
Chapter 1

Multiagent Systems Under Uncertainty

The impact of the advent of the computer on modern societies can hardly be over-
stated; every single day we are surrounded by more devices equipped with on-board
computation capabilities taking care of the ever-expanding range of functions they
perform for us. Moreover, the decreasing cost and increasing sophistication of hard-
ware and software opens up the possibility of deploying a large number of devices
or systems to solve real-world problems. Each one of these systems (e.g., computer,
router, robot, person) can be thought of as an agent which receives information and
makes decisions about how to act in the world. As the number and sophistication of
these agents increase, controlling them in such a way that they consider and cooper-
ate with each other becomes critical. In many of these multiagent systems (MASs),
cooperation is made more difficult by the fact that the environment is unpredictable
and the information available about the world and other agents (through sensors
and communication channels) is noisy and imperfect. Developing agent controllers
by hand becomes very difficult in these complex domains, so automated methods
for generating solutions from a domain specification are needed. In this book, we
describe a formal framework, called the decentralized partially observable Markov
decision process (Dec-POMDP), that can be used for decision making for a team of
cooperative agents. Solutions to Dec-POMDPs optimize the behavior of the agents
while considering the uncertainty related to the environment and other agents. As
discussed below, the Dec-POMDP model is very general and applies to a wide range
of applications.

From a historical perspective, thinking about interaction has been part of many
different ‘fields’ or, simply, aspects of life, such as philosophy, politics and war.
Mathematical analyses of problems of interaction date back to at least the begin-
ning of the eighteenth century [Bellhouse, 2007], driven by interest in games such
as chess [Zermelo, 1913]. This culminated in the formalization of game theory with
huge implications for the field of economics since the 1940s [von Neumann and
Morgenstern, 1944]. Other single-step cooperative team models were studied by
Marschak [1955] and Radner [1962], followed by systems with dynamics modeled
as team theory problems [Marschak and Radner, 1972, Ho, 1980] and the result-
ing complexity analysis [Papadimitriou and Tsitsiklis, 1987]. In the 1980s, people
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2 1 Multiagent Systems Under Uncertainty

in the field of Artificial Intelligence took their concept of agent, an artificial en-
tity that interacts with its environment over a sequence of time steps, and started
thinking about multiple such agents and how they could interact [Davis and Smith,
1983, Grosz and Sidner, 1986, Durfee et al., 1987, Wooldridge and Jennings, 1995,
Tambe, 1997, Jennings, 1999, Lesser, 1999]. Dec-POMDPs represent a probabilis-
tic generalization of this multiagent framework to model uncertainty with respect
to outcomes, environmental information and communication. We first discuss some
motivating examples for the Dec-POMDP model and then provide additional details
about multiagent systems, the uncertainty considered in Dec-POMDPs and applica-
tion domains.

1.1 Motivating Examples

Before diving deeper, this section will present two motivating examples for the mod-
els and techniques described in this book. The examples briefly illustrate the diffi-
culties and uncertainties one has to deal with when automating decisions in real-
world decentralized systems. Several other examples and applications are discussed
in Section 1.4.

Fig. 1.1: Illustration of a simple Recycling Robots example, in which two robots
remove trash in an office environment with three small (blue) trash cans and two
large (yellow) ones. In this situation, the left robot may observe that the large trash
can next to it is full, and the other robot may detect that the adjacent small trash
can is empty. Note that neither robot can be sure of the trash can’s true state due
to limited sensing capabilities, nor do the robots see the state of trash cans further
away. Also, the robots cannot observe each other at this distance and they do not
know the observations of the other robot due to a lack of communication.

