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Preface

In the past 11 years, SecureComm has emerged as a leading international forum that
covers all aspects of information and communications security with particular emphasis
on security in communication and networking. SecureComm also serves as a venue for
learning about the emerging trends in security and privacy research, giving participants
the opportunity to network with experts in the field. The strategic objectives of
SecureComm are to provide a common platform for security and privacy experts in
academia, industry, and government as well as practitioners, standards developers, and
policy makers to engage in discussions on the common goals in order to explore
important research directions in the field.

For SecureComm 2015, 107 high-quality papers were submitted from all over the
world. Unfortunately, the acceptance rate set for this conference did not allow us to
accept all papers with relevant merits. In this respect, special thanks to the Technical
Program Committee members for handling the challenging task and selecting 29 out-
standing papers with a significant contribution to the field to be included in the pro-
ceedings. The 29 accepted papers can be broadly classified under the following themes:

– Mobile, System, and Software Security
– Cloud Security
– Privacy and Side Channels
– Web and Network Security
– Crypto, Protocol, and Models

Based on the submitted papers, we also extended invitations to the authors of 25
promising papers to be presented as posters, of whom 12 accepted. We awarded the
Best Paper Award to the paper entitled “Enhancing Traffic Analysis Resistance for Tor
Hidden Services with Multipath Routing” by Lei Yang and Fengjun Li.

In addition to the papers and posters presented at the conference, we also had two
exciting keynote speakers:

– Engin Kirda, Northeastern University
– Joe St. Sauver, Farsight Security, Inc.

Finally, we are very grateful to the School of Computing and Informatics at the
University of Indiana and the University of Texas at Dallas for their sponsorship, as
well as the European Alliance for Innovation (EAI). We also thank the local Orga-
nizing Committee and its many members and volunteers for their support. A special
thank goes to Anna Horvathova, EAI Conference Manager, and Rhonda Walls, Local
Arrangements Coordinator, for their utmost professionalism in managing the admin-
istrative aspects of the conference. Last but not least, our gratitude goes to the Steering
Committee members, in particular to Prof. Guofei Gu, whose continuous supervision
helped make SecureComm a very successful event.

November 2015 Bhavani Thuraisingham
XiaoFeng Wang

Vinod Yegneswaran
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FineDroid: Enforcing Permissions with
System-Wide Application Execution Context

Yuan Zhang1,2(B), Min Yang1,2, Guofei Gu3, and Hao Chen4

1 School of Computer Science, Fudan University, Shanghai, China
{yuanxzhang,m yang}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
3 SUCCESS Lab, Teax A&M University, College Station, USA

guofei@cse.tamu.edu
4 University of California, Davis, USA

chen@ucdavis.edu

Abstract. To protect sensitive resources from unauthorized use, mod-
ern mobile systems, such as Android and iOS, design a permission-based
access control model. However, current model could not enforce fine-
grained control over the dynamic permission use contexts, causing two
severe security problems. First, any code package in an application could
use the granted permissions, inducing attackers to embed malicious pay-
loads into benign apps. Second, the permissions granted to a benign
application may be utilized by an attacker through vulnerable applica-
tion interactions. Although ad hoc solutions have been proposed, none
could systematically solve these two issues within a unified framework.

This paper presents the first such framework to provide context-
sensitive permission enforcement that regulates permission use policies
according to system-wide application contexts, which cover both intra-
application context and inter-application context. We build a prototype
system on Android, named FineDroid, to track such context during
the application execution. To flexibly regulate context-sensitive permis-
sion rules, FineDroid features a policy framework that could express
generic application contexts. We demonstrate the benefits of FineDroid
by instantiating several security extensions based on the policy frame-
work, for two potential users: administrators and developers. Further-
more, FineDroid is showed to introduce a minor overhead.

Keywords: Permission enforcement · Application context · Policy
framework

1 Introduction

Modern mobile systems such as Android, iOS design a permission-based access
control model to protect sensitive resources from unauthorized use. In this model,
the accesses to protected resources without granted permissions would be denied
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by the permission enforcement system. Ideally, the permission model should pre-
vent malicious applications from abusing sensitive resources. However, the cur-
rent permission model could not enforce a fine-grained control over permission
use contexts (in this paper, when we say context we mean the application exe-
cution context). As a result, malicious entities could easily abuse permissions,
leading to the explosion of Android malware these years [9] and the numerous
reported application vulnerabilities [21,36].

Since Android has been expanding its market share rapidly as the most pop-
ular mobile platform [5], this paper mainly focuses on the permission model
of Android. Currently, the coarse-grained permission enforcement mechanism is
limited in the following two aspects.

– Intra-application Context Insensitive. Current permission model treats
each application as a separate principal and permissions are granted at the
granularity of application, thus all the code packages in the application could
access the protected resources with the same granted permissions. In fact,
not all the code packages in a single application come from a same origin.

– Inter-application Context Insensitive. Application interaction is a com-
mon characteristic of mobile applications. However, this new characteristic
is transparent to the current coarse-grained permission enforcement mech-
anism, exposing a new attack surface, i.e., the permissions granted to a
vulnerable application may be abused by an attacker application via inter-
application communication.

Given these problems, plenty of extensions have been proposed to refine the
Android permission model. Dr. Android and Mr. Hide framework [23] provides
fine-grained semantics for serval permissions by adding a mediation layer. SEAn-
droid [33] hardens the permission enforcement system by introducing SELinux
extensions to the Android middleware. FlaskDroid [15] extends the scope of
current permission system by regulating resource accesses in Linux kernel and
Android framework together within a unified policy language. Context-aware
permission models [17,26,30,32] are proposed to support different permission
policies according to external contexts, such as location, time of the day. How-
ever, these works still could not address the two limitations described above.
There are also some work dedicated to reduce the risk of inter-application com-
munication [12–14,18,20,26] or to isolate untrusted components inside an appli-
cation [27,31,35,39]. However, none could achieve unified and flexible control
according to the system-wide application context.

In this paper, we seek to fill the gap by bringing context-sensitive permission
enforcement. We design a prototype, called FineDroid to provide fine-grained per-
mission control over the application context. For example, if app A is allowed to use
SEND SMS permission in the context C, when app A requests SEND SMS permission in
another context C’, it would be treated as a different request of SEND SMS permis-
sion. In FineDroid, we consider both the intra-application context which represents
the internal execution context of an application, and the inter-application context
which reflects the IPC context of interacted applications. It is non-trivial to track
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such context in Android. FineDroid designs several techniques to automatically
track such contexts along with the application execution. To ease the adminis-
tration of permission control policies, FineDroid also features a policy framework
which is general enough to express the rules for handling permission requests in a
context-sensitive manner.

To demonstrate the benefits of FineDroid, we create two security extensions for
administrators and developers. First, since permission leak vulnerability [20,21,
24,36] is very common and dangerous, we show how administrators could benefit
from our system in transparently fixing these vulnerabilities without modifying
vulnerable applications. Second, we provide application developers with the abil-
ity of restricting untrusted third-party SDK by declaring fine-grained permission
specifications in the manifest file. All these security extensions can be easily built
using policies.

We evaluate the effectiveness of our framework by measuring the effectiveness
of the developed security extensions. For administrators, we show that FineDroid
can easily fix permission leak vulnerabilities with context-sensitive permission
control policies, and the policies could even be automatically generated by a
vulnerability detector. For developers, we show that just several policies are
enough to restrict the permissions that could be used by untrusted SDKs. It is
worth noting that our system is not limited to support these two extensions. In
addition, our system is showed to introduce minor performance overhead (less
than 2%).

In this paper, we make the following contributions.

– We propose context-sensitive permission enforcement to deal with severe
security problems of mobile systems. Considering the characteristics of
mobile applications, it is important and necessary to take the application
context into account when regulating permission requests.

– We design a novel context tracking technique to track intra-application con-
text and inter-application context during the application execution.

– We design a new policy framework to flexibly and generally regulate permis-
sion requests with respect to the fine-grained application context.

– We demonstrate two security extensions based on the context-sensitive per-
mission enforcement system, by just writing policies and sometimes a small
number of auxiliary code.

– We evaluate the security benefits gained by the two security extensions and
report the performance overhead.

2 Threat Model

This paper considers a strong threat model in which an attacker aims to gain
and abuse sensitive resources stealthily. More specifically, this paper assumes
an attacker could launch all kinds of application-level attacks, while the Linux
kernel and Android Runtime are secure (not compromised). For the stealthiness,
we mean an attacker tries to hide its identity in using permissions from the
permission enforcement system. We consider these two kinds of attacks.
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extend action

Fig. 1. Architecture of Context-Sensitive Permission Enforcement Framework.

Intra-application Attack. To hide the behavior of abusing permissions, an
attacker could inject malicious payloads into a benign application (either before
installation or during runtime). There are several ways for an attacker to infect
benign apps. First, an attacker could actively embeds malicious payloads into
popular benign apps and redistributes the repackaged version via third-party
application markets. Second, an attacker could exploit code injection vulnera-
bilities (such as Man-in-the-Middle attack with dynamic class loading [28]) to
inject malicious payloads. In addition, an attacker could also publish malicious
SDKs, passively waiting for developers to include [1].

