information concerning
the relevance of a suggestion. Replying gives the best indication on whether a
professional deemed a recommended job offer relevant.

This knowledge will support our future research. We will conduct experiments
with a variety of existing recommendation algorithms. The selection includes



308 B. Kille et al.

collaborative filtering, content-based filtering, location-aware recommendation,
and context-aware filtering. We will investigate which algorithm or combination
of algorithm maximises replies and bookmarks.

Acknowledgement. The research leading to these results has received funding
from European Union Seventh Framework Programme (FP7/2007–2013) under Grant
Agreement № 610594.

References

1. Akehurst, J., Koprinska, I., Yacef, K., Pizzato, L., Kay, J., Rej, T.: CCR - A
content-collaborative reciprocal recommender for online dating. In: IJCAI, pp.
2199–2204 (2011)

2. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L.,
Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–184.
Springer, Heidelberg (2011)

3. Kunegis, J., Gröner, G., Gottron, T.: Online dating recommender systems: the
split-complex number approach. In: ACM RecSys Workshop on Recommender Sys-
tems and the Social Web, pp. 37–44 (2012)

4. Lops, P., de Gemmis, M., Semeraro, G., Handbook, R.S.: Content-based recom-
mender systems: state of the Art and trends. In: Ricci, F., Rokach, L., Shapira,
B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–100. Springer,
Heidelberg (2011)

5. Malinowski, J., Wendt, O., Keim, T., Weitzel, T.: Matching people, jobs: a bilateral
recommendation approach. In: Proceedings of the Annual Hawaii International
Conference on System Sciences, vol. 6, pp. 1–9 (2006)

6. Mine, T., Kakuta, T., Ono, A.: Reciprocal Recommendation for Job Matching with
Bidirectional Feedback, vol. 2009, pp. 39–44 (2013)

7. Paparrizos, I., Cambazoglu, B., Gionis, A.: Machine learned job recommendation.
In: RecSys, pp. 325–328 (2011)

8. Pizzato, L., Rej, T., Chung, T., Koprinska, I., Kay, J.: RECON: a reciprocal rec-
ommender for online dating. In: ACM RecSys, pp. 207–214 (2010)

9. Zhao, K., Wang, X., Mo, Y., Gao, B.: User recommendations in reciprocal and
bipartite social networks-an online dating case study. IEEE Intell. Syst. 29, 27–35
(2014)



A Spatiotemporal Approach for Social Situation
Recognition

Christian Meurisch(B), Tahir Hussain, Artur Gogel, Benedikt Schmidt,
Immanuel Schweizer, and Max Mühlhäuser

Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
{christian.meurisch,tahir.hussain,artur.gogel,

benedikt.schmidt,schweizer,max}@tk.informatik.tu-darmstadt.de

Abstract. The development of virtual personal assistants requires situ-
ation awareness. For this purpose, lightweight approaches for the process-
ing of sensor data to derive situation information from available sensor
data (e.g., mobile phone data) are required.

In this paper, we propose a spatiotemporal approach to derive situa-
tional information about social interactions only based on location and
time, using data collected with off-the-shelf smartphones. We examine
the approach, using location traces of 163 users collected over four weeks.
The proposed spatiotemporal approach shows an average social situation
recognition result of 45.8 ± 23.2 % F1-measure across the data set using
Random Forest classifiers.

Keywords: Social interaction · Personal tracking · Mobility pattern ·
Social computing · Situation recognition · Location sensing · Smartphone

1 Introduction

Virtual personal assistants to support users in their daily lives have become more
and more popular in recent years. Due to the growing use of mobile devices assis-
tant systems are able to seamlessly track and give advices through mobile appli-
cations at any time. Examples are commercial personal assistants like Google
Now or Apple’s Siri which offer automatic event reminders considering related
information like traffic situations. Similarly, fitness trackers offer coaching con-
sidering users’ actual performance [16], can detect and even prevent health prob-
lems [4]. In all cases knowledge about the user’s current situation is of utmost
importance.

A major challenging problem in situation recognition is the information base.
In general the fusion of already available information sources (e.g., mobile sensor
data, web data) [5,20] is preferred over deploying additional static hardware
(e.g., smart home sensors) [1]. After data gathering, the fusion and processing
of sensor data to derive information types, granularity and quality suitable for
situation follows. We propose a lightweight approach to derive social interactions
based only on location and time with no additional instrumentation of the user
or the environment.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 309–316, 2015.
DOI: 10.1007/978-3-319-29003-4 18



310 C. Meurisch et al.

In this paper, we examine over 24 million location traces of 163 students over
four weeks to automatically infer the user’s social situation represented by place,
time and social presence. For that, we reduce the complex situation recognition
problem to the detection of social interactions from mobility patterns. In our
approach, a social interaction is defined as meeting of a group consisting of at
least two persons who are co-located over a specific amount of time (e.g., five
minutes). By doing this, our data model consists of three types of information:
(1) social, (2) spatial, and (3) temporal information. We assume that each one of
the three information types can be derived by using the other two. This paper
focuses on inferring social interactions (class label) from spatiotemporal data
(features), i.e., if we know the user’s current whereabouts and the corresponding
times, we are able to infer information about the social situation which means
we know the exact persons a social interaction takes place with. While location
and time are standard information of modern off-the-shelf smartphones, our
approach is highly suitable for daily use. Training personalized classifiers for
each user we get an overall classification result from 45.8 ± 23.2% F1-measure
across our user base.

In summary, the contributions of this paper are twofold:

Self-tracking Dataset. Using personal mobile devices we collected a large
dataset with 24 million location values of 163 students over four weeks using
our multi-device user tracking suite [17,18].

Social Situation Recognizer. Detecting social interactions only from location
traces, we extract features and train personalized Random Forest classifiers
for each user [3]; averaging the results over all users we get an overall classifi-
cation result of 45.8±23.2% F1-measure across our users. Thus, we are able
to infer the current user’s social situation from spatiotemporal data stream.

The remainder of this paper is organized as follows. In Sect. 2, we provide an
overview of related work in recognition users’ activities and contexts. In Sect. 3,
we present our approach that utilizes detection of social interactions to reveal
user’s social situation. In Sect. 4, the data collection process with the resulting
dataset and feature extraction process are described, before we report the results.
The paper closes with conclusion and future works.

2 Related Work

Most mobile phones feature a large variety of sensors [13], providing the perfect
platform for activity, context and situation recognition [22] without the need of
deploying additional hardware like in smart homes [1]. While simple activities
(e.g., standing, walking) can be detected with a high accuracy of above 90 %
relying on accelerometer data only [12], the recognition of complex activities
(e.g., watching tv, playing volleyball) or detecting the entire situation including
social presence, only with highly available devices is still an open challenge [15].
Most approaches still need external sensors or custom wearables [9].



A Spatiotemporal Approach for Social Situation Recognition 311

Our idea is based on only utilizing location traces of users to recognize social
interactions (i.e., temporal co-located users) and characterize the user’s current
situation. Other state of the art approaches already utilize the social context
inferred from mobility pattern [6] or online social networks [5] to improve their
results in human activity recognition [14]. In this paper, we focus on one data
source deployed in all modern mobile phones (i.e., locations) to underpin that
deep insights into activity and situation can be derived only by location traces.
Various works already show recognition approaches based on location traces, e.g.,
place detection [11,23], social relationship inferences [21] or even the recognition
of mental disorders like depressions [4]. It is important to note that human
trajectories show a high degree of temporal and spatial regularity [8]. Song
et al. even find a 93 % potential predictability in user mobility across their user
base [19], which makes human mobility an attractive data source for context
and situation recognition. In the next section, we describe our spatiotemporal
approach in detail.

3 Our Approach

In this section we describe our approach for deriving a current social situation
(the persons interacted with) from space and time (cf. Fig. 1). For that, we only
need the location sensor of the smartphone to get location (coordinates) or loca-
tion traces of a user, including timestamps. In the following we explain our app-
roach of inferring social interactions from human mobility step by step. First, we
describe the detection of places (high-level spatial information) and place visits
(high-level spatial-temporal information) inferred from location traces (low-level
information) for each user. Second, we cluster temporal overlapping place visits of
users to social interactions (high-level spatial-temporal social context). Finally,
we represent a situation by these three information: (1) social, (2) spatial, and
(3) temporal data.

3.1 Places and Place Visits

We define a place as stationary geographical location where a user stays for an
amount of time. We extract a user’s places from location traces by using the
place detection algorithm proposed by [11] with dp = 25 m and tp = 15 min as
distance and time threshold parameters. Within the detected places, we identify
places of specific relevance throughout the daily live. Inspired by [23], we define
and determine the following four meaningful place types: home, work, university,
and other place (high-level spatial information). To add temporal information to
that static places, we check when and how long users visit their specific places
and define this as place visit (high-level spatial-temporal information).

3.2 Social Interactions

We define a social interaction as a meeting of at least two persons who are
temporal co-located over a specific amount of time (here: at least ts =5 min).



312 C. Meurisch et al.

Location 
traces l1

Location 
traces l2

Location 
traces l3

Location 
traces ln

Places p1

Places p2

Places p3

Places pn

Place visits 
v1

Place visits 
v2

Place visits 
v3

Place visits 
vn

S
oc

ia
l i

nt
er

ac
tio

ns
 i

S
oc

ia
l s

itu
at

io
n 
s

Low-level 
spatial context

High-level
spatial context

High-level spatial-
temporal context

High-level spatial-
temporal social context

User u1

User u2

User u3

User un

Features Class label

Fig. 1. Our approach utilizes location traces of users to detect higher-level informa-
tion like places, place visits (features) and, finally, social interactions (class label) to
characterize a situation.

Inspired by [5,6,21], we infer social interactions from co-location of users. More
precisely, we consider spatiotemporal overlapping place visits of different users in
a sliding window with size of ts to detect social interactions (high-level spatial-
temporal social context). For that, we use the clustering algorithm DBSCAN
[7] with parameters minPts = 2 and eps =20 m within that sliding window to
cluster users to social groups.

3.3 Social Situation Recognition

A social situation in our approach is represented by three contexts: (1) social,
(2) spatial, and (3) temporal context. Given a use case, we are able to sense two
of these contexts and infer the third context to characterize the situation. In this
paper, we focus on the recognition of the social context from spatiotemporal data.
For example, if we are able to sense location values including a timestamp, our
approach can infer social interactions (cf. Fig. 1), i.e., the output is the exact
user group with unique persons. Utilizing well-researched next place detection
algorithms [2], our approach could furthermore be utilized to predict the exact
persons a user will meet the next or in near future.

4 Proof of Concept

To prove our approach we first conducted a user study to get real-world location
data, described in the next section. Based on that dataset we extract appropriate



A Spatiotemporal Approach for Social Situation Recognition 313

spatiotemporal and social features (class label) to train a personalized classifier
for each user to recognize user’s social situations. Finally, we report and discuss
the classification results.

4.1 Dataset

We conducted a self-tracking user study to collect location data from 163 stu-
dents of Technische Universität Darmstadt over four weeks using our multi-
device user tracking suite [17,18]. In total, we gathered over 24 million raw
location values within four weeks, i.e., about 148± 359 thousand location values
per user. The high scatter can be reasoned by dynamic sampling rates for loca-
tion sensor depending on the strength of user’s movement, i.e., we reduce the
sampling rate if the smartphone is still, while we increase the sampling rate if
the smartphone is moving, especially in vehicles.

