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Abstract. Providing fair bandwidth allocation for applications is
becoming increasingly compelling in cloud datacenters as different appli-
cations compete for shared datacenter network resources. Existing solu-
tions mainly provide bandwidth guarantees for virtual machines (VMs)
and achieve the fairness of VM bandwidth allocation. However, scant
attention has been paid to application bandwidth guarantees for the fair-
ness of application performance. In this paper, we introduce a rigorous
definition of application-level utility max-min fairness, which guides us
to develop a non-linear model to investigate the relationship between the
fairness of application performance (utility) and the application band-
width allocation. Based on Newton’s method, we further design a simple
yet effective algorithm to solve this problem, and evaluate its effectiveness
with extensive experiments using OpenFlow in Mininet virtual network
environment. Evaluation results show that our algorithm can achieve
utility max-min fair share of bandwidth allocation for applications in
datacenter networks, yet with an acceptable computational overhead.

Keywords: Bandwidth allocation · Max-min fairness · Application util-
ity · Datacenter networking

1 Introduction

Cloud datacenters are increasingly hosting a variety of big data applications,
e.g., MapReduce, Spark, Dryad, transferring a large amount of data between
servers [1]. Typically, such applications operate across dozens of servers and initi-
ate a number of heavy network flows over the datacenter networks [2]. Meanwhile,
network bandwidth oversubscription is not uncommon in modern datacenters,
such as 40 : 1 in some Facebook datacenters [3], which inevitably leads to heavy
contention for network resources of core switch bandwidth. Hence, providing fair
bandwidth allocation for applications is becoming highly desirable, in order to
guarantee the application performance in cloud datacenters [4].
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However, the traditional TCP rate control mechanisms only provide the flow-
level max-min fairness [5] or proportional fairness [6] in sharing network band-
width for applications. Undoubtedly, a “selfish” big data application can request
more bandwidth and break such flow-level fairness by arbitrarily initiating a
number of TCP connections (i.e., flows), thereby degrading the performance of
other cloud applications. There have also been a number of works devoted to
providing minimum bandwidth guarantees [7] for tenant virtual machines (VMs)
and achieving the VM-level fairness [8] or tenant-level fairness [9]. Nevertheless,
these solutions cannot provide the fairness of application performance (e.g., com-
pletion time or throughput). Moreover, a number of existing bandwidth sharing
solutions (e.g., [8]) are based on the “ideal” hose model, where all VMs are con-
nected to a non-blocking logical switch through dedicated network connections.
As a result, there have been little attention paid to achieving the fairness of
application performance and bandwidth allocation on congested switch links.

To solve the issues above, in this paper, we present a utility max-min fair
bandwidth allocation algorithm for cloud applications in sharing datacenter net-
work resources. Specifically, by presenting a rigorous definition of application-
level utility max-min fairness, we develop a non-linear model to study the rela-
tionship between the fairness of application performance (utility) and bandwidth
allocation of applications. Based on such analysis, we further develop a simple
yet effective bandwidth allocation algorithm using Newton’s method [10] and
implement our algorithm in an OpenFlow [11] controller. Extensive experiment
results demonstrate that our algorithm can reduce the variation of application
performance (utility) by 5.8 % – 10.8 %, compared with the traditional TCP
rate control mechanism and flow-level utility max-min fair allocation algorithm,
thereby achieving utility max-min fairness of bandwidth allocation for applica-
tions in datacenter networks.

The rest of this paper is organized as follows. Section 2 presents a bandwidth
allocation model to analyze the relationship between application bandwidth and
the fairness of application utility (i.e., performance), which enables the design
of our application-level utility max-min fair bandwidth allocation algorithm.
Section 3 evaluates the effectiveness and overhead of our algorithm. Section 4
discusses our contribution in the context of related work. Finally, we conclude
this paper and discuss our future work in Sect. 5.