Multirobot Coordination: Recycling Robots Consider a team of robots tasked
with removing trash from an office building, depicted in Figure 1.1. The robots have
sensors to find marked trash cans, motors to move around in order to look for cans, as
well as gripper arms to grasp and carry a can. Small trash cans are light and compact
enough for a single robot to carry, but large trash cans require multiple robots to
carry them out together. It is not certain exactly where the trash cans may be or how
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fast they will fill up, but it is known that, because more people use them, the larger
trash cans fill up more quickly. Each robot needs to take actions based on its own
knowledge: while we encourage the robots to share some important information, we
would not want them to communicate constantly, as this could overload the office’s
wireless network and seems wasteful from an energy perspective. Each robot must
also ensure that its battery remains charged by moving to a charging station before
it expires. The battery level for a robot degrades due to the distance the robot travels
and the weight of the item being carried. Each robot only knows its own battery
level (but not that of the other robots) and the location of other robots within sensor
range. The goal of this problem is to remove as much trash as possible in a given
time period. To accomplish this goal we want to find a plan, or policy, that specifies
for each robot how to behave as a function of its own observations, such that the
joint behavior is optimal. While this problem may appear simple, it is not. Due to
uncertainty, the robots cannot accurately predict the amount of battery reduction that
results from moving. Furthermore, due to noisy and insufficient sensors, each robot
does not accurately know the position and state of the trash cans and other robots.
As a result of these information deficiencies, deciding which trash cans to navigate
to and when to recharge the battery is difficult. Moreover, even if hand-coding the
solution for a single robot would be feasible, predicting how the combination of
policies (one for each robot) would perform in practice is extremely challenging.

Efficient Sensor Networks

Another application that has received significant interest over the last two decades
is that of sensor networks. These are networks of sensors (the agents) that are dis-
tributed in a particular environment with the task of measuring certain things about
that environment and distilling this into high-level information. For instance, one
could think about sensor networks used for air pollution monitoring [Khedo et al.,
2010], gas leak detection [Pavlin et al., 2010], tracking people in office environ-
ments [Zajdel et al., 2006, Satsangi et al., 2015] or tracking of wildlife [Garcia-
Sanchez et al., 2010]. Successful application of sensor networks involves answering
many questions, such as what hardware to use, how the information from different
sensors can be fused, and how the sensors should measure various parts of their
environment to maximize information while minimizing power use. It is especially
questions of the latter type, which involve local decisions by the different sensors,
for which the Dec-POMDP framework studied in this book is relevant: in order to
decide about when to sense at a specific sensor node we need to reason about the ex-
pected information gain from turning that sensor on, which depends on the actions
taken at other sensors, as well as how the phenomenon to be tracked moves through
the spatial environment. For example, when tracking a person in an office environ-
ment, it may be sufficient to only turn on a sensor at the location where the target
is expected given all the previous observations in the entire system. Only when the
target is not where it is expected to be might other sensors be needed. However,
when communication bandwidth or energy concerns preclude the sharing of such
previous information, deciding when to turn on or not is even further complicated.
Again, finding plans for such problems is highly nontrivial: even if we were able to
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specify plans for each node by hand, we typically would not know how good the
joint behavior of the sensor network is, and whether it could be improved.

Concluding, we have seen that in both these examples there are many different
aspects such as decentralization and uncertainties that make it very difficult to spec-
ify good actions to take. We will further elaborate on these issues in the remainder
of this introductory chapter and give an overview of many more domains for which
Decentralized POMDPs are important in Section 1.4.

1.2 Multiagent Systems

This book focuses on settings where there are multiple decision makers, or agents,
that jointly influence their environment. Such an environment together with the mul-
tiple agents that operate in it is called a multiagent system (MAS). The field of MAS
research is a broad interdisciplinary field with relations to distributed and concur-
rent systems, artificial intelligence (AI), economics, logic, philosophy, ecology and
the social sciences [Wooldridge, 2002]. The subfield of AI that deals with principles
and design of MASs is also referred to as ‘distributed AI’. Research on MASs is
motivated by the fact that it can potentially provide [Vlassis, 2007, Sycara, 1998]:

• Speedup and efficiency, due to the asynchronous and parallel computation.
• Robustness and reliability, since the whole system can undergo a ‘graceful degra-

dation’ when one or more agents fail.
• Scalability and flexibility, by adding additional agents as required.
• Lower cost, assuming the agents cost much less than a centralized system.
• Lower development cost and reusability, since it is easier to develop and maintain

a modular system.

