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    Chapter 9   
 Dental Stem Cells: Possibility for Generation 
of a Bio-tooth                     

     Sema     S.     Hakki       and     Erdal     Karaoz   

9.1           Introduction 

 Regeneration of tissues and organs requires highly specifi c orchestrations on cell/
extracellular matrix (ECM)/scaffold interactions depending on the tissue character-
istics. Bioengineering of tooth and surrounding periodontal tissues is challenging 
du e to  their structural complexity .  Tooth development requires epithelial- 
mesenchymal interactions, and signaling pathways of these interactions are still 
unclear. To overcome these diffi culties, various cells such as periodontal ligament 
(PDL) fi broblasts, osteoblasts, cementoblasts, odontoblasts and ameloblasts have 
been tried to induce new PDL, bone and cementum for new periodontal attachment 
apparatus and dentin, and enamel for new crown development. In the last decade, 
mesenchymal stem cells ( MSCs)   are also studied in periodontal tissue regeneration 
approaches. Currently,  cell-based therapies   using MSCs are very popular to regen-
erate dental tissues [ 1 ,  2 ]. In this regard, the accessibility and quality of the stem 
cells are very critical for cell-based dental tissue engineering.  

9.2     Stem Cells in Dentistry 

 In the last decade, different sources including dental follicles, apical papilla, exfoli-
ated deciduous teeth pulp, permanent teeth (premolar, molar) pulp and PDL have 
been investigated for MSCs isolation [ 3 – 7 ]. Recent studies demonstrated new and 
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more accessible sources for stem cell-like populations including gingiva, palatal 
connective tissue and oral mucosa [ 8 – 10 ]. Comparison of MSCs originated from 
oral or dental  tissues   with bone marrow MSCs (BMMSCs) demonstrated that these 
cells possess similar characteristics for their differentiation capacities [ 5 – 12 ]. 

9.2.1     Stem Cells Studies in Reconstruction of  Cranio-Facial 
Tissues   

 Bone regeneration therapies are frequently required because of trauma, infection, 
congenital conditions and cancer. Dental implant therapies are needed to rehabili-
tate patients for functional, phonation and esthetic reasons. Dental implant- 
supported therapies may have some diffi culties if the bone tissue is insuffi cient at 
the treatment area. Cell-based therapies combined with appropriate scaffolds may 
help to overcome the limitations of currently used biomaterials including xeno-
grafts, autografts, allografts, and alloplastic materials in these challenging situations 
[ 13 ,  14 ]. Stem cell therapy can be benefi cial on treatments of craniofacial bone 
defects,  i.e.  sinus lift, extraction socket preservation, and bone augmentation proce-
dures to prepare bone for implant insertion [ 15 ]. Although there are several animal 
studies in goat [ 16 ], canine [ 17 ,  18 ] and sheep [ 19 ], supporting MSC-based thera-
pies for the purpose of bone regeneration, only case and/or case series were pub-
lished in the literature as human studies [ 20 – 23 ]. 

 Recently, randomized clinical trials for stem cell-based therapies have been 
mostly started in dentistry. To reconstruct localized craniofacial bone defects, 
Kaigler et al. [ 24 ] planned a randomized and controlled clinical trial with mixed 
stem and progenitor cell population enriched in CD14 and CD90 positive cells 
isolated from bone marrow (tissue repair cells, TRC) for socket preservation after 
tooth extraction.  Guided bone regeneration (GBR)   as control group or TRC trans-
plantation as test group were applied to the participants. No adverse affect was 
reported after 1-year following the therapy. The clinical, histological and radio-
graphic evaluations of the study demonstrated that TRC therapy increased alveolar 
bone regeneration compared to GBR therapy. Test group needed less secondary 
bone grafting during implant insertion. Bony dehiscence exposure on the implants 
was noted 5-fold longer in the control group compared to the test group [ 24 ]. In a 
very recent study, same group from University of Michigan investigated transplan-
tation of autologous cells enriched for CD90 +  stem cells and CD14 +  monocytes in 
the reconstruction of bone defi ciencies of the maxillary sinus in a randomized and 
controlled clinical trial. Patients with 50–80 % maxillary sinus defi ciency were 
randomly allocated to two groups: (i) stem cells combined with β-tricalcium phos-
phate scaffold group and (ii) control group (scaffold alone). While radiographic 
analysis showed no difference in the total bone volume gained between test and 
control groups, 4 months after treatment, bone density in test group was found to 
be higher. Bone core biopsies of the test group showed  better   bone quality than 
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control group [ 25 ]. In addition, the authors reported no adverse effects after the 
1-year follow-up, suggesting that cell-based therapy is safe for maxillary sinus 
reconstruction and may be an alternative for other maxillofacial bone defects.  

9.2.2     Stem Cell Studies in  Periodontal and Peri-Implantal 
Regeneration   

 BMMSCs were used for periodontal regeneration to promote new cementum, PDL 
and alveolar bone [ 26 ,  27 ]. BMMSCs seeded biodegradable scaffolds were used for 
the extraction socket preservation and additional benefi t for the preservation of alve-
olar bone walls was observed in the cell seeded group when compared to control 
groups [ 28 ]. Stem cells isolated from pulp (DPSCs) and PDL (PDLSCs) have been 
used in several animal and human studies for regenerative periodontal and peri- 
implantal treatment [ 29 – 33 ]. In canine peri-implant defect models, PDLSCs and 
BMMSCs were compared for their alveolar bone regeneration capacities [ 30 ], and 
it was found that BMMSC group provided highest new bone formation rate. 
Transplantation of progenitor cells were thought as an effective and safe alternative 
in the treatment of human periodontitis; therefore, autologous PDLSCs were applied 
to the periodontal defects [ 33 ].  Upon   the well-documented satisfactory results in 
animal studies [ 34 ], further randomized clinical trials with these stem cells are war-
ranted to determine additional benefi ts of dental/oral stem cell-based therapies [ 35 ].  

9.2.3     Stem Cells Studies in  Pulp Regeneration   

 Aim of the regenerative endodontics is to convert the non-vital tooth into vital sub-
stitute to pathological pulp with functional healthy pulp tissue [ 36 ]. For this pur-
pose, DPSCs or other MSCs from different sources have been investigated for 
revitalization/revascularization procedures in dentistry. Recent studies reported the 
presence of MSCs in human infl amed pulps [ 37 ] and infl amed periapical tissues 
[ 38 ]. Therefore, even infected pulp tissue can be used to obtain autologous MSCs in 
pulp regeneration treatment. Ravindran et al. investigated differentiation ability of 
human PDLSCs and BMMSCs into odontogenic lineage [ 39 ]. Histological and 
immunohistochemical analysis revealed that a vascularized pulp-like tissue could 
be formed by BMMSCs, PDLSCs and DPSCs. They concluded that the biomimetic 
scaffolds may promote odontogenic differentiation of BMMSCs, PDLSCs and 
DPSCs. To regenerate pulp, stem cells and biomimetic extracellular matrix combi-
nation provides new perspective toward possible therapeutic application in end-
odontics. Recently, a combination of CD31 −  and CD105 +  DPSC-seeded scaffolds 
was used for dental pulp regeneration in a canine pulpectomy model [ 40 ]. The 
potential of DPSCs in regenerating pulp-like tissue was proved in immature canine 
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teeth [ 41 ]. From a clinical perspective, although these studies give promise, further 
studies are strictly needed to establish new methods and proper parameters to pro-
vide functional pulp regeneration;  i.e.  appropriate cells, scaffolds, growth factors 
and clinical application procedures.  