Inter-application Attack. The prevalent application interaction in the
Android programming model may also be used by attackers to stealthily use
permissions. This kind of attack has been verified in several forms, such as capa-
bility leak [20,21,36], component hijacking [24], content leak and pollution [41].
In these attacks, the permission enforcement system would see a permission
request from a victim app which has a legitimate requirement for this privileged
resource, while actually this permission is originally requested and utilized by
an attacker app.

Note that our threat model does not consider other kinds of attacks such
as privacy stealing, root exploits and colluding attacks, because they are not
caused by the context-insensitive permission enforcement mechanism and have
been well addressed by previous work [12,13,15,19,22].

3 Approach Overview

To defeat these attacks, we propose context-sensitive permission enforcement.
The key idea is to construct a system-wide application context for each per-
mission request and make granting decisions based on this context. Since the
permission enforcement system could catch all the code packages and all the
apps that participate in the permission request, an attacker could no longer
stealthily abuse permissions.

The system-wide application context is composed of two parts: (1) Intra-
application Context which represents the internal execution flow of an appli-
cation, and (2) Inter-application Context which reflects the interaction flow
among applications and system services. With these two kinds of contexts, our
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framework could accurately distinguish permission requests originated from dif-
ferent sources, thus achieving a fine-grained control over permission usage.

The overall architecture of FineDroid is presented in Figure 1. The rectangles
filled with black color are new modules introduced by FineDroid. The core of
our framework is the Context Builder module, which automatically tracks the
application context along with the application execution. This module is placed
in the Linux Kernel, so an attacker cannot escape from the context tracking. We
also provide Context API at the library layer for applications and the Android
framework to obtain the current application context from the Context Builder
module.

Based on Context API, we design a context-sensitive permission enforcement
system. To flexibly set context-sensitive permission control rules, FineDroid fea-
tures a generic policy language. In FineDroid, all permission requests are inter-
cepted by the Permission Manager module. To handle a permission request,
the Policy Manager module examines all the polices in the system, and then
Permission Manager could make a permission decision according to the action
(e.g. allow or deny) specified in the match policy. Besides, our policy language is
extensible for introducing new permission handling actions. To support building
security extensions atop the policy framework, Policy Manager provides open
interfaces for policy management and extension.

Next, we will detail the design of FineDroid. The application context track-
ing technique is presented in Section 4, and we describe the context-sensitive
permission enforcement system in Section 5.

4 Application Context Tracking

Application context is the cornerstone of FineDroid, while it is not a primitive
element yet in the Android system. Thus, we design Context Builder to auto-
matically build the two kinds of application contexts. To prevent attackers from
hiding their identities in the application context, we place the Context Builder in
the Linux Kernel. However, the complexity of the Android programming model
brings huge challenges in propagating application context along with the appli-
cation execution. To deal with these complexities, we further introduce several
techniques for context propagating. Next, we elaborate these techniques.

4.1 Intra-application Context Builder

Intra-application context is used to distinguish different execution flows inside an
app. In FineDroid, the function calling context is used to abstract the internal
execution context inside an app. However, it is too large to efficiently propagate
and compare the complete calling context. Thus, we need to efficiently compute
a birthmark for any given calling context.

PCC as Intra Context. We adopt a technique called probabilistic calling
context (PCC) [11] to compute an integer birthmark based on all the func-
tions in the flow. PCC can be efficiently calculated with a recursive expression
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pcc = 3 ∗ pcc′ + cs where pcc′ is the PCC value of the caller and cs is a birth-
mark for the current call site. By applying this expression recursively from the
leaf function on the stack to the root function, we could finally obtain a PCC
value as the birthmark for the whole calling context. Note that PCC calcula-
tion is deterministic which means a given calling context would always get the
same PCC value. As evaluated in millions of unique calling contexts [11], PCC
is efficient and accurate for bug detection and intrusion detection in deployed
software. Thus, PCC is very suitable to represent the internal execution context
inside an app.

Call Site Birthmark. Since all Java code in an Android app is packed into a
single DEX file, we use the relative offset of a call site in the DEX file as the
birthmark of the call site (cs value). While at the first glance this solution may
encounter problems with native code execution, it turns out that this solution
could still calculate a PCC value for the Java functions invoked before the native
code because native code could only be invoked from Java functions through Java
Native Interface. It is worth noting that our solution does not need to calculate
a PCC value for every function invocation. Instead, it just needs to compute
PCC values for a small portion of calling contexts inside an application that
may participate in a permission request, such as application interaction.

Implementation Issue. Since Java functions are executed in a dedicated Java
stack by Dalvik virtual machine, Context Builder which lies in the Linux Kernel
cannot recognize the user-space Java stack. To solve this problem, we instru-
ment Dalvik virtual machine to register the base address of Java stack to the
kernel whenever a Java thread is spawned. Thus, when Context Builder needs
to calculate the PCC value for the current context, it could traverse all the Java
functions in the execution flow by reconstructing the calling stack with the base
Java stack address.

4.2 Inter-application Context Builder

Inter-application context reflects the IPC context among interacted applications.
Since Binder IPC is the only way for an application to interact with other appli-
cations and system services, Context Builder extends Binder kernel module to
keep the whole IPC call chain for every IPC invocation. As showed in Figure 2,
the extended Binder driver allocates an array for each thread to record the
application context in handling Binder communication. During each Binder IPC
interaction, the driver would append caller’s identity into caller’s application
context, and propagate it to the callee application as the callee’s application
context. The caller’s identity is composed of two parts: assigned UID of the
caller application and PCC value for the intra-application context inside the
caller application when this interaction occurs.
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Fig. 2. Binder IPC Context Building.
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Fig. 3. Binder IPC Propagating Diagram in Component Interaction from App A to
App B.

4.3 Context Propagating

Due to some unique features of Android, the built system-wide application con-
text would be lost during normal execution. Thus, FineDroid further retrofits
the Android Runtime which manages the application execution to propagate
application context during the following interaction behaviors.

Component-Level Propagating. Component interaction is prevalent in
Android apps. To initiate a component interaction, an application (named as
A ) first needs to send an Intent to the ActivitManagerService (referenced as
AMS for short), then AMS would choose a target application (named as B ) and
route the Intent to B. Figure 3 (a) illustrates this process. Since the invocations
from A to AMS and from AMS to B are all proceeded with Binder IPC, app B would
get the application context as [(uidA, pccA), (uidAMS , pccAMS)] when receiving
this Intent. During the component interaction, AMS plays as a mediator between
the sender and the receiver. However, from the application context propagated
to app B, AMS looks like a participator which is contrary to its actual role.

The problem would be even worse when the target application B has not been
launched at the time of Intent delivery. Figure 3 (b) illustrates this scenario.
When app B is chosen as the callee of this component interaction and AMS finds
that app B has not been started. AMS would delay the Intent routing and notify
Zygote (which is the application incubator in Android) to spawn a new process
for app B. When B has been started, it would notify AMS and AMS would send the
delayed Intent to B. The problem is that the Intent delivery from AMS to app
B is performed in the context of receiving the start notification of app B, so the
application context propagated to app B is [(uidB , pccB), (uidAMS , pccAMS)].
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This problem is caused by that the application context for sending the Intent
from app A to AMS has not been recovered in delivering the Intent from AMS to
app B.

To solve the two problems, we design Intent-based component interaction
tracking. The basic idea is that, we instrument AMS to annotate each Intent
object with the sender’s context, thus the context is propagated to the receiver
together with the Intent object. When Android Runtime in the receiver appli-
cation gets the Intent object from AMS, it first recovers the application context
recorded in the Intent object and then triggers the invocation of the target com-
ponent. Thus, the target component can be executed with the right application
context. Note that the application context recovery in the receiver application is
guaranteed by our instrumented Android Runtime, thus it could not be escaped.

Thread-Level Propagating. In each Android Runtime, there is a main
thread to handle the component interactions with the system and dispatch
UI events (so this thread is also known as UI thread). To reduce the latency
of main thread in processing events, developers are advised to delegate time-
consuming operations to worker threads. Android designs Message [4], Handler
[3], AsyncTask [2] interfaces for developers to facilitate such workload migra-
tion and synchronization. However, since thread interaction is not proceeded via
Binder IPC, the application context would be lost in the worker thread.

We design two countermeasures to propagate application contexts among
thread interactions. First, during thread creation, we instrument the thread cre-
ation and initialization logic to propagate the application context of the creator
thread to the new created thread and then recover the application context before
the created thread is ready to run. Second, for thread interaction, we consider the
message-based interaction mechanism in Android. Before a message is sent to a
thread, the application context of the current thread is annotated to the Message
object. Then before the target thread handles the Message, its application con-
text is restored according to the one encapsulated in the Message object. It is
worth noting that, our thread-level context tracking is transparently performed
by our instrumented Android Runtime. Thus, this kind of tracking is manda-
tory without relying on any modification to the applications or cooperation with
developers.