Table 1. Obtained higher-level information from collected locations

Step High-level information Instances per user Total

- Raw locations l 147, 630.7 ± 358, 764.9 24, 063, 641

1 Places p 14.2 ± 10.8 2, 312

2 Place visits v 102.0 ± 59.7 16, 629

3 Social interactions i 182.7 ± 193.7 29, 787

Table 2. Definition of spatiotemporal features (fp,fw,fd,ft) and class label (fs)

ID Feature Value range

fp Place type {home, work, university, other}
fw Weekend {false, true}
fd Day of week {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
ft Time of day {morning, afternoon, evening, night}
fs Social interaction {uk, uj , ..}⊆ U (users)

4.2 Feature Extraction

For the dataset, three different kinds of features were extracted: (1) social, (2)
spatial, and (3) temporal features. For that, we proceed as described in the
previous section: inferring places from raw location values (step 1 ), detecting
place visits (step 2 ), and clustering social interactions (step 3 ). Table 1 shows
the resulting count of instances per user and the total count of instances for each



314 C. Meurisch et al.

processing step. Based on this high-level information the features are extracted.
Table 2 lists the resulting features and their value ranges. Feature fp repre-
sents the place context with four possible semantic places for each user: home,
work, university and other places. Finally, we have three time-based features: the
binary feature fw (weekend) with false for weekday or true for weekend as values;
feature fd (day of week) with the seven days of week as values (i.e., Monday, Tues-
day,..), and feature ft (time of day) with value range of morning (6am− 12pm),
afternoon(12pm− 17pm), evening (17pm− 22pm), and night (22pm− 6am). As
categorical class label, we use the feature fs representing the social context. Its
value range is an arbitrary subset of all users within the system, i.e., the smallest
subset contains only the user himself and the largest subset contains all users.
In total, we extracted 59, 412 instances, i.e., 364.5 ± 237.0 instances per user.

0 20 40 60 80 100 120 140 160
Users

0

10

20

30

40

50

60

70

80

90

100

F
1
 m

ea
su

re
 [%

]

Personalized classifier
Average classifier

Fig. 2. Classification results (F1-measure) of personalized classifiers for each users
(indigo) and the average F1-measure over all users (green line) (Color figure online)

4.3 Results

With the above extracted spatiotemporal features (fp,fw,fd,ft) and fs as class
to predict we train and evaluate personalized classifiers for each user. For that,
we programmatically tested 26 various classification algorithms with different
configurations provided by WEKA, a data mining software [10]. Avoiding over-
fitting, the best evaluated classifier was a Random Forest with 100 trees [3].
In Fig. 2, we report the results for each personalized classifier and the average
F1-measure of 45.8 ± 23.2% over our user base using the above classification
algorithm. We see that social context (i.e., exact determination of present users)
is highly predictable for few users, i.e., F1-measure ranging between 70.0 % and



A Spatiotemporal Approach for Social Situation Recognition 315

99.3 % for about 18 % of users. For over 38 % of users our approach is able to
correctly detect the exact social interactions in every second situation. For the
rest of users the social context prediction out of spatiotemporal data is challeng-
ing. In future work, we plan to assign each probably presented unique person a
probability of attendance, i.e., the algorithm will consider subgroups, to further
improve our results.

5 Conclusion

In this paper, we proposed a recognition approach to detect user’s social situation
only utilizing his location traces. By analyzing these location traces we recog-
nize social interactions (i.e., co-located persons over a specific time) to derive
the social situation. Our evaluation built on a four-week self-tracking study with
over 24 million location values of 163 students. We showed an average recogni-
tion result of 45.8 ± 23.2% F1-measure across our user base using personalized
Random Forest classifiers for each user. The result confirms the initial assump-
tion that if the same group of users meets each other, the situation with respect
to time and place is often the same or similar and, thus, predictable. There-
fore, the presented approach can predict the persons of prospective meetings.
In future work, we will also consider the relationship between social interac-
tions, e.g., friends, classmates or colleagues, and investigate the impact of user
routines versus accidental meeting. Moreover, we will build a real-time assistive
system based on our situation recognition approach to support students in their
daily lives.

Acknowledgments. This work has been funded by the LOEWE initiative (Hessen,
Germany) within the NICER project.

References

1. Arcelus, A., Jones, M.H., Goubran, R., Knoefel, F.: Integration of smart home tech-
nologies in a health monitoring system for the elderly. In: 21st International Confer-
ence on Advanced Information Networking and Applications Workshops (AINAW
2007), vol. 2, pp. 820–825. IEEE (2007)

2. Baumann, P., Kleiminger, W., Santini, S.: The influence of temporal and spatial
features on the performance of next-place prediction algorithms. In: 15th Interna-
tional Conference on Ubiquitous Computing (UbiComp 2013), pp. 449–458. ACM
(2013)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

4. Canzian, L., Musolesi, M.: Trajectories of depression: unobtrusive monitoring of
depressive states by means of smartphone mobility traces analysis. In: 17th Inter-
national Conference on Ubiquitous Computing (UbiComp 2015), pp. 1293–1304.
ACM (2015)

5. Cranshaw, J., Toch, E., Hong, J., Kittur, A., Sadeh, N.: Bridging the gap between
physical location and online social networks. In: 12th International Conference on
Ubiquitous Computing (UbiComp 2010), pp. 119–128. ACM (2010)



316 C. Meurisch et al.

6. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers.
Ubiquit. Comput. 10(4), 255–268 (2006)

7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: 2th International Conference
on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. ACM (1996)

8. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human
mobility patterns. Nature 453(7196), 779–782 (2008)

9. Gordon, D., Hanne, J.-H., Berchtold, M., Shirehjini, A.A.N., Beigl, M.: Towards
collaborative group activity recognition using mobile devices. Mob. Netw. Appl.
18(3), 326–340 (2013)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

11. Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from
traces of locations. Mob. Comput. Commun. Rev. 9(3), 58–68 (2005)

12. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. Explor. Newsl. 12(2), 74–82 (2011)

13. Lane, N.D., Miluzzo, E., Hong, L., Peebles, D., Choudhury, T., Campbell, A.T.: A
survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)

14. Lane, N.D., Pengyu, L., Zhou, L., Zhao, F.: Connecting personal-scale sensing and
networked community behavior to infer human activities. In 16th International
Conference on Ubiquitous Computing (UbiComp 2014), pp. 595–606. ACM (2014)

15. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wear-
able sensors. Commun. Surv. Tutorials 15(3), 1192–1209 (2013)

16. Schmidt, B., Benchea, S., Eichin, R., Meurisch, C.: Fitness tracker or digital per-
sonal coach: how to personalize training. In: 17th International Conference on
Ubiquitous Computing (UbiComp 2015): Adjunct Publication. ACM (2015)

17. Schweizer, I., Bärtl, R., Schmidt, B., Kaup, F., Mühlhäuser, M.: Kraken.me mobile:
the energy footprint of mobile tracking. In: 6th International Conference on Mobile
Computing, Applications and Services (MobiCASE 2014), pp. 82–89. IEEE (2014)

18. Schweizer, I., Schmidt, B.: Kraken.me: multi-device user tracking suite. In: 16th
International Conference on Ubiquitous Computing (UbiComp 2014): Adjunct
Publication, pp. 853–862. ACM (2014)

19. Song, C., Zehui, Q., Blumm, N., Barabási, A.-L.: Limits of predictability in human
mobility. Science 327(5968), 1018–1021 (2010)

20. Takata, K., Ma, J., Apduhan, B.O., Huang, R., Shiratori, N.: Lifelog image analysis
based on activity situation models using contexts from wearable multi sensors. In:
2nd International Conference on Multimedia and Ubiquitous Engineering (MUE
2008), pp. 160–163. IEEE (2008)

21. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility,
social ties, and link prediction. In 17th International Conference on Knowledge
Discovery and Data Mining (KDD 2011), pp. 1100–1108. ACM (2011)

22. Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive
computing. In: 4th Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, and 2nd International Workshop on Collaborative Comput-
ing, Integration, and Assurance (SEUS-WCCIA 2006), p. 6. IEEE (2006)

23. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering per-
sonally meaningful places: an interactive clustering approach. ACM Trans. Inf.
Syst. (TOIS) 25(3), 12 (2007)



Managing Wireless Mesh Networks – A Survey
of Recent Fault Recovery Approaches

Akmal Yaqini(B)

Department of Telecommunication Systems, Communication and Operating Systems,
Technische Universität Berlin, Berlin, Germany

Yaqini@win.tu-berlin.de

Abstract. Wireless Mesh Network (WMN) is a technology which has
evolved in recent years and fits well in today’s technological needs. How-
ever, due to the wireless nature of WMNs and their deployment in het-
erogeneous and large scale areas, wireless links often face significant
quality fluctuations and performance degradation or weak connectivity.
Therefore, failure detection and recovery plays crucial role in perfor-
mance of WMN. This paper presents a study report on comparison of
recent research and techniques developed for the issue of fault tolerance
in WMNs. In this survey we present the existing techniques for fault
tolerance in WMNs in categories; node failure approach, communica-
tion failure approach, routing schemes, fault tolerance techniques, and
autonomous reconfiguration systems. The paper also provides an outline
of areas which need further research and studies.

Keywords: Wireless mesh network · Fault tolerance · Cross-layer

1 Introduction

Wireless Mesh Network (WMN) is a specific type of Mobile Ad Hoc Networks
(MANET) [12], which extends the concept of single-hop WLANs to a multi-
hop network. In WMNs, nodes can automatically join or leave the network and
networks can be established instantly virtually anywhere. WMNs’ advantages
such as low up-front cost, self-managing, robustness, and reliable service cover-
age encourage researchers to study their features for better and more reliable
performance [2].

The main intention of WMNs is the capability of working without infrastruc-
ture. This feature and the inherit features of a wireless connectivity, such as inter-
ference, limited bandwidth, packet loss, dynamic obstacles, and fading makes
WMNs not stable and reliable in all situations [6]. They may experience various
failures, for example, node or link failures which may result in service interrup-
tion and degrading the performance of WMNs [8].

Hence, it is crucial to find the solutions necessary for WMN fault detection
and recovery in order to make them fault tolerant. Fault tolerant function opti-
mizes the capability of the network to deliver the data constantly and successfully
during the specific time when some node or link failures happen.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 317–324, 2015.
DOI: 10.1007/978-3-319-29003-4 19



318 A. Yaqini

The concept of Situation detection [16] can be used for developing a fault tol-
erance mechanism for WMNs. Considerable amount of event data due to changes
in WMNs are produced that need to be analyzed. Gaining spatio-temporal infor-
mation about the occurrence of faults enriches fault recovery mechanism. Based
on the spatio-temporal data about faults, root cause and type of faults can be
diagonized. Detecting faults in WMNs in time to take appropriate actions for
obtaining desired QoS and save network resources can enhance WMNs perfor-
mance.