There are many different aspects of multiagent systems, depending on the type of
agents, their capabilities and their environment. For instance, in a homogeneous
MAS all agents are identical, while in a heterogeneous MAS the design and capa-
bilities of each agent can be different. Agents can be cooperative, self-interested
or adversarial. The environment can be dynamic or static. These are just a few of
many possible parameters, leading to a number of possible settings too large to
describe here. For a more extensive overview, we refer the reader to the texts by
Huhns [1987], Singh [1994], Sycara [1998], Weiss [1999], Stone and Veloso [2000],
Yokoo [2001], Wooldridge [2002], Bordini et al. [2005], Shoham and Leyton-Brown
[2007], Vlassis [2007], Buşoniu et al. [2008] and Weiss [2013]. In this book, we
will focus on decision making for heterogeneous, fully cooperative MASs in dy-
namic, uncertain environments in which agents need to act based on their individual
knowledge about the environment. Due to the complexity of such settings, hand-
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coded solutions are typically infeasible for such settings [Kinny and Georgeff, 1997,
Weiss, 2013]. Instead, the approach advocated in this book is to describe such prob-
lems using a formal model—the decentralized partially observable Markov decision
process (Dec-POMDP)—and to develop automatic decision making procedures, or
planning methods, for them.

Related Approaches We point out that due to the multi-disciplinary nature of the
field of MASs, there are many disciplines that are closely related to the topic at
hand, and we point out the most relevant of them here.

For instance, in the field of game theory, much research focuses on extensive
form games and partially observable stochastic games, both of which are closely
related to Dec-POMDPs (more on this connection in Section 2.4.5). The main dif-
ference is that game theorists have typically focused on self-interested settings.

The ‘classical planning problem’ as studied in the AI community also deals with
decision making, but for a single agent. These methods have been extended to the
multiagent setting, resulting in a combination of planning and coordination, e.g.
distributed problem solving (DPS) [Durfee, 2001]. However, like classical planning
itself, these extensions typically fail to address stochastic or partially observable en-
vironments [desJardins et al., 1999, de Weerdt et al., 2005, de Weerdt and Clement,
2009].

The field of teamwork theory also considers cooperative MAS, and the
belief-desire-intension (BDI) model of practical reasoning [Bratman, 1987, Rao and
Georgeff, 1995, Georgeff et al., 1999] has inspired many teamwork theories, such
as joint intentions [Cohen and Levesque, 1990, 1991a,b] and shared plans [Grosz
and Sidner, 1990, Grosz and Kraus, 1996], and implementations [Jennings, 1995,
Tambe, 1997, Stone and Veloso, 1999, Pynadath and Tambe, 2003]. While such
BDI-based approaches do allow for uncertainty, they typically rely on (manually)
pre-specified plans that might be difficult to specify and have as a drawback the fact
that it is difficult to define clear quantitative measures for their performance, making
it hard to judge their quality [Pynadath and Tambe, 2002, Nair and Tambe, 2005].

Finally, there are also close links to the operations research (OR) and control the-
ory communities. The Dec-POMDP model is a generalization of the (single-agent)
MDP [Bellman, 1957] and POMDP [Åström, 1965] models which were developed
in OR, and later became popular in AI as a framework for planning for agents [Kael-
bling et al., 1996, 1998]. Control theory and especially optimal control essentially
deals with the same type of planning problems, but with an emphasis on continuous
state and action spaces. Currently, researchers in the field of decentralized control
are working on problems very similar to Dec-POMDPs [e.g., Nayyar et al., 2011,
2014, Mahajan and Mannan, 2014], and, in fact, some results have been established
in parallel both in this and the AI community.
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1.3 Uncertainty

Many real-world applications for which we would want to use MASs are subject
to various forms of uncertainty. This makes it difficult to predict the outcome of a
particular plan (e.g., there may be many possible outcomes) and thus complicates
finding good plans. Here we discuss different types of uncertainty that the Dec-
POMDP framework can cope with.

