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Abstract. Inverted index has been widely adopted by modern search engines to
effectively manage billions of documents and respond to users’ queries.
Recently, many auxiliary index variants are brought up to enhance the engine’s
compression ratio or query processing efficiency. The most successful auxiliary
index structures are Block-Max Index and Dual-Sorted Index, both used for
quickening the query processing. More precisely, Block-Max Index is designed
for efficient top-k query processing while Dual-Sorted Index introduces pattern
matching to solve complex query. There is little work thoroughly analyses and
compares the performance of the two auxiliary structures. In this paper, an
in-depth study on Block-Max Index and Dual-Sorted Index is presented, with a
survey on related top-k query processing strategies. Finally, experimental results
on TREC GOV2 dataset with detailed analysis show that Dual-Sorted Index
achieves the best query processing performance at the price of huge space
occupation, moreover, it sheds light upon the prospect of combining compact
data structures with inverted index.

Keywords: Performance evaluation � Inverted index � Block-Max index �
Dual-Sorted index � Query processing

1 Introduction

Inverted index is adopted as the core component to fast respond to enormous queries.
Given a collection of D documents, an inverted index can be seen as a big table
mapping each unique term to a posting list which contains all the document identifiers
(called docid) and the number of occurrences in the document (called the frequency),
and possibly other information like the positions of each occurrence within the doc-
uments. We postulate that postings have docids and frequencies, but do not consider
other data such as positions or contexts, thus the postings fit in the format (di, fi). The
set of terms is called lexicon, which is relatively small compared to postings. Its
advantages are clear: (i) it removes the redundancy in the documents where the same
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term occurs more than once, stores only one mapping from term to document instead;
(ii) its primitives are composed of docids, document frequencies and positions, these
elements can be stored separately or combined arbitrarily; (iii) the posting lists of query
terms can be processed in parallel to accelerate the procedure, also, various list
intersection and skipping algorithms have been implemented to reach early termination
[1–3].

On the other hand, the inverted index may consist of many millions of postings and
it can be hardly fit into the main memory, thus compression is needed to save space and
reduce the number of disk access. Different ordering schemes and traversal strategies
have a large impact on the performance of query response. Also, the inverted index is
inferior in searching for substrings and in languages which the terms are not as discrete
in English. All these issues have forced variant implementations of inverted index.
Different orderings in the lists of documents associated with a term, and different
auxiliary information, fit widely different IR tasks. Index designers have to choose the
right order for one such task, rendering the index difficult to use for others.

Among various schemes of inverted index, Block-Max Index [4–6] and
Dual-Sorted Index [7, 8] are two successful works that have been continuously studied
by researchers. Block-Max Index first partitions the sequence of each term into blocks
of fixed size(say, 64 or 128 elements), and compresses each block independently with
faster list-oriented encoders like simple-X or PFD [9]; then stores the maximum impact
value and the head docid for each block in uncompressed form, enabling to skip large
parts of the lists. It is simple with little space occupation, but leads to considerable
performance gains in conjunctive query and DAAT style pruning approaches.
Dual-Sorted Index is a variant of inverted index using wavelet tree, a balanced binary
tree-like compact data structure. The wavelet tree can store a sequence (e.g., the posting
list) from a symbol universe (e.g., the docid) within asymptotically the same space
required by a plain representation of the sequence [10–12]. Dual-Sorted Index allows
combining an ordering by decreasing term frequency with an ordering by increasing
docid, more importantly, it supports not only typical query scheme, but also sophis-
ticated operations in pattern matching. While researchers keep improving both tech-
niques continuously, missing from the literature is a study that thoroughly measures
properties and performances of these two indexes. In this paper, we provide a com-
prehensive comparison and analysis of the space occupation and response efficiency for
different query schemes of these two indexes, using an open source search engine
platform-Terrier [13].

This paper is structured as follows: Section 2 provides a background on query
processing strategies and wavelet trees; Sect. 3 summarizes both Block-Max Index and
Dual-Sorted Index; Sect. 4 describes our experimental setup and comparison results;
Conclusions and future work follow in Sect. 5.