Designing reliable and fault tolerant WMNs have been a hot topic of research
of wireless networks during the last decade and many studies and research have
been undertaken to address issues in WMNs to make them more dependable.

In this paper we present and compare the recent approaches and techniques
developed for making WMNs fault tolerant against node failure, communication
failure, routing protocol failure, backbone and base station failures.

2 Faults in WMNs

Based on our study, there are a number of faults that can happen in WMNs and
effect the performance of the network severely. We have distinguished WMN
faults in the following categories.

2.1 Node Failure

Failure in Mesh nodes occur in different ways, such as hardware failure or soft-
ware issues. Node failure decreases the performance level of WMNs. More reasons
which cause node failure are, deficiency in WMN coverage domain, nodes weari-
ness after operating in a network for a long time, interruption in routing path,
or reduction in node battery power [15].

2.2 Communication Failure

The wireless nature of WMNs cause their links facing quality fluctuations and
performance degradation by experiencing various issues such as interference,
limited bandwidth, unpredictable circumference, multi-path fading, weak signal,
dynamic obstacles [10], channel overlapping and reconfiguration overhead caused
by channel switching in multi channel-multi radio WMNs [5].

2.3 Traffic Overload

The other important connectivity issue is the traffic congestion (overhead). From
one hand the dynamic nature of traffic demand in WMNs and also excessive
throughput requested by some applications and from the other hand the lim-
ited bandwidth capacity of WMNs can cause significant traffic congestion and
degrade network performance dramatically. Moreover, network traffic can be
interrupted and congestion might happen due to the network structure changes
or because of faults happening during the network operations.



Managing WMNs – A Survey of Recent Fault Recovery Approaches 319

2.4 Routing Protocol Failure

The existing routing schemes used for WMN need improvements to satisfy
required QoS and to provide optimal performance level for all situations in the
network. In some conditions the routing protocol messages in the network are
delayed or lost and cause the routing protocol to face problems to continue oper-
ation. Moreover, the bandwidth and computing resources of communication is
limited for each node, therefore wastage of time, resources, traffic overhead and
bandwidth occur due to protocol decision making.

2.5 Network Scalability Issue

In wireless mesh networks the number of nodes continuously changes. The exist-
ing routing protocols work best for smaller mesh networks but cannot operate
efficiently once the network is large and heterogeneous. As the network enlarges,
the number of hops in the network increase, new routes are required to be estab-
lished and traffic load should be calculated for different network routes. In this
new condition routing mechanisms might face difficulty to find appropriate and
reliable route, connections in transport protocols may weaken and MAC proto-
cols may experience reduction in throughput. This results in increment of the
number of network operations and can degrade the performance of the network
[1,6].

2.6 Faults Resulting from Network Dynamics

Due to the dynamic nature of WMNs, the structure and topology of the net-
work might stay unchanged or change often. Moreover, nodes are allowed to
stay stationary or become mobile by moving around and change their location.
These topological changes require WMNs for reconfiguring and reorganizing the
network structure which can add more complexity and overhead.

2.7 Base Station and Backbone Failures

Mesh routers are the base stations and the connectivity among them creates a
wireless multi-hop backbone for WMNs [7]. Base station and backbone faults can
make network unstable and create confusion for route selection and data flow.
Faults related to base station and network backbone are: weak radio frequency
signal or unpredictable circumference which effect the QoS in the coverage zone,
capture effect by base station with high transmission power, battery wear out,
excessive energy consumption, hardware failure, gateway selection when instant
changes occurs in the network.

3 Taxonomy of Approaches

This section presents the recent developed techniques for addressing current
issues in WMNs. These techniques are organized in the following taxonomy: (a)
Fault Diagnosis Approach, (b) Node Failure, (c) Connectivity Issues and Routing
Schemes, (d) Fault Tolerance, (e) Autonomous Reconfiguration Systems.



320 A. Yaqini

3.1 Fault Diagnosis Approach

Xu et al., developed a fault diagnosis model for WMNs [17]. During the fault
diagnosis process a shortest path spanning tree is constructed. Each node
included in the tree has the shortest hop-distance to the root. In this way the
delay time is reduced. Each node produces a testing request message and broad-
cast it to its neighbors. The reply message is not needed. Therefore, the overhead
of maintaining and repairing the spanning tree is prevented and also communi-
cation and time complexity is enhanced significantly.

Li et al., propose a fault diagnosis model based on decision tree algorithm
named W-C4.5-RP [9]. The developed model is basically the improvement of the
C4.5 decision tree algorithm by adapting rule post-pruning mechanism. The main
advantage of the developed fault diagnosis algorithm is reducing the rule set size
and cutting down the rule matching time that increases the system efficiency.

3.2 Node Failure Approach

In [15] authors proposed a node recovery algorithm that replaces inactive nodes
or the ones which have vacated batteries. Fault Node Recovery (FNR) algorithm
allows to reuse maximum number of routing paths. As the result the network
lifetime increases and on the other hand cost of node replacement decreases by
consuming less power during the route discovery process.

3.3 Connectivity Issues and Routing Schemes

Franklin et al., address the problem of joint channel assignment and flow allo-
cation in WMNs [5]. The research has proposed a static channel assignment
algorithm for improving performance of WMNs by using multiple partially over-
lapped channels. The proposed algorithm is called Mix Integer Linear Program
(MILP). The algorithm is considered load aware and deliberates increasing end-
to-end throughput and decreasing queuing delay in the network.

In [4] Franklin et al., propose a solution for traffic disruption overhead that
happens during channel switching in order to reconfigure the channel assign-
ment in Multi Channel - Multi Radio (MC-MR) WMNs. The paper provides a
mathematical model for reconfiguration of the network when channel switching
occurs which can minimize traffic disruption and increase the throughput usage.

Papapostolou et al., proposes a simple approach for obtaining fault tolerance
in WMNs [11]. Their proposed approach has three main characteristics; it adapts
to changes in the network, it avoids traffic to be forwarded by unreliable nodes and
selects routing path differently with a joint link metric. Their proposed link metric
encapsulates distance between nodes and their inclination and vulnerability to
failure. The result of the research shows certain advantages of joint link metric.

3.4 Fault Tolerance Approaches

Aizaz et al., propose a failure recovery method for TICA (Technology-controlled
Interference-aware Channel-assignment Algorithm) [3]. When a failure happens



Managing WMNs – A Survey of Recent Fault Recovery Approaches 321

the algorithm bypasses the failed node and removes its related MPNT (Maxi-
mum Power Neighbor Table). Then gateway executes the TCA (Topology Con-
trol Algorithm) to reorganize the network by making a new MPSPT (Minimum
Power-based Shortest Path Tree). The new MPSPT helps gateway to recalculate
the link rankings and the channel assignment. The result provided in [3] shows
TICA performs well in small and large scale networks.

Ivanov et al., proposed a fault-tolerant mechanism for base station plan-
ning [7]. The developed algorithm has three steps: optimization step which finds
an optimal solution for requirements and needed conditions for last mile and
backbone coverage. Connectivity testing step analyzes the resulted graph for
bio-connectivity. The consolidation step makes a single vertex by mapping parts
of the graph that are bio-connected. In this way the algorithm generates true
results after limited number of iteration during acceptable time period.

Wang et al., proposed two routing algorithms based on k-submesh concept
[14]. They utilized probabilistic method on the fault tolerance of the developed
algorithms. For example if nodes fail independently with given probability the
algorithms are able to return a fault-free path. They provided formal proof for
their algorithm’s performance.

In [13] authors propose a mechanism for WMNs to recover the packets omit-
ted by the source. The proposed mechanism is a fault-tolerant technique based on
network coding and integrates the multi-path routing and random linear network
coding method by enhancing the traditional coding nodes selection technique.
The authors indicate the proposed mechanism has better performance in packet
delivery, reducing delay, resource redundancy degree, and useful throughput.

3.5 Autonomous Reconfiguration Systems

Kim et al., propose an autonomous reconfiguration system (ARS) for WMNs
in [8]. This mechanism enables a multi-radio WMN to autonomously recover
local link failures by reconfiguring its local network settings, radio, and route
assignment. The proposed ARS generates reconfiguration plans which satisfy
applications’ QoS and also needs less changes for the healthy network settings.

In [10] authors presented an Enhanced Reconfiguration System for fault recov-
ery in WMNs. In the proposed approach the gateway is responsible for generating
reconfiguration plan and process of choosing the best recovery plan by introducing
the idea of cost effectiveness along with the objective of maximizing the through-
put. When link failure occurs, the gateway synchronizes and reconfiguration plan
is identified according to QoS which improves network utilization.

4 Discussion

The result of our survey shows there is still need for further research in the area
of fault tolerance in WMNs. In this section we discuss the areas in WMNs which
need further research to address the challenges of enhancing the performance of
WMNs and make them fault tolerant.



322 A. Yaqini

Cross-Layer Design: The purpose of traditional design of layers in protocol
stack is basically encapsulating each layer’s information separately and main-
taining levels of abstraction so that the implementation of each layer does not
interfere with the others. Development of advanced and complex, systems and
applications demand more sophisticated techniques to improve the network per-
formance. In WMN there is need to develop protocols that should enable all
layers to function interactively to improve quality of services by considering
parameters of other layers [2].

There have been efforts to achieve cross-layer design for WMN, but these
techniques are partially cross-layer and mostly consider MAC and routing pro-
tocol layers. Transport and application layers can be considered in addition to
the current partially cross-layer approaches. The application layer determines
which part of the missing data is important and what level of loss is toler-
able. The transport layer protocols adaptively decide how to re-transmit the
data. Such design improves the performance level of WMNs to obtain better
QoS. Additionally, it helps the development of smarter fault recovery and self-
configuration techniques for WMNs. It is important to consider and prevent the
additional overhead that might happen in cross layer approaches. Cross-layer
design should not induce unwanted complexity, incompatibility with existing
designs and loss of protocol layer abstraction.

Network Dynamics: As WMNs have dynamic and flexible infrastructure, var-
ious changes might occur in terms of topological changes, mobility and size of
the network either separately or simultaneously which can degrade network per-
formance, cause faults or increase the faults’ ratio and types.

Topological Changes: Due to the dynamic nature of WMNs the structure
and topology of the network might change often or stay unchanged. Nodes can
join and leave the network dynamically making the network unstable and erro-
neous. This results in frequent variation of connectivity, route failures and energy
reduction. Therefore, there is need for adaptive routing protocols, MAC layer and
channel assignment schemes, efficient topology control, and power management
techniques.

Scalability: As it is discussed in Subsect. 2.4, the scalability issue in WMN is
not fully solved yet. Multi-hop protocols face scalability problems when the size
of network enlarges which results in network performance degradation. To make
WMNs scalable, it is necessary that MAC, routing and transport layer protocols
should be made scalable and collaborative. These protocols should not increase
network operations exponentially and should minimize overhead and complexity.

Mobility: In order to make WMNs able to enhance mobility, sophisticated
physical layer techniques should be developed which adapt to fast hand-offs
and fast fading that are correlated to mobile nodes. Moreover, these techniques
should be able to handle the shift in frequency, employ low latency handover
and location management algorithms to enhance QoS during mobility [6].

