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    Chapter 4   
 Signaling Pathways in Dental Stem Cells 
During Their Maintenance and Differentiation                     

     Genxia     Liu    ,     Shu     Ma    ,     Yixiang     Zhou    ,     Yadie     Lu    ,     Lin     Jin    ,     Zilu     Wang    , 
and     Jinhua     Yu     

4.1            Introduction 

 Dental stem cells (DSCs) residing in dental tissues possess the self-renewal and 
multipotential differentiation ability, and are essential in the process of tooth 
homeostasis, repair and regeneration. The maintenance,  proliferation   and differen-
tiation of DSCs are directly or indirectly regulated by a variety of factors, such as 
microenvironment, growth factors and donor ages. The complex network of sig-
naling pathways, including fi broblast growth factor (FGF), bone morphogenetic 
protein (BMP), Notch, nuclear transcription factor kappa-B (NF-κB), mitogen-
activated protein kinases (MAPKs), transforming growth factor-β (TGF-β), mam-
malian target of rapamycin (mTOR), phosphatidylinositol-4,5-bisphosphate 
3-kinase/protein kinase B (PI3K/AKT) and sonic hedgehog (SHH) signaling path-
ways, participate in regulating the formation, homeostasis, and differentiation of 
DSCs in the developing tooth and throughout the adulthood. Researches over the 
past years have given rise to the meaningful progress on the understanding of the 
signaling network.  
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4.2     Signaling Pathways in DSC Maintenance/Homeostasis 

 The signaling pathway is a series of cellular   proteins     that transfer a biological signal 
from a   receptor     on the cell membrane to the   DNA     in the cell nucleus. The pathway 
begins with a signaling molecule binding to the membrane receptor and ends when 
the nuclear DNA generates respective proteins and brings about some cellular 
changes ( e.g.,  cell differentiation). 

 During tooth development, DSCs can maintain the stable state, referred to as 
homeostasis, and many signaling pathways ( e.g. , Notch, BMP-SHH, MAPK and 
Eph/Ephrin signaling pathways) control the maintenance of stem cells in tooth. 

4.2.1     Notch Signaling Pathway 

 The  Notch signaling pathway   is a highly   conserved     signaling cascade and plays a 
key role in the stem cell maintenance and fate determination. There are usually four 
kinds of Notch receptors, i.e., Notch1, Notch2, Notch3 and Notch4. These receptors 
are single-pass transmembrane receptors. Notch ligands (Jagged1, Jagged2, Delta1, 
Delta2 and Delta3) interact with these membrane-bound Notch receptors and 
directly initiate Notch signaling pathway and downstream molecules to mediate the 
expression level of target genes (Fig.  4.1 ).

  Fig. 4.1    Notch signaling pathway. Notch ligands (Jagged1, Jagged2, Delta1, Delta2 and Delta3) 
interact with Notch receptors and then initiate the Notch pathway. The activation of Notch subse-
quently gives rise to a release of  Notch intracellular domain (NICD)   into the cytoplasm where it 
translocates to the nucleus. In the nucleus, NICD binds to RBP-J and MAML1, recruits the tran-
scriptional co-activators and leads to the transcription of target genes       
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   Previous studies have shown that Notch receptors are absent in the adult rat pulp 
tissues but the expression level will be reactivated during the repair of tooth injury 
[ 1 ]. Notch signaling is also essential for the development of dental epithelium and 
enamel organ [ 2 ]. Notch receptors as well as Notch ligands are expressed in both 
dental epithelial and mesenchymal cells during the odontogenesis, and initiate the 
stage of epithelial-mesenchymal interactions for tooth morphogenesis [ 3 ,  4 ]. Notch 
and FGF signaling pathways are associated with dental epithelial stem cells in regu-
lating their fate and FGF10 maintains the stem cell population during the develop-
ment of mouse incisors [ 5 ,  6 ].  

4.2.2     SHH Signaling Pathway 

 SHH signaling  path  way is a chain of proteins that transfer the information to cells 
for proper embryonic development. In addition, it is highly active in cell prolifera-
tion and differentiation of both epithelial and mesenchymal stem cells (MSCs). 

 In mice, dental epithelial stem cells residing in the cervical loop at the proximal 
end of the labial side of incisors are maintained along with the MSCs, and they 
allow the incisors to grow continuously throughout life [ 7 ]. Researchers have 
focused on the molecular mechanisms of this phenomenon, and fi nd that SHH sig-
naling pathway is related to the stem cell homeostasis [ 8 ]. Moreover, BMP-Smad4- 
SHH signaling can regulate the epithelial stem cell maintenance in tooth 
development. Sox2 +  epithelial stem cells exist transiently during the molar develop-
ment, and sonic hedgehog-glioma-associated oncogene 1 (Shh-Gli1) activity pro-
vides a niche for maintenance of these stem cells. However, loss of Smad4 results in 
ectopic SHH-Gli1 signaling and maintenance of Sox2 +  cells [ 9 ]. This study has 
proved the importance of crosstalk between BMP and SHH signaling pathways in 
the regulation of epithelial stem cell fate during odontogenesis. Moreover, SHH 
pathway can inhibit the osteo/dentinogenic differentiation of stem cells from apical 
papilla [ 10 ].  