2 Background

2.1 Query Processing Strategies

Given a query, the most basic processing form is called Boolean query processing,
which intersects or merges posting lists of query terms according to their logical
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relation (AND or OR) [14, 15]. Search engines usually use ranked query processing,
where a ranking function is used to compute a score for each document passing a
simple Boolean filter, and then the k top-scoring documents are returned. To traverse
the index structure, there are two basic techniques, DAAT and TAAT. The former
searches the posting list of each query term one after another, keeping a temporary
accumulator to build the result set; while the latter traverses in an interleaved fashion,
keeping aligned by docid. To facilitate different strategies, posting lists are always
reordered, in TAAT, lists are sorted by term impact in non-increasing order. Mean-
while, DAAT uses docid-sorted lists instead. DAAT performs well on AND query and
supports dynamic pruning algorithms like WAND [16] and Maxscore [17], hence is
widely adopted in current search engines.

In WAND, an ingenious pointer movement strategy based on pivoting is used,
which allows it to skip many documents that would be evaluated by an exhaustive
algorithm. It stores for each posting list the highest impact score of any posting in the
list, called maxscore. There are three steps when the algorithm processes the lists: pivot
selection, alignment check and evaluation. Left hand side of Fig. 1 gives a glance into
the procedure of WAND, terms are sorted in increasing order by their current docids,
maxscores are precalculated and the current minimum score of top-k results is known
and used as a threshold, maxscores are accumulated from top to bottom, docid whose
sum excesses threshold is chosen as pivot. Thus, we can align the lists above to the
position which is no less than pivot docid, if the pivot docid appears in these lists then
we evaluate this document, otherwise we sort the lists according to the current docids
and pivot again.

Maxscore also precalculates the maximum score of each list, before query pro-
cessing lists are sorted by their maxscores in decreasing order, after scoring some
documents, we again have a threshold that a document must meet to be ranked into
current top-k results. According to the threshold lists are divided as essential and
non-essential lists. Note that no document can make it into the top-k results just using
postings in the non-essential lists, and at least one of the essential terms has to occur in
any top-k documents. Each time we pick out the least docid from essential lists, and
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Fig. 1. On the left is the pivot selection phase in WAND. Posting lists are sorted by their current
docid and term3 is selected as pivot term. On the right is the selection of essential lists in
Maxscore. Lists are sorted by their maximum score and essential lists are those whose sum
overpasses current threshold.
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pointers of other lists are aligned to it, scoring is executed incrementally from top to
bottom, once we find current document fail to pass the threshold, scoring is aborted and
another docid is picked until essential lists reach their ends.

2.2 Wavelet Tree

Recent years, several researchers have been making efforts to bring the compact data
structure to bear on the problems in IR, in particular ranked document retrieval.
Brisaboa et al. [18] present an encoding scheme called Directly Addressable Codes
(DACs), which enables direct access to any element of the encoded sequences without
the need of sampling method, but the symbols must be stored in complete form,
making it hard to compress; Culpepper et al. [19, 20] adopt the HSV data structure in
combination with a wavelet tree-base representation to retrieve top-k results, but it is
not safe; Petri et al. [21] describe a hybrid index consisting of a pruned suffix of
document-level posting lists to efficiently handle large intervals, and fast sequential
exhaustive processing of smaller sections to create document-level lists on-the-fly.
Although quite different in their details, the common vision of these work is to use
breakthroughs in compressed pattern matching as an efficient algorithmic base on
which the more sophisticated operations required by IR systems can be built.

Wavelet tree is a versatile data structure which stores a sequence S[1, n] over an
alphabet R 0 � � � r½ �, within a space requirement of nlogr 1þ o 1ð Þð Þ bits. Figure 2 gives
an example of the structure of wavelet tree. The tree is a complete balanced binary tree,
where each node handles a range of symbols. The root handles 0½ � � � rÞ, its children
nodes bisect the range recursively until reach the leaves which only hold a single
symbol. The detail procedure is as follows: each node v in the tree handling the range
[αυ., .ωυ) represents the subsequence Sv[1, nv] of S formed by the symbols in [αυ., .ωυ),
instead of storing Sv, a bitmap Bv is stored, so that Bv[i] = 0 if Sv i½ �\av þ 2 log xt�atð Þ½ ��1

and Bv[i] = 1 otherwise. Then the alphabet interval breaks into two roughly equal
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Fig. 2. A wavelet tree over a sequence “clcecr c lc clcecrgc”. In each node, the top row shows
subsequence Sv[1, nv] and the second row shows bitmap Bv. Spaces in the sequence is represented
by underscores. Since leaf nodes store only one symbol, a sum is saved instead. Here is an
example of letters, however, wavelet tree can extend to docid or term frequency sequences easily.