Event-Level Propagating. Callbacks are commonly used in Android to mon-
itor system events. A typical use case is UI event handling. However, the event-
based programming model also brings problems to application context tracking,
because a callback may be executed in a future time by a thread which would
have a different context to the one when the callback is registered. To deal
with this problem, FineDroid annotates each callback with the application con-
text when it is registered and recover the application context from the callback
before it is triggered for execution. From Android documentation, we find more
than 100 APIs that would register callbacks. We instrument each API to embed
the registered callback into a wrapper which automatically records and recovers
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the context to/from the callback. Since only Android APIs are instrumented,
this technique is also enforced transparently to the app.

5 Context-Sensitive Permission System

Based on the constructed system-wide application context, permission requests
in FineDroid could be handled separately according to the concrete application
context. To ease the regulation of permissions requests, FineDroid features a
policy framework. Next, this framework is introduced in two parts.

5.1 Permission Manager

Permission Manager first needs to intercept all permission requests. As intro-
duced in [35,40], two kinds of permission requests are intercepted: For KEPs
(Kernel Enforced Permissions), we instrument the UID/GID isolation modules in
the Linux Kernel to intercept all KEP permission requests and redirect them to
Permission Manager in the Android framework for handling; For AEPs (Android
Enforced Permissions), we instrument PermissionController service to redirect
all permission requests to the Permission Manager.

To handle a permission request, Permission Manager first queries Policy
Manager to select a policy which best matches the current application context.
If no policy matches, Permission Manager would fall back to the original permis-
sion enforcement mode. In the original mode, permission requests are handled
by querying the Permission Record (see Figure 1) to grant all the permissions
declared in the application manifest file. When a matched policy is selected for
the current permission request, Permission Manager just needs to follow the
action (e.g. allow or deny) specified in the policy.

5.2 Policy Framework

FineDroid designs a declarative policy language to express the rules for handling
permission requests in a context-sensitive manner. Basically, it states the han-
dling action for a permission request from an app within a specified application
context. Our policy is structured in XML format, with the following tags. (A
sample policy can be found in Figure 4.)

– policy tag. It is the root tag for specifying a policy. Three attributes
are required to designate the handling action (action attribute) when an
app (app attribute) requests some permission (permission attribute). The
expected application context for this policy can be figured by either a context
attribute or child tags described below.

– uid-selector tag. It describes the composition relationship of several uid-
context child tags. The selector attribute is mandatory to describe the com-
position relationship among the child tags. It supports 5 kinds of selectors:
“contains”, “startwith”, “endwith”, “strictcontains” and “fullymatch”.
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– uid-context tag. It describes context information for a single application
participated in the inter-application communication. The uid attribute is
required to specify the identity of the application. Package name can also be
used as the identity of the application. If the value of uid attribute begins
with “∧”, it represents any application except the one specified by the uid
attribute. The intra-application context of the application can be described
by either the pcc attribute using the exact PCC value of the application, or
detailed function call context information using a child pcc-selector tag.

– pcc-selector tag. It describes the composition relationship of several
method-sig child tags. Just like uid-selector tag, it requires a selector
attribute which also supports 5 selectors.

– method-sig tag. It describes the signature for a method invoked in the
calling context. Three attributes can be used for description: className,
methodName, and methodProto.

– or, and, not tag. They describe the logic relationships among child tags.
They are used to depict complex contexts which may be difficult to expressed
only with uid-selector and pcc-selector. Meanwhile, these tags can be
nested together.

Besides, the policy language supports using “*” as the wild card character in
some attributes, such as context attribute in policy tag, pcc attribute in uid-
context tag.

Policy Matching. To test whether a policy could match a permission request,
Policy Manager first checks the requested permission and the requestor applica-
tion. When both attributes match, Policy Manager further compares the appli-
cation context. The application context matching is relatively slow, so we use a
cache to remember the context matching results. If multiple policies are found to
match, Policy Manager would select the one that express the most fine-grained
application context. Policy Manager also supports adding and removing policies
to/from the system, as well as registering new action types to extend the policy
language. The next section will show how these policies can be used to refine
current permission model.

6 Security Extensions

To demonstrate the effectiveness of context-sensitive permission enforcement, we
create security extensions for administrators and developers. All these extensions
are built upon the interfaces exposed by Policy Manager, without modifying
other FineDroid modules.

6.1 For Administrator: Fixing Permission Leak Vulnerability

In the Android programming model, if a public component is not protected
well, it may be misused to perform privileged actions by an attacker application.
As demonstrated in [21,24,36], many high-risk permissions, such as SEND SMS,
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<policy action=”deny” app=”com.android.mms” permission=”SEND_SMS” >
  <uid-selector selector=”strictcontains” >
    <uid-context uid=”^com.android.mms” pcc=”*” />
    <uid-context uid=”com.android.mms” />
      <pcc-selector selector=”contains” >
        <method-sig className=”com.android.mms.transaction.SmsReceiver” 

methodName=”beginStartingService” />
      </pcc-selector>
    </uid-context>
  </uid-selector>
</policy>

Fig. 4. Policy to fix SEND SMS permission leak in SmsReceiver.

RECORD AUDIO are found to be leaked in pre-installed apps and third-party apps.
Next, we introduce how to use FineDroid to prevent permission leaks. Note that
we do not want to prevent all kinds of component hijacking vulnerabilities, such
as information leaks.

Leak Causes. There are two possible cases for the permission leak vulnerabil-
ity. The first case is that some application-private components are mistakenly
made publicly accessible. This may be caused by developer’s lack of security
awareness or insecure code generated by IDE. To fix such kind of leak, devel-
opers just need to mark these components as private ones in the manifest file.
In Android, intra-application component interaction and the inter-application
component interaction share the same communication channel [16]. Thus, a sin-
gle component may be designed for two purposes: internal use and public use.
The second case of permission leak is that developers do not perform enough
security checks when an internal component is for public use. However, this case
is quite difficult to handle, due to two levels of security requirements in a single
component.

Our Solution. By tracking system-wide application context, FineDroid could
be used to fix permission leak vulnerability. With inter-application context, we
could find whether a component interaction is for internal use or for public use.
With intra-application context, we could accurately specify the vulnerable flow
inside the application. Combining intra-application context and inter-application
context together, we could make a policy to prevent a vulnerable flow from
using permissions when it is invoked from an external application. For exam-
ple, the policy in Figure 4 denies the SEND SMS permission request from the
app com.android.mms when a foreign application participates in the interaction
and the internal execution state of com.android.mms matches a vulnerable path
(specified by the <pcc-selector> element).

The advantages of FineDroid in preventing permission leak vulnerabilities are
that it requires no modification to the system nor the vulnerable applications
and the policies are quite easy to write. In Section 7.1, we would evaluate the
effectiveness of FineDroid in fixing real-world permission leak vulnerabilities,
and show that how the policies could be automatically generated by enhancing
a permission leak vulnerability detector.
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...
<fine-permission android:package="com.flurry.android">
  <deny android:permission="android.permission.ACCESS_FINE_LOCATION" />
  <deny android:permission="android.permission.ACCESS_COARSE_LOCATION" />
</fine-permission>
...

Fig. 5. Policy to prevent Flurry Ads from requesting location permission.

6.2 For Developer: Fine-Grained Permission Specification

An Android application may contain many third-party code packages. For exam-
ple, it is common for applications to embed an Ad library for fetching Ads, social
network SDKs for publishing events, payment SDKs for financial charge, ana-
lytic SDKs for marketing. However, in this case multiple third-party SDKs from
different origins (potentially with different trust levels) will share the same priv-
ileges as the host application, violating the principle of least privilege. Thus,
a third-party SDK may abuse the permissions that granted to the host appli-
cation. For example, a popular Ad library was found to collect text messages,
contacts and call logs [1]. Unfortunately, developers have no way to restrict the
permissions that are available to certain foreign packages.

Our Solution. By tracking intra-application context, FineDroid is capable of
distinguishing the origins of permission requests inside an application. Thus,
we could build a permission sandbox inside an application where code packages
from different origins have different permission configurations. Based on the per-
mission sandbox, developers could declare fine-grained permission specifications
in the application manifest file to specify the permissions that could be used
by each third-party SDK. Figure 5 shows the format of this kind of permission
specification. The fine-grained permission specifications in the manifest file will
be transformed to FineDroid policy by our enhanced PackageManagerService at
the install-time and added to the Policy Manager. Note that application obfus-
cation [6] would not cause problems here, because developers could modify the
manifest file after code obfuscation.

7 Prototype and Evaluation

We implement a prototype of FineDroid on Android 4.1.1 (Jelly Bean), running
on both Google Nexus phones (Samsung I9250) and emulators. We also imple-
ment the two security extensions upon FineDroid. This section evaluates these
extensions to demonstrate the effectiveness of our context-sensitive permission
enforcement framework, as well as the performance overhead introduced by our
framework.

