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  Pref ace    

 Stem cells are a class of undifferentiated master cells that have robust self-renewal 
kinetic and differentiation potential into many specialized cell types in the body. 

 Stem cell research has been a fi eld of great clinical interest with immense pos-
sibilities of using the stem cells to replace, restore, or enhance the biological func-
tion of damaged tissues and organs due to accidents, diseases, and/or developmental 
defects. 

 Recent studies have demonstrated that mesenchymal stem cells (MSCs) are 
found in various tissues in an adult organism. MSCs derived from teeth and support-
ing tissues, called dental stem cells (DSCs), have been mainly characterized into 
fi ve different cell types including dental pulp stem cells (DPSCs), dental follicle 
stem cells (DFSCs), periodontal ligament stem cells (PDLSCs), stem cells from 
human exfoliated deciduous teeth (SHEDs), and stem cells from the apical papilla 
(SCAPs). 

 The knowledge of stem cell technology is moving extremely fast in both dental 
and medical fi elds. Advances in DSC characterization, standardization, and valida-
tion of stem cell therapies and applications have been leading to the development of 
novel therapeutic strategies. 

 Several investigators, especially those who have made signifi cant contribution to 
the fi eld of DSC research, have been invited to create this book. With the help of 
their intense and substantive efforts, this book reviews different aspects, challenges, 
and gaps of basic and applied dental stem cell research, cell-based therapies in 
regenerative medicine concentrating on the application and clinical use, and recent 
developments in cell programming and tissue engineering. This review will be use-
ful to students, teachers, clinicians, and scientists, who are interested or working in 
the fi elds of biology and medical sciences related to dental stem cell therapy and 
related practices.  

  Istanbul, Turkey     Fikrettin     Şahin     
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    Chapter 1   
 Dental and Craniofacial Tissue Stem Cells: 
Sources and Tissue Engineering Applications                     

     Paul     R.     Cooper    

        P.  R.   Cooper      (*) 
  Oral Biology, School of Dentistry ,  College of Medical and Dental Sciences, 
University of Birmingham ,   St. Chad’s Queensway ,  Birmingham   B4 6NN ,  UK   
 e-mail: cooperpr@adf.bham.ac.uk  

      Abbreviations 

   ADSCs    Adipose stromal/stem cells   
  BMP    Bone morphogenetic protein   
  BMMSCs    Bone marrow stromal cells   
  DFSCs    Dental follicle stem cells   
  DSCs    Dental stem cells   
  DPSCs    Dental pulp stem cells   
  EGF    Epidermal growth factor   
  DMP1    Dentin matrix protein 1   
  DSPP    Dentin sialophosphoprotein   
  ESC    Embryonic stem cell   
  FBS    Fetal bovine serum   
  ECM    Extracellular matrix   
  FGF    Fibroblast growth factor   
  GMP    Good manufacturing practice   
  GMSCs    Gingiva-derived MSCs   
  HERS    Hertwig’s epithelial root sheath   
  HS    Human serum   
  IEE    Inner enamel epithelium   
  iPSC    Induced pluripotent stem cell   
  OEE    Outer enamel epithelium   
  OESCs    Oral epithelial progenitor/stem cells   
  PDL    Periodontal ligament   

mailto:cooperpr@adf.bham.ac.uk


2

  PDLSCs    Periodontal ligament stem cells   
  PSCs    Periosteum-derived stem cells   
  SCAPs    Stem cells from apical papilla   
  SGSCs    Salivary gland-derived stem cells   
  SHEDs    Stem cells from human exfoliated deciduous teeth   
  Shh    Sonic hedgehog   
  SR    Stellate reticulum   
  TGF-β    Transforming growth factor-β   
  TGPCs    Tooth germ progenitor cells   
  TMJ    Temporomandibular joint   
  VEGF    Vascular endothelial growth factor   

1.1         Introduction 

 Stem cells are present in many tissues throughout the body and at the different 
developmental stages of the organism. They are reported to reside in specifi c areas 
within each tissue, in a so called “ stem cell niche     ”. They are also frequently 
described as being located within close proximity to the vasculature,  i.e.  in a peri-
vascular niche [ 1 – 3 ], and this anatomical localisation may facilitate their rapid 
mobilisation to sites of injury [ 4 ]. Stem cells have been characterised based on their 
abilities to self-renew, along with their multi-lineage differentiation capabilities 
which enable complex tissue regeneration [ 5 ]. They have varying degrees of 
potency ranging from totipotent, pluripotent, multipotent through to unipotent. 
Totipotent stem cells are derived from the zygote, and can form embryonic and 
extra- embryonic tissues, including the ability to generate the placenta [ 6 ]. 
Pluripotent stem cells include  embryonic stem cells (ESCs)     , and are derived from 
the inner cell mass of the developing blastocyst. Notably,  ESCs   can differentiate 
into the three main germ layers of the organism including the endoderm, mesoderm 
and ectoderm.  Postnatal/adult stem cells   are regarded as being multipotent and 
include populations of hematopoietic and mesenchymal stem cells (MSCs). They 
are capable of differentiating toward several germ layer lineages giving rise to cell 
types which are necessary for natural organ and tissue turn-over and repair. In addi-
tion, along with these naturally present stem cell types,  induced pluripotent stem 
cells (iPSCs)      have been generated within laboratory settings by transcriptional 
reprogramming of somatic cells. Notably, sources of these somatic cells have 
included ones of oral and dental origin.  iPSCs   are reprogrammed to an embryonic-
like state and hence are pluripotent and can differentiate into cells of all three germ 
layers [ 7 ,  8 ]. 

 The dental and craniofacial tissues are known to be a rich source of MSCs which 
are relatively easily accessible for dentists. Stem cell populations which have been 
identifi ed and characterised within these tissues include dental pulp stem cells 
(DPSCs) [ 9 ], stem cells from the apical papilla (SCAPs) [ 10 – 12 ], dental follicle 
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precursor cells (DFSCs) [ 13 – 16 ], periodontal ligament stem cells (PDLSCs) [ 17 , 
 18 ], stem cells from human exfoliated deciduous teeth (SHEDs) [ 19 ] and tooth 
germ progenitor cells (TGPCs) [ 20 ]. Furthermore, the presence of other, perhaps as 
yet less well characterised stem cell types within the  orofacial region   have been 
reported including oral epithelial progenitor/stem cells (OESCs) [ 21 ],  gingiva- derived 
MSCs (GMSCs) [ 22 ,  23 ], periosteum-derived stem cells (PSCs) [ 24 ] and salivary 
gland-derived stem cells (SGSCs) [ 25 – 27 ]. In addition, well characterised MSCs 
which are not exclusive to the oral and craniofacial tissues, include  bone marrow-
derived MSCs (BMMSCs)         [ 28 ], which can be harvested from maxilla and mandibu-
lar bone, as well as  adipose tissue-derived stem cells (ADSCs)         [ 29 ]. These stem cell 
populations and their isolation and application will be discussed in greater detail in 
the following sections. Figure  1.1  pictorially shows the dental and craniofacial loca-
tions of these stem cell groups.

   The oral and  dental stem cell (DSC)         populations are defi ned as MSCs according 
to the minimal criteria proposed by the  International Society for Cellular Therapy 
(ISCT)      in 2006 [ 30 ]. The criteria defi ning them, which are tissue independent, 
include their ability to adhere to standard tissue cultureware along with their expres-
sion profi le of Cluster of Differentiation (CD) and other markers. According to the 
ISCT, MSCs should express CD105, CD73 and CD90 but lack expression of CD45, 
CD34, CD14 or CD11b, CD79a or CD19, and HLA-DR cell surface molecules. 

  Fig. 1.1    The locations of developmental and postnatal stem cell populations in the dental and 
craniofacial region indicating sources for isolation from the mandible and teeth. The  insert  ( to the 
right ) shows the histology of the overlying masticatory mucosa (including oral epithelium, submu-
cosa and bone tissue) and indicates the locations of the stem cell populations within it. Further 
details on all the stem cell populations shown are provided in the main text body. Abbreviations 
used are: BMMSCs—bone marrow-derived mesenchymal stem cells (MSCs) from mandible (also 
maxilla); DPSCs—dental pulp stem cells; SHEDs—stem cells from human exfoliated deciduous 
teeth; PDLSCs—periodontal ligament stem cells; DFSCs—dental follicle stem cells; TGPCs—
tooth germ progenitor cells; SCAPs—stem cells from the apical papilla; OESCs—oral epithelial 
progenitor/stem cells; GMSCs—gingiva-derived MSCs; PSCs—periosteum-derived stem cells; 
SGSCs—salivary gland-derived stem cells       
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More recently, the expression of other cell surface markers for human MSCs, 
including CD271 and MSC antigen-1, have been reported [ 31 ,  32 ]. The presence of 
(or lack of) combinations of these markers are not only used to defi ne stem cell 
populations but are also used for their isolation, although across species, this may 
not be entirely reproducible. Further defi ning criteria from the ISCT state that MSCs 
must be capable of differentiating into osteogenic, adipogenic and chondrogenic 
lineages in vitro [ 33 ]. 

 The harvesting of MSCs from postnatal dental, craniofacial and other tissues is 
not always straightforward and this can be hampered by these cells being present at 
relatively low frequencies within tissues,  i.e.  <1 % of the total cell population. The 
simplest approach for isolating postnatal MSCs utilises their ability to adhere to 
cultureware which was initially demonstrated for BMMSCs [ 34 ]. This approach 
has also been used for craniofacial and dental MSCs, and generates a heteroge-
neous population of cells which exhibit the MSC-like properties of clonogenicity 
and a high proliferative capacity [ 9 ,  19 ]. However, frequently reported in the litera-
ture is the increasing use of  fl uorescence-activated cell sorting (FACs)      and  mag-
netic activated cell sorting (MACs)      approaches [ 35 ]. These methods enable the 
 isolation   of cells from dissociated tissue which are positive and/or negative for 
many of the defi ning markers previously described. For DPSC isolation, several 
studies have applied positive selection for a range of different markers including 
STRO-1, CD105, c-kit, CD34 and low-affi nity nerve-growth-factor receptor 
(LNGFR) with negative selection for CD31 and CD146 [ 36 – 40 ]. These studies 
indicate that the dental pulp likely contains several different MSC populations/
niches, and this is also probably true for other dental and craniofacial tissues. It 
should, however, be noted that selection of MSCs using STRO-1, CD146 and peri-
cyte-associated antigen also supports the premise that perivascular niches exist in a 
variety of tissues throughout the body including those from the dental and cranio-
facial regions [ 9 ,  11 ,  19 ,  41 ]. 

 Recent work has also built upon the cultureware adhesion approach initially 
reported for BMMSC isolation with studies now demonstrating that several MSC- 
types can be derived via selective adhesion to cultureware surfaces coated with 
 extracellular matrix (ECM)      derived molecules. This potentially biomimetic approach 
may be based on the in vitro recapitulation of the niche environment whereby MSCs 
in vivo are maintained in a quiescent state by the  ECM   until released and activated 
during tissue disease or trauma. This MSC selection technique has been shown to be 
successfully applied using ECM-derived proteins such as fi bronectin, type I colla-
gen, type II collagen, vitronectin, laminin and poly- L -lysine [ 42 – 45 ]. 

 It is also notable that isolated cells may not always be of a pure population and 
may be somewhat heterogeneous in nature, subsequently representing various dif-
ferentiation states. It remains unclear, and is under considerable debate, as to 
whether a pure population of cells is indeed needed for therapeutic application, as 
within tissues stem cells interact with a variety of other cell types to enable repair. 
Further confounding this issue is the fact that MSCs are derived from different 
donors,  e.g.  age range and sexes, and isolated cells may subsequently respond dif-
ferently in vitro and in vivo [ 28 ]. Current research, therefore, aims to identify the 
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most appropriate isolation conditions which will enable predictable clinical applica-
tion and outcomes. 

 Over the coming years within the dental fi eld, stem cells combined with tissue 
engineering strategies are expected to provide novel therapeutic approaches to 
regenerate teeth or tooth component tissue and for repair of defects in periodontal 
tissues and alveolar bone. Specifi c oral tissues and organs which are already being 
targeted for regenerative medicine strategies include the salivary glands, tongue, 
craniofacial skeletal muscles, and component structures of the  temporomandibular 
joint  . The properties and characteristics of craniofacial and dentally relevant MSCs 
are subsequently discussed below as is dental tissue development, tissue engineer-
ing and clinical application progress.  

1.2     Dental Tissue Development and Repair 

 In general, the development of many organs requires heterologous cell and tissue 
interactions. For tooth development these interactions occur between the 
ectodermally- derived enamel organ epithelium and cranial neural crest–derived 
ectomesenchyme. These  epithelial-mesenchymal interactions   also underpin the 
development and morphogenesis of many other human organs including hair, mam-
mary gland and salivary glands. Signifi cant work over recent years has shown that 
complex growth and transcription factor signalling are critical to coordinate these 
cellular events [ 46 ].  Gene and protein expression profi les   are tightly regulated 
throughout all stages of tooth development, and the signalling networks generated 
are similar to those found in the development of other organs. Notably, it is these 
networks which are reactivated during many repair and regeneration events later on 
in life. Indeed, recent studies have now made signifi cant in-roads into the charac-
terisation of these intracellular signalling cascades essentially for coordinating 
tooth development [ 47 ]. 

 The initiation stage of  tooth development   is characterized by the formation of the 
dental lamina and this occurs at around the fi fth week of human gestation [10 th  
embryonic day (ED 10) of mouse development]. During this stage, a variety of  cel-
lular and molecular events   occur which determine tooth type, position and orienta-
tion within the developing jaws. Subsequently, the dental epithelium begins to 
proliferate to give rise to a narrow horseshoe-like ribbon of cells termed the dental 
lamina, and their morphology refl ects the future position of the dental arches. 
Embryonic epithelial thickenings (ectodermal/dental placodes) of the dental lamina 
subsequently develop which are the fi rst morphological indications of teeth and 
precede the local appearance of an  ectodermal organ  . Many  growth factors and 
signalling molecules   such as fi broblast growth factors (FGFs), Paired box’s (PAXs), 
WNTs, sonic hedgehog (SHH), msh homeobox’s (MSXs), distal-less homeobox’s 
(DLXs) and bone morphogenetic proteins (BMPs) are the main regulators of this 
process which provide the relevant positional information for dental placode devel-
opment [ 48 ,  49 ]. 
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 The  dental epithelium   continues to proliferate and begins to invaginate into the 
ectomesenchyme, and forms tooth buds with the dental placodes continuing to 
secrete potent signalling molecules [ 50 – 52 ]. Subsequently, at 20 locations in the 
human dental lamina, at around weeks 7–9 of human gestation and mouse (ED 
11–11.5), the epithelial cells begin to proliferate and intrude into the mesenchyme 
to give rise to an early bud stage structure. The  ectomesenchymal cells   proliferate 
and accumulate around each epithelial bud, and the innermost cells of the epithelial 
develops a star-like morphology with the onset of synthesis and secretion of glycos-
aminoglycans. This structure becomes hydrated resulting in the cells becoming 
more widely distributed with this internal area of the tooth bud now containing the 
stellate reticulum and the intermediate layer. During the bud stage of tooth develop-
ment, the odontogenic potential no longer resides with the epithelium but is driven 
by the ectomesenchyme [ 53 ]. 

 The tooth bud becomes transformed into a cap-like structure by differential pro-
liferation and infolding of the epithelium. The local mesenchymal cells begin to 
secrete a range of ECM molecules, such as  tenascin and syndecan  , which bind to, 
and increase the local concentrations of growth factors. The inductive signalling 
results in differential multiplication of the epithelial layer with concomitant trans-
formation of the tooth bud into a pyramid-like structure with the dental lamina at its 
tip which marks the future site of the tooth crown. Evidence indicates that BMP4 is 
key to the  mesenchymal signalling   that induces transition from bud to cap stage due 
to its regulation of several key transcription factors. Subsequently, an epithelial 
mass, the enamel knot, within the central base of this structure develops, and this 
reportedly acts as a transient organizer of the morphogenetic signalling for adjacent 
cells via its expression of FGFs. The enamel knot is removed via apoptosis at the 
end of the cap stage and is entirely lost by the time of the bell stage [ 54 – 56 ]. The 
epithelium expands and folds inside the core of the bud in an anterior to posterior 
manner and the whole structure begins to resemble an upturned cap. The inner 
enamel epithelium (IEE) is found internally within the cap while the outer structure 
is covered by the outer enamel epithelium (OEE). Between the IEE and OEE sheets 
are vacuolised cells of the stellate reticulum and an intermediate cell layer which is 
referred to as the enamel or dental organ. The condensed mesenchymal tissue 
within the IEE and between the cervical loop (outer rim of the entire structure) is 
the dental papilla which develops into the future dental pulp tissue. The condensed 
mesenchyme surrounding the dental papilla and dental organ is the dental follicle 
which gives rise to the cementoblasts, osteoblasts and fi broblasts of the periodontal 
ligament [ 57 ]. 

 Cup position and height are tooth- and species-specifi c; therefore, correct spac-
ing and size are accurately regulated in multicuspid teeth via primary and secondary 
enamel knots. Indeed, secondary knot formation marks the onset of the bell stage of 
tooth development and the IEE continues infolding according to the organising sig-
nals that they express. The IEE subsequently displaces the  stellate reticulum     , and 
the structure acquires the form of a bell. At this point, the dental mesenchyme does 
not appear to be undergoing cell proliferation, and the enamel organ is separated 
from the dental papilla, with the tooth cusps starting to form and the crown height 
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increasing.  Crown morphogenesis and cytodifferentiation   occur during the bell 
stage with the cells differentiating in situ to give the crown its fi nal shape [ 58 – 61 ]. 
Subsequently, the mesenchymal cells bordering the dental papilla are attached to the 
basement membrane of the IEE, and they take on a polarised columnar form and 
differentiate into the odontoblasts which secrete the  predentine     . Immediately fol-
lowing the deposition of the predentine the basement membrane breaks down and 
subsequent signalling leads to cells of the IEE, which are in contact with the preden-
tine, differentiating into polarised columnar ameloblasts which begin their synthesis 
of enamel. Mineralization occurs and converts the predentine to dentine, and further 
secretion of predentine results in the odontoblasts receding from the dentino-enamel 
junction.    The odontoblasts leave cellular processes within dentinal tubules as they 
traverse towards the pulp core. The two hard tissues of the tooth matrix, the enamel 
and dentine, are characterised by their apposition of  hydroxyapatite crystal  . Notably, 
the basal cells of the intermediate layer support the process of enamel formation and 
following tooth eruption transform into the junctional epithelium. The dental lam-
ina disintegrates, and the pulp and enamel organ are encased in a condensed mesen-
chyme, which constitutes the dental follicle which ultimately gives rise to 
cementoblasts, osteoblasts and fi broblasts [ 62 ,  63 ]. 

 A multitude of genes have been identifi ed as being active during tooth develop-
ment and morphogenesis which indicate the complexity of the process. Our 
increased understanding of these molecular and cellular events is necessary to 
underpin the development of future stem cell-based therapies for bio-tooth 
engineering. 

1.2.1      Dentinogenesis      

 Whilst primary dentinogenesis occurs at a rate of ~4 μm/day during tooth develop-
ment, namely secondary dentinogenesis continues to occur at ~0.4 μm/day follow-
ing tooth root formation throughout the life of the tooth. Tertiary dentinogenesis 
refers to the process of repair and regeneration in the dentine–pulp complex which 
represents a natural wound healing response. Following relatively mild dental 
injury, such as during early stage dental caries, primary odontoblasts are reactivated 
to secrete a reactionary dentine which is tubular and continuous with the primary 
and secondary dentin. However, in response to injury of a greater intensity,  e.g.  a 
rapidly progressing carious lesion, the primary odontoblasts die beneath the lesion. 
Subsequently, if conditions are appropriately conducive,  e.g.  caries is arrested; the 
stem/progenitor cells within the pulp are signalled to home to the site of injury and 
differentiate into odontoblast-like cells. These cells deposit a tertiary reparative 
dentine matrix resulting clinically in dentine bridge formation walling off the dental 
injury. Clearly, the relative complexity of these two tertiary dentinogenic processes 
differ with reactionary dentinogenesis somewhat more simply requiring only the 
up-regulation of existing odontoblast activity, whereas reparative dentinogenesis 
involves recruitment, differentiation, as well as up-regulation of dentine synthetic 
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and secretory activity. It is understood that tertiary dentine deposition rates some-
what recapitulate those of development and are also reported to be ~4 μm/day. 
Notably, tertiary dentinogenic events are understood to be signalled by released 
bioactive molecules similar to those present during tooth development which were 
initially sequestrated within the dentine during its formation [ 64 – 66 ]. Indeed, an 
array of molecules are bound within dentine and are known to be released from their 
inactive state by carious bacterial acids and restorative materials, such as calcium 
hydroxide, and are known to stimulate dentine bridge formation. At the stem cell 
level, released dentine matrix components may stimulate  cell      proliferation and 
expansion, recruitment to the site of injury, differentiation into odontoblast-like 
cells and the up-regulation of synthetic and secretory activity. Indeed, prime candi-
date signalling molecules for stimulating these events come from the BMP and 
transforming growth factor (TGF)-β superfamilies with TGF-β1 alone being shown 
to stimulate many of these processes in vitro and in animal models. However, it is 
likely that synergistic signalling due to many of the bioactive molecules released 
from the dentine ECM are potent regulators of DSC repair processes in vivo 
(reviewed in [ 67 ,  68 ]). Notably, however, while it is generally assumed regenerative 
processes utilises tissue resident cell sources, a mouse parabiosis model has recently 
demonstrated that progenitor cells can be derived externally to the pulp [ 69 ]. The 
source and properties of stem cells involved in repair and regenerative responses are 
discussed in Section  1.3 .   

1.3      Stem Cell Populations 

1.3.1     BMMSCs 

 Originally in 1970,    Friedenstein et al. [ 34 ] reported the isolation of adherent colony 
forming cells from bone marrow, and demonstrated their ability to differentiate 
toward various mesenchymal tissue lineages. In 1999, Pittenger et al. [ 70 ] charac-
terized human BMMSCs from the iliac crest, and showed that they could be 
expanded in culture, and were able to differentiate down osteogenic, adipogenic and 
chondrogenic lineages. More recent work has gone on to demonstrate BMMSCs 
also have the capacity to differentiate into non-typical mesenchymal lineages such 
as ones involved in neurological repair [ 71 ]. Perhaps predictably BMMSCs most 
robustly form bone in vitro and in vivo, indicating their utility in bone regenerative 
therapy which is frequently exploited clinically in oral and dental procedures. While 
BMMSCs are generally isolated from bone marrow aspirates derived from the iliac 
crest during a relatively invasive and painful surgery, they can also be isolated from 
the maxilla and mandible. These orofacially-derived BMMSCs, derived from cra-
nial neural crest cells, are subsequently likely more applicable for dental treatments 
although their safe expansion in numbers is required prior to use  in   therapeutic 
procedures [ 72 – 74 ].  
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1.3.2      Adipose Tissue-Derived Stem Cells (ADSCs)      

 ADSCs can be relatively abundantly harvested via lipectomy or from lipoaspirates 
from many sites within the adult human body including craniofacial regions. 
Notably, their harvest generally results in low donor-site morbidity, and the tissue 
isolated is regarded as clinical waste as liposuction is routinely performed during 
cosmetic surgery,  e.g.  cheek and chin reshaping. While intrinsically ADSCs exhibit 
some differences compared with BMMSCs, ADSCs appear to exhibit good miner-
alised tissue lineage responses, and therefore have potential for use in bone and 
tooth tissue repair including applications in osseointegration [ 29 ]. For dental struc-
tures, ADSC transplantation has been used to regenerate pulp tissue and whole teeth 
containing dentine, with periodontal ligament and alveolar bone attachments in ani-
mal models [ 75 – 78 ]. Further work characterising the application of ADSCs for 
bone, tooth and periodontal tissue regeneration should result in the development of 
robust protocols which utilise waste fat tissue for clinical application.  

1.3.3     Dental Tissue Stem Cells 

1.3.3.1      Postnatal Dental Tissue-Derived Stem Cells   

 A clonogenic and highly proliferative DPSC population exhibiting phenotypic char-
acteristics similar to those of BMMSCs were initially isolated by enzymatic disag-
gregation of adult dental pulp. Only a few years later, SHEDs were isolated, which 
were also shown to exhibit the stem cell properties of self-renewal and multi-lineage 
differentiation potential. In animal studies, DPSCs and SHEDs have demonstrated 
the ability to generate a mature dentine–pulp-like structure. Further studies using 
SHEDs have shown that they can induce bone-like matrix formation which may 
relate to processes that occur in deciduous tooth roots, whereby resorption occurs 
concurrently with new bone formation. Notably, DPSCs and SHEDs have signifi -
cant clinical application potential for autologous regenerative treatment approaches 
as both can be derived from what is regarded as clinical waste tissue. Indeed, DPSCs 
can be obtained from teeth extracted for orthodontic reasons, whilst SHEDs are 
harvestable from primary teeth which are naturally exfoliated (reviewed in [ 79 ]). 
Interestingly, up until recently, it was believed that due to the reciprocal interactions 
which occur between the embryonic oral epithelium and neural crest-derived mes-
enchyme during tooth morphogenesis, the stem cells from the tooth were derived 
from a neural crest origin. However, Kaukua et al. [ 80 ] recently demonstrated that a 
signifi cant population of MSCs involved in development, self-renewal and repair of 
teeth are derived from peripheral nerve-associated glia.    While this study was per-
formed in a murine incisor model system, which may limit its relevance to humans, 
it does, however, indicate our continued need to better understand both tooth devel-
opment and regeneration events. 
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 The periodontal ligament provides another source of postnatal MSCs in the form 
of PDLSCs which can also be isolated from extracted waste teeth. Perhaps not sur-
prisingly due to their localisation, PDLSCs have been demonstrated to be able to 
regenerate several periodontal tissues including cementum, periodontal ligament and 
alveolar bone in animal studies. However, recent work has indicated that the local 
derivation of the PDLSCs may signifi cantly infl uence their differentiation capabili-
ties as PDLSCs from the alveolar bone surface exhibited superior alveolar bone 
regeneration properties compared with PDLSCs from the root surface [ 17 ,  18 ,  81 ].  

1.3.3.2     Stem Cells Derived from Developing Dental Tissue 

 Within the developing dental tissues of the  dental follicle  , including the dental mes-
enchyme and apical papilla, MSC-like cell populations have been identifi ed. The 
dental follicle, also termed the dental sac, contains the developing tooth and within 
it, DFSCs with the ability to regenerate several periodontal tissue types are found 
[ 13 – 16 ]. At the late bell stage of tooth development, stem cells derived from the 
dental mesenchyme of the third molar tooth germ have also been identifi ed and 
these are termed as TGPCs [ 82 ]. These  isolated MSC-like cells   demonstrated a high 
proliferative capacity along with the requisite capability to differentiate in vitro into 
the three germ layer lineages. SCAPs [ 11 ,  12 ] have also been identifi ed in develop-
ing tooth roots. In comparison with DPSCs, SCAPs have demonstrated increased 
proliferation rates and enhanced regenerative capabilities for dentine-pulp complex 
tissue in animal model studies. Furthermore, as these cells exhibit a developmen-
tally immature phenotype and can be isolated from the clinical waste postnatal or 
adult tissue of extracted wisdom teeth, they could provide a valuable source of 
 autologous stem cells   for future regenerative therapies.  

1.3.3.3      Oral Mucosal and Periosteum-Derived Stem Cells   

 The oral mucosa comprises stratifi ed squamous epithelium composed of oral kera-
tinocytes and an underlying connective tissue. The connective tissue consists of a 
well vascularised lamina propria and a submucosa which can contain minor salivary 
glands, adipose tissue, neuronal structures and lymphatics. Within the oral mucosa 
two different types of human postnatal stem cells have been identifi ed; OESCs and 
GMSCs [ 21 – 23 ]. OESCs are reportedly relatively small oral keratinocytes (<40 mm 
in diameter) and while being unipotent, they can regenerate oral mucosal tissue 
ex vivo which may have clinical utility for intra-oral grafts. 

 GMSCs are reported in the gingival lamina propria which attaches directly to the 
periosteum of the underlying bone [ 21 ]. In addition, a neural crest stem cell-like 
population has also been isolated from the adult human gingival lamina propria 
which are termed oral mucosa stem cells (OMSCs) [ 22 ]. The relative clinical ease 
by which relatively high numbers of both GMSCs and OMSCs could be isolated 
makes these cells promising candidates for use in future clinical therapies. 
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 The periosteum of bone comprises two distinct layers; the outer layer which 
contains mainly fi broblasts and elastic fi bres, while the inner layer contains MSCs 
along with other progenitor cell populations. Periosteum-derived cells may have 
preferential application for bone regeneration and subsequently may have applica-
tion in craniofacial therapies [ 83 – 85 ]. Indeed, locally derived periosteum cells may 
have particular application for bone repair in procedures such as periosteal fl ap 
surgery in conjunction with implant placement along with use in large defect repair 
procedures [ 86 – 88 ].  

1.3.3.4      Salivary Gland-Derived Stem Cells   

 Salivary glands develop from the endoderm and when mature comprise of acinar 
and ductal epithelial cells with exocrine function. While the existence of salivary 
gland stem cells have been proposed following in vivo studies, stem cells that give 
rise to the entirety of the epithelial cell types present within the gland have yet to be 
identifi ed [ 25 ,  27 ]. MSC-like cells from human salivary glands have, however, been 
reported based on their expression of embryonic and postnatal stem cell markers 
along with their ability to differentiate toward adipogenic, osteogenic and  chondro-
genic   lineages [ 89 – 91 ]. Stem cells isolated from this tissue may have particular 
application for use in the rescue of dysfunctional gland activity in particular in head 
and neck irradiated cancer patients who exhibit salivary gland dysfunction [ 92 ].  

1.3.3.5      Induced Pluripotent Stem Cells (iPSCs)   

 The possibility of reprogramming somatic cells  to   an early embryonic development 
stage by introducing the four transcriptional factors, Oct3/4, Sox2, Klf4 and c-Myc, 
was initially reported by Takahashi and Yamanaka [ 93 ]. Originally, normal mouse 
adult skin fi broblasts were used and the resultant reprogrammed cells were termed 
as iPSCs. A year later, this work was replicated using human skin cells which sub-
sequently indicated the potential to generate patient-specifi c cells with ESC-like 
characteristics [ 7 ,  94 ]. Indeed, animal studies have demonstrated iPSCs can gener-
ate all the tissues and organs of the body. Notably, it has been shown that iPSCs can 
be derived from many cell types derived from oral and dental tissues which can be 
relatively easily harvested by dentists. Interestingly, many of these cells have exhib-
ited relative high reprogramming effi ciencies which may be explicable as oral and 
dental MSCs already express relatively high levels of endogenous multipotent tran-
scription factors [ 82 ,  95 – 99 ]. In the future, the use of oral and dental waste tissue 
may, therefore, provide an ideal cell source for use in iPSC technology in particular 
for the regeneration of autologous craniofacial soft and hard tissue structures. 
Indeed, recent work utilising iPSCs in a mouse model using enamel matrix derived 
molecules demonstrated increased periodontal tissue regeneration, while in vitro 
work has demonstrated iPSC application for biotooth-engineering of ameloblast- 
and odontoblast-like cells [ 100 – 102 ]. 
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 Notably, there remain drawbacks with the use of iPSC technology. Much is still 
to be learned as to how to optimise their generation and reprogramming effi ciency 
as well as in controlling their differentiate fate. A major concern also lies with the 
risk of  tumour      formation by iPSCs following clinical implantation. Such a concern 
arises due to the use of the c-Myc oncogene as a reprogramming factor along with 
the use of the retroviral insertion system for gene transfer. Recent research, how-
ever, may have resolved these issues by using alternative genes for reprogramming 
along with the application of small reprogramming molecules. Indeed, the use of 
non-viral components such as proteins, microRNAs, synthetic mRNAs and epi-
somal plasmids is being pioneered. A further clinical concern also arises due to 
delivery of residual undifferentiated iPSCs remaining amongst the differentiated 
target cell population. These cells may proliferate uncontrollably and generate tera-
tomas at the site of implantation. To overcome this issue the use of selective ablation 
approaches to remove teratomas via suicide genes and chemotherapy, as well as the 
use of antibody-based cell sorting approaches to remove teratoma-forming cells, are 
being developed [ 7 ,  103 – 113 ].    

1.4     Scaffolds and Morphogens for Stem Cell Tissue 
Engineering 

1.4.1      Scaffolds      

 For dental and oral tissue engineering strategies, along with stem cells, suitable 
biomimetic scaffolds and appropriate morphogens/growth factors are required 
[ 114 ]. Clinically, for periodontal tissue repair, material-based  guided tissue regen-
eration (GTR)      approaches have been developed. Subsequently, biocompatible or 
bioinert scaffolds are used to enable connective tissue and bone regeneration from 
local tissue MSC populations [ 115 – 118 ]. Alveolar bone augmentation approaches, 
such as guided bone regeneration (GBR), utilise bioactive materials, such as cal-
cium phosphate (CaP)-based biomaterials and collagen-based grafts. While these 
materials are bioactive and osteoconductive, they are not osteoinductive; hence, 
scaffolds are being developed, which incorporate bone formation promoting growth 
factors [ 119 – 122 ]. 

 Fibrous silk protein (fi broin) biomaterial scaffolds are also being developed for 
their use in tooth and bone repair. These scaffolds can be generated and harvested 
from silkworms and spiders, and can exhibit properties of controllable porosity, 
surface roughness and stiffness. They can be further functionally modifi ed to mimic 
the natural ECM environment to facilitate stem cell recolonization, differentiation 
and tissue regeneration for therapeutic applications [ 123 – 125 ]. 

 Recent studies have demonstrated the utility of hydrogel scaffolds for tooth tis-
sue engineering applications and their promise is likely based on them exhibiting 
similar biomechanical properties to pulp tissue. The seeding of pulp derived cells on 
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collagen scaffolds with subsequent animal implantation has demonstrated the for-
mation of  dental      tissue structures [ 126 ,  127 ]. Furthermore, DPSCs encapsulated in 
collagen hydrogels have been shown to differentiate and deposit a mineralised ECM 
in the presence of natural tissue morphogens [ 40 ,  128 ]. Others have generated pulp- 
like tissue in vivo following the seeding of SHEDs and human endothelial cells on 
biodegradable poly- L -lactic acid hydrogel scaffolds [ 129 ]. A peptide-amphiphile 
hydrogel scaffold containing bioactive osteogenic supplements has also been shown 
to promote differentiation of encapsulated SHED and DPSCs [ 130 ]. While chal-
lenges still remain, the development of the most appropriate scaffolds which opti-
mise stem cell responses for clinical application is progressing at a rapid rate.  

1.4.2     Role of  Growth Factors and Morphogens   for Tissue 
Regeneration 

 Our understanding of the molecules involved in signalling tissue development and 
repair will underpin the generation of novel naturally inspired clinical therapies. 
Current knowledge of this molecular signalling is advancing with the tooth’s hard 
and soft tissue ECM being shown to provide both biochemical and biomechanical 
regulatory cues. Indeed, comparable with repair processes in other tissues, the regu-
lation of dental tissue regeneration involves signalling derived from its ECM with 
inherent growth factors known to coordinate recruitment, proliferation and differen-
tiation of MSC populations [ 65 ,  68 ,  131 ,  132 ]. 

 In the periodontal tissues, the application of  platelet rich plasma (PRP)      enables 
the delivery of a cocktail of potent growth factors and morphogens. Indeed cur-
rently, there is signifi cant interest in the use of PRP in combination with bone grafts 
and/or stem cells to enable more predictable periodontal regeneration [ 133 ].  Enamel 
matrix derivatives (EMDs)     , obtained from porcine tooth buds, also contain a com-
plex cocktail of growth factors and can also stimulate periodontal tissue regenera-
tive events. Indeed both PRP and EMD are morphogenically complex  and   have 
been shown to include BMP-2, platelet derived growth factor (PDGF)-BB and FGF- 
2, amongst others [ 134 – 136 ]. These molecules likely act synergistically on MSCs. 
However, the action of individual growth factors has been exploited with BMP-2 
being used in absorbable collagen sponge scaffolds to induce bone formation for 
sinus and alveolar ridge augmentation therapies. Both PDGF-BB and FGF-2 in 
combination with CaP or hydrogel scaffolds have also shown some clinically effi ca-
cious potential based on their ability to stimulate vascular responses which underpin 
many MSC-based repair mechanisms [ 137 – 145 ]. 

 The indirect application of MSCs due to their release of growth factor with para-
crine effects has also recently been highlighted. These secretomes contain a 
 multitude of bioactive molecules such as  insulin-like growth factor (IGF)-1      and 
 vascular endothelial growth factor (VEGF)      which promote many tissue repair 
mechanisms [ 146 ]. Notably, DPSC secretomes exhibit signifi cant neurogenic repair 
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activity as well as being able to immunomodulate T-cell, B-cell, natural killer cell, 
and dendritic cell function [ 147 ,  148 ]. Further work is still required to better char-
acterise the active components of the secretomes to determine optimal concentra-
tions for targeted tissue repair and regeneration application.   

1.5     Stem Cell Applications for Dental and Craniofacial 
Tissue Regeneration 

 The use of stem cells for regenerative medicine/dentistry is progressing and cur-
rently, the use of adult/postnatal stem cells exhibits the most realistic clinical oppor-
tunity. Regeneration of  bone and periodontal tissues   using MSCs has received 
considerable attention with several studies already reporting clinical application. 
Clearly, stem cells used in dental tissue engineering should be; (i) relatively easily 
isolated, (ii) straightforward to deliver in a reproducible and clinically simple pro-
cedure, (iii) clear of any patient safety issues, and (iv) ultimately differentiate into 
and regenerate the target tissue or organ. 

 BMMSCs and ADSCs, in particular those derived from the orofacial region, may 
provide an appropriate source for craniofacial tissue repair. Other dental and cranio-
facial tissue-derived MSCs may be more appropriate for regenerating dental 
mesenchyme- derived hard and soft tissues, including those of the dentine, pulp and 
supporting periodontal tissues. The application of MSCs for complete repair of 
complex oral organs, such as teeth and salivary glands, which also require cells to 
differentiate down epithelial lineages may however be challenging. 
Pluripotent embryonic stem cells may, therefore, have utility in these cases; how-
ever, medical and ethical issues associate with their application and the use of iPSCs 
still require further technical and safety advancements before they can be applied. 
For all stem cell sources, their downstream processing following isolation still 
remains an issue for the clinician who would also require onsite specialist equip-
ment and expertise to enable their purifi cation and expansion. 

1.5.1      Tooth and Tooth Component Tissue Regeneration   

 Ultimately, it is aimed that a lost tooth will be replaced by a fully functional bioen-
gineered one; however, current studies indicate that tooth component tissue, such as 
root and crown dentine are more realistically clinically achievable. Recent work 
using animal models has shown that complex root/periodontal structures can be 
regenerated using PDLSCs and SCAPs in conjunction with hydroxyapatite scaf-
folds [ 11 ,  149 ]. The structures regenerated provided suitable abutments for pros-
thetic devices enabling the support of an artifi cial crown with dental functionality. 
Clearly, future work in this area may enable development of the underpinning tech-
nology necessary for human application. 
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 The regeneration of an entire tooth structure is now appearing feasible in the 
future based on animal studies utilising several different MSC sources. For tooth 
bioengineering, the generation of embryonic tooth primordia has been commonly 
used. Initial studies have transplanted pelleted dissociated porcine tooth buds in the 
omentum of athymic rats which resulted in the generation of complex tooth struc-
tures which comprised a pulp chamber, dentine, putative  Hertwig’s Epithelial Root 
Sheath (HERS)   and an enamel organ. Transplantation of dissociated rat and mouse 
tooth buds have also resulted in the development of similar tooth structures. Notably, 
as is described previously, tooth development requires the reciprocal interactions 
between embryonic oral epithelial cells and neural-crest derived mesenchyme. 
Subsequently, recent work has attempted to determine if mouse-derived ESCs, neu-
ral stem cells and BMMSCs can appropriately respond to mouse embryonic oral 
epithelium derived cells. Data indicated that odontogenic differentiation was most 
apparent in explants containing BMMSCs although other cell types demonstrated 
some potentiality [ 100 ,  102 ,  150 – 154 ]. Work conducted by Volponi et al. [ 155 ] has 
demonstrated tooth tissue regeneration following transplantation of human adult 
gingival  epithelial   cells combined with mouse embryonic tooth mesenchyme cells 
in kidney capsules. The tooth structures generated at six weeks of transplantation 
contained vascularized pulp-like tissue and signs of root development including the 
presence of ameloblast-like cells and epithelial rests of Malassez. 

 Signifi cantly, a murine model has recently demonstrated that, following the trans-
plantation into the alveolar bone of a bioengineered tooth germ, reconstituted in vitro 
in a collagen hydrogel scaffold using epithelial and mesenchymal progenitor/stem 
cells, a functioning tooth was formed. Notably, the in vitro step used recapitulated the 
developmental events necessary for complex tooth tissue generation and the subse-
quent bioengineered tooth, which when erupted and occluded, exhibited appropriate 
mineralised tissue properties [ 151 ]. Furthermore, the pulpal tissue was appropriately 
innervated and relevantly serviced by a blood supply. The generation of fully func-
tional tooth units in animal models which have utilised MSC and iPSC sources sup-
port the concept that bioengineered structures may one day be routinely generated for 
patients. Clearly, signifi cant work is still required to bring this to fruition and to pro-
vide clinically relevant alternatives for patients who require dental implants.  

1.5.2     Regeneration of Other Complex  Craniofacial Tissues 
and Organs   

 The regeneration of salivary gland function is important in particular for head and 
neck oncology patients who have undergone surgery and/or radiotherapy. Recent 
mouse model studies using ADSCs, BMMSCs and primitive salivary gland stem 
cells have shown that this may one day be clinical feasible. [ 89 ,  92 ,  156 ,  157 ]. The 
temporomandibular joint (TMJ) disc or condyle can become damaged due to dis-
ease such as arthritis or through trauma. MSCs in conjunction with hydrogels and 
ultrasound approaches have been used successfully to reconstruct condylar defects 
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in animal model systems [ 158 – 160 ]. The regeneration of tongue tissue is also 
important to many patients. Several animal model systems using MSCs and relevant 
scaffold systems has now shown tongue tissue repair is possible [ 161 – 163 ]. Overall 
studies are now showing that for many complex tissue and organ systems within the 
oro-craniofacial region, bioengineering approaches may one day become  a   clinical 
reality for patient treatment.   

1.6     Stem Cell Storage and Processing 

 While growing evidence demonstrates that dental and oral tissues provide a rich 
source of MSCs, their use in regenerative therapies may be limited due to the 
requirement to isolate tissue at the time of need,  e.g.  tooth extraction.  The   banking 
of DSCs or tissues obtained from deciduous and wisdom teeth may, therefore, pro-
vide a practical approach for future stem-cell-based regenerative therapies. Recently, 
in several countries worldwide stem cell and tissue banks in the dental fi eld have 
been developed,  e.g. , Advanced Center for Tissue Engineering Ltd., Tokyo, Japan 
(  http://www.acte-group.com/    ); Teeth Bank Co., Ltd., Hiroshima, Japan (  http://
www.teethbank.jp/    ); Store-A-ToothTM, Lexington, USA (  http://www.store-a- 
tooth.com/    ); BioEDEN, Austin, USA (  http://www.bioeden.com/    ) and Stemade 
Biotech Pvt. Ltd., Mumbai, India (  http://www.stemade.com/    ) (reviewed in [ 164 ]). 
These banking approaches routinely utilise cryopreservation which aims to enable 
the long term storage of viable stem cells from tissues such as the PDL, pulp, apical 
papilla and whole tooth tissue. Subsequently, it is envisaged that the stem cells will 
be retrieved in the future from this cryopreservation and applied in autologous 
regenerative therapies for the patient. Much work, however, is still needed to deter-
mine the utility of these biobanks, their longevity, and value for money and the 
MSC processing procedures required. 

 Currently, it is not entirely clear as to how long term cryopreservation affects 
MSC viability and phenotype [ 165 ]. Therefore, alternative storage approaches are 
being developed which may be benefi cial. Indeed, recent studies have shown that 
MSCs encapsulated in hydrogels may provide a means to decrease archiving costs 
while maintaining  MSC phenotype and properties  . Furthermore, the potential of 
tissue engineered product vitrifi cation has also been investigated with studies using 
bone constructs consisting of a hydroxyapatite scaffold-cell complexes demonstrat-
ing higher cell survival rates compared with conventional freezing approaches [ 166 , 
 167 ]. Further studies of these emerging biobanking approaches are clearly needed. 

 MSC handling  a  nd ex vivo expansion will be required for clinical application due 
to the relatively low number of stem cells, <0.1 % of all cell types, present within 
tissues. To achieve this,  Good manufacturing practice (GMP)     -compliant environ-
ments have been developed and are reported to generate clinical-grade MSCs from 
several tissue-types,  e.g.  adipose and bone marrow [ 168 ]. Currently, there are mini-
mal published reports evident on GMP-handling and processing for dental MSC-
types. It is proposed that standard GMP procedures should be more routinely applied 
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across institutes, as previous work has demonstrated signifi cant MSC heterogeneity 
which may be due to donor or operator variability. Indeed, data has indicated donor 
age may be one key source of this heterogeneity with some studies showing that 
proliferative potential and differentiation capability decrease in an age-related man-
ner both in vivo and in vitro,  i.e.  during culture passage [ 169 – 171 ]. Indeed, our work 
using DPSCs has also shown that with higher passages, MSC properties, such as 
proliferation rates and differentiation capabilities, diminish [ 172 ]. To overcome 
these issues, others have supplemented prolonged in vitro cultures with growth fac-
tors to maintain MSC-like properties [ 173 ]. Further optimisation of laboratory pro-
cedures may minimise culture differences, and novel techniques which involve 
spheroid culturing in the presence of growth factors or the use of relevant hypoxic 
conditions [ 174 ], which better mimic the MSC niche in vivo, may be exploited. 

  Cell culture   requires several kinds of supportive factors including animal-derived 
reagents, such as  fetal bovine serum (FBS)     , and variation in lots have been cited as a 
further source of MSC heterogeneity. There are also safety concerns relating to the 
use of animal- derived reagents for human MSC expansion due to possible risk of 
contaminations such as prions, viruses, and zoonosis, along with the potential for 
host immunological reactions against xenogeneic proteins. Subsequently, autolo-
gous  human serum (HS)   has been proposed for clinical applications as a replace-
ment for FBS. There exist major drawbacks, however, with using autologous HS 
due to the need for its harvest in suffi cient volumes at the time of need potentially 
from patients who may already be compromised with regards to their health. 
Alternatively, the utility and safety of other approaches; such as the use of pooled 
human platelet lysates, has been proposed [ 175 – 179 ]. To overcome these culture- 
related issues, the development of well-defi ned serum-free media which can support 
the growth of MSCs is being explored. While chemically defi ned media may include 
some animal or human serum, efforts are being made to generate a more xeno-free 
culture media which would circumnavigate safety issues and improve clinical grade 
cell culture consistency [ 180 – 183 ]. However, while initial studies support the poten-
tial GMP application of serum-free media, more work, examining a wider range of 
MSC-types, is still required. Furthermore, along with the standardisation of labora-
tory protocols, procedures for aspiration, including harvesting site locations, should 
also be undertaken as consistently as possible. 

  GMP-compliant MSC processing requires   multiple complex steps which can 
include surgical tissue dissection, cell dissociation, dispersion, expansion and 
 collection. An expensive clean room is also required along with experienced and 
specialist technical staff. Work is generally labour-intensive and the complexity of 
the process can result in human error and culture contamination. Subsequently, the 
use of automated cell processing approaches has been explored. However, while 
such an approach would eliminate human error, the risk of contamination from 
operators, and reduce variability within the procedure, robotic approaches are 
extremely costly [ 184 – 186 ]. The development and miniaturisation of benchtop 
devices and processes through collaborations between biologists, mechanical and 
computer engineers may enable automated processes to be more broadly accessible 
within clinical practices in the future. 
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  Safety issues   are a major concern prior to clinical application of bioengineering 
approaches and regulation of use of cell and cell-based products differs from coun-
try to country. Safety tests of the cultured cells need to demonstrate that they are free 
from infectious agent contamination and tumour formation ability. Indeed, cultures 
should be free from bacteria, fungi, mycoplasma, viruses ( e.g.  hepatitis B, hepatitis 
C, and human T-lymphotropic virus), and endotoxin levels should also be moni-
tored [ 187 ]. While tumour formation is a common risk for both  autologous and 
allogeneic cell therapies  , the transplantation of MSCs is considered a relatively safe 
procedure. However, long-term culture is known to increase the chances of cellular 
transformation, therefore, karyotypic analyses and transplantation of the MSCs in 
immuno-defi cient animals should be routinely used to assess cancer risk [ 188 ]. 

 For more global standardisation, characterisation and clinical application, it may 
be necessary to safely transport MSCs between sites. The carriage of the MSCs 
provides further risks to viability and phenotype, potentially due to needs to main-
tain cells at constant carbon dioxide tension, temperatures and air pressure. There is 
also a clear need for appropriate biological safety regulation and associated accom-
panying documentation for clinical materials which can increase administration 
processes, time and costs. Minimising the impact of transportation is, therefore, 
critical for the clinical and commercial application of cell therapies and devices, and 
procedures which enable this are being developed. It is proposed that variations in 
temperature during transport might be the most important risk to cell viability and 
that the optimal temperature for carriage may depend on cell type.  Hydrogel tech-
nology   is currently providing a novel means (as previously discussed) to better 
maintain MSC phenotype over a longer term at relatively low (<37 °C) and wider 
temperature ranges. This approach may be advantageous to ensure consistency in 
cell therapies between distant sites.  

1.7     Concluding Remarks 

 While promising data have already been generated in vitro and in preclinical stud-
ies using animals, research remains ongoing to ensure that there is a signifi cant and 
sound knowledge-base prior to clinical translation. In order for this translation to 
be realised, collaborative work and appropriate communication and dissemination 
between researchers, clinicians, industry and healthcare workers worldwide need 
to remain ongoing. Indeed, while considerable advancements have already been 
made over recent decades, it is imperative that attempts to translate basic science 
fi ndings are not made too soon as this may generate risk for the patient. Therefore, 
appropriate restraint within the scientifi c and clinical communities is essential, and 
subsequent steps should be approached with caution as the patient’s safety is of 
prime importance. Towards this goal, research governance and peer review pro-
cesses need to be fi rmly in place. It is also important to determine which patient 
groups would best benefi t from translation of stem cell science advances rather 
than incentives for application being driven due to any fi nancial or industrial gain. 
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Indeed, in terms of dental patient need, it is important to consider whether novel 
bio-inspired techniques offer signifi cant advantage over those currently applied. 
Such a risk- reward strategy may also help drive which approaches to prioritise 
for more rapid clinical fruition. For example, in regenerative endodontics, loss of 
pulp vitality in the child or younger adult in which full root formation is also not 
complete may provide a more realistic and successful application of pulp tissue 
bioengineering approaches which offers a long term patient benefi t. Conversely, 
tooth bioengineering approaches within signifi cantly older patients may be more 
challenging, less likely to succeed and therefore, current treatment approaches may 
be more appropriate. Indeed, it will be essential, as is currently the case, for a com-
plete consideration of the patient’s condition including age, need, diet and lifestyle, 
to be undertaken before any clinical work is performed which utilise MSC-based 
therapies. 

 In order to ensure coherent and comprehensive advancements within dentistry, 
we should also aim to learn from parallel areas of tissue engineering which are well 
advanced for repair at other sites of the body. Indeed in the US, stem cell research 
has recently become one of the pillars of the health programme and the US Military 
are signifi cantly investing (>$250-million) in this area for soldier rehabilitation. It 
is, therefore, envisaged that ongoing and increased activity will lead to advances 
that will benefi t dental medicine and enable clinicians to deliver novel therapies as 
part of their routine practice. Within the clinical setting, as has already been dis-
cussed, concomitantly advancements in related technologies will need to occur such 
that following tissue isolation, its processing and preparation happen as rapidly and 
routinely as possible. It is, therefore, envisaged that intelligent automatic and robotic 
systems will be necessary to help the clinician undertake these tasks and standardise 
the processes involved. Along with this is the need for the continued education of 
the dental team in areas of stem cell biology, biomaterials, and novel clinical proce-
dures and equipment in order to ensure benefi ts are realised for patients.     
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    Chapter 2   
 Immunomodulatory Properties of Stem Cells 
Derived from Dental Tissues                     

     Pakize     Neslihan     Taşlı    ,     Safa     Aydın    , and     Fikrettin     Şahin    

2.1           Mesenchymal Stem Cell (MSC)-Mediated 
Immunomodulation 

 MSCs are basically characterized by their potential to adhere to plastic surfaces in 
cell culture conditions, express cell surface markers of CD105, CD44, CD29, CD73, 
and CD90, but not express hematopoietic stem cell surface makers such as CD45, 
CD34, CD14, and differentiate into osteo-, adipo-, and chondro-genic cell lines [ 1 ]. 
Along with their high self-renewal and multi-lineage differentiation abilities, they 
possess an immune-suppressive activity, which make them promising candidates to 
be used in cell and even tissue mediated treatments of a various immune and infl am-
mation dependent diseases. 

 MSCs can be easily obtained from various human tissues, preserved in culture 
conditions, and used in even  histocompatibility antigen (HLA)   un-matching condi-
tions of transplantation patients. Though they are mainly isolated from bone mar-
row, they can also be obtained from fat tissue [ 2 ], cartilage [ 3 ], liver [ 4 ], amniotic 
fl uid [ 5 ], tooth germ [ 6 ], hair follicle [ 7 ] and so on [ 8 – 10 ]. 

 Several reports indicate that MSC could be used in vast amount immune disor-
ders. In particular, researchers have found that systematic infusion of allogenic stem 
cells may offer a new suitable treatment for  Graft versus host disease (GVHD) 
patients   [ 11 ]. In addition, Prasad et al. described a stem cell derived agent to treat 
 GVHD patients   [ 12 ]. The ability of MSCs to stimulate activation, proliferation, and 
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function of immune cells may take part on tissue healing and regeneration, which 
would also contribute to treatment of several immune disease including GVHD. 

2.1.1     Interactions of MSCs with White Blood Cells 

2.1.1.1      T Lymphocyte-Mediated Suppression   

 The basic role of T cells, one main component of the adaptive immunity which 
forms immunological memory, is to create specialized immune reactions to particu-
lar pathogens [ 13 ]. Interaction between MSCs and T cells is critical for the activity 
of immune system. Direct cell to cell contact of MSCs with CD8 +  (cytotoxic T cells) 
or CD4 +  (regulatory T cells) helper T cells moderates the expression of cytokines 
for signaling and inhibition of T cell activation [ 14 ,  15 ]. 

 Recent studies have demonstrated that MSCs express Fas ligand (FasL) known 
as a death receptor which inhibit T cell migration [ 13 ],  triggering   stimulated T cell 
death via direct cell interaction [ 16 ]. Even though inhibition of T cell proliferation 
via MSCs action has partially known, suppressive effect of MSCs has not been elu-
cidated in the manner of autologous or allogeneic respective [ 17 ,  18 ]. One possible 
action of MSCs is suppression of CD8 +  cytotoxic T cell proliferation, rather than a 
direct suppression of cytolysis [ 19 ,  20 ]. Furthermore, MSCs can enhance secretion 
of interferon gamma (IFNγ) and interleukin (IL)-17, while they induce T helper 
cells to produce IL-4 [ 21 ,  22 ]. 

 It has been reported that MSCs can promote the proliferation of regulatory T 
cells and increase their modulatory ability directly or indirectly. When peripheral 
blood mononuclear cell (PBMCs) are triggered by mitogens, modulatory phenotype 
presenting CD4 +  CD25 +  T cells start to proliferate in the existence of MSCs. 
Inhibition of T cell proliferation by MSCs is triggered by allogeneic, mitogenic, or 
antigen specifi c stimuli [ 23 ]. 

 Notably, scientists found that suppressed T cell proliferation via triggering apop-
tosis when T cells were stimulated by foreign mitogen, had no infl uence on latent T 
cells [ 23 ]. However, the proliferation of inactive and separating thymocytes was 
repressed via MSCs once treated in absence of systemic elements. These fi ndings 
propose that MSCs can be capable of stimulating the endurance of T cells in a latent 
state. Furthermore, it has also been revealed that MSCs can repress T cell activation 
but not their toxicity by arresting T cells in G0/G1 cell cycle phase through suppres-
sion of cyclin D and increment of p27kip1 expression [ 24 – 26 ]. As a mechanism of 
action, it has been reported that MSC-mediated repression of T cell proliferation 
was not found to be because of soluble HLA-G5 isoform, but of the surface expres-
sion of HLA G1 [ 24 ]. 

 In last decade, many studies using the heading ‘MSCs in Solid Organ 
Transplantation (SOT)’ were designed to understand what is unknown about the 
MSCs use in the setting of SOT, and how to progress best in clinical trials [ 27 ]. 
Although there is not any clinical studies evaluating the effi ciency of MSCs against 
Solid Organ Allograft (SOA) rejection, a plentiful and increasing quantity of evi-

P.N. Taşlı et al.



31

dences obtained from animal models propose that this methodology may be promis-
ing. Based on in vitro and in vivo animal models, a possible role of these cells on 
the prevention of acute tissue allograft rejection has been recommended [ 28 – 31 ]. 

 General MSC-based treatment studies have proved that allogenic MSCs can 
 diffuse into related tissue during SOT. Enhanced allograft persistence or abolition in 
the simultaneous suppression is few of the frequently reported conclusions. 
Although human clinical trials are not adequate, preclinical studies have shown that 
MSCs could be important therapeutic tools for organ transplantation approaches not 
just as they have the ability to modulate the host immunity in a way that may pro-
mote tolerance of the transplanted organ, but also their regeneration capability and 
trophic factor expression profi les may also help to lessen infl ammatory responses to 
the allograft. One of the main aim of SOT studies is to inhibit T cell response against 
external antigen. In this line, MSCs can suppress the proliferation of cytotoxic T 
cells while enhancing the activities of helper and regulatory T cells. Some 
immunomodulation- related studies have proposed that these properties of MSCs 
may be the key reasons for their ability to prevent the  a  llo-immune reactions in vivo 
[ 32 ]. More research must be carried out because lack of knowledge about MSCs- 
mediated immune suppression; nevertheless, the fewer toxicity and possible long 
term immunosuppression effect of MSCs make them a potentially striking thera-
peutic applicant with respect to outmoded T cell modulatory agents. Another advan-
tage of MSCs use for the inhibition of SOA rejection is the infusion of these cells 
while SOT may hold the potential to endorse a state of cell chimerism and continu-
ing tolerance of the transplanted organ via host immune system [ 33 ,  34 ].  

2.1.1.2      B Lymphocyte-Mediated Suppression   

 Even though the main player of the immune suppression response is the T cells, B 
cells can also secret antibodies to regulate immune response, and they closely coop-
erate with T cells. The exact mechanism of MSCs on B cells still remains unknown. 
However, most of the immune suppression related studies have shown that MSCs 
can suppress B cell proliferation, differentiation, and cytokine production in in vitro 
co-culture assays and in vivo multiple sclerosis models [ 35 – 38 ]. In contrast, it has 
also been shown that MSCs increase B cell proliferation and trigger cytokine pro-
ductions from B cells [ 38 ,  39 ]. 

 MSCs can enhance the production of IgG from peripheral blood and spleen orig-
inated B cells, but they can also inhibit IgG secretion if a heavy primary stimulus is 
used to trigger B cells. One of the possible actions of B cell dependent MSCs- 
mediated suppression can be formed by differentiated B cell or the direct effect of 
the local stimulating signals. MSCs can inhibit B cell proliferation when B cells 
starts to secret activation signals to the culture medium in co-culture system, sug-
gesting that MSCs need activation indicators derived from B cells to inhibit B cell 
stimulation. This cross talk between MSCs and B cells lead to inhibition of B cell 
proliferation. Some of the important factors  secreted   from MSCs are transforming 
growth factor (TGF)-β, hepatocyte growth factor (HGF), prostaglandin E2 (PGE2), 
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and indoleamine 2,3-dioxygenase (IDO), which conduct MSC-derived immunosup-
pressive action on B cells [ 40 ]. 

 As a conclusion, important part of B cell stimulation is carried out via T cell 
dependent pathways; hence, the effect of MSCs on T cell activity may also indirectly 
inhibit B cell actions [ 37 ]. Furthermore, MSCs seem to display a direct stimulus on 
B cells by direct cell to cell interactions and via production of vital inducer signals 
[ 36 ,  40 ]. One other critical issue is that majority of these experiments have been 
made in in vitro conditions, not in vivo or ex vivo. Therefore, actual immunosup-
pression effect of DSCs on B lymphocytes in vivo still remains to be determined.  

2.1.1.3      Dendritic Cell-Mediated Suppression   

 MSCs have also been proposed to be effective against monocytes, monocyte deriva-
tive dendritic cells, macrophages, natural killer cells and neutrophils. Several 
in vitro works have presented that MSCs can inhibit the evolution of monocytes into 
dendritic cells via suppressing the antigen presentation role of these cells [ 41 ,  42 ]. 
As recently suggested, dendritic cells are an important part of immune reaction in 
regards of immune response and tolerance, depending on the stimulation and matu-
ration period and the cytokine environment at locations of infl ammation [ 43 ]. The 
inhibitory effect of MSCs on dendritic cell differentiation, maturation and function 
could be via suppressing CD14 +  monocyte differentiation into matured dendritic 
cells and triggering the production of inducer molecules [ 44 ,  45 ]. In addition, MSCs 
can suppress the differentiation of allo-antigen stimulated monocytes toward mature 
dendritic cells [ 45 ]. Immature dendritic cells can induce cytokine production char-
acterized by a reduced secretion of pro-infl ammatory molecules including tumor 
necrosis factor alpha (TNFα), IFNγ and IL-12, and an amplifi ed secretion of the 
anti-infl ammatory molecule such as IL-10, when cultured in the presence of MSCs 
[ 44 – 47 ]. Similarly, as MSCs cultured with mature dendritic cells, they started to 
display decreased function of antigen-presenting,    and down-regulated IL-12 pro-
duction [ 45 ].  

2.1.1.4      Natural Killer Cell (NKs)-Mediated Suppression   

 NK cells take crucial roles in intrinsic immune response, particularly in anti-tumor 
and anti-viral functions due to their cytotoxic activity, and they have the ability to 
produce large amount of pro-infl ammatory molecules, including TNFα and IFNγ 
[ 48 ]. Impulsive cytotoxic function of NK cells especially target the cells displaying 
decreased HLA-I expression. Moreover, MSCs suppress IL-2 and IL-15 mediated 
NK cell proliferation, IFNγ secretion, and cytotoxic function of both latent and stim-
ulated NK cells [ 20 ,  21 ,  49 ]. Recently, researches have demonstrated that cell- cell 
interaction is the most critical event in the MSC-mediated immunosuppression, 
whereas other cells were driven by soluble elements dependent on HLA-I character-
istic. Donor cells isolated from HLA incompatible patients are much more vulnerable 
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to be lysed by triggered NK cells via secretion of high amount of IFNγ and TNFα 
ex vivo [ 50 ]. MSCs suppress the expression of NKp30 and NKG2D surface receptors 
which are take part in NK cell function and lysing of targeted cells [ 51 ]. 

 Direct cell to cell interaction of MSCs with active immune cells leads inhibition 
or limitation of infl ammatory responses and enhances the mitigating and anti- 
infl ammatory pathways. Depending on activation type and expression profi le 
resulted via danger signals, inhibition or limitation can be chosen by MSCs [ 52 ]. In 
addition, transition of MSCs into infected and damaged tissue might interfere to 
secondary lymphoid organs which are crucial for the immunity. They can also dif-
fuse into the damaged tissue or organ to trigger healing process, resulting in func-
tional tissue or organ regeneration and local immunity. While these studies enlarge 
our understanding about MSC-mediated immunosuppression, further studies must 
be strictly conducted to fully elucidate exact action of mechanism underlying these 
suppressive, regenerative, and anti-infl ammatory functions [ 11 ,  14 ].    

2.2     Immuno-Modulation of DSCs 

  Immunomodulation properties   of MSCs make them outstanding candidates as 
immunosuppressive drugs for the prevention and treatment of various infl ammatory 
and autoimmune diseases [ 38 ,  53 ]. Starting from the 2000, unique MSC sources 
have been obtained from several dental tissues, which exhibit remarkable tissue 
regenerative and immunosuppressive properties [ 54 ]. These  dental tissue derived 
cells   include dental pulp stem cells (DPSCs), periodontal ligament stem cells 
(PDLSCs), gingival mesenchymal stem cells (GMSCs), tooth germ stem cells 
(TGSCs), apical papilla stem cells (SCAPs), exfoliated deciduous teeth stem cells 
(SHEDs), and dental follicles stem cells (DFSCs) [ 55 – 57 ]. Other than having spec-
tacular self-renewal property and multipotency, DSCs have powerful immunosup-
pressive functions comparable to other stem cell types, making them promising cell 
sources for MSC-mediated transplantation treatment [ 58 ]. 

2.2.1     DPSCs 

  DPSCs   have great regeneration capacity which can create pulp and blood vessels 
containing fi brous tissue resembling human tooth like structure [ 55 ]. Studies explor-
ing the immunosuppressive characteristics of DSCs showed that DPSCs could sup-
press the proliferation of activated T cells better than bone marrow MSCs (BMMSCs) 
[ 17 ,  57 ]. This remarkable immunosuppressive function of DPSCs could make them 
appropriate cell type for allogenic bone marrow replacement therapy [ 59 ]. In addi-
tion, proliferation of PBMCs could be inhibited by TGF-β secreted from DPSCs, 
indicating the immunosuppressive role of MSCs triggered by signaling molecules 
derived from stimulated DSCs [ 60 ]. 
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 DPSCs have been used in an important transplantation study to treat  Duchenne 
Muscular Dystrophy (DMD)      of dogs carrying congenitally  golden retriever muscu-
lar dystrophy (GRMD)     . Researchers found that DPSCs displayed immune suppres-
sion in GRMD dogs and helped to relieve disease symptoms [ 61 ]. In addition, 
DPSCs has been shown to trigger T cell apoptosis in vitro, and improve infl amma-
tion dependent tissue injuries as given to a murine colitis model in vivo. siRNA 
mediated inhibition of FasL expression, a trans membrane protein, involves in 
induction of the Fas/ FasL apoptotic pathway in DPSCs, leading to partial suppres-
sion of T cell apoptosis in vitro, and reduction in therapeutic effects of DPSCs in 
mice colitis models in vivo. Moreover, it has been proposed that FasL expression 
levels could regulate duplication rate and differentiation capacity of DPSCs.  

2.2.2      PDLSCs         

 Periodontal ligament (PDL) tissue is originated from neural crest, and it can be 
obtained from dental follicle. Mainly, PDL cells connect the cementum to the bone, 
and support the tooth organ in the alveolar socket [ 62 ,  63 ]. These cells could also 
arrange the tooth nutrient source, homeostasis, restoration and regeneration of 
injured tissues [ 64 ,  65 ]. 

 Several comparative studies showed that both PDLSCs and BMMSCs demon-
strated suppressive effects on the production of allogeneic and xenogeneic PBMCs 
by blocking the cell doubling via secretion of TGF-β, HGF, and IDO [ 66 ]. Another 
study exploring the immunosuppressive role of PDLSCs has indicated that the 
infl amed PDLSCs displayed considerably reduced suppressor effects on T cell acti-
vation compared to healthy cells. In vitro co-culture studies showed that stimulated 
PBMCs displayed signifi cantly less activation of CD4 + CD25 + Foxp3 +  regulatory T 
cells, and IL-10 production when infl amed PDLSCs were used. Additionally, inhi-
bition of Th17 differentiation and IL-17 secretion from infl amed PDLSCs was sig-
nifi cantly less compared to healthy PDLSCs, proving infl amed PDL tissue serve 
less immunosuppressive stem cells [ 67 ].  

2.2.3     TGSCs 

  TGSCs         derived from third molar tooth germs of young adults are MSCs with high 
proliferation and differentiation capacity [ 68 ]. Besides their availability in adult 
body and having no ethical problems associated with embryonic stem cells, human 
TGSCs can be converted into osteogenic, adipogenic, myogenic, neurogenic, odon-
togenic [ 6 ,  69 – 71 ] and endothelial cell linages [ 72 ]. Human TGSCs were used as 
immunosuppressive agent in rat tooth socket. It has been reported that TGSCs not 
only suppressed the immunity but also they regenerated the tooth socket at early 
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dental organogenesis [ 73 ]. Exact mechanism of immunomodulatory properties of 
tooth germ stem cells are still unknown; hence, further studies  are      required in vitro 
and in vivo.  

2.2.4      GMSCs   

 GMSCs were  fi rstly      isolated at 2009, and they have been shown to be easily obtained 
from waste materials of routine dental treatment. GMSCs exert stem cell-like char-
acteristics and immunosuppressive properties similar to other DSCs [ 54 ,  74 ]. 
GMSCs have the ability to stimulate a strong inhibitory action against immunity 
cells by enhancing the IFNγ-dependent IDO, IL-10, cyclooxygenase (COX)-2 and 
inducible nitric oxide synthase (iNOS) synthesis [ 75 ]. 

 Zhang et al. showed that when macrophages were co-cultured with GMSCs, they 
developed an anti-infl ammatory M2 phenotype, which might enhance wound heal-
ing process [ 76 ]. Another study reported that systemic infusion of GMSCs intensely 
improved contact dermatitis as revealed by a reduced penetration of dental cells, 
CD8 +  T cells, Th17, and Mast Cells (MCs) [ 77 ]. Many in vivo transplantation stud-
ies have shown that stimulated GMSCs exerted stronger regeneration ability than 
non-stimulated healthy GMSCs, supporting the idea that GMSCs contribute to the 
pathogenesis of drug-stimulated gingival hyperplasia.  

2.2.5      SCAPs   

  SCAP      cells are obtained from cervical loop which contributes to tooth formation 
and pulp tissue development [ 78 ,  79 ]. SCAP cells showed a two-fold higher cell 
doubling rate compared to DPSCs. Moreover, SCAP cells can suppress T cell pro-
liferation in an apoptosis independent way [ 57 ]. Further studies are necessary to 
explore the potential usage of SCAP cells as an immunosuppressive agent.  

2.2.6     SHEDs 

  SHED         cells are obtained from the coronal pulp of exfoliated deciduous teeth [ 56 ]. 
SHED cells exert MSC characteristics but high levels of alkaline phosphatase (ALP) 
were detected under osteogenic induction conditions. SHEDs have been shown to 
suppress Th17 function proposing that SHEDs could be used to treat systemic lupus 
erythematosus (SLE) in vivo [ 54 ]. 

 Available data in the literature provides valuable information about MSC- 
regulated immune suppression. However, advanced in vivo and clinical studies 
should be completed to reveal multiple signals and complicated mechanisms con-
trolling immune regulatory pathways.   
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2.3     Relation Between  Immunosuppression and Stem Cell 
Expression   Profi les 

 The discovery of DSCs in the pulp tissue by Gronthos et al. was a milestone for 
MSC research and expanded new horizons for the development of alternative treat-
ment strategies [ 55 ]. MSCs residing in dental tissues are characterized by differen-
tiation ability into many cell types such as adipocyte, osteocyte, chondrocyte and 
myocyte under appropriate culture conditions [ 80 ]. In addition to MSC-like behav-
ior at culture conditions, DPSCs are positive for MSC surface markers such as 
CD29, CD73, CD105 and CD 90. It has been revealed that stage-specifi c embryonic 
antigen-4 (SSEA-4), a globo-series ganglioside, is also expressed in DPSC popula-
tions, and can be used to sort DPSCs [ 81 ]. Moreover, STRO-1, which is a cell sur-
face protein expressed by BMMSCs, is also expressed by DSCs [ 82 ]. Although 
STRO-1 is used as a specifi c marker to characterize DSCs, some STRO-1 +  cells 
express typical hematopoietic stem cell markers such as CD117 and CD34 [ 83 ,  84 ]. 