4.2.3     MAPK Signaling Pathway 

  MAPK signaling pathway   (also known as the Ras-Raf-MEK-ERK pathway) con-
tains several proteins, including MAPK (mitogen-activated protein kinases), that 
communicate by driving the phosphate groups into a neighboring protein (work 
as an "on" or "off" switch manner). This pathway is involved in cell apoptosis, 
survival, migration, proliferation, differentiation as well as other cellular pro-
cesses. Three main MAPK family members (extracellular signal-regulated kinase 
(ERK), c-Jun-N-terminal kinase (JNK) and p38) are distinctly referred to these 
processes [ 11 ]. 
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 Recent literatures have provided convincing evidences that MAPK signaling 
pathway plays a critical role in the maintenance, migration, proliferation and dif-
ferentiation of DSCs. Two-hydroxyethyl methacrylate (HEMA), a kind of resin-
based dental materials, can inhibit the cell migration of dental pulp stem cells 
(DPSCs) by phosphorylation of p38 but not ERK, or JNK MAPK pathways [ 12 ]. 
p38 MAPK and insulin-like growth factor 1 receptor (IGF-1R) are responsible for 
the mitotic quiescence of DPSCs. The inhibitors of IGF-1R can improve the sphere- 
forming capacity of DPSCs and decrease the colony-forming capacity without caus-
ing cell death, in contrast to the p38 inhibitors. IGF-1R and p38 MAPK signaling 
pathways are interrelated at the molecular levels in DPSCs. Signals from these path-
ways converge as signal transducers and activators of transcription 3 (STAT3), and 
oppositely modulate its activity to maintain the quiescence or enhance the self- 
renewal and differentiation of cells [ 13 ]. 

 Previous studies have proposed that interleukin 8 (IL-8) might be involved in 
regulating the immune response of DPSCs and promoting the recruitment process 
of neighboring DPSCs to the site of injury [ 14 ]. Lipopolysaccharide (LPS), which 
mediates IL-8 expression in DPSCs, is associated with toll-like receptor 4 (TLR4), 
myeloid differentiation marker 88 (MyD88), MAPK and NF-κB signaling 
 pathways. Overall results of the study indicate that NF-κB and MAPK signaling 
pathways are closely involved in dental pulp infl ammation and maintaining of the 
homeostasis of DPSCs niche. Another study reveals that DPSCs may play impor-
tant roles in the immune responses during the pulp infection via activating NF-κB 
signaling   pat  hway [ 15 ].  

4.2.4      Eph-Ephrin Signaling Pathway   

 Eph-Ephrin signaling pathway includes Ephs and their corresponding   ephrin     ligands 
(ephrins), which are both membrane-bound proteins. Thus, the activation of Eph- 
Ephrin intracellular pathways can only happen through the direct cell-cell interac-
tions. Eph-Ephrin signaling regulates diverse biological processes during the 
embryonic development ( e.g. , formation of tissue boundaries, cell migration, angio-
genesis, and stem cell differentiation). 

 Tooth development occurs through interactions between cranial neural crest- 
derived mesenchymal and epithelial cells [ 16 ], while DPSCs reside mainly within 
the perivascular niche of dental pulp tissue. The Eph family of receptor tyrosine 
kinases and their ligands, ephrin molecules, are reported to play an imperative role 
in the migration of neural crest cells throughout the development and maintenance 
of stem cell niche (Fig.  4.2 ) [ 17 ].

   DPSCs exposed to EphB2-Fc and EphB1-Fc can exhibit a signifi cantly rounder 
and smaller morphology than hDPSCs treated with human IgG-Fc controls. 
EphB2-Fc treated DPSCs present the same migration speed as human IgG-Fc treated 
DPSCs while the migration ability of EphB1-Fc treated DPSCs decreases signifi -
cantly. The ERK inhibitor U0126 can partially reverse the reduction of  migration 
speed of EphB1-Fc treated DPSCs [ 18 ]. These data suggest that EphB-EphrinB 
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pathway also mediates human DPSCs attachment, spreading and migration in 
DPSC niche, in which ERK-MAPK signaling are involved in the regulation of  the  se 
processes.   

4.3     Signaling Pathways in DSC  Migration   

 Stem cells can adhere, grow and migrate to the damaged areas during infl ammatory 
response or wound healing. There are some critical signaling pathways that have 
great impacts on the migration of DSCs. 

4.3.1      MAPK Signaling Pathway   

 ERK, JNK and p38 MAPKs can be activated by a variety of environmental factors. 
Activated ERK, JNK and p38 can translocate to the nucleus where they phosphory-
late the transcription factors (c-Jun, c-Fos, Elk-1 and Sp1), and then regulate the 
downstream gene expression (Fig.  4.3 ).

