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Abstract We describe recent biologically-inspired mapping research incorporating
brain-based multi-sensor fusion and calibration processes and a new multi-scale,
homogeneous mapping framework. We also review the interdisciplinary approach
to the development of the RatSLAM robot mapping and navigation system over the
past decade and discuss the insights gained from combining pragmatic modelling of
biological processes with attempts to close the loop back to biology. Our aim is to
encourage the pursuit of truly interdisciplinary approaches to robotics research by
providing successful case studies.

1 Introduction

The brain circuitry involved in encoding space in rodents has been extensively tested
over the past thirty years, with an ever increasing body of knowledge about the
components and wiring involved in navigation tasks. The learning and recall of spa-
tial features is known to take place in and around the hippocampus of the rodent,
where there is clear evidence of cells that encode the rodent’s position and head-
ing. RatSLAM [1–3] is a robotic navigation system based on current models of
the rodent hippocampus, which has achieved several significant outcomes in vision-
based Simultaneous Localization And Mapping (SLAM), including mapping of an
entire suburb using only a low cost webcam [4, 5], and navigation continuously over
a period of two weeks in a delivery robot experiment [6]. These results showed for
the first time that a biologically inspired mapping system could compete with or
surpass the performance of conventional probabilistic robot mapping systems. The
RatSLAM system has recently been open-sourced and published [7].

We have also “closed the loop” back to the neuroscience underpinning the Rat-
SLAM system. In our research, we took a pragmatic approach to modelling the
neural mechanisms, and would engineer “better” solutions whenever the underlying
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biology did not appear to meet the robot’s needs. However, some of themodifications
necessary to make the models of hippocampus work effectively over long periods
in large and ambiguous environments raised new questions for further biological
study, including a potential neural mechanism for filtering uncertainty in navigation
[8]. The research has also led to recent experiments demonstrating that vision-based
navigation can be achieved at any time of day or night, during any weather, and in
any season using sequences of visual images as small as 2 pixels in size [9–12]. Most
recently we have led collaborative research with human- and animal-neuroscience
labs leading to novel human-inspired vision-based place recognition algorithms that
are starting to rival human capabilities at specific tasks [13, 14].

In this paper we describe two recent biologically-inspired areas of investigation
building on the existing RatSLAM system. We first provide a brief but necessary
overview of the core RatSLAM system. We then describe research mimicking the
hypothesized sensory calibration processes in the rodent brain and present experi-
ments demonstrating autonomous calibration of a place recognition system, a key
requirement for mapping and navigation systems. Finally, we describe new research
modelling the multi-scale, homogeneous mapping frameworks recently discovered
in the rat brain and present results showing the place recognition performance ben-
efits of such an approach. We conclude with a discussion of the key lessons learnt
in more than a decade of pursing an interdisciplinary robotics-neuroscience research
agenda.

2 RatSLAM

In this section we briefly describe the core RatSLAM algorithms upon which the new
research presented here is based. RatSLAM is a SLAM system based on computa-
tional models of the navigational processes in the part of the mammalian brain called
the hippocampus. The system consists of three major modules—the pose cells, local
view cells, and experience map. Further technical details on RatSLAM can be found
in [4, 6].

2.1 Pose Cells

The pose cells are a Continuous Attractor Network (CAN) of units connected by
both excitatory and inhibitory connections, similar to a recently discovered class of
navigation neurons found in many mammals called grid cells [15]. The network is
configured in a three-dimensional prism (Fig. 1), with cells connected to nearby cells
by excitatory connections, which wrap across all boundaries of the network. The
dimensions of the cell array nominally correspond to the three-dimensional pose of
a ground-based robot—x, y, and θ . The pose cell network dynamics are such that the
stable state is a single cluster of activated units, referred to as an activity packet or
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Fig. 1 The RatSLAM system, consisting of local view cells, pose cells and the experience map

energy packet. The centroid of this packet encodes the robot’s best internal estimate
of its current pose. Network dynamics are regulated by the internal connectivity as
well as by input from the local view cells.