 Use of DSCs for regenerative medicine could be problematic in some situations. 
Infl ammation in periapical and pulp tissues could restrict the regeneration potential 
of DSCs [ 85 ]. In the case of infl ammation caused by bacterial infection, several 
immune cells such as macrophages, neutrophils, T and B lymphocytes take in 
charge as immune protector [ 86 ]. In this situation, MSCs express certain cell sur-
face markers providing the interaction with the immune system to suppress the 
immunity [ 86 ]. The immune system and MSC interactions are well-known for 
BMMSCs which express receptors for plenty of cytokines such as IL-4, IL-6, TNFα, 
IFNγ,    and growth factors including epidermal growth factor (EGF), TGF-β and 
bone morphogenetic proteins (BMPs) [ 87 ,  88 ]. Moreover, MSCs express vital mol-
ecules necessary for cell to cell interactions with immune and hematopoietic cells, 
particularly various adhesion molecules. 

 Although similar expression profi le of DSCs with other well-studied MSCs is 
expected, currently, there is not a comprehensive research for the investigation of 
surface proteins of all types of DSCs. Some receptors for distinct mediators 
expressed by DSCs are TGF-β, vascular endothelial growth factor (VEGF), fi bro-
blast growth factor (FGF) and insulin-like growth factor (IGF) [ 89 – 93 ]. 

 MSCs can receive signals from the infl ammatory environment via several recep-
tors. They express some growth factors and cytokines such as IL-11, IL-8 and IL-6, 
and involved in the early maturation of T cells [ 87 ]. It was shown that MSCs modify 
cytokine release of distinct types of adaptive immune cells like T cells or suppress 
their proliferation [ 94 – 96 ]. Immunomodulatory potential of MSCs have been 
described for BMMSCs, and also have been confi rmed for DPSCs. Responses of 
activated T cells are prohibited by DPSCs and SCAPs [ 97 ,  98 ]. It has also been 
reported that in the existence of DPSCs and PDLSCs, repression of PBMC prolif-
eration has been observed [ 99 ]. Similar effects have also been demonstrated for 
gingival fi broblast [ 95 ]. 

 MSCs derived from dental tissue express some critical receptors for infl am-
matory agents, which can be produced by injured cells and infl ammatory cells. 
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They can also be released from dental tissues. Released cytokines and growth 
 factors are able to decrease or increase the proliferation or differentiation potential 
of MSCs derived from dental tissues.  

2.4      Clinical Applications   

 Clinical study is the process of experiments and trials, observational studies in med-
ical and other types of research. The aim of a clinical study is to investigate the 
activity, safety and mechanism of action of an investigated product, drug or device. 
In this regard, MSCs are being currently used in clinical applications for the treat-
ment/prevention of  various   disorders including immunity related disorders. In par-
ticular, human MSCs derived from adult donors are isolated and cultured in the 
laboratory conditions, and they have displayed the ability to fi nd injured tissue, 
reduce and control the infl ammation [ 100 ]. In addition, BMMSCs are evaluated for 
the treatment of GVHD [ 101 ] and their safety, tolerability and effectivity after liver 
or kidney transplantation are also being investigated in clinics [ 102 ]. Currently, 
there are no clinical studies investigating immunosuppression properties of DSCs. 
However, as DSCs have been proven to display comparable immunosuppression 
properties with other well-studies MSCs, it is worth to conduct clinical trials using 
different DCSs. For instance, DPSCs have exhibited 18 % higher suppression rate of 
T lymphocyte growth in comparison with BMMSCs, indicating possible superior 
immunosuppression potential of DSCs. In addition to their outstanding immuno-
suppressive activity, DSCs have several advantages which makes them promising 
candidates to be used in various clinical trials including;

•    They are cost-effective, easily obtainable and do not need ethical and safety con-
cerns as long as they are derived from regular orthodontic procedures [ 103 ].  

•   They can be easily cryopreserved, stored long-term, and combined with many 
structural materials [ 104 ].  

•   They have neuro-protective effects on dopaminergic neurons and motor neurons 
in spinal cord [ 105 ,  106 ].     

2.5      Safety Issues   

 Absence of clinical studies investigating in vivo survival of MSCs after tissue or cell 
transplantation can bring serious doubts to usage of MSCs in human cases. Few 
human studies have indicated that long term side effects of MSCs are still unknown. 
Not just only immunosuppressive effect of DSCs against immunogenic cells, but 
also their anti-infl ammatory role, tissue repairing function, and interaction between 
these actions must be studied before performing clinical studies. In addition, several 
questions including “is this immunogenic suppression mediated by MSCs stable for 
long time”, “do DSCs cause malignant transformation in the related or un-related 
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tissue or organs”, or “do they result in any ectopic tissue transformation” should be 
answered. Until these questions will be resolved, usage  of   MSCs can remain doubt-
ful in transplantation cases or treatment of immune-related disorders.  

2.6     MSC Paradigm; Suppression or  Modulation   

 Do MSCs only act as an immunosuppressive agent or do they have much more 
complicated modulatory function? Warning signals which are expressed from for-
eign microbial infection, trigger toll like receptor (TLR) production from immune 
cells. Expression of TLR from induced immune cells leads a great host response, 
leading homeostasis [ 107 – 109 ]. MSCs can recognize the warning signal from for-
eign agent to fi nd the damaged tissues to exert their suppressive function. Recently, 
researchers founded that MSCs not only suppress immune cells but also they can 
suppress infl ammation at related area [ 52 ]. TLR-3 expression causes production of 
immune suppressive signals secreted from MSCs, while stimulation of TLR-4 with 
lipopolysaccharide (LPS) causes production of pro-infl ammatory factors [ 110 ]. 
This process can be shifted by specifi c TLR expression depending on reaction 
against foreign warning signal. TLR-3 expression leads to T cell derived immune 
suppression and increased deposition of fi bronectin [ 111 ]. However, TLR-4 expres-
sion results in the suppression of infl ammation related mediators and suppression of 
T cell suppression [ 111 ]. Exact mechanism of this dual role of MSCs in immune 
system needs to be evaluated by further in vivo and ex vivo analysis.  

2.7     Conclusion 

 In short time after Gronthos et al. isolated MSCs derived from dental pulp tissue 
of permanent teeth, the immunomodulatory properties of DSCs have gained wide 
attraction from scientists. In this manner, many properties of DSCs including their 
remarkable immune suppression effects are explored. Researchers showed that 
DSCs are much more usable in the manner of accessibility, strong immune 
 modulation capacity, low frequency of exposure to the infl ammatory environment, 
and also, they have higher proliferation rate compared to other well-known MSCs 
[ 54 ,  60 ,  112 ]. 

 Although there is not any systemic clinical study, pre-clinical and in vitro studies 
have proved that DSCs could serve a promising immune suppressive in human 
cases. This unique property of MSCs is not only important for tissue transplantation 
treatments but also for allogenic-based regenerative medicine and tissue engineer-
ing tools. As additional approaches such as pre-treatment of DSCs with cytokines 
including IFNγ, TNFα and IL-1β increase suppression effect and anti-infl ammatory 
mediator secretion, stem cell culture and treatment should be optimized before 
treatment. Second important issue could be the time of application. It has been 
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 proposed that although same MSC type have been used, one of them failed to treat 
GVDH in mice due to having different infusion time [ 113 ]. Such parameters should 
be optimized to increase success rate in MSC-based treatments. As all communica-
tions and interactions between DSCs and immune cells are not completely eluci-
dated yet, further in vitro, in vivo, and ex vivo studies are highly warranted to fully 
clarify critical roles and the fundamental mechanisms of immunomodulatory fea-
tures of DSCs to increase DSC use in clinics.     
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    Chapter 3   
 miRNA Regulation in Dental Stem Cells: 
From Development to Terminal Differentiation                     

     Sukru     Gulluoglu    ,     Emre     Can     Tuysuz    , and     Omer     Faruk     Bayrak    

3.1           Introduction 

 Dental tissues are a rich source of  mesenchymal stem cells (MSCs)     ,    which can be 
utilized not only for dental regenerative medicine but also other types of stem 
 cell- based therapy applications due to their remarkable ability to differentiate into 
several cell types such neural progenitors, adipocytes and chondrocytes [ 1 ,  2 ]. Tooth 
development occurs through  epithelial-ectomesenchymal interactions   mainly 
 powered by transforming growth factors (TGFs), fi broblast growth factor (FGF), 
bone morphogenic protein (BMP), Hedgehog, Notch and Wnt pathways. These 
 factors are differentially expressed during the stages of tooth development which 
are initiation (5 weeks), lamina (6 weeks), placodes (7 weeks), bud (8 weeks), cap 
(11 weeks), bell (14 weeks) and late bell (18 weeks) stages. 

 MicroRNAs (miRNAs) are small RNA sequences which are thought to play 
important roles in regulating gene expression. Since their discovery in 1993, miR-
NAs have attracted increasing interest by researchers, as microarrays and sequenc-
ing techniques are improved. An extensive number of miRNAs have been recognized 
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for their roles in embryonic development and adult stem cells (ASCs), orchestrating 
differentiation and self-renewal by regulating target genes, gene families and path-
ways. DSCs both during development and after birth until adulthood undergo 
through dynamic processes of signaling cascades with gene levels fl uctuating in 
defi ned periods of time, during which miRNAs play their part in these complex 
series of events. 

 In this book chapter, the role of numerous miRNAs in DSC differentiation and 
maintenance from the fi rst stages of development until the adult stage will be inves-
tigated in detail.  

3.2     Stem Cells and miRNAs 

 Stem cells science is an important fi eld since regenerative medicine is an emerg-
ing area that needs a lot of understanding and different perspectives. Stem cells 
are undifferentiated cells with a potential to transform into various number of 
specialized cell types.  Embryonic stem cells (ESCs)     ,    derived from inner cell mass 
of blastocysts, are pluripotent stem cells that can differentiate into all types of 
specialized cells. They can generate three primary germ layers: ectoderm, endo-
derm and mesoderm. Ectoderm localizes at the outer layer of germ line, which 
later gives rise to the nervous system, tooth enamel and epidermis, etc. Mesoderm 
is the middle layer localized between endoderm and ectoderm, which form mus-
cle, bone, circulatory system, notochord and connective tissue. Endoderm gives 
rise to epithelial lineage cells and organs such as stomach, colon, liver, pancreas 
and lung. 

  Induced pluripotent stem (iPS) cells      are pluripotent stem cells generated fi rstly 
by Takashi & Yamanaka by overexpression of defi ned transcription factors (Oct3/4, 
Sox2, c-Myc, and Klf4) from embryonic and adult mouse fi broblast [ 3 ].  iPS cells   
have similar properties and potency as ESCs since they have the ability to be dif-
ferentiated with the same conventional differentiation agents but not causing the 
ethical controversy encountered in collection of ESCs. ASCs are another source of 
stem cells which are easy to obtain and produce, with the advantage of autografting 
into patients. They are multipotent stem cells found in mature tissues at low ratios 
and produce limited number of specialized cells. ASCs have the ability of self- 
renewal, maintaining the population balance of specialized and reserve cells in the 
tissues that they are found in. Main roles of ASCs are regeneration and maintenance 
of tissues or organs in which they are located. Differentiation potency of ASCs is 
less than ESCs. Currently, a lot of progress has been made on the isolation, charac-
terization and manipulation of MSCs, which are in use for research and therapy 
since their discovery in the 1960s at the bone marrow [ 4 ]. Some of the other sources 
for MSCs includes adipose tissue, umbilical cord blood, dental tissues, synovial 
fl uid and parathyroid gland [ 5 – 9 ]. 
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3.2.1     Regulation of  Stemness Properties   by miRNAs 

 miRNAs not only play a crucial role for maintaining the stemness properties in vari-
ous types of stem cells such as ESCs and MSCs, they also act as regulators of stem 
cell differentiation both in the embryonic and adult stages, and iPS cell production. 
As potent regulators of individual genes, gene families and gene networks, miRNAs 
should always be taken under the scope to better understand the dynamic mecha-
nisms of stem cell biology. 

 ESCs are pluripotent cells, and this potency is regulated by defi ned genes such as 
Oct3/4, Klf4, c-myc, Sox2 and Lin28b. Several studies have suggested that miRNAs 
have an important role in maintenance of stem cell properties in ESCs [ 10 ,  11 ]. 
ESCs have a shorter G1 phase than somatic cells, and ESC specifi c cell cycle miR-
NAs have important roles in regulating this property [ 12 ,  13 ]. For example, miR- 
92b is highly expressed in human ESCs (hESCs), and differentiation of hESCs, 
which resulted in a signifi cant decline in miR-92b level [ 14 ]. As miR-92b regulates 
the p57 gene which inhibits G1 to S phase transition in hESCs [ 15 ], it could be sug-
gested that abundant miR-92b expression in hESCs suppresses the p57 protein, pro-
viding shorter G1 phase. Furthermore, Kosik et al. compared miRNA level of 
hESCs and differentiated embryoid bodies, and reported that miR-145 expression 
diminished in hESCs. Bioinformatical analysis showed that Klf4, Oct4 and Sox2 
were candidate targets for miR-145, and ectopic expression of miR-145 reduced 
gene expression and/or protein levels of these markers. In line with these fi ndings, 
miR-145 overexpression resulted in differentiation of hESCs, and inhibited self- 
renewal capacity and colony formation [ 16 ]. Another study has shown that miR- 
290- 295 cluster provides stem cell maintenance in ESCs [ 13 ]. Briefl y, this cluster 
inhibits Retinoblastoma-Like 2 (Rbl2) protein which is a negative regulator of cell 
cycle and is a critical factor in maintaining stemness properties of ESCs. 

 During iPS cell generation, ESC-specifi c cell cycle (ESCC) family of miRNAs 
enhances the effi ciency of the process [ 17 ]. Blelloch et al. showed that ESCC 
miRNA orthologs miR-302b, and mir-372 promote iPS cell generation from human 
somatic cells [ 18 ]. In another study, inhibition of miR-21 and miR-29, highly 
expressed miRNAs in mouse embryonic fi broblasts (MEFs), enhanced the effi ciency 
of iPS cell generation from MEFs [ 19 ]. Additionally, miR-29 downregulated p53 
protein through p85a and CDC42 pathway. miR-21 can activate mitogen- activated 
protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in  car-
diac   fi broblasts [ 20 ], which is particularly signifi cant since inhibition of MAPK/
ERK pathway enhances iPS cell generation [ 21 ]. Similar to cardiac fi broblasts, 
 miR-21 inhibits MAPK/ERK pathway and enhances iPS cell generation from MEFs. 

 ASCs are undifferentiated somatic cells found throughout the body, which are 
responsible for tissue or organ maintenance and regeneration. Unsurprisingly, miR-
NAs are important regulators of ASCs as in other types of stem cells. miR-29a 
provides maintenance of hematopoietic stem cell self-renewal through regulating 
DNA (cytosine-5)-methyltransferase 3a (DNMT3a) expression [ 22 ]. Briefl y, mice 
harboring miR-29a/b-1 bicistronic cluster deletion in their genome exhibited 
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decreased ratio of Lin − c-Kit + Sca-1 +  population in their bone marrow when  compared 
with the wild type group. Ectopic expression of miR-25 in neural stem cells 
enhances neural stem cell proliferation through regulating insulin growth factor 1 
(IGF1) gene [ 23 ]. Furthermore, miR-205 is highly expressed in skin stem cells in 
neonates via regulation the phosphoinositide 3-kinase (PI3K) pathway [ 24 ].  

3.2.2     miRNAs in  MSCs      

 MSCs are multipotent ASCs that can differentiate into limited number of special-
ized cells such as bone, adipose and muscle cell. MSCs can be isolated from various 
 cell sources   such as bone marrow, cord blood, peripheral blood, adipose tissue and 
amniotic fl uid. MSCs can be used in tissue regeneration approaches and treatments 
of immune disorders. As a stem cell source for tissue regeneration, MSC differentia-
tion into several cell types has been widely studied; some of those studies have 
investigated the roles of miRNA in the differentiation process. The miRNA profi les 
of MSC derived from healthy donors and osteogenically differentiated MSCs have 
been compared by which 12 miRNAs were discovered to be down- regulated includ-
ing miR-142-3p, miR-451 and miR-146a, and 17 miRNAs up- regulated including 
miR-376a, miR-378, miR-193a, miR-100 and miR-31 during differentiation pro-
cess [ 25 ]. In another study, miR-138 inhibited osteoblast differentiation of MSCs 
derived from bone marrow (BMMSCs). Briefl y, pre-mir-138 and antimiR-138 were 
transfected to MSCs and osteoblast related genes, RUNX2 and OSX2, as well as 
alkaline phosphatase (ALP) activity were evaluated. Inhibition of miR-138 increased 
the abundance of osteoblast-related genes and ALP activity, whereas overexpression 
of miR-138 decreased these parameters [ 26 ]. During  adipogenic differentiation   of 
MSCs derived from adipose tissue (ADSCs), miR-21 expression was found to have 
increased. In the same study, the authors report that lentiviral- mediated   over-expres-
sion of miR-21 enhanced adipogenic differentiation of MSCs. Furthermore, overex-
pression of miR-21 downregulated TGF beta receptor II at both gene and protein 
levels [ 27 ]. In another study, Wagner et al. showed that adipogenic differentiation of 
BMMSCs can be regulated by miR- 369- 5p and miR-371. They concluded that 
transfection of MSCs with miR-369-5p inhibited adipogenesis, whereas transfec-
tion with miR-371 enhanced adipogenesis [ 28 ]. Expression of miR-145 decreased 
gradually during  chondrogenic differentiation   in murine BMMSCs. In the study, 
miR-145 was found to regulate the SRY (sex determining region Y)-box 9 (SOX9) 
gene, an important chondrogenesis mediator [ 29 ].  

3.2.3     miRNA Regulation of Pathways Active in MSCs 

  Signaling cascades   are well-defi ned processes during embryonic development and 
stem cell differentiation. These processes concurrently activate several genes, in 
which miRNAs can both regulate and be regulated by this activity.  Wnt signal 
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transduction pathway   has several functions such as embryonic development, 
 carcinogenesis, heart and neural tissue formation and sex determination. It is also a 
prominent regulator of stemness and differentiation of MSCs. Wnt pathway media-
tors, predominantly the WNT2, WNT4, WNT5A, WNT11 and WNT16 genes, are 
highly active in BMMSCs [ 30 ]. WNT3A overexpression in MSCs increased self- 
renewal capacity and inhibited apoptosis [ 31 ,  32 ]. miR-128 inhibited differentiation 
of MSCs into neuron-like cells through regulating WNT3A expression [ 33 ]. miR- 
346 expression increases during osteogenic differentiation of BMMSCs through the 
activation of WNT/β-catenin pathway, leading to enhanced osteogenesis [ 34 ]. To 
sum up,    Wnt pathway which can both maintain stem cell phenotype and enhance 
differentiation of MSCs can be regulated by various miRNAs. 

  BMPs   are growth factors that belong to the TGF-β superfamily. They have vital 
roles in bone and cartilage formations as well as various biological processes such 
as maintenance of stem cell properties in ESCs and MSCs. BMP receptor type IB 
(BMPR1B) signaling induces osteogenic differentiation, whereas BMPR1A inhib-
its osteogenic differentiation [ 35 ,  36 ]. Kung et al. showed that miR-20a regulates 
the levels of  peroxisome proliferator-activated receptor gamma (PPARG)      which is a 
negative regulator of BMP/RUNX2 signaling. Overexpression of miR-20a enhanced 
differentiation of human BMMSCs into osteoblast [ 37 ]. miRNA profi ling of ADSCs 
exhibited that levels of miR-17-5p and miR-106a reduced during osteogenic dif-
ferentiation while they enhanced during adipogenesis [ 38 ]. It has also been shown 
that BMP2 is directly regulated by miR-17-5p and miR-106a. Furthermore, another 
study has suggested that BMP2 can be regulated by miR-149* and miR-654-5p dur-
ing osteogenic differentiation [ 39 ]. 

  TGF-β   is a vital cytokine that coordinates differentiation, cell growth, apoptosis 
and homeostasis. When TGF-β binds to its receptor, an intracellular cascade results 
in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the 
common mediator Smad4. In MSCs, TGF-β pathway drives lineage differentiation 
and determination. For example, MSCs derived from hair follicle could differenti-
ate into smooth muscle cells, and during TGF-β induced differentiation, miR-18b 
expression decreased. Overexpression of miR-18b caused inhibition of smooth 
muscle cell differentiation and downregulation of smooth muscle cell associated 
genes including smooth muscle actin and calponin-1 [ 40 ]. van Zoelen et al. showed 
that TGF-β and BMP induced differentiation of human BMMSCs into chondro-
genic lineage causes a signifi cant change in miRNA profi le. They found that 485 
miRNAs downregulated during differentiation of MSCs into chondrocyte including 
miR-494, miR-298, miR-500 and miR-524-5p [ 41 ]. In another study, miR-21 regu-
lated the TGFBRII gene level during differentiation of MSCs into adipogenic lin-
eages [ 27 ]. 

  Notch pathway   is highly conserved, and it plays a crucial role in development 
and homeostasis. The Notch pathway mediates juxtacrine cellular signaling wherein 
both the signal sending and receiving cells are affected through ligand-receptor 
crosstalk by which an array of cell fate decisions in neuronal, cardiac, immune, and 
endocrine development are regulated. Overexpression of miR-126 in mouse 
BMMSCs increased the expression of the delta like ligand 4 (DLL4), which is a 
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Notch ligand [ 42 ]. miR-1 regulates the transcription factor, hairy and enhancer of 
split-1 (Hes1) gene which is a downstream target molecule of Notch1, and overex-
pression of miR-1 in mouse BMMSCs promoted gene expression of cardiac dif-
ferentiation markers including NK2 homeobox 5 (NKX2-5), GATA binding protein 
4 (GATA-4), Cardiac Troponin T (TNNT2), and Connexin43 (CX43).  Platelet-
derived growth factor (PDGF)      takes part in various biological processes such as 
angiogenesis, cellular proliferation and development [ 43 ]. Qu et al. has shown that 
 PDGF   inhibits osteogenic differentiation of MSCs. Administration of PDGF to 
hMSCs caused upregulation of miR-138 [ 44 ], indicating that miR-138 can be regu-
lated by PDGF.   

3.3     miRNAs in DSCs, Dental Tissues and Their Roles 

 After development, once the tooth is erupted both in juveniles and adults, the organ 
possesses diverse types of tissues and structures such as the enamel, dentin, pulp 
and periodontal ligaments. In infants and adults, dental stem cells (DSCs) can 
mainly be classifi ed into fi ve main types. The presence of stem cells in dental tissues 
has fi rst been discovered in the human dental pulp tissue (DPSCs) [ 45 ]. More  stem 
cells types   have been discovered later in the exfoliated deciduous teeth (SHEDs) 
[ 46 ], periodontal ligament (PDLSCs) [ 47 ], the apical papilla (SCAPs)[ 48 ], and den-
tal follicle (DFSCs) [ 49 ]. Such diversity of stem cell-derived tissues suggests that 
there are differences in the gene regulation of these stem cell rich areas. Thus, 
miRNA regulation is also expected to differ. 

 As potential sources of  pluripotent stem cells  , DSCs are expected to exhibit simi-
lar biological patterns as ESCs or other types of ASCs. A number of miRNAs shows 
great potential to single handedly control important cascades by targeting one or 
more key genes. A good example of how a single miRNA may regulate multiple 
processes in stem cell biology can be seen in the study by Kuboki et al. Regulation 
of  NANOG gene   which is responsible for maintenance of stemness properties, dif-
ferentiation and gene methylation has been observed to be carried out by miRNAs 
in side populations of DPSCs and PDLSCs [ 50 ]. After checking for the potential 
stem cell markers (NANOG, Oct4 and ABCG2), the side populations of DPSCs and 
PDLSCs were used to compare miRNA profi les with the main cell population. 
Among the differentially expressed miRNAs between the two groups, miR-1260b, 
miR-1280, miR-491-3p, miR-1260a, miR-138-1 and miR-720 down-regulated, and 
miR-200b, miR-515-5p, miR-1245, miR-3919, miR-182 and miR-607 up-regulated 
the most in the side populations which are considered to be rich in stem cells. 
 miR- 720 which is a regulator of the stem cell marker NANOG has been found to 
have a binding affi nity to its target in DPSCs.  DNA methyltransferases (DNMTs)   
   play crucial roles in stem cell differentiation. DNMT3a and DNMT1 have increased 
upon miR-720 mimic transfection into DPSCs. Since single miRNAs may target 
members of the same gene family, as in the referred study, they can be considered 
as molecules that not only target single mRNAs but also gene networks, families 

S. Gulluoglu et al.



53

and pathways. Replacement of miR-720 in DPSCs has also decreased cell 
 proliferation and promoted odontogenic differentiation, indicating that miR-720 is 
a potent regulator controlling the differentiation and proliferation of DPSCs. 
Another example can be seen in the Notch pathway which is highly active in stem 
cells. Unsurprisingly, the Notch pathway was found to have elevated activity in 
SCAPs. miR-34a negatively regulated Notch signaling in SCAPs which resulted in 
the loss of stemness properties, leading to odontogenic and osteogenic differentia-
tion. Moreover, Notch activation in these cells inhibited differentiation and trig-
gered elevated miR-34a production, suggesting that there is a feedback mechanism 
between the Notch pathway molecules and miR-34a [ 51 ]. In mice, a fi ne-tuning 
mechanism to maintain homeostasis in the dental epithelium, which contains epi-
thelial stem cells, has been proposed by Juuri et al. miR-720 has been found to 
control FGF8, while miR-200b controls SOX2 which are both important genes in 
stem cell biology. 

 While similarities in major stem cell pathways are expected between DSCs and 
other types of stem cells, differences in miRNA patterns is inevitable.  BMMSCs   
have been compared with DPSCs in terms of miRNA profi les, and a total of 48 dif-
ferentially expressed miRNAs have been discovered between the two groups. 
Among these miRNAs, miR-516a which is upregulated in DPSCs compared with 
BMMSCs has been proposed to have an indirect inhibitory effect on the WNT path-
way via knock-down of the WNT5A gene. In the same study, miR-7-5p was found 
to be effective on epidermal growth factor receptor (EGFR) expression [ 52 ]. In 
another study, the miRNA expression profi les of cells derived from deciduous and 
adult wisdom teeth were reported to be extremely similar. However, they had sig-
nifi cant differences with umbilical cord-derived MSCs. Fifteen miRNAs including 
hsa-miR-196b, hsa-miR-10a, hsa-miR-146a, hsa-miR-335 were downregulated in 
DSCs, and 26 miRNAs up-regulated including hsa-miR-138, hsa-let7b, hsa-miR-98 
and has-miR-199b-5p [ 53 ].  

3.4     Regulation of Developmental Stages of Tooth by miRNAs 

 Tooth development mainly occurs in 7 stages: Initiation, Lamina, Placodes, Bud, 
Cap, Bell, and Late Bell Stages. Tooth develops primarily from the mesoderm layer 
of embryonic development with the exception of the enamel that is derived from the 
ectoderm. In this section we will focus on the miRNA regulation during develop-
mental stages of tooth. 

3.4.1      Initiation, Lamina and Placode Stages   

 Initiation stage of tooth starts at the end of the 5th weeks in humans with condensa-
tion of jaw epithelium. Condensed dental epithelium interacts with mesenchyme 
derived from neural crest, and forms dental lamina. Distinction of oral ectoderm 
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from dental ectoderm is very important during initiation of tooth development. 
Sharpe et al. showed that WNT7B, expressed in oral ectoderm, repressed Sonic 
Hedgehog, expressed in the dental ectoderm, and Ptc, expressed in the ectomesen-
chyme, downregulated [ 54 ]. Lamina stage starts at the end of the 6th weeks. BMP 
is expressed in developing tooth and has a key role in multiple steps of tooth devel-
opment. Chen et al. showed that the negative regulator of BMP, Noggin, enhanced 
in dental epithelium and overexpression of Noggin caused arresting at the lamina/
early bud stage [ 55 ]. Furthermore, CP27 localized in epithelial-mesenchymal 
interface of dental lamina during the lamina stage. However, during later stages, 
CP27 localized in stellate reticulum,  the   oral mucosa mesenchyme, and alveolar 
bone [ 56 ]. Placode is an ectodermal organ consisting of thickened epithelium 
underlying neural crest derived mesenchyme. It is known that WNT and FGF sig-
nals are the activators of placode formation, whereas BMP signals inhibit of plac-
ode formation.  

3.4.2      Bud Stage   

 miRNAs have important roles during the bud stage. For example, 37, 124 and 105 
miRNAs were differentially expressed in the bud stage compared to the cap, bell 
and late bell stages, respectively, in miniature pigs. In addition, ssc-miR-125b 
expression decreased in the bell and late bell stages with respect to the bud stage. 
Bioinformatic analysis revealed that ssc-125b is a candidate regulator of the TGF-β 
pathway. Furthermore, ssc-miR-128 diminished in bud stage and bioinformatics 
analysis revealed that ssc-miR-128 can regulate the WNT pathway [ 57 ]. In a study 
conducted on mice tooth, miR-135 expression level was found to increase in bud 
stage. miR-135 targets Bmpr-1a and Bmpr-1b receptors [ 58 ].  

3.4.3      Cap Stage   

 In the cap stage, the tooth bud forms a cap as a result of the differential proliferation 
capacity of cells present in the cell population followed by the folding of epithe-
lium [ 59 ]. The enamel knot occurs during cap stage where WNT3 expression is 
observed specifi cally in the enamel [ 60 ]. Thirty-seven, 4 and 16 miRNAs were dif-
ferentially expressed in the cap stage in comparison with the bud, bell and late bell 
stages, respectively, in miniature pigs. ssc-miR-199a-3p down-regulated in the cap 
stage, and ssc-miR-199a-3p has been proposed to regulate the WNT pathway. 
Furthermore, TGF-β pathway regulator, let-7f, downregulated when compared 
with  the   bell stage [ 57 ].  
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3.4.4      Bell Stage   

 Bell stage, also known as histodifferentiation of morphodifferentiation, is the stage 
in which the dental organ is bell-like, and cells in the enamel organ differentiate into 
outer enamel epithelial covering the enamel organ and inner enamel epithelial cells 
which differentiate into ameloblast cells. Outer enamel epithelial cells provide 
nutrition of ameloblast cells. 

 As mentioned above, ssc-miR-125b regulating the TGF-β pathway downregu-
lated in the early bell stage when compared with the bud stage. Reduction in 
ssc- miR- 125b level in the early bell stage provides activation of the pathway 
which might imply that TGF-β pathway is an important regulator of this differ-
entiation stage [ 57 ]. In a comparison of miRNA levels between the early bell 
stage and the late bell stage in humans, 29 miRNAs were found to be differen-
tially expressed. hsa-miR-34a reduced in the early bell stage, and BMP2, BMP7, 
Notch1 and Notch7 were found to be putative targets of hsa-miR-34a. Moreover, 
hsa-miR-224 increased in the early bell stage and amelogenin, X isoform 
(AMELX), Hes5, ameloblastin (AMBN) and BMP3 were found to be the puta-
tive targets for this miRNA. The study revealed that downregulation of has-miR-
34a in the early bell stage provided activation of Notch and TGF-β pathway, with 
the activation or suppression of key genes responsible for tooth development. 
Furthermore, hsa-miR-34a was found to regulate Notch1 and BMP7 in dental 
papilla cells [ 61 ].  

3.4.5      Late Bell Stage   

 Dentin formation and mineralization starts at the late bell stage. Inner dental epi-
thelium and odondoblast outlines the future dentino-enamel junctions. Dental 
organ, which is responsible for providing nutrition for the residing cells, consists of 
outer dental epithelium, stellate reticulum, stratum intermedium and inner dental 
epithelium. 

 He et al. showed that in miniature pigs, 105, 16 and 40 miRNAs were dysregu-
lated in the late bell stage when compared with the bud, cup and early bell stages, 
respectively. ssc-miR-99b and ssc-miR-206 enhanced in late bell stage when com-
pared to the bud stage.    Furthermore, ssc-miR-214, which has been associated with 
the WNT pathway, downregulated in late bell stage when compared with bud stage 
[ 57 ]. hsa-miR-34a also upregulated in late bell stage with respect to the early bell 
stage, and it was shown that hsa-miR-34a regulated Notch and TGF-β pathways 
[ 61 ]. As a result, it can be concluded that during the late bell stage has-miR-34a 
expression can act as a switch to downregulate Notch and TGF-β pathways to facili-
tate the transition from the early to late bell stage.  
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3.4.6     Tooth Eruption 

  Tooth eruption   is the fi nal process by which the tooth becomes visible and func-
tional for the organism. In newborn humans, tooth eruption starts 6 months to 2 
years after birth. Periodontal ligament and dental follicle are the main tissues that 
take part in the process. Several studies showed that EGF, TGF-β, interleukin-l (IL- 
1), colony-stimulating factor-l (CSF-l) have crucial roles during tooth eruption [ 62 ]. 
Khan et al. showed that decreasing the abundance of miR-214 by mandibular injec-
tion of antimiR in mice prevented tooth eruption. Additionally, after the injection of 
antimiR-214, TGFβ1 and clusterin expressions decreased [ 63 ]. It is evidenced that 
salivary miRNAs function as critical players in tooth development and eruption in 
rodents [ 64 ,  65 ]. miRNA analysis of saliva from different dentition stage of children 
including edentulous, deciduous and permanent teeth showed that 47 miRNAs dys-
regulated between three groups. Briefl y, expression of 19 miRNAs increased and 
expression of 27 miRNAs decreased gradually during transition from edentulous 
stage to permanent stage [ 66 ]. 

 It has been observed that the RUNX2 molecule takes plays an important role in 
tooth eruption since a mutated form of RUNX2 gene caused a delay in tooth erup-
tion. miRNA profi le of mutated and wild-type hDFSCs revealed that 123 miRNAs 
were differentially expressed (69 upregulated, 54 downregulated) in mutated 
RUNX2-hDFSCs. miR-146a can be  highlighted   in this study since it can target the 
RUNX2 gene [ 67 ].   

3.5     Role of miRNAs in Differentiation of DSCs 

 Having multipotent characteristics, DSCs display the potential to be used in tissue 
engineering and stem cell therapy. As the knowledge about the molecular pathways 
behind DSC differentiation grows, the role of miRNAs in these gene networks also 
begins to be unveiled. Acquisition of such knowledge will not only help us to under-
stand the biology of this process, but also will help to optimize the in vitro differen-
tiation techniques into necessary lineages for therapy purposes. Table  3.1  presents 
selected miRNAs that play various roles in DSC differentiation and have promising 
validated and predicted targets.

3.5.1        Odontogenic Differentiation      

 Odontoblast cells are differentiated mesenchymal cells responsible in tooth devel-
opment and regeneration, primarily by producing dentin. They are located near the 
dental pulp and rich in collagen type 1 (COL1). Several studies suggested that iso-
lated DSCs can differentiate into odontoblast cells in vitro and in vivo [ 78 – 81 ]. In 
the study conducted by Ling et al., miRNAs have been shown to affect the 
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differentiation of DPSCs into odontoblast cells. DPSCs isolated from pre-molar and 
impacted third molar teeth from health donors were differentiated into odontoblast 
cells, and the miRNA expression profi les of undifferentiated DPSCs and differenti-
ated DPSCs were compared. According to the results, 22 miRNAs were dysregu-
lated between two groups. hsa-miR-135b expression can be singled out as a reduced 
miRNA during osteogenic differentiation [ 68 ]. Adenomatous polyposis coli (APC), 
myocyte enhancer factor 2C (MEF2C) and COL5A1 are reported to be candidate 
targets for hsa-miR-135b. APC can inhibit WNT pathway which provides mainte-
nance of DPSC properties, while MEF2C is responsible in terminal differentiation 
of odontoblast [ 82 ,  83 ]. In a study on mice, miR-145 and miR-143 were found to 
regulate odontoblast cell differentiation. DPSCs derived from mouse were differen-
tiated into odontoblast-like cells in vitro ,  which resulted in differential expressions 
of 27 miRNAs. They also found that mmu-miR-145 and mmu-miR-143 expressions 
reduced during odontoblast differentiation which was in parallel with the increasing 
levels of KLF4 and osterix (OSX) genes whose expression is known to increase 

   Table 3.1    Role of miRNAs in dental stem cell (DSC) differentiation and their relevant predicted 
or validated targets   

 miRNA 
 Differentiation 
inhibition 

 Predicted 
gene targets 

 Validated 
gene targets 

 Source of 
dental stem 
cells  Reference 

 miR-135  Odontogenesis  APC, 
MEF2C and 
COL5A1 

 DPSCs  [ 68 ] 

 miR-145  Odontogenesis  KLF, OSX  DPSCs  [ 69 ] 
 miR-720  Odontogenesis  NANOG  DPSCs  [ 50 ] 
 miR- 
338- 3p 

 Odontogenesis  RUNX2  mDPC6T Cell 
Line 

 [ 70 ] 

 mir32, 
mir885-5p 
and mir586 

 Odontogenesis  DSPP  DPSCs  [ 71 ] 

 Let-7  Odontogenesis  DMP1  DPSCs  [ 72 ] 
 miR-27  Odontogenesis  APC  MDPC-23 

Cell Line 
 [ 73 ] 

 miR-17  Osteogenesis  SMURF1  PDLSCs  [ 74 ] 
 miR-218  Osteogenesis  RUNX2  PDLSCs, 

DPSCs, 
gingiva- 
derived MSCs 

 [ 75 ] 

 miR-26a  Osteogenesis  SMAD1  PDLSCs  [ 76 ] 
 miR-18a  Osteogenesis  CCN2  PDLSCs  [ 76 ] 
 miR-141  Osteogenesis  DLX5  PDLSCs  [ 76 ] 
 miR-200b  Osteogenesis  SMAD5  PDLSCs  [ 76 ] 
 miR-183  Insulin-producing 

cell differentiation 
 FOXO1  DPSCs  [ 77 ] 

   DPSCs  Dental pulp stem cells,  PDLSCs  Periodontal ligament stem cells  
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during  odontoblast      cell differentiation [ 84 – 86 ]. Following a microarray study, it 
was discovered that miR-338-3p could induce odontoblast differentiation through 
regulating expression of RUNX2, and further functional tests revealed that this 
miRNA targets RUNX2 in both gene and protein levels. Therefore, targeting of 
KLF4 by miR-338-3p may be a crucial step towards odontogenic differentiation 
[ 70 ]. In another study, miR-720 expression was found to decrease side population 
of DPSCs when compared with main population. Overexpression of miR-720 
increased differentiation of hDPSCs into odontogenic lineage through regulating 
the expression of NANOG which is responsible for stemness maintenance [ 50 ]. 
Besides, 10 different predicted miRNAs determined using 4 different online target 
prediction databases have been shown to regulate expression of  dentin sialophos-
phoprotein (DSPP)     , an important marker to identify odontogenic differentiation. 
Among the 10 miRNAs, miR-32, miR-885-5p and miR-586 regulated DSPP 
expression in 293-T cells, suggesting that such an interaction can be possible in 
differentiation of DPSCs as well [ 71 ]. Dentin matrix protein 1 which is essential 
in odontogenesis can be regulated by let-7 [ 72 ]. During the differentiation of 
odontoblastic cells, miR-27 was up-regulated. Briefl y, transfection of MDPC-23 
cell line with miR-27 mimic increased the odontogenic differentiation. Furthermore, 
miR- 27 was found to inhibit APC, a negative regulator of WNT/β-catenin path-
way, and WNT/β-catenin pathway induced differentiation of odontoblastic cell 
line MDPC- 23 [ 73 ].  

3.5.2      Osteogenic Differentiation      

 Several studies explored that DSCs have the ability for osteogenic differentiation. 
For example,   MacDougall     et al. showed that PDLSCs can differentiate into osteo-
genic lineage [ 87 ]. miRNA regulation of DSCs during osteogenic differentiation 
has been studied by several groups. miR-17 level decreased during osteogenic dif-
ferentiation of PDLSCs of healthy donors [ 74 ]. miR-17 targets the SMAD specifi c 
E3 ubiquitin protein ligase 1 (Smurf1) gene, a negative regulator of osteogenic dif-
ferentiation as presented in other studies [ 88 – 90 ]. On the other hand, when miR-17 
is overexpressed, expression of osteogenic differentiation related gene RUNX2 and 
functional osteogenic markers increase. Another study showed that miR-218 level 
decreased during osteogenic differentiation of PDLSCs,       DPSCs and gingiva-
derived MSCs. After DSCs were differentiated into osteogenic lineage, an increase 
in the expression of RUNX2 were observed, confi rmed by qPCR. They also com-
pared miRNA profi le of both undifferentiated and differentiated DSCs and reported 
that expression levels of 8 miRNAs decreased during osteogenic differentiation. 
Among the differentially expressed miRNAs, the most downregulated miRNA, 
miR-218, targeted RUNX2 expression [ 75 ]. In another study, effects of the osteopo-
rosis drug, ibandronate, on cell proliferation and miRNA profi le of PDLSCs have 
been investigated. Ibandronate treatment resulted in differentiation of PDLSCs into 
osteogenic lineage [ 76 ]. Eighteen miRNAs (2 upregulated, 16 downregulated) were 
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dysregulated during the process. Expressions of miR-26a, miR-18a, miR-141 and 
miR- 200b decreased during ibandronate-induced osteogenic differentiation of 
DSCs, and SMAD1, connective tissue growth factor (CCN2), DLX5 and SMAD5 
were the candidate targets for these miRNAs.  

3.5.3     Other  Lineages   

 Between the miRNA profi le of undifferentiated DSCs and differentiated insulin- 
producing cells, 7 miRNAs including mir101a, miR-101b, miR-181c, miR-29a, 
miR-29b, miR-29c and miR-30e upregulated, and miR-183 downregulated during 
differentiation [ 77 ]. After differentiation of DPSCs into insulin-producing cells, it 
was found that forkhead box O1 (FOXO1), a key gene in pancreatic differentiation, 
upregulated in differentiated insulin-producing cells, indicating that miR-183 could 
regulate FOXO1 expression. Taken together, we can interpret that downregulation 
of miR-183 during pancreatic cell differentiation provides more abundant of FOXO1 
which can facilitate the differentiation. 

 There is lack of miRNA research for many lineages that DSCs can differentiate into. 
Further studies should strictly be conducted to elucidate the roles of miRNAs in DSC 
differentiation into other lineages such as chondrocytes, neurons and adipocytes.   

3.6     Expression of miRNA in Dental Tissues 
 and Stem Cell Niche   

 Although stem cells have self-suffi ciency to a certain extent in terms self-renewal, 
preservation of stemness, migration and differentiation, the tissue environment in 
which stem cells are positioned is very important for the stem cells to function prop-
erly. Stem cell niches are local tissue environments that have the duties of mainte-
nance and regulation of the stem around them. Stem cell dormancy and activation 
upon injury are also regulated by the niche. 

 Understanding the stem cell niche around DSCs will not only help us to better 
understand the biological mechanisms behind DSCs but also help us to acquire 
potentially more potent stem cells from various tooth tissues. Additionally, 
 explanation of how the niche acts to help stem cells self-renew may lead to grow 
these cells more effi ciently in vitro. In the dental pulp, multiple stem cell niches 
have been identifi ed in the perivascular area by determining the microenvironments 
that produce nestin, vimentin, Oct3 and Oct4 [ 91 ]. Another widely studied stem cell 
niche is the cervical loop of rodent incisors, in which epithelial stem cells are main-
tained and regulated by mainly FGF signaling through the Notch pathway [ 92 ]. 

 miRNAs produced in dental tissues and DSC microenvironment can directly 
affect target mRNAs intracellularly or can function extracellularly, affecting 
 neighboring cells. As the importance of stem cell niches has been realized, specifi c 
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miRNA markers and their potential roles have become an emerging fi eld of study. 
For instance, in the testis, there is a huge potential of miRNAs regulating the sur-
rounding somatic cells, and the spermotogonial cells with the possibility of intercel-
lular regulation [ 93 ]. Although MSCs that have been isolated from bone marrow, 
adipose tissue and cord blood had similar miRNA profi les, each tissue type had 
specifi c miRNA levels that may be connected to their surrounding tissue [ 94 ]. 

 Studies on the miRNA profi le of dental tissues, their comparison and potential 
effects on DSCs have been widely carried out in several researches. In one study, 
fi broblasts from dental pulp, gingiva and periodontal ligament have been shown to 
display different miRNA profi les. miR-146a and miR-155 have been singled out to 
show this tissue dependent expressions. A number of miRNAs that have been 
detected have known functions in extracellular matrix turnover and infl ammation. 
Stimulation by lipopolysaccharides derived from  Escherichia coli  resulted in the 
increase of miR-146a and decrease of miR-155 solely in the gingival fi broblasts [ 95 ]. 

 The adult mouse incisor tooth is a good model organ not only for DSC studies but 
also for other ASCs. Unlike any human teeth, mouse incisors grow  continuously   during 
adulthood. Labial and lingual cervical loops are two epithelial stem cell niches that give 
rise to this continuously growing tooth by presenting progeny that migrate out of the 
niche and move towards the tip of the tooth, and eventually differentiate into enamel-
producing ameloblasts. miRNAs have potentially play an important role in maintaining 
the balance of self-renewal and differentiation in the stem cell niche of these cells. 
Labial cervical loop forming ameloblast stem cells, lingual cervical loop containing 
stem cells that do not give rise to ameloblasts, and ameloblasts were used in a miRNA 
profi le comparison study. Twenty-six miRNAs were differentially expressed between 
labial and lingual cervical loops which would highlight the importance of miRNAs in 
ameloblast stem cell renewal. Thirty-fi ve miRNAs were differentially expressed 
between labial cervical loop and ameloblast cells which would highlight the signifi -
cance of miRNAs in enamel differentiation. The labial cervical loop samples had 
increased miR-31, miR-96, miR-182, miR- 200c and miR-429, and decreased miR-21 
levels compared to the lingual cervical loop samples. miR-138, miR-141, miR-200c 
and miR-429 were highly expressed in ameloblasts, whereas miR-143 and miR-145 
levels decreased, when compared to labial cervical loop samples. miR-31 localized as 
expected in the labial cervical loop region especially in the T-A cell region [ 96 ]. 
Similarly, comparison of miRNA profi les of mouse incisors with molars proved that 
continuously developing incisors have a distinct miRNA profi le than the non-develop-
ing molars, suggesting an extensive role of miRNAs in the process. In the same study, 
miR-200c has been identifi ed as a regulator of Noggin, suggesting that this miRNA is 
essential for normal tooth development, and dental epithelial cell differentiation [ 97 ].  

3.7     Future Directions 

 Although ESCs are considered as the most functional cells in stem cell technology, 
ethical debate and diffi culties in cell collection and long term storage still persist. 
This undesirable situation forces researchers to improve the knowledge on ASCs. 
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Moreover, the emergence of iPSCs technology may help scientists to increase the 
potency of ASCs. As dental tissues emerge as reliable, sustainable and non-inva-
sive sources for ASCs, understanding the molecular mechanisms of DSC stemness 
and differentiation is crucial in order to optimize the manipulation of these cells 
in vitro and in vivo to be used in stem cells therapies and tissue engineering 
approaches. miRNAs are known to be important mediators of stem cell biology in 
any stage of life ranging from the embryonic stage into adult development. miR-
NAs are natural RNA interfering molecules that have been extensively studied in 
areas ranging from cancer to stem cell biology. Undoubtedly, to fully understand 
the mechanisms behind DSC biology, the miRNA profi les of each DSC source 
under every differentiation process must be monitored. Such studies could help to 
connect the missing links in canonical pathways and gene networks that transcrip-
tomics or proteomics cannot unveil. However, it is hard to miss the fact that miRNA 
studies have been neglected in the DSC fi eld. It is hard to fi nd satisfactory studies 
of miRNA profi les after DSC differentiation into particular lineages such as the 
neurons. Furthermore, present studies do not provide solid data due to lack of rep-
etition and sample number. The need for further miRNA profi ling studies also 
results from the increasing number of newly identifi ed miRNAs. Roughly, the 
number of miRNAs presented in the miRBase doubles in every 18 months thanks 
to high-throughput RNA sequencing technologies. As the database is updated, new 
versions of miRNA microarray ChIPs are presented; thus, past studies using older 
chip versions remain inadequate. 

 miRNAs have the potential to be utilized as molecular transfecting agents as 
well. Fully understanding the specifi c miRNAs for DSC differentiation would make 
it possible to use miRNAs to direct differentiation toward the desired path. Since 
differentiation is a dynamic process in which genes are turned on and off periodi-
cally and at well-defi ned times, stable transfections would not be very helpful. 
Besides, a stably transfected cell would contain extra pieces of DNA, which is not 
desired for cells that will be transferred to humans. Moreover, the usage of viruses 
for stable transfection is risky. miRNAs are excellent molecules for transient trans-
fection, easier than other types of therapeutic nucleic acids. There is no need for 
vectors, and lipofection-mediated transfection is a well-defi ned method for miRNA 
transfection with high yield and minimum toxicity. Since the stability of mature 
miRNAs is very low, it would be very easy to control the timing of target gene 
downregulation. All these factors make miRNAs ideal for controlling gene regula-
tion is DSC differentiation.     
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    Chapter 4   
 Signaling Pathways in Dental Stem Cells 
During Their Maintenance and Differentiation                     

     Genxia     Liu    ,     Shu     Ma    ,     Yixiang     Zhou    ,     Yadie     Lu    ,     Lin     Jin    ,     Zilu     Wang    , 
and     Jinhua     Yu     

4.1            Introduction 

 Dental stem cells (DSCs) residing in dental tissues possess the self-renewal and 
multipotential differentiation ability, and are essential in the process of tooth 
homeostasis, repair and regeneration. The maintenance,  proliferation   and differen-
tiation of DSCs are directly or indirectly regulated by a variety of factors, such as 
microenvironment, growth factors and donor ages. The complex network of sig-
naling pathways, including fi broblast growth factor (FGF), bone morphogenetic 
protein (BMP), Notch, nuclear transcription factor kappa-B (NF-κB), mitogen-
activated protein kinases (MAPKs), transforming growth factor-β (TGF-β), mam-
malian target of rapamycin (mTOR), phosphatidylinositol-4,5-bisphosphate 
3-kinase/protein kinase B (PI3K/AKT) and sonic hedgehog (SHH) signaling path-
ways, participate in regulating the formation, homeostasis, and differentiation of 
DSCs in the developing tooth and throughout the adulthood. Researches over the 
past years have given rise to the meaningful progress on the understanding of the 
signaling network.  
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4.2     Signaling Pathways in DSC Maintenance/Homeostasis 

 The signaling pathway is a series of cellular   proteins     that transfer a biological signal 
from a   receptor     on the cell membrane to the   DNA     in the cell nucleus. The pathway 
begins with a signaling molecule binding to the membrane receptor and ends when 
the nuclear DNA generates respective proteins and brings about some cellular 
changes ( e.g.,  cell differentiation). 

 During tooth development, DSCs can maintain the stable state, referred to as 
homeostasis, and many signaling pathways ( e.g. , Notch, BMP-SHH, MAPK and 
Eph/Ephrin signaling pathways) control the maintenance of stem cells in tooth. 

4.2.1     Notch Signaling Pathway 

 The  Notch signaling pathway   is a highly   conserved     signaling cascade and plays a 
key role in the stem cell maintenance and fate determination. There are usually four 
kinds of Notch receptors, i.e., Notch1, Notch2, Notch3 and Notch4. These receptors 
are single-pass transmembrane receptors. Notch ligands (Jagged1, Jagged2, Delta1, 
Delta2 and Delta3) interact with these membrane-bound Notch receptors and 
directly initiate Notch signaling pathway and downstream molecules to mediate the 
expression level of target genes (Fig.  4.1 ).

  Fig. 4.1    Notch signaling pathway. Notch ligands (Jagged1, Jagged2, Delta1, Delta2 and Delta3) 
interact with Notch receptors and then initiate the Notch pathway. The activation of Notch subse-
quently gives rise to a release of  Notch intracellular domain (NICD)   into the cytoplasm where it 
translocates to the nucleus. In the nucleus, NICD binds to RBP-J and MAML1, recruits the tran-
scriptional co-activators and leads to the transcription of target genes       
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   Previous studies have shown that Notch receptors are absent in the adult rat pulp 
tissues but the expression level will be reactivated during the repair of tooth injury 
[ 1 ]. Notch signaling is also essential for the development of dental epithelium and 
enamel organ [ 2 ]. Notch receptors as well as Notch ligands are expressed in both 
dental epithelial and mesenchymal cells during the odontogenesis, and initiate the 
stage of epithelial-mesenchymal interactions for tooth morphogenesis [ 3 ,  4 ]. Notch 
and FGF signaling pathways are associated with dental epithelial stem cells in regu-
lating their fate and FGF10 maintains the stem cell population during the develop-
ment of mouse incisors [ 5 ,  6 ].  

4.2.2     SHH Signaling Pathway 

 SHH signaling  path  way is a chain of proteins that transfer the information to cells 
for proper embryonic development. In addition, it is highly active in cell prolifera-
tion and differentiation of both epithelial and mesenchymal stem cells (MSCs). 

 In mice, dental epithelial stem cells residing in the cervical loop at the proximal 
end of the labial side of incisors are maintained along with the MSCs, and they 
allow the incisors to grow continuously throughout life [ 7 ]. Researchers have 
focused on the molecular mechanisms of this phenomenon, and fi nd that SHH sig-
naling pathway is related to the stem cell homeostasis [ 8 ]. Moreover, BMP-Smad4- 
SHH signaling can regulate the epithelial stem cell maintenance in tooth 
development. Sox2 +  epithelial stem cells exist transiently during the molar develop-
ment, and sonic hedgehog-glioma-associated oncogene 1 (Shh-Gli1) activity pro-
vides a niche for maintenance of these stem cells. However, loss of Smad4 results in 
ectopic SHH-Gli1 signaling and maintenance of Sox2 +  cells [ 9 ]. This study has 
proved the importance of crosstalk between BMP and SHH signaling pathways in 
the regulation of epithelial stem cell fate during odontogenesis. Moreover, SHH 
pathway can inhibit the osteo/dentinogenic differentiation of stem cells from apical 
papilla [ 10 ].  

4.2.3     MAPK Signaling Pathway 

  MAPK signaling pathway   (also known as the Ras-Raf-MEK-ERK pathway) con-
tains several proteins, including MAPK (mitogen-activated protein kinases), that 
communicate by driving the phosphate groups into a neighboring protein (work 
as an "on" or "off" switch manner). This pathway is involved in cell apoptosis, 
survival, migration, proliferation, differentiation as well as other cellular pro-
cesses. Three main MAPK family members (extracellular signal-regulated kinase 
(ERK), c-Jun-N-terminal kinase (JNK) and p38) are distinctly referred to these 
processes [ 11 ]. 

4 Signaling Pathways in Dental Stem Cells During Their Maintenance…



72

 Recent literatures have provided convincing evidences that MAPK signaling 
pathway plays a critical role in the maintenance, migration, proliferation and dif-
ferentiation of DSCs. Two-hydroxyethyl methacrylate (HEMA), a kind of resin-
based dental materials, can inhibit the cell migration of dental pulp stem cells 
(DPSCs) by phosphorylation of p38 but not ERK, or JNK MAPK pathways [ 12 ]. 
p38 MAPK and insulin-like growth factor 1 receptor (IGF-1R) are responsible for 
the mitotic quiescence of DPSCs. The inhibitors of IGF-1R can improve the sphere- 
forming capacity of DPSCs and decrease the colony-forming capacity without caus-
ing cell death, in contrast to the p38 inhibitors. IGF-1R and p38 MAPK signaling 
pathways are interrelated at the molecular levels in DPSCs. Signals from these path-
ways converge as signal transducers and activators of transcription 3 (STAT3), and 
oppositely modulate its activity to maintain the quiescence or enhance the self- 
renewal and differentiation of cells [ 13 ]. 

 Previous studies have proposed that interleukin 8 (IL-8) might be involved in 
regulating the immune response of DPSCs and promoting the recruitment process 
of neighboring DPSCs to the site of injury [ 14 ]. Lipopolysaccharide (LPS), which 
mediates IL-8 expression in DPSCs, is associated with toll-like receptor 4 (TLR4), 
myeloid differentiation marker 88 (MyD88), MAPK and NF-κB signaling 
 pathways. Overall results of the study indicate that NF-κB and MAPK signaling 
pathways are closely involved in dental pulp infl ammation and maintaining of the 
homeostasis of DPSCs niche. Another study reveals that DPSCs may play impor-
tant roles in the immune responses during the pulp infection via activating NF-κB 
signaling   pat  hway [ 15 ].  

4.2.4      Eph-Ephrin Signaling Pathway   

 Eph-Ephrin signaling pathway includes Ephs and their corresponding   ephrin     ligands 
(ephrins), which are both membrane-bound proteins. Thus, the activation of Eph- 
Ephrin intracellular pathways can only happen through the direct cell-cell interac-
tions. Eph-Ephrin signaling regulates diverse biological processes during the 
embryonic development ( e.g. , formation of tissue boundaries, cell migration, angio-
genesis, and stem cell differentiation). 

 Tooth development occurs through interactions between cranial neural crest- 
derived mesenchymal and epithelial cells [ 16 ], while DPSCs reside mainly within 
the perivascular niche of dental pulp tissue. The Eph family of receptor tyrosine 
kinases and their ligands, ephrin molecules, are reported to play an imperative role 
in the migration of neural crest cells throughout the development and maintenance 
of stem cell niche (Fig.  4.2 ) [ 17 ].

   DPSCs exposed to EphB2-Fc and EphB1-Fc can exhibit a signifi cantly rounder 
and smaller morphology than hDPSCs treated with human IgG-Fc controls. 
EphB2-Fc treated DPSCs present the same migration speed as human IgG-Fc treated 
DPSCs while the migration ability of EphB1-Fc treated DPSCs decreases signifi -
cantly. The ERK inhibitor U0126 can partially reverse the reduction of  migration 
speed of EphB1-Fc treated DPSCs [ 18 ]. These data suggest that EphB-EphrinB 
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pathway also mediates human DPSCs attachment, spreading and migration in 
DPSC niche, in which ERK-MAPK signaling are involved in the regulation of  the  se 
processes.   

4.3     Signaling Pathways in DSC  Migration   

 Stem cells can adhere, grow and migrate to the damaged areas during infl ammatory 
response or wound healing. There are some critical signaling pathways that have 
great impacts on the migration of DSCs. 

4.3.1      MAPK Signaling Pathway   

 ERK, JNK and p38 MAPKs can be activated by a variety of environmental factors. 
Activated ERK, JNK and p38 can translocate to the nucleus where they phosphory-
late the transcription factors (c-Jun, c-Fos, Elk-1 and Sp1), and then regulate the 
downstream gene expression (Fig.  4.3 ).

  Fig. 4.2    Eph-Ephrin signaling pathway. Eph family is composed of receptor tyrosine kinases and 
their ligands. The activation of EphB2 bound by EphrinB1 stimulates the HRAS-Erk signaling 
pathway, and the increase in MEK and/or Erk activity, reversely enables the enhanced expression 
of EPHB2 under the stimulation of EphrinB1. The phosphorylation of EphB2 can also activate the 
expression of p120RASGAP, leading to the inhibition of HRAS       
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   Previous studies have proved that MAPKs, including JNK, p38 and ERK are 
involved in the cell migration process [ 19 ]. In particular, JNK regulates cell migra-
tion by phosphorylating paxillin, doublecortin X-linked (DCX), Jun and microtubule- 
associated proteins. The antimicrobial peptide LL37 promotes the migration of 
DPSCs via activating the epidermal growth factor receptor (EGFR)-JNK signaling 
pathway, which may lead to the increased regeneration of pulp-dentin complexes 
[ 20 ]. MAPK regulates the directional migration of cells via the phosphorylation of 
MAPK-activated protein kinase 2/3 (MAPKAP 2/3). Some studies have demon-
strated that HEMA inhibits the migration of DPSCs at non-toxic doses, and such 
inhibition is associated with the p38 signaling pathway [ 12 ]. Moreover, LPS can 
promote the adhesion and migration of DPSCs by upregulating the expression of 
adhesion molecules and chemotactic factors, while inhibition of MAPK and NF-κB 
signifi cantly antagonizes LPS-induced adhesion and migration [ 21 ]. 

 The inhibition of JNK or p38 pathways in DPSCs signifi cantly decreases cell 
proliferation, alkaline phosphatase (ALP) activity, and mineralization ability stimu-
lated by hepatocyte growth factor (HGF). JNK and p38 inhibitors can affect F-actin 
remodeling induced by HGF and thus, contribute to HGF-induced migration [ 22 ]. 
The activation of fi broblast growth factor receptor (FGFR), ERK, JNK, and AKT 
can modulate the upregulation of focal adhesion molecules, stress fi ber assembly, 
and enhance cell migration induced by iRoot BP Plus [ 23 ]. ERK determines cell 
movement by the phosphorylation of myosin light chain kinase (MLCK), calpain or 
focal adhesion kinase (FAK). Overall, the different kinds of kinases in MAPK fam-
ily  a  ll appear to be capable of regulating cell migration via particular mechanisms.  

  Fig. 4.3    MAPK signaling pathway. ERK, JNK and p38 MAPKs are members of MAPK family 
which can be activated by a variety of environmental factors. Activated ERK, JNK and p38 can 
translocate to the nucleus where they  phosphorylate transcription factors   (c-Jun, c-Fos, Elk-1 and 
Sp1) and then regulate the downstream gene expression       
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4.3.2      PI3K/AKT Signaling Pathway   

 The PI3K/AKT pathway mainly contains the phosphatidylinositol 3-kinase (PI3K) 
and AKT. The pathway begins with an activation of a membrane receptor and phos-
phorylation of PI3K. Then, PI3K phosphorylates the lipids and generates the second 
messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) which subsequently 
activates the AKT. Activated AKT mediates the downstream responses by phos-
phorylating a series of intracellular proteins. 

 PI3K/AKT signaling pathway is critical in cell growth and migration. Firstly 
identifi ed in osteoblast-like cell line MC3T3-E1, periostin is a kind of matrix- 
cellular protein expressed in multiple tissues like bone, periodontal ligament, skin 
and various cancers [ 24 ,  25 ]. Periostin interacts with integrin molecule on the cell 
surface, mediating cell adhesion and migration of various kinds of cells. In peri-
odontal tissues, periostin is localized between the cytoplasmic processes of cement-
oblasts/periodontal fi broblasts and the adjacent collagen fi bers [ 26 ]. Periostin can 
induce cell proliferation and cell migration of periodontal ligament (PDL) cells by 
activating the PI3K/AKT signaling pathway (higher phosphorylation of AKT and 
the ribosomal protein S6) [ 27 ]. 

  Cartilage oligomeric matrix protein (COMP)      is another kind of matrix-cellular 
protein that is fi rstly detected in cartilage tissues [ 28 ]. Recent researches have 
revealed that COMP is essential in different diseases such as bone tissue disorders 
and atherosclerosis [ 29 ,  30 ]. Combination of recombinant angiopoietin 1 (Ang1), 
an important factor for endothelial survival and proliferation [ 31 ], COMP (COMP- 
Ang1) can promote the migration of periodontal ligament stem cells (PDLSCs) 
through the activation of PI3K/AKT signaling pathway [ 32 ]. Moreover, fi broblast 
growth factor-2 can stimulate the  dire  cted migration of PDLSCs via PI3K/AKT 
pathway [ 33 ].  

4.3.3      Eph-Ephrin Signaling Pathway   

 The EphB-EphrinB family consists of contact-dependent molecules that mediate 
various inhibitory or repulsive cellular responses depending on the model of signal-
ing. The EphB-EphrinB family has shown to be expressed in tooth development and 
plays critical roles in dental cell migration and tooth repair. EphrinB1 expression is 
downregulated in the dental pulp tissue of injured tooth, and it can inhibit the migra-
tion of DPSCs in vitro [ 18 ,  34 ]. EphB-EphrinB molecules are paramount for the 
perivascular DPSCs migration toward the dentin surfaces and differentiation into 
functional odontoblasts after the injury of dentin matrix [ 34 ]. The interaction 
between EphB and its corresponding   ephrin     ligand (EphrinB) is required for the 
attachment, spreading and migration of human DPSCs in its niche. However, the 
major role of EphB-EphrinB pathway in these processes is the induction of inhibi-
tory responses [ 18 ]. 
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 Other signaling pathway may also interact with the Eph signaling pathway. 
EphrinB1-induced DPSCs migration inhibition can be partially reversed by the 
suppression of MAPK signaling pathway [ 18 ]. The  action  s of PI3K signaling 
pathway on endothelial cell migration and proliferation can be mediated by EphB 
receptors [ 35 ].   

4.4     Signaling Pathways in DSC Proliferation 

 DSCs have a long-term proliferation capacity and generate many identical copies of 
themselves, which are regulated by several related signaling pathways. 

4.4.1     MAPK Signaling Pathway 

 MAPK pathway consists of many signaling molecules that can be activated by 
diverse extracellular stimuli. Activation of  MAPK pathway   can give rise to a variety 
of physiological effects, including cell apoptosis and proliferation. Many studies 
have revealed that chemical and mechanical stress can affect the proliferation of 
DSCs via activation of MAPK signaling pathway. For instance, cisplatin, a com-
monly used  chemotherapeutic agent  , can induce a greater genotoxic stress response 
in DPSCs in comparison to human dermal fi broblasts (HDFs). Cisplatin in higher 
concentrations can initiate the activation of all three main MAPK families ( e.g ., 
ERK, JNK and p38) and cell apoptosis in DPSCs [ 36 ]. Dental tissues are subjected 
to various kinds of mechanical stress such as compression fl uid-sheer stress and 
uniaxial vertical and horizontal stretch during jaw movement and occlusal forces. 
Mechanical stress can activate several intracellular signals such as MAPK through 
 mechanoreceptors   [ 37 ,  38 ]. Mechanical stretch can enhance the proliferation while 
suppressing the osteogenic differentiation of DPSCs. The stretch signifi cantly 
enhances the phosphorylation of AKT, ERK1/2, and p38 MAPK as well as upregu-
lating the proliferation of DPSCs [ 39 ]. 

  Epiregulin (EREG)  , a member of epidermal growth factor family, can enhance 
the proliferation ability of stem cells from apical papilla (SCAPs) by activating JNK 
MAPK pathway [ 40 ]. In addition, mechanical stress stimuli can augment the 
 proliferation of SCAPs by activating ERK 1/2 and JNK pathway [ 41 ]. Some 
researchers have established PDL tissue model under compression, and found that 
the prolonged compression can inhibit the cell proliferation by the activation of 
MAPK pathway [ 42 ].  
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4.4.2     PI3K/AKT Signaling Pathway 

  PI3K pathway   is one of the key pathways in the regulation of crucial cellular pro-
cesses such as cell survival, growth, migration, apoptosis, transcription and transla-
tion. Stem cell factor (SCF), one of the prominent homing factors, can bind to c-Kit 
receptor (CD117) and recruit stem cells toward homing sites [ 43 ]. Both SCF and 
c-Kit are highly expressed in differentiation of DPSCs. SCF treatment in dental pulp 
progenitors may enhance the phosphorylation of ERK and/or AKT, and stimulate 
the cyclin D3 and CDK4 (cell cycle proteins) expression in DPSCs [ 44 ]. In addition, 
the increasing fl uid shear stress (FSS) and periostin may regulate the proliferation 
of human PDLSCs via the PI3K/AKT/mTOR signaling axis [ 27 ,  45 ].  

4.4.3     NF-κB Signaling Pathway 

  NF-κB   (nuclear factor kappa-light-chain-enhancer of activated B cells) is a protein 
complex that modifi es the transcription of DNA in almost all animal cell types. 
Canonical NF-κB pathway is regulated by the inhibition of IκB kinase complex 
(IKK-a, IKK-b and IKK-c). The IKK complex phosphorylates/degrades the IκB, 
and releases NF-κB subunits, mainly p65 and p50. These phosphorylated subunits 
enter the cell nucleus and bind to DNA, which subsequently bring about a variety of 
biological processes including cell proliferation, cell apoptosis, and cell differentia-
tion. Moreover, NF-κB signaling pathway is greatly involved in the process of DSC 
proliferation. DPSCs derived from injured pulps present a lower proliferative capac-
ity than normal DPSCs, and this process is proposed to be related with NF-κB sig-
naling pathway [ 46 ]. Moreover, donor sodium nitroprusside (SNP) can induce nitric 
oxide (NO) production, and downregulate the proliferation of hPDLSCs. Blockade 
of NF-κB signaling suppresses the SNP-induced growth inhibition, showing that the 
infl uence of NO on the  proliferatio  n of hPDLSCs is conducted by NF-κB signaling 
pathway [ 47 ].  

4.4.4     Notch Signaling Pathway 

 Notch signaling governs the cell fate determination of adult and  embryonic tissues  . 
The Notch ligand, Delta1, is known to affect the proliferation and differentiation of 
various tissue specifi c stem cells. Studies have revealed that Notch receptors and 
Delta1 ligand are identifi ed and expressed in DPSCs. The proliferation index (PI) 
and colonies of dental pulp cells are signifi cantly upregulated in Delta1 transduced 
DPSCs than the control groups (wt- and vector transduced DPSCs). Therefore, it 
can be proposed that Notch-Delta1 signaling is essentially associated with the pro-
liferation of DSCs [ 48 ].  
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4.4.5      Wnt/β-Catenin   Signaling Pathway 

 The canonical Wnt pathway is a key component in the induction of epithelial- 
mesenchymal interactions, and actively participates in tooth morphogenesis and 
development. WNT10A, a member of Wnt family, can promote the proliferation 
ability and negatively regulate the odontoblastic differentiation of DPSCs [ 49 ]. 
Moreover, the canonical Wnt/β-catenin pathway can facilitate the proliferation of 
SCAPs [ 50 ]. In addition, bioactive scaffolds containing lithium ions can enhance 
the proliferation of PDLSCs via the activation of Wnt/β-catenin pathway [ 51 ]. 
Recent studies have revealed that stress-associated periodontal disturbance may 
be due to GC-induced changes in PDLSCs. Dexamethasone treatment can induce 
the expression of several genes including dickkopf-1 (DKK-1) in PDLSCs, and 
then inhibit Wnt-mediated  activati  on of β-catenin signaling as well as their growth 
rate [ 52 ].  

4.4.6     Other Signaling Pathways 

 TGF-β2 may infl uence the growth and differentiation of DPSCs through an auto-
crine way via the activation of  ALK/Smad2/3-signal   transduction pathways [ 53 ]. 
Small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) can 
decrease the DPSC proliferation, which may be mediated by mTOR signaling path-
way [ 54 ]. ITGA5 down-regulation inhibits the proliferative capacity of hDPSCs, 
and promotes their odontogenic differentiation, suggesting that ITGA5 signaling 
pathway can negatively affect the odontogenic differentiation of hDPSCs and may 
help hDPSCs to remain in a proliferative and undifferentiated state [ 55 ].   

4.5     Signaling Pathways in DSC Differentiation 

 DSCs are undifferentiated cells that have a special capacity to differentiate into 
specialized cell types. More and more studies have found that many kinds of signal-
ing pathways are involved in the multiple differentiation abilities of DSCs. 

4.5.1     TGF-β Signaling Pathway 

 TGF-β1 is a multifunctional cytokine and intimately involved in the metabolism of 
several tissues, including dental pulps. TGF-β signaling pathway is crucial for 
epithelial- mesenchymal interactions, especially in those vital interactions during 
tooth morphogenesis. Interaction of  TGF-β   with the membrane TGF-β receptor I 
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and II mediates the activities of multiple kinds of signaling pathways, and then 
regulates the expression levels of TGF-β related genes via the cascade interactions 
among these pathways (Fig.  4.4 ). TGF-β1, TGF-β2, and a small quantity of TGF-β3 
mRNAs are expressed in DPSCs [ 53 ]. TGF-β receptors I/II are both expressed in 
odontoblasts and pulp cells, and they response to subtle variations in expression 
levels and participate in the tissues' response to injury [ 56 ].

