
Optimal Control of Nonlinear Systems
with Temporal Logic Specifications

Eric M. Wolff and Richard M. Murray

Abstract We present a mathematical programming-based method for optimal
control of nonlinear systems subject to temporal logic task specifications. We spec-
ify tasks using a fragment of linear temporal logic (LTL) that allows both finite-
and infinite-horizon properties to be specified, including tasks such as surveillance,
periodic motion, repeated assembly, and environmental monitoring. Our method
directly encodes an LTL formula as mixed-integer linear constraints on the system
variables, avoiding the computationally expensive process of creating a finite abstrac-
tion. Our approach is efficient; for common tasks our formulation uses significantly
fewer binary variables than related approaches and gives the tightest possible convex
relaxation. We apply our method on piecewise affine systems and certain classes of
differentially flat systems. In numerical experiments, we solve temporal logic motion
planning tasks for high-dimensional (10+ continuous state) systems.

1 Introduction

In safety-critical robotics applications involving autonomous ground and air vehicles,
it is desirable to unambiguously specify the desired system behavior and automat-
ically synthesize a controller that provably implements this behavior. Additionally,
autonomous systems often have high-dimensional, nonlinear dynamics and require
high-performance (not just feasible) controllers.

Linear temporal logic (LTL) is an expressive task-specification language for
specifying a variety of tasks such as responding to the environment, visiting goals,
periodically monitoring areas, staying safe, and remaining stable. These properties
generalize classical point-to-point motion planning. Also, the widespread use of LTL

E.M. Wolff (B) · R.M. Murray
California Institute of Technology, Pasadena, CA, USA
e-mail: ewolff@caltech.edu

R.M. Murray
e-mail: murray@cds.caltech.edu

© Springer International Publishing Switzerland 2016
M. Inaba and P. Corke (eds.), Robotics Research, Springer Tracts
in Advanced Robotics 114, DOI 10.1007/978-3-319-28872-7_2

21

22 E.M. Wolff and R.M. Murray

in software verification [2] makes it appealing as a common language for reasoning
about the software and dynamics of autonomous systems.

Standard methods for motion planning with LTL task specifications first create a
finite abstraction of the original dynamical system. This abstraction can informally be
viewed as a labeled graph that represents possible behaviors of the system. Approxi-
mate finite abstractions can be computed using either sampling-based methods (e.g.,
RRTs) [6, 14, 17] or reachability-based approaches [1, 3, 10, 16, 29].

Given a finite abstraction of a dynamical system and an LTL specification,
controllers can be automatically constructed using an automata-based approach [2,
6, 9, 14, 16]. This approach first transforms the LTL formula into an equivalent
Büchi automaton whose size may be exponential in the length of the formula [2]. A
product automaton is created from the finite abstraction and the Büchi automaton,
and then a controller is found by graph search in the product automaton.

The main drawback of this approach is that it is expensive to compute a finite
abstraction. The product automaton might also be quite large due to the size of the
abstraction and the Büchi automaton. Finally, although optimal controllers can be
computed for the discrete abstraction [21, 27], optimality is only with respect to the
abstraction’s level of refinement or asymptotic [14].

Instead of the automata-based approach, we directly encode a large class of tem-
poral logic formulas as mixed-integer linear constraints on the original dynamical
system. These constraints enforce that an infinite sequence of system states satisfies a
task specification. A key component of our formulation is enforcing that the system
is in a (non-convex) region at a given time. We introduce an alternative formula-
tion for this that gives a tighter convex relaxation than the commonly used big-M
approach. Our approach applies to any deterministic system model that is amenable
to finite-dimensional optimization, as the temporal logic constraints are indepen-
dent of any particular system dynamics or cost functions. We specifically investigate
Mixed Logical Dynamic (MLD) systems [4] and certain differentially flat systems
[19], whose dynamics can be encoded with mixed-integer linear constraints. MLD
systems include constrained linear systems, linear hybrid automata, and piecewise
affine systems. Differentially flat systems include quadrotors and car-like vehicles.

It is well-known that mixed-integer linear programming can be used for reason-
ing about propositional logic [7, 11], generating state-constrained trajectories [8, 20,
24], and modeling vehicle routing problems [13, 22]. The work most similar to ours
is Karaman et al. [15], who consider controller synthesis for MLD systems subject to
finite-horizon LTL specifications. However, finite-horizon properties are too restric-
tive to model a large class of interesting robotics problems, including persistent sur-
veillance, repeated assembly, periodic motion, and environmental monitoring. Our
work specifically addresses these types of periodic tasks with a novel mixed-integer
formulation.

Our main contributions are (1) a novel method for encoding both finite- and
infinite-horizon temporal logic properties as mixed-integer linear constraints on
a system and (2) an improved encoding that has a tighter convex relaxation and
uses significantly fewer binary variables for common tasks than related work [15].
The fragment of temporal logic that we consider allows one to specify properties

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 23

such as safety, stability, liveness, guarantee, and response. We demonstrate how this
mixed-integer programming formulation can be used with off-the-shelf optimiza-
tion solvers (e.g. CPLEX [23]) to compute both feasible and optimal controllers for
high-dimensional systems with temporal logic specifications.