2.2 Local View Cells

The local view cells are an expandable array of cells or units. Novel scenes drive
the creation of a new local view cell which is then associated with the raw sensory
data (or an abstraction of that data) from that scene. In addition, an excitatory link
is learnt (one shot learning) between that local view cell and the centroid of the
dominant activity packet in the pose cells at that time. When that view is seen again
by the robot, the local view cell is activated and injects activity into the pose cells
via that excitatory link. Re-localization in the pose cell network occurs when a
sufficiently long sequence of familiar visual scenes is experienced in the correct
sequence, causing constant injection of activity into the pose cells resulting in the
re-activation of the pose cells that were associated with that scene the first time.

2.3 Experience Map

Initially the representation of space provided by the pose cells correspondswell to the
metric layout of the environment a robot is moving through. However, as odometric
error accumulates and loop closure events occur, the space represented by the pose
cells becomes discontinuous—adjacent cells in the network can represent physical
places separated by great distances. Furthermore, the pose cells represent a finite
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area but the wrapping of the network edges means that in theory an infinite area can
be mapped, which implies that some pose cells represent multiple physical places.
The experience map is a graphical map that provides a unique estimate of the robot’s
pose by combining information from the pose cells and the local view cells. A new
experience is created when the current activity state in the pose cells and local view
cells is not closely matched by the state associated with any existing experiences. As
the robot transitions between experiences, a link is formed from the previously active
experience to the new experience. A graph relaxation algorithm runs continuously
to evenly distribute odometric error throughout the graph, providing a map of the
robot’s environment which can readily be interpreted by a human.

3 Brain-Based Sensor Fusion and Calibration

Current state of the art robot mapping and navigation systems produce impressive
performance under a narrow range of robot platform, sensor and environmental con-
ditions. In contrast, animals such as rats produce “good enough” maps that enable
them to function in an incredible range of situations and environments around the
world. From only four days after birth, rat pups start to learn how to best sense, map
and navigate in their environment [16, 17]. Rat pups have been seen to demonstrate
particular movement behaviours such as pivoting that are theorized to help them cal-
ibrate their sensory stream. Furthermore, adult rats rapidly adapt to changes in their
own sensing equipment or in their environment during their adult life [18]. It has
even been shown that it is possible to integrate novel sensory devices into a rat brain
and have the rats subsequently learn to utilise this novel input [19]. We investigated
the feasibility of adopting a “sensor agnostic” approach to mapping and localization
inspired by the adaptation capabilities of rats.

We describe a rat-inspiredmulti-sensor fusion and calibration system that assesses
the usefulness of multiple sensor modalities based on their utility and coherence
for place recognition both when a robot is first placed in an environment through
calibration behaviors [20] and autonomously while moving [21], without knowledge
as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and
outdoor environments with large illumination changes.

3.1 Approach

Herewe present our sensor-agnostic approach tomulti-sensory calibration and online
sensory evaluation. The system is algorithmic in nature; however it is loosely inspired
by rodent behavioural and neural processes.
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3.1.1 Sensor Pre-processing

Sensor data is pre-processed to enable agnostic evaluation of sensory information
through a standardized format. All sensor data is normalized by dividing by the
maximumpossible sensor readingproducing a value between (0, 1). Sensor data in the
form of multi-dimensional arrays, such as images, are down-sampled and separated
into a single line vector, for example, RGB images are converted to grayscale, down-
sampled to 12 × 9 and separated into a single vector 108 elements long. Sensor
pre-processing is applied to all sensor modalities producing a single vector for each
sensor called a template.