   Exogenous TGF-β2 can upregulate the expression levels of nestin and dentin 
sialophosphoprotein (DSPP) in DPSCs, indicating that TGF-β signaling controls 
the odontoblast differentiation and dentin formation ability during tooth morpho-
genesis [ 57 ]. TGF-β2 possibly mediates the differentiation of DPSCs at specifi c 
stages, which cooperates with other factors through multiple signaling pathways, 
especially with the ALK/Smad2/3-signal transduction pathways [ 53 ]. 

 TGF-β signaling also participates in nerve growth factor (NGF) regulation dur-
ing pulp tissue repair. TGF-β can up-regulate NGF in hDPSCs via p38 and JNK 
MAPK pathways [ 58 ]. Some studies suggest that TGF-β1 can inhibit the prolifera-
tion of SCAPs and their mineralization by decreasing the osteogenic/dentinogenic 
gene expressions [ 59 ]. In detail, TGF-β1 promotes the cell growth, collagen content 

  Fig. 4.4    TGF-β signaling pathway. TGF-β signaling pathway is crucial for the tooth morphogen-
esis and repair. Interaction of TGF-β with the membrane TGF-β receptor I and II mediates the 
activities of multiple kinds of signaling pathways ( e.g. , MAPK, Wnt, Smad and PI3K/AKT path-
ways), and then regulates the expression levels of TGF-β related genes via the cascade interactions 
among these pathways       
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and ALP activity at lower concentrations (0.1–1 ng/mL) but down-regulates the 
activity at higher concentrations (>5 ng/mL) by  regu  lating ERK1/2 and Smad2 sig-
naling pathways [ 60 ].  

4.5.2     BMPs Signaling Pathway 

  BMP2 and BMP4 genes   are proved to be expressed and play essential roles during 
embryonic tooth development. The BMP2 gene is also expressed in post-natal 
odontoblasts and ameloblasts during tooth differentiation period from birth to 
approximately 3 weeks after birth. Dentin-derived BMP2 possesses the ability to 
drive the differentiation of DSCs from exfoliated deciduous teeth (SHEDs) into 
mature dentin-forming  odontoblasts   [ 61 ]. BMP2 transcripts are restricted in dental 
papillae, and remarkably upregulated during odontoblastic differentiation [ 62 ]. 

 Both SHEDs and adult DPSCs express BMP receptors, including BMPR-IA, 
BMPR-IB and BMPR-II. The blockade of BMP2 signaling inhibits the expression 
of odontoblastic differentiation markers in SHEDs. Similarly, BMP2 drives the dif-
ferentiation of SHEDs into odontoblasts [ 63 ]. Some studies suggest that lentiviral- 
mediated BMP2 gene transfection can accelerate the odontogenic differentiation 
capability of human SCAPs in vitro [ 64 ]. Meanwhile, hPDLSCs/rAd-BMP2 effec-
tively promote the osteogenesis both in vitro and in vivo. Thus, hPDLSCs/rAd- 
BMP2 can be applied in a novel therapeutic approach for the regeneration of 
deteriorated bony defects [ 65 ]. 

 BMP7 can induce the gene expression of several markers of  cementoblasts and 
cementocytes  , such as protein tyrosine phosphatase-like member/cementum attach-
ment protein (PTPLA/CAP) and cementum protein 1 (CEMP1) [ 66 ]. BMP7 treat-
ment upregulates the transcription of Sp7/Osterix and PTPLA/CAP by binding to 
specifi c short motifs termed as GC-rich Smad-binding elements (GC-SBEs) located 
in the human PTPLA/CAP and CEMP1 promoter. The gene expression levels of 
RUNX2 and ALP are increased afterward while the expression of odontogenic 
markers such as DSPP, bone sialoprotein (BSP) and dentin matrix acidic phospho-
protein 1 (DMP1) are not affected [ 67 ].  

4.5.3     NF-κB Signaling Pathway 

  NF-κB signaling   not only participates in regulating immune responses and infl am-
mation, but also plays critical roles in differentiation of MSCs including DSCs 
(Fig.  4.5 ). NF-κB signaling pathway is activated in case of estrogen defi ciency and 
subsequently decreases the osteo/odontogenic differentiation of DPSCs. Inhibitors 
of the NF-κB effectively rescues the down-regulated differentiation potential of 
DPSCs [ 68 ]. DPSCs derived from the injured pulps exhibit the robust osteogenic 
potential and weak odontogenic capacity as compared with healthy DPSCs. The 
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inhibitors of NF-κB pathway can reverse the process that the osteogenic potential of 
DPSCs is signifi cantly reduced while the odontogenic differentiation is enhanced. 
Therefore, the NF-κB signaling pathway can be proposed to be associated with the 
osteo/odentogenic differentiation of DPSCs [ 46 ].

   LPS can activate TLR4, and regulate NF-κB pathway of human PDLSCs, lead-
ing to decrease in osteogenic potential. Thus, blockage of TLR4 or NF-κB pathway 
might provide a new approach for periodontitis treatment [ 69 ]. NF-κB pathway-
activated SCAPs present higher proliferation/ migr  ation capacity and increased 
odonto/osteogenic ability than control cells. Likewise, NF-κB pathway-suppressed 
SCAPs inversely display lower proliferation/migration ability as well as decreased 
odonto/osteogenic ability than control group [ 70 ].  

4.5.4     MAPK Signaling Pathway 

  p38-MAPK   is involved in the infl ammatory response of PDLSCs during the chronic 
periodontitis in which p38 is strongly induced in PDLSCs derived from the infected 
periodontal tissues. The p38 inhibition markedly suppresses the osteogenic differ-
entiation of PDLSCs in a chronic infl ammatory microenvironment [ 71 ]. 

  Fig. 4.5    NF-κB signaling pathway. Small molecules like TNF-α and IL-1 can induce PI3K/AKT, 
TAK/TAB/IKK and JNK/MEK/MMP1 signaling pathways in the  cytoplasm  . All these signalings 
will converge to the IκB/NF-κB at the cytoplasmic level and then translocate to the nucleus to regu-
late the expression of NF-κB target genes       
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 Natural mineralized scaffolds ( e.g. , demineralized dentin matrix-DDM, ceramic 
bovine bone-CBB) can induce DPSCs to exhibit higher levels of ALP activity and 
mRNA expression of osteo/odentogenetic markers than other scaffolds via the acti-
vation of MAPK signaling pathway. However, the inhibitors of ERK1/2 and p38 can 
down-regulate the odontogenic differentiation ability of DPSCs cultured on DDM 
and CBB [ 72 ]. BMP9 can promote the bone formation of PDLSCs. p38 and ERK1/2 
MAPKs are involved in BMP9-induced osteogenic differentiation of PDLSCs. The 
inhibitors of ERK1/2 and p38 increase BMP9-induced osteogenic differentiation of 
PDLSCs [ 73 ]. Moreover,   IGF-1    can induce the phosphorylation of ERK and JNK in 
PDLSCs, and promote the osteogenic differentiation of PDLSCs, suggesting the 
involvement of   MAPK     signaling pathway in the   IGF-1    -based differentiation of 
PDLSCs [ 74 ]. Stretch can increase the proliferation rate of DPSCs via the activation 
of ERK pathway, and inhibit the osteogenic differentiation in which PI3K/AKT and 
ERK pathways are partly involved [ 39 ]. Mechanical stress can enhance the odonto/
osteogenic differentiation of SCAPs via the activation of ERK 1/2 and JNK MAPK 
signaling pathways [ 75 ]. In addition, hypoxia can affect the osteogenic potential, 
mineralization and paracrine release of therapeutic factors from PDLSCs, and the 
process is closely related to ERK and p38 MAPK signaling pathways [ 76 ]. 

 MAPK signaling pathway also plays an important role in the revascularization of 
dental-pulp complex. LPS stimulates the expression level of vascular endothelial 
growth factor (VEGF) in DPSCs and human dental pulp  fi broblast  s via ERK1/2 
MAPK signaling pathway [ 77 ].  

4.5.5      mTOR Signaling Pathway   

 mTOR kinase is the catalytic subunit of at least two distinct signaling complexes: 
target of rapamycin complex 1 and 2 (TORC 1 and 2) [ 78 ]. TORC 1 is a popular 
regulator of protein translation [ 79 ], and is essential for cell growth, cell prolifera-
tion, and cell cycle. On the other hand, TORC 2 is involved in the cytoskeleton 
reorganization and cell survival [ 78 ]. In the concept of DSC differentiation, the 
mTOR signaling pathway is activated in the process of osteogenic differentiation of 
hDPSCs [ 80 ]. 

 Both TORC1 and TORC2 play critical roles in the modulation of DPSCs while 
TORC1 is essential in SHEDs differentiation. Inhibition of the TORC1 complex 
proteins (mTOR or raptor) can effectively decrease the mineralized matrix deposi-
tion of SHEDs. Conversely, when the TORC2 complex proteins are downregulated, 
both mineralization and differentiation markers are increased in SHEDs. 
Furthermore, the increased mineralization of SHEDs is dependent on functioning 
TORC1 complex [ 81 ]. 

 Pluripotin can affect the maintenance of hDPSCs properties, decreasing cell pro-
liferation, increasing the expression of STRO-1, NANOG, OCT4, and SOX2, and 
diminishing cell differentiation through various signaling pathways  including   
mTOR-signaling pathway [ 54 ].  
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4.5.6      Wnt/β-Catenin Signaling Pathway   

 Nineteen Wnt family proteins are divided into two main categories, canonical and 
non-canonical wnt signaling pathways, based on their role in cytosolic β-catenin 
stabilization [ 82 ]. Canonical Wnt signaling transduces their signals via regulation 
of β-catenin levels and is thought to be of much importance in the tooth develop-
ment and self-renewal of stem cells (Fig.  4.6 ).

   After transduction with canonical Wnt-1 by retrovirus-mediated infection, 
matrix-cellular protein osteopontin and type I collagen are upregulated while ALP 
activity and the mineralization of DPSCs are inhibited. Over-expression of β-catenin 
can effectively inhibit the differentiation and mineralization of DPSCs, indicating 
that DPSC differentiation is downregulated via the activation of Wnt/β-catenin sig-
naling pathway [ 83 ]. Wnt3A effectively induces ALP activity in immortalized 
SCAPs (iSCAPs), and BMP9 also induces the expression of osteocalcin and osteo-
pontin as well as matrix mineralization of iSCAPs. Moreover, BMP9 and Wnt3A 

  Fig. 4.6    Wnt/β-catenin signaling pathway. Wnt signaling pathway is divided into the canonical 
Wnt signaling and non-canonical Wnt signaling. The former plays a crucial role in tooth develop-
ment. Wnt protein binds its receptor Frizzled and co-receptor LRP5/6, and stimulates the LRP5/6 
phosphorylation. Phosphorylated LRP5/6 recruits Axin to the membrane and disrupts the Axin 
complex that containing APC and GSK3β. GSK3β phosphorylates β-catenin, subsequently, the 
phosphorylated β-catenin enters the nucleus, where it binds TCF/LEF and co-activators, and acti-
vates the downstream gene expression       
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can act synergistically, and their ability to induce the osteo/odontogenic differentia-
tion will be diminished by knockdown of β-catenin [ 84 ]. 

 Zinc-bioglass (ZnBG) incorporated within calcium phosphate cements (CPC) 
can activate the odontogenic differentiation and promote the angiogenesis of DPSCs 
in vitro. ZnBG upregulates the integrins and their downstream signaling pathways 
including canonical and non-canonical Wnt signaling pathways [ 85 ]. 

 After osteogenic genes in PDLSCs are increased by down-regulating anti- 
differentiation noncoding RNA (ANCR), the osteogenic differentiation of PDLSCs 
is improved. When the canonical WNT signaling pathway is suppressed, the osteo-
genic differentiation of PDLSC/ANCR-RNAi cells is inhibited too, indicating that 
Wnt/β-catenin signaling pathway may play a crucial role in the ANCR-mediated 
osteogenic differentiation of PDLSCs [ 86 ]. Nicotine and TNF-α can induce the 
osteogenic differentiation defi ciency of PDLSCs by activating WNT signaling [ 87 , 
 88 ], and down-regulation of β-catenin level can activate the non-canonical Wnt/Ca 2+  
pathway, leading to the promotion of osteogenic differentiation in PDLSCs [ 89 ]. 
The β-catenin also plays an important role in the osteo/odontogenic differentiation 
of SCAPs. Silencing of β-catenin in SCAPs can reduce BMP9/WNT3A-induced 
expression of osteocalcin/osteopontin and  m  atrix mineralization in vitro and ecto-
pic bone formation in vivo [ 90 ].  

4.5.7     Other Signaling Pathways 

 Shh signaling pathway is related to cell differentiation and  osteogenesis   which is 
negatively modulated by BMP signaling. It can repress the osteo/dentinogenic dif-
ferentiation of SCAPs [ 91 ]. Moreover, Notch signaling also participates in the 
odontoblastic differentiation of DSCs [ 2 ], which permits DPSCs differentiating into 
odontoblast-like cells in the appropriate inductive conditions. Notch signaling path-
way is also important in maintaining the correct balance between proliferation and 
differentiation of DPSCs. Activation of Notch signaling by Delta1 ligand can 
enhance the proliferation and odontogenic ability of DPSCs due to the increasing of 
the proliferation index (PI), DSPP protein expression level and calcifi ed nodules 
number in Delta1- DPSCs [ 48 ]. However, another study reports that the activation of 
Notch signaling by either Jagged1 or N1ICD can depress the differentiation of 
DPSCs into odontoblasts without interrupting cell proliferation [ 92 ]. In addition, 
Notch signaling pathway modulates the osteogenic differentiation of  dental follicle 
stem cells (DFSCs)      [ 93 ]. Therefore, we can conclude that distinct Notch ligand may 
induce different effects of Notch signaling on the differentiation of DSCs. The 
mechanism of these distinct effects remains puzzled and needs more explorations. 

  Trichostatin A (TSA)   is an effi cient histone deacetylase (HDAC) inhibitor with a 
wide spectrum of epigenetic activities known to mediate many kinds of  cellular 
behaviors  , including MSC differentiation. It can signifi cantly upregulate the expres-
sion levels of phospho-Smad2/3, Smad4, and nuclear factor I-C, while specifi c 

G. Liu et al.



85

inhibitor of Smad3 suppresses TSA-based differentiation of hDPSCs, suggesting 
that Smad signaling pathway is also involved in the differentiation of DPSCs [ 94 ]. 

 Basic FGF has been found to increase the neurosphere size and upregulate the 
expression of neurogenic markers of DPSCs. Inhibition of FGFR or Phospholipase 
Cγ (PLCγ) signaling can abolish the basic FGF-mediated neuronal differentiation 
of DPSCs [ 95 ].   

4.6     Signaling Pathway Networks 

 Crosstalk between cellular processes and molecular signaling pathways is frequent 
in any biological system. Signaling pathways can affect each other synergistically 
in maintaining cell survival, apoptosis, proliferation, differentiation as well as other 
cellular processes of DSCs. 

 Some similar stem cell–related genes can be detected in DPSCs and PDLSCs 
during their odontogenic/osteogenic differentiation. The genes exhibit consider-
able overlap with minor difference between DPSCs and PDLSCs. Numerous regu-
latory genes in odonto/osteogenic differentiation interact or crosstalk through 
Notch, Wnt, TGF-β/BMP, and cadherin signaling pathways [ 96 ]. Extracellular 
phosphate (Pi) can regulate the BMP2 expression level by cAMP/protein kinase A 
and ERK1/2 MAPK signaling pathways in human DPSCs [ 97 ]. TGF-β1 can down-
regulate the differentiation ability of human DPSCs through ALK5/Smad2/3 sig-
naling pathways [ 98 ]. Furthermore, p38 MAPK pathway is involved in regulating 
ALP activity of hDPSCs and may interact with Smad pathway [ 99 ]. As the main 
element of many pulp capping materials, calcium ions can upregulate the odonto-
blastic differentiation and mineralization of DPSCs. Calcium ions activate the 
BMP2-mediated Smad1/5/8 and ERK1/2 pathways to control the odontoblastic dif-
ferentiation of DPSCs in which Smad1/5/8 and ERK1/2 signaling converge at 
Runx2 in DPSCs [ 100 ]. 

 5' adenosine monophosphate-activated protein kinase (AMPK), AKT and mTOR 
signaling pathways act synergistically in the differentiation process of human 
DPSCs. AMPK, the upstream mechanism of AKT and mTOR signaling pathways, 
can regulate the osteogenic differentiation of human DPSCs via both early mTOR 
suppression-modulated autophagy and late activation of AKT/mTOR signaling 
axis. AKT inhibition restrains mTOR activation without infl uencing AMPK phos-
phorylation [ 101 ]. PIN1, a peptidyl-prolyl cis/trans isomerase, acts as an important 
modulator of  odontogenic and adipogenic   differentiation of hDPSCs. BMP, Wnt/β- -
catenin, MAPK and NF-κB pathway are involved in PIN1-mediated differentiation 
of hDPSCs [ 102 ]. Moreover, WNT5α mRNA and protein expressions rapidly 
increased in response to LPS treatment in a time- and dose-dependent manner. 
LPS- induced WNT5α expression is mediated through the TLR4/MyD88/PI3K/
AKT signaling pathways, which subsequently activate NF-κB signaling pathway in 
hDPSCs [ 103 ].  
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4.7     Conclusions and Prospects 

 Overall data has shown that the maintenance, proliferation, migration, and differen-
tiation of DSCs are regulated by a variety of signaling pathways. Although larger 
amount of recent studies have led to rapid expansion of knowledge of signaling 
molecular mechanisms in stem cell biology, this fi eld is still full of confusions and 
challenges. The complex  signaling networks   participating in the homeostasis, 
migration, proliferation and differentiation of DSCs are still in its infancy. DSCs are 
thought to be an appropriate and suffi cient candidate for tooth regeneration. 
However, their clinical applications remain much immature and diffi cult. Therefore, 
more laboratorial and clinical researches need to be conducted to explore the further 
pathway mechanisms, which are important to clarify the signaling-related behaviors 
of dental stem cells. Moreover, the upstream and downstream transcription factors 
as well as their detailed functions in these signaling pathways should be extensively 
investigated, so that we can easily and effi ciently smooth the potential diffi culties in 
stem cell-based tooth regeneration.     
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    Chapter 5   
 Genetically Engineered Dental Stem Cells 
for Regenerative Medicine                     

     Valeriya     V.     Solovyeva    ,     Andrey     P.     Kiyasov    , and     Albert     A.     Rizvanov     

5.1           Introduction 

 Mesenchymal stem cells (MSCs) of adult organism have multilineage differentia-
tion potential, secrete trophic growth factors that infl uence the microenvironment, 
and promote  angiogenesis and tissue regeneration  , as well as reduce infl ammation. 
MSCs naturally express cell surface markers (Cluster of Differentiation - CD mark-
ers) of CD44, CD73, CD90, CD105, but not markers of  hematopoietic stem cell   
CD45, CD34 and CD14. Of particular interest are immunosuppressive properties of 
MSCs, moreover, they usually do not form teratomas [ 1 ]. All these properties make 
MSCs promising materials to be used in  regenerative medicine   and tissue engineer-
ing. MSCs can be isolated from various sources such as bone marrow, adipose tis-
sue, cord blood, liver, lung, dental tissues etc. 

 Actively explored MSCs from dental and related tissues are dental pulp stem cells 
(DPSCs), dental follicle precursor cells (DFSCs), periodontal ligament stem cells 
(PDLSCs), stem cells from human exfoliated deciduous teeth (SHEDs), stem cells 
from the apical papilla (SCAPs) and human tooth germ stem cells (hTGSCs) [ 2 ,  3 ]. 

 Stem cells derived from human dental pulp [ 4 ] and postnatal dental follicle of 
wisdom tooth [ 5 ] have properties of MSCs, in which they retain the capacity of self- 
renewal and in vitro differentiation toward different cell types, including osteoblasts, 
cementoblasts, chondroblasts, adipocytes, muscle and nerve cells [ 6 ,  7 ]. In addition, 
DPSCs secrete neurotrophic factors (Nerve growth factor - NGF, Brain- derived neu-
rotrophic factor - BDNF, Glial cell line-derived neurotrophic factor - GDNF) and 
promote the survival of sensory neurons in vitro and motor neurons in vivo [ 8 ]. 

        V.  V.   Solovyeva    •    A.  P.   Kiyasov    •    A.  A.   Rizvanov ,  PhD, DSc      (*) 
  Institute of Fundamental Medicine and Biology ,  Kazan (Volga Region) Federal University , 
  Kazan ,  Russia   
 e-mail: albert.rizvanov@kpfu.ru  

mailto:albert.rizvanov@kpfu.ru


94

 Therapeutic application of MSCs can be enhanced by genetic modifi cation using 
various approaches of delivering recombinant genetic material. Introduction of 
recombinant genes into the target cell allows controlling of proliferation, migration, 
differentiation, cell-cell and cell-matrix interaction, secretion of soluble signaling 
molecules and apoptosis. 

 This chapter will describe current knowledge and recent developments in geneti-
cally engineered dental stem cells (DSCs) and their application in  regenerative 
medicine  .  

5.2     Genetic Modifi cation of MSCs and Their Biomedical 
Applications 

 One of the limitations of MSC application in regenerative medicine is the low sur-
vival of transplanted cells.  Genetic modifi cation   is a key tool for improving the 
therapeutic potential and viability of MSCs. Overexpression of various factors 
increases viability of MSCs under hypoxic conditions, protects from apoptosis, 
increases the proliferation, migration and differentiation capacity, and improves 
metabolic characteristics and angiogenic properties of the modifi ed cells. Secreted 
products (proteins, factors) by modifi ed MSCs may have paracrine and endocrine 
actions, which help to exert the therapeutic effect. 

 To increase survival of MSCs in vivo, a variety of pro-angiogenic and anti- 
apoptotic genes ( AKT1 ,  HO-1 ,  BCL2  etc.) are used for genetic modifi cation of these 
cells [ 1 ]. For example, it has been shown that  autologous transplantation   of MSCs 
overexpressing AKT1 improves cardiac function in pigs with myocardial infarction 
[ 9 ]. It has also been found that overexpression of chemokine (C-X-C motif) receptor 
4 (CXCR4) or C-C chemokine receptor type-1 (CCR-1) stimulates migration of 
MSCs [ 10 ,  11 ]. Currently, research is focused on the use of MSCs for bone regen-
eration and stimulation of vascularization. For genetic modifi cation of the cells, 
scientists use genes encoding bone morphogenetic proteins (BMPs), vascular endo-
thelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1) and transforming 
growth factor-β (TGF-β) [ 12 ]. Kumar et al. studied the effect of MSCs transduced 
with recombinant adenovirus encoding BMP2 and VEGF on the process of bone 
formation in a mouse model of  segmental bone defect  . The research has found that 
modifi ed MSCs have greater therapeutic effect, stimulating the bone formation and 
vascularization process [ 13 ]. 

 Modern methods of cell and molecular biology allow manipulation of the geno-
type of stem cells and engineer their functional properties. Therefore, the develop-
ment of effective gene delivery systems is one of the major challenges of regenerative 
medicine. Gene delivery technology made signifi cant progress in recent years. 
However, there are multiple problems associated with low effi ciency, high cost and 
complexity of vector delivery systems. Issues include toxicity, immunogenicity, 
carcinogenicity of the vectors and transient transgene expression [ 14 ]. Gene deliv-
ery systems can be divided into two groups:  viral and non-viral  . 
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5.2.1     Viral Nucleic Acid Transfer Techniques 

 The life cycle of a virus involves several stages. Infection begins with recognition of 
target cell by the virus, the viral surface proteins recognize specifi c receptors on 
the cell  plasma membrane resulting in the attachmenent of the virus to cell surface.   
The viral particle or the genetic material of the virus penetrates the cell where rep-
lication (viral gene expression, replication of viral genome and synthesis of viral 
proteins) and formation of new virions occurs. Virions are released from cells by 
lysis or  budding  , and begin a new process of infection of neighboring cells or circu-
late in the bloodstream until they meet receptive target cell [ 15 ]. 

 In the context of viral delivery of nucleic acids, the viral transduction can 
be defi ned as non-replicative or unproductive infection delivering heterologous ( i.e.  
not viral) genetic material into the target cell. To achieve this, the viral genome has 
to be subjected to major modifi cations in order to eliminate the genes required for 
replication and pathogenicity. Thus, the virus becomes a simple carrier of genetic 
information [ 16 ]. 

 Viral systems are based on the use of recombinant viruses (retroviruses, lentivi-
ruses, adenoviruses, adeno-associated viruses - AAV, etc.), obtained through genetic 
engineering and optimized for recombinant gene transfer. The main advantages of 
viral systems include high effi ciency of genetic modifi cation and long-term trans-
gene expression. However, clinical application of viral vectors are often limited by 
their immunogenicity and oncogenicity [ 16 ]. 

 Due to the low pathogenicity (the ability to infect non-dividing and dividing cell) 
and broad tropism (high-level expression of the viral proteins during viral replica-
tion and transport of viral genome into the nucleus),  adenoviruses   are considered 
potential candidates for regenerative medicine. However, high immunogenicity of 
adenovirus proteins and antiviral cellular immune responses reduce the duration of 
transgene expression and thus limit the use of adenoviral vectors in clinics [ 17 ]. To 
solve this problem, adenovirus vectors are made from rare serotypes that cause mild 
infections. Assembling of replication-defective vectors and viruses that lack genes 
required for productive replication of viral particles occurs in special packaging cell 
lines [ 18 ]. 

 Low immunogenicity, site-specifi c integration, as well as the ability to infect a 
broad range of dividing and non-dividing cells in vitro and in vivo make AAV a 
promising vector system for gene delivery. To replicate, they need a helper virus 
co-infection: adenovirus or herpes simplex virus type 1 (HSV1)   . High infectivity 
and the ability to transduce both dividing and non-dividing cells make herpesvirus 
vectors good candidates for gene transfer. Vectors based on HSV1 have high infec-
tivity in nerve cells due to natural tropism of the virus; in sensory nerve endings, it 
takes latent state. However, the drawbacks of a HSV1-based vector system 
are  represented by immunogenicity of viral proteins and short duration of transgene 
expression [ 19 ]. Another problem is the presence of latently infected cells that can 
be transduced with HSV1-based vectors, which may lead to the recombination 
between wild type and vector genomes [ 20 ]. 
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 Genetic modifi cation via retroviral vectors leads to integration into the host 
genome of the cells that can further lead to insertional mutagenesis and activation of 
 oncogenes   [ 21 ]. Vectors based on retroviruses provide long-term transgene expres-
sion for more than 6 months. A limitation of using retroviral vectors is their inability 
to infect non-dividing cells [ 22 ]. 

 The most widely used retroviral vectors are lentiviruses, a subgroup of retroviruses 
that can effi ciently deliver a transgene into non-dividing cells, ensuring long- term 
expression. In particular, lentiviral vectors derived from the human immunodefi ciency 
virus (HIV) are able to target different cell types known to be diffi cult to transduce 
(neurons, hematopoietic progenitor cells, lymphoid cells, macrophages, etc.) [ 23 ]. 

 Currently, the research is underway to develop pseudotype retroviral vectors in 
which the viral envelope glycoproteins are replaced with glycoproteins of the other 
viruses such as  vesicular stomatitis virus (VSV)      and rabies virus strain pasteur vac-
cins/PV. Pseudotyping of recombinant retroviruses allows transduction of a wide 
range of primary and immortalized human and other mammalian cell lines [ 24 ]. 
Besides, another widely used vector is baculovirus, which has low toxicity and high 
effi ciency in transgenic gene transfer. Another advantage of this type of vectors is 
that they do not get integrated into target cell genome [ 25 ]. For example, Lu et al. 
have used baculovirus encoding TGF-β3 to modify MSCs from adipose tissue 
(ADSCs) to demonstrate that these cells increase chondrogenesis and stimulate car-
tilage formation in vitro [ 26 ].  

5.2.2     Non-Viral Methods for Nucleic Acids Transfer 

 Development of effective non-viral nucleic acid delivery approaches is complicated 
by various intra- and extra-cellular obstacles. After entering cell cytoplasm the DNA, 
particularly in uncomplexed form, undergoes degradation by various nucleases. The 
most diffi cult stage is penetration of DNA through the cell membrane, since both 
DNA and the cell surface have negative charges. However, the problem can be allevi-
ated by physical and chemical methods that enable delivery of DNA into cells [ 27 ]. 

 Physical methods, such as the gene gun, electroporation and sonoporation can 
create microfractures in the cell membrane allowing DNA penetration. 
 Electroporation   reversibly increases cell membrane permeability by means of high 
voltage impulses passing through the  lipid bilayer   and forming pores suitable for 
penetration of different macromolecules [ 28 ]. Yalvac and colleagues performed elec-
troporation of human DFSCs and demonstrated higher percentage of transfected 
cells compared with that of chemical methods of transfection [ 29 ]. Non-viral trans-
fection methods of DFSCs are crucial for developing gene and cell therapy technol-
ogy since DFSCs could serve as a convenient alternative source of MSCs [ 30 ]. 
Nakashima et al. optimized conditions for DFSC electroporation and found that the 
transfer effi ciency of therapeutic genes is best achieved in conditions using three 
rectangular pulses at a frequency of 1 Hz, pulse length of 999 microseconds and 
strength of the electric fi eld of 1.05 kV/cm [ 31 ]. 
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  Sonoporation   is a nucleic acid transfer method using  ultrasonic waves   
that increase permeability of the cell membrane. It is worth noting the difference 
between sonoporation and electroporation; during electroporation DNA moves in 
the electric fi eld, whereas during sonoporation DNA penetrates into the cells 
by means of passive diffusion [ 32 ]. 

 In recent years, chemical transfection reagents have actively been used for the 
delivery of nucleic acids due to multiple advantages including safety, low toxicity, 
ability to carry large size genes and ease of preparation. Cationic lipids and poly-
mers are promising chemical vectors used to form complexes with negatively 
charged DNA through electrostatic interactions. Formation of complexes can pro-
mote absorption by the cell, improve intracellular delivery of genes and protect the 
DNA from nuclease-driven degradation [ 27 ]. The advantages of using the peptides 
and proteins for gene delivery include simplicity of production and use of recombi-
nant proteins, high purity and homogeneity, targeted transport of  polyplexes   (DNA/
protein complexes) to certain cell types through specifi c ligand-receptor interac-
tions, and the absence of restrictions on the size and type of the nucleic acid deliv-
ered to the cells [ 33 ]. 

  Cationic polymers   include natural polymers ( i.e.  chitosan), dendrimers ( i.e.  poly-
amidoamine), polypeptides ( i.e.  poly- L -lysine), polyarginine, polyornithine, his-
tones [ 34 ], protamine, polyethylene imine, and others [ 33 ]. Gheisari et al. optimized 
transfection conditions of MSCs derived from rat bone marrow using different cat-
ionic polymers with cytotoxicity lower than 20 % [ 35 ]. 

 Transfection effi ciency of cationic lipids (liposomes) is defi ned by their structure. 
In general, cationic lipids include several components: hydrophilic head and hydro-
phobic domain that are connected via linker [ 36 ]. The properties of the linker 
affect the biodegradability and toxicity of the cationic lipids, as well as formation of 
 lipoplexes   and their transfection effi ciency [ 37 ]. Functionality of lipoplexes is deter-
mined by a large number of factors, with the most important one being the charge ratio 
between cationic lipid and DNA (must be greater than 1) [ 38 ]. It is believed that 
lipoplexes penetrate cells by  endocytosis  . After internalization (the capture) by the 
cell, lipoplexes should be released from the endosome into the cytoplasm to avoid 
degradation. One of the main disadvantages of cationic lipids is their inability to 
deliver the DNA directly into the cell nucleus. In addition, the large size of lipo-
plexes prevents them from passing through the nuclear pore. According to the cur-
rent literature, after transfection using cationic lipids (liposomes) MSCs retain the 
ability to proliferate and differentiate without the loss of transgene expression [ 39 ].   

5.3     Genetic Modifi cation for  Cell Immortalization   

 One of the limitations of using adult stem cells in  regenerative medicine   and tissue 
engineering is their aging, a phenomenon that reduces the proliferative activity and 
biological properties of the cells. The main reason for reduced number of cell divi-
sions and aging is the shortening of telomeres that stretches the DNA at the ends of 
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chromosomes, therefore protecting them from degradation. Sustaining the telo-
mere length depends on the expression of telomerase reverse transcriptase (TERT) 
gene, encoding the catalytic subunit of telomerase protein complex responsible 
for addition of telomeric DNA during cell division. The activity of p21, p53, 
Retinoblastoma- associated protein (RB) and other proteins is also affected during 
the aging process [ 40 ]. 

 The biological role of p53 protein is to ensure genome stability and genetic uni-
formity of the cells in the whole organism. p53 protein triggers the transcription of 
a group of genes and is activated in response to accumulation of DNA damage. The 
activation of p53 leads to the arrest of cell cycle and DNA replication; it also initi-
ates apoptosis under strong stress conditions. p53 activity also depends on the pres-
ence of p16 protein regulated by RB protein [ 41 ]. 

 To prevent cell aging and enhance proliferation activity of cell cultures, genetic 
transformation can be performed in a process known as immortalization. There are 
several methods for immortalization of mammalian cells in culture conditions. 
Most common methods are based on recombinant lenti-, retro- or adeno-viruses 
expressing Epstein-Barr virus (EBV),  e6/7  genes of human papilloma virus 16 
(HPV-16), SV40 large T antigen, hTERT, short interfering RNA (siRNA) specifi c 
to mRNA of  p53  and  RB  genes, as well as mutant forms of  ras and myc proteins   
[ 42 ]. The easiest and the most reliable way to induce the immortalization process is 
to use large T antigen of the SV40 virus. Recent studies have shown that SV40 
large T antigen can increase telomerase activity [ 43 ]. The  hTERT  gene is also 
actively used for stem cell immortalization, leading to prolonged cell proliferation 
without disrupting unique properties. It has been shown that hTERT-induced 
immortalization of hTGSCs does not lead to chromosomal aberrations or damage 
to the DNA as in the cells immortalized with SV40 large T antigen, and does not 
affect the process of cell differentiation in vitro. Cytogenetic study of 20 hTGSC-
hTERT cell lines  displayed trisomy of chromosome 7 in only one cell line, while 
the rest of the immortalized cell lines demonstrated normal 46XY karyotype. On 
the other hand, all investigated hTGSC-SV40 cell lines showed abnormal chromo-
somal characteristics, namely the association of telomeres, deletions and duplica-
tions. The authors have shown that after hTERT immortalization hTGSCs retained 
their immunophenotypic characteristics and the ability to differentiate as standard 
MSCs. Moreover, following immortalization, a signifi cant increase was observed 
in expression level of pluripotent transcription factors (Oct4 and Sox2), in contrast 
to reduced expression of factor Klf4 that plays a role in chromosome remodeling 
[ 44 ]. The conditioned medium of hTGSC-hTERT cells also demonstrated neuro-
protective properties against SH-SY5Y human  neuroblastoma cells   by reducing 
oxidative stress-induced neurotoxicity or the effect of cytostatic anticancer drug 
doxorubicin [ 44 ]. It has been shown that ectopic expression of telomerase in hDP-
SCs prevents aging by downregulation of  p16  and  p53  gene activity, thereby main-
taining proliferative ability of the cells and promoting expression of pluripotency 
transcription factors [ 45 ]. 

 Wang and coworkers immortalized mouse SCAPs by using retroviral system 
expressing SV40 large T antigen fl anked by Cre/LoxP sites. Immortalized SCAPs 
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(iSCAPs) were found to express MSC markers. Further experiments showed that 
the genetic modifi cation (transduction) of iSCAPs by recombinant adenovirus 
expressing BMP9 initiated the process of cell differentiation toward osteo-, chon-
dro- and adipo-genic directions in vitro and in vivo [ 46 ]. Yokoi et al. immortalized 
mouse DFSCs using mutant human papillomavirus (HPV)-16 virus  e6  gene lacking 
PDZ-binding domain motive. mDFSCs expressing mutant  e6  gene had prolonged 
proliferative activity (150 population doublings, PD) in contrast to that of native 
cells (10 PD). Immortalized mDFSCs cells expressed genes, important for defi ning 
tendon/ligament phenotype, including Scleraxis (Scx), growth and differentiation 
factor 5 (GDF5), EphA4, Six-1, periostin and collagen type I. In order to analyse the 
differentiation potential of immortalized mDFSCs they were transplanted into 
severe combined immunodefi ciency mice. Four weeks after transplantation immor-
talized mDFSCs were capable of generating periodontal-like tissue expressing peri-
ostin, Scx, collagen type 12, collagen type I, most probably due to the presence of 
subpopulation of periodontal progenitor cells [ 47 ]. These results indicate that 
immortalized mDFSCs can act as periodontal progenitor cells and can be used to 
study the formation of  periodontal tissue   and also for development of novel regen-
erative therapies.  

5.4     Genetic Modifi cation for Modulation of Cell Phenotype 
and Osteo- and Odontogenic Differentiation 

 Currently, there are a large number of experimental studies showing the possibility 
of using osteogenic potential of MSCs for  bone tissue regeneration   [ 3 ]. BMPs are 
involved in the initiation and maintenance of odonto- and osteo-genesis. For exam-
ple, BMP2 and BMP7 are multifunctional cytokines that belong to the TGF-β super-
family. These glycoproteins act as disulfi de-linked homo- or hetero- dimers  , and are 
potent regulators of the formation and regeneration of bone and cartilage tissue, 
they also promote cell proliferation during embryonic development and adult bone 
homeostasis [ 48 ]. Tasli et al. studied the effect of BMP2 and BMP7 on the induction 
of  osteogenic and odontogenic cell   differentiation of hTGSCs [ 49 ]. Authors carried 
out genetic modifi cation of hTGSCs via electroporation using genetic constructs 
encoding cDNAs for BMP2 or BMP7 genes. They studied the mRNA levels of 
DSPP (Dentin sialophosphoprotein), OCN (Osteocalcin) and COL1A (Collagen, 
type I, alpha) genes, early markers of osteogenic and odontogenic differentiation. 
The study shows that overexpression of BMP2 and BMP7 in hTGSCs leads to an 
increase in alkaline phosphatase (ALP) activity and enhanced mRNA expression of 
DSPP, OCN and COL1A genes compared to native cells, therefore indicating induc-
tion (stimulation) of osteo- and  odontogenic   differentiation. Interesting to note that 
rise in ectopic expression of one of the studied BMP proteins increases endogenous 
expression of the other, even though BMP2 and BMP7 are independently involved 
in the induction of bone formation and odontogenesis [ 49 ]. Yang et al. transfected 
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DPSCs with BMP2 gene and showed that BMP2 overexpression signifi cantly 
increased the expression level of genes involved in osteogenic and odontogenic dif-
ferentiation, such as ALP, OCN, COL1A, BSP (Bone sialoprotein), DSPP and 
DMP1 (dentin matrix protein 1) [ 50 – 52 ]. For BMP2 gene delivery the authors used 
both viral [ 50 ,  51 ] and non-viral [ 52 ] approaches. Experiments in vitro demon-
strated that transfected DPSCs differentiated into odontoblasts-like cells even when 
cultured in a non-osteogenic medium [ 51 ]. The study also showed that ectopic 
expression of transfected BMP2 gene in mice-implanted DPSCs resulted in forma-
tion of mineralized tissue [ 50 ]. 

 Zhang et al. investigated the effects of lentivirus-mediated  BMP2  gene delivery 
on odontogenic differentiation of human SCAPs in vitro [ 53 ]. Modifi cation of 
SCAPs with  BMP2  gene stimulated cell differentiation toward odontogenic lineage 
by upregulation of ALP, OCN, DSPP and DMP1 genes. Therefore, the BMP2 gene 
transfection of dental cells can be an effective strategy for developing new methods 
to be used in tissue engineering and regenerative medicine approaches [ 53 ]. Other 
promising inducers of osteogenesis and odontogenesis are BMP7 and Growth/dif-
ferentiation factor 11 (GDF11), also known as the BMP11. To study the effect of 
BMP7 on the differentiation processes, Yang et al. cultured DPSCs on collagen- 
chitosan scaffolds (matrixes) impregnated with plasmid DNA encoding BMP7 
cDNA. In vitro and in vivo investigations have shown that cells cultured using plas-
mid DNA-impregnated scaffolds were successfully transfected and expressed 
BMP7. In addition, modifi ed cells displayed higher proliferation rates and odonto-
genic differentiation potential with respect to the cells cultured on scaffolds without 
plasmid DNA [ 54 ]. One of the potential clinical applications of matrixes implanted 
with genetically modifi ed cells includes regeneration of dentin-pulp complex 
through a  dental pulp capping procedure  . 

 Nakashima and co-workers optimized  sonoporation   to deliver plasmid DNA 
encoding GDF11 cDNA into dog DPSCs in vivo. Modifi cation of DPSCs with 
GDF11 led to induction of dentin sialoprotein expression, a marker of odonto-
blasts differentiation, and formation of large amounts of reparative dentine in the 
pulp isolated from a dog tooth [ 55 ]. The authors obtained similar results by modi-
fying mice DPSCs in vitro and in vivo with GDF11 by  electroporation   [ 56 ]. These 
results demonstrate the feasibility of using BMPs in gene-cell applications for 
endodontic treatment of teeth. In addition, authors have developed a three-dimen-
sional canine pulp cell culture modifi ed with GDF11. Based on in vivo experi-
ments, it was demonstrated that autologous transplantation of GDF11-transfected 
cell mass on the surface of the amputated pulp stimulated reparative dentin for-
mation [ 31 ]. 

 Transcription factor Runx2 (involved in BMP- and TGF-β1-signaling) plays an 
important role in skeletal development and differentiation of  osteoblasts  . Runx2 
expression was detected in DFSCs during development of periodontal tissues. 
Structural and functional analysis shows the presence of fi ve amino acid (aa) motif, 
VWRPY, at the C-terminus of Runx2 that is responsible for the suppression of tran-
scriptional activation by Runx2 [ 57 ,  58 ]. Pan and colleagues have shown that high 
levels of Runx2 increased expression of osteoblast-/cementoblast-related genes and 
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enhanced osteogenic differentiation of DFSCs in vitro. In addition, authors investi-
gated the transcriptional activity of mutant forms of Runx2 with deleted VWRPY 
motif and showed that it leads to higher expression levels of OPN, ColI and CP23 in 
DFSCs compared to the full length Runx2 [ 57 ]. 

 Expression level of the transcription factor DLX3 (distal-less homeobox 3) has 
been shown to increase during osteogenic differentiation of DFSCs in vitro [ 59 ]. 
Viale-Bouroncle et al. studied regulation of DLX3 expression in DFSCs and found 
it to be crucial for viability and proliferative capacity of the cells; DLX3 gene 
knockdown resulted in an increase of apoptotic cells in culture. Using microarray 
technology, the authors showed that overexpression of DLX3 in DFSCs leads to 
upregulation of 73 genes ( e.g ., IL8, CXCL10, CXCL11, MMP1, BMP2, NR4A2, 
HES1 and ATF3) and downregulation of 55 genes ( e.g ., COL3A1, ELN, OMD and 
PLXNC1). DLX3 regulates osteogenic differentiation and mineralization of DFSCs 
through BMP2-dependent pathway and feedback control [ 60 ]. 

 Other studies have demonstrated that during osteogenic differentiation of SCAPs, 
expression of EGR1 (early growth response gene 1) is induced. Overexpression of 
EGR1 results in upregulation of DLX3 and BMP2, whereas knockdown of EGR1 
leads to downregulation of DLX3, BMP2 and ALP. Similarly, overexpression of 
EGR1 in SCAPs contributes to the process of mineralization after osteogenic dif-
ferentiation [ 61 ]. 

 It is known that the function of  Runx2   in osteoblast differentiation is regulated by 
protein Twist1. A shift in equilibrium between transcription factors Runx2 and 
Twist1 occurs in the beginning of osteoblasts differentiation, allowing expression of 
genes involved in the process of mineralization. Li et al. show that lentivirus- 
mediated overexpression of Twist1 in DPSCs increases the expression levels of 
OCN, DMP1, OPN and DSPP genes that are characteristic of terminally differenti-
ated odontoblasts and markers of late mineralization [ 62 ]. 

 The canonical Wnt signaling pathway plays a critical role in the development of 
teeth and self-renewal of stem cells through β-catenin regulation. Scheller et al. 
studied the regulation of odontoblast-like differentiation by modulating canonical 
Wnt signaling in DPSCs and found that overexpression of β-catenin led to inhibi-
tion of differentiation and mineralization of DPSCs. DPSCs stably transduced by 
canonical Wnt-1 and β-catenin demonstrated increased expression of OPN and 
Col1, and decreased activity of ALP and mineralization. These results suggest that 
canonical Wnt signaling negatively regulates the odontoblast-like differentiation of 
DPSCs [ 63 ].  

5.5     Genetic Modifi cation for Enhanced Angiogenesis 

 Angiogenesis, the formation of new capillaries from pre-existing blood vessels, is a 
key process in tissue engineering, wound healing, and reproduction. The angiogen-
esis process is comprised of the following steps: degradation of the basal membrane 
and extracellular matrix, proliferation and migration of endothelial cells, their 
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interaction with  pericytes  , and tube formation and maturation into functional blood 
vessels [ 64 ]. Pericytes, specialized connective tissue cells, are part of the small 
blood vessel walls where they perform key functions in the maintenance of blood 
vessels and angiogenesis [ 65 ]. Pericytes dysfunction leads to pathological angio-
genesis, which is found in a number of diseases such as diabetic microangiopathy 
and tissue fi brosis [ 66 ]. 

 Molecular and cellular events that occur in the process of angiogenesis are 
regulated by numerous stimulatory and inhibitory signals, including growth fac-
tors and their receptors, enzymes, matrix metalloproteinases, cytokines, endoge-
nous angiogenesis inhibitors, transcription factors, adhesion molecules and 
extracellular matrix components [ 64 ]. The MSC transplantation may stimulate 
angiogenesis in two ways: either through a  paracrine effect   (stimulation of the 
formation of blood vessels from host tissue by secreting angiogenic factors) or by 
differentiation into endothelial and pericyte-like cells actively involved in neovas-
cularization [ 67 ]. 

 hDPSCs secrete a variety of angiogenic factors such as VEGF, platelet derived 
growth factor (PDGF) and basic fi broblast growth factor (bFGF or FGF2), and can 
stimulate the formation of capillary-like structures by human umbilical vein endo-
thelial cells (HUVECs) in vitro [ 68 ]. As hDPSCs were administered intramyocar-
dially in rat models of myocardial infarction, improvement in cardiac function, 
reduction of infarct size, and improved neovascularization were noted [ 69 ]. In addi-
tion, Janebodin et al. showed that DPSCs derived from mouse pulp formed 
capillary- like structures in vitro as they were co-cultured with mouse endothelial 
cells and HUVEC cells [ 70 ]. To determine the molecular mechanism of DPSCs 
angiogenic activity authors used an exogenous inhibitor of angiogenesis sFlt 
(Soluble Fms-like Tyrosine Kinase) that regulates the VEGF function by competi-
tively binding to VEGF-A [ 71 ]. The fi ndings showed that sFlt inhibited signaling 
of VEGF-A through receptor VEGFR2 by blocking the binding of VEGF to the 
receptor. 

 Human VEGF is one of the most promising growth factors for clinical use due to 
its neuroprotective, neurotrophic and pro-angiogenic properties [ 64 ,  72 ,  73 ]. Besides 
its strong pro-angiogenic properties, VEGF supports neuronal survival, protects the 
nervous tissue from oxygen starvation during hypoxia, stimulates neuroblast prolif-
eration and axonal growth, and also supports the survival of neurons in vitro and 
in vivo [ 74 ]. Different cell types, including stem cells, have the ability to secrete 
high level of  endogenous   VEGF that may have an advantage as cellular material to 
develop methods of treatment of neurodegenerative and ischemic diseases in 
humans. In this context, studies have found that hTGSCs possess high endogenous 
VEGF gene expression and actively secrete VEGF protein into the culture medium. 
VEGF concentration in the culture medium reached 367 pg/ml, 2247 pg/ml and 
2675 pg/ml after 24 hours, 3 and 5 days of incubation periods, respectively [ 75 ]. 
Modifi cation of hTGSCs with plasmid pBud-VEGF-FGF2 using Turbofect trans-
fection reagent resulted in increased expression of VEGF in culture medium (2442 
pg/ml) 24 hours after transfection (unpublished data).  

V.V. Solovyeva et al.



103

5.6     Conclusion 

 MSCs, due to their multilineage differentiation capacity, are being actively investi-
gated as promising cell material for tissue regeneration therapies. MSCs isolated 
from different tissues of the tooth can be used as alternatives to bone marrow- and 
adipose tissue-derived MSCs. In vivo studies have shown that MSCs from tooth tis-
sues have high regenerative potential and can be used as  treatment   options for vari-
ous diseases such as pulpitis, periapical, coronary artery and neurodegenerative 
diseases. To increase the therapeutic potential of MSCs, scientists actively use dif-
ferent methods of genetic engineering. The most effective ones are the viral delivery 
methods of recombinant genetic material, however their clinical use is signifi cantly 
limited by potential immunogenicity and oncogenicity of viral. Currently, studies 
are underway to develop effective and safe delivery systems for transgene transfer 
using chemical methods, such as cationic lipids and polymers. Judging from the 
experimental data described in this chapter, it can be concluded that  genetic modifi -
cation   can signifi cantly increase the therapeutic potential of dental MSCs that can 
serve as  basis for the development of new methods of gene-cell therapy for  regen-
erative medicine  . 

 Another important limitation of clinical use of MSCs is their heterogeneous cells 
population meaning the lack of standardized and certifi ed methods of their selection 
from a variety of tissues. There is a growing interest in the directed genetic modifi -
cation of MSCs for use in treatments of various human diseases. In the future, 
researchers will face the challenge of developing validated methods of isolation and 
modifi cation of MSCs, overcoming limitations of cell survivability after transplan-
tation and minimizing the adverse effects on the human body.     

  Acknowledgements   The work was supported by grant 15-04-07527 from Russian Foundation 
for Basic Research and was performed in accordance with Program of Competitive Growth of 
Kazan Federal University and subsidy allocated to Kazan Federal University for the state assign-
ment in the sphere of scientifi c activities. 

  Statement of Confl ict of Interest     Authors declare no confl ict of interest.   

   References 

     1.    Park JS, Suryaprakash S, Lao YH, Leong KW (2015) Engineering mesenchymal stem cells for 
regenerative medicine and drug delivery. Methods. doi:  10.1016/j.ymeth.2015.03.002      

    2.    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. 
those from other sources: their biology and role in regenerative medicine. J Dent Res 
88(9):792–806. doi:  10.1177/0022034509340867      

     3.    Kim JY, Kim MR, Kim SJ (2013) Modulation of osteoblastic/odontoblastic differentiation of 
adult mesenchymal stem cells through gene introduction: a brief review. J Korean Assoc Oral 
Maxillofac Surg 39(2):55–62. doi:  10.5125/jkaoms.2013.39.2.55      

    4.    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem 
cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630  

5 Genetically Engineered Dental Stem Cells for Regenerative Medicine

http://dx.doi.org/10.1016/j.ymeth.2015.03.002
http://dx.doi.org/10.1177/0022034509340867
http://dx.doi.org/10.5125/jkaoms.2013.39.2.55


104

    5.    Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH 
(2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix 
Biol 24(2):155–165  

    6.    Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba 
CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant'Anna OA, Miglino MA, Zatz M 
(2008) Early transplantation of human immature dental pulp stem cells from baby teeth to 
golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 6:35. 
doi:  10.1186/1479-5876-6-35      

    7.    Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. 
J Dent Res 87(8):767–771  

    8.    Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic 
factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord 
injury. Dev Biol 238(1):120–132  

    9.    Yu YS, Shen ZY, Ye WX, Huang HY, Hua F, Chen YH, Chen K, Lao WJ, Tao L (2010) AKT- 
modifi ed autologous intracoronary mesenchymal stem cells prevent remodeling and repair in 
swine infarcted myocardium. Chin Med J (Engl) 123(13):1702–1708  

    10.    Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) 
Targeted migration of mesenchymal stem cells modifi ed with CXCR4 gene to infarcted myo-
cardium improves cardiac performance. Mol Ther 16(3):571–579. doi:  10.1038/sj.mt.6300374      

    11.    Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) 
Genetic modifi cation of mesenchymal stem cells overexpressing CCR1 increases cell viability, 
migration, engraftment, and capillary density in the injured myocardium. Circ Res 
106(11):1753–1762. doi:  10.1161/CIRCRESAHA.109.196030      

    12.    Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based 
bone tissue engineering. Biotechnol Adv 31(8):1695–1706. doi:  10.1016/j.
biotechadv.2013.08.015      

    13.    Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem 
cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in 
a mouse model of segmental bone defect. Mol Ther 18(5):1026–1034. doi:  10.1038/
mt.2009.315      

    14.    Santos JL, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2011) Non-viral gene deliv-
ery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering 
and regeneration. Curr Gene Ther 11(1):46–57  

    15.    Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M (2013) Viral vectors: a look 
back and ahead on gene transfer technology. New Microbiol 36(1):1–22  

     16.    Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 
459(1–2):70–83. doi:  10.1016/j.ijpharm.2013.11.041      

    17.    Schagen FH, Ossevoort M, Toes RE, Hoeben RC (2004) Immune responses against adenoviral 
vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol 
Hematol 50(1):51–70  

    18.    Campos SK, Barry MA (2007) Current advances and future challenges in Adenoviral vector 
biology and targeting. Curr Gene Ther 7(3):189–204  

    19.    Latchman DS (2005) Herpes simplex virus-based vectors for the treatment of cancer and neu-
rodegenerative disease. Curr Opin Mol Ther 7(5):415–418  

    20.    de Silva S, Bowers WJ (2009) Herpes virus amplicon vectors. Viruses 1(3):594–629. 
doi:  10.3390/v1030594      

    21.    Wu X, Burgess SM (2004) Integration target site selection for retroviruses and transposable 
elements. Cell Mol Life Sci 61(19–20):2588–2596  

    22.    Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral 
vectors. Prog Brain Res 175:187–200. doi:  10.1016/S0079-6123(09)17513-1      

    23.    Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and 
preclinical research. Hum Gene Ther 22(6):649–657. doi:  10.1089/hum.2011.058      

    24.    Albertini AA, Baquero E, Ferlin A, Gaudin Y (2012) Molecular and cellular aspects of rhab-
dovirus entry. Viruses 4(1):117–139. doi:  10.3390/v4010117      

V.V. Solovyeva et al.

http://dx.doi.org/10.1186/1479-5876-6-35
http://dx.doi.org/10.1038/sj.mt.6300374
http://dx.doi.org/10.1161/CIRCRESAHA.109.196030
http://dx.doi.org/10.1016/j.biotechadv.2013.08.015
http://dx.doi.org/10.1016/j.biotechadv.2013.08.015
http://dx.doi.org/10.1038/mt.2009.315
http://dx.doi.org/10.1038/mt.2009.315
http://dx.doi.org/10.1016/j.ijpharm.2013.11.041
http://dx.doi.org/10.3390/v1030594
http://dx.doi.org/10.1016/S0079-6123(09)17513-1
http://dx.doi.org/10.1089/hum.2011.058
http://dx.doi.org/10.3390/v4010117


105

    25.    Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, 
Novy R, Loomis K, Bird LE, Owens RJ, King LA (2010) Genetic modifi cation of a baculovi-
rus vector for increased expression in insect cells. Cell Biol Toxicol 26(1):57–68. doi:  10.1007/
s10565-009-9133-y      

    26.    Lu CH, Lin KJ, Chiu HY, Chen CY, Yen TC, Hwang SM, Chang YH, Hu YC (2012) Improved 
chondrogenesis and engineered cartilage formation from TGF-beta3-expressing adipose- 
derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A 18(19–20):2114–
2124. doi:  10.1089/ten.TEA.2012.0010      

     27.    Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm 
Biotechnol 14(1):46–60  

    28.    Kaestner L, Scholz A, Lipp P (2015) Conceptual and technical aspects of transfection and gene 
delivery. Bioorg Med Chem Lett 25(6):1171–1176. doi:  10.1016/j.bmcl.2015.01.018      

    29.    Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotas A, Rizvanov AA (2009) Comparison 
and optimisation of transfection of human dental follicle cells, a novel source of stem cells, 
with different chemical methods and electro-poration. Neurochem Res 34(7):1272–1277. 
doi:  10.1007/s11064-008-9905-4      

    30.    Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotas A 
(2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr 
Pharm Des 15(33):3908–3916  

     31.    Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A (2004) 
Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells 
electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 
15(11):1045–1053  

    32.    Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M (2013) 
Sonoporation: gene transfer using ultrasound. World J Methodol 3(4):39–44. doi:  10.5662/
wjm.v3.i4.39      

     33.    Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy - an overview. J Clin 
Diagn Res 9(1):GE01–GE06. doi:  10.7860/JCDR/2015/10443.5394      

    34.    Solovyeva VV, Kudryashova NV, Rizvanov АА (2011) Transfer of recombinant nucleic acids 
into cells (transfection) by means of histones and other nuclear proteins. Cell Transpl Tiss Eng 
6(3):29–40  

    35.    Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S (2008) Multipotent mesenchymal stromal 
cells: optimization and comparison of fi ve cationic polymer-based gene delivery methods. 
Cytotherapy 10(8):815–823. doi:  10.1080/14653240802474307      

    36.    Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. 
Annu Rev Biophys Biomol Struct 29:27–47  

    37.    Tang F, Hughes JA (1998) Introduction of a disulfi de bond into a cationic lipid enhances trans-
gene expression of plasmid DNA. Biochem Biophys Res Commun 242(1):141–145  

    38.    Rao NM, Gopal V (2006) Cell biological and biophysical aspects of lipid-mediated gene deliv-
ery. Biosci Rep 26(4):301–324  

    39.    Madeira С, Mendes RD, Ribeiro SC, Boura JS, Aires-Barros MR, da Silva CL, Cabral JMS 
(2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene 
and cell therapy. J Biomed Biotechnol. doi:  10.1155/2010/735349      

    40.    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. 
doi:  10.1083/jcb.201009094      

    41.    Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma 
gene. Nat Rev Cancer 8(9):671–682. doi:  10.1038/nrc2399      

    42.    Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G, Rogiers V, Vinken M (2014) 
Strategies for immortalization of primary hepatocytes. J Hepatol 61(4):925–943. doi:  10.1016/j.
jhep.2014.05.046      

    43.    Jha KK, Banga S, Palejwala V, Ozer HL (1998) SV40-mediated immortalization. Exp Cell Res 
245(1):1–7  

     44.    Yalvac ME, Yilmaz A, Mercan D, Aydin S, Dogan A, Arslan A, Demir Z, Salafutdinov II, 
Shafi gullina AK, Sahin F, Rizvanov AA, Palotas A (2011) Differentiation and neuro-protective 

5 Genetically Engineered Dental Stem Cells for Regenerative Medicine

http://dx.doi.org/10.1007/s10565-009-9133-y
http://dx.doi.org/10.1007/s10565-009-9133-y
http://dx.doi.org/10.1089/ten.TEA.2012.0010
http://dx.doi.org/10.1016/j.bmcl.2015.01.018
http://dx.doi.org/10.1007/s11064-008-9905-4
http://dx.doi.org/10.5662/wjm.v3.i4.39
http://dx.doi.org/10.5662/wjm.v3.i4.39
http://dx.doi.org/10.7860/JCDR/2015/10443.5394
http://dx.doi.org/10.1080/14653240802474307
http://dx.doi.org/10.1155/2010/735349
http://dx.doi.org/10.1083/jcb.201009094
http://dx.doi.org/10.1038/nrc2399
http://dx.doi.org/10.1016/j.jhep.2014.05.046
http://dx.doi.org/10.1016/j.jhep.2014.05.046


106

properties of immortalized human tooth germ stem cells. Neurochem Res 36(12):2227–2235. 
doi:  10.1007/s11064-011-0546-7      

    45.    Egbuniwe O, Grant AD, Renton T, Di Silvio L (2013) Phenotype-independent effects of retro-
viral transduction in human dental pulp stem cells. Macromol Biosci 13(7):851–859. 
doi:  10.1002/mabi.201300020      

    46.    Wang J, Zhang H, Zhang W, Huang E, Wang N, Wu N, Wen S, Chen X, Liao Z, Deng F, Yin 
L, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Luu HH, Haydon RC, He TC 
(2014) Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation 
of the reversibly immortalized stem cells of dental apical papilla. Stem Cells Dev 23(12):1405–
1416. doi:  10.1089/scd.2013.0580      

    47.    Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, 
Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generat-
ing periodontal ligament in vivo. Cell Tissue Res 327(2):301–311  

    48.    Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphoge-
netic proteins: structure, biological function and therapeutic applications. Arch Biochem 
Biophys 561:64–73. doi:  10.1016/j.abb.2014.07.011      

     49.    Tasli PN, Aydin S, Yalvac ME, Sahin F (2014) Bmp 2 and bmp 7 induce odonto- and osteo-
genesis of human tooth germ stem cells. Appl Biochem Biotechnol 172(6):3016–3025. 
doi:  10.1007/s12010-013-0706-0      

      50.    Yang X, van der Kraan PM, Bian Z, Fan M, Walboomers XF, Jansen JA (2009) Mineralized 
tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020–1025. 
doi:  10.1177/0022034509346258      

     51.    Yang X, van der Kraan PM, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA 
(2007) STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated 
human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation. Tissue 
Eng 13(11):2803–2812  

     52.    Yang X, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan M, Jansen JA (2008) Non- 
viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium 
phosphate nanoparticles as carriers. Tissue Eng Part A 14(1):71–81. doi:  10.1089/
ten.a.2007.0102      

     53.    Zhang W, Zhang X, Ling J, Liu W, Ma J, Zheng J (2014) Proliferation and odontogenic dif-
ferentiation of BMP2 gene-transfected stem cells from human tooth apical papilla: an in vitro 
study. Int J Mol Med 34(4):1004–1012. doi:  10.3892/ijmm.2014.1862      

    54.    Yang X, Han G, Pang X, Fan M (2012) Chitosan/collagen scaffold containing bone morpho-
genetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. 
J Biomed Mater Res A. doi:  10.1002/jbm.a.34064      

    55.    Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A (2003) Induction of 
reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation 
factor 11. Hum Gene Ther 14(6):591–597  

    56.    Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem 
cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/dif-
ferentiation factor 11 (Gdf11). Gene Ther 9(12):814–818  

     57.    Pan K, Sun Q, Zhang J, Ge S, Li S, Zhao Y, Yang P (2010) Multilineage differentiation of 
dental follicle cells and the roles of Runx2 over-expression in enhancing osteoblast/
cementoblast- related gene expression in dental follicle cells. Cell Prolif 43(3):219–228. 
doi:  10.1111/j.1365-2184.2010.00670.x      

    58.    Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N (2015) Runx2: structure, function, 
and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208. 
doi:  10.1016/j.ijbiomac.2015.04.008      

    59.    Morsczeck C (2006) Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in 
dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 78(2):98–102  

    60.    Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C (2012) 
The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle 
precursor cells. Stem Cells Dev 21(11):1936–1947. doi:  10.1089/scd.2011.0422      

V.V. Solovyeva et al.

http://dx.doi.org/10.1007/s11064-011-0546-7
http://dx.doi.org/10.1002/mabi.201300020
http://dx.doi.org/10.1089/scd.2013.0580
http://dx.doi.org/10.1016/j.abb.2014.07.011
http://dx.doi.org/10.1007/s12010-013-0706-0
http://dx.doi.org/10.1177/0022034509346258
http://dx.doi.org/10.1089/ten.a.2007.0102
http://dx.doi.org/10.1089/ten.a.2007.0102
http://dx.doi.org/10.3892/ijmm.2014.1862
http://dx.doi.org/10.1002/jbm.a.34064
http://dx.doi.org/10.1111/j.1365-2184.2010.00670.x
http://dx.doi.org/10.1016/j.ijbiomac.2015.04.008
http://dx.doi.org/10.1089/scd.2011.0422


107

    61.    Press T, Viale-Bouroncle S, Felthaus O, Gosau M, Morsczeck C (2015) EGR1 supports the 
osteogenic differentiation of dental stem cells. Int Endod J 48(2):185–192. doi:  10.1111/
iej.12299      

    62.    Li Y, Lu Y, Maciejewska I, Galler KM, Cavender A, D'Souza RN (2011) TWIST1 promotes 
the odontoblast-like differentiation of dental stem cells. Adv Dent Res 23(3):280–284. 
doi:  10.1177/0022034511405387      

    63.    Scheller EL, Chang J, Wang CY (2008) Wnt/beta-catenin inhibits dental pulp stem cell dif-
ferentiation. J Dent Res 87(2):126–130  

      64.    Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32  
    65.    Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 

55(3):261–268. doi:  10.1387/ijdb.103167dr      
    66.    Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. 

Neuro Oncol 7(4):452–464  
    67.    Sieveking DP, Ng MK (2009) Cell therapies for therapeutic angiogenesis: back to the bench. 

Vasc Med 14(2):153–166. doi:  10.1177/1358863X08098698      
    68.    Dissanayaka WL, Zhan X, Zhang C, Hargreaves KM, Jin L, Tong EH (2012) Coculture of 

dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic 
potential in vitro. J Endod 38(4):454–463. doi:  10.1016/j.joen.2011.12.024      

    69.    Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, Sanchez-Torrijos 
J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepulveda P (2008) Human 
dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce 
infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638–645  

    70.    Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M (2013) VEGFR2- 
dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res 92(6):
524–531  

    71.    Ahmad S, Hewett PW, Al-Ani B, Sissaoui S, Fujisawa T, Cudmore MJ, Ahmed A (2011) 
Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vasc 
Cell 3(1):15. doi:  10.1186/2045-824X-3-15      

    72.    Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specifi c angio-
genic factor, now implicated in neuroprotection. Bioessays 26(9):943–954  

    73.    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced 
neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 
111(12):1843–1851  

    74.    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor 
(VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):
11946–11950  

    75.    Solovyeva VV, Blatt NL, Shafi gullina AK, Rizvanov AA (2012) Endogenous secretion of 
vascular endothelial growth factor by multipotent mesenchymal stromal cells derived from 
human third molar dental follicles. Cell Transpl Tiss Eng 7(3):155–158    

5 Genetically Engineered Dental Stem Cells for Regenerative Medicine

http://dx.doi.org/10.1111/iej.12299
http://dx.doi.org/10.1111/iej.12299
http://dx.doi.org/10.1177/0022034511405387
http://dx.doi.org/10.1387/ijdb.103167dr
http://dx.doi.org/10.1177/1358863X08098698
http://dx.doi.org/10.1016/j.joen.2011.12.024
http://dx.doi.org/10.1186/2045-824X-3-15


109© Springer International Publishing Switzerland 2016 
F. Şahin et al. (eds.), Dental Stem Cells, Stem Cell Biology 
and Regenerative Medicine, DOI 10.1007/978-3-319-28947-2_6

    Chapter 6   
 Dental Stem Cells  vs . Other Mesenchymal 
Stem Cells: Their Pluripotency and Role 
in Regenerative Medicine                     

     Selami     Demirci     ,     Ayşegül     Doğan    , and     Fikrettin     Şahin   

6.1           Introduction 

 MSCs residing in dental tissues are self-renewing progenitors which could help 
regeneration process of other  tooth components   such as dentin, pulp or periodontal 
ligament. Up to date, several kinds of stem cell populations from mature or imma-
ture tooth have been isolated and characterized for their stem cell characteristics in 
terms of self-renewal and differentiation capacities [ 1 ]. Gronthos and his colleagues 
isolated the fi rst stem cell type from dental pulp tissue in 2000 and named as  dental 
pulp stem cells (DPSCs)      [ 2 ]. Stem cells from exfoliated deciduous teeth (SHEDs) 
[ 3 ], periodontal ligament stem cells (PDLSCs) [ 4 ], dental follicle stem cells 
(DFSCs) [ 5 ] and stem cells from apical papilla (SCAPs) [ 6 ] have been presented at 
the following years. DSCs are identifi ed according to the procedures established for 
MSC stem cell characterization, specifi cally for  adult stem cells (ASCs)      of bone 
marrow. Colony-forming capacity and differentiation potential of DSCs into multi-
ple  cell types   (osteo-, chondro-, adipo- and neuro-genic lineages) make  them   poten-
tial candidates to be used in  regenerative medicine   [ 1 ]. Because dental-derived stem 
cells have mainly  neuroectodermal origin   [ 7 ], they are defi ned as attractive sources 
for stem cell-based regenerative treatments, particularly for neuroregeneration. 

 Different stem cell types residing in specialized dental tissues have distinct 
features and comprise a great heterogeneity, leading to signifi cant differentiation 
potential. Understanding the possible mechanisms underlying pluripotency, 
plasticity and self-renewal capacity of DSCs could allow researchers to maintain 
stem cells in culture, obtain enough number of cells required for clinical applica-
tions, direct stem cell fate for a certain treatment choice and create a promising 
stem cell therapy option for ASC-based approaches. Moreover, regulation of DSC 
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 differentiation for a special tissue engineering practice such as bone, tooth and 
neuronal regeneration, and controlling the expansion of genetically stable stem cells 
are crucial for medicinal applications [ 8 ]. This chapter will review the pluripotency 
of DSCs and comparison of their regenerative potential with other famous MSC 
sources in detail.  

6.2     Pluripotency of DSCs 

6.2.1     Pluripotency: Defi nition, Assessment and Markers 

 Apart from tissue-specifi c ASCs having capacity of differentiation into limited cell 
lineages, pluripotent stem cells can give rise to cells of all three  embryonic germ 
layers   (ectoderm, endoderm and mesoderm). Pluripotency of a cell can be simply 
defi ned as the potential of generating an entire organism and all types of cells of an 
adult body with broad range of functions [ 9 ]. First studies investigating cell pluripo-
tency were started in late 1800s, and Driesch and co-workers managed to obtain two 
sea urchins from cells of the early blastocyst [ 10 ]. After further progresses in 
embryonic cell (ES) studies in the 1980s and 1990s, pluripotent cells were success-
fully isolated from mouse [ 11 ] and human [ 12 ]  blastocysts  . Understanding the 
potential of ES cells to differentiate into a limitless number of cell types have given 
an excellent opportunity for stem cell research. Some critical problems including 
immune rejections after cell transplantation, teratoma formation and ethical issues 
have been faced in ES cell studies. These challenges have been partly overcome by 
the induced pluripotent stem cells (iPSC) breakthrough of Takahashi and Yamanaka 
who have made the pluripotent stem cell studies more popular and attractive research 
of area [ 13 ]. 

 There are some established criteria for assessment of pluripotency. Programmed 
pluripotent cells should have colonies similar to ES cells, reactivate the telomerase 
gene expression and express a set of genes related to pluripotency including 
octamer-binding transcription factor 4 (OCT4), SRY (sex determining region 
Y)-box 2 (SOX2) and Nanog. Although reliability of alkaline phosphatase (ALP) 
assay is doubtful, it is generally used to prove pluripotent state of stem cells. 
Providing these features, programmed cells behave just like ES cells and could 
differentiate into a wide range of cell types [ 9 ]. In addition, fully reprogrammed 
cells form embryoid bodies and create teratoma when injected to immunodefi cient 
mice. However, there are still vital challenges with iPSC technology including less 
effi ciency, safety problem and teratoma formation, which direct scientist to search 
for safer, effi cient and pluripotent stem cells to be used in regenerative approaches. 
Although development of pluripotent cells from any adult cell or stem cell is 
theoretically possible in culture conditions using multiple  cloning techniques  , it 
would be a powerful approach to isolate stem cells from adult body with their own 
pluripotency and differentiation capacity. The idea of “whether pluripotent stem 
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cells reside in the adult body and distribute into several body parts, they can be used 
after differentiation into desired lineage to restore tissue function instead of ES cells 
or iPSCs” have attracted scientists to investigate ASCs in terms of pluripotency 
[ 14 ]. To this end, identifi cation of new ASC types or defi ning the pluripotent char-
acteristics of known stem cells could be a promising approach for stem cell-based 
regenerative medicine applications.  

