
Chapter 7

Infinite-Horizon Planning Methods: Discounted

Cumulative Reward

As discussed in Chapter 6, infinite-horizon planning methods focus on generating
ε-optimal solutions or solutions with a fixed controller size. We first discuss policy
iteration, which is an extension of dynamic programming for Dec-POMDPs to the
infinite-horizon case and can produce ε-optimal solutions. We then describe some
of the heuristic algorithms that generate fixed-size controllers. We describe these
algorithms in terms of Moore controllers, but they can all use Mealy controllers
(see Section 6.2) with minor extensions.

7.1 Policy Iteration

Policy iteration (PI) for Dec-POMDPs [Bernstein et al., 2009] is similar to the
finite-horizon dynamic programming algorithm (Algorithm 4.1), but finite-state
controllers are used as policy representations (like the policy iteration approach for
POMDPs [Hansen, 1998]). In addition, there are two other main differences with
the finite-horizon DP:

1. Instead of using a set of separately represented policies (i.e., policy trees), PI
maintains a single controller for each agent and considers the value of beginning
execution from any node of the controller. That is, starting at each (joint) node
can be interpreted as an infinite-horizon (joint) policy and the set of policies can
be considered to be the set of joint nodes. Pruning can then take place over nodes
of these controllers to remove dominated policies.

2. Rather than initializing the iteration process with the (set of) one-stage-to-go
policies as in DP, PI can start from any initial joint controller for each agent
m0 = 〈m1,0, . . . ,mn,0〉. Exactly what this initial joint controller m0 is does not
matter: the controller is going to be subject to exhaustive backups, which will
‘push’ the initial controller to beyond the effective horizon (where the discount
factor renders the value bounded by ε), as well as controller improvements.

© The Author(s) 2016
F.A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs,
SpringerBriefs in Intelligent Systems, DOI 10.1007/978-3-319-28929-8_7

79

80 7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward

a1 a2

 o1

 o1

 o2

 o2

(a)

 o2

 a1
 o1

a1 a2

 o1

 o1

 o2

 o2

 o1
 a1

 o2

a1 o1,o2

 a1 o1,o2

(b)

Fig. 7.1: A full backup for a single agent for action a1 when starting with the con-
troller in (a), resulting in the controller in (b).

The basic procedure of PI is that it continuously tries to improve the joint con-
troller by improving the controller maintained for each agent. This per-agent im-
provement is done using an exhaustive backup operation (this is the same as in
the finite-horizon DP case) by which nodes are added to the controller that intu-
itively correspond to all possible ‘one-step longer’ policies.1 To counter the growth
of the individual controllers, pruning can be conducted, which removes a node in
an agent’s controller if it is dominated (i.e., if it has equal or lower value than when
beginning in a combination of nodes for all (s,I−i)-pairs). That is, the policy for
agent i given by beginning in the node is dominated by some set of policies given
by starting at other nodes in the controller. These exhaustive backups and pruning
steps continue until the solution is provably within ε of an optimal solution. This
algorithm can produce an ε-optimal policy in a finite number of steps [Bernstein
et al., 2009]. The details of policy iteration follow.

The policy iteration algorithm is shown in Algorithm 7.1. The input is an initial
joint controller, m0, and a parameter ε . At each step, evaluation, backup and pruning
occurs. The controller is evaluated using (6.3.1). Next, an exhaustive backup is per-
formed to add nodes to each of the local controllers. Similarly to the finite-horizon
case, for each agent i, |Ai||Ii||Oi| nodes are added to the local controller, where |Ii|
is the number of nodes in the current controller. The exhaustive backup represents
starting from each action and for each combination of observations transitioning to
each of the nodes in the current controller. Repeated application of exhaustive back-
ups amounts to a brute-force search in the space of deterministic policies, which
will converge to ε-optimality, but is obviously quite inefficient.

