
Voltammetric Electronic Tongue
for the Sensing of Explosives and
Its Mixtures

Andreu González-Calabuig and Manel del Valle

Abstract This chapter presents recent work with electronic tongues, that is sensor
analytical systems formed by an array of chemical sensors featuring low selectivity
plus a chemometric tool to process the complex multivariate data that is generated.
As the generic application covered is related to security, the described systems are
those devised to identify and detect explosive compounds. These are characterized
from their voltammetric features, whereas a particular fingerprint is used to identify
particular compounds alone, or, in a more advanced application, to resolve mixtures
of compounds, that is to quantify their presence in mixtures. Two are the main
approaches shown, a first from the use of a voltammetric screen printed electrode,
and a second one from an array of metallic electrodes. Detected compounds are
different nitro-based energetic compounds, and later, also the identification of
organic peroxide type compounds.
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Artificial neural networks � Explosives

1 Introduction

Concerns relating to homeland security have given rise to increased research into
explosive detection as well as further developments for existing analytical tech-
niques to enable faster, more sensitive, less expensive and simpler determinations to
facilitate the trace identification of explosives.

Traditional security measures at airports include the use of metal detectors to
identify concealed weapons in conjunction with X-ray machines to inspect bag-
gage. One major problem is that explosive substances are not easily detectable
using conventional approaches and that in this context terrorist groups may avoid
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the use of metallic objects. Approaches to detect volatile substances, such as ion
mobility spectrometry in conjunction with swabbing, whilst in routine use, are
largely only suitable for the screening of items of hand baggage.

Research in connection with security has received increased attention, through
both the development of new, innovative detection approaches and through the
improvement of existing techniques. The most commonly used techniques include
Ion Mobility Spectrometry (IMS), Mass Spectrometry (MS), and Gas
Chromatography (GC) followed by detection using a sensitive detector. Most of
these devices are, however, rather bulky, expensive, and require time-consuming
procedures. Over those, IMS is one of the most widely adopted detection tech-
niques in routine use due to its ability to characterise the sample both qualitatively
and quantitatively. Because of the above limitations, such systems are deployed
only at strategic locations, e.g. airports or government buildings. Nevertheless,
further complications arise when one considers not only these placements, where
there is a reasonably controlled environment for sensing and detection, but also the
virtually uncontrollable entry points to public places, transportation, etc. or in field
use. Thus, to ensure security over those scenarios, mass deployment of miniature
sensors that are sufficiently sensitive and selective, inexpensive, and amenable for
mass production may be required.

Explosive compounds are widely used in warfare, mining industries, civil
constructions as well as terrorist attacks. Those are categorized in four major
classes: nitroaromatics, nitroamines, nitrate esters and peroxides according to their
chemical structures, as schematized on Fig. 1 [1]; from there, the most widely used
being 2,4,6-trinitrotoluene (TNT) or 1,3,5-trinitroperhydro-1,3,5-triazine (RDX).
Among them, special attention must be paid to peroxide explosives since those
compounds contain neither nitro groups nor aromatic functionalities, what makes
them difficult to be detected with the more established analytical methods used to
determine explosives [2]. That is, the challenge is that many current chemical
identification techniques are based on the nitrogen and carbon content of a sub-
stance for its identification, and this practice is not suitable for peroxide explosive.
Furthermore, the peroxide explosives are also not suitable for UV detection [3]
because of their lack of chromophores and their instability under illumination of
UV light—all necessary conditions for traditional detection procedures.

As an alternative, electrochemical devices are advantageous for addressing the
growing need for detection of various explosives, satisfying previously described
requirements [4]. In this direction, previous attempts were made to voltammetrically
detect the aforementioned compounds employing different types of electrodes such
as a bare screen printed electrode (SPCE), unmodified or modified gold electrodes
and modified glassy carbon electrodes (GCE). Although the detection of such
compounds can be achieved even at very low concentration levels, the main
challenge now is that common real-life explosives are usually mixtures of two or
more different explosive species. Therefore, it is interesting to discriminate between
individual compounds and to resolve their mixtures.
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On the other hand, voltammetric signals produced by these electrochemical
methods correspond normally to a global overlapped, multiple peak voltammo-
gram; i.e. there is a lack of specificity or identification of differentiated peaks for
each of the compounds. Thus, to correctly discover the relationships among all
variables and samples efficiently and to overcome the limitations found when
analyzing the data using only one or two variables at a time, it would be desirable to
process all of the data simultaneously, in this case with help of chemometrics.
Chemometrics is the discipline for extracting information from multivariate
chemical data using tools of statistics and mathematics. In our case, the used
techniques will be divided into two classes depending on the nature of the extracted
information, either qualitative methods such as principal component analysis
(PCA), linear discriminant analysis (LDA) or quantitative ones such as partial least
squares (PLS) or artificial neural networks (ANNs).