2 Preliminaries

An atomic proposition is a statement that is True or False. A propositional formula
is composed of only atomic propositions and propositional connectives, i.e., ∧
(and), ∨ (or), and ¬ (not). Let T = {0, 1, 2, . . . , T} ⊂ N denote a bounded set of
discrete time instances and T ∞ = {0, 1, 2, . . .} denote an unbounded set of discrete
time instances.

2.1 System Model

We consider discrete-time nonlinear systems of the form

x(t + 1) = f (x(t), u(t)), (1)

where t ∈ T ∞, x ∈ X ⊆ R
nc × {0, 1}nl are the continuous and binary states, u ∈

U ⊆ R
mc × {0, 1}ml are the inputs, and x(0) = x0 ∈ X is the initial state. We assume

that the system is deterministic, i.e., an initial state x0 and a control input sequence
u = u0u1u2 . . . produces a unique trajectory (or run) x = x(x0, u) = x0x1x2

Let AP be a finite set of atomic propositions. The (time-dependent) labeling
function Lt : X → 2AP maps the continuous part of each state to the set of atomic
propositions that are True at time t. Each atomic proposition ψ ∈ AP is represented
by a union of polyhedrons. The finite index set Iψ

t lists the polyhedronswhereψ holds
at time t. The ith polyhedron is {x ∈ X | Hψi

t x ≤ Kψi
t }, where i ∈ Iψ

t . Thus, the set
of states where atomic proposition ψ holds at time t is given by [[ψ]](t) := {x ∈ X |
Hψi

t x ≤ Kψi
t for some i ∈ Iψ

t }. This (potentially) time-varying set is the finite union
of polyhedrons (finite conjunctions of halfspaces).

2.2 A Fragment of Temporal Logic

We do not attempt to reason about all possible temporal logic formulas (see [2]);
instead, we develop a useful library of temporal operators for robotic tasks. This
fragment of temporal logic can concisely and unambiguously specify a wide range
of tasks such as safe navigation, surveillance, persistent coverage, response to the
environment, and visiting goals. In the following definitions, ψ , φ, and ψj (for a

24 E.M. Wolff and R.M. Murray

finite number of indices j) are propositional formulas. To simplify the presentation,
we split these into three groups: core Φcore, response Φresp, and fairness Φfair. We
first define the syntax of the temporal operators and then their semantics.

Syntax

Thecore operators,Φcore := {ϕsafe, ϕgoal, ϕper, ϕlive, ϕuntil}, specify fundamental prop-
erties such as safety, guarantee, persistence, liveness (recurrence), and until. These
operators are,

ϕsafe := �ψ, ϕgoal := ♦ψ, ϕper := ♦�ψ, ϕlive := �♦ψ, ϕuntil := ψ U φ,

where ϕsafe specifies safety, i.e., a property should invariantly hold, ϕgoal specifies
goal visitation, i.e., a property should eventually hold, ϕper specifies persistence, i.e.,
a property should eventually hold invariantly, andϕlive specifies liveness (recurrence),
i.e., a property should hold repeatedly, as in surveillance, and ϕuntil specifies until,
i.e., a property ψ should hold until another property φ holds.

The response operators,Φresp := {ϕ1
resp, ϕ

2
resp, ϕ

3
resp, ϕ

4
resp}, specify how the system

responds to the environment. These operators are,

ϕ1
resp := �(ψ =⇒ ©φ), ϕ2

resp := �(ψ =⇒ ♦φ),

ϕ3
resp := ♦�(ψ =⇒ ©φ), ϕ4

resp := ♦�(ψ =⇒ ♦φ),

where ϕ1
resp specifies next-step response to the environment, ϕ2

resp specifies eventual
response to the environment, ϕ3

resp specifies steady-state next-step response to the
environment, and ϕ4

resp specifies steady-state eventual response to the environment.
Finally, the fairness operators,Φfair := {ϕ1

fair, ϕ
2
fair, ϕ

3
fair}, allow one to specify con-

ditional tasks. These operators are,

ϕ1
fair := ♦ψ =⇒

m∧

j=1

♦φj, ϕ2
fair := ♦ψ =⇒

m∧

j=1

�♦φj,

ϕ3
fair := �♦ψ =⇒

m∧

j=1

�♦φj,

where ϕ1
fair specifies conditional goal visitation, and ϕ2

fair and ϕ3
fair specify conditional

repeated goal visitation.
The fragment of LTL that we consider is built from the temporal operators defined

above as follows,

ϕ: := ϕcore | ϕresp | ϕfair | ϕ1 ∧ ϕ2, (2)

where ϕcore ∈ Φcore, ϕresp ∈ Φresp, and ϕfair ∈ Φfair.

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 25

This LTL fragment specifies many properties relevant to robotics, especially for
surveillance tasks for which no mathematical programming-based approaches cur-
rently exist. However, it does not include nested properties [2]. Determining all
temporal properties that can be expressed in this framework is future work.

Remark 1 To include disjunctions (e.g., ϕ1 ∨ ϕ2), one can rewrite a formula in
disjunctive normal form, where each clause is of the form (2). In what follows, each
clause can then be considered separately, as the system (1) is deterministic.