Fault Tolerance: As it has been presented in the previous section most of
the fault recovery mechanisms in WMNs deal with one type of failure. There



Managing WMNs – A Survey of Recent Fault Recovery Approaches 323

is need for more robust approaches which help WMNs to recover from different
types and composite faults such as node failure, communication failure, protocol
failure, and traffic congestion. The mechanism should be able to prioritize faults
in the network and assign the needed resources for recovering the more important
failures first.

Most of the recovery techniques consider reliability of data delivery as a met-
ric for performance measurement. In fact, high availability of the radio coverage
and timeliness are also important for many applications. For adding these two
requirements to the recovery mechanism energy efficiency should be considered
and complexity should be prevented.

5 Conclusion

WMNs’ advantages such as low up-front cost, self-forming, self-managing,
robustness, and reliable service coverage consistently make it a promising tech-
nology for the era of mobility.

In contrast, due to the wireless nature of WMNs and their deployment in
heterogeneous and large scale areas, wireless links often face various types of
failures which results in significant quality fluctuations and performance degra-
dation [7]. Therefore, designing reliable and fault tolerant WMNs have been a
hot topic of research of wireless networks during the recent years.

In this paper we presented and compared the approaches and techniques
which have been developed for making WMNs fault tolerant. First, we described
different types of faults in WMNs, node failure, communication failure, routing
failure, scalability issues, network dynamics, and base station and backbone fail-
ures. Then we discussed the recent approaches and techniques developed for fault
diagnosis and recovery in WMNs. The taxonomy of the presented approaches
include: fault diagnosis, node failure, communication issue, routing schemes, fault
tolerance mechanisms, and autonomous reconfiguration systems. Also some of
the issues to improve QoS in WMNs are mentioned for further research.

References

1. Akyildiz, I., Wang, X.: Wireless Mesh Networks, vol. 1. John Wiley and Sons Inc.,
UK (2009)

2. Akyildiz, I.F., Wang, X.: A survey on wireless mesh networks. IEEE Commun.
Mag. 43(9), S23–S30 (2005)

3. Chaudhry, A.U., Hafez, R.H.M., Aboul-Magd, O., Mahmoud, S.A.: Fault-tolerant
and scalable channel assignment for multi-radio multi-channel IEEE 802.11a-based
wireless mesh networks. In: GLOBECOM Workshops (GC Wkshps 2010), pp.
1113–1117. IEEE, December 2010

4. Antony Franklin, A., Balachandran, A., Siva Ram Murthy, C.: Online reconfigu-
ration of channel assignment in multi-channel multi-radio wireless mesh networks.
Comput. Commun. 35(16), 2004–2013 (2012)



324 A. Yaqini

5. Antony Franklin, A., Bukkapatanam, V., Siva Ram Murthy, C.: On the end-to-end
flow allocation and channel assignment in multi-channel multi-radio wireless mesh
networks with partially overlapped channels. Comput. Commun. 34(15), 1858–
1869 (2011)

6. Gungor, V.C., Natalizio, E., Pace, P., Avallone, S.: Challenges and issues in design-
ing architectures and protocols for wireless mesh networks. In: Hossain, E., Leung,
K. (eds.) Wireless Mesh Networks, pp. 1–27. Springer, New York (2008)

7. Ivanov, S., Nett, E., Schumann, R.; Fault-tolerant base station planning of wire-
less mesh networks in dynamic industrial environments. In: IEEE Conference on
Emerging Technologies and Factory Automation (ETFA 2010), pp. 1–8, September
2010

8. Kim, K.-H., Shin, K.G.: Self-reconfigurable wireless mesh networks. IEEE/ACM
Trans. Networking 19(2), 393–404 (2011)

9. Li, W., Li, M., Fan, R., Li, L.: A fault diagnosis method based on decision tree for
wireless mesh network. In: 12th IEEE International Conference on Communication
Technology (ICCT 2010), pp. 231–234, November 2010

10. Sharmila, P., Partibhan, P.A., Murugaboopathi, G., Sivakumar, R.: Feasibility
based reconfiguration approach for recovery in wireless mesh networks. Int. J.
Recent Sci. Res. 4, 592–596 (2013)

11. Papapostolou, A., Friderikos, V., Yahiya, T.A., Chaouchi, H.: Path selection algo-
rithms for fault tolerance in wireless mesh networks. Telecommun. Syst. 52(4),
1831–1844 (2013)

12. Janes, P.: Interested in learning SANS Institute InfoSec Reading Room. In: Infor-
mation Assurance and Security Integrative Project People, Process, and Technolo-
gies Impact on Information Data Loss (2012)

13. Peng, Y., Song, Q., Yao, Y., Wang, F.: Fault-tolerant routing mechanism based on
network coding in wireless mesh networks. J. Netw. Comput. Appl. 37, 259–272
(2014)

14. Qi, Q., Zili, W.: Research on fault-tolerant routing with high success probability
in mesh interconnection networks and image. JATIT & LLS 48(3) (2013). ISSN:
1992-8645, E-ISSN: 1817-3195

15. Shih, H.-C., Ho, J.-H., Liao, B.-Y., Pan, J.-S.: Fault node recovery algorithm for
a wireless sensor network. IEEE Sens. J. 13(7), 2683–2689 (2013)

16. Singh, V.K., Gao, M., Jain, R.: Situation detection and control using spatio-
temporal analysis of microblogs. In: Proceedings of the 19th International Con-
ference on World Wide Web, WWW 2010, pp. 1181–1182. ACM, New York (2010)

17. Xu, L., Ji, L., Zhou, S.M.: An efficient self-diagnosis protocol for hierarchical wire-
less mesh networks. Concurrency Comput. Pract. Exp. 25(14), 2036–2051 (2013)



Threat Model Based Security
for Wireless Mesh Networks

Freshta Popalyar(B)

Department of Telecommunication Systems, Communication and Operating Systems,
Technische Universität Berlin, Berlin, Germany

Popalyar@win.tu-berlin.de

Abstract. Wireless Mesh Network (WMN) is a technology, which has
gained popularity due to its cost effective design, robustness, and reliable
service coverage. Despite the advantages, WMNs are considered vulner-
able to security breaches. Thereby, it is important to consider security
in the early design phase in WMNs. Identifying security threats helps
the system designer in developing rational security requirements. In this
paper we propose threat modeling as a systematic approach to pinpoint
the security threats for WMNs as basis for developing security require-
ments. We identify assets, value them and categorize possible attacks
that target the assets in a layer-wise manner. We further elucidate our
threat model by use of Attack Trees to clearly define vulnerabilities in
the system during early design phase. We take the example of Schools’
WMN in a district of Kabul City in Afghanistan as our scenario. We
briefly discuss how to assess the risks that are associated with the spec-
ified WMN based on the information that is derived from the threat
model.

Keywords: Wireless Mesh Networks · Security · Threat model · Attack
Tree

1 Introduction

Wireless Mesh Network (WMN) is a promising technology which is characterized
as a robust, scalable, resilient, cost effective and easily maintainable and man-
ageable network technology [1]. As WMN owns such qualities it is considered
a good network solution for developing countries and organizations/institutions
with low budget. In contrast, with the advantages of WMNs there are a number
of problems associated with general performance of WMNs. One of the main
concerns regarding WMNs is security [1–3,8,9]. The vulnerabilities existing in
every layer of wireless mesh network stack pose threats and risks that need to be
mitigated. There are many intrusion detection systems available and a number
of security mechanisms and techniques have been proposed. But it is important
to realize whether the features included in the security systems are required and
whether they can fulfill the security requirements of the WMN. It is the respon-
sibility of the system designer to resolve such doubts regarding security of the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 325–332, 2015.
DOI: 10.1007/978-3-319-29003-4 20



326 F. Popalyar

system in the design phase of WMN during elicitation of the security require-
ments of the system. Generally considering security requirements of the system
in the early design phase can save time and financial resources [4]. Therefore,
before incorporating the security measures, the system designer should utilize a
systematic approach that involves identifying risks, requirements, risk mitigation
strategies and looking at the system from the adversary’s perspective.

Threat modeling helps in rationalizing the chosen security measures for a
system and verifying the security decisions of system designer [4]. Previously
threat modeling was used for application security modeling [12], but recently it
has been adopted by researchers in the areas of Mobile Ad hoc Networks and
Wireless Sensor Networks [13–16]. There is still a lack of literature on threat
modeling and attack tree definition for WMNs.

In this paper we propose Threat Modeling as a systematic approach to pin-
point the security threats for WMNs as basis for security requirements in the
initial design stage of developing a WMN. We identify assets, value them and
identify threats to assets. To elucidate the threat model we use Attack Tree
to view the system from the attacker’s perspective and develop attack trees to
clearly define vulnerabilities in the system during early design phase. Moreover,
the proposed approach considers a layer-wise classification of threats in WMNs,
since attacks can happen in every layer of WMN network stack. The proposed
approach can also be used in existing WMNs where security measures need to
be reimplemented.

Obtaining spatio-temporal attack information in WMNs can help in under-
standing which kinds of attacks are targeting WMNs. According to [22], adapting
the definition of Situation, it is implied that an attack on the WMN is an action-
able event and can be observed in time. Furthermore, situation modeling is used
to derive information about an occurrence, sequence of events and set of events
[23]. Thereby, we use the concept of situation modeling (attack/threat modeling)
to obtain information about attacks in WMNs. We take the example of Schools’
WMN in a district of Kabul City in Afghanistan as our scenario. We briefly dis-
cuss how to assess the risks that are associated with the specified WMN based
on the information that is derived from the threat model.

The rest of the document is structured as follows: The threat model is
described in Sect. 2. Risk assessment is presented in Sect. 3 and the conclusion
is presented in Sect. 4.

2 Threat Model

A threat is a goal of an adversary that if achieved can harm the system. Pro-
tecting a system from threats is one of the most important aspects in a system’s
security. Securing a system against threats and risks is a process that carries out
identification of the risks and threats, figuring out the ways to mitigate the risks
and developing security strategies to omit them [11].

WMNs are generally considered not secure enough and there are various
research being conducted on security of WMNs [1–3,8,9]. There has been less



Threat Model Based Security for Wireless Mesh Networks 327

attention devoted on embodying security in WMNs in the design phase and
threat modeling for WMNs. On the contrary several research in the same area
have been accomplished for other similar network types such as Mobile Ad hoc
Networks and Wireless Sensor Networks [13–16]. For this reason we proposes a
threat model based approach to secure WMNs in the early design phase. Accord-
ing to [4], to create a threat model for a system it is crucial to accomplish the
following sub processes; (i) characterizing the system, (ii) identifying assets and
(iii) identifying threats. Our work differs from the existing bodies of work because
we tailor the threat modeling steps to suit WMNs and focus on layer-wise deriva-
tion of attack information in WMN. The necessary steps taken towards threat
model in this paper are described as follows.

– To understand the system a network model needs to be created for the network
scenario which is shown in Fig. 1.

– The assets of the intended network are identified based on the scenario.
– Possible attacks that target the identified assets are listed and categorized

based on the network layer in which a certain attack can occur. To elaborate
the threat model and obtain clear attack information for the WMN, Attack
Tree modeling method is used.

2.1 Scenario

As the first step in threat modeling is to understand and realize the intended
network, the network model of the scenario used in this work is described and
illustrated in this section.