9.2.4     Stem Cells in Tooth Development, Bio-tooth or Bio- root   

 As regeneration of a single tissue compartment of tooth and periodontium, namely 
bone, PDL or pulp, is even complicated matter, creating a functional whole tooth 
and appropriate interaction of every single tissue of this organ become a real chal-
lenge. The knowledge about tooth development was obtained from the laboratory 
mice. The regulation of the signals on the tooth initiation and morphogenesis is not 
still enough clear. In human body, biologically replacement of congenitally missing 
or lost teeth still remains as a dream. 

 Two possible ways have been proposed to obtain biological tooth:

    (i)    Using cells with tooth forming ability, and transplantation to the jaw bone [ 42 , 
 43 ].   

   (ii)    Using cells to create the every single compartment of tooth including PDL, pulp 
and cementum, and seeding these cells to the bio-printed tooth scaffold or 
decellularized natural tooth [ 44 ,  45 ].     

 A number of animal studies were performed for whole-tooth bioengineering [ 46 , 
 47 ]. Most realistic thought seems to use cells with tooth-forming capacity, transplanta-
tion of tooth germ to the jaw, and allowing the formation of a physiological root [ 1 ]. 
Obtaining a biologically mimicked and fully-functional tooth is the main objective for 
missing teeth due to trauma or periodontal and pulpal disease [ 44 ]. Researchers actively 
follows recent developments in stem cell-mediated tissue regeneration in dentistry 
[ 48 – 50 ]. In order to regenerate functional pulp and PDL, researchers have explored the 
characteristics of MSCs isolated from dental tissues [ 51 – 53 ]. In this sense, differentia-
tion ability differences of various cells have been investigated;  i.e.  DPSCs have found 
prone to dentinogenesis [ 52 ] and PDLSCs to cementogenesis [ 54 ]. Cells should be 
used according to their potentials (proliferation, differentiation and immuno-regula-
tory), and the targeted tissue/organ in cell- based regenerative therapies [ 55 ,  56 ].   

9.3     Oral/Dental Tissue-Derived MSCs 

 Oral/dental MSCs have become more popular due to their similarities with other 
MSCs based on their characteristics, relative ease of obtaining and propagating. 
Examination of differentiation and proliferation capacities of these oral/dental tissue- 
derived MSCs has been previously carried out in detailed in vivo and in vitro studies. 
As the fi rst report on this topic, Gronthos et al. have revealed that stem cells derived 
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from the wisdom teeth’s dental pulp has formed dentin/pulp-like structures in vivo 
and in vitro [ 57 ]. The same study group has subsequently accomplished to produce 
ectomesenchymal stem cells from exfoliated deciduous teeth (SHEDs) [ 58 ]. Later on, 
cells with MSC characteristic were successfully isolated from pulp tissue of supernu-
merary [ 59 ], natal tooth [ 60 ] and human third molar germs of young adults [ 61 ]. 

9.3.1     Oral Tissue-Derived MSCs 

9.3.1.1     Gingiva-Derived  MSCs      

 Gingival tissue is a part of the unique soft tissue that surrounds teeth; covering the 
alveolar ridges, palatal and retromolar regions [ 62 ,  63 ]. In addition, because gingi-
val tissue is a distinctive component of the oral mucosal immunity, it plays a signifi -
cant role in periodontal protection and wound healing. Therefore, gingival tissue 
participates in the mucosal barrier to stand against bacterial infection, sudden ther-
mal and chemical changes. Another important feature of the gingival tissue is its 
unique scar-free healing process after the damage occurring in oral tissue [ 62 ,  64 , 
 65 ]. Thus, gingival tissue derived-cells are admitted as potential MSC source 
because of unique characteristics such as regeneration ability, wound closure, clo-
nogenicity, immunomodulatory properties and multipotent differentiation capacity 
like other MSCs [ 65 ,  66 ]. A new area of research on stem cell types obtained from 
periodontal connective tissues where gingival tissue was fi rstly used for the isola-
tion of progenitor/stromal cell population by Zhang et al. has emerged. MSCs 
derived from gingival tissue (GMSCs), which are clonogenic colonies, can exhibit 
stem cell properties and express typical MSC surface markers. They have the capac-
ity of differentiation toward multiple mesodermal lineages in vitro, and have stable 
phenotype and telomerase activity in long-term cultures [ 66 ]. Recent studies have 
shown that GMSCs are not prone to tumor formation whether they are obtained 
from healthy or infl amed\hyperplastic gingival tissue, indicating a tremendous 
potential for therapeutic applications [ 67 ]. GMSCs are considered as an accessible 
cell population because gingival tissues can be obtained from general dental proce-
dures and treated as biomedical waste [ 68 ]. Indeed, gingival tissues can be obtained 
during tooth extraction, dental implantation or periodontal surgery [ 69 ]. Thus, 
 GMSCs      can be easily isolated from the patient with minimum disturbance. Human 
gingival tissue is a potential MSC source for the future clinical use for regeneration 
and repair considering its accessibility and availability.  

9.3.1.2      Oral Mucosa-Derived MSCs      

 Oral cavity is covered by the  oral mucosa (OM)   as known. It has been showed that 
characteristics of OM-derived fi broblasts and fetal-derived fi broblasts are similar in 
some respects [ 70 ,  71 ]. The human OM has been suggested as a novel source for 
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therapeutic adult stem cells after Marynka’s study in 2008 providing fi rst evidence 
that the  oral mucosa lamina propria (OMLP)   gives rise to a robust multipotent stem 
cell population [ 72 ]. The same group also reported that the adult human OMLP can 
generate trillions of stem cells and 95 % of them can express MSC markers and so 
are referred as  human oral mucosa stem cells (hOM-MSCs)  . hOM-MSCs have the 
capacity to differentiate in vitro into lineages of the three germ layers. Their implan-
tation in vivo, after stimulation with dexamethasone, resulted in the formation of 
lineage mixed tumors consisting of tissues that develop from cranial neural crest 
cells during embryogenesis [ 73 ]. A high percentage of these cells (60–80 %) 
expressed fundamental neural and neural crest stem cell markers, and were positive 
for Oct4, Sox2, and Nanog. hOM-MSCs were differentiated into mesodermal 
(osteogenic, chondrogenic and adipogenic), defi nitive endoderm and ectodermal 
(neuronal) lineages in culture conditions, and they also shared all known MSC 
markers. Therefore, hOM-MSCs might be an alternative source to provide human 
MSCs. hOM-MSCs could possibly be clinically used for oral diseases and tissue 
regeneration in the future due to their promising differentiation capacity and easy 
isolation property.  