The methodology needed for this kind of work consists, then, of two main parts:
the development of the (bio)sensors responding to the species sought and the use of
the processing tools for the data treatment. In the case of sensors, different alter-
natives, which will be detailed later, have raised; however, in all cases, voltam-
metric sensors are the preferred technology if explosives are the target analytes. In
the case of the processing tools, the concept and principles of electronic tongues

Fig. 1 Chemical structures of important explosive compounds commercially available or used in
terrorist acts. The different nitro- compounds (i) 2,4,6-trinitrotoluene (TNT); (ii)
1,3,5-trinitroperhydro-1,3,5-triazine (RDX); (iii) N-methyl-N,2,4,6-tetranitroaniline (Tetryl); (iv)
Pentaerythritol tetranitrate (PETN); (v) octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and
the peroxo- type (vi) triacetone triperoxide (TATP)
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will be used, which are a new relatively concept in analytical chemistry and on
which our group has a wide experience [5].

These two blocks will also mark the roadmap of any investigation in this area. At
an early stage we will mainly focus in the construction of the sensors first with
response towards the nitro and later to the peroxo compounds. After the selection of
the sensors that will be part of the electronic tongue, the different data treatment
options will be evaluated; finally, the applications will be devised, in which it can
be the detection of explosive presence, the identification of different types of
explosives and the resolution and quantification of mixtures of different explosive
substances, alone or in mixtures.

1.1 Detection of Explosives by Simple Voltammetry

As already mentioned, the development of electrochemical sensors for the detection
of explosive substances provides significant benefits and is experiencing constant
growth [6]. The main advantages of these types of sensors for on-field detection
include its high sensitivity and selectivity, a wide linear range, minimal space and
power requirements, and low-cost instrumentation. Moreover, both the sensor and
the instrumentation can be readily miniaturized to yield compact and user-friendly
hand-held meters for on-site (indoor and outdoor) testing [7].

In voltammetric sensors, there is a sweep in the potential applied to the working
electrode to generate an electron transfer reaction (usually the reduction) of the
explosive substance of interest, during which the current is measured. The inherent
redox activity of commercial explosives [8], such as nitroaromatic or nitramine
compounds, namely the presence of easily-reducible nitro groups, makes them ideal
candidates for voltammetric monitoring. What is needed, is to obtain their particular
voltammetric fingerprint, which is text used for its identification. Hence, electro-
chemical devices represent a promising solution for on-site explosives detection.

Upon selection of the measuring technique, the next step is the evaluation of the
different strategies/technologies for the obtention of the sensor array that will allow
the detection of the explosive compounds. In this direction, the most feasible
options are the use of:

• Composites, in this case based on conductive phases dispersed in polymeric
matrices. These materials combine the electrical properties of graphite with the
ease of processing of plastics (epoxy, methacrylate, Teflon, etc.) and show
attractive electrochemical, physical, mechanical and economical features com-
pared to the classic conductors (gold, platinum, graphite, etc.) [9]. The main
advantages derived from the use of composites include their ability to integrate
different materials that allow to improve the sensitivity and selectivity, the
flexibility in size and shape that they bring to their manufacture, the possibility
of polishing its surface to obtain fresh material for the next measurements
(obtaining reproducible results due to the composition of the “composite” being
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homogeneous), higher S/N ratio compared to pure conductors, which allows
lower detection limits to be achieved, etc. The electrodes in the sensor array may
incorporate catalysts, conducting polymers or nanoparticles in the composite
formulation, according to existing knowledge, in order to display differentiated
response.

• Screen Printed Electrodes (SPEs), which allow the miniaturization of the pre-
vious described system through the use of screen printed electrodes instead of
bulk composite electrodes; increasing in this manner, the portability of the
system, allowing disposable use, reducing the amount of sample required and
the manufacturing cost [10].

• Electropolymerized conducting polymers [11]. The high application potential of
conducting polymers in chemical and biological sensors is one of the main
reasons for the intensive investigation and development of these materials.
Although conducting polymers show almost no conductivity in the neutral
(uncharged) state, their intrinsic conductivity results from the formation of
charge carriers upon oxidizing (p-doping) or reducing (n-doping) their conju-
gated backbone. A process that can be done electrochemically, which addi-
tionally provides fine tuning of the doping level by adjusting the electrical
potential. Moreover, sensitivity of conducting polymers to organic molecules
(explosive compounds in our case) can be fine tuned based on the intrinsic
affinity of the polymer backbone, on the affinity of side groups or on binding to
immobilized receptors.