Semantics

We use set operations between a trajectory (run) x = x(x0, u) and subsets of X
where particular propositional formulas hold to define satisfaction of a temporal
logic formula [2]. We denote the set of states where propositional formula ψ holds
by [[ψ]]. A run x satisfies the temporal logic formula ϕ, denoted by x |= ϕ, if and
only if certain set operations hold. Given propositional formulas ψ and φ, we relate
satisfaction of (a partial list of) formulas of the form (2)with set operations as follows:

• x |= �ψ iff xi ∈ [[ψ]] for all i,
• x |= ♦�ψ iff there exists an index j such that xi ∈ [[ψ]] for all i ≥ j,
• x |= ♦ψ iff xi ∈ [[ψ]] for some i,
• x |= �♦ψ iff xi ∈ [[ψ]] for infinitely many i,
• x |= ψ U φ iff there exists an index j such that xj ∈ [[φ]] and xi ∈ [[ψ]] for all i < j,
• x |= �(ψ =⇒ ©φ) iff xi /∈ [[ψ]] or xi+1 ∈ [[φ]] for all i,
• x |= �(ψ =⇒ ♦φ) iff xi /∈ [[ψ]] or xk ∈ [[φ]] for some k ≥ i for all i,
• x |= ♦�(ψ =⇒ ©φ) iff there exists an index j such that xi /∈ [[ψ]] or xi+1 ∈ [[φ]]
for all i ≥ j,

• x |= ♦�(ψ =⇒ ♦φ) iff there exists an index j such that xi /∈ [[ψ]] or xk ∈ [[φ]]
for some k ≥ i for all i ≥ j.

A run x satisfies a conjunction of temporal logic formulas ϕ = ∧m
i=1 ϕi if and

only if the set operations for each temporal logic formula ϕi holds. The LTL formula
ϕ is satisfiable by a system at state x0 ∈ X if and only if there exists a control input
sequence u such that x(x0, u) |= ϕ.

3 Problem Statement

In this section, we formally state both a feasibility and an optimization problem and
give an overview of our solution approach. Let ϕ be an LTL formula of the form (2)
defined over AP.

Problem 1 Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), determine whether or not there exists a control input
sequence u such that x(x0, u) |= ϕ.

26 E.M. Wolff and R.M. Murray

We now introduce a cost function to distinguish among all trajectories that satisfy
Problem 1. Since LTL formulas are defined over infinite state sequences, we define
a cost function over infinite state sequences. We use a maximum cost function to
simplify the presentation; it can easily be extended to discounted, limit-maximum,
and average cost functions (see [26]). Let the cost c : X × U → R be bounded.

Definition 1 Let x be a trajectory andu be the corresponding control input sequence.
The maximum cost of trajectory x is

J(x, u) := sup
t∈T ∞

c(xt, ut), (3)

where J maps trajectories and control inputs to R ∪ ∞.

Problem 2 Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), compute a control input sequence u such that x(x0, u) |= ϕ

and J(x(x0, u), u) is minimized.

We now give a brief overview of our solution approach. We parameterize the
system trajectory (control input) as a periodic prefix-suffix structure. Every LTL
operator of the form (2) is encoded as mixed-integer linear constraints on this finite
parameterization. These temporal logic constraints (see Sect. 5) are then combined
with dynamic constraints (see Sect. 6) as constraints on a combined mixed-integer
optimization problem with an appropriate cost function. For MLD systems and cer-
tain differentially flat systems (see Sect. 6) with linear costs, Problems 1 and 2 can
thus be solved using a mixed-integer linear program (MILP) solver. While even
checking feasibility of a MILP is NP-hard, modern solvers using branch and bound
methods routinely solve large problems [23]. We show promising results (see Fig. 1)
on high-dimensional (10+ continuous state) systems in Sect. 7.

Fig. 1 Illustration of a problem instance. The task is to repeatedly visit regions P, D1, and D2,
where dark regions are obstacles that must be avoided. Representative trajectories for a quadrotor
(left) and nonlinear car (right) are shown with the prefix (blue) and suffix (black)

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 27

Remark 2 We only consider open-loop trajectory generation, which is already a
challenging problem due to the nonlinear dynamics and LTL specifications. Distur-
bances can be dealt with by wrapping a feedback controller around the trajectory.
Incorporating disturbances during trajectory generation is the subject of future work.

4 A Periodic Trajectory Parameterization

We parameterize the system trajectory by a periodic prefix-suffix form that is com-
monly used in model checking for finite systems. In this structure, the prefix is a
finite trajectory and the suffix is a finite trajectory that is repeated infinitely often.
This gives a sufficient condition that is amenable to computation, although it may
miss valid non-periodic trajectories.

A walk is a finite sequence of states x = x0x1x2 . . . xN that satisfy the con-
straints in (1). A cycle is a walk x = x0x1x2 . . . xN where f (xN , u) = x0 for some
u ∈ U . A trajectory x induces a corresponding word (i.e., sequence of labels)
L(x) = L0(x0)L1(x1)L2(x2) . . . through the labeling function. A word is similarly
defined for a walk or cycle. We now define a trajectory in prefix-suffix form.