2 Achieving Application-Level Utility Max-Min Fairness
of Bandwidth Allocation

In this section, we first present a model of utility max-min fairness of bandwidth
allocation among cloud applications. Next, we devise a simple yet effective algo-
rithm to achieve the application-level utility fairness of bandwidth allocation in
datacenter networks.
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2.1 Network Bandwidth Allocation Model for Applications

We consider the datacenter network with the representative tree topology, host-
ing a set of running applications, denoted by N = {1, 2, · · · , N}. Each applica-
tion i ∈ N initiates a number of network flows, denoted by Fi = {1, 2, · · · ,mi}.
Each flow is denoted by a two-tuple (i, f), representing that the flow is the f -
ordered in Fi. We use a binary variable hl

i,f to denote whether the flow (i, f) of
an application i passes through the link l. We also use Cl and αi,f to denote the
bandwidth capacity of a network link l and the bandwidth allocated to a flow
(i, f), respectively.

hl
i,f =

{
1, the flow (i, f) passes through the link l
0, otherwise

Allocated Bandwidth (Mbps)
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Fig. 1. Application utility: the application performance achieved by allocating different
amount of network bandwidth.

Typically, the datacenter is hosting various types of workloads, ranging
from CPU-intensive, data-intensive, to latency-sensitive applications. Different
applications are able to achieve different performance when allocated the same
amount of network bandwidth. As shown in Fig. 1, application 1 is able to achieve
better application utility (i.e., performance) than application 2, when allocated
the same bandwidth of 450 Mbps. In this paper, we use application utility to
measure the application performance according to the allocated network band-
width. Specifically, with a particular focus on big data applications, we leverage
the log function to formulate the application utility (i.e., utility function [12]
fi(·) of an application i) as below,

fi(αi) = logri
αi, (1)

where αi denotes the network bandwidth allocated to the application i, and
ri denotes the bandwidth demand of the application i, which is limited by the
bandwidth capacity Cl and the aggregated bandwidth demand ri,f of appli-
cation flows. Accordingly, we have ri = min(

∑
f ri,f , Cl). Similarly, we formu-

late the flow utility [13] (utility function fi,f (·) of an application flow (i, f)) as
fi,f (αi,f ) = logri,f

αi,f , where ri,f is the bandwidth demand of the flow (i, f).
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Table 1. Key notations in our bandwidth allocation model.

Notation Definition

N Set of applications in the datacenter

Nl Application set running on a link l

Fi Network flow set of an application i

L Set of links that host application flows in the network

ri Bandwidth demand of an application i

ri,f Bandwidth demand of a flow f of an application i

αi Bandwidth allocated to an application i

αi,f Bandwidth allocated to a flow f of an application i

ti Bandwidth temporarily allocated to an application i

ti,f Bandwidth temporarily allocated to a flow f of an application i

Cl Bandwidth capacity of a link l

hl
i,f Whether the flow f of an application i passes through the link l

fi(·) Bandwidth utility function of an application i

Using the notations of application utility defined in Eq. (1), we proceed to
define the application-level utility max-min fairness of the bandwidth allocation
for different cloud applications running on a congested network link.

Definition 1. Application-level Utility Max-min Fairness: Given a fea-
sible application bandwidth allocation vector a = (α1, α2, · · · , αn), the utility-
ordered application bandwidth allocation vector is a = (αr1 , αr2 , · · · , αrn

), such
that frk

(αrk
) ≤ frk+1(αrk+1), ∀k ∈ [1, n−1]. An application-level utility max-min

fair allocation vector is the largest feasible utility-ordered vector in the network
bandwidth allocation space.

In particular, given two feasible utility-ordered vectors ai = (αi1 , αi2 , · · · , αin)
and aj = (αj1 , αj2 , · · · , αjn), we say ai > aj if and only if there exists m such
that fik(αik) = fjk(αjk), ∀k ∈ [1,m), and fil(αil) > fjl(αjl), ∀l ∈ [m,n]. The
important notations used in our model are summarized in Table 1.

