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Preface

This book presents an overview of formal decision making methods for decentral-
ized cooperative systems. It is aimed at graduate students and researchers in the
fields of artificial intelligence and related fields that deal with decision making, such
as operations research and control theory. While we have tried to make the book rel-
atively self-contained, we do assume some amount of background knowledge.

In particular, we assume that the reader is familiar with the concept of an agent as
well as search techniques (like depth-first search, A*, etc.), both of which are stan-
dard in the field of artificial intelligence [Russell and Norvig, 2009]. Additionally,
we assume that the reader has a basic background in probability theory. Although
we give a very concise background in relevant single-agent models (i.e., the ‘MDP’
and ‘POMDP’ frameworks), a more thorough understanding of those frameworks
would benefit the reader. A good first introduction to these concepts can be found
in the textbook by Russell and Norvig, with additional details in texts by Sutton and
Barto [1998], Kaelbling et al. [1998], Spaan [2012] and Kochenderfer et al. [2015].
We also assume that the reader has a basic background in game theory and game-
theoretic notations like Nash equilibrium and Pareto efficiency. Even though these
concepts are not central to our exposition, we do place the Dec-POMDP model in
the more general context they offer. For an explanation of these concepts, the reader
could refer to any introduction on game theory, such as those by Binmore [1992],
Osborne and Rubinstein [1994] and Leyton-Brown and Shoham [2008].

This book heavily builds upon earlier texts by the authors. In particular, many
parts were based on the authors’ previous theses, book chapters and survey articles
[Oliehoek, 2010, 2012, Amato, 2010, 2015, Amato et al., 2013]. This also means
that, even though we have tried to give a relatively complete overview of the work
in the field, the text in some cases is biased towards examples and methods that have
been considered by the authors. For the description of further topics in Chapter 8,
we have selected those that we consider important and promising for future work.
Clearly, there is a necessarily large overlap between these topics and the authors’
recent work in the field.
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i . In the list of
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Chapter 1

Multiagent Systems Under Uncertainty

The impact of the advent of the computer on modern societies can hardly be over-
stated; every single day we are surrounded by more devices equipped with on-board
computation capabilities taking care of the ever-expanding range of functions they
perform for us. Moreover, the decreasing cost and increasing sophistication of hard-
ware and software opens up the possibility of deploying a large number of devices
or systems to solve real-world problems. Each one of these systems (e.g., computer,
router, robot, person) can be thought of as an agent which receives information and
makes decisions about how to act in the world. As the number and sophistication of
these agents increase, controlling them in such a way that they consider and cooper-
ate with each other becomes critical. In many of these multiagent systems (MASs),
cooperation is made more difficult by the fact that the environment is unpredictable
and the information available about the world and other agents (through sensors
and communication channels) is noisy and imperfect. Developing agent controllers
by hand becomes very difficult in these complex domains, so automated methods
for generating solutions from a domain specification are needed. In this book, we
describe a formal framework, called the decentralized partially observable Markov
decision process (Dec-POMDP), that can be used for decision making for a team of
cooperative agents. Solutions to Dec-POMDPs optimize the behavior of the agents
while considering the uncertainty related to the environment and other agents. As
discussed below, the Dec-POMDP model is very general and applies to a wide range
of applications.

From a historical perspective, thinking about interaction has been part of many
different ‘fields’ or, simply, aspects of life, such as philosophy, politics and war.
Mathematical analyses of problems of interaction date back to at least the begin-
ning of the eighteenth century [Bellhouse, 2007], driven by interest in games such
as chess [Zermelo, 1913]. This culminated in the formalization of game theory with
huge implications for the field of economics since the 1940s [von Neumann and
Morgenstern, 1944]. Other single-step cooperative team models were studied by
Marschak [1955] and Radner [1962], followed by systems with dynamics modeled
as team theory problems [Marschak and Radner, 1972, Ho, 1980] and the result-
ing complexity analysis [Papadimitriou and Tsitsiklis, 1987]. In the 1980s, people
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2 1 Multiagent Systems Under Uncertainty

in the field of Artificial Intelligence took their concept of agent, an artificial en-
tity that interacts with its environment over a sequence of time steps, and started
thinking about multiple such agents and how they could interact [Davis and Smith,
1983, Grosz and Sidner, 1986, Durfee et al., 1987, Wooldridge and Jennings, 1995,
Tambe, 1997, Jennings, 1999, Lesser, 1999]. Dec-POMDPs represent a probabilis-
tic generalization of this multiagent framework to model uncertainty with respect
to outcomes, environmental information and communication. We first discuss some
motivating examples for the Dec-POMDP model and then provide additional details
about multiagent systems, the uncertainty considered in Dec-POMDPs and applica-
tion domains.

1.1 Motivating Examples

Before diving deeper, this section will present two motivating examples for the mod-
els and techniques described in this book. The examples briefly illustrate the diffi-
culties and uncertainties one has to deal with when automating decisions in real-
world decentralized systems. Several other examples and applications are discussed
in Section 1.4.

Fig. 1.1: Illustration of a simple Recycling Robots example, in which two robots
remove trash in an office environment with three small (blue) trash cans and two
large (yellow) ones. In this situation, the left robot may observe that the large trash
can next to it is full, and the other robot may detect that the adjacent small trash
can is empty. Note that neither robot can be sure of the trash can’s true state due
to limited sensing capabilities, nor do the robots see the state of trash cans further
away. Also, the robots cannot observe each other at this distance and they do not
know the observations of the other robot due to a lack of communication.

Multirobot Coordination: Recycling Robots Consider a team of robots tasked
with removing trash from an office building, depicted in Figure 1.1. The robots have
sensors to find marked trash cans, motors to move around in order to look for cans, as
well as gripper arms to grasp and carry a can. Small trash cans are light and compact
enough for a single robot to carry, but large trash cans require multiple robots to
carry them out together. It is not certain exactly where the trash cans may be or how
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fast they will fill up, but it is known that, because more people use them, the larger
trash cans fill up more quickly. Each robot needs to take actions based on its own
knowledge: while we encourage the robots to share some important information, we
would not want them to communicate constantly, as this could overload the office’s
wireless network and seems wasteful from an energy perspective. Each robot must
also ensure that its battery remains charged by moving to a charging station before
it expires. The battery level for a robot degrades due to the distance the robot travels
and the weight of the item being carried. Each robot only knows its own battery
level (but not that of the other robots) and the location of other robots within sensor
range. The goal of this problem is to remove as much trash as possible in a given
time period. To accomplish this goal we want to find a plan, or policy, that specifies
for each robot how to behave as a function of its own observations, such that the
joint behavior is optimal. While this problem may appear simple, it is not. Due to
uncertainty, the robots cannot accurately predict the amount of battery reduction that
results from moving. Furthermore, due to noisy and insufficient sensors, each robot
does not accurately know the position and state of the trash cans and other robots.
As a result of these information deficiencies, deciding which trash cans to navigate
to and when to recharge the battery is difficult. Moreover, even if hand-coding the
solution for a single robot would be feasible, predicting how the combination of
policies (one for each robot) would perform in practice is extremely challenging.

Efficient Sensor Networks

Another application that has received significant interest over the last two decades
is that of sensor networks. These are networks of sensors (the agents) that are dis-
tributed in a particular environment with the task of measuring certain things about
that environment and distilling this into high-level information. For instance, one
could think about sensor networks used for air pollution monitoring [Khedo et al.,
2010], gas leak detection [Pavlin et al., 2010], tracking people in office environ-
ments [Zajdel et al., 2006, Satsangi et al., 2015] or tracking of wildlife [Garcia-
Sanchez et al., 2010]. Successful application of sensor networks involves answering
many questions, such as what hardware to use, how the information from different
sensors can be fused, and how the sensors should measure various parts of their
environment to maximize information while minimizing power use. It is especially
questions of the latter type, which involve local decisions by the different sensors,
for which the Dec-POMDP framework studied in this book is relevant: in order to
decide about when to sense at a specific sensor node we need to reason about the ex-
pected information gain from turning that sensor on, which depends on the actions
taken at other sensors, as well as how the phenomenon to be tracked moves through
the spatial environment. For example, when tracking a person in an office environ-
ment, it may be sufficient to only turn on a sensor at the location where the target
is expected given all the previous observations in the entire system. Only when the
target is not where it is expected to be might other sensors be needed. However,
when communication bandwidth or energy concerns preclude the sharing of such
previous information, deciding when to turn on or not is even further complicated.
Again, finding plans for such problems is highly nontrivial: even if we were able to
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specify plans for each node by hand, we typically would not know how good the
joint behavior of the sensor network is, and whether it could be improved.

Concluding, we have seen that in both these examples there are many different
aspects such as decentralization and uncertainties that make it very difficult to spec-
ify good actions to take. We will further elaborate on these issues in the remainder
of this introductory chapter and give an overview of many more domains for which
Decentralized POMDPs are important in Section 1.4.

1.2 Multiagent Systems

This book focuses on settings where there are multiple decision makers, or agents,
that jointly influence their environment. Such an environment together with the mul-
tiple agents that operate in it is called a multiagent system (MAS). The field of MAS
research is a broad interdisciplinary field with relations to distributed and concur-
rent systems, artificial intelligence (AI), economics, logic, philosophy, ecology and
the social sciences [Wooldridge, 2002]. The subfield of AI that deals with principles
and design of MASs is also referred to as ‘distributed AI’. Research on MASs is
motivated by the fact that it can potentially provide [Vlassis, 2007, Sycara, 1998]:

• Speedup and efficiency, due to the asynchronous and parallel computation.
• Robustness and reliability, since the whole system can undergo a ‘graceful degra-

dation’ when one or more agents fail.
• Scalability and flexibility, by adding additional agents as required.
• Lower cost, assuming the agents cost much less than a centralized system.
• Lower development cost and reusability, since it is easier to develop and maintain

a modular system.

There are many different aspects of multiagent systems, depending on the type of
agents, their capabilities and their environment. For instance, in a homogeneous
MAS all agents are identical, while in a heterogeneous MAS the design and capa-
bilities of each agent can be different. Agents can be cooperative, self-interested
or adversarial. The environment can be dynamic or static. These are just a few of
many possible parameters, leading to a number of possible settings too large to
describe here. For a more extensive overview, we refer the reader to the texts by
Huhns [1987], Singh [1994], Sycara [1998], Weiss [1999], Stone and Veloso [2000],
Yokoo [2001], Wooldridge [2002], Bordini et al. [2005], Shoham and Leyton-Brown
[2007], Vlassis [2007], Buşoniu et al. [2008] and Weiss [2013]. In this book, we
will focus on decision making for heterogeneous, fully cooperative MASs in dy-
namic, uncertain environments in which agents need to act based on their individual
knowledge about the environment. Due to the complexity of such settings, hand-
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coded solutions are typically infeasible for such settings [Kinny and Georgeff, 1997,
Weiss, 2013]. Instead, the approach advocated in this book is to describe such prob-
lems using a formal model—the decentralized partially observable Markov decision
process (Dec-POMDP)—and to develop automatic decision making procedures, or
planning methods, for them.

Related Approaches We point out that due to the multi-disciplinary nature of the
field of MASs, there are many disciplines that are closely related to the topic at
hand, and we point out the most relevant of them here.

For instance, in the field of game theory, much research focuses on extensive
form games and partially observable stochastic games, both of which are closely
related to Dec-POMDPs (more on this connection in Section 2.4.5). The main dif-
ference is that game theorists have typically focused on self-interested settings.

The ‘classical planning problem’ as studied in the AI community also deals with
decision making, but for a single agent. These methods have been extended to the
multiagent setting, resulting in a combination of planning and coordination, e.g.
distributed problem solving (DPS) [Durfee, 2001]. However, like classical planning
itself, these extensions typically fail to address stochastic or partially observable en-
vironments [desJardins et al., 1999, de Weerdt et al., 2005, de Weerdt and Clement,
2009].

The field of teamwork theory also considers cooperative MAS, and the
belief-desire-intension (BDI) model of practical reasoning [Bratman, 1987, Rao and
Georgeff, 1995, Georgeff et al., 1999] has inspired many teamwork theories, such
as joint intentions [Cohen and Levesque, 1990, 1991a,b] and shared plans [Grosz
and Sidner, 1990, Grosz and Kraus, 1996], and implementations [Jennings, 1995,
Tambe, 1997, Stone and Veloso, 1999, Pynadath and Tambe, 2003]. While such
BDI-based approaches do allow for uncertainty, they typically rely on (manually)
pre-specified plans that might be difficult to specify and have as a drawback the fact
that it is difficult to define clear quantitative measures for their performance, making
it hard to judge their quality [Pynadath and Tambe, 2002, Nair and Tambe, 2005].

Finally, there are also close links to the operations research (OR) and control the-
ory communities. The Dec-POMDP model is a generalization of the (single-agent)
MDP [Bellman, 1957] and POMDP [Åström, 1965] models which were developed
in OR, and later became popular in AI as a framework for planning for agents [Kael-
bling et al., 1996, 1998]. Control theory and especially optimal control essentially
deals with the same type of planning problems, but with an emphasis on continuous
state and action spaces. Currently, researchers in the field of decentralized control
are working on problems very similar to Dec-POMDPs [e.g., Nayyar et al., 2011,
2014, Mahajan and Mannan, 2014], and, in fact, some results have been established
in parallel both in this and the AI community.
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1.3 Uncertainty

Many real-world applications for which we would want to use MASs are subject
to various forms of uncertainty. This makes it difficult to predict the outcome of a
particular plan (e.g., there may be many possible outcomes) and thus complicates
finding good plans. Here we discuss different types of uncertainty that the Dec-
POMDP framework can cope with.

Outcome Uncertainty. In many situations, the outcome or effects of actions may
be uncertain. In particular we will assume that the possible outcomes of an action
are known, but that each of those outcomes is realized with some probability (i.e.,
the state of the environment changes stochastically). For instance, due to different
surfaces leading to varying amounts of wheel slip, it may be difficult, or even im-
possible, to accurately predict exactly how far our recycling robots move. Similarly,
the amount of trash being put in a bin depends on the activities performed by the
humans in the environment and is inherently stochastic from the perspective of any
reasonable model.1

State Uncertainty. In the real world an agent might not be able to determine what
the state of the environment exactly is. In such cases, we say that the environment is
partially observable. Partial observability results from noisy and/or limited sensors.
Because of sensor noise an agent can receive faulty or inaccurate sensor readings,
or observations. For instance, the air pollution measurement instruments in a sensor
network may give imperfect readings, or gas detection sensors may fail to detect gas
with some probability. When sensors are limited, the agent is unable to observe the
differences between certain states of the environment because they inherently can-
not be distinguished by the sensor. For instance, a recycling robot may simply not
be able to tell whether a trash can is full if it does not first navigate to it. Similarly,
a sensor node typically will only make a local measurement. Due to such sensor
limitations, the same sensor reading might require different action choices, a phe-
nomenon referred to as perceptual aliasing. In order to mitigate these problems, an
agent may use the history of actions it took and the observations it made to get a
better estimate of the state of the environment.

Multiagent Uncertainty: Uncertainty with Respect to Other Agents. Another
complicating factor in MASs is the presence of multiple agents that each make de-
cisions that influence the environment. The difficulty is that each agent can be un-
certain regarding the other agents’ actions. This is apparent in self-interested and
especially adversarial settings, such as games, where agents may not share infor-
mation or try to mislead other agents [Binmore, 1992]. In such settings each agent
should try to accurately predict the behavior of the others in order to maximize its
payoff. But even in cooperative settings, where the agents have the same goal and
therefore are willing to coordinate, it is nontrivial how such coordination should be

1 To be clear, here we exclude models that try to predict human activities in a deterministic fashion
(e.g., this would require perfectly modeling the current activities as well as the ‘internal state’ of
all humans in the office building) from the set of reasonable models.
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performed [Boutilier, 1996]. Especially when communication capabilities are lim-
ited or absent, the question of how the agents should coordinate their actions is
problematic (e.g., given the location of the other recycling robot, should the first
robot move to the trash can which is known to be full?). This problem is magnified
in partially observable environments: as the agents are not assumed to observe the
complete state of the environment—each agent only knows its own observations
made and actions taken—there is no common signal that they can use to condition
their actions on (e.g., given that the first robot only knows that a trash can was not
full four hours ago, should it check if it is full now?). Note that this problem is in
addition to the problem of partial observability, and not a substitute for it; even if
the agents could freely and instantaneously communicate their individual observa-
tions, the joint observations would in general not disambiguate the true state of the
environment.

Other Forms of Uncertainty. We note that in this book we build upon the frame-
work of probability to represent the aforementioned uncertainties. However, there
are other manners by which one can represent uncertainty, such as Dempster-
Shafer belief functions, possibility measures, ranking functions and plausibility
measures [Halpern, 2003]. In particular, many of these alternatives try to overcome
some of the shortcomings of probability in representing uncertainty. For instance,
while probability can represent that the outcome of a die roll is uncertain, it requires
us to assign numbers (e.g., 1/6) to the potential outcomes. As such, it can be diffi-
cult to deal with settings where these numbers are simply not known. For a further
discussion on such issues and alternatives to probability, we refer you to Halpern
[2003].

1.4 Applications

Decision making techniques for cooperative MASs under uncertainty have a great
number of potential applications, ranging from more abstract tasks located in a digi-
tal or virtual environment to a real-world robotics setting. Here we give an overview
of some of these.

An example of a more abstract task is distributed load balancing among queues.
Here, each agent represents a processing unit with a queue, and can only observe
its own queue size and that of its immediate neighbors. The agents have to decide
whether to accept new jobs or pass them to another queue. Such a restricted prob-
lem can be found in many settings, for instance, industrial plants or a cluster of
webservers. The crucial difficulty is that in many of these settings, the overhead as-
sociated with communication is too high, and the processing units will need to make
decisions on local information [Cogill et al., 2004, Ouyang and Teneketzis, 2014].

Another abstract, but very important domain is that of transmission protocols
and routing in communication networks. In these networks, the agents (e.g.,
routers) operate under severe communication restrictions, since the cost of send-
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ing meta-level communication (occupying the communication channels) is pro-
hibitively large. For example, consider the problem faced by transmission protocols
such as TCP: when should packets be sent across a shared channel to be both fair and
efficient for the endpoint computers? Because each computer only has information
such as the number of packets in its queue or the latency of its own packets, each
computer must make decisions based on its own information. A simple two-agent
networking example was first modeled as a Dec-POMDP by Bernstein et al. [2005],
but more recently, more realistic congestion control problems have been studied in
simulation [Winstein and Balakrishnan, 2013]. Peshkin [2001] treated a packet rout-
ing application in which agents are routers and have to minimize the average transfer
time of packets. They are connected to immediate neighbors and have to decide at
each time step to which neighbor to send each packet. Some other approaches to
modeling and optimizing communication networks using decentralized, stochastic,
partially observable systems are given by Ooi and Wornell [1996], Tao et al. [2001]
and Altman [2002].

The application domain of sensor networks [Lesser et al., 2003], as mentioned
above, had received much attention in the Dec-POMDP community. These problems
are inherently partial observable and—when assuming that adding extensive com-
munication infrastructure between the sensor nodes is infeasible—decentralized. In
addition the systems they are intended to monitor are seldom deterministic. This
means that these domains have all the facets of a Dec-POMDP problem. However,
there are also some special properties, such as the fact that the nodes usually have a
static location and that they typically2 do not change the environment by monitoring,
that make them easier to deal with, as we will discuss in Chapter 8.

Another interesting potential application area is the control of networks of traf-

fic lights. Smart traffic light controllers have the potential to significantly increase
the throughput of traffic [Van Katwijk, 2008], but controlling networks of traffic
lights is still challenging, since the traffic flows are stochastic and the networks
are large. To avoid a central point of failure and expensive communication infras-
tructure, the traffic lights should make decisions based on local information, but
reasoning about non-local effects and interactions is necessary. A number of papers
address such problems from the learning perspective [Wiering, 2000, Wiering et al.,
2004, Bazzan, 2005, Kuyer et al., 2008, Bazzan et al., 2010]. Wu et al. [2013] pre-
sented a simplified Dec-POMDP traffic control benchmark. The structure present in
such traffic problems is similar to the structure exploited by several recent solution
methods [Oliehoek et al., 2015b].

A very exciting application domain is that of cooperative robotics [Arai et al.,
2002]. Robotic systems are notorious for being complicated by stochasticity, sen-
sor noise and perceptual aliasing, and not surprisingly many researchers have used
POMDPs to address these problems [Roy et al., 2003, Pineau and Gordon, 2005,
Theocharous et al., 2004, Smith, 2007, Kaelbling and Lozano-Pérez, 2013]. In
case of multiple cooperative robots, as in the RECYCLING ROBOTS example, the
POMDP model no longer suffices; in most of these domains full communication is

2 This assumes the absence of the so-called observer effect, as present in quantum mechanics.
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either not possible (e.g., there is too little bandwidth to transmit video streams from
many cameras or transmission is not sufficiently powerful) or consumes resources
(e.g., battery power) and thus has a particular cost. Therefore Dec-POMDPs are
crucial for essentially all teams of embodied agents. Examples of such settings are
considered both in theory/simulation, such as multirobot space exploration [Becker
et al., 2004b, Witwicki and Durfee, 2010b], as well as in real hardware robot imple-
mentation, e.g., multirobot search of a target [Emery-Montemerlo, 2005], robotic
soccer [Messias, 2014] and a physical implementation of a problem similar to RE-
CYCLING ROBOTS [Amato et al., 2014].

A final, closely related, application area is that of decision support systems for
complex real-world settings, such as crisis management. Also in this setting, it is
inherently necessary to deal with the real world, which often is highly uncertain.
For instance, a number of research efforts have been performed within the context
of RoboCup Rescue [Kitano et al., 1999]. In particular, researchers have been able to
model small subproblems using Dec-POMDPs [Nair et al., 2002, 2003a,b, Oliehoek
and Visser, 2006, Paquet et al., 2005]. Another interesting application is presented
by Shieh et al. [2014], who apply Dec-MDPs in the context of security games which
have been used for securing ports, airports and metro-rail systems [Tambe, 2011].



Chapter 2

The Decentralized POMDP Framework

In this chapter we formally define the Dec-POMDP model. It is a member of the
family of discrete-time planning frameworks that are derived from the single-agent
Markov decision process. Such models specify one or more agents that inhabit a
particular environment, which is considered at discrete time steps, also referred to
as stages [Boutilier et al., 1999] or (decision) epochs [Puterman, 1994]. The number
of time steps during which the agents will interact with their environment is called
the horizon of the decision problem, and will be denoted by h.

The family of MDP-derived frameworks considered in decision-theoretic plan-
ning very neatly fits the definition of an agent [Russell and Norvig, 2009] by offering
an interface of actions and observations to interact with the environment. At each
stage t = 0,1,2, . . . ,h− 1 every agent under consideration takes an action and the
combination of these actions influences the environment, causing a state transition.
At the next time step, each agent first receives an observation of the environment, af-
ter which it has to take an action again. The way in which the environment changes
and emits observations is modeled by the transition and observation model. These
specify probabilities that represent the stochastic dynamics of the environment. Ad-
ditionally there are rewards that specify what behavior is desirable. Hence, the re-
ward model defines the agents’ goal or task: the agents have to come up with a plan
that maximizes the expected long-term reward signal.

2.1 Single-Agent Decision Frameworks

Before diving into the core of multiagent decision making under uncertainty, we
first give a concise treatment of the single-agent problems that we will build upon. In
particular, we will treat Markov decision processes (MDPs) and partially observable
Markov processes (POMDPs). We expect the reader to be (somewhat) familiar with
these models. Hence, these sections serve as a refresher and to introduce notation.
For more details we refer the reader to the texts by Russell and Norvig [2009], Put-
erman [1994], Sutton and Barto [1998], Kaelbling et al. [1998] and Spaan [2012].
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Fig. 2.1: Schematic representation of an MDP. At every stage, the agent takes an
action and observes the resulting state s′.

2.1.1 MDPs

MDPs can be used to formalize a discrete-time planning task of a single agent in
a stochastically changing environment, on the condition that the agent can observe
the state of the environment. This is illustrated in Figure 2.1. Every time step the
state changes stochastically, but the agent chooses an action that selects a particular
transition function. Taking an action a from a particular state st at time step t induces
a probability distribution over states st+1 at time step t +1. The goal of planning for
such an MDP is to find a policy that is optimal with respect to the desired behavior.
This desired behavior, the agent’s objective, can be formulated in several ways. The
first type of objective of an agent is reaching a specific goal state, for example in
a maze in which the agent’s goal is to reach the exit. A different formulation is
given by associating a certain cost with the execution of a particular action in a
particular state, in which case the goal will be to minimize the expected total cost.
Alternatively, one can associate rewards with actions performed in a certain state,
the goal being to maximize the total reward.

When the agent knows the probabilities of the state transitions, i.e., when it
knows the model, it can contemplate the expected transitions over time and com-
pute a plan that is either most likely to reach a specific goal state, that minimizes the
expected costs or that maximizes the expected reward.

In the finite-horizon case an agent can employ a nonstationary policy π =
(δ0, . . . ,δh−1), which is a sequence of decision rules δt , one for each stage t. Each de-
cision rule maps states to actions. In the infinite-horizon case, under some assump-
tions [Bertsekas, 2007], an agent can employ a stationary policy π = (δ), which is
used at each stage. As such, the task of planning can be seen as a search over the
space of (sequences of) decision rules. In planning, this search uses the MDP model
to compute the expected rewards realized by different candidate solutions.

Such a planning approach stands in contrast to reinforcement learning (RL) [Sut-
ton and Barto, 1998, Wiering and van Otterlo, 2012], where the agent does not have
a model of the environment, but has to learn good behavior by repeatedly interact-
ing with the environment. Reinforcement learning can be seen as the combined task
of learning the model of the environment and planning, although in practice it of-
ten is not necessary to explicitly recover the environment model. This book focuses
only on planning, but considers two factors that complicate computing successful
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plans: the inability of the agent to observe the state of the environment as well as
the presence of multiple agents.

2.1.2 POMDPs

Fig. 2.2: Schematic representation of a POMDP. Instead of observing the resulting
state s′, the agent receives an observation o ∼ O(·|s,a).

As mentioned in Section 1.3, noisy and limited sensors may prevent the agent
from observing the state of the environment, because the observations are inaccurate
and perceptual aliasing may occur. In order to represent such state uncertainty, a
partially observable Markov decision process (POMDP) extends the MDP model
by incorporating observations and their probability of occurrence conditional on the
state of the environment [Kaelbling et al., 1998, Cassandra, 1998, Spaan, 2012].
This is illustrated in Figure 2.2. In a POMDP, an agent no longer knows the state of
the world, but rather has to maintain a belief over states. That is, it can use the history
of observations to estimate the probability of each state and use this information to
decide upon an action.

Definition 1 (Belief). A belief of an agent in a POMDP is a probability distribution
over states:

∀st b(st)� Pr(st |ot ,at−1,ot−1, . . . ,a1,o1,a0). (2.1.1)

As a result, a single agent in a partially observable environment can specify its
policy as a series (one for each stage t) of mappings, or decision rules, from the
set of beliefs to actions. Again, for infinite-horizon settings one can usually use a
stationary policy, which consists of a single decision rule used for all stages. During
execution, the agent can incrementally update its current belief by using Bayes’ rule.
The updated belief for a particular action at taken and observation ot+1 received is
given by:

∀st+1 bt+1(st+1) =
1

Pr(ot+1|bt ,at)
∑
st

bt(st)Pr(st+1,ot+1|st ,at). (2.1.2)
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In this equation, Pr(ot+1|at ,bt) is a normalizing constant, and Pr(st+1,ot+1|st ,at) is
the probability that the POMDP model specifies for receiving the particular new
state st+1 and the resulting observation ot+1 assuming st was the previous state.

In control theory, the (continuous) observations, also referred to as measure-
ments, are typically described as a deterministic function of the state. Sensor noise
is modeled by adding a random disturbance term to this function and is dealt with by
introducing a state estimator component, e.g., by Kalman filtering [Kalman, 1960].
Perceptual aliasing arises when a state component cannot be measured directly. For
instance, it may not be possible to directly measure angular velocity of a robot arm;
in this case it may be possible to use a so-called observer to estimate this velocity
from its positions over time.

Although the treatment of state uncertainty in classical control theory involves
terminology and techniques different from those in used in POMDPs, the basic
idea in both is the same: use information gathered from the history of observations
in order to improve decisions. There also is one fundamental difference, however.
Control theory typically separates the estimation from the control component. For
example, the estimator returns a particular value for the angles and angle veloci-
ties of the robot arm and these values are used to select actions as if there was no
uncertainty. In contrast, POMDPs allow the agent to explicitly reason over the be-
lief and what the best action is given that belief. As a result, agents using POMDP
techniques can reason about information gathering: when beneficial, they will select
actions that will provide information about the state.