6 X. Song et al.



parts: at½ ; at þ 2 log xt�atð Þ½ ��1
�
and at þ 2 log xt�atð Þ½ ��1

�
;xtÞ, ditto for Sv and Bv, gener-

ating their left and right children nodes. It is easy to figure out the tree has a height of
logr, and it has exactly σ leaves and σ - 1 internal nodes. The Bv in each level exactly
occupies n bits, for a total of at most n logr½ �. Storing the tree pointers, and the pointers
to the bitmaps, requires O(σlogn) further bits, if we use the minimum logn bits for the
pointers.

Within that space, the wavelet tree is able to return any sequence element S i½ �, and
also to answer another two queries that are fundamental in succinct data structure for
text retrieval. Note that searching in bitmap Bv to obtain Bv[i] can be solved in constant
time, which enables the following three operations return in O(logσ) time.

access(S, i): returns the symbol at the position i in the sequence S.
rankc(S, i): returns the number of times symbol c appears in the prefix S[1, i].
selectc(S, i): returns the position of the i-th occurrence of symbol c in sequence S.

3 Auxiliary Index Structures

3.1 Block-Max Index

A Block-Max Index (BMI), in a nutshell, augments the commonly used inverted index
structure, where for each distinct term t we store a sorted list of the docids of those
documents where t occurs, with upper-bound values for blocks of these docids. That is,
for every say 64 docids of documents containing a term t, we store the maximum
term-wise score of any of these documents with respect to t. This then allows algo-
rithms to quickly skip over blocks of documents whose scores are too low to make it
into the top results, as shown in Fig. 3.

BMI is designed particularly to speed up early termination algorithms like Maxs-
core and WAND. We refer to the approach in [4] as Block-Max WAND (BMW), and
the approach in [22] as Block-Max Maxscore (BMM). BMW defines two functions
used in list traversal: deep pointer movement refers to receiving a docid from the
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docid space maxdoc-10

Fig. 3. Three inverted lists are piecewise upper-bounded by the maximum scores in each block.
Inside each block are various values in compressed form as shown in the bottom list, one block
needs to be decompressed when its maximum score has the potential to be ranked in top-k results,
or the whole block will be skipped.
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current list that is equal to or greater than a given one and it usually involves a block
decompression; shallow pointer movement only moves the current pointer to the cor-
responding block without decompression. BMW picks a candidate pivot using the list
maxscores as in WAND, but then it uses shallow movement to check if it is necessary
to decompress the block and evaluate the pivot based on the maxscores of the block,
which helps filtering out most of the candidates and achieving much faster query
response. Also, if a pivot d fails to make it into the top results, instead of picking the
docid next to it, the pointer is moved to the header of the next block, since d is ruled out
based on the maxscore of current block. Different from BMW, BMM uses a prepro-
cessing step rather than an online one to detect and align block boundaries. The blocks
are repartitioned into intervals with interval boundary, then BMM runs Maxscore
within each interval, selecting non-essential lists and doing partial scoring using block
maxscores instead of list maxscores.