The environment of a network of schools in a district of Kabul, Afghanistan
is used as the scenario for this work. The network considered is based on the
administrative structure of schools and their relation to the Education Direc-
torate of the City (EDC) in Afghanistan. The Education Directorate in every
city is a representative of Ministry of Education and is responsible for collecting
data from all schools in a city. At the end of every semester and school year,
data is transfered from the school to Education Directorate of City. Thus the
schools need to be connected to the EDC.

The structure of wireless mesh networks considered is based on three tiers
which is depicted in Fig. 1. The bottom most tier is where the mesh clients (MCs)
are. These are the nodes that belong to the users of the services provided by the
school’s network. The mesh routers (MRs) that provide connectivity to mesh
clients are located in the intermediate tier. These routers are stationary nodes
that are responsible to connect the schools to the gateways. And in the topmost
tier the gateways are located.

2.2 Assets

Identifying assets of the network is a critical step in threat modeling [4]. Assets
are the target of attackers in a network. If there were no assets there would be
no attacks.



328 F. Popalyar

Fig. 1. The Wireless Mesh Network of Schwools

According to the illustrated scenario (Fig. 1), there are a number of services
that run on the servers of the school and the education directorate. Each of
the services are considered as assets. These services include; DHCP, DNS, Web
Service, Email, authentication, user’s database, employee information database,
student information database. Additionally, availability of the network is one of
the most important assets. The assets identified for the intended network are
described as follows.

– Availability of the network
– Integrity of the school’s data
– Confidentiality of the school’s data
– The Software installed in user nodes and servers
– Hardware of all network components

Asset Valuation. Since assets can be tangible or intangible [10], in the network
considered in this work the tangible assets are software systems and hardware
and the intangible assets include; availability of the network and services, data
integrity and confidentiality. It is assumed that the hardware and software assets
are kept safe against attacks in the scenario used in this work and only the
Availability, Integrity and Confidentiality of data are taken in consideration that
have relatively high value of importance.



Threat Model Based Security for Wireless Mesh Networks 329

2.3 Possible Attacks

The best way to list possible attacks for a system is to identify threats based on
every asset on the network. Threats/attacks aim towards one or more assets [4].
The assets for the scenario are identified in the previous section. The following
table (Table 1) pinpoints the attacks that can happen on every identified asset
on the intended WMN according to [9,24] and the attacks are categorized layer-
wise. The layer-wise categorization of threats on assets helps the system designer
in decision making on employing and developing security countermeasures.

Table 1. Layer based categorization of possible attacks on identified assets

Assets Possible attacks Layers

Availability Signal jamming Intentional collision of
frames, virtual jamming UDP flood,
ICMP flood DoS attacks, DDoS DNS
spoofing, TCP SYN flood,
de-synchronization

Physical data-link
network transport

Data integrity Mac spoofing session hijacking Data-link transport

Confidentiality Replay attack, eavesdropping and
man-in-the-middle, mac spoofing,
pre-computation and partial matching

Data-link

Software Worms and viruses Application

Hardware Device tampering and physical damage Physical

Attack Tree. Threat-logic trees were first introduced by Weiss [17] which were
used for analyzing failure conditions of complex systems [19]. Later the idea of
“Attack trees” was popularized by Bruce Schenier [5,18,19] which was based on
the original fault tree idea. Attack trees are defined as a systematic approach
for characterizing system security based on different types of attacks that can
be launched on the system [6]. In an attack tree, the root of the tree represents
the threat, in other words the root of the tree is the main goal of the adversary.
Considering that, to reach the goal, the adversary has to achieve the subgoals
that are presented by each child node in the attack tree. Thus the leaf nodes
show the starting points of the attack. Subgoals in the attack tree can be either
conjunctive (AND decompositions) or disjunctive (OR decompositions) [7]. As
a result each path on the tree shows a distinct attack on the system [6].

Attack trees are considered one of the most popular methods of graphical
security modeling [17].In this approach it is proposed to model the WMN threats
using Attack Trees. Because Attack Tree presents a visual way of depicting
security holes and help in better understanding the underlying security threats
and vulnerabilities in a system.



330 F. Popalyar

Fig. 2. Attack tree for signal jamming attack

In order to complete the threat model it is necessary to develop attack trees for
each possible attack and create a forest of attack trees [6]. Furthermore, by using
the attack trees specification of other attributes of the threats to the system such
as cost, possibility and impossibility, ease and difficulty can be determined [7].

An attack tree for Signal Jamming attack is presented as an example which is
depicted in Fig. 2 which is based on the network model illustrated in Fig. 1. The
result of an In-order traversal of the attack tree gives the method the attacker
should use to jam the intended network, which in the given example would be;
Identify MR 1 (see Figure 1.) AND Identify its frequency range, Position the
jamming device in the range of MR 1 AND emit jamming signals.

Similar to the presented example it is necessary to create attack trees for
each identified attack and develop the attack forest for the network. Once the
attack tree for every possible attack is depicted and vulnerabilities of the network
are known, it is relatively important to analyze the risks associated with each
threat. Risk assessment helps us to rank threats based on the level of their risk
and based on the level of the risks, they can be prioritized and risk mitigation
strategies can be applied accordingly.

3 Risk Assessment

Threat modeling and risk management are related processes [21]. In order to
manage risks by applying risk mitigation strategies it is crucial to asses risks in
this stage.

The relationship between threat, risk and vulnerability is explained in [20],
which can be summarized in the following sentence. Threat exploits vulnerability
and both threat and vulnerability increase risk. Thus defining the probability of
threat and the level of vulnerability for every asset defines the risk associated
with the asset and the impact that the risk can have depends on the value of
the asset under threat. Considering this explanation the following formula is
acquired [21] that we use for calculating risk of attacks in WMN:



Threat Model Based Security for Wireless Mesh Networks 331

Risk = Vulnerability Level x Threat Probability x Asset Value
At this point the systematic approach for securing WMNs at the early stage

of design is finalized. Based on the identified assets, their evaluated threats and
known layers of vulnerabilities, risk of attacks in WMN can be calculated and
decisions can be made on risk mitigation strategies that need to be applied to
secure the intended WMN.

4 Conclusion

Distinct characteristics of a Wireless Mesh Network such as its broadcast nature
and use of shared wireless media make it vulnerable to security threats. This paper
proposes a threat model based approach for securing WMNs during early design
phase where threat modeling is used as the basis of WMN security requirements.
Throughout the paper, assets of the network are identified based on the scenario,
threats for every asset are pointed and categorized in a layer-wise manner. The
attack tree is used to elaborate the threat model and an example attack tree is
developed. Lastly, risk assessment methods for possible attacks are discussed.

Once the threat model is created the WMN’s threats and security require-
ments are identified. Based on the information derived from our threat model
proper ways to mitigate the risks can be figured out and security mechanisms
for the WMN can be developed. These two steps are considered as future work.

References

1. Akyildiz, I., Wang, X.: Wireless Mesh Networks, vol .1. John Wiley and Sons Inc.,
UK (2009)

2. Khan, S., Pathan, A.S.K.: Wireless networks and security: issues, challenges and
research trends. In: SCT, pp. 189–272 (2013)

3. Sen, J.: Security and Privacy Issues in Wireless Mesh Networks: A Survey, Inno-
vation Labs. Tata Consultancy Services Ltd., Kolkata (2013)

4. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security
requirements. In: Symposium on Requirements Engineering for Information Secu-
rity (2005)

5. Schneier, B.: Attack trees: modeling security threats. Dr. Dobbs J. 24(12), 21–29
(1999)

6. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack Modeling for Information Security
and Survivability. Software Engineering Institute, Pittsburgh (2001)

7. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

8. Siddiqui, M.S., Hong, C.S.: Security issues in wireless mesh networks. In: The
Proceedings of the International Conference on Multimedia and Ubiquitous Engi-
neering (MUE’07), Seoul, Korea, pp. 717–722 (2007)

9. Sen, J.: Security and privacy issues in wireless mesh networks: a survey. In: Khan,
S., Pathan, Al-SK. (eds.) Wireless Networks and Security. SCT, vol. 2, pp. 189–272.
Springer, Heidelberg (2013)

10. Allee, V.: Value network analysis and value conversion of tangible and intangible
assets. J. Intell. Capital 9(1), 5–24 (2008)



332 F. Popalyar

11. McGraw, G., Allen, J.H., Mead, N., Ellison, R.J., Barnum, S.: Software Security
Engineering: A Guide for Project Managers. Addison-Wesley Professional, Boston
(2008)

12. Johansson, J.M., Riley, S.: Protect Your Windows Network From Perimeter to
Data. Pearson Education Inc., USA (2005)

13. Spiewak, D., Engel, T., Fusenig, V.: Towards a threat model for mobile ad-hoc net-
works. In: Proceedings of the 5th WSEAS International Conference on Information
Security and Privacy, Venice, Italy, 20–22 November 2006

14. Clark, J.A., Murdoch, J., McDermid, J.A., Sen, S., Chivers, H., Worthington, O.,
Rohatgi, P.: Threat modelling for mobile ad hoc and sensor networks. In: Annual
Conference of ITA (2007)

15. Hasan, R., Myagmar, S., Lee, A.J., Yurcik, W.: Toward a threat model for storage
systems. In: Proceedings of the 2005 ACM Workshop on Storage Security and
Survivability, pp. 94–102. ACM, New York (2005)

16. Zalewski, J., Drager, S., McKeever, W., Kornecki, A.J.: Threat modeling for secu-
rity assessment in cyberphysical systems. In: Proceedings of the Eighth Annual
Cyber Security and Information Intelligence Research Workshop. ACM, New York
(2013). Article No. 10

17. Kordy, B., Mauw, S., Radomirovi, S., Schweitzer, P.: DAG-based attack and defense
modeling: dont miss the forest for the attack trees. Comput. Sci. Rev. 13(14), 1–38
(2014)

18. Kordy, B., Mauw, S., Radomirovi, S., Schweitzer, P.: Attack Defense Trees. Oxford
University Press, New York (2012)

19. Steffan, J., Schumacher, M.: Collaborative attack modeling. In: Proceedings of
the 2002 ACM Symposium on Applied Computing, pp. 253–259. ACM, New York
(2002)

20. Arnes, A.: Risk, Privacy, and Security in Computer Networks, Ph.D. thesis (2006)
21. UcedaVelez, T., Morana, M.M.: Risk Centric Threat Modeling: Process for Attack

Simulation and Threat Analysis. Wiley, Hoboken (2015)
22. Singh, V.K.: From multimedia data to situation detection. ACM, Scottsdale (2011)
23. James, L.: Crowley, patrick reignier and remi barranquand, situation models: a

tool for observing and understanding activity. In: Proceedings of IEEE ICRA,
Workshop of People Detecting and Tracking, Kobe, Japan, May 2009

24. Glass, S., Portmann, M., Muthukkumarasamy, V.: Securing wireless mesh network-
ing. IEEE Internet Comput. 12, 30–36 (2008)



Posters



Integrating Wearable Devices into a Mobile
Food Recommender System

Mouzhi Ge, David Massimo, Francesco Ricci, and Floriano Zini

Free University of Bozen-Bolzano, Bolzano, Italy
{mouzhi.ge,david.massimo,fricci,floriano.zini}@unibz.it

Abstract. The booming development of wearable devices has created
new opportunities and challenges for recommender system research.
In fact, the relevance of a recommendation is largely affected by the
user’s real-time requirements, and therefore understanding the precise
user’s situation at recommendation time is pivotal. Wearable devices
can contribute to provide this rich description of the user’s situation. In
particular, in food recommender systems this set of user’s data can lead
to novel research challenges that are illustrated in this paper.