To increase the efficiency of the algorithm, pruning takes place. Because plan-
ning takes place offline, the controllers for each agent are known at each step, but
agents will not know which node of their controller any of the other agents will be in
during execution. As a result, pruning must be completed over the multiagent belief

1 Essentially, doing (infinitely many) exhaustive backups will generate all (infinitely many) poli-
cies.

7.2 Optimizing Fixed-Size Controllers 81

Algorithm 7.1 Policy iteration for Dec-POMDPs.
Input: An initial joint controller m0 = 〈m1,0, . . . ,mn,0〉.
Output: An ε-optimal joint controller m∗.
1: τ ← 0
2: mτ ← m0
3: repeat

4: {Backup and evaluate:}
5: for i = 1 to n do

6: mi,τ←ExhaustiveBackup(mi,τ−1)
7: end for

8: Compute V mτ {Evaluate the controllers}
9: {Prune dominated nodes until none can be removed:}

10: while some nodes have been pruned do

11: for i = 1 to n do

12: mi,τ←Prune(i,m−i,τ , mi,τ)
13: UpdateController(mi,τ) {Remove the pruned nodes and update links accordingly}
14: Compute V mτ {Evaluate updated controllers}
15: end for

16: end while

17: τ ← τ +1
18: until

γτ+1|Rmax|
1−γ ≤ ε

19: return m∗←mτ

space (using a linear program that is very similar to that described for finite-horizon
dynamic programming in Section 4.3). That is, a node for an agent’s controller can
only be pruned if there is some combination of nodes that has higher value for all
states of the system and at all nodes of the other agents’ controllers. Unlike in the
finite-horizon case, edges to the removed node are then redirected to the dominating
nodes. Because a node may be dominated by a distribution of other nodes, the result-
ing transitions may be stochastic rather than deterministic. The updated controller
is evaluated, and pruning continues until no agent can remove any further nodes.

Convergence to ε-optimality can be calculated based on the discount rate and the
number of iterations of backups that have been performed. Let |Rmax| be the largest
absolute value of any immediate reward in the Dec-POMDP. Then the algorithm
terminates after iteration t if γt+1|Rmax|

1−γ ≤ ε . At this point, due to discounting, the
value of any policy after step t will be less than ε .

7.2 Optimizing Fixed-Size Controllers

Like optimal finite-horizon approaches, methods for producing ε-optimal infinite-
horizon solutions are intractable for even moderately sized problems. This results in
optimal algorithms not converging to any reasonable bound of the optimal solution
in practice. To combat this intractability, approximate infinite-horizon algorithms

82 7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward

a? q
o2

o1 q?

q?

Fig. 7.2: Choosing actions and transitions in each node of a fixed-size controller.

have sought to produce a high-quality solution while keeping the controller sizes
for the agents fixed.

That is, the concept behind these approaches is to choose a controller size |Ii|
for each agent and then determine action selection and node transitions parameters
that produce high values. However, because these methods fix the size of the agents’
controllers, the resulting size may be smaller than is needed for even an ε-optimal
solution. This means that, while some of the approaches in this section can produce a
controller that has the highest value given the fixed size, that value may be arbitrarily
far from the optimal solution.

7.2.1 Best-First Search

A way to compute the best deterministic joint controller of given size is via heuristic
search. One such method, referred to as best-first search for Dec-POMDPs [Szer and
Charpillet, 2005], generalizes the MAA∗ technique from Section 4.2.2 to the infinite
horizon. Rather than filling templates of trees (cf. Figure 5.1b) the method here fills
templates of controllers; it searches through the possible actions that can be taken
at each agent’s controller nodes and the possible transitions that result from each
observation in each node.

In more detail, the algorithm searches through the possible deterministic transi-
tion mappings ιi : Ii×Oi → Ii and the deterministic action function, πi : Ii →Ai, for
all agents. The controller nodes are ordered and a forward search is conducted that
specifies the action selection and node transition parameters for all agents, one node
at a time. The heuristic value determines an upper bound value for these partially
specified controllers (again, in a way that is similar to MAA∗) by assuming central-
ized control is used for unspecified nodes. In this way, an approximate value for the
controller is calculated given the currently specified deterministic parameters and
the algorithm fills in the remaining nodes one at a time in a best-first fashion.

This process continues until the value of a set of fully specified controllers is
greater than the heuristic value of any partially specified controllers. Since this is an
instance of heuristic search applied with an admissible heuristic, this technique is
guaranteed to find the best deterministic joint finite-state controller of a given size.

