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Abstract Aptamers are defined as new generation of nucleic acids which has
recently presented the promising spesifications over to antibodies. They can be
produced in vitro by Systematic Evolution of Ligands by EXponential Enrichment
(SELEX), and have the ability to recognize selectively and sensitively their targets;
protein, toxin, drug or cell targets. Thus, they have a wide range of applications in
different areas, such as, drug delivery, imaging and biosensing. Accordingly, an
increasing number of studies related to aptamer based sensors “aptasensors” have
been introduced in the literature. The recent studies on development of aptasensor
technologies, which were applied for toxin detection, have been overviewed herein.
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1 Introduction

The rapid detection and monitoring of toxins in clinical fluids, environmental
samples and foods require new approaches in order to expedite appropriate
detection systems. Many toxins are secreted by bacteria during the course of
infection and can be detected in low ng mL−1 quantities in urine or blood samples.
Toxins in environmental samples can be introduced by industrial, agricultural, or
military activity. Toxic compounds may also be found in environmental samples as
a result of terrorist activity. Of particular concern for homeland defense are toxins
that can be used as weapons; these include ricin, botulinum toxins, staphylococcal
enterotoxin B (SEB), trichothecene mycotoxins, and saxitoxin [1]. Toxins also
occur naturally in the food supplies. Mycotoxin contamination is a particular
problem due to fungal infection of grains and peanuts and can still be present after
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food processing [2, 3]. While many cases of foodborne illnesses are caused by
bacteria (e.g., salmonellosis, campylobacteriosis), a large number of illnesses are
also caused by bacterial toxins, that have been secreted into the foodstuff during
growth (e.g., Staphylococcus aureus enterotoxins, botulinum toxins) [4]. They also
cause death in longterm. Due to their vital side effects, the advanced and faster
detection protocols for toxins with better sensitivity and specifity has become an
emerging necessity.

Aptamers are a class of new generation nucleic acids, which can recognize the
target molecules specifically. Since their discovery in 1990 by Tuerk and Gold [5]
they could be synthesized as single stranded DNA or RNA oligonucleotides using
Systematic Evolution of Ligands by EXponential Enrichment (SELEX) method,
which mimics the natural selection [5, 6] SELEX comprises tree fundamental steps;
(i) the creation of a nucleic acid pool and the incubation with the target molecule,
(ii) the generation of the specific bounds and separation of nonspecific bounds and
finally (iii) the amplification of the bound molecules. Due to SELEX providing the
design of the aptamer molecules, which have strong affinity to their targets, apta-
mers can be utilized to recognize a variety of (bio)molecules such as toxins [7]
proteins [8–33] drugs [34–35] and even whole cells [36, 37]. Therefore, they have a
great potential to apply for development of analysis systems toxins in the field of
food [7, 34, 35, 38] medicine [8, 39]and environment [40, 41].

Biosensors are analytical devices, that are aimed to detect the analytes sensi-
tively and selectively. Their structure allows to occur a specific response in the
presence of the biological recognition element and the target molecule [10, 15, 18,
29–31]. Then, the response is converted into an electrical signal via a transducer.
There are different types of transducers designed by using quartz cyrstral micro-
scopy (QCM), surface plasmon resonance (SPR), optical or electrochemical tech-
niques. Aptamers can be succesfully manipulated to develop biosensor systems and
their combination is called as “aptasensors”. Aptamers are assessed in a wide range
of biosensor designs due to their specifity against to analytes. Moreover, they
promote the development more stable and robust platforms in comparison to
antibodies which is a result of SELEX method. Consequently, there are many
reports emphasizing the development of biosensors in combination with aptamer
technology for detection of toxins [7, 42–62].

The recent studies on different aptasensor technologies, which were applied for
detection of numerous toxins have been overviewed herein, and an aptasensor
technology was simply represented in Scheme 1.

1.1 Electrochemical Aptasensors for Detection of Toxins

Toxins are small molecules produced from living organisms such as bacteria and
fungus and have extremely serious effects on human health within very short time
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[42, 63, 64]. Their importance is about medical diagnosis, environmental moni-
toring, and food safety surveillance [42, 44, 63, 64]. Thus, monitoring of toxins via
fast, reliable, sensitive and selective detection platforms has been gained attraction
by researchers. In the meantime, aptamers were introduced in the field of devel-
opment of biosensing platforms. One of them is electrochemical aptasensor tech-
nologies. Some approaches in the field of electrochemical aptasensors have been
progressed for detection of toxins and given in Table 1 [35, 42–50, 64–70].

Ochratoxins are well-known by-products of numerous fungal species, which can
contaminate not only foods, but also beverages including, coffee, beer, and wine.
They are mainly produced in the Aspergillus and Penicillium genera [71]. Due to
the fact that ochratoxin A (OTA) is known as the most toxic and has hepatotoxic,
nephrotoxic, teratogenic and mutagenic effects onto a wide range of mammalian
species [71–73], there are many electrochemical aptasensor applications in the
literature to detect OTA [35, 65–67]. Zhang et al. [66] developed an electro-
chemical aptasensor by using gold electrode. They immobilized single stranded
thiolated DNA aptamer labelled with biotin group onto the surface of gold elec-
trode. The interaction of OTA and its DNA aptamer was then performed at the
electrode surface and the interaction was determined in the presence of the resis-
tance against TaqaI enzyme occurred after interaction process. Then, the enzymatic
reaction between streptavidin-HRP and 3,3ʹ,5,5ʹ-tetramethylbenzidine sulfate
(TMB) was monitored by using chronoamperometry technique.