• Molecularly Imprinted Polymers (MIPs), also known as artificial antibodies, are
polymers formed in the presence of the molecule that we aim to determine
(template) and that at a later stage is removed, leaving a complementary cavity
in the polymer with affinity to the chosen template molecule [12]. Such poly-
mers present a high affinity towards the template molecule and can be used to
manufacture sensors with a similar recognition mechanism to antibodies,
therefore with a very high selectivity. Molecular imprinting is, in fact, making
an artificial tiny lock for a specific molecule that serve as miniature key.
Integration of MIPs with voltammetric sensors is feasible when the detected
molecules are electroactive, which is the selected case. Adsorptive stripping
techniques will be the ideal choice for improving detection limits to the sub-ppb
level.

• Molecularly imprinted Au nanoparticle composites. The idea in the construction
of these sensors is very similar to the previous one, but replacing the polymer
with gold nanoparticles [13]. The imprinting process involves the electropoly-
merization of thioaniline-functionalized gold nanoparticles on a thioaniline
monolayer-modified electrode in the presence of a carboxylic acid, acting as a
template analogue for the respective explosive. Then, the high affinity of gold
with thiol groups lead to the formation of an array of gold nanoparticles (similar
to the polymer matrix) in which cavities might be also generated due to the
presence of the template molecule.

Voltammetric Electronic Tongue … 65



1.2 Improvement of Voltammetric Results with Use
of Chemometrics

After the data collection task, which typically involves several measurements made
on many samples, the next step is data processing. Voltammetric multivariate data
has traditionally been analyzed using one or two variables at a time. However, this
approach fails to discover the relationships among all variables and samples effi-
ciently. To overcome this, we must process all of the data simultaneously, in this
case with the help of chemometrics [14]. Therefore, in order to extract useful
information from what is not, and be able to interpret the data so they can be used in
useful prediction models, the use of multivariate processing tools such as in the case
of electronic tongues is required.

Electronic tongues are inspired by the sensory ability of taste in mammals, where
a few receptors can respond to a large variety of substances [5]. This principle
functions thanks to the complex data treatment applied in the brain, which allows
the quantification or classification of a large amount of substances. These biomi-
metic systems, opposed to conventional sensing approaches, are directed towards
the combination of low selectivity sensors array response (or with cross response
features) in order to obtain some added value in the generation of analytical
information. Moreover, once implemented and trained, the usage of such systems
facilitates its implementation as a screening/monitoring device since it does not
require of any technician presence. The pictorial concepts intervening in an elec-
tronic tongue are sketched on Fig. 2.

Multivariate analysis techniques allow disclosing the contribution of different
factors in a result [15]. These factors are related to the explanatory variables of the
system; in the case of electronic tongues these variables are usually determined

Fig. 2 The use of electronic tongue principles for the on-site detection of explosives and IEDs
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experimentally and are related to each of the sensors’ signals, while the response
variable is related to the presence of a compound or the concentration value to be
determined. The proposal and development of various methods based on mathe-
matical, statistical and formal logic calculations are intended to establish procedures
that allow to perform tasks such as the discrimination, quantification, classification
and systems modelling trying to use the most relevant information from the ana-
lytical data available. On that account, data analysis and pattern recognition are a
fundamental part of any electronic tongue system [5]. For the modelling, first, the
data is preprocessed in order to make it independent from units, remove redundant
information and to enhance signal-to-noise ratio. Following this, the model
describing the relation between readings and outputs is then created. A known
problem when voltammetric sensors are used is the large dimensionality of the
generated data which hinders their treatment, that is, when a complete voltammo-
gram is recorded for each sensor from the array. This is perhaps the main reason
why this approach is not the most frequently used in the literature; especially if
ANNs are to be used, in which case departure information needs to be preprocessed.
Although signal preprocessing is not always strictly necessary (e.g. the whole data
set may be employed in the case of PLS or PCA), it has been demonstrated that
even in these cases, its use improves model predictive behaviour. In this sense, an
attractive solution when dealing with a set of voltammograms is the use of a
preprocessing stage for data reduction prior to modelling [5, 16]. The main
objective of this step is to reduce the complexity of the input signal preserving the
relevant information and making it compatible with ANN or other numeric mod-
ellers, which facilitates an advantageous reduction in training time, to avoid
redundancy in input data and to obtain a model with better generalization ability.
This compression stage may be achieved by the use of methods such as PCA [17],
feature selection [18], “kernels” [19], discrete wavelet transform (DWT) [20] or
even fast Fourier transform (FFT) [21].