7.1 Fixing Permission Leak Vulnerability

We evaluate the effectiveness of FineDroid in fixing permission leak vulnera-
bilities with two real-world vulnerabilities in Android AOSP apps: SEND SMS



FineDroid: Enforcing Permissions with System-Wide Application 15

SmsReceiverService

SmsReceiver

WRITE_SMS leak SEND_SMS leak

public interface

a b

c

Fig. 6. Permission leak paths in Mms application.

leak [7] and WRITE SMS leak [8]. These two vulnerabilities are both caused by
the improper protection of public components exposed in the Mms application,
which is the default message management app.

Vulnerability Analysis. There are two vulnerable components in the Mms
application: SmsReceiverService which is a Service component and SmsReceiver
which is a Broadcast Receiver component. Figure 6 illustrates the exploitable
paths in this application. SmsReceiverService is intended for only internal use
in the Mms application, while it is mistakenly exported to the public. Through
sending a well-crafted Intent to SmsReceiverService, an attacker can drive the
Mms application to fake the receiving of arbitrary SMS messages (WRITE SMS
leak, path a) or send arbitrary SMS messages (SEND SMS leak, path b). SmsRe-
ceiver is designed for both internal use and public use. However, the functionality
of sending arbitrary SMS messages which should only be used by private compo-
nents is not protected properly, causing it to be exported to the public (SEND SMS
leak, path c).

Fixing the Vulnerability. Permission leak vulnerability is typically difficult
to fix manually, because it requires enforcing multiple security requirements in
a single component, such as SEND SMS leak (path c in Figure 6) in SmsReceiver.
Besides, even if carefully fixed, it also requires the re-distribution of the new
application file. Based on FineDroid, we could easily prevent permission leaks by
simply writing policies to deny the permission request occurred in the exploitable
path without modifying the application. Figure 4 shows an example of how to
prevent SEND SMS leak (path c in Figure 6) in SmsReceiver. Similarly, we could
fix the vulnerability of path a and b.

Effectiveness. We created three sample apps to exploit each vulnerable path
mentioned above. The sample apps were first tested in our FineDroid prototype
with no policies. The result shows that all the three apps successfully exploited
the vulnerabilities in the Mms app. Then we added three policies (as showed
in Figure 4) to our prototype to fix the three vulnerable paths. We also ran
the same three sample apps to attack Mms again. We found that our security
policies successfully prevented the permission re-delegation attacks this time,
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demonstrating the effectiveness of FineDroid in enforcing fine-grained permission
use policies.

Policy Generation. The policies to fix permission-leak vulnerabilities rely on
the precise understanding of vulnerable paths among component interactions.
Thus the ideal scenario is to use together with an existing permission leakage vul-
nerability detector (such as CHEX [24]). Once a vulnerable path is detected, we
can automatically generate a corresponding policy for FineDroid. Thus, the task
of diagnosing vulnerable applications and writing policies can be greatly simpli-
fied. To demonstrate the feasibility of automatic policy generation to be used
together with any vulnerability detector, we choose CHEX [24], a state-of-the-art
tool in detecting permission leak vulnerability, in our evaluation. However, the
source code of CHEX is not available, so we could not directly enhance CHEX
for policy generation. Instead, the authors of CHEX provided us the output of
CHEX in analyzing 20 vulnerable applications, among which 10 applications are
vulnerable to INTERNET permission leak. By parsing the output files, we success-
fully extracted 414 vulnerable paths with detailed calling contexts. Based on the
vulnerable paths (contexts), the automatic policy generation is quite straightfor-
ward. As showed in Figure 4, the generated policies could deny the permission
request when the vulnerable path is exploited by a foreign application. Finally,
for each vulnerable path detected by CHEX, a policy is automatically generated
to fix it.

7.2 Fine-Grained Permission Specification

We evaluate the effectiveness of FineDroid in providing fine-grained permission
specification by restricting the privileges of untrusted Ad libraries. In this exper-
iment, we use an application named Stock Watch which embeds Flurry Ads for
fetching and displaying advertisements. For demonstration purpose, we assume
Flurry Ads is not trusted by Stock Watch developers, thus the developers want to
restrict the permissions that could be used by Flurry Ads. Flurry Ads requests
ACCESS FINE LOCATION permission during the execution, and we assume the
developers think this is quite suspicious. With FineDroid, Stock Watch devel-
opers could easily prohibit Flurry Ads from using ACCESS FINE LOCATION per-
mission. As Figure 5 shows, they just need to declare a fine-grained permission
specification in the manifest file. During the installation, these specifications
would be transformed to policies that could be added to FineDroid. Because
we do not have the source code of the Stock Watch application, we mimic
the behavior of Stock Watch developers by repackaging the application file to
replace the manifest file. By running the new application, we could find the
ACCESS FINE LOCATION permission requests from Flurry Ads are all denied by
FineDroid, and this does not affect the normal operation of the Stock Watch
application. Similar to Stock Watch, we also tested another 20 applications to
restrict the permissions assigned to third-party libraries, including Google Ads,
Tapjoy, Millennial Media. In all these cases, FineDroid provides strong enforce-
ment of fine-grained permission specifications. We did encounter two cases that
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the applications crashed due to the denial of some permissions requested from
the Ads library. Instead of considering it as the fault of FineDroid, we argue
that developers of the Ads library should write more robust code to handle
more necessary exceptions in the future.

7.3 Performance Overhead

We have conducted several experiments to measure the performance overhead
caused by FineDroid. The experiments are performed on Google Nexus phones.

Overall Performance. We first use three performance benchmarks (Caffeine-
Mark3, AnTuTu, and Linpack) to measure the overall overhead introduced by
FineDroid. The results show that almost no noticeable performance overhead is
observed, with the worst overhead case at 1.99% in the Linpack benchmark.

Permission Request Handling Performance. Most overhead of FineDroid
is introduced when handling permission requests. We implement a test app that
performs 10,000 times of permission requests to measure the average performance
of FineDroid in handling a single permission request. We compare the perfor-
mance of unmodified Android with FineDroid in two configurations. Context
tracking is disabled in FineDroid w/o Context, where all overhead is caused by
permission interception. In FineDroid w/ Context, context tracking is switched
on and no policy is installed on the system. Table 1 shows the results.

FineDroid introduces an overhead of 2.02 ms per request in intercepting KEP
permission requests, which is undoubtedly higher than the case of unmodified
Andorid because in that case KEP request can be handled in the application
process without communicating with Permission Manager in the system process.
The overhead introduced by further application context tracking is very minor
(0.02 ms per request). For AEP permissions, the interception overhead is quite
minor because AEP is originally enforced in the system process, while the context
tracking overhead is more significant because it needs to build intra- and inter-
application contexts in several processes.

Table 1. Results on handling permission requests.

Permission
Type

Original
Android

FineDroid
w/o Context

FineDroid
w/ Context

Socket(KEP) 0.14ms 2.16ms Δ2.02ms 2.18ms Δ0.02ms

IMEI(AEP) 0.62ms 0.69ms Δ0.06ms 1.09ms Δ0.40ms

Policy Matching Performance. To test the overhead introduced by the policy
matching, we add policies to the system to grant the permissions requested by
the test app. Each policy is written with the same structure as Figure 4. Table 2
shows the overhead of policy matching.
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Table 2. Results on policy matching.

Permission
Type

FineDroid
w/o Policy

FineDroid
w/ Policy

Overhead

Socket(KEP) 2.18ms 3.06 ms 0.88ms

IMEI(AEP) 1.09ms 1.99ms 0.90ms

We believe the performance penalty introduced by FineDroid is acceptable
because permission request (as well as policy matching) do not frequently occur
in practice.

8 Discussion

To propagate application context, FineDroid relies on Android Runtime
instance in each application to participate. Since Android Runtime is a user-
space module in the application process, currently FineDroid cannot guarantee
its integrity. Attackers may use Java Reflection to modify Android Runtime’s
private data structures. To prevent such attacks, we instrument Reflection APIs
to prevent manipulation of the private fields which are added by FineDroid to
keep application context. Because these fields are unique to FineDroid, this kind
of instrumentation would not break other legitimate use of Reflection. Besides,
adversaries may also use native code to attack Android Runtime. Recent work
on isolating native code in Android system [34] could be incorporated to our
system to prevent native code attack.

Undesirable data flows among multiple permission requests are not consid-
ered in this paper. Actually, by providing fine-grained permission control to
raise the bar for abusing permissions, FineDroid could also be used to prevent
potential risky data flows.