2.2 Multiagent Decision Making: Decentralized POMDPs

Although POMDPs provide principled treatment of state uncertainty, they only con-
sider a single agent. In order to deal with the effects of uncertainty with respect to
other agents, this book will consider an extension of the POMDP framework, called
decentralized POMDP (Dec-POMDP).

The Dec-POMDP framework is illustrated in Figure 2.3. As the figure shows, it
generalizes the POMDP to multiple agents and thus can be used to model a team of
cooperative agents that are situated in a stochastic, partially observable environment.
Formally, a Dec-POMDP can be defined as follows.1

Definition 2 (Dec-POMDP). A decentralized partially observable Markov decision
process is defined as a tuple MDecP = 〈D,S,A,T,O,O,R,h,b0〉, where

• D= {1, . . . ,n} is the set of n agents.
• S is a (finite) set of states.
• A is the set of joint actions.
• T is the transition probability function.

1 Pynadath and Tambe [2002] introduced a model called multiagent team decision problem
(MTDP), which is essentially equivalent to the Dec-POMDP.
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Fig. 2.3: Schematic representation of a Dec-POMDP. At every stage, each agent
takes an action based on only its own observations.

• O is the set of joint observations.
• O is the observation probability function.
• R is the immediate reward function.
• h is the horizon of the problem as mentioned above.
• b0 ∈�(S) is the initial state distribution at time t = 0.2

The Dec-POMDP model extends single-agent POMDP models by considering
joint actions and observations. In particular, A=×i∈DAi is the set of joint actions.
Here, Ai is the set of actions available to agent i, which can be different for each
agent. At every stage t, each agent i takes an action ai,t , leading to one joint action
a = 〈a1,...,an〉 at every stage.3 How this joint action influences the environment is
described by the transition function T , which specifies Pr(s′|s,a). In a Dec-POMDP,
agents only know their own individual action; they do not observe each other’s ac-
tions. We will assume that Ai does not depend on the stage or state of the environ-
ment (but generalizations that do incorporate such constraints are straightforward to
specify). Similar to the set of joint actions, O = ×i∈DOi is the set of joint obser-
vations, where Oi is a set of observations available to agent i. At every time step
the environment emits one joint observation o = 〈o1,...,on〉 from which each agent i
only observes its own component oi. The observation function O specifies the prob-
abilities Pr(o|a,s′) of joint observations. Figure 2.4 further illustrates the dynamics
of the Dec-POMDP model.

The immediate reward function R : S×A → R maps states and joint actions to
real numbers and is used is used to specify the goal of the agents. In particular, R
only specifies the immediate reward that is awarded for each joint action. The goal,
however, should be to optimize the behavior of the team of agents over a longer
term, i.e., it should optimize over all h stages. Therefore, in order to fully specify
the problem, one needs to select an optimality criterion that indicates how the imme-
diate rewards are combined into a single number. For instance, when planning over

2 We write �(·) for the simplex, the set of probability distributions, over the set (·).
3 Note that we will write ai for the action of agent i (when t is left unspecified) and at for the joint
action at stage t. From the context it should be clear which is intended.
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Fig. 2.4: A more detailed illustration of the dynamics of a Dec-POMDP. At every
stage the environment is in a particular state. This state emits a joint observation
according to the observation model (dashed arrows) from which each agent observes
its individual component (indicated by solid arrows). Then each agent selects an
action, together forming the joint action, which leads to a state transition according
to the transition model (dotted arrows).

a finite horizon the undiscounted expected cumulative reward (the expectation of the
sum of the rewards for all stages, introduced in Chapter 3) is commonly used as the
optimality criterion. The planning problem amounts to finding a tuple of policies,
called a joint policy, that maximizes the optimality criterion.

During execution, the agents are assumed to act based on their individual obser-
vations only and no additional communication is assumed. This does not mean that
Dec-POMDPs cannot model settings which concern communication. For instance,
if one agent has an action “mark blackboard” and the other agent has an observa-
tion “mark on blackboard”, the agents have a mechanism of communication through
the state of the environment. However, rather than making this communication ex-
plicit, we say that the Dec-POMDP can model communication implicitly through
the actions, states and observations. This means that in a Dec-POMDP, communi-
cation has no special semantics. Section 8.3 further elaborates on communication in
Dec-POMDPs.

Note that, as in other planning models (and in contrast to what is usual in rein-
forcement learning), in a Dec-POMDP, the agents are assumed not to observe the
immediate rewards. Observing the immediate rewards could convey information
regarding the true state, which is not present in the received observations, which
is undesirable as all information available to the agents should be modeled in the
observations. When planning for Dec-POMDPs, the only thing that matters is the
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expectation of the cumulative future reward, which is available in the offline plan-
ning phase, not the actual reward obtained. It is not even assumed that the actual
reward can be observed at the end of the episode. If rewards are to be observed, they
should be made part of the observation.

2.3 Example Domains

To illustrate the Dec-POMDP model, we discuss a number of example domains
and benchmark problems. These range from the toy (but surprisingly hard) ‘de-
centralized tiger’ problem to multirobot coordination and communication network
optimization.

2.3.1 Dec-Tiger

We will consider the decentralized tiger (DEC-TIGER) problem Nair et al. [2003c]—
a frequently used Dec-POMDP benchmark—as an example. It concerns two agents
that are standing in a hallway with two doors. Behind one door, there is a treasure
and behind the other is a tiger, as illustrated in Figure 2.5.

Fig. 2.5: The DEC-TIGER benchmark.

The state describes which door the tiger is behind—left (sl) or right (sr), each
occurring with 0.5 probability (i.e., the initial state distribution b0 is uniform). Each
agent can perform three actions: open the left door (aOL), open the right door (aOR)
or listen (aLi). Clearly, opening the door to the treasure will yield a reward (+10),
but opening the door to the tiger will result in a severe penalty (−100). A greater
reward (+20) is given for both agents opening the correct door at the same time.
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As such, a good strategy will probably involve listening first. The listen actions,
however, also have a minor cost (a negative reward of −1). The full reward model
is shown in Table 2.1.

a sl sr

〈aLi,aLi〉 −2 −2
〈aLi,aOL〉 −101 +9
〈aLi,aOR〉 +9 −101
〈aOL,aLi〉 −101 +9
〈aOL,aOL〉 −50 +20
〈aOL,aOR〉 −100 −100
〈aOR,aLi〉 +9 −101
〈aOR,aOL〉 −100 −100
〈aOR,aOR〉 +20 −50

Table 2.1: Rewards for DEC-TIGER.

At every stage the agents get an observation: they can either hear the tiger behind
the left (oHL) or right (oHR) door, but each agent has a 15% chance of hearing it
incorrectly (getting the wrong observation), which means that there is only a prob-
ability of 0.85 ·0.85 = 0.72 that both agents get the correct observation. Moreover,
the observation is informative only if both agents listen; if either agent opens a door,
both agents receive an uninformative (uniformly drawn) observation and the prob-
lem resets to sl or sr with equal probability. At this point the problem just continues,
such that the agents may be able to open the door to the treasure multiple times.
Also note that, since the only two observations the agents can get are oHL and oHR,
the agents have no way of detecting that the problem has been reset: if one agent
opens the door while the other listens, the other agent will not be able to tell that
the door was opened. The full transition, observation and reward models are listed
in Table 2.2.

a sl → sl sl → sr sr → sr sr → sl

〈aLi,aLi〉 1.0 0.0 1.0 0.0
otherwise 0.5 0.5 0.5 0.5

(a) Transition probabilities.

sl sr
a oHL oHR oHL oHR

〈aLi,aLi〉 0.85 0.15 0.15 0.85
otherwise 0.5 0.5 0.5 0.5

(b) Individual observation probabilities.

Table 2.2: Transitions and observation model for DEC-TIGER.
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2.3.2 Multirobot Coordination: Recycling and Box-Pushing

Dec-POMDPs can also be used for the high-level formalization of multirobot tasks.
In fact, several benchmark problems are motivated by coordination in robotics. Here
we will briefly describe two of them: RECYCLING ROBOTS and COOPERATIVE
BOX PUSHING.

Recycling Robots This is the problem described in Section 1.1 and can be rep-
resented as a Dec-POMDP in a natural way. The states, S, consist of the different
locations of each robot, their battery levels and the different amounts of trash in the
cans. The actions, Ai, for each robot consist of movements in different directions
as well as decisions to pick up a trash can or recharge the battery (when in range
of a can or a charging station). Recall that large trash cans can only be picked up
by two agents jointly. The observations, Oi, of each robot consist of its own battery
level, its own location, the locations of other robots in sensor range and the amount
of trash in cans within range. The rewards, R, could consist of a large positive value
for a pair of robots emptying a large (full) trash can, a small positive value for a
single robot emptying a small trash can and negative values for a robot depleting its
battery or a trash can overflowing. An optimal solution is a joint policy that leads
to the expected behavior (given that the rewards are properly specified). That is, it
ensures that the robots cooperate to empty the large trash cans when appropriate and
the small ones individually while considering battery usage.

Box Pushing The COOPERATIVE BOX PUSHING domain was introduced by
Seuken and Zilberstein [2007b] and is a larger two-robot benchmark. Also in this
domain the agents are situated in a grid world, but now they have to collaborate to
move boxes in this world. In particular, there are small boxes that can be moved
by one agent, and big boxes that the agents have to push together. Each agent has
four actions: turn left, turn right, move forward and stay, and five observations that
describe the grid position in front of the agent: empty, wall, other agent, small box,
large box.

b3 b1 b2 

Goal area 

Fig. 2.6: An example cooperative box pushing problem.
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2.3.3 Network Protocol Optimization

The BROADCASTCHANNEL, introduced by Hansen et al. [2004] (and modified by
Bernstein et al. [2005]), models two nodes that have to cooperate to maximize the
throughput of a shared communication channel. At each stage the agents can choose
to send or not send a message across the channel, and they can noisily observe
whether there was a collision (if both agents sent) or not. A reward of 1 is given for
every stage in which a message is successfully sent over the channel and all other
actions receive no reward. This problem has four states (in which each agent has a 0
or 1 message in its buffer), two actions (send or do not send) and five observations
(combinations of whether there is a message in the buffer or not and whether there
was a collision if a message was sent).

A more advanced version of this problem also considers state variables that are
the average interarrival time of acknowledgments, the average outgoing time step
from the sender’s acknowledgments, and the ratio of the most recent round-trip-time
measurement to the minimum observed so far. Its actions consist of adjustments
to the congestion window (increments and multipliers) and the minimum interval
between outgoing packets [Winstein and Balakrishnan, 2013].

2.3.4 Efficient Sensor Networks

Fig. 2.7: A sensor network for intrusion detection. Scanning overlapping areas in-
creases the chance of detection, but sensor nodes should also try to preserve power.

Sensor networks have also been modeled as Dec-POMDPs [Nair et al., 2005,
Marecki et al., 2008]. For instance, consider the setting illustrated in Figure 2.7.
Here, a network of sensors needs to coordinate to maximize the chance of detecting
intruders, while minimizing power usage. The intruders navigate through the plane
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(which could be discretized as a grid) according to certain (stochastic) patterns. At
every stage, sensors decide on a direction to scan or decide to turn off for that time
step (thus saving energy). A typical description of the state of such a problem would
include the position of the intruder, as well as any variable associated with the sensor
nodes (such as remaining battery power). The observations for each sensor node
would typically be whether there was a detection or not. Rewards could model the
cost (energy use) of scanning, and assign a positive reward for every stage in which
sensor nodes scan the area including the target, with a higher reward if multiple
sensors scan that area. These problems are cooperative because the reward will often
be super- (or sub)additive, reflecting the greater (or redundant) information that is
gathered when multiple sensors detect a target on a single time step.

Since the numbers of states, joint actions and joint observations in a sensor net-
work can be quite large, it is typically necessary to exploit the structure specific
to these problems in order to be able to represent them compactly. This will be dis-
cussed in Section 2.4.2. The specific subclass of Dec-POMDP that is frequently used
for sensor networks is called the networked distributed POMDP (ND-POMDP).
ND-POMDPs will be discussed in Chapter 8, where we will revisit this example.

2.4 Special Cases, Generalizations and Related Models

Because solving Dec-POMDPs is complex (as will be discussed in the next chapter),
much research has focused on special cases of Dec-POMDPs. This section briefly
treats a number of special cases that have received considerable attention. For a more
comprehensive overview of all the special cases, the reader is referred to the articles
by Pynadath and Tambe [2002], Goldman and Zilberstein [2004] and Seuken and
Zilberstein [2008]. Additionally, we give a description of the partially observable
stochastic game, which generalizes the Dec-POMDP, and the interactive POMDP,
which is a related framework but takes a subjective perspective.

2.4.1 Observability and Dec-MDPs

One of the dimensions in which Dec-POMDPs can be distinguished is the amount
of information that they provide to the agents via the observations. Research has
identified different categories of observation functions corresponding to degrees of
observability [Pynadath and Tambe, 2002, Goldman and Zilberstein, 2004]. When
the observation function is such that the individual observation for each of the agents
will always uniquely identify the true state, the problem is considered fully observ-
able, also called individually observable. In such a case, the problem reduces to a
centralized model; these will be treated in some more detail in Section 2.4.3.

The other extreme is when the problem is non-observable, meaning that none of
the agents observes any useful information. This is modeled by restricting the set of
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observations to a single null-observation, ∀i Oi = {oi, /0}. Under non-observability
agents can only employ an open-loop plan: a predetermined sequence of actions. A
result of this is that the non-observable setting is easier from a complexity point of
view (NP-complete, Pynadath and Tambe 2002).

Between these two extremes there are partially observable problems which are
the focus of this book. One more special case has been identified, namely the case
where not the individual, but the joint observation identifies the true state. In other
words, if the observations of all the agents are combined, the state of the environ-
ment is known exactly. This case is referred to as jointly or collectively observable.

Definition 3 (Dec-MDP). A jointly observable Dec-POMDP is referred to as a de-
centralized Markov decision process (Dec-MDP).

A common example of a Dec-MDP is a problem in which the state consists of
the locations of a set of robots and each agent observes its own location perfectly.
Therefore, if all these observations are combined, the locations of all robots would
be known.

It is important to keep in mind that, even though all observations together identify
the state in a Dec-MDP, each agent still has a partial view. As such, Dec-MDPs are a
nontrivial subclass of Dec-POMDPs and in fact it can be shown that the worst case
complexity (cf. Section 3.5) of this subclass is the same as that of the entire class of
Dec-POMDPs [Bernstein et al., 2002]. This implies that hardness comes from being
distributed, not (only) from having a hidden state.

2.4.2 Factored Models

A different family of special cases focuses on using properties that the transition,
observation and reward function might exhibit in order to both compactly repre-
sent and efficiently solve Dec-POMDP problems. The core idea is to consider the
states and transition, observation and reward functions not as atomic entities, but as
consisting of a number of factors, and explicitly representing how different factors
affect each other.

For instance, in the case of a sensor network, the observations of each sensor
typically depend only on its local environment. Therefore, it can be possible to rep-
resent the observation model more compactly as a product of smaller observation
functions, one for each agent. In addition, since in many cases the sensing costs are
local and sensors do not influence their environment there is likely special structure
in the reward and transition function.

A large number of models that exploit factorization have been proposed, such as
transition- and observation-independent Dec-MDPs [Becker et al., 2003],
ND-POMDPs [Nair et al., 2005], factored Dec-POMDPs [Oliehoek et al., 2008c],
and many others [Becker et al., 2004a, 2005, Shen et al., 2006, Spaan and Melo,
2008, Varakantham et al., 2009, Mostafa and Lesser, 2009, Witwicki and Durfee,
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2009, 2010b, Mostafa and Lesser, 2011a,b, Witwicki et al., 2012]. Some of these
will be treated in more detail in Chapter 8. In the remainder of this section, we give
an overview of a number of different forms of independence that can arise.

We will discuss factorization in the context of Dec-MDPs, but similar factoriza-
tion can be done in full Dec-POMDPs.

Definition 4 (Agent-Wise Factored Dec-MDP). An (agent-wise) factored n-agent
Dec-MDP is a Dec-MDP where the world state can be factored into n+ 1 compo-
nents, S = S1 × . . .× Sn. The states in si ∈ Si are the local states associated with
agent i. 4

For example, consider an agent navigation task where the agents are located in
positions in a grid and the goal is for all agents to navigate to a particular grid cell.
In such a task, an agent’s local state, si, might consist of its location in a grid. Next,
we identify some properties that an agent-wise factored Dec-MDP might posses.

An agent-wise factored Dec-MDP is said to be locally fully observable if each
agent fully observes its own state component. For instance, if each agent in the
navigation problem can observe its own location the state is locally fully observable.

A factored, n-agent Dec-MDP is said to be transition-independent if the state
transition probabilities factorize as follows:

T (s′ | s,a) =
n

∏
i

Ti(s′i | si,ai). (2.4.1)

Here, Ti(s′i | si,ai) represents the probability that the local state of agent i transi-
tions from si to s′i after executing action ai. For instance, a robot navigation task
is transition-independent if the robots never affect each other (i.e., they do not
bump into each other when moving and can share the same grid cell). On the other
hand, RECYCLING ROBOTS (see Section 2.3.2) is not transition-independent. Even
though the movements are independent, the state cannot be factored into local com-
ponents for each agent: this would require an arbitrary assignment of small trash
cans to agents; moreover, no agent can deal with the large trash cans by itself.

A factored, n-agent Dec-MDP is said to be observation-independent if the obser-
vation probabilities factorize as follows:

O(o | a,s′) = ∏
i∈D

Oi(oi | ai,s′i). (2.4.2)

In the equation above, Oi(oi | ai,s′i) represents the probability that agent i receives
observation oi in state s′i after executing action ai. If the robots in the navigation
problem cannot observe each other (due to working in different locations or lack of
sensors), the problem becomes observation-independent.

A factored, n-agent Dec-MDP is said to be reward-independent if there is a
monotonically nondecreasing function f such that

4 Some factored models also consider an s0 component that is a property of the environment and
is not affected by any agent actions.
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R(s,a) = f (R1(s1,a1), . . . ,Rn(sn,an)) , (2.4.3)

If this is the case, the global reward is maximized by maximizing local rewards. For
instance, additive local rewards,

R(s,a) = ∑
i∈D

Ri(si,ai), (2.4.4)

are frequently used.

2.4.3 Centralized Models: MMDPs and MPOMDPs

In the discussion so far we have focused on models that, in the execution phase, are
truly decentralized: they model agents that select actions based on local observa-
tions. A different approach is to consider models that are centralized, i.e., in which
(joint) actions can be selected based on global information. Such global informa-
tion can arise due to either full observability or communication. In the former case,
each agent simply observes the same observation or state. In the latter case, we have
to assume that agents can share their individual observations over an instantaneous
and noise-free communication channel without costs. In either case, this allows the
construction of a centralized model.

For instance, under such communication, a Dec-MDP effectively reduces to a
multiagent Markov decision process (MMDP) introduced by Boutilier [1996].

Definition 5 (MMDP). A multiagent Markov decision process (MMDP) is defined
as a tuple MMMDP = 〈D,S,A,T,R,h〉, where the components are identical to the case
of Dec-POMDPs (see Definition 2).

In this setting a joint action can be selected based on the state without consider-
ing the history, because the state is Markovian and known by all agents. Moreover,
because each agent knows what the state is, there is an effective way to coordinate.
One can think of the situation as a regular MDP with a ‘puppeteer’ agent that selects
joint actions. For this ‘underlying MDP’ an optimal solution π∗ can be found effi-
ciently5 with standard dynamic programming techniques [Puterman, 1994]. Such a
solution π∗ = (δ 0, . . . ,δ h−1) specifies a mapping from states to joint actions for each
stage ∀t δ t : S → A and can be split into individual policies πi =

(
δi,0, . . . ,δi,h−1

)
with ∀t δi,t : S→ Ai for all agents.

Similarly, adding broadcast communication to regular Dec-POMDP results in
a multiagent POMDP (MPOMDP), which is a special type of POMDP. In this
MPOMDP, each agent can compute the joint belief: i.e., the probability distribu-
tion over states given the histories of joint actions and observations.

5 Solving an MDP is P-complete [Papadimitriou and Tsitsiklis, 1987], but the underlying MDP
of a Dec-POMDP still has size exponential in the number of agents. However, given the MMDP
representation for a particular (typically small) number of agents, the solution is efficient.
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Fig. 2.8: Schematic representation of an MPOMDP. At every stage, each agent
broadcasts its individual observation, which means that effectively each agent re-
ceives the joint observation.

Definition 6 (Joint Belief). A joint belief is the probability distribution over states
induced by the initial state distribution b0 and the history of joint actions and obser-
vations:

b(s)� Pr(s|b0,ao,o1,a1, . . . ,at−1 ot).

We will also write B=	(S) for the set of joint beliefs.

Since the MPOMDP is a POMDP, the computation of this joint belief can be
done incrementally using Bayes’ rule in exactly the same way as described in Sec-
tion 2.1.2.

Even though MPOMDPs are POMDPs and POMDPs are intractable to solve
(PSPACE-complete, Papadimitriou and Tsitsiklis 1987), solving an MPOMDP is
usually easier than solving a Dec-POMDP in practice. The solution of an MPOMDP
specifies a mapping from joint beliefs to joint actions for each stage, ∀t δ t :
	(S) → A, and can be split into individual policies πi =

(
δi,0, . . . ,δi,h−1

)
with

∀t δi,t : 	(S)→ Ai for all agents.

2.4.4 Multiagent Decision Problems

The attentive reader might wonder why we have not given a definition in terms of a
formal tuple for the MPOMDP framework. The reason is that this definition would
be identical to the definition of the Dec-POMDP given in Definition 2. That is, the
traditional definition of a Dec-POMDP presented in Section 2.2 is underspecified
since it does not include the specification of the communication capabilities of the
agents. We try and rectify this situation here.

In particular, we introduce a formalization of a more general class of multiagent
decision problems (MADPs) that will make more explicit all the constraints spec-
ified by its members. In particular, it will make clearer what the decentralization
constraints are that the Dec-POMDP model imposes, and how the approach can be
generalized (e.g., to deal with different assumptions with respect to communica-
tion). We begin by defining the environment of the agents:
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Definition 7 (Markov Multiagent Environment). The Markov multiagent environ-
ment (MME) is defined as a tuple M = 〈D,S,A,T,O,O,R,h,b0〉, where

• R= {R1, . . .Rn} is the set of immediate reward functions for all agents,
• all the other components are exactly the same as in our previous definition of

Dec-POMDP (Definition 2).

With the exception of the remaining two subsections, in this book we restrict
ourselves to collaborative models: a collaborative MME is an MME where all the
agents get the same reward:

∀i, j Ri(s,a) = R j(s,a),

which will be simply written as R(s,a).
An MME is underspecified in that it does not specify the information on which

the agents can base their actions, or how they update their information. We make
this explicit by defining an agent model.

Definition 8 (Agent Model). A model for agent i is a tuple mi = 〈Ii,Ii,Ai,Oi,Zi,πi,ιi〉,
where

• Ii is the set of information states (ISs) (also internal states, or beliefs),
• Ii is the current internal state of the agent,
• Ai,Oi are as before: the actions taken by / observations that the environment

provides to agent i,
• Zi is the set of auxiliary observations zi (e.g., from communication) available to

agent i,
• πi is a (stochastic) action selection policy πi : Ii →	(Ai),
• ιi is the (stochastic) information state function (or belief update function) ιi :

Ii ×Ai ×Oi ×Zi →	(Ii).

This definition makes clear that the MME framework leaves the specification of
the auxiliary observations, information states, the information state function, as well
as the action selection policy unspecified. As such, the MME by itself is not enough
to specify a dynamical process. Instead, it is necessary to specify those missing
components for all agents. This is illustrated in Figure 2.9, which shows how a
dynamic multiagent system (in this case, a Dec-POMDP, which we redefine below)
evolves over time. It makes clear that there is a environment component, the MME,
as well as an agent component that specifies how the agents update their internal
state, which in turn dictates their actions.6 It is only these two components together
that lead to a dynamical process.

Definition 9 (Agent Component). A fully specified agent component, can be for-
malized as a tuple m = 〈D,{Ii} ,{Ii,0} ,{Ai} ,{Oi} ,{Zi} ,{ιi} ,{πi}〉, where

• D= {1, . . . ,n} is the set of n agents.

6 In the most general form, the next internal states would explicitly depend on the taken action too
(not shown, to avoid clutter).
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Fig. 2.9: Illustration of the new perspective on the Dec-POMDP for the two-agent
case. The process is formed by an environment and an agent component that together
generate the interaction over time.

• {Ii} are the sets of internal states for each agent.
• {Ii,0} are the initial internal states of each agent.
• {Ai} are the sets of actions.
• {Oi} are the sets of observations.
• {Zi} are the sets of auxiliary observations.
• {ιi} are the information state functions for each agent.
• {πi} are the policies, that map from internal states to actions.

Additionally, we assume that the agent component specifies a mechanism (left im-
plicit here) for generating the auxiliary observations.

As such, the agent component handles the specification of the entire team of
agents and their internal workings. That is, one can alternatively think of the agent
component as a set of agent models, a joint agent model, for stage t = 0, together
with a mechanism to generate the auxiliary observations.
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Clearly, once the MME and a fully specified agent component are brought to-
gether, we have a dynamical system: a somewhat more complicated Markov reward
process. The goal in formalizing these components, however, is that we want to op-
timize the behavior of the overall system. That is, we want to optimize the agent
component in such a way that the reward is maximized.

As such, we provide a perspective of a whole range of multiagent decision prob-
lems that can be formalized in this fashion. On the one hand, the problem designer
1) selects an optimality criterion, 2) specifies the MME, and 3) may specify a subset
of the elements of the agent component (which determines the ‘type’ of problem
that we are dealing with). On the other hand, the problem optimizer (e.g., a planning
method we develop) has as its goal to optimize the nonspecified elements of the
agent component in order to maximize the value as given by the optimality criterion.
In other words, we can think of a multiagent decision problem as the specification
of an MME together with a non-fully specified agent component.

Redefining Dec-POMDPs We can now redefine what a Dec-POMDP is by mak-
ing use of this framework of MADPs.

Definition 10 (Dec-POMDP). A decentralized POMDP (Dec-POMDP) is a tuple
MDecP = 〈OC,M ,m〉, where

• OC is the optimality criterion,
• M is an MME, and
• m = 〈D, · , · ,{Ai} ,{Oi} ,{Zi = /0} , · ,·〉 is a partially specified agent component:

m can be seen to partially specify the model for each agent: for each model mi
contained in the agent component, it specifies that Zi = /0. That is, there are no
auxiliary observations, such that each agent can form its internal state, and thus
act, based only on its local actions and observations.

The goal for the problem optimizer for a Dec-POMDP is to specify the elements
of m that are not specified: {Ii} ,{Ii,0} ,{ιi} ,{πi}. That is, the action selection poli-
cies need to be optimized and choices need to be made with respect to the represen-
tation and updating of information states. As we will cover in more detail in later
chapters, these choices are typically made differently in the finite and infinite hori-
zon case: internal states are often represented as nodes in a tree (in the former case)
or as a finite-state controller (in the latter case) for each agent.7

Defining MPOMDPs Now, we can also give a more formal definition of an
MPOMDP. As we indicated at the start of this section, an MPOMDP cannot be
discriminated from a Dec-POMDP on the basis of what we now call the MME. In-
stead, it differs from a Dec-POMDP only in the partial specification of the agent
component. This is illustrated in Figure 2.10. In particular, the set of internal states

7 The optimality criterion selected by the problem designer also is typically different depending on
the horizon: maximizing the undiscounted and discounted sum of cumulative rewards are typically
considered as the optimality criteria for the finite and infinite horizon cases, respectively. While this
does not change the task of the problem optimizer, it can change the methods that can be employed
to perform this optimization.
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I1,t
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Fig. 2.10: The agent component for an MPOMDP. The agents share their individual
observations via communication and therefore can maintain the same internal state.
In particular, given the history of joint actions and joint observations, each agent can
compute the joint belief I1,t = I2,t = bt .

of the agents is the set of joint beliefs. This allows us to give a formal definition of
the MPOMDP:

Definition 11 (MPOMDP). A multiagent POMDP (MPOMDP) is specified by a
tuple MMPOMDP = 〈OC,M ,m〉, where

• OC is the optimality criterion,
• M is an MME, and
• m = 〈D,{Ii} ,{Ii,0} ,{Ai} ,{Oi} ,{Zi} ,{ιi} ,·〉 is a partially specified agent com-

ponent. For each agent i:

– The set of internal states is the set of joint beliefs Ii = B.
– Ii,0 = b0.
– The auxiliary observations are the observations of the other agents o−i =

〈o1, . . . ,,oi−1,oi+1, . . . ,on〉 obtained through instantaneous communication. That
is, Zi =

⊗
j 
=iO j.

– The information state function is specified by the joint belief update: bt+1 =
ιi(bt ,at ,ot+1) if and only if bt+1 is the result of performing the belief update
for at ,ot+1—cf. (2.1.2)—on bt .