After applying the desired preprocessing method, the next step is the modelling
of the target variables using the obtained coefficients as inputs into the model stage.
Among the various numeric procedures that can be implemented, PCA, PLS and
ANNs are the most widely used for electronic tongue applications [5, 22].
Concretely, PCA is the most common one being used either as a qualitative
visualization tool or as a preprocessing step; whereas most advanced qualitative
modelling may be achieved with the use of PLS discriminant analysis (PLS DA),
linear discriminant analysis (LDA) or support vector machines (SVM) [23]. While
in the case of quantitative applications, easier models can be built either using
multiple linear regression (MLR) or principal components regression (PCR),
although better results can be achieved by using more powerful methods such as
PLS or ANNs. Lastly, the new trends in data analysis are mainly related to the use
of trilinear approaches such as PARAFAC for qualitative analysis, and multi-way
PLS (nPLS) for quantitative models.
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2 Systems Using a Single Sensor

Afirst attempt toperform thedetectionof explosive compounds involving thecoupling
of electrochemical measurements and advanced chemometric data processing was
realized fromvoltammetric signals obtained at a disposable carbon electrode, andwith
use of proper chemometric tools. Three nitro-containing compounds found in the
majority of explosive mixtures, namely hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN) were
identified as individual energetic chemicals, and next, a quantitative application
was also illustrated with the resolution of their trinary mixtures.

Screen printed electrodes (SPCE) were prepared following the conventional
methodology previously described [8]. The electrochemical cell was formed by a
carbon working electrode, a carbon counter electrode and a silver pseudo-reference
electrode. Cyclic Voltammetry (CV) was the technique employed and a new
electrode was used for each sample. Figure 3 shows some of the obtained
voltammograms for the different mixtures of explosive compounds, as can be seen
complex and highly overlapped signals were observed. This kind of signals, which
exhibit different sensibility and selectivity, are an ideal departure point to be used in
an ANN application.

In order to evaluate the capabilities of the proposed system to distinguish
between different explosives, stock solutions of each of the pure compounds were
analyzed, also mixtures based on usual commercial formulations were also prepared
and measured. Hence, in this manner 10 different explosives mixtures were con-
sidered, the concentration of explosives was kept at 50 ppm for the case of pure
compounds like TNT, RDX, HMX, Tetryl and PETN. For the commercial explo-
sive mixtures like Semtex H (RDX:PETN at 1:1 ratio), Comp. B (RDX:TNT at 3:2
ratio), Comp. C-3 (RDX:TNT:Tetryl at 23:1:1 ratio), Pentolite (TNT:PETN at 1:1
ratio) and Tetrytol (TNT:Tetryl at 3:7 ratio) the total explosive concentration was

Fig. 3 Example of the voltammograms obtained for (a) 50 μg·mL−1 standard solutions of each of
the three explosive compounds under study and (b) mixtures of the three explosive compounds (all
concentrations are expressed in μg·mL−1). Reprinted from [24], with permission from Elsevier
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kept at 50 ppm.. All samples were prepared in triplicate and randomly measured
employing a new sensor each time. Therefore, the set of samples under study was
formed by 30 samples distributed in 10 different classes.

It is important to note that DWT was used as the feature extraction tool; PCA
was used for qualitative analysis of the results, while quantitative analysis and
classification was achieved by means of ANNs. DWT is a high performance signal
processing technique developed inspired in the Fourier transform, with the key
advantage over the latter of its temporal resolution: it captures both frequency and
location information (location in time). DWT is used for signal decomposition onto
a set of basic functions, obtained from dilations and translations of a unique
function called mother wavelet, the most commonly used being Daubechies wavelet
[25]. Transform is implemented using Mallat’s pyramidal algorithm [26], which
operates over a single discrete signal of length M by decomposing it into orthogonal
subspaces of length ca. M/2 in each step [20]. In this way, by repeating this
decomposition process n times, the signal compression ratio is increased at the
expenses of the accuracy in the signal reconstruction.

Principal Component Analysis (PCA) allows the projection of the information
contained in the original variables onto a smaller number of latent variables called
principal components (PCs) with new coordinates called scores, obtained after data
transformation. Plotting the PCs, one can view interrelationships between different
variables, and detect and interpret sample patterns, groupings, similarities or dif-
ferences [17]. As the PCA only is a visualization tool it has to be coupled with a
modeling tool to be used as a classifier.

ANNs are excellent modellers, that consist of a number of simple processing
units (also called neurons) linked by weighted modifiable interconnections [27],
originally designed to mimic the function of the human brain. ANNs work by
imitating the biological learning task, requiring a training process where the weights
of those connections are adjusted, to build a model that will allow the prediction of
the desired parameters. Such methods are known as supervised methods; the
training data consists of a set of training examples (a fraction of the set cases) which
are used to build the model plus an external set used to evaluate the performance of
the model, the test subset. The main advantages of ANNs include a high modelling
performance tool, particularly suited to non-linear sensor responses, and significant
likeness to human pattern recognition [5].