  Fig. 4.2    Eph-Ephrin signaling pathway. Eph family is composed of receptor tyrosine kinases and 
their ligands. The activation of EphB2 bound by EphrinB1 stimulates the HRAS-Erk signaling 
pathway, and the increase in MEK and/or Erk activity, reversely enables the enhanced expression 
of EPHB2 under the stimulation of EphrinB1. The phosphorylation of EphB2 can also activate the 
expression of p120RASGAP, leading to the inhibition of HRAS       
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   Previous studies have proved that MAPKs, including JNK, p38 and ERK are 
involved in the cell migration process [ 19 ]. In particular, JNK regulates cell migra-
tion by phosphorylating paxillin, doublecortin X-linked (DCX), Jun and microtubule- 
associated proteins. The antimicrobial peptide LL37 promotes the migration of 
DPSCs via activating the epidermal growth factor receptor (EGFR)-JNK signaling 
pathway, which may lead to the increased regeneration of pulp-dentin complexes 
[ 20 ]. MAPK regulates the directional migration of cells via the phosphorylation of 
MAPK-activated protein kinase 2/3 (MAPKAP 2/3). Some studies have demon-
strated that HEMA inhibits the migration of DPSCs at non-toxic doses, and such 
inhibition is associated with the p38 signaling pathway [ 12 ]. Moreover, LPS can 
promote the adhesion and migration of DPSCs by upregulating the expression of 
adhesion molecules and chemotactic factors, while inhibition of MAPK and NF-κB 
signifi cantly antagonizes LPS-induced adhesion and migration [ 21 ]. 

 The inhibition of JNK or p38 pathways in DPSCs signifi cantly decreases cell 
proliferation, alkaline phosphatase (ALP) activity, and mineralization ability stimu-
lated by hepatocyte growth factor (HGF). JNK and p38 inhibitors can affect F-actin 
remodeling induced by HGF and thus, contribute to HGF-induced migration [ 22 ]. 
The activation of fi broblast growth factor receptor (FGFR), ERK, JNK, and AKT 
can modulate the upregulation of focal adhesion molecules, stress fi ber assembly, 
and enhance cell migration induced by iRoot BP Plus [ 23 ]. ERK determines cell 
movement by the phosphorylation of myosin light chain kinase (MLCK), calpain or 
focal adhesion kinase (FAK). Overall, the different kinds of kinases in MAPK fam-
ily  a  ll appear to be capable of regulating cell migration via particular mechanisms.  

  Fig. 4.3    MAPK signaling pathway. ERK, JNK and p38 MAPKs are members of MAPK family 
which can be activated by a variety of environmental factors. Activated ERK, JNK and p38 can 
translocate to the nucleus where they  phosphorylate transcription factors   (c-Jun, c-Fos, Elk-1 and 
Sp1) and then regulate the downstream gene expression       
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4.3.2      PI3K/AKT Signaling Pathway   

 The PI3K/AKT pathway mainly contains the phosphatidylinositol 3-kinase (PI3K) 
and AKT. The pathway begins with an activation of a membrane receptor and phos-
phorylation of PI3K. Then, PI3K phosphorylates the lipids and generates the second 
messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) which subsequently 
activates the AKT. Activated AKT mediates the downstream responses by phos-
phorylating a series of intracellular proteins. 

 PI3K/AKT signaling pathway is critical in cell growth and migration. Firstly 
identifi ed in osteoblast-like cell line MC3T3-E1, periostin is a kind of matrix- 
cellular protein expressed in multiple tissues like bone, periodontal ligament, skin 
and various cancers [ 24 ,  25 ]. Periostin interacts with integrin molecule on the cell 
surface, mediating cell adhesion and migration of various kinds of cells. In peri-
odontal tissues, periostin is localized between the cytoplasmic processes of cement-
oblasts/periodontal fi broblasts and the adjacent collagen fi bers [ 26 ]. Periostin can 
induce cell proliferation and cell migration of periodontal ligament (PDL) cells by 
activating the PI3K/AKT signaling pathway (higher phosphorylation of AKT and 
the ribosomal protein S6) [ 27 ]. 

  Cartilage oligomeric matrix protein (COMP)      is another kind of matrix-cellular 
protein that is fi rstly detected in cartilage tissues [ 28 ]. Recent researches have 
revealed that COMP is essential in different diseases such as bone tissue disorders 
and atherosclerosis [ 29 ,  30 ]. Combination of recombinant angiopoietin 1 (Ang1), 
an important factor for endothelial survival and proliferation [ 31 ], COMP (COMP- 
Ang1) can promote the migration of periodontal ligament stem cells (PDLSCs) 
through the activation of PI3K/AKT signaling pathway [ 32 ]. Moreover, fi broblast 
growth factor-2 can stimulate the  dire  cted migration of PDLSCs via PI3K/AKT 
pathway [ 33 ].  

4.3.3      Eph-Ephrin Signaling Pathway   

 The EphB-EphrinB family consists of contact-dependent molecules that mediate 
various inhibitory or repulsive cellular responses depending on the model of signal-
ing. The EphB-EphrinB family has shown to be expressed in tooth development and 
plays critical roles in dental cell migration and tooth repair. EphrinB1 expression is 
downregulated in the dental pulp tissue of injured tooth, and it can inhibit the migra-
tion of DPSCs in vitro [ 18 ,  34 ]. EphB-EphrinB molecules are paramount for the 
perivascular DPSCs migration toward the dentin surfaces and differentiation into 
functional odontoblasts after the injury of dentin matrix [ 34 ]. The interaction 
between EphB and its corresponding   ephrin     ligand (EphrinB) is required for the 
attachment, spreading and migration of human DPSCs in its niche. However, the 
major role of EphB-EphrinB pathway in these processes is the induction of inhibi-
tory responses [ 18 ]. 
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 Other signaling pathway may also interact with the Eph signaling pathway. 
EphrinB1-induced DPSCs migration inhibition can be partially reversed by the 
suppression of MAPK signaling pathway [ 18 ]. The  action  s of PI3K signaling 
pathway on endothelial cell migration and proliferation can be mediated by EphB 
receptors [ 35 ].   