We see that in an MPOMDP many more elements of the agent component are
specified. In particular, only the action selection policies {πi} that map from internal
states (i.e., joint beliefs) to individual actions need to be specified.
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2.4.5 Partially Observable Stochastic Games

The Dec-POMDP is a very general model in that it deals with many types of un-
certainty and multiple agents. However, it is only applicable to cooperative teams
of agents, since it only specifies a single (team) reward. The generalization of the
Dec-POMDP is the partially observable stochastic game (POSG). It has the same
components as a Dec-POMDP, except that it specifies not a single reward function,
but a collection of reward functions, one for each agent. This means that a POSG
assumes self-interested agents that want to maximize their individual expected cu-
mulative reward.

The consequence of this is that we arrive in the field of game theory: there is
no longer an optimal joint policy, simply because optimality is no longer defined.
Rather the joint policy should be a (Bayesian) Nash Equilibrium, and preferably a
Pareto optimal one.8 However, there is no clear way to identify the best one. More-
over, such a Pareto optimal NE is only guaranteed to exist in randomized policies
(for a finite POSG), which means that it is no longer possible to perform brute-force
policy evaluation (see Section 3.4). Also search methods based on alternating max-
imization (see Section 5.2.1) are no longer guaranteed to converge for POSGs. The
dynamic programming method proposed by Hansen et al. [2004], covered in Sec-
tion 4.1.2, does apply to POSGs: it finds the set of nondominated policies for each
agent.

Even though the consequences of switching to self-interested agents are severe
from a computational perspective, from a modeling perspective the Dec-POMDP
and POSG framework are very similar. In particular all dynamics with respect to
transitions and observations are identical, and therefore computation of probabilities
of action-observation histories and joint beliefs transfers to the POSG setting. As
such, even though solution methods presented in this book may not transfer directly
to the POSG case, the modeling aspect largely does. For instance, the conversion
of a Dec-POMDP to a type of centralized model (covered in Section 4.3) can be
transferred to the POSG setting [Wiggers et al., 2015].

2.4.6 Interactive POMDPs

Both the Dec-POMDP and POSG frameworks present an objective perspective of
the MAS: they present a picture of the whole situation and solution methods try to
find plans for all agents at the same time. An alternative approach to MASs is to
consider it from the perspective of a one particular agent, which we refer to as the
subjective perspective of an MAS.

8 Explanations of these concepts as well as other concepts in this section can be found in for
example the texts by Binmore [1992], Osborne and Rubinstein [1994] and Leyton-Brown and
Shoham [2008].
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The simplest approach is to try and model the decision making process of the
protagonist agent as a POMDP by simply ignoring other agents, and treating their
influence on the transitions and observations as noise. This approximation has as a
drawback that it decreases the value of the optimal policy. Moreover, it cannot deal
with nonstationarity of the influence of other agents; in many settings the behavior
of other agents can change over time (e.g., as the result of changes to their beliefs).

A more sophisticated approach is to have the protagonist agent maintain explicit
models of the other agents in order to better predict them. This is the approach cho-
sen in the recursive modeling method (RMM) [Gmytrasiewicz and Durfee, 1995,
Gmytrasiewicz et al., 1998], which presents a stateless game framework, and the in-
teractive POMDP (I-POMDP) framework [Gmytrasiewicz and Doshi, 2005], which
extends this approach to sequential decision problems with states and observations.

Fig. 2.11: Schematic representation of an I-POMDP. The agent reasons about the
joint state of the environment and the other agent(s).

The general idea is illustrated in Figure 2.11: the protagonist agent models the
interactive state ši =

〈
s,m j

〉
of its environment as consisting of a world state s and a

model for (including the internal state of) the other agent m j.9 Since this interactive
state is the hidden state of a POMDP, it allows the agent to deal with partial observ-
ability of the environment as well as with uncertainty regarding the model of the
other agent. During execution the agent maintains an interactive belief over world
states and models of other agents.

Definition 12. Formally, an interactive POMDP (I-POMDP) of agent i is a tuple〈
Ši,A,Ti,Ri,Oi,Oi,h

〉
, where:

• Ši is the set of interactive states.
• A is the set of joint actions.
• Ti,Ri,Oi,Oi are the transition and reward functions, observations and the ob-

servation function for agent i. These are defined over joint actions (specify-
ing Pr(s′|s,a) and Ri(ši,a)), but over individual observations (i.e., Oi specifies
Pr(oi|a,s′)).

Since an I-POMDP can be seen as a POMDP defined over interactive states, the
POMDP belief update can be generalized to the I-POMDP setting [Gmytrasiewicz

9 This generalizes to more than two agents, but for simplicity we focus on a two-agent (i and j)
setting.
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and Doshi, 2005]. The intuition is that, in order to predict the actions of the other
agents, it uses probabilities ∀ j Pr(a j|θ j) given by the model m j.

An interesting case occurs when considering so-called intentional models: i.e.,
when assuming the other agent also uses an I-POMDP. In this case, the formal def-
inition of I-POMDPs as above leads to an infinite hierarchy of beliefs, because an
I-POMDP for agent i defines its belief over models and thus types of other agents,
which in turn define a belief over the type of agent i, etc. In response to this phe-
nomenon, Gmytrasiewicz and Doshi [2005] define finitely nested I-POMDPs. Here,
a 0th-level belief for agent i, bi,0, is a belief over world states S. An kth-level belief
bi,k is defined over world states and models consisting of types that admit beliefs of
(up to) level k− 1. The actual number of levels that the finitely nested I-POMDP
admits is called the strategy level.



Chapter 3

Finite-Horizon Dec-POMDPs

In this chapter, we discuss issues that are specific to finite-horizon Dec-POMDPs.
First, we formalize the goal of planning for Dec-POMDPs by introducing optimality
criteria and policy representations that are applicable in the finite-horizon case. Sub-
sequently, we discuss the concepts of multiagent belief and value functions for joint
policies that are crucial for many planning methods. Finally, we end this chapter
with a discussion of the computational complexity of Dec-POMDPs.

3.1 Optimality Criteria

An optimality criterion defines exactly what we (i.e., the problem optimizer from
Section 2.4.4) want to optimize. In particular, a desirable sequence of joint actions
should correspond to a high ‘long-term’ reward, formalized as the return.

Definition 13. Let the return or cumulative reward of a Dec-POMDP be defined as
the total sum of the rewards the team of agents receives during execution:

CR(s0,a0,s1, . . . ,sh−1,ah−1) =
h−1

∑
t=0

R(st ,at) (3.1.1)

where R(st ,at) is the reward received at time step t.

A very typical optimality criterion in finite horizon settings is the expectation of
the CR, i.e., the expected cumulative reward,

ECR = E
[h−1

∑
t=0

R(st ,at)
]
, (3.1.2)

where the expectation refers to the expectation over sequences of states and exe-
cuted joint actions. The planning problem is to find a conditional plan, or policy, for
each agent to maximize the optimality criterion. Because the rewards depend on the

© The Author(s) 2016
F.A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs,
SpringerBriefs in Intelligent Systems, DOI 10.1007/978-3-319-28929-8_3
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actions of all agents in Dec-POMDPs, this amounts to finding a tuple of policies,
called a joint policy, that maximizes the expected cumulative reward for the team.

Another frequently used optimality criterion is the discounted expected cumula-
tive reward

DECR = E
[h−1

∑
t=0

γ tR(st ,at)
]
, (3.1.3)

where 0 ≤ γ < 1 is the discount factor. Discounting gives higher priority to rewards
that are obtained sooner, which can be desirable in some applications. This can be
thought of in financial terms, where money now is worth more than money received
in the future. Discounting is also used to keep the optimality criterion bounded in
infinite horizon problems, as we discuss in Chapter 6. Note that the regular (undis-
counted) expected cumulative reward is the special case with γ = 1.

3.2 Policy Representations: Histories and Policies

In an MDP, the agent uses a policy that maps states to actions. In selecting its ac-
tion, an agent can ignore the history (of states) because of the Markov property. In
a POMDP, the agent can no longer observe the state, but it can compute a belief b
that summarizes the history; it is also a Markovian signal. In a Dec-POMDP, how-
ever, during execution each agent will only have access to its individual actions and
observations and there is no method known to summarize this individual history. It
is not possible to maintain and update an individual belief in the same way as in a
POMDP, because the transition and observation function are specified in terms of
joint actions and observations.

In a Dec-POMDP, the agents do not have access to a Markovian signal during
execution. As such, there is no known statistic into which the problem optimizer can
compress the histories of actions and observations without sacrificing optimality.1

As a consequence, planning for Dec-POMDPs involves searching the space joint
Dec-POMDP policies that map full-length individual histories to actions. We will
see later that this also means that solving Dec-POMDPs is even harder than solving
POMDPs.

3.2.1 Histories

First, we define histories that are used in Dec-POMDPs.

1 When assuming slightly more information during planning, one approach is known to compress
the space of internal states: Oliehoek et al. [2013a] present an approach to lossless clustering of
individual histories. This, however, does not fundamentally change the representation of all the
internal states (as is done when, for example, computing a belief for a POMDP); instead only some
histories that satisfy a particular criterion are clustered together.
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Definition 14 (Action-Observation History). An action-observation history (AOH)
for agent i, θ̄i, is the sequence of actions taken by and observations received by agent
i. At a specific time step t, this is

θ̄i, t = (ai,0,oi,1, . . . ,ai,t−1,oi,t) . (3.2.1)

The joint action-observation history θ̄ t = 〈θ̄1, t , . . . ,θ̄n, t〉 specifies the AOH for all
agents. Agent i’s set of possible AOHs at time t is Θ̄i,t . The set of AOHs possible for
all stages for agent i is Θ̄i and θ̄i denotes an AOH from this set.2 Finally the set of
all possible joint AOHs θ̄ is denoted Θ̄ . At t = 0, the (joint) AOH is empty θ̄ 0 = ().

Definition 15 (Observation History). An observation history (OH) for agent i, ōi,
is defined as the sequence of observations an agent has received. At a specific time
step t, this is:

ōi, t = (oi,1, . . . ,oi,t) . (3.2.2)

The joint observation history, is the OH for all agents: ōt = 〈ō1, t , . . . ,ōn, t〉. The set of
observation histories for agent i at time t is denoted by Ōi,t . Similarly to the notation
for action-observation histories, we also use ōi ∈ Ōi and ō ∈ Ō.

Definition 16 (Action History). The action history (AH) for agent i, āi, is the se-
quence of actions an agent has performed:

āi, t = (ai,0,ai,1, . . . ,ai,t−1) . (3.2.3)

Notation for joint action histories and sets are analogous to those for observation
histories. Finally we note that, clearly, a (joint) AOH consists of a (joint) action and
a (joint) observation history: θ̄ t = 〈ōt ,āt〉.

3.2.2 Policies

A policy πi for an agent i maps from histories to actions. In the general case, these
histories are AOHs, since they contain all information an agent has. The number of
AOHs grows exponentially with the horizon of the problem: At time step t, there
are (|Ai| · |Oi|)t possible AOHs for agent i. A policy πi assigns an action to each of
these histories. As a result, the number of possible policies πi is doubly exponential
in the horizon.

Under a deterministic policy, only a subset of possible action-observation histo-
ries can be reached. This is illustrated by the left side of Figure 3.1, where the actions
selected by the policy are given as gray arrows and the two possible observations
are given as dashed arrows. Because one action will have probability 1 of being ex-
ecuted while all other actions will have probability 0, policies that only differ with
respect to an AOH that can never be reached result in the same behavior. Therefore,

2 In a particular Dec-POMDP, it may be the case that not all of these histories can actually be
realized, because of the probabilities specified by the transition and observation model.
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a deterministic policy can be specified by observation histories: when an agent se-
lects actions deterministically, it will be able to infer what action it took from only
the observation history. Using this observation history formulation, a deterministic
policy can conveniently be represented as a tree, as illustrated by the right side of
Figure 3.1.

aOL

aOL

aOL

aOL

aLiaLi

aLi

aLi

aLiaLi

aLi

aLi

aOR

aOR

aOR

aOR

oHL

oHLoHL

oHL
oHR

oHRoHR

oHR

act.-obs. history

Fig. 3.1: A deterministic policy can be represented as a tree. Left: a tree of action-
observation histories θ̄i for one of the agents from the Dec-Tiger problem. A deter-
ministic policy πi is highlighted, showing that πi only reaches a subset of histories
θ̄i. Note that θ̄i that are not reached are not further expanded. Right: The same pol-
icy can be shown in a simplified policy tree. When both agents execute this policy
in the Dec-Tiger problem with h = 3, the joint policy is optimal.

Definition 17. A deterministic policy πi for agent i is a mapping from observation
histories to actions, πi : Ōi → Ai.

In a deterministic policy, πi(θ̄i) specifies the action for the observation his-
tory contained in (action-observation history) θ̄i. For instance, if θ̄i = 〈ōi,āi〉, then
πi(θ̄i) � πi(ōi). We use π = 〈π1,...,πn〉 to denote a joint policy. We say that a de-
terministic joint policy is an induced mapping from joint observation histories to
joint actions π : Ō → A. That is, the mapping is induced by individual policies πi
that make up the joint policy. We will simply write π(ō)� 〈π1(ō1), . . . ,πn(ōn)〉, but
note that this does not mean that π is an arbitrary function from joint observation
histories: the joint policy is decentralized so only a subset of possible mappings
f : Ō → A are valid (those that specify the same individual action for each ōi of
each agent i). This is in contrast to a centralized joint policy that would allow any
possible mapping from joint histories to action (implying agents have access to the
observation histories of all other agents).

Agents can also execute stochastic policies, but (with exception of some parts
of Chapter 6 and 7) we will restrict our attention to deterministic policies without
sacrificing optimality, since a finite-horizon Dec-POMDP has at least one optimal
pure joint policy [Oliehoek et al., 2008b].
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3.3 Multiagent Beliefs

As discussed in the previous section, individual agents in a Dec-POMDP cannot
maintain a belief in the same way as an agent in a POMDP simply because they do
not know what joint action was performed and what joint observation was emitted
by the environment. Nevertheless, a number of forms of individual belief have been
proposed in the literature [Nair et al., 2003c, Hansen et al., 2004, Oliehoek et al.,
2009, Zettlemoyer et al., 2009]. In contrast to beliefs in single-agent POMDPs, these
are not specified over only states, but also over histories/policies/types/beliefs of
the other agents. The key point is that from an individual agent’s perspective just
knowing a probability distribution over states is insufficient; it also needs to be able
to predict what actions the other agents will take.

This is illustrated most clearly by the so-called multiagent belief , which is a
joint distribution over states and the policies that other agents will execute in the
future. We postpone the formal definition of multiagent beliefs to Section 4.1.1,
which formally introduces the concept of ‘policies that other agents will execute in
the future’.

We point out that the computation of all these types of beliefs depends, in one
way or another, on the policies that have been or might be followed by some subset
of agents. However, if we look at our renewed definition of a Dec-POMDP (Def-
inition 10), we see that these quantities are not specified by the problem designer.
Instead, it is up to the problem optimizer to find these. This means that all these
novel notions of belief are only really useful as part of the planning process. That
is, the problem optimizer can use these notions to perform ‘what-if’ reasoning (e.g.,
“what would be good individual policies if the other agents were to act in this-and-
this way” or “what would be the distribution over joint histories and states if the
agents follow some policy π”), but they are not useful without the problem opti-
mizer making any such assumptions on the policies.

3.4 Value Functions for Joint Policies

Joint policies differ in how much reward they can expect to accumulate, which
serves as the basis for determining their quality. Formally, we are interested in the
value of the optimality criterion, the expected cumulative reward (3.1.2), that a joint
policy realizes. This quantity will be simply referred to as the joint policy’s value.

Definition 18. The value V (π) of a joint policy π is defined as

V (π)� E
[h−1

∑
t=0

R(st ,at)
∣∣∣b0,π

]
, (3.4.1)

where the expectation is over states and observations.
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This expectation can be computed using a recursive formulation. For the last
stage t = h−1, the value is given simply by the immediate reward

V π(sh−1,ōh−1) = R(sh−1,π(ōh−1)) .

For all other stages, the expected value is given by:

V π(st ,ōt) = R(st ,π(ōt))+ ∑
st+1∈S

∑
ot+1∈O

Pr(st+1,ot+1|st ,π(ōt))V π(st+1,ōt+1).

(3.4.2)
Here, the probability is simply the product of the transition and observation proba-
bilities Pr(s′,o|s,a) = Pr(o|a,s′) ·Pr(s′|s,a). In essence, fixing the joint policy trans-
forms the Dec-POMDP to a Markov chain with states (st ,ōt). Evaluating this equa-
tion via dynamic programming will result in the value for all (s0,ō0)-pairs. The value
V (π) is then given by weighting these pairs according to the initial state distribution
b0:

V (π) = ∑
s0∈S

b0(s0)V π(s0,ō0). (3.4.3)

(Remember ō0 = 〈(), . . . ,()〉 is the empty joint observation history, which is fixed.)
Finally, as is apparent from the above equations, the probabilities of states and

histories are important in many computations. The following equation recursively
specifies the probabilities of states and joint AOHs under a (potentially stochastic)
joint policy:

Pr(st ,θ̄ t |b0,π) = ∑
st−1∈S

∑
at−1∈A

Pr(st ,ot |st−1,at−1)Pr(at−1|θ̄ t−1,π)

Pr(st−1,θ̄ t−1|b0,π). (3.4.4)

Because there exists an optimal deterministic joint policy for a finite-horizon
Dec-POMDP, it is possible to enumerate all joint policies, evaluate them as de-
scribed above and choose the best one. However, the number of such joint policies
is

O

(
|A†|

n(|O†|h−1)
|O†|−1

)
, (3.4.5)

where |A†| and |O†| denote the largest individual action and observation sets. The
cost of evaluating each joint policy is O

(|S| · |O†|nh
)
. It is clear that this approach

therefore is only suitable for very small problems. This analysis provides some in-
tuition about how hard the problem is. This intuition is supported by the complexity
result due to Bernstein et al. [2002].
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3.5 Complexity

The computational complexity of Dec-POMDPs is notorious. Intuitively, this com-
plexity has two components: First, evaluating a policy, e.g., using (3.4.2), requires
exponential time (in both the number of agents and horizon h) since we need to
compute multiple values for each joint observation history. Second, and even worse,
the number of such joint policies is doubly exponential in the horizon h.

problem primitives num. π for h

n |S| |Ai| |Oi| 2 4 6

DEC-TIGER 2 2 3 2 7.29e02 2.06e14 1.31e60

BROADCASTCHANNEL 2 4 2 2 6.40e01 1.07e09 8.51e37

GRIDSMALL 2 16 5 2 1.563e04 9.313e20 1.175e88

COOPERATIVE BOX PUSHING 2 100 4 5 1.68e7 6.96e187 1.96e4703

RECYCLING ROBOTS 2 4 3 2 7.29e02 2.06e14 1.31e60

Table 3.1: The number of joint policies for different benchmark problems and hori-
zons.

To get an idea of what this means in practice, Table 3.1 lists the number of joint
policies for a number of benchmark problems. Clearly, approaches that exhaustively
search the space of joint policies have little chance of scaling beyond very small
problems. Unfortunately, the complexity result due to Bernstein et al. [2002] sug-
gests that, in the worst case, the complexity associated with such an exhaustive
approach might not be avoidable.

Theorem 1 (Dec-POMDP complexity). The problem of finding the optimal solu-
tion for a finite-horizon Dec-POMDP with n ≥ 2 is NEXP-complete.

Proof. The proof is by reduction from the TILING problem. See Bernstein et al.
[2002] for details.

NEXP is the class of problems that in the worst case take nondeterministic expo-
nential time. Nondeterministic means that, similarly to NP, solving these problems
requires generating a guess about the solution in a nondeterministic way. Expo-
nential time means that verifying whether the guess is a solution takes exponential
time. In practice this means that (assuming NEXP 
= EXP) solving a Dec-POMDP
takes doubly exponential time in the worst case. Moreover, Dec-POMDPs cannot
be approximated efficiently: Rabinovich et al. [2003] showed that even finding
an ‘ε-approximate solution’ is NEXP-complete. That is, given some positive real
number ε , the problem of finding a joint policy that has a value V (π) such that
V (π) ≥ V (π∗)− ε is also intractable. The infinite-horizon problem is undecidable,
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which is a direct result of the undecidability of (single-agent) POMDPs over an
infinite horizon [Madani et al., 1999].

As mentioned in Section 2.4, many of the special cases are motivated by the
intractability of the overall problem. However, it turns out that very strong assump-
tions need to be imposed in order to lower the computational complexity, as demon-
strated by Table 3.2, which shows the complexity of different subclasses of Dec-
MDPs. The simplest case results from having independent transitions, observations
and rewards. It is straightforward to see that in this case, the problem can be de-
composed into n separate MDPs and their solution can then be combined. When
only the transitions and observations are independent, the problem becomes NP-
complete. Intuitively, this occurs because the other agents’ policies do not affect an
agent’s state (only the reward attained at the set of local states). Because indepen-
dent transitions and observations imply local full observability, an agent’s observa-
tion history does not provide any additional information about its own state—it is
already known. Similarly, an agent’s observation history does not provide any addi-
tional information about the other agents’ states because they are independent. As
a result, optimal policies become mappings from local states to actions instead of
mappings from observation histories (or local state histories, as local states are lo-
cally fully observable in this case) to actions. All other combinations of independent
transitions, observations and rewards do not reduce the complexity of the problem,
leaving it NEXP-complete in the worst case.

Table 3.2: Complexity of finite-horizon Dec-MDP subclasses using the indepen-
dence notions from Section 2.4.2.

Independence Complexity

Transitions, observations and rewards P-complete
Transitions and observations NP-complete
Any other subset NEXP-complete



Chapter 4

Exact Finite-Horizon Planning Methods

This chapter presents an overview of exact planning methods for finite-horizon Dec-
POMDPs. This means that these methods perform a search through the space of
joint policy trees. There are three main approaches to doing this: dynamic program-
ming, which will be treated in Section 4.1, heuristic search, which will be treated
in Section 4.2, and converting to a special case of single-agent POMDP, treated in
Section 4.3. Finally, a few other methods will be treated in Section 4.4.

4.1 Backwards Approach: Dynamic Programming

In this section we treat dynamic programming for Dec-POMDPs (DP) [Hansen
et al., 2004]. This method starts at the last stage, t = h−1, and works its way back
to the first stage, t = 0. As such, we say that DP works backwards through time, or
is a bottom-up algorithm. At every stage t the algorithm keeps the solutions that are
potentially optimal for the remaining stages t, . . . ,h−1. This is similar to dynamic
programming for (single-agent) MDP [Puterman, 1994, Sutton and Barto, 1998],
but in contrast to that setting it will not be possible to represent these solutions us-
ing a simple value function over states. Instead, DP for Dec-POMDPs will need to
maintain partial policies, called subtree policies, and values for them.

4.1.1 Growing Policies from Subtree Policies

Since policies can be represented as trees (remember Figure 3.1), a way to decom-
pose them is by considering subtrees. Define the time-to-go, τ , at stage t as

τ = h− t. (4.1.1)

© The Author(s) 2016
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Now qτ
i denotes a τ-stage-to-go subtree policy for agent i. That is, qτ

i is a policy tree
that has the same form as a full policy for the horizon-τ problem. Within the original
horizon-h problem qτ

i is a candidate for execution starting at stage t = h−τ . The set
of τ-stage-to-go subtree policies for agent i is denoted by Qτ

i . A joint subtree policy
qτ ∈Qτ specifies a subtree policy for each agent: qτ = 〈qτ

1, . . . ,q
τ
n〉.

Figure 4.1 shows different structures in a policy for a fictitious Dec-POMDP with
h = 3. This full policy also corresponds to a 3-stage-to-go subtree policy q3

i ; two of
the subtree policies are indicated using dashed ellipses.
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Fig. 4.1: Structure of a policy for an agent with actions {a,ȧ} and observations
{o,ȯ}. A policy πi can be divided into decision rules δi (which are introduced in
Section 4.2.1) or subtree policies qi.

Subtree policies exactly correspond to the notion of ‘policies that other agents
will execute in the future’ mentioned in Section 3.3, and allow us to formally define
multiagent beliefs.

Definition 19 (Multiagent Belief [Hansen et al., 2004]). Let qτ
−i be a profile of

τ = h− t stage-to-go subtree policies for all agents j 
= i. A multiagent belief bi for
agent i is a joint distribution over states and subtree policies of other agents. The
probability of a particular (st ,qτ

−i)-pair is written as bi(st ,qτ
−i).

Policy trees are composed of subtrees; we refer to the reverse operation—returning
the subtree for a particular observation—as policy consumption.

Definition 20 (Subtree Policy Consumption). Providing a length-τ (joint) subtree
policy qτ with a sequence of l < τ (joint) observations consumes a part of qτ , leading
to a (joint) subtree policy which is a subtree of qτ . In particular, consumption

� by
a single joint observation o is written as

qτ−1 = qτ�
o. (4.1.2)
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For instance, in Figure 4.1, q1
i = q2

i

�
ȯ.

Policy consumption is important, because it allows us to reinterpret the equation
of the value of a joint policy (3.4.2) in terms of subtree policies, and thus forms the
basis for establishing sufficiency of the multiagent belief (to predict the value of a
best response) as well as for the dynamic programming approach to Dec-POMDPs.
Note that given a fixed joint policy π , a history ōt actually induces a joint subtree
policy. As such, it is possible to rewrite (3.4.2) as follows. Executing qτ over the last
τ stages, starting from a state st at stage t = h− τ will achieve:

V (st ,qτ) =

{
R(st ,at) if t = h−1,
R(st ,at)+∑st+1∈S ∑o∈O Pr(st+1,o|st ,at)V (st+1,qτ

�
o) otherwise,

(4.1.3)
where at is the joint action specified by (the roots of) qτ .

This equation also explains why a multiagent belief bi(s,qτ
−i) is a sufficient statis-

tic for an agent to select its policy; we can define the value of an individual qτ
i at a

multiagent belief bi using (4.1.3):

V (bi,qτ
i ) = ∑

s,qτ−i

bi(s,qτ
−i)V (s,qτ

−i,q
τ
i ). (4.1.4)

This enables an agent to determine its best individual subtree policy at a multiagent
belief, i.e., a multiagent belief is a sufficient statistic for agent i to optimize its
policy. In addition, a multiagent belief is sufficient to predict the next multiagent
belief (given a set of policies for the other agents): an agent i, after performing
ai,t and receiving oi,t+1, can maintain a multiagent belief via Bayes’ rule. Direct
substitution in (2.1.2) yields:

∀st+1,q
τ−1
−i

bi,t+1(st+1,qτ−1
−i ) =

1
Pr(oi,t+1|bi,t ,ai,t)

∑
st ,qτ−i

bi(st ,qτ
−i)Pr(st+1,qτ−1

−i ,oi,t+1|st ,qτ
−i,ai,t),

where the transition and observation probabilities are the result of marginalizing
over the observations that the other agents could have received:

Pr(st+1,qτ−1
−i ,oi,t+1|st ,qτ

−i,ai,t) = ∑
o−i,t+1

Pr(st+1,ot+1|st ,at)1{qτ−1
−i =qτ−i

�
o−i,t+1

}.

(1{·} is the indicator function, which is 1 if {·} is true and 0 otherwise.)
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4.1.2 Dynamic Programming for Dec-POMDPs

The core idea of DP is to incrementally construct sets of longer subtree policies for
the agents: starting with a set of one-stage-to-go (τ = 1) subtree policies (actions)
that can be executed at the last stage, construct a set of two-step policies to be
executed at h− 2, etc. That is, DP constructs Q1

i ,Q
2
i , . . . ,Q

h
i for all agents i. When

the last backup step is completed, the optimal policy can be found by evaluating
all induced joint policies π ∈ Qh

1 ×·· ·×Qh
n for the initial belief b0 as described in

Section 3.4.
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Fig. 4.2: Policy construction in MAA* (discussed in Section 4.2.2 and shown left)
and dynamic programming (shown right). The figure shows how policies are con-
structed for an agent with two actions a, ȧ and two observations o, ȯ. Dashed com-
ponents are newly generated, dotted components result from the previous iteration.

DP formalizes this idea using backup operations that construct Qτ+1
i from Qτ

i .
For instance, the right side of Figure 4.2 shows how q3

i , a three-stage-to-go subtree
policy, is constructed from two q2

i ∈Q2
i . In general, a one step extended policy qτ+1

i
is created by selecting a subtree policy for each observation and an action for the
root. An exhaustive backup generates all possible qτ+1

i that have policies from the
previously generated set qτ

i ∈Qτ
i as their subtrees. We will denote the sets of subtree

policies resulting from exhaustive backup for each agent i by Qτ+1
e,i .

Unfortunately, the exhaustive backup has an exponential complexity: if an agent
has |Qτ

i | k-step trees, |Ai| actions, and |Oi| observations, there will be

|Qτ+1
e,i |= |Ai||Qτ

i ||Oi|

(k+1)-step trees. This means that the sets of subtree policies maintained grow dou-
bly exponentially with k. This makes sense: since the qτ

i are essentially full policies
for the horizon-k problem their number must be doubly exponentially in k.