9.3.1.3      Palatal Connective Tissue-Derived MSCs      

 The palatal-derived cells were previously isolated by Roman et al. for the fi rst time 
in 2012, and these cells were named as  progenitor-like cells   but their characteristics 
were not completely studied [ 74 ]. Later, the characteristics of the cells isolated from 
the palate tissues were investigated by the same research group [ 9 ]. This study dem-
onstrated that the basic characteristics to defi ne cells as MSCs were met by the cells 
from palatal connective tissue. Palatal connective-derived MSCs are a type of adult 
stem cells which are easy to isolate, culture and manipulate under in vitro condi-
tions [ 10 ]. These cells are characterized by high plasticity and can become impor-
tant cell sources for regenerative therapy.  

9.3.1.4      Palatal Adipose Tissue-Derived MSCs      

 Autologous MSCs isolated from palatal adipose tissue might have potential clinical 
use in regenerative alveolar bone/cranio-facial bone and periodontal therapy, and 
gingival recession treatments [ 10 ,  75 ]. More recently, our group has designed a 
study in order to make a comparative analysis between MSCs obtained from adi-
pose tissue-derived lipoaspirate (LAT) and  palatal adipose tissue (PAT)   based on 
their immunophenotypic and immunogenetic properties, proliferation and differen-
tiation potential [unpublished data]. The results demonstrated that the cell surface 
marker expression profi le of the PAT- and LAT-MSCs showed similarities, and they 
expressed all MSC markers, except CD11b, CD34, CD45, CD106, CD117 and 
HLA-DR. PAT-MSCs showed differentiation potential into adipocytes, osteocytes 
and neuro-glial like cells under proper conditions like LAT-MSCs. The level of 

S.S. Hakki and E. Karaoz



173

 Alkaline Phosphatase (ALP)   activity of PAT-MSCs was found to be higher than the 
LAT-MSCs after the osteogenic differentiation in culture [unpublished data]. 
Results of this study pointed that PAT-MSCs are likely to have more osteogenic 
potential when compared to LAT-MSCs.   

9.3.2     Dental-Derived MSCs 

9.3.2.1      Dental Follicle-Derived MSCs (DFSCs)      

 The dental follicle (DF) has a loose connective tissue structure. It is thought that the 
dental follicle derived from third molar and wisdom tooth contains progenitor cells 
which are originated from cementoblasts, PDL cells and osteoblasts [ 6 ,  76 ,  77 ]. 
Like the other dental stem cells, DFSCs express similar cell surface antigens, and 
have the capability to form hard tissue in vitro and in vivo along with displaying 
extensive proliferative ability [ 78 ]. On the other hand, they can form the tissues of 
the periodontium including alveolar bone, PDL and cementum while they express 
the putative stem cell markers including Notch‐1 and Nestin [ 77 ]. Recent studies 
show that DPSCs and DFSCs derived from the same tooth and donor have the abil-
ity to form colonies, and although they show similar immunophenotypic character-
istics they had different levels of gene expressions. 

 When DFSCs and DPSCs are compared, DFSCs seemed to proliferate faster and 
contained cells larger in diameter. DFSCs also exhibited a higher potential to form 
adipocytes and a lower potential to form chondrocytes and osteoblasts with respect 
to DPSCs. Unlike DFSCs, DPSCs were able to produce the transforming growth 
factor (TGF)-β and suppressed the proliferation of peripheral blood mononuclear 
cells, which could be neutralized with anti-TGF-β antibody [ 78 ].  

9.3.2.2      Apical Papilla-Derived MSCs   

 Recent studies have described the physical and histological properties of the dental 
papilla located at the apex of developing human permanent teeth, and this tissue is 
named as the “ apical papilla  ”. Because this tissue is loosely attached to the apex of 
the developing root, it can easily be detached from it [ 79 ]. Discovery of human api-
cal papilla MSCs have been accomplished by Sonoyama et al. in 2006, and they 
called these cells as “ stem cells from the apical papilla (SCAPs)     ”. In this study, it 
has been demonstrated that SCAPs are a promising cell source for regeneration of 
bio-roots for future clinical applications by utilizing them to engineer bio-roots 
using swine as an animal model [ 44 ]. Afterwards, the same group have shown that 
apical papilla comprises less cellular and vascular components in comparison with 
the pulp tissue. SCAPs have displayed two to three times greater proliferation rate 
in comparison with DPSCs. Both SCAPs and DPSCs showed weak adipogenic dif-
ferentiation potentials although they were as potent as BMMSCs in terms of osteo/
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dentinogenic differentiation potential. Furthermore, it has been found that the 
immunophenotypic properties of SCAPs and DPSCs show similarities in osteo-
genic and dentinogenic gene profi les of growth factor receptors. A broad variety of 
neurogenic markers such as nestin and neurofi lament are also expressed by SCAPs 
[ 80 ]. Besides playing a fundamental role in pulp healing and regeneration, SCAPs 
also contribute to the formation of developing odontoblasts which are responsible 
for dentinogenesis and radicular pulp formation [ 80 ,  81 ]. The importance of SCAPs 
for the apexogenesis of developing roots and constant root maturation in teenagers 
with endodontic diseases have been reported in recent clinical studies [ 82 ,  83 ]. In 
addition, SCAPs are also candidates to be used for dental tissue regeneration due to 
their remarkable regeneration capability. In vivo recombination of SCAPs and bio-
logical scaffolds resulted in generation of dentin-pulp-like tissues in the empty root 
canal space and bioengineered roots that can support a porcelain crown [ 6 ,  84 ]. It 
has been hypothesized that the  insulin growth factor 1 (IGF-1)   has a very important 
role in the differentiation and proliferation of SCAPs. SCAPs were isolated from 
juvenile third human molar apex and treated with exogenous IGF-1 for this ratio-
nale. Afterwards, in vitro and in vivo studies were conducted for the evaluation of 
the effects of IGF-1 on  SCAPs  . The increase of osteogenesis and osteogenic dif-
ferentiation potential and decrease of dentinogenesis and odontogenic differentia-
tion potential of SCAPs by IGF-1 treatment was also reported in the study of Wang 
et al., indicating that SCAPs treated with IGF-1 may be used as a potential candi-
date for bone tissue engineering [ 85 ].  