4.4     Signaling Pathways in DSC Proliferation 

 DSCs have a long-term proliferation capacity and generate many identical copies of 
themselves, which are regulated by several related signaling pathways. 

4.4.1     MAPK Signaling Pathway 

 MAPK pathway consists of many signaling molecules that can be activated by 
diverse extracellular stimuli. Activation of  MAPK pathway   can give rise to a variety 
of physiological effects, including cell apoptosis and proliferation. Many studies 
have revealed that chemical and mechanical stress can affect the proliferation of 
DSCs via activation of MAPK signaling pathway. For instance, cisplatin, a com-
monly used  chemotherapeutic agent  , can induce a greater genotoxic stress response 
in DPSCs in comparison to human dermal fi broblasts (HDFs). Cisplatin in higher 
concentrations can initiate the activation of all three main MAPK families ( e.g ., 
ERK, JNK and p38) and cell apoptosis in DPSCs [ 36 ]. Dental tissues are subjected 
to various kinds of mechanical stress such as compression fl uid-sheer stress and 
uniaxial vertical and horizontal stretch during jaw movement and occlusal forces. 
Mechanical stress can activate several intracellular signals such as MAPK through 
 mechanoreceptors   [ 37 ,  38 ]. Mechanical stretch can enhance the proliferation while 
suppressing the osteogenic differentiation of DPSCs. The stretch signifi cantly 
enhances the phosphorylation of AKT, ERK1/2, and p38 MAPK as well as upregu-
lating the proliferation of DPSCs [ 39 ]. 

  Epiregulin (EREG)  , a member of epidermal growth factor family, can enhance 
the proliferation ability of stem cells from apical papilla (SCAPs) by activating JNK 
MAPK pathway [ 40 ]. In addition, mechanical stress stimuli can augment the 
 proliferation of SCAPs by activating ERK 1/2 and JNK pathway [ 41 ]. Some 
researchers have established PDL tissue model under compression, and found that 
the prolonged compression can inhibit the cell proliferation by the activation of 
MAPK pathway [ 42 ].  
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4.4.2     PI3K/AKT Signaling Pathway 

  PI3K pathway   is one of the key pathways in the regulation of crucial cellular pro-
cesses such as cell survival, growth, migration, apoptosis, transcription and transla-
tion. Stem cell factor (SCF), one of the prominent homing factors, can bind to c-Kit 
receptor (CD117) and recruit stem cells toward homing sites [ 43 ]. Both SCF and 
c-Kit are highly expressed in differentiation of DPSCs. SCF treatment in dental pulp 
progenitors may enhance the phosphorylation of ERK and/or AKT, and stimulate 
the cyclin D3 and CDK4 (cell cycle proteins) expression in DPSCs [ 44 ]. In addition, 
the increasing fl uid shear stress (FSS) and periostin may regulate the proliferation 
of human PDLSCs via the PI3K/AKT/mTOR signaling axis [ 27 ,  45 ].  

4.4.3     NF-κB Signaling Pathway 

  NF-κB   (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein 
complex that modifi es the transcription of DNA in almost all animal cell types. 
Canonical NF-κB pathway is regulated by the inhibition of IκB kinase complex 
(IKK-a, IKK-b and IKK-c). The IKK complex phosphorylates/degrades the IκB, 
and releases NF-κB subunits, mainly p65 and p50. These phosphorylated subunits 
enter the cell nucleus and bind to DNA, which subsequently bring about a variety of 
biological processes including cell proliferation, cell apoptosis, and cell differentia-
tion. Moreover, NF-κB signaling pathway is greatly involved in the process of DSC 
proliferation. DPSCs derived from injured pulps present a lower proliferative capac-
ity than normal DPSCs, and this process is proposed to be related with NF-κB sig-
naling pathway [ 46 ]. Moreover, donor sodium nitroprusside (SNP) can induce nitric 
oxide (NO) production, and downregulate the proliferation of hPDLSCs. Blockade 
of NF-κB signaling suppresses the SNP-induced growth inhibition, showing that the 
infl uence of NO on the  proliferatio  n of hPDLSCs is conducted by NF-κB signaling 
pathway [ 47 ].  

4.4.4     Notch Signaling Pathway 

 Notch signaling governs the cell fate determination of adult and  embryonic tissues  . 
The Notch ligand, Delta1, is known to affect the proliferation and differentiation of 
various tissue specifi c stem cells. Studies have revealed that Notch receptors and 
Delta1 ligand are identifi ed and expressed in DPSCs. The proliferation index (PI) 
and colonies of dental pulp cells are signifi cantly upregulated in Delta1 transduced 
DPSCs than the control groups (wt- and vector transduced DPSCs). Therefore, it 
can be proposed that Notch-Delta1 signaling is essentially associated with the pro-
liferation of DSCs [ 48 ].  
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4.4.5      Wnt/β-Catenin   Signaling Pathway 

 The canonical Wnt pathway is a key component in the induction of epithelial- 
mesenchymal interactions, and actively participates in tooth morphogenesis and 
development. WNT10A, a member of Wnt family, can promote the proliferation 
ability and negatively regulate the odontoblastic differentiation of DPSCs [ 49 ]. 
Moreover, the canonical Wnt/β-catenin pathway can facilitate the proliferation of 
SCAPs [ 50 ]. In addition, bioactive scaffolds containing lithium ions can enhance 
the proliferation of PDLSCs via the activation of Wnt/β-catenin pathway [ 51 ]. 
Recent studies have revealed that stress-associated periodontal disturbance may 
be due to GC-induced changes in PDLSCs. Dexamethasone treatment can induce 
the expression of several genes including dickkopf-1 (DKK-1) in PDLSCs, and 
then inhibit Wnt-mediated  activati  on of β-catenin signaling as well as their growth 
rate [ 52 ].  