9 Related Work

Permission System Extensions. Aurasium [37] provides time-of-use permis-
sion granting for legacy Android apps by automatically repackaging applica-
tions to attach user-level sandboxing code. Roesner et al. [29] introduced access
control gadgets (ACGs) which embed permission-granting semantics in nor-
mal user actions. Dr. Android and Mr. Hide [23] provides finer semantics for
coarse-grained permissions by rewriting privileged API invocations. Apex [25]
introduces partial permission granting at installation time and runtime con-
straints over permission requests. SEAndroid [33] combines kernel-level MAC
(SELinux) with several middleware MAC extensions to the Android permissions
model, which could mitigate vulnerabilities in both system and application layer.
FlaskDroid [15] extends kernel-level MAC to bring mandatory access control for
all resources in Linux Kernel and Android framework. While these works refine
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or extend current permission system in some degree, they do not enforce fine-
grained control over the permission use context, which is the focus of FineDroid.

Application Interaction Hardening. Felt et al. [20] proposed IPC inspection
to prevent permission re-delegation attacks by intersecting the permissions of all
the applications in the IPC call chain. However, this strategy is too rigid to allow
intentional permission re-delegations. Quire [18] provides developers with new
interfaces to acquire IPC call chain. Different from FineDroid, Quire relies on
AIDL instrumentation to record the IPC call chain. However, the technique has
several limitations: First, it could only track the IPC call chain during the invo-
cation of AIDL-specified methods, while some system interfaces are not specified
using AIDL such as AcvitityManagerService; Second, it is an opt-in option
for developers to use these enhanced API proxies, thus an attacker application
can easily escape.

TrustDroid [14] divides apps into two isolated domains: trusted and
untrusted. However, communication problems inside a single domain are not con-
sidered. XManDroid [12,13] generally mitigates application-level privilege esca-
lation attacks by prohibiting any application communication if the permission
union of the two apps may pose a security risk. Saint [26] secures the application
communication by providing developers with the ability to specify fine-grained
requirements about the caller and callee. However, it could not improve the
permission enforcement mechanism during the application communication.

AppSealer [38] is a tool to automatically fix component hijacking vulnera-
bilities by actively instrumenting vulnerable apps. Compared to AppSealer, our
technique of fixing permission leak vulnerabilities does not require heavy appli-
cation rewriting which is error-prone and needs redistribution of patched apps.

Similar to FineDroid, Scippa [10] also extends Binder driver and Android
Runtime to provide IPC provenance. However, it does not cover intra-application
context which is quite important for a unified fine-grained permission system.
Moreover, the IPC context propagating technique in Scippa is quite simpler
than the one designed in FineDroid which could systematically propagate IPC
contexts at the level of component-interaction, thread creation/interaction, and
events.

Application Internal Isolation. To isolate in-app Ads, a separate process
is introduced by AFrame [39], AdDroid [27] and AdSplit [31] for running Ads
libraries. By intersecting the permissions that can be used by different code
packages in the same application, Compac [35] also provides fine-grained per-
mission specification. However, without a systematic context tracking system
and a generic policy framework, Compac could not flexibly handle permission
requests that cross multiple code packages. Compared with FineDroid, these
frameworks could not flexibly regulate permission use policies based on intra-
application context.

Context-Aware Access Control. Recent works on context-aware access con-
trol model [17,26,30,32] also regulate access control rules based on context infor-
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mation. Different from the notion in FineDroid, these works mostly consider the
external application context such as location, time of the day.

10 Conclusion

This paper presents FineDroid, which brings context-sensitive permission
enforcement to Android. By associating each permission request with its appli-
cation context, FineDroid provides a fine-grained permission control. The appli-
cation context in FineDroid covers not only intra-application context, but also
inter-application context. To automatically track such application context, Fine-
Droid designs a new seamless context tracking technique. FineDroid also features
a policy framework to flexibly regulate context-sensitive permission rules. This
paper further demonstrates the effectiveness of FineDroid by creating two secu-
rity extensions upon FineDroid for administrators and application developers.
The performance evaluation shows that the overhead introduced by FineDroid
is minor.
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Abstract. With the popularity of Android devices, more and more
Android malware are manufactured every year. How to filter out mali-
cious app is a serious problem for app markets. In this paper, we propose
DroidADDMiner, an efficient and precise system to detect, classify and
characterize Android malware. DroidADDMiner is a machine learning
based system that extracts features based on data dependency between
sensitive APIs. It extracts API data dependence paths embedded in app
to construct feature vectors for machine learning. While DroidSIFT [13]
also attempts automated detection of Android applications according to
data flow analysis, DroidADDMiner can not only reduce the run time
but also characterize malware’s behaviors automatically. We implement
DroidADDMiner based on FlowDroid [14] and evaluate it using 5648
malware samples and 14280 benign apps. Experiments show that, for
malware detection, DroidADDMiner achieves a 98% detection rate, with
a 0.3% false positive rate. For malware classification, the accuracy of clas-
sifying malicious apps under their proper family labels is 96%. Although
performing data flow analysis, most of the experimental samples can be
examined in 60 seconds.

Keywords: Android malware · Machine learning · Data flow ·
Flowdroid

1 Introduction

Smartphone is performing a more and more important role in people’s daily life.
According to a recent study [1], in United States and Great Britain, Android
has reached over 50% market share. Meanwhile, in China, the market share has
exceeded 70%. There’s no doubt that Android has become the most popular
platform for smart phone today. This trend has attracted attention of attackers,
more and more malicious applications emerged in the official and alternative
Android marketplaces. As described in [2], over 150,000 malicious applications
and 253 new malware families have been discovered in 2013 alone. In order to
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maintain a healthy ecosystem for Android, robust malware detection techniques
need to be designed.

Previously, many machine learning based approaches have been proposed to
detect malware. Before utilizing machine learning algorithms, they use feature
vectors to model the app’s behaviors. Their main difference lies in how to extract
feature vectors. Rather than in-depth understanding program semantics, Drebin
[10] and DroidAPIMiner [20] extract features from application syntax like per-
missions listed in manifest file and API parameters used by application code.
Malware and benign apps may use the same APIs and permissions, because
some benign apps also need to access sensitive resources. So these approaches
are not robust enough to model malware’s behaviors. DroidMiner [11] focuses on
the control flow of Android application, API sequences extracted from control
flow graph are used to construct feature vectors. But it may miss important data
flow information that can help build better behavior models which have effects
on the detection rate.

For Android application, APIs can be invoked under two contexts: user inter-
face and background callback. Malware always exploit background callbacks to
launch malicious behaviors. Constant values like network address can also reveal
a malware’s intention when they are used as parameters of some APIs. Hence,
DroidSIFT [13] adopts data flow analysis to construct weighted contextual API
dependency graphs which contain data dependency, context and constant infor-
mation. Their feature vectors are extracted based on similarity between weighted
contextual API dependency graphs. Although DroidSIFT represents program
semantics well, it cannot automatically generate malicious behavior character-
ization of malware. Moreover, DroidSIFT is time-consuming when analyzing
large-scaled apps because it calculates all objects’ point-to information during
data flow analysis.

We present DroidADDMiner to automate the process of Android malware
detection, classification and characterization. DroidADDMiner is a machine
learning based system which extracts features on the basis of API data depen-
dency and also considers context and constant information just like DroidSIFT.
We define API data dependence path with context and constant information as
modality. A modality repository is built by collecting all modalities extracted
from malware samples. Feature vector is then generated according to whether
the app’s modalities are contained in modality repository. Finally, feature vec-
tors are feeded to machine learning techniques for detecting, classifying and
characterizing malware.

Data flow analysis is the most important part of DroidADDMiner. Flow-
droid [14][15] and Amandroid [17] are two state-of-the-art data flow analysis
tools for Android. Like DroidSIFT [13], during data flow analysis, Amandriod
calculates all objects’ point-to information. Analyzing the same app, Flowdroid
is quicker than Amandroid since it only focuses on objectes related to some
specified sources and sinks. Using machine learning techniques needs to analyze
abundant apps, so we choose to extend Flowdroid to build DroidADDMiner.
We evaluate our system using 5648 malware samples and 14280 benign apps.
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Experiments show that DroidADDMiner can achieve 98% accuracy in malware
detection with 0.3% false positive rate, and it can label 96% malware instances to
their right family. Although performing data flow analysis, for most of the exper-
imental samples, DroidADDMiner can accomplish analysis in 60 seconds which
leads us to believe that DroidADDMiner can handle large-scale applications.

To summarize, this paper makes the following contributions:

– We propose a semantic-based malware detection, classification and charac-
terization approach. The program semantics of malware are modeled by API
data dependence paths with context and constant information.

– We make an extension on Flowdroid [14]. Using the extended tool, we can
perform API data dependence path construction, API context and constant
analysis.

– We make an in-depth evaluation of DroidADDMiner. Experiments include
run-time performance and efficacy in malware detection, family classifica-
tion, and behavior characterization.