7.2 Optimizing Fixed-Size Controllers 83

7.2.2 Bounded Policy Iteration

Because stochastic controllers with the same number of nodes are able to produce
higher-valued policies than deterministic controllers, researchers have also explored
optimizing stochastic controllers (a difficult problem by itself; see the overview and
complexity results by Vlassis et al. 2012). These approaches seek to find proba-
bilistic parameters for action selection and node transition. That is, for agent i, the
algorithms find the probability of taking action ai in node Ii, Pr(ai|Ii), and the prob-
ability of transitioning to node I′i in node Ii after action ai is taken and observation
oi made, Pr(I′i |Ii,ai,oi).

One method to produce stochastic controllers is by using a set of linear pro-
grams. In particular, bounded policy iteration for decentralized POMDPs (Dec-
BPI) [Bernstein et al., 2005], is such a method that extends the BPI algorithm for
POMDPs [Poupart and Boutilier, 2003] to the multiagent setting. This approach
iterates through the nodes of each agent’s controller, attempting to find an improve-
ment for that node. That is, it tries to improve a single local controller, assuming
that the controllers of the other agents are fixed, and thus is conceptually similar to
JESP, described in Section 5.2.1. In contrast to JESP, however, this improvement for
an agent i cannot be found using plain dynamic programming over a tree or directed
acyclic graph (DAG) of reachable ‘JESP beliefs’ bi(〈s,ō−i,t〉) (even when replacing
histories by internal states leading to a belief of the form bi(〈s,I−i〉) there would
be infinitely many in general) or enumeration of all controllers mi (there are un-
countably many stochastic controllers). Instead, Dec-BPI uses linear programming
to search for a new node to replace the old node.

Specifically, this approach iterates through agents i, along with nodes for agent Ii.
Then, the method assumes that the current controller will be used from the second
step on, and tries to replace the parameters for Ii with ones that will increase value
for just the first step. That is, it attempts to find parameters satisfying the following
inequality:

∀st ∈ S, ∀I−i ∈ I−i

V m(s,I)≤ ∑
a

π(a|I)
[

R(s,a)+ γ ∑
s,o′,I′

Pr(I′|I,a,o′)Pr(s′,o′|s,a)V m(s′,I′)

]
.

Here, I−i is the set of controller nodes for all agents besides i. The search for new
parameters can be formulated as a linear program in Figure 7.3. Note that a ‘com-
bined’ action selection and node transition probability,

Pr(I′i ,ai|Ii,oi)� Pr(I′i |Ii,ai,oi)Pr(ai|Ii),

is used to ensure the improvement constraints are linear; naive inclusion of the right-
hand side product would lead to quadratic improvement constraints. Instead, we
introduce more variables that lead to a linear formulation. The second probability
constraint in Figure 7.3 ensures that the action selection probabilities can be recov-

84 7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward

ered (i.e., that y(ai,oi,I′i) does not encode an invalid distribution). Note that the first
and second probability constraints together guarantee that

∀oi ∑
I′i ,ai

y(ai,oi,I′i) = 1.

Given: Ii the node for which we want to test improvement.
variables:
ε , the value gap that we try to maximize (ε > 0 indicates an improvement),
x(ai) = πi(ai|Ii), action probability variables,
y(ai,oi,I′i) = Pr(I′i ,ai|Ii,oi), combined action and next-stage node probabilities.
maximize: ε .
subject to:

Improvement constraints, ∀s,I−i:

V m(s,I)+ ε ≤ ∑
a

π−i(a−i|I−i)

[
x(ai)R(s,a)+ γ ∑

s,o′,I′
y(ai,oi,I′i)Pr(I′−i,s

′,o′|s,a)V m(s′,I′)

]

Probability constraints:

∑
ai

x(ai) = 1

∀ai,oi ∑
I′i

y(ai,oi,I′i) = x(ai)

∀ai x(ai)≥ 0

∀ai,oi,I′i y(ai,oi,I′i)≥ 0

Fig. 7.3: The linear program (LP) to test for improvement in Dec-BPI. The LP de-
termines if there is a probability distribution over actions and transitions from node
Ii that improves value when assuming the current controller will be used from the
second step on. Note that Pr(I′i ,ai|Ii,oi) is the combined action and transition prob-
ability which is made consistent with the action selection probability πi(ai|Ii) in
the probability constraints. This form is needed to ensure the objective function is
linear.

This linear program is polynomial in the sizes of the Dec-POMDP and the joint
controller, but exponential in the number of agents. Bernstein et al. allow each
agent’s controller to be correlated by using shared information in a correlation de-
vice (as discussed in Section 6.2.4). This may improve solution quality while requir-
ing only a limited increase in problem size [Bernstein et al., 2005, 2009].