The combination of CV and chemometric data treatment such as PCA or ANNs
allowed the identification of each compound’s voltammetric fingerprint and solved
the problem of signal overlapping. To facilitate data treatment of information
contained in each voltammogram, a compression step was selected [30]. In this
specific case the reduction of the large data generated was achieved by means of
DWT [20]. This allowed the reduction of signals from each voltammogram down to
82 coefficients without any loss of relevant information and achieving a com-
pression ratio of 93.2 %. The obtained coefficients were used to build a model that
predicts the desired parameters, either the discrimination of different samples or the
quantitative resolution of the mixtures composition.
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As was previously commented a total of 30 samples were analyzed, corre-
sponding to triplicate measurements of 5 explosive compounds (HMX, PETN,
RDX, Tetryl, TNT) and triplicate measurements of 5 typical commercial mixtures
(C-3, Comp. B, Pentolite, Semtex, Tetrytol), with one complete voltammogram for
each sample. Afterwards, responses were preprocessed employing DWT and the
obtained coefficients were analyzed by means of PCA analysis and were grouped
using cluster analysis tools. After the initial representation of data, an ANN model
used with its binary output was used as classifier.

Upon completion of the PCA analysis, the accumulated explained variance was
calculated with the three first PCs as ca. 94.3 %. This large value shows that nearly
all the variance contained in the original data can be explained by just using the first
new coordinates. Different clusters were obtained and plotted, outlined in Fig. 4; in
this, observed patterns show evidence that samples are clearly grouped based on
explosives mixtures composition.

Analyzing the plot more thoroughly, some expected trends could be observed;
i.e. the fact that clusters corresponding to mixtures are located close to the
pure compounds forming those mixtures. For example, Comp. B samples are
clustered between RDX and TNT groups, or Tetrytol samples close to TNT and
Tetryl groups, etc. Hence, despite some overlapping regions between the different
pure compounds signals are observed, their fingerprints can be still distinguished
due to the differentiated sensitivity shown by the electrode.

To confirm the discrimination of the samples shown in the PCA plot, a classifier
based on a PCA-ANN model was built. The output of the ANN model was formed
by binary predictors (1/0) for each of the classes. As usual, the ANN configuration
first needed to be optimized. After some preliminary tests, the final ANN archi-
tecture model had 3 neurons (corresponding to the first three components of the

Fig. 4 Score plot of the first three components obtained after PCA analysis. A total of 30 samples
were analyzed corresponding to triplicate determinations of: RDX, TNT, PETN, Tetryl, HMX,
Semtex H, Comp. B, Comp. C-3, Pentolite and Tetrytol). Reprinted from [24], with permission
from Elsevier
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PCA) in the input layer, 6 neurons in the hidden layer and 11 binary (1/0) neurons
in the output layer (one for each class plus an unknown class) with logsig transfer
function connecting the three layers. The aim of including an unknown class in the
classifier model was to somehow avoid that other explosive compounds could result
in a misclassification [28].

The PCA–ANN model was trained with 67 % of the data (20 samples) and
evaluated using the information of the testing set (remaining 33 % of the data; 10
samples) in order to characterize the accuracy of the identification model and obtain
unbiased data. From the classification results, the corresponding confusion matrix
was built. Correct classification for all the classes was obtained (i.e., a classification
rate of 100 % for each of the groups), as indicated from the direct visualization of
the PCA analysis. The percentage of correct classifications was estimated, from
individual sample calculation in the test subset, as 100 %. The efficiency of the
classification obtained was also evaluated according to its sensitivity, i.e., the
percentage of objects of each class identified by the classifier model, and to its
specificity, the percentage of objects from different classes correctly rejected by the
classifier model. The value of sensitivity, averaged for the classes considered, was
100 %, and that of specificity was 100 %.

The quantitative resolution of mixtures of three explosive compounds was
evaluated (i.e. RDX, TNT and PETN) to provide a tool that would allow the
identification of the type of explosive, its quantification, and its specific composi-
tion. For this, a total set of 42 samples were manually prepared with a concentration
range for the three species from 0 to 200 μg·mL−1 for each of the nitro-containing
explosive compounds. The set of samples was divided into two data subsets: a
training subset formed by 27 samples (64 %), which were distributed in a cubic
design and used to establish the response model [18]; plus 15 additional samples
(36 %) for the testing subset, randomly distributed along the experimental domain,
and used to evaluate the model’s predictive response.