To counter this source of intractability, it is possible to prune dominated subtree
policies from Qτ

e,i, resulting in smaller maintained sets Qτ
m,i. As indicated by (4.1.4),

the value of a qτ
i depends on the multiagent belief. Therefore, a qτ

i is dominated if
it is not maximizing at any point in the multiagent belief space: the simplex over
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variables: υ and
{

xq−i,s
}

maximize: υ
subject to:

∑
q−i,s

xq−i,sV (s,qi,q−i)≥ ∑
q−i,s

xq−i,sV (q′i,q−i,s)+υ ∀ q′i

xq−i,s = 1 and xq−i,s ≥ 0 ∀q−i,s

Fig. 4.3: The linear program (LP) to test for dominance. The LP determines if agent
i’s subtree policy qi is dominated, by trying to find a multiagent belief point (en-
coded by the variables

{
xq−i,s

}
) where the value of qi is higher (by υ) than any

other subtree policy q′i (enforced by the constraints on the first line). If at the op-
timal solution υ is nonpositive, qi is not the best subtree policy at any point in the
multiagent belief space and can be pruned. The constraints on the second line simply
guarantee that the variables encode a valid multiagent belief.

S×Qτ
m,−i. It is possible to test for dominance by linear programming, explained

in Figure 4.3. In order to perform pruning, DP must store all the values V (st ,qτ).
Removal of a dominated subtree policy qτ

i of an agent i may cause a qτ
j of another

agent j to become dominated. Therefore DP iterates over agents until no further
pruning is possible, a procedure known as iterated elimination of dominated policies
[Osborne and Rubinstein, 1994].

Algorithm 4.1 Dynamic programming for Dec-POMDPs.
1: Q1

i ←Ai, ∀i {Initialize with individual actions}
2: for τ = 2 to h do

3: for i = 1 to n do

4: Qτ
i ←ExhaustiveBackup(Qτ−1

i )
5: end for

6: while some policies have been pruned do

7: for i = 1 to n do

8: Qτ
i ←Prune(i,Qτ

i , Q−i,τ )
9: end for

10: end while

11: end for

12: Qh ←Qh
1 ×·· ·×Qh

n {Construct the candidate full length policies}
13: for each π ∈Qh do

14: V (π)←∑s b0(s)V (π,s) {Evaluate them}
15: end for

16: return π∗← argmaxπ∈Qh V (π)

Algorithm 4.1 summarizes DP for Dec-POMDPs. In line 1, the individual τ = 1-
stage-to-go policies are initialized with the individual actions. Subsequently, the
outer loop constructs one-step-longer subtree policies via exhaustive backups, and
prunes the dominated subtree policies from the resulting sets. Finally, line 12 con-
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structs all the candidate joint policies that consist of nondominated individual poli-
cies, and subsequently the best one is selected out of this set.

Note that in the main (‘policy growing’) loop of the algorithm, the stored values
V (st ,qτ) are left implicit, even though they form a crucial part of the algorithm; in
reality the exhaustive backup provides both one-step-longer individual policies, as
well as their values V (st ,qτ), and those values are subsequently used in the pruning
step. Additionally, it is worthwhile to know that this algorithm was proposed in the
context of finding nondominated joint policies for POSGs. For more details, we
refer the reader to the original paper by Hansen et al. [2004].

In practice, the pruning step in DP often is not able to sufficiently reduce the
maintained sets to make the approach tractable for larger problems. However, the
idea of point-based dynamic programming formed the basis for a heuristic method,
which will be discussed in Section 5.2.2, that has achieved some empirical success
in finding good policies for problems with very long horizons.

4.2 Forward Approach: Heuristic Search

In the previous section, we explained how dynamic programming works in a back-
ward fashion: by constructing policies from the last stage and working back to the
beginning. In this section we cover a method called Multiagent A* (MAA∗) that is
based on heuristic search. As we will see, it can be interpreted to work in a top-down
fashion forward through time: starting at t = 0 and working to later stages.

4.2.1 Temporal Structure in Policies: Decision Rules

Policies specify actions for all stages of the Dec-POMDP. A common way to repre-
sent the temporal structure in a policy is to split it into decision rules δi that specify
the policy for each stage. An individual policy is then represented as a sequence of
decision rules πi = (δi,0, . . . ,δi,h−1). Decision rules are indicated by dotted ellipses
in Figure 4.1.

In the case of a deterministic policy, the form of the decision rule for stage t is a
mapping from length-t observation histories to actions δi,t : Ōi,t → Ai. In the more
general case its domain is the set of AOHs δi,t : Θ̄i,t → Ai. A joint decision rule
δ t = 〈δ1,t , . . . ,δn,t〉 specifies a decision rule for each agent.

We will also consider policies that are partially specified with respect to time.
Formally, ϕ t = (δ 0, . . . ,δ t−1) denotes the past joint policy at stage t, which is a
partial joint policy specified for stages 0,...,t −1. By appending a joint decision rule
for stage t, we can ‘grow’ such a past joint policy.

Definition 21 (Policy Concatenation). We write

ϕ t+1 = (δ 0, . . . ,δ t−1,δ t) = 〈ϕ t ◦δ t〉 (4.2.1)
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to denote policy concatenation.

Figure 4.1 shows a past policy ϕi,2 and illustrates how policy concatenation 〈ϕi,2◦
δi,2〉= πi forms the full policy.

4.2.2 Multiagent A*

Multiagent A* (MAA∗) is a method that uses the temporal structure in policies to
search through the space of past joint policies ϕ t [Szer et al., 2005]. As Figure (4.2)
(left) illustrates, it works in a forward fashion: it starts with the actions to take at
the first stage, then, in each iteration, a partial (i.e., past) joint policy is selected
and extended with policy concatenation. This leads to a search tree where nodes
correspond to past joint policies, shown in Figure 4.4: the root node is a completely
unspecified joint policy; nodes at depth 3 are fully specified.

Fig. 4.4: An MAA* search tree.

MAA∗ performs standard A∗ search [Russell and Norvig, 2009]: it maintains an
open list of partial joint policies ϕ t and their heuristic values V̂ (ϕ t). On every iter-
ation MAA∗ selects the node ϕ t with the highest heuristic value and ‘expands’ it,
which means that it generates all child nodes—this involves generating and heuris-
tically evaluating all ϕ t+1 = 〈ϕ t ◦δ t〉 and placing them in the open list—and that it
removes ϕ t from the open list. When using an admissible heuristic—a guaranteed
overestimation—the heuristic values V̂ (ϕ t+1) of the newly expanded policies are an
upper bound to the true values, and any lower bound v that has been found (i.e., by
expanding a full policy) can be used to prune the open list. The search ends when



48 4 Exact Finite-Horizon Planning Methods

the list becomes empty, at which point an optimal fully specified joint policy has
been found.

In order to compute a node’s heuristic value V̂ (ϕ t), MAA∗ takes V 0...t−1(ϕ t), the
actual expected reward over the first t stages that are specified, and adds V̂ t...h−1(ϕ t),
a heuristic value for the remaining h− t stages. A typical way to specify V̂ t...h−1(ϕ t)
is to use the value function of the underlying MDP [Szer et al., 2005]. That is, we
can pretend that the Dec-POMDP is an MDP (by ignoring the observations and
the decentralization requirement) and compute the (nonstationary) value function
VMDP(st). Then we can use those values to specify

V̂ t...h−1(ϕ t) = ∑
st

Pr(st |ϕ t ,b0)VMDP(st),

where the probability can be computed as the marginal of (3.4.4). As a result of
its similarity to an approach to approximate POMDPs [Littman et al., 1995], this
approach is called the QMDP heuristic. Intuitively, it should lead to an admissible
heuristic because the MDP value function assumes that the state is observable. In
a similar fashion, it is also possible to use the value function of the underlying
POMDP [Szer et al., 2005, Roth et al., 2005a], referred to as QPOMDP, which will
also result in a tighter overestimation, since it makes fewer simplifying assumptions:
it only drops the decentralization requirement, which effectively means that it as-
sumes that the agents can communicate instantaneously (cf. Section 2.4.3). Finally,
it is also possible to compute a heuristic, dubbed QBG, which corresponds to assum-
ing that the agents can communicate with a one-step delay (see Section 8.3.2.1).
For more details about these heuristics and empirical comparisons, we refer the
reader to Oliehoek [2010]. Regardless of how V̂ t...h−1(ϕ t) is specified, when it is
admissible—a guaranteed overestimation—so is V̂ (ϕ t).

Even though MAA∗ improves over the brute-force search, its scalability is lim-
ited by the fact that the number of δ t grows doubly exponential with t, which means
that the number of children of a node grows doubly exponential in its depth. In or-
der to mitigate the problem, it is possible to apply lossless clustering of the histories
of the agents [Oliehoek et al., 2009], or to try and avoid the expansion of all child
nodes by incrementally expanding nodes only when needed [Spaan et al., 2011].
These techniques can significantly improve the scalability of MAA* [Oliehoek
et al., 2013a].

4.3 Converting to a Non-observable MDP

As discussed, the MAA* method stood at the basis of a number of advances in
scalability of optimal methods. However, it also offers a new perspective on the
planning process itself, which in turn has led to even greater improvements. We
treat this perspective here.
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4.3.1 The Plan-Time MDP and Optimal Value Function

In particular, it is possible to interpret the search-tree of MAA* as a special type
of MDP, a plan-time MDP. That is, each node in Figure 4.4 (i.e., each past joint
policy ϕ t ) can be interpreted to be a state and each edge (i.e., each joint decision
rule δ t ) then corresponds to an action. In this plan-time MDP, the transitions are
deterministic, and the rewards Ř(ϕ t ,δ t) are the expected reward for stage t :

Ř(ϕ t ,δ t) = E [R(st ,at) | b0,ϕ t ]

= ∑
st

∑̄
ot

Pr(st ,ōt |b0,ϕ t)R(st ,δ t(ōt)).

Here, the probability is given by a deterministic variant of (3.4.4).
The transitions are deterministic: the next past joint policy is determined com-

pletely by ϕ t and δ t , such that we can define the transitions as:

Ť (ϕ t+1|ϕ t ,δ t) =

{
1 if ϕ t+1 = 〈ϕ t ◦δ t〉,
0 otherwise.

Given that we have just defined an MDP, we can write down its optimal value func-
tion:

V ∗
t (ϕ t) = max

δ t
Q∗

t (ϕ t ,δ t) (4.3.1)

where Q∗ is defined as

Q∗
t (ϕ t ,δ t) =

{
Ř(ϕ t ,δ t) for the last stage t = h−1,
Ř(ϕ t ,δ t)+V ∗

t+1(〈ϕ t ◦δ t〉) otherwise.
(4.3.2)

This means that, via the notion of plan-time MDP, we have been able to write
down an optimal value function for the Dec-POMDP. It is informative to contrast
the formulation of an optimal value function here to that of the value function of a
particular policy as given by (3.4.2). Where the latter only depended on the history
of observations, the optimal value function depends on the entire past joint policy.
This means that, even though this optimal formulation admits a dynamic program-
ming algorithm, it is not helpful, as this (roughly speaking) boils down to brute-force
search through all joint policies [Oliehoek, 2010].

4.3.2 Plan-Time Sufficient Statistics

The problem in using the optimal value function defined by (4.3.1) is that it is too
big: the number of past joint policies is too large to be able to compute it for most
problems. However, it turns out that it is possible to replace the dependence on
the past joint policy by a so-called plan-time sufficient statistic: a distribution over
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histories and states [Oliehoek et al., 2013a, Dibangoye et al., 2013]. This is useful,
since many past joint policies can potentially map to the same statistic, as indicated
in Figure 4.5.

Fig. 4.5: A hypothetical MAA* search tree based on plan-time sufficient statistics.
Two joint decision rules from the root node can map to the same σ1, and two δ 1
(from different σ1) can lead to the same σ2.

Definition 22 (Sufficient Statistic for Deterministic Past Joint Policies). The suf-
ficient statistic for a tuple (b0,ϕ t), with ϕ t deterministic, is the distribution over joint
observation histories and states: σt(st ,ōt)� Pr(st ,ōt |b0,ϕ t).

Such a statistic is sufficient to predict the immediate reward,

Ř(σt ,δ t) = ∑
st

∑̄
ot

σt(st ,ōt)R(st ,δ t(ōt)),

as well as the next statistic (a function of σt and δ t ). Let ōt+1 = (ōt ,ot+1); then the
updated statistic is given by

σt+1(st+1,ōt+1) =Uss(σt ,δ t) = ∑
st

Pr(st+1,ot+1|st ,δ t(ōt))σt(st ,ōt). (4.3.3)

This means that we can define the optimal value function for a Dec-POMDP as

V ∗
t (σt) = max

δ t
Q∗

t (σt ,δ t), (4.3.4)

where

Q∗
t (σt ,δ t) =

{
Ř(σt ,δ t) for the last stage t = h−1,
Ř(σt ,δ t)+V ∗

t+1(Uss(σt ,δ t)) otherwise.
(4.3.5)

Since potentially many ϕ t map to the same statistic σt , the above formulation
can enable a more compact representation of the optimal value function. Moreover,
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it turns out that this value function satisfies the same property as POMDP value
functions:

Theorem 2 (PWLC of Optimal Value Function). The optimal value function
given by (4.3.4) is piecewise linear and convex (PWLC).

Proof. For the proof see Oliehoek and Amato [2014].

4.3.3 An NOMDP Formulation

The PWLC property of the optimal value function seems to imply that we are actu-
ally dealing with a kind of POMDP. This intuition is correct [Nayyar et al., 2011,
Dibangoye et al., 2013, MacDermed and Isbell, 2013]. In particular, it is possible
make a reduction to a special type of POMDP: a non-observable MDP (a POMDP
with just one ‘NULL’ observation).

Definition 23 (Plan-Time NOMDP). The plan-time NOMDP MPT for a Dec-
POMDP MDecP is a tuple MPT (MDecP) =

〈
Š,Ǎ,Ť ,Ř,Ǒ,Ǒ,ȟ,b̌0

〉
, where:

• Š is the set of augmented states, each št = 〈st ,ōt〉.
• Ǎ is the set of actions, each ǎt corresponds to a joint decision rule δ t in the

Dec-POMDP.
• Ť is the transition function:

Ť (〈st+1,ōt+1〉 | 〈st ,ōt〉 ,δ t) =

{
Pr(st+1,ot+1|st ,δ t(ōt)) if ōt+1 = (ōt ,ot+1),
0 otherwise.

• Ř is the reward function: Ř(〈st ,ōt〉 ,δ t) = R(st ,δ t(ōt)).
• Ǒ = {NULL} is the observation set which only contains the NULL observation.
• Ǒ is the observation function that specifies that NULL is received with probabil-

ity 1 (irrespective of the state and action).
• The horizon is just the horizon of MDecP: ȟ = h.
• b̌0 is the initial state distribution. Since there is only one ō0 (i.e., the empty joint

observation history), it can directly be specified as

∀s0 b̌0(〈s0,ō0〉) = b0(s0).

Since an NOMDP is a special case of a POMDP, all POMDP theory and solu-
tion methods apply. In particular, it should be clear that the belief in this plan-time
NOMDP corresponds exactly to the plan-time sufficient statistic from Definition 22.
Moreover, it can be easily shown that the optimal value function for this plan-time
NOMDP is identical to the formulation equations (4.3.4) and (4.3.5).
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4.4 Other Finite-Horizon Methods

Here we briefly describe two more methods for finite-horizon Dec-POMDPs. The
first, point-based dynamic programming, is an extension of dynamic programming
that tries to avoid work by only considering reachable multiagent beliefs. The sec-
ond directly tries to transform the Dec-POMDP problem to a mathematical pro-
gramming formulation. While these methods have been less effective on benchmark
problems than the heuristic search and conversion to NOMDP methods discussed
above, they present an insight into the problem and a basis for extensions.

4.4.1 Point-Based DP

The main problem in the scalability of exact dynamic programming, is that the set
of maintained subtree policies grows very quickly. DP only removes qτ

i that are not
maximizing at any point in the multiagent belief space. Point-based DP (PBDP)
[Szer and Charpillet, 2006] proposes improving pruning of the set Qτ

e,i by consid-
ering only a subset of reachable belief points Bi ⊂	(S×Qτ

−i). Only those qτ
i that

maximize the value at some bi ∈ Bi are kept.
In order to define reachable beliefs, we consider mappings Γj from observation

histories to subtree policies: Γj,t : Ō j,t → Qτ
j . Let Γ−i,t = 〈Γj,t〉 j 
=i be a mapping

induced by the individual Γj. Now we can define the multiagent belief point induced
by such a Γ−i,t and distribution Pr(st ,ō−i,t |b0,ϕ t) as follows:

bi,t(st ,qτ
−i) = ∑

ō−i,t s.t. Γ−i,t (ō−i,t )=qτ−i

Pr(st ,ō−i,t |b0,ϕ t).

Definition 24 (Deterministically Reachable Multiagent Belief). A multiagent be-
lief bi,t is reachable if there exists a probability distribution Pr(st ,ō−i, t |b0,ϕ t) (for
any deterministic ϕ t ) and an induced mapping Γ −i,t = 〈Γj,t〉 j 
=i that result in bi,t .

While PBDP has the potential to prune more and thus maintain smaller sets of
subtree policies, its scalability remains limited since generating all reachable multi-
agent beliefs requires enumerating all the past joint policies ϕ t . In order to overcome
this problem, Szer and Charpillet [2006] also propose an approximate version that
samples multiagent belief points. While we do not discuss this latter variant in detail,
it can be interpreted as the starting point for an empirically very successful method,
memory-bounded dynamic programming, which will be treated in Section 5.2.2.

4.4.2 Optimization

Another approach to solving Dec-POMDPs is to directly apply exact optimization
methods. This is the approach taken by Aras and Dutech [2010], who proposed a
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mixed integer linear programming formulation for the optimal solution of finite-
horizon Dec-POMDPs, based on representing the set of possible policies for each
agent in sequence form [Koller and Pfeffer, 1997]. In this representation, a policy for
an agent i is represented as a subset of the set of sequences (roughly corresponding
to action-observation histories) for the agent. As such the problem can be interpreted
as a combinatorial optimization problem—find the best subset of sequences—and
solved with a mixed integer linear program (MILP).

For the formulation of the MILP, we refer the reader to the original paper of
Aras and Dutech [2010]. We point out that, while the performance of the MILP-
based approach has not been competitive with the newer MAA* variants, the link
to optimization methods is an important one and may inspire future insights.



Chapter 5

Approximate and Heuristic Finite-Horizon

Planning Methods

The previous chapter discussed methods for exactly solving finite-horizon Dec-
POMDPs: i.e., methods that guarantee finding the optimal solution. While there
have been quite a few insights leading to better scalability, finding an optimal solu-
tion remains very challenging and is not possible for many larger problems. In an
effort to scale to these larger problems, researchers have considered methods that
sacrifice optimality in favor of better scalability. Such methods come in two flavors:
approximation methods and heuristic methods.

Approximation methods are not guaranteed to find the optimal solution, but have
bounds on their solution quality. While such guarantees are very appealing, the com-
plexity result by Rabinovich et al. [2003]—computing an ε-approximate joint pol-
icy is NEXP-complete; see Section 3.5—suggests that they may be either difficult to
obtain, or will suffer from similar scalability problems as exact methods do. Looser
bounds (e.g., probabilistic ones [Amato and Zilberstein, 2009]) are possible in some
cases, but they suffer from the same trade-off between tightness and scalability.

Heuristic methods, in contrast, do not provide quality guarantees, but can pro-
duce high-quality results in practice. A difficulty with such methods is that it is
unclear how close to optimal the solution is. This does not mean that such methods
have no merit: they may produce at least some result where exact or approximation
algorithms would not, and, even though we may not know how far from optimal
they are, they can be objectively compared to one another on benchmark problems.
Many communities in artificial intelligence and computer science have successfully
used such benchmark-driven approaches. Moreover, we argue that the identification
of a successful heuristic should not be seen as the end goal, but rather the start of
an investigation into why that heuristic performs well: apparently there are some
not-yet understood properties of the benchmarks that leads to the heuristic being
successful.

Finally, let us point out that the terminology for non-exact methods is used
loosely in the field. In order to avoid confusion with heuristic search methods
(which, when used with an admissible heuristic—cf. Section 4.2.2—are optimal),
heuristic methods are more often than not referred to as “approximate methods
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(without guarantees)”. Consequently, approximation methods are often referred to
as “bounded approximations” or “approximate methods with guarantees”.

5.1 Approximation Methods

As indicated, approximation methods have not received much attention in Dec-
POMDP literature. In fact, only one approximation method with quality guarantees
has been proposed for finite-horizon Dec-POMDPs. This method is based on dy-
namic programming for Dec-POMDPs and will be treated first. However, as we will
discuss next, the exact methods of the previous chapter can typically be transformed
to approximation methods.

5.1.1 Bounded Dynamic Programming

Bounded Dynamic Programming (BDP) is a version of the dynamic programming
algorithm from Section 4.1.2 that can compute a bounded approximation [Amato
et al., 2007b]. It addresses the main bottleneck of DP, its memory requirement, by
trading in memory for a bounded decrease in solution quality. The main idea is one
that has also been employed in the approximation of POMDPs [Feng and Hansen,
2001, Varakantham et al., 2007a]: by allowing the pruning operator to more aggres-
sively prune the sets of maintained policies, we lose some solution quality, but may
potentially save a lot of space.

Instead of pruning only dominated policies as in the traditional dynamic pro-
gramming approach, BDP performs a more aggressive ε-pruning. That is, instead
of testing if υ ≥ 0 when pruning policies, it tests whether υ ≥ −ε for some fixed
error ε (thus, giving rise to the name ε-pruning). As a result, there may be some
combination of policies that is only ε worse than the given policy qτ

i , allowing the
possible difference in value between the optimal set of policies and the ones re-
tained to be bounded. Of course, truly suboptimal policies will also be pruned, but
removing qτ

i affects the value at that step by at most ε since pruning considers the
value of policies for all distributions over states and other agent policies. Each time
ε-pruning is used by any agent, policies that are close to the optimal may be lost,
but the resulting value of the remaining policies can be bounded. Recall that in tra-
ditional dynamic programming, pruning at each step continues iteratively for each
agent until no more policies can be removed. As a result, at time step τ , if ε-pruning
is used nτ times, the error is at most εnτ . If ε-pruning is used at multiple time steps,
the error will similarly increase additively: over h steps the error becomes at most
ε(n1 + . . .+ nh). Therefore, BDP can provide offline error bounds by interleaving
ε-pruning with optimal pruning. For instance, pruning once per agent on each time
step using ε-pruning, and using optimal pruning otherwise to ensure the total error
is less then nεh, where n is the number of agents and h is the horizon.
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Online error bounds can also be calculated during BDP’s execution to determine
the actual values of υ that result in removing a policy. That is, if υ < 0 during ε-
pruning, the loss in value is at most |υ |. The magnitude of the negative deltas can
be summed to provide a more accurate estimate of the error that BDP has produced.
Small epsilons are useful when implementing pruning in algorithms (due to numer-
ical precision issues), but in practice large epsilons are often needed to significantly
reduce the memory requirements of dynamic programming.

5.1.2 Early Stopping of Heuristic Search

The forward, heuristic search approach can also be transformed into an approxi-
mation method. In particular, remember that MAA* exhaustively searches the tree
of past joint policies ϕ t while maintaining optimistic heuristic values V̂ (ϕ t). Since
the method performs an A* search—it always selects the node to expand with the
highest heuristic value—we know that if V̂ (ϕselected

t ) does not exceed the value v of
the best found joint policy so far, it knows that is has identified an optimal solution.
That is, MAA* stops when

V̂ (ϕselected
t )≤ v.

This immediately suggests a trivial way to turn MAA* into an algorithm that is
guaranteed to find an ε-absolute error approximation: stop the algorithm when

V̂ (ϕselected
t )≤ v+ ε.

Alternatively, MAA* can be used as an anytime algorithm: every time the al-
gorithm finds a new best joint policy this can be reported. In addition, the value of
V̂ (ϕselected

t ) can be queried at any time during the search, giving the current tightest
upper bound, which allows us to compute the worst-case absolute error on the last
reported joint policy.

5.1.3 Application of POMDP Approximation Algorithms

The conversion to a non-observable MDP (NOMDP), described in Section 4.3, im-
mediately suggests an entire range of approximation methods. Even though there are
not many methods directed at NOMDPs in particular, an NOMDP is a special case
of a POMDP. As such, it is possible to apply any POMDP approximation method to
the NOMDP formulation of a Dec-POMDP.

For instance, Dibangoye et al. [2013] extend heuristic search value iteration
(HSVI) to apply to the NOMDP formulation. HSVI, introduced by Smith and Sim-
mons [2004], performs a search over reachable beliefs given the initial belief, and
maintains lower and upper bounds to direct the search. As such, in the limit, the
lower and upper bound will converge, but the method can stop as soon as a desired
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precision ε is reached. In order to improve the efficiency of the method Dibangoye
et al. [2013] introduce a number of modifications.

Because the state and action space of the NOMDP grows with the horizon, the
authors compress these spaces by determining equivalent histories using methods
such as the one discussed in Section 4.2.2. These compression techniques reduce
the dimensionality of the sufficient statistic in the NOMDP. Using an extension of
HSVI in this compressed space then permits significantly larger problems to be
solved.

5.2 Heuristic Methods

Given the complexity of even finding an approximation for a Dec-POMDP, many
proposed methods sacrifice guarantees on the performance in favor of better scala-
bility. Again, many of these methods are inspired by the exact approaches (DP and
MAA*) to solving Dec-POMDPs, but in addition there are a few other methods,
of which we will describe Joint Equilibrium-based Search for Policies as well as
cross-entropy optimization.

5.2.1 Alternating Maximization

Joint Equilibrium-based Search for Policies (JESP) is a method introduced by Nair
et al. [2003c] that is guaranteed to find a locally optimal joint policy. More specif-
ically, it is guaranteed to find a Nash equilibrium: a tuple of policies such that for
each agent i its policy πi is a best response for the policies employed by the other
agents π−i. Such a Nash equilibrium is a fixed point under best-response computa-
tion and is referred to as person-by-person optimal in control theory [Mahajan and
Mannan, 2014].

JESP relies on a process called alternating maximization, which is a procedure
that computes a policy πi for an agent i that maximizes the joint reward, while keep-
ing the policies of the other agents fixed. Next, another agent is chosen to maximize
the joint reward by finding its best response. This process is repeated until the joint
policy converges to a Nash equilibrium, which is a local optimum. This process is
also referred to as hill-climbing or coordinate ascent. Note that the local optimum
reached in this way can be arbitrarily bad. For instance, if, in the Dec-Tiger problem,
agent 1 opens the left (aOL) door right away, the best response for agent 2 is to also
select aOL. To reduce the impact of such bad local optima, JESP can use random
restarts.

In order to compute a best response for the selected agent, one can exhaustively
loop through the policies available to agent i and use (3.4.2) to compute the resulting
value. However, a more efficient approach is to compute the best-response policy
for a selected agent i via dynamic programming. In essence, fixing π−i allows for a
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reformulation of the problem as an augmented POMDP. In this augmented POMDP,
a state š = 〈s,ō−i〉 consists of a nominal state s and the observation histories of the
other agents ō−i. Given the fixed deterministic policies of other agents π−i, such
an augmented state š is Markovian and all transition and observation probabilities
can be derived from π−i and the transition and observation model of the original
Dec-POMDP. For instance, the transition probabilities are given by

Ťπ−i(š
′ = 〈st+1,ō−i,t+1〉|š = 〈s,ō−i,t〉,ai,t) =

T (st+1|st ,π−i(ō−i,t),ai,t) ∑
oi,t+1

O(oi,t+1,o−i,t+1|π−i(ō−i,t),ai,t ,st+1)

if ō−i,t+1 = (ō−i,t ,o−i,t+1) and 0 otherwise. The observation probabilities of the aug-
mented model are given by

Ǒ(oi,t+1|ai,t ,š ′ = 〈st+1,ō−i,t+1〉) = O(oi,t+1,o−i,t+1|π−i(ō−i,t),ai,t ,st+1),

where o−i,t+1 is specified by ō−i,t+1.
There is an interesting relation between the belief bi(〈s,ō−i,t〉) used by JESP, and

a multiagent belief bi(〈s,qh−t
−i 〉). Particularly, given a full-length (i.e., specified for

all stages) fixed policy of other agents π−i, it is easy to show that a ‘JESP belief’
induces a multiagent belief. Interestingly, it can be shown that (even when the full-
length π−i are not given) two histories that lead to the same JESP beliefs will lead
to the same best-response policies for agent i [Oliehoek et al., 2013a]. This property
can be used to cluster ‘probabilistically equivalent’ observation histories together
(the ‘lossless clustering’ mentioned in Section 4.2.2), potentially allowing for drastic
decreases in the search space.