6.2.2     Pluripotency of MSCs 

 Although adult MSCs have been defi ned in a vast amount of human tissues, and 
they have displayed a limited differentiation and self-renewal potential, recent stud-
ies have proven their remarkable multipotent differentiation capacity [ 14 ]. The stem 
cell plasticity comprises self-renewal potential, and in vitro and in vivo multilineage 
differentiation capacity. To address the plasticity and pluripotency concept,  bone 
marrow mesenchymal stem cells (BMMSCs)      have generally been the subject of 
many researches. Differentiation of BMMSCs into mesoderm, neuroectoderm and 
endodermal lineages has been reported in previous studies [ 15 ]. Moreover, ES cell- 
like phenotype of BMMSCs has been pointed by showing OCT4, Nanog, SOX2, 
ALP and stage specifi c embryonic antigen-4 (SSEA-4) expressions. Apart from 
BMMSCs, adipose, dermal and heart tissue-derived MSCs have also expressed ES 
cell specifi c markers [ 16 ]. In addition, Wharton jelly-derived MSCs have surpris-
ingly demonstrated higher pluripotent/stem cell marker expression levels compared 
to BMMSCs even at high passage numbers in standard in vitro culture conditions 
[ 17 ]. These and other similar reports have concluded that although BMMSCs are 
the most popular and well-established source for MSC isolation, there could be 
more suitable alternative sites in the adult body for pluripotent progenitor cell isola-
tion including Wharton jelly, cord blood, adipose tissue, dermis and tendon [ 17 – 19 ]. 
Therefore, stem cells without exerting any ethical problems, and being highly 
proliferative, multipotent, easily accessible and cultured in vitro are necessary for 
regenerative therapy approaches. In this line, DSCs comprising many advantages 
exist as an alternative pluripotent stem cell source for future researches and 
applications.  

6.2.3     Pluripotent Characteristics of DSCs 

 As dental tissues, particularly tooth germs, are developed by  ectomesodermal inter-
actions  , these cells are able to differentiate into several cell lineages. Multipotent 
stem cells residing in dental tissues remain quiescent until late ages and have been 
successfully transformed into osteo-, chondro-, adipo-cytes and neurons. DSCs are 
easily isolated from teeth and surgical procedure of dental tissues is relatively easy 
compared to bone marrow or other sources. Teeth are waste materials of dental 
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procedures and do not cause any ethical problems for stem cell isolation [ 7 ]. 
Therefore, isolation and characterization of pluripotent stem cells from dental tis-
sues might be a promising approach for clinical studies. DSCs have been used 
in vitro and in vivo to evaluate their restorative potential for regenerative medicine 
and have started to be used in clinical studies in recent years. Researchers have 
identifi ed ES cell-like characteristics of DSCs in many studies to determine their 
pluripotency (Fig.  6.1 ). In this line, studies have aimed to develop new culture meth-
ods that could prevent spontaneous differentiation and protect pluripotency of 
dental- derived stem cells are currently of great interest.

    Fetal bovine serum (FBS)      is generally used as an important supplement in cul-
ture media to provide cell growth but might cause sensitivity reactions and prion 
transmission [ 20 ]. Although FBS is required for stem cell isolation from dental tis-
sues as well as from other adult tissues, it includes animal proteins and other com-
ponents which might cause immune reactions or undesirable spontaneous 
transformation, which is the main obstacle for multilineage differentiation. Using 
autologous human serum (AHS) instead of FBS in cell culture medium could be a 
solution for immune reactions and contamination. However, required amount of 
blood collection from particular patients for clinical applications might not be fea-
sible every time. Therefore, development of defi ned media and culture conditions is 
the fi rst step for maintenance of DSC pluripotency. Optimum serum free medium 
supplemented with 1 % insulin-transferrin-selenium-X (ITS-X) and 100 mg/mL of 
embryotrophic factor for deciduous and wisdom  tooth pulp stem cells   have 
provided desired proliferation, survival and stem cell marker expressions [ 21 ]. 

  Fig. 6.1     Embryonic stem cells marker   expression profi le of dental stem cells. DFSCs: Dental fol-
licle stem cells, DPSCs: Dental pulp stem cells, PDLSCs: Periodontal ligament derived stem cells       
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Similarly, basic fi broblast growth factor (bFGF or FGF2) supplementation to the 
cell culture medium (either containing FBS or serum-free) has protected the pluri-
potency of DPSCs, and increased the expression of  stem cell marker  , STRO-1 level. 
These stem cells have protected self-renewal capacity and differentiation potential, 
and formed bone, cartilage or adipose-like structures when transplanted to immuno-
compromised mice [ 22 ]. 

 Although culture conditions and provided environment are crucial for mainte-
nance of stem cell characteristics, cell source itself is the main determinant to obtain 
stem cells with high pluripotency. Stem cells isolated from healthy periodontal liga-
ment (PDL) tissues have been shown for ectodermal, endodermal and mesodermal 
differentiation capacities, indicating remarkable regenerative potential not only lim-
ited to dental tissues. In addition, SSEA-4 as a defi nitive marker of ES cells has also 
been suggested as a PDLSC marker. Stem cells isolated from periodontal tissues of 
permanent teeth have been shown for their  fi broblastic cell   morphology, multilin-
eage differentiation capacity towards all three germ layers (ectodermal, endodermal 
and mesodermal) and expressions of ES cell markers (SSEA-1, SSEA-3, SSEA-4, 
TRA-1-60, TRA-1-81, OCT4, Nanog, SOX2, and REX1) [ 23 ]. These observations 
have also been confi rmed by showing that stem cells either isolated from healthy or 
defected periodontal ligament tissues have exerted ES cell characteristics proven by 
Nanog, OCT4, REX-1 and SOX2 gene expressions and have been successfully 
differentiated into osteogenic lineage in vitro [ 23 ]. In another interesting study, 
infl ammatory granulation tissue removed from periodontal tissue during surgery 
has been used for progenitor cell isolation, and it has been proposed that pluripotent 
subpopulation found in periodontal tissue might favor  tissue regeneration  . ES cell 
markers including OCT4, REX-1, Nanog and SOX2 were expressed in infl amed 
PLDSCs at high levels, suggesting the contribution of pluripotent PLDSCs to heal-
ing process of damaged tissues [ 24 ]. 

 As the oral cavity and dental tissues are rich sources for  stem cell isolation  , lots 
of dental tissue parts have been investigated for pluripotent stem cell isolation and 
ES cell-like properties. SHEDs were found to express ES cell markers such as 
OCT4, Nanog, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81, display high growth 
kinetics, clonogenic capacity up to passage 25, and form dense structures when 
injected to immunocompromised mice [ 25 ]. Similarly, Ferro and his colleagues 
have investigated the expression of ES cell marker (OCT4, Nanog, KLF4 and 
c-Myc) expressions in undifferentiated and differentiated DPSCs derived from 
human deciduous teeth [ 26 ]. Both ES cell and stem cell markers (CD10, CD29 and 
CD117) have reduced after induction of differentiation into osteocytes, myocytes, 
neurons and hepatocytes. Particularly, expression of OCT4, a key transcription fac-
tor for pluripotency of ES cells, has down-regulated about 50 % after differentiation 
process and changed localization, indicating the importance of this transcription 
factor for stem cell phenotype and maintenance. 

 While DSC isolation from various dental tissue parts has been successfully con-
ducted for years, and valuable cell types have been derived, search for potential of 
these cells and characterization of pluripotent properties to fully understand regen-
erative potential are still on progress. Tooth germs of third molars, generated by 
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ectomesodermal interactions, might be used as a new pluripotent stem cell source 
due to remaining undifferentiated state until the age of six, and starting organogen-
esis process after birth. Pluripotent characteristics of these cells and differentiation 
capacity to several lineages have been shown in several reports [ 27 ,  28 ]. In 2009, 
Yalvac and co-workers showed MSC properties of  human tooth germ stem cells 
(hTGSCs)      by surface marker expression and multiple differentiation potential. 
While OCT4 expression has been detected in early passages, expression level 
decreased in late passages and differentiated cells. In addition to OCT4 expression, 
SOX2, KLF4, Nanog and c-Myc expressions have also been observed in hTGSCs 
similar to ES cells [ 7 ]. Similar fi ndings were reported in a recent study pointing the 
role of OCT4 in maintenance of pluripotency and multilineage potential of DPSCs 
obtained from tooth germs. Using an inducible OCT4 expressing system has been 
proposed to keep DSCs in a pluripotent state to be used in regenerative medicine 
[ 29 ]. Other than genetic modifi cations, some growth factors are included in the 
culture media to maintain pluripotency of stem cells. Progenitor cells isolated from 
pulp tissues of human tooth germs cultured in a specifi c media containing leukemia 
inhibitory factor (LIF), epidermal growth factor (EGF) and platelet-derived growth 
factor (PDGF) showed an embryonic phenotype, formed embryoid bodies, and 
were positive for ALP staining and  embryonic markers   including Nanog, SOX2, 
OCT3/4 and c-Myc [ 30 ]. The same group published a further study in 2012 showing 
that hTGSCs have exhibited ES cell phenotype by forming embryoid bodies in vitro 
and teratoma-like structures in nude mice, and differentiated into cell types derived 
from ectoderm, endoderm and mesoderm [ 31 ]. 

 All of the  avai  lable  re  search comparing the ES cell-like characteristics of DSCs 
has demonstrated that pluripotency and differentiation capacity of stem cells are 
dependent on the originated tissue. Distinct stem cell populations reside in the vari-
ous teeth and dental parts of the  oral cavity  . Detailed characterization studies of 
various DSCs and their pluripotency could be useful for therapeutic interventions.   

6.3     DSCs  vs.  Other MSCs 

 Comparison of pluripotency and multilineage differentiation capacity for MSC 
types might allow scientist to determine proper seed cells for a specifi c therapeutic 
application in which multi-differentiation capability is required, such as  neurore-
generation   approaches. 

 After the discovery of BMMSCs,  s  cientists are searching for alternative MSCs 
from other tissues displaying higher regeneration ability. In general, there are at least 
three accepted criteria for a  cell population   to be considered as MSC: (i) cells must 
display plastic-adherent properties in cell culture applications, (ii) cells must express 
mesenchymal cell surface markers including CD73, CD90 and CD105 but not 
 hematopoietic cell surface markers   such as CD14, CD19, CD34, CD45 and 
HLA-DR, and (iii) cells must have the ability to differentiate into osteo-, adipo- and 
chondro-genic cell lineages [ 32 ]. However, as MSCs display different properties 
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according to their origin of tissues, it is quite essential to be aware of variations 
between MSCs to apply the most suitable cell type in regeneration approaches. 
During the characterization of newly identifi ed MSCs, their properties are generally 
compared with well-known and widely studied MSC type, BMMSCs, or other 
famous MSCs such as adipose derived stem cells (ADSCs) or umbilical cord stem 
cells (UCSCs). Comparison articles so far have proved that MSCs derived from dif-
ferent tissues might display variable behavior in vitro and in vivo conditions in terms 
of proliferation, expansion and differentiation characteristics. Therefore, while 
MSCs can be isolated from almost all parts of the body, selecting the most appropri-
ate candidate for a specifi c tissue regeneration application is the most critical step in 
MSC-based tissue engineering approaches [ 33 ]. These disparities in MSC are 
mainly originated from donor and tissue which cells are isolated, isolation technique 
and cell culture applications. Firstly, as MSCs from different sources are isolated 
using different techniques such as applying various enzymes for digestion or explant 
growth, their proliferation and differentiation properties varies. Even a stem cell 
type derived from the same donor isolated by applying different techniques might 
display varying characteristics and differentiation potential [ 34 ,  35 ]. Therefore, 
using different enzymes for tissue digestion, incubation periods along with having 
different source of origin result in variable  cell behavior   in cell culture and in vivo 
studies. In this sense, dental tissue derived stem cells including SHEDs, SCAPs, 
PDLSCs, DFSCs and DPSCs exhibit comparable peculiarities with regard to their 
differentiation, proliferation, in vitro expansion and immunosuppression capacities 
which mainly determines their potential uses in  regenerative medicine   (Fig.  6.2 ).
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  Fig. 6.2    Potential uses of dental stem cells (DSCs) in regenerative medicine. DFSCs: Dental 
follicle stem cells, DPSCs: Dental pulp stem cells, PDLSCs: Periodontal ligament derived stem 
cells, SCAPs: Stem cells from the apical papilla       
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   The time required to reach full confl uency for DPSCs was relatively higher with 
respect to BMMSCs and ADSCs immediately after the isolation, but cell viability 
rate of DPSCs were signifi cantly higher than BMMSCs and not different from 
ADSCs after a 14-days cryopreservation period [ 36 ]. Moreover, colony forming 
ability and proliferation rate of DPSC were superior to BMMSCs in later passages 
possibly because DPSCs isolated from unerupted third molar are in later stage of 
development in comparison with BMMSCs [ 2 ]. Apart from their behavior in cell 
culture, MSC surface protein profi les which determines the pluripotency of stem 
cells, differ from each other. 

 Cell behavior, proteins expression and differentiation potential of stem cells are 
regulated by their basal gene expression profi les. Early microarray studies have 
indicated that DPSCs and BMMSCs share similar pattern of gene expression levels 
for known 4,000 human genes except few differences. Undifferentiated DPSCs 
expressed high levels of insulin-like growth factor-2, collagen type XVIII α1, dis-
cordin domain tyrosine kinase 2 and cyclin-dependent kinase 6, and lower levels of 
insulin-like growth factor binding protein-7 and collagen type I α2 compared to 
BMMSCs [ 37 ]. In the following surveys, DPSCs have been compared with 
BMMSCs for broad range of gene sets. Yamada and co-workers have shown that 
there are several upregulated and down-regulated genes in DPSCs compared to 
BMMSCs, which take place in vital cell progresses including proliferation, migration, 
cell adhesion, growth factor production and differentiation [ 38 ]. These  variances in 
 basal gene expression   profi les are critical factors determining the differentiation 
capacity of MSCs towards various cell lineages. The most prominent and well-
studied transformation capacity of DSCs is towards osteo-/odonto-genic cell types 
[ 8 ], most probably due to their natural microenvironments. All DSC types display 
varying degree of  osteo-/odonto-genic potentials   confi rmed by several in vitro and 
in vivo studies [ 39 ]. As DPSCs are the most studied and well-elucidated DSC type, 
they are commonly used in MSC comparison studies. DPSCs  tra  nsplanted into 
immunocompromised mice have formed dentin-like structure, whereas BMMSCs 
formed lamellar bone consisting of  osteocytes and osteoblasts   [ 2 ]. In addition, 
DPSCs co-cultured with apical bud cells (ABCs) mineralized faster and expressed 
higher levels of tooth specifi c proteins and genes compared to BMMSCs/ABCs co-
culture, indicating the superior odontogenic differentiation potential of DPSCs over 
BMMSCs [ 40 ]. Davies and co-workers have compared mineralization and dentino-
genic potential of MSCs derived from dental pulp, bone marrow and adipose tissue 
[ 41 ]. Their results have revealed that both mineralized matrix and dentinogenesis 
were signifi cantly elevated in DPSCs with respect to ADSCs  a  nd BMMSCs. 
Similarly, DPSCs have displayed signifi cantly higher alkaline phosphatase (ALP) 
activity and osteogenic differentiation than ADSCs [ 42 ]. While several other studies 
have claimed better osteo-/odonto-genic capacity of DPSCs over BMMSCs and 
ADSCs, there are also a few confl icting reports. Hung and co- workers have pub-
lished that ADSCs and DPSCs used in tooth regeneration rabbit model exhibited 
similar gene expression profi les and regeneration potentials but as ADSCs had 
higher growth rate and senescence resistance, they were proposed to be suitable 
candidate for  tissue regeneration   approaches [ 43 ]. 
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 Another important DSC type, PDLSCs, have also been compared with BMMSCs 
in an immunodefi cient rat calvarium critical size defect model [ 44 ]. Although both 
stem cells incorporated into Bio-Oss scaffolds have increased the regeneration effi -
ciency compared to scaffold alone group, PDLSCs have been claimed to be more 
effective. In addition, colony forming ability, proliferation rate and mineralization 
matrix formation capacity of PDLSCs were higher compared to BMMSCs in 
in vitro conditions [ 45 ]. However, Liu and co-workers have proposed that although 
PDLSCs and BMMSCs have similar proliferation rate and cell surface protein pro-
fi les, PDLSCs had lower osteogenic differentiation capacity determined by observ-
ing mineralization deposition areas stained by alizarin red and, Runx2 and ALP 
protein expressions compared to BMMSCs [ 46 ]. In addition, they have shown that 
osteogenic lineage differentiation potential of PDLSCs signifi cantly inhibited by 
main infl ammatory cytokine, tumor necrosis factor alpha (TNF-α), stimulation via 
canonical Wnt signaling pathway. DFSCs have also been compared with BMMSCs 
and skin derived MSCs (SMSCs) for their osteogenic capacity in in vitro and in vivo 
conditions using demineralized bone matrix and fi brin glue scaffolds [ 47 ]. The fi nd-
ings of the study have indicated that while SMSCs exhibited the weakest osteogenic 
transformation ability, DFSCs possessed similar differentiation potential with 
BMMSCs  i  n vitro, but displayed higher osteocalcin intensity and calcium deposi-
tion along with similar radiologic intensities in vivo. Superior osteogenesis of 
DFSCs could be explained by having osteoblast progenitor cells and cementoblasts 
along with expressing higher and stable levels of osteoblast specifi c genes before 
and after differentiation [ 48 ]. 

 While  osteo-/odonto-genic transformation   capacity of DSCs are comparable 
with other MSCs, adipogenic lineage differentiation ability of DSCs relatively 
remains weaker. Lipid droplets in DPSCs after adipogenic medium treatment were 
signifi cantly lower than UCSCs [ 33 ] and BMMSCs [ 2 ,  49 ] but higher than SMSCs 
[ 47 ]. Although these reports indicate potential insuffi ciency of DSCs in fat tissue 
replacement therapies, there are promising and encouraging attempts to increase 
 adipogenesis potential   of DSCs. Exogenous growth factor applications [ 50 ], gene 
overexpression [ 51 ] or knock-down approaches [ 52 ], and engineered surfaces [ 53 ] 
have been used to enhance adipogenesis capacity of various dental tissue-derived 
stem cells. Similar to adipogenesis of DSCs, chondrogenesis potential of DSCs 
remains relatively unsatisfactory in comparison with other MSCs. While BMMSCs 
could differentiate into chondrocyte-like cells and express elevated levels of 
chondrogenesis- related proteins, chondrogenic differentiation  abil  ity of DPSCs was 
insuffi cient to be used in regenerative approaches [ 54 ,  55 ]. In contrast, PDLSCs 
displayed better chondrogenesis in comparison with MSCs derived from Wharton's 
Jelly of the umbilical cord [ 56 ]. To modify and enhance chondrogenesis capacity of 
DSCs, researches have focus on additional applications including use of tissue 
engineered scaffold systems [ 57 ], exogenous growth factors [ 58 ] and gene modifi -
cations [ 52 ]. 

 It is undeniable that current knowledge of DSCs offers limited options for chon-
drogenic and adipogenic regeneration potential, but their neurogenic potential is 
much more promising, most probably due to their neural-crest origin. Undifferentiated 
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DPSCs and PDLSCs expressed higher levels of vital neuronal markers including 
nestin with respect to ADSCs and SMSCs [ 59 ]. Neuronal differentiation ability of 
DSCs was evident not only by cellular morphology but also expression of neuron 
specifi c markers under appropriate cell culture conditions [ 60 ]. Neuron-like cell 
formation potential of DPSCs was higher than  BMMSCs   determined at both protein 
and gene levels [ 61 ]. However, while neuronal progenitors cells could be  obtained 
  from DPSCs in in vitro conditions, they do not further differentiate into mature 
functional neurons, indicating more researches are strictly required to optimize cul-
ture conditions to initiate neuronal functionality [ 62 ]. One promising attempt has 
been performed by Király and co-workers, mentioning that activation of protein 
kinase C and the cyclic adenosine monophosphate pathways, and maturation with 
important neurotropic factors and other supplements resulted in functional neuronal 
derivation from DPSCs [ 63 ]. Most of the in vivo studies, on the other hand, indicate 
positive contribution of DSCs to  neuroregeneration   process by expressing important 
neurotropic agents and anti-infl ammatory cytokines rather than regenerating the lost 
neuronal network [ 64 ]. Additional advances in controlling and managing neurogen-
esis of DSCs would increase regeneration capacity and realize their use in clinical 
applications. 

 Similar to neurogenic potential of DSCs, angiogenic activity of DSCs has also 
been investigated in several studies. Dental pulp is a highly vascularized tissue with 
an ability of healing after various injuries [ 65 ]. Therefore, the idea of “ endothelial 
progenitor cells   must have been inside the pulp tissue to reorganize lost vascular 
network and provide a complete healing” has been examined. As expected, DPSCs, 
SHED and PDLSCs cells have been successfully differentiated into endothelial 
cells [ 66 – 68 ]. After a proper stimuli and culture conditions, DPSCs formed tube- 
like structures and expressed high levels of endothelial cell-specifi c markers includ-
ing FMS-like tyrosine kinase 1 (Flt1), kinase insert domain receptor (KDR), 
intercellular adhesion molecule 1 (ICAM-1) and von willebrand factor (vWF) [ 69 ]. 
Apart from differentiating into endothelial-like cells, DSCs, mainly DPSCs and 
SHED cells, promote angiogenesis by secreting a vast amount of pro-angiogenic 
factors such as vascular endothelial growth factor (VEGF), FGF-2 and PDGF [ 70 ]. 
PDLSCs also produced more VEGF proteins in comparison with BMMSCs but 
SHED cells secreted relatively low levels of VEGF while their vessel formation 
inducing effects were similar [ 71 ]. SCAPs, DPSCs and DFSCs were found to 
express more VEGF proteins with respect to gingival stem cells, and angiogenesis 
in SCAPs’ and DPSCs’ condition medium treated chorioallantoic membranes sig-
nifi cantly augmented [ 72 ]. Similarly, CD31 −  side population of DPSCs expressed 
higher levels of pro-angiogenic stimulators such as VEGFA and granulocyte mac-
rophage colony-stimulating factor (GM-CSF) with respect to CD31 −  side popula-
tions of ADSCs and BMMSCs isolated from same donors [ 73 ]. In the same study, 
authors have claimed that while conditioned medium of BMMSCs and DPSCs 
resulted in better proliferation rates compared to conditioned medium of ADSCs, 
migratory and tube-like structure formation promoting effects were found to be 
highest in DPSCs’ conditioned medium applied group. They also proved that DPSC 
application to mouse hindlimb ischemia model provided better blood fl ow and 
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denser capillary network than other two MSC types. In line with this study, co- 
culturing endothelial cells with DPSCs resulted in more tube-like structure forma-
tion compared to BMMSCs in  vitr  o, and more blood vessels in vivo matrigel plug 
assay in a VEGFR-2 dependent pathway, showing superior  angiogenic activity   [ 74 ]. 

 Epithelial cell-like transformation of tooth germ stem cells was shown [ 75 ] and 
epithelial stem cell properties of DPSCs was found to be higher than BMMSCs 
[ 61 ]. The study have proved that DPSCs expressed signifi cantly higher  le  vels of 
cytokeratin-18 and cytokeratin-19 with respect to BMMSCs as expected due to hav-
ing epithelial stem cell fraction in the pulp tissue [ 76 ]. MSCs derived from dental 
tissues have also been shown to differentiate into neural crest derived melanocytes 
[ 77 ], pancreatic cells [ 78 ,  79 ] and hepatic cells [ 80 ]. Only hepatic differentiation 
capacity of SHEDs has been compared with BMMSCs [ 81 ]. CD117 +  fraction of 
SHEDs, which maintained their remarkable stem cells properties up to 50 passages, 
exhibited better differentiation potential than BMMSCs and differentiation was fur-
ther promoted by hydrogen sulfi de treatment.  

6.4     Conclusion 

 DSCs have been the subject of various reports mentioning superior self-renewal and 
differentiation capacities along with their pluripotency. As every MCS type pos-
sesses varying differentiation capacities, determining the best MSC option for a 
specifi c regeneration approach would be powerful. DSCs, in this regards, have not 
been widely investigated. Although researchers have investigated other MSCs to 
compare differentiation capacities of DSCs towards specifi c lineages, there is not 
any systemic comparison studies for DSCs with other MSCs to elucidate advan-
tages and limitations in cell-based regeneration approaches. Additional works 
should strictly be carried out to explore full-potential and realize use of DSCs in 
clinics.     
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7.1           Introduction 

 Currently, fetal, neonatal, or adult fi broblasts are the main cell types used for 
reprogramming of human somatic cells into the  pluripotent state  . These cell sources 
seem to be highly accessible for generating human iPSCs and already show great 
promise in future clinical applications. However, dermal fi broblasts, as well as fore-
skin or hair  keratinocytes   and, as a consequence, adult stem cells derived from these 
sources, are strongly exposed to environmental factors, which can compromise their 
use as genetic models and therapeutic tools [ 1 ,  2 ]. The question then becomes “which 
source of donor cells is the best for iPSCs generation”. The biological and functional 
characteristics of donor cells, their ability to produce iPSCs and to differentiate effi -
ciently into cell types of interest in therapeutics, as well as safety and tolerance con-
cerns after transplantation, initially as determined in preclinical models, will help us 
to answer this question. 

 Findings demonstrate that successful generation of iPSCs may be easier if these 
iPSCs originate from actively dividing cells rather than from slow or non-dividing cells 
[ 3 ].  Dental tissues (DTs)   contain mesenchymal stem cells (MSCs), which are  multipotent 
cells of neural crest origin similar to dermal fi broblasts, and foreskin or hair keratino-
cytes [ 4 ,  5 ]. These cells rapidly proliferate in vitro and are able to differentiate into 
mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon and adipose tis-
sue [ 6 ]. Additionally, they are able to produce ectopic dentin and related pulp tissues, 
and neural cells. A variety of SC sources derived from DTs have been studied. SCs from 
deciduous teeth are especially useful because they are young and mainly healthy cells, 
which is good for clinical use, plus they can be used to study pediatric diseases [ 6 – 8 ].  
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7.2     DTs as a Source of Stem Cells (SCs) 

 The embryonic counterparts of adult DSCs are cranial neural crest derived multipotent 
dental MSCs. These cells, after neurulation, migrate away from the neural tube into 
developing  craniofacial tissues  . Following the developmental courses of determination 
and differentiation, they give rise to all structures of the tooth and its supporting tissues, 
except enamel. They also robustly contribute to  central nervous system (CNS)   forma-
tion. Thus, DTs as well as CNS both derive from the embryonic ectoderm [ 9 ]. 

 Primary (baby) teeth start their development during prenatal life, and are formed 
between the 6–8th week of fetal development. Nonetheless, SCs derived from pulp of 
deciduous teeth, due to ethical considerations, can only be isolated when baby teeth 
start to spontaneously fall out, which usually happens when children are between 
5–10 years old, within a relatively short time interval in comparison to the human 
normal life span. Baby teeth are habitually discarded, thus dental pulp derived from 
these teeth represents a healthy, available source of SCs, which is free from the ethical 
considerations associated with human embryonic stem (ES) cells isolation [ 6 ]. 

 The process known as exfoliation occurs when the last primary tooth falls out and 
permanent teeth start to form, usually at 11 to 12 years of age. Extraction of perma-
nent teeth is ethically more problematic then that of baby teeth, and can happen only 
if such procedure is necessary for oral health, as determined by the dentist. The extrac-
tion of permanent teeth is uncomfortable for donors and requires medical attention. 
Generally, dental pulp is extracted from vital teeth of healthy adults; however, the 
majority of these teeth are extracted due to severe periodontal disease, the need to 
fabrication complete dentures, etc. All of the above is also true in respect to third 
molars (also called “wisdom teeth”), which are a type of permanent teeth frequently 
extracted because of decay, pain or impaction. Impaction occurs when an “impacted” 
tooth has failed to fully emerge in its expected position and needs to be extracted. 

 Dental follicles, periodontal ligament tissue, gingiva and apical papilla are addi-
tional DT sources that can be used for stem cell isolation. The periodontal ligament 
(PDL), the supporting tooth structure, is differentiated from the dental follicle (sac 
containing the developing tooth) and consists of the cementum, periodontal liga-
ments, gingiva and alveolar bone. PDL stem cells (PDLSCs) can be collected from 
the root surface after permanent, deciduous or third molar tooth extraction, while 
SCs from  gingival tissues   can be obtained from remnant or discarded tissue follow-
ing routine dental procedures from human donors with relatively healthy periodon-
tium and without previous history of periodontal disease. Finally, SCs can be isolated 
from the apical papilla (SCAPs), which contributes to tooth formation. This tissue is 
known as “apical” because as the root continues to develop after the bell stage (fetal 
stage of tooth development), the dental papilla localization is apical to the pulp tissue 
(reviewed by [ 10 ,  11 ]). 

 As mentioned before, SCs are usually extracted from vital DT of healthy 
adults, nevertheless the majority of the teeth themselves are extracted due to med-
ical indication and severe infl ammation occurring in DT, which can impair the 
quality of isolated SCs, debilitating their differentiation capacity into bone, for 
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example [ 12 ]. The age of the donor of DT can also be important for the quality of 
SCs, as previously reported [ 13 ]. Although every type of DSCs can be used for 
iPSCs generation, to date, the SCs isolated are from apical papilla-SCAPs, from 
 pulp tissue   of primary deciduous teeth, such as SHEDs (human exfoliated decidu-
ous teeth) and iDPSCs (immature dental pulp stem cells), as well as pulp tissues 
from permanent (DPSCs) and from wisdom teeth (TGSCs) were used [ 14 – 23 ].  

7.3     Expression of  Pluripotent Markers   in DSCs 

 Pluripotent transcription factors, such as, KLF4, a member of the Krüppel-like factor 
(KLF) family, OCT-4 (octamer-binding transcription factor 4) also known as POU5F1 
(POU domain, class 5, transcription factor 1) and SOX-2 (SRY (sex determining region 
Y)-box 2) are highly expressed in ES cells, thus regulating the developmental signaling 
network necessary for ES cell pluripotency. The overexpression of these factors induces 
reprogramming of both mouse and human somatic cells into the embryonic stage [ 24 ]. 
The expression of PSC markers such as OCT-4, NANOG, SOX-2 and STAT-3 is 
observed during different fetal stages of tooth germ development [ 25 ,  26 ]. During 
adulthood, in situ expression of OCT-4 has been found in the dental pulp of deciduous 
teeth in the cell-rich zone which contains fi broblasts and undifferentiated mesenchymal 
cells, and also in the cell-free zone, which is rich in both capillaries and nerve networks 
[ 27 ]. Recently, this fi nding was confi rmed by another group [ 10 ]. Interestingly, OCT-4 
expression is also maintained in a small amount of iDPSCs (≥10–20 %) after isolation 
and in vitro cultivation. The OCT-4 transcription factor is critical for pluripotency and 
multilineage differentiation potential of SCs and its expression, even at low levels, in 
DSCs may play a critical role in reprogramming [ 5 ,  6 ,  10 ].  

7.4     DSC Reprogramming 

 Freshly isolated DSCs are plastic-adherent, present common fi broblast-like mor-
phology (Fig.  7.1a ), are clonogenic and express a set of markers, which, as the scien-
tifi c community has determined, is typical of MSCs. Furthermore, these cells are 
able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro [ 28 ]. The 
majority of SCs isolated from  dental pulp   seems to be of multipotent MSCs rather 
than of multipotent neural crest cells. Such multipotent MSCs derived from DTs 
preserve their main characteristics, such as immunophenotype, proliferation rate and 
differentiation potentials, unchanged over several passages (up to 25) of in vitro cul-
tivation [ 5 ]. However, culture characteristics certainly depend on method of isola-
tion, enzymatic digestion or explant culture, and cultivation-different culture media 
can be used supplemented, or not, with different growth factors [ 5 ].

   The fi rst study on iPSCs generation was focused on SHEDs and SCAPs. For 
reprogramming, a lentiviral vector carrying C-MYC (Myc proto-oncogene 
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protein), KLF4, OCT-4 and SOX-2 was used. However, this vector failed to repro-
gram these cells. Next, another  lentiviral vector   carrying four factors, this time 
LIN28 (LIN-28 homolog A), NANOG, OCT-4, and SOX-2, was constructed to 
obtain iPSCs, but the effi ciency of colony generation from SHEDs and SCAPs was 
still very low. To improve reprogramming effi ciency, a retroviral vector carrying 
the same genes initially studied: C-MYC, KLF4, OCT-4, and SOX-2, was employed 
and, after a second round of transduction, iPSCs colonies were fi nally produced. 
Nevertheless, human fi broblasts, used as a control in this study, were not able to 
undergo reprogramming under such conditions [ 22 ]. 

  Fig. 7.1     Immature dental pulp derived stem cell (iDPSC)     -derived induced pluripotent stem cells 
(iPSCs). This fi gure depicts ( a ) iDPSCs before reprogramming; ( b ) Morphological changes 
observed in iDPSCs after reprogramming; ( c ) A colony of DSC-derived iPSCs; ( d ) Multiple 
iDPSC-derived iPSC colonies. ( e – g ) Expression of transcription factors, such as, OCT-4 ( e ), 
NANOG ( f ) and SOX-2 ( g ) in the nuclei ( green ) and cytoplasm ( red ) SSEA-4 ( f ), of iDPSC- 
derived iPSCs. ( h ) In vitro differentiation, through embryoid body (EB) formation, of iDPSC- 
derived iPSCs. Differentiated cells can be observed around EB. ( i ) Haematoxylin- and Eosin-stained 
teratoma sections obtained 3 months after intramuscular injection of iDPSC-derived iPSCs into 
nude mice. ( a–d ,  h ,  i ) Light microscopy and Phase contrast (except of  i ). ( e–g ) Epifl uorescence. 
Scale bars: ( a ,  b ,  e ,  g ) = 50 μm; ( f ) = 10 μm; ( c ,  d ,  h ) = 100 μm; ( i ) = 200 μm. PI; Propidium iodide 
( red ) and DAPI; 4′,6-diamidino-2-phenylindole ( blue ), DNA dyes. Methodology described in 
Beltrao-Braga et al. [ 14 ]       
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 Other authors reported reprogramming of DSCs from deciduous teeth iDPSCs, 
which are different from SHEDs due to method of isolation [ 6 ], using a  retroviral 
vector   expressing four of Yamanaka’s factors (KLF4, OCT-4, C-MYC and SOX-2) 
[ 24 ]. The derived cells so far express a low level of OCT-4 and NANOG [ 5 ]. The 
successful reprogramming of these cells occurs after one round of transduction, with 
satisfying effi ciency: 0.1–1 % or even higher [ 14 ] (Fig.  7.1a–i ). More recently, an 
alternative polycistronic lentiviral vector encoding OCT-4, SOX-2, KLF4, and 
C-MYC [ 29 ] with addition of the dTomato reporter gene that allows real-time moni-
toring of transduction effi ciency and silencing of transgenes, was used for successful 
reprogramming DSCs from deciduous teeth [ 16 ]. 

 Reprogramming of DSCs from wisdom teeth, deciduous teeth and human der-
mal fi broblasts (HDFs) has also been carried out using retroviruses expressing four 
(OCT-4, SOX-2, KLF4, and C-MYC) or three (without C-MYC) factors [ 15 ,  18 , 
 21 ]. In order to avoid an integration of an RNA virus into the host genome, a vector 
based on  Sendai virus   [ 30 ] was constructed to generate iPSCs that express the tran-
scription factors encoded by OCT-4, SOX-2, KLF4, and C-MYC from permanent 
teeth-derived DSCs [ 19 ].  

7.5     Factors Relevant in Reprogramming 

 In general, reprogramming requires the use of  mouse embryonic fi broblasts (MEF)   
as a feeder layer for iPSC growth. MEF have been employed in all studies with 
DSCs reprogramming except one, which succeeded in establishing and propagating 
iPSCs under feeder-free conditions on matrigel-coated dishes (Fig.  7.1b–d ) [ 14 ], 
thus avoiding the contamination of human cells with zoonoses derived from mice 
cells. This is an essential step in iPSC technology development, especially when 
iPSCs are obtained for their potential use in cell therapy. 

  Fetal bovine serum (FBS)      is also considered an undesirable component of  culture 
media to obtain SCs for therapeutic use. Although currently FBS can be purchased 
from companies whose product is originated from FDA-approved regions, where 
production is followed by extensive inspection and rigorous quality control (  www.
pan-biotech.com    ), chemically-defi ned media protocols that avoid the use of FBS, 
have already been developed: fi rst, for the isolation and growth of DSCs used for 
iPSC generation and, second, for generation, growth and differentiation of iPSCs 
[ 19 ]. From a practical point of view, the great disadvantage of this protocol is that, 
even before iPSC generation, DSCs cultured under chemically-defi ned conditions 
show delay in growth dynamics and generate signifi cantly lower number of primary 
colonies than those obtained in the presence of FBS. Most importantly, under 
 FBS- free conditions, growth of these cells is strongly donor-dependent, and the use 
of DNA array analyses demonstrates that gene expression patterns are robustly 
altered in DSCs grown under chemically-defi ned conditions in comparison with the 
cells grown in FBS. Another disadvantage of the protocol used is that despite all the 
care that was taken to avoid FBS use, the iPSCs obtained in this study, before they 
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were transferred onto matrigel, were grown on SNL Feeder Cells, which are clonally 
derived from a mouse fi broblast STO cell line. Therefore, potential contamination 
with mouse-derived zoonoses can still occur by using this protocol [ 19 ]. 

 Next, as hypoxia enhances the reprogramming effi ciency of HDFs into iPSCs 
[ 31 ], DSCs were also submitted to early and transient hypoxia (3 % O 2 ) during 
reprogramming, and under such conditions, the transition of SCs to iPSCs was 3.3- 
to 5.1-fold higher as compared to that of cells cultured in normoxia (21 % O 2 ). 
Interestingly, in contrast to what is observed during HDF reprogramming to iPSCs, 
when DSC-derived iPSCs are treated with 3 % O 2  during the later stage of repro-
gramming (from day 6 to day 21), the generation of iPSCs under such conditions is 
strongly inhibited. There is still no rational explanation for such phenomenon and 
the authors speculate that metabolic changes may be involved [ 17 ]. 

 The process of iPSC isolation is still very costly, largely because of low 
 reprogramming effi ciency. It seems that less differentiated  somatic cells   can be 
reprogrammed more effi ciently than terminally differentiated cells, and even 
require fewer viruses than  fi broblasts   for effi cient reprogramming [ 32 – 34 ]. 
Additional factors that may infl uence reprogramming effi ciency are the age of 
cell donor, cell type and number of transcription factors used [ 34 ,  35 ]. Thus, the 
effi ciency of reprogramming of young DSCs is higher than those obtained from 
their adult counterparts as well as than that of HDFs and human primary gingival 
fi broblasts. Additionally, a comparative study between immature and mature 
teeth derived DSCs converted into pluripotent states has been carried out in order 
to understand the low reprogramming effi ciency of mature human iPSC. This 
study has shown that only two factors, OCT-4 and SOX-2, are needed for imma-
ture teeth SC reprogramming and these factors are not suffi cient to convert 
mature teeth DSCs to iPSCs [ 14 ,  16 ,  18 ,  21 ,  22 ]. The comparison of gene expres-
sion profi les between these two DSC groups (immature and mature) unveiled a 
new transcript factor, distal-less homeobox 4 (DLX4), which is highly expressed 
in immature teeth DSCs in comparison to mature ones. The suppression of this 
gene by transforming growth factor beta (TGF-β) impairs iPSC generation. This 
gene may be the fi rst candidate that can substitute already known transcription 
factors ( e.g.,  C-MYC oncogene) and make this process safer due to lower cancer 
risk [ 20 ]. 

 Another issue that must be considered when deriving iPSC from DSCs is the 
system used for gene delivery. The use of lentivirus and retrovirus is effi cient; but 
this technique is not safe since these viruses can integrate into the host DNA, 
potentially altering gene expression and leading to cancer. Adenoviral delivery of 
these genes is safer because adenoviral DNA does not integrate into the genome 
[ 21 ]. Experimental approaches, however, have demonstrated that this is not a rule 
and that retroviral vectors can be transcriptionally silent in iPSCs [ 18 ] and that 
 transgene expression from retroviral vectors can even be lost for some reason dur-
ing reprogramming [ 14 ]. 

 Overall, iPSCs derived from DSCs show stable karyotype after reprogramming, 
although the methylation status of cytosine guanine dinucleotides (CpG) in these 
cells remains to be clarifi ed due to controversies found in the literature and to the 
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few data available for analysis [ 14 ,  21 – 23 ]. Another important marker of  undifferentiated 
PSCs is telomerase activity, which is found to be restored in iPSCs in comparison 
with the original cells used for iPSC generation [ 18 ,  22 ].  

7.6     Transcription Factor Expression in DSC-Derived iPSCs 

 A very important issue for the potential clinical applications of iPSCs, which has 
been less studied, is that of transcription factor expression in iPSCs after repro-
gramming in comparison with naturally developed human ES cells derived from 
human embryos. Two recent studies reported that transcription factor expression in 
iPSCs is similar to that of human ES cells [ 17 ,  20 ]. Nevertheless, we have previ-
ously demonstrated that although immunofl uorescence analyses reveal expression 
of OCT-4, NANOG and SOX-2 in iPSCs derived from iDPSCs of deciduous teeth 
(Fig.  7.1e–g ), molecular analysis shows a low level of expression of all factors 
(OCT-4, NANOG and SOX-2), and, especially, of NANOG (Fig.  7.1f ) in iPSCs 
[ 14 ]. This low level of expression of PSC factors apparently does not affect their 
ability to form embryoid bodies ( EBs  , spherical structures with cystic cavities 
resembling early embryos, albeit, chaotically organized) and teratomas upon 
in vivo implantation- a “gold standard” to test pluripotency of ES cells. In spite of 
the lower expression of transcription factors, as compared with previous studies 
[ 17 ,  20 ], these iPSCs demonstrate very robust differentiation within teratomas and 
strong neuronal commitment in vitro and in vivo [ 14 ].  

7.7     Differentiation Potential 

 The differentiation potential of iPSCs derived from DSCs has been studied using 
conventional models: in vitro formation and differentiation of EB (Fig.  7.1h ); and 
in vivo teratoma generation (Fig.  7.1i ). All authors have reported the capacity of 
these cells to produce the wide spectrum of cells derived of the three  germ layers   
(mesoderm, endoderm and ectoderm) (Fig.  7.1i ); moreover, neuronal differentia-
tion is a “trademark” of DSCs derived iPSCs [ 14 ,  15 ]. 

 The HOX proteins participate in many common developmental processes dur-
ing normal embryogenesis and the vertebrate nervous system is a major site of 
HOX gene expression and function. Furthermore, they play a key role in extend-
ing our understanding of the CNS development [ 36 ]. Additional evidence that 
DSC-derived iPSCs have predominantly a neuronal fate was recently provided. 
Expression  profi ling of HOX genes by neurons differentiated from DSC-derived 
iPSCs and HDF- iPSCs was compared and showed a high degree of correlation 
for the two sources of neurons; nevertheless, they differ in the expression of 
some important genes, especially in several members of the HOX gene families. 
Lower levels of expression for genes involved in hindbrain development are 
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observed in the neurons differentiated from DSC-derived iPSCs as compared 
with HDF-iPSCs. In contrast, several transcription factors involved in the fore-
brain development are considerably increased, such as FOXP2 (Forkhead box 2 
encoded by the FOXP2 gene, also known as CAGH44, SPCH1 or TNRC10, and 
required for proper development of speech and language), OTX1 
 (orthodenticlehomeobox 1, which encodes a member of the bicoid sub-family of 
homeodomain-containing transcription factors and may play a role in brain and 
sensory organ development), and LHX2 (LIM/homeoboxprotein that specifi es 
cortical identity and suppresses hippocampal organization fate). These transcrip-
tion factors are involved in the development of communicative and linguistic 
neural networks [ 37 – 41 ]. Such difference might infl uence the decision to use 
DSC-or HDF-derived iPSCs in  neuropsychiatric disorder   studies and treatments, 
such as in schizophrenia and autism spectrum disorders [ 42 ]. 

 Interestingly, spontaneous (without the use of specifi c differentiation inducing 
agents in culture medium) robust neuronal and endothelial differentiations of 
DSC- derived iPSCs have been demonstrated [ 16 ]. Furthermore, when a chemically- 
defi ned protocol to isolate DSC-iPSCs focusing on their safe establishment was 
used, signifi cantly less primary colony formation was observed with respect to the 
protocols using FBS. Although the DNA array analyses indicate that the culture 
conditions robustly alter DSCs gene expression patterns, DSC-derived iPSCs 
grown under defi ned conditions show a donor-dependent growth capacity but the 
differentiation capacity of these cells is not changed in comparison to that of DSC-
derived iPSCs grown with FBS [ 19 ,  43 ]. 

 Regarding cell differentiation to improve vascularization, two factors, OCT-4 
and SOX-2, have been used to produce iPSCs (2 factors (2F)–iPSCs). After the 
addition of basic fi broblast growth factor (bFGF) and vascular endothelial growth 
factor A (VEGF A) to the culture medium, the effective in vitro differentiation of 
DSC-derived iPSCs into functional endothelial progenitor cells (EPCs) and  smooth 
muscle cells   has been shown. The global transcriptomic analysis of iPSC-derived 
EPCs and endothelial cells (ECs) demonstrates limited variations in gene expres-
sion similar to those of EPCs and ECs derived from human ES cells. However, 
evaluation of the expression of CD31 in iPSCs-derived EPCs and ECs suggests 
that they are highly heterogeneous in respect to the presence of the  cell popula-
tions  : arterial, venous, and lymphatic cell subtypes. Such heterogeneity is geneti-
cally controlled by the multistep regulatory system associated with key signaling 
pathways and transcription factors before circulation begins [ 43 ]. Therefore, to 
validate this method, it should be determined whether iPSC-derived EPCs cultured 
in vitro are associated with the same signaling pathways that control cells during 
early embryonic development in vivo. On the other hand, in order to understand 
heterogeneity, we should determine functional benefi ts of each subtype of arterial, 
venous, and lymphatic endothelial cells to establish the protocol for optimal dif-
ferentiation of iPSC-derived EPCs. The heterogeneity aforementioned also 
strongly indicates the immature state of iPSC-derived EPCs, which increases the 
possibility of teratoma formation or even tumor development. Regarding endothe-
lial cell differentiation, it is also worth mentioning the matrigel plug angiogenesis 
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assay, which is a simple in vivo technique to detect newly formed blood vessels in 
transplanted gel plugs in nude mice. This assay was used and confi rmed the angio-
genic and neovasculogenic capacities of 2F-hEPCs [ 23 ].  

7.8     DSC-Derived iPSCs and Disease Modeling 

 Neurodegenerative diseases combine a wide range of pathogeneses which affect 
neurons in the human  brain and spinal cord  . When neurons become damaged or 
die, they cannot be replaced rapidly by natural sources of SCs in the human 
body. Such diseases result in progressive degeneration, which causes problems 
with movement (ataxias), or mental functioning (dementias). The list of such 
diseases includes Parkinson’s, Alzheimer’s, and Huntington’s diseases. They 
are incurable and the lack of effective treatments for various  neurodegenerative 
disorders   has placed an enormous burden on society. iPSC technology has 
emerged as a powerful tool for in vitro modeling of neurodegenerative diseases, 
the study of their cellular and molecular mechanisms, and drug screening and 
cell therapy for their treatment (Fig.  7.2 ). Before iPSC technology became a 
reality, researchers used post-mortem tissues, which often are not available and 
frequently obtained at the last stage of disease, or, alternatively, from transgenic 
animals. Both approaches are not able to fully reproduce the course of human 
disease or development of cells with neural phenotypes [ 44 ,  45 ]. The establish-
ment of iPSC lines from patients has been an essential and novel step in medi-
cine and biotechnology (Fig.  7.2 ). Thus, in 2008, the fi rst iPSCs derived from 
patients with genetic diseases, including Parkinson’s and Huntington’s diseases, 
were obtained. The majority of iPSC lines were able to maintain the patient 
genotype and phenotype in vitro, while, for other diseases, further phenotypic 
confi rmation is needed [ 37 ,  46 – 48 ]. Moreover, because of the non-invasive 
method of DT isolation, DSCs are important source of iPSC for modeling and 
investigating pediatric diseases [ 49 ].

   DSCs present clear advantages over commonly used skin fi broblasts and other 
 somatic cell types   because of the easy access to DT with minimum discomfort for 
the patient, their rapid cell proliferating, young donor age, and lower exposure to 
environmental factors such as ultraviolet irradiation [ 6 ]. Clonal variation among 
pluripotent SCs is also a very important factor, which seems to be less problematic 
in iPSCs from DSCs [ 23 ]. Furthermore, normal ES cells derived from human blas-
tocysts and iPSCs derived from fi broblasts of the same donor show the variable 
neuronal differentiation potentials [ 50 ,  51 ]. In vitro differentiation of iPSCs derived 
from DSCs occurs practically spontaneously [ 14 ,  15 ]. Despite high neuronal com-
mitment and great potential in research in neurological conditions and disorders, 
only one study used DSCs to generate patient-specifi c iPSCs for modeling of 
 non- syndromic autism and to investigate the impact of TRPC6 (transient receptor 
potential cation channel, subfamily C, member 6) disruption in human neurons 
[ 52 ]. This group identifi ed the disruption of the TRPC6 gene by a balanced de novo 
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translocation in a non-syndromic autism spectrum disorder (ASD) individual. This 
gene is involved in the regulation of axonal guidance, dendritic spine growth and 
excitatory synapse formation [ 53 ,  54 ]. Generation of DSC-derived iPSCs from the 
ASD individual allowed this group to explore the functional consequences of 
TRPC6 disruption in human  neuronal cells  . Overall, they demonstrated that 
patient-specifi c iPSC-derived neurons can be used to associate novel variants to 

  Fig. 7.2    Near and Not-So-Near Future of dental stem cell (DSC)-Derived induced pluripotent stem 
cells (iPSCs).  Near : This fi gure depicts that DSC-derived iPSCs can originate from healthy or dis-
eased donors. Both these cell types can be used in toxicological studies, disease modeling and  drug 
discovery  . The great advantage of iPSCs is that they can be used undifferentiated and as precursors 
of cell lineages of many types upon differentiation. In toxicological studies, multiple endpoints can 
be evaluated in two dimension culture systems (organotoxicity) or 3D systems (embryotoxicity, 
embryoid body models), other cell culture models and even germ cells, which can be produced 
in vitro; iPSCs derived from donors with diseases provide unique tools to study molecular and cel-
lular mechanisms of diseases of interest, which help to understand the etiology of this disease and 
forms of treatment. To study  neurodegenerative diseases  , DSCs-derived iPSCs are particularly 
important tools, since the original cells tend to be committed to neural differentiation. DSC-derived 
iPSCs are potentially important in drug discovery and can be used for cytotoxic endpoint assays, as 
well as to test a variety of drugs in both undifferentiated and differentiated cells, and especially to 
evaluate the drug effect on differentiation pathways throughout the daisy chain of intermediates. 
 Not-So-Near Future:  DSCs-derived iPSCs without disease are of great interest in regenerative med-
icine. However, many questions still need to be answered. Patient- specifi c iPSCs can be used in 
autologous treatments, however when genetic disease issues need to be addressed, the use of autolo-
gous cells is not welcome and therefore, allogenic iPSCs without disease are recommended. In 
addition, patients with a family history of ischemic vascular disease should likewise avoid the use 
of autologous iPSCs. In both cases, need an additional in vitro iPSCs manipulation in order to pro-
duce more mature and safe precursors. Finally, we would like to emphasize once again that DSCs-
derived iPSCs use is highly recommended to treat neurological diseases       
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ASD patients to study the etiology of these disorders [ 52 ]. Finally, the importance 
of DSC-derived iPSCs for  neuropsychiatric disorders  , such as schizophrenia and 
ASD, has also been suggested [ 42 ].  

7.9     Drug Discovery and  Cytotoxicity   Studies 

 Drug discovery today has been very unsuccessful considering time and capital 
investment, with several drugs failing in the clinical trials phases due to lack of 
effi ciency or safety. This should not be happening, considering the major progress 
associated with chemical synthesis technologies, the large amount of data derived 
from “omics” initiatives (genomics, epigenomics, transcriptomics, proteomics, 
metabolomics, among others), the advances in analytical sciences and the possibil-
ity of high-throughput screening. However, the absence of adequate models of 
human disease for drug screening, which include cell lines, is probably one of the 
reasons for the high failure rate in this fi eld. 

 Traditional drug discovery uses animal and human cell lines established long ago 
that poorly refl ect the in vivo biology. Drug screening and toxicological studies often 
require cells from highly differentiated tissues or from tissues where there is no cell 
proliferation, such as neurons, cardiomyocytes and some gland cells. Toxicological 
studies, which are carried out in parallel with drug discovery to weed out highly toxic 
drug candidates, require, for instance, hepatocytes and cardiomyocytes. Liver cells 
are important since they receive high quantities of drugs in the fi rst pass stage of 
distribution, and also because they carry out drug metabolism, which may lead to the 
generation of highly toxic compounds. Hepatocytes are known to be highly capable 
of proliferation. However, hepatocyte-derived cell lines rarely maintain all metabolic 
routes necessary for drug metabolism and safety screening. As for cardiomyocytes, 
these cells typically do not proliferate in vivo after development, which is why it has 
been hard to establish cardiomyocyte models. However, they are of major impor-
tance in drug discovery and toxicity studies, given the many forms of heart disease 
on one hand, and the fact that heart damage by drugs being a reason for abandonment 
of drug development projects. Likewise, drug screening and toxicity studies lack 
good models of neuronal cells, which are also hard to establish in spite of their need 
in the discovery of drugs that are used to treat central nervous system disorders and 
in toxicological protocols to prevent neurotoxicity of new drugs. 

 Most of the above considerations can be addressed using patient-specifi c iPSCs. 
iPSCs with genetic disorders are important models which allow, upon differentiation, 
studying the effect of genetic mutations on cell function and drug discovery screening 
on these diseased models (Fig.  7.2 ). In particular, drug discovery can profi t from 
iPSCs and differentiated cells derived from diseased individuals, whereby the total 
diversity of genetic background of the individual can be considered (Fig.  7.2 ). This is 
particularly true nowadays, when whole genomic sequencing, or, at least, polymor-
phism screening, are straightforward. Most common diseases are associated with 
combinations of genetic polymorphisms [ 55 ], and the development of cell lines 
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obtained from many patients can be useful in drug discovery and toxicity by  addressing 
this complex genetic background in vitro (Fig.  7.2 ). It is likely that such cell lines can 
improve drug screening success by indicating which subpopulations will respond to 
drugs and which will be unresponsive or even not tolerate the medication due to toxic 
side effects. These studies are still in their “infancy” and need to be further improved. 
Thus, Muotri’s group provides insights supporting the testing of novel drugs in 
patient-specifi c ASD DSC-derived iPSCs such as hyperforin, a drug that specifi cally 
activates TRPC6, or insulin growth factor- 1 (IGF-1), which is expected to increase not 
only TRPC6  pro  tein levels but also other synaptic components [ 52 ].  

7.10     Regenerative Medicine and Cell Therapy 

 The main goal of regenerative medicine is to obtain unlimited numbers of a specifi c 
cell type, which can be achieved by reprogramming of DSCs into  pluripotent state  , 
and establishment of differentiation protocols, which allow direct differentiation of 
DSC-derived iPSCs into “pure” populations of precursors, which, when introduced 
back into the organism, are able to produce therapeutically signifi cant numbers of 
mature differentiated cells with functional capacities that allow total restoration of 
lost cells, tissues and organs function. However, it seems that, currently, researchers 
are mainly focused on the methods of iPSCs derivation and cultivation, and less on 
differentiation potential of these cells, which needs to be more extensively studied 
from the perspective of iPSC future applications in regenerative medicine. 

 The neural precursor is a cell type consistently obtained from iPSCs and great 
progress has been made in the area of neuronal lineage specifi cation, which is highly 
dependent on imitating in vitro the early patterning signals that convey axial coor-
dinates during neural development. However, in vivo replacement of  nerve cells   in 
traumatic or degenerative disorders of the central nervous system (CNS) is still at 
early stages of development. Over the years, embryoid body formation, co-culture 
on neural inducing feeders and direct neural induction have been used in the fi eld of 
directed neural differentiation, which are still complex, long lasting and time con-
suming [ 56 ]. Therefore, the fi nding that DSC-derived iPSCs are able to undergo 
spontaneous differentiation into  neurons and endothelial cells   is of great impor-
tance. From a practical point of view, developing protocols for purifi cation of neural 
and endothelial precursors obtained as a result of spontaneous differentiation of 
DSC-derived iPSCs may be much more interesting than in vitro induced differentia-
tion. However, this would be nice, if not for a small detail, that we don’t know how 
immature or mature these precursors are. The study, which demonstrates the deriva-
tion of EPCs from DSC-derived iPSCs, is an alert for the scientists that we still need 
to study a lot about iPSC differentiation. These cells have a very strong differentia-
tion potential which is abundant in different cell types, when compared with DSC-
derived MSCs from post-natal tissues. Therapeutic use of iPSCs expects that their 
differentiation occurs not in a “dish”, but in particular tissue and organ, and under 
the complete control of an organism. Hence, teratogenicity, as well as, short- and 
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long-term tumorigenicity of iPSC-derived precursors must be thoroughly evaluated 
before any clinical application (Fig.  7.2 ). 

 Another popular fi eld of regenerative medicine regards treatment of  peripheral arte-
rial disease (PAD)     . All over the world, PAD affects many people; only in the United 
States, there are about 10 million individuals who suffer from PAD. The murine hind-
limb ischemia preparation is a model of PAD, and is useful for testing new therapies. 
The advantages of this model are the ease of access to the femoral artery and the low 
mortality rates. It has been shown that 2F hEPC-iPSCs have a strong ability to produce 
angiogenic and vasculogenic EPCs. The therapeutic effects of 2F hEPC-iPSC trans-
plantation were verifi ed in mouse models of hind-limb ischemia and myocardial infarc-
tion. The 2F-EPCs effi ciently incorporated into newly formed vascular structures and 
enhanced neovascularization in both experimental models. This study recommends a 
follow up investigation of the use of EPC derived from iPSCs in patient-specifi c thera-
pies, especially in ischemic vascular diseases [ 23 ] (Fig.  7.2 ). 

 The origin of cell types is an important factor, which can infl uence the molecular 
and functional properties of SCs. Thus, upon reprogramming, iPSCs generally 
gain new characteristics, but they habitually hold a ‘footprint’ of the tissue of origin 
[ 57 – 59 ]. The use of SCs in regenerative medicine and cell therapies, therefore, may 
dependent on SC origin, which could have signifi cant effects on the outcome, for 
example, in effi cient differentiation and  functional properties of cells. DSCs can dif-
ferentiate into odontoblasts, osteoblasts, endotheliocytes, smooth muscle cells, adipo-
cytes and chondrocytes [ 5 ], however, due to their neural crest origin, they may also be 
a very important source of SCs to be used to repair  spinal cord injuries   and to prevent 
or even treat patients with neurological disorders [ 42 ] (Fig.  7.2 ). The dental tissue 
origin also suggests that DSC- derived iPSCs can potentially have a major impact on 
oral health [ 60 ,  61 ]. Regeneration of the tooth structure may avoid or delay the loss of 
the whole tooth. A preclinical study has already focused on tissue engineering of 
tooth-like structures, although it was developed using non-odontogenic SCs as a cell 
source [ 62 ]. On the other hand, this study is interesting and important, and will allow 
the comparison of the capacity of non-odontogenic SCs and odontogenic SCs to 
regenerate tooth structures (Fig.  7.2 ).  

7.11     Near and Not-So-Near Future 

 The advantage of iPSCs as compared to ES cell lines includes ethical issues-the fi rst 
are harvested from discarded teeth, without harm to the donors, whereas the later 
come from non-implanted embryos, which sometimes can be associated with social, 
ethical and legal complications. The risk aspect is the teratogenic potential of both 
these cell types as well as the effi ciency of inducing differentiation into defi nite cell 
types, which can be isolated as pure progenitor populations that will not produce 
cells with negative features, such as hyperproliferation, tumorigenicity, and ectopic 
tissue formation. All SCs which are potentially tumorigenic should be eliminated in 
order to prevent recurrence of malignancies. The safety of iPSCs and iPSC-derived 
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progenitors can be, for example, evaluated by  genome and epigenome analyses  , and 
this may minimize the risk to a level acceptable for clinical trials, but nobody can 
confi rm how the cells will respond until clinical trials are completed. 

 The iPSCs can be relatively rapidly obtained from DSCs, and this process seems 
to have good reproducibility, which means a high variety of cell lines will soon be 
available representing human genetic diversity. Since the human donor is known 
and alive, the cell lines can be associated with many phenotypic traits that can be 
useful additional data. Whereas human ES cells can also represent genetic diversity, 
one cannot have further information on the “donor”, since it is destroyed in the pro-
cess of cell line establishment. Furthermore, iPSCs derived from the DSCs of 
patients, or close relatives, can differentiate to tissues associated with the disorder 
( i.e.  lung tissue, Langerhans cells, cardiomyocytes, etc.) and can be used for thera-
peutic purposes as well as to screen for effective drugs for that given patient. 
Currently, such approach is too complex and expensive for the general public. 
Nevertheless, automation and protocol standardization will probably soon follow, 
rendering this form of drug “pre-screening” more viable in order to fi nd effective 
and low-toxicity treatments, especially for very fragile patients.     
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8.1          Overview 

 Craniofacial defects are caused by various conditions, including trauma, tumor/cyst 
resection, degenerative diseases and congenital/developmental anomalies, bringing 
serious functional, aesthetical and psychological outcomes for patients. Conventional 
approaches toward the treatment of craniofacial defects include recruitment of 
diverse techniques and materials; autogenous bone graft, allogenic materials, guided 
bone regeneration [ 1 – 7 ] and distraction osteogenesis [ 1 ], to list a few. Despite sig-
nifi cant success rate of these methods, they possess several disadvantages which 
hamper their application in several cases [ 8 ,  9 ]. As an example, due to their osteoin-
ductive and osteoconductive properties [ 10 ], autogenous bone grafts has long been 
recognized as the gold standard in regeneration of skeletal defects [ 11 ]. However, 
their utilization has several drawbacks such as source and shape limitations, as well 
as possibility of creating donor site morbidities [ 3 ,  12 ]. On this account, regenerative 
medicine has been developed to overcome these shortcomings. Accordingly, this 
cell-based approach is termed the “platinum standard”, and has provided the chance 
to deliver personalized autologous bone grafts to the patients [ 13 ]. 
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 In recent years, the axiom of regenerative medicine was built on three elements; 
cells, scaffolds and growth factors [ 4 ,  14 ]. The aim of regenerative medicine is to 
reiterate the developmental steps in the primary formation of the tissues to per-
form the ideal repair. This necessitates the propagation and differentiation of stem 
cell/progenitor cells towards the favorable lineages [ 15 ]. All human tissues arise 
from pluripotent embryonic stem cells (ESCs) [ 16 ], and these cells remain in 
adult tissues as multipotent adult stem cells (ASCs) which are in charge of hemo-
stasis and repairing of the injuries through the life [ 17 ] .  ASCs are obtained from 
various tissues, namely adipose tissue [ 18 ], bone marrow [ 19 ], skin [ 20 ], dental 
tissues [ 21 ,  22 ], etc. Compared to ESCs, ASCs are easily accessible, immuno-
compatible and they lack the ethical issues associated with ESCs [ 23 ]. It is 
assumed that ASCs have the capability to migrate to the site of injury and differ-
entiate into the tissue-specifi c cells, and take part in tissue repair process [ 24 ,  25 ]. 
The current chapter provides  information regarding potential application of ASCs 
derived from dental tissues in oral, maxillofacial and craniofacial regeneration.  

8.2      Mesenchymal Stem Cells (MSCs)      

  MSCs   are ASCs characterized by their fi broblast-like morphology, plastic  adherence, 
pluripotentcy, colony-forming properties, and considerable proliferation rate [ 26 ]. 
Under proper stimuli, they possess the potential to differentiate into specifi c mesen-
chymal cells including adipocytes, chondrocytes, and osteoblasts [ 27 ]. Taking into 
consideration their multipotency, accessibility and predictable behavior in cell cul-
tures; MSCs have provided a great source in regenerative medicine [ 28 ]. These cells 
were fi rst detected in bone marrow aspirates, named as bone marrow  mesenchymal 
stem cells (BMMSCs) [ 26 ]. BMMSCs have been widely used due to their promising 
osteogenic capability [ 29 ,  30 ]. However, the procedure of BMMSCs harvesting is 
invasive and accompanied with morbidity and post- surgical discomforts [ 31 ]. An 
ideal criteria for application of cell sources in regenerative medicine includes being 
easily accessed and isolated, leading to least patient morbidity. In addition, it should 
have the feasibility to further reproduce them in several clinical cases. Hence, harvest-
ing MSCs from other sources including dental tissues has been in the spotlight.  

8.3     Dental Stem Cells (DSCs) 

  Dental stem cells (DSCs)       possess   signifi cant advantages over BMMSCs. They have 
been an interesting topic for researchers, since these cells can be obtained from 
medical waste [ 32 ]. In addition, they face no ethical issues compared to recruitment 
of ESCs [ 33 ]. DSCs are originated from neural crest, while BMMSCs are derived 
from mesoderm. Accordingly, DSCs possess superior properties for regenerating 
neural crest-derived tissues [ 34 ], namely defects in periodontal and craniofacial 
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regions [ 32 ]. Recent studies have isolated stem cells from various dental and oral 
tissues, including dental pulp [ 21 ],       human exfoliated deciduous teeth [ 35 ], apical 
papillae [ 36 ], periodontal ligament [ 37 ] and dental follicle [ 38 ] (Fig.  8.1 ). Based on 
the ability to form dentin-pulp complex or periodontium, DSCs are classifi ed into 
two categories. Dental pulp stem cells (DPSCs), stem cells from apical papillae 
(SCAPs) and stem cells obtained from human exfoliated deciduous teeth (SHEDs) 
are recognized in the fi rst group, and they have the capability to differentiate into 
dentin, pulp or dentin-pulp complex, while  dental follicle stem cells (DFSCs)      and 
periodontal ligament stem cells (PDLSCs) are allocated to the second group, and 
they are related to formation of periodontium elements [ 39 – 43 ].

8.3.1        DPSCs   

 The presence of DPSCs was fi rst suggested by Fitzgerald et al. in 1990 [ 44 ], and 
were fi rst isolated by Gronthos et al. in 2000 [ 21 ]. They described DPSCs as clono-
genic, rapidly proliferating cells capable of producing mineralized tissue both 
in vitro and in vivo [ 45 ]. 

 DPSC niches are frequently quiescent, and are activated following injuries and 
stimuli [ 46 ]. Comparing to BMMSCs, they possess 30 % higher proliferation and 
growth rates [ 47 ]. These fi ndings are attributed to cell cycling mediators such as 
cyclin-dependent kinase 6 and insulin-like growth factors [ 48 ]. Several studies have 
demonstrated that this cell population express various perivascular markers  including 
trypsin-resistance cell surface antigen (STRO-1), vascular cell adhesion molecule 1 

  Fig. 8.1    Types of dental stem cells (DSCs). DPSCs: Dental pulp stem cells; SCAPs: stem cells from 
apical papilla; SHEDs: stem cells from exfoliated deciduous teeth; DFSCs: dental follicle stem cells; 
PDLSCs: stem cells isolated from PDL. Figure is reprinted from a published paper by Egusa H, 
Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry-part I: stem cell sources. J 
Prosthodont Res. 2012;56(3):151–165. With permission granted from ELSEVIER publisher       
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(VCAM-1/CD106), melanoma cell adhesion molecule (MCAM/MUC-18/CD146) 
and α-smooth muscle actin, indicating that they consist of heterogeneous mesenchy-
mal cell population [ 21 ,  49 ]. 

 The STRO-1 positive cells isolated from dental pulp demonstrated capability of 
differentiating into chondrogenic, myogenic, adipogenic and neurogenic lineages 
[ 50 ] in addition to their odontogenic potential [ 51 ]. It is noteworthy that odontoblast 
differentiation was exclusively allocated to STRO-1 positive cells, and STRO-1 
 negative   cells were not capable of differentiating into odontoblasts [ 52 ].  

8.3.2      SHEDs   

 SHED were fi rst isolated from the dental pulp of exfoliated deciduous teeth by 
Miura et al. in 2003 [ 35 ]. Compared to DPSCs, SHED population presents higher 
proliferation rate. They form sphere-like cell clusters, and possess in vivo osteoin-
ductive potential. However, SHEDs fail to generate a complete dentin-pulp like 
complex [ 35 ,  53 ]. Furthermore, they seem to be more immature than DPSCs [ 54 ], 
and have the potential to differentiate into neural cells, adipocytes, osteoblasts and 
odontoblasts [ 35 ].  

8.3.3      SCAPs   

 During  tooth      development, an epithelial sheath is created by fusion of the inner 
and outer enamel epithelium at the bottom of the crown cervical level. This 
sheath plays a pivotal role in root development [ 55 ]. During root development, 
the dental papilla moves more apical, and a dense cell rich zone is detected 
between the pulp and apical papilla that can be easily removed. It is known that 
primary odontoblasts are originated from developing dental papillae, while 
reparative and reactionary dentins are synthesized by the replacement odonto-
blast originating from the dental pulp [ 56 ]. Thus, it is hypothesized that DPSCs 
produce secondary odontoblasts while SCAPs are probably the source of 
 primary odontoblasts [ 36 ,  40 ]. Furthermore, SCAPs had a greater bromodeoxy-
uridine (BrdU )  uptake rate, population doublings and regeneration capacity, as 
well as higher number of STRO-1-positive cells in comparison with DPSCs. 
SCAPs expressed higher levels of survivin (anti-apoptotic protein), and they 
were positive for hTERT (human telomerase reverse transcriptase) which main-
tains the telomerase length. This marker has been associated with ESCs and it is 
frequently absent in MSCs [ 57 ]. 

 Since  SCAPs are      obtained from a developing tissue, and possess an early popula-
tion of stem cell, it is postulated that SCAPs may be a superior reservoir for tissue 
regeneration. Hence, it may be concluded that stem cells obtained from developing 
tissue may be distinct from those obtained from mature tissues [ 40 ].  

A. Khojasteh et al.



147

8.3.4      PDLSCs   

 Periodontium  is      composed of cementum,  periodontal ligament (PDL)      and alveolar 
bone which support the tooth [ 58 ]. PDL is a specialized connective tissue originat-
ing from the dental follicle which stems from neural crest cells [ 59 ,  60 ]. The 
 presence of progenitor/stem cells in mice PDL was fi rst reported by McCulloch 
and co-workers in 1985 [ 61 ], and later PDLSCs were isolated from human PDL in 
2004 [ 37 ]. Limited regeneration following periodontitis is an evidence for exis-
tence of these stem cells [ 62 ]. As PDLSCs were cultured in conditions described 
for DPSCs and BMMSCs; clonogenic and adherent cells were generated, and the 
rate of fi broblastic colony-forming units were greater comparing to aforemen-
tioned cells [ 37 ]. It is noted that proliferation and osteogenic potentials of BMMSCs 
are infl uenced by donor age [ 63 ], while this trend was not reported for PDLSCs 
[ 64 ]. PDLSCs are distinct from other MSCs due to their differentiation potential 
towards the cementoblast lineage [ 37 ].  

8.3.5      DFSCs   

 Dental follicle (DF)    is originated from ectomesenchyme, and presents as a loose 
connective tissue surrounding the unerupted tooth [ 65 ]. It is hypothesized that DF 
controls tooth eruption via regulating osteoclastogenesis and osteogenesis by pro-
ducing growth factors and cytokines [ 66 ]. DF is separated from dentin by Hertwig’s 
sheet [ 67 ,  68 ], and following disintegration of this sheet, the  DFSCs      differentiate 
into periodontium [ 69 ,  70 ]. This function proposed the presence of DFSCs. Several 
studies have isolated stem cells population from DF in various developmental stages 
[ 38 ,  71 ,  72 ]. DFSCs have shown to differentiate mainly toward the osteoblast but 
not cementoblast and odontoblast lineages [ 22 ].   