4.4.6     Other Signaling Pathways 

 TGF-β2 may infl uence the growth and differentiation of DPSCs through an auto-
crine way via the activation of  ALK/Smad2/3-signal   transduction pathways [ 53 ]. 
Small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) can 
decrease the DPSC proliferation, which may be mediated by mTOR signaling path-
way [ 54 ]. ITGA5 down-regulation inhibits the proliferative capacity of hDPSCs, 
and promotes their odontogenic differentiation, suggesting that ITGA5 signaling 
pathway can negatively affect the odontogenic differentiation of hDPSCs and may 
help hDPSCs to remain in a proliferative and undifferentiated state [ 55 ].   

4.5     Signaling Pathways in DSC Differentiation 

 DSCs are undifferentiated cells that have a special capacity to differentiate into 
specialized cell types. More and more studies have found that many kinds of signal-
ing pathways are involved in the multiple differentiation abilities of DSCs. 

4.5.1     TGF-β Signaling Pathway 

 TGF-β1 is a multifunctional cytokine and intimately involved in the metabolism of 
several tissues, including dental pulps. TGF-β signaling pathway is crucial for 
epithelial- mesenchymal interactions, especially in those vital interactions during 
tooth morphogenesis. Interaction of  TGF-β   with the membrane TGF-β receptor I 
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and II mediates the activities of multiple kinds of signaling pathways, and then 
regulates the expression levels of TGF-β related genes via the cascade interactions 
among these pathways (Fig.  4.4 ). TGF-β1, TGF-β2, and a small quantity of TGF-β3 
mRNAs are expressed in DPSCs [ 53 ]. TGF-β receptors I/II are both expressed in 
odontoblasts and pulp cells, and they response to subtle variations in expression 
levels and participate in the tissues' response to injury [ 56 ].

   Exogenous TGF-β2 can upregulate the expression levels of nestin and dentin 
sialophosphoprotein (DSPP) in DPSCs, indicating that TGF-β signaling controls 
the odontoblast differentiation and dentin formation ability during tooth morpho-
genesis [ 57 ]. TGF-β2 possibly mediates the differentiation of DPSCs at specifi c 
stages, which cooperates with other factors through multiple signaling pathways, 
especially with the ALK/Smad2/3-signal transduction pathways [ 53 ]. 

 TGF-β signaling also participates in nerve growth factor (NGF) regulation dur-
ing pulp tissue repair. TGF-β can up-regulate NGF in hDPSCs via p38 and JNK 
MAPK pathways [ 58 ]. Some studies suggest that TGF-β1 can inhibit the prolifera-
tion of SCAPs and their mineralization by decreasing the osteogenic/dentinogenic 
gene expressions [ 59 ]. In detail, TGF-β1 promotes the cell growth, collagen content 

  Fig. 4.4    TGF-β signaling pathway. TGF-β signaling pathway is crucial for the tooth morphogen-
esis and repair. Interaction of TGF-β with the membrane TGF-β receptor I and II mediates the 
activities of multiple kinds of signaling pathways ( e.g. , MAPK, Wnt, Smad and PI3K/AKT path-
ways), and then regulates the expression levels of TGF-β related genes via the cascade interactions 
among these pathways       
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and ALP activity at lower concentrations (0.1–1 ng/mL) but down-regulates the 
activity at higher concentrations (>5 ng/mL) by  regu  lating ERK1/2 and Smad2 sig-
naling pathways [ 60 ].  

4.5.2     BMPs Signaling Pathway 

  BMP2 and BMP4 genes   are proved to be expressed and play essential roles during 
embryonic tooth development. The BMP2 gene is also expressed in post-natal 
odontoblasts and ameloblasts during tooth differentiation period from birth to 
approximately 3 weeks after birth. Dentin-derived BMP2 possesses the ability to 
drive the differentiation of DSCs from exfoliated deciduous teeth (SHEDs) into 
mature dentin-forming  odontoblasts   [ 61 ]. BMP2 transcripts are restricted in dental 
papillae, and remarkably upregulated during odontoblastic differentiation [ 62 ]. 

 Both SHEDs and adult DPSCs express BMP receptors, including BMPR-IA, 
BMPR-IB and BMPR-II. The blockade of BMP2 signaling inhibits the expression 
of odontoblastic differentiation markers in SHEDs. Similarly, BMP2 drives the dif-
ferentiation of SHEDs into odontoblasts [ 63 ]. Some studies suggest that lentiviral- 
mediated BMP2 gene transfection can accelerate the odontogenic differentiation 
capability of human SCAPs in vitro [ 64 ]. Meanwhile, hPDLSCs/rAd-BMP2 effec-
tively promote the osteogenesis both in vitro and in vivo. Thus, hPDLSCs/rAd- 
BMP2 can be applied in a novel therapeutic approach for the regeneration of 
deteriorated bony defects [ 65 ]. 