JESP exploits the knowledge of the initial belief b0 by only considering reachable
beliefs bi(š) in the solution of the POMDP. However, in some cases the initial belief
might not be available. As demonstrated by Varakantham et al. [2006], JESP can be
extended to plan for the entire space of initial beliefs, overcoming this problem.

5.2.2 Memory-Bounded Dynamic Programming

As discussed in Section 4.4.1, the major limitation of exact dynamic programming
is the amount of time and memory required to generate and store all the nondomi-
nated subtree policies. Even though pruning is applied, this typically cannot prevent
the sets of nondominated subtree policies from growing very rapidly. The Point-
based DP technique that Section 4.4.1 introduces tries to overcome this problem by
focusing only on reachable multiagent beliefs, and an approximate variation tries to
bring further leverage by just sampling those reachable beliefs. In this section, we
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discuss a method called Memory-bounded DP (MBDP), introduced by Seuken and
Zilberstein [2007a] , which takes this idea even further.1

In particular, MBDP makes two approximations. First, for each agent it maintains
sets of subtree policies Qk

i of a fixed size: a parameter called MaxTrees. Second,
in order to generate those MaxTrees subtree policies per agent, it does not sample
reachable multiagent beliefs (which involves sampling past joint policies), but rather
relies on a small number of heuristic joint policies and uses the sample joint beliefs
(cf. Section 2.4.3) at which candidate subtree policies are evaluated. As such, MBDP
integrates top-down heuristics with bottom-up dynamic programming.

In a bit more detail, MBDP is conducted in an iterative fashion like traditional
dynamic programming. For example, in a problem of horizon h, the algorithm starts
with performing an exhaustive backup to construct the sets {Q2

i } of two-stage-to-go
subtree policies. In order to reduce the size of these sets to MaxTrees, MBDP uses
heuristic policies for stages 0, . . . ,h−2 to sample joint-action observation histories
θ̄ h−2 and associated joint beliefs bh−2. At each joint belief the algorithm selects the
joint subtree policy that maximizes the value:

q2 = argmax
q2∈Q2

V (bh−2,q2). (5.2.1)

That is, MBDP pretends that the resulting joint beliefs are revealed to the agents and
it retains only the trees that have the highest value at these joint belief. While during
execution the belief state will not truly be revealed to the agents, the hope is that
the individual subtree policies that are specified by these joint subtree policies are
good policies in large parts of the multiagent belief space. Because it can happen
that multiple maximizing joint subtree policies specify the same individual subtree
for an agent, the algorithm continues sampling new joint beliefs bh−2 until it has
found MaxTrees subtrees for each agent. At this point, MBDP will again perform
an exhaustive backup and start with the selection of MaxTrees three-stage-to-go
subtree policies for each agent.

The big advantage that MBDP offers is that, because the size of maintained sub-
trees does not grow, the size of the candidate sets Qτ

i formed by exhaustive backup is
O(|A†|MaxTrees|O†|), where |A†| and |O†| denote the size of the largest individual
action and observation set. This does not depend on the horizon and as such MBDP
scales linearly with respect to the horizon, enabling to solution of problems up to
thousands of time steps.

While the complexity of MBDP becomes linear in the horizon, in order to per-
form the maximization in (5.2.1), MBDP loops over the

|Qτ |= O(|A†|nMaxTreesn|O†|)

joint subtree policies for each of the sampled joint belief points. To reduce the bur-
den of this complexity, many papers have proposed new methods for performing

1 For a deeper treatment of the relation between MBDP and PBDP, we refer to the description by
Oliehoek [2012].
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this so-called point-based backup operation [Seuken and Zilberstein, 2007b, Car-
lin and Zilberstein, 2008, Boularias and Chaib-draa, 2008, Dibangoye et al., 2009,
Amato et al., 2009, Wu et al., 2010a].2 Also, this backup corresponds to solving a
one-shot constraint optimization problem, or collaborative Bayesian game, for each
joint action [Kumar and Zilberstein, 2010a, Oliehoek et al., 2010].

5.2.3 Approximate Heuristic-Search Methods3

The fact that MBDP’s point-based backup can be interpreted as a collaborative
Bayesian game (CBGs) is no coincidence: such CBGs capture a fundamental aspect
of the coordination process under uncertainty. In fact, one of the first approximate
methods developed by Emery-Montemerlo et al. uses CBGs as a central component
[Emery-Montemerlo et al., 2004, 2005]: it represents a Dec-POMDP as a series of
CBGs, one for each stage t. It turns out that this method can be interpreted as a
special case of the heuristic search approach to Dec-POMDPs (i.e., MAA*), pro-
viding a unifying perspective on the methods by Emery-Montemerlo et al. [2004]
and Szer et al. [2005]. Here we treat this perspective, starting with a formalization
of the CBG for a stage of the Dec-POMDP.

Dec-POMDPs as Series of Bayesian Games A Bayesian game (BG) is an exten-
sion of a strategic form game in which the agents have private information [Osborne
and Rubinstein, 1994]. A collaborative BG is a BG with identical payoffs. In a Dec-
POMDP, the crucial difficulty in making a decision at some stage t is that the agents
lack a common signal on which to condition their actions; they must instead base
their actions on their individual histories. Given the initial state distribution b0 and
past joint policy ϕ t , this situation can be modeled as a CBG:

Definition 25. A collaborative Bayesian game B(MDecP,b0,ϕ t) for stage t of a Dec-
POMDP MDecP induced by b0,ϕ t is a tuple 〈D,A,Θ̄ t ,Pr(·),Q̂〉 consisting of

• the set of agents D,
• the set of their joint actions A,
• the set of their joint AOHs Θ̄ t (referred to as joint ‘types’ in Bayesian-game

terminology),
• a probability distribution over them Pr(θ̄ t |b0,ϕ t), and
• a heuristic payoff function Q̂(θ̄ t ,a).

Since our discussion will be restricted to CBGs in the context of a single Dec-
POMDP, we will simply write B(b0,ϕ t) for such a CBG.

2 This name indicates the similarity with the point-based backup in single-agent POMDPs.
3 This section title nicely illustrates the difficulty with the terminology for approximate and
heuristic methods: This section covers heuristic methods (i.e., without guarantees) that are based
on heuristic search. In order to avoid the phrase ‘heuristic heuristic-search methods’, we will refer
to these as ‘approximate heuristic-search methods’.
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In the CBG, agents use policies4 that map from their individual AOHs to actions.
That is, a policy of an agent i for a CBG corresponds to a decision rule δi,t for the
Dec-POMDP. The solution of the CBG is the joint decision rule δ t that maximizes
the expected payoff with respect to Q̂:

δ̂ t = argmax
δ t

∑
θ̄ t∈Θ̄ t

Pr(θ̄ t |b0,ϕ t)Q̂(θ̄ t ,δ t(θ̄ t)). (5.2.2)

Here δ t(θ̄ t) is shorthand for the joint action resulting from individual application
of the decision rules: δ t(θ̄ t) �

〈
δ1,t(θ̄1, t), . . . ,δn,t(θ̄n, t)

〉
. The probability is given

as the marginal of (3.4.4). If ϕ t is deterministic, the probability of θ̄ t = 〈āt ,ōt〉 is
nonzero for exactly one āt , which means that attention can be restricted to OHs and
decision rules that map from OHs to actions.

This perspective of a stage of a Dec-POMDP immediately suggests the following
solution method: first construct a CBG for stage t = 0, solve it to find δ̂ 0, set ϕ1 =

(δ̂ 0) and use it to construct a CBG B(b0,ϕ1) for stage t = 1, etc. Once we have
solved a CBG for every stage t = 0,1, . . . ,,h− 1, we have found an approximate
solution π̂ = (δ̂ 0, . . . ,δ̂ h−1). This process is referred to as forward-sweep policy
computation (FSPC) and is illustrated in Figure 5.1a.
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(a) Forward-sweep policy computation (FSPC).
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Fig. 5.1: Forward approach to Dec-POMDPs.

A problem in FSPC is that (5.2.2) still maximizes over δ t that map from histo-
ries to actions; the number of such δ t is doubly exponential in t. There are two main
approaches to gaining leverage. First, the maximization in (5.2.2) can be performed
more efficiently: approximately via alternating maximization [Emery-Montemerlo
et al., 2004], or exactly via heuristic search or other methods from constraint op-

4 In game theory, these policies are typically referred to as ‘strategies’. To avoid introducing more
terms than necessary, we stick to policy here.
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timization [Kumar and Zilberstein, 2010a, Oliehoek et al., 2010, 2012a]. Second,
it is possible to reduce the number of histories under concern via pruning [Emery-
Montemerlo et al., 2004], approximate clustering [Emery-Montemerlo et al., 2005]
or lossless clustering [Oliehoek et al., 2009].

Heuristic Q-Value Functions The CBG for a stage is fully specified given b0,ϕ t
and Q̂, but we have not yet addressed the matter of choosing Q̂. Essentially, this is
quite similar to the choice of the heuristic V̂ in MAA* described in Section 4.2.2.
The difference is that here we constrain the heuristic to be of the form:

V̂ (ϕ t+1 = 〈ϕ t ◦δ t〉) = ∑
θ̄ t∈Θ̄ t

Pr(θ̄ t |b0,ϕ t)Q̂(θ̄ t ,δ t(θ̄ t)).

If, for the last stage, the heuristic specifies the immediate reward Q̂(θ̄ t ,a) =
R(θ̄ t ,a), it is easy to show that the decision rule δ̂ h−1 that maximizes (5.2.2) in
fact maximizes the expected last-stage reward and thus is optimal (given b0,ϕ t ).
For other stages it is not practical to specify such an optimal heuristic of the form
Q̂(θ̄ t ,a); this essentially corresponds to specifying an optimal value function, but
there is no way to compute an optimal value function of such a simple form (cf. the
discussion in Section 4.3).

However, note that FSPC via CBGs is not suboptimal per se: It is possible to
compute a value function of the form Qπ(θ̄ t ,a) for any π . Doing this for a π∗ yields
Qπ∗

, and when using the latter as the payoff functions for the CBGs, FSPC is ex-
act [Oliehoek et al., 2008b].5 The practical value of this insight is limited since it
requires knowing an optimal policy to start with. In practice, researchers have used
approximate value functions, such as the QMDP, QPOMDP and QBG functions that
were mentioned in Section 4.2.2. It is worth pointing out, however, that since FSPC
does not give any guarantees, it is not restricted to using an ‘admissible’ heuristic:
heuristics that occasionally underestimate the value but are overall more accurate
can produce better results.

Generalized MAA* Even though Figure 5.1 shows a clear relation between FSPC
and MAA∗, it may not be directly obvious how they relate: the former solves CBGs,
while the latter performs heuristic search. Generalized MAA∗ (GMAA∗) unifies
these two approaches by making explicit the ‘Next’ operator [Oliehoek et al.,
2008b].

Algorithm 5.1 shows GMAA∗. When the Select operator selects the highest
ranked ϕ t and when the expansion (‘Next’) operator expands all the children of a
node, GMAA∗ simply is MAA∗. Alternatively, the Next operator can construct a
CBG B(b0,ϕ t) for which all joint CBG policies δ t are evaluated. These can then be
used to construct a new set of partial policies ΦNext = {〈ϕ t ◦δ t〉} and their heuristic
values. This corresponds to MAA∗ reformulated to work on CBGs. It can be shown

5 There is a subtle but important difference between Qπ∗
(θ̄ t ,a) and the optimal value function

from Section 4.3: the latter specifies the optimal value given any past joint policy ϕ t while the
former only specifies optimal value given that π∗ is actually being followed. For a more thorough
discussion of these differences we refer you to Oliehoek [2010].
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Algorithm 5.1 (Generalized) MAA∗

Initialize:
v←−∞ {initialize max. lower bound}
L←{ϕ0 = ()} {initialize open list with ‘empty’ root node}
repeat

ϕ t ←Select(L)
ΦNext←Next(b0,ϕ t)
if ΦNext contains full policies ΠNext ⊆ ΦNext then

π ′ ← argmaxπ∈ΠNext
V (π)

if V (π ′)> v then

v←V (π ′) {found better lower bound}
π�←π ′
L←{ϕ ∈ L | V̂ (ϕ)> v} {prune L}

end if

ΦNext←ΦNext \ΠNext {remove full policies}
end if

L← (L\ϕ t)∪{ϕ ∈ ΦNext | V̂ (ϕ)> v} {remove processed/add new ϕ }
until L is empty

that when using a particular form of Q̂ (Q̂ needs to faithfully represent the expected
immediate reward; the mentioned heuristics QMDP, QPOMDP and QBG all satisfy this
requirement), the approaches are identical [Oliehoek et al., 2008b]. GMAA∗ can
also use a Next operator that does not construct all new partial policies, but only
the best-ranked one, ΦNext = {〈ϕ t ◦δ ∗

t 〉}. As a result the open list L will never con-
tain more than one partial policy, and behavior reduces to FSPC. A generalization
called k-GMAA∗ constructs the k best-ranked partial policies, allowing us to trade
off computation time for solution quality. Clustering of histories can also be applied
in GMAA∗, but only lossless clustering will preserve optimality.

5.2.4 Evolutionary Methods and Cross-Entropy Optimization

The fact that solving a Dec-POMDP can be approached as a combinatorial opti-
mization problem, as discussed in Section 4.4.2, was also recognized by approaches
based on cross-entropy optimization [Oliehoek et al., 2008a] and genetic algo-
rithms [Eker and Akın, 2010]. Here we given an overview of direct cross-entropy
(DICE) optimization for Dec-POMDPs based on the article by Oliehoek et al.
[2008a].

The cross-entropy method can be used for optimization in cases where we want
to find a—typically large—vector x from a hypothesis space X that maximizes
some performance function V : X → R. That is, when we are looking for

x∗ = argmax
x∈X

V (x). (5.2.3)
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The CE method maintains a probability distribution fξ over the hypothesis space,
parametrized by a vector ξ .

The core of the CE method is an iterative two-phase process:

1. Generate a set of samples X according to fξ .
2. Select the best Nb samples Xb, and use those to update the parameter vector ξ .

DICE is a translation of this idea to finite-horizon Dec-POMDPs. In the Dec-
POMDP case, the hypothesis space is the space of deterministic joint policies Π .
In order to apply the CE method, it is required to define a distribution over this
space, an evaluation function for sampled policies, and the manner by which the
policy distribution is updated from the best samples.

Policy Distribution Let fξ denotes a probability distribution over pure joint poli-
cies, parametrized by ξ . It is the product of probability distributions over individual
pure joint policies:

fξ (π) =
n

∏
i=1

fξi(πi). (5.2.4)

Here ξi is the vector of parameters for agent i, i.e., ξ = 〈ξ1,...,ξn〉.

ξ()

ξ(o1)
ξ(ȯ1)

o1o1

o1

ȯ1ȯ1

ȯ1

Pr(a1)

Pr(ȧ1)

Fig. 5.2: A part of a stochastic policy for an agent of a fictitious Dec-POMDP.

The question is how to represent the probability distributions over individual
pure policies. The simplest way is illustrated in Figure 5.2: maintaining a simple
probability distribution over actions for each observation history. Other choices,
such as maintaining distributions over actions for every AOH or controller node,
are also possible.

Sampling and Evaluation Unlike other applications of the CE method (e.g.,
Mannor et al. 2003), in the setting of Dec-POMDPs there is no trivial way to sample
trajectories given the joint policy distribution fξ and use that to update the distribu-
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Algorithm 5.2 The DICE policy search algorithm
Input: CE parameters: I,N,Nb,α
1: Vb ←−∞
2: initialize ξ (0) {typically uniform random}
3: for i← 0 to I do

4: X← /0
5: for s←0 to N do

6: sample π from fξ (i)

7: X←X∪{π}
8: V (π)← Evaluate(π) {exactly or approximately}
9: if V (π)>Vb then

10: Vb ←V (π)
11: πb ←π
12: end if

13: end for

14: Xb← the set of Nb best joint policies π ∈ X

15: Compute ξ (i+1) {using (5.2.5) }
16: ξ (i+1)←αξ (i+1) + (1−α)ξ (i)

17: end for

18: return πb

tion. Rather DICE samples complete joint policies and uses those for the parameter
update.

Selecting a random sample X of N joint policies π from the distribution fξ is
straightforward. For all the observation histories ōi, t of an agent i an action can be
sampled from action distribution ξōi, t . The result of this process is a deterministic
policy for agent i. Repeating this procedure for each agent samples a deterministic
joint policy. The evaluation of a joint policy can be done using (3.4.2). For larger
problems—where policy evaluation is expensive—it is also possible to do approx-
imate sample-based evaluation using only polynomially many samples [Oliehoek
et al., 2008b].

Parameter Update The final step is to update the distribution using the best joint
policies sampled. Let π ∈ Xb be the set of best joint policies sampled from the
previous distribution fξ ( j) . These will be used to find new parameters, ξ ( j+1). Let
1{πi(ōi, t )}(ai) be an indicator function that indicates whether πi(ōi, t) = ai. In the OH-
based distribution the probability of agent i taking action ai,t after having observed
ōi, t can be re-estimated as:

ξ ( j+1)
ōi, t

(ai) =
1

|Xb| ∑
π∈Xb

1{πi(ōi, t )}(ai), (5.2.5)

where |Xb| normalizes the distribution. Note that the computed new parameter vec-
tor ξ ( j+1) can be smoothed using a learning rate parameter α .

Summary Algorithm 5.2 summarizes the DICE policy search method. To start, it
needs I, the number of iterations, N, the number of samples taken at each iteration,
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Nb, the number of samples used to update ξ , and α , the learning rate. The outer loop
of lines 3–17 covers one iteration. The inner loop of lines 5–13 covers sampling and
evaluating one joint policy. Lines 14–16 perform the parameter update. Because
the CE method can get stuck in local optima, one typically performs a number of
restarts. This algorithm has also been extended to solve the infinite-horizon prob-
lems discussed in the next chapter [Omidshafiei et al., 2016].



Chapter 6

Infinite-Horizon Dec-POMDPs

This chapter presents an overview of the theory and policy representations for
infinite-horizon Dec-POMDPs. The optimality criteria are discussed and policy rep-
resentations using finite-state controllers are considered. These controllers can be
thought of as an extension of the policy trees used in the finite-horizon case to allow
execution over an infinite number of steps. This chapter provides value functions for
such controllers. Furthermore, the decidability and computational complexity of the
problem of (ε-)optimally solving infinite-horizon Dec-POMDPs are discussed.

6.1 Optimality Criteria

When an infinite horizon is considered, the expected cumulative reward may be in-
finite. A finite sum (and a well-defined optimization problem) can be maintained by
using discounting or average rewards. Both of these concepts are presented below,
but the vast majority of research considers the discounted cumulative reward case.

6.1.1 Discounted Cumulative Reward

In the infinite horizon case, a finite sum can be guaranteed by considering the dis-
counted expected cumulative reward

DECR = E
[ ∞

∑
t=0

γ tR(st ,at)
]
, (6.1.1)

where 0 ≤ γ < 1 is the discount factor. That is, the DECR here is exactly the same as
in the finite horizon (3.1.3), even though we explicitly replaced the summand with
∞ here. Where in the finite-horizon setting discounting might be applied if it makes
sense from the application perspective to give more importance to earlier rewards,

© The Author(s) 2016
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in the infinite-horizon discounting is (also) applied to make sure that the objective
is bounded. In this way, discounting makes the values of different joint policies
comparable even if they operate for an infinite amount of time.

6.1.2 Average Reward

A different way to overcome the unbounded sum that would result from regular
expected cumulative rewards is given by the expected average reward criterion:

EAR = E
[

lim
h→∞

1
h

h−1

∑
t=0

R(st ,at)
]
, (6.1.2)

This criterion has the benefit that it does not require setting a discount factor. In
contrast to DECR, earlier states do not weight more heavily and, in fact, any finite
sequence of initially poor rewards will be disregarded by this criterion: only the
limiting performance counts. Therefore, it is most appropriate for problems that are
truly expected to run for what can be considered an infinite amount of time (as
opposed to problems that must reach some goal or complete some set of tasks in an
unknown amount of time). Theoretical analysis of the average reward criterion in
the POMDP case is very involved and the complexity of the problem is the same as
that of the discounted case (undecidable) [Puterman, 1994]. Few researchers have
considered the average reward case, but it has been shown to be NP-complete in the
case of independent transition and observation Dec-MDPs [Petrik and Zilberstein,
2007] and has been used in conjunction with the expectation maximization methods
described by Pajarinen and Peltonen [2013]. Since the amount of work done on the
average-reward case is limited, we will focus on the discounted cumulative reward
criterion in this book.

6.2 Policy Representation

A tree-based representation of a policy requires the agent to perfectly remember the
entire history in order to determine its next action, which in the case of an infinite-
horizon problem would imply that an agent needs an infinite amount of memory.
Clearly, this is not possible. As an alternative, we discuss approaches that consider
finite sets of internal states Ii which represent an agent i’s finite memory.

A natural representation for a policy in this form is given by finite-state con-
trollers (FSCs). FSCs can be used to represent policies for agents in an elegant way
since an agent can be conceptualized as a device that receives observations and pro-
duces actions. FSCs operate in a manner that is very similar to policy trees in that
there is a designated initial node, and following the action selection at that node,
the controller transitions to the next node depending on the observation seen. This
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continues for the infinite steps of the problem. Nodes in the controller of agent i
represent its internal states Ii and prescribe actions based on this finite memory.

For Dec-POMDPs, a set of controllers, one per agent, provides the joint policy.
Finite-state controllers explicitly represent infinite-horizon policies, but can also be
used (as a possibly more concise representation) for finite-horizon policies. They
have been widely used in POMDPs1 (e.g., see Kaelbling et al. 1998, Hansen 1998,
Meuleau et al. 1999b, Poupart and Boutilier 2004, Poupart 2005, Toussaint et al.
2006, 2008, Grześ et al. 2013, Bai et al. 2014) as well as Dec-POMDPs (e.g., Bern-
stein et al. 2005, Szer and Charpillet 2005, Amato et al. 2007a, Bernstein et al.
2009, Kumar and Zilberstein 2010b, Pajarinen and Peltonen 2011a, Kumar et al.
2011, Pajarinen and Peltonen 2011b and Wu et al. 2013).

One thing to note is that compared to the finite-horizon setting treated in the pre-
vious chapters, introducing FSCs somewhat alters the multiagent decision problem
that we are dealing with. The previous chapters assumed that agents’ actions are
based on histories, thereby in fact (implicitly) specifying the agents’ belief update
function. When resorting to FSCs this is no longer the case, and we will need to
reason about both the action selection policies πi as well as the belief update func-
tions ιi.

6.2.1 Finite-State Controllers: Moore and Mealy

Perhaps the easiest way to view a finite-state controller (FSC) is as an agent model,
as treated in Section 2.4.4, where the number of internal states (or simply ‘states’)
is finite. The typical notation employed for FSCs is different from the notation
from Section 2.4.4—these differences are summarized in Table 6.1— but we hope
that the parallel is clear and will reuse the agent model’s notation for FSCs (which
are an instantiation of such agent models).2 To differentiate internal states of the
FSC from states of the Dec-POMDP, we will refer to internal controller states as
nodes.

We will now focus on two main types of FSCs, Moore and Mealy: Moore con-
trollers associate actions with nodes and Mealy controllers associate actions with
controller transitions (i.e., nodes and observations). The precise definition of the
components of FSCs can be formulated in different ways (e.g., deterministic vs.
stochastic transition functions, as will be further discussed in the remainder of this
section).

Definition 26. A (deterministic) Moore controller for agent i can be defined as a
tuple mi = 〈Ii,Ii,0,Ai,Oi,ιi,πi〉 where

1 In POMDPs, finite-state controllers have the added benefit (over value function representations)
that the policy is explicitly represented, alleviating the need for belief updating during execution.
2 In this section, we will not consider auxiliary observations, and thus omit Zi from the definitions.
Note that FSCs are not per se incompatible with auxiliary observations: they could be allowed by
defining the Cartesian product Oi ×Zi as the input alphabet in Table 6.1.
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model mi = 〈Ii,Ii,Ai,Oi,ιi,πi〉 FSC 〈N,n0,Σ ,ϒ ,β ,α〉 mixed

Ii a set of internal states S finite set of states Qi
Ii,0 initial internal state s0 initial state qi
Oi the set of observations Σ the finite input alphabet Oi
Ai the set of actions Γ the finite output alphabet Ai
πi the action selection policy λ the output function λi
ιi the belief update function δ the transition function δi

Table 6.1: Mapping between model notation from Section 2.4.4 and (typical) finite-
state machine notation and terminology, as well as a ‘mixed’ notation common in
Dec-POMDP literature.

a1 

o2 

o1 

o2 o1 

a2 

,a1 o2 

o1 ,a1 

o1 ,a2 

,a2 o2 

Moore Machine Mealy Machine 

Fig. 6.1: Deterministic Moore and Mealy finite-state controllers.

• Ii is the finite set of nodes,
• Ii,0 is the initial node,
• Oi and Ai are the input and output alphabets,
• ιi : Ii ×Oi → Ii is the (deterministic) transition function,3

• πi : Ii → Ai is the (deterministic) output function.

In the Moore case, execution begins at the given initial node, Ii,0, the action associ-
ated with that node, πi(Ii,0), is selected and then the controller transitions to a new
node based on the observation seen by using the controller transition (i.e., belief up-
date) function: Ii,1 = ιi(Ii,0,oi,1). These action selections and controller transitions
can continue for the infinite steps of the problem.

Definition 27. A Mealy controller is a tuple mi = 〈Ii,Ii,0,Ai,Oi,ιi,πi,πi,0〉 where

• Ii,Ii,0,Ai, and Oi are as in a Moore controller
• πi,0 : Ii → Ai is the output function for the first stage t = 0,
• πi : Ii ×Oi → Ai is the output function for all the remaining stages.

The difference in the Mealy case is that action selection now depends on the last
observation seen as well as the current node. As such, a separate rule is needed for

3 Note that the transition function (for both the Moore and Mealy case) can also depend on the
action chosen, which makes the formulation even more general. All the algorithms in the next
chapter can operate in either case.
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the first stage (the action selection policy for this stage cannot depend on an ob-
servation since none have been seen yet). Examples of two-node Moore and Mealy
controllers are shown in Figure 6.1.

Both Moore and Mealy models are equivalent in the sense that for a given con-
troller of one type, there is a controller of the other type that generates the same
outputs. However, it is known that Mealy controllers are more succinct than Moore
controllers in terms of the number of nodes. Given a Moore controller mi, one can
find an equivalent Mealy controller m′

i with the same number of nodes by constrain-
ing the outputs produced at each transition from a common node to be the same.
Conversely, given a (general) Mealy controller, the equivalent Moore controller
has |Ii|× |Oi| nodes [Hopcroft and Ullman, 1979]. Of course, more parameters are
needed for a Mealy controller (2|Ii|×|Oi| in the Mealy case, but only |Ii|+ |Ii|×|Oi|
in the Moore case), but this added structure can be used by algorithms (e.g., limit-
ing the possible actions considered based on the observation seen at the node). In
general, both formulations can be useful in solution methods (as we will discuss in
the next chapter).

6.2.2 An Example Solution for DEC-TIGER

Agent 1 Agent 2 

aL 

oHR 

aL oHL 
aOR oHL 

oHL, oHR 

oHR 
aL 

oHL 

aL oHR 
aOL oHR 

oHL, oHR 

oHL 

Fig. 6.2: Three node deterministic controllers for two agents in the DEC-TIGER
problem.

An example of a set of Moore controllers for the (two agent) DEC-TIGER prob-
lem is given in Figure 6.2. This is the highest quality deterministic solution which
uses at most three nodes for each agent. Here, agent 1 listens until it hears the tiger
on the left twice in a row and then chooses to open the door on the right, while agent
2 listens until it hears the tiger on the right twice in a row and then opens the door
on the left. After the door is opened, the agents transition back to the first node and
begin this process again. The value of these controllers (using a discount factor of
0.9) is approximately −14.12, while the value of listening forever is −20.
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6.2.3 Randomization

Even though switching to FSCs helps us overcome the problem of requiring an
infinite amount of memory, deterministic controllers limit the value of policies rep-
resented as controllers. That is, with a limited amount of memory, stochastic con-
trollers are able to produce higher-quality solutions with the same number of nodes
compared to deterministic controllers [Singh et al., 1994, Bernstein et al., 2009].
This makes stochastic controllers useful for methods that seek to keep the number
of nodes small, but stochastic controllers can always be converted to (larger) deter-
ministic controllers [Bernstein et al., 2009].

Stochastic controllers are similar to those presented above except that probability
distributions are used for transitions and output. That is, for a Moore controller, the
transition function is ιi : Ii ×Oi →	(Ii) (where 	(Ii) is the set of probability dis-
tributions over Ii) and the output function is πi : Ii →	(Ai). For Mealy controllers,
these become ιi : Ii ×Oi →	(Ii) and πi : Ii ×Oi →	(Ai).