In order to prove the capabilities of the approach to achieve the quantification of
the explosive compounds, in addition to the qualitative identification of the com-
mercial explosive, mixtures of the main constituents (i.e. RDX, TNT and PETN)
were analyzed by means of CV. The voltammograms, as before, were compressed
employing DWT and obtained coefficients were used as inputs to an ANN model
[29].

The first step in building the ANN model is selecting the topology of the
network used. This is a trial-and-error process where several parameters (number of
neurons, transfer functions, etc.) are fine-tuned in order to find the best configu-
ration that optimizes the performance of the model [27]. The final ANN architecture
had 82 neurons (corresponding to the coefficients obtained from the DWT analysis)
in the input layer, 5 neurons and tansig transfer function in the hidden layer and 3
neurons and purelin transfer function in the output layer (one for each compound).

The accuracy of the generated model was then evaluated towards samples on the
external test subset by using it to predict the concentrations of explosives on those
samples. Subsequently, comparison graphs of predicted vs. expected concentration
for the three compounds were built, both for training and test subsets, to easily
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check the prediction ability of the obtained ANN model (Fig. 5). A satisfactory
trend is obtained for the three compounds observed in the figure, with regression
lines almost indistinguishable from the theoretical ones. As is usual in ANN
models, lower dispersion and uncertainties are obtained for the training subsets, as
expected taking into account that the external test subset data is not employed at all
for the modeling, so its goodness of fit is a measure of the model performance.

The figure also displays the resulting regression parameters of the obtained vs.
expected comparison graphs. A good linear trend is attained for all the cases, but
with improved correlation coefficients in the training subsets due to the lower
dispersion. Despite this, the results obtained for both subsets are close to the ideal
values, with intercepts ca. 0, and slopes and correlation coefficients ca. 1.

Fig. 5 Modeling ability of the optimized ANN. Sets adjustments of obtained versus expected
concentrations for (a) RDX, (b) TNT and (c) PETN, both for training (●, solid line) and testing
subsets (○, dotted line). Dashed line corresponds to theoretical diagonal line. Figure adapted from
[24], with permission from Elsevier
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In this way, it has been demonstrated how the combination of CV with chemo-
metric tools is an analytically powerful approach for the characterization and
detection of individual explosive substances and its mixtures commercially available.

This is particularly useful since it does not only allow the identification of typical
commercial mixtures, but also the quantification of the amount present and the ratio
of the mixtures analyzed. In this manner home-made nitro-containing explosives
and IEDs might be properly identified; this represents a major advantage compared
to the qualitative approach.

The proposed sensor coupled with chemometrics represents a qualitative method
to provide the identification of the voltammetric fingerprint of different explosive
mixtures commercially or manufactured, such as IEDs. This represents a viable
system with significant promise for in-field measurements given its simplicity,
rapidity and portability. Nevertheless, to fully achieve the correct identification of
almost all types of explosives, application of the proposed approach to the detection
of peroxide-based explosives is still required. Its increasing use has led to con-
siderable research into the detection of this group of improvised explosive sub-
stances; the challenge being that many current chemical identification techniques
are based on the nitrogen and carbon content of a substance for identification and
this practice is not suitable for peroxide explosive. In this context, electrochemical
sensors offer an opportunity to detect peroxide-based explosives that would
otherwise prove problematic.

3 Systems Using a Sensor Array

In a second application study, a voltammetric electronic tongue (ET) was developed
towards the simultaneous determination of both nitro-containing and
peroxide-based explosive compounds, two families that represent the vast majority
of compounds employed either in commercial mixtures or in improvised explosive
devices. The electronic tongue was formed by a multielectrode array constituted by
graphite, gold and platinum electrodes, which exhibited marked mix responses
towards the compounds examined; namely RDX, HMX, PETN, TNT, Tetryl and
triacetone triperoxide (TATP).

In this particular study, our aim was to obtain a miniaturized sensor array. Thus
the use of a quatrielectrode with inner counter and reference electrodes was pro-
posed. Platinum, silver, gold and epoxy-graphite 1 mm diameter discs were used as
electrodes. The metal electrodes were fabricated from its metal wires, the epoxy
graphite electrode was done mixing epoxy and carbon; the electrodes were encased
in inert epoxy resin using a PVC tube as the body [30].

To complete the electrochemical cell, a stainless steel tube was glued to the
cylinder multi-electrode and used as a counter electrode while, the Ag electrode was
converted into a Ag/AgCl pseudo-reference electrode. Figure 6 illustrates the
design of the quatrielectrode used. Thus, with this adaptation all the electrodes are
integrated in a small device suitable to be used in field applications, which in turn
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allows using a smaller sample volume, also making possible to perform drop
analysis.