9.3.2.3      PDLSCs   

 PDL is a gap interlaying the cementum and alveolar bone functioning as a replace-
ment of the follicle region, which encloses the developing tooth during the cap and 
bud stages. Follicle (Sharpey’s fi bers) or  cementoblast   (in cellular intrinsic fi ber 
cementum) originated fi bers may be used to insert into the cementum layer. As PDL 
matures during the tooth eruption, it prepares to support the functional tooth for the 
occlusal forces [ 86 ,  87 ]. Major collagen bundles (principal fi bers) occupy whole 
mature PDL by embedding in both cementum and alveolar bone. The maximization 
of the forces to be placed on the tooth during mastication is caused by the arrange-
ment of fi bers in specifi c orientations [ 4 ,  87 ]. Previous studies indicate that 
cementoblast- like cells, adipocytes and connective tissue with rich collagen struc-
ture can be produced from cell populations found in PDL which can differentiate 
into mesenchymal cell lineages [ 88 ,  89 ]. The study of Ponnaiyan et al. proved that 
embryonic stem cell markers Oct4 and Nanog (weak for PDLSCs) and the mesoder-
mal marker vimentin are expressed both in DPSCs and PDLSCs. Strong expression 
of MSC markers (CD73 and CD90) in DPSCs and PDSCs were also shown by 
immunophenotyping experiments. These results indicated that MSC markers were 
expressed in both stem cells at different levels, suggesting that DPSCs are more 
primitive stem cell type with respect to PDLSCs [ 90 ]. Functional and cellular char-
acteristics of  MSCs   derived from pulp and PDL from identical donors have been 
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compared in a recent study [ 91 ]. The results of this study proved that DPSCs and 
PDLSCs differed from each other in differentiation potentials and as well as expres-
sion levels of mesenchymal (CD105) and pluripotent/multipotent stem cell–associ-
ated cell surface antigens (SSEA4, CD117, CD123, andCD29). DPSCs, and 
PDLSCs also had different response patterns when exposed to pro-infl ammatory 
cytokines [ 91 ]. 

 In one of our group’s recent  study  , different cell behaviors were seen in MSCs 
isolated from pulp and PDL tissues [ 5 ]. In this study, PDLSCs expressed higher 
levels of HLA-G, which is a  major histocompatibility complex (MHC)      class I mol-
ecule that functions as an immune modulatory molecule, when compared to DPSCs 
based on the immunohistochemical data. HLA-G inhibits cytolytic function of natu-
ral killer (NK) and cytotoxic T cells, the alloproliferative response of CD4+ T cells, 
the proliferation of NK and T cells, and the maturation and function of dendritic 
cells which have the ability to protect tissues from the immune system attacks [ 92 ]. 
PDLSCs had much higher levels of IL-6 and IL-10 expressions than DPSCs. While 
these  cytokines   play an important role in immune regulation, it was also demon-
strated that both IL-10 and HLA-G are essential for the full immunosuppression 
mediated by MSCs [ 93 ]. IL-6, a pro-infl ammatory cytokine, can also mediate 
immunosuppressive functions that might involve in the induction of IL-10 which is 
an anti-infl ammatory cytokine. 

  Immunomodulatory characteristics   of PDLSCs were examined by Wada et al. as 
a candidate sources for new allogeneic stem cell-based therapies. It is confi rmed by 
this research group that PDLSCs, DPSCs and BMMSCs can inhibit proliferation of 
peripheral blood mononuclear cells (PBMNC) via stimulation of mitogen or an 
allogeneic-mixed lymphocyte reaction (MLR). The results of their study stated that 
soluble factors produced by activated PBMNCs mediated the immunosuppressive 
effect of PDLSCs, BMMSCs and DPSCs [ 94 ]. Similar to Wada et al., our study 
showed the expression of IL-6, IL-10 and HLA-G with respect to their immuno-
regulatory relationship. In addition, our study also demonstrated that although 
PDLSCs had higher IL-6 and IL-10 mRNA expression levels, DPSCs seemed to 
have more stemness characteristics, and higher BMP-2 and BMP-6 mRNA expres-
sion levels, indicating that PDLSCs are more likely to be preferred in clinical trials 
compared to DPSCs due to their superior immunomodulatory properties [ 5 ]. 

 Lei et al. has reported that MSC characteristics of DPSCs and PDLSCs can be 
sustained after in vivo implantation but when compared with PDLSCs, DPSCs 
seems to be more stable under in vivo conditions [ 95 ]. This study also suggested 
that further studies need to be done to understand the mechanisms lying beneath the 
determination of the reduction of lineage-specifi c differentiation of PDLSCs. 
Comparison of DPSCs and  PDLSCs   in our study has shown that  DPSCs   had higher 
proliferation and telomerase activity [ 5 ]. The reduction of lineage-specifi c 
 differentiation of PDLSCs may explain the reason of the low proliferation and 
telomerase activity of PDLSCs. PDLSCs, BMMSCs and DPSCs seem to share sim-
ilarities in their differentiation potentials, and cell surface marker characteristics 
[ 86 ]. Cementum/PDL-like structures were formed when PDLSCs were transplanted 
into immune compromised mice.  Bone generation   was observed when human 
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PDLSCs were expanded ex vivo and seeded into 3D scaffolds (fi brin sponge, 
bovine-derived substitutes) [ 96 ]. These PDLSCs also seemed to preserve their stem 
cell properties and tissue regeneration potentials. In conclusion, overall data pro-
poses that the PDLSC population might be used for creating a biological root to be 
used like a metal implant by capping with an artifi cial dental crown.  

9.3.2.4      DPSCs (Natal, Deciduous and Adult)   

 Stem cells residing in the dental pulp showing similar characteristics with BMMSCs 
and generating the mineralized matrix of dentin due to their ability to differentiate 
into  odontoblasts   were fi rst reported by Gronthos and co-workers [ 57 ]. Based on the 
surface marker expression of both cell types, they proposed that they can both 
adhere to plastic, form colonies, and display similar phenotypes with each other. 
Two different  types of DPSCs   were identifi ed, which are similar to stem and stem- 
like cells in subsequent studies. While hematopoietic markers (CD34/CD45/CD14) 
are not expressed by the fi rst type, MSC specifi c markers (STRO1/CD29/CD44/
CD13) are strongly expressed [ 58 ,  97 ,  98 ]. The second type of DPSCs are consti-
tuted by C-kit + /CD34 + /CD45 −  cells which have osteogenic differentiation potential 
both in vivo and in vitro [ 99 ,  100 ] .  Then after, cells displaying stem cell character-
istics were isolated from pulp tissue of deciduous and wisdom tooth [ 97 ,  99 ,  100 ], 
supernumerary natal tooth [ 4 ] and human third molar germs of young adults [ 5 ]. 
Recent studies indicate that DPSCs have the ability to differentiate into a broad 
range of cell lineages, including odontoblasts that can produce dentin, osteoblasts, 
adipocytes,  skeletal   and smooth muscle cells, elastic cartilage cells, endothelial and 
neural cells both in vivo and in vitro conditions [ 97 – 105 ]. Even though adult stem 
cells share very similar behaviors both in vivo and in vitro, they carry some specifi c 
characteristics of the tissue that they were derived from. The impact of these differ-
ences on biological and clinical processes, their origin and the generation mecha-
nism that lies beneath are still unclear. Comparing the differences or similarities 
between stem cell types is one way to understand these mechanisms. Such compari-
sons should be focused on aspects of  biological marker discovery  , characterization 
of their proliferation capacity and differentiation potential along with other charac-
teristics. In this sense, our research group isolated putative stem cells derived from 
human impacted third molar dental pulp (hDP), broadly characterized and com-
pared with human BMMSCs [ 106 ]. We found out that in contrast to hBMMSCs, 
cytokeratin (CK) -18 and -19, which may be involved in the dentine repair and 
odontoblast differentiation, are strongly expressed in hDPSCs [ 106 ]. By showing 
the expression of numerous specifi c proteins of neural stem cells (NSCs) and neu-
rons, the essential neuro-glia characteristics of hDPSCs were demonstrated. While 
these cells can differentiate into chondrogenic, osteogenic and adipogenic lineages, 
they also share some specifi c characteristics like expressing some NSC- and 
epithelial- related markers. hDPSCs have the ability to differentiate into both vascu-
lar endothelial and neural cells under distinct conditions in vitro. hDPSCs are 
located in the perivascular niche of dental pulp, and because hDPSCs are originated 
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from migrating cranial neural crest cells, their neurogenicity is more potent with 
respect to hBMMSCs. Neural crest cells differentiate into a wide range of cell types 
including cells of dental papilla, dental follicle and neurons of the peripheral ner-
vous system during embryonic development. Considering this, it has been shown 
that transplanted DPSCs can stay alive for a long time [ 107 ] and may induce neuro-
plasticity [ 108 ] in the central nervous system of experimental animal models. 
Considerable recovery from  neurological dysfunction   has been reported in studies 
mentioning DPSCs injection into the right dorsolateral striatum of animals sub-
jected to  middle cerebral arteryocclusion (MCAO)   [ 109 ]. 