6.2.4 Correlation Devices

Adding randomization may allow higher quality solutions to be represented more
concisely in Dec-POMDPs. However, because policies need to be decentralized, we
are not able to represent all joint probability distributions, but only factored ones.
In other words, since agent policies depend only on local action and observation
histories, even higher quality solutions could be achieved if we allow the action
selection and node transitions to be correlated between agents.

Specifically, controllers have also been developed that make use of a shared
source of randomness in the form of a correlation device. This allows a set of
independent controllers to be correlated in order to produce higher values, with-
out sharing any additional local information. For example, consider a situation in
which all agents are able to observe the outcome of a coin that is being flipped on
each step. The agents can then condition their action choices and controller tran-
sitions on these outcomes to produce correlated behavior. Specifically, the corre-
lation device is a tuple 〈C,ψ〉, where C is a set of correlation device states and
ψ : C→	(C) is a stochastic transition function that we will represent as Pr(c′|c).
At each step of the problem, the device transitions and each agent can observe its
state. Then, for a Moore controller, the action selection probabilities can be de-
fined as πi : Ii ×C → 	(Ai) while the node transition probabilities an be defined
as ιi : Ii ×Oi ×C → 	(Ii). A correlation can be incorporated into a Mealy con-
troller in a similar way. It is worth noting that correlation devices are similar to
non-influenceable state factors, s0, that were discussed in Section 2.4.2 . Both of
their state values are uninfluenceable, but agents can condition their actions on them
in order to correlate their solutions (and possibly improve their performance).

A correlation device is particularly useful for reducing miscoordination in stochas-
tic controllers since the agents can choose the same (or appropriate) action based on
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the commonly known signal. For instance, consider a domain in which there is a
large penalty when agents choose different actions, but a large reward for choosing
the same actions. For sufficiently small controllers (e.g., one node for each agent),
this type of policy is impossible without the correlation device. It has been shown
that policies can be randomized and correlated to allow higher values to be attained
in a range of domains [Bernstein et al., 2005, 2009, Amato et al., 2007a, 2010].

6.3 Value Functions for Joint Policies

When each agent uses a Moore controller, this results in a fully specified agent
component m (cf. Definition 8), to which we will also refer as joint controller in the
current context of FSCs. Such a joint controller induces a Markov reward process
(which is a Markov chain with rewards, or, alternatively, an MDP without actions)
and thus a value. In particular, the infinite-horizon discounted reward incurred when
the initial state is s and the initial nodes for all of the controllers is given by I can be
denoted by V m(I,s) and satisfies:

V m(I,s) = ∑
a

π(a|I)
(

R(s,a)+ γ ∑
s′,o,I′

Pr(s′,o|s,a)ι(I′|I,o)V m(I′,s′)

)
(6.3.1)

where

• π(a|I)� ∏i πi(ai|Ii), and
• ι(I′|I,o)� ∏ j ιi(I′i |Ii,oi).

The value of m at the initial distribution is V m(b0) = ∑s0
b0(s0)V m(I0,s0), where I0

is the set of initial nodes for the agents.
For a Mealy controller, the selected actions will depend on the last received ob-

servations. For a particular joint controller, m, when the initial state is s, the last joint
observation was o, and the current node of m is I, the value is denoted by V m(I,o,s)
and satisfies:

V m(I,o,s) = π(a|I,o)
(

R(s,a)+ γ ∑
s′,o,I′

Pr(s′,o|s,a)ι(I′|I,o)V m(I′,o′,s′)

)
(6.3.2)

where, now, π(a|I,o) = ∏i πi(ai|Ii,oi). In this case, recall that the first node is as-
sumed to be a Moore node (i.e., the action selection in the first stage is governed
by πi,0, which only depends on the node, not on observations),4 so the value for the
initial belief b0 can be computed as V m(b0) = ∑s0

b0(s0)V m
0 (I0,s0), with

4 Alternatively, the value can be represented as V m(b0) = ∑st b0(s0)V m
0 (I0,o∗0s0)), where o0∗ is a

dummy observation that is only received on the first step of the problem.
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V m
0 (I0,s0) = ∑

a
π0(a|I)

(
R(s,a)+ γ ∑

s′,o,I′
Pr(s′,o|s,a)ι(I′|I,o)V m(I′,o′,s′)

)
.

These recursive equations are similar to those used in the finite-horizon version
of the problem, but evaluation continues for an infinite number of steps. Note that
the policy is now stationary (depending on the controller node, but not time) and the
value for each combination of nodes and states for a fixed policy can be found using
a set of linear equations or iterative methods [Amato et al., 2010, Bernstein et al.,
2009].

6.4 Undecidability, Alternative Goals and Their Complexity

For the infinite-horizon problem, both the number of steps of the problem and the
possible size of the policy (i.e., the number of nodes in the controllers) are un-
bounded. That is, controllers of unbounded size may be needed to perfectly rep-
resent an optimal policy. As a result, solving an infinite-horizon Dec-POMDP op-
timally is undecidable. This follows directly from the fact that optimally solving
infinite-horizon POMDPs is undecidable [Madani et al., 1999], since a Dec-POMDP
is a generalization of a POMDP.

Similarly, the definition of multiagent beliefs, which is based on subtree poli-
cies (cf. Definition 19), is not appropriate in the potentially infinite space, but has
been reformulated in the context of bounded policies. Specifically, from the per-
spective of agent i and given a known set of controllers for the other agents, −i, a
probability distribution of the other agents being in nodes I−i while the state of the
system is st , can be represented as Pr(st ,I−i). Like the multiagent belief in the finite-
horizon case, these probabilities can be used at planning time to evaluate agent i’s
policies across the space of other agent policies and estimate the outcomes of other
agents’controllers.

As an alternative, approximation methods (with guarantees) have been consid-
ered: due to discounting, a solution that is within any fixed ε of the optimal value can
be found in a finite number of steps [Bernstein et al., 2009]. That is, we can choose
t such that the maximum sum of rewards over the remaining stages t +1,t +2, . . . is
bounded by ε:

∞

∑
k=t+1

γk|Rmax|= γ t+1|Rmax|
1− γ

≤ ε,

where |Rmax| is the immediate reward with the largest magnitude. This ensures that
any sum of rewards after time t will be smaller than ε (due to discounting). There-
fore, t becomes an effective horizon in that an optimal solution for the horizon t
problem ensures an ε-optimal solution for the infinite-horizon problem. This pro-
cedure is also NEXP-complete because an optimal policy is found for the effective
horizon. Theoretically, finite-horizon methods from the previous chapter could also
be used to produce ε-optimal solutions, but the effective horizon is often too large
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for current optimal finite-horizon methods to reach. As a more scalable solution,
heuristic methods have been developed which seek to produce the highest quality
solution for a given controller size. These methods are discussed in more detail in
the following chapter.



Chapter 7

Infinite-Horizon Planning Methods: Discounted

Cumulative Reward

As discussed in Chapter 6, infinite-horizon planning methods focus on generating
ε-optimal solutions or solutions with a fixed controller size. We first discuss policy
iteration, which is an extension of dynamic programming for Dec-POMDPs to the
infinite-horizon case and can produce ε-optimal solutions. We then describe some
of the heuristic algorithms that generate fixed-size controllers. We describe these
algorithms in terms of Moore controllers, but they can all use Mealy controllers
(see Section 6.2) with minor extensions.

7.1 Policy Iteration

Policy iteration (PI) for Dec-POMDPs [Bernstein et al., 2009] is similar to the
finite-horizon dynamic programming algorithm (Algorithm 4.1), but finite-state
controllers are used as policy representations (like the policy iteration approach for
POMDPs [Hansen, 1998]). In addition, there are two other main differences with
the finite-horizon DP:

1. Instead of using a set of separately represented policies (i.e., policy trees), PI
maintains a single controller for each agent and considers the value of beginning
execution from any node of the controller. That is, starting at each (joint) node
can be interpreted as an infinite-horizon (joint) policy and the set of policies can
be considered to be the set of joint nodes. Pruning can then take place over nodes
of these controllers to remove dominated policies.

2. Rather than initializing the iteration process with the (set of) one-stage-to-go
policies as in DP, PI can start from any initial joint controller for each agent
m0 = 〈m1,0, . . . ,mn,0〉. Exactly what this initial joint controller m0 is does not
matter: the controller is going to be subject to exhaustive backups, which will
‘push’ the initial controller to beyond the effective horizon (where the discount
factor renders the value bounded by ε), as well as controller improvements.

© The Author(s) 2016
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Fig. 7.1: A full backup for a single agent for action a1 when starting with the con-
troller in (a), resulting in the controller in (b).

The basic procedure of PI is that it continuously tries to improve the joint con-
troller by improving the controller maintained for each agent. This per-agent im-
provement is done using an exhaustive backup operation (this is the same as in
the finite-horizon DP case) by which nodes are added to the controller that intu-
itively correspond to all possible ‘one-step longer’ policies.1 To counter the growth
of the individual controllers, pruning can be conducted, which removes a node in
an agent’s controller if it is dominated (i.e., if it has equal or lower value than when
beginning in a combination of nodes for all (s,I−i)-pairs). That is, the policy for
agent i given by beginning in the node is dominated by some set of policies given
by starting at other nodes in the controller. These exhaustive backups and pruning
steps continue until the solution is provably within ε of an optimal solution. This
algorithm can produce an ε-optimal policy in a finite number of steps [Bernstein
et al., 2009]. The details of policy iteration follow.

The policy iteration algorithm is shown in Algorithm 7.1. The input is an initial
joint controller, m0, and a parameter ε . At each step, evaluation, backup and pruning
occurs. The controller is evaluated using (6.3.1). Next, an exhaustive backup is per-
formed to add nodes to each of the local controllers. Similarly to the finite-horizon
case, for each agent i, |Ai||Ii||Oi| nodes are added to the local controller, where |Ii|
is the number of nodes in the current controller. The exhaustive backup represents
starting from each action and for each combination of observations transitioning to
each of the nodes in the current controller. Repeated application of exhaustive back-
ups amounts to a brute-force search in the space of deterministic policies, which
will converge to ε-optimality, but is obviously quite inefficient.

To increase the efficiency of the algorithm, pruning takes place. Because plan-
ning takes place offline, the controllers for each agent are known at each step, but
agents will not know which node of their controller any of the other agents will be in
during execution. As a result, pruning must be completed over the multiagent belief

1 Essentially, doing (infinitely many) exhaustive backups will generate all (infinitely many) poli-
cies.
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Algorithm 7.1 Policy iteration for Dec-POMDPs.
Input: An initial joint controller m0 = 〈m1,0, . . . ,mn,0〉.
Output: An ε-optimal joint controller m∗.
1: τ ← 0
2: mτ ← m0
3: repeat

4: {Backup and evaluate:}
5: for i = 1 to n do

6: mi,τ←ExhaustiveBackup(mi,τ−1)
7: end for

8: Compute V mτ {Evaluate the controllers}
9: {Prune dominated nodes until none can be removed:}

10: while some nodes have been pruned do

11: for i = 1 to n do

12: mi,τ←Prune(i,m−i,τ , mi,τ )
13: UpdateController(mi,τ ) {Remove the pruned nodes and update links accordingly}
14: Compute V mτ {Evaluate updated controllers}
15: end for

16: end while

17: τ ← τ +1
18: until

γτ+1|Rmax|
1−γ ≤ ε

19: return m∗←mτ

space (using a linear program that is very similar to that described for finite-horizon
dynamic programming in Section 4.3). That is, a node for an agent’s controller can
only be pruned if there is some combination of nodes that has higher value for all
states of the system and at all nodes of the other agents’ controllers. Unlike in the
finite-horizon case, edges to the removed node are then redirected to the dominating
nodes. Because a node may be dominated by a distribution of other nodes, the result-
ing transitions may be stochastic rather than deterministic. The updated controller
is evaluated, and pruning continues until no agent can remove any further nodes.

Convergence to ε-optimality can be calculated based on the discount rate and the
number of iterations of backups that have been performed. Let |Rmax| be the largest
absolute value of any immediate reward in the Dec-POMDP. Then the algorithm
terminates after iteration t if γt+1|Rmax|

1−γ ≤ ε . At this point, due to discounting, the
value of any policy after step t will be less than ε .

7.2 Optimizing Fixed-Size Controllers

Like optimal finite-horizon approaches, methods for producing ε-optimal infinite-
horizon solutions are intractable for even moderately sized problems. This results in
optimal algorithms not converging to any reasonable bound of the optimal solution
in practice. To combat this intractability, approximate infinite-horizon algorithms
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Fig. 7.2: Choosing actions and transitions in each node of a fixed-size controller.

have sought to produce a high-quality solution while keeping the controller sizes
for the agents fixed.

That is, the concept behind these approaches is to choose a controller size |Ii|
for each agent and then determine action selection and node transitions parameters
that produce high values. However, because these methods fix the size of the agents’
controllers, the resulting size may be smaller than is needed for even an ε-optimal
solution. This means that, while some of the approaches in this section can produce a
controller that has the highest value given the fixed size, that value may be arbitrarily
far from the optimal solution.

7.2.1 Best-First Search

A way to compute the best deterministic joint controller of given size is via heuristic
search. One such method, referred to as best-first search for Dec-POMDPs [Szer and
Charpillet, 2005], generalizes the MAA∗ technique from Section 4.2.2 to the infinite
horizon. Rather than filling templates of trees (cf. Figure 5.1b) the method here fills
templates of controllers; it searches through the possible actions that can be taken
at each agent’s controller nodes and the possible transitions that result from each
observation in each node.

In more detail, the algorithm searches through the possible deterministic transi-
tion mappings ιi : Ii×Oi → Ii and the deterministic action function, πi : Ii →Ai, for
all agents. The controller nodes are ordered and a forward search is conducted that
specifies the action selection and node transition parameters for all agents, one node
at a time. The heuristic value determines an upper bound value for these partially
specified controllers (again, in a way that is similar to MAA∗) by assuming central-
ized control is used for unspecified nodes. In this way, an approximate value for the
controller is calculated given the currently specified deterministic parameters and
the algorithm fills in the remaining nodes one at a time in a best-first fashion.

This process continues until the value of a set of fully specified controllers is
greater than the heuristic value of any partially specified controllers. Since this is an
instance of heuristic search applied with an admissible heuristic, this technique is
guaranteed to find the best deterministic joint finite-state controller of a given size.
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7.2.2 Bounded Policy Iteration

Because stochastic controllers with the same number of nodes are able to produce
higher-valued policies than deterministic controllers, researchers have also explored
optimizing stochastic controllers (a difficult problem by itself; see the overview and
complexity results by Vlassis et al. 2012). These approaches seek to find proba-
bilistic parameters for action selection and node transition. That is, for agent i, the
algorithms find the probability of taking action ai in node Ii, Pr(ai|Ii), and the prob-
ability of transitioning to node I′i in node Ii after action ai is taken and observation
oi made, Pr(I′i |Ii,ai,oi).

One method to produce stochastic controllers is by using a set of linear pro-
grams. In particular, bounded policy iteration for decentralized POMDPs (Dec-
BPI) [Bernstein et al., 2005], is such a method that extends the BPI algorithm for
POMDPs [Poupart and Boutilier, 2003] to the multiagent setting. This approach
iterates through the nodes of each agent’s controller, attempting to find an improve-
ment for that node. That is, it tries to improve a single local controller, assuming
that the controllers of the other agents are fixed, and thus is conceptually similar to
JESP, described in Section 5.2.1. In contrast to JESP, however, this improvement for
an agent i cannot be found using plain dynamic programming over a tree or directed
acyclic graph (DAG) of reachable ‘JESP beliefs’ bi(〈s,ō−i,t〉) (even when replacing
histories by internal states leading to a belief of the form bi(〈s,I−i〉) there would
be infinitely many in general) or enumeration of all controllers mi (there are un-
countably many stochastic controllers). Instead, Dec-BPI uses linear programming
to search for a new node to replace the old node.

Specifically, this approach iterates through agents i, along with nodes for agent Ii.
Then, the method assumes that the current controller will be used from the second
step on, and tries to replace the parameters for Ii with ones that will increase value
for just the first step. That is, it attempts to find parameters satisfying the following
inequality:

∀st ∈ S, ∀I−i ∈ I−i

V m(s,I)≤ ∑
a

π(a|I)
[

R(s,a)+ γ ∑
s,o′,I′

Pr(I′|I,a,o′)Pr(s′,o′|s,a)V m(s′,I′)

]
.

Here, I−i is the set of controller nodes for all agents besides i. The search for new
parameters can be formulated as a linear program in Figure 7.3. Note that a ‘com-
bined’ action selection and node transition probability,

Pr(I′i ,ai|Ii,oi)� Pr(I′i |Ii,ai,oi)Pr(ai|Ii),

is used to ensure the improvement constraints are linear; naive inclusion of the right-
hand side product would lead to quadratic improvement constraints. Instead, we
introduce more variables that lead to a linear formulation. The second probability
constraint in Figure 7.3 ensures that the action selection probabilities can be recov-
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ered (i.e., that y(ai,oi,I′i ) does not encode an invalid distribution). Note that the first
and second probability constraints together guarantee that

∀oi ∑
I′i ,ai

y(ai,oi,I′i ) = 1.

Given: Ii the node for which we want to test improvement.
variables:
ε , the value gap that we try to maximize (ε > 0 indicates an improvement),
x(ai) = πi(ai|Ii), action probability variables,
y(ai,oi,I′i ) = Pr(I′i ,ai|Ii,oi), combined action and next-stage node probabilities.
maximize: ε .
subject to:

Improvement constraints, ∀s,I−i:

V m(s,I)+ ε ≤ ∑
a

π−i(a−i|I−i)

[
x(ai)R(s,a)+ γ ∑

s,o′,I′
y(ai,oi,I′i )Pr(I′−i,s

′,o′|s,a)V m(s′,I′)

]

Probability constraints:

∑
ai

x(ai) = 1

∀ai,oi ∑
I′i

y(ai,oi,I′i ) = x(ai)

∀ai x(ai)≥ 0

∀ai,oi,I′i y(ai,oi,I′i )≥ 0

Fig. 7.3: The linear program (LP) to test for improvement in Dec-BPI. The LP de-
termines if there is a probability distribution over actions and transitions from node
Ii that improves value when assuming the current controller will be used from the
second step on. Note that Pr(I′i ,ai|Ii,oi) is the combined action and transition prob-
ability which is made consistent with the action selection probability πi(ai|Ii) in
the probability constraints. This form is needed to ensure the objective function is
linear.

This linear program is polynomial in the sizes of the Dec-POMDP and the joint
controller, but exponential in the number of agents. Bernstein et al. allow each
agent’s controller to be correlated by using shared information in a correlation de-
vice (as discussed in Section 6.2.4). This may improve solution quality while requir-
ing only a limited increase in problem size [Bernstein et al., 2005, 2009].
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7.2.3 Nonlinear Programming

Because Dec-BPI can often become stuck in local maxima, nonlinear programming
(NLP) has also been used [Amato et al., 2007a, 2010]. The formulation seeks to
optimize the value of a set of fixed-size controllers given an initial state distribution.
The variables for this problem are the action selection and node transition proba-
bilities for each node of each agent’s controller as well as the value of the resulting
policy starting from a set of controller nodes.

More formally, the NLP maximizes the expected value of the initial controller
node for each agent at the initial belief subject to the Bellman constraints. To this
end, let us translate the value of a joint controller (from Equation 6.3.1) in terms of
variables that will be used for optimization:

z(I,s) = ∑
a

[
∏

i
x(Ii,ai)

]
(

R(s,a)+ γ ∑
s′,o

Pr(s′,o|s,a)∑
I′

[
∏

j
y(I j,ai,oi,I′j)

]
z(I′,s′)

)
. (7.2.1)

As shown in Figure 7.4, z(I,s) represents the value, V (I,st), of executing the con-
troller starting from nodes I and state s, while x(Ii,ai) is the action selection proba-
bility, Pr(ai | Ii), and y(Ii,ai,oi,I′i ) is the node transition probability, Pr(I′i | Ii,ai,oi).
Note that to ensure that the values are correct given the action and node transition
probabilities, these nonlinear constraints must be added to the optimization which
represent the Bellman equations given the policy determined by the action and tran-
sition probabilities. We must also ensure that the necessary variables are valid prob-
abilities in a set of probability constraints. This approach differs from DEC-BPI in
that it explicitly represents the node values as variables, thus allowing improvement
and evaluation to take place simultaneously. An optimal solution of this nonlinear
program represents an optimal fixed-size solution to the Dec-POMDP, but as this
is often intractable, approximate solvers have been used in practice [Amato et al.,
2010].

7.2.4 Expectation Maximization

As an alternative method for determining the parameters of stochastic controllers,
expectation maximization (EM) has been used [Kumar and Zilberstein, 2010b, Ku-
mar et al., 2011]. Again a fixed-size controller is assumed, but rather than deter-
mining the controller parameters using optimization, the problem is reformulated
as a likelihood maximization problem and EM is used. This planning as inference
technique is an extension of similar methods for POMDPs [Toussaint et al., 2006].
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variables for each agent i :
x(Ii,ai) = Pr(ai | Ii), action probability variables,
y(Ii,ai,oi,I′i ) = Pr(I′i | Ii,ai,oi), next-stage node probabilities,
z(I,st) =V (I,st), the values.
maximize:

∑
s0

b0(s0)z(I0,s0).

subject to:

Bellman constraints:

∀I,s z(I,s) = ∑
a

[
∏

i
x(Ii,ai)

]
(

R(s,a)+ γ ∑
s′,o

Pr(s′,o|s,a)∑
I′

[
∏

j
y(I j,ai,oi,I′j)

]
z(I′,s′)

)
. (7.2.2)

Probability constraints for each agent i:

∀Ii,ai ∑
ai

x(Ii,ai) = 1

∀Ii,ai,oi ∑
I′i

y(Ii,ai,oi,I′i ) = 1

∀Ii,ai x(Ii,ai)≥ 0

∀Ii,ai,oi,I′i y(Ii,ai,oi,I′i )≥ 0

Fig. 7.4: The nonlinear program (NLP) representing the optimal fixed-size solution
for the problem. The action selection, Pr(ai|Ii), and node transition probabilities,
Pr(I′i |Ii,ai,oi), are optimized for each agent i to maximize the value of the controllers.
This optimization is performed for the given initial belief b0 and a given (arbitrarily
selected) tuple of the initial nodes, I0 = 〈I1,0, . . . ,In,0〉.

The basic idea is that the problem can be represented as an infinite mixture of dy-
namic Bayesian networks (DBNs), which has one component for each time step t.
The DBN responsible for a particular t covers stages 0, . . . , t and represents the
‘probability’ that the ‘maximum reward’ is received at its last modeled stage (i.e.,
at t). The intuition is that the probability of achieving the maximum reward can be
considered as a substitute for the value of the controller. We give a brief formaliza-
tion of this intuition next; for details we refer the reader to the papers by Toussaint
et al. [2006], Kumar and Zilberstein [2010b], and Kumar et al. [2011].

First, the formalization is based on binary reward variables, r, for each stage t
that provide probability via Pr(r = 1|st ,at) � R(st ,at )−Rmin

Rmax−Rmin
, where Rmin and Rmax are

the smallest and largest immediate rewards. This probability encodes the ‘chance of
getting the highest possible reward’ at stage t. This can be used to define Pr(r,Z|t;θ)
with Z = 〈s0,a0,s1,o1,I1,a1, . . . ,at−1,st ,ot ,It〉 the entire histories of states, actions,
observations and internal states, and with θ = {Pr(a|I),Pr(I′|I,o),Pr(I)} the pa-
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rameter vector that specifies the action selection, node transition and initial node
probabilities. Now these probabilities constitute a mixture probability via:

Pr(r,Z,t;θ) = Pr(r,Z|t;θ)P(t),

with P(t) = γ t(1− γ) (used to discount the reward that is received for each time
step t). This can be used to define an overall likelihood function Lθ (r = 1;θ), and
it can be shown that maximizing this likelihood is equivalent to optimizing value
for the Dec-POMDP (using a fixed-size controller). Specifically, the value function
of controller θ can be recovered from the likelihood as V (b0) =

(Rmax−Rmin)Lθ

1−γ +

∑t γ tRmin [Kumar and Zilberstein, 2010b].
As such, maximizing the value has been cast as the problem of maximizing likeli-

hood in a DBN, and for this the EM algorithm can be used [Bishop, 2006]. It iterates
by calculating occupancy probabilities—i.e., the probability of being in each con-
troller node and problem state—and values given fixed controller parameters (in an
E-step) and improving the controller parameters (in an M-step). The likelihood and
associated value will increase at each iteration until the algorithm converges to a
(possibly local) optima. The E-step calculates two quantities. The first is Pθ

t (I,st),
the probability of being in state st and node I at each stage t. The second quantity,
computed for each stage-to-go, is Pθ

τ (r = 1|I,s), which corresponds to the expected
value of starting from I,s and continuing for τ steps. The M-step uses the probabil-
ities calculated in the E-step and the previous controller parameters to update the
action selection, node transition and initial node parameters.

After this EM approach was introduced, additional related methods were devel-
oped. These updated methods include EM for Dec-POMDPs with factored state
spaces [Pajarinen and Peltonen, 2011a] and factored structured representations [Pa-
jarinen and Peltonen, 2011b], and EM using simulation data rather than the full
model [Wu et al., 2013].

7.2.5 Reduction to an NOMDP

Similarly to the transformation of finite-horizon Dec-POMDPs into NOMDPs de-
scribed in Section 4.3, infinite-horizon Dec-POMDPs can also be transformed into
(plan-time) NOMDPs. The basic idea here is to replace the observation histories by
(a finite number of) information states such as nodes of an FSC. Let I = 〈I1, . . . ,In〉
denote a joint information state. This allows us to redefine the plan-time sufficient
statistic as follows:

σt(s,I)� Pr(s,I|δ 0,...,δ t−1).

Again, this statistic can be updated using Bayes’ rule. In particular σ ′(s′,I′) is given
by

∀(s′,I′) [Uss(σ ,δ )] (s′,I′) = ∑
(s,I)

Pr(s′,I′|s,I,δ (I))σ(s,I), (7.2.3)
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where—using ι(I′|I,a,o) = ∏i∈D ιi(I′i |Ii,ai,oi) for the joint information state update
probability—the probability of transitioning to (s′,I′) is given by

Pr(s′,I′|s,I,a) = Pr(s′|s,a)∑
o

ι(I′|I,a,o)Pr(o|a,s′). (7.2.4)

It is easy to show that, for a given set {ιi} of information state functions, one can
construct a plan-time NOMDP analogous to Definition 23 in Section 4.3.3, where
augmented states are tuples s̄ = 〈s,I〉. However, as discussed before, in the infinite-
horizon setting, the selection of those information state functions becomes part of
the problem.

One idea to address this, dating back to Meuleau et al. [1999a], is to make
searching the space of deterministic information state functions part of the prob-
lem by defining a cross-product MDP in which “a decision is the choice of an
action and of a next node”. That is, selection of the ιi function (in a POMDP
with protagonist agent i) can be done by introducing |Oi| new action variables
(say, aι

i = {aι ,1
i , . . . ,aι ,|Oi|

i }) that specify, for each observation oi ∈Oi, to what next
internal state to transition. This approach is extended to Dec-POMDPs by Mac-
Dermed and Isbell [2013] who introduce the bounded belief Dec-POMDP2 (BB-
Dec-POMDP), which is a Dec-POMDP that encodes the selection of optimal {ιi}
by splitting each stage into two stages: one for selection of the domain-level actions
and one for selection of the aι

i . We omit the details of this formulation and refer
the reader to the original paper. The main point that the reader should note is that
by making ι part of the (augmented) joint action, the probability Pr(s′,I′|s,I,a) from
(7.2.4) no longer depends on external quantities, which means that it is possible
to construct an NOMDP formulation analogous to Definition 23 that in fact does
optimize over (deterministic) information state functions.

This is in fact what MacDermed and Isbell [2013] propose; they construct the
NOMDP (to which they refer as a ‘belief-POMDP’) for a BB-Dec-POMDP and
solve it with a POMDP solution method. Specifically, they use a modification of
the point-based method Perseus [Spaan and Vlassis, 2005] to solve the NOMDP.
The modification employed is aimed at mitigating the bottleneck of maximizing
over (exponentially many) decision rules in V ∗(σ)=maxδ Q∗(σ ,δ ). Since the value
function is PWLC, the next-stage value function can be represented using a set of
vectors v ∈ V , and we can write

V ∗(σ) = max
δ

∑
(s,I)

σ(s,I)

(
R(s,δ (I))+max

v∈V
∑

(s′,I′)
Pr(s′,I′|s,I,δ )v(s′,I′)

)

= max
v∈V

max
δ

∑
(s,I)

σ(s,I)

(
R(s,δ (I))+ ∑

(s′,I′)
Pr(s′,I′|s,δ (I))v(s′,I′)

)
︸ ︷︷ ︸

vδ (s,I)

.