3.1.2 Multi-sensor Fusion

Sensor data similarity is evaluated utilizing a Sum of Absolute Differences (SAD)
comparison, in order to determine the similarity between the current template and
all previously stored templates. The best template match to the current sensor tem-
plate is the previously learnt template with the smallest difference score. We define a
template as familiar if a previously learnt template has a difference score less than a
predetermined recognition threshold, Sthresh. The current sensory template is defined
as novel if the best template match difference score is greater than the recognition
threshold. Furthermore, we define a technique for dynamically evaluating the utility
and reliability of sensors as the robot moves through the environment. Sensor reli-
ability is determined using two biologically inspired metrics, spatial coherence and
template expectation similarity. These metrics are binary operators and evaluate the
agreement between two sensory modalities. Each sensor is compared to each other
sensor using these two metrics and combined to produce a single coherence score
which is used to determine the utility of each sensor. Spatial coherence builds on
the idea of using geometric information to validate place recognition and utilizes
the experience map to determine the Euclidean distance between template matches.
Two sensors are deemed to be spatially coherent if the Euclidean distance between
the location matches is below a geometric threshold, gthresh. Template expectation
similarity determines the similarity between the current sensor data and a predicted
sensor reading generated from another sensor. Sensors are deemed to be reliable if
coherent with at least one other sensor or if no template match has been reported,
otherwise the sensor is tagged as unreliable.

Sensor data is fused together through the implementation of “super templates”,
formed by concatenating each sensor template into a single vector. When comparing
super templates, the component of the overall matching score corresponding to each
sensor is normalized by the number of readings for the sensor to remove any effect
of varying sensor vector sizes (Fig. 2).
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Fig. 2 Super templates are created by the concatenation of individual sensor data and compared
to previously learnt super templates using a weighted SAD. Super templates allow the storage of
sensory information for a particular scene, allowing all sensory data to be processed in a uniform
manner

3.1.3 Movement-Driven Autonomous Calibration

Autonomous calibrationof the place recognitionprocesses for each sensor is achieved
bymimicking the pivoting behavior of young rat pups when calibrating their sensors.
The main requirement of a robot is that it is capable of safely performing two donuts
within the operating environment and that the environment is primarily static for
the calibration behaviors. The performance of two donut behaviors is required to
allow the sensory equipment to experience an environmental scene twice, allowing
the distinction of novel and familiar sensory data.

Place recognition calibration is performed by monitoring the difference scores
between the current and previous sensory snapshots as the robot completes two
revolutions, the first a “novel” revolution and the second a “familiar” revolution,
since the robot is repeating a previous movement. The place recognition threshold is
set to themaximumdifference score for the familiar region of the calibration behavior.
This method captures the largest possible variance in difference score for a familiar
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Fig. 3 a Map indicating the calibration locations and robot path for the office environment.
b–e show photos of the calibration locations used within the office environment, which varied
between open plan space, corridors and a kitchen. f Campus environment. The route was traversed
during both day- and night-time conditions, with snapshots of the robot in the environment shown
along the route

template match. This process is a conservative one—while it is likely the system will
miss place matches in more perceptually challenging environments, false negatives
are generally less catastrophic than false positives. The system also calculates a
threshold quality score based on analysis of the difference score distribution over the
two revolutions.

3.2 Experimental Setup

All the dataset acquisition and testingwas performed inROSgroovy, all datasets ROS
bags are available for readers to download and process at: https://wiki.qut.edu.au/
display/cyphy/Michael+Milford+Datasets+and+Downloads. Detailed system para-
meters are provided in [20, 21].

3.2.1 Testing Environments

The testing environmentswere diverse and included a university campus and an office
building floor. The Campus dataset was traversed during day and night conditions to
test the system’s ability to handle varying environmental conditions (Fig. 3).

https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads
https://wiki.qut.edu.au/display/cyphy/Michael+Milford+Datasets+and+Downloads
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3.2.2 Robot Platforms

The office robot configuration was built on an Adept MobileRobots Pioneer 3DX
utilizing a FireWire PointGrey Camera with Catadioptric mirror, 16 ultrasonic range
sensors, SICK laser range finder and Microsoft Kinect with RGB and Depth images.
The campus robot configurationwas also assembled on theAdeptMobileRobots Pio-
neer 3DX using 16 ultrasonic range sensors, SICK laser range finder and Microsoft
Kinect with RGB and Depth images.