Shan et al. [5] propose an optimization on BMI which combines the static score
such as PageRank and the IR score into one score to give a correct and better estimation
of document’s upper bound score, they also recalibrate candidate documents using
local BMW and BMM to omit invalid scoring. Dimopoulos et al. [6] compare per-
formances of WAND- and Maxscore-based algorithms with and without BMI, then
build on their observations by designing and implementing new techniques for
exploiting BMI, in particular docid-oriented block selection schemes, on-the-fly gen-
eration of BMI, and a new recursive query processing algorithm that uses a hierarchical
partitioning of inverted lists into blocks. The core idea of their improvement is to
decouple the choice of blocks for storing block maxscores from the choice of blocks for
inverted index compression, making the BMI as a structure separate from the inverted
lists. In some cases, much smaller blocks are chosen to get better pruning power,
however, this also results in a much larger space occupation. To solve the problem,
they have defined block boundaries based not on the number of postings in a block, but
based on docid space and carefully tuned the block size to achieve good space-time
tradeoffs, moreover, on-the-fly Block-Max generation is proposed to further shrink the
size of BMI with little time overhead.

3.2 Dual-Sorted Index

The main data structure used in Dual-Sorted Index (DSI) is wavelet tree. To make it
suitable for document retrieval, symbols of letters are substituted by docids in the range
[1, D], where D denotes the total number of documents in the collection. Let Lt[1, dft]
be the list of docids in which term t appears, in decreasing tf order. Let N = ∑ tdft be the
total number of occurrences of distinct terms in the documents. All the posting lists Lt
are concatenated into a unique list L[1, N], and the starting position st of list Lt within
L is also stored. The sequence L of docids is then represented with a wavelet tree. Note
that the structure is a complete balanced binary tree with D leaves. The leaves are
labeled left-to-right with the symbols [1, D] in increasing order. For any internal node
v of the wavelet tree, let Lv be a subsequence of L containing only the docids on the
leaves in the subtree with root v. At each node v of depth ‘, the docids are split by their
most significant bit (msb) in the position of logD - ‘, for each docid, if msblogD-‘ = 0 it
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will appear below the left child of v, or the right child otherwise. With this property, the
docid can be restored by recording its path (e.g. consider alphabet 0, 1, 2, 3, 4 = 000,
001… 100; after 3 times turning left, we descend down to the leaf 0).

Note that Lt of each term is sorted in decreasing tf order, symbols in wavelet tree are
sorted in increasing order inherently, thus making the index dual-sorted for different
type of retrieval. The tf values are sorted in differential and run-length compressed form
in a separate sequence. Finally, the st sequence is represented using a bitmap S[1, N],
preprocessed for rank and select queries. Thus st = select1(S, t), and also
Rank1(S, i) tells where L[i] belongs to. Analysis of wavelet tree shows that space
occupied by L is NH0(L) + o(NlogD) bits, here NH0 Lð Þ ¼ P

d
dtdlog N

dtd
�NlogD and

dtd denotes the number of distinct terms in document d. The tf values are stored in a
sequenceW[1, N] aligned to L, which is also asymptotically similar to the space needed
by L. The st values are represented to support constant time rank and select queries,
requiring Vlog N

V þO Vð Þþ o Nð Þ bits, which is less than the usual pointers from the
vocabulary to the list of each term and here V denotes the number of distinct terms in
collection. Roberto improves DSI’s time efficiency using a fast implementation from
[23] that uses 37.5 % extra space on top of bitmap since L is not expected to be
compressible, also st is replaced by V pointers from term t to the starting positions of
the list Lt in L.

The three fundamental queries are detailed as follows. For access(L, i), a look-up is
started from the root node v, if Bv[i] = 0 we descend to the left child and i is updated
using i = rank0(Bv, i), or right child with i = rank1(Bv, i) otherwise. This process is
continued recursively until a leaf is reached and L[i] is the concatenated path in binary.
For rankc(L,i), bits in c tell the path to descend, the only thing needs to do is updating
i to be the number of times of the current bit in depth ‘ appears up to position i in the
node until a leaf is reached. For selectc(L,i), the look-up is processed upwards to the
root, as the path is already clear, each level ‘i. i is updated by i = select0(B‘, i) if c
[‘] = 0, or i = select1(B‘, i) if c[‘] = 1. More complex operations can be implemented by
combining the above three queries like retrieving all the values in a range L[i, j] and
retrieving the k-th value in a range L i; j½ �. These algorithms can be easily adopted in
Boolean conjunctive and disjunctive queries, when we find the |q| intervals st; et½ � of the
query words using pointers from the vocabulary to the inverted lists Lt, we can track all
the |q| ranges simultaneously and recursively merge or intersect them to obtain a result.
Note that the docids in each list are sorted by term frequencies, so we can immediately
compute the documents score and retain the k highest scoring documents. See more
details of the algorithms in [7, 8].