2 Motivation and System Goals

2.1 Motivation

We explain the motivation of our system design by introducing the inner work-
ing of a real-world malicious Android application. This malware sample (MD5:
ecbbce17053d6eaf9bf9cb7c71d0af8d) belongs to the family of zitmo. The code
of this malware is listed in Fig. 1. From the code snippet we can know that
once a SMS is arrived, life cycle call onReceive() is invoked by Android sys-
tem. Then abortBroadcast() is issued to abort current broadcast. In order to
steal SMS message, an intent carries SMS message information is created to
launch a background service (named “MainService”). Once the service is trig-
gered, SMS message extracted from intent is stored in an object array named
“pdus”. Next, for extracting originating address (sender) and message body
from this object array, getOriginatingAddress() and getMessageBody() are
called. Now the address and message body are stored in String value “str1” and
“str2” respectively. Meanwhile, after invoking getDeviceId(), the device id is
stored in “str3”. While malware gets all sensitive information it needs, these
information are encoded into an UrlEncodedFormEntity object. Before sending
these information through network, HttpPost object is created with a constant
string “http://softthrifty.com/security.jsp” and then setEntity() is called to
encode these information into a form that can be sent through network. Finally,
DefaultHttpClient.execute() is issued to post data to remote server.

From the above description, we find an important design premise that
when malware authors design malicious apps to achieve malicious behav-
iors, they always have to use some sensitive API calls like the APIs marked
with red font in Fig. 1. DroidMiner [11] and DroidSIFT [13] is two state-of-
the-art malware detection tools base on machine learning techniques. Droid-
Miner extracts API sequences according to control flow. For malware sample
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Fig. 1. Example Malware

depicted in Fig. 1, it will extract a control flow sequence [BroadcastReceiver,
abortBroadcast(), setEntity(), execute()] and sensitive resources “Vres”
{getOriginatingAddress(), getMessageBody(), getDeviceId()}. DroidMin-
erthey does not analyze the data flow of sensitive data, they simply consider
that there is an edge from the root “Vroot” (one component, in our example
is BroadcastReciever “SmsReceiver”) to the resources “Vres”. Actually, this is
not precise. For example, in “SmsReceiver”, the app invokes getOriginatingAd-
dress(), getMessageBody() and getDeviceId() to obtain sensitive information,
but if we change the sensitive information what we put into ArrayList “localAL”
by Line 22, the malware’s behaviors will be different. That’s why analyzing data
flow will get more precise behavior models which will affect the accuracy of
identification process.

DroidSIFT [13] is another malware detection tool adopts machine learn-
ing techniques. During data flow analysis, it calculates all objects’ point-to
information, this is time consuming. Moreover, when DroidSIFT analyzes the
demonstrated malware sample, it will construct a data dependence graph which
is composed of red font marked API nodes list in Fig. 1. Because of utiliz-
ing the data dependence graph as an integrity to compute similarity related
to base graphs in DroidSIFT’s database, it loses the ability of digging out the
relationships between APIs and malicious behaviors. So it cannot characterize a
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malware’s behaviors automatically. In order to address this deficiency, we extract
API data dependence paths embedded in known malware samples. Then mine
out the relationships between API data dependence paths and malicious behav-
iors according to the malicious behaviors malware contain. We use these rela-
tionships to characterize a unknown malware’s behaviors.

2.2 Goals and Assumption

DroidADDMiner is aimed to detect whether an app is malicious, label malware
to correct family, and more specially, give a concise description of a malware’s
malicious behaviors. For example, given the app demonstrated in section 2.1,
DroidADDMiner can know it is a malware, classify it to zitmo family, and find
out that it can get SMS message, block SMS message, and send sensitive infor-
mation to remote server. DroidADDMiner is built based on Flowdroid [14], so
its data flow analysis has the same limits as Flowdroid.

3 System Design

We demonstrate DroidADDMiner’s work flow in Fig. 2. As depicted in this figure,
DroidADDMiner contains two phases: program analysis phase and machine
learning phase.

Fig. 2. System Architecture

The most important component of DroidADDMiner is program analysis.
As described in section 2.1, we choose to use API data dependency, contex and
constant information to represent the program semantics of malware. When per-
forming data flow analysis, analyzing too much APIs will be very expensive. It is
necessary to choose a set of APIs which can achieve computational efficiency and
security analysis in the same time. So we leverage the API-permission mapping
from Pscout [21] to conduct our data flow analysis.

We also need to know whether an API is activated from background callbacks,
this is called context analysis. For context analysis, we select some background
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callbacks like BroadcastReceiver$onReceive and GpsStatus$Listener. Con-
stant information of parameters of some sensitive APIs, like exec() are sig-
nificant signature to identify malware. These parameters can decide an app’s
behavior significantly. Due to space limitations, we don’t list all these callbacks
and APIs in this paper. To extract API data dependence path and extract con-
text and constant information, we extend Flowdroid [14], a detail description
will be given in section 4.1.

After analyzing an app, DroidADDMiner will obtain some API data depen-
dence paths with context and constant information. We define API data depen-
dence path with context and constant information as modality. In this paper, we
use following formula to represent modality :

S1[constant; context] → · · · → Sk[constant; context] → · · ·

In this formula, Sk represents sensitive API. ’constant’ represents the con-
stant information of sensitive API, for APIs whose constant information we
don’t analyze, ’constant’ value will be ’none’. On the other hand, if we ana-
lyze an API’s constant information, the value will be ’ture’ or ’false’ depends
on whether the API’s parameter contains constant value. ’context’ represents
the context information, if the API is invoked under a background callback,
’context’ value will be this callback, otherwise the value will be ’none’. For
example, for the malware shown in section 2.1, one of its modalities is:

setEntity()[false; onReceive] → execute()[true; onReceive]

The modality is made up of at least one node, each node is a sensitive API
with its context and constant information. We show how to extract modalities
from app in section 4.2. After analyzing all malware samples, we collect all
modalities DroidADDMiner obtains, then build a modality repository. For the
sake of performing machine learning techniques, we need to generate feature
vector for every app. Those feature vectors can be calculated based on modality
repository. The detail of how to generate feature vectors is shown in section 4.3.
At machine learning phase, we use the classical algorithm to detect whether an
app is malicious. If it is a malware, we can label it to correct family. Finally we
use “Association Rule Mining” technique to characterize a malware’s behaviors.
This will be described in section 4.4.

4 Implementation

4.1 Extension of FlowDroid

In this section, we introduce how we extend FlowDorid [14] to extract API data
dependence path with constant and context information.

In order to extract API data dependence path, for adopting FolwDroid, we
need to solve two problems: First, in FlowDroid, all data dependencies are start-
ing from source and ending at sink, but we need to extract API data dependence
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Fig. 3. An Example of Call Graph. Each circle vertex stands for a function, each
rectangle vertex stands for a sensitive API

path, data dependency can start from or end at any sensitive API; Second, Flow-
Droid can just output data dependency between every two API(source and sink),
but the API data dependence path may contains more than two nodes. To solve
the first problem, we modify FlowDroid to make it treat the sensitive APIs we
specified as both source and sink. The data flow analysis start from a sensitive
API, during taint propagation, if a tainted factor encounters a sensitive API, we
will record it and stop propagate this factor. Because for every sensitive API,
we’ll also treat it as source and start taint propagation from it. In this way, we can
get propagation path between every two sensitive APIs which have data depen-
dency relationship. For the second problem, as we get data flow propagation
path between every two sensitive APIs. To construct long API data dependence
path, we use these propagation paths. For simplicity and time efficiency, when
using these propagation paths, we only focus on their call context(function call
sequence), so we modify FlowDroid to output these call context.

When analyzing an app, FlowDroid constructs an extended call graph. Any
control flow transformation like lifecircle or callback method is modeled in this
graph and this call graph has only one entry point. It means if one sensitive API
data depends on the other sensitive API, the call graph must contains a fuction
can reach both these two sensitive APIs. For example, in fig 3, if S2 data depends
on S1, f1 is the function which is able to reach both S1 and S2. More generally,
if an app has an API data dependence path, there must exist a function in the
call graph which can reach all sensitive APIs this API data dependence path
contains. The API data dependence path with call context is defined as:

Ft{· · · → (. . . , Ckm
, . . . , CSj

)Si → · · · }

Ft represents the function this API data dependence path happens. Ckm

represents call statement, km is a function. Statement sequence in parentheses is
the call context of propagation path, the last call statement must call sensitive
API. Si represents sensitive API, and API data dependence path contains at
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least two nodes. Right arrow represents data dependence. The formula shows Ft

can reach Si through propagation path (. . . , Ckn
, . . . , CSj

).

Short API Data Dependence Path with Call Context. To demonstrate
the API data dependency path construction process, we assume that, for call
graph in fig 3, we get following short paths

f1{(c[f2], c[f3], c[S1])S1 → (c[f4], c[f5], c[S2])S2} (1)
f4{(c[f5], c[S2])S2 → (c[f7], c[S3])S3} (2)

c[F] denotes a call statement which invokes function or API.