 After rats with induced cortical lesions were injected into their cerebrospinal 
fl uid with DPSCs which are pre-differentiated into neurons, these cells integrated 
into the host brain and exhibited some neuronal properties, indicating that they may 
be used as valuable sources for neuro‐ and glio-genesis in vivo [ 110 ]. The neurore-
generative  effects   of DPSCs in rodent  spinal cord injury (SCI)    models   have also 
been reported in a recent study. High levels of trophic‐factor expression in the tis-
sue, better tissue organization and the existence of many axons or oligodendrocytes 
and neurons with synapses in DPSCs transplanted mouse models of compressive 
SCI suggested that DPSCs may be possible candidates for therapeutic intervention 
for the treatments of SCI and central nervous system disorder in humans [ 111 ]. 

  Partial locomotor function recovery   has been reported in completely transected 
rat spinal cord after hDPSC transplantation [ 112 ]. However, relatively less recovery 
of locomotor functions was detected after transplantation of human BMMSCs or 
skin-derived fi broblasts. It has been stated by the same research group that hDPSCs 
present three major  neuroregenerative activities  ; (i) SCI-induced apoptosis of neu-
rons, oligodendrocytes and astrocytes are inhibited by DPSCs that improves the 
preservation of myelin sheaths and neuronal fi laments, (ii) they directly inhibit vari-
ous axon growth inhibitors including chondroitin sulfate proteoglycan and myelin- 
associated glycoprotein via paracrine mechanisms, and (iii) they replace the lost 
cells by differentiating into mature oligodendrocytes under severe conditions of 
SCI. In line with these fi ndings, results of our study state that due to their cell- 
autonomous and paracrine neuroregenerative activities, tooth-derived stem cells 
may offer therapeutic benefi ts for treating SCI [ 112 ]. Another fi nding of our study 
is that preclinical animal disease models, including myocardial infarction, colitis 
and systemic lupus erythematosus (SLE) may be treated via using the signifi cant 
therapeutic benefi ts provided by the array of trophic factors produced by engrafted 
DPSCs [ 113 ,  114 ]. In correlation, DPSCs are found to be highly proliferative, self- 
renewing and multipotent cell population that can actively secrete a broad range of 
trophic, immuno-modulatory and anti-infl ammatory factors. It has also been sug-
gested by preliminary studies that other than exhibiting self‐renewal and multi- 
differentiation potential, dental tissue-derived MSCs also have immunomodulatory 
functions and potent tissue regenerative properties [ 115 – 117 ]. We have also shown 
the regulation of T-cell functions via expression and secretion of  soluble factors/
cytokines   such as HLA-G, HGF-β1, IL-6, IL-10, TGF-β1, ICAM-1 and VCAM-1 
by hDPSCs in both direct and indirect co-culture systems [ 117 ]. 
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  SHEDs   can proliferate faster than DPSCs and BMMSCs 
(SHEDs > DPSCs > BM-MSCs). If they are cultured in neurogenic differentia-
tion medium, SHEDs can form sphere-like clusters due to their high proliferation 
rate, which either adhere to the culture dish or fl oat freely in the culture medium 
aggregating in clusters. Dissociation of these sphere-like clusters can be done via 
passaging through needles and grown on dishes coated with 0.1 % gelatin as indi-
vidual fi broblastic cells afterwards, demonstrating that the process can bring about 
a remarkable proliferative  capacity   analogous to that of NSCs [ 58 ]. SHEDs have 
also been isolated and termed as “ immature DPSCs (iDPSCs)     ” by another research 
group [ 118 ]. As well as correlating with the results of studies described above, they 
also found out that iDPSCs express embryonic stem cell markers, including Oct4, 
Nanog, tumor recognition antigens (TRA-1-60 and TRA-1-81) and stage specifi c 
embryonic antigens (SSEA-3, SSEA-4). 

 Successful isolation and characterization of MSCs derived from  human natal den-
tal pulp (hNDP)      were fi rst declared by our research group [ 119 ] and these hNDP-
MSCs were directionally differentiated to osteogenic, chondrogenic, adipogenic, 
myogenic and neurogenic lineages. Unlike CD3, CD8, CD11b, CD14, CD15, CD19, 
CD33, CD34, CD45, CD117, and HLA-DR, hNDP-MSCs expressed CD13, CD44, 
CD90, CD146 and CD166. hNDP-SCs seemed more developed and metabolically 
active cells based on their ultrastructural characteristics. Under basal conditions and 
without any stimulation towards differentiation, hNDP-SCs were able to express par-
ticular adipogenic (leptin, adipophilin and PPARγ), neurogenic (γ-enolase, MAP2a,b, 
c-fos, nestin, NF-H, NF-L, GFAP and betaIII tubulin), myogenic (desmin, myogenin, 
myosin-IIa, and α-SMA), osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, 
and type I collagen) and chondrogenic (type II collagen, SOX9) markers along with 
embryonic stem cell markers including Oct4, Rex-1, FoxD-3, Sox2, and Nanog. 
Adipogenic, osteogenic, chondrogenic, myogenic and neurogenic differentiation 
potentials of hNDP-SCs have also been demonstrated [ 119 ]. 