4 Experiments

4.1 Experimental Setup

We implement both BMI and DSI for comparison, as an external implementation to
compare we choose Terrier as a baseline, which is a highly flexible and effective open
source search engine. Terrier supports both disjunctive and conjunctive queries in
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DAAT and TAAT traversals with different weighting models, we will show the result
that although inferior to the two state-of-the-art indexes, it does gain performance
achievement after carefully tuned.

In our experiments, we use the TREC GOV2 collection, which consists of 25.2
million web pages and about 32.8 million terms in the vocabulary crawled from the gov
Internet domain. The uncompressed size of these web pages is 426 GB. The collection
is indexed using Terrier IR platform, all terms have the Porter stemmer applied, and
stopwords have been removed. The docids are assigned by the sequence of their
occurrence.

For retrieval, a total of 1000 queries are selected from the TREC2005 Efficiency
track queries and classified into different categories according to the number of distinct
terms in the query. Unless stated otherwise, the default number of documents retrieved
for each query equals to 20 that a result page will contain and BM25 is used as ranking
function in order to keep consistent with work in [4, 6].

All the implementations are carried out on an Intel(r) Xeon(r) E5620 processor
running at 2.40 GHz with 128 GB of RAM and 12,288 KB of cache. The default
physical block size is 16 KB, unless stated otherwise algorithms are implemented using
C ++ and compiled with GCC 4.8.1 with –O3 optimizations. In all our runs, the whole
inverted index is completely loaded into main memory, in order to warm up the
execution environment, each query set is run 4 times for each experiment, and the
response times only measured for the last run. Our implementations are available at
https://github.com/Sparklexs/Dualsorted-master.

4.2 Index Size Comparison

First we compare the index size of each structure. The baseline is compressed using
both Gamma and OptPFD. As depicted in [4], BMI compresses docid-gaps and fre-
quencies using OptPFD, compared with baseline OptPFD, BMI barely expands its size,
as it only augments the index with local maxscores and pointers to the header of blocks.
For DSI, its docids and frequencies are stored separately, the frequency lists are
compressed using Gamma codec, however, the docid lists are hard to compress since
they are stored in wavelet trees in primitive form. Moreover, in order to achieve direct
access to any symbol in the tree, some additional structures are also stored, all these
result in the size of DSI grows nearly 4 times larger than the rest indexes. Table 1 gives
the detail of each index. We also show the results after docid reassignment for the
collection. The idea of docid reassignment is to reorder the documents in the collection
so that similar documents are clustered together, thus shrinking the gap between docids
and the index size, it also improves the speed of dynamic pruning for that both potential
and invalid documents are batched up to reach an early termination, here we choose to
reorder the documents based on an alphabetic sorting of their URLs. As the right hand
side of Table 1 shows, baseline and BMI reduce nearly 20 % size after docid reas-
signment, however, DSI seems insensitive to reassignment as it hardly changes size in
both situations, this is mainly due to the fact that DSI separately stores docids in their
primitive form and frequencies in decreasing order without relying on docid order.
Also note that BMI cuts out the same size as baseline OptPFD, which can be explained
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by the fact that they adopt the same structure except BMI stores its additional infor-
mation in its raw format.

4.3 Query Processing Efficiency

Next, we compare the timing results of each index for different length of queries. First
we use the index without reordering and the processing strategy chosen for baseline
index is DAAT, to distinguish different compressions we name the result of baseline
Gamma as GDAAT and ODAAT for baseline OptPFD, BMM is short for BMI using
Maxscore and BMW for BMI using WAND. For now there isn’t any dynamic pruning
techniques used in DSI in the literature, as arbitrary symbols in the index are directly
accessible, so we simply use DAAT-like strategy for DSI (which is quite different from
ordinary DAAT since the documents are not fetched in ascending order). The results
are shown in Fig. 4, we omit the result of a single term query, since all the processing
strategies degenerate into DAAT with only one posting list and performances of these
methods become the same. It is worth mentioning that our implementations achieve a
close performance to what has been reported in [21].