8.4      DSC Niches   

 The microenvironment where the stem cell resides is termed “niche”. Niches deter-
mine stem cells fate and lineage differentiation by providing specifi c signals [ 73 ] .  
Cell proliferation, fate and death are regulated by elements found in the niche [ 74 –
 76 ]. The interaction between transcription factors such as Oct-4, Sox-2, Nanog and 
Stat-3 results in stem cell niche formation [ 77 ]. By evaluating BrdU uptake of pro-
liferating cells in the pulp tissue, DPSC niches were claimed to reside in perivascu-
lar regions [ 78 ]. However, researches have also proposed various niches other than 
perivascular niche. Evaluation of notch signaling in pulp injury has demonstrated 
that these cells could be found in odontoblast-sub-odontoblast layer and stroma of 
the pulp, in addition to the perivascular structures [ 79 ].  
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8.5      DSC Isolation and Characterization   

 Isolation of DPSCs from dental pulp has been established by Gronthos et al. [ 21 ]. 
Since then, other types of DSCs have been isolated using similar procedures. Detailed 
procedure of isolating DPSCs used in our laboratory is provided as follow: Tooth 
surface is cleaned by several washes in sterile phosphate buffer solution (PBS), fol-
lowed by immersion in 1 % povidone-iodine solution for 2 min and 0.1 % sodium 
thiosulfate for 1 min. Then, the tooth is washed again in sterile PBS. The root of 
cleaned tooth is separated from crown. The pulp tissue is isolated from the pulp cham-
ber with sterile forceps. Dental pulp is digested with 0.075 % collagenase Type I for 1 
hour at 37 °C. Digested cells are centrifuged to collect cell pellet. Cells are re-sus-
pended in the medium containing DMEM + 10 % fetal bovine serum (FBS) + 1 % 
Penicillin-Streptomycin (10,000 u/ml). Cell suspension is immediately plated in a 
T-25 fl ask, and placed at 37 °C and 5 % CO 2 , and non-adherent cells are removed by 
fresh medium following day. At this stage, cells are called passage 0 (P0). The adher-
ent cells are cultured until they reach 80-90 % confl uency. Medium  is   changed every 
4 days. In this method, no selection of stem cells is administered; instead  selective 
culture is used for stem cell enrichment. Cells are passaged using 0.25 % trypsin-
EDTA at a ratio of 1:3. Primary culture of DPSCs is illustrated in Fig.  8.2 .

   Extensive studies have been carried out to identify specifi c marker genes for MSC 
characterization. Procedures such as cell migration, proliferation and differentiation 
are highly controlled by stem cell markers. Furthermore, expression of these genes is 
recruited as a biomarker for identifi cation, isolation and determination for their dif-
ferentiation potential [ 80 ]. There is no single, generally acceptable stem cell marker. 
However,  International Society of Stem Therapy (ISCT)      has proposed three primary 
markers for identifi cation of MSCs; CD73 (membrane-bound ecto-5'-nucleotidase), 
CD90 (Thy1) and CD105 (endoglin) markers [ 81 ]. STRO-1 is also another important 
marker widely used for characterization and isolation of DSCs [ 49 ,  50 ,  54 ,  57 ]. This 
surface antigen is proposed to regulate cell migration [ 80 ]. Other studies have also 
reported several markers highly expressed in DSCs [ 32 ,  39 – 43 ] (Table  8.1 ).

  Fig. 8.2    The primary culture of dental pulp stem cells (DPSCs) at early passage. ( a ) DPSCs pas-
sage 3 at lower magnifi cation (5×). ( b ) DPSCs passage 3 at higher magnifi cation (10×)       
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8.6         Dentin/Pulp Regeneration   

 Maintenance of dental pulp tissue is critical for integrity of tooth shape and function. 
A layer of odontoblast cells lies outside the pulp tissue and its functions include secre-
tion and mineralization of extracellular matrix of dentin [ 82 ,  83 ]. In case of mild 
stimulus, existing odontoblasts produce increased rates of matrix known as  reactionary 
dentin. However, in case of strong stimulus and death of odontoblasts, new odonto-
blasts are differentiated from undifferentiated MSCs found in pulp tissue, leading to 
formation of reparative dentin [ 84 ]. However, when dental pulp tissue is infected, it is 
diffi cult for the immune system to eradicate the infection; therefore, removing of the 
infected pulp is necessary. Demand for pulp regeneration technique is more evident in 
cases of pulp exposure in young immature teeth. Immature teeth possess incomplete 
root and large pulp chambers and thin walls, making these teeth susceptible to frac-
ture. The current practice of replacing infected pulp with artifi cial material results in a 
nonvital tooth with a questionable prognosis [ 85 ]. 

 Among the different types of  DSCs   mentioned previously, the potential of 
DPSCs, SHEDs and SCAPs to regenerate dentin/pulp tissue has been investigated. 
PDLSCs have been shown to regenerate cementum/PDL-like structure, indicating 
their potential role in PDL tissue regeneration [ 37 ]. The large body of the literature 
have shown that in vivo transplantation of DPSCs seeded in ceramic phosphates can 
form ectopic dentin-pulp like complexes in immunocompromised mice [ 21 ,  45 ,  86 , 
 87 ]. Unlike DPSCs, subcutaneous transplantation of SHEDs did not show complete 
dentin-pulp-like complexes, whereas formation of odontoblast-like cells was 
observed [ 35 ]. In a later study, regenerative potential of DPSCs and SHEDs to form 
dentin-pulp-like complexes with vascularized tissue using tooth root fragments with 
empty root canal space was demonstrated. In this study, the root canal was fi lled 
with a poly- D , L -lactide/glycolide (PLG) scaffold seeded with DPSCs [ 88 ]. Similarly, 
formation of  dentin-pulp like complex has been shown by odontogenically differen-
tiated DPSCs seeded on nanofi brous poly( L -lactic acid) (PLLA) scaffolds in immu-
nocompromised mice [ 89 ]. Transplantation of DPSCs seeded on polyglycolic acid 
(PGA) scaffold in immunocompromised mice subcutaneously demonstrated extra-
cellular matrix production, secretion of type 1 collagen, fi bronectin and invasion of 
blood vessels into cell-PGA complex after 3 weeks of implantation [ 90 ]. In addition, 
placing DPSCs in combination with collagen scaffold and dentin matrix protein-1 
(DMP-1) in the simulated perforation sites in dentin slices, and transplanting the 

   Table 8.1    Types of dental stem cells (DSCs) and specifi c surface markers [ 32 ,  39 – 43 ]   

 Type of 
DSCs  Surface marker 

 DPSCs  STRO-1, CD13, CD29, CD44, CD59, CD73, CD90, D105, CD146, NESTIN 
 SHEDs  STRO-1, CD13, CD29, CD44, CD73, CD90, CD105, CD146, CD166 
 SCAPs  STRO-1, CD13, CD24, CD29, CD44, CD73, CD90, D105, CD106, CD146, NESTIN 
 PDLSCs  STRO-1, CD13, CD29, CD44, CD59, CD73, CD90, CD105 
 DFSCs  STRO-1, CD13, CD29, CD44, CD59, CD73, CD90, D105, CD146, NOTCH1, NESTIN 

8 Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration



150

construct subcutaneously into immunocompromised mice showed a well-organized 
pulp-like tissue in the perforation site [ 91 ]. Transplantation of SHED seeded on 
PLLA scaffold within human tooth slices not only have the potential to form dental 
pulp-like structures, but also can form endothelial-like cells [ 92 ]. It is hypothesized 
that directing the natural process of progenitor cell recruitment to the defect site 
may mimic repair process [ 54 ]. In this context, some researchers investigated this 
hypothesis by  transplanting  bone morphogenetic protein-2 (BMP-2)      treated DPSCs 
[ 93 ] and growth/differentiation factor 11(Gdf11)-electrotransfected DPSCs [ 94 ] to 
the amputated pulps. The primary generated tissue expressed osteo-dentin like 
structure resembling atubular reparative dentin. It is noteworthy that generating atu-
bular dentin may be even more benefi cial, since it is more  resistant   to carious attacks 
[ 54 ]. Similar to DPSCs, SCAPs have also exhibited the potential to generate dentin-
pulp like complex in vivo. A pulp-like tissue with well-established vascularity and 
a layer of odontoblast-like cells was also observed when SCAPs were seeded into 
tooth fragments and then transplanted to immunodefi cient mice [ 56 ]. 

 One of the challenging aspects of tooth regeneration is promoting angiogenesis and 
vascular ingrowth. When cell-scaffold systems, just nourished by apical blood supply, 
are seeded in canals, the vitality of cells may be jeopardized [ 36 ]. Accordingly, efforts 
have been made to modify scaffolds in order to overcome this obstacle and enhance 
vascularization [ 95 – 97 ]. One of the approaches is enriching the scaffold with  vascular 
endothelial growth factor (VEGF)      and/or platelet-derived growth factor (PDGF) or 
seeding the stem cells together with endothelial cells [ 36 ]. Nör and co-workers seeded 
DPSCs and SHEDs together with human dermal microvascular endothelial cells sub-
cutaneously to the immunocompromised mice. The results demonstrated a dental pulp 
generation similar to normal pulp tissue structure [ 85 ]. It is also demonstrated that 
dental pulp-derived CD31 − /CD146 −  side population cells can induce a strong vasculo-
genic response in amputated pulps [ 98 ]. Similarly, a study conducted by Iohara et al. 
showed complete pulp regeneration with neurogenesis and vasculogenesis when autog-
enous dental pulp CD105 +  side population cells in combination with  stromal  cell-derived 
factor-1 (SDF-1)      transplanted to a canine model of pulpectomy [ 99 ].  

8.7      Bone Regeneration   

 Similar to other repair mechanisms, infl ammation is the fi rst phase of bone repair. 
Following the infl ammatory phase, the endogenous stem/progenitor cells are 
recruited from local and distant sources to the site of injury [ 30 ,  100 ]. Subsequent 
to proliferation, the stem/progenitor cells differentiate into chondrocytes or osteo-
blasts. Osteoblasts carry  out   intramembranous ossifi cation by direct deposition of 
bone; likewise, chondrocytes perform endochondral ossifi cation by multiplying, 
getting hypertrophied and mineralized, and fi nally the deposition of new bone on 
the cartilaginous matrix. This process outlines the signifi cant role of stem/progeni-
tor cells as the precursor of osteoblasts and chondrocytes as well as the modulator 
of healing response [ 30 ]. However, endogenous repair would not be suffi cient in 
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severe injuries and an exogenous source of stem cell is required to have satisfi ed 
bone regeneration. 

 BMMSCs are well studied source of stem cells in tissue engineering. Our labora-
tory as well as others have extensively studied the potential application of BMMSCs 
for treatment of craniofacial skeletal defects [ 2 – 5 ,  11 ,  29 ,  101 – 104 ]. However, due 
to diffi culty of harvesting a suffi cient amount of cells as well as discomfort during 
the harvesting procedures, researchers have been exploring other source of MSCs. 
DSCs express osteogenic markers, and they have shown to properly respond to the 
signal/inductors of osteogenic differentiation. Subjecting DSCs to the defi ned cul-
ture conditions differentiates cells towards the osteoblast lineage [ 40 ]. 

 In early studies about osteogenic capacity of DFSCs, bone formation was 
observed following subcutaneous transplantation of DFSCs with ceramic phosphate 
[ 105 ,  106 ]. Later studies have also confi rmed their potential in healing critical-sized 
defects in immunocompromised animal models [ 107 – 109 ]. Several studies have 
demonstrated that subcutaneous transplantation of DPSCs in immunocompromised 
animals can form dentin-pulp complex while no bone-like structures were observed 
[ 21 ,  86 ]. However, Carinci and co-workers have shown that a subpopulation of stem 
cells from human dental pulp named  osteoblasts derived from human pulpar stem 
cells (ODHPSCs)      have osteogenic potential forming bone-like tissue in vivo [ 110 ]. 
A similar study demonstrated that subcutaneous transplantation of CD34 +  cells 
obtained from dental pulp tissues transplanted into immunocompromised rats can 
form nodules of bone [ 111 ]. Furthermore, the osteogenic potential of osteo-induced 
DPSCs seeded on fi broin scaffold resulted in healing of  calvarial   critical-sized 
defects [ 112 ]. Similarly, DPSCs treated with osteogenic medium and seeded into 
 granular deproteinized bovine bone (GDPB)      or beta-tricalcium phosphate (b-TCP) 
were transplanted into a rat calvarial critical-sized defect. Increased bone mineral-
ization was observed in DPSCs in conjunction with GDPB [ 113 ]. Later clinical 
study demonstrated that autogenous DPSCs seeded on collagen sponge biocomplex 
can completely repair human mandibular bone defect [ 114 ]. Similarly, seeding 
human DPSCs from extracted third molars on collagen scaffold followed by trans-
plantation of the construct into the extraction sites demonstrated a rich vascularized 
lamellar bone for three years [ 115 ]. Miura and co-workers have proven that SHED 
cells were unable to directly differentiate into osteoblasts but they could induce 
bone formation by forming an osteoinductive template which recruited host osteo-
genic cells [ 35 ]. On the other hand, it has also been demonstrated that oste-induced 
SHEDs were potent in repairing critical-sized calvarial defects in mice with sub-
stantial bone formation [ 37 ]. In addition, high regenerative potential of canine 
DPSCs and SHED in combination with platelet rich plasma (PRP) was noted in 
treatment of canine mandibular defect [ 116 ]. 

 PDLSCs have typically formed cementum/PDL-like structures following subcu-
taneous transplantation [ 40 ]. However, it is observed that transplantation of human 
PDLSCs into the periodontal defects of immunocompromised mice generates tra-
becular bone next to PDL-like structure, indicating their potential role in alveolar 
bone regeneration [ 37 ]. Furthermore, transplantation of PDLSCs to the rat peri-
odontal defects resulted in bone regeneration [ 117 ] and PDLSCs encapsulated in 
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arginine-glycine-aspartate (RGD)-modifi ed alginate microspheres are able to promote 
mineralization in rat calvarial critical-sized defects [ 118 ]. Some of the studies have 
compared bone formation potential of PDLSCs and BMMSCs. Placing canine 
PDLSCs and BMMSCs around the surgically created peri-implant saddle-like defects 
in canine models demonstrated that BMMSCs have a greater potential in bone regen-
eration in alveolar ridge than PDLSCs [ 119 ]. Another study has also confi rmed that 
PDLSCs have less osteogenic potential compared to BMMSCs [ 120 ]. PDLSC matrix 
mineralizes at a slower rate with respect to BMMSCs which may be attributed to pres-
ence of terminally-differentiated cells in PDLSCs [ 121 ]. In contrast, some studies 
have reported similar osteogenic differentiation potential for BMMSCs and PDLSCs 
[ 122 ]. Comparison of osteogenic differentiation of human PDLSCs and SHEDs has 
suggested that PDLSCs present superior osteogenic stem  cell   source [ 123 ,  124 ]. 
Similar to DPSCs, typical dentin-pulp like structures are formed when SCAPs are 
transplanted into immunocompromised mice [ 40 ]. However, BMP-9 immortalized 
SCAP cells exhibit mature mineralized trabecular bone in ectopic site [ 125 ].  

8.8     Neural Tissue Regeneration 

  Neural stem cells (NSCs)         are the most ideal cell source for neural regeneration. However, 
their harvesting is complicated and limited cell quantities can be obtained [ 126 ]. DSCs 
provide a convenient source of autogenous stem cells, and they are more accessible than 
NSCs. In addition, they are originated from neural crest which makes them more potent 
for neurogenesis compared to mesoderm-derived BMMSCs [ 40 ,  126 ]. 

 DSCs express immature neural cell markers including nestin, neurofi lament even 
in their undifferentiated state [ 35 ,  56 ,  126 – 128 ]. Differentiation towards the neural 
lineage can be induced using epidermal growth factor (EGF), fi broblast growth fac-
tor (FGF) and retinoic acid (RA) [ 129 ,  130 ]. Upon induction, expression of mature 
neural markers increases in DSCs [ 35 ,  56 ,  126 – 128 ]. The neurogenesis potential is 
not only evaluated by expression of neural markers but also following criteria should 
be assessed: 1) neural morphology, including polarized cells with axon and multiple 
dendrites; 2) neural functionality confi rmed by evaluating the voltage-dependent 
channels; and 3) presence of synapse and neurotransmitters required for the com-
munication between neurons [ 126 ]. 

 The large body of literature has evaluated the neurogenic potential of DPSCs and 
SHEDs. Limited in vitro studies are available on neurogenesis of DFSCs, PDLSCs 
and SCAPs [ 126 ]. A study conducted by Kiraley et al .  showed neural-induced 
DPSCs expressed mature neural markers including neurogenin-2, neuron-specifi c 
enolase, neurofi lament-M and glial fi brillary acidic protein (GFAP). In addition, they 
revealed the functional activity of both voltage-dependent sodium and potassium 
channels [ 131 ]. A latter in vivo study conducted by the same group on cortical lesion 
of postnatal rat brain showed that differentiated/transplanted DPSCs expressed neu-
ral markers, and they exhibited voltage-dependent sodium and potassium channels 
[ 132 ]. However, they did  not      observe any synapse or network connection between 
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neural cells. Several studies have also shown the ability of DPSCs to secret many 
neurotropic growth factors including brain-derived neurotrophic factor (BDNF), cili-
ary neurotrophic factor (CNTF), fi broblast growth factor (FGF), glial cell-derived 
growth factor (GDNF), nerve growth factor (NGF), and VEGF. These factors are 
essential for cell survival, differentiation, maturation, and promote neurite outgrowth 
and axon guidance [ 129 ,  133 – 135 ]. Potential role of DPSCs in recovery of central 
nervous system damages are extensively investigated in animal models. A study per-
formed by Huang et al. showed that undifferentiated DPSC transplantation into the 
hippocampus of immunocompromised mice stimulated neural cell proliferation, and 
also resulted in recruitment and maturation of endogenous neural cells to the site of 
the graft [ 136 ]. In another study, DPSCs were detected in cortical lesion of a rat 
model following transplantation into the cerebro- spinal fl uid [ 132 ]. 

 The investigation of regenerative potential of DSCs for peripheral nerve injuries 
in maxillofacial region, including facial nerve and inferior alveolar nerve injuries, 
are also crucial. The only study in this regard performed by Sasali et al. evaluated 
the neural regeneration potential of DPSCs in facial nerve injury of a rat model and 
they observed axon regeneration of facial nerve after transplantation of DPSCs 
loaded into degradable polyglycolic acid (PLGA)-collagen tubes [ 137 ]. In addition 
to neurogenesis, angiogenesis is also essential for pulp regeneration. Study of 
Nakashima and Iohara demonstrated complete pulp regeneration with neural pro-
cesses as well as proper vascularization following autogenous transplantation of 
DPSCs side-population of CD31 − /CD146 −  cells and CD105 +  cells in a rat model of 
amputated pulp [ 138 ].  

8.9      Vascular Tissue Regeneration   

 Angiogenesis plays a pivotal role in differentiation and maintenance of transplanted 
cells in tissue engineering [ 139 ]. The principal strategy utilized in tissue engineer-
ing is ingrowth and extension of vascularity from the host. Any impairment or delay 
in this process may lead to damage or loss of implanted cells; subsequently lack of 
tissue regeneration [ 140 ]. On this account, the angiogenic potential of DSCs has 
been studied by several research groups. 

 DPSCs have demonstrated capability of forming tube-like structures on matrigel 
coated tissue culture plates upon induction in endothelial growth medium. Expression 
of CD31, the endothelial progenitor cell marker, also confi rmed differentiation toward 
the endothelial lineage [ 141 ]. Comparison of two side population cells from human 
dental pulp; CD31 − /CD 146 −  and CD31 + /CD146 −  suggested that CD31 − /CD146 −  cells 
generated extensive cord networks and tube-like structures on matrigel. CD31 − /
CD146 −  cells exhibited 13-fold higher capillary density and greater blood fl ow, and 
signs of neovascularization in a hind limb ischemia model compared to CD31 + /
CD146 −  cell population [ 142 ]. It is noteworthy that this side population can give rise 
to osteoblasts as well as endotheliocytes, and transplantation of this side population in 
immunocompromised rats resulted in vascularized adult bone formation [ 143 ]. It is 
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proposed that low concentration of growth factors secreted by human DPSCs or 
 presence of anti-angiogenic molecules may be the reason for lack of signifi cant effect 
of DPSCs on human microvascular endothelial and mouse brain endothelial cell pro-
liferation. However, signifi cant angiogenesis is detected following incubation of 
human DPSC matrigel with chicken chorioallantonic membrane [ 144 ]. 

 Some studies have investigated the mechanisms associated with endothelial dif-
ferentiation of DSCs. As mentioned earlier, CD31 and VEGF receptor-2 (VEGFR- 2) 
are detected in vascular endothelial cells [ 145 ] .VEGFR-1 is normally present in 
normal and malignant tissues [ 146 ] and controls the angiogenic potential of cells 
when exposed to VEGF [ 147 ]. Treatment of SHED cells with VEGF generated ves-
sels connected to the host vasculature, and detection of vascular markers including 
VEGFR-2, platelet endothelial cell adhesion molecule 1 and vascular endothelial 
cadherin confi rmed this fi nding [ 148 ]. Furthermore, it is demonstrated that SHEDs 
normally express VEGFR-1 [ 148 ] and less angiogenic potential is observed in vivo 
when VEGFR-1 is silenced; hence, it was postulated that VEGFR-1 plays a pivotal 
role in differentiation of  DPSCs   into endothelial cells [ 149 ]. 

 Co-culture of human DPSCs and endothelial cells promotes vasculogenesis 
compared to single cultures of endothelial cells [ 150 ]. The co-culture of human 
umbilical vein endothelial cells (HUVECs) with DPSCs demonstrated an increase 
in odonto-/osteo-genic potential of DPSCs as well as the vasculogenic potential of 
HUVECs, furthermore, DPSCs contributed to longer stabilization of vessel-like 
structures generated by HUVECs [ 140 ]. In addition, DPSCs led to improvement in 
cardiac function correlating with infarct size reduction, greater vascular density, and 
greater wall thickness in infracted myocardium. Despite of having no differentiation 
toward cardiac, smooth muscle or endothelial cell lineages, greater number of car-
diomyocyte bundles and myofi broblasts were observed, which may be attributed to 
paracrine factors secreted by DPSCs [ 151 ].  

8.10      Muscle Tissue Regeneration   

 Tissue-resident muscle stem cells, known as satellite cells, are responsible for muscle 
growth, and regeneration. These cells have been utilized for replacement of damaged 
muscle cells for a long time [ 152 ,  153 ]. While some studies have evaluated the myo-
genic potential of DSCs, majority of them have focused on myocardial differentia-
tion or myocardial infarction models [ 154 ,  155 ]. The fi rst report on differentiation of 
DPSCs into cardiomyocyte-like cells was demonstrated by in vitro co-cultivation of 
DPSCs with neonatal cardiomyocytes [ 154 ]. Serum-free condition is an effi cient 
technique for differentiating myoblasts to skeletal myogenic cells. Likewise, DPSCs 
were incapable of expressing any myogenic markers in this culture condition [ 156 ]. 
The literature has proposed that skeletal myogenic differentiation might be regulated 
by DNA methylation [ 157 ,  158 ]. Treating DPSCs by 5-Aza-20-deoxycytidine 
(5-Aza) demonstrated formation of myotube like structures as well as expression of 
myosin heavy chain, myogenic differentiation 1 (Myod1), myogenic factor 4 
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(myogenin) and Pax7 (a transcription factor that plays a role in myogenesis) [ 156 ]. It 
was observed that PDLSCs also displayed myotube- like structures and desmin 
expression, a subunit of intermediate fi laments in skeletal muscle after 5-Aza treat-
ment [ 159 ]. Injection of  DPSCs   in cardiotoxin induced injury in tibialis anterior 
muscles of dogs demonstrated that cells signifi cantly engrafted in the muscles and 
expressed higher levels of dystrophin and myosin heavy chain [ 155 ].  

8.11      Cartilage Tissue Regeneration   

 Cartilage possesses limited regenerative potential, and its low metabolic rate and 
 avascularity should be taken into consideration prior to any regenerative measurements 
[ 160 ]. Stem cells, chondrocytes and osteoblasts as well as endothelial cells are essen-
tials for articular condylogenesis [ 60 ,  161 ]. Several studies focused on the regeneration 
of temporomandibular joint (TMJ) using MSCs. However, some challenges such as 
facilitating remodeling potential of the cartilage and enhancing mechanical properties 
still exist [ 162 ,  163 ]. Studies on TMJ engineering was mainly based on stem cells 
obtained from disc [ 164 – 166 ] and hyaline cartilage [ 167 ,  168 ]. Considering the fact 
that both DSCs and TMJ cartilage originate from neural crest [ 168 ], utilization of 
DSCs may be a potential candidate for regeneration of TMJ [ 118 ]. 

 Chondrogenic differentiation potential of DSCs has already been demonstrated 
by several studies [ 40 ,  169 ]. It has been proven that the early passages of STRO-1 +  
DPSCs are able to generate cartilage [ 170 ]. Comparable results were also obtained 
following transplantation of bFGF treated DPSCs in immunocompromised mice 
[ 171 ]. Culturing SHEDs and DPSCs with BMP-2 displayed chondrocyte formation 
along with expression of type X collagen and increase in alkaline phosphatase level. 
However, expressions of chondrogenic markers, including type II and X collagen, 
and SOX9 were signifi cantly lower in DPSCs in comparison with SHEDs [ 172 ]. 

 The TGF-β loaded alginate system demonstrated that PDLSCs expressed greater 
levels of collagen type II in comparison with gingival MSCs and human BMMSCs 
[ 118 ]. Furthermore, the chondrogenic differentiation of DPSCs seems to  be 
  enhanced by ultrasound application [ 141 ].  

8.12      Adipose Tissue Regeneration   

 Reconstruction of adipose tissue is essential, because it has considerable impact on 
facial features. MSCs including DSCs can differentiate into adipocytes in vitro upon 
induction in the specifi c medium containing dexamethasone, isobutylmethylxan-
thine, indomethacin, and anti-infl ammatory drugs [ 27 ,  173 ]. Both BMMSCs and 
 adipose-derived stem cells (ADSCs)      have been used for regeneration of adipose tis-
sues for cosmetic purposes [ 174 ,  175 ]. Despite the in vitro adipogenic differentiation 
of DSCs, there is almost no literature using them for adipose tissue regeneration. The 
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only available study conducted by Soe et al. indicated formation of adipocytes by 
transplantation of PDLSCs into immunocompromised rodent [ 37 ]. 

 In summary, regenerative medicine is the promising treatment approach of the 
era that may revolutionize the traditional therapies in coming years. Neural crest- 
derived DSCs as a medical waste can be promising in craniofacial regeneration. The 
application of DSCs for craniofacial regeneration is still in its infancy. Stem cells 
from dental pulp is the most studied DSCs in craniofacial regeneration. Despite the 
well-established hard tissue formation potential of DSCs, very few studies have 
begun to address the potential application of these cells in regeneration of craniofa-
cial soft tissues. The further large scale human studies, particularly investigation of 
their potential for soft tissue reconstruction, would pave the way for clinical appli-
cation of this novel cell source in future.     
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    Chapter 9   
 Dental Stem Cells: Possibility for Generation 
of a Bio-tooth                     

     Sema     S.     Hakki       and     Erdal     Karaoz   

9.1           Introduction 

 Regeneration of tissues and organs requires highly specifi c orchestrations on cell/
extracellular matrix (ECM)/scaffold interactions depending on the tissue character-
istics. Bioengineering of tooth and surrounding periodontal tissues is challenging 
du e to  their structural complexity .  Tooth development requires epithelial- 
mesenchymal interactions, and signaling pathways of these interactions are still 
unclear. To overcome these diffi culties, various cells such as periodontal ligament 
(PDL) fi broblasts, osteoblasts, cementoblasts, odontoblasts and ameloblasts have 
been tried to induce new PDL, bone and cementum for new periodontal attachment 
apparatus and dentin, and enamel for new crown development. In the last decade, 
mesenchymal stem cells ( MSCs)   are also studied in periodontal tissue regeneration 
approaches. Currently,  cell-based therapies   using MSCs are very popular to regen-
erate dental tissues [ 1 ,  2 ]. In this regard, the accessibility and quality of the stem 
cells are very critical for cell-based dental tissue engineering.  

9.2     Stem Cells in Dentistry 

 In the last decade, different sources including dental follicles, apical papilla, exfoli-
ated deciduous teeth pulp, permanent teeth (premolar, molar) pulp and PDL have 
been investigated for MSCs isolation [ 3 – 7 ]. Recent studies demonstrated new and 
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more accessible sources for stem cell-like populations including gingiva, palatal 
connective tissue and oral mucosa [ 8 – 10 ]. Comparison of MSCs originated from 
oral or dental  tissues   with bone marrow MSCs (BMMSCs) demonstrated that these 
cells possess similar characteristics for their differentiation capacities [ 5 – 12 ]. 

9.2.1     Stem Cells Studies in Reconstruction of  Cranio-Facial 
Tissues   

 Bone regeneration therapies are frequently required because of trauma, infection, 
congenital conditions and cancer. Dental implant therapies are needed to rehabili-
tate patients for functional, phonation and esthetic reasons. Dental implant- 
supported therapies may have some diffi culties if the bone tissue is insuffi cient at 
the treatment area. Cell-based therapies combined with appropriate scaffolds may 
help to overcome the limitations of currently used biomaterials including xeno-
grafts, autografts, allografts, and alloplastic materials in these challenging situations 
[ 13 ,  14 ]. Stem cell therapy can be benefi cial on treatments of craniofacial bone 
defects,  i.e.  sinus lift, extraction socket preservation, and bone augmentation proce-
dures to prepare bone for implant insertion [ 15 ]. Although there are several animal 
studies in goat [ 16 ], canine [ 17 ,  18 ] and sheep [ 19 ], supporting MSC-based thera-
pies for the purpose of bone regeneration, only case and/or case series were pub-
lished in the literature as human studies [ 20 – 23 ]. 

 Recently, randomized clinical trials for stem cell-based therapies have been 
mostly started in dentistry. To reconstruct localized craniofacial bone defects, 
Kaigler et al. [ 24 ] planned a randomized and controlled clinical trial with mixed 
stem and progenitor cell population enriched in CD14 and CD90 positive cells 
isolated from bone marrow (tissue repair cells, TRC) for socket preservation after 
tooth extraction.  Guided bone regeneration (GBR)   as control group or TRC trans-
plantation as test group were applied to the participants. No adverse affect was 
reported after 1-year following the therapy. The clinical, histological and radio-
graphic evaluations of the study demonstrated that TRC therapy increased alveolar 
bone regeneration compared to GBR therapy. Test group needed less secondary 
bone grafting during implant insertion. Bony dehiscence exposure on the implants 
was noted 5-fold longer in the control group compared to the test group [ 24 ]. In a 
very recent study, same group from University of Michigan investigated transplan-
tation of autologous cells enriched for CD90 +  stem cells and CD14 +  monocytes in 
the reconstruction of bone defi ciencies of the maxillary sinus in a randomized and 
controlled clinical trial. Patients with 50–80 % maxillary sinus defi ciency were 
randomly allocated to two groups: (i) stem cells combined with β-tricalcium phos-
phate scaffold group and (ii) control group (scaffold alone). While radiographic 
analysis showed no difference in the total bone volume gained between test and 
control groups, 4 months after treatment, bone density in test group was found to 
be higher. Bone core biopsies of the test group showed  better   bone quality than 
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control group [ 25 ]. In addition, the authors reported no adverse effects after the 
1-year follow-up, suggesting that cell-based therapy is safe for maxillary sinus 
reconstruction and may be an alternative for other maxillofacial bone defects.  

9.2.2     Stem Cell Studies in  Periodontal and Peri-Implantal 
Regeneration   

 BMMSCs were used for periodontal regeneration to promote new cementum, PDL 
and alveolar bone [ 26 ,  27 ]. BMMSCs seeded biodegradable scaffolds were used for 
the extraction socket preservation and additional benefi t for the preservation of alve-
olar bone walls was observed in the cell seeded group when compared to control 
groups [ 28 ]. Stem cells isolated from pulp (DPSCs) and PDL (PDLSCs) have been 
used in several animal and human studies for regenerative periodontal and peri- 
implantal treatment [ 29 – 33 ]. In canine peri-implant defect models, PDLSCs and 
BMMSCs were compared for their alveolar bone regeneration capacities [ 30 ], and 
it was found that BMMSC group provided highest new bone formation rate. 
Transplantation of progenitor cells were thought as an effective and safe alternative 
in the treatment of human periodontitis; therefore, autologous PDLSCs were applied 
to the periodontal defects [ 33 ].  Upon   the well-documented satisfactory results in 
animal studies [ 34 ], further randomized clinical trials with these stem cells are war-
ranted to determine additional benefi ts of dental/oral stem cell-based therapies [ 35 ].  

9.2.3     Stem Cells Studies in  Pulp Regeneration   

 Aim of the regenerative endodontics is to convert the non-vital tooth into vital sub-
stitute to pathological pulp with functional healthy pulp tissue [ 36 ]. For this pur-
pose, DPSCs or other MSCs from different sources have been investigated for 
revitalization/revascularization procedures in dentistry. Recent studies reported the 
presence of MSCs in human infl amed pulps [ 37 ] and infl amed periapical tissues 
[ 38 ]. Therefore, even infected pulp tissue can be used to obtain autologous MSCs in 
pulp regeneration treatment. Ravindran et al. investigated differentiation ability of 
human PDLSCs and BMMSCs into odontogenic lineage [ 39 ]. Histological and 
immunohistochemical analysis revealed that a vascularized pulp-like tissue could 
be formed by BMMSCs, PDLSCs and DPSCs. They concluded that the biomimetic 
scaffolds may promote odontogenic differentiation of BMMSCs, PDLSCs and 
DPSCs. To regenerate pulp, stem cells and biomimetic extracellular matrix combi-
nation provides new perspective toward possible therapeutic application in end-
odontics. Recently, a combination of CD31 −  and CD105 +  DPSC-seeded scaffolds 
was used for dental pulp regeneration in a canine pulpectomy model [ 40 ]. The 
potential of DPSCs in regenerating pulp-like tissue was proved in immature canine 
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teeth [ 41 ]. From a clinical perspective, although these studies give promise, further 
studies are strictly needed to establish new methods and proper parameters to pro-
vide functional pulp regeneration;  i.e.  appropriate cells, scaffolds, growth factors 
and clinical application procedures.  

9.2.4     Stem Cells in Tooth Development, Bio-tooth or Bio- root   

 As regeneration of a single tissue compartment of tooth and periodontium, namely 
bone, PDL or pulp, is even complicated matter, creating a functional whole tooth 
and appropriate interaction of every single tissue of this organ become a real chal-
lenge. The knowledge about tooth development was obtained from the laboratory 
mice. The regulation of the signals on the tooth initiation and morphogenesis is not 
still enough clear. In human body, biologically replacement of congenitally missing 
or lost teeth still remains as a dream. 

 Two possible ways have been proposed to obtain biological tooth:

    (i)    Using cells with tooth forming ability, and transplantation to the jaw bone [ 42 , 
 43 ].   

   (ii)    Using cells to create the every single compartment of tooth including PDL, pulp 
and cementum, and seeding these cells to the bio-printed tooth scaffold or 
decellularized natural tooth [ 44 ,  45 ].     

 A number of animal studies were performed for whole-tooth bioengineering [ 46 , 
 47 ]. Most realistic thought seems to use cells with tooth-forming capacity, transplanta-
tion of tooth germ to the jaw, and allowing the formation of a physiological root [ 1 ]. 
Obtaining a biologically mimicked and fully-functional tooth is the main objective for 
missing teeth due to trauma or periodontal and pulpal disease [ 44 ]. Researchers actively 
follows recent developments in stem cell-mediated tissue regeneration in dentistry 
[ 48 – 50 ]. In order to regenerate functional pulp and PDL, researchers have explored the 
characteristics of MSCs isolated from dental tissues [ 51 – 53 ]. In this sense, differentia-
tion ability differences of various cells have been investigated;  i.e.  DPSCs have found 
prone to dentinogenesis [ 52 ] and PDLSCs to cementogenesis [ 54 ]. Cells should be 
used according to their potentials (proliferation, differentiation and immuno-regula-
tory), and the targeted tissue/organ in cell- based regenerative therapies [ 55 ,  56 ].   

9.3     Oral/Dental Tissue-Derived MSCs 

 Oral/dental MSCs have become more popular due to their similarities with other 
MSCs based on their characteristics, relative ease of obtaining and propagating. 
Examination of differentiation and proliferation capacities of these oral/dental tissue- 
derived MSCs has been previously carried out in detailed in vivo and in vitro studies. 
As the fi rst report on this topic, Gronthos et al. have revealed that stem cells derived 
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from the wisdom teeth’s dental pulp has formed dentin/pulp-like structures in vivo 
and in vitro [ 57 ]. The same study group has subsequently accomplished to produce 
ectomesenchymal stem cells from exfoliated deciduous teeth (SHEDs) [ 58 ]. Later on, 
cells with MSC characteristic were successfully isolated from pulp tissue of supernu-
merary [ 59 ], natal tooth [ 60 ] and human third molar germs of young adults [ 61 ]. 

9.3.1     Oral Tissue-Derived MSCs 

9.3.1.1     Gingiva-Derived  MSCs      

 Gingival tissue is a part of the unique soft tissue that surrounds teeth; covering the 
alveolar ridges, palatal and retromolar regions [ 62 ,  63 ]. In addition, because gingi-
val tissue is a distinctive component of the oral mucosal immunity, it plays a signifi -
cant role in periodontal protection and wound healing. Therefore, gingival tissue 
participates in the mucosal barrier to stand against bacterial infection, sudden ther-
mal and chemical changes. Another important feature of the gingival tissue is its 
unique scar-free healing process after the damage occurring in oral tissue [ 62 ,  64 , 
 65 ]. Thus, gingival tissue derived-cells are admitted as potential MSC source 
because of unique characteristics such as regeneration ability, wound closure, clo-
nogenicity, immunomodulatory properties and multipotent differentiation capacity 
like other MSCs [ 65 ,  66 ]. A new area of research on stem cell types obtained from 
periodontal connective tissues where gingival tissue was fi rstly used for the isola-
tion of progenitor/stromal cell population by Zhang et al. has emerged. MSCs 
derived from gingival tissue (GMSCs), which are clonogenic colonies, can exhibit 
stem cell properties and express typical MSC surface markers. They have the capac-
ity of differentiation toward multiple mesodermal lineages in vitro, and have stable 
phenotype and telomerase activity in long-term cultures [ 66 ]. Recent studies have 
shown that GMSCs are not prone to tumor formation whether they are obtained 
from healthy or infl amed\hyperplastic gingival tissue, indicating a tremendous 
potential for therapeutic applications [ 67 ]. GMSCs are considered as an accessible 
cell population because gingival tissues can be obtained from general dental proce-
dures and treated as biomedical waste [ 68 ]. Indeed, gingival tissues can be obtained 
during tooth extraction, dental implantation or periodontal surgery [ 69 ]. Thus, 
 GMSCs      can be easily isolated from the patient with minimum disturbance. Human 
gingival tissue is a potential MSC source for the future clinical use for regeneration 
and repair considering its accessibility and availability.  

9.3.1.2      Oral Mucosa-Derived MSCs      

 Oral cavity is covered by the  oral mucosa (OM)   as known. It has been showed that 
characteristics of OM-derived fi broblasts and fetal-derived fi broblasts are similar in 
some respects [ 70 ,  71 ]. The human OM has been suggested as a novel source for 
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therapeutic adult stem cells after Marynka’s study in 2008 providing fi rst evidence 
that the  oral mucosa lamina propria (OMLP)   gives rise to a robust multipotent stem 
cell population [ 72 ]. The same group also reported that the adult human OMLP can 
generate trillions of stem cells and 95 % of them can express MSC markers and so 
are referred as  human oral mucosa stem cells (hOM-MSCs)  . hOM-MSCs have the 
capacity to differentiate in vitro into lineages of the three germ layers. Their implan-
tation in vivo, after stimulation with dexamethasone, resulted in the formation of 
lineage mixed tumors consisting of tissues that develop from cranial neural crest 
cells during embryogenesis [ 73 ]. A high percentage of these cells (60–80 %) 
expressed fundamental neural and neural crest stem cell markers, and were positive 
for Oct4, Sox2, and Nanog. hOM-MSCs were differentiated into mesodermal 
(osteogenic, chondrogenic and adipogenic), defi nitive endoderm and ectodermal 
(neuronal) lineages in culture conditions, and they also shared all known MSC 
markers. Therefore, hOM-MSCs might be an alternative source to provide human 
MSCs. hOM-MSCs could possibly be clinically used for oral diseases and tissue 
regeneration in the future due to their promising differentiation capacity and easy 
isolation property.  

9.3.1.3      Palatal Connective Tissue-Derived MSCs      

 The palatal-derived cells were previously isolated by Roman et al. for the fi rst time 
in 2012, and these cells were named as  progenitor-like cells   but their characteristics 
were not completely studied [ 74 ]. Later, the characteristics of the cells isolated from 
the palate tissues were investigated by the same research group [ 9 ]. This study dem-
onstrated that the basic characteristics to defi ne cells as MSCs were met by the cells 
from palatal connective tissue. Palatal connective-derived MSCs are a type of adult 
stem cells which are easy to isolate, culture and manipulate under in vitro condi-
tions [ 10 ]. These cells are characterized by high plasticity and can become impor-
tant cell sources for regenerative therapy.  

9.3.1.4      Palatal Adipose Tissue-Derived MSCs      

 Autologous MSCs isolated from palatal adipose tissue might have potential clinical 
use in regenerative alveolar bone/cranio-facial bone and periodontal therapy, and 
gingival recession treatments [ 10 ,  75 ]. More recently, our group has designed a 
study in order to make a comparative analysis between MSCs obtained from adi-
pose tissue-derived lipoaspirate (LAT) and  palatal adipose tissue (PAT)   based on 
their immunophenotypic and immunogenetic properties, proliferation and differen-
tiation potential [unpublished data]. The results demonstrated that the cell surface 
marker expression profi le of the PAT- and LAT-MSCs showed similarities, and they 
expressed all MSC markers, except CD11b, CD34, CD45, CD106, CD117 and 
HLA-DR. PAT-MSCs showed differentiation potential into adipocytes, osteocytes 
and neuro-glial like cells under proper conditions like LAT-MSCs. The level of 
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 Alkaline Phosphatase (ALP)   activity of PAT-MSCs was found to be higher than the 
LAT-MSCs after the osteogenic differentiation in culture [unpublished data]. 
Results of this study pointed that PAT-MSCs are likely to have more osteogenic 
potential when compared to LAT-MSCs.   

9.3.2     Dental-Derived MSCs 

9.3.2.1      Dental Follicle-Derived MSCs (DFSCs)      

 The dental follicle (DF) has a loose connective tissue structure. It is thought that the 
dental follicle derived from third molar and wisdom tooth contains progenitor cells 
which are originated from cementoblasts, PDL cells and osteoblasts [ 6 ,  76 ,  77 ]. 
Like the other dental stem cells, DFSCs express similar cell surface antigens, and 
have the capability to form hard tissue in vitro and in vivo along with displaying 
extensive proliferative ability [ 78 ]. On the other hand, they can form the tissues of 
the periodontium including alveolar bone, PDL and cementum while they express 
the putative stem cell markers including Notch‐1 and Nestin [ 77 ]. Recent studies 
show that DPSCs and DFSCs derived from the same tooth and donor have the abil-
ity to form colonies, and although they show similar immunophenotypic character-
istics they had different levels of gene expressions. 

 When DFSCs and DPSCs are compared, DFSCs seemed to proliferate faster and 
contained cells larger in diameter. DFSCs also exhibited a higher potential to form 
adipocytes and a lower potential to form chondrocytes and osteoblasts with respect 
to DPSCs. Unlike DFSCs, DPSCs were able to produce the transforming growth 
factor (TGF)-β and suppressed the proliferation of peripheral blood mononuclear 
cells, which could be neutralized with anti-TGF-β antibody [ 78 ].  

9.3.2.2      Apical Papilla-Derived MSCs   

 Recent studies have described the physical and histological properties of the dental 
papilla located at the apex of developing human permanent teeth, and this tissue is 
named as the “ apical papilla  ”. Because this tissue is loosely attached to the apex of 
the developing root, it can easily be detached from it [ 79 ]. Discovery of human api-
cal papilla MSCs have been accomplished by Sonoyama et al. in 2006, and they 
called these cells as “ stem cells from the apical papilla (SCAPs)     ”. In this study, it 
has been demonstrated that SCAPs are a promising cell source for regeneration of 
bio-roots for future clinical applications by utilizing them to engineer bio-roots 
using swine as an animal model [ 44 ]. Afterwards, the same group have shown that 
apical papilla comprises less cellular and vascular components in comparison with 
the pulp tissue. SCAPs have displayed two to three times greater proliferation rate 
in comparison with DPSCs. Both SCAPs and DPSCs showed weak adipogenic dif-
ferentiation potentials although they were as potent as BMMSCs in terms of osteo/
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dentinogenic differentiation potential. Furthermore, it has been found that the 
immunophenotypic properties of SCAPs and DPSCs show similarities in osteo-
genic and dentinogenic gene profi les of growth factor receptors. A broad variety of 
neurogenic markers such as nestin and neurofi lament are also expressed by SCAPs 
[ 80 ]. Besides playing a fundamental role in pulp healing and regeneration, SCAPs 
also contribute to the formation of developing odontoblasts which are responsible 
for dentinogenesis and radicular pulp formation [ 80 ,  81 ]. The importance of SCAPs 
for the apexogenesis of developing roots and constant root maturation in teenagers 
with endodontic diseases have been reported in recent clinical studies [ 82 ,  83 ]. In 
addition, SCAPs are also candidates to be used for dental tissue regeneration due to 
their remarkable regeneration capability. In vivo recombination of SCAPs and bio-
logical scaffolds resulted in generation of dentin-pulp-like tissues in the empty root 
canal space and bioengineered roots that can support a porcelain crown [ 6 ,  84 ]. It 
has been hypothesized that the  insulin growth factor 1 (IGF-1)   has a very important 
role in the differentiation and proliferation of SCAPs. SCAPs were isolated from 
juvenile third human molar apex and treated with exogenous IGF-1 for this ratio-
nale. Afterwards, in vitro and in vivo studies were conducted for the evaluation of 
the effects of IGF-1 on  SCAPs  . The increase of osteogenesis and osteogenic dif-
ferentiation potential and decrease of dentinogenesis and odontogenic differentia-
tion potential of SCAPs by IGF-1 treatment was also reported in the study of Wang 
et al., indicating that SCAPs treated with IGF-1 may be used as a potential candi-
date for bone tissue engineering [ 85 ].  

9.3.2.3      PDLSCs   

 PDL is a gap interlaying the cementum and alveolar bone functioning as a replace-
ment of the follicle region, which encloses the developing tooth during the cap and 
bud stages. Follicle (Sharpey’s fi bers) or  cementoblast   (in cellular intrinsic fi ber 
cementum) originated fi bers may be used to insert into the cementum layer. As PDL 
matures during the tooth eruption, it prepares to support the functional tooth for the 
occlusal forces [ 86 ,  87 ]. Major collagen bundles (principal fi bers) occupy whole 
mature PDL by embedding in both cementum and alveolar bone. The maximization 
of the forces to be placed on the tooth during mastication is caused by the arrange-
ment of fi bers in specifi c orientations [ 4 ,  87 ]. Previous studies indicate that 
cementoblast- like cells, adipocytes and connective tissue with rich collagen struc-
ture can be produced from cell populations found in PDL which can differentiate 
into mesenchymal cell lineages [ 88 ,  89 ]. The study of Ponnaiyan et al. proved that 
embryonic stem cell markers Oct4 and Nanog (weak for PDLSCs) and the mesoder-
mal marker vimentin are expressed both in DPSCs and PDLSCs. Strong expression 
of MSC markers (CD73 and CD90) in DPSCs and PDSCs were also shown by 
immunophenotyping experiments. These results indicated that MSC markers were 
expressed in both stem cells at different levels, suggesting that DPSCs are more 
primitive stem cell type with respect to PDLSCs [ 90 ]. Functional and cellular char-
acteristics of  MSCs   derived from pulp and PDL from identical donors have been 
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compared in a recent study [ 91 ]. The results of this study proved that DPSCs and 
PDLSCs differed from each other in differentiation potentials and as well as expres-
sion levels of mesenchymal (CD105) and pluripotent/multipotent stem cell–associ-
ated cell surface antigens (SSEA4, CD117, CD123, andCD29). DPSCs, and 
PDLSCs also had different response patterns when exposed to pro-infl ammatory 
cytokines [ 91 ]. 

 In one of our group’s recent  study  , different cell behaviors were seen in MSCs 
isolated from pulp and PDL tissues [ 5 ]. In this study, PDLSCs expressed higher 
levels of HLA-G, which is a  major histocompatibility complex (MHC)      class I mol-
ecule that functions as an immune modulatory molecule, when compared to DPSCs 
based on the immunohistochemical data. HLA-G inhibits cytolytic function of natu-
ral killer (NK) and cytotoxic T cells, the alloproliferative response of CD4+ T cells, 
the proliferation of NK and T cells, and the maturation and function of dendritic 
cells which have the ability to protect tissues from the immune system attacks [ 92 ]. 
PDLSCs had much higher levels of IL-6 and IL-10 expressions than DPSCs. While 
these  cytokines   play an important role in immune regulation, it was also demon-
strated that both IL-10 and HLA-G are essential for the full immunosuppression 
mediated by MSCs [ 93 ]. IL-6, a pro-infl ammatory cytokine, can also mediate 
immunosuppressive functions that might involve in the induction of IL-10 which is 
an anti-infl ammatory cytokine. 

  Immunomodulatory characteristics   of PDLSCs were examined by Wada et al. as 
a candidate sources for new allogeneic stem cell-based therapies. It is confi rmed by 
this research group that PDLSCs, DPSCs and BMMSCs can inhibit proliferation of 
peripheral blood mononuclear cells (PBMNC) via stimulation of mitogen or an 
allogeneic-mixed lymphocyte reaction (MLR). The results of their study stated that 
soluble factors produced by activated PBMNCs mediated the immunosuppressive 
effect of PDLSCs, BMMSCs and DPSCs [ 94 ]. Similar to Wada et al., our study 
showed the expression of IL-6, IL-10 and HLA-G with respect to their immuno-
regulatory relationship. In addition, our study also demonstrated that although 
PDLSCs had higher IL-6 and IL-10 mRNA expression levels, DPSCs seemed to 
have more stemness characteristics, and higher BMP-2 and BMP-6 mRNA expres-
sion levels, indicating that PDLSCs are more likely to be preferred in clinical trials 
compared to DPSCs due to their superior immunomodulatory properties [ 5 ]. 

 Lei et al. has reported that MSC characteristics of DPSCs and PDLSCs can be 
sustained after in vivo implantation but when compared with PDLSCs, DPSCs 
seems to be more stable under in vivo conditions [ 95 ]. This study also suggested 
that further studies need to be done to understand the mechanisms lying beneath the 
determination of the reduction of lineage-specifi c differentiation of PDLSCs. 
Comparison of DPSCs and  PDLSCs   in our study has shown that  DPSCs   had higher 
proliferation and telomerase activity [ 5 ]. The reduction of lineage-specifi c 
 differentiation of PDLSCs may explain the reason of the low proliferation and 
telomerase activity of PDLSCs. PDLSCs, BMMSCs and DPSCs seem to share sim-
ilarities in their differentiation potentials, and cell surface marker characteristics 
[ 86 ]. Cementum/PDL-like structures were formed when PDLSCs were transplanted 
into immune compromised mice.  Bone generation   was observed when human 
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PDLSCs were expanded ex vivo and seeded into 3D scaffolds (fi brin sponge, 
bovine-derived substitutes) [ 96 ]. These PDLSCs also seemed to preserve their stem 
cell properties and tissue regeneration potentials. In conclusion, overall data pro-
poses that the PDLSC population might be used for creating a biological root to be 
used like a metal implant by capping with an artifi cial dental crown.  

9.3.2.4      DPSCs (Natal, Deciduous and Adult)   

 Stem cells residing in the dental pulp showing similar characteristics with BMMSCs 
and generating the mineralized matrix of dentin due to their ability to differentiate 
into  odontoblasts   were fi rst reported by Gronthos and co-workers [ 57 ]. Based on the 
surface marker expression of both cell types, they proposed that they can both 
adhere to plastic, form colonies, and display similar phenotypes with each other. 
Two different  types of DPSCs   were identifi ed, which are similar to stem and stem- 
like cells in subsequent studies. While hematopoietic markers (CD34/CD45/CD14) 
are not expressed by the fi rst type, MSC specifi c markers (STRO1/CD29/CD44/
CD13) are strongly expressed [ 58 ,  97 ,  98 ]. The second type of DPSCs are consti-
tuted by C-kit + /CD34 + /CD45 −  cells which have osteogenic differentiation potential 
both in vivo and in vitro [ 99 ,  100 ] .  Then after, cells displaying stem cell character-
istics were isolated from pulp tissue of deciduous and wisdom tooth [ 97 ,  99 ,  100 ], 
supernumerary natal tooth [ 4 ] and human third molar germs of young adults [ 5 ]. 
Recent studies indicate that DPSCs have the ability to differentiate into a broad 
range of cell lineages, including odontoblasts that can produce dentin, osteoblasts, 
adipocytes,  skeletal   and smooth muscle cells, elastic cartilage cells, endothelial and 
neural cells both in vivo and in vitro conditions [ 97 – 105 ]. Even though adult stem 
cells share very similar behaviors both in vivo and in vitro, they carry some specifi c 
characteristics of the tissue that they were derived from. The impact of these differ-
ences on biological and clinical processes, their origin and the generation mecha-
nism that lies beneath are still unclear. Comparing the differences or similarities 
between stem cell types is one way to understand these mechanisms. Such compari-
sons should be focused on aspects of  biological marker discovery  , characterization 
of their proliferation capacity and differentiation potential along with other charac-
teristics. In this sense, our research group isolated putative stem cells derived from 
human impacted third molar dental pulp (hDP), broadly characterized and com-
pared with human BMMSCs [ 106 ]. We found out that in contrast to hBMMSCs, 
cytokeratin (CK) -18 and -19, which may be involved in the dentine repair and 
odontoblast differentiation, are strongly expressed in hDPSCs [ 106 ]. By showing 
the expression of numerous specifi c proteins of neural stem cells (NSCs) and neu-
rons, the essential neuro-glia characteristics of hDPSCs were demonstrated. While 
these cells can differentiate into chondrogenic, osteogenic and adipogenic lineages, 
they also share some specifi c characteristics like expressing some NSC- and 
epithelial- related markers. hDPSCs have the ability to differentiate into both vascu-
lar endothelial and neural cells under distinct conditions in vitro. hDPSCs are 
located in the perivascular niche of dental pulp, and because hDPSCs are originated 
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from migrating cranial neural crest cells, their neurogenicity is more potent with 
respect to hBMMSCs. Neural crest cells differentiate into a wide range of cell types 
including cells of dental papilla, dental follicle and neurons of the peripheral ner-
vous system during embryonic development. Considering this, it has been shown 
that transplanted DPSCs can stay alive for a long time [ 107 ] and may induce neuro-
plasticity [ 108 ] in the central nervous system of experimental animal models. 
Considerable recovery from  neurological dysfunction   has been reported in studies 
mentioning DPSCs injection into the right dorsolateral striatum of animals sub-
jected to  middle cerebral arteryocclusion (MCAO)   [ 109 ]. 

 After rats with induced cortical lesions were injected into their cerebrospinal 
fl uid with DPSCs which are pre-differentiated into neurons, these cells integrated 
into the host brain and exhibited some neuronal properties, indicating that they may 
be used as valuable sources for neuro‐ and glio-genesis in vivo [ 110 ]. The neurore-
generative  effects   of DPSCs in rodent  spinal cord injury (SCI)    models   have also 
been reported in a recent study. High levels of trophic‐factor expression in the tis-
sue, better tissue organization and the existence of many axons or oligodendrocytes 
and neurons with synapses in DPSCs transplanted mouse models of compressive 
SCI suggested that DPSCs may be possible candidates for therapeutic intervention 
for the treatments of SCI and central nervous system disorder in humans [ 111 ]. 

  Partial locomotor function recovery   has been reported in completely transected 
rat spinal cord after hDPSC transplantation [ 112 ]. However, relatively less recovery 
of locomotor functions was detected after transplantation of human BMMSCs or 
skin-derived fi broblasts. It has been stated by the same research group that hDPSCs 
present three major  neuroregenerative activities  ; (i) SCI-induced apoptosis of neu-
rons, oligodendrocytes and astrocytes are inhibited by DPSCs that improves the 
preservation of myelin sheaths and neuronal fi laments, (ii) they directly inhibit vari-
ous axon growth inhibitors including chondroitin sulfate proteoglycan and myelin- 
associated glycoprotein via paracrine mechanisms, and (iii) they replace the lost 
cells by differentiating into mature oligodendrocytes under severe conditions of 
SCI. In line with these fi ndings, results of our study state that due to their cell- 
autonomous and paracrine neuroregenerative activities, tooth-derived stem cells 
may offer therapeutic benefi ts for treating SCI [ 112 ]. Another fi nding of our study 
is that preclinical animal disease models, including myocardial infarction, colitis 
and systemic lupus erythematosus (SLE) may be treated via using the signifi cant 
therapeutic benefi ts provided by the array of trophic factors produced by engrafted 
DPSCs [ 113 ,  114 ]. In correlation, DPSCs are found to be highly proliferative, self- 
renewing and multipotent cell population that can actively secrete a broad range of 
trophic, immuno-modulatory and anti-infl ammatory factors. It has also been sug-
gested by preliminary studies that other than exhibiting self‐renewal and multi- 
differentiation potential, dental tissue-derived MSCs also have immunomodulatory 
functions and potent tissue regenerative properties [ 115 – 117 ]. We have also shown 
the regulation of T-cell functions via expression and secretion of  soluble factors/
cytokines   such as HLA-G, HGF-β1, IL-6, IL-10, TGF-β1, ICAM-1 and VCAM-1 
by hDPSCs in both direct and indirect co-culture systems [ 117 ]. 
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  SHEDs   can proliferate faster than DPSCs and BMMSCs 
(SHEDs > DPSCs > BM-MSCs). If they are cultured in neurogenic differentia-
tion medium, SHEDs can form sphere-like clusters due to their high proliferation 
rate, which either adhere to the culture dish or fl oat freely in the culture medium 
aggregating in clusters. Dissociation of these sphere-like clusters can be done via 
passaging through needles and grown on dishes coated with 0.1 % gelatin as indi-
vidual fi broblastic cells afterwards, demonstrating that the process can bring about 
a remarkable proliferative  capacity   analogous to that of NSCs [ 58 ]. SHEDs have 
also been isolated and termed as “ immature DPSCs (iDPSCs)     ” by another research 
group [ 118 ]. As well as correlating with the results of studies described above, they 
also found out that iDPSCs express embryonic stem cell markers, including Oct4, 
Nanog, tumor recognition antigens (TRA-1-60 and TRA-1-81) and stage specifi c 
embryonic antigens (SSEA-3, SSEA-4). 

 Successful isolation and characterization of MSCs derived from  human natal den-
tal pulp (hNDP)      were fi rst declared by our research group [ 119 ] and these hNDP-
MSCs were directionally differentiated to osteogenic, chondrogenic, adipogenic, 
myogenic and neurogenic lineages. Unlike CD3, CD8, CD11b, CD14, CD15, CD19, 
CD33, CD34, CD45, CD117, and HLA-DR, hNDP-MSCs expressed CD13, CD44, 
CD90, CD146 and CD166. hNDP-SCs seemed more developed and metabolically 
active cells based on their ultrastructural characteristics. Under basal conditions and 
without any stimulation towards differentiation, hNDP-SCs were able to express par-
ticular adipogenic (leptin, adipophilin and PPARγ), neurogenic (γ-enolase, MAP2a,b, 
c-fos, nestin, NF-H, NF-L, GFAP and betaIII tubulin), myogenic (desmin, myogenin, 
myosin-IIa, and α-SMA), osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, 
and type I collagen) and chondrogenic (type II collagen, SOX9) markers along with 
embryonic stem cell markers including Oct4, Rex-1, FoxD-3, Sox2, and Nanog. 
Adipogenic, osteogenic, chondrogenic, myogenic and neurogenic differentiation 
potentials of hNDP-SCs have also been demonstrated [ 119 ]. 

 In one of our recent studies, phenotypic and proteomic characteristics of hDP-
SCs derived from a natal, an exfoliated deciduous and an impacted third molar 
tooth were comparatively analyzed [ 120 ]. All three stem cells displayed similar 
features on morphology, proliferation rates, expression of various cell surface 
markers, and differentiation potentials into adipocytes, osteocytes and chondro-
cytes. Furthermore, using  2DE approach   coupled with MALDI-TOF/TOF, we 
have generated a common 2DE profi le for all three stem cells. We found that 
62.3 ± 7 % of the protein spots were conserved among the three MSC lines. Sixty-
one of these conserved spots were identifi ed by  MALDI-TOF/TOF analysis  . 
Classifi cation of the identifi ed proteins based on biological function revealed that 
proteins that are involved in protein folding machinery along with many structur-
ally important proteins are  predominantly expressed by all three stem cell lines. 
Some of these proteins may hold importance in understanding specifi c character-
istics of hDPSCs [ 120 ]. 

 To sum up, ongoing researches on DSCs is growing at an exceptional rate.  Teeth- 
derived stem cells   can be obtained in a convenient and minimally invasive way, and 
are easily accessible. Based on the discussion above, these new stem cell sources 
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could  be   exploited for cellular therapies and ultimately for the development of 
regenerative treatment methods. Although these cells guarantee a donor match 
(autologous transplant) for life, they can also be used partly for close relatives.    

9.4     Induced Pluripotent Stem (iPS) Cells in Dentistry 

 The discovery of iPS cells by Dr. Shinya Yamanaka is a milestone in stem cell 
research, and created a new approach in regenerative medicine [ 121 – 123 ]. iPS cells 
are obtained by reprogramming of somatic cells with gene transfer of transcription 
factors (Oct4, Sox2, Klf4, and c-Myc) which are highly expressed in embryonic stem 
cells. In the dental fi eld, researchers are actively working with iPS cells for tooth 
regeneration [ 124 ]. Tooth development requires  epithelial-mesenchymal interactions   
during the early stages of morphogenesis, and these cells come from different embry-
onic layer. To form tooth/root, iPS cells should be differentiated into both epithelial 
and mesenchymal lineages. If iPS cells can be induced separately to epithelial cells 
which express ameloblasts-specifi c proteins  (i.e. , cytokeratin, ameloblastin, amelo-
genin, enamelin) and mesenchymal cells which display odontogenic potential, and if 
the interactions of these two lineages could be provided later, functional tooth regen-
eration seems possible. Although iPS cells are promising for tooth/root regeneration 
and tooth like-structures obtained in mouse models,  tooth regeneration process   using 
iPS cells in humans, however, cannot be that much easy. While in mouse, the success 
rate of tooth regeneration using mesenchyme and epithelium derived from iPS cells 
can be 100 %, success rate of obtaining the tooth-like structures can be only 30 % in 
human studies. The difference of success rates between two groups can be explained 
with lack of uniformity in the epithelium derived from human iPS cells, and lack of 
the capacity to secrete extracellular matrix required for tooth regeneration [ 125 ,  126 ]. 
Furthermore, these variations can be due to differences in species and signaling at the 
stages of tooth formation in human  vs.  mouse. Therefore, some  challenges   still remain 
in creating root/tooth formation from human iPS cells as follows;

    (i)    Immunogenicity of iPS cells   
   (ii)    No established feasible reprogramming method   
   (iii)    Lack of reproducible method due to signifi cant differences between species   
   (iv)    Lack of information to accelerate human tooth development in vitro or in vivo   
   (v)    Lack of information in regulatory mechanism for iPS cells   
   (vi)    Insuffi ciency in regulation of the shape and size of the tooth    

  iPS cells can be differentiated into both epithelial and mesenchymal cells, and 
expanded and maintained for tooth bioengineering [ 127 ]. Liu et al. claimed that 
iPS cells had more potential in tooth regeneration when compared to other stem 
cells due to having better proliferation and differentiation capacities [ 128 ]. In 
addition to form epithelium and/or mesenchyme layer of tooth germ with iPS 
cells, these cells can also be used to obtain functional adult MSCs [ 129 ,  130 ]. For 
the fi rst time, Hynes and co-workers investigated the pre-clinical utility of iPS 
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cell-derived MSC- like cells for the treatment of  periodontal fenestration defect 
model   in rats [ 131 ]. Their results demonstrated that iPSC-MSC-like cells increased 
regeneration effi ciency of periodontal tissues. Yang et al. used iPS cells-derived 
MSCs in the treatment of experimentally induced periodontitis model in rat as 
well, and they observed signifi cantly decreased infl ammatory infi ltrates in peri-
odontal tissues after systemic and local application of iPSC-MSCs treatment 
[ 132 ]. These two studies mentioned above concluded that iPSC-MSCs might pro-
vide a promising approach for the treatment of periodontal defects, and can be 
used as a source for not only for periodontal tissue engineering but also orthope-
dic applications and dental tissue engineering [ 133 ]. Ozeki et al. reported a 
method to differentiate mouse iPS cells into odontoblast- like cells expressing 
mature odontoblast markers, dentin sialophosphoprotein, and dentin matrix pro-
tein 1, and displaying physiologic and functional characteristics of odontoblasts 
in vitro. The generation of  odontoblast cells   from iPS cells may provide new clini-
cal application area for the treatment of dental pulp regeneration [ 134 ] Since 
MSC-like cells derived from different iPS cell lines might demonstrate variability 
in their differentiation potential, detailed characterization studies regarding iPS 
cell-derived MSC-like cells is critical. Furthermore, safety, effi cacy and economi-
cal concerns should be taken in to consideration as well [ 128 ,  133 ].  

9.5     Current Approach in the Treatment of Missing Teeth 

 There are various alternative methods for the management of oral conditions due to 
periodontal disease, profound caries, congenital missing teeth, failure in endodontic 
treatment, tumor, and trauma, which may result in partial or full edentulism [ 135 ]. 
While the only choices for patients were conventional prosthesis including fi xed 
prosthesis and full/partial dentures until dental implants were discovered, dental 
implant supported fi xed and removable prosthesis have currently been offered to 
patients as a promising option (Figs.  9.1 ,  9.2 ,  9.3 ,  9.4 , and  9.5 )               . As patient’s expec-
tations and life standards increase, more options are being presented to the patients. 
However, economic condition can limit the alternative interventions, and is impor-
tant for decision-making for the management of tooth loss.

  Fig. 9.1     Functional and esthetic rehabilitation   of the patient with titanium implant in the case who 
has single missing tooth due to periodontitis       
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  Fig. 9.2    Two-implant supported removable mandibular prosthesis using ball  attachment   in the 
edentulous patient       

  Fig. 9.3     Four-implant supported removable mandibular prosthesis   with bar attachment in edentu-
lous patient       
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       In dentistry, evidence-based approaches indicate that  root canal treatment   is 
the most cost-effective treatment options for the treatment of teeth with irrevers-
ible pulpitis and coronal lesions. If initial root canal treatment fails, orthograde 
retreatment can be the most cost-effective way. However, if root canal retreat-
ment is not successful, extraction and/or implant-supported crown would be 
more cost- effective compared to traditional prosthesis including fi xed or remov-
able partial dentures [ 135 ]. 

  Fig. 9.4     Four-implant supported mandibular and six-implant supported maxillary fi xed hybrid 
dental prosthesis   in the edentulous patient       
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 In molars with furcation involvement, non-surgical periodontal therapy is more 
effective for Class I types, and the therapy costs less than implant-supported single 
crowns. However, molars with class II-III need periodontal surgeries, and further 
bone graft materials and membranes for guided tissue regeneration, meaning that 
teeth can be saved successfully but it may not always be cost effective.  Quality and 
survival rates   of the treatment plan are very important for the replacement of miss-
ing single tooth. Implant-supported single crown provides better results in compari-
son with fi xed partial prostheses. However, implant-supported prosthesis especially 
in partially or totally edentulous cases may cost more but provides superior survival 
rates when compared to partial or full dentures [ 135 ]. Gjengedal et al. compared the 
dietary intake of edentulous subjects who had conventional mandibular complete 
dentures or implant-supported overdenture, and recorded food avoidance of the 
patients [ 136 ]. The results of their study demonstrated that while there was no sig-
nifi cant difference regarding food choices and nutrient intake between two groups, 
better chewing ability and greater willingness to eat more of certain food were 
reported in implant supported overdenture group. The chewing ability and capacity 
are very important for patients, and complete dentures may present oral disability. 
 Chewing effi ciency   is critical to maintain quality of life and adequate nutrition. 
Using dentures or fi xed prosthesis supported with dental implants improves life 
standards and nutritional status [ 137 ]. Numerous alternatives have been presented 
for implant supported dentures including fi xed, removable or hybrid type according 
to bone amount (width/height), bone quality of jaw, oral hygiene, habits, systemic 
conditions and expectations of the patients. Esthetic, phonetic, functional and fi nan-
cial parameters can also be determinative for decision of the patients and dentist 
(prosthodontist and periodontist/oral surgeon). 

 For a successful treatment,  osseointegration   of the implants with bone should 
take place.  Osseointegration   is defi ned as the direct structural and functional con-
nection between living bone and the surface of implant without intervening soft 
tissue. In dentistry, the implementation of osseointegration started in the mid-1960s 

  Fig. 9.5    Fixed prosthesis of the patient with conventional  prosthodontic restoration         
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as results of the study performed by Branemark who was anatomist professor [ 138 ]. 
Osseointegration is a dynamic process in which implant characteristics (macro- 
topography, micro-topography and surface properties) play critical role for cell 
behavior [ 139 ,  140 ]. However, the survival rate of the dental implants are very high 
(95–99 %), osseointegration of bone to titanium dental implant provides very rigid 
connection when compared to natural tooth. Natural tooth has periodontium and 
periodontal ligament tissue surrounding root surface which is unique tissue in the 
body allows tooth for the mobility for compensation of occlusal forces or trauma, 
and provides the maintenance of the  periodontium  . PDL composes different cell 
types including fi broblasts, MSCs, nerve cells and extracellular matrix and fi rm 
 collagen fi bers [ 140 ]. These cells have the capacity to differentiate into cemento-
blasts and/or osteoblasts, and have roles in repair/regeneration and immunoregula-
tion of cell within the periodontium [ 140 ]. 

 Dental implant-supported rehabilitations have some limitations due to lack of peri-
odontal ligament around implants that maintains periodontium and proprioception 
during chewing. Dental implant supported prosthesis cannot mimic biologically active 
system like in tooth surrounding periodontal ligament and alveolar bone. There is 
direct integration and rigid connection with bone and titanium implants. Rehabilitation 
of mouth with denture (with/without implant) may present some complications like 
denture induced  stomatitis and traumatic ulcers  . Furthermore, dental implant-sup-
ported therapies may have some early and delayed complications (failure of implants, 
broken implants, peri-implantitis, decementation of prosthesis) [ 141 ]. To overcome 
these limitations, stem cell-based tooth regeneration has been considered as a fantastic 
option, combining tissue engineering techniques and stem cells [ 142 ].  

9.6     Future Prospective of Stem Cells in Dentistry 

9.6.1     Utility of Stem Cells to Create Whole  Tooth Organ  . 

 During the last decade, stem cell-based tooth regeneration studies presented attrac-
tive approaches for lost teeth. For this purpose, embryonic, adult stem cells and 
recently iPS cells have been investigated as potential cell sources for tooth regenera-
tion. Since using embryonic stem cells leads to ethical concerns, iPS and adult stem 
cells seem more promising approaches for regenerative dentistry.  