Scheme 1 A representative aptasensor technologies developed for detection of numerous toxins
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In the study reported by Rhouati et al. [35], a fully automated flow electro-
chemical aptasensor based on the magnetic beads (MBs) was introduced and
accordingly, direct and indirect competitive electrochemical assays were developed
to monitor OTA. For fabrication of this direct assay, carboxylated aptamer modified
MBs were immobilized onto the surface of screen printed carbon electrode (SPCE)
placed in a flow cell. After the immobilization of avidin-ALP onto the surface of the
electrode, the enzymatic reaction in the presence of 1-naphthyl phosphate was
occurred and the oxidation of the electro-active product 1-naphtol phosphate to
1-iminoquinone was detected by using amperometry. For fabrication of indirect
assay, OTA modified MBs were immobilized onto the surface of SPCE. The free
OTA molecules and the immobilized OTA molecules were competed in the solu-
tion for binding of biotinylated DNA aptamer. The avidin-ALP was then conju-
gated and the enzymatic reaction was utilized. A lower limit of detection

Table 1 Some electrochemical aptasensors developed for detection of toxins

Type of
toxin

Electrode Method Detection limit (DL) Reference

ATX AuE CV, EIS 0.5 nM [42]

BoNTA,
RTA

AuE SWV 0.4 ± 0.2 nM for BoNTA and
0.7 ± 0.5 nM for RTA

[43]

BoNTA 16-unit gold
array

Amperometry 40 pg/mL [44]

rGO/AuE CV, DPV, EIS 8.6 pg/mL [64]

AuE CV, EIS Not reported [45]

AFB1 Dendrimer
modified AuE

CV, EIS 0.40 ± 0.03 nM [46]

AFB1 GCE EIS 0.05 nM [47]

AFM1 SPE EIS 1.15 ng/L [48]

IDA CV, SWV 1.98 ng/L [49]

VerA AuE DPV 10 pg/mL [50]

OTA SPE Amperometry 0.05 µg/L [35]

GCE CV 0.03 ng/mL [65]

GCE Chronoculometry 0.4 pg/mL [66]

AuE CV, DPV, EIS 0.75 pM [67]

TOA SPE CV 1 nM [68]

BTX-2 Au electrode CV, EIS 106 pg/mL [69]

FB-1 GCE EIS 2 pM [70]

Abbreviations Toxins: OTA Ochratoxin A, AFB1 Aflatoxin B1, AFM1 Aflatoxin M1, BoNTA
Botulinum neurotoxin, BTX-2 Brevetoxin-2, FB-1 Fumonisin B1, SEB staphylococcal enterotoxin
B, TOA toxin A, RTA Ricin chain A, VerA Versicolorin A, ZEN: Type of electrodes: AuE Gold
electrode, rGO/AuE reduced graphene oxide modified gold electrode, GCE Glassy carbon
electrode, SPE Screen printed carbon electrode, IDA interdigitated electrode array. Detection
methods: CV Cyclic voltammetry, SWV square wave voltammetry, DPV differential pulse
voltammetry, EIS electrochemical impedance spectroscopy
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(0.05 µg/L) was obtained with the indirect flow-based aptasensor both of the
electrochemical assays were tested in the presence of buffer, or beer samples.

Aflatoxins are known to be carcinogen and highly toxic secondary metabolites
produced by Aspergillus flavus and Aspergillus parasiticus [46–48]. FDA limited
the level of aflatoxins in nuts, seed and legumes. The monitoring and the detection
of aflatoxin at low levels has become attractive in the food safety area. Therefore,
some studies were reported for development of electrochemical aptasensors for
detection of aflatoxins [46–49]. Nguyen et al. [49] fabricated an electrochemical
aptasensor platform for monitoring of AFM1. They used Fe3O4 incorporated
polyaniline (Fe3O4/PANI) film modified interdigitated electrode (IDE) as electro-
chemical aptasensor platform. They found the detection limit as 1.98 ng/L. In
another study, an impedimetric aptasensor onto SPE surface was developed and
used for detection of AFM1 [48]. The detection of AFM1 was achieved based on
the changes at the charge transfer resistance (Rct) even in milk samples.

Fumonisin B1 (FB-1) is primarily produced by Fusarium moniliforme and the
most abundant and important fumonisin [74]. It has been found in maize, maize
products animal feeds [75]. FB1 threats both animal and human health [76, 77]. An
impedimetric aptasensor was developed by Chen and coworkers [70] for recogni-
tion of FB-1. GCE surface was modified gold nanoparticles (AuNP) and the
interaction of DNA aptamer and FB-1 was investigated based on the changes at the
Rct value. The selectivity of the aptasensor was then tested against other toxins.