 BMP7 can induce the gene expression of several markers of  cementoblasts and 
cementocytes  , such as protein tyrosine phosphatase-like member/cementum attach-
ment protein (PTPLA/CAP) and cementum protein 1 (CEMP1) [ 66 ]. BMP7 treat-
ment upregulates the transcription of Sp7/Osterix and PTPLA/CAP by binding to 
specifi c short motifs termed as GC-rich Smad-binding elements (GC-SBEs) located 
in the human PTPLA/CAP and CEMP1 promoter. The gene expression levels of 
RUNX2 and ALP are increased afterward while the expression of odontogenic 
markers such as DSPP, bone sialoprotein (BSP) and dentin matrix acidic phospho-
protein 1 (DMP1) are not affected [ 67 ].  

4.5.3     NF-κB Signaling Pathway 

  NF-κB signaling   not only participates in regulating immune responses and infl am-
mation, but also plays critical roles in differentiation of MSCs including DSCs 
(Fig.  4.5 ). NF-κB signaling pathway is activated in case of estrogen defi ciency and 
subsequently decreases the osteo/odontogenic differentiation of DPSCs. Inhibitors 
of the NF-κB effectively rescues the down-regulated differentiation potential of 
DPSCs [ 68 ]. DPSCs derived from the injured pulps exhibit the robust osteogenic 
potential and weak odontogenic capacity as compared with healthy DPSCs. The 
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inhibitors of NF-κB pathway can reverse the process that the osteogenic potential of 
DPSCs is signifi cantly reduced while the odontogenic differentiation is enhanced. 
Therefore, the NF-κB signaling pathway can be proposed to be associated with the 
osteo/odentogenic differentiation of DPSCs [ 46 ].

   LPS can activate TLR4, and regulate NF-κB pathway of human PDLSCs, lead-
ing to decrease in osteogenic potential. Thus, blockage of TLR4 or NF-κB pathway 
might provide a new approach for periodontitis treatment [ 69 ]. NF-κB pathway-
activated SCAPs present higher proliferation/ migr  ation capacity and increased 
odonto/osteogenic ability than control cells. Likewise, NF-κB pathway-suppressed 
SCAPs inversely display lower proliferation/migration ability as well as decreased 
odonto/osteogenic ability than control group [ 70 ].  

4.5.4     MAPK Signaling Pathway 

  p38-MAPK   is involved in the infl ammatory response of PDLSCs during the chronic 
periodontitis in which p38 is strongly induced in PDLSCs derived from the infected 
periodontal tissues. The p38 inhibition markedly suppresses the osteogenic differ-
entiation of PDLSCs in a chronic infl ammatory microenvironment [ 71 ]. 

  Fig. 4.5    NF-κB signaling pathway. Small molecules like TNF-α and IL-1 can induce PI3K/AKT, 
TAK/TAB/IKK and JNK/MEK/MMP1 signaling pathways in the  cytoplasm  . All these signalings 
will converge to the IκB/NF-κB at the cytoplasmic level and then translocate to the nucleus to regu-
late the expression of NF-κB target genes       
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 Natural mineralized scaffolds ( e.g. , demineralized dentin matrix-DDM, ceramic 
bovine bone-CBB) can induce DPSCs to exhibit higher levels of ALP activity and 
mRNA expression of osteo/odentogenetic markers than other scaffolds via the acti-
vation of MAPK signaling pathway. However, the inhibitors of ERK1/2 and p38 can 
down-regulate the odontogenic differentiation ability of DPSCs cultured on DDM 
and CBB [ 72 ]. BMP9 can promote the bone formation of PDLSCs. p38 and ERK1/2 
MAPKs are involved in BMP9-induced osteogenic differentiation of PDLSCs. The 
inhibitors of ERK1/2 and p38 increase BMP9-induced osteogenic differentiation of 
PDLSCs [ 73 ]. Moreover,   IGF-1    can induce the phosphorylation of ERK and JNK in 
PDLSCs, and promote the osteogenic differentiation of PDLSCs, suggesting the 
involvement of   MAPK     signaling pathway in the   IGF-1    -based differentiation of 
PDLSCs [ 74 ]. Stretch can increase the proliferation rate of DPSCs via the activation 
of ERK pathway, and inhibit the osteogenic differentiation in which PI3K/AKT and 
ERK pathways are partly involved [ 39 ]. Mechanical stress can enhance the odonto/
osteogenic differentiation of SCAPs via the activation of ERK 1/2 and JNK MAPK 
signaling pathways [ 75 ]. In addition, hypoxia can affect the osteogenic potential, 
mineralization and paracrine release of therapeutic factors from PDLSCs, and the 
process is closely related to ERK and p38 MAPK signaling pathways [ 76 ]. 

 MAPK signaling pathway also plays an important role in the revascularization of 
dental-pulp complex. LPS stimulates the expression level of vascular endothelial 
growth factor (VEGF) in DPSCs and human dental pulp  fi broblast  s via ERK1/2 
MAPK signaling pathway [ 77 ].  

4.5.5      mTOR Signaling Pathway   

 mTOR kinase is the catalytic subunit of at least two distinct signaling complexes: 
target of rapamycin complex 1 and 2 (TORC 1 and 2) [ 78 ]. TORC 1 is a popular 
regulator of protein translation [ 79 ], and is essential for cell growth, cell prolifera-
tion, and cell cycle. On the other hand, TORC 2 is involved in the cytoskeleton 
reorganization and cell survival [ 78 ]. In the concept of DSC differentiation, the 
mTOR signaling pathway is activated in the process of osteogenic differentiation of 
hDPSCs [ 80 ]. 