Long API Data Dependence Path Construction. Before constructing long
paths, we need to define what kind of paths can be assembled. Every path has
at least two nodes, we call the first node start node and the last node end node.
If two path can be assembled to construct a long path, this means the first
path’s end node is “equal” to the second path’s start node. In this case, two
nodes are “equal” does not mean they are identical. Every node in the API data
dependence path has call context. During our path construction process, end
node is “equal” to start node means their call context are identical or one’s call
context is the subsequence of the other one’s. For example, (c[f5], c[S2])S2 is
subsequence of (c[f4], c[f5], c[S2])S2, so path (1) and path (2) can be assembled
to a long path:

f1{(c[f2], c[f3], c[S1])S1 → (c[f4], c[f5], c[S2])S2 → (c[f4], c[f7], c[S3])S3} (3)

Context and Constant Analysis. After data flow analysis, we get all API
data dependence paths embedded in an app. In this section, we demonstrate
how to add context and constant information to API nodes in these API data
dependence paths.

For constant analysis, APIs (such as Runtime.exec()) whose parameter have
special meaning are selected. To perform constant analysis, starting from state-
ments invoke these APIs, we backward search the control flow graph. Call context
will be stored during this process. Hence, we can obtain sensitive APIs’ constant
information with call context. Just like path construction, using the call context,
we can add constant information to nodes in API data dependence path. For
example, if we get following constant information:

f2{(c[f3], c[S1])S1[true;none]}
f2{(c[f3], c[S1])S1 is the subpath of f1{(c[f2], c[f3], c[S1])S1, so we can add this
information to path (3), we’ll get a new path:

f1{(c[f2], c[f3], c[S1])S1[true;none] → (c[f4], c[f5], c[S2])S2

→ (c[f4], c[f7], c[S3])S3} (4)
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For context analysis, we need to know whether a function is triggered in
background. Among the code of an app, background callback is overridden to
do some operations. In Flowdroid [14], all callback methods are modeled in a
dummy method. This means if we perform a backward search on control flow
graph, we can reach a single entry point. We know that every API data depen-
dence path is happened in a function. For example, the path (4) is contained in
function f1. Starting from nodes in control flow graph which invoke f1, we per-
form backward search. If we encounter a background callback method, record it.
After the backward search, we can decide the context of f1 based on the callback
methods we record. But we can’t directly apply the f1’s context to all nodes in
path (4), because the nodes in this path also have call context. If a node’s call
context contains a background callback method, we specify this background call-
back method as the node’s context. Otherwise, the node’s context is decided by
f1’s context. Using this approach, we can obtain context of all nodes in API data
dependence path. For example, if our backward analysis find that f1 is invoked
under onRecieve, and f1, f2, f3, f4, f5, f7 are not background callback, we can
get a new path with constant and context information:

f1{(c[f2], c[f3], c[S1])S1[true; onReceive]→(c[f4], c[f5], c[S2])S2[none; onReceive]
→ (c[f4], c[f7], c[S3])S3[none; onReceive]} (5)

Finally, we remove the call context information, and can get a API depen-
dence path:

S1[true; onReceive] → S2[none; onReceive] → S3[none; onReceive]} (6)

4.2 Modality Generation

In section 3, we define modality. And in section 4.1, we demonstrate how to
extract API data dependence path with constant and context information. For
an API dependence path, we extract its subpaths, because these subpaths are
both modalities. The length of these subpaths are not less than one. For path
(6) obtained from section 4.1, we can get following subpaths:

S1[true; onReceive] (7)
S2[none; onReceive] (8)
S3[none; onReceive] (9)

S1[true; onReceive] → S2[none; onReceive] (10)
S2[none; onReceive] → S3[none; onReceive] (11)

So, for Fig. 3, path (6)(7)(8)(9)(10)(11) are modalities. Through the app-
roach, we collect modalities embeded in all malware samples to build a modality
repository.
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4.3 Feature Vector Construction

Before applying machine learning techniques, we need translating extracted
information to mathematical form. For every app, we generate a feature vector.
All app’s feature vectors will be added to a data set used by machine learning
algorithms. In section 4.2, we get a modality repository. For an app, we can
extract the modalities embeded in it. The app’s feature vector is constructed as
a boolean vector (B1, B2, ..., Bn): Bi = 1, if app??s modality set contains modal-
ity Mi in the modality repository. Otherwise, Bi = 0. Through this vector, all
API data dependencies can be represented.

4.4 Malware Detection, Classification and Characterization

In this section, we introduce how to use app’s feature vectors to achieve malware
detection, classification and characterization:

Malware Detection. One application scene is to determine whether or not an
Android app is malicious. This is not straightforward. Some benign apps also use
sensitive APIs to accomplish some actions like sending SMS message and getting
location information. So their feature vectors may contain some modalities mined
from malware. However, usually, malicious behaviors are not launched by just
a single modality. Multiple modalities are needed to achieve a malicious behav-
ior. This observation makes us treat an app as malware only when its modalities
exceed a threshold. In this paper, we use machine learning technique to automat-
ically find the relationships between modalities and malware. Machine-learning
classifier mines the relationships based on feature vectors extracted from known
malware samples and benign apps, then unknown apps can be detected by this
classifier.

Malware Classification. Another application scene is to label malware to a
malware family which it actually belongs to. Generally, malware belong to the
same family always share similar malicious behaviors. This leads to their modal-
ities are similar. For us, we can use the similarity between malware’s feature
vectors to classify malware. Using the malware samples from known malware
family, we can build a machine-learning classifier to classify unknown malware
samples.

Malware Characterization. The last application scene is to automatically
characterize the malicious behaviors a malware contains. In fact, to achieve
a specified malicious behavior, malware always needs to invoke some sensitive
APIs. Such as sending a SMS message needs sendTextMessage(), getting loca-
tion information needs getLastKnownLocation(). It means there exist relation-
ships between modalities and malicious behaviors. Our work is to dig out which
modalities result a specific malicious behavior. This goal can be achieved by using
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a well-known machine learning technique called “Association Rule Mining”. Mal-
ware from the same malware family share the similar malicious behavior, we can
list malicious behaviors of a malware family from many sources [3][9]. Malware
from a malware family may contains several malicious behaviors, like blocking
SMS message, sending out phone id. We can use a boolean vector to represent
a malware’s behaviors according to whether it contains a specified malicious
behavior. Then adding this vector to the end of malware’s feature vector to con-
struct a new vector. Feeding this vector to “Association Rule Mining” algorithm
can mine out the relationships between modalities and malicious behaviors.

5 Evaluation

5.1 Dataset and Experiment Setup

We collect 6400 malware samples from the Android Malware Genome Project
(AMGP) [9][22] and VirusShare project [5]. Then we submit these malware sam-
ples to VirusTotal [4]. For each malware, we get a VirusTotal report which lists
the scan results of 57 different antivirus (AV) products. If a malware is labeled
as malicious by more than 4 AVs, we add this malware to our malware dataset.
Finally, we get a malware dataset contains 5648 malware samples. For malware
classification, we need to know which malware family a malware belongs to. After
we examine the scan results of AV products, we find Ad-Aware’s [6] classifica-
tion results are more approximate to the classification results of AMGP. So we
chose the classification results of Ad-Aware to classify the malware. In order to
construct a benign dataset, we crawls apps from two alternative Android mar-
kets(xiaomi [7] and anzhi [8]). We also upload crawled apps to VirusTotal. If an
app passed all AVs, we add it to our benign dataset. In the end, we get 14280
benign apps. Finally, our dataset contains 5648 malware samples and 14280
benign apps.

We conduct experiments on a computer equipped with Intel(R) Core(TM)
i7-4770k CPU(3.5GHz) and 16GB of physical memory. The operation system is
Windows 7 and we utilize weka [25] as machine learning tool.

5.2 Summary of Modality Generation

The summary of Modality Generation is shown in Figure 4 and Figure 5. Among
them, Figure 4 demonstrates the number of the modalities generated from both
benign and malicious apps. As shown in this figure, for 94.3% of benign apps
and 90.4% of malware samples, less than 20 modalities are extracted from an
individual app. This is because the majority of apps don’t invoke too many
different sensitive APIs.

After analyzing 5648 malware samples, we obtain 4317 modalities. The length
of modality is defined as the number of sensitive APIs it contains. Figure 5
illustrates the distribution of the length of modality. As shown in this figure, the
longest modality is 7 and 87% of modalities carry less than 6 APIs.
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Fig. 4. Distribution of The Amount of
Modality Extracted from Each App

Fig. 5. Distribution of The Length
Modality

5.3 Malware Detection Result

As introduced in section 4.4, we use machine learning techniques to detect mal-
ware. In our experiment, we adopt NaiveBayes, SVM and Random Forest to
conduct malware detection, and we use 10-fold cross validation to evaluate these
machine learning approaches. The malicious apps and benign apps are both ran-
domly split into 10 groups. In each time of 10 rounds, we select combination of
one group of benign apps and malicious apps as testing dataset. The reminding
groups are treated as training dataset. When using NaiveBayes, we can correctly
identify 91.5% of experimental apps with a 0.8% false positive rate. This process
can be completed in 30 seconds. For SVM algorithm, there are four kinds of ker-
nel function in weka [25]: linear, polynomial, radial basis function and sigmid.
After testing all these kernel functions, we find linear kernel can achieve 97.3%
accuracy rate with a 1.6% false positive, the training and testing procedure can
be finished in 3 minutes. We also evaluate the efficiency of using Random For-
est, the experiment completes in 20 minutes and 98.5% of apps are correctly
identified with a 0.3% false positive rate. For DroidMiner, it achieves 82.2%,
86.7% and 95.3% accuracy rate when using NaiveBayes, SVM and Random For-
est respectively. This verify feature vectors extracted based on data flow is more
efficient than control flow on modeling the program semantics of malware. The
comparison is shown in Table 1.