Based on Definition 1, in order to achieve the application-level utility max-
min fairness of bandwidth allocation on a congested link l (i.e., the sum of
application bandwidth demand exceeds the network link capacity), we formulate
the application bandwidth allocation problem as below,

⎧⎪⎨
⎪⎩

fi(αi) − fj(αj) = 0, ∀i, j ∈ Nl∑
i∈Nl

αi − Cl = 0, (2)
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In addition, we use a vector a to denote the bandwidth allocation set (αi, ∀i ∈
Nl), and G(·) to denote the left parts of the equation arrays formulated above.
As a result, the model we formulated in Eq. (2) can be simplified as

G(a) = 0 (3)

Remark 1. The bandwidth allocation problem formulated above is a non-linear
model, which is difficult and time-consuming to solve. As our objective is to allo-
cate network bandwidth for applications without bringing much computational
overhead, we seek to design a heuristic algorithm that can be implemented in
a real-world datacenter. In particular, if a network link l is not a congested
link (i.e., the sum of application bandwidth demand is less than the bandwidth
capacity of the link l), the demands of application flows passing through this
link can be satisfied directly.

2.2 Bandwidth Allocation Algorithm for Achieving
Application-Level Utility Max-Min Fairness

As we have analyzed in Sect. 2.1, the bandwidth allocation problem formulated
in Eq. (2) is hard to solve in polynomial time. To allocate the network bandwidth
for applications in practice, we design a simple yet effective algorithm in Algo-
rithm 1 to achieve application-level utility max-min fairness based on Newton’s
method [10]. The detailed procedure of our algorithm is elaborated as follows.

Consider a set of applications N with the bandwidth demand of network
flows ri,f running on the datacenter links L. For each congested network link
l in the datacenter, Algorithm 1 first initializes several algorithm parameters,
such as the iterator k. Using Newton iteration method [10], Algorithm 1 then
calculates the temporary bandwidth allocation ti,f of network flows running on
the link l. Specifically, for each iteration k, the temporary bandwidth allocation
vector t(k) = (t1, t2, · · · , tNl

) for applications running on a link l is obtained by

t(k) = t(k−1) − AkG(t(k−1)), (4)

where Ak is a matrix used in Newton’s method [10] that avoids the inverse
calculation of the matrix G(t), and G′(t) is the Jacobian matrix of G(t). They
can be calculated by Eqs. (5) and (7), respectively.

Ak = 2Ak−1 − Ak−1G′(t(k))Ak−1, (5)

A0 = G′(t(0))−1, (6)

G′(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f1
∂t1

∂f2
∂t2

0 · · · 0
∂f1
∂t1

0 ∂f3
∂t3

· · · 0
...

∂f1
∂t1

0 0 · · · ∂fNl

∂tNl

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)
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Algorithm 1. Achieving utility max-min fairness of bandwidth allocation
among applications
Input: Application set N , network link set L, the relationship between flows and

links hl
i,f , the flow bandwidth demand ri,f .

Output: Network bandwidth allocation for the application set N .

1: while exists unallocated application flows (N �= ∅) do

2: for all congested link l ∈ L do

3: Initialize k ← 0, t(0) ← the output of binary search algorithm, A0 ←
Eq. (6);

4: Identify the application flows (i, f) on the link l (i.e., hl
i,f ≡ 1);

5: while k ≤ T &&
∥
∥t(k) − t(k−1)

∥
∥
1

> δ do

6: t(k) ← Eq. (4); Ak ← Eq. (5); k ++;

7: end while

8: ti,f ← Eq. (8);

9: end for

10: Identify the flow (i, f)min with the minimum utility fi,f (ti,f );

11: Allocate the minimum temporary bandwidth along the flow path l ∈ L to the

flow (i, f)min, i.e., αi,f = min(ti,f );

12: if all the flows of an application i have been allocated bandwidth then

13: Remove the application i from the application set N ;

14: end if

15: end while

16: return the bandwidth αi,f allocated to network flows of applications.

The iteration terminates in two conditions: (1) The iteration exceeds a maxi-
mum T . (2) The difference of iteration outputs t (i.e., the first order norm of
t(k) − t(k−1)) is less than a small value δ. In proportional to the bandwidth
demand of network flows on the link l, the temporary bandwidth allocation ti,f
is given by

ti,f = ti · ri,f∑
f∈Fi

ri,fhl
i,f

(8)

Finally, to achieve the application-level utility max-min fairness in Definition 1,
Algorithm 1 identifies the flow (i, f)min with the minimum flow utility and allo-
cates the minimum temporary bandwidth min(ti,f ) along the flow path to the
flow (i, f)min. An application i requires to be removed from the set N , if all its
application flows have been allocated bandwidth. In particular, Algorithm 1 iter-
atively executes the procedure above until all the application flows are allocated
network bandwidth.