 Both TORC1 and TORC2 play critical roles in the modulation of DPSCs while 
TORC1 is essential in SHEDs differentiation. Inhibition of the TORC1 complex 
proteins (mTOR or raptor) can effectively decrease the mineralized matrix deposi-
tion of SHEDs. Conversely, when the TORC2 complex proteins are downregulated, 
both mineralization and differentiation markers are increased in SHEDs. 
Furthermore, the increased mineralization of SHEDs is dependent on functioning 
TORC1 complex [ 81 ]. 

 Pluripotin can affect the maintenance of hDPSCs properties, decreasing cell pro-
liferation, increasing the expression of STRO-1, NANOG, OCT4, and SOX2, and 
diminishing cell differentiation through various signaling pathways  including   
mTOR-signaling pathway [ 54 ].  

G. Liu et al.

http://springerlink.bibliotecabuap.elogim.com/search?dc.title=IGF-1&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://springerlink.bibliotecabuap.elogim.com/search?dc.title=MAPK&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://springerlink.bibliotecabuap.elogim.com/search?dc.title=IGF-1&facet-content-type=ReferenceWorkEntry&sortOrder=relevance


83

4.5.6      Wnt/β-Catenin Signaling Pathway   

 Nineteen Wnt family proteins are divided into two main categories, canonical and 
non-canonical wnt signaling pathways, based on their role in cytosolic β-catenin 
stabilization [ 82 ]. Canonical Wnt signaling transduces their signals via regulation 
of β-catenin levels and is thought to be of much importance in the tooth develop-
ment and self-renewal of stem cells (Fig.  4.6 ).

   After transduction with canonical Wnt-1 by retrovirus-mediated infection, 
matrix-cellular protein osteopontin and type I collagen are upregulated while ALP 
activity and the mineralization of DPSCs are inhibited. Over-expression of β-catenin 
can effectively inhibit the differentiation and mineralization of DPSCs, indicating 
that DPSC differentiation is downregulated via the activation of Wnt/β-catenin sig-
naling pathway [ 83 ]. Wnt3A effectively induces ALP activity in immortalized 
SCAPs (iSCAPs), and BMP9 also induces the expression of osteocalcin and osteo-
pontin as well as matrix mineralization of iSCAPs. Moreover, BMP9 and Wnt3A 

  Fig. 4.6    Wnt/β-catenin signaling pathway. Wnt signaling pathway is divided into the canonical 
Wnt signaling and non-canonical Wnt signaling. The former plays a crucial role in tooth develop-
ment. Wnt protein binds its receptor Frizzled and co-receptor LRP5/6, and stimulates the LRP5/6 
phosphorylation. Phosphorylated LRP5/6 recruits Axin to the membrane and disrupts the Axin 
complex that containing APC and GSK3β. GSK3β phosphorylates β-catenin, subsequently, the 
phosphorylated β-catenin enters the nucleus, where it binds TCF/LEF and co-activators, and acti-
vates the downstream gene expression       
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can act synergistically, and their ability to induce the osteo/odontogenic differentia-
tion will be diminished by knockdown of β-catenin [ 84 ]. 

 Zinc-bioglass (ZnBG) incorporated within calcium phosphate cements (CPC) 
can activate the odontogenic differentiation and promote the angiogenesis of DPSCs 
in vitro. ZnBG upregulates the integrins and their downstream signaling pathways 
including canonical and non-canonical Wnt signaling pathways [ 85 ]. 

 After osteogenic genes in PDLSCs are increased by down-regulating anti- 
differentiation noncoding RNA (ANCR), the osteogenic differentiation of PDLSCs 
is improved. When the canonical WNT signaling pathway is suppressed, the osteo-
genic differentiation of PDLSC/ANCR-RNAi cells is inhibited too, indicating that 
Wnt/β-catenin signaling pathway may play a crucial role in the ANCR-mediated 
osteogenic differentiation of PDLSCs [ 86 ]. Nicotine and TNF-α can induce the 
osteogenic differentiation defi ciency of PDLSCs by activating WNT signaling [ 87 , 
 88 ], and down-regulation of β-catenin level can activate the non-canonical Wnt/Ca 2+  
pathway, leading to the promotion of osteogenic differentiation in PDLSCs [ 89 ]. 
The β-catenin also plays an important role in the osteo/odontogenic differentiation 
of SCAPs. Silencing of β-catenin in SCAPs can reduce BMP9/WNT3A-induced 
expression of osteocalcin/osteopontin and  m  atrix mineralization in vitro and ecto-
pic bone formation in vivo [ 90 ].  