3.3 Results

For reasons of brevity, here we present only the maps produced in each experiment—
which reveal whether the system was able to produce topologically correct maps
without any false connectivity between map locations. Further results can be found
in [20, 21].

3.3.1 Office Environment

The calibration behavior was performed in the office environment resulting in the
generation of the four sets of sensor thresholds and confidence scores shown in
Fig. 4. Evaluation of Fig. 4b illustrates that all the autonomously generated place
recognition thresholds are reliable (have a confidence score above 1), except the
thresholds for sensors 1 and 2 in office calibration location 1. These low confidence
scores were most likely due to the approximately equally distant and bland white
walls of office calibration location 1. Figure5 shows the experience maps are all

Fig. 4 a Autonomously calibrated thresholds from office calibration locations 1–4. Each group of
five bars corresponds to the five sensor calibrations at one calibration location. b Corresponding
calibration confidence scores. For each individual sensor, confidence scores less than 1 indicate a
sensor calibration failure
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Fig. 5 OpenRatSLAM experience maps for the office environment generated with wheel encoder
self-motion information using the (a) manually selected super template thresholds of 0.08 and 0.01
and (b) reliable autonomously calibrated thresholds from office calibration locations 1–4

topologically correct and have no incorrect loop closures, including the map created
using only 3 reliable sensors from office calibration location 1.

3.3.2 Campus Environment

Here we present results for the campus environment experimentation produced from
traversing the campus environment twice, first during the day and the second at
night. Place recognition thresholds calibrated in the office calibration locations that
resulted in a full set of trusted sensors (locations 2–4)were used for testing in the cam-
pus environment. Figure6 shows the resultant OpenRatSLAM maps for the campus
environment. All sensors were down weighted at various times during the exper-
iment, removing large amounts of false positive matches from individual sensors.
The dynamic sensor fusion system also removed some true positive matches, which
resulted in some regions of the map not being connected together. All the maps are
topologically correct although the recall rate for Fig. 6c is less than ideal. A reference
map without sensor weighting is shown in Fig. 6d.

3.4 Future Work

We are currently investigating the use of a much wider range of sensing modalities
such as WiFi. One of the most interesting insights from these multi-sensor fusion
experiments is that different sensor types have varying spatial specificities when
used in an associative mapping framework such as RatSLAM. Cameras offer the
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Fig. 6 a–c OpenRatSLAM experience maps of the campus environment generated with wheel
encoder self-motion information using reliable autonomously calibrated thresholds from office
calibration locations 2–4. d Map without online sensor weighting

potential for spatially precise place recognition performance, while sensors such as
WiFi offer broader spatial localization. Attempting to integrate the place recognition
information provided by each of these very different sensor types using a single
scale mapping framework is likely suboptimal. In the next section, we present a pilot
study investigating a multi-scale, homogeneous mapping framework inspired by the
multi-scale maps recently found in the rodent brain.

4 Multi-scale Mapping

Most robot navigation systems perform mapping at one fixed spatial scale, or over
two scales, often locally metric and globally topological [22–24]. Recent discoveries
in neuroscience suggest that animals such as rodents, and likelymany othermammals
including humans, encode the world using multiple but homogeneous parallel map-
ping systems, each of which encode the world at a different scale [15, 25]. Although
investigated in a theoretical context [26, 27], the potential performance benefits of
such a mapping framework have not yet been investigated in a real-world robotics
context. In this study, we investigated the utility of combiningmultiple homogeneous
maps at different spatial scales to perform place recognition [14]. The performance
of the multi-scale implementation was compared to a single scale implementation
using two different vision-based datasets.
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4.1 Approach

Our overall approach involves a feature extraction stage, a learning stage using arrays
of Support Vector Machines, and a place recognition stage that combines place
recognition hypotheses at different spatial scales.