5.4 Malware Classification Result

In this section, we evaluate the ability of DroidADDMiner [20] to label mal-
ware to its correct family. We select 1168 malware samples from 16 malware
families. The number of samples selected from each family is listed in Table 2.
For malware of each family, we divide them into training set and testing set.
Training set contains 66% of malware samples and testing set contains 34% of
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Table 1. Effectiveness of Malware Detection(DR denotes Detection Rate, FP denotes
False Positive Rate)

Classifer NaiveBayes SVM Random Forest

Tool DR FR DR FR DR FR

DroidADDMiner 91.5% 0.8% 97.3% 1.6% 98.5% 0.4%

DroidMiner 82.2% 4.4% 86.7% 1.1% 95.3% 0.3%

malware samples. Then we use Random Forest as classifier for training and pre-
diction. The experiments show the classifier can correctly label 96% of malware
samples. We further examine 4% of the samples that are mislabeled. 7 samples
from DroidDeluxe and GingerMaster are labeled as one another, DroidDeluxe
and GingerMaster both root the phone and share some similar malicious behav-
iors, thus these mislabels are understandable. DroidKungFu4 is the variant of
DroidKungFu2, so 4 samples belong to them are mislabeled as one another.

Table 2. Malware Samples Used for Classification

Ind Family Num Ind Family Num

1 GingerMaster 42 9 DroidKungFu2 26

2 DroidDeluxe 22 10 DroidKungFu3 305

3 ADRD 27 11 DroidKungFu4 71

4 BaseBridge 114 12 Geinimi 67

5 AnserverBot 183 13 GoldDream 42

6 DroidDreamLight 46 14 KMin 71

7 DroidDream 21 15 Pjapps 44

8 DroidKungFu1 28 16 SmsSpy 59

5.5 Malware Characterization Result

As described in section 4.4, in order to characterize a malware’s behaviors, we
need to construct a boolean vector for each malware family to model its malicious
behaviors. We use the malicious behavior characterization of malware family col-
lected by DroidMiner [11], and also focus on following behaviors: stealing phone
information (GetPho), Sending SMS (SdSMS), blocking SMS (BkSMS), com-
municating with a C&C (C&C), escalating root privilege (Root) and accessing
geographical information (GetGeo). Then malicious behavior boolean vectors
are generated for each malware family. Adding corresponding malicious behav-
ior boolean vector to the end of a malware’s feature vector, we can get new
vector for Association Rule Mining.

We utilize Apriori algorithm [12] to mine the relationships between malicious
behaviors and modalities. After mining, DroidADDMiner obtained 492 behavior



36 Y. Li et al.

Table 3. Behaviors of 5 Test Malware Samples

MD5 Family Behavior
3ae5c5ee6c118a3cdbf2c55132f55948 SmsSpy BkSMS,C&C,SdSMS
156fdce65eb6e4287aed687a1c9c2589 GGTracker BkSMS,C&C,GetPho,SdSMS
60ce9b29a6b9c7ee22604ed5e08e8d8a Endofday BkSMS,GetPho,SdSMS
e98791dffcc0a8579ae875149e3c8e5e zitmo BkSMS,SdSMS

de04914d84239fbd40aa470ad86e388c DroidKungFuUpdate Root,GetPho,C&C

Table 4. Representative Rules for Malicious Behavior Characterization

Index Behavior Rule

1 GetGeo
LocationManager.getBestProvider()[false;none]

→ Location.getLastKnownLocation()[false;none]
2 GetGeo LocationManager.requestLocationUpdates()[true;none]
3 Root Runtime.getRuntime()[false;none] → Runtime.exec()[true;none]
4 Root Process.killProcess()[false;none]

5 C&C
ConnectivityManager.getActiveNetworkInfo()[false;none]

→ WifiManager.setWifiEnabled()[false;none]

6 C&C
URLConnection.openConnection()[false;none]
→ HttpURLConnection.connect()[false;none]

7 SdSMS
gsm.SmsManager.getDefault()[false;none]

→ gsm.SmsManager.sendTextMessage()[true;none]

8 SdSMS
SmsManager.getDefault()[false;none]

→ SmsManager.sendTextMessage()[true;none]

9 GetPho
TelephonyManager.getLine1Number()[false;none]

→ ConnectivityManager.getActiveNetworkInfo()[false;none]

10 GetPho
TelephonyManager.getDeviceId()[false;none]

→ HttpEntityEnclosingRequestBase.setEntity()[false;none]
11 BkSMS ContentResolver.delete()[false;BroadcastReceiver$onReceive]
12 BkSMS abortBroadcast()[false;BroadcastReceiver$onReceive]

association rules. Some representative rules are listed in Table 3. Then we use
these mined rules to test malware samples which are not used in mining phase.
The results show we can correctly characterize the malware’s behaviors. We list
the results in Table 4.

5.6 Runtime Performance

DroidADDMiner needs three steps to identify an app: modality generation, fea-
ture vector construction and machine learning. Compared with modality genera-
tion, the time of feature vector construction and machine learning are negligible.
So we just focus on the time of modality generation. Fig. 6 illustrates the runtime
performance of modality generation for benign apps and malware samples. As
shown in this figure, because most of malware samples are very small, majority
(91%) of malware samples are completed in 10 seconds. For 89% of benign apps
and 95% malware samples, the process of modality generation can be completed
in 1 minute. The average runtime of modality generation is 10 seconds. Droid-
SIFT [13] also performs data flow analysis on Android app, as shown in Table 5,
although their hardware is better than ours, its average runtime is 175.8 seconds.
It’s no doubt that when analyzing large-scaled apps, DroidADDMiner can vastly
reduce the running time.



DroidADDMiner 37

Fig. 6. Distribution of Modality Generation Time

Table 5. Runtime Performance of Malware Detection Tools

Tool Average Performance CPU physical memory
DroidADDMiner 10s Core(TM) i7-4770k 16G

DroidSIFT 175s Xeon(R) E5-2650 128GB

6 Discussion

There is competition between defender and attacker, Android malware always
evolutes itself to evade detection. DroidChameleon [23] and Adam [24] have
demonstrated common malware transformation techniques like repackaging,
changing field names could evade many existing commercial anti-malware tools.
But for DroidADDMiner, it does not rely on external symptoms like package
name, field name. So it’s resilient to these common transformation attacks.
Other transformation techniques like call indirections, code reordering and junk
code insertion also can not evade DroidADDMiner. Because DroidADDMiner
focuses on data flow between sensitive APIs, these transformation techniques do
not change the data flow of sensitive APIs. To demonstrate it, we use Droid-
Chameleon and Adam to obfuscate 100 malware samples selected from Droid-
KungFu3 family. As expected, DroidADDMiner can label all these obfuscated
samples to DroidKungFu3 family. But DroidADDminer also has some limita-
tions. It does not take native code into consideration right now, so a malware
can put malicious behaviors in native code to bypass detection of DroidAD-
DMiner. And DroidADDMiner just performs a simple constant analysis, if mal-
ware author splits an string like “content://sms” into two parts, we can not get
the original semantics of some APIs. These limitations are left for future work.
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Table 6. Comparison of Different Tools

Tool Modeling of App Behavior Explanation of App Behavior
Dredin permission, API, manifest file support

DroidAPIMiner API, parameters of API -
DroidMiner control flow of API support

DroidSIFT
data flow of API

context and constant information
-

DroidADDMiner
data flow of API

context and constant information
support

7 Related Work

Static analysis techniques are widely adopted to extract features for using
machine learning algorithm to detect and classify Android malware. We summa-
rize the difference of exist tools in Table 6. We don’t list the detection rate and
time efficiency in this table, because these tools use different machine learn-
ing algorithms and hardwares. Drebin [10] proposes to detect Android mal-
ware by extracting feature vectors from application manifest file and app code.
DroidAPIMiner [20] extracts features at API level, and they take some APIs’
parameters into consideration. Despite the effectiveness, the extracted feature
vectors of these approaches are related to application syntax instead of program
semantics. The feature vectors they extract are not robust enough to reflect
app’s behaviors. DroidMiner [11] focuses on control flow, they select some sen-
sitive APIs and specific resources as the nodes to construct control flow graph,
node sequences are extracted from this graph to generate feature vectors. Miss-
ing of data flow information