2 The term ‘bounded belief’ refers to the finite number of internal states (or ‘beliefs’) considered.
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The key insight is the in the last expression, the bracketed part only depends on
δ (I) = 〈δ1(I1), . . . ,δ1(I1)〉, i.e., on that part of δ that specifies the actions for I only.
As such it is possible to rewrite this value as the maximum of solutions of a collec-
tion of collaborative Bayesian games (cf. Section 5.2.3), one for each v ∈ V :

V ∗(σ) = max
v∈V

max
δ

∑
I

σ(I)∑
s

σ(s|I)vδ (s,I)

= max
v∈V

[
max

δ
∑

I
σ(I)Qv(I,δ (I))

]
.

For each v∈V , the maximization over δ can be interpreted as the solution of a CBG
(5.2.2), and therefore can be performed more effectively using a variety of meth-
ods [Oliehoek et al., 2010, Kumar and Zilberstein, 2010a, Oliehoek et al., 2012a].
MacDermed and Isbell [2013] propose a method based on the relaxation of an inte-
ger program. We note that the maximizing δ directly induces a vector vδ , which is
the result of the point-based backup. As such, this modification can also be used by
other point-based POMDP methods.

It is good to note that a BB-Dec-POMDP is just a special case of an (infinite-
horizon) Dec-POMDP. The fact that it happens to have a bounded number of infor-
mation states is nothing new compared to previous approaches: those also limited
the number of information states (controller nodes) to a finite number. The concep-
tual difference, however, is that MacDermed and Isbell [2013] pose this restriction
as part of the model definition, rather the solution method. This is very much in
line with, and a source of inspiration for, the more general definition of multiagent
decision problems that we introduced in Section 2.4.4.



Chapter 8

Further Topics

Decentralized decision making is an active field of research, and many different
directions and aspects are actively explored. Here we present an overview of some
of the more active directions that people have been pursuing in recent years.

8.1 Exploiting Structure in Factored Models

One of the major directions of research in the last decade has been the identifica-
tion and exploitation of structure in Dec-POMDPs. In particular, much research has
considered the special cases mentioned in Section 2.4.2, and models that generalize
these.

8.1.1 Exploiting Constraint Optimization Methods

One of the main directions of work that people have pursued is the exploitation of
structure between variables by making use of methods from constraint optimization
or inference in graphical models. These methods construct what is called a coordi-
nation graph, which indicates the agents that need to directly coordinate. Methods
to exploit the sparsity of this graph can be employed for more efficient computation.
After introducing coordination graphs, this section will give an impression of how
they are employed within ND-POMDPs and factored Dec-POMDPs.

8.1.1.1 Coordination (Hyper-)Graphs

The main idea behind coordination graphs [Guestrin et al., 2002a, Kok and Vlassis,
2006], also called interaction graphs [Nair et al., 2005] or collaborative graphical
games [Oliehoek et al., 2008c, 2012a], is that even though all agents are relevant
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for the total payoff, not all agents directly interact with each other. For instance,
Figure 8.1a shows a coordination graph involving four agents. All agents try to
optimize the sum of the payoff functions, but agent 1 only directly interacts with
agent 2. This leads to a form of conditional independence that can be exploited
using a variety of techniques.

1

2

3 4

u
1(a1,a2)

u
2(a2,a3) u

3(a2,a4)

(a) A four-agent coordination graph.

2

31

u
1

u
2

u
3

u
4

(b) A three-agent coordination hyper-
graph.

Fig. 8.1: Example Coordination Graphs.

Definition 28 (Coordination (Hyper-)Graph). A coordination (hyper-)graph (CG)
is a tuple CG = 〈D,A,{u1, . . . ,uρ}〉, where

• D= {1, . . . ,n} is the set of n agents.
• A is the set of joint actions.
• {u1, . . . ,uρ} is a set of local payoff functions.

Each local payoff function ue is a mapping of the actions of a subset of agents e ⊆D

to payoffs, called the scope of the function. Note that we use e to denote both the
index and the scope of the payoff function, such that we write ue(ae).1 As illustrated
in Figure 8.1, the scopes of the local payoff function induce a (hyper-)graph: there
is a set of (hyper-)edges E such that there is one edge e ∈ E for every local payoff
function. Each edge connects one, two or more agents (nodes) e = {i, j, . . .} ⊆ D.
So the graph is a traditional graph when exactly two agents participate in each local
payoff function and a hyper-graph otherwise.

The goal in a CG is to find the joint action with the highest total payoff:

u(a) = ∑
e∈E

ue(ae).

1 Even though an abuse of notation, the meaning should be clear from context. Moreover, it allows
us to avoid the notational burden of correct alternatives such as defining the subset as A (e) and
writing ue(aA (e)).
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Note that the local reward functions should not be confused with individual re-
ward functions in a system with self-interested agents, such as partially observable
stochastic games [Hansen et al., 2004] and (graphical) BGs [Kearns et al., 2001,
Kearns, 2007]. In such models agents compete to maximize their individual reward
functions, while we consider agents that collaborate to maximize the sum of local
payoff functions.

A CG is a specific instantiation of a constraint optimization problem (COP) [Mari-
nescu and Dechter, 2009] or, more generally, a graphical model [Dechter, 2013]
where the nodes are agents (rather than variables) and they can take actions (rather
than values). This means that there are a multitude of methods that can be brought
to bear on these problems. The most popular exact method is nonserial dynamic
programming (NDP) [Bertele and Brioschi, 1972], also called variable elimination
[Guestrin et al., 2002a, Kok and Vlassis, 2006] and bucket elimination [Dechter,
1997]. Since NDP can be slow for certain network topologies (those with high ‘in-
duced width’; see Kok and Vlassis 2006 for details and empirical investigation), a
popular (but approximate) alternative is the max-sum algorithm [Pearl, 1988, Kok
and Vlassis, 2005, 2006, Farinelli et al., 2008, Rogers et al., 2011]. It is also possi-
ble to use distributed methods as investigated in the field of distributed constraint
optimization problems (DCOPs) [Liu and Sycara, 1995, Yokoo, 2001, Modi et al.,
2005].

The framework of CGs can be applicable to Dec-POMDPs when replacing CG-
actions by Dec-POMDP policies. That is, we can state a requirement that the value
function of a Dec-POMDP can be additively decomposed into local values:

V (π) = ∑
e∈E

V e(πe), (8.1.1)

where πe = 〈πe1, . . . ,πe|e|〉 is the profile of individual policies of agents that partici-
pate in edge e. The class of Dec-POMDPs that satisfy this requirement, also called
value-factored Dec-POMDPs [Kumar et al., 2011], can be trivially transformed to
CGs.

8.1.1.2 ND-POMDPs

Nair et al. [2005] introduced the networked distributed POMDP (ND-POMDP),
which is a subclass of Dec-POMDPs that imposes constraints such that 8.1.1 holds.
An ND-POMDP can be described as a transition- and observation-independent Dec-
POMDP with additively separated rewards.

Definition 29. An ND-POMDP is a Dec-POMDP, where

• The states are agent-wise factored: S = S0 ×S1 × . . .×Sn (as discussed in Sec-
tion 2.4.2).

• The reward function exhibits additive separability, which means that it is pos-
sible to decompose the reward function into the sum of smaller local reward
functions:
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R(s,a) =
ρ

∑
e=1

Re(s0,se,ae). (8.1.2)

Again, e is overloaded to also denote a subset of agents.
• The transition and observation model satisfy the transition and observation inde-

pendence properties from Section 2.4.2.

Note that the ND-POMDP allows for an additional state component that takes
values s0 ∈ S0, and that can be used to model aspects of the world that cannot be
influenced by the agents, such as the weather. This means that its transitions only
depend on itself, Ti(s′0|s0). However, the non-influenceable state factor is allowed to
influence the observation of the agents: Oi(oi|ai,s′i,s′0), as well as the reward com-
ponents (8.1.2).

Nair et al. [2005] show that in this setting the value can be decomposed into lo-
cal value functions: i.e., (8.1.1) holds. This means that the factorization of the value
function implies a coordination (hyper-)graph, and that (distributed) COP methods
can be employed: in each of the nodes (representing agents) a policy is chosen, and
the goal is to select a joint policy such that the sum of local value functions is max-
imized. The sparsity in the graph can be exploited for more efficient computation.

π1 π2 π3

π4

π5π6π7

V
1(π1,π2)

V
3(π3,π4)

Fig. 8.2: An ND-POMDP sensor network example.

Typical motivating domains for ND-POMDPs include sensor network and target
tracking problems. Figure 8.2 shows an example coordination graph corresponding
to an ND-POMDP for the sensor network problem from Section 2.3 (see Figure 2.7).
There are six edges, each connecting two agents, which means that the reward func-
tion decomposes as follows:

R(s,a) = R1(s0,s1,s2,a1,a2)+R2(s0,s2,s3,a2,a3)+ · · ·+R6(s0,s6,s7,a6,a7).

Let Ni denote the neighbors of agent i, including i itself, in the interaction graph.
In an ND-POMDP, the local neighborhood utility of an agent i is the expected return
for all the edges that contain agent i:

V (πNi) = ∑
e∈E s.t. i∈e

V e(πe). (8.1.3)



8.1 Exploiting Structure in Factored Models 95

It can be shown that when an agent j /∈Ni changes its policy, V (πNi) is not affected,
a property referred to as locality of interaction [Nair et al., 2005].

This locality of interaction is the crucial property that allows COP methods to
optimize more effectively.2 In particular, Nair et al. [2005] propose a globally opti-
mal algorithm (GOA), which essentially performs nonserial dynamic programming
on the interaction graph, as well as locally interacting distributed joint equilibrium
search for policies (LID-JESP), which combines the distributed breakout algorithm
(DBA) [Yokoo and Hirayama, 1996] with JESP (see Section 5.2.1). Kim et al. [2006]
extend this method to make use of a stochastic version of DBA, allowing for a
speedup in convergence. Both Varakantham et al. [2007b] and Marecki et al. [2008]
address the COP using heuristic search (for the finite and the infinite-horizon case
respectively). Kumar and Zilberstein [2009] extend MBDP (see Section 5.2.2) to
exploit COP methods in both the heuristic used to sample belief points and in com-
puting the best subtree for a sampled belief. Kumar et al. [2011] cast the planning
problem as an inference problem [Toussaint, 2009] and employ the expectation max-
imization (EM) algorithm (e.g., see Koller and Friedman, 2009) to solve the prob-
lem. Effectively, this approach decomposes the full inference problem into smaller
problems by using message passing to compute the local values (E-step) of each
factor and then combining the resulting solutions in the M-step. Dibangoye et al.
[2014] use the reduction to an NOMDP (discussed in Section 4.3) and extend the
solution method of Dibangoye et al. [2013] by exploiting the factored structure in
the resulting NOMDP value function.

We note that even with factored transitions and observations, a policy in an ND-
POMDP is a mapping from observation histories to actions (unlike in the transition-
and observation-independent Dec-MDP case, where policies are mappings from lo-
cal states to actions) and the worst-case complexity remains the same as in a regular
Dec-POMDP (NEXP-complete), thus implying doubly exponential complexity in
the horizon of the problem. While the worst-case complexity remains the same as in
the Dec-POMDP case, algorithms for ND-POMDPs are typically much more scal-
able in the number of agents in practice. Scalability can increase as the hyper-graph
becomes less connected.

8.1.1.3 Factored Dec-POMDPs

The ND-POMDP framework enables the exploitation of locality by imposing re-
strictions that guarantee that the value function factorizes in local components. Un-
fortunately, these restrictions narrow down the class of problems that can be rep-
resented. Alternatively, we can investigate a broader class and see to what extent
locality of interaction might still hold.

2 The formula (8.1.3), that explains the term locality of interaction, and (8.1.1), that states the
requirement that the value function can be decomposed into local components, each emphasize
different aspects. Note, however that one cannot exist without the other and that, therefore, these
terms can be regarded as synonymous.
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Definition 30 (Factored Dec-POMDP). A factored Dec-POMDP (fDec-POMDP)
[Oliehoek et al., 2008c] is identical to a Dec-POMDP with:

• an arbitrary (non-agent-wise) factored state space S= X1 × . . .×X|X |, which is
spanned by a set of factors X=

{
X1, . . . ,X|X |};

• a reward function that exhibits additive separability: R(s,a) = ∑ρ
e=1 Re(xe,ae),

which is similar to the above definition in (8.1.2), but now xe expresses the value
of an arbitrary subset of state factors associated with reward component e.

In a factored Dec-POMDP, the transition and observation model can be com-
pactly represented by exploiting conditional independence between variables. In
particular, the transition and observation model can be represented by a dynamic
Bayesian network (DBN) [Boutilier et al., 1999]. In such a DBN, arrows represent
causal influence and each node with incoming edges has a conditional probability
table (CPT) associated with it. Although the size of these CPTs is exponential in the
number of parents, the parents are typically a subset of all state factors and actions,
leading to a model exponentially smaller than a flat model. Rewards can be included
in the DBN.3 The reward nodes have conditional reward tables (CRTs) associated
with them that represent the local reward functions. Decision trees [Boutilier et al.,
1999, 2000] or algebraic decision diagrams [Bahar et al., 1993, St-Aubin et al.,
2001, Poupart, 2005] can be used to further reduce the size of representation of both
CPTs and CRTs by exploiting context-specific independence. For example, the value
of some factor xi may be of no influence when some other factor x j has a particular
value.

As an example, we consider the FIREFIGHTINGGRAPH (FFG) problem, illus-
trated in Figure 8.3a. It models a team of n firefighters that have to extinguish fires
in a row of nH = n+1 houses. In the illustration, we assume n = 3,nH = 4. At every
time step, each agent i can choose to fight fires at house i or i+ 1. For instance,
agent 2’s possible actions are H2 and H3. Each agent can observe whether there are
flames, oi = F , or not, oi = N, at its location. Each house H is characterized by a fire
level xH , an integer parameter in [0,Nf ), where a level of 0 indicates the house is not
burning. A state in FFG is an assignment of fire levels s = 〈x1,x2,x3,x4〉. Initially,
the fire level xH of each house is drawn from a uniform distribution.

Figure 8.3b shows the DBN for the problem. The transition probabilities are such
that a burning house where no firefighter is present has a reasonable chance to in-
crease its fire level. When a neighboring house is also burning, this probability is
even higher. In addition a burning neighboring house can also ignite a non-burning
house. When two agents are in the same house, they will extinguish any present
fire completely, setting the house’s fire level to 0. A single agent present at a house
will lower the fire level by one point with probability 1 if no neighbors are burn-
ing, and with probability 0.6 otherwise. Flames are observed with probability 0.2 if
the visited house is not burning, with probability 0.5 if its fire level is 1, and with
probability 0.8 otherwise.

3 Such a DBN that includes reward nodes is also called an influence diagram (ID) [Howard and
Matheson, 1984].
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(b) The DBN that represents FFG.

Fig. 8.3: The FIREFIGHTINGGRAPH problem. A DBN can be used to represent the
transition, observation and reward function.

Figure 8.3b also includes the local reward functions, one per house. In particular,
for each house 1 ≤ H ≤ 4 the rewards are specified by the fire levels at the next time
step rH(xH′) = −xH′. We can reduce these rewards to ones of the form RH(s,a) as
in Definition 2 by taking the expectation over xH ′. For instance, for house 1

R1(x{1,2},a1) = ∑
x1 ′

Pr(x1′|x{1,2},a1)r1(x1′), (8.1.4)

where x{1,2} denotes 〈x1,x2〉. While FFG is a stylized example, such locally con-
nected systems can be found in applications as traffic control [Wu et al., 2013] or
communication networks [Ooi and Wornell, 1996, Hansen et al., 2004, Mahajan and
Mannan, 2014].

Value Functions for Factored Dec-POMDPs Factored Dec-POMDPs can ex-
hibit very local behavior. For instance, in FFG, the rewards for each house only
depend on a few local factors (both ‘nearby’ agents and state factors), so it seems
reasonable to expect that also in these settings we can exploit locality of interac-
tion. It turns out, however, that due to the absence of transition and observation
independence, the story for fDec-POMDPs is more subtle than for ND-POMDPs.
In particular, in this section we will illustrate this by examining how the Q-function
for a particular joint policy Qπ decomposes.

Similarly to typical use in MDPs and RL, the Q-function is defined as the value
of taking a joint action and following π subsequently (cf. the definition of V π by
(3.4.2)):
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Qπ(st ,ōt ,at)�
{

R(st ,at), for the last stage t = h−1, and otherwise:
R(st ,at)+∑st+1 ∑ot+1

Pr(st+1,ot+1|st ,at)Qπ(st+1,ōt+1,π(ōt+1)).

Since the immediate reward function is additively factored in case of an fDec-
POMDP, it is possible to decompose this Q-function into ρ components Qe that
each predict the value for a reward component Re. This decomposition is not as
straightforward as the decomposition of values in ND-POMDPs (8.1.1), but needs
to deal with differences in structure between stages, as we explain next.

For the last stage of an fDec-POMDP, the Q-function is trivially additively fac-
tored: Qπ

h−1 is simply equal to the immediate reward function. This is illustrated for
FFG in Figure 8.4. The figure shows that the Q-function can be decomposed in four
local Q-value functions Q = Q1 + · · ·+Q4, where each Qe is defined over the same
subset of variables as Re (the scope of Qe). In order to exploit independence between
agents, we discriminate between the variables that pertain to state factors and those
that pertain to agents (i.e., actions and observations).

2
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4

Fig. 8.4: The interaction hyper-graph illustrating the factorization of Qπ for FIRE-
FIGHTINGGRAPH t = h−1.

For other stages, t < h− 1, it turns out that—even without assuming transition
and observation independence—it is still possible to decompose the value function
as the sum of functions, one for each payoff component e. However, because actions,
factors and observations influence each other, the scopes of the components Qe grow
over time. This is illustrated in Figure 8.5, which shows the scope of Q1, the value
component that represents the expected (R1) reward for house 1 at different stages
of a horizon h = 3 FFG problem. Even though the scope of the function R1 only
contains {x1,x2,a1}, at earlier stages we need to include more variables since they
can affect R1

h−1, the reward for house 1 at the last stage t = h−1.
We can formalize these growing scopes using ‘scope backup operators’ for state

factors scopes (Γ X ) and agent scopes (Γ A ). Given a set of variables V (which can
be either state factors or observations) from the right-hand side of the 2DBN, they
return the variables (respectively the state factors scope and agent scope) from the
left-hand side of the 2DBN are ancestors of V. This way, it is possible to specify a
local value function component:

Qe
π(xe,t ,ōe,t ,ae) = Re(xe,t ,ae)+ ∑

xe′,t+1

∑
oe′,t+1

Pr(xe′,t+1,oe′,t+1|xΓ X,t ,aΓ A )Qe
π(xe′,t+1,ōe′,t+1,πe′(ōe′,t+1)). (8.1.5)
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Fig. 8.5: Illustration of the interaction between agents and environment over time
in FFG. In contrast to Figure 8.3b, which represents the transition and observation
model using abstract time steps t and t + 1, this figure represents the last 3 stages
of a decision problem. Also the rewards are omitted in this figure. The scope of Q1,
given by (8.1.4), is illustrated by shading and increases when going back in time.

where xΓ X,t ,aΓ A denote the state factors and actions of agents that are needed to
predict the state factors (xe′,t+1) as well as the observations of the agents (oe′,t+1) in
the next stage scope.

Theorem 3 (Decomposition of Vt(π)). Given an additively factored immediate re-
ward function, for any t there is a specification of scopes (xe,t ,ōe,t ) such that the
value Vt(π) of a finite-horizon factored Dec-POMDP is decomposable:

Vt(π) = ∑
e∈E

V e
t (π) = ∑

e∈E
∑
xe,t

∑̄
oe,t

Pr(xe,t ,ōe,t |b0,π)Qe
π(xe,t ,ōe,t ,πe(ōe,t)). (8.1.6)

Proof. See Oliehoek [2010, Chapter 5].

When one or more components becomes ‘fully coupled’ (i.e., contains all agents
and state factors), technically, the value function still is additively factored. How-
ever, at this point the components are no longer local, which means that factorization
will no longer provide any benefits. Therefore, at this point the components can be
collapsed to form a non-factored value function.

When assuming transition and observation independence, as in ND-POMDPs,
the scopes do not grow: each variable si,t+1 (representing a local state for agent i) is
dependent only on si,t (its own value at the previous state), and each oi is dependent
only on si,t+1. As a result, the interaction graph for such settings is stationary.
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In the more general case, such a notion of locality of interaction over full-length
policies is not properly defined, because the interaction graph and hence an agent’s
neighborhood can be different at every stage. It is possible to define such a notion
for each particular stage t [Oliehoek et al., 2008c]. As a result, it is in theory possible
to exploit factorization in an exact manner. However, in practice it is likely that the
gains of such a method will be limited by the dense coupling for earlier stages.

A perhaps more promising idea is to exploit factored structure in approximate
algorithms. For instance, even though Figure 8.5 clearly shows there is a path from
x4 to the immediate reward associated with house 1, it might be the case that this
influence is only minor, in which case it might be possible to approximate Q1 with
a function with a smaller scope. This is the idea behind transfer planning [Oliehoek
et al., 2013b]: the value functions of abstracted source problems involving few state
factors and agents are used as the component value functions for a larger task. In
order to solve the constraint optimization problem more effectively, the approach
makes use of specific constraint formulation for settings with imperfect informa-
tion [Oliehoek et al., 2012a]. Other examples are the methods by Pajarinen and Pel-
tonen [2011a] and Wu et al. [2013] that extend the EM method for Dec-POMDPs
by Kumar and Zilberstein [2010b] and Kumar et al. [2011] such that they can be ap-
plied to fDec-POMDPs. While these methods do not have guarantees, they can be
accompanied by methods to compute upper bounds for fDec-POMDPs, such that it
is still possible to get some information about their quality [Oliehoek et al., 2015a].

8.1.2 Exploiting Influence-Based Policy Abstraction

The reduction of (special cases of) Dec-POMDP to constraint optimization prob-
lems, as described above, exploits conditional independence of the best responses
of agents. That is, the best response of one agent might depend only on a sub-
set of other agents. However, in certain (special cases of) factored Dec-POMDPs
there is also another type of structure that has been exploited [Becker et al., 2003,
2004a, Varakantham et al., 2009, Petrik and Zilberstein, 2009, Witwicki and Dur-
fee, 2010a,b, 2011, Velagapudi et al., 2011, Witwicki, 2011, Witwicki et al., 2012,
Oliehoek et al., 2012b]. This type of structure, which we refer to as compact influ-
ence space, operates at a finer level and may even be exploited in settings with just
two agents.

The core idea is that in an interaction, say between a cook i and a waiter j, not all
details of the agents’ policies are relevant for their interaction. There might be many
different ways for the cook to prepare a steak, but the only thing that is relevant for
the policy of the waiter is when the steak is ready to be served. As such, for the waiter
to compute a best response to the cook’s policy πi, he does not need to know every
detail about that policy, but instead can compute a more abstract representation of
that policy, to which we will refer as the (experienced) influence Ii→ j of policy πi on
agent j.
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(a) IBA: for the purpose of computing best re-
sponses, the policies of each agent can be rep-
resented in a more abstract way as influences.

(b) IS: given a joint influence point, each agent
i can independently compute its best-response
(subject to the constraint of satisfying Ii→ j ).

Fig. 8.6: Influence-based abstraction (IBA) and influence space search (IS).

The process of creating an abstract representation of πi is called influence-based
(policy) abstraction (IBA), and is illustrated in Figure 8.6a. A number of differ-
ent approaches have been proposed for performing this operation [e.g., Becker
et al., 2003, Varakantham et al., 2009, Witwicki and Durfee, 2010a, Oliehoek et al.,
2012b], exploiting different properties of the specific model for which they were
proposed. In the case that IBA can be performed efficiently, it can be useful for
best-response computations, with many potential applications. From the perspective
of objective planning for Dec-POMDPs, however, there is another very important
application: since the IBA operator potentially maps many policies πi to the same in-
fluence Ii→ j, the so-called (joint) influence space can be much smaller than the space
of joint policies. This means that searching the space of joint influences may lead
to substantial improvements in efficiency. This idea of joint influence space search
is illustrated in Figure 8.6b. As the figure emphasizes, influence search is not only
a promising technique because the the space of joint influences may be smaller, but
also because it allows each agent to compute its (constrained) best response locally,
thus opening the door to distributed planning approaches.

As a concrete example Becker et al. [2004b] consider a domain in which Mars
rovers need to perform exploration missions. Each rover has its own mission where
it visits a number of sites to take pictures, conduct experiments, collect soil sam-
ples, etc. During the execution of the mission of a rover, unexpected events (delays)
can occur, which means that at every site the rover needs to decide whether to per-
form the planned action or to continue to the next site. While the execution of the
missions do not interfere with each other (i.e., there is transition and observation
independence; cf. Section 2.4.2), the rewards do: some of the rovers may visit the
same site and the joint reward can be sub- or superadditive depending on the task.
For instance, consider a scenario where we want to find a joint policy for two rovers
i and j that both visit different sides of a canyon. Since two pictures from the dif-
ferent sides of the canyon will give an impression of the whole canyon, this might
be worth a lot more than twice the utility of a single picture. This means that the
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best response for agent i depends on the probability that π j will lead to agent j
successfully taking a picture from his side of the canyon. That is, the probability
p j( f oto|π j) that j successfully takes the picture is I j→i, the influence that π j exerts
on agent i, and similarly pi( f oto|πi) corresponds to Ii→ j . To find optimal solutions
for such problems, Becker et al. [2003] introduce the coverage-set algorithm, which
searches over the space of probabilities p j (not unlike the linear support algorithm
for POMDPs by Cheng [1988]) and computes all possible best response policies for
agent i. The resulting set, dubbed the coverage set, is subsequently used to compute
all the candidate joint policies (by computing the best responses of agent j) from
which the best joint policy is selected.

The above example illustrates the core idea of influence search. Since then, re-
search has considered widening the class of problems to which this approach can
be applied [Becker et al., 2004a, Varakantham et al., 2009, Witwicki and Durfee,
2010b, Velagapudi et al., 2011, Oliehoek et al., 2012b], leading to different defini-
tions of ‘influence’ as well as different ways of performing the influence search
[Varakantham et al., 2009, Petrik and Zilberstein, 2009, Witwicki et al., 2012,
Oliehoek et al., 2012b]. Currently, the broadest class of problems for which in-
fluence search has been defined is the so-called transition-decoupled POMDP (TD-
POMDP) [Witwicki and Durfee, 2010b], while IBA has also been defined for fac-
tored POSGs [Oliehoek et al., 2012b]. Finally, the concept of influence-based ab-
straction and influence search is conceptually similar to techniques that exploit be-
havioral equivalence in subjective (e.g., I-POMDP, cf. Section 2.4.6) planning ap-
proaches [Pynadath and Marsella, 2007, Rathnasabapathy et al., 2006, Zeng et al.,
2011]; the difference is that these approaches abstract classes of behavior down to
policies, whereas IBA abstracts policies down to even more abstract influences.

8.2 Hierarchical Approaches and Macro-Actions

The Dec-POMDP framework requires synchronous decision making: every agent
determines an action to execute, and then executes it in a single time step. While
this does not rule out things like turn-taking—it would be easy to force an agent to
select a ‘noop’ action based on an observable bit, for instance—this restriction is
problematic in settings with variable-length action duration and (thus) in hierarchi-
cal approaches [Oliehoek and Visser, 2006, Messias, 2014, Amato et al., 2014].

Many real-world systems have a set of controllers (e.g, way point navigation,
grasping an object, waiting for a signal), and planning consists of sequencing the ex-
ecution of those controllers. These controllers are likely to require different amounts
of time, so synchronous decision making would require waiting until all agents have
completed their controller execution (and achieved common knowledge of this fact).

Similarly, such delays could, and typically would, arise in hierarchical solutions
to Dec-POMDPs. For instance, Oliehoek and Visser [2006] describe an idea for a
hierarchical approach to addressing RoboCup Rescue: the lowest level corresponds
to a regular Dec-POMDP, while higher levels correspond to assignments of agents to
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particular fires or regions. Again, the problem here is that it is not possible guarantee
that the tasks ‘fight fire A’ and ‘fight fire B’ taken by two subsets of agents will end
simultaneously, and a synchronized higher level will therefore induce delays: the
amount of time Δ t needs to be long enough to guarantee that all tasks are completed,
and if a task finishes sooner, agents will have to wait. In some cases, it may be
possible to overcome the worst effects of such delays by expanding the state space
(e.g., by representing how far the current task has progressed, in combination with
time step lengths Δ t that are not too long). In many cases, however, more principled
methods are needed: the differences in task length may make the above approach
cumbersome, and there are no guarantees for the loss in quality it may lead to.
Moreover, in some domains (e.g., when controlling airplanes or underwater vehicles
that cannot stay in place) it is not possible to tolerate any delays.