4.1.1 Feature Extraction

Dimensional reductionwas performedbefore camera imageswere input to theSVMs.
We implemented two commonly used feature extraction methods—Principal Com-
ponent Analysis (PCA) and GIST. PCA [28] is an efficient dimension reduction
method which projects the original data into the directions with largest variances.
Camera images were down-sampled to 64 × 48 before applying PCA. The first 38
principal eigenvectors were picked which were shown to already capture 90% of
the data variance. For GIST features, we chose the model proposed by Oliva [29]
which provides a holistic description of the scene called Spatial Envelope. GIST was
also attractive because of the possibility of generating relevant insights into how the
biological visual mapping systemmay function. We extracted the GIST feature from
down sampled 64 × 48 images which resulted in a 512-dimensional feature.We then
extracted the top 32 principal eigenvectors, which captured approximately 90% of
the total variance.

4.1.2 Learning Algorithm

Support Vector Machines (SVM) [30] were chosen as the learning algorithm for two
reasons. Firstly, they are an effective method for finding an optimal hyperplane to
separate training data whilst simultaneously maximizing the classification margin,
making it suited to the task of training recognition of a specific spatial segment and
maximizing the difference between the training segment and other similar segments.
Secondly, the use of SVMs removes the need for the extensive parameter tuning
required of more biologically plausible grid cell models, such as continuous attractor
networks [2], although we do intend to eventually adopt these models to maximize
biological relevance.

4.1.3 Combining Multi-scale Place Match Hypotheses

Each array of SVMs produces a firing matrix M representing the matching scores
of the testing segments on the trained SVMs where element M(i, j) indicates the
response of the ith SVM from a training dataset to the jth segment in a test dataset.
Firing scores in each column j are then normalized to sum to one for each segment
recognition distribution:
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Fig. 7 Overlapping SVM
matching scores are
combined at the smallest
spatial scale in order to
accept or reject place match
hypotheses. In this case,
K = 3

M(i, j) = M(i, j)
∑

i
M(i, j)

(1)

Place recognition hypotheses produced by each array of SVMs are only as accurate
as the average size of a segment in that array. To create a common scale in which
hypotheses from different spatial scales can be compared and combined, reported
place recognition matches are transformed to the scale space of the smallest segment
size. For K arrays of SVMs, the matching scores after normalization of each array
are:

Mp, p = 1, . . . , K (2)

Suppose there are Lp training segments for the matching score Mp. For a segment j
in a test data set, its coherence measurement on each training segment c (i, j), i =
1, . . . , Lp is determined by whether spatially overlapping hypotheses exist over all
SVMs scales. If not, the system reports “no coherent” match (c = 0):

c(i, j) =
{
1, Mp(i, j) > 0, ∀p

0, else
(3)

At the smallest spatial scale, there can be several competing place recognition
hypotheses that are supported by all other spatial scales. To determine the most
likely hypothesis, we sum the firing scores of the overlapping SVMs at each spatial
scale and classify segment j to the class C(j) with the largest accumulated firing
score (Fig. 7):

C(j) = argmaxi

∑

p
Mp(i, j), ∀c(i, j) = 1 (4)
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Fig. 8 The Rowrah dataset (left) and Campus data (right) with example frames

Table 1 Dataset descriptions

Dataset name Single traverse
distance (m)

Number of frames per
traverse

Resolution

Rowrah 1000 1570 320 × 240

Campus 800 1000 1280 × 960

4.2 Experimental Setup

We used two datasets (Fig. 8) to test the multi-scale algorithms, with details listed
in Table1. Each dataset consists of two traverses along the same route with the first
traverse used for training and the second traverse for testing. The Rowrah dataset
was collected from a forward-facing camera mounted on a motorbike and can be
downloaded at the following link: http://www.youtube.com/watch?v=_UfLrcVvJ5o.
The Campus dataset was sourced from a GoPro Hero 1 camera mounted on a bicycle
pushed by an experimenter. The bike was pushed through and in-between buildings
along a mixed indoor-outdoor path approximately 800m long. Due to GPS not being
viable, datasets were parsed frame by frame to build ground truth correspondence
between testing and training data sets for each spatial scale.