Outcome Uncertainty. In many situations, the outcome or effects of actions may
be uncertain. In particular we will assume that the possible outcomes of an action
are known, but that each of those outcomes is realized with some probability (i.e.,
the state of the environment changes stochastically). For instance, due to different
surfaces leading to varying amounts of wheel slip, it may be difficult, or even im-
possible, to accurately predict exactly how far our recycling robots move. Similarly,
the amount of trash being put in a bin depends on the activities performed by the
humans in the environment and is inherently stochastic from the perspective of any
reasonable model.1

State Uncertainty. In the real world an agent might not be able to determine what
the state of the environment exactly is. In such cases, we say that the environment is
partially observable. Partial observability results from noisy and/or limited sensors.
Because of sensor noise an agent can receive faulty or inaccurate sensor readings,
or observations. For instance, the air pollution measurement instruments in a sensor
network may give imperfect readings, or gas detection sensors may fail to detect gas
with some probability. When sensors are limited, the agent is unable to observe the
differences between certain states of the environment because they inherently can-
not be distinguished by the sensor. For instance, a recycling robot may simply not
be able to tell whether a trash can is full if it does not first navigate to it. Similarly,
a sensor node typically will only make a local measurement. Due to such sensor
limitations, the same sensor reading might require different action choices, a phe-
nomenon referred to as perceptual aliasing. In order to mitigate these problems, an
agent may use the history of actions it took and the observations it made to get a
better estimate of the state of the environment.

Multiagent Uncertainty: Uncertainty with Respect to Other Agents. Another
complicating factor in MASs is the presence of multiple agents that each make de-
cisions that influence the environment. The difficulty is that each agent can be un-
certain regarding the other agents’ actions. This is apparent in self-interested and
especially adversarial settings, such as games, where agents may not share infor-
mation or try to mislead other agents [Binmore, 1992]. In such settings each agent
should try to accurately predict the behavior of the others in order to maximize its
payoff. But even in cooperative settings, where the agents have the same goal and
therefore are willing to coordinate, it is nontrivial how such coordination should be

1 To be clear, here we exclude models that try to predict human activities in a deterministic fashion
(e.g., this would require perfectly modeling the current activities as well as the ‘internal state’ of
all humans in the office building) from the set of reasonable models.



1.4 Applications 7

performed [Boutilier, 1996]. Especially when communication capabilities are lim-
ited or absent, the question of how the agents should coordinate their actions is
problematic (e.g., given the location of the other recycling robot, should the first
robot move to the trash can which is known to be full?). This problem is magnified
in partially observable environments: as the agents are not assumed to observe the
complete state of the environment—each agent only knows its own observations
made and actions taken—there is no common signal that they can use to condition
their actions on (e.g., given that the first robot only knows that a trash can was not
full four hours ago, should it check if it is full now?). Note that this problem is in
addition to the problem of partial observability, and not a substitute for it; even if
the agents could freely and instantaneously communicate their individual observa-
tions, the joint observations would in general not disambiguate the true state of the
environment.

Other Forms of Uncertainty. We note that in this book we build upon the frame-
work of probability to represent the aforementioned uncertainties. However, there
are other manners by which one can represent uncertainty, such as Dempster-
Shafer belief functions, possibility measures, ranking functions and plausibility
measures [Halpern, 2003]. In particular, many of these alternatives try to overcome
some of the shortcomings of probability in representing uncertainty. For instance,
while probability can represent that the outcome of a die roll is uncertain, it requires
us to assign numbers (e.g., 1/6) to the potential outcomes. As such, it can be diffi-
cult to deal with settings where these numbers are simply not known. For a further
discussion on such issues and alternatives to probability, we refer you to Halpern
[2003].

1.4 Applications

Decision making techniques for cooperative MASs under uncertainty have a great
number of potential applications, ranging from more abstract tasks located in a digi-
tal or virtual environment to a real-world robotics setting. Here we give an overview
of some of these.

An example of a more abstract task is distributed load balancing among queues.
Here, each agent represents a processing unit with a queue, and can only observe
its own queue size and that of its immediate neighbors. The agents have to decide
whether to accept new jobs or pass them to another queue. Such a restricted prob-
lem can be found in many settings, for instance, industrial plants or a cluster of
webservers. The crucial difficulty is that in many of these settings, the overhead as-
sociated with communication is too high, and the processing units will need to make
decisions on local information [Cogill et al., 2004, Ouyang and Teneketzis, 2014].