7.2 Optimizing Fixed-Size Controllers 85

7.2.3 Nonlinear Programming

Because Dec-BPI can often become stuck in local maxima, nonlinear programming
(NLP) has also been used [Amato et al., 2007a, 2010]. The formulation seeks to
optimize the value of a set of fixed-size controllers given an initial state distribution.
The variables for this problem are the action selection and node transition proba-
bilities for each node of each agent’s controller as well as the value of the resulting
policy starting from a set of controller nodes.

More formally, the NLP maximizes the expected value of the initial controller
node for each agent at the initial belief subject to the Bellman constraints. To this
end, let us translate the value of a joint controller (from Equation 6.3.1) in terms of
variables that will be used for optimization:

z(I,s) = ∑
a

[
∏

i
x(Ii,ai)

]
(

R(s,a)+ γ ∑
s′,o

Pr(s′,o|s,a)∑
I′

[
∏

j
y(I j,ai,oi,I′j)

]
z(I′,s′)

)
. (7.2.1)

As shown in Figure 7.4, z(I,s) represents the value, V (I,st), of executing the con-
troller starting from nodes I and state s, while x(Ii,ai) is the action selection proba-
bility, Pr(ai | Ii), and y(Ii,ai,oi,I′i) is the node transition probability, Pr(I′i | Ii,ai,oi).
Note that to ensure that the values are correct given the action and node transition
probabilities, these nonlinear constraints must be added to the optimization which
represent the Bellman equations given the policy determined by the action and tran-
sition probabilities. We must also ensure that the necessary variables are valid prob-
abilities in a set of probability constraints. This approach differs from DEC-BPI in
that it explicitly represents the node values as variables, thus allowing improvement
and evaluation to take place simultaneously. An optimal solution of this nonlinear
program represents an optimal fixed-size solution to the Dec-POMDP, but as this
is often intractable, approximate solvers have been used in practice [Amato et al.,
2010].

7.2.4 Expectation Maximization

As an alternative method for determining the parameters of stochastic controllers,
expectation maximization (EM) has been used [Kumar and Zilberstein, 2010b, Ku-
mar et al., 2011]. Again a fixed-size controller is assumed, but rather than deter-
mining the controller parameters using optimization, the problem is reformulated
as a likelihood maximization problem and EM is used. This planning as inference
technique is an extension of similar methods for POMDPs [Toussaint et al., 2006].

86 7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward

variables for each agent i :
x(Ii,ai) = Pr(ai | Ii), action probability variables,
y(Ii,ai,oi,I′i) = Pr(I′i | Ii,ai,oi), next-stage node probabilities,
z(I,st) =V (I,st), the values.
maximize:

∑
s0

b0(s0)z(I0,s0).

subject to:

Bellman constraints:

∀I,s z(I,s) = ∑
a

[
∏

i
x(Ii,ai)

]
(

R(s,a)+ γ ∑
s′,o

Pr(s′,o|s,a)∑
I′

[
∏

j
y(I j,ai,oi,I′j)

]
z(I′,s′)

)
. (7.2.2)

Probability constraints for each agent i:

∀Ii,ai ∑
ai

x(Ii,ai) = 1

∀Ii,ai,oi ∑
I′i

y(Ii,ai,oi,I′i) = 1

∀Ii,ai x(Ii,ai)≥ 0

∀Ii,ai,oi,I′i y(Ii,ai,oi,I′i)≥ 0

Fig. 7.4: The nonlinear program (NLP) representing the optimal fixed-size solution
for the problem. The action selection, Pr(ai|Ii), and node transition probabilities,
Pr(I′i |Ii,ai,oi), are optimized for each agent i to maximize the value of the controllers.
This optimization is performed for the given initial belief b0 and a given (arbitrarily
selected) tuple of the initial nodes, I0 = 〈I1,0, . . . ,In,0〉.

The basic idea is that the problem can be represented as an infinite mixture of dy-
namic Bayesian networks (DBNs), which has one component for each time step t.
The DBN responsible for a particular t covers stages 0, . . . , t and represents the
‘probability’ that the ‘maximum reward’ is received at its last modeled stage (i.e.,
at t). The intuition is that the probability of achieving the maximum reward can be
considered as a substitute for the value of the controller. We give a brief formaliza-
tion of this intuition next; for details we refer the reader to the papers by Toussaint
et al. [2006], Kumar and Zilberstein [2010b], and Kumar et al. [2011].