Definition 2 Let xpre be a finite walk and xsuf be a finite cycle. A trajectory x is
in prefix-suffix form if it is of the form x = xpre(xsuf)ω, where ω denotes infinite
repetition.

We will require that the (time-varying) labeling function Lt is eventually periodic.

Assumption 1 There exists a finite t′ ∈ T ∞ and a Ω ∈ N such that Lt = Lt+Ω for
all t ≥ t′ ∈ T ∞. We further assume that Ω is minimal among all possible values.

In the sequel, we will only consider trajectories x = xpre(xsuf)ω in prefix-suffix
form. While both xpre and xsuf are finite, the constraint that xsuf is a cycle allows us
to repeat that sequence of states forever. Repeating the same sequence of states is a
sufficient condition that the word L(xsuf) (i.e., the sequence of atomic propositions) is
also repeated (usingAssumption1).However, only thewordmatters for the feasibility
of an LTL formula, not the exact sequence of states. In fact, there may exist other
trajectories that produce the same word L(x), but are not eventually periodic. Our
approach cannot find such trajectories, although we have not noticed this limitation
in our experiments. This differs from the case of finite discrete systems, where a
prefix-suffix form is sufficient to find a feasible solution if one exists [2].

In the next section, we will encode the temporal operators as mixed-integer con-
straints on xpre and xsuf. Let xcat := xprexsuf denote the concatenation of xpre and
xsuf, and assign time indices to xcat as Tcat := {0, 1, . . . , Ts, . . . , T}. Let Tpre :=
{0, 1, . . . , Ts − 1} and Tsuf := {Ts, . . . , T}, where Ts is the first time instance on
the suffix. The infinite repetition of xsuf is enforced by the constraint xcat(Ts) =
f (xcat(T), u) for some u ∈ U . By Assumption 1, it is sufficient that Ts is greater

28 E.M. Wolff and R.M. Murray

than t′ and that the length of Tsuf is an integer multiple of Ω . We often identify
xpre(0) · · · xpre(Tpre) with xcat(0) · · · xcat(Ts − 1) and xsuf(0) · · · xsuf(Tsuf) with
xcat(Ts) · · · xcat(T) in the obvious manner.

5 A Mixed-Integer Linear Formulation of LTL Constraints

In this section, we develop a mixed-integer programming formulation for a given
prefix-suffix trajectory parameterization, xcat = xprexsuf. The corresponding system
trajectory is x = xpre(xsuf)ω. Since the system is deterministic, this defines a cor-
responding control input sequence. The split between xpre and xsuf can either be
specified a priori or left as a variable (see [26] for details). We mix notation in the
following and refer to x and T instead of xcat and Tcat when clear from context.

5.1 Relating the Dynamics and Propositions

We now relate the state of a system to the set of atomic propositions that are True
at each time instance. We assume that each propositional formula ψ is described
at time t by the union of a finite number of polytopes, indexed by the finite index
set Iψ

t . Let [[ψ]](t) := {x ∈ X | Hψi
t x ≤ Kψi

t for some i ∈ Iψ
t } represent the set of

states that satisfy propositional formula ψ at time t. We assume that these have been
constructed as necessary from the system’s original atomic propositions. We note
that a proposition preserving partition [1] is not necessary or even desired.

For each propositional formula ψ , introduce binary variables zψi
t ∈ {0, 1} for all

i ∈ Iψ
t and for all t ∈ T . Let xt be the state of the system at time t and M be a vector

of sufficiently large constants. The big-M formulation

Hψi
t xt ≤ Kψi

t + M(1 − zψi
t), ∀i ∈ Iψ

t∑

i∈Iψ
t

zψi
t = 1 (4)

enforces the constraint that xt ∈ [[ψ]](t) at time t. DefinePψ
t := ∑

i∈Iψ
t

zψi
t . IfPψ

t = 1,

then xt ∈ [[ψ]](t). If Pψ
t = 0, then nothing can be inferred.

The big-M formulation may give poor continuous relaxations of the binary vari-
ables, i.e., zψi

t ∈ [0, 1], which may lead to poor performance during optimization
[23]. Such relaxations are frequently used during the solution of mixed-integer lin-
ear programs [23]. Thus, we introduce an alternate representation whose continuous
relaxation is the convex hull of the original set [[ψ]](t). This formulation is well-
known in the optimization community [12], but does not appear in the trajectory

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 29

generation literature ([8, 20, 24] and references therein). As such, this formulation
may be of independent interest for trajectory planning with obstacles.

The convex hull formulation

Hψi
t xi

t ≤ Kψi
t zψi

t , ∀i ∈ Iψ
t∑

i∈Iψ
t

zψi
t = 1,

∑

i∈Iψ
t

xi
t = xt (5)

represents the same set as the big-M formulation (4). While the convex hull formu-
lation introduces more continuous variables, it gives the tightest linear relaxation of
the disjunction of the polytopes and reduces the need to select theM parameters [12].
Note that we will only use the convex hull formulation (5) for safety and persistence
formulas (i.e., ϕsafe and ϕper) in Sect. 5.2, as Pψ

t = 0 enforces x = 0.
Regardless if one uses the big-M or convex hull formulation, only one binary vari-

able is needed for each polyhedron (i.e., finite conjunction of halfspaces). This com-
pares favorably with the approach in [15], where a binary variable is introduced for
each halfspace. Additionally, the auxiliary continuous variables and mixed-integer
constraints previously used are not needed because we use implication. For simple
tasks such as ϕ = ♦ψ , our method can use significantly fewer binary variables than
previously needed, depending on the number of halfspaces and polytopes needed to
describe [[ψ]].