Keywords: Food recommender system · Wearable devices · Mobile
application · Personalization

1 Introduction

Recommender Systems (RS) are information exploration tools that tackle infor-
mation overload by providing personalized suggestions and assisting users’ deci-
sion making [1]. Nowadays, RS has been applied in different application domains
such as movies, restaurants and vacations. Among these domains, food is an
emerging as an important application area, since for many people, food is usu-
ally associated with improper eating habits [2]. Many people are not aware of
the potential health problems that can be caused by improper eating habits. In
this scenario, the goal of a food recommender system is to assist users to choose
meals, food or recipes that not only suit user’s taste but also are good for the
user’s health.

Early attempts to build food recommender systems were mostly focused
on computing personalized food recommendation based on user’s previously
expressed preferences. For example, [5] used case-based reasoning to find the
recipes that satisfies the user’s cooking goal. However, as reported in [3], when
looking for food recommendations, people would like to take the health factor
into account even if this can partially conflict with their taste. Therefore more
recent works tend to bring the health aspect into this application area of recom-
mender systems. For example, Freyne and Berkovsky [2] proposed an intelligent
food planning system that can provide personalised and healthy recipe recom-
mendations. [4] incorporated nutrition concerns into their recommender system
and created daily meal plan based on user’s nutritional needs. However, these
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 335–337, 2015.
DOI: 10.1007/978-3-319-29003-4



336 M. Ge et al.

works are focused on daily or weekly planning, and are not able to provide real-
time recommendations, i.e., recommendations that take into account the current
state of the user. If, for instance, the user is deviating from the given plan at
certain point, then following the original plan is not any more in order.

In our previous work [3], we proposed a food recommender system called
ChefPad1, which not only offers recipe recommendations that suit user’s taste
but is also able to take the user’s health into account. The health aspect mainly
considers the calorie balance of the user. This system aims at providing real-time
healthy food recommendations. However it is based on user manual recording
on their activities and estimated calorie consumption. This can lower the user
engagement because of the constantly required user input. Moreover, the esti-
mated calorie balance can be imprecise since is not based on real time monitoring
of user’s activities.

Wearable devices can be seen as a breakthrough technology that can help
food recommender system to generate real-time recommendations. From wear-
able devices, one can obtain exact information about the user (past and cur-
rent) activities and consumed calories, which results in a more precise calorie
balance and can lead to more convincing explanations for the recommenda-
tions. Therefore, in this paper we propose the integration of wearable devices
into our ChefPad food RS. As far as we know, this is the first attempt in recom-
mender system research to integrate and use wearable devices in the generation of
recommendations.

The contributions of this short paper is to open a novel research direction
in food recommend systems by proposing the integration of wearable devices,
and also provides indications for RS applications in other domains. It can be
considered as a further step into a fully context-aware recommender system [6].

2 Food RS and Wearable Devices

Nowadays, there is a booming development and application of wearable devices.
When we considered the integration of wearable device technologies in food
recommender systems, we have reviewed and compared a number of wearable
devices such as Microsoft Band, Apple Watch, Jawbone, Misfit, Fitbit and
Garmin etc. We have identified one type of wearable devices - Fitbit2, which
will be mainly used to track user activities. We have choosen to use Fitbit for
our recommender system for two reasons: (1) the Fitbit functionality is more
focused on user activities and burned calories. Other devices, such as Apple
Watch, require additional devices, such as an iPhone, or provide additional ser-
vices (email or phone call) not necessary for our application. (2) We found that
Fitbit is easy to integrate and has a large number of active users. The tracking
data are stable and the Fitbit device is easy to use. Fitbit will be used in our
app to access user activity data such as the number of steps or the user’s heart
rate by means of the offered Fitbit web services.
1 http://foodrecsys.inf.unibz.it/.
2 https://www.fitbit.com/.

http://foodrecsys.inf.unibz.it/
https://www.fitbit.com/


Integrating Wearable Devices into a Mobile Food Recommender System 337

Our ChefPad system is a client-server application. The client is an android-
based app ideally for tablet that communicates with the system backend through
a REST API. The integration of the Fitbit is mainly through OAUTH2 authen-
tication, which allows Fitbit account to associate with a registered app. The
registration of an app is via the developer tools on the Fitbit website. This reg-
istered app can be any third-party software and will obtain an appKey after
Fitbit app registration. Using appKey, the registered app can access the Fitbit
endpoints3 to get the required data.

When a user chooses to connect to Fitbit, our app will provide our appKey
to Fitbit. The Fitbit server will send back a confirmation in terms of an URL.
We offer this URL to the user, which is a link to the FitBit official page for
user confirmation. When user finishes the confirmation, by means of a callback
function we collect whether Fitbit accepted or not the confirmation. If the con-
firmation is successful, our app obtains the userKey and can start to access to
user’s Fitbit data. Up to this point, we have integrated Fitbit to our app and we
are able to retrieve user activity data such as the number of steps or the burned
calories through Fitbit endpoints. Once we have retrieved the calories that the
user has burned and related activities, our app can provide recommendations
according to the real-time calorie consumption and the retrieved data can also
be used in the explanation component for why the recommendation is healthy.

3 Conclusion

On top of a previously developed food recommender system, we have accom-
plished the integration of activity tracking wearable devices. We found that it is
feasible to use the tracking data to generate proactive and real-time recommen-
dations. In the future it will be important to validate the proposed model and
further develop the proposed context-tracking recommender system.

References

1. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Hand-
book. Springer, Heidelberg (2011)

2. Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommen-
dation. In: 15th International Conference on Intelligent User Interfaces, pp. 321–324.
ACM (2010)

3. Ge, M., Ricci, F., Massimo, D.: Health-aware food recommender system. In: 9th
ACM Recommender System, Vienna, Austria, pp. 333–334 (2015)

4. Elsweiler, D., Harvey, M.: Towards automatic meal plan recommendations for bal-
anced nutrition, Vienna, Austria, pp. 313–316 (2015)

5. Hammond, K.: CHEF: a model of case-based planning. In: 5th National Conference
on Artificial Intelligence, Philadelphia, USA (1986)

6. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender
systems. AI Magazine. 32(3), 67–80 (2011)

3 https://dev.fitbit.com/docs/activity/.

https://dev.fitbit.com/docs/activity/


Upgrading Wireless Home Routers as
Emergency Cloudlet: A Runtime Measurement

Christian Meurisch, Ashwinkumar Yakkundimath, Benedikt Schmidt,
and Max Mühlhäuser

Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
{christian.meurisch,ashwinkumar.yakkundimath,

benedikt.schmidt,max}@tk.informatik.tu-darmstadt.de

Abstract. Smartphones have become a daily companion in recent
years due to their small form factor. However, such mobile systems are
resource-constrained in view of computational power, storage and bat-
tery life. Offloading resource-intensive tasks (aka mobile cloud comput-
ing) to distant (e.g., cloud computing) or closely located data centers
(e.g., cloudlet) overcomes these issues. However, in emergency case (e.g.,
blackout) conventional offloading concepts are no longer available while
battery life of mobile devices becomes crucial. In this paper, we extend
our previous concept of upgrading wireless home routers as cloudlets by
an emergency power extension (i.e., off-the-shelf battery pack) to provide
computing infrastructure during an emergency case. Our conducted run-
time measurements show the feasibility of this concept. As preliminary
result, we are able to run a large-scale deployable emergency cloudlet
over 5 h autarchically under full load.

Keywords: Wireless home router ·Mobile cloud computing · Cloudlet ·
Smartphones · Offloading · Blackout · Emergency case

1 Introduction

Most mobile services today rely on mobile cloud computing [1], i.e., offload-
ing resource-intensive tasks to distant (e.g., cloud computing) or closely located
servers (e.g., cloudlet [4]), to save mobile resources (e.g., battery). However, in
emergency cases (e.g., blackout) these offloading systems might not be avail-
able anymore if battery life of mobile devices becomes crucial. Cloudlets are
predestinated for emergency cases or hostile environments [5] due to the close
proximity to the consumer, i.e., cloudlets provide a direct low-latency and high-
bandwidth connection without the need of a network infrastructure. However,
a large-scale deployment of autarkic cloudlets is still lacking. To address this
challenge we extend our router-based cloudlet [2] as large-scale deployable emer-
gency cloudlet, i.e., we equip an upgraded wireless router with an emergency
care (i.e., off-the-shelf battery pack). In this paper, we show the feasibility of the
proposed concept by conducting runtime measurements. Our preliminary results

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 338–340, 2015.
DOI: 10.1007/978-3-319-29003-4



Upgrading Wireless Home Routers as Emergency Cloudlet 339

show a prototype that runs over 5 h autarchically under full load. However, for a
promising large-scale deployment of emergency cloudlets either household own-
ers need to upgrade their routers or manufacturers could provide the emergency
mode inherently. The remainder of this paper is organized as follows: First, we
describe our concept of cloudlets for emergency cases; second, we present the
preliminary results. This paper closes with conclusion and outlook of future
works.

2 Router-Based Emergency Cloudlets

In [2], we proposed router-based cloudlets to offload computations from mobile
device. This concept benefits from the dense distribution of wireless routers, low
latency, high bandwidth and economic operations. However, in some emergency
cases like blackouts current offloading systems are no longer available. While
wireless home routers provide adequate offloading performance (cf. [2]), they
also have lower power drain. This makes our approach predestinated to realize
an emergency infrastructure. To realize a prototype we equip a router-based
cloudlet with an off-the-shelf battery pack. Upgrading a router-based cloudlet as
emergency cloudlet can be done by the household owner himself or inherently by
the manufacturer. In [3], we already proposed and discussed an emergency switch
for wireless home routers to build a mesh network with other upgraded routers for
an emergency communication infrastructure. Combining all approaches, emer-
gency cloudlets are able to autarkically operate during blackouts and provide
an emergency infrastructure including both computational offloading and com-
munication capabilities. Highly relevant for data analyses and communication
between first responders and victims in disaster scenarios. In the next section,
we evaluate how long an emergency infrastructure can be maintained by our
approach and what the requirements are.

3 Preliminary Results

Proving our concept we conduct runtime measurements over various CPU usages
of the router (cf. Fig. 1). Our experimental setup consists of a mobile device
(LG Nexus 5) and an upgraded wireless home router (Asus RT-AC87U) as
emergency cloudlet providing computational power and running autarchically
through 18,000 mAh, 19 V off-the-shelf battery pack (Aukey PB-016) at a price
of ∼60$. For reproducible results, we permanently run one resource-intensive
task on the router to achieve maximal CPU usage constantly. To measure various
maximal usage levels we accordingly limit the maximal CPU usage of that com-
putation process by Linux command cpulimit. Connecting the mobile device has
two reasons: firstly, simulation of offloading device by exchanging data packets,
and secondly, measuring router’s runtime, i.e., mobile device starts the measure-
ment run by triggering the task on the router with fully charged battery pack
and stops the run by detecting inaccessibility of the router when the battery is
empty. Our preliminary results show an autarchic router runtime over 5 h under
full load and almost 7 h in standby mode (cf. Fig. 1).