1.2 Optical Aptasensors for Detection of Toxins

Aptamers have been used as bio-probes in optical sensors based primarily on the
incorporation of a fluorophore or a nanoparticle. In the case of fluorescence
detection, the simplest format is to label the aptamers with both a quencher and a
fluorophore. Additionally, many nano-materials, including QDs, AuNPs, CNTs,
graphene oxide (GO), polymer nanobelts, and coordination polymers, have been
investigated for their fluorescence-quenching effect instead of using a more tradi-
tionally quencher [78–84]. Some optical aptasensors developed for detection of
toxins were summarized in Table 2.

AuNPs or several polymers that cause color changes, can be applied as novel
reagents for the optical detection technique called colorimetry. The highly
negatively-charged ssDNA (complementary strand of the aptamer), which is sep-
arated from the aptamer by interaction between the aptamer and the target, is
stabilized against aggregation, and a color change occurs in conjunction with this
phenomenon [85].

The light chain of BoNT/A (LCA) was utilized as target molecules in SELEX
process. Overall, Chang et al. [86] identified three RNA aptamer species which
have high binding affinity, specificity and strong inhibition activity. They showed
that the endopeptidase activity was effectively inhibited by docking of aptamer to
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BoNT/A (LCA). Their study was the first to confirm that the aptamers for the light
chain BoNT/A (LCA) could be used as therapeutic reagents against the deadly
botulism [86].

1.3 Other Techniques Developed for Detection of Toxins
Using Aptamer Technologies

There are some reports in the literature which can be classified as aptasensors.
Nanogold modified piezoresistive microcantilevers (PZR) were used for monitoring
of Staphylococcus enterotoxin B (SEB) which is small monomeric protein and a
pathogen with high thermal and proteolytic stability [87]. PZR sensor surface was
modified with DNA aptamer, then the interaction of SEB and its DNA aptamer was
investigated even in milk samples.

Ricin is a plant lectin from the castor bean plant Ricin communis [51]. It consists
of two chains, an A chain and B chain linked by a single disulfide bond and the A
chain is toxic to cells [52]. Its production is relatively easy and it is a potential threat
as a terrorist weapon. Capillary electrophoresis based aptasensor was reported by
Haes et al. [52] for monitoring of ricin A chain. The interaction of ricin and DNA
aptamer was performed in capillary surface. Detection of ricin could be achieved in
nuclease-contaminated sample matrixes. In another study, atomic force microscopy
(AFM) based aptasensor was developed for monitoring of ricin [53]. DNA aptamer
and ricin interaction was performed at the surface of Au(111) and ricin binding sites
to aptamer was predicted.

Table 2 Some optical aptasensors developed for detection of toxins

Type of toxin Type of substrate Method Detection limit (DL) Reference

OTA Au chip SPR 0.005 ng/mL [54]

LPS AuE SPR – [55]

OTA – Fluorescence 21.8 nM [56]

OTA
FB-1

– Fluorescence 0.02 ng/mL
0.01 ng/mL

[57]

Abrin – Luminescence 1 mM [58]

BoNT – Spectroflorimetry 1 ng/mL [59]

AFB1 – Chemilumiescence 0.11 ng/mL [7]

Ricin SERS substrate SERS 10 ng/mL [60]

Ricin SERS substrate SERS 25 ng/mL [61]

Ricin B Silicon substrate SERS 0.32 fM [62]

Abbreviations Toxins: OTA Ochratoxin A, AFB1 Aflatoxin B1, BoNT Botulinum neurotoxin,
FB-1 Fumonisin B1, LPS Lipopolysaccharide. Electrodes: AuE Gold electrode. Method: SPR
Surface plasmon resonance, SERS surface-enhanced Raman scattering
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2 Conclusion

Aptamers have been utilized in biosensor area since their discovery by Tuerk and
Gold [5] due to their stability against physical conditions such as ionic strength,
temperature and pH and production cost. They have been alternative biorecognition
elements for antibodies even their discovery is relatively new [88, 89]. Aptamers
synthesized and isolated by SELEX procedure can spesifically recognize their
targets even in complex matrix due to characteristic structure generated during
SELEX procedure. They have been used for recognition of proteins [21, 29, 30, 32,
33, 63, 90–92], drugs [93–95] and also toxins [7, 42–62, 64, 96, 97] in combination
with different detection techniques such as optic, colorimetric, electrochemical, or
piezoelectric techniques. Aptasensors developed for toxin analysis have offered the
advanced assays for sensitive, selective, fast, reliable and cost-effective monitoring
of numerous toxins as well as their application into the real samples such as food
matrices, or biological fluids.

In another aspect, aptasensors can be miniaturized and adaptable for chip
technologies for development of aptasensors based on point of care systems which
are portable, compatible and having an easy-to-use design. Thus, their application
to the environmental or food samples such as water, milk, nuts etc. could be
performed and toxins could be sensitively and selectively analyzed with on-line
measurements via aptamer based chip technologies in a short time.
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