For every temporal operator described in the following section, the constraints in
(4) or (5) should be understood to be implicitly applied to the corresponding propo-
sitional formulas so that Pψ

t = 1 implies that the system satisfies ψ at time t. Also,
note that we use different binary variables for each formula—evenwhen representing
the same set.

5.2 The Mixed-Integer Linear Constraints

In this section, the trajectory parameterization x has been a priori split into a prefix
xpre and a suffix xsuf. This assumption can be relaxed, so that the size of xpre and xsuf
are optimization variables (see [26] for details). We further assume that xpre and xsuf
satisfy Assumption 1.

In the following, the correctness of the constraints applied to xpre and xsuf comes
directly from the temporal logic semantics given in Sect. 2.2 and the form of the
trajectory x = xpre(xsuf)ω. The most important factors are whether a property can
be verified over finite- or infinite-horizons. All infinite-horizon (liveness) properties
must be satisfied on the suffix xsuf.

30 E.M. Wolff and R.M. Murray

We begin with the fundamental temporal operators Φcore. Safety and persistence
require a mixed-integer linear constraint for each time step, while guarantee and
liveness only require a single mixed-integer linear constraint.

Safety, ϕsafe = �ψ , is satisfied by the constraints

Pψ
t = 1, ∀t ∈ Tpre,

Pψ
t = 1, ∀t ∈ Tsuf,

which ensure that the system is always in a [[ψ]] region. Similarly, persistence,
ϕper = ♦�ψ , is enforced by

Pψ
t = 1, ∀t ∈ Tsuf,

which ensures the system eventually remains in a [[ψ]] region.
Guarantee, ϕgoal = ♦ψ , is satisfied by the constraints

∑

t∈Tpre

Pψ
t +

∑

t∈Tsuf

Pψ
t = 1,

which ensures the system eventually visits a [[ψ]] region. Similarly, liveness ϕlive =
�♦ψ is enforced by

∑

t∈Tsuf

Pψ
t = 1,

which ensures the system repeatedly visits a [[ψ]] region.
Until, ϕuntil = ψ U φ, is enforced by

Pφ

0 = s0,

Pφ
t = st − st−1, t = 1, . . . , T

Pψ
t = 1 − st, ∀t ∈ T ,

where we use auxiliary binary variables st ∈ {0, 1} for all t ∈ T such that st ≤ st+1

for t = 0, . . . , T − 1 and sT = 1.
Now consider the response temporal operators Φresp. For these formulas, the

definition of implication is used to convert each inner formula into a disjunction
between a property that holds at a state and a property that holds at some point in
the future. The response formulas require a mixed-integer linear constraint for each
time step.

For next-step response, ϕ1
resp = �(ψ =⇒ ©φ) = �(¬ψ ∨ ©φ), the addi-

tional constraints are

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 31

P¬ψ
t + Pφ

t+1 = 1, t = 0, . . . , Ts, . . . , T − 1,

P¬ψ

T + Pφ

Ts
= 1,

Similarly, steady-state next-step response, ϕ3
resp = ♦�(ψ =⇒ ©φ) = ♦�(¬ψ ∨

©φ), is satisfied by

P¬ψ
t + Pφ

t+1 = 1, t = Ts, . . . , T − 1,

P¬ψ

T + Pφ

Ts
= 1,

Eventual response, ϕ2
resp = �(ψ =⇒ ♦φ) = �(¬ψ ∨ ♦φ), requires the fol-

lowing constraints

P¬ψ
t +

T∑

τ=t

Pφ
τ = 1, ∀t ∈ Tpre,

P¬ψ
t +

∑

t∈Tsuf

Pφ
t = 1, ∀t ∈ Tsuf.

Similarly, for steady-state eventual response, ϕ4
resp = ♦�(ψ =⇒ ♦φ) =

♦�(¬ψ ∨ ♦φ), the additional constraints are

P¬ψ
t +

∑

t∈Tsuf

Pφ
t = 1, ∀t ∈ Tsuf.

Now consider the fairness temporal operatorsΦfair. In the following, the definition
of implication is used to rewrite the inner formula as disjunction between a single
safety (persistence) property and a conjunction of guarantee (liveness) properties.
These formulas require a mixed-integer linear constraint for each conjunction in the
response and each time step.

Conditional goal visitation, ϕ1
fair = ♦ψ =⇒ ∧m

j=1 ♦φj = �¬ψ ∨ ∧m
j=1 ♦φj,

is specified by

P¬ψ
t +

∑

t∈T
P

φj
t = 1, ∀j = 1, . . . , m,∀t ∈ T .

Conditional repeated goal visitation, ϕ2
fair = ♦ψ =⇒ ∧m

j=1 �♦φj = �¬ψ ∨∧m
j=1 �♦φj, is enforced as

P¬ψ
t +

∑

t∈Tsuf

P
φj
t = 1, ∀j = 1, . . . , m,∀t ∈ T .