 In one of our recent studies, phenotypic and proteomic characteristics of hDP-
SCs derived from a natal, an exfoliated deciduous and an impacted third molar 
tooth were comparatively analyzed [ 120 ]. All three stem cells displayed similar 
features on morphology, proliferation rates, expression of various cell surface 
markers, and differentiation potentials into adipocytes, osteocytes and chondro-
cytes. Furthermore, using  2DE approach   coupled with MALDI-TOF/TOF, we 
have generated a common 2DE profi le for all three stem cells. We found that 
62.3 ± 7 % of the protein spots were conserved among the three MSC lines. Sixty-
one of these conserved spots were identifi ed by  MALDI-TOF/TOF analysis  . 
Classifi cation of the identifi ed proteins based on biological function revealed that 
proteins that are involved in protein folding machinery along with many structur-
ally important proteins are  predominantly expressed by all three stem cell lines. 
Some of these proteins may hold importance in understanding specifi c character-
istics of hDPSCs [ 120 ]. 

 To sum up, ongoing researches on DSCs is growing at an exceptional rate.  Teeth- 
derived stem cells   can be obtained in a convenient and minimally invasive way, and 
are easily accessible. Based on the discussion above, these new stem cell sources 
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could  be   exploited for cellular therapies and ultimately for the development of 
regenerative treatment methods. Although these cells guarantee a donor match 
(autologous transplant) for life, they can also be used partly for close relatives.    

9.4     Induced Pluripotent Stem (iPS) Cells in Dentistry 

 The discovery of iPS cells by Dr. Shinya Yamanaka is a milestone in stem cell 
research, and created a new approach in regenerative medicine [ 121 – 123 ]. iPS cells 
are obtained by reprogramming of somatic cells with gene transfer of transcription 
factors (Oct4, Sox2, Klf4, and c-Myc) which are highly expressed in embryonic stem 
cells. In the dental fi eld, researchers are actively working with iPS cells for tooth 
regeneration [ 124 ]. Tooth development requires  epithelial-mesenchymal interactions   
during the early stages of morphogenesis, and these cells come from different embry-
onic layer. To form tooth/root, iPS cells should be differentiated into both epithelial 
and mesenchymal lineages. If iPS cells can be induced separately to epithelial cells 
which express ameloblasts-specifi c proteins  (i.e. , cytokeratin, ameloblastin, amelo-
genin, enamelin) and mesenchymal cells which display odontogenic potential, and if 
the interactions of these two lineages could be provided later, functional tooth regen-
eration seems possible. Although iPS cells are promising for tooth/root regeneration 
and tooth like-structures obtained in mouse models,  tooth regeneration process   using 
iPS cells in humans, however, cannot be that much easy. While in mouse, the success 
rate of tooth regeneration using mesenchyme and epithelium derived from iPS cells 
can be 100 %, success rate of obtaining the tooth-like structures can be only 30 % in 
human studies. The difference of success rates between two groups can be explained 
with lack of uniformity in the epithelium derived from human iPS cells, and lack of 
the capacity to secrete extracellular matrix required for tooth regeneration [ 125 ,  126 ]. 
Furthermore, these variations can be due to differences in species and signaling at the 
stages of tooth formation in human  vs.  mouse. Therefore, some  challenges   still remain 
in creating root/tooth formation from human iPS cells as follows;

    (i)    Immunogenicity of iPS cells   
   (ii)    No established feasible reprogramming method   
   (iii)    Lack of reproducible method due to signifi cant differences between species   
   (iv)    Lack of information to accelerate human tooth development in vitro or in vivo   
   (v)    Lack of information in regulatory mechanism for iPS cells   
   (vi)    Insuffi ciency in regulation of the shape and size of the tooth    

  iPS cells can be differentiated into both epithelial and mesenchymal cells, and 
expanded and maintained for tooth bioengineering [ 127 ]. Liu et al. claimed that 
iPS cells had more potential in tooth regeneration when compared to other stem 
cells due to having better proliferation and differentiation capacities [ 128 ]. In 
addition to form epithelium and/or mesenchyme layer of tooth germ with iPS 
cells, these cells can also be used to obtain functional adult MSCs [ 129 ,  130 ]. For 
the fi rst time, Hynes and co-workers investigated the pre-clinical utility of iPS 
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cell-derived MSC- like cells for the treatment of  periodontal fenestration defect 
model   in rats [ 131 ]. Their results demonstrated that iPSC-MSC-like cells increased 
regeneration effi ciency of periodontal tissues. Yang et al. used iPS cells-derived 
MSCs in the treatment of experimentally induced periodontitis model in rat as 
well, and they observed signifi cantly decreased infl ammatory infi ltrates in peri-
odontal tissues after systemic and local application of iPSC-MSCs treatment 
[ 132 ]. These two studies mentioned above concluded that iPSC-MSCs might pro-
vide a promising approach for the treatment of periodontal defects, and can be 
used as a source for not only for periodontal tissue engineering but also orthope-
dic applications and dental tissue engineering [ 133 ]. Ozeki et al. reported a 
method to differentiate mouse iPS cells into odontoblast- like cells expressing 
mature odontoblast markers, dentin sialophosphoprotein, and dentin matrix pro-
tein 1, and displaying physiologic and functional characteristics of odontoblasts 
in vitro. The generation of  odontoblast cells   from iPS cells may provide new clini-
cal application area for the treatment of dental pulp regeneration [ 134 ] Since 
MSC-like cells derived from different iPS cell lines might demonstrate variability 
in their differentiation potential, detailed characterization studies regarding iPS 
cell-derived MSC-like cells is critical. Furthermore, safety, effi cacy and economi-
cal concerns should be taken in to consideration as well [ 128 ,  133 ].  

9.5     Current Approach in the Treatment of Missing Teeth 

 There are various alternative methods for the management of oral conditions due to 
periodontal disease, profound caries, congenital missing teeth, failure in endodontic 
treatment, tumor, and trauma, which may result in partial or full edentulism [ 135 ]. 
While the only choices for patients were conventional prosthesis including fi xed 
prosthesis and full/partial dentures until dental implants were discovered, dental 
implant supported fi xed and removable prosthesis have currently been offered to 
patients as a promising option (Figs.  9.1 ,  9.2 ,  9.3 ,  9.4 , and  9.5 )               . As patient’s expec-
tations and life standards increase, more options are being presented to the patients. 
However, economic condition can limit the alternative interventions, and is impor-
tant for decision-making for the management of tooth loss.

  Fig. 9.1     Functional and esthetic rehabilitation   of the patient with titanium implant in the case who 
has single missing tooth due to periodontitis       
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  Fig. 9.2    Two-implant supported removable mandibular prosthesis using ball  attachment   in the 
edentulous patient       

  Fig. 9.3     Four-implant supported removable mandibular prosthesis   with bar attachment in edentu-
lous patient       
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       In dentistry, evidence-based approaches indicate that  root canal treatment   is 
the most cost-effective treatment options for the treatment of teeth with irrevers-
ible pulpitis and coronal lesions. If initial root canal treatment fails, orthograde 
retreatment can be the most cost-effective way. However, if root canal retreat-
ment is not successful, extraction and/or implant-supported crown would be 
more cost- effective compared to traditional prosthesis including fi xed or remov-
able partial dentures [ 135 ]. 