4.2.1 Training Procedure

Images from the first traverse of the environment were used for training while images
from the second traversewere used to evaluate performance. The overall training pro-
cedure consisted of the following three steps: dataset segmentation, feature extraction
and SVM training.

Dataset Segmentation

The images in each dataset were grouped into a total of S subsequent segments (S/2
segments per traverse). Larger values of S result in smaller size of each segment.
For the sake of intuition, we refer to different SVMs by the size of each segment,
not the number of segments. For example, each traverse in the Campus dataset is
approximately 800m and therefore splitting the Campus dataset into 170 segments

http://www.youtube.com/watch?v=_UfLrcVvJ5o


480 M. Milford et al.

(85 segments per traverse) resulted in an average segment size of approximately
9.4m. We then use “9.4m system” to refer to the SVMs with 170 segments.

Feature Extraction

Two feature types (as discussed in Sect. 4.1.1) were extracted from each dataset. The
feature vectors from all frames in a segment were combined into a single vector and
input into each of the SVMs.

SVM Training

To train a SVMmodel for each segment, we manually labeled the images in that seg-
ment as positive examples and those from the other N segments as negative examples.
Ideally, all other (S-1) groups would be used as negative examples. However, since
in real world situations it may not be possible to train on the entire training dataset,
we instead arbitrarily set N to be 9, indicating for each segment, we use 1 frame
group as a positive example and 9 other adjacent frame groups as negative samples

4.3 Results

We show three key sets of results—comparison between single and multi-scale place
recognition, ground truth plots and illustrative multi-scale place recognition combi-
nation plots.

4.3.1 Single- and Multi-scale Place Recognition

This section presents precision recall (PR) curves for the single- andmulti-scale place
recognition experiments. Each PR curve was generated by sweeping the accepted
range in each hypothesis rank. For both single- and multi-scale matching, it is, not
surprisingly, easier to perform place recognition when trying to match a spatially
broad segment than when trying to match a spatially specific segment. This disparity
is most likely due to two reasons; firstly because performance is bound to increase
when the false positive spatial error tolerance is bigger, and secondly, because the
larger segments are trained on a larger number of frames.

Precision-recall performance at all except very low precision levels improved
significantly across all experiments. At 100% precision, the recall rate was improved
by an average of 74.79% across all experiments. The biologically-inspired feature
GIST slightly outperformed PCA—at 100% precision, the recall rate for GIST was
improved by an average of 81.7% over all experiments, versus 67.9% for PCA.
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4.3.2 Ground Truth Plots

Figures11a, b present ground truth plots showing the true positives (green circles),
false positives (blue squares) and false negatives (red stars) output by the single and
multi-scale systems for the Rowrah datasets without (a) and with (b) multi-scale
combination. Straight lines connect the matching segments.

4.3.3 Multi-hypothesis Combination Plots

Figure11c–f show examples of how place match hypotheses at varying scales are
combined together. In general, a large number of false positives at the smallest spatial
scale (yellow color) are eliminated due to lack of support from larger spatial scales.
The examples in (c, d) show how secondary ranked spatially specific matches are
correctly chosen as the overall place match due to support from other spatial scales.
In (e) the best ranked spatially specific match is correctly supported by the other
spatial scales, while (f) shows a failure case where the incorrect 4th ranked spatially
specific match is more strongly supported by the other spatial scales that the 1st
ranked and correct spatially specific match. Interestingly, the most common failure
mode of the system is to report a “minor” false positive match—a place match to a
different location at the smallest spatial scale but within the correct place at a larger
spatial scale (Figs. 9, 10).