It is clear that the same structure using different compressions gains performance
gap between ODAAT and GDAAT, which can be explained by the fact that shift and

Table 1. Size in GB of different inverted index for GOV2

before reordering after reordering Δ

Baseline Gamma 9.86 7.11 2.75
Baseline OptPFD 9.45 7.33 2.12
BMI OptPFD 10.86 8.75 2.12
DSI Gamma 39.2 39.2 0

Fig. 4. Efficiency for queries of different length using different indexes. The interquartile range
is shown in the box part and solid line in the box represents the median, points represent the
outliers. One thing to take notice of is that the box part of DSI shrinks into a solid line.
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concatenation operations are inevitable to decode an integer using bit-oriented codecs,
however, list-oriented codecs can decode a batch of integers with a single operation.
BMI with dynamic pruning methods further improves processing efficiency,
nonetheless, BMM achieves better performance than BMW, which is different from the
result in [21], after an inspection into the procedure of both methods, we conclude that
the list sorting consumes much time in pivot selection phase of BMW, also BMM
selects candidate documents in the essential lists which are likely to belong to more
important terms, while BMW selects candidate documents based on their docids
without considering the terms’ importance, with more query terms, it causes more
mis-scoring candidates that slows down the performance of BMW. Here we only
implement the basic BMI, some other methods like on-the-fly BMI generation and
hierarchical-layered blocks adopted in [6] remain future investigation. When it comes
to DSI, we get an interesting result that its time consume is rarely low compared with
other strategies, which are an order of magnitude higher than DSI; another surprising
phenomenon is that it stays considerably stable when query length grows while other
strategies raise their time consume to different extent, the box part is contracted into a
solid line which can be hardly noticed. It can be concluded without doubt that DSI
outperforms all the others. However, this performance is achieved at the cost that the
huge size structure of DSI is fully loaded into the main memory and occupies nearly
50 GB space, while others keep low memory occupation within 6 GB. This result is
also consistent with the inference before, we postulate that scoring a document and
maintaining a priority queue for the result cost constant time, then the only factor that
influences time efficiency is the size of the collection, as the three basic operations can
be implemented in O(logD) time, so is the intersection and merge of the posting lists.
Also the documents in DSI are sorted by term frequency in decreasing order, the
potential candidates to be ranked in top-k lie in the front of each posting list. With this
in mind, we can just evaluate few documents rather than the whole list and the query
time is significantly reduced. Another thing to be noticed is that the outliers always
appear below the box, which is caused by the fact that posting lists for uncommon
terms are missing or pruned by dynamic pruning strategies.

Second we reproduce this experiment with reordered index. Figure 5 shows the
results for the case of reordered indexes, as expected, performance of structures which
use dynamic pruning techniques shows promising benefits in term of query response
time compared to the prior. However, DAAT and DSI remain unaffected, as DAAT
processes the query in an exhaustive way and documents in DSI are ordered by term
frequency actually. Reordering works extremely well for BMW, performance gap
between it and BMM is sharply reduced. Indeed, reordering clusters the related doc-
uments and shorten the time of pivot alignment. For query length no longer than 5,
BMM and BMW are about the same efficiency, their average response times fall below
102 ms, as query length grows, the performance gap rises again.
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5 Conclusions

In this paper we have presented an explicit study of two state-of-the-art inverted index
structures used in safe retrieval in disjunctive queries. Our main contribution is an
experimental comparison of these two indexes combined with different compression
techniques and traversal strategies, we also discuss the effect on query processing
efficiency brought by docid reassignment. As shown in the result, DSI reveals its
superiority over other techniques in query response, however, a serious disadvantage is
obvious that it occupies too much storage and memory space. Overall, DSI is a
promising structure taking its feature of bridging the gap between IR problems and
pattern matching data structures into account.

There are still many open problems and opportunities for future research, including
mitigating the space issue using on-the-fly index generation and extending DSI with
dynamic pruning techniques and list-oriented compression codecs.
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