  Fig. 9.4     Four-implant supported mandibular and six-implant supported maxillary fi xed hybrid 
dental prosthesis   in the edentulous patient       
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 In molars with furcation involvement, non-surgical periodontal therapy is more 
effective for Class I types, and the therapy costs less than implant-supported single 
crowns. However, molars with class II-III need periodontal surgeries, and further 
bone graft materials and membranes for guided tissue regeneration, meaning that 
teeth can be saved successfully but it may not always be cost effective.  Quality and 
survival rates   of the treatment plan are very important for the replacement of miss-
ing single tooth. Implant-supported single crown provides better results in compari-
son with fi xed partial prostheses. However, implant-supported prosthesis especially 
in partially or totally edentulous cases may cost more but provides superior survival 
rates when compared to partial or full dentures [ 135 ]. Gjengedal et al. compared the 
dietary intake of edentulous subjects who had conventional mandibular complete 
dentures or implant-supported overdenture, and recorded food avoidance of the 
patients [ 136 ]. The results of their study demonstrated that while there was no sig-
nifi cant difference regarding food choices and nutrient intake between two groups, 
better chewing ability and greater willingness to eat more of certain food were 
reported in implant supported overdenture group. The chewing ability and capacity 
are very important for patients, and complete dentures may present oral disability. 
 Chewing effi ciency   is critical to maintain quality of life and adequate nutrition. 
Using dentures or fi xed prosthesis supported with dental implants improves life 
standards and nutritional status [ 137 ]. Numerous alternatives have been presented 
for implant supported dentures including fi xed, removable or hybrid type according 
to bone amount (width/height), bone quality of jaw, oral hygiene, habits, systemic 
conditions and expectations of the patients. Esthetic, phonetic, functional and fi nan-
cial parameters can also be determinative for decision of the patients and dentist 
(prosthodontist and periodontist/oral surgeon). 

 For a successful treatment,  osseointegration   of the implants with bone should 
take place.  Osseointegration   is defi ned as the direct structural and functional con-
nection between living bone and the surface of implant without intervening soft 
tissue. In dentistry, the implementation of osseointegration started in the mid-1960s 

  Fig. 9.5    Fixed prosthesis of the patient with conventional  prosthodontic restoration         
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as results of the study performed by Branemark who was anatomist professor [ 138 ]. 
Osseointegration is a dynamic process in which implant characteristics (macro- 
topography, micro-topography and surface properties) play critical role for cell 
behavior [ 139 ,  140 ]. However, the survival rate of the dental implants are very high 
(95–99 %), osseointegration of bone to titanium dental implant provides very rigid 
connection when compared to natural tooth. Natural tooth has periodontium and 
periodontal ligament tissue surrounding root surface which is unique tissue in the 
body allows tooth for the mobility for compensation of occlusal forces or trauma, 
and provides the maintenance of the  periodontium  . PDL composes different cell 
types including fi broblasts, MSCs, nerve cells and extracellular matrix and fi rm 
 collagen fi bers [ 140 ]. These cells have the capacity to differentiate into cemento-
blasts and/or osteoblasts, and have roles in repair/regeneration and immunoregula-
tion of cell within the periodontium [ 140 ]. 

 Dental implant-supported rehabilitations have some limitations due to lack of peri-
odontal ligament around implants that maintains periodontium and proprioception 
during chewing. Dental implant supported prosthesis cannot mimic biologically active 
system like in tooth surrounding periodontal ligament and alveolar bone. There is 
direct integration and rigid connection with bone and titanium implants. Rehabilitation 
of mouth with denture (with/without implant) may present some complications like 
denture induced  stomatitis and traumatic ulcers  . Furthermore, dental implant-sup-
ported therapies may have some early and delayed complications (failure of implants, 
broken implants, peri-implantitis, decementation of prosthesis) [ 141 ]. To overcome 
these limitations, stem cell-based tooth regeneration has been considered as a fantastic 
option, combining tissue engineering techniques and stem cells [ 142 ].  

9.6     Future Prospective of Stem Cells in Dentistry 

9.6.1     Utility of Stem Cells to Create Whole  Tooth Organ  . 

 During the last decade, stem cell-based tooth regeneration studies presented attrac-
tive approaches for lost teeth. For this purpose, embryonic, adult stem cells and 
recently iPS cells have been investigated as potential cell sources for tooth regenera-
tion. Since using embryonic stem cells leads to ethical concerns, iPS and adult stem 
cells seem more promising approaches for regenerative dentistry.  

9.6.2     What Is Bio-tooth? Is It Possible? 

 Regeneration of a living tooth is the fi nal aim of dentistry for the replacement of a 
lost tooth. There are two different approaches to create bio-tooth; only cell or cell- 
scaffold based approaches. 
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9.6.2.1      Cell-Based Tooth Regeneration   

 The  cell-based regeneration process   can be simply defi ned as obtaining of tooth 
germ using the epithelial and mesenchymal cells (derived from embryo or iPS 
cells). These cells can be derived from either dental or non-dental sources.  

9.6.2.2     Using Epithelial and Mesenchymal Cells Derived from Dental 
 Source   

 Oshima et al. described a protocol for three-dimensional bioengineered tooth germ 
reconstitution using tooth germ-derived epithelial and mesenchymal cells [ 43 ,  46 ]. 
They also described methods for analysis utilized for in vitro and in vivo studies of 
tooth development. Oshima’s group ectopically produced a bioengineered tooth 
containing periodontal ligament and alveolar bone, and they engrafted this bioengi-
neered tooth into a jaw bone through bone integration. This bioengineered tooth 
could perform normal physiological tooth functions, including masticatory and per-
ceptive potential, in mouse.  

9.6.2.3     Using One of Epithelial or Mesenchymal Cells from Non-dental 
 Sources   

 Mesenchymal cells derived from bone marrow stroma as a non-dental source were 
used for tooth formation fi rstly by Ohazama et al. in 2004 [ 143 ]. Their study demon-
strated that adult BMMSCs with the embryonic inductive tooth epithelium cells could 
induce tooth formation in an adult body. Later, Angelova Volponi et al. showed that 
adult human epithelial cells (non-dental source) combined with mouse embryonic 
mesenchymal cells could also produce tooth-like structure in renal capsule of the 
mouse [ 144 ]. Micro-CT analysis of the transferred tissues revealed obvious tooth-like 
structures. Histological sections confi rmed the presence of obvious teeth structure 
with dentin, enamel spaces, and well-vascularized pulp containing odontoblast-like 
cells expressing dentin sialophosphoprotein and lining the dentin surface. They 
claimed that these epithelial cells obtained from human gingival are a realistic source 
to be used in human bio-tooth generation [ 144 ]. They concluded that using non-
embryonic sources for epithelial or mesenchymal cells is clinically feasible and needs 
further research to provide suffi cient cell numbers for successful tooth formation.  