340 C. Meurisch et al.

0 10 20 30 40 50 60 70 80 90 100
CPU usage [%]

4.5

5

5.5

6

6.5

7

R
un

tim
e 

[h
]

Aukey PB-016 (18,000mAh)

Fig. 1. Runtimes of emergency cloudlet over various CPU usages

4 Conclusion and Future Work

In this paper, we extended our previous concept of upgrading wireless home
routers as cloudlets [2] by an emergency power mode (i.e., off-the-shelf battery
pack) to provide a large-scalable emergency computing infrastructure. Proving
our concept we conducted runtime measurements over various CPU usages. Our
preliminary results show the feasibility of this concept and an adequate runtime
of our emergency cloudlet over 5 h autarchically under full load. Enough to tem-
porarily provide an alternative offloading system and bridge short-term emer-
gency cases like blackouts. In future works, we will connect emergency cloudlets
as computing mesh network and create energy models of router-based cloudlets.

Acknowledgments. This work has been co-funded by the LOEWE initiative (Hessen,
Germany) within the NICER project and by the DFG as part of project B02 within
the CRC 1053 MAKI.

References

1. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future
Gener. Comput. Syst. 29(1), 84–106 (2013). Elsevier

2. Meurisch, C., Seeliger, A., Schmidt, B., Schweizer, I., Kaup, F., Mühlhäuser, M.:
Upgrading wireless home routers for enabling large-scale deployment of cloudlets. In:
Nurmi, P., Sigg, S. (eds.) 7th International Conference on Mobile Computing, Appli-
cations and Services (MobiCASE 2015). LNICST, vol. 162, pp. 12–29. Springer,
Heidelberg (2015)

3. Panitzek, K., Schweizer, I., Schulz, A., Bönning, T., Seipel, G., Mühlhäuser, M.:
Can we use your router, please?: benefits and implications of anemergency switch
for wireless routers. Int. J. Inf. Syst. Crisis Responseand Manag. (IJISCRAM 2012)
4(4), 59–70 (2012)

4. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

5. Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng, J., Ha, K.: The role
of cloudlets in hostile environments. IEEE Pervasive Comput. 12(4), 40–49 (2013)



SWIPE: Monitoring Human Dynamics
Using Smart Devices

Sébastien Faye, Raphael Frank, and Thomas Engel

Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, 4 rue Alphonse Weicker,

2721 Luxembourg, Luxembourg
{sebastien.faye,raphael.frank,thomas.engel}@uni.lu

Abstract. SWIPE is a platform for sensing, recording and processing
human dynamics using smart devices. The idea behind this type of sys-
tem, which exists for the most part on smartphones, is to consider new
metrics from wearables – in our case smartwatches. These new devices,
used in parallel with traditional smartphones, provide clear indicators of
the activities and movements performed by the users who wear them.
They can also sense environmental data and interactions. The SWIPE
architecture is structured around two main elements, namely (1) an
Android application deployed directly on the devices, allowing them to
synchronize and collect data; and (2) a server for storing and processing
the data. This publication is intended to communicate on the platform
with both the scientific and the industry communities. SWIPE is freely
distributed under a MIT license.

Keywords: Sensing system · Wearable computing · Activity detection

1 Introduction

Growth in the market for smartphones and connected devices opens up oppor-
tunities for new applications and areas of research. Integrated sensors within
the devices allow us to monitor not only of the user’s movements (e.g. using an
accelerometer sensor) and interactions (e.g. Bluetooth), but also the environment
in which they take place (e.g. microphone, GPS).

Recently, many mobile sensing frameworks have been developed to moni-
tor user activities [1]. For example, EmotionSense [2] detects activity, verbal
interaction and proximity between members of a group. Another example is
SenseFleet [3], a platform to compute driving profiles, by using solely standard
smartphone sensors. However, two observations can be made. (1) Very few of
these systems are accessible to the public, thus limiting their development to
highly targeted business models. (2) Although most of these systems rely on the
use of smartphones, more recent devices, such as smartwatches, can bring real
advances in understanding human activities and open up new ways of interacting
with the user.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Sigg et al. (Eds.): MobiCASE 2015, LNICST 162, pp. 341–343, 2015.
DOI: 10.1007/978-3-319-29003-4



342 S. Faye et al.

In [4], we show that using a smartwatch in parallel with a smartphone could
improve the performance of a simple activity and context recognition system
based on Support Vector Machines. In [5], we introduce SWIPE, i.e. the sys-
tem that we developed for the purposes of conducting our research. The work
introduced here is complementary to these papers and aims to present the first
released version of SWIPE, which is now freely available online1 under a MIT
license.

2 Overview of SWIPE

Figure 1 shows the overall architecture of the SWIPE platform. The first part
of the architecture is a local sensing system, in which the equipment carried by
the user uses an Android application. Users can start or stop a recording session
from their smartphones. During recording, data is collected automatically by
the smartwatch while the smartphone serves as a local data collection point.
Because smartphones generally have better energy capabilities and direct access
to cellular andWi-Fi networks, they also serves as a local gateway to the Internet,
sending data to a global data collection server through an independent web
service. The second part of this architecture is the data storage server, which
recovers the data transmitted to the web service and stores it for processing and
analysis.

Local sensing system Online data collection

Web Service

Bluetooth

Cellular, WiFi

User aggregated
data

Smartwatch 
aggregated data

Server

Smartphone

Smartwatch
Storage, processing

and analysis
Movements (e.g. accelerometer), 

physiological data (heart rate)

Movements (e.g. accelerometer), 
environment and interactions (e.g., 

microphone, Bluetooth, GPS)

Fig. 1. Overview of the SWIPE architecture.

Currently, the application considers the three sets of metrics described in the
introduction (i.e. movements, interactions, environment) in addition to physio-
logical data. The system records include: average and maximum linear acceler-
ation, Wi-Fi access points, Bluetooth and Bluetooth Low Energy devices, heart
rate, sound level, battery level, GPS location and speed, pedometer, smartphone
proximity sensor, luminosity, information on cellular networks, activity (Google
Play Services).
1 https://github.com/sfaye/SWIPE/

https://github.com/sfaye/SWIPE/


SWIPE: Monitoring Human Dynamics Using Smart Devices 343

Finally, note that the system we propose adopts certain strategies to con-
serve battery life and thus facilitates a full day’s recording. In [4], we choose to
(1) repatriate data on the smartphone from the smartwatch every 20 minutes;
(2) send data to the web service only once (at the end of the session); and
(3) record data only when it is really necessary (i.e. heart rate only when the
user is moving). These points, combined with finely studied recording frequen-
cies (e.g. average linear acceleration instead of raw data), allow us to send more
diverse data and process light operations, while saving energy.

3 Excepted Results

Our presentation aims to provide visitors with additional technical features that
were not included in our main study.

By choosing deliberately to share our work, we open the way to interested
developers and present the functioning of our system, in addition to providing
feedback on the problems we have encountered during development, which is
currently in its early stages. For this, we will be presenting a smartphone and a
smartwatch running on Android 5.1 to test the acquisition of data. To illustrate
this, a real time collection mode, allowing visualization of environmental and
sensory information, will also be presented.

References

1. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.:
A survey of mobile phone sensing. IEEE Commun. Mag. 48.9, pp. 140–150 (2010),

2. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C.,
Aucinas, A.: EmotionSense: a mobile phones based adaptive platform for experi-
mental social psychology research. In: Proceedings of the 12th ACM International
Conference on Ubiquitous Computing, pp. 281–290. ACM (2010)

3. Castignani, G., Frank, R.: SenseFleet: A smartphone-based driver profiling platform.
In: Proceedings of the 11th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2014). IEEE
(2014)

4. Faye, S., Frank, R., Engel, T.: Adaptive activity and context recognition using
multimodal sensors in smart devices. In: The 7th International Conference on
Mobile Computing, Applications and Services (Mobi-CASE 2015), Berlin, Germany,
October 2015

5. Faye, S., Frank, R.: Demo: Using wearables to learn from human dynamics. In: Pro-
ceedings of the 13th Annual International Conference on Mobile Systems, Applica-
tions, and Services, p. 445. ACM (2015)



Author Index

Abel, Fabian 301
Agrawal, Pragya 89
Alanezi, Khaled 143
Albayrak, Sahin 301
Awwal, Ibrahim 51

Barth, Peter 221
Bhardwaj, Ketan 89
Blunck, Henrik 259

Camp, Carmen 203
Challen, Geoffrey 161
Chen, Lijun 143
Chen, Yihong 161
Choi, Ryan H. 107
Choi, Youngil 107

Ebert, Andre 239
Emery, Kevin 71
Engel, Thomas 33, 341

Faye, Sébastien 33, 341
Frank, Raphael 33, 341

Gavrilovska, Ada 89
Ge, Mouzhi 335
Gogel, Artur 309

Han, Qi 71
Hidasi, Balázs 301
Hurd, Sam 203
Hussain, Tahir 309

Imai, Tomoharu 3

Jamali, Nadeem 181
Julien, Christine 122

Kaup, Fabian 12
Kille, Benjamin 301
Kim, Yeseong 51

Kjærgaard, Mikkel Baun 259
Korgaonkar, Kunal 51

Liu, Chenguang 122

Maiti, Anudipa 161
Marouane, Chadly 239
Massimo, David 335
Matsuda, Masahiro 3
Matsui, Kazuki 3
Meurisch, Christian 12, 309, 338
Mishra, Shivakant 143
Moamen, Ahmed Abdel 181
Mühlhäuser, Max 12, 309, 338

Nowicki, Michał 280

Patil, Shruti 51
Popalyar, Freshta 325
Pras, Manuel 221
Prentow, Thor Siiger 259

Ricci, Francesco 335
Rosing, Tajana S. 51

Sallee, Taylor 71
Schmidt, Benedikt 12, 309, 338
Schwan, Karsten 89
Schweizer, Immanuel 12, 309
Seeliger, Alexander 12
Skrzypczyński, Piotr 280
Stisen, Allan 259

White, Jules 203

Yamasaki, Kouichi 3
Yakkundimath, Ashwinkumar 338
Yaqini, Akmal 317

Zhou, Xinyang 143
Zini, Floriano 335


	Preface
	Organization
	Contents
	Intelligent Caching
	Network Data Buffering for Availability Improvement of Mobile Web Applications
	Abstract
	1 Background
	2 Issues and Existing Technology
	3 Data Synchronization with VMA
	3.1 Overview
	3.2 DataCache
	3.3 DataShrink

	4 Results
	5 Conclusion, Discussion, and Future Work
	References

	Upgrading Wireless Home Routers for Enabling Large-Scale Deployment of Cloudlets
	1 Introduction
	2 Related Work
	3 Concept for Router-Based Cloudlets
	3.1 Device (Router)
	3.2 Infrastructure
	3.3 Community