As in the previous case, the set of samples was measured employing the mul-
tielectrode array to obtain a whole cyclic voltammogram for each of the sensors.
The electrochemical measurements were carried out at room temperature (25 °C)
under quiescent conditions. Some of those results are shown on Fig. 7. As can be
seen, complex and overlapped signals are obtained along the whole voltammogram
with differentiated signals obtained for the different kinds of sensors; this situation
is ideal to implement the electronic tongue approach.

In a first experiment, discrimination of different explosive compounds by means
of the electronic tongue was attempted. That is, to asses if the system presented
herein was able to carry out the identification of the most common explosive com-
pounds. For such purposes, we measured 18 samples, corresponding to 3 replicates
of each explosive compound (RDX, HMX, TNT, TATP, PETN and tetryl).

Fig. 6 Quatrielectrode used
during the measurements

Fig. 7 Cyclic voltammograms for arbitrary mixtures of the three explosive compounds (all
concentrations are expressed in μg·mL−1) for the graphite epoxy electrode (a), gold electrode
(b) and platinum electrode (c)
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To this aim, voltammetric responses obtained for the stock solutions of each of the
pure compounds were analyzed by means of PCA and grouped using cluster analysis
tools.

Upon the completion of the PCA analysis (Fig. 8), the accumulated explained
variance was calculated with the three first PCs as ca. 99.81 %. This large value
shows that nearly all the variance contained in the original data can be explained by
just using the first new coordinates. In addition, patterns in the figure evidence that
samples are clearly grouped based on each explosive compound, with replicas for
the same class one to each other. Moreover, the low dispersion of PETN, TATP and
RDX clusters shows a more reproducible behaviour. Nevertheless, despite the
bigger dispersion obtained for the others compounds there is no overlap between
clusters.

After the initial representation of the data, a fuzzy ARTMAP ANN model with
binary inputs (1/0) was used as classifier, which allowed quantification of the
classification performance system in contrast to PCA analysis which just provides a
visualization of the grouping regions.

The PCA-ANN model was trained with the 67 % of the data (12 samples) and
evaluated using the information of the testing set (remaining 33 % of the data; 6
samples) in order to characterize the accuracy of the identification model and obtain
unbiased data. From the classification results, the corresponding confusion matrix
was built. Correct classification for all the classes was obtained (i.e. a classification
rate of 100 % for each of the groups), as indicated from the direct visualizations of
the PCA. The percentage of correct classifications was estimated, from individual
sample calculation in the test subset, as 100 %. The efficiency of the classification
obtained was also evaluated according to its sensitivity, i.e. the percentage of each
class identified by the classifier model, and to its specificity, the percentage of
objects from different classes correctly rejected by the classifier model. The value of
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sensitivity, averaged for the classes considered, was 100 %, and that of specificity
was 100 %.

Next, a quantification study case was also attempted. When designing an
experimental involving quantification of compounds, a first consideration is the
definition of the experimental domain, i.e. the range of concentrations for each
analyte of interest. In our case, the experimental design used for the construction of
the ANN model was a factorial design with three levels and three analytes (33)
which gives a total of 27 samples used to build the model (training subset). Once
defined our experimental design and the number of samples required to build the
model, its performance will be evaluated with an external subset of samples (testing
subset). Those test samples are randomly distributed along inside the limits of the
experimental domain as can be seen in Fig. 9. In this case the concentration ranged
from 0–165 µg·mL−1 for TNT and tetryl, and 0–300 µg·mL−1 for TATP; 10
random samples were used for the testing subset.

A known problem when voltammetric sensors are involved is the large dimen-
sionality of the generated data (samples x sensors x polarization potentials) which
hinders their treatment: especially if ANNs are to be used, in which case departure
information has to be preprocessed. In this fashion, prior to building the quantifi-
cation model the removal of less significant coefficients that barely contribute to the
network was carried out by means of causal index (CI) pruning inputs [16, 31].

Briefly, CI is based on the usage of ANNs as feature selection tools, aimed to the
selection of an optimal set of inputs that can successfully classify or predict the
desired outputs. To this end, an ANN model is built employing the whole set of
variables, followed by the determination of the contribution and relevance of each
of the network inputs to the variance in the output layer. This can be achieved with
the analysis of its connection weights, which allows to easily identifying the
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important inputs since inputs that make relatively small contributions indicate that
the input does not change significantly; and therefore, can be discarded, viz. pruned.
Afterwards, selection of the most relevant inputs can proceed until a near-optimal,
small, set of inputs is identified by repeating the training process of the ANN model
with the reduced input set and selecting the most relevant ones each time. Finally,
once the reduced set of inputs is identified, optimization of ANN architecture can
proceed as usual [27].