First, the formalization is based on binary reward variables, r, for each stage t
that provide probability via Pr(r = 1|st ,at) � R(st ,at)−Rmin

Rmax−Rmin
, where Rmin and Rmax are

the smallest and largest immediate rewards. This probability encodes the ‘chance of
getting the highest possible reward’ at stage t. This can be used to define Pr(r,Z|t;θ)
with Z = 〈s0,a0,s1,o1,I1,a1, . . . ,at−1,st ,ot ,It〉 the entire histories of states, actions,
observations and internal states, and with θ = {Pr(a|I),Pr(I′|I,o),Pr(I)} the pa-

7.2 Optimizing Fixed-Size Controllers 87

rameter vector that specifies the action selection, node transition and initial node
probabilities. Now these probabilities constitute a mixture probability via:

Pr(r,Z,t;θ) = Pr(r,Z|t;θ)P(t),

with P(t) = γ t(1− γ) (used to discount the reward that is received for each time
step t). This can be used to define an overall likelihood function Lθ (r = 1;θ), and
it can be shown that maximizing this likelihood is equivalent to optimizing value
for the Dec-POMDP (using a fixed-size controller). Specifically, the value function
of controller θ can be recovered from the likelihood as V (b0) =

(Rmax−Rmin)Lθ

1−γ +

∑t γ tRmin [Kumar and Zilberstein, 2010b].
As such, maximizing the value has been cast as the problem of maximizing likeli-

hood in a DBN, and for this the EM algorithm can be used [Bishop, 2006]. It iterates
by calculating occupancy probabilities—i.e., the probability of being in each con-
troller node and problem state—and values given fixed controller parameters (in an
E-step) and improving the controller parameters (in an M-step). The likelihood and
associated value will increase at each iteration until the algorithm converges to a
(possibly local) optima. The E-step calculates two quantities. The first is Pθ

t (I,st),
the probability of being in state st and node I at each stage t. The second quantity,
computed for each stage-to-go, is Pθ

τ (r = 1|I,s), which corresponds to the expected
value of starting from I,s and continuing for τ steps. The M-step uses the probabil-
ities calculated in the E-step and the previous controller parameters to update the
action selection, node transition and initial node parameters.

After this EM approach was introduced, additional related methods were devel-
oped. These updated methods include EM for Dec-POMDPs with factored state
spaces [Pajarinen and Peltonen, 2011a] and factored structured representations [Pa-
jarinen and Peltonen, 2011b], and EM using simulation data rather than the full
model [Wu et al., 2013].

7.2.5 Reduction to an NOMDP

Similarly to the transformation of finite-horizon Dec-POMDPs into NOMDPs de-
scribed in Section 4.3, infinite-horizon Dec-POMDPs can also be transformed into
(plan-time) NOMDPs. The basic idea here is to replace the observation histories by
(a finite number of) information states such as nodes of an FSC. Let I = 〈I1, . . . ,In〉
denote a joint information state. This allows us to redefine the plan-time sufficient
statistic as follows:

σt(s,I)� Pr(s,I|δ 0,...,δ t−1).

Again, this statistic can be updated using Bayes’ rule. In particular σ ′(s′,I′) is given
by

∀(s′,I′) [Uss(σ ,δ)] (s′,I′) = ∑
(s,I)

Pr(s′,I′|s,I,δ (I))σ(s,I), (7.2.3)

88 7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward

where—using ι(I′|I,a,o) = ∏i∈D ιi(I′i |Ii,ai,oi) for the joint information state update
probability—the probability of transitioning to (s′,I′) is given by

Pr(s′,I′|s,I,a) = Pr(s′|s,a)∑
o

ι(I′|I,a,o)Pr(o|a,s′). (7.2.4)

It is easy to show that, for a given set {ιi} of information state functions, one can
construct a plan-time NOMDP analogous to Definition 23 in Section 4.3.3, where
augmented states are tuples s̄ = 〈s,I〉. However, as discussed before, in the infinite-
horizon setting, the selection of those information state functions becomes part of
the problem.