9.6.2     What Is Bio-tooth? Is It Possible? 

 Regeneration of a living tooth is the fi nal aim of dentistry for the replacement of a 
lost tooth. There are two different approaches to create bio-tooth; only cell or cell- 
scaffold based approaches. 
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9.6.2.1      Cell-Based Tooth Regeneration   

 The  cell-based regeneration process   can be simply defi ned as obtaining of tooth 
germ using the epithelial and mesenchymal cells (derived from embryo or iPS 
cells). These cells can be derived from either dental or non-dental sources.  

9.6.2.2     Using Epithelial and Mesenchymal Cells Derived from Dental 
 Source   

 Oshima et al. described a protocol for three-dimensional bioengineered tooth germ 
reconstitution using tooth germ-derived epithelial and mesenchymal cells [ 43 ,  46 ]. 
They also described methods for analysis utilized for in vitro and in vivo studies of 
tooth development. Oshima’s group ectopically produced a bioengineered tooth 
containing periodontal ligament and alveolar bone, and they engrafted this bioengi-
neered tooth into a jaw bone through bone integration. This bioengineered tooth 
could perform normal physiological tooth functions, including masticatory and per-
ceptive potential, in mouse.  

9.6.2.3     Using One of Epithelial or Mesenchymal Cells from Non-dental 
 Sources   

 Mesenchymal cells derived from bone marrow stroma as a non-dental source were 
used for tooth formation fi rstly by Ohazama et al. in 2004 [ 143 ]. Their study demon-
strated that adult BMMSCs with the embryonic inductive tooth epithelium cells could 
induce tooth formation in an adult body. Later, Angelova Volponi et al. showed that 
adult human epithelial cells (non-dental source) combined with mouse embryonic 
mesenchymal cells could also produce tooth-like structure in renal capsule of the 
mouse [ 144 ]. Micro-CT analysis of the transferred tissues revealed obvious tooth-like 
structures. Histological sections confi rmed the presence of obvious teeth structure 
with dentin, enamel spaces, and well-vascularized pulp containing odontoblast-like 
cells expressing dentin sialophosphoprotein and lining the dentin surface. They 
claimed that these epithelial cells obtained from human gingival are a realistic source 
to be used in human bio-tooth generation [ 144 ]. They concluded that using non-
embryonic sources for epithelial or mesenchymal cells is clinically feasible and needs 
further research to provide suffi cient cell numbers for successful tooth formation.  

9.6.2.4      Scaffold and Cell-Based Tooth Regeneration      (Fig.  9.6 ) 

    The main aim of the process is to obtain different compartment of tooth (peri-
odontal ligament and pulp) from MSCs (derived from adult or iPS cells) sepa-
rately, and put them together into the tooth-like bio-printed scaffold mimicking 
calcifi ed tooth structure. 
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 Sonoyama et al. aimed to establish a bio-root model to reconstruct a functional tooth 
in miniature pigs (minipigs) using postnatal stem cells including SCAPs and PDLSCs 
[ 44 ]. Their results demonstrated that this hybrid strategy using autologous DSCs may 
provide predictable applications. Wei et al. also performed an animal experiment to 
regenerate bio-root by employing similar hybrid strategy with different cell types (allo-
geneic DSCs) [ 45 ]. Hydroxyapatite tricalcium phosphate root shaped scaffold contain-
ing DPSCs covered by PDLSC sheet exhibited normal tooth characteristics after 6 
months. In addition, dentinal tubule-like and functional periodontal ligament-like 
structures without any immunological response were reported. In another study, 
hydroxyapatite-coated dental implant was covered with embryonic dental follicle tis-
sue, and transplanted into jaw bone of a murine tooth-loss model [ 145 ]. Using hydroxy-
apatite-coated dental implant and DFSCs, fi brous connection was established around 
the implants, a bio-hybrid organ. This bio-hybrid implant provided function, bone 
remodeling, and periodontal tissue regeneration including periodontal ligament and 
cementum. The bio-hybrid implant was claimed to be a promising approach to be used 
for future tooth replacement therapies. However, to create tooth-like structures, numer-
ous concerns should be elucidated  before   conducting clinical studies;

 –    Which cell combinations are better for human approaches?  
 –   Heterogeneity of the cells among the patient,  
 –   Appropriate reciprocal interaction among the cells,  
 –   The predictability of shape of the growing tooth,  
 –   Tumorigenicity and immunogenicity of the cells (since one of cell layer is 

embryonic and obtained from iPS)       

9.7     Biomaterials 

 Developing three dimensional bioengineered tooth for future replacement therapy 
have been investigated, and in this line, mechanically resistant to the occlusal force 
and biocompatible biomaterials have been tested. Biomaterials including micro and 

  Fig. 9.6    Schematic 
illustration of the 
bio-root/ tooth   using dental 
pulp stem cell (DPSCs) 
and periodontal ligament 
stem cell (PDLSCs) seeded 
hydroxyapatite (HA)/
tricalcium phosphate 
(TCP) tooth-shaped 
scaffold       
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nano-sized (or their combinations) have been used for this purpose. Biomaterials 
should provide appropriate micro-environment for cells to form the fi nal structured 
organ. The materials used for  bio-tooth applications   should be resistant to chemical 
and physical abrasions, and provide required mechanical strength and intraoral 
maintenance with desired function and esthetic. For this purpose, poly(lactide-co- 
glycolide) (PLGA) (70/30, mol/mol) scaffolds, three types of calcium phosphate 
contained composites scaffolds that were composed of 50 % of PLGA and 50 % of 
hydroxyapatite, tricalcium phosphate (TCP) and calcium carbonate hydroxyapatite 
(CDHA) were evaluated [ 146 ]. The results showed that while the calcium phos-
phate contained compound supported tooth regeneration effectively, the PLGA/
TCP scaffold would be more appropriate for the proliferation and differentiation of 
DPSCs. Furthermore, seeding of rat tooth bud cells on the PLGA/TCP scaffold 
generated dentin- and pulp-like tissues, indicating that  PLGA/TCP scaffold   is supe-
rior to the other three scaffolds for tooth-tissue regeneration approaches, particu-
larly for dentin formation. 

 Selection of optimal scaffold for future clinical application remains a question-
able, and further research is required to improve the features of the materials for 
tooth regeneration applications. In particular, recent developments including com-
posites, biomaterials (nanofi brous scaffolds, hydrogel systems, laser-fabricated 
nanostructures) and cell-based bio-printing methods seem promising to produce 
proper scaffolds for dental tissue engineering. 

9.7.1      Bio-implant vs. Bio-tooth?      

 Gault et al. evaluated PDLSC-seeded titanium implant to create bio-implant 
(Fig.  9.7 ), and named the structure as ‘  ligaplant   ’ [ 147 ]. They placed titanium dental 
implant to the extraction socket and reported new bone and PDL tissue development 
around the implants at the end of treatment. They claimed that biological mimicking 
of tooth with dental implant can be applicable in clinical dentistry. Their investiga-
tion demonstrated the application of ligament-anchored implants, which have 
advantages over osseointegrated oral implants since they don’t have rigid fi xation. 
In addition, they concluded that  ligaplant  induced the formation of new bone and 
new PDL in the vicinity due to their remarkable potential in periodontal tissue 
regeneration [ 147 ,  148 ]. On the other hand, as there is no cementum on the titanium 
surface, and collagen fi bers cannot be placed around of the titanium implants like in 
natural tooth environment, bio-implant cannot exactly mimic natural structure 
around the tooth. Without cementum layer, cell-seeded titanium implant cannot pro-
vide biological expectations. Many questions remain with the  ligaplant  to be solved 
with long-term clinical fi ndings [ 148 ]. However, this bio-hybrid (cells and titanium 
material combination) technology for tooth replacement can fi nd a place in both 
periodontology/oral implantology, bio-tooth philosophy looks more applicable and 
more biological thought. But further pre-clinical studies in large animal models or 
human clinical trials using patient tissue-derived cells are needed to realize future 
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human clinical applications [ 149 ]. Making a functional bio-tooth using stem cells 
may be much more complicated than expected. Several issues including identifi ca-
tion and stemness of stem cells, dental morphogenesis, determination tooth type, 
odontogenic signals, controllable bio-tooth growth and eruption, and host-graft 
immunorejection in the jaws must be solved [ 35 ,  124 ,  149 ].

9.8         Conclusion and Future Trends or Directions 

 The fi nal aim of the regenerative dentistry is to create functional whole tooth 
organ, mimicking dental hard and soft tissues. Various stem cells have been 
used in tooth bioengineering studies to evaluate their potential. Technologies 
using MSCs and iPS cells might be the new era of personalized dentistry but due 
to heterogeneity among the patients, studies should be focused an  individually-
targeted approach  . Functional cell-based tooth replacement therapy requires 
collaborative studies conducted by bio-engineers, biologists, chemists and den-
tists. Mechanically and topographically appropriate biomaterials should be 
investigated for functional tooth organ studies. For successful tooth regenera-
tion, more information is needed on genetic and cellular mechanisms regulating 
growth of the tooth crown and root, guiding tooth development, to understand 
the specifi cation of important  cell lineages   including ameloblasts, odontoblasts, 
and cementoblasts.     

  Fig. 9.7    Schematic 
illustration of the 
bio- implant   using dental 
pulp stem cell (DPSCs) 
and periodontal ligament 
stem cell (PDLSCs) seeded 
titanium dental implant       
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10.1           Introduction 

  Bone defects and atrophy  , which can be caused by trauma and congenital malforma-
tions, might lead to several clinical problems including malformation, movement 
disorders, pathological fracture and mastication disorders. Bone augmentation by 
applying autogenous bone grafts, guided bone regeneration, and some other thera-
pies, are commonly used to repair bone defects in clinics. Of those,  autogenous bone 
grafts   provide the best clinical outcomes because of their remarkable osteoinductive 
and osteogenic potentials. However, the procedure has some disadvantages including 
the limited amount of tissue supply, the risk of infection transfer and damage to the 
donor site. For bone graft materials, conventional materials have unsatisfying osteo-
conduction or osteoinduction properties. Thus, studies have focused on improving 
various  graft materials   in order to avoid invasiveness and promote good outcomes. 
By now, numerous bone grafting materials invariably falling into the categories of 
allografts, xenografts and alloplastic grafts are commercially available, which have 
varying limitations in clinical applications.  Allografts and xenografts   have the poten-
tial to transmit disease and are rejected by some patients, whereas alloplastic grafts 
lack osteoinductive and osteogenic properties. Achieving satisfactory bone quantity 
and quality using these materials is still diffi cult; therefore, advanced bone tissue 
engineering approaches attempt to overcome these problems [ 1 ]. 

 Bone tissue engineering is a part of regenerative medicine, and most commonly 
defi ned as the implantation of an artifi cial construct comprised of stem/progenitor 
cells seeded on scaffolds combined with growth factors. In this artifi cial system, the 
 stem/progenitor cells   act as seed cells for regenerating tissue, the growth factors act 
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as morphogenetic signals for tissue induction, and the scaffolds create a  microenvironment 
to facilitate the tissue regeneration [ 2 ]. Among these three elements that constitute 
the basis of bone tissue engineering, stem/progenitor cells are considered as the 
most crucial element. Commonly employed strategies for bone tissue engineering 
require a previous biopsy of live tissue containing the cells of interest for the recep-
tor site. Cell cultures are then developed in the laboratory conditions where the cells 
of interest are expanded and seeded onto polymer matrices so they can later be 
reinserted into the organism [ 3 ]. 

 Bone marrow mesenchymal stem cells ( BMMSCs)     , which have been widely 
investigated, are considered the gold standard for bone tissue engineering [ 4 ], and 
have been applied in preliminary clinical trials for regenerative therapy [ 5 ]. However, 
collection of BMMSCs leads to varying degrees of injury at the donor site,  impeding 
the application. Therefore, investigators have been paying more and more attention 
to dental stem cells (DSCs).  

10.2     DSCs as Candidate Seed Cells for Bone Tissue 
Engineering 

 Several kinds of  mesenchymal stem cells (MSCs)      have been isolated from  dental 
tissues and identifi ed based on the properties of adult MSCs. These populations 
are divided into several cell types depending on the tissue of origin: namely, 
 dental pulp stem cells (DPSCs)   [ 6 ],  stem cells from human exfoliated deciduous 
teeth (SHEDs)   [ 7 ],  periodontal ligament stem cells (PDLSCs)   [ 8 ],  dental folli-
cle stem cells (DFSCs)   [ 9 ], and  stem cells from apical papilla (SCAPs)   [ 10 ]. 
These cells have been the subject of numerous studies because they are easily 
accessible, have the potential for self renewal, and are capable of differentiation 
into osteo/dentinogenic cells, adipocytes, cardiomyocytes, endotheliocytes, and 
neurocytes [ 7 ,  11 – 16 ]. DSCs also possess immunomodulatory function, which 
makes them suitable candidates for allogenic transplantation of a single MSC 
line into multiple patients [ 17 ,  18 ]. All dental tissue-derived MSCs have been 
reported to potentially differentiate into osteocytes in vitro. In vivo studies have 
further proved their osteogenesis capacity forming bone-like mineralized tissue 
and repairing bone defects. Considering the powerful potential to differentiate 
into osteocytes in vitro and regenerate bone tissues in vivo, DSCs have become 
suitable candidates as seed cells to be used in bone tissue engineering. 

 To determine whether a cell line can be applied in bone tissue engineering, 
some characterization tests, which have still not reached an international consen-
sus, should reliably predict the therapeutic aptitude of the MSCs. In this line, it 
has been reported that high levels of cell growth, proliferation, and viability 
in vitro, as determined by cell count, 5-bromo-2-deoxyuridine (Brdu) incorpora-
tion, and cellular adenosine triphosphate (ATP) levels, respectively, accurately 
determine proper lines functioning well in vascularized granular tissue regenera-
tion in vivo [ 19 ]. 
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10.2.1     In Vitro Properties of  DSCs      

 In vitro characteristics of MSCs such as growth, proliferation, osteogenic 
 differentiation, viability, angiopoiesis, and immunomodulatory functions affect 
mineral tissue formation which is essential for bone tissue engineering [ 20 ,  21 ]. In 
this sense, proliferation abilities of several kinds of DSCs (DPSCs, SHEDs, and 
PDLSCs) and BMMSCs have been compared [ 22 ]. The DSCs have been reported to 
possess higher proliferation potential than BMMSCs which reached the plateau 
phase earlier than the DSCs, but no signifi cant difference has been noted for pulp-
derived SHEDs and DPSCs. Another investigation agreed with Galler’s study, 
reporting that SHEDs had a higher proliferation potential than BMMSCs, but the 
SHEDs also possessed a higher proliferation ability than DPSCs [ 23 ]. Proliferation 
rates of DPSCs and PDLSCs has been examined, and the results of the study proved 
greater cell proliferation potential for DPSCs with respect to PDLSCs [ 24 ]. SCAPs 
also exhibited signifi cantly greater cell proliferation and colony forming capacity 
than PDLSCs [ 25 ]. Other studies have discovered that the proliferation ability of 
DFSCs is more powerful than that of DPSCs and PDLSCs [ 26 ,  27 ]. Taken together, 
these results suggest that the hierarchy of cell proliferation potential is DFSCs, 
SCAPs, DPSCs, and SHEDs > PDLSCs > BMMSCs. 

 Previous studies have investigated the osteogenic differentiation potential of 
DSCs. Although some authors have reported that DPSCs have remarkable osteo-
genic potential [ 28 – 31 ], PDLSCs have exhibited greater alkaline phosphatase 
(ALP) activity than DPSCs and SHEDs, revealing massive collagen and mineral 
deposition [ 22 ]. Similarly, osteogenically differentiated PDLSCs had more cal-
cium nodules and greater accumulation of calcium than DFSCs and DPSCs [ 27 ] 
but exhibited weaker ALP activity and mineralization than BMMSCs after osteo-
genic induction [ 32 ]. SCAPs have been reported to display signifi cantly increased 
expression of ALP, bone sialoprotein (BSP), and osteocalcin (OC), which play 
crucial roles in mineralization process, than PDLSCs, indicating the stronger 
mineralization capacity of SCAPs compared to PDLSCs [ 25 ]. Thus, overall data 
suggests that the hierarchy of osteogenic differentiation potential is BMMSCs, 
SCAPs > PDLSCs > DPSCs, SHEDs. 

 Vascularization ability of stem cells would also be benefi cial for stem cell- 
mediated bone regeneration approaches. The angiogenic property of DSCs has 
rarely been investigated. It has been indicated that DPSCs enhance angiogenesis 
in vivo [ 33 ]. When DPSCs differentiate into osteoblasts, they express not only OC, 
but also vascular endothelial growth factor receptor-2 (VEGF-R2), an angiogenic 
marker. Some cells also express endothelial cell markers, such as intercellular cell 
adhesion molecule-1 (ICAM-1, CD54), platelet endothelial cell adhesion molecule-
 1 (PECAM-1), and angiotensin-converting enzyme. Furthermore, DPSC transplan-
tation to immunocompromised rats forms a structure with the capillary network 
similar to bone tissue [ 13 ]. In addition, SHEDs have been observed to differentiate 
into endothelial cells, which line the walls of blood vessels [ 12 ]. 

 Immunomodulatory action of  MSCs   is another important parameter in tissue 
regeneration, and BMMSCs reportedly possess an immunomodulatory function. 
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SHEDs have been confi rmed to display an immunomodulatory effect, and DPSCs, 
PDLSCs, DFPCs, and SCAPs suppress the immune reaction [ 34 ]. Other studies have 
reported that PDLSCs have low immunogenicity and display an immunomodulatory 
function [ 35 ,  36 ]. This property of DSCs could help to decrease the reaction of  allo-
genic   stem cell transplantation and enhance bone regeneration. Moreover, the number 
of cells yielded per tooth is a factor that impacts whether dental MSCs can be a cell 
source for tissue engineering. Otabe and colleagues found that DPSCs had a higher 
cell yield per tooth compared to PDLSCs [ 31 ]. Thus, it can be concluded that DPSCs 
could be more suitable source of MSCs for regenerative medicine than PDLSCs.  

10.2.2     In Vivo Osteogenesis of  DSCs      

 In vivo investigations conducted with DSCs have mainly attempted to confi rm the 
osteogenic ability proved by in vitro examinations. In general, DPSC and SHED 
based bone regeneration strategies have signifi cantly increased bone formation com-
pared to control animals [ 37 – 39 ]. It has been reported that SHEDs are capable of 
repairing critical-size calvarial defects in immunocompromised mice, though the gen-
erated bone tissue lacked hematopoietic marrow elements [ 7 ,  38 ]. Thus, it has been 
proposed that SHEDs are not able to differentiate into osteoblasts directly, but they 
recruit host osteogenic cells in vivo to form new bone tissue. One of scarce clinical 
trials performed with DSCs have also investigated bone regeneration capacity of 
DPSCs combined with collagen sponge scaffold [ 40 ]. After transplantation, it has 
been verifi ed that DPSCs are capable of repairing human mandibular bone defects 
completely. However, another study contradicted these results, reporting no signifi -
cant differences in bone formation between DPSC transplanted and control groups 
[ 41 ]. Apart from pulp derived DSCs, Park et al. discovered that PDLSCs signifi cantly 
enhanced new bone regeneration in peri-implantitis defects in an experimental animal 
model [ 42 ]. Other studies have demonstrated that, similar to SHEDs, DFSCs obvi-
ously supported the generation of new bone, restoring a critical- size calvarial defect 
but the new bone tissue formation being due to the direct differentiation of trans-
planted cells is doubtful. The researchers have also implied that bone generation effi -
ciency does not differ in DFSCs, PDLSCs and BMMSCs [ 43 ]. To increase the bone 
regeneration potential of DSCs, combining cells with scaffolds is a promising option. 
To this end, it has  been      found that SCAPs have given rise to bone-like mineralized 
tissue when combined with hydroxyapatite (HA) scaffold in vivo [ 44 ,  45 ].   

10.3     Effect of Matrices and Scaffold on DSC-Mediated Bone 
Tissue Engineering 

 An  extracellular matrix (ECM)   or scaffold is an important element for tissue engineer-
ing as it provides the necessary framework for nutrient, oxygen, and metabolic waste 
transportation for the cells in the medium. The framework must be biocompatible, have 
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a suitable biodegradation profi le, be non-toxic to the surrounding cells and tissues, 
and have optimal physical and mechanical properties with a fi rm consistency so that 
the fi nal formed tissue is easily managed during transplantation to the body [ 46 ]. 
When used in tissue engineering, a matrix or scaffold should also facilitate adherence, 
migration, proliferation, and differentiation of the cells in question [ 47 ]. The composi-
tions of scaffolds are  conductive and inductive biomaterials  , which are frequently 
modifi ed by bioactive molecules to facilitate cell functions such as migration, and 
enhance the restoration of large defects [ 48 ]. The ideal materials for bone tissue engi-
neering should have high porousness with an interconnected porous structure, be 
 biocompatible and tensioactive, possess superior mechanical properties that allow 
shaping, and mimic the ECM of the bone regenerating environment. 

 Stem cells implanted in vivo without scaffolds may present a problem of uncon-
trolled cell migration within the body, leading to heterotopic mineralized tissue for-
mation. A scaffold may help cells to stay together and maintain their position [ 49 ]. 
Moreover, the microenvironment formed by the scaffold  and signaling molecules   
are important in guiding stem cell differentiation. For example, when SCAPs and 
HA scaffolds were transplanted subcutaneously into immunocompromised rats, 
most of the harvested mineralized tissue was bone-like, and only a small portion of 
the dentin-like structure was formed [ 44 ]. However, SCAPs combined with teeth- 
induced synthetic scaffolds resulted in the deposition of dentin-like tissue instead of 
bone-like tissue onto the wall of the endodontic canal in immunocompromised mice 
[ 50 ]. Generally, the scaffolds mimicking the natural ECM of the target tissue could 
be benefi cial, to some extent, in the application of DSCs for different tissues. 

10.3.1     Categories of Materials 

 Numerous materials have been used as scaffolds for bone tissue engineering includ-
ing natural, synthetic, inorganic and composite materials [ 51 ]. Natural materials are 
biocompatible and biodegradable but the structural strength of the materials is weak 
to meet the requirements for bone tissue reconstruction. In addition, natural materials 
always carry the risk of transmitting animal-associated pathogens or might cause 
immune reactions [ 52 ]. Elastin, laminin, fi brin, fi bronectin, collagen, silk, alginate, 
chitosan, and glycosaminoglycans are a few examples of  natural materials  . The 
effects of four kinds of  ECM compositions   including collagen type I (Col-I), colla-
gen type IV (Col-IV), laminin, and fi bronectin on DFSCs have been investigated by 
evaluating the cell growth and osteogenic differentiation. While laminin suppressed 
cell proliferation, osteoblastic differentiation, and cell adhesion, Col-I and fi bronec-
tin promoted cell growth, and Col-I or Col-IV was able to enhance osteoblastic dif-
ferentiation but fi bronectin did not facilitate osteogenic differentiation [ 53 ]. Coyac 
et al. also confi rmed the enhanced osteogenic differentiation of SHEDs by treatment 
of ECM containing Col-I [ 54 ]. Agreeing with Tsuchiya et al. [ 53 ], Viale- Bouroncle 
et al. [ 55 ] reported that cell proliferation and vitality of DFSCs were slightly 
decreased on laminin matrix. They also confi rmed that laminin inhibited early 
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osteogenic markers but up-regulated the late osteogenic differentiation markers of 
DFSCs by inducing the expression of osteopontin (OPN). In contrast, Morsczeck 
et al. [ 56 ] observed that  laminin   is differentially expressed during osteogenic differ-
entiation of human DFSCs. Another natural material,  acellular amniotic membrane 
(AM)  , which presents a basement membrane side and collagenous stromal side, was 
also reported to supply a preferable environment for SCAPs to differentiate into 
osteocytes. The collagenous stromal side of this material is more effective at facilitat-
ing osteogenesis than the basement membrane side [ 57 ]. The main component of 
 AM   is Col-I and Col-III, which may be a possible explanation for why AM possesses 
the favorable environment for mineralization. In addition, tissue engineered alginate 
scaffold enhanced osteogenic potential of DPSCs while maintaining the high viabil-
ity [ 58 ]. Taken together, these fi ndings indicate that scaffold containing Col-I or algi-
nate may be suitable natural materials for DSC-mediated bone regeneration. 

  Synthetic polymers  , such as polydopamine (PDA), polyglycolic acid (PGA), 
polylactic acid (PLA), and their copolymer polylactic-co-glycolic acid (PLGA), 
present satisfactory chemical and mechanical properties, and manageable degrada-
tion rates. However, the structures of the polymers are different than that of the 
ECM, and lack the bioactive signals [ 22 ].  Low tissue affi nity   is another critical issue 
with synthetic polymers. PLGA is a biocompatible and biodegradable synthetic 
polymer synthesized by using lactic acid and glycolic acid. The degradation speed 
of PLGA can be arranged changing the percentages of the two reactants; the degra-
dation products are also metabolites in the human body, making them nontoxic. For 
these reasons,  PLGA   is widely used as a scaffold material in tissue engineering in 
today’s technology [ 59 ]. Another synthetic material, PDA displays bioadhesive and 
bioactive characteristics. PDA has been confi rmed to induce cell proliferation and 
stimulate osteogenic differentiation of PDLSCs by increasing the expression of 
integrin -α5/-β1, an adhesion receptor, resulting in enhanced cell attachment and 
activation of the integrin-mediated phosphoinositide 3-kinase (PI3K) pathway [ 60 ]. 

  Inorganic materials   including fl uorapatite (FA), HA, and β-tricalcium phosphate 
(TCP) provide high compressive strength, stable chemical properties, and biode-
gradability, but they are often frangible as a scaffold and diffi cult to operate. Studies 
have shown that the osteogenic differentiation of human MSCs can be induced by 
TCP or HA but the induction of ALP activity is much higher on TCP scaffold than 
HA scaffold [ 61 ]. Viale-Bouroncle et al. [ 62 ] confi rmed TCP-induced osteogenic 
differentiation in another trial conducted with DFSCs. They also found that TCP 
induces the apoptosis of DFSCs, indicating potential cytotoxicity of TCP and solu-
ble particles derived from TCP [ 63 ]. 

 In order to take advantage of the benefi ts of the scaffold, hybrid materials for cell 
delivery have been created as composite materials. Col-I with HA have been com-
bined to form the nanometer-scale porous material, Col-I-HA [ 64 ]. It possessed 
functional properties that facilitated cell growth and bone formation. Another 
 nanometer- scale   scaffold incorporating FA crystals within  polycaprolactone (PCL)   
backbone has also been investigated, and although it presented a relatively slower 
proliferation stimulation than the  PCL scaffold  , it induced mineralization without 
any other supplements [ 65 ]. Dahl et al. [ 59 ] investigated the chitosan coated TCP 
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scaffold incorporated with lysozymes, and verifi ed promotion of bone integration, 
osteoconduction and osteoinduction. Annibali et al. [ 48 ] compared the bone regen-
eration potentials of three scaffolds ( i.e. , granular deproteinized bovine bone with 
additional porcine collagen, β-TCP, and resorbable granulate ceramic) and discov-
ered no signifi cant differences among them.  

10.3.2     Material Features 

 The morphology and structure of scaffold materials exist as porous scaffolds, nano-
fi brous materials, microparticles, and hydrogels, etc., affecting the characteristics of 
stem cells in bone tissue engineering. 

 Two kinds of nanometer scale  materials   (Col-I-HA and FA-PCL) have been proven 
to allow osteogenic induction as mentioned before. Compared to conventional HA, 
nanophase HA might be better for bone regeneration approaches because of its supe-
rior biomimetic structure and osteoconduction potential [ 59 ]. Graziano et al. [ 29 ] dis-
covered that microconcavities of PLGA had signifi cant effects on the osteoblastic 
differentiation of DPSCs. In addition, compared to convex and smooth surfaces, cells 
cultured on concave textured surface presented better cell-scaffold interactions and 
easily induced signaling factors secretion, resulting in quick osteogenic differentia-
tion, bone generation, and the vascularization of newly formed tissue [ 29 ]. 

 Recently, the applications of  hydrogels   have been explored in detail in bone tis-
sue engineering. A large number of materials have been presented as hydrogels with 
plenty of attractive characteristics including tissue-like moisture content, appropri-
ate mechanical characteristics similar to those of human tissue, and favorable bio-
compatibility [ 51 ]. Galler et al. [ 22 ] found that the number of SHEDs were 
equivalent in polyethyleneglycolylated (PEGylated) fi brin and collagen hydrogel. 
Moreover, arginine-glycine-aspartic acid tripeptide (RGD)-united alginate hydrogel 
accelerates differentiation into the osteoblast lineage [ 66 ]. Physical characteristics 
of the surfaces could be important in stem cell-based bone tissue engineering, as it 
has been shown that while a soft surface induced osteogenic differentiation of 
DFSCs, stiff surface induced osteogenic differentiation of BMMSCs [ 55 ]. Similar 
to BMMSCs, SHEDs possessed a greater capability for proliferation and osteogen-
esis in rigid matrix than in soft matrix [ 67 ].   

10.4     Growth Factors in DSC-Mediated Bone Tissue 
Engineering 

 Growth factors play crucial roles in bone tissue engineering as they stimulate pro-
liferation, differentiation, and other functions of the seed cells combined with the 
scaffold. These growth factors are also applied as signaling molecules to regulate 
tissue formation. Several growth factors have been used in bone tissue regeneration, 
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including bone morphogenetic proteins (BMPs), basic fi broblastic growth factor 
(bFGF), and transforming growth factor-β (TGF-β), insulin-like growth factors 
(IGFs), as well as composite growth factors such as platelet-rich plasma (PRP). 

10.4.1      BMPs      

 Belonging to the TGF-β superfamily, BMPs comprise more than 15 human pro-
teins. BMPs are used sequentially and repeatedly throughout cytodifferentiation 
and matrix secretion [ 2 ]. Differentiation into osteoblasts and the generation of bone 
tissue by stem cells are mainly governed by BMPs, especially BMP2, BMP4, and 
BMP7. In addition, BMP2 and BMP7 have been applied as assisted therapy in clini-
cal bone regeneration approaches. Among 14 BMPs (BMP2-15), BMP9 has been 
reported to be the most potent inducer of osteogenic differentiation [ 68 – 70 ]. SCAPs 
were successfully differentiated into bone, cartilage, and adipocytes upon BMP9 
stimulation in vitro and in vivo [ 69 ]. A recent study confi rmed that BMP2 stimu-
lated the osteogenic differentiation of DFSCs [ 71 ]. Furthermore, BMP2 and BMP9 
induced osteogenic differentiation through the canonical Wnt/β-catenin pathway. 
Activation of the canonical Wnt pathway and knockdown of β-catenin inhibited the 
differentiation of DFSCs, illustrating the need for accurate levels of β-catenin in the 
regulation of cell differentiation induced by BMP pathway [ 72 ]. Another study has 
discovered that BMP9 induces ALP activity in SCAPs, which has been diminished 
by silencing β-catenin. Thus, β-catenin has been proposed to play an important role 
in BMP9-induced osteo/ondontogenic signaling [ 73 ]. BMP4 could stimulate 
 distal- less homeobox 2 (DLX2) gene, and then enhance SCAPs’ osteogenic differ-
entiation and bone tissue regeneration by up-regulating Sp7 transcription factor 7 
(OSX) [ 74 ]. BMPs have also been demonstrated to enhance osteogenic differentia-
tion through the activation of mitogen-activated protein kinase (MAPK) pathway. In 
particular, BMP2 exerts its role in osteogenic induction via activation of extracel-
lular signal-regulated kinase (ERK) pathway [ 75 ]. However, the p38  pathway      has 
been elucidated to play a positive role in BMP9-induced differentiation, whereas the 
ERK pathway has the opposite effect [ 70 ]. Unfortunately, as BMP2 has been used 
 clinically, some serious complications have been reported including ectopic bone 
formation, cyst-like bone void emergence, and signifi cant soft tissue swelling. 
Therefore, more pre-clinical researches are needed on use of BMPs in bone tissue 
engineering.  

10.4.2      IGFs      

 IGFs consist of two receptors and two ligands: IGF1 and IGF2. Numerous  investigations 
have focused on IGF1, demonstrating its key roles in the regulation of osteoblastic dif-
ferentiation or cell proliferation. IGF1 is a multifunctional peptide that can enhance 
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osteogenic differentiation of BMMSCs. IGF1 has a positive effect on bone tissue 
 generation and homeostasis, and it upregulates osteogenesis-associated genes and 
downregulates the expression of odontoblast-specifi c markers in SCAPs [ 45 ]. IGF1 
may regulate osteogenesis via β-catenin, the molecule involved in the canonical Wnt 
signaling pathway [ 45 ]. IGF1 also enhances the proliferation and osteogenic differen-
tiation potentials of PDLSCs through ERK and c-Jun N-terminal kinase (JNK) MAPK 
pathways [ 76 ]. In another study, IGF1 was found to promote cell proliferation and 
osteogenic differentiation potentials of DPSCs via mammalian target of rapamycin 
(mTOR) pathway [ 77 ]. Furthermore, a recent study proposed that IGF2 treatment stim-
ulated the osteogenic differentiation of DFSCs [ 71 ]. Insulin-like growth factor binding 
protein family (IGFBPs), including six members (IGFBP1-6)      , are an indispensable 
member of the IGF axis [ 78 ]. Researchers have reported that IGFBP5 expression 
increased upon osteogenic induction, and IGFBP5 could enhance osteogenic differen-
tiation in PDLSCs and SCAPs. Moreover, IGFBP5 also enhanced the anti-infl amma-
tory effect of PDLSCs through nuclear factor kappa B (NF ĸ B) signaling pathway [ 79 ].  

10.4.3      bFGF      

 bFGF mainly regulates cell behaviors such as proliferation and differentiation. 
Whether bFGF plays a positive role in the regulation of osteogenic differentiation 
is still controversial. It has been shown to enhance the osteogenic differentiation of 
BMMSCs [ 80 ] and inhibit mineralization in SHEDs [ 81 ]. Others also demonstrate 
that inhibition of bFGF or FGFR has reduced the colony forming capacity and 
prompted the mineralization rate of SHEDs, indicating that the endogenous bFGF 
may participate in the colony formation and osteogenic differentiation ability of 
SHEDs [ 82 ]. bFGF has also been shown to promote pre-osteoblast proliferation 
but inhibit mineralization in PDLSCs [ 83 ]. In given conditions, bFGF signifi cantly 
increased the ability of cell proliferation and colony formation, enhanced the 
osteogenic differentiation potentials and the expressions of pluripotency markers, 
including Nanog, Oct4, Sox2, and Rex1 in SCAPs [ 84 ]. Others have discovered 
that bFGF regulated the osteogenic differentiation ability of DPSCs in a treatment- 
dependent manner. Their results have shown that bFGF treatment within the period 
of the osteogenic differentiation decreased the osteogenic differentiation potentials 
of DPSCs; pre-treatment with bFGF for 1 week enhanced the osteogenic differen-
tiation, whereas pre-treatment with bFGF for 2 weeks diminished the osteogenic 
differentiation ability [ 85 ]. The regulatory function of bFGF is probably cell type- 
specifi c. Several reports have explained how bFGF regulates osteogenesis. bFGF 
suppressed the mineralization by inhibiting Notch signaling activation in both 
PDLSCs and SHEDs, but the interaction between the Notch pathway and  bFGF      is 
uncertain [ 83 ]. In mice dental epithelial stem cells (DESCs), FGF signaling is nec-
essary for self-renewal and inhibition of cell differentiation. Blocking of the FGF 
signaling increases cell apoptosis and decreases cell proliferation in DESCs 
through Wnt signaling pathway [ 86 ].  
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10.4.4     TGF- β      

 TGF-β is one of the representative members of the TGF-β superfamily, and one of the 
most common growth factors found in the bone matrix. TGF-β promotes osteogenic 
differentiation in the early stage of osteoblastic maturation, and inhibits mineraliza-
tion and osteogenic differentiation in the late stage [ 87 ]. In SCAPs, TGF-β1 inhibited 
cell proliferation and mineralization, and signifi cantly downregulated osteogenic/den-
tinogenic gene expressions. In addition, interaction between nuclear factor I-C (NFIC, 
an antagonist of TGF-β1) and TGF-β1 controlled the cell function, and determined the 
differentiation potentials of SCAPs [ 88 ]. On the contrary, TGF-β1 promoted the cell 
growth and collagen content, and stimulated ALP activity at lower concentrations 
(0.1–1 ng/mL), and down-regulated the ALP activity at higher concentrations (>5 ng/
mL) in SCAPs. As for the molecular mechanism, it has been discovered that TGF-β1 
regulated the cell proliferation, collagen turnover, and differentiation via ALK5/
Smad2 and MEK/ERK signaling pathways [ 89 ]. In a similar way, it has been pro-
posed that low dose of TGF-β1 promoted osteogenic differentiation while repeated or 
high dose of TGF-β1 inhibited osteogenic differentiation in PDLSCs [ 90 ]. Persistence 
of TGF-β1 suppressed the osteogenic differentiation via inhibition of IGF1 and sub-
sequent blockage of the PI3K/AKT signaling pathway [ 91 ]. DFSCs treated with TGF-
β1 migrated faster, indicating that potential chemoattractant functions of TGF-β1 
[ 92 ].  Connective tissue growth factor (CTGF)   is a matricellular protein that  upregulates 
the production of ECM. Mechanical stretch loading has  been      suggested to upregulate 
CTGF gene expression in PDLSCs. Compared with TGF-β1 treatment alone, applica-
tion of CTGF and TGF-β1 combination signifi cantly enhanced the expression of 
Col-I and fi bronectin in PDLSCs [ 93 ].  

10.4.5      PRP      

 PRP is biologically composed of plasma, leukocytes, and platelets. PRP is produced 
from autologous blood and contains several growth factors including IGF1, TGFβ, 
FGF and VEGF. A recent preclinical study has demonstrated that SHEDs, DPSCs, 
and BMMSCs combined with PRP have the ability to form bone tissue in dogs [ 39 ]. 
The use of PRP has the potential to accelerate surgical wound healing due to the 
local release of specifi c growth factors involved in angiogenesis and collagen pro-
duction [ 47 ], but they are not the key cytokines exerting the bio-function of PRP. In 
a human cytokine array, Chemokine (C-C motif) ligand 5 (RANTES/CCL5) and 
ICAM-1 were defi ned as the two key factors in PRP. The appropriate concentration 
of PRP, reported to be 1 %, promoted the characteristics of human DSCs including 
cell proliferation, differentiation and mineralization [ 94 ]. Investigation of the effects 
of PRP derived from human umbilical cord blood (UCB-PRP) proved that 1–2 % 
(volume percentage) of UCB-PRP had positive effects on the cell proliferation and 
osteogenic differentiation potentials of DSCs, including DPSCs, SHEDs and 
PDLSCs [ 95 ]. Another study showed that 1–20 % of PRP signifi cantly promoted the 
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proliferation of DPSCs, and 1–10 % of PRP signifi cantly enhanced the osteogenic 
differentiation potential of DPSCs [ 96 ]. Although clinical studies conducted with 
PRP and DSCs are scarce, one research group successfully applied DPSCs com-
bined with PRP to treat one case of osteoradionecrosis in clinic [ 97 ].   

10.5     Other Elements Involved in DSC-Mediated Bone Tissue 
Engineering 

10.5.1      Infl ammatory Factors   

 In the fi eld of  bone regeneration therapy  , defected or injured tissues are generally 
infl amed with unnatural expression of infl ammatory elements. Accumulating evi-
dence suggests that pro-infl ammatory cytokines suppress differentiation into osteo-
blasts and bone generation. Ideal tissue restoration mediated by MSCs requires 
overcoming the blockade of tissue regeneration caused by infl ammation. 

   Interleukin-11 (IL11)   , which belongs to the IL6 cytokine family, is involved in 
bone metabolism and the regulation of both osteoblast and osteoclast activities. 
Appropriate mechanical loading increases IL11 expression and induces osteoblastic 
differentiation [ 98 ]. IL11 may promote the osteoblastic differentiation of PDLSCs 
via the inhibition of Dickkopf-1 (DKK1) and DKK2, the extracellular antagonists 
of Wnt signaling, subsequently activating the canonical Wnt/β-catenin signaling 
pathway and shifting the cell fate [ 98 ]. 

   Tumor necrosis factor-α (TNFα)    is a cytokine that triggers the acute phase 
 infl ammatory reaction and participates in systemic infl ammatory reactions. TNFα is 
principally secreted by macrophages, inducing infl ammation, cell apoptosis, cell 
proliferation and differentiation. TNFα has been found to inhibit the osteogenic dif-
ferentiation of PDLSCs and BMMSCs through the canonical Wnt pathway, but 
PDLSCs have been more sensitive to this infl ammatory cytokine via diverse regula-
tory mechanisms [ 99 ].  

10.5.2      Integrin Receptors   

 Integrin surface receptors, as the components of the cellular sensing system, transmit 
extracellular signals to intracellular signals. The ligands of integrins include laminin, 
fi bronectin and collagen. Studies have demonstrated that integrin α5 interacts with 
IGF2 and IGFBP2, activating various signaling pathways to stimulate and enhance 
osteoblast differentiation. The stiffness of the matrix is also a regulatory factor for 
integrin, playing an important role in cytoskeletal changes during the osteogenic pro-
cess [ 60 ]. Integrin-α2/-β1 also transmits the information of laminin from ECM into 
the cells, subsequently regulating the late osteogenic differentiation of DFSCs [ 55 ].  
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10.5.3      Chemical Agents   

 Various phytochemicals and plant-derived extracts are capable of stimulating bone 
formation and healing. Ginsenoside Rg-1, the main functional component of gin-
seng, promotes the proliferation and osteoblastic differentiation of PDLSCs at an 
optimal concentration of 10 μmol/L and also promotes neovascularization [ 100 ]. In 
addition, the proliferation and osteogenic potentials of PDLSCs have been enhanced 
by the hexane, ethyl acetate (EA), or n-butanol (BuOH) fractions of  Zanthoxylum 
schinifolium  extract [ 101 ]. Flavonoids and hesperetin have also been shown to 
recover the osteogenic capacity of PDLSCs from the inhibitory effects of high glu-
cose [ 102 ]. Butyrate, a bacterial metabolite and infl ammatory agent commonly 
found in dental plaque and the periodontal pocket, at low concentrations facilitated 
the osteogenic differentiation of DFSCs in the early stages of differentiation but 
inhibited calcifi cation at the later stages [ 103 ]. Moreover, a high concentration of 
butyrate has been reported to be toxic to DFSCs. These fi ndings indicate that butyr-
ate could stimulate or suppress osteogenic differentiation in a dose-dependent man-
ner and possibly in a cell type-specifi c manner.  

10.5.4      Hypoxia      

 Hypoxic conditions normally exist in healthy human tissues; healthy bone marrow 
has an oxygen concentration of 2–5 %, and the oxygen level in region of a hematoma 
after bone fracture is less than 1 % [ 104 ,  105 ]. Therefore, in bone tissue engineering 
approaches, the effect of hypoxia on stem cells is highly important for the scientifi c 
community. By now, there are contradictory reports about the effect of hypoxia on 
stem cells. 

 Hypoxia exhibits disparate impacts on the proliferation of MSCs. The effect prob-
ably depends on the cell type, oxygen concentration, and duration in hypoxia [ 106 ]. 
Increased proliferation rate for DPSCs has been reported after culturing in 3 % oxy-
gen compared to normoxia [ 107 ,  108 ], but the proliferation rates of DPSCs or SHEDs 
incubated in 1 % oxygen or normoxic conditions were not signifi cantly different 
[ 106 ,  107 ]. Vanacker et al. [ 106 ] unveiled that hypoxia could induce the spontaneous 
osteogenic differentiation of SCAPs, and maintain the pro-angiogenic factor 
VEGF-A or survivin, an inhibitor of apoptosis protein. PDLSCs cultured under 
hypoxic conditions exhibited enhanced osteogenic differentiation potential in vitro 
and in vivo [ 32 ]. Slightly increased mineralization is occasionally seen in the central 
regions of the scaffold, perhaps refl ecting that cells prefer hypoxic conditions for 
cell-mediated mineralization [ 54 ]. Another opinion is that hypoxia helps to maintain 
the stemness of BMMSCs and DPSCs by suppressing their differentiation [ 109 ]. 

 Until now, hypoxia has been considered to regulate cell properties via hypoxia 
inducible factor 1α (HIF-1α). Usually, HIF-1α translocates to the nucleus and induces 
changes in a series of biological behaviors. Cobalt-(II) chloride (CoCl 2 ) is a chemical 
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agent used in hypoxia studies to mimic a hypoxic environment, and could inhibit the 
activity of prolyl hydroxylase, a key enzyme in the oxygen-sensing pathway. 
Osathanon et al. showed that CoCl 2  treatment inhibited the  osteogenic      differentiation 
and maintained the stemness of PDLSCs via HIF-1α dependent pathway [ 109 ]. Thus, 
the opposing effects of hypoxia based on cell type needs to be further investigated.  

10.5.5      Mechanical Loading   

 Clinically, mechanical loading is known to be one of the important factors in bone 
remodeling. The phenomenon of mechanical loading on cells depends on the mag-
nitude of stress, duration of the cyclic load and loading frequency. The alteration of 
cell proliferation under mechanical loading is still controversial. Low mechanical 
force likely stimulates cell proliferation as high force suppresses proliferation [ 110 ]. 
In addition, appropriate mechanical stretch and stress trigger the osteoblastic dif-
ferentiation of DSCs via activation of the ERK/MAPK, JNK/MAPK, and RAS 
pathways [ 98 ,  109 ,  110 ]. The activations of ERK1/2 and JNK signaling pathways 
phosphorylate and activate the downstream mediators including c-Fos and c-Jun, 
and the Ang II type 1 (AP1) transcription factors. The upregulation of AP1 results 
in the enhanced osteogenic differentiation of DSCs [ 110 ].   

10.6     Prospects 

 Although DSCs have been extensively investigated for more than a decade, there are 
still several issues remaining to be fi gured out, especially in the concept of bone 
tissue engineering. Several studies have investigated the clinical use of BMMSCs 
derived from the iliac crest. The outcomes have shown that autogenous BMMSCs 
are benefi cial for generating new bone tissue and improving the clinical situations 
[ 111 ,  112 ]. In addition to BMMSCs, ample evidences indicate the potential of DSCs 
in bone tissue engineering. However, the clinical applications of DSCs have been 
rarely investigated. Previously, researchers have transplanted autogenous DPSCs to 
repair the mandible defects, and their results showed that the bone defects were suc-
cessfully restored [ 40 ]. However, solid evidence is still lacking and a large number 
of issues need to be solved for the application of DSCs in  bone tissue engineering  : 

 1) It is uncertain whether DSCs could reconstruct the hematopoietic marrow ele-
ments in newly formed bone tissues. If the DSC-mediated bone tissue formation lacks 
hematopoietic marrow elements, how can this challenging problem be overcome? 

 2) The ethical issue associated with stem cell applications needs to be solved. In 
addition, the seed cells used in previous studies were generally autogenous stem 
cells to prevent immunological issues. Thus, it might be better to use autogenous 
DSCs in bone tissue engineering. To this end, another issue for the clinical usage of 
DSCs is how to amplify enough seed cells and preserve them. 
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 3) The effect of the microenvironment on DSC-mediated bone tissue regenera-
tion is unclear including infl ammation, hypoxia, senescence, and immunity, among 
other issues. These parameters should be investigated in order to improve and 
extend the use of DSCs in clinics. 

 4) Optimal biomaterials and effi cient growth factors should be explored and 
developed to enhance DSC-mediated bone tissue regeneration. 

 5) In vivo large animal models should be conducted to evaluate DSC-mediated 
bone tissue regeneration and understand their limitations. On the basis of this evi-
dence, more clinical trials are necessary for the eventual application of DSCs. 

 There are additional unknown problems impeding the application of DSCs in 
this fi eld. Thus, much progress is needed before DSCs are applied clinically.     
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11.1           Introduction 

 This chapter will focus on the neurogenic and angiogenic properties of dental stem 
cells (DSCs) (Fig.  11.1 ).  Angiogenesis   is the development of new blood vessels out 
of existing blood capillaries. The fi rst part of the chapter will cover the angiogenic 
characteristics of DSCs, with emphasis on the paracrine effects that these cells exert 
on endogenous cell populations and tissues, as well as the fruitful attempts that have 
been made to upregulate their angiogenic properties. In addition, possible endothe-
lial differentiation potential of DSCs will also be briefl y discussed.

   Secondly, several studies have tried to gain insight into the neural regenerative 
potential of DSCs. An overview will be given on the status  of   differentiation of 
DSCs towards neuronal cells and Schwann cells. In addition, the neurotrophic pro-
teins present in the DSC secretome will be described along with the potential of 
preconditioning of these cells for neurodegenerative diseases. 

 Finally, applications of DSCs in  stroke   will be addressed. Stroke is a severe condi-
tion defi ned by interrupted or severely impaired blood fl ow to the affected area in the 
brain. Consequently, neuronal cell  death   occurs at the affected site, resulting in severe 
neurological damage. Due to their neurogenic and angiogenic properties, DSCs are 
considered to be strong candidates for the treatment of stroke where both angiogen-
esis and neurogenesis are key factors to reconstitute the affected brain area.  
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11.2     DSCs and  Angiogenesis   

 Angiogenesis, the sprouting of new capillaries from pre-existing blood vessels, is 
considered to be a well-coordinated multi-step biological process initiated in response 
to specifi c stimuli such as infl ammation or hypoxia [ 1 – 3 ]. The subsequent increase 
in vascular permeability and destabilization of the pre-existing vessels cause release 
of sequestered growth factors and chemokines which promote  endothelial prolifera-
tion and migration. Following vascular  sprouting   and lumen formation, the formed 
tubes fuse with the pre-existing capillary after which they are stabilized through 
attachment of pericytes and deposition of extracellular matrix [ 4 ]. These events are 
carefully regulated by a broad range of regulatory proteins, which form a delicate 
balance between stimulation and inhibition of blood vessel formation. Within the 
healthy human body, endothelial cells (ECs) and blood vessels usually remain in a 
quiescent state as the inhibitory factors have a predominant effect. However, in case 
of hypoxia, the balance can be tipped towards blood vessel growth due to the local 
production of an excess amount of pro-angiogenic growth factors [ 5 ,  6 ]. A disturbance 

  Fig. 11.1     Angiogenic   and neurogenic properties of dental stem cells (DSCs). ( a ) Paracrine actions 
of DSCs: DSCs secrete a wide variety of angiogenic and neurogenic molecules which are able to 
induce responses of other tissues and cell types; For example, they produce BDNF and NGF which 
enhance survival and proliferation of neurons and stimulate the outgrowth of axons. In addition, 
angiogenic factors are generated by DSCs which activate blood vessel growth by stimulating endo-
thelial cell migration, proliferation and tube formation. Environmental factors such as hypoxia, 
LPS or pharmacological agents which mimic hypoxia (such as PHD inhibitors) have been shown 
to increase the amount of angiogenic molecules produces by DSCs. ( b ) Differentiation potential of 
DSCs. Besides their classical mesenchymal differentiation potential into osteoblasts, chondro-
blasts and adipocytes, DSCs themselves have been shown to differentiate into cells showing sub-
sets of typical characteristics of neurons, Schwann cells and endothelial cells hen cultured in 
specifi c conditions in vitro when cultured in specifi c conditions in vitro       
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of this angiogenic balance also takes place in pathological conditions, such as 
 myocardial infarction, diabetes mellitus,  cerebral ischemic stroke   and cancer [ 7 ]. Not 
 only   does angiogenesis play an important role in potential life-threatening disorders, 
it is also a key aspect in tissue engineering as a lack of vascular supply causes oxygen 
and nutrient deprivation and eventually necrosis of newly transplanted tissues. Due 
to the limited success of growth factor- based revascularization studies, stem cell-
based therapies have been postulated as a more regenerative approach to promote 
angiogenesis [ 8 ,  9 ].  Mesenchymal stem cells (MSCs)  ,  for   example, are thought to 
contribute to therapeutic angiogenesis through (i) the paracrine secretion of pro-
angiogenic factors or (ii) direct differentiation into endothelial cells (ECs) [ 10 – 12 ]. 
The paracrine actions of DSCs and their possible transition towards ECs will be 
described in part 11.2.1 and 11.2.3, respectively. 

11.2.1     The  Paracrine Angiogenic Properties   of DSCs 

 In this section, the angiogenic factors present in the secretome of various DSC 
 populations will be summarized. Next part handles the effect of DSCs on endothe-
lial cells, which align blood vessels, and are the key actors in the angiogenic  process. 
Furthermore, as current capacities of DSCs to induce blood vessel development are 
suboptimal, various attempts have been made to increase their angiogenic potential 
by either genetic modifi cation, hypoxia pretreatment or by incubation of the cells 
with various proteins or molecules, which will be discussed in Sect.  11.2.2 . 

11.2.1.1     DSCs Express a Wide Variety of Angiogenic Factors 

 Despite  the   elaborate characterization of DSCs and the large amount of studies sug-
gesting their potential role in the regeneration of dental tissues, data regarding their 
angiogenic properties are limited. A number of studies have pointed out the expres-
sion of vascular endothelial growth factor (VEGF), basic fi broblast growth factor 
(bFGF) and platelet-derived growth factor (PDGF) by dental pulp stem cells 
(DPSCs), either under basal conditions or after injury or hypoxia [ 13 – 17 ]. In addi-
tion, DPSCs express urokinase-type plasminogen activator (uPA), endothelin-1 
(EDN1), dipeptidyl peptidase IV (DPPIV), angiopoietin-1 (ANGPT1), colony- 
stimulating factor (CSF), monocyte chemoattractant protein-1 (MCP-1) and 
 angiogenin (ANG) [ 18 ]. However, DPSCs also express  anti-angiogenic factors, 
namely   plasminogen activator inhibitor-1 (PAI-1), endostatin, thrombospondin-1 
(THBS1) [ 18 ], tissue inhibitor of matrix metalloproteinase-1/4 (TIMP-1/4) and pen-
traxin-3 (IGFBP3) [ 18 ,  19 ]. Similar results were also found for stem cells from the 
apical papilla (SCAPs) and dental follicle stem cells (DFSCs), although the expres-
sion levels differed signifi cantly between stem cell populations [ 18 ,  20 – 22 ]. With 
regard to periodontal ligament stem cells (PDLSCs) and stem cells human exfoliated 
deciduous teeth (SHEDs), literature merely indicates the expression of bFGF, 
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endostatin, insulin-like growth factor-1 (IGF1), ANGPT2 and VEGF [ 23 – 25 ]. As 
DSCs express pro-angiogenic as well as anti-angiogenic factors, it is important to 
determine the resulting impact on endothelial cells.  

11.2.1.2     DSCs Promote Different Aspects of Angiogenesis In Vitro 

 As already mentioned, angiogenesis is a complex biological process which  encompasses 
endothelial proliferation, migration and tube formation. In order to evaluate the func-
tional impact of DSCs on endothelial cells, multiple assays can be  conducted   to mimic 
each of these aspects (Fig.  11.2a, b ). Endothelial proliferation, for example, is often 
tested by means of colorimetric assays comprising the incubation of the cells with 
growth factors or conditioned medium (CM). However, limited and confl icting data are 
available with regard to DSCs. Iohara and co-workers, for instance, reported a 

  Fig. 11.2    Commonly used angiogenic assays. ( a ) In the  matrigel   tube formation  assay  , endothelial 
cells (ECs) are seeded onto matrigel. Under the correct angiogenic stimuli, the endothelial cells 
will form networks. Scalebar = 200 μm. ( b ) Transwell migration assay: ECs are allowed to migrate 
through a semi-permeable membrane towards a lower compartment which may contain chemotac-
tic molecules. Scalebar = 200 μm. ( c )  Mouse matrigel assay  : matrigel is mixed with angiogenic 
factors and injected subcutaneously in the dorsal fl ank of athymic nude mice. 2 or 4 weeks later 
mice are sacrifi ced and the number of blood capillaries grown within the plugs is assessed. ( d ) 
Chicken  chorioallantoic membrane (CAM) assay  :    Pro-angiogenic agents are placed onto the 
CAM, and 48–72 hours later, blood vessels grow towards the stimulus in a typical spoke wheel 
pattern       
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signifi cant increase of the proliferation of human umbilical cord vein  endothelial cells 
(HUVECs) after incubation with CM of porcine CD31 −  CD146 −  DPSCs [ 26 ]. In con-
trast, the CM of DPSCs, SCAPs as well as DFSCs had no pronounced effect on the 
proliferation of human microvascular endothelial cells (HMECs) [ 18 ]. To date, there are 
no reports available regarding the infl uence of PDLSCs and SHEDs on endothelial 
migration. During angiogenesis, endothelial cells migrate along a  gradient of chemotac-
tic proteins. As DSCs secrete several proteins infl uencing endothelial migration, such as 
ANGPT, bFGF, CSF, EDN1 and VEGF, their chemotactic  potential   can be assessed in 
a transwell migration assay (Fig.  11.2a ). In particular, DPSCs and SCAPs cause a sig-
nifi cant increase in endothelial migration in  comparison to DFSCs, which showed no 
substantial impact [ 18 ,  19 ]. With regard to endothelial tube formation (Fig.  11.2b ), lit-
erature indicates an increased formation of vessel-like  structures   after direct co-culture 
of SCAPs and HUVECs [ 27 ]. Similar results were also found for DPSCs, PDLSCs and 
SHEDs [ 25 ,  28 ]. Given the close proximity of DPSCs and SCAPs to the endothelial 
tubes in the aforementioned studies, these results suggest a more pericyte-like role for 
DSCs in angiogenesis [ 27 ,  28 ]. However, the induction of endothelial tubulogenesis 
does not necessarily require cell-cell contact, as it can also be mediated by paracrine 
factors. Dissanayaka et al., for example, demonstrated the formation of tubular networks 
following indirect co-culture of human DPSCs and HUVECs encapsulated into a 
 self-assembling peptide hydrogel [ 29 ]. A signifi cant augmentation of endothelial tubu-
logenesis was also observed after the incubation of HMECs with CM of DPSCs [ 18 ]. 
Besides, along with more elaborate research regarding the in vitro angiogenic properties 
of PDLSCs and SHEDs, various in vivo tests for all types of DSCs are required as the 
cellular microenvironment can be determining for their infl uence on angiogenesis.

11.2.1.3        DSCs Induce Angiogenesis in Different In Vivo Models 

 In order to test angiogenesis in vivo, several proof-of-principle models are 
 available. Janebodin et al., for instance, demonstrated the VEGF-dependent induc-
tion of angiogenesis by mouse DPSCs in a mouse  matrigel   plug assay [ 28 ]
(Fig.  11.2c ). Subcutaneous co-transplantation of PDLSCs  and   endothelial cells 
also led to signifi cant vascularization. As there was no increase in human-derived 
blood vessels, PDLSCs did not differentiate into endothelial cells but acted as peri-
cyte-like cells or secreted paracrine factors [ 25 ]. DPSCs and SCAPs were also able 
to induce angiogenesis in a chorioallantoic membrane assay [ 18 ,  19 ] (Fig.  11.2d ). 
Next to this proof-of-principle models, DPSCs were also shown to promote angio-
genesis in  clinically   relevant disease models. For instance, Gandia et al. reported a 
signifi cant improvement of left ventricular function 4 weeks after the intracardial 
injection of GFP- labeled human DPSCs in rats suffering from myocardial infarc-
tion. Cardiac function improvement was not only correlated with a reduction of the 
infarct size and a thickening of the anterior ventricular wall, but also a signifi cant 
increase in capillary density. As there  were   no signs of green fl uorescent endothe-
lial cells, smooth muscle cells or cardiomyocytes within the heart tissue, the 
observed effects were probably due to the secretion of paracrine factors, such as 
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VEGF or IGF [ 30 ]. A notably higher capillary density was also found in a mouse 
model of hindlimb ischemia after the transplantation of a side population of por-
cine DPSCs, namely CD31 −  CD146 −  DPSCs. Since these cells were found to  be   in 
close proximity of the newly formed vessels, the increased neovascularization was 
probably caused by paracrine mechanisms rather than functional incorporation 
into the vessels [ 26 ]. The same side population was also able to enhance functional 
recovery after focal cerebral ischemia in rats. Next to the secretion of neurotrophic 
factors, the authors also detected increased levels of VEGF, which potentially stim-
ulated neurogenesis and vasculogenesis in the ischemic rat brain [ 31 ,  32 ].   

11.2.2       Priming/Upregulation of Paracrine Angiogenic Actions 
of DSCs 

 Multipotent stem cells possess  many   characteristics that make them suitable for 
clinical applications. However, a major concern in the fi eld  of   regenerative medicine 
is the survival of these stem cells after transplantation. In order to overcome this 
hurdle, attempts have been made to modulate the stem cells to improve cell survival 
and engraftment after the transplantation [ 33 ]. A recent paradigm shift has emerged, 
suggesting that the benefi cial effects of stem cell transplantation may be due to their 
paracrine effects rather than their differentiation potential. Therefore, a variety of 
different approaches has been examined, mainly focusing on increasing stem cell 
survival and thereby increasing the amount of trophic factors secreted [ 34 ]. 

11.2.2.1     Genetic Modifi cation 

 One possible approach to enhance  graft   survival is genetically modifying the cells 
to express pro-survival genes.  Bone marrow derived MSCs (BMMSCs)   have been 
modifi ed to overexpress anti-apoptotic genes such as Bcl-2 or Akt [ 35 – 37 ]. 
Overexpression of Bcl-2 protected MSCs  against   apoptosis, increased VEGF secre-
tion under hypoxic conditions in vitro, and resulted in an increased capillary density 
in vivo [ 36 ]. Furthermore, Gnecchi and colleagues demonstrated that CM of Akt- 
modifi ed BMMSCs protected cardiomyocytes against hypoxia-induced apoptosis 
in vitro. Injecting CM obtained from hypoxic Akt-MSCs limited infarct size in vivo. 
Moreover, subjecting Akt-MSCs to hypoxia signifi cantly increased the expression 
of several genes such as VEGF, bFGF, HGF and IGF1, further supporting the para-
crine hypothesis [ 35 ]. Another possibility is to induce overexpression of key pro-
teins specifi c to the illness of the patient ( e.g.  dopamine for patients suffering with 
Parkinson’s disease or insulin for diabetics). To date, this line of investigation has 
not yet been pursued with regard to DSCs. Unfortunately, gene therapy is a rela-
tively young fi eld of research, of which the clinical relevance still has to be proven. 
Today, scientists are merely learning how exactly to modify the genes of cells, and 
many questions and (bio)safety concerns remain before clinical trials with geneti-
cally modifi ed stem cells can be deemed possible [ 38 ].  
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11.2.2.2     Hypoxic Preconditioning 

 Preconditioning stem cells by  exposing   them to a defi ned stimulus may be helpful 
in enhancing the secretion of trophic factors. In contrast to genetic modifi cation, 
which usually affects a single target, preconditioning usually results in a  more   
global cellular response [ 34 ]. As mentioned above, hypoxia is a potent stimulus for 
the secretion of certain trophic factors. Not surprisingly, hypoxic preconditioning 
has gained a lot of attention as a standard method to improve the paracrine actions 
of a variety of stem cell sources [ 33 ]. By this kind of pretreatment, researchers aim 
to improve the resistance of cultured cells against hypoxic conditions by taking 
advantage of the known mechanism leading to survival during in vivo ischemia and 
creating in vitro simulations. Hypoxic preconditioning has been shown to increase 
stem cell survival and paracrine activity, and even increase angiogenesis in an 
in vivo model of murine hind limb ischemia [ 39 – 41 ]. 

 Oxygen tension in dental pulp tissues is lower compared to that of the  atmosphere, 
since oxygen can only reach the pulpal cells via the vasculature in the narrow root. It 
might be postulated that dental pulp cells are, therefore, uniquely suited to survive in 
hypoxic conditions as they naturally reside in a low oxygen environment in vivo. Iida 
and colleagues demonstrated that hDPSCs cultured under hypoxic conditions dis-
played an increased proliferation rate as well as an increased expression of STRO-1 
[ 42 ,  43 ]. In contrast, hypoxic preconditioning did not infl uence proliferation of por-
cine dental pulp-derived cells [ 44 ]. Furthermore, hypoxia has been shown to enhance 
the expression of HIF-1α and VEGF [ 13 ]. Hypoxia also increased the migration of 
DPSCs according to Kanafi  et al. [ 45 ]. Other stem cell  populations   from dental origin 
have also been shown to response to hypoxic preconditioning. Although hypoxia 
does not seem to infl uence the proliferation rate of SCAPs, it has been reported to 
increase the production of VEGF as well as infl uencing SCAPs’ differentiation 
potential [ 22 ]. Subjecting human PDLSCs to hypoxia resulted in an increased secre-
tion of VEGF and interleukin (IL)-6 after 24 and 48 hours of hypoxia. Moreover, 
reoxygenation resulted in an even greater increase in VEGF and IL-6 production at 
normal (20 %) oxygen tension conditions for 6 hours after 24 and 48 hours of hypoxia 
[ 46 ]. Similarly, Amemiya et al. reported increased proliferation ratios of rat PDLSCs 
and an augmented expression of VEGF mRNA in hypoxic conditions [ 47 ]. Yet 
another population are the SHEDs which have been shown to exhibit an elevated rate 
of cell migration under hypoxia, superior to the migration of DPSCs [ 45 ].  

11.2.2.3     Pharmacological Preconditioning to Mimic Hypoxia 

 These reports all indicate that hypoxic preconditioning could be an effective method 
to improve stem cell survival and their pro-angiogenic and chemoattractive effects. 
   However, mimicking hypoxia using pharmacological pretreatment could represent a 
more convenient alternative [ 33 ]. One particular group of chemical agents that mimic 
the hypoxic response by inhibiting the activity of prolyl hydroxylase (PHD), a key 
enzyme of the oxygen sensing pathway, has gained a lot of interest [ 48 ]. Typical PHD 
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inhibitors include cobalt chloride (CoCl 2 ), dimethyloxalglycine (DMOG) or iron 
 chelators such as hinokitiol, deferoxamine (DFO) or  L -mimosine [ 49 – 51 ]. Treatment 
with four of these PHD inhibitors (CoCl 2 , DMOG, DFO and  L -mimosine) have been 
reported to increase VEGF secretion and HIF-1α expression in both dental pulp-
derived cells and periodontal ligament fi broblasts [ 49 ,  52 ]. In a similar way, Yuan 
et al. reported an upregulation of HIF-1α and VEGF secretion in CoCl 2  treated SCAPs. 
Furthermore, co-culture of HUVECs and SCAPs under artifi cial hypoxic conditions 
(CoCl 2 ) resulted in an increased number of endothelial tubules, tubule lengths and 
branching points [ 27 ]. Trimmel et al. demonstrated that  L -mimosine is able to increase 
the VEGF production via HIF-1α in a tooth slice organ culture model in which the 
dental pulp is surrounded by dentin [ 53 ]. The iron chelator hinokitiol has also been 
demonstrated to increase HIF-1α expression and VEGF production in dental pulp 
cells. According to Kim et al. CM of hinokitiol- treated pulp cells enhanced angiogen-
esis in vitro and in vivo. CM of hinokitiol- treated pulp cells improved the capillary 
network formation of HUVECs compared to control CM, thereby demonstrating an 
increased angiogenic potential of hinokitiol- treated dental pulp cells. Moreover, a 
mouse  matrigel   plug assay showed an increased hemoglobin content and PECAM-1 
expression, confi rming that hinokitiol stimulates the angiogenic potential of dental 
pulp cells in vivo [ 54 ]. Overall data indicates a promising future for the use of hypoxia 
mimicking agents and more in particular the PHD inhibitors. 

 Besides hypoxia mimicking agents, there is a plethora of other cytokines, growth 
factors and chemical agents that have been investigated for their potential to augment 
the angiogenic profi le of stem cells. For example, bacterial lipopolysaccharides 
(LPS) have  been   shown to increase VEGF production in murine BMMSCs [ 55 ], 
murine and human DPSCs [ 56 ,  57 ] and, reported to stimulate DFSC migration [ 58 ]. 
In addition,  there   are reports confi rming the LPS responsiveness of PDLSCs [ 59 ,  60 ] 
and SCAPs [ 61 ], however these studies do not mention the effects LPS treatment on 
VEGF secretion or the  angiogenic   profi le of these cells. Other pretreatments such as 
IL-1α [ 62 ] and TNF-α [ 63 ] have been reported to increase VEGF secretion in 
PDLSCs and adiponectin stimulates PDLSC proliferation and wound healing [ 64 ].   

11.2.3     Endothelial Differentiation Potential of DSCs 

11.2.3.1     DSCs Are Able to Differentiate into Endothelial Cells In Vitro 

 There is a growing  need   for ECs in regenerative medicine.  ECs   can align artifi cial 
 vessels and EC transplantations have been shown to restore blood fl ow in ischemic dis-
eases. The main disadvantage of adult ECs is that these cells are diffi cult to isolate and 
maintain in culture. It is possible to differentiate ECs from  endothelial progenitor cells 
(EPCs)  , harvested from the bone marrow. Nevertheless, these EPCs lose their potential 
after long-term cultivation and their capacity is not enough to provide suffi cient amounts 
of cells needed for therapeutic applications. Therefore, numerous trials have been made 
to establish protocols to differentiate MSCs including DSCs towards ECs in vitro. 
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 Successful differentiation of DSCs  into   an EC phenotype is generally demon-
strated by the increase of typical EC surface markers such as VEGF-receptor 1 and 
2, CD31, CD34 and von Willibrand factor (vWF). Other commonly examined EC 
characteristics include  increased   internalization of acetylated-low density lipopro-
teins (LDL), and the formation of a tubular network when plated on matrigel in vitro 
[ 65 ]. As these assays only show phenotypical rather than functional changes, it 
might be inaccurate to designate these differentiated DSCs as fully functional ECs, 
and therefore are referred to as EC-like cells. 

 Differentiation of MSCs towards EC-like cells is  generally   accomplished by 
 adding the angiogenic factor VEGF to the cell medium [ 19 ,  66 ,  67 ]. For example, in 
one of the earliest attempts to derive EC-like cells out of BMMSCs, cells were incu-
bated in medium containing 2 % fetal calf serum (FCS) and 50 ng/ml VEGF for 7 
days. The resulting cell population showed an increase in VEGFR1, VEGFR2, 
VE-Cadherin, VCAM-1 and vWF expressions. Differentiated cells were also able to 
form a characteristic capillary-like network structures when plated onto matrigel 
in vitro [ 68 ]. Other proteins used to drive EC-like differentiation include bFGF and 
epidermal growth factor (EGF) [ 26 ,  69 ,  70 ]. Besides adding molecular mediators such 
as growth factors to the culture media, physical cues are also applied as a successful 
method to skew the stem cell fate of MSCs towards EC-like cells. Shear stress [ 67 ,  71 ] 
and seeding cells on elastic nanofi ber hydrogels [ 72 ] or incubating cells in 3-dimen-
sional matrices [ 73 ,  74 ] have been shown to induce EC differentiation of MSCs. 

 d’Aquino and  coworkers   were the fi rst to report the differentiation of endothelio-
cytes out of DPSCs. In an attempt to achieve differentiation towards osteoblasts, 
DPSCs were incubated in vitro for 40 days in α-MEM supplemented with 20 % 
FCS. Unexpectedly, cells started to differentiate into two cytotypes: 70 % became 
osteogenic progenitor cells while the remaining 30 % turned into VEGFR1+/CD44+/
CD54+ EC-like cells. The latter cell population also expressed vWF, CD31 and angio-
tensin-converting enzyme [ 75 ]. In 2009, Marchionni et al. used the aforementioned 
protocol of Oswald et al. [ 68 ] to derive EC-like cells from DPSCs. Flow cytometry 
demonstrated an induction of ICAM-1, CD34 and vWF expressions. In addition, 
unlike control DPSCs, differentiation medium treated cells were able to form tubes 
when seeded on matrigel in vitro [ 76 ]. Another study described that incubation of 
DPSCs with 20 ng/ml VEGF and 1 % ITS supplement (a mixture of insulin, transfer-
rin, and sodium selenite) for 10–21 days resulted in upregulation of CD31, CD34, 
CD105 and CD106 in only 10 % of the cells.  This   study did not mention any acquired 
functional properties (such as tube formation and uptake of lipoproteins) for these 
cells. In addition, Iohara et al. were able to demonstrate the existence of a CD31-/
CD146- side fraction of DPSCs which highly expressed CD34 and VEGFR2, formed 
extensive networks on matrigel and possessed high proliferation and  migration capac-
ities upon stimulation with VEGF in comparison to other DPSC subpopulation [ 26 ]. 
Furthermore, when these cells were cultured in endothelial growth medium-(EGM)-2 
supplemented with 2 % porcine serum, 10 ng/ml VEGF and 10 ng/ml FGF2 for 14 
days, they could uptake acetylated-LDL proteins and were able to release vWF after 
stimulation of histamine, typical functional features of ECs. The above described 
studies on the formation of EC-like cells out of DPSCs did not provide evidence on 

11 Dental Stem Cells: Their Potential in Neurogenesis and Angiogenesis



226

gained endothelial cell properties on the ultrastructural level (such as presence of 
Weibel–Palade bodies and tight junctions) nor did they study the intracellular path-
ways involved in the differentiation process. In addition, in most studies only a 
 subpopulation or a fraction of DPSCs is able to acquire EC-like features, probably due 
to the heterogeneity and different embryonic origin of these cells. A very recent study 
shows that PDLSCs are also able to differentiate into EC-like cells. Incubation with 
low-molecular weight fraction of enamel proteins or with the synthetic tyrosine-rich 
amelogin peptide for 5 weeks resulted in EC-like cell differentiation with high immu-
noreactivity against VE-cadherin and vWF. In addition,  differentiated   cells also 
showed the ability to uptake acetylated LDL [ 77 ]. 