Another abstract, but very important domain is that of transmission protocols
and routing in communication networks. In these networks, the agents (e.g.,
routers) operate under severe communication restrictions, since the cost of send-
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ing meta-level communication (occupying the communication channels) is pro-
hibitively large. For example, consider the problem faced by transmission protocols
such as TCP: when should packets be sent across a shared channel to be both fair and
efficient for the endpoint computers? Because each computer only has information
such as the number of packets in its queue or the latency of its own packets, each
computer must make decisions based on its own information. A simple two-agent
networking example was first modeled as a Dec-POMDP by Bernstein et al. [2005],
but more recently, more realistic congestion control problems have been studied in
simulation [Winstein and Balakrishnan, 2013]. Peshkin [2001] treated a packet rout-
ing application in which agents are routers and have to minimize the average transfer
time of packets. They are connected to immediate neighbors and have to decide at
each time step to which neighbor to send each packet. Some other approaches to
modeling and optimizing communication networks using decentralized, stochastic,
partially observable systems are given by Ooi and Wornell [1996], Tao et al. [2001]
and Altman [2002].

The application domain of sensor networks [Lesser et al., 2003], as mentioned
above, had received much attention in the Dec-POMDP community. These problems
are inherently partial observable and—when assuming that adding extensive com-
munication infrastructure between the sensor nodes is infeasible—decentralized. In
addition the systems they are intended to monitor are seldom deterministic. This
means that these domains have all the facets of a Dec-POMDP problem. However,
there are also some special properties, such as the fact that the nodes usually have a
static location and that they typically2 do not change the environment by monitoring,
that make them easier to deal with, as we will discuss in Chapter 8.

Another interesting potential application area is the control of networks of traf-

fic lights. Smart traffic light controllers have the potential to significantly increase
the throughput of traffic [Van Katwijk, 2008], but controlling networks of traffic
lights is still challenging, since the traffic flows are stochastic and the networks
are large. To avoid a central point of failure and expensive communication infras-
tructure, the traffic lights should make decisions based on local information, but
reasoning about non-local effects and interactions is necessary. A number of papers
address such problems from the learning perspective [Wiering, 2000, Wiering et al.,
2004, Bazzan, 2005, Kuyer et al., 2008, Bazzan et al., 2010]. Wu et al. [2013] pre-
sented a simplified Dec-POMDP traffic control benchmark. The structure present in
such traffic problems is similar to the structure exploited by several recent solution
methods [Oliehoek et al., 2015b].

A very exciting application domain is that of cooperative robotics [Arai et al.,
2002]. Robotic systems are notorious for being complicated by stochasticity, sen-
sor noise and perceptual aliasing, and not surprisingly many researchers have used
POMDPs to address these problems [Roy et al., 2003, Pineau and Gordon, 2005,
Theocharous et al., 2004, Smith, 2007, Kaelbling and Lozano-Pérez, 2013]. In
case of multiple cooperative robots, as in the RECYCLING ROBOTS example, the
POMDP model no longer suffices; in most of these domains full communication is

2 This assumes the absence of the so-called observer effect, as present in quantum mechanics.
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either not possible (e.g., there is too little bandwidth to transmit video streams from
many cameras or transmission is not sufficiently powerful) or consumes resources
(e.g., battery power) and thus has a particular cost. Therefore Dec-POMDPs are
crucial for essentially all teams of embodied agents. Examples of such settings are
considered both in theory/simulation, such as multirobot space exploration [Becker
et al., 2004b, Witwicki and Durfee, 2010b], as well as in real hardware robot imple-
mentation, e.g., multirobot search of a target [Emery-Montemerlo, 2005], robotic
soccer [Messias, 2014] and a physical implementation of a problem similar to RE-
CYCLING ROBOTS [Amato et al., 2014].

A final, closely related, application area is that of decision support systems for
complex real-world settings, such as crisis management. Also in this setting, it is
inherently necessary to deal with the real world, which often is highly uncertain.
For instance, a number of research efforts have been performed within the context
of RoboCup Rescue [Kitano et al., 1999]. In particular, researchers have been able to
model small subproblems using Dec-POMDPs [Nair et al., 2002, 2003a,b, Oliehoek
and Visser, 2006, Paquet et al., 2005]. Another interesting application is presented
by Shieh et al. [2014], who apply Dec-MDPs in the context of security games which
have been used for securing ports, airports and metro-rail systems [Tambe, 2011].
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