The accuracy of the generated model was evaluated towards samples of the
external test subset by using the built model to predict concentrations of the
explosives of those samples. To evaluate the performance of the different models,
its normalized root mean square error (NRMSE) for each combination of the
transfer functions used in the hidden and output layers, and the number of neurons
in the hidden layer.

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ij
ðxexpected�xobtainedÞ2

k�n�1

r

xmax � xmin
ð1Þ

Thus, the optimum topology will be the one that also gives the lowest NRMSE
value. As it can be seen in Fig. 10, by plotting the total NRMSE versus the number
of inputs gives a clear view of the performance of the model.

Hence, once the predictors data matrix was obtained, the next step was the
optimization of the ANN as previously done. In this case, the resulting ANN model
has 48 neurons in the input layer (corresponding to the relevant data points pre-
viously selected), 8 neurons and logsig transfer function in the hidden layer, and 3
neurons and purelin transfer function in the output layer, providing the concen-
trations of the three species considered.
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Comparison graphs of predicted vs. expected concentration for the three com-
pounds were built, both for training subset and testing subset. Table 1 shows the
regression parameters for each compound in the training subset and the test subset.
As can be seen in the plots (Fig. 11) a good linearity is achieved for all the cases,
with better correlation in the training subset and less NRMSE. For the test subset,
that is the one that really shows how the model is performing; the regression
parameters are also close to the ideal values. Thus, in both subsets the intercepts are
close to 0, and the slopes and the correlation coefficients close to 1.

Table 1 Results of the fitted regression lines for the obtained versus expected values for the
samples of the training and testing subsets and the three considered explosive materials (intervals
calculated at the 95 % confidence level)

Training subset

Explosive Correlation
(r)

Slope Intercept
(µg·mL−1)

NRMSE Total
NRMSE

TNT 0.997 0.984 ± 0.030 1.4 ± 3.2 0.031 0.031

Tetryl 0.997 0.980 ± 0.030 1.7 ± 3.2 0.032

TATP 0.998 0.981 ± 0.028 2.8 ± 5.6 0.030

Testing subset

Explosive Correlation
(r)

Slope Intercept
(µg·mL−1)

NRMSE Total
NRMSE

TNT 0.979 0.981 ± 0.166 2.2 ± 14.9 0.063 0.091

Tetryl 0.929 1.038 ± 0.337 5.4 ± 30.8 0.135

TATP 0.945 0.959 ± 0.269 1.2 ± 44.7 0.080

NRMSE Normalized root mean square error

Fig. 11 Test plots of
predicted versus expected
concentrations for TNT (○,
dashed line), Tetryl (Δ, dotted
line) and TATP (□,
dashed-dotted line)
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Based on these results, we can confirm that the model is able to predict the
concentration of the 3 individual compounds in a mixture sample with good per-
formance. However, results show that the tetryl and the TATP show a bigger
dispersion and that affects the regression parameters of these compounds.

The analysis of samples was based on the combination of cyclic voltammetry for
the extraction of the fingerprints of the individual components and mixtures of these
species, coupled with chemometric tools that allowed the resolution of signal
overlapping and identification of the different compounds. The resolution and
quantification of ternary mixtures was achieved employing an artificial neural
network model. Obtained results suggest that voltammetric electronic tongues could
be of application for the detection in real explosive formulation samples and a good
candidate for homeland security applications.

4 Concluding Remarks

To summarize, these two application cases have shown how the voltammetric
sensor systems used can be used as qualitative methods to provide the identification
of the voltammetric fingerprint of different explosive mixtures commercially or
manufactured, such as IEDs. The systems are also capable to detect peroxide
compounds, due to their difficulty of detection its use has been increased and has
led to considerable research into the detection of this group of improvised explosive
substances; the challenge being that many current chemical identification tech-
niques are based on the nitrogen and carbon content of a substance for identification
and this practice is not suitable for peroxide explosives. In this context, electro-
chemical sensors offer an opportunity to detect peroxide-based explosives that
would other-wise prove problematic. Alternatively, quantitative determination
applications to determine explosives in mixtures can be also developed.

The results suggested that voltammetric electronic tongues could be of appli-
cation for the detection of real explosive formulation samples and a good candidate
for homeland security applications; leading to a new generation of on-site field
deployable explosive detectors. These may be massively used, and with wireless
communication allow for complete networked areas, even regions to prevent by
their trace detection the approach of any of the considered substances.
Alternatively, from environmental concerns, any affected area by these compounds
may employ the described analytical systems a starting point for the monitoring of
state and evolution of already polluted scenarios or the ones being remediated.
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