 Besides adult DPSCs, EC  differentiation   potential of SHEDs has also been 
explored. Recent reports of the research group of Nör demonstrated that upon expo-
sure to EC growth medium (EGM-2MV) supplemented with 50 ng/ml VEGF, SHEDs 
were able to express VEGFR2, CD31, and VE-cadherin and organize themselves into 
capillary-like sprouts as cultured on matrigel in vitro. Addition of VEGFR1 or mito-
gen-activated protein kinase kinase-1 (MEK1) shRNA, or a chemical inhibitor of the 
extracellular signal-regulated kinase (ERK) pathway (U0146) to the induction 
medium completely inhibited the differentiation towards EC-like cells, unraveling 
that the VEGF/MEK1/ERK pathway is a key cascade in this process [ 78 ,  79 ]. 

 To our knowledge, the endothelial differentiation of other DSC populations, such 
as DFSCs and SCAPs, has not yet been described and thus, it is unclear whether 
these cells are able to transform into EC-like cells in vitro.  

11.2.3.2     EC Differentiation of DSCs In Vivo? 

 There is tremendous evidence that DSCs induce angiogenesis in various in vivo set-
tings. Nevertheless, incorporation of the transplanted DSCs into the host vasculature 
and the acquisition of an EC- like   phenotype are mostly not seen. Often, transplanted 
DSCs are found to be in the close proximity of the blood vessels, suggesting their role 
as directors of angiogenesis and supporting the current concept of MSCs including 
DSCs functioning as pericytes [ 26 ,  30 ]. For example, DPSCs mixed with matrigel and 
transplanted subcutaneously in nude mouse induced blood vessel growth towards the 
engrafted cells 10 days post-surgery. Immunohistochemistry analysis showed that 
DSCs were in juxtaposition to the host ECs, taking the same position as pericytes [ 28 ].    

11.3      Neural Regeneration   Potential of DSCs 

 Due to the neuroectodermal origin of dental tissue [ 80 ], the neurogenic differentiation 
properties of DSCs are widely explored by several research groups. The most thor-
oughly studied DSC subtype is the DPSCs but the neurogenic properties of SHEDs, 
SCAPs, DFSCs and PDLSCs have also been assessed. DSCs were differentiated 
towards cells with neuronal- and  Schwann   cell-like properties with variable success 
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rates, as will be discussed (Fig.  11.1b ). In addition, it was shown that DSCs have the 
potential to integrate into host neuronal tissue or to ameliorate the disease outcome in 
animal models of central and peripheral nervous system disorders. 

11.3.1     DSCs Differentiate into Functional Neurons In Vitro 
and Show Promising Effects in Animal Models 
of Central Nervous System Pathology 

 In the literature, various  approaches   can be found to derive neurons from DSCs such 
as (i) transplantation of DPSCs into injured rodent brain, (ii) chemical and cytokine 
induction by using a mixture of neuronal inducing agents (neuro-inductive medium), 
or (iii) generation of neurospheres. Although a consensus has not been established 
for the neuronal induction protocols, EGF and bFGF [ 81 – 84 ] are thought to play an 
important roles in driving DSCs towards a neuronal cell lineage whether or not 
combined with neurosphere formation [ 85 – 92 ]. Other  neuronal differentiation strat-
egies   include epigenetic reprogramming [ 93 ], Sonic Hedgehog signaling combined 
with bFGF and FGF8 administration [ 94 ] or using commercially available differen-
tiation media [ 95 ]. Maturation of the neurogenically induced DSCs is normally 
achieved by increasing intracellular cyclic AMP (cAMP) and protein kinase C sig-
naling and/or by specifi c growth factor administration [ 84 ,  86 ,  91 – 93 ]. 

 Successful differentiation  into   neurons is usually demonstrated by upregulation 
of various neuronal markers including NeuN, N-tubulin, neurofi lament (NF), and 
microtubule associated protein 2 (MAP2), and the appearance of a neuronal cell 
morphology (polarized cells with one axon and multiple dendrites). In addition, 
 physiological properties have to   be validated such as the coexistence of voltage- 
gated sodium and potassium channels, the ability to generate action potentials and 
the presence of synapses, neurotransmitters, and neurotransmitter receptors allow-
ing typical neuronal communication. 

 With regard to the neuronal differentiation in vitro,    the most explored DSC  subtype 
are the DPSCs. The pilot study of Arthur et al. demonstrated that after exposure to 
neuronal inductive conditions for 3 weeks, expression of neuron-related markers such 
as neural cell adhesion molecule (NCAM), neurofi lament-M (NF-M) and NF-H 
increased while the levels of early neuronal markers such as nestin and beta-III tubulin 
decreased. Moreover, DPSCs acquired neuronal characteristics such as inward sodium 
currents [ 81 ]. As this study was not able to demonstrate outward potassium currents 
and the generation of an action potential, numerous efforts have been made to improve 
the neurogenic differentiation outcome of DPSCs. In addition to a shift in marker 
expression towards neuronal-related proteins, the neuronally matured DPSCs of these 
studies acquired inward sodium currents and outward  potassium currents that could 
be reversibly blocked by tetrodotoxin and tetraethylammonium, respectively, showing 
the functional characteristic of differentiated cells [ 86 ,  93 ]. The study conducted by 
Gervois and co-workers was able to show that neurogenically differentiated cells were 
able to fi re a single action potential,  suggesting successful, yet incomplete neuronal 
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maturation as only a single action potential and not a train of action potentials was 
observed [ 86 ]. Other reports  describing the neurogenic differentiation potential of 
DPSCs were limited to immunohistochemical, morphological and gene expression 
analysis of the differentiated DPSCs, showing augmented expressions of MAP2, beta-
III tubulin and GFAP [ 88 ,  89 ,  95 ]. Similar to human DPSCs, attempts were made to 
differentiate SHEDs [ 84 ,  87 ,  92 ,  94 ], PDLSCs [ 82 ,  83 ,  90 ,  95 ,  96 ], SCAPs [ 85 ,  95 ] 
and DFSCs [ 87 ,  91 ] towards neuronal cells. Neurogenically differentiated SHEDs 
expressed Tau, beta- III tubulin, NeuN, NCAM, GFAP and tyroxin hydroxylase (TH) 
and MAP2. SHEDs were also differentiated into peripheral sensory neurons by 
Jarmalaviciute  and   colleagues as demonstrated by brain-specifi c homeobox/POU 
domain protein 3A (Brn3a) and peripherin expressions (2013). However, no func-
tional assessments were performed. PDLSCs were more thoroughly investigated and 
found to upregulate beta-III tubulin, GFAP, synaptophysin, MAP2, MAP1b, NeuN 
after neuronal differentiation, and were  also   reported to express specifi c neurotrans-
mitter markers such as choline acetyltransferase, gamma-aminobutyric acid (GABA), 
GABA- transporter 1, glutamate carboxylase 65/67, the oligodendrocyte precursor 
markers O4 and neural/glial antigen 2. Both SCAPs and DFSCs subjected to neuro-
inductive media were found to express nestin, NF-M, MAP2, beta-III tubulin and 
GFAP. A study performed by Zou et al. showed that SCAPs could be reprogrammed 
towards induced pluripotent stem cells that could subsequently be differentiated 
towards neural-like cells expressing nestin, beta-III tubulin, NF-M, neuron specifi c 
enolase, NeuN, 2′, 3′-cyclic nucleotide-3′- phosphodiesterase (CNPase), and metabo-
tropic- (GRM1) and ionotropic (NR1-1) glutamate receptors [ 97 ].  The   results of these 
studies are limited to alterations in gene expression profi le, neuronal marker expres-
sion and morphology, and no electrophysiological studies have been performed. 

 In vivo studies of transplanted DSCs in animal models of central nervous system 
pathology are scarce and were mainly performed with DPSCs.  The   results of these 
studies indicated that DPSCs acquired a neuronal morphology, expressed neuronal 
markers such as NF-M and attracted trigeminal axons after transplantation into 
chicken embryos [ 81 ,  98 ]. Moreover, the study of Kiraly and colleagues demon-
strated that when neurogenically pre-differentiated DPSCs were injected into the 
cerebrospinal fl uid of neonatal rats, DPSCs migrated towards and integrated into the 
host brain while retaining their functional characteristics [ 93 ,  99 ]. Not only did 
DPSCs incorporate into the host brain after transplantation, they also displayed ben-
efi cial effects in various in vivo models of neurological dysfunction including  isch-
emic   stroke [ 100 ], hypoxic-ischemic encephalopathy [ 101 ] and spinal cord injury 
(SCI) [ 102 ,  103 ]. Transplantation studies of DPSCs in animal models of Parkinson’s 
and Alzheimer’s diseases have not been  performed   to date. However, Apel et al. 
observed possible positive contributions of DPSCs in in vitro models of both neuro-
logical disorders [ 104 ]. SHEDs were used successfully in in vivo models of SCI 
[ 105 ] and Parkinson’s disease [ 92 ], ameliorating the disease outcome. PDLSCs 
were found to differentiate towards neuronal cells after engraftment into the host 
brain [ 96 ]. DFSCs, seeded on aligned electrospun poly(ε-caprolactone)/poly- DL - 
lactide-co-glycolide (PCL/PLGA) fi bers, were used in a spinal cord injury model. 
Although no signifi cant functional improvement was observed following  transplantation, 
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it was shown that the PCL/PLGA fi bers supported nerve fi ber growth and the seeded 
DFSCs expressed the oligodendrocyte marker Olig2 [ 106 ] To date, SCAPs have not 
yet been directly used in in vivo models for neurological disorders. However, Zou 
et al. established a SCAP-derived induced pluripotent stem cell culture that can be 
differentiated in vitro into neural-like cells for potential in vivo applications [ 97 ]. 
The proposed mechanisms of disease amelioration by the transplanted cells included 
integration of the transplanted cells in the  host   brain and/or stimulating the prolif-
eration and differentiation of endogenous neural stem cells.  

11.3.2     DSCs Differentiate into Schwann Cell–Like Cells 
and Actively Support Regeneration After Peripheral 
Nerve Injury 

 In addition to the neurogenic differentiation potential of DSCs, the ability of  DSCs 
  to transform into Schwann-like cells has also been evaluated. Martens et al. were 
able to successfully differentiate DPSCs towards Schwann cells based on a multistep 
process using beta-mercaptoethanol, retinoic acid, forskolin, bFGF, neuregulin- 1 and 
PDGF-AA. They showed that Schwann cells derived from DPSCs expressed the 
glial markers including p75, laminin, CD104 and GFAP but not nestin, and were able 
to myelinate and guide neurites of dorsal root ganglia in vitro [ 107 ]. Additional 
attempts were made to differentiate PDLSCs derived from beagle dogs [ 108 ] and 
SHEDs [ 84 ] towards Schwann cell-like cells. PDLSCs were differentiated using four 
different protocols. All procedures had a comparable outcome, and the growth fac-
tors and supplements that were used were similar to those reported by Martens et al., 
with the exception of nerve growth factor (NGF) and brain-derived neurotrophic 
factor (BDNF). Schwann cells derived from PDLSCs expressed GFAP and S100, as 
well as nestin, which contradicted the fi ndings of Martens et al. Remarkably, with the 
exception of NGF and BDNF, these supplements were not used to differentiate 
SHEDs. These cells were differentiated towards neuronal/glial cells after exposure to 
bFGF, EGF, BDNF, NGF, GDNF and cAMP, and were cultured in medium support-
ing neuronal growth instead of glial growth. Differentiated SHEDs expressed myelin 
basic protein, early growth response protein 1 (ERG-1), ERG-2 and apolipoprotein 
E. The results of studies using SHEDs and PDLSCs have been limited to alterations 
in gene and/or marker expression, and morphology as no functional studies such as 
remyelination and neurite outgrowth assessments have been performed. 

 In vivo studies that apply DSCs for peripheral nerve injury have mentioned only 
artifi cial tubes seeded with DPSCs in animal models of facial nerve injury. It was 
shown that rat DPSCs promoted remyelination, blood vessel formation and normal 
nerve regeneration when applied in combination with silicon or PLGA tubes, in which 
positive contributions were attributed to the paracrine factors secreted by the DPSCs 
[ 109 ,  110 ]. Subsequently, same group showed that a silicon tube containing DPSCs 
impregnated in type I collagen gel improved the  electrophysiological   and functional 
characteristics of the facial nerve, comparable with a nerve autograft [ 111 ].  
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11.3.3     Preconditioning Stem Cells for Neuroregeneration 

 The secretome of DSCs is not  only   rich in angiogenic factors, but also contains 
numerous neurotrophic proteins. These factors regulate the growth, differentiation 
and survival of developing neurons and the maintenance of mature neurons. In addi-
tion, they are able to enhance axon and neurite outgrowth in both the central and 
peripheral nervous systems after injuries. Examples of such growth factors found in 
DSCs are BDNF, NGF and glial cell-derived neurotrophic factor (GDNF) [ 112 ]. In 
accordance to the angiogenic actions of DSCs, it is possible to further improve their 
neurotrophic actions as will discussed in the Sects.  11.3.3.1  and  11.3.3.2  below. 

11.3.3.1      Genetic Modifi cation 

 Enhancing trophic activities of cells by overexpression of related genes could be a 
valuable approach to maximize the effi cacy of cell therapies in neurological diseases 
[ 113 ]. Therapeutic target genes include angiogenic factors such as VEGF, HGF and 
PIGF or neurotrophic factors such as BDNF, NGF and GDNF. These types of studies 
most frequently use MSCs and neural stem cells but so far no data are available of 
genetic modifi cation of DSCs for the purpose of neuroprotection or neuroregenera-
tion [ 114 ]. To date, there is no clinical experience using genetically modifi ed stem 
cell therapy for neuroregeneration, mainly because of the diffi culty of proving safety 
and effi cacy of transplanting genetically modifi ed cells into patients [ 113 ,  114 ].  

11.3.3.2      Preconditioning 

 To date, a variety of  preconditioning triggers   have been tested in stem cells and stem 
cell-derived progenitors for the treatment of ischemic brain disorders. Hypoxia pre-
conditioning and hypoxia mimicking agents have gained a lot of attention in the 
fi eld of cell-based therapies for neurological disorders [ 114 ]. This is not surprising 
since HIF-1α also plays a key role in neuroprotection via its downstream targets 
VEGF and erythropoietin (EPO), which not only stimulate angiogenesis but also 
neurogenesis, which are both vital processes in the recovery of injured brains [ 115 ]. 
Several reports have already demonstrated that stroke animals receiving hypoxia- 
primed cells (such as BMMSCs and embryonic stem cells) have displayed better 
functional recovery compared to animals receiving non-treated cells [ 116 – 118 ]. 
Furthermore, hypoxia preconditioning has been shown to upregulate HIF-1α, 
BDNF, GDNF and VEGF expressions [ 117 ,  119 ], and increase migration [ 119 ] and 
homing ability compared to normoxic cells [ 117 ,  118 ]. 

 Despite the promising results of transplanting hypoxia preconditioned stem/pro-
genitor cells into ischemic brains, no data are available on the use of  primed   stem 
cells from dental origins. However, since HIF-1α and its downstream targets are 
also key players in the recovery of ischemic brain, other preconditioning approaches 
as mentioned in Sect.  11.2.2  could also be applied with regard to ischemic brain 
conditions and require thus further investigations.    

A. Bronckaers et al.



231

11.4     DSCs in Stroke 

 Stroke is a severe condition  which   is defi ned by loss of brain function due to  interrupted 
or severely impaired blood fl ow to the affected area in the brain. It is a major cause of 
permanent disability and ranked as the second leading cause of death worldwide 
[ 120 ]. Ischemic stroke is the most common type, covering 70 % of all stroke cases. 
Since the  incidence   of stroke is the highest in people over age 60, the social and eco-
nomic burden caused by stroke keeps on rising, given the ageing of the population. 
During stroke, disturbed blood supply leads to oxygen and glucose deprivation which 
triggers a cascade of deleterious events, including excitotoxicity, accumulation of 
toxic metabolites and mitochondrial failure. Consequently, neuronal cell death occurs 
at the affected site, resulting in severe neurological damage. Clinically, this is trans-
lated into disabilities such as paralysis, sensory disturbances, aphasia, memory loss, 
urinary incontinence, cognitive impairment and emotional instability. Limited stroke-
induced endogenous neurogenesis can be  observed   in patients but not to an extent to 
acquire adequate functional recovery [ 121 ]. Furthermore, modern medicine is unable 
to suffi ciently improve the functional outcome after stroke. Currently, recombinant 
tissue plasminogen activator is the only FDA-approved pharmacological treatment. It 
has to be used within 4 to 5 hours after the ischemic insult, thereby limiting its use to 
only 2–4 % of the patients [ 122 ]. These  indications   highlight the urgent need for an 
improved treatment option for stroke patients. 

11.4.1      Stem Cell Intervention   as a Promising Therapy 
in Stroke 

 Stem cell-based therapy is considered to be a promising approach to minimize 
 neurological damage and enhance functional recovery after stroke. Several preclinical 
studies comprising various cell types show benefi cial effects on the functional out-
come in animal models of stroke [ 123 ]. Furthermore, a systematic review of the fi rst 
clinical trials in stroke patients suggests stem cell therapy to be feasible and effective 
[ 124 ]. However, further research is necessary to evaluate the clinical effi cacy. Although 
encouraging preclinical and clinical cell based studies have been reported, still many 
questions concerning the optimal stem cell source, mechanisms of action, fate of the 
stem cells and optimal treatment protocol remain to be elucidated.  

11.4.2     Human DSCs Are Ideal Candidates for Stem Cell 
Therapy in Stroke 

 In order to develop an effective cell  based   therapy in stroke, it is essential to exploit the 
optimal stem cell source. The fi rst clinical trials primarily used BMMSCs and  bone 
marrow derived mononuclear cells (BMMNCs)  . However, DSCs are proposed to be 
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more promising stem cell source as they can be used autologously, and can be easily 
isolated with low donor site morbidity and are associated with little ethical concern 
[ 125 ,  126 ]. Moreover, certain subtypes such as DPSCs seem to hold great promise for 
cell replacement approaches, since these neural crest-derived stem cells have neuro-
genic differentiation capacity and have been shown to integrate into the brain circuitry 
after transplantation [ 81 ,  86 ,  99 ]. Furthermore, human DPSCs have a rich secretome 
including BDNF, NGF, neurotrophin-3 (NT-3) and GDNF, which are considered as 
hallmark neurotrophic and neuroregulatory factors [ 112 ]. A recent study showed that 
the secretion of these factors is signifi cantly higher in human DPSCs compared with 
BMMSCs [ 127 ]. When the cytoprotective effects of human DPSCs and BMMSCs 
were compared in an in vitro ischemic model for astrocytes, both human DPSCs and 
CM of DPSCs were found to have superior effects [ 128 ]. Additionally, enhancement of 
sensorimotor  defi cits   after transplantation of human DPSCs in a rat stroke model has 
been demonstrated, and found to be mainly caused by paracrine effects rather than 
neural cell replacement [ 100 ]. Taken together, human DPSCs are proposed to be ideal 
candidates for stem cell therapy in the treatment of stroke. However, further research is 
strictly necessary to gain better insight into the cell biology of human DPSCs and their 
benefi cial effects on the functional outcome after stroke.  

11.4.3     Potential Benefi cial Mechanisms of Action and Effects 
of the DSC Secretome in Stroke 

 Following stem cell transplantation, both  paracrine   effects and cell replacement can be 
responsible for improved functional outcome after stroke. Initially, cell replacement was 
believed to be the predominant mechanism. However, there is increasing evidence that 
transplanted human DSCs use secretome-mediated mechanisms, including neuropro-
tection, neuroregeneration, immune-regulation to improve disease outcome, as already 
demonstrated in spinal cord injury and other neurodegenerative diseases [ 102 ,  104 ,  129 , 
 130 ]. SHEDs have been reported to provide protection against both heat stroke and 
cerebral ischaemia [ 131 ,  132 ]. These studies demonstrated a positive effect on migration 
and differentiation of endogenous neural progenitor cells as well as inductive effects on 
vasculogenesis even in case of exposure to CM, clearly demonstrating the paracrine 
effects of these stem cells. Even in neonatal brain, SHEDs have been found to support a 
neuroprotective microenvironment during perinatal hypoxia/ischemia [ 133 ].   

11.5     Conclusions 

 Taken together, DSCs are proposed to be ideal candidates for stem cell based therapy 
in treatment of neurological disorders or diseases associated with limited angiogene-
sis. Their neural crest origin and related possible epigenetic infl uences make them 
extremely suitable to be used in neuroregeneration approaches. The main mechanism 
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of action is suggested to be by paracrine effects of the human DSC secretome rather 
than true cell replacement. As this literature overview shows, neuronal and endothelial 
differentiation of DSCs is possible under the right conditions in vitro but the processes 
are still, in most cases, very insuffi cient and time consuming. Preconditioning of 
DSCs by hypoxia or certain chemical agents has been shown to boost the angiogenic 
effects of DSCs and the effect of this pretreatment on the neurotrophic actions of these 
cells warrants further examination. Nevertheless, pharmacological pretreatment might 
become a valuable strategy to maximize the clinical potential of DSCs. 

 The limited studies available on the effect of human DSCs on stroke outcome 
show promising results as all studies report improved functional outcome and/or 
superior effects of DSCs compared to other stem cell sources. Concerning clinical 
application, private biobanking of dental tissue-derived stem cells is already estab-
lished in a variety of countries including the United States,  the   United Kingdom and 
Switzerland. In this context, the effects of cryopreservation on DSCs has already 
been studied in detail and no adverse effects of this long-term storage on cell biol-
ogy have been reported. However, further research is necessary to gain better insight 
into the cell biology of human DSCs and optimize their mode of administration 
before these fascinating cells become a daily practice in the clinic.     
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12.1           Introduction 

 The World Health Organization (WHO) reports liver cirrhosis and  diabetes melli-
tus (DM)   form the 12th and 7th highest causes of death in the USA, respectively. 
Furthermore, mortality cases due to  liver cirrhosis   and DM were 14 and 21, respec-
tively, for every 100,000 of the population in 2012 [ 1 ]. Having said that, much 
emphasis is being placed on controlling such mortality rates by introducing 
advanced treatments and equipment facilities upon detection at the early stages [ 2 ]. 
However, despite such efforts, the problems relating to these conditions have not 
been adequately resolved. In DM for example, though life-long insulin injection/
pump seems to be a do-able treatment modality, the problems related with  hypo-
glycemia   which is life-threatening still remain and the illness requires serious 
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attention [ 3 ]. It should be noted that the actual cause of DM is primarily due to lack 
of insulin- producing cells which could have been damaged due to various reasons. 
This has initiated a global search for the best solution to overcome these draw-
backs, and cell replacement therapy has of late become a popular topic in the fi eld 
of medicine. A wide array of cell choices to replace damaged tissues or organs is 
available, which were proposed by numerous studies. Dental stem cells (DSCs)   , 
among the available cell sources, are emerging as potential candidates due to their 
inherent plasticity and ability to differentiate into cells of germ layers despite their 
neural crest origin. This has created signifi cant possibilities which, with enough 
attention and efforts, could be employed to our advantage. In this sense, this chap-
ter discusses the generation of endoderm and the applicability of DSCs toward two 
most common endpoints of  endodermal lineages  , namely hepatocyte-like cells and 
islet like-cells.  

12.2      Endoderm   Generation 

 The endoderm is one of the three germ layers derived from the inner cell mass 
(ICM) of blastocysts [ 4 ] and begins to develop around embryonic (E) 7. It com-
prises of 3 regions, and defi nitive endoderm (DE) progenitors found in the foregut 
region will give rise to liver and pancreas [ 5 ,  6 ]. 

12.2.1     Liver Development 

 Shortly after DE formation,    three major developmental stages take place in the 
onset of liver ontogeny, namely hepatic endoderm specifi cation, liver budding 
and fi nal differentiation. Fate mapping studies have demonstrated that the devel-
opment of this organ arises from the lateral domain of the developing ventral 
foregut region [ 7 ,  8 ]. During the closure of the foregut, the medial and lateral 
domains merge together to stipulate hepatic endoderm. After the hepatic endo-
derm specifi cation, inductive signalling response promotes liver bud emergence 
and leads to differentiation. Overall, the liver is composed of many specialized 
cell types and of those, hepatocytes are the principal cells comprising of 70 % of 
the whole liver mass. 

12.2.1.1     Hepatocyte Formation 

 Hepatocyte formation occurs via a  progressive   series of reciprocal interaction between 
various germ layers. In brief, extracellular transcriptional machinery such as  fi bro-
blast growth factors (FGFs)   from the cardiac mesoderm and  bone morphogenic pro-
teins (BMPs)   from the septum transversum mesenchyme (STM) work in concert to 
produce inductive signals to the ventral endoderm to adopt hepatic induction by 
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repressing Wnt signalling [ 9 ,  10 ]. The cellular response to the  signalling cues during 
this period eventually prompt new gene expression signals that are essential for cell 
differentiation from the epithelium at the intracellular level involving  liver enriched 
transcription factors (LETFS)   such as the homeobox factor (HEX) [ 11 ], hepatocyte 
nuclear factor (HNF) and GATA genes [ 12 ]. Simultaneously, initially suppressed Wnt 
signalling is also necessary for liver bud emergence and differentiation [ 11 ,  13 ]. At 
this point, specifi ed hepatic cells are denoted as hepatoblast or progenitors [ 14 ]. They 
are bipotential as they give rise to both hepatocytes and cholangiocytes [ 15 ] that 
expresses both adult hepatic genes (HNF4α, albumin) and biliary cell genes (cyto-
keratin 19) [ 16 ,  17 ]. Liver diverticulum appears once the hepatoblast transform from 
a columnar to a pseudo-stratifi ed epithelium. These progenitors then embed into the 
stromal environment of the STM in which they tend to interact and receive  stimula-
tory   signals from adjacent endothelial cells [ 18 ,  19 ] for  liver   bud formation. For 
instance, the presence of the hepatocyte growth factor (HGF) and transforming 
growth factor (TGF) produced by the surrounding non- parenchymal liver cells 
enhance hepatoblast proliferation and liver bud growth [ 20 ,  21 ]. Meanwhile, the bipo-
tent status of the hepatoblast is then regulated by cytokines such as Oncostatin M 
(OSM) in combination with glucocorticoid hormone and HGF to differentiate into 
hepatocyte [ 22 – 24 ] and maintain proper balance of the number of hepatocytes under 
the infl uence of an integrated signalling and transcriptional network (Fig.  12.1 )

12.2.1.2        Pancreatic Development 

 Pancreas is unique in nature due to having  both   exocrine and endocrine  functions 
represented by acinar tissues and islets of Langerhans, respectively. Two  distinct   
phases of development, namely primary transition (E9.5-E12.5) and  secondary 
transition (E13.5-E16.5), defi ne the morphogenesis of the pancreas from DE in 
which the former is involved particularly in organ determination and corresponds to 
a period of active proliferation of pancreatic progenitors [ 25 ], whereas the latter 
corresponds to the specifi cation of multi-potent precursor cells toward the differen-
tiated lineage [ 26 ]. As such, pancreas begins to develop as early as E9 in which two 
outpouchings, namely ventral and dorsal pancreas, start to emerge from the endo-
dermal lining of the duodenum. These outpouchings eventually fuse due to gut rota-
tion and form the head, body and tail of the pancreas [ 27 – 30 ]. 

   Beta (β) Cell Formation 

 Though there are distinct cell  types   with respective functions in the endocrine 
portion of the pancreas, it is interesting to note that the neogenesis of β cells 
occurs side by side with other cell types as well. Expression of Neurogenin 3 
(Ngn3) and Hairy Enhancer of Split-1 (HES1) from the pancreatic precursors 
emerging from DE play vital role in determining the subsequent development into 
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either exocrine or endocrine precursors [ 31 ,  32 ]. Studies showed that the ratio of 
Aristaless related homeobox (Arx) and Paired box 4 (Pax4) are crucial in deciding 
the fate of Ngn3 +  endocrine progenitors at as early as E9.5 [ 25 ,  26 ,  30 ]. For exam-
ple, knockout of Pax4 results in the total absence of β cells but not α cells. In 
normal pancreatic development, expression of Pax4 peaks between E13.5 and 
E15.5, which coincides with the period of maximal differentiation of β cell pre-
cursors. Consequently after endocrine specifi cation, Ngn3 co-localizes with Pax4, 
suggesting that the latter may be one of the targets of the former [ 33 – 35 ]. As such, 
when the ratio of Arx/Pax4 is low during secondary transition from E13.5 
onwards, a subsequent progenitor with three signature markers, namely Paired 
box 6 (Pax6), Pax4 and NK2 homeobox 2 (Nkx 2.2), will begin to emerge [ 36 ]. 

 During the later stages of β cell differentiation, the v-maf avian musculo aponeu-
rotic fi brosarcoma oncogene homolog A and B (MAFA and MAFB)  transcription   
factors also play prominent roles. MAFA/MAFB expressions in β cells lead to an 
increase in pancreatic and duodenal homeobox 1 (PDX1) expression initiating the 
insulin transcription. It was shown that in the absence of MAFB, fewer α and β cells 
were present, although total endocrine cell mass did not change [ 37 ]. MAFA 

  Fig. 12.1    A  schematic   representation of hepatocytes and biliary cell formation from endodermal 
progenitor cells. Hepatic induction begins with the infl uence of fi broblast growth factor (FGF) and 
bone morphogenetic protein (BMP) and eventually forms hepatoblast. Maturation of either hepa-
tocytes or biliary cell largely depends on the signalling from hepatocyte growth factor (HGF) and 
transforming growth factor (TGF)       
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 expression starts shortly after insulin expression [ 38 ] and persists in adult β cells. It 
was reported in MAFB-defi cient mice, insulin expression reduced and delayed until 
MAFA became expressed, but the resulting insulin +  cells had low expression of 
PDX1, NK6 homeobox 1 (NKX6-1), and Glucose transporter, type 2 (GLUT2; 
SLC2A2) [ 37 ], and therefore were unlikely to represent true β cells. 

 Finally, upon β cell specifi cation, the transcription of insulin is commenced and 
maintained by MAFB PDX1, NEUROD1, PAX6, and MAFA whereas other factors 
such as Nkx 2.2, Nkx 6.1, and Homeobox 9 (Hb9) are crucial for continuation of β cell 
neogenesis [ 39 ,  40 ]. Figure  12.2  summarizes the progressive development from  pancre-
atic   precursors and their subsequent sub-types and eventual differentiation into β cells.

12.2.1.3         Liver and Pancreatic Dysfunctions and Current Treatments 

 Among the various  organs   in the human body, the liver is believed to provide the 
highest prospects for regenerative medicine due to its ability to regenerate following 
chemical or physical abuses [ 41 ]. The abuses could arise due to trauma [ 42 ], drugs 
[ 43 ], and microbial agents including viruses and bacteria [ 44 ,  45 ]. Despite huge 
array of medication and treatment modalities to treat liver injuries, it should be noted 
that until recently acute and chronic liver diseases as well as other metabolic disor-
ders were treated by whole organ transplantation or  orthotopic liver transplantation 
(OLT)  . Despite the success of this techniques, major impediments such as fi nancial 
cost, long term immunosuppression issues, major surgery requirements, and many 

  Fig. 12.2     Progressive   development of pancreatic related cells from their respective precursors and 
their corresponding transcription factors (Ngn3: Neurogenin 3; Hes1: Hairy Enhancer of Split-1; 
Hnf6: Hepatocyte nuclear factor 6; Ptf1a: α subunit of pancreas-specifi c transcription factor 1; 
Rpbj: Recombination Signal Binding Protein For Immunoglobulin Kappa J; Pax4: Paired box 4; 
Arx: Aristaless related homeobox; MafA: v-maf avian musculoaponeuroticfi brosarcoma oncogene 
homolog A; Nkx 2.2: NK2 homeobox 2; Nkx 6.1: NK6 homeobox 1; Isl1: ISL LIM homeobox 1; 
Pax6: Paired box 6; Hb9: Homeobox 9; Pdx1: pancreatic and duodenal homeobox 1; Brn4: Brain 
4; MafB: v-maf avian musculoaponeuroticfi brosarcoma oncogene homolog B). Adapted from 
Ben-Othman et al. [ 26 ]       
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other obstacles have brought the cell-based therapies to treat liver diseases to the 
forefront. The transplantation of hepatocytes do not require major surgical proce-
dures and since the cells can be cryopreserved and they are theoretically available at 
any time they are required for transplantation as compared to organ transplantation. 
Besides hepatocyte transplantation, alternative sources of hepatocyte have emerged, 
 for   instance immortalized human hepatocytes [ 46 ,  47 ] and the widely available of 
stem cells-derived hepatocytes [ 48 – 50 ]. 

 Dysfunctions of the  pancreas are   due to a number of factors, of those the most 
common is infl ammation, leading to pancreatitis. This usually occurs when the 
digestive enzymes are activated before being released into the small intestines thus 
attacking the pancreas itself [ 51 ,  52 ]. Of the two types of pancreatitis disorders, 
acute pancreatitis occurs when the infl ammation lasts for a short period of time 
while chronic infl ammation develops when the damage is long-lasting [ 53 ,  54 ]. 
Depending on the severity of the infl ammation, this condition can be treated by 
medication, having a low-fat diet, and surgery [ 55 ,  56 ]. Damage to the endocrine 
portion is inevitable in which defects in either insulin secretion or insulin action 
results in  diabetes mellitus (DM)  . Though there are a variety of categories with 
known and also unknown etiology, the main characteristic of this condition lies in 
the ability of β cells to secrete insulin and is somewhat correlates with the lifestyle 
of patients as noted by the American Diabetes Association [ 57 ]. Type 1 diabetes, for 
example occurs when β cell destruction occurs, usually leading to absolute insulin 
defi ciency [ 58 – 60 ]. Also known as insulin-dependent diabetes,    type 1 DM ensues 
when cellular-mediated autoimmune destruction of the β cells of the pancreas takes 
place [ 61 ]. Furthermore, the rate of β cell destruction is quite variable, being rapid 
in some individuals (mainly infants and children) and slow in others (mainly adults) 
[ 62 ]. Some patients, particularly children and adolescents, may exhibit ketoacidosis 
as the fi rst manifestation of the disease [ 63 ]. Others have uncertain fasting hypergly-
cemia that can rapidly change to severe hyperglycemia and/or ketoacidosis in the 
presence of infection or other stress [ 64 ]. As the name implies, this particular condi-
tion can be controlled by taking interval insulin injections [ 65 ]. 

 Type 2 diabetes, however, accounts for almost 95 % of DM patients and ranges 
from predominantly insulin resistance with relative insulin defi ciency to an insulin 
secretory defect with insulin resistance [ 66 ]. Most patients with this  form   of diabetes 
are obese, and the obesity itself causes some degree of insulin resistance [ 67 ]. Patients 
who are not obese according to the traditional weight criteria may have an increased 
percentage of body fat distributed mainly in the abdominal region [ 68 ]. In addition, 
 insulin   secretion is defective in these patients and insuffi cient to compensate for insu-
lin resistance. The risk of developing this form of diabetes increases with age, obesity, 
and lack of physical activity [ 69 ]. Type 2 DM is controlled via the administration of 
drugs such as remoglifl ozinetabonate (RE), a sodium-dependent glucose transporter 2 
(SGLT2) inhibitor [ 70 ], glucagon-like peptide-1 receptor agonist [ 71 ] and the use of 
newly developed techniques like resveratrol treatment [ 72 ]. Though insulin resistance 
may be improved with weight reduction and/or pharmacological treatment of hyper-
glycemia, it is seldomly restored to normal conditions (Fig.  12.3 ).
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12.3           Stem Cells (SCs)   for Liver and Pancreatic Regeneration 

12.3.1     Adult SC 

 Adult SCs are undifferentiated cells found throughout the body that proliferate to 
replenish dying cells and regenerate damaged tissues. These cells are pluripotent by 
nature in which they have the capacity to differentiate into certain cell lineage upon 
exposure to growth and/or differentiating factors [ 73 ]. These cells are commonly 
found in bone marrow, blood vessels and skin, and recently dental pulps are also 
being extensively explored due to the presence of pulp tissues containing progeni-
tor/stem cells. These cells was fi rst discovered by Gronthos et al. [ 74 ], claiming to 
have similar immunophenotype in vitro with human bone marrow stromal cells 
(BMMSCs), and have the ability to form a dentin/pulp-like complex when trans-
planted on immunocompromised mice. Furthermore, their procurement which is 
less invasive and do not require stringent ethical pressure like in embryonic stem 
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  Fig. 12.3    Ideal usage  of   dental stem cells (DSCs) in treating two most prevalent issues in regards 
to endoderm,  i.e.  liver cirrhosis and diabetes mellitus Type 2. With the direct differentiation tech-
nology, cells upon large scale expansion with high purity and functional abilities are expected to 
be the next level of possible therapy       
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cells (ESCs) as well as absence of viral transfection like we observe in induced 
pluripotent stem cells (iPSCs) have  rendered   them to be more research-friendly; 
thus, inspiring extensive works on them [ 75 ].  

12.3.2      Dental Stem Cell (DSCs)   

 DSCs are basically categorized based on their location where isolation takes place. The 
wide sources of  SCs   derived from dental origin have triggered tremendous amount of 
work to facilitate our understanding about them and to search for possible ways to 
employ them to our advantage. The cell types from this origin include SCs from human 
exfoliated deciduous teeth (SHEDs), adult dental pulp SCs (DPSCs), SCs from the 
apical part of the papilla (SCAPs), SCs from the dental follicle (DFSCs) and  periodontal 
ligament SCs (PDLSCs) [ 76 ]. The SHEDs are isolated from pulp of human deciduous 
teeth, and have a higher proliferation rate compared to DPSCs [ 77 ]. DPSCs have been 
isolated and grown from pulp tissue of permanent human dental pulp. SCAPs are iso-
lated from human teeth found at the toot root apex [ 78 ] while DFSCs are isolated from 
dental follicle surrounding the developing tooth germ which have long been  considered 
a multipotent tissue based on its ability to generate cementum, bone and periodontal 
ligament [ 79 ]. PDLSCs are derived from root surface of extracted teeth and can dif-
ferentiate into cells or tissues very similar to periodontium [ 80 ]. 

12.3.2.1     DSCs and Directed Differentiation Toward Hepatocyte-Like 
Cells 

 Formulating an induction  protocol   to differentiate DSCs into hepatocyte-like cell 
involves a number of factors. First and foremost are the cytokine and growth factors 
acting as extracellular stimulating agents in differentiation process of DSCs into 
hepatocyte-like cells. Among the frequently exposed growth factors are HGF, OSM 
and insulin transferrin selenium (ITS), meanwhile the non-proteinaceous chemical 
compounds that enhance and maintain hepatocyte differentiation are dexametha-
sone (DEX) and nicotinamide (NA). 

 Ikeda et al. [ 81 ] was the fi rst group to illustrate the potential of SCs derived from 
third molar tooth germs to differentiate in hepatocyte-like cells. They have reported 
apparent changes in morphology and also secretion of albumin confi rming the pres-
ence of hepatocyte-like cells after differentiation process. The other groups worked 
on this subject were Ishkitiev et al. [ 82 – 84 ] and Okada et al. [ 85 ] who employed a 
 two-step protocol including induction and maturation phases. In the induction phase, 
culture media was incorporated with 20 ng/mL HGF and 5 mM NA for the fi rst 5 
days. Subsequently for the maturation phase, 10 ng/mL OSM, 10 nmol/L DEX and 
1 % ITS were added into the culture media, and cells were incubated in this particular 
media for about 16 days. The generated hepatocyte-like cells not only displayed 
hepatocyte-like morphology but also they possessed functional properties of a hepatic 
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cells. Apart from that, the presence of damaged liver conditioned medium can also 
augment the differentiation ability of MSCs into hepatocyte-like cells. In addition, 
our group have also worked on differentiation of DPSCs toward hepatocyte-like cells 
using the protocol established by Ishkitiev et al. [ 82 – 84 ] and Okada et al. [ 85 ], and we 
have also observed similar characteristics as previously described [ 86 ].  

12.3.2.2     DSCs and Directed Differentiation Toward Islet-Like Cells 

 The ability of stem cell of dental origin  to   differentiate into islet-like cells was fi rst 
demonstrated by Huang et al [ 87 ] in an attempt to PDLSCs. They have introduced 
chemicals such as monothioglycerol, sodium butyrate and NA which were 
 established in ESC model. These factors collectively trigger Wnt pathway, the 
integrin- mediated signalling pathway as well as Notch signalling pathway [ 88 ,  89 ]. 
This study was the fi rst of its kind to illustrate the expression of ESC markers in 
sub- population of PDLSCs displaying a broad differentiation potential. 

 Next, our group was the fi rst to show the ability of DPSCs to differentiate toward 
islet-like cell aggregates (ICAs) using a three step protocol [ 90 ]. The presence of 
activin A in the differentiation protocol helps in stimulating TGF signalling pathway 
among other signalling pathways as discussed previously [ 91 ]. Moreover, the num-
ber of ICAs that we managed to harvest at day 10 post-differentiation were 156 ± 23, 
indicating suffi cient production of ICAs from DPSCs for transplantation purpose. 

 Similar to our group, a three-step protocol was employed by Sawangmake et al. 
[ 92 ] on DPSCs and PDLSCs, showing the former generating more insulin- producing 
cells (IPCs) than the latter. Here, they investigated the effect of Notch  signalling   in 
the differentiation ability of these cells. Notch maintained the pool of PDX-1- 
positive early pancreatic progenitors by suppressing Ngn3 expression in order to 
prevent premature endocrine differentiation. Furthermore, it was also reported that 
Notch signalling targets (Hes1 and Hey1) were highly expressed, indicating the 
involvement of Notch signalling in pancreatic islet differentiation. 

 Next, another team from Korea have attempted to replicate the differentiation of 
PDLSCs into ICAs but in a Matrigel 3D culture system using our established protocol 
with slight modifi cations [ 93 ]. Here, the usage of glucagon-like peptide-1 (GLP- 1) ago-
nists are believed to promote β cell differentiation by acting on several intracellular 
pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), the 
Hedgehog, the mitogen-activated protein kinases (MAPK), and the protein kinase A 
(PKA) pathways to modify the expression of β cell transcription factors, including Pdx1. 

 Carnevale et al. [ 94 ] have conducted a study to understand the transformation 
effi cacy of a particular sub-population of DPSCs, which are positive for c-kit, 
CD34, and STRO-1 markers, into ICAs via using simple and multiple-step 
approaches. They introduced retinoic acid which is essential for pancreatic develop-
ment through the induction of Pdx1 expression [ 91 ] and promoting the generation 
of Ngn3 +  endocrine progenitors. The authors claimed to have generated ICAs with 
high expression of Pdx-1 and Glut2 as early as day 7 upon exposure to induction 
media. Another group from Japan described a method of obtaining IPCs from 

12 Dental Stem Cell Differentiation Toward Endodermal Cell Lineages…



252

DPSCs and PDLSCs by fi rst performing sorting of cells to obtain CD117 +  cells 
[ 95 ]. This marker was specifi cally selected for its importance in maintaining SC 
properties of the mesenchymal and hematopoietic SCs [ 96 ]. Moreover, its activation 
leads to apoptosis, cell differentiation, proliferation, chemotaxis and cell adhesion 
[ 97 ]. Again in 2014, Ishkitiev’s group tried to improve their differentiation protocol 
by adding hydrogen sulphide (H 2 S) at the concentration of 0.1 ng/mL [ 98 ]. It was 
reported that exposure to H 2 S activates all signalling functions of the PI3K-AKT 
pathway. They have reported that the expressions of insulin, glucagon, somatostatin 
and pancreatic polypeptide signifi cantly up-regulated after differentiation  as   com-
pared to those not treated with H 2 S. The summary of efforts taken by researchers to 
show the ability of DSCs toward both hepatocyte-like cells as well as pancreatic- 
islets like cells is presented in Table  12.1 .     

   Table 12.1    Summary of studies employing DSCs differentiating toward hepatocyte-like cells as 
well as islet-like cells   

 Differentiation toward hepatocyte-like cells 

 No.  Cell source  Growth factors introduced  Results  References 

 1  DSCs from 
3rd molar 
tooth germs 

  Step 1 medium (5 days):  
low-glucose DMEM + 2 % 
FBS + 2 mM L-glutamine + 
100 ng/ml acidic fi broblast 
growth factor (a-FGF) 

 The morphology changed 
from a bipolar-spindle 
and fi broblast-like to a 
polygonal and an 
epithelial-like 
morphology. Immature 
hepatocyte markers, AFP, 
CK19 were declining in 
expression toward the end 
of differentiation. 
Albumin secretion too 
were in concurrent with 
its corresponding gene 
expression 

 Ikeda et al. 
[ 81 ] 

  Step 2 medium (5 days):  
low-glucose DMEM + 2 % 
FBS + 2 mM L-glutamine + 
20 ng/mL hepatocyte growth 
factor (HGF) 
  Step 3 medium (11 days):  
low-glucose DMEM + 2 % 
FBS + 2 mM L-glutamine + 
20 ng/ml HGF + 10 nmol/l 
dexamethasone + insulin-
transferrin-selenium-X 
(ITS-X) + 10 ng/ml 
oncostatin M (OSM) 

 2  SHED   Step 1 (5 days):  
DMEM + 20 ng/mL 
HGF + 2 % fetal calf serum 

 The morphology of the 
cells changed from 
spindle shaped to 
polygonal. Expression of 
genes and proteins 
albumin, AFP, HNF-4a, 
and IGF-1 were present. 
Glycogen storage in the 
differentiated cells were 
profound indicating 
presence of matured 
hepatocyte-like cells 

 Ishkitiev et al. 
[ 82 ] 

  Step 2 (15 days):  
DMEM + 10 ng/mL 
OSM + 10 nmol/L 
dexamethasone + 1 % ITS-X 

(continued)
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 Differentiation toward hepatocyte-like cells 

 No.  Cell source  Growth factors introduced  Results  References 

 3  CD117 +  
SHED and 
DPSC 

  Step 1:  DMEM + 1 % 
ITS-X + 100 mg/mL of 
embryotrophic factor 

 The morphology of the 
cells changed from 
spindle shaped to 
polygonal. All specifi c 
hepatic markers such as 
albumin, AFP, HNF-4a, 
IGF-I, and CPS-1 were 
positive. Glycogen 
storage and urea secretion 
were prominent in 
differentiated SHED and 
DPSC 

 Ishkitiev et al. 
[ 83 ]; Okada et 
al. [ 85 ]; 
Ishkitiev et al. 
[ 84 ] 

  Step 2 (5 days):  
DMEM + 1 % 
ITS-X + 100 mg/mL of 
embryotrophic factor + 20 ng/
mL HGF 
  Step 3 (15 days):  
DMEM + 10 ng/mL 
OSM + 10 nmol/L 
dexamethasone + 1 % ITS-X 

 4  DPSC   Step 1 (5 days):  
DMEM + 20 ng/mL 
HGF + 2 % FBS 

 The morphology of the 
cells changed from 
spindle shaped to 
polygonal at Day 21. The 
gene, protein and its 
functional profi le showed 
a steady down-regulation 
of early endoderm 
markers (GATA4, 
GATA6, SOX17, HNF4α, 
HNF3β and AFP) with 
the up-regulation of 
hepatic specifi c markers 
(TDO, TO, TAT, ALB, 
AAT, CK18). 

 Vasanthan et 
al. [ 86 ] 

  Step 2 (16 days):  
DMEM + 10 ng/mL 
Oncostatin M + 10 nmol/L 
dexamethasone + 1 % ITS-X 

 Differentiation toward islet-like cells 

 No. 
 Cell 
source  Growth factors introduced  Results  References 

 1  PDLSC  DMEM/F12 + 1 % 
non-essential amino acids 
(NEAA) + 2 mM 
glutamine + 1 % 
ITS + 450 µM 
monothioglycerol + 1 mM 
sodium butyrate + 10 mM 
nicotinamide (NA) + 5 mg/
ml albumin fraction V 

 Cell aggregates were formed 
within 24 h of induction and 
after 10 days, genes such as 
Isl-1, Pdx-1, Glut2 and 
Somatostatin were expressed. 
C-peptide was also secreted 
indicating the maturity stage of 
differentiated cells 

 Huang et al. 
[ 87 ] 

Table 12.1 (continued)
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 Differentiation toward islet-like cells 

 No. 
 Cell 
source  Growth factors introduced  Results  References 

 2  DPSC   SFM-A : DMEM-KO + 1 % 
BSA + 1× ITS + 4 nM 
activin A + 1 nM sodium 
butyrate + 50 µM 
β-mercaptoethanol (BME) 

 DPSCs that proliferated as an 
adherent monolayer aggregated 
into spherical cells when the 
medium was changed from 
serum containing medium to 
day 1 SFM-A. After 5 days of 
incubation in SFM-C, most of 
the day 10 ICAs stained 
positive for DTZ. PCR analysis 
of day 10 ICAs showed a 
greater transcript abundance of 
pancreatic β-cells markers such 
as Pdx-1, Ngn3, Pax4, Nkx6.1, 
Isl-1, Insulin, and Glut2 as 
compared with undifferentiated 
DPSCs. 

 Govindasamy 
et al. [ 90 ] 

  SFM-B : DMEM-KO + 1 % 
BSA + 1× ITS + 0.3 mM 
taurine 
  SFM-C : 
DMEM-KO + 1.5 % 
BSA + 1× ITS + 3 mM 
taurine + 100 nM 
glucagon-like peptide + 1 
(GLP-1) mM NA + 1X 
NEAA 

 3  DPSC 
and 
PDLSC 

  SFM-A : DMEM-KO + 1 % 
BSA + 1x ITS + 4 nM 
activin A + 1 nM sodium 
butyrate + 50 µM BME 
 SFM-B : DMEM-KO + 1 % 
BSA + 1× ITS + 0.3 mM 
taurine 

 As early as Day 5, cell 
aggregates became denser and 
bigger in appearance. The total 
colony count of hDPSCs-
derived cell aggregation was 
signifi cantly higher than that of 
hPDLSCs. Key markers such 
as Pdx-1, Ngn3 and Isl-1 were 
highly expressed and pro-
insulin secretion was also 
signifi cantly noted suggesting 
the differentiation capacity of 
these cells. 

 Sawangmake 
et al. [ 92 ] 

  SFM-C : 
DMEM-KO + 1.5 % 
BSA + 1× ITS + 3 mM 
taurine + 100 nM 
GLP-1 + 1 mM NA + 1X 
NEAA 

 4  PDLSC   Step 1 medium : DMEM/
F12 + 17.5 mM 
glucose + 1 % 
BSA + ITS + 4 nM activin 
A + 1 mM sodium 
butyrate + 50 mM BME 

 They have demonstrated the 
down-regulation of pluripotent 
markers, Oct4 and Nanog in 
ICAs and up-regulation of 
endodermal markers, FoxA2, 
Gata2 and Sox17. In addition, 
pancreatic cell markers, such as 
Glut2, Pdx1, Isl-1, and Pax6 were 
signifi cantly upregulated in ICAs 
as compared with undifferentiated 
PDLSCs. The authors further 
stated that they have previously 
tested the use of 2D culture 
system, however islet like clusters 
did not appear in this as they did 
in 3D culture systems. These 
clusters, apart from expressing 
early endoderm markers, they too 
were capable of responding to 
glucose in a manner similar to 
pancreatic β cells. 

 Lee et al. [ 93 ] 

  Step 2 medium : DMEM/
F12 + 17.5 mM 
glucose + 1 % 
BSA + ITS + 0.3 mM 
taurine 
  Step 3 medium : DMEM/
F12 + 17.5 mM 
glucose + 1.5 % 
BSA + ITS + 3 mM 
taurine + GLP-1 + 1 mM 
NA + 1× NEAA 

Table 12.1 (continued)
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 Differentiation toward islet-like cells 

 No. 
 Cell 
source  Growth factors introduced  Results  References 

 5  DPSC   Pre-induction medium 
(2 days) : L-DMEM +5 % 
FBS + 5 µM trans-retinoic 
acid (RA) + 0.5 mM BME 
 Induction medium 
(2 days) : 
H-DMEM + 10 mM NA, 
5 µM RA, 0.5 mM BME 

 After 7 days of differentiation 
the cells started to form 
islet-like structures that became 
evident after 14 days of 
induction. Furthermore, 
expression of PDX-1, insulin 
and Glut-2 in undifferentiated 
and differentiated cells was 
evaluated by 
immunofl uorescence assay and 
showed intense labelling of 
Pdx-1, Isl-1 and Glut2. This 
was further validated with 
Western blotting. Insulin 
release assay too revealed 
signifi cant differences when 
challenged with two different 
glucose concentrations 
signifying maturation of ICAs 
generated. 

 Carnevale 
et al. [ 94 ] 

  Maintaining-1 medium 
(2 days) : H-DMEM + 5 % 
FBS + 10 mM NA, 10 µM 
zinc sulphate + 10 µM 
selenium 
  Maintaining-2 medium 
(2 days) : L-DMEM + 5 % 
FBS, 10 mM NA, 10 µM 
zinc sulphate and 10 µM 
selenium 
 Maintaining-1 medium 
and Maintaining-2 
medium to be replaced 
every 2 days until 
induction process reaches 
21 days 

 6  DPSC 
and 
PDLSC 

  5 days : DMEM-KO + 100 
U/mL penicillin + 100 µg/
mL 
streptomycin + 0.25 µg/mL 
amphotericin + 20 ng/mL 
HGF + 10 ng/mL aFGF 

 Immunocytochemistry of both 
cell lines revealed clusters of 
cells expressing all tested 
markers, such as INS, GCG, 
PPY, SST, Glut2 and AMY2A 
after  in vitro  differentiation. 
Flow cytometric analysis 
confi rmed the fl uorescent data 
presented above and showed 
that between 10 and 20 % of 
DPSCs and up to 50 % of 
SHED expressed the pancreatic 
markers after in vitro 
differentiation. The expression 
of insulin remained low in both 
cell cultures. The glucose-
stimulated insulin release test 
proved the functionality of the 
insulin producing cells. 

 Ishkitiev et al. 
[ 95 ]) 

  7 days : DMEM-KO + 100 
U/mL penicillin + 100 µg/
mL 
streptomycin + 0.25 µg/mL 
amphotericin + 20 ng/mL 
EGF + 100 µM BME 
  5 days : DMEM-KO + 100 
U/mL penicillin + 100 µg/
mL 
streptomycin + 0.25 µg/mL 
amphotericin + 20 ng/mL 
HGF + 10 mM 
NA + 100 µg/mL 
embryotrophic factors 
(ETF) 

Table 12.1 (continued)
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 Differentiation toward islet-like cells 

 No. 
 Cell 
source  Growth factors introduced  Results  References 

 7  DPSC 
and 
PDLSC 

  5 days : 
DMEM-KO + 20 ng/mL 
HGF + 10 ng/mL 
aFGF + 4nM activin 
A + 1 µM RA 

 Gene expression revealed that 
only HHEX, Pdx1 and Nkx6.1 
among the factors controlling 
Ins, GCG, PPY and SST 
expression were positive in 
both cell lines. Flow cytometry 
also revealed that the presence 
of H 2 S increased the number of 
cells positive for Ins compared 
with those in the H 2 S −  group. 
Similarly, exposure of the cells 
to H 2 S contributed to increased 
intracellular or extracellular 
Isl-1 concentration upon 
glucose challenge. 

 Okada et al. 
[ 98 ] 

  7 days : IMEM + 20 ng/mL 
EGF + 100 µM BME, +1 % 
ITS-X + 100 µg/mL 
ETF + 20 ng/ml BMP 
11 + 0.1 ng/mL H 2 S 
  5 days : α-MEM + 1 % 
ITS-x + 20 ng/mL 
HGF + 10 mM 
NA + 100 µg/mL 
ETF + 20 ng/mL BMP11 

Table 12.1 (continued)

12.4     Mechanisms and Critical Pathways Involved in Liver 
and Pancreatic Regeneration 

12.4.1      Liver   

 The generation of liver cells from MSCs involve the process of mesenchymal to 
epithelial transition (MET). The main aspect that changes during this process is the 
structural changes in which epithelial cells that appear closely connected to their 
neighbours with the help of adherens junctions and desmosomes transform from 
loosely organized MSCs. 

 All the above structures are regulated by the presence of many cell  communicative 
signalling pathways in three phases; namely specifi cation  of   endoderm, formation 
of hepatoblast and fi nally determination/maturation of hepatocytes. Nodal signal-
ling/TGFβ is the top of the molecular hierarchy that plays an important role in 
endoderm pattern formation and development [ 99 ,  100 ]. Nevertheless, this signal-
ling pathway initiates both mesodermal formation at lower dosages and endodermal 
formation at antagonistic dosages. At the latter point, Nodal members release inhib-
itory signals generated by PI3K/AKT signalling network through an insulin/IGF 
pathway. Nodal signalling acts together with another important signalling pathway, 
Wnt/β-catenin, in specifying defi nitive endoderm formation. Nodal signalling 
 subsequently stimulates expression of a set of endodermal transcription factors 
including SOX 17, GATA and Fork Head domain proteins FOXA1-3 (HNF3α/β/γ) 
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that are identifi ed as the targets of FGF and BMP signallings [ 12 ] which then regu-
late a cascade of genes related to the formation of hepatoblast. 

 During the  hepatoblast formation by   both hepatic liver cells and biliary epithelial 
cells [ 14 ], Wnt/β-catenin is known to promote cell proliferation and differentiation 
along with the formation of progenitor hepatocytes [ 101 ]. The activation of this 
signalling pathway allows the conversion of non-hepatic endodermal cells to a hep-
atoblast condition. Contrarily, activation of TGF-β/Nodal signalling suppresses the 
expression of hepatogenic transcription factors such as HNF3β, and simultaneously 
enhances biliary epithelial cells transcription factors such as onecut1 (OC1), OC2, 
and HNFβ1 [ 102 ]. However, the secretion of growth factors, in particular HGF, by 
mesenchymal cells or non-parenchymal liver cells induces the expression of 
CCAAT/enhancer binding protein alpha (C/EBPα) that improves differentiation of 
hepatocytes.  Hepatoblast   proliferation is further enhanced with HGF stimulus via 
Wnt/β-catenin and HGF/c-Met pathways. 

 Once the hepatoblast is directed to the hepatocyte lineage and separated from 
biliary lineage, the maturation process take place in which the cells  acquire   meta-
bolic properties. This process is controlled by a dynamic network compromising six 
transcription factors (HNF1α, HNF1β, HNF3β, HNF4α1 and HNF6) that function-
ally cross-regulate each other. Hepatocyte maturation is then determined not only 
by the presence of these genes but also by their abundance. Another cell intrinsic 
cue that promotes hepatocyte maturation is OSM, a member of interleukin-6 (IL-6) 
subfamily, which is usually produced by hematopoietic cells. This cytokine  activates 
the signalling pathway of the signal transducer and the activator of transcription 3 
(STAT3). On the other hand, ITS has been shown to effectively augment prolifera-
tion rate of hepatocytes through PI3K pathway. Meanwhile, DEX induces the 
expression of the hepatocyte nuclear factor of 4 and C/EBPα via regulation of the 
PI3K signalling pathway, wherein these two factors belong to the hepatocyte nuclear 
factors and are vital transcriptions for hepatocyte maturation. DEX eventually 
inhibits the growth inhibitory molecules of the hepatocyte such as CXC chemokine 
receptor and thus allows hepatocyte development.  

12.4.2      Pancreas   

 In general, mechanisms of islet regeneration can be categorised into reversible 
epithelial- to-mesenchymal (EMT) transition, self-duplication, and re-ignition of the 
embryonic developmental program [ 103 ]. Regardless of their mechanism, the gen-
esis of pancreatic cells takes place via critical pathways in the presence of their 
respective transcription factors. 

 First of all,  Wnt/β-catenin signalling pathway plays   a vital role in β cell prolifera-
tion as described in Thu et al. [ 104 ]. It gets activated when Wnt ligands bind to 
 specifi c cell surface receptors, called Frizzled (Fzd), leading to activation of the intra-
cellular Ca 2+ , planar cell polarity, or the β-catenin/canonical branch of the pathway. 
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The presence of Wnt signalling stimulates expression of multiple β cell cycle regula-
tors, including β-catenin, cyclin D1 and D2, resulting in enhanced islet proliferation 
[ 105 ,  106 ]. It was shown that these Wnt signals promoted the expression of Pitx2, a 
transcriptional activator which is directly associated with cis-regulatory elements in 
cyclin D2 gene. Furthermore, it was reported in García-Jiménez et al. [ 107 ] that the 
deletion of β-catenin contributed to a silencing effect in the Wnt pathway. In addi-
tion, this pathway is also implicated in foregut endoderm specifi cation in which 
repressing Wnt  signalling   in the anterior endoderm was required for  maintaining the 
foregut fate, whereas high levels of Wnt signalling in the posterior endoderm 
enhanced intestinal development [ 108 ]. 

 Next, the PI3K signalling pathway has been shown to negatively regulate cellular 
differentiation especially in regards to β cells formation and maturation.    Initially, 
this pathway was shown to be important in maintaining self-renewal through 
 leukemia inhibitory factor (LIF)-activated signalling [ 109 ]. Consistent with this 
observation, it was later reported that activation of AKT which is a major  downstream 
component of this pathway, had similar effects in maintaining the pluripotency of 
cells [ 110 ]. Furthermore, it was also reported that the suppression of PI3Ks facili-
tated the differentiation of ESCs into mesendoderm and defi nitive endoderm under 
circumstances in which activin-Nodal signalling was highly active [ 111 ]. Moreover, 
suppressing the PI3K pathway was reported to promote endocrine differentiation of 
human fetal pancreatic cells [ 112 ] perhaps suggesting an additional negative regula-
tory action of PI3K at a later stage in the β cell differentiation pathway. 

 Apart from this, Notch signalling also plays  its   role in deciding between the endo-
crine and progenitor/exocrine fates in the developing pancreas [ 113 ]. In this signalling 
system, ligand activation would normally lead to intracellular cleavage of the Notch 
receptor. The activated intracellular domain of Notch receptors interacts with the DNA-
binding protein, recombination signal binding protein for immunoglobulin kappa J 
region (RBP-Jk), to activate expression of the negative basic helix- loop- helix (bHLH) 
HES genes, which, in turn, repress expression of downstream target genes including 
the Ngn genes [ 114 ,  115 ]. The repression of Ngn3 transcription through Hes activation 
prevents premature endocrine differentiation. This step serves to expand the pool of 
pancreatic progenitors before differentiation is initiated and notch inhibition results in 
Ngn3 expression, and further differentiation towards the  endocrine   fate [ 116 ]. 

 Last but not least, another crucial signalling pathway worth discussing is the 
Hedgehog signalling pathway which has a dual role in  endocrine   pancreatic regen-
eration [ 117 ]. For instance, Hebrok et al. [ 118 ] have shown that Indian hedgehog 
(Ihh), together with Patched-1 (Ptc-1), a receptor and negative regulator of hedge-
hog activity, is expressed in pancreatic tissue. Meanwhile, sonic hedgehog, another 
hedgehog family member, is repressed by activin, a TGF-β signalling molecule, to 
promote pancreas development. The TGF-β pathway is the central network in gen-
eration of mesendoderm and DE, which leads to activation of Smoothened (Smo), a 
G-protein coupled-like receptor [ 119 ]. Thereafter, signalling  is   mediated in the 
Hedgehog signalling complex, which modifi es the activity of Gli transcription fac-
tors in order to regulate expression of target genes.   
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12.5     In Vivo Studies 

12.5.1     Hepatocyte-Like Cells Related Studies 

 Studies on the effi cacy of DSCs to function as  hepatocyte-like cells   have been tested 
in animal models as early as 2008 by Ikeda et al. They have employed three-step 
approach whereby in the fi rst step, cells isolated from third molar were exposed to 
aFGF for 5 days followed by HGF treatment for additional 5 days, and fi nally 
 treatment with a cocktail of HGF, OSM, DEX and ITS-X for 11 days. They have 
transplanted 1 × 10 7  cells through portal vein of nude rats (F344) in which liver 
injury was created with intra-peritoneal (i.p.) carbon tetrachloride injection. They 
have discovered engraftment of cells with expressions of albumin (ALB), cytokera-
tin18, and cytokeratin19 coupled with proliferative behaviour. In addition, DSC trans-
planted rats showed suppression of liver fi brosis and steatonecrosis, thus,  proving 
possible use of DSCs in liver tissue engineering. 

 Next, Ishkitiev et al. [ 84 ] investigated  the   in vivo effi cacy of DSCs on two types 
of liver diseases, namely acute liver injury and secondary biliary cirrhosis. The 
damage for the former model was created via 80–90 % surgical resection whereas 
for the latter, the injury was induced via ligation of bile duct. A total of 2 × 10 6  
SHEDs were transplanted to spleen of nude rats (F344/NJc1) after treating stem 
cells with HGF for 5 days, followed by OSM and DEX treatments. Histological 
analysis of the rat livers revealed that the engrafted human hepatic cells were dis-
tributed all over the regenerated organs of the transplanted animals in both models. 
Markers such as ALB, alpha feto protein (AFP), insulin-like growth factor-1 (IGF- 
1), and carbamoyl phosphate synthetase-1 (CPS-1) were also highly expressed in 
the regenerated organs indicating functional  incorporation   of SHEDs to the liver. 
Blood examinations also revealed a similar pattern, whereby decrement of white 
blood cells, total bilirubin, and blood urea nitrogen were profound in animals trans-
planted with human cells. However, the authors further noted that since SHEDs 
were originally transplanted into the spleen, cells expressing human-specifi c mark-
ers were found in the spleens of the transplanted animals.  

12.5.2     Islet-Like Cells Related Studies 

 Despite numerous studies describing the potential  of   stem cells originated from 
 dental sources, studies on the effi cacy of DSC-derived ICAs in pre-clinical models 
are indeed very limited. Kanafi  et al. [ 120 ] conducted a study to assess the effi cacy 
of SHEDs and DPSCs in streptozotocin-induced DM model in mice. It was demon-
strated that about 90 % of diabetic mice transplanted with encapsulated stem 
 cell- derived islets survived, and were restored to normoglycemia within 2 weeks 
after transplantation and maintained normoglycemia for 2 months while their body 
weight and glucose levels in urine reverted to normal conditions. So far, this is the 
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only reported study showing a positive correlation of DSCs from the pre-clinical 
point of view. It is hoped that more of such studies will be conducted to further vali-
date this observation and, as a matter of fact, our group is in the midst of conducting 
a pre-clinical study on the effi cacy of SHEDs in streptozotocin-induced DM rat mod-
els. The idea is to evaluate the ability of IPCs generated from SHEDs to reduce the 
blood sugar levels to their normal ranges.   

12.6     Remaining Challenges and Clinical Perspectives 

 Though a vast amount of  in vitro studies   investigating the potential of DSCs 
 differentiating toward specifi c endodermal-related lineage is abundant, the translat-
ability in either pre-clinical or clinical aspects are indeed very limited. The challenges 
described in preceding sub-chapter above shows that the smooth sailing journey of 
cell replacement therapy is still far from reality. As such, a collective effort must be 
taken by researchers  worldwide   to address these issues to be able to prepare ourselves 
regarding treatments for liver cirrhosis and DM. 

 One of the major challenge we face when dealing with DSCs is the small quantity 
of starting material. Unlike SCs from Wharton’s’ jelly or adipose tissue,    the amount 
of cells upon dental pulp processing at passage 0 would be at most 1 × 10 6  cells, if 
proper measures in ensuring sterility is taken into account. Furthermore, in general 
transplantation scenario, 3 × 10 6  cells would ideally be transplanted for each kg of 
body weight [ 121 ]. As such, for a 70 kg person, the optimum amount of cells to be 
transplanted is 2.1 × 10 8 . Looking at the limited ability of DSCs to proliferate, it is 
believed that hypoxic culture condition in 3D-bioreactor can be used to up-scale the 
proliferation rate. We have also previously discussed the effect of different commer-
cially available culture media for the purpose of large scale expansion, especially on 
the proliferative behaviour on DSCs as well as their ability to differentiate towards 
selected cell lineage [ 122 ]. Perhaps combining the usage of 3D-bioreactor or serum-
free micro-carrier system coupled with optimized culture media would enhance the 
output capacity [ 123 ,  124 ]. 

 The next issue is pertaining on the immunological tolerance upon cell transplan-
tation regardless of the origin of cells, such that use of whether autologous-based or 
allogeneic-based is still a subject of debate [ 125 ,  126 ]. Preferably,  autologous-based 
therapy would   be highly recommended to avoid immunological rejection [ 127 , 
 128 ]. For instance, in order to regulate blood glucose homeostasis, islet transplanta-
tion has been considered as a safer and easier method for treating DM. However, the 
amount of cells required to achieve a substantial effect would be tremendous 
whereby performing it in autologous-based condition would be very challenging. 
As such, the only feasible approach is via pooled allogeneic-based islet transplanta-
tion. If not carefully planned, the success rate of such treatment would be very low 
possibly due to actions of immunological rejection. Here perhaps pre- conditioning 
  of cells prior to transplantation might be helpful. This technique would prime the 
cells to behave accordingly when they are exposed to a specifi c microenvironment. 
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A number of in vitro studies have shown the improvement on the cell survivability 
when they were pre-conditioned thus providing us an avenue to look at with the aim 
of enhancing the  outcome   of transplantation works [ 18 ,  129 – 133 ]. 

 Another approach worth considering for  islet transplantation   is the idea of encap-
sulating the islets with physical barrier to avoid immunological rejection while 
allowing transition of insulin, sugar, nutrients and oxygen. The  material   for encapsu-
lation can be brown algae derived alginate which is currently being used in clinical 
trials [ 134 ]. Another material, polysulphone can also be utilized but it needs to be 
modifi ed in order to reduce insulin adsorption [ 135 ]. Despite this, few disadvantages 
include inability of cytokines to move across the barrier and lack of nutrient causes 
further impairment upon transplantation [ 136 ,  137 ]. This has led to an invention of 
polymeric layers that can be coated directly onto islets surface which minimizes the 
 distance   between the islets and capsule by 1000-fold that later increases the islet 
survival [ 138 ,  139 ]. 

 Further, to create synergistic effect while performing these techniques, additional 
factors such as the route of transplantation, dosages and duration of SCs  treatment 
  are believed to play central roles as well. Though intravenous is a very popular route 
of SC transfusion due to ease of access [ 140 ], SC administration near the injury site 
due to its better healing potential remains inevitable [ 141 ,  142 ]. Furthermore, it was 
shown that multiple delivery techniques have amplifi ed cell homing ability to target 
area [ 143 ,  144 ]. Therefore, a thorough study is needed to investigate all these consid-
erations before we could proceed toward clinical application.  