9.6.2.4      Scaffold and Cell-Based Tooth Regeneration      (Fig.  9.6 ) 

    The main aim of the process is to obtain different compartment of tooth (peri-
odontal ligament and pulp) from MSCs (derived from adult or iPS cells) sepa-
rately, and put them together into the tooth-like bio-printed scaffold mimicking 
calcifi ed tooth structure. 
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 Sonoyama et al. aimed to establish a bio-root model to reconstruct a functional tooth 
in miniature pigs (minipigs) using postnatal stem cells including SCAPs and PDLSCs 
[ 44 ]. Their results demonstrated that this hybrid strategy using autologous DSCs may 
provide predictable applications. Wei et al. also performed an animal experiment to 
regenerate bio-root by employing similar hybrid strategy with different cell types (allo-
geneic DSCs) [ 45 ]. Hydroxyapatite tricalcium phosphate root shaped scaffold contain-
ing DPSCs covered by PDLSC sheet exhibited normal tooth characteristics after 6 
months. In addition, dentinal tubule-like and functional periodontal ligament-like 
structures without any immunological response were reported. In another study, 
hydroxyapatite-coated dental implant was covered with embryonic dental follicle tis-
sue, and transplanted into jaw bone of a murine tooth-loss model [ 145 ]. Using hydroxy-
apatite-coated dental implant and DFSCs, fi brous connection was established around 
the implants, a bio-hybrid organ. This bio-hybrid implant provided function, bone 
remodeling, and periodontal tissue regeneration including periodontal ligament and 
cementum. The bio-hybrid implant was claimed to be a promising approach to be used 
for future tooth replacement therapies. However, to create tooth-like structures, numer-
ous concerns should be elucidated  before   conducting clinical studies;

 –    Which cell combinations are better for human approaches?  
 –   Heterogeneity of the cells among the patient,  
 –   Appropriate reciprocal interaction among the cells,  
 –   The predictability of shape of the growing tooth,  
 –   Tumorigenicity and immunogenicity of the cells (since one of cell layer is 

embryonic and obtained from iPS)       

9.7     Biomaterials 

 Developing three dimensional bioengineered tooth for future replacement therapy 
have been investigated, and in this line, mechanically resistant to the occlusal force 
and biocompatible biomaterials have been tested. Biomaterials including micro and 

  Fig. 9.6    Schematic 
illustration of the 
bio-root/ tooth   using dental 
pulp stem cell (DPSCs) 
and periodontal ligament 
stem cell (PDLSCs) seeded 
hydroxyapatite (HA)/
tricalcium phosphate 
(TCP) tooth-shaped 
scaffold       
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nano-sized (or their combinations) have been used for this purpose. Biomaterials 
should provide appropriate micro-environment for cells to form the fi nal structured 
organ. The materials used for  bio-tooth applications   should be resistant to chemical 
and physical abrasions, and provide required mechanical strength and intraoral 
maintenance with desired function and esthetic. For this purpose, poly(lactide-co- 
glycolide) (PLGA) (70/30, mol/mol) scaffolds, three types of calcium phosphate 
contained composites scaffolds that were composed of 50 % of PLGA and 50 % of 
hydroxyapatite, tricalcium phosphate (TCP) and calcium carbonate hydroxyapatite 
(CDHA) were evaluated [ 146 ]. The results showed that while the calcium phos-
phate contained compound supported tooth regeneration effectively, the PLGA/
TCP scaffold would be more appropriate for the proliferation and differentiation of 
DPSCs. Furthermore, seeding of rat tooth bud cells on the PLGA/TCP scaffold 
generated dentin- and pulp-like tissues, indicating that  PLGA/TCP scaffold   is supe-
rior to the other three scaffolds for tooth-tissue regeneration approaches, particu-
larly for dentin formation. 

 Selection of optimal scaffold for future clinical application remains a question-
able, and further research is required to improve the features of the materials for 
tooth regeneration applications. In particular, recent developments including com-
posites, biomaterials (nanofi brous scaffolds, hydrogel systems, laser-fabricated 
nanostructures) and cell-based bio-printing methods seem promising to produce 
proper scaffolds for dental tissue engineering. 

9.7.1      Bio-implant vs. Bio-tooth?      

 Gault et al. evaluated PDLSC-seeded titanium implant to create bio-implant 
(Fig.  9.7 ), and named the structure as ‘  ligaplant   ’ [ 147 ]. They placed titanium dental 
implant to the extraction socket and reported new bone and PDL tissue development 
around the implants at the end of treatment. They claimed that biological mimicking 
of tooth with dental implant can be applicable in clinical dentistry. Their investiga-
tion demonstrated the application of ligament-anchored implants, which have 
advantages over osseointegrated oral implants since they don’t have rigid fi xation. 
In addition, they concluded that  ligaplant  induced the formation of new bone and 
new PDL in the vicinity due to their remarkable potential in periodontal tissue 
regeneration [ 147 ,  148 ]. On the other hand, as there is no cementum on the titanium 
surface, and collagen fi bers cannot be placed around of the titanium implants like in 
natural tooth environment, bio-implant cannot exactly mimic natural structure 
around the tooth. Without cementum layer, cell-seeded titanium implant cannot pro-
vide biological expectations. Many questions remain with the  ligaplant  to be solved 
with long-term clinical fi ndings [ 148 ]. However, this bio-hybrid (cells and titanium 
material combination) technology for tooth replacement can fi nd a place in both 
periodontology/oral implantology, bio-tooth philosophy looks more applicable and 
more biological thought. But further pre-clinical studies in large animal models or 
human clinical trials using patient tissue-derived cells are needed to realize future 
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human clinical applications [ 149 ]. Making a functional bio-tooth using stem cells 
may be much more complicated than expected. Several issues including identifi ca-
tion and stemness of stem cells, dental morphogenesis, determination tooth type, 
odontogenic signals, controllable bio-tooth growth and eruption, and host-graft 
immunorejection in the jaws must be solved [ 35 ,  124 ,  149 ].

9.8         Conclusion and Future Trends or Directions 

 The fi nal aim of the regenerative dentistry is to create functional whole tooth 
organ, mimicking dental hard and soft tissues. Various stem cells have been 
used in tooth bioengineering studies to evaluate their potential. Technologies 
using MSCs and iPS cells might be the new era of personalized dentistry but due 
to heterogeneity among the patients, studies should be focused an  individually-
targeted approach  . Functional cell-based tooth replacement therapy requires 
collaborative studies conducted by bio-engineers, biologists, chemists and den-
tists. Mechanically and topographically appropriate biomaterials should be 
investigated for functional tooth organ studies. For successful tooth regenera-
tion, more information is needed on genetic and cellular mechanisms regulating 
growth of the tooth crown and root, guiding tooth development, to understand 
the specifi cation of important  cell lineages   including ameloblasts, odontoblasts, 
and cementoblasts.     

  Fig. 9.7    Schematic 
illustration of the 
bio- implant   using dental 
pulp stem cell (DPSCs) 
and periodontal ligament 
stem cell (PDLSCs) seeded 
titanium dental implant       
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