Fig. 9 Precision recall curves demonstrating the single- and multi-scale place recognition perfor-
mance for the Rowrah dataset

Fig. 10 Precision recall curve demonstrating the results with and without combination for Campus
dataset using gist features and PCA features
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Fig. 11 Ground truth plots for the a single and b multi-scale Campus dataset. c, d Show examples
of secondary-ranked spatially specific place matches (yellow) that became the primary overall place
match hypothesis due to support from other spatial scales. In e the first ranked spatially specific
match is supported, while f shows a failure case where a secondary ranked spatially specific match
is incorrectly chosen as the overall match due to more significant support from the other spatial
scales than the correct, first ranked spatially specific match

4.4 Discussion and Future Work

Place recognition performance was improved by combining the output from parallel
systems, each trained to recognize places at a specific spatial scale. Although here we
presented a specific implementation of both the vision processing and place recog-
nition framework, we believe that the novel multi-scale combination concept should
generalize to other systems. In future work, we will incorporate an odometry source
to enable the system to allocate segments directly based on distance travelled rather
than (in effect) time. Odometry information may enable us to expand our current
system to two-dimensional unconstrained movement in large open environments.
Testing the system in open field environments will be more analogous to many
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current rodent experiments and may increase the likelihood of generating neuro-
science insights. An obvious extension to the sensor fusion work presented here and
elsewhere [21, 31] would be to use a multi-scale mapping framework approach to
exploit the variable spatial specificity of different sensor modalities, such as cameras,
range finders and WiFi.

5 Achieving Balance in Interdisciplinary Research

If we were asked to identify the single key issue involved in conducting interdisci-
plinary (especially biologically-inspired) robotics research it would be this:

How can research achieve the appropriate balance between maintaining a faithful
representation of the modelled biological systems and producing state of the art
performance in the robotics domain at a relevant task?

To discuss this issue concisely in a paper such as this, one must necessarily make
some generalizations. Research focusing on maintaining fidelity to the underlying
source of biological inspiration often produces performance that is inferior to con-
ventionalmathematical approaches, but can lead to novel insightful predictions about
biological systems. Conversely, research that readily abandons any relevance to the
biologymay lead to better robotics performance but is rarely the cause of new discov-
eries in biological research. In addition, it becomes an increasingly painful process to
generate relevant testable predictions or insights in the biological field as the model
becomes more and more abstracted.

In the initial stages of the RatSLAM project, we started with what was then a state
of the art neural networkmodel of themapping processes observed in the rodent brain.
As we tested the algorithms in larger and more challenging environments and over
longer periods of time, we were forced to make some pragmatic modifications to the
algorithms to produce good mapping performance. These modifications seemingly
moved the model further away from biology. One example would be the pragmatic
decision to engineer the pose cells, artificial neurons that encode the complete three-
dimensional (x, y, ϑ) pose of a ground-based robot and are re-used at regular inter-
vals to efficiently encode large environments. The decision to move to pose cells
was made because the neuron types known at that time—place cells which represent
(x, y) location—and head-direction cells which represent orientation—were unable
to represent and correctly update multiple robot location hypotheses. Subsequently
neuroscientists discovered a new type of spatial neuron called a grid cell in the rodent
brain sharing similar although not identical characteristics [15, 32]. This discovery
demonstrated that a functionally driven investigation (engineering a new cell to pro-
duce better mapping performance) could lead to relevant insights or predictions in
another discipline, in this case neuroscience. It is interesting to speculate that, had
we abandoned the biological neural network completely and moved to a conven-
tional technique such as a particle or Kalman filter, it may have been harder to make
this specific prediction. Conversely, if we had maintained a more biological faithful
model, we may never have been able to test it in environments that were sufficiently
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challenging to require the ability to encode and propagate multiple location hypothe-
ses. At least in this particular example, it was only by following the “middle ground”
that we were able to make some contribution to both fields.
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