One idea to address this, dating back to Meuleau et al. [1999a], is to make
searching the space of deterministic information state functions part of the prob-
lem by defining a cross-product MDP in which “a decision is the choice of an
action and of a next node”. That is, selection of the ιi function (in a POMDP
with protagonist agent i) can be done by introducing |Oi| new action variables
(say, aι

i = {aι ,1
i , . . . ,aι ,|Oi|

i }) that specify, for each observation oi ∈Oi, to what next
internal state to transition. This approach is extended to Dec-POMDPs by Mac-
Dermed and Isbell [2013] who introduce the bounded belief Dec-POMDP2 (BB-
Dec-POMDP), which is a Dec-POMDP that encodes the selection of optimal {ιi}
by splitting each stage into two stages: one for selection of the domain-level actions
and one for selection of the aι

i . We omit the details of this formulation and refer
the reader to the original paper. The main point that the reader should note is that
by making ι part of the (augmented) joint action, the probability Pr(s′,I′|s,I,a) from
(7.2.4) no longer depends on external quantities, which means that it is possible
to construct an NOMDP formulation analogous to Definition 23 that in fact does
optimize over (deterministic) information state functions.

This is in fact what MacDermed and Isbell [2013] propose; they construct the
NOMDP (to which they refer as a ‘belief-POMDP’) for a BB-Dec-POMDP and
solve it with a POMDP solution method. Specifically, they use a modification of
the point-based method Perseus [Spaan and Vlassis, 2005] to solve the NOMDP.
The modification employed is aimed at mitigating the bottleneck of maximizing
over (exponentially many) decision rules in V ∗(σ)=maxδ Q∗(σ ,δ). Since the value
function is PWLC, the next-stage value function can be represented using a set of
vectors v ∈ V , and we can write

V ∗(σ) = max
δ

∑
(s,I)

σ(s,I)

(
R(s,δ (I))+max

v∈V
∑

(s′,I′)
Pr(s′,I′|s,I,δ)v(s′,I′)

)

= max
v∈V

max
δ

∑
(s,I)

σ(s,I)

(
R(s,δ (I))+ ∑

(s′,I′)
Pr(s′,I′|s,δ (I))v(s′,I′)

)
︸ ︷︷ ︸

vδ (s,I)

.

2 The term ‘bounded belief’ refers to the finite number of internal states (or ‘beliefs’) considered.

7.2 Optimizing Fixed-Size Controllers 89

The key insight is the in the last expression, the bracketed part only depends on
δ (I) = 〈δ1(I1), . . . ,δ1(I1)〉, i.e., on that part of δ that specifies the actions for I only.
As such it is possible to rewrite this value as the maximum of solutions of a collec-
tion of collaborative Bayesian games (cf. Section 5.2.3), one for each v ∈ V :

V ∗(σ) = max
v∈V

max
δ

∑
I

σ(I)∑
s

σ(s|I)vδ (s,I)

= max
v∈V

[
max

δ
∑

I
σ(I)Qv(I,δ (I))

]
.

For each v∈V , the maximization over δ can be interpreted as the solution of a CBG
(5.2.2), and therefore can be performed more effectively using a variety of meth-
ods [Oliehoek et al., 2010, Kumar and Zilberstein, 2010a, Oliehoek et al., 2012a].
MacDermed and Isbell [2013] propose a method based on the relaxation of an inte-
ger program. We note that the maximizing δ directly induces a vector vδ , which is
the result of the point-based backup. As such, this modification can also be used by
other point-based POMDP methods.

It is good to note that a BB-Dec-POMDP is just a special case of an (infinite-
horizon) Dec-POMDP. The fact that it happens to have a bounded number of infor-
mation states is nothing new compared to previous approaches: those also limited
the number of information states (controller nodes) to a finite number. The concep-
tual difference, however, is that MacDermed and Isbell [2013] pose this restriction
as part of the model definition, rather the solution method. This is very much in
line with, and a source of inspiration for, the more general definition of multiagent
decision problems that we introduced in Section 2.4.4.

	7 Infinite-Horizon Planning Methods: Discounted Cumulative Reward
	7.1 Policy Iteration
	7.2 Optimizing Fixed-Size Controllers
	7.2.1 Best-First Search
	7.2.2 Bounded Policy Iteration
	7.2.3 Nonlinear Programming
	7.2.4 Expectation Maximization
	7.2.5 Reduction to an NOMDP