12.7     Conclusions 

 DSCs are indeed very promising candidates in the promotion of regenerative 
 medicine. The fact that these cells can be differentiate into endodermal lineage in 
both  in   vitro and in vivo conditions proved that in the long run, cell replacement 
therapies can perhaps become a reality. Furthermore, since dental pulps could be 
harvested from exfoliated teeth, perhaps they can serve as an ideal source for SCs 
banking. This would be very helpful in instances where pooled donors for allogeneic 
transplantation are desired. Though there are serious issues requiring further atten-
tion, we believe that with the technological advances prevalent today, these  challenges 
can be overcome. We can only hope that in the near future, all of these  concepts   will 
be fi nally settled and this fi eld will have progressed much close to defi nitive solutions 
for endodermal related diseases.     
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    Chapter 13   
 Dental Stem Cells in Regenerative Medicine: 
Clinical and Pre-clinical Attempts                     

     Ferro     Federico      and     Renza     Spelat   

13.1            Dental Stem Cells (DSCs)   Origin and Types 

 Mammalian tooth tissues, which share a number of morphogenetic similarities with 
many ectodermal organs such as hairs and glands, derive from reciprocal interac-
tions of oral ectoderm and neural crest mesenchyme [ 1 ,  2 ]. The fi rst sign of tooth 
morphogenesis is the establishment of dental lamina, a structure that represents a 
condensation of the oral epithelium, with relative thickening corresponding to the 
future dental region. Therefore, dental crown organogenesis proceeds through three 
different stages known as bud, cap, and bell, and when the crown has almost com-
pletely formed, root formation starts to differentiate from the dental follicle and the 
dental papilla mesenchyme [ 1 ,  2 ]. 

 Epithelial and mesenchymal reciprocal interactions as result of a conserved 
three-dimensional molecular signaling environment are crucial not just during 
 tooth   morphogenesis but also for the stem cell’s niche establishment and mainte-
nance. In fact, it has been confi rmed that stem cells reside in adult dental tissues, 
and that Morsczeck et al. [ 3 ] demonstrated their neural crest origin. At present, 
fi ve types of DSCs have been isolated from adult, both mature and immature, and 
embryonic- like dental tissues. These stem cells can be simply divided into two 
groups depending on the dental tissue derivation and dental developmental stage 
reached (Fig.  13.1 ).
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13.1.1       DSC Classifi cation 

13.1.1.1     DSCs Derived from  Mature   or Immature Dental Pulp Tissues 
(Dental Pulp Derived Stem Cells-DPDSCs) 

 Dental pulp stem cells ( DPSCs)   were isolated for the fi rst time by Gronthos et al. 
[ 4 ] from extracted adult dental tooth pulp tissues. It is generally believed that 
these cells are mainly present or derive from the perivascular regions [ 5 ] or 
peripheral nerve- associated glia [ 6 ] of the pulpal cavity, migrating from  there   to 
the site of injury when required. 

 Stem cells from exfoliated deciduous teeth (SHEDs) have been isolated for the 
fi rst time by Miura et al. [ 7 ] reporting that even exfoliated/loosen organs contain 
stem cells. More recently, a subgroup of highly immature stem cells have been 
isolated both from dental pulps of supernumerary teeth as well as  from   exfoliated 
deciduous teeth [ 8 ]. Data derived from their characterization studies confi rmed 
that those cells express not only mesenchymal stem cell (MSC) markers but also 
embryonic stem cell (ESC) markers, suggesting that these cells are precursors of 
DPSCs and SHEDs.    However, it was recently demonstrated that DPSCs and 
SHEDs also express those markers [ 9 ,  10 ].  

  Fig. 13.1    Sources  of   dental stem cells (DSCs). Five types of DSCs have been isolated from 
adult, both from mature or immature, and embryonic-like dental tissues. Acronyms: DPSCs, 
Dental Pulp Stem Cells; SHEDs, Stem cells from Human Exfoliated Deciduous teeth; PDLSCs, 
Periodontal Ligament Stem Cells; SCAPs, Stem Cells of the Apical Papilla; DFSCs, Dental 
Follicle Stem Cells       
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13.1.1.2     DSCs Derived from Mature or Immature Periodontal Tissues 
(DSCs Periodontium Derived- DSCPD  ) 

 Recent evidence suggests that stem cells are present in the dental follicle (DFSCs) 
of the tooth germs at various stages of development [ 11 ]. Dental follicle  is   a loose 
embryonic-like connective tissue, part of the dental sac, which surrounds the devel-
oping tooth and is involved in periodontium formation as well as in tooth eruption. 

  DSCs derived from apical papilla (SCAPs) ; apical  papilla   is a cell mass at the tip 
of developing tooth roots, which is rich in progenitor cells involved in root forma-
tion [ 12 ]. Both DFSCs and SCAPs are present and isolable only for a limited time 
because dental follicle and apical papilla become a part of the dental periodontium 
and dental root during tooth maturation and formation [ 11 – 14 ]. 

 Another source of DSCs is that of mature periodontal tissues,  i.e.  periodontal 
ligaments, alveolar bone, cementum, and all those tissues  involved   in tooth fi xation 
to dental alveolus. These tissues cover the whole tooth root’s outer surface and pres-
ence of stem cells within those fully differentiated tissues has been proven, referred 
to as periodontal  ligament   stem cells (PDLSCs) [ 15 ] .     

13.2     In Vitro Properties of DSCs 

 DSCs are an easily accessible  source   of adult stem cells, and do not involve the ethi-
cal issues associated with stem cells derived from embryonic tissues. They have 
also been shown to maintain their stemness and self-renewal capabilities after cryo-
preservation and thawing [ 16 ,  17 ]. In general, cell characterization studies revealed 
that DSCs express mesenchymal markers along with embryonic stem cell markers 
as summarized in  Table    13.1  [ 8 ,  9 ,  19 ,  20 ].

   Many in vitro studies verifi ed that DSCs (DPDSC and DSCPD) are multipo-
tent because of having differentiation potential towards at least three distinct cell 
lineages: osteo/odontogenic, adipogenic and neurogenic [ 3 ,  7 ,  9 ,  14 ,  17 ,  18 ,  21 ]. 
However, it was also evidenced that DPDSCs are capable of chondrogenic, myo-
genic [ 17 ], endothelial [ 22 ], hepatocytic [ 9 ,  23 ,  24 ] in vitro differentiation capac-
ities, and can also be used for derivation of induced pluripotent stem cells (iPSC) 
[ 25 ]. Siqueira da Fonseca et al. [ 26 ] also proved that human DPDSCs, contribut-
ing to the formation of mouse/human chimaera embryos, are also able to differ-
entiate into cell types derived from ectoderm and endoderm despite their 
ecto- mesenchymal origin. Those results have confi rmed that DPDSCs are plu-
ripotent and biologically compatible with the mouse embryonic environment, 
capable of being ‘reprogrammed’ to a cell type similar to the embryonic pheno-
type by the host milieu, without any human external modifi cation [ 26 ]. In addi-
tion, many studies have reported the immunomodulatory and immunosuppressive 
properties of DSCs by three main action of mechanisms: (i) cell cycle arrest of 
immune cells at the G1 phase, (ii) direct interaction with immune cells, and (iii) 
paracrine effect through secretion of various factors including human leukocyte 
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antigen G (HLA-G),  prostaglandin E2, various cytokines (TGF β , IL6, IL10, 
HGF, VEGF, etc.) and enzymes (indoleamine 2,3-dioxygenase and inducible 
nitric oxide synthase) [ 27 – 29 ].  

13.3     Clinical and Pre-clinical Trials of DSCs 

 Because of their relatively simple  recovering   methodology, availability, tolerogenic 
properties and differentiation capabilities, DSCs have also been tested in various 
in vivo trials. However, the vast majority of these in vivo studies have been con-
ducted on animal models, and to date very few clinical trials have been completed 
or are currently being performed. 

   Table 13.1    Summary of  the   mesenchymal and embryonic stem cell markers expressed in dental 
derived stem cells (DSCs). Kerkis et al. [ 8 ], Ferro et al.[ 18 ]), Bojic et al. [ 19 ], Huang et al. [ 20 ], 
Ferro et al. [ 9 ]   

 Name  Alternative name 

 DPDSC  DSCPD 

 DPSCs  SHEDs  DFPCs  SCAPs  PDLSCs 

 CD 13  Aminopeptidase N  +  +  +  +  + 
 CD 29  Integrin β1  +  +  +  +  + 
 CD 44  Hyaluronate receptor  +  +  +  +  + 
 CD 73  Ecto-5’-nuclotidase  +  +  +  + 
 CD 90  Thy-1  +  +  +  +  + 
 CD 105  Endoglin  +  +  +  +  + 
 CD 146  Mel-CAM  +  +  +  + 
 Oct4 (octamer- 
binding 
transcription factor 
4) 

 POU5F1  +  +  +  +  + 

 Nanog  Homeobox protein 
NANOG 

 +  + 

 Sox2  SRY - box 2  +  + 
 SSEA4 (stage 
specifi c embryonic 
antigen 4) 

 +  + 

 SSEA3 (stage 
specifi c embryonic 
antigen 3) 

 +  + 

 TRA 1-60 (tumor 
recognition antigen 
1-60) 

 +  + 

  Acronyms: DPDSCs, Dental Pulp Derived Stem Cells; DSCPDs, Dental Stem Cells Periodontium 
Derived; DPSCs, Dental Pulp Stem Cells; SHEDs, Stem cells from Human Exfoliated Deciduous 
teeth; PDLSCs, Periodontal Ligament Stem Cells; SCAPs, Stem Cells of the Apical Papilla; 
DFSCs, Dental Follicle Stem Cells; CD, Cluster of Differentiation  

F. Federico and R. Spelat



273

 Because stem cells derived from embryonic-like dental tissues (DFSCs) are not 
a readily available cell source, we are not going to discuss them; instead we prefer 
to highlight those DSCs which are most suitable for clinical trials due to being 
easier to obtain such as DPDSC (DPSCs and SHEDs), DSCPD) (SCAPs and 
PDLSCs) (Fig.  13.2 ).

13.3.1       Clinical and Pre-clinical Trials of DPDSCs 

 DPDSCs have been proven to be useful not only for dental tissue engineering and 
periodontal tissue regeneration but also for  regeneration   of structures of the cranio-
facial region. 

13.3.1.1     Odontogenic and Osteogenic Differentiation 

 Different attempts to obtain de novo pulp regeneration have been made by re- 
cellularizing tooth mineralized fragments seeded with DPDSCs, followed by their 
in vivo implantation. Six weeks after implantation, results confi rmed successful 
regeneration of dental pulp-like tissue but not odontoblast-like cells [ 30 ]. A vascu-
larized pulp tissue, as well as a dentin-like mineral tissue, were obtained by Huang 
et al. [ 31 ] when a section of human tooth root, modifi ed with synthetic scaffold, and 
seeded with DPDSCs, was transplanted in vivo. Similarly, another research demon-
strated that transplantation of DPDSCs cultured in aggregate condition or DPDSCs 
seeded on collagen scaffold in a dog model were both able to regenerate a dental 
pulp/odontoblastic-like tissue [ 32 ,  33 ] (Fig.  13.2 ). 

  Fig. 13.2    Summary  of   pre-clinical and clinical dental stem cell (DSC) studies. Pre-clinical studies 
verifi ed DSCs (DPDSCs and DSCPDs) stemness, by testing their differentiation capabilities. 
Completed and ongoing clinical trials have already or are being performed in order to prove 
DPDSCs (DPSCs and SHEDs) clinical effectiveness in human. Acronyms: DPDSCs, Dental Pulp 
Derived Stem Cells; DSCPDs, Dental Stem Cells Periodontium Derived       
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 In a pre-clinical study, Graziano et al. used a scaffold system seeded with DPDSCs, 
previously pre-differentiated into osteoblastic cells, to test the bone regeneration 
capability of stem cells after transplantation into immunocompromised rats (2008). 
Hydroxyapatite nano-crystals, as well as bone specifi c markers in the explanted con-
structs, were confi rmed by using X-ray diffraction and immunohistochemical analy-
sis, respectively [ 34 ]. Furthermore, in yet another study, rats with large cranial 
defects were cured by using DPDSCs implanted a collagen membrane [ 35 ]. 

 In one of the few attempted clinical trials, human DPDSCs isolated from third 
molars were seeded onto collagen scaffolds. After that, both mandibular third 
molars of the patients were extracted at the same time, and one of the two sockets 
was then fi lled with the collagen scaffold seeded with DPSCs, while the other one, 
fi lled with collagen scaffold alone, was used as negative control. After 3 months 
period, radiographic and histological analysis evidenced a higher amount of bone 
restoration in patients treated with DPSCs than in those treated with collagen 
scaffold alone [ 36 ]. In addition, after a 3 year follow-up, novel synchrotron 
radiation- based holo-tomographic (HT) imaging analysis  confi rmed   that regener-
ated bone was  homogeneously   vascularized and qualitatively compact. This clini-
cal trial shed light on the possibility of using DPSCs to restore bone defect in 
humans, indicating that DPSCs can have a future leading role at least in bone 
regenerative therapy [ 37 ] (Fig.  13.2 ). 

 Two other ongoing clinical trials are summarized in the U.S. National Institutes 
of Health ClinicalTrials.gov site. The fi rst one is conducted by Daniela Franco 
Bueno at the hospital sirio-libanes in Brazil, which aims to show positive effects of 
DPSCs seeded in a collagen and hydroxyapatite biomaterial system on patients with 
cleft lip and palate alveolar bone defects through prospective qualitative and quan-
titative investigation of bone de-novo formation (NIH [ 38 ] ClinicalTrials.gov). 

 The second trial is being directed by Jin Yan at the fourth military medical univer-
sity in China. The main goal of this clinical trial is both to clarify the effi ciency of 
autologous SHEDs to regenerate pulp and apical tissue in the patients with immature 
permanent  teeth   and pulp necrosis and to confi rm the safety of using autologous stem 
cells in clinical endodontic regenerative medicine (NIH [ 39 ] ClinicalTrials.gov).  

13.3.1.2     Non-osteo/Odontogenic Pre-clinical Trials 

 Besides being used in dentin, periodontal, and craniofacial tissue regeneration 
approaches, DPDSCs have also displayed pluripotent capabilities in pre- clinical   
treatment of myocardial infarction, muscular regeneration and corneal reconstruc-
tions along with vascular and neural restorations in various animal models. 

   Myocardial Infarction Therapy and Muscular Tissue Regeneration 

 It has been evidenced that after transplantation into the infarction zone of nude rats, 
DPDSCs favor cardiac repair. The restoration of cardiac functionality  was   con-
fi rmed by the change in  the   frontal wall thickening, change in left ventricular 
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fractional region, reduction in the infarct size, and increased angiogenesis. 
Researchers established that the cardiac restorative function was due to the DPDSCs’ 
proangiogenic and antiapoptotic activities rather than their direct differentiation 
into cardiac cells [ 40 ,  41 ] (Fig.  13.2 ). By contrast, Kerkis et al. [ 42 ] proven that 
transplanted DPDSCs can differentiate into dystrophin-producing multinucleated 
cells and engraft into dog muscles, thus confi rming the potential of DPDSCs for 
muscular dystrophy clinical therapy.  

   Corneal and Retinal Regeneration Potential of DPSCs 

 DSCs have also  been   used for corneal reconstruction, and for this purpose, a de- 
epithelialized human amniotic membrane uniformly covered with DPDSCs was 
transplanted onto corneal bed in in vivo conditions. Histological analysis after 3 
months confi rmed that those cells were able to regenerate a new tissue-engineered 
corneal epithelium [ 43 ]. Additionally, Mead and co-workers [ 44 ] transplanted DPSCs 
or bone marrow mesenchymal stem cells (BMMSCs) into the rat’s vitreous body of 
the eye in which optic nerve had previously been surgically damaged. Twenty one 
days after transplantation, a higher rate of retinal ganglion cells survival in DPSCs 
treated rats was noted compared to those treated with BMMSCs [ 44 ] (Fig.  13.2 ).  

   Vasculogenic Differentiation of DPDSCs (Treatment of Ischemia) 

 Vasculogenic DPDSCs were  isolated   and tested for their ability to engraft and 
improve the blood fl ow by secreting pro-angiogenic proteins such as vascular endo-
thelial growth factor-A (VEGF-A) as well as favoring the formation of capillary 
network in a rat model with hind limb ischemia [ 33 ].  

   Neural Differentiation of DPDSCs 

 Damaged spinal cords have  been   positively infl uenced by the DPDSCs transplanta-
tion. During this in vivo pre-clinical trial on rats, human DPDSCs were shown to 
induce regeneration of nerves. Results showed that human DPDSCs promoted the 
regeneration of transected axons by both  directly   inhibiting multiple axon growth 
inhibitors and preventing the apoptosis of neurons, astrocytes, and oligodendrocytes 
as well as differentiating and substituting oligodendrocytes that have been lost [ 45 ]. 

 Another in vivo pre-clinical trial on mice with induced compressive spinal cord 
injury confi rmed that human DPDSCs were able to recover damaged neural tissues 
by integration with axonal myelination and a high degree of trophic factor expres-
sion [ 46 ]. DPDSC neural integration was also confi rmed by Király et al. [ 47 ] who 
injected labeled human DPDSCs into the cerebrospinal fl uid of rats. They proved 
that DPDSCs differentiated towards neuronal-like cells expressing neuron-specifi c 
proteins and voltage-dependent sodium and  potassium   channels.    
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13.3.2     Clinical and Pre-clinical Trials of  DSCPD   

 Comparison of osteogenic potentials of human DSCPDs and human DPDSCs 
suggested that DSCPD is a better osteogenic/odontogenic stem cell source than 
DPDSC. In fact, DSCPDs have been proven more likely to be multipotent rather 
than pluripotent, and thus specifi cally useful for dental (odontoblastic, cemento-
blastic and periodontal tissues) and bone tissues regeneration [ 48 ]. The fi ndings 
were confi rmed by labeling DSCPDs derived from ovine periodontal ligament 
tissue, and implanting them into immunodefi cient mice. Results revealed that 
transplanted cells exhibiting an osteoblastic/cementoblastic phenotype were able 
to survive and also produce mineralized tissue as well as a ligament structure 
similar to Sharpey's fi bers with concomitant vasculature. Furthermore, DSCPDs’ 
potential role in dental tissue regeneration was tested on an ovine animal model 
with a periodontal defect. Histological examinations at 8 weeks post-implantation 
evidenced surviving labeled DSCPDs, regenerated periodontal tissues, cementum 
and bony structures [ 49 ]. 

 Jin Yan and co-workers at the  fourth   military medical university in China are also 
conducting a clinical trial aiming to clarify the effectiveness of autologous PDLSCs 
to regenerate periodontal tissue in periodontitis affected patients with deep intra- 
osseous defects (>5 mm), and to confi rm the safety of using autologous DSCPDs in 
clinical periodontal regenerative medicine (NIH [ 50 ]) ClinicalTrials.gov).   

13.4     Why to Choose DSCs for Clinical Trials? 

 As already suggested, DPDSCs have displayed pluripotent capabilities in the pre- 
clinical treatment of myocardial infarction, muscular regeneration, corneal and ret-
ina reconstructions as well as in vascular and neural restorations in various animal 
models. Thus, DPDSCs have literally the capability to be used in clinical trials 
involving tissues phenotypically very different from their dental origin. However, at 
present DSCs have been tested preferentially in clinical trials which involved hard 
tissues (dental or bone related tissues) because of their origin. It seems that the 
research community is following  an   unwritten rule or more likely a precaution, 
which tries to avoid possible complications, that adult tissue-derived stem cells 
should be clinically tested, in the fi rst instance, to regenerate damaged tissues phe-
notypically closer to their tissue origin (“fi rst choice” stem cell source). This way of 
thinking, without doubt, refl ects the willingness of the research community to pro-
ceed correctly and with caution. However, this will not reveal all the DSC potential 
and will not advance tissue engineering. Thus, the question, which could also be 
applied to other adult stem cell sources, is: “ Why DSCs should be chosen to be 
tested in clinical trials ”. 

 There are direct motivations, or cell specifi c properties, which will prompt us to 
choose DSCs as a stem cell source suitable for clinical trials different than those 
already attempted. DPDSCs (DPSCs and SHEDs) and DSCPDs (PDLSCs, SCAPs 
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and DFSCs) are great  autologous stem cell sources   being also useful for relatives 
closer to the donor because they can be easily collected starting at childhood. In 
addition, they are not subjected to the same ethical concerns associated with embry-
onic derived cells. Within DSCs, SHEDs have more advantages with respect to 
DPSCs, PDLSCs, SCAPs, DFPCs because they are simpler to isolate, do not cause 
pain, are rapidly proliferating cells, and are also complementary to stem cells 
derived from the umbilical cord blood [ 51 ]. 

 The comparison between DSCs and stem cells of “fi rst choice”, phenotypically 
most similar or related to the damaged or non-functional tissue to be treated,    is and 
will be extremely helpful to understand if DSCs are suitable for testing in clinical 
trials involving tissues different from either dental or bone related ones. 

 Recent papers have discussed how DPSCs’ neural and epithelial differentiation 
capabilities are better than those of the BMMSCs [ 44 ,  52 ], and adipose tissue 
derived stem cells (ADSCs) [ 53 ], most probably because of their neuro-ectoder-
mal derivation. In addition, it has also been demonstrated that expression profi le 
for 15 of the most important pluripotent stem cell proteins between BMMSCs, 
ADSCs DPSCs and  umbilical   cord blood  derived   stem cells (UCBSCs) are almost 
identical [ 51 ]. 

 On the vasculogenic side, DPSCs are able to secrete pro-angiogenic factors, 
improving the blood fl ow in rat models with hind limb ischemia [ 33 ], as  well   as to 
regenerate a well vascularized dental pulp after their transplantation [ 54 ,  55 ], sug-
gesting that the vascular regenerative fi eld can also signifi cantly benefi t from the 
pro-angiogenic properties of DPSCs. Those data strongly support the fact that adult 
stem cells are almost “interchangeable”, indicating that DPDSCs can be a suitable 
stem cells source at least in clinical trials involving neural, epithelial and vascular 
damaged tissues and organs. 

 A wider use of DSCs is also supported by the fact that DPDSCs, in addition to 
their direct therapeutic action by differentiating and replacing  damaged   host’s cells 
function, secrete many different molecules which indirectly provide the desired 
therapeutic action [ 27 – 29 ,  33 ,  40 ,  41 ,  44 ,  46 ]. In fact, the secretome of DPDSCs 
includes molecules and extracellular vesicles which could have paracrine as well as 
systemic effects. Summarizing those indirect therapeutic effects, which are regen-
erative, immune modulatory, anti-infl ammatory, anti-tumoral, suggest the use 
DPDSCs’ secretome in clinical trials including tissue regeneration, autoimmune, 
infl ammatory, and malignant diseases. 

 A recent review on stem cells clinical  trials   proposed that there are many novel 
clinical trials conducted to cure cardiovascular diseases or attempt to regenerate 
vascular or cardiac tissues by using different types of stem cells (skeletal myoblasts, 
bone marrow cells, peripheral blood cells or autologous cardiac stem cells derived 
from heart biopsies) [ 56 ]. However, those clinical outcomes are often not convinc-
ing because results displayed only limited cardiac tissue regeneration and re- 
functionalization effects. Thus, “fi rst choice” stem cells failure is a typical indirect 
motivation that invites the assessment of other stem cell sources in clinical trials. 
However, this must be carried out alongside valuable pre-clinical tests aimed to 
evaluate their suitability. DPDSCs have already been demonstrated to have cardiac 
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restorative function because of their pro-angiogenic activity rather than having 
direct differentiation capacity [ 40 ,  41 ], as well as displaying myogenic differentia-
tion capability [ 42 ], and thus represent a valid alternative source. In addition, ethical 
concerns related to the stem cell sources ( i.e.  cells from fetal or cadaveric tissues), 
and the diffi culty in isolating  the   more specifi c or already tested source, could rea-
sonably lead us to  search   for alternatives. Thus, because of the relatively simple and 
painless harvest process and their high proliferation rate, DSCs can represent a valid 
and alternative stem cell source to be tested in clinical trials requiring cardiovascu-
lar diseases/regeneration or vascular tissue regeneration. 

 The fact is that DPSCs are an extremely valuable source which has similar or 
higher potential than other well-known stem cell sources ( i.e.  BMMSCs, ADSCs 
and UCBSCs), and  many   researchers are considering the use of these stem cell 
sources in clinical trials which do not involve the regeneration of bone or tooth 
related tissues. However, it is good to keep in mind that we need to fi nd a clearer 
understanding of the healing/regenerative processes triggered by DPSCs and today, 
more than ever, focused pre-clinical studies will help us to achieve this.  

13.5     Stem Cells and “Good Practice” 

 In the last 22 years since the term “ tissue engineering”   was coined by Langer and 
Vacanti [ 57 ], tissue engineering has not advanced as expected even though impor-
tant achievements have been made. 

 Adult or ESC therapy and tissue engineered products have been classifi ed as 
 advanced therapy medicinal products (ATMPs)   [ 58 ] and  justifi ably   have to satisfy 
stringent requirements for use in human beings. It has been established that clinical 
trials must be conducted in compliance with the ethical principles originating from 
the declaration of Helsinki, as well as consistently following good clinical practices 
(GCP), and the applicable regulatory requirements  ( Offi cial Journal of the European 
Union 2010/C 82/01 [ 59 ]). 

 Ethical and scientifi c quality  standard   for the design, conduct and recording of 
research involving humans is regulated by international GCP. GCP comprise 13 
core principles, which are applied to all clinical investigations that could affect the 
safety and well-being of human participants. GCP principles were developed by the 
regulatory authorities of the EU, Japan and US in 1996, becoming effective in 1997. 
These rules provide an international guarantee that data and reported results of clini-
cal trials are reliable and accurate, and rights, safety and confi dentiality of partici-
pants in clinical research are respected and protected. 

 Initially, the GCP was not enforced by law, however, it was internationally 
recognized as best practice, and thus, with the advent of the Medicines for 
Human Use (Clinical Trials) Regulations and the EU Directive on Good Clinical 
Practice, GCP compliance became a legal obligation for all trials of investiga-
tional medicinal products [ 60 ]. In addition, to be in compliance with GCP, the 
stem cell clinical manufacturing process should follow the principles of  good 

F. Federico and R. Spelat



279

manufacturing practice (GMP)   [ 61 ], and clinical testing requires strict  observance 
of  good clinical laboratory practice (GCLP)   [ 62 ]. In summary, to satisfy GMP 
protocols, cells must be strictly controlled starting from the collection and 
manipulation of raw materials (isolation), through the intermediate product pro-
cessing (expansion process), to the quality controls (characterization, functional-
ity, multipotency, and safety), storage (storage, labeling, packaging) and 
therapeutic use (transplantation, infusion into the patient) [ 63 ] (Fig.  13.3 ).

   Researchers and clinicians are gaining awareness of the need to share, standardize 
and recognize GMPs for the possible use of stem cells for  clinical   applications. 
Nevertheless, animal derivatives ( e.g.  serum) are widely used in basic and pre- clinical 
experimentation, and use of serum represents a major obstacle to stem cells clinical 
application [ 64 ] since they are associated with many problems related to the presence 
of viruses, mycoplasmas, prions or other pathogenic, toxic or immunogenic agents 
[ 65 – 68 ]. Because of such safety risks, regulatory authorities discourage or prohibit 
the use of animal derivatives for the manufacture of biological products intended for 
clinical trials [ 69 ]. Therefore, it will be important to determine if DSCs, or stem cells 
in general, can be harvested, isolated, characterized, stored and transplanted without 
ever being directly exposed to animal sera or animal derivatives. Many studies are 
currently being planned and performed with the aim of addressing this question and 
developing an animal serum-free media capable of supporting the  expansion   and 
maintaining the stemness of DSCs [ 70 ]. Platelet-rich plasma (PRP), which contains 
various growth factors, has been positively tested as a natural substitute of animal 
serum to support the expansion and multipotency of DSCs [ 71 ]. Recently,    it was 
demonstrated that a chemically defi ned culture medium to which a small amount of 
human sera had been added, was able to select a fast proliferating population of 
DPSCs, which expressed ESC and MSC markers as good as in a medium containing 
higher volume of animal serum [ 9 ,  18 ]. For the same reason, other authors prefer to 
use autologous serum when they are conducting pre-clinical studies and planning to 
perform clinical trials by using stem cells [ 54 ]. 

 DPDSCs (DPSCs and SHEDs) and DSCPD (PDLSCs and SCAPs) can be col-
lected almost without any trauma starting from childhood, and thus they  could   be 
stored and conserved for a considerable length of time, before being used. Therefore, 
it is extremely important and necessary to improve long-term storage and cryopreser-
vation protocols to safely and reliably store those DSCs. In general, a variable per-
centage of dimethylsulfoxide (DMSO) and animal serum is employed as 
cryoprotectant for the cryopreservation and storage of hematopoietic, MSCs, ESCs 
and iPCSs. DMSO is used as standard following a 1 to 2 °C/min controlled rate 
freezing and a rapid thawing protocol [ 72 ]; however, it has been demonstrated to be 
toxic to tissues and cells. Toxicity is time-, temperature- and concentration-depen-
dent, and DMSO affects the epigenetic profi le of the stem cell by inducing differen-
tiation and thus loss of stemness [ 73 ,  74 ]. Therefore, the use of DMSO, as well as 
animal serums (mostly fetal bovine serum-FBS), as components of the cryopreserv-
ing solution for cells to be used in  clinical   trials is not advisable. Many researchers 
investigated the possibility of developing or improving the cryopreserving solutions. 
Attempting to reduce and relieve adverse effects of DMSO on cell recovery and 
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  Fig. 13.3    The road  to   clinical trials. Adult or embryonic stem cell therapy and tissue engineered 
products have been classifi ed as advanced therapy medicinal products (ATMPs) and their clinical 
trials should be conducted in accordance with good clinical practice (GCP). To be in compliance 
with GCP, stem cells clinical manufacturing process should follow the principles of good manufac-
turing practice (GMP), and clinical testing requires strict observance of good clinical laboratory 
practice (GCLP). Thus, stem cell must be strictly controlled starting from the collection and 
manipulation of the raw materials (isolation), through the intermediate products processing 
(expansion process), to the quality controls (characterization, functionality, multipotency, and 
safety), storage (storage, labeling, and packaging) and therapeutic use (transplantation, infusion) 
into the patients       
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engraftment, many researchers successfully lowered its concentration to as low as 
5 % [ 75 ,  76 ], and even to 2 %, leading to optimized the cooling rates [ 72 ]. Alternatives 
to DMSO containing cryogenic solutions ( i.e.  polyvinylpyrrolidone, methylcellu-
lose), as well as animal serum ( i.e.  human serum or human serum albumin) have also 
been developed and positively tested over recent years to increase stem cells’ cryo-
preservation safety and their clinical utility [ 77 ,  78 ]. Along with those attempts to 
reduce or substitute DMSO in storage protocols, Gioventù et al. [ 79 ] tested the  pos-
sibility   of cryoconserving DPSCs inside the whole tooth. In their opinion, avoiding 
the purifi cation step will reduce the possibility of stemness loss due to the cryo-
preservation period; moreover, it will reduce the initial cost and assist the efforts 
required to set up a DSC bank [ 79 ]. 

 Stem cell expansion and banking need to be as safe as possible, reliable and 
effective if intended for clinical trial purposes. For this reason, it is  also   a good 
practice to avoid, as much as possible, direct human interaction with stem cells 
since handling could lead to contamination. However, even if GCPs applied to vali-
date the advanced medicinal products used today in clinical trials have been estab-
lished, most cells are still obtained and cultured by using typical handling methods, 
which are subjected to the personnel’s technical ability [ 80 ]. 

 A highly reproducible and reliable handling of stem cells can be achieved by auto-
mating those processes. Fortunately, many effective automatic cell  culture   systems have 
been developed in today’s technology [ 81 – 87 ]. In summary, those automated “GCPs-
following” devices will improve large-scale culture and expansion of the stem cells by 
automating most of the manual cell culture steps ( e.g.  media exchange, cells centrifuga-
tion and pelleting, cells splitting and passaging), thus, allowing safe handling of stem 
cells to be used for clinical purposes. In addition, automation in stem cells culture or 
generally stem cells handling will allow tight control over multiple growth parameters 
and sterility, ensuring a higher rate of uniformity to classic culture methods.  

13.6     Stem Cells Clinical Trials: Suggestions and Concerns 

 DSCs are relatively easy to obtain ecto-mesenchymal stem cells with already tested 
for their stemness and differentiation capabilities in vitro and  in   vivo. Our scientifi c 
literature search revealed that to date the vast majority of in vivo applications have 
been performed on animal models and very few clinical trials have been attempted. A 
recent review reasonably stated that a cause of this delayed clinical translation is pri-
marily the lack of clear good manufacturing practices (GMP) or common methods to 
isolate and characterize DSCs [ 88 ]. In a different point of view, La Noce and co-
workers proposed that because clinical trials are long, diffi cult and expensive, even the 
most dedicated researcher could be discouraged from pursuing stem cell clinical tran-
sition. They, therefore,    suggested that whenever possible, and without compromising 
patient safety, bureaucratic procedures should be simplifi ed. Nevertheless, even if the 
use of DSCs in basic research and medical therapy does not bring up any ethical and 
legal issues with respect to ESCs, those cells will not be free of any risk [ 89 ]. 
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 The reality is that any cell has a latent risk of becoming a cancer cell and cancer is 
not the only risk derived from transplants, even from autologous adult stem cell trans-
plants [ 90 ]. Some of other risks are heart attack, thrombosis (blood clotting) [ 91 ], 
 infection   or autoimmune response [ 92 ], which can be fatal to patients. Those adverse 
effects during clinical trials represent just a small number of reports. Thus, alongside 
our efforts to translate stem cell therapy from the bench to the bed-side, we must also 
ensure that these therapies are safe and in this area a lot of work remains to be done. 

 To comprehend and decrease any potential danger associated with stem cells 
therapies, improved in vitro and in vivo techniques are required to guarantee gene 
aberration-free expansion of cells, tumorigenic-free potential, increased population 
and differentiation purity,    and identify those risk factors that can be routinely 
screened before transplantation ( i.e.  infections). Furthermore, we need to more reli-
ably predict those adverse immunological responses, and better track transplanted 
cells by developing improved immunological models and tracking techniques, and 
thus expand our knowledge and reduce those risks [ 89 ] (Fig.  13.4 ).

   It is good to keep in mind that we also need to fi nd a way to provide a better 
understanding of the healing/regenerative process elicited by  stem cells; today  , 
more than ever, focused pre-clinical studies will help us to answer to those questions 
prior to their clinical testing. Indeed, pre-clinical studies should help to understand 

  Fig. 13.4    Potential  risks   and solutions. Any transplanted cell has a potential risk to form a tumor, 
as well as they might cause infections or catastrophic autoimmune reactions. Thus, risks associated 
with stem cells therapies would be reduced by ensuring gene aberration-free expansion, testing 
cells’ tumorigenic-free potential, increasing population and differentiation purity, and identifying 
those risk factors that can be routinely screened before transplantation. In addition, it may be help-
ful to develop a more effective predictive immunological response model and cell tracking tech-
niques. Acronyms: ATMPs, advanced therapy medicinal products       
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the “possible” direct negative specifi c effects of the adult stem cells directly related 
to their stemness/differentiation capacity. This also relates to the indirect negative 
therapeutic action resulting from their paracrine and systemic action and thus related 
to their secretome [ 27 – 29 ,  33 ,  40 ,  41 ,  44 ,  46 ]. To conclude, we are fully aware that 
stem cells therapy, as with many drug treatments, may not be perfectly safe. This 
knowledge should make one  main   clinical priority that the benefi t to the patient will 
outweigh the risk.     
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14.1           Introduction 

 In early periods of dentistry,    patients fi rst expected pain relief from their dentists, 
which led to dentists identifying the cause of the problem and eliminating it by tooth 
extraction, pulpectomy, and dental scaling. As the fi eld of dentistry advanced, the 
trends of dental treatment shifted to the functional restoration of the oral cavity by 
artifi cial materials such as composite resin fi llings, metal and ceramic restorations, 
dentures and dental implants. More recently, the restoration of the original shape 
and function of the oral cavity using regenerative medicine and biomaterials has 
become a major focus of study. Especially, regenerative treatments in dental implan-
tology and  periodontology   have achieved great progress. For example, platelet-rich 
plasma (PRP) has been applied with dental implants to promote osseointegration, 
though the effects are still controversial [ 1 ], while enamel matrix derivative (EMD) 
has also been used as a major growth factor to  regenerate periodontal tissue   [ 2 ]. 
However, in both of these approaches, as the treatment effects depend on host cells 
near the damaged site, there is insuffi cient tissue regeneration when the extent of 
damage to the periodontal and bone tissues is relatively large. As current therapies 
for dental tissue regeneration have shown limited potential, the development of 
alternative strategies to reconstruct damaged or destroyed dental tissue is greatly 
needed. In recent years, tissue engineering strategies incorporating stem cells has 
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been proposed for the development of new dental tissue therapies, such as tissue 
engineering of alveolar bone, periodontal tissue, dentin/pulp complex and ulti-
mately whole tooth. In this chapter, the future perspectives of dental stem cell ( DSC)   
engineering and ethical considerations are described.  

14.2     Future Dental Tissue Engineering 

14.2.1     Dental stem cells (DSCs) 

14.2.1.1     Cell Source 

 Stem cells, including somatic stem cells, embryonic stem (ES) cells and induced 
pluripotent stem (iPS) cells, commonly possess a self-renewal capacity that allows 
them to actively undergo cell division, and multipotency that allows them to differ-
entiate into various types of cells. Thus, the use of stem cell populations in tissue 
engineering has become a major focus in recent years. However, each stem cell type 
has different properties with respect to the tissue that they are derived from. The 
stage of maturity of certain stem cells can affect their capacity for differentiation 
into multiple lineages. Thus, each stem cell population has different advantages and 
disadvantages for various tissue engineering applications. Furthermore, there 
remains much to be learned about the suitability of different stem cell types for their 
particular applications. 

 Human  ES cells  , derived from  blastocysts   produced by in vitro fertilization, were 
fi rst established by Thomson et al. in 1998 [ 3 ]. As ES cells possess the potential to 
differentiate into derivatives of the three embryonic germ layers (endoderm, meso-
derm and ectoderm), these cells were initially anticipated as playing a leading role 
in regenerative medicine. However, because of ethical issues associated with their 
derivation, the use of ES cells for tissue engineering was very restricted. ES cells 
have been used as a tool for examining the mechanisms of tissue and organ develop-
ment and regeneration. 

  Somatic stem cells      such as hematopoietic stem cells and mesenchymal stem 
cells (MSCs) are found in different organs or tissues. These stem cells exhibit lim-
ited differentiation potential in comparison with ES cells. The advantages of 
somatic stem cells compared with ES cells for tissue engineering are the availabil-
ity of autologous transplantation, low risk of cancer formation and ease of 
 controlling their differentiation into target cells. Among somatic stem cells, MSCs 
have been identifi ed in  various tissues throughout the human adult body, including 
bone marrow, adipose tissue, placenta and muscle [ 4 – 7 ]. Human MSCs were origi-
nally isolated from aspirates of adult bone marrow [ 8 ], and they displayed the 
potential to differentiate into mesodermal lineage cells, such as adipocytes, 
 chondrocytes and osteoblasts [ 6 ], endodermal lineage cells [ 9 ], and even neuroec-
todermal lineage cells [ 10 ]. Regarding dental tissue, MSCs were fi rst isolated from 
dental pulp tissue in 2000 [ 11 ], and since then other dental tissue-derived MSCs 
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have been reported [ 12 – 17 ] (Table  14.1 ). Given that most dental and oral tissues, 
except for enamel, are mesenchymal tissues, MSCs could be a promising cell 
source for dental and oral tissue engineering. In particular, MSCs originating from 
gingival and dental pulp tissue are believed to be strong candidate cell sources for 
tissue engineering, as gingival tissue is rich and easily obtainable, and dental pulp 
tissue can be retrieved from extracted teeth, which are usually discarded. It is also 
believed that MSCs derived from original tissue possess the potential to regenerate 
damaged tissue more effectively than other sources. Thus, future studies should 
aim to identify the factors controlling the differentiation of MSCs derived from 
other tissues into the cells of damaged tissues.

   One limitation, however, is that MSCs obtained from the patients vary in num-
ber and quality depending on the patient’s health. In 2007 and 2008, pluripotent 
stem cell populations, termed iPS cells, were generated from neonatal and adult 
human dermal fi broblasts by the overexpression of four transcription factors [ 18 –
 20 ].  iPS    cells   display comparable properties to  ES cells   in terms of their potential 
to generate cells from the three embryonic germ layers. Therefore, iPS cells are 
expected to be an alternative source of large quantities of pluripotent cells for 
regenerative research, because of not only their differentiation potential but also 
the use of patient-derived autologous cells. iPS cells derived from dental tissues, 
such as dental pulp, periodontal ligament and gingival tissue, have been already 
established, and are believed to be a good source of seed cells for dental tissue 
engineering [ 21 – 24 ] (Table  14.2 ). In addition, recent studies have reported factors 
that can induce cell dedifferentiation from various tissue-derived cells into undif-
ferentiated mesenchymal cell types.  Activin receptor-like kinase-2 (ALK2)      in 
endothelial cells and octamer-binding transcription factor 4 (OCT4) in cord or 
peripheral blood CD34-positive cells cause  induced   conversion into MSC-like 
cells [ 25 ,  26 ], while Notch reprograms epidermal- derived melanocytes into neural 
crest stem-like cells [ 27 ]. Such factors may become available to induce the forma-
tion of MSCs from differentiated cells.

   Table 14.1    Human dental stem cells (DSCs)   

 Human dental mesenchymal stem cells 
(MSCs)  Origin  Reference 

 Dental pulp stem cells (DPSCs)  Pulp tissue from permanent teeth  [ 11 ] 
 Stem cells from human exfoliated 
deciduous teeth (SHEDs) 

 Pulp tissue from exfoliated 
deciduous teeth 

 [ 12 ] 

 Periodontal ligament stem cells (PDLSCs)  Periodontal ligament tissue from 
permanent teeth 

 [ 13 ] 

 Precusor cells from dental follicle 
(DFPCs) 

 Dental follicle tissue from immature 
wisdom teeth 

 [ 14 ] 

 Stem cells from appical papilla (SCAPs)  Appical papilla tissue from 
immature wisdom teeth 

 [ 15 ] 

 Gingiva-derived mesenchymal stem cells 
(GMSCs) 

 Gingival tissue  [ 16 ,  17 ] 
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14.2.1.2        Autologous  vs.  Allogeneic Cell  Transplantation         

 Autologous stem cell transplantations display good promise for future tissue engi-
neering applications. However, it is often diffi cult to generate suffi cient, healthy and 
high quality cells from a single donor. To circumvent these problems, it is hoped that 
a cell transplantation method using allogeneic stem cells will be established, as an 
alternative cell source to autologous stem cells. Allogeneic sources could generate 
suffi cient numbers of healthy stem cells with defi ned regenerative capacity for trans-
plantation. One of the most important issues is that the use of allogeneic cells may 
lead to their rejection by the host immune system because of major histocompatibility 
complex (MHC)-mismatching. 

 MSCs derived from dental tissue have been reported to possess immunosuppressive 
properties similar to bone marrow stem cells [ 17 ,  28 ]. Wada et al. demonstrated that 
periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs) and gingival 
fi broblasts lack the expression of  immune costimulatory factors  , such as MHC class II, 
CD40, CD80 and CD86 antigens, and suppress peripheral blood mononuclear cell pro-
liferation following stimulation [ 28 ]. Gingiva-derived mesenchymal stem cells (GMSCs) 
have also been shown to be capable of  immunomodulatory functions   through the expres-
sion of immunosuppressive factors, including interleukin (IL)-10, IDO, inducible nitric 
oxide synthase and cyclooxygenase-2 [ 17 ]. In addition, another potential mechanism of 
 immunomodulation   by DPSCs and stem cells derived from exfoliated deciduous teeth 
( SHED  ) has been reported to occur via the induction of apoptosis in activated T-cells 
[ 29 ,  30 ]. Furthermore, several studies have reported that intravenous administration of 
allogeneic dental MSCs results in marked suppression of host immune reactions in pre-
clinical animal models of transplant rejection and immune-mediated diseases,       such as 
murine colitis, systemic lupus erythematosus and allergic contact dermatitis models [ 17 , 
 29 – 31 ]. In a lacZ transgenic mouse model, periodontal tissue  was   regenerated after 
allogeneic tooth transplantation by replacement with host cells, without any host 
immune responses [ 32 ]. In an ovine periodontal defect model, allogeneic PDLSC 
implantation into periodontal defects induced regeneration of alveolar bone, cementum 
and periodontal ligament with Sharpey’s fi bers, without infl ammation and infection 
[ 33 ]. These fi ndings have elicited further interest in allogeneic dental MSCs as alterna-
tive cell sources that have the potential to modulate alloreactivity and tissue regeneration 
following transplantation into human leukocyte antigen-mismatched donors.   

  Table 14.2    iPS cells derived 
from dental tissues  

 Origin  Author  Reference 

 DPSCs  Yan et al.  [ 21 ] 
 SHEDs  Yan et al.  [ 21 ] 
 SCAPs  Yan et al.  [ 21 ] 
 Dental pulp cells  Tamaoki 

et al. 
 [ 22 ] 

 Gingival fi broblasts  Egusa et al.  [ 23 ] 
 Periodontal ligament 
cells 

 Wada et al.  [ 24 ] 
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14.2.2     Growth Factors 

 Although tissue engineering using cell transplantation is considered to be an 
 attractive method to regenerate damaged tissue, there are still some aspects, such 
as technical and ethical issues, that have not been resolved in preparation for clini-
cal application. In addition, we have to consider the cost of treatment for clinical 
application of dental tissue engineering. Hence, tissue engineering using growth 
factors may be a more realistic, feasible and economical method with respect to 
cell transplantation for clinical application at present. Thus, the combination of 
DSCs and growth factors which can accelerate DSC functions such as prolifera-
tion, migration, adhesion and differentiation potential are critical to realize dental 
stem cell engineering in clinics. 

 In 1997,  porcine    EMD   was reported to induce new bone and cementum forma-
tion in periodontal defects by mimicking the biological processes in periodontium 
development [ 34 ]. EMD, which contains a mixture of a variety of growth factors, 
has so far been the most powerful material for promoting regeneration of periodon-
tal tissues clinically. EMD has been shown to regulate the growth, proliferation, 
migration, adhesion, bone-related gene expression, and protein synthesis of PDL 
fi broblasts, osteoblasts and cementoblasts [ 35 ]. Suzuki et al. demonstrate that an 
 EMD gel   containing transforming growth factor beta 1 (TGF-β1) and bone morpho-
genetic protein 2 (BMP2) could regulate cell behavior in periodontium [ 36 ]. 
Treatment of PDL cells with TGF-β1 increased gene expression and protein synthe-
sis of collagen [ 37 ,  38 ]. Interestingly, our current study revealed that  exogenous 
application   of TGF-β1 induced collagen type I alpha 1 ( COLIA1        ) and alpha smooth 
muscle actin (α-SMA) gene transcriptions, and α-SMA protein expression in a PDL 
stem/progenitor cell line; however, two different human PDL cells showed no sig-
nifi cant change in gene and protein expression of COLIA1 and α-SMA [ 39 ]. These 
results suggested crucial roles of TGF-β1 in collagen and α-SMA production in 
predominantly immature PDL cells. BMP2 has been reported to stimulate alveolar 
bone regeneration of experimental periodontal defect models in animal experiments 
[ 40 ,  41 ]. Chen et al. generated BMP2-overexpressing bone marrow-derived MSCs 
using an adenovirus, and implanted them into the periodontal defect models [ 42 ]. 
Intriguingly, they showed enhanced regeneration of the periodontium, including the 
cementum and Sharpey’s fi bers, compared with the untreated bone marrow-derived 
MSCs. In addition, an in vitro study has reported that amelogenin included in EMD 
enhanced proliferation and migration, but BMP included in EMD induced osteo-
blastic differentiation of PDL progenitor cells, suggesting the combination of DSCs 
and EMD may be effective for dental tissue engineering [ 43 ]. 

 Recent reports showed the effect of the combination of basic fi broblast growth 
factor ( bFGF  ) and TGF- β1   on DSCs; whereby bFGF and TGF-β1 synergistically 
promoted alkaline phosphatase (ALP) activity, the formation of mineralized nod-
ules and odontoblast-related gene expression in DPSCs [ 44 ]. Our current study 
using two different PDL stem/progenitor stem cell lines also revealed that bFGF and 
TGF-β1 signifi cantly down-regulated ESC-related marker genes, while simultane-
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ously upregulating PDL-related genes [ 45 ]. These results indicated that bFGF  and   
TGF-β1  treatment   could promote pulp and PDL regeneration through the induction 
of stem cell differentiation. 

 PRP is generated from  autologous blood   and includes various growth factors 
such as platelet-derived growth factor (PDGF), vascular endothelial growth factor 
(VEGF), and epidermal growth factor (EGF). PRP upregulated colony formation, 
proliferation, mineralization, and odontoblast-related gene expression of DPSCs 
[ 46 ]. PRP also enhanced extracellular matrix protein production and bone-related 
gene expression in PDLSCs [ 47 ]. Moreover, concentrated growth factors from a 
platelet-type concentrate dose-dependently increased the  proliferation and osteo-
blastic   differentiation of PDLSCs [ 48 ]. 

 Connective tissue growth factor ( CTGF     ), a cysteine-rich secretory protein 
belonging  to   the CCN family, enhanced the synthesis of collagen type I and III, 
biglycan, and periostin and the formation of mineral deposits in PDLSCs and 
dental follicle stem/progenitor cells (DFSCs) [ 49 ]. Our recent study demonstrated 
that CTGF up-regulated proliferation, migration, bone/cementum-related gene 
expression and mineralization in a  PDLSCs   [ 50 ]. Interestingly, the combination 
of CTGF and  bFGF      or TGF-β1 down-regulated mineralization of the PDLSCs, 
while signifi cantly upregulating the expression of connective tissue-related genes. 
Wnt5a may also be a promising growth factor for controlling periodontal tissue 
regeneration, as we have recently reported that Wnt5a induced collagen produc-
tion by PDLSCs through TGFβ1 mediated upregulation of periostin expression, 
while it also suppressed the osteoblastic differentiation. These results suggest that 
Wnt5a expression in PDL tissue plays important roles in collagen fi brillogenesis 
and the suppression of ankyloses [ 51 ]. Therefore, the effects of certain growth 
factor application on periodontal tissue or dental pulp regeneration are based on 
the induction of DSC proliferation, differentiation, migration and tissue  formation. 
Another approach using growth factors is to induce stemness of cells effectively 
because the recruitment of MSCs from their niche to the damaged area is an 
important step in the regeneration of tissue. We have recently reported that sema-
phorin 3A (Sema3A)-treated PDL cells upregulated the expression of stem cell 
markers such as NANOG, OCT4, E-cadherin, CD73, CD90, CD105, CD146 and 
CD166, and promoted cell division and enhanced multipotency [ 52 ]. These results 
suggest that Sema3A may be capable of inducing the dedifferentiation of PDL 
cells into mesenchymal-stem- like cells, and could be promising for periodontal 
tissue regeneration; however, further studies are required to clarify the in vivo 
effects using animal models. 

 To date, the application of  exogenous   individual or combinations of growth 
factors to damaged tissues have provided good results in promoting periodontal 
regeneration, and the cell transplantation combined with growth factors may be a 
more effective method for tissue regeneration than cell transplantation alone. 
Further studies are needed to determine the optimal concentrations and combina-
tions of growth factors and to confi rm their safety, especially regarding immune 
rejection and tumorigenesis.  
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14.2.3     Scaffolds 

14.2.3.1      Bioactive Scaffolds      

 Scaffolds are important components for tissue engineering because they provide 
structural support for cell attachment, and have the capability of acting as delivery 
vehicles for growth factors, while subsequently integrating into the tissue. A huge 
variety of scaffolds, ranging from natural polymers and ceramics to synthetic poly-
mers, have been reported to induce stem cell proliferation and differentiation, and 
consequently promote dental tissue regeneration. Natural polymers, such as c olla-
gen and chitosan  , were the fi rst to be used as scaffolds for dental tissue regeneration. 
A collagen  scaffold   seeded with DPSCs, and dentin matrix protein 1 (DMP1) 
induced the formation of a matrix similar to dentin and pulp [ 53 ]. A collagen 
 scaffold stimulated PDLSCs to attach, proliferate, exhibit a PDL spindle-like 
 morphology and subsequently generate PDL-like tissue [ 54 ].  DPSCs   seeded on a 
chitosan scaffold survived and differentiated into neural cells [ 55 ]. In addition, a 
scaffold derived from a combination of collagen and chitosan promoted the migra-
tion, proliferation, and differentiation of DPSCs  and HAT-7 cells   [ 56 ]. Hydroxyapatite 
( HA)   and  tricalcium phosphate (TCP)      are two of the most biocompatible ceramics 
because of their properties of resorption, biocompatibility, low immunogenicity, 
osteoconductivity, bone bonding capacity and similarity to bone and tooth. 
Sonoyama et al. transplanted an artifi cial tooth root fabricated from HA/TCP with 
root apical papilla stem cells (SCAPs) and PDLSCs into the tooth socket [ 15 ]. Three 
months after transplantation, new dentin and PDL tissues were formed, and the 
treatment consequently resulted in normal tooth function.  Synthetic   polymers, such 
as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly-
ethylene glycol (PEG) and poly(lactic-co-glycolic) acid (PLGA), have also been 
used as scaffold materials for various tissue regeneration studies [ 57 ,  58 ]. 

 Although both bioactive  ceramic   s   and  polymers   have been claimed to be the 
most optimal scaffolds for tissue engineering, they both have advantages and disad-
vantages for regenerating dental tissues ( e.g. , periodontal tissue) as dental tissues 
include both soft tissue ( e.g.  periodontal ligament and gingival), and hard tissues 
( e.g.  alveolar bone and cementum).        Bioactive ceramics   such as HA and β-TCP are 
well known to show high biocompatibility and osteoconductivity [ 59 – 62 ], while 
they are not substantially degraded and remain in living organisms under physiolog-
ical conditions [ 63 ,  64 ]. DPSCs and PDLSCs transplanted with  β-TCP scaffolds      
subcutaneously into the dorsal surfaces of mice have been reported to form dentin/
pulp complex-like tissue and periodontal-like tissue [ 11 ,  13 ]. Meanwhile, polymers, 
including natural and synthetic polymers that form porous structures, are ideal for 
the engraftment and survival of cells; however, they do not have enough strength to 
create spaces for regenerating tissue, especially hard tissues that are found in the 
periodontium. Thus, composites of bioactive ceramics and polymers, which are bio-
mimetic scaffolds, are currently being developed in hope of taking advantage of 
each component’s characteristics to increase the mechanical stability of the scaffold 
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and improve tissue interaction and their degradation [ 65 ]. The fabrication of 
 composites from bioactive ceramics and polymers was generally prepared by sim-
ple techniques, whereby bioactive ceramics are immersed in a polymer solution, or 
polymers are mineralized in saturated bioactive ceramic matrix solutions or in simu-
lated body fl uid, followed by drying or freeze-drying. More exact techniques, like 
electrospinning and thermally induced phase separation, have also been introduced 
for the fabrication of the composite scaffolds [ 19 ,  66 ,  67 ]. 

 A number of studies using composites of bioactive ceramics with natural or syn-
thetic polymers have been reported to show favorable results for the regeneration of 
periodontal tissue. Among various combinations of bioactive ceramics and poly-
mers, the combination of HA and  collagen      (HA/Col) has frequently been investi-
gated for bone tissue engineering because of its similar structure to bone tissue 
[ 68 – 71 ]. β-TCP was also studied by many researchers as a bioactive ceramic other 
than HA for periodontal tissue regeneration, because β-TCP is known to be biocom-
patible, and osteoconductive similar to HA. Furthermore, the degradation rate of 
β-TCP is higher than that of HA, which is an important feature for a scaffold to be 
used in tissue regeneration applications [ 72 ]. An in vivo study of a rabbit model of 
a proximal  tibial and distal femoral bone defect   revealed that 85 % of β-TCP and 
only 5.4 % of HA were resorbed at 3 months post-implantation [ 73 ]. Hence, the 
potential of composite scaffolds of β-TCP and polymers has been widely investi-
gated in tissue regeneration. 

 Composites of bioactive  ceramic  s and polymers are also expected to function as 
effi cient biomimetic scaffolds for the delivery of growth factors and stem cells to 
implant sites because of their high protein absorption capacity and biocompatibility 
[ 74 ]. A biodegradable polymer, gelatin hydrogel, has been reported to be a promis-
ing carrier material for growth factor or drug delivery in various forms such as a 
sponge, sheet, and liquid [ 75 ]. More recently, the combined nanosized β-TCP and 
collagen scaffold (nβ-TCP/Col) were reported to show good biocompatibility and 
osteoconductivity in vitro and in vivo [ 76 ]. The advantage of using nanosized β-TCP 
in biomimetic scaffolds is that it is believed to undergo easier resorption compared 
with the microsized form, while still performing its primary role as a cell attachable 
scaffold. Thus, the transplantation of DSCs seeded in nanosized  β-TCP   combined 
with collagen scaffolds could be more effective method for dental tissue engineer-
ing although further study is needed.  

14.2.3.2      Custom-Made      Scaffold 

 A rapid prototyping (RP) system has been developed to fabricate scaffolds for tissue 
engineering applications [ 77 ]. The system reads data from computer-aided design 
images and automatically produces three-dimensional objects according to the  virtual 
design. The application of RP to tissue engineering enables us to produce three-
dimensional scaffolds with complex geometries and very fi ne structures. In addition, 
RP can control features of scaffolds such as porosity, surface design and mechanical 
properties, so it allows us to fabricate applications of a desired structural integrity. 
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Park et al. applied RP to a rat model of PDL fenestration defects, where they  fabricated 
two types of customized defect-fi t hybrid scaffolds (random-porous scaffolds and 
PDL fi ber-guiding scaffolds) and transplanted them with PDLSCs into the defects 
[ 78 ]. The fi ber-guiding scaffolds signifi cantly enhanced the formation of PDL, bone 
and cementum in the fenestration defects compared with the random-porous  scaf-
folds,   suggesting that well-designed custom-made scaffolds with controlled and 
 oriented fi ber channels are important to regenerate functional periodontium.   

14.2.4     Dental Tissue Engineering 

14.2.4.1      Bone   

 Although growth factors such as EMD  and BMP2   do induce bone formation, their 
ability to regenerate bone of certain sizes is limited. In the case of large bone defects, 
DSCs, especially DPSCs and  SHED  s, are believed to be promising cell sources to 
regenerate bone tissue. The implantation of both human stem cells with scaffolds 
into artifi cial cranial bone defects in non-immunosuppressed rats resulted in the for-
mation of more new mature bone than cell-free implants [ 79 – 81 ]. Seo et al .  reported 
that  SHED  s not only induced recipient cells to differentiate into osteogenic cells for 
the formation of new bone, which had been previously reported [ 12 ], but also actively 
contributed to bone formation by themselves. The other group demonstrated that 
DPSC implantation with dental implants in a dog model showed increased osseoin-
tegration of dental implants compared with the implantation of bone marrow stem 
cells and periosteal cells [ 82 ]. iPS cells are also believed to be an ideal candidate cell 
source because of their pluripotency and ability for  autologous transplantation  . The 
osteoblast lineage can be differentiated from iPS cell-derived embryoid bodies by 
culturing with differentiation medium supplemented with dexamethasone, ascorbic 
acid and β-glycerophosphate in vitro [ 83 ,  84 ]. Osteoblastic differentiation-induced 
iPS cells were transplanted into  calvarial bone defects   in SCID mice, and bone for-
mation was confi rmed in soft X-ray images and tissue specimens [ 84 ]. As iPS cells 
derived from dental tissue have been well established, the use of iPS cells derived 
from dental tissue for bone regeneration is of great interest.  

14.2.4.2      Dentin/Pulp Complex   

 Once dentin caries occur, pulp tissue can subsequently become infected with bacteria. 
The pulp tissue can therefore be diffi cult to regenerate because of the small volume of 
the pulp tissue and limited blood supply compared with other connective tissues. Thus, 
the establishment of stem cell-based therapies to regenerate the damaged dentin/pulp 
complex can be challenging. However, recently Iohara et al. reported that autologous 
transplantation of CD31-negative side population cells or CD105-positive cells, which 
exhibited DPSC-like characteristics, with stromal-cell-  derived   factor-1 and a collagen 
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scaffold into the empty root canals of dogs showed dentin/pulp complex regeneration, 
accompanied by neoangiogenesis and reinnervation [ 85 ,  86 ]. More recently, mobilized 
DPSCs induced by granulocyte-colony stimulating factor ( GCSF        ) stimulation were 
examined for their potential for clinical application [ 87 ]. The preclinical safety, feasi-
bility and effi cacy of pulp regeneration by these human mobilized DPSCs were 
 confi rmed in vitro and in vivo in an animal model. In the future, it may be possible to 
regenerate dentin/pulp complex using DPSCs for endodontic treatment in the clinic. 
First, however, a major limitation must be addressed in the decontamination of the pulp 
cavity prior to regeneration of dentin/pulp complex.  

14.2.4.3      Periodontal Tissue   

 Many reports have demonstrated successful PDL tissue regeneration using a combina-
tion of stem cells, growth factors and scaffolds in animal models. BMP2- transduced 
bone marrow derived MSCs combined with a polyethylene and polypropylene oxide 
copolymer scaffold promoted the formation of PDL-like soft tissue that inserted into 
both the new cementum and the new bone in rat models [ 42 ]. Adipose derived stem cells 
combined with a PRP gel, acting as growth factor reservoir and a scaffold, fi lled class III 
periodontal defects with newly formed PDL, cementum and bone in canine models 
[ 88 ]. Human foreskin-derived iPS cells combined with EMD and an apatite-coated silk 
fi broin scaffold promoted the repair of mouse periodontal defects by inducing the for-
mation of new PDL, cementum, and bone [ 89 ]. Avulsed teeth reimplanted to the tooth 
sockets with a PDLSCs sheet in combination with  platelet-rich fi brin granules   showed 
the induction of PDL tissue healing and a reduction of ankylosis and infl ammatory tooth 
resorption in canine models [ 90 ]. More recently, a human clinical trial was performed to 
investigate the effi cacy of a combination of stem cells with growth factors and scaffolds 
for the healing of PDL disease. Yamada et al. transplanted autologous PDLSCs com-
bined with PRP and atelocollagen scaffolds into bone defects adjacent to the tooth root 
surface in 17  periodontitis   patients with deep intraosseous defects [ 91 ]. After 1 year of 
treatment, mean levels of clinical attachment, probing depth, and alveolar bone were 
signifi cantly improved, compared with pre-treatment values [ 91 ]. The transplantation of 
PDLSC sheets have also attracted attention in the regeneration of periodontal tissue. 
Iwata et al. reported PDLSC sheet technology for periodontal tissue regeneration of 
alveolar bone defects in a beagle dog model [ 92 ,  93 ]. Currently, there is an ongoing 
clinical trial using human PDLSC sheet for periodontal tissue regeneration in Japan 
[ 94 ]. These reports suggest that tissue-engineering technology has the potential to 
become an effective method to realize the regeneration of functional PDL tissue.  

14.2.4.4     Tooth 

 One of the ultimate goals of dental tissue regeneration is to construct an artifi cial 
whole tooth that performs the complete function of natural tooth. Tissue engineering 
technology should play crucial roles in achieving functional tooth reconstruction. The 
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progression of current bioengineering technologies for regenerating three-dimensional 
organs has involved replicating tissue development through  epithelial–mesenchymal 
interactions   that occur in the developing embryo. In the dental fi eld, Honda et al. 
transplanted cell-scaffold constructs into the omentum of rats that were formed by 
plating DSCs onto a collagen scaffold, followed by seeding dental epithelial cells on 
top of the DSCs [ 95 ]. The results of their study demonstrated small tooth structures 
containing all of the tooth tissue components, including enamel, dentine and pulp. 
Interestingly, when mesenchymal and epithelial cells were cultured in the same dish 
divided by a microporous membrane, they were unable to form tooth tissue compo-
nents. This result indicated that the direct interaction  of   epithelial–mesenchymal cells 
would be essential for successful generation of bioengineered teeth. In addition, 
Nakao et al. formed a bioengineered tooth germ that contained epithelial and mesen-
chymal cells, isolated from a mouse tooth germ, in a collagen gel drop [ 96 ]. When the 
bioengineered tooth germ was cultured in vitro, incisor and molar tooth germ-like 
tissues were observed in the gel drop. Interestingly, when these tooth germ-like tissues 
were transplanted into the tooth socket, they generated a correct tooth structure, 
including enamel, dentin, cementum, pulp, blood vessels, bone, sensory nerves and 
PDL. More recently, this research group reported that the bioengineered tooth formed 
by the tooth germ-like tissue successfully erupted and reached occlusion with an 
opposing tooth [ 97 ]. These results suggest that bioengineered teeth generated using 
tissue engineering technology could have several functions of natural teeth. Although 
tissue engineering technology should be useful for the formation of artifi cial teeth, 
some fundamental problems still remain, including the irregularity of the tooth size 
and shape, the long period required for regeneration, and the diffi culty of acquiring a 
suffi cient number of epithelial mesenchymal cells. For example, an erupted 
 bioengineered tooth was generated from a mouse molar tooth germ, but its size was 
approximately half of the original molar tooth when it erupted [ 97 ]. Thus, further 
studies by many researchers are required to address these problems.    

14.3     Ethical Issues 

 During recent years, tissue engineering and regenerative medicine using stem cells 
have been investigated worldwide, and a number of scientists, researchers, 
 clinicians and companies have been competitively engaged in research. Tissue 
engineering using cell transplantation is shifting from in vitro and animal models 
to human clinical trials. Information on clinical trials already performed through-
out the world can be found on the United States National Institutes of Health Trials 
website (  https://www.clinicaltrials.gov/    ). It is well known that one of the biggest 
challenges in tissue engineering using cell transplantation is the  ethical issues   
associated with obtaining cells. The fundamental principle for researchers using 
stem cells for tissue engineering studies is to respect bioethical guidelines. To pro-
tect the life, health, privacy and dignity of research participants, donors of cells and 
organs and recipients, researchers have to ensure safety and effi cacy of stem cell 
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transplantation. In particular, the safety of the tools, drugs and reagents used for 
treating cells must be confi rmed, and all concerns regarding cell transplantation 
must be explained to participants, donors and recipients prior to obtaining informed 
consent. Furthermore, the confi dentiality of personal information must always be 
protected. Notably, with the use of ES cells, there are some distinct ethical issues 
associated with the embryo from which the cells are obtained, including its right to 
live. There are also ethical issues with the use of iPS cells and whether these can 
be used to form an embryo for human cloning. 

 The use of MSCs for tissue engineering are characterized by less ethical issues as 
MSCs are not treated with genetic reprogramming unlike iPS cells, and don’t nor-
mally form teratoma different from ES and iPS cells. In particular, DPSCs, which 
can be retrieved from pulp tissue of extracted teeth such as wisdom and deciduous 
teeth, have no ethical tissue because extracted teeth are usually discarded. Nonetheless, 
there are various risks in stem cell transplantation such as infection, genetic modifi -
cation, switched cells, and so on. Thus, researchers have the responsibility of  adhering 
to the ethical guidelines of each country, especially regarding clinical trials.  

14.4     Future Directions 

 To date, it is believed that three elements are essential to achieve effective tissue 
engineering, including a combination of cells, growth factors and scaffolds [ 98 ]. In 
dental tissue engineering, for example, EMD application into marginal bone defects 
caused by  periodontitis      is so far one of most effective treatments to regenerate peri-
odontal tissue including alveolar bone. However, in this case, only one element 
essential to regenerate the tissue is incorporated: EMD, which acted as the growth 
factors, but the other elements are endogenous host cells and no scaffold. Therefore, 
it is unsurprising that  EMD   application has shown limited potential for periodontal 
tissue regeneration in spite of good clinical performance. To achieve more effective 
regeneration, novel regenerative methods using stem cells or other cell types are 
currently being developed. At present, research in regenerative medicine using stem 
cells is developing at an accelerating pace. To establish alternative effective treat-
ments for regenerating dental tissue using stem cells in clinics, we faces a host of 
challenges; isolation of effective stem cell populations, identifi cation of stem cell 
markers and genes, and the development of effective bio scaffold for stem cell main-
tenance and activity. Future directions of dental tissue engineering using stem cells 
are illustrated in Fig.  14.1 . There is still no defi nite method to effi ciently identify 
 DSCs   but this could be avoided by the use of iPS cells. In particular, dental tissue- 
derived iPS cells might be useful for dental tissue regeneration as they have been 
shown to maintain an epigenetic memory of their tissue of origin,    which infl uences 
the subsequent differentiation potential of specifi c iPS cells [ 99 ]. However, the clin-
ical application of MSCs could occur sooner than iPS cells, as there are still some 
problems associated with iPS  clinical applications   such as teratoma formation, con-
trol of differentiation and cost of reprogramming cells. One of the main issues 
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regarding the use of autologous MSCs is the technical diffi culty associated with the 
isolation of large enough quantities of MSCs with high quality from one patient, 
especially as the growth and differentiation potentials of MSCs vary between  indi-
viduals   although  DPSCs and   GMSCs are relatively overcoming these issues. One 
way to address this issue is to establish a  cell   transplantation method using  alloge-
neic MSCs   as an alternative cell source. Because of the immunomodulatory 
 properties of MSCs, further study is required to investigate the possibility of trans-
planting allogeneic MSCs. If possible, selected good quality MSCs can then be 
stored in a cell bank for widespread use. Another method of potential application is 
the more effi cient induction of MSC populations. If factors which can induce  the 
  conversion of differentiated cells into MSCs or neural crest cells are identifi ed, they 
may be useful for dental stem cell engineering and the effi cient regeneration of 
dental  tissue. As the application of growth factors alone is an easy method for clini-
cal treatment, studies focused on the identifi cation of essential growth factors for the 
effective regeneration of tissues are also of importance. With regard to scaffolds for 
dental tissue regeneration, an ideal scaffold should be investigated that will allow 
for suffi cient space for tissue regeneration, and exhibit high biocompatibility, good 
cell attachment, appropriate degradation and be capable of delivering growth factors 

Cells Scaffolds

Growth factors

Dental tissue-derived
iPS cells

Allogeneic MSCs
with immunomodulatory property

Biomimetic scaffold
•  Composites of bioactive nonosized
   ceramics and polymers
•  Custom-made scaffold

Differentiated
mesenchymal cells

Differentiation

Conversion

Various type of cells

MSCs
Factor X

Factor Y3

Factor Y2

Factor Y1

  Fig. 14.1    Future directions of dental tissue engineering using stem cells. Three elements essential 
to achieve effective dental tissue engineering, including a combination of cells, growth factors and 
scaffolds are currently being developed. Cells; dental pulp stem cells (DPSCs), gingiva derived 
stem cells (GMSCs), dental tissue-derived iPS cells or allogeneic mesenchymal stem cells (MSCs) 
which possess immunomodulatory property may be useful. Growth factors; growth factor X which 
can convert differentiated cells to MSCs, and growth factors Y which can control cell differentia-
tion might be identifi ed. Scaffolds; Custom-made biomimetic scaffold could be useful for dental 
tissue engineering. By using these elements and methods, more effective dental tissue engineering 
treatment might be established in the future       
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and stem cells. Furthermore, we must consider additional factors such as time, cost 
and risk for the patient. It is important to accumulate solid evidence for not only the 
regenerative effects but also their mechanisms and safety, so that tissue engineering 
can be correctly conveyed and applied to patients. Whereby, the dentists and 
researchers must make more efforts in the studies of regenerative medicine and need 
to bring together our wisdom.
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