	4 Experimental Setup
	4.1 Hardware
	4.2 Measurement Methodology

	5 Benchmark Results
	6 Discussion and Future Work
	6.1 Router's Performance
	6.2 Offloading Strategy
	6.3 Discovery, Handover, and Failure Handling

	7 Conclusion
	References


	Activity Recognition and Crowdsourcing
	Adaptive Activity and Context Recognition Using Multimodal Sensors in Smart Devices
	1 Introduction
	2 Related Work
	3 Sensing System
	3.1 Hardware
	3.2 Architecture
	3.3 Metrics Collected by SWIPE
	3.4 Energy Saving Strategy

	4 Building a Data Set
	4.1 Scenario
	4.2 Example
	4.3 Activity and Context Classes

	5 Activity and Context Recognition Using SVM
	5.1 Parameters
	5.2 Feature Set
	5.3 Recognition Using Metrics Individually
	5.4 Recognition Using a Combination of Multiple Metrics
	5.5 Application Example

	6 Comparing Participants
	7 Conclusion
	References

	Characterization of User's Behavior Variations for Design of Replayable Mobile Workloads
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Analysis of User Workloads
	4.1 Intra-App
	4.2 Inter-App
	4.3 Utilization Values

	5 Automated Test Run Generation
	5.1 Automated Generation of Test Runs
	5.2 Comparison with User Workloads

	6 Analysis with Test Runs
	6.1 Resource Characterization for Scenarios
	6.2 Memory Bandwidth and User Interaction
	6.3 Impact on Power and Optimization
	6.4 Changes in Devices and Platforms

	7 Conclusion
	References

	Worker Selection for Reliably Crowdsourcing Location-Dependent Tasks
	1 Introduction
	2 Related Work
	3 Our Approaches
	3.1 Definition of Accuracy Metric
	3.2 Formal Problem Statement
	3.3 Our Algorithms

	4 Performance Evaluation
	4.1 Simulation Setup
	4.2 Experimental Results

	5 Conclusions
	References


	Mobile Frameworks
	AppSachet: Distributed App Delivery from the Edge Cloud
	1 Introduction
	2 Internet Traffic Due to App Delivery
	2.1 Data Collection Methodology
	2.2 Observations

	3 App Sachet System Design
	3.1 AppSachet Cache
	3.2 AppSachet Server
	3.3 AppSachet Sync
	3.4 AppSachet Client

	4 AppSachet Cache Policy Design
	4.1 Popularity-Aware Caching: p-LRU
	4.2 Cost-Aware Caching: c-LRU

	5 AppSachet Implementation
	6 Evaluation
	6.1 Experimental Testbed
	6.2 Cacheability of App Traffic
	6.3 p-LRU and c-LRU Cache Performance
	6.4 Storage Requirements on eBox
	6.5 Cost Benefit Analysis of Deploying eBox Based AppSachets

	7 Discussion and Future Work
	8 Related Work
	9 Conclusions
	References

	Typed JS: A Lightweight Typed JavaScript Engine for Mobile Devices
	1 Introduction
	2 Related Work
	3 Design of Typed JS
	4 Architecture of Typed JS
	4.1 Compiler
	4.2 Runtime
	4.3 Optimization
	4.4 Limitations

	5 Experimental Results
	6 Conclusion
	References

	Pervasive Context Sharing in Magpie: Adaptive Trust-Based Privacy Protection
	1 Introduction
	2 Related Work
	3 Magpie: Adaptive Trust- and Privacy-Based Context Sharing
	3.1 Adaptive Trust Management
	3.2 Privacy Preserving Sharing of Context

	4 Experimental Evaluation
	5 Conclusions and Future Research
	References


	Middleware
	Panorama: A Framework to Support Collaborative Context Monitoring on Co-located Mobile Devices
	1 Introduction
	2 Design
	2.1 Overall Architecture
	2.2 Application Partitioning and Profiling
	2.3 Optimization Models
	2.4 Discovery Protocol

	3 Implementation
	3.1 Panorama's Programming Interface
	3.2 Experiment Testbed

	4 Evaluation
	4.1 Methodology
	4.2 The Utility of Multi-objective Optimizer
	4.3 Benefits of Collaboration for Sequential Tasks
	4.4 Handling Mobility

	5 Related Work
	6 Conclusion
	References

	Jouler: A Policy Framework Enabling Effective and Flexible Smartphone Energy Management
	1 Introduction
	2 Motivation
	3 Design
	3.1 Energy Managers
	3.2 Energy Manager Inputs
	3.3 Cooperative Mechanisms
	3.4 Imperative Mechanisms
	3.5 Privacy Concerns

	4 Example Energy Managers
	5 Implementation
	5.1 Energy Manager Implementation

	6 Evaluation
	6.1 Energy Benchmark
	6.2 Jouler Mechanisms
	6.3 Deployment

	7 Related Work
	8 Future Work and Conclusions
	References

	CSSWare: A Middleware for Scalable Mobile Crowd-Sourced Services
	1 Introduction
	2 Related Work
	3 Supporting Crowd-Sourced Services
	3.1 Multi-origin Communication

	4 Middleware Design
	4.1 Service Platform Side
	4.2 Contributor Side
	4.3 Client Side

	5 Middleware Implementation
	5.1 Service Platform Side
	5.2 Contributor Side
	5.3 Client Side

	6 Evaluation
	6.1 Programmability
	6.2 Experimental Evaluation

	7 Conclusions
	References


	Interactive Applications
	Quality Assurance in Additive Manufacturing Through Mobile Computing
	1 Introduction
	2 Motivating Example
	3 Challenges
	3.1 Challenge 1: Generating a 2D Representation of a Print Layer
	3.2 Challenge 2: Time Synchronization with the Printer
	3.3 Challenge 3: Accurate Positioning of the Monitoring Device
	3.4 Challenge 4: Identifying When a Print has Failed

	4 Print Quality Assurance with a Mobile Device
	4.1 Algorithm to Discover Misprinted PLA
	4.2 Identifying Failed Prints

	5 Empirical Results
	5.1 Experimental Platform
	5.2 Experiment 1: Image Subtraction Analysis
	5.3 Experiment 2: Image Searching Analysis
	5.4 Experiment 3: Correlations Between Size and Analyzation Speed
	5.5 Analysis of Results

	6 Related Work
	7 Concluding Remarks
	References

	Interactively Set up a Multi-display of Mobile Devices
	1 Introduction
	2 Related Work
	3 Interactive Multi-Display Setup
	3.1 Test Images
	3.2 Coarse Grained Initial Position
	3.3 Fine Grained Absolute Position
	3.4 Differentiate Among Gestures

	4 Image Preparation and Distribution
	5 Evaluation
	5.1 Participants and Setup
	5.2 Tasks
	5.3 Procedure
	5.4 Results

	6 Conclusion
	References

	SURFLogo - Mobile Tagging with App Icons
	1 Introduction
	2 Image Processing
	2.1 Representing Images with Feature Points
	2.2 Image Comparison

	3 Concept
	3.1 Control Concept
	3.2 Components of SURFLogoApp
	3.3 Matching Algorithm

	4 Evaluation
	4.1 Setup Configuration
	4.2 Critical Quantization Variables
	4.3 Multi-layered Decisioning Process

	5 Conclusion
	References


	Mobility
	Towards Indoor Transportation Mode Detection Using Mobile Sensing
	1 Introduction
	2 Indoor Versus Outdoor Settings
	2.1 Transportation Infrastructure
	2.2 Transportation Modes
	2.3 Available Sensing Technologies
	2.4 Existing Approaches for TMD

	3 Features for Indoor Transportation Mode Detection
	3.1 Signal Strength Based Features
	3.2 Position Based Features
	3.3 Kinetic Features

	4 Evaluation
	4.1 Evaluation Setting
	4.2 Dataset
	4.3 Evaluation Methodology
	4.4 Detecting Transportation Means
	4.5 Evaluating Different Sensor and Feature Types
	4.6 Evaluating Different Classifiers
	4.7 Network- Versus Client-Based Wi-Fi Signal Strength Measurements
	4.8 Evaluating Different Wi-Fi Window Size
	4.9 Evaluating the Usefulness of Additional Tagging of Vehicles

	5 Conclusions
	References

	Indoor Navigation with a Smartphone Fusing Inertial and WiFi Data via Factor Graph Optimization
	1 Introduction
	2 Related Work
	3 Indoor Localization in a Smartphone
	3.1 Stepometer
	3.2 Orientation Estimation
	3.3 WiFi Fingerprinting

	4 Factor Graph Representation
	4.1 PDR Motion Constraints
	4.2 WiFi Fingerprint Constraints
	4.3 Implementation Details

	5 Experiments
	5.1 Experimental Setup
	5.2 Pedestrian Dead Reckoning Results
	5.3 PDR Supported by Matching of Discovered WiFi Fingerprints
	5.4 Constraints from WiFi Fingerprints with Known Positions

	6 Conclusions
	References


	Workshop Papers
	Using Interaction Signals for Job Recommendations
	1 Introduction
	2 Related Work
	3 Data Description
	3.1 User Activity
	3.2 Item Activity
	3.3 Interaction Activity

	4 Relevance Prediction
	4.1 Clicks  Ratings
	4.2 Bookmarks  Ratings
	4.3 Replies  Ratings

	5 Discussion
	6 Conclusion and Future Work
	References

	A Spatiotemporal Approach for Social Situation Recognition
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Places and Place Visits
	3.2 Social Interactions
	3.3 Social Situation Recognition

	4 Proof of Concept
	4.1 Dataset
	4.2 Feature Extraction
	4.3 Results

	5 Conclusion
	References

	Managing Wireless Mesh Networks -- A Survey of Recent Fault Recovery Approaches
	1 Introduction
	2 Faults in WMNs
	2.1 Node Failure
	2.2 Communication Failure
	2.3 Traffic Overload
	2.4 Routing Protocol Failure
	2.5 Network Scalability Issue
	2.6 Faults Resulting from Network Dynamics
	2.7 Base Station and Backbone Failures

	3 Taxonomy of Approaches
	3.1 Fault Diagnosis Approach
	3.2 Node Failure Approach
	3.3 Connectivity Issues and Routing Schemes
	3.4 Fault Tolerance Approaches
	3.5 Autonomous Reconfiguration Systems

	4 Discussion
	5 Conclusion
	References

	Threat Model Based Security for Wireless Mesh Networks
	1 Introduction
	2 Threat Model
	2.1 Scenario
	2.2 Assets
	2.3 Possible Attacks

	3 Risk Assessment
	4 Conclusion
	References


	Posters
	Integrating Wearable Devices into a Mobile Food Recommender System
	1 Introduction
	2 Food RS and Wearable Devices
	3 Conclusion
	References

	Upgrading Wireless Home Routers as Emergency Cloudlet: A Runtime Measurement
	1 Introduction
	2 Router-Based Emergency Cloudlets
	3 Preliminary Results
	4 Conclusion and Future Work
	References

	SWIPE: Monitoring Human Dynamics Using Smart Devices
	1 Introduction
	2 Overview of SWIPE
	3 Excepted Results
	References


	Author Index