Similarly, ϕ3
fair = �♦ψ =⇒ ∧m

j=1 �♦φj = ♦�¬ψ ∨ ∧m
j=1 �♦φj, is represented

by

32 E.M. Wolff and R.M. Murray

P¬ψ
t +

∑

t∈Tsuf

P
φj
t = 1, ∀j = 1, . . . , m, ∀t ∈ Tsuf.

We have encoded the temporal logic specifications on the system variables using
mixed-integer linear constraints. Note that the equality constraints on the binary
variables dramatically reduce search space. In Sect. 6 we discuss adding dynamics
to further constrain the possible behaviors of the system.

6 System Dynamics

The mixed-integer constraints in Sect. 5 are over a sequence of states, and thus are
independent of the specific system dynamics. Dynamic constraints on the sequence
of states can also be enforced by standard transcription methods [5]. However, the
resulting optimization problem may then be a mixed-integer nonlinear program due
to the dynamics. We highlight two useful classes of nonlinear systems where the
dynamics can be encoded using mixed-integer linear constraints.

6.1 Mixed Logical Dynamical Systems

Mixed Logical Dynamical (MLD) systems have both continuous and discrete-valued
states and allow one tomodel nonlinearities, logic, and constraints [4]. These systems
include constrained linear systems, linear hybrid automata, and piecewise affine
systems. An MLD system is of the form

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t)

subject to E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5,

where t ∈ T ∞, x ∈ X ⊆ R
nc × {0, 1}nl are the continuous and binary states, u ∈

U ⊆ R
mc × {0, 1}ml are the inputs, and δ ∈ {0, 1}rl and z ∈ R

rl are auxiliary binary
and continuous variables, respectively. The terms A, B1, B2, B3, E1, E2, E3, E4, and
E5 are system matrices of appropriate dimension. We assume that the system is
deterministic and well-posed (see Definition 1 in [4]).

6.2 Differentially Flat Systems

A system is differentially flat if there exists a set of outputs such that all states
and control inputs can be determined from these outputs without integration. If a
system has states x ∈ R

n and control inputs u ∈ R
m, then it is flat if we can find

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 33

outputs y ∈ R
m of the form y = y(x, u, u̇, . . . , u(p)) such that x = x(y, ẏ, . . . , y(q))

and u = u(y, ẏ, . . . , y(q)). Thus, we can plan trajectories in output space and then
map these to control inputs [17].

Differentially flat systems may be encoded using mixed integer linear constraints
in certain cases, e.g., the flat output is constrained bymixed integer linear constraints.
This holds for relevant classes of robotic systems, including quadrotors and car-like
robots. However, control input constraints are typically non-convex in the flat output.
Common approaches to satisfy control constraints are to plan a sufficiently smooth
trajectory or slow down along a trajectory [19].

7 Examples

We demonstrate our techniques on a variety of motion planning problems. The first
example is a chain of integrators parameterized by dimension. Our second example
is a quadrotor model from [25]. Our final example is a nonlinear car-like vehicle with
drift. All computations were done on a laptop with a 2.4GHz dual-core processor
and 4 GB of memory using CPLEX [23] through Yalmip [18].

The environment and task is motivated by a pickup and delivery scenario. All
properties should be understood to be with respect to regions in the plane (see Fig. 1).
Let P be a region where supplies can be picked up and D1 and D2 be regions
where supplies must be delivered. The robot must remain in the safe region S (in
white). Formally, the task specification is ϕ = �S ∧ �♦P ∧ �♦D1 ∧ �♦D2.
Additionally, we minimize the maximum cost function (3) where c(xt, ut) = |ut|
penalizes the control input.

In the remainder of this section, we consider this temporal logic motion plan-
ning problem for different system models. We use the simultaneous (sim.) approach
described in Sect. 5.2, and also a sequential (seq.) approach from [26] that first com-
putes the suffix and then the prefix. A trajectory of length 60 (split evenly between
the prefix and suffix) is used in all cases, and all results are averaged over 20 ran-
domly generated environments. The simultaneous approach uses between 300 and
469 binary variables with a mean of 394. Finally, all continuous-time models are
discretized using a first-order hold and time-step of 0.5s.

7.1 Chain of Integrators

The first system is a chain of orthogonal integrators in the x and y directions. The
kth derivative of the x and y positions are controlled, i.e., x(k) = ux and y(k) = uy,
subject to the constraints |ux| ≤ 0.5 and |uy| ≤ 0.5. The general state constraints
are |x(i)| ≤ 1 and |y(i)| ≤ 1 for i = 1, . . . , k − 1. Results are given in Tables1 and 2
under “chain-2”, “chain-6”, and “chain-10”, where “chain-k” indicates that the kth
derivative in both the x and y positions is controlled.