One potential solution for MPOMDPs, i.e., settings where free communication is
available, is provided by Messias [2014], who describes multirobot decision making
as an event-driven process: in the Event-Driven MPOMDP framework, every time
that an agent finishes its task, an event occurs. This event is immediately broadcast
to other agents, who become aware of the new state of the environment and thus can
immediately react. Another advantage of this approach is that, since events are never
simultaneous (they occur in continuous time), this means that the model does not
suffer from exponentially many joint observations. A practical difficulty for many
settings, however, is that the approach crucially depends on free and instantaneous
broadcast communication.

A recent approach to extending the Dec-POMDP model with macro-actions, or
temporally extended actions [Amato et al., 2014] does not assume such forms of
communication. The formulation models prespecified behaviors as high-level ac-
tions (the macro-actions) in order to deal with significantly longer planning hori-
zons. In particular, the approach extends the options framework Sutton et al. [1999]
to Dec-POMDPs by using macro-actions, mi, that execute a policy in a low-level
Dec-POMDP until some terminal condition is met. We can then define policies over
macro-actions for each agent, μi, for choosing macro-actions that depend on ‘high-
level observations’ which are the termination conditions of the macro-actions (la-
beled with β in Figure 8.7).4 Because macro-action policies are built from primitive
actions, the value for high-level policies can be computed in a similar fashion, as
described in Section 3.4.

As described in that section, the value can be expressed as an expectation

V (m) = E

[
h−1

∑
t=0

R(st ,at)
∣∣∣b0,m

]
,

with the difference that the expectation now additionally is over macro-actions. In
terms of computing the expectation, it is possible to define a recursive equation
similar to (3.4.2) that explicitly deals with the cases that one or more macro-actions

4 More generally, high-level observations can be defined that depend on these terminal conditions
or underlying states.
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Fig. 8.7: A set of policies for one agent with macro-actions m1 and m1 and terminal
conditions as β s.

terminate. For details, we refer the reader toAmato et al. [2014]. The goal is to
obtain a hierarchically optimal joint macro-policy. This is a joint macro-policy that
produces the highest expected value that can be obtained by sequencing the agents’
given macro-actions.

Two Dec-POMDP algorithms have been extended to consider macro-actions [Am-
ato et al., 2014], but other extensions are possible. The key difference (as shown in
Figure 8.7) is that nodes in a policy tree now select macro-actions (rather than prim-
itive actions) and edges correspond to terminal conditions. Macro-action methods
perform well in large domains when high-quality macro-actions are available. For
example, consider the COOPERATIVE BOX PUSHING-inspired, multirobot domain
shown in Figure 8.8. Here, robots were tasked with finding and retrieving boxes of
two different sizes: large and small. The larger boxes can only be moved effectively
by two robots and while the possible locations of boxes are known (in depots), the
depot contents (the number and type of boxes) are unknown. Macro-actions were
given that navigate to the depot locations, pick up the boxes, push them to the drop-
off area and communicate any available messages.

The resulting behavior is illustrated in Figure (8.8), which shows screen cap-
tures from a video of the macro-policies in action. It is worth noting that the prob-
lem here represented as a flat Dec-POMDP is much larger than the COOPERATIVE
BOX PUSHING benchmark problem (with over 109 states) and still the approach
can generate high-quality solutions for a very long horizon [Amato et al., 2015b].
Additional approaches have extended these methods to controller-based solutions,
to automatically generate macro-actions, and to remove the need for a full model of
the underlying Dec-POMDP [Omidshafiei et al., 2015, Amato et al., 2015a].

8.3 Communication

Another more active direction of research involves incorporating communication
between agents. We already saw in Section 2.4.3 that adding instantaneous, noise-
free and cost-free communication allows us to transform a Dec-POMDP into an
MPOMDP, but these assumptions are very strong. As such, research has tried identi-
fying more reasonable assumptions and investigating how those impact the decision
making processes.
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(a) One robot starts first and goes to depot 1
while the other robots begin moving towards
the top middle.

(b) The robot in depot 1 sees a large box, so it
turns on the red light (the light is not shown).

(c) The green robot sees light first, turns it off,
and goes to depot 1. The white robot goes to
depot 2.

(d) The robots in depot 1 push the large box
and the robot in depot 2 pushes a small box to
the goal.

Fig. 8.8: Multirobot video captures (signaling).

8.3.1 Implicit Communication and Explicit Communication

The main focus of this book is the regular Dec-POMDP, i.e., the setting without ex-
plicitly modeled communication. Nevertheless, in a Dec-POMDP the agents might
very well communicate by means of their regular actions and regular observations.
For instance, if one agent can use a chalk to write a mark on a blackboard and other
agents have sensors to observe such a mark, the agents have a clear mechanism
to send information from one to another, i.e., to communicate. We refer to such
communication via regular (‘domain’) actions as implicit communication.5 Further-
more, communication actions can be added to the action sets of each agent and
communication observations can be added to the observation sets of each agent,
allowing communication to be modeled in the same way as other actions and obser-
vations (e.g., with noise, delay or signal loss).

Definition 31 (Implicit and Explicit Communication). When a multiagent deci-
sion framework has a separate set of communication actions, we say that it supports
explicit communication. Frameworks without explicit communication can and typ-
ically do still allow for implicit communication: the act of influencing the observa-
tions of one agent through the actions of another.

5 Goldman and Zilberstein [2004] refer to this as ‘indirect’ communication.
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We point out that the notion of implicit communication is very general. In fact,
the only models that do not allow for implicit communication are precisely those
that impose both transition and observation independence, such as the transition-
and observation-independent Dec-MDP (Section 2.4.2) and the ND-POMDP (Sec-
tion 8.1.1.2).

8.3.1.1 Explicit Communication Frameworks

When adding explicit communication to a multiagent framework, a first question to
answer is what type of communication is supported. For instance, Xuan et al. [2001]
identify three possible communication types:

• Tell, in which an agent informs another agent with some information (such as its
local state, as assumed by Xuan et al.).

• Query in which an agent can ask another agent for some specific information.
• Sync in which, once initiated by at least one agent, all involved agents synchro-

nize their knowledge (regarding an a priori specified set of things, such as the
agents’ local states).

Goldman and Zilberstein [2003] make a different categorization:

• One-way communication, in which information flow is unidirectional. This is
similar to tell.

• Two-way communication, which leads to an exchange of messages. Both Query
and Sync are forms of two-way communication. (Note that by issuing a query, the
first agent may inform the second agent about aspects of the world about which
it is uncertain.)

• Acknowledged communication, in which the agents send confirmation of the re-
ceipt of messages.

In addition, communication can differ as to which agents are involved: communica-
tion can be point-to-point, or broadcast to (a subset of) all agents.

There have been some approaches to extend the Dec-POMDP to explicitly in-
corporate communication actions and observations. For instance, the Dec-POMDP-
Com6 [Goldman and Zilberstein, 2003, 2004] additionally includes a set of mes-
sages and a cost function:

Definition 32 (Dec-POMDP-Com). A Dec-POMDP-Com is a tuple 〈MDecP,Σ ,CΣ 〉,
where

• MDecP is a Dec-POMDP,
• Σ is the alphabet of possible messages that the agents can send,
• CΣ is the communication cost function that indicates the cost of each possible

message.

6 The multiagent team decision problem (MTDP) that was mentioned in Section 2.2 has a similar
extension, called the Com-MTDP [Pynadath and Tambe, 2002], which is equivalent to the Dec-
POMDP-Com.
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The messages in the Dec-POMDP-Com fulfill a threefold purpose: they serve
as additional observations (i.e., they can be interpreted to serve as the set of aux-
iliary observations Zi, introduced in Section 2.4.4, for each agent i), they serve as
additional actions (i.e., the mechanism by which the auxiliary observations are gen-
erated is by selecting these distinguished communication actions), and they serve as
the basis for communication costs.

In the original paper by Goldman and Zilberstein [2003], the interaction proceeds
as follows. At the beginning of every stage t, right after observing its individual
observation oi,t , each agent i gets the opportunity to first perform a communication
action (i.e., broadcast one of the symbols from Σ ). These messages are assumed to
arrive instantly such that they are available to the other agents when deciding upon
their next (domain) action ai.

Of course, variations to this model are also possible, such as in Section 8.3.2,
where we cover some approaches that deal with delayed communication. Also, the
Dec-POMDP-Com model itself could allow different communication models, but
most studies have considered noise-free instantaneous broadcast communication.
That is, each agent broadcasts its message and receives the messages sent by all
other agents instantaneously and without errors.

Although models with explicit communication seem more general than the mod-
els without, it is possible to transform the former to the latter. That is, a Dec-
POMDP-Com can be transformed to a Dec-POMDP [Goldman and Zilberstein,
2004, Seuken and Zilberstein, 2008]. This means that contributions to the Dec-
POMDP setting transfer to the case of general communication. Unfortunately, since
the other way around, a Dec-POMDP is a special case of Dec-POMDP-Com, the
computational hardness results also transfer to these models.

8.3.1.2 Updating of Information States and Semantics

It is important to realize that in a Dec-POMDP-Com the messages do not have any
particular semantics. Instead, sending a particular message, say A, will lead (with
some probability) to an observation for other agents, and now these other agents
can condition their action on this observation. This means, that the goal for a Dec-
POMDP-Com is to:

find a joint policy that maximizes the expected total reward over the finite horizon. Solving
for this policy embeds the optimal meaning of the messages chosen to be communicated.
—Goldman and Zilberstein [2003]

That is, in this perspective the semantics of the communication actions become part
of the optimization problem. This problem is considered by [Xuan et al., 2001,
Goldman and Zilberstein, 2003, Spaan et al., 2006, Goldman et al., 2007, Amato
et al., 2015b].

One can also consider the case where messages have specified semantics. In such
a case the agents need a mechanism to process these semantics (i.e., to allow the
messages to affect their internal state or beliefs). For instance, as we already dis-
cussed in Section 2.4.3, in an MPOMDP the agents share their local observations.
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Each agent maintains a joint belief and performs an update of this joint belief, rather
than maintaining the list of observations. In terms of the agent component of the
multiagent decision process, introduced in Section 2.4.4, this means that the belief
update function for each agent must be (at least partly) specified.7

It was shown by Pynadath and Tambe [2002] that for a Dec-POMDP-Com un-
der instantaneous, noise-free and cost-free communication, a joint communication
policy that shares the local observations at each stage (i.e., as in an MPOMDP) is
optimal. Since this also makes intuitive sense, much research has investigated shar-
ing local observations in models similar to the Dec-POMDP-Com [Pynadath and
Tambe, 2002, Nair et al., 2004, Becker et al., 2005, Roth et al., 2005a,b, Spaan et al.,
2006, Oliehoek et al., 2007, Roth et al., 2007, Goldman and Zilberstein, 2008]. The
next two subsections cover observation-sharing approaches that try to lift some of
the limiting assumptions: Section 8.3.2 allows for communication that is delayed
one or more time steps and Section 8.3.3 deals with the case where broadcasting the
local observation has nonzero costs.

8.3.2 Delayed Communication

Here we describe models, in which the agents can share their local observations
via noise-free and cost-free communication, but where this communication can be
delayed. That is, the assumption is that the synchronization of the agents such that
each agent knows what the local observations of the other agents were takes one or
more time steps.

8.3.2.1 One-Step Delayed Communication

We start investigating communication that arrives with a one-step delay (1-SD),
which is referred to as the ‘one-step delay observation sharing pattern’ in the con-
trol literature [Witsenhausen, 1971, Varaiya and Walrand, 1978, Hsu and Marcus,
1982]. The consequence is that during execution at stage t the agents know θ̄ t−1,
the joint action-observation history up to time step t − 1, and the joint action at−1
that was taken at the previous time step. Because all the agents know θ̄ t−1, they can
compute the joint belief bt−1, which is a Markovian signal. Therefore the agents do
not need to maintain prior information; bt−1 takes the same role as the initial state
distribution b0 in a regular Dec-POMDP (i.e., without communication). Also, since
we assume that during execution each agent knows the joint policy, each agent can
infer the taken joint action at−1. However, the agents are uncertain regarding each
other’s last observation, and thus regarding the joint observation ot . Effectively, this
situation defines a collaborative Bayesian game (CBG) for each possible joint belief

7 The Com-MTDP [Pynadath and Tambe, 2002] deals with this by introducing the notion of
a ‘richer’ belief space and separating the belief update in a pre-communication and a post-
communication part. The same functionality is also assumed in the Dec-POMDP-Com.
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bt−1 and joint action at−1 in which the type of each agent is its individual observa-
tion oi,t . Note that these CBGs are different from the ones in Section (5.2.3); where
the latter had types corresponding to the entire observation histories of agents, the
CBGs considered here have types that correspond only to the last individual obser-
vation. Effectively, communication makes the earlier observations common infor-
mation and therefore they need not be modeled in the type anymore.

As a result, the optimal value for the 1-SD setting can be expressed as:

Vt,∗
1 (bt ,at) = R(bt ,at)+max

β t+1
∑

ot+1∈O
Pr(ot+1|bt ,at)V

t+1,∗
1 (bt+1,β t+1(ot+1)), (8.3.1)

where β t+1 = 〈β1,t+1, . . . ,βn,t+1〉 is a joint BG policy containing individual BG poli-
cies βi,t+1 that map individual observations to individual actions. For the motivation
to indicate this value using the letter ‘V’ and for the relation to other value functions,
see the discussion by Oliehoek [2010, Chap. 3]

Hsu and Marcus [1982] already showed that the value function for one-step de-
layed communication is piecewise linear and convex (PWLC), i.e., representable
using sets of vectors. Not surprisingly, more recent approximation methods for
POMDPs, e.g., Perseus [Spaan and Vlassis, 2005], can be transferred to its com-
putation [Oliehoek et al., 2007]. Based on the insight that the value functions for
both 0-step delayed communication (i.e., the MPOMDP) and 1-SD settings are rep-
resentable using sets of vectors, Spaan et al. [2008] give a formulation that deals
with stochastic delays of 0-1 time steps.

8.3.2.2 k-Steps Delayed Communication

We now consider the setting of k-step delayed communication8 [Ooi and Wornell,
1996, Oliehoek, 2010, Nayyar et al., 2011, Oliehoek, 2013]. In this setting, at stage t
each agent agent knows θ̄ t−k, the joint action-observation history of k stages earlier,
and therefore can compute bt−k, the joint belief induced by θ̄ t−k. Again, bt−k is a
Markov signal, so no further history needs to be retained and bt−k takes the role of
b0 in the no-communication setting and bt−1 in the one-step delay setting. Indeed,
one-step delay is just a special case of the k-step delay setting.

In contrast to the one-step delayed communication case, the agents do not know
the last taken joint action. However, if we assume the agents know each other’s
policies, they do know qk

t−k, the joint policy that has been executed during stages
t − k, . . . ,t − 1. This qk

t−k is a length-k joint subtree policy rooted at stage t − k: it
specifies a subtree policy qk

i,t−k for each agent i.
Let us assume that at a particular stage t the situation is as depicted in the top

half of Figure 8.9: the system with two agents has k = 2 steps delayed communi-
cation, so each agent knows bt−k and qk

t−k, the joint subtree policy that has been
executed during stages t − k, . . . ,t − 1. At this point, the agents need to select an

8 This setting is referred to as the ‘k-step delayed observation sharing information structure’ in
decentralized control theory.
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Fig. 8.9: Subtree policies in a system with k = 2 steps delayed communication. Top:
policies at t − k. The policies are extended by a joint BG-policy β k

t , shown dashed.
Bottom: The resulting policies after joint observation 〈ȯ1,o2〉.

action, but they do not know each other’s individual observation history since stage
t − k. That is, they have uncertainty with respect to the length-k observation history
ōt,|k| = (ot−k+1, . . . ,ot).Effectively, this means that the agents have to use a joint
BG-policy β k

t = 〈β k
1,t , . . . ,β

k
n,t〉 that implicitly maps length-k observation histories to

joint actions β k
t (ōt,|k|) = at .

For example, let us assume that in the planning phase we computed a joint BG-
policy β k

t as indicated in the figure. As is shown, β k
t can be used to extend the

subtree policy qk
t−k to form a longer subtree policy with τ = k+1 stage-to-go. Each

agent has knowledge of this extended joint subtree policy qk+1
t−k = 〈qk

t−k ◦β k
t 〉. Conse-

quently each agent i executes the action corresponding to its individual observation
history β k

i,t(ōi,t,|k|) = ai,t and a transition occurs to stage t + 1. At that point each
agent receives a new observation oi,t+1 through perception and the joint observation
ot−k+1 through communication, it transmits its individual observation, and it com-
putes bt−k+1. Now, all the agents know what action was taken at t − k and what the
following observation ot−k+1 was. Therefore the agents know which part of qk+1

t−k
has been executed during the last k stages t − k+ 1, . . . ,t and they discard the part
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not needed further; i.e., the joint observation ‘consumes’ part of the joint subtree
policy: qk

t−k+1 = qk+1
t−k

�
ot−k+1

(see Definition 20).
Now the basic idea is that of Section 4.3.1: it is possible to define a plan-time

MDP where the augmented states at stage t correspond to the common knowledge
(i.e.,

(
bt−k,qk

t−k

)
-pairs) and where actions correspond to joint BG-policies (β k

t ).
Comparing to Section 4.3.1, the former correspond to ϕ t and the latter to δ t . Con-
sequently, it is possible to define the value function of this plan-time MDP in a very
similar way; see Oliehoek [2010] for details. Similarly to the development in Sec-
tion 4.3.2, it turns out to be possible to replace the dependence on

(
bt−k,qk

t−k

)
-pairs

by a plan-time sufficient statistic σt(st ,ōt,|k|) over states and joint length-k observa-
tion histories [Oliehoek, 2013], which in turn allows for a centralized formulation (a
reduction to a POMDP), similar to the reformulation as an NOMDP of Section 4.5.
The approach can be further generalized to exploit any common information that
the agents might have [Nayyar et al., 2013, 2014].

8.3.3 Communication with Costs

Another way in which the strong assumptions of the MPOMDP can be relaxed is to
assume that communication, while instantaneous and noise-free, no longer is cost-
free. This can be a reasonable assumption in settings where the agents need to con-
serve energy (e.g., in robotic settings).

For instance, Becker et al. [2009] consider the question of when to communicate
in a transition- and observation-independent Dec-MDP augmented with the ‘sync’
communication model. In more detail, each time step is separated in a domain ac-
tion selected phase and a communication action selection phase. There are only two
communication actions: communicate and do not communicate. When at least one
agent chooses to communicate, synchronization is initiated and all agents partic-
ipate in synchronizing their knowledge; in this case the agents suffer a particular
communication cost.

Becker et al. [2009] investigate a myopic procedure for this setting: as long as
no agent chooses to synchronize, all agents follow a decentralized (i.e, Dec-MDP)
policy. At each stage, however, each agent estimates the value of communication—
the difference between the expected value when communicating and when staying
silent—by assuming that 1) in the future there will be no further possibility to com-
municate, and 2) other agents will not initiate communication. Since these assump-
tions introduce errors, Becker et al. also propose modified variants that mitigate
these errors. In particular, the first assumption is modified by proposing a method
to defer communicating if the value of communicating after one time step is higher
than that of communicating now. The second assumption is overcome by modeling
the myopic communication decision as a joint decision problem; essentially it is
modeled as a collaborative Bayesian game in which the actions are communicate or
do not communicate, while the types are the agents’ local states.
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8.3.4 Local Communication

The previous two subsections focused on softening the strong assumptions that the
MPOMDP model makes with respect to communication. However, even in settings
where instantaneous, noise-free and cost-free communication is available, broad-
casting the individual observations to all other agents might not be feasible since
this scales poorly: with large numbers of agents the communication bandwidth may
become a problem. For instance, consider the setting of a Dec-MDP where each
agent i can observe a subset of state factors si (potentially overlapping with that of
other agents) that are the most relevant for its task. If all the agents can broadcast
their individual observation, each agent knows the complete state and the problem
reduces to that of an MMDP. When such broadcast communication is not possible,
however, the agents can still coordinate their actions using local coordination.

The main idea, introduced by Guestrin et al. [2002a] and Kok and Vlassis
[2006], is that we can approximate (without guarantees) the value function of an
MMDP using a factored value function (similar to the ND-POMDP discussed in
Section 8.1.1.2), which can be computed, for instance, via linear programming
[Guestrin et al., 2002a]. When we condition the resulting factored Q-function
Q(s,a) ≈ ∑i∈D Qi(si,aN (i)) on the state we implicitly define a coordination graph
u(·)� Q(s,·), which allows the agents to coordinate their action selection online via
message passing (e.g., using max-sum or NDP) that only uses local communication.
The crucial insight that allows this to be applicable to Dec-MDPs is that in order to
condition the local factor Qi on the current state s each agent only needs access to
its local state si: ui(·) = Qi(si,·).

A somewhat related idea, introduced by Roth et al. [2007], is to minimize the
communication in a Dec-MDP by using the (exact or approximate) decision-tree
based solution of a factored MMDP. That is, certain solution methods for factored
MDPs (such as SPI [Boutilier et al., 2000], or SPUDD [Hoey et al., 1999]) produce
policies in the form of decision trees: the internal nodes specify state variables,
edges specify their values and the leaves specify the joint action to be taken for the
set of states corresponding to the path from root to leaf. Now the idea is that in some
cases (certain parts of) such a policy can be executed without communication even
if the agents observe different subsets of state variables. For instance, Figure 8.10a
shows the illustrative relay world in which two agents have a local state factor that
encodes their position. Each agent can perform ‘shuffle’ to randomly reset its loca-
tion, ‘exchange’ a packet (only useful when both agents are at the top of the square)
or do nothing (‘noop’). The optimal policy for agent 1 is shown in Figure 8.10b and
clearly demonstrates that requesting the location of the other agent via communica-
tion is only necessary when ŝ1 = L1. This idea has also been extended to partially
observable environments [Messias et al., 2011].
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(a) Relay World [Messias et al., 2011].
(Reproduced with permission.)

shuffle

exchange noop

ŝ1

ŝ2

L1 L2

R1 R2

(b) The optimal policy of agent 1 only depends on ŝ2
when ŝ1 = L1.

Fig. 8.10: The structure of the policy for a factored multiagent problem can be ex-
ploited to reduce communication requirements.

8.4 Reinforcement Learning

This book focuses on planning for Dec-POMDPs, i.e., settings where the model of
the environment is known at the start of the task. When this is not the case, we
step into the realm of multiagent reinforcement learning (MARL). In such settings,
the model will have to be learned online (model-based MARL) or the agents will
have to learn a solution directly without the use of a model (model-free methods).
While there is a great deal of work on MARL in general [Panait and Luke, 2005,
Buşoniu et al., 2008, Fudenberg and Levine, 2009, Tuyls and Weiss, 2012], MARL
in partially observable settings has received little attention.

One of the main reasons for this gap in the literature seems to be that it is hard
to properly define the setup of the reinforcement learning (RL) problem in these
partially observable environments with multiple agents. For instance, it is not clear
when or how the agents will the observe rewards.9 Moreover, even when the agents
can observe the state, general convergence of MARL under different assumptions is
not fully understood: from the perspective of one agent, the environment has become
nonstationary (since the other agent is also learning), which means that convergence
guarantees from single-agent RL no longer hold. Claus and Boutilier [1998] argue
that, in a cooperative setting, independent Q-learners are guaranteed to converge to
a local optimum (but not necessarily to the global optimal solution). Nevertheless,
this method has been reported to be successful in practice [e.g., Crites and Barto,
1998] and theoretical understanding of convergence of individual learners is pro-
gressing [e.g., Tuyls et al., 2006, Kaisers and Tuyls, 2010, Wunder et al., 2010].
There are coupled learning methods (e.g., Q-learning using the joint action space)
that will converge to an optimal solution [Vlassis, 2007]. However, the guarantees

9 Even in a single-agent POMDP, the agent is not assumed to have access to the immediate rewards,
since they can convey hidden information about the states.
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of these methods rely on the fact that the global states can be observed by all agents.
In partially observable settings such guarantees have not yet been established. Nev-
ertheless, a recent approach to Bayesian RL (i.e., the setting where there is a prior
over models) in MPOMDPs demonstrates that learning in such settings is possible
and scales to a moderate number of agents [Amato and Oliehoek, 2015].

Relatively few MARL approaches are applicable in partially observable settings
where agents have only local observations. Peshkin et al. [2000] introduced decen-
tralized gradient ascent policy search (DGAPS), a method for MARL in partially
observable settings based on gradient descent. DGAPS represents individual poli-
cies using finite-state controllers and assumes that agents observe the global re-
wards. Based on this, it is possible for each agent to independently update its policy
in the direction of the gradient with respect to the return, resulting in a locally opti-
mal joint policy. This approach was extended to learn policies for self-configurable
modular robots [Varshavskaya et al., 2008]. Chang et al. [2004] also consider de-
centralized RL assuming that the global rewards are available to the agents. In their
approach, these global rewards are interpreted as individual rewards, corrupted by
noise due to the influence of other agents. Each agent explicitly tries to estimate
the individual reward using Kalman filtering and performs independent Q-learning
using the filtered individual rewards.

The methods by Wu et al. [2010b, 2013] are closely related to RL since they do
not need entire models as input. They do, however, need access to a simulator which
can be initialized to specific states. Similarly, Banerjee et al. [2012] iteratively learn
policies for each agent using a sample-based version of the JESP algorithm where
communication is used to alert the other agents that learning has been completed.

Finally, there are MARL methods for partially observed decentralized settings
that require only limited amounts of communication. For instance, Boyan and
Littman [1993] considered decentralized RL for a packet routing problem. Their
approach, Q-routing, performs a type of Q-learning where there is only limited lo-
cal communication: neighboring nodes communicate the expected future waiting
time for a packet. Q-routing was extended to mobile wireless networks by Chang
and Ho [2004]. A similar problem, distributed task allocation, is considered by Ab-
dallah and Lesser [2007]. In this problem there also is a network, but now agents
do not send communication packets, but rather tasks to neighbors. Again, commu-
nication is only local. This approach was extended to a hierarchical approach that
includes so-called supervisors [Zhang et al., 2010]. The supervisors can communi-
cate locally with other supervisors and with the agents they supervise (‘workers’).
Finally, in some RL methods for MMDPs (i.e., coupled methods) it is possible to
have agents observe a subset of state factors if they have the ability to communicate
locally [Guestrin et al., 2002b, Kok and Vlassis, 2006]. Such methods have been
used in RoboCup soccer [Kok and Vlassis, 2005] and traffic control [Kuyer et al.,
2008].
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Conclusion

This book gives an overview of the research performed since the early 2000s on de-
cision making for multiagent systems under uncertainty. In particular, it focuses on
the decentralized POMDP (Dec-POMDP) model, which is a general framework for
modeling multiagent systems in settings that are both stochastic (i.e., the outcome
of actions is uncertain) and partially observable (i.e., the state is uncertain). The core
distinction between a Dec-POMDP and a (centralized) POMDP is that the execu-
tion phase is decentralized: each agent can only use its own observations to select its
actions. This characteristic significantly changes the problem: there is no longer a
compact sufficient statistic (or ‘belief’) that the agents can use to select actions, and
the worst-case complexity of solving a Dec-POMDP is higher (NEXP-complete for
the finite-horizon case). Such decentralized settings are important because they oc-
cur in many real-world applications, ranging from sensor networks to robotic teams.
Moreover, in many of these settings dealing with uncertainty in a principled man-
ner is important (e.g., avoiding critical failures while dealing with noisy sensors in
robots problems or minimizing delays and thus economic cost due to traffic conges-
tion while anticipating low-probability events that could lead to large disruptions).
As such, Dec-POMDPs are a crucial framework for decision making in cooperative
multiagent settings.

This book provides an overview of planning methods for both finite-horizon and
infinite-horizon settings (which proceed for a finite or infinite number of time steps,
respectively). Solution methods are provided that 1) are exact, 2) have some guaran-
tees, or 3) are heuristic (have no guarantees but work well on larger benchmark do-
mains). We also sketched some of the main lines of research that are currently being
pursued: exploiting structure to increase scalability, employing hierarchical models,
making more realistic assumptions with respect to communication, and dealing with
settings where the model is not perfectly known in advance.

There are many big questions left to be answered in planning for Dec-POMDPs
and we expect that much future research will continue to investigate these topics.
In particular, the topics treated in Chapter 8 (exploiting structured models, hierar-
chical approaches, more versatile communication models, and reinforcement learn-
ing) all have seen quite significant advances in just the last few years. In parallel,
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due to some of the improvements in scalability, we see that the field is starting to
shift from toy problems to benchmarks that, albeit still simplified, are motivated by
real-world settings. Examples of such problems are settings for traffic control [Wu
et al., 2013], communication network control [Winstein and Balakrishnan, 2013]
and demonstrations on real multirobot systems [Emery-Montemerlo et al., 2005,
Amato et al., 2015b]. We are hopeful that progress in these domains will inspire new
ideas, and will attract the attention of both researchers and practitioners, thus lead-
ing to an application-driven influx of ideas to complement the traditionally theory-
driven community studying these problems.
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