4.5.7     Other Signaling Pathways 

 Shh signaling pathway is related to cell differentiation and  osteogenesis   which is 
negatively modulated by BMP signaling. It can repress the osteo/dentinogenic dif-
ferentiation of SCAPs [ 91 ]. Moreover, Notch signaling also participates in the 
odontoblastic differentiation of DSCs [ 2 ], which permits DPSCs differentiating into 
odontoblast-like cells in the appropriate inductive conditions. Notch signaling path-
way is also important in maintaining the correct balance between proliferation and 
differentiation of DPSCs. Activation of Notch signaling by Delta1 ligand can 
enhance the proliferation and odontogenic ability of DPSCs due to the increasing of 
the proliferation index (PI), DSPP protein expression level and calcifi ed nodules 
number in Delta1- DPSCs [ 48 ]. However, another study reports that the activation of 
Notch signaling by either Jagged1 or N1ICD can depress the differentiation of 
DPSCs into odontoblasts without interrupting cell proliferation [ 92 ]. In addition, 
Notch signaling pathway modulates the osteogenic differentiation of  dental follicle 
stem cells (DFSCs)      [ 93 ]. Therefore, we can conclude that distinct Notch ligand may 
induce different effects of Notch signaling on the differentiation of DSCs. The 
mechanism of these distinct effects remains puzzled and needs more explorations. 

  Trichostatin A (TSA)   is an effi cient histone deacetylase (HDAC) inhibitor with a 
wide spectrum of epigenetic activities known to mediate many kinds of  cellular 
behaviors  , including MSC differentiation. It can signifi cantly upregulate the expres-
sion levels of phospho-Smad2/3, Smad4, and nuclear factor I-C, while specifi c 
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inhibitor of Smad3 suppresses TSA-based differentiation of hDPSCs, suggesting 
that Smad signaling pathway is also involved in the differentiation of DPSCs [ 94 ]. 

 Basic FGF has been found to increase the neurosphere size and upregulate the 
expression of neurogenic markers of DPSCs. Inhibition of FGFR or Phospholipase 
Cγ (PLCγ) signaling can abolish the basic FGF-mediated neuronal differentiation 
of DPSCs [ 95 ].   

4.6     Signaling Pathway Networks 

 Crosstalk between cellular processes and molecular signaling pathways is frequent 
in any biological system. Signaling pathways can affect each other synergistically 
in maintaining cell survival, apoptosis, proliferation, differentiation as well as other 
cellular processes of DSCs. 

 Some similar stem cell–related genes can be detected in DPSCs and PDLSCs 
during their odontogenic/osteogenic differentiation. The genes exhibit consider-
able overlap with minor difference between DPSCs and PDLSCs. Numerous regu-
latory genes in odonto/osteogenic differentiation interact or crosstalk through 
Notch, Wnt, TGF-β/BMP, and cadherin signaling pathways [ 96 ]. Extracellular 
phosphate (Pi) can regulate the BMP2 expression level by cAMP/protein kinase A 
and ERK1/2 MAPK signaling pathways in human DPSCs [ 97 ]. TGF-β1 can down-
regulate the differentiation ability of human DPSCs through ALK5/Smad2/3 sig-
naling pathways [ 98 ]. Furthermore, p38 MAPK pathway is involved in regulating 
ALP activity of hDPSCs and may interact with Smad pathway [ 99 ]. As the main 
element of many pulp capping materials, calcium ions can upregulate the odonto-
blastic differentiation and mineralization of DPSCs. Calcium ions activate the 
BMP2-mediated Smad1/5/8 and ERK1/2 pathways to control the odontoblastic dif-
ferentiation of DPSCs in which Smad1/5/8 and ERK1/2 signaling converge at 
Runx2 in DPSCs [ 100 ]. 

 5' adenosine monophosphate-activated protein kinase (AMPK), AKT and mTOR 
signaling pathways act synergistically in the differentiation process of human 
DPSCs. AMPK, the upstream mechanism of AKT and mTOR signaling pathways, 
can regulate the osteogenic differentiation of human DPSCs via both early mTOR 
suppression-modulated autophagy and late activation of AKT/mTOR signaling 
axis. AKT inhibition restrains mTOR activation without infl uencing AMPK phos-
phorylation [ 101 ]. PIN1, a peptidyl-prolyl cis/trans isomerase, acts as an important 
modulator of  odontogenic and adipogenic   differentiation of hDPSCs. BMP, Wnt/β- -
catenin, MAPK and NF-κB pathway are involved in PIN1-mediated differentiation 
of hDPSCs [ 102 ]. Moreover, WNT5α mRNA and protein expressions rapidly 
increased in response to LPS treatment in a time- and dose-dependent manner. 
LPS- induced WNT5α expression is mediated through the TLR4/MyD88/PI3K/
AKT signaling pathways, which subsequently activate NF-κB signaling pathway in 
hDPSCs [ 103 ].  
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4.7     Conclusions and Prospects 

 Overall data has shown that the maintenance, proliferation, migration, and differen-
tiation of DSCs are regulated by a variety of signaling pathways. Although larger 
amount of recent studies have led to rapid expansion of knowledge of signaling 
molecular mechanisms in stem cell biology, this fi eld is still full of confusions and 
challenges. The complex  signaling networks   participating in the homeostasis, 
migration, proliferation and differentiation of DSCs are still in its infancy. DSCs are 
thought to be an appropriate and suffi cient candidate for tooth regeneration. 
However, their clinical applications remain much immature and diffi cult. Therefore, 
more laboratorial and clinical researches need to be conducted to explore the further 
pathway mechanisms, which are important to clarify the signaling-related behaviors 
of dental stem cells. Moreover, the upstream and downstream transcription factors 
as well as their detailed functions in these signaling pathways should be extensively 
investigated, so that we can easily and effi ciently smooth the potential diffi culties in 
stem cell-based tooth regeneration.     
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