34 E.M. Wolff and R.M. Murray

Table 1 Time until a feasible solution was found (mean± standard error) and number of problems
(out of 20) solved in 45s using the big-M formulation (4) with M = 10

Model Dimensional Feasible solution (s) Number of problems solved

Simultaneous Sequential Simultaneous Sequential

Chain-2 4 1.10 ± 0.09 0.64 ± 0.06 20 20

Chain-6 12 4.70 ± .48 2.23 ± 0.15 20 20

Chain-10 20 9.38 ± 1.6 3.74 ± 0.29 20 19

Quadrotor 10 4.20 ± 0.66 1.80 ± 0.15 20 20

Quadrotor-flat 10 2.26 ± 0.36 1.99 ± 1.0 20 20

Car-3 3 43.9 ± 0.77 10.7 ± 2.0 4 20

Car-4 3 42.4 ± 1.7 18.7 ± 3.1 2 18

Car-flat 3 15.8 ± 3.8 14.0 ± 4.4 12 14

Table 2 Time until a feasible solution was found (mean± standard error) and number of problems
(out of 20) solved in 45s using the convex hull formulation (5)

Model Dimensional Feasible solution (s) Number of problems solved

Simultaneous Sequential Simultaneous Sequential

Chain-2 4 1.94 ± 0.23 0.94 ± 0.11 20 20

Chain-6 12 12.4 ± 2.7 2.89 ± 0.32 20 20

Chain-10 20 16.9 ± 3.0 7.28 ± 1.2 17 15

Quadrotor 10 18.9 ± 3.8 2.80 ± 0.35 16 20

Car-3 3 37.3 ± 3.1 13.3 ± 1.6 8 20

7.2 Quadrotor

Wenowconsider the quadrotormodel used in [25] for point-to-pointmotionplanning,
to which we refer the reader for a complete description of the model. The state
x = (p, v, r, w) is 10-dimensional, consisting of position p ∈ R

3, velocity v ∈ R
3,

orientation r ∈ R
2, and angular velocity w ∈ R

2. This model is the linearization of a
nonlinear model about hover with the yaw constrained to be zero. The control input
u ∈ R

3 is the total, roll, and pitch thrust. Results are given in Tables1 and 2 under
“quadrotor”, and a sample trajectory is shown in Fig. 1.

Also, we use the fact that the quadrotor is differentially flat [19] to generate
trajectories for the nonlinear model (with fixed yaw). We parameterize the flat output
p ∈ R

3 with eight piecewise polynomials of degree three, and then optimize over their
coefficients to compute a smooth trajectory. Afterwards, we check that the trajectory
does not violate the control input constraints. Results are given in Table1 under
“quadrotor-flat”.

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 35

7.3 Nonlinear Car

Consider a nonlinear car-like vehicle with state x = (px, py, θ) and dynamics ẋ =
(v cos(θ), v sin(θ), u). The variables px, py are position (m) and θ is orientation (rad).
The vehicle’s speed v is fixed at 0.8 (m/s) and its control input is constrained as
|u| ≤ 2.5. We form a hybrid MLD model by linearizing the system about different
orientations θ̂i for i = 1, . . . , k. The dynamics are governed by the closest lineariza-
tion to the current θ . Results with k = 3 and k = 4 are given in Table1 under “car-3”
and “car-4”, respectively. A sample trajectory of “car-4” is show in Fig. 1.

Additionally, we use the flat output (x, y) ∈ R
2 to generate trajectories for the

nonlinear car-like model in a similar manner as for the quadrotor model. Results are
given in Table1 under “car-flat”.

7.4 Discussion and Comparison

We first compare our approach to reachability-based algorithms that compute a finite
abstraction [16, 28]. We used the method in [28] to compute a discrete abstraction
for a two dimensional system in 22s, and [16] reports abstracting a four dimensional
system in just over a minute. This contrasts with our mixed-integer approach that can
routinely find solutions to such problems in seconds, although we do not compute a
feedback controller. Our results appear particularly promising for situations where
the environment is dynamically changing and a finite abstraction must be repeatedly
computed.

We also compare to the finite-horizon mixed-integer formulation given in [15].
Consider the task ϕ = ♦ψ , where [[ψ]] is a convex polytope defined bym halfspaces.
Our method uses one binary variable at each time step, while their approach uses m.
Additionally,whilewe encode eventually (♦) using a single constraint, their approach
uses a number of constraints quadratic in the trajectory length.

In most of our examples, we are able to quickly compute a feasible trajectory that
satisfies a temporal logic formula by solving a mixed-integer linear program. This
is aided by the sequential approach, which separates the problem into computing a
suffix and then a prefix [26]. It typically takes a long time to compute a trajectory
that is provably globally optimal, although this does happen in finite time.

Finally, the convex hull formulation performed poorly in our examples. There is
an empirical tradeoff between having tighter continuous relaxations and the number
of continuous variables in the formulation. We hypothesize that the convex hull
formulation will be most useful in cases when (1) the number of binary variables is
large, or (2) the cost function is minimized near the boundary of the region.

36 E.M. Wolff and R.M. Murray

8 Conclusion

We presented a novel mixed-integer programming-based method for control of non-
linear systems with a useful fragment of LTL that allows both finite- and infinite-
horizon properties to be specified. Our method is efficient in the number of binary
variables used to model the an LTL formula. Additionally, we showed the computa-
tional effectiveness of our approach on temporal logic motion planning examples.