Remark 2. First, Algorithm 1 can be periodically executed in the case that (1)
new applications are running in the datacenter, and (2) the bandwidth demand
of application flows has been changed. The algorithm execution period can be
adjusted by the datacenter operator, ranging from several minutes to one hour.
Second, given the detailed notations in Table 1, the complexity of Algorithm 1 is
in the order of O(|N | · |L|). In practice, the congested links are mainly restricted
to the top-layered links in the tree topology [14], and accordingly, Algorithm 1
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only requires running on the top-layered links to obtain the bandwidth allocation
of application flows. Third, Algorithm 1 can be implemented in an OpenFlow
controller, such as Ryu1 and OpenDaylight2. After calculating the bandwidth
allocation for application flows by Algorithm 1, the application bandwidth can
be limited by setting the meter table in the OpenFlow v1.3 switches.

3 Experimental Evaluation

In this section, we evaluate the effectiveness and computational overhead of our
bandwidth allocation algorithm in the context of application utility, algorithm
running time and underutilized network bandwidth. We compare the evaluation
results of our algorithm with that of the conventional TCP rate control mecha-
nism and flow-level utility max-min fair allocation in large-scale simulations.

Experimental Setup. We set up a datacenter network with the representative
tree topology in Mininet v2.1.0+3 virtual network environment, by varying the
network scale from 100 switches to 800 switches. We use the iPerf application4

to generate the different network flows for 10 running applications. Each flow is
randomly set in the range of [1, 100] Mbps. We implement our algorithm with
Ryu v3.9 OpenFlow controller and OpenFlow 1.3 Software Switch5.
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Fig. 2. Application utility achieved
by different bandwidth allocation
algorithms.
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Fig. 3. Computation time of our
bandwidth allocation algorithm.

Effectiveness and Computational Overhead. To examine the effectiveness
of our bandwidth allocation algorithm, Fig. 2 compares the application utility
achieved by three different algorithms. We observe that our application-level util-
ity fair allocation algorithm significantly reduces the variation (i.e., unfairness)

1 http://osrg.github.io/ryu/.
2 https://www.opendaylight.org.
3 http://mininet.org.
4 https://iperf.fr.
5 http://cpqd.github.io/ofsoftswitch13/.

http://osrg.github.io/ryu/
https://www.opendaylight.org
http://mininet.org
https://iperf.fr
http://cpqd.github.io/ofsoftswitch13/
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of application utility by 5.8 % – 10.8 %, compared with TCP rate control and
flow-level utility max-min fair allocation algorithms, though the average appli-
cation utility is comparable among different algorithms for each network scale.
The rationale is that, our algorithm allocates the network bandwidth based on
the aggregated flows of each application, and achieves utility max-min fairness
for applications on congested links to circumvent the unfairness of application
performance. Moreover, our algorithm achieves the application utility close to
the optimal allocation, yet with a rough linear computational overhead of the
number of network switches, as shown in Fig. 3. Such an overhead is consistent
with the complexity analysis of our algorithm in Sect. 2.2. Specifically, the com-
plexity of Algorithm 1 is reduced to O(|L|) as the number of applications is
a constant (|N | = 10) in our experiment. In particular, the algorithm running
time is within 0.25 s as the network scale increases to 800 switches.

We next examine the underutilized network bandwidth achieved by our band-
width allocation algorithm. As shown in Table 2, the link bandwidth of datacen-
ter networks is not efficiently utilized, i.e., the total underutilized bandwidth of
our algorithm is ranging from 132 to 938 Gbps as the number of network switches
increases from 100 to 800. As a result, our algorithm achieves the application-
level utility max-min fairness of bandwidth allocation at the cost of underutiliz-
ing the network resources. We illustrate this tradeoff by considering an example
shown in Fig. 4, in which application A has two flows from A1 to A3 and A2 to
A3, and application B has two flows from B1 to B3 and B2 to B3. Each flow has
the same bandwidth demand 100 Mbps. All the links have the same bandwidth
capacity 100 Mbps. Assume two applications have the same utility function. Our
algorithm allocates 25 Mbps to the flows (A1, A3) and (A2, A3) and allocates
50 Mbps to the flow (B1, B3) on the congested link (S1, S2). The flow (B2, B3)
is allocated 50 Mbps on the link (S1, S5). Hence, the underutilized bandwidth of
network links between switches is summed up to 100 Mbps with our algorithm,
which accounts for 25 % of switch bandwidth resources in the datacenter.

S1

S2 S3 S4 S5

A1 A2 B1 B2 A3 B3

Application A

Application B

Fig. 4. Bandwidth allocation of
two applications in an example
tree topology.

Table 2. Underutilized network
bandwidth achieved by our band-
width allocation algorithm.

Scale (#switches) Underutilized
bandwidth

100 132 Gbps

200 214 Gpbs

300 331 Gbps

400 448 Gbps

500 692 Gbps

600 782 Gbps

700 808 Gbps

800 938 Gbps
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4 Related Work

There have been a number of works on flow bandwidth allocation in traditional
networks, with the aim of achieving max-min fairness [5], utility max-min fair-
ness [13] and proportional fairness [6]. Several works have paid much attention
to the flow-level utility. For example, Wang et al. [15] proposed an algorithm for
guaranteeing the Quality of Service (QoS) of applications based on the flow-level
utility. However, these works only provide the flow-level QoS and fairness, which
is likely to impact the performance and fairness of applications with a number of
network flows. Furthermore, the utility function of big data applications is quite
different from that of the applications running in traditional networks.

With the evolution of datacenters, virtualization technique has been widely
deployed to multiplex resources (e.g., computing and bandwidth resources) and
improve the utilization of servers. Recently, there have emerged a number of
works that focus on providing bandwidth guarantees for tenant VMs in public
clouds, such as deterministic guarantees [16], minimum guarantees [7], and pro-
portional bandwidth share [9]. For example, Lam et al. [9] focused on achieving
the tenant-level fairness of bandwidth allocation, while Shieh et al. [17] proposed
a fair bandwidth share on the source VMs. Popa et al. [8] allocated bandwidth
to achieve VM-pair level fairness. To cope with highly dynamic network traffic
in datacenters, Guo et al. [18] proposed an efficient rate allocation algorithm
to achieve both minimum guarantees and VM-pair level fairness. Different from
these works, our work aims to achieve the utility max-min fairness among appli-
cations, in order to provide performance guarantees for cloud applications, while
prior works provide bandwidth guarantees and achieve fairness at the tenant
level or VM level. Moreover, prior works mainly implement the rate limiter on
the Hypervisor [18], while our work makes an attempt to limit the bandwidth
of network flows on the OpenFlow switches.

To provide application-level bandwidth guarantees, Kumar et al. [19] pro-
posed to allocate bandwidth based on the communication patterns of big data
applications, while Lee et al. [20] designed a VM placement algorithm to satisfy
the bandwidth requirements of workloads. Chen et al. [21] presented a definition
of performance-centric fairness and designed a bandwidth allocation strategy to
achieve such fairness among applications. Different from prior works, our work
defines the application utility to reflect the performance of various applications
and achieves utility max-min fairness of bandwidth allocation, while [21] uses
the reciprocal of the data transfer time to represent the application performance.

5 Conclusion and Future Work

To achieve the fairness of application performance, this paper proposes a rigorous
definition of application-level utility max-min fairness, and design the utility fair
bandwidth allocation algorithm that can be practically implemented in a real-
world OpenFlow controller. Extensive experiment results using OpenFlow show
that our bandwidth allocation algorithm can reduce the variation of application
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utility by 5.8 % – 10.8 % and achieve utility max-min fairness of bandwidth
allocation for applications, in comparison to the conventional TCP rate control
mechanism and flow-level utility max-min fair allocation algorithm.

As our future work, we plan to investigate the tradeoff between high uti-
lization and utility max-min fairness of bandwidth allocation for applications.
We also plan to deploy our bandwidth allocation algorithm in real OpenFlow
switches and evaluate its effectiveness and running overhead.
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