Futureworkwill consider reactive environments by including both continuous and
discrete disturbances using a receding horizon control approach. Additionally, we
will expand the space of tasks that can be specified by including additional temporal
operators and timing constraints.

Acknowledgments The authors thank Matanya Horowitz, Scott Livingston, and Ufuk Topcu for
helpful feedback. This work was supported by a NDSEG Fellowship and the Boeing Corporation.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems.
Proc. IEEE 88(7), 971–984 (2000)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Belta, C., Habets, L.C.G.J.M.: Controlling of a class of nonlinear systems on rectangles. IEEE

Trans. Autom. Control 51, 1749–1759 (2006)
4. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints.

Automatica 35, 407–427 (1999)
5. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Program-

ming, 2nd edition. SIAM (2000)
6. Bhatia, A., Maly,M.R., Kavraki, L.E., Vardi, M.Y.:Motion planning with complex goals. IEEE

Robot. Autom. Mag. 18, 55–64 (2011)
7. Blair, C.E., Jeroslow, R.G., Lowe, J.K.: Some results and experiments in programming tech-

niques for propositional logic. Comput. Oper. Res. 13, 633–645 (1986)
8. Earl, M.G., D’Andrea, R.: Iterative MILP methods for vehicle-control problems. IEEE Trans.

Robot. 21, 1158–1167 (2005)
9. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for

dynamic robots. Automatica 45, 343–352 (2009)
10. Habets, L., Collins, P.J., van Schuppen, J.H.: Reachability and control synthesis for piecewise-

affine hybrid systems on simplices. IEEE Trans. Autom. Control 51, 938–948 (2006)
11. Hooker, J.N., Fedjki, C.: Branch-and-cut solution of inference problems in propositional logic.

Ann. Math. Artif. Intell. 1, 123–139 (1990)
12. Jeroslow, R.G.: Representability in mixed integer programming, I: Characterization results.

Disc. Appl. Math. 17, 223–243 (1987)
13. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routingwith applications tomulti-UAV

mission planning. Int. J. Robust Nonlinear Control 21, 1372–1395 (2011)
14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with deter-

ministicμ-calculus specifications. In: Proceedings of the American Control Conference (2012)
15. Karaman, S., Sanfelice, R.G., Frazzoli, E.: Optimal control of mixed logical dynamical systems

with linear temporal logic specifications. In: Proceedings of the IEEE Conference on Decision
and Control, pp. 2117–2122 (2008)

16. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from tem-
poral logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)

Optimal Control of Nonlinear Systems with Temporal Logic Specifications 37

17. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
18. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: Proceedings

of the CACSD Conference. Taipei, Taiwan (2004). Software available at http://control.ee.ethz.
ch/~joloef/yalmip.php

19. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory gener-
ation for heterogeneous quadrotor teams. In: Proceedings of the International Conference on
Robotics and Automation (2012)

20. Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed
integer linear programming. In: American Control Conference (2002)

21. Smith, S.L., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with
temporal-logic constraints. Int. J. Robot. Res. 30, 1695–1708 (2011)

22. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Philadelphia, PA: SIAM (2001)
23. User’s Manual for CPLEX V12.2. IBM (2010)
24. Vitus, M.P., Pradeep, V., Hoffmann, J., Waslander, S.L., Tomlin, C.J.: Tunnel-MILP: path

planningwith sequential convex polytopes. In: Proceedings of theAIAAGuidance,Navigation,
and Control Conference (2008)

25. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: Asymptotically optimal motion planning for
robots with linear dynamics. In: Proceedings of the IEEE International Conference on Robotics
and Automation (2013)

26. Wolff, E.M., Murray, R.M.: Optimal control of mixed logical dynamical systems with long-
term temporal logic specifications. Technical report, California Institute of Technology (2013).
http://resolver.caltech.edu/CaltechCDSTR:2013.001

27. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control with weighted average costs and tem-
poral logic specifications. In: Proceedings of the Robotics: Science and Systems (2012)

28. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: TuLiP: A software toolbox
for receding horizon temporal logic planning. In: Proceedings of the International Conference
on Hybrid Systems: Computation and Control (2011). http://tulip-control.sf.net

29. Wongpiromsarn, T., Topcu, U.,Murray, R.M.: Receding horizon temporal logic planning. IEEE
Trans. Autom. Control (2012)

http://control.ee.ethz.ch/~joloef/yalmip.php
http://control.ee.ethz.ch/~joloef/yalmip.php
http://resolver.caltech.edu/CaltechCDSTR:2013.001
http://tulip-control.sf.net

	Optimal Control of Nonlinear Systems with Temporal Logic Specifications
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 A Fragment of Temporal Logic

	3 Problem Statement
	4 A Periodic Trajectory Parameterization
	5 A Mixed-Integer Linear Formulation of LTL Constraints
	5.1 Relating the Dynamics and Propositions
	5.2 The Mixed-Integer Linear Constraints

	6 System Dynamics
	6.1 Mixed Logical Dynamical Systems
	6.2 Differentially Flat Systems

	7 Examples
	7.1 Chain of Integrators
	7.2 Quadrotor
	7.3 Nonlinear Car
	7.4 Discussion and Comparison

	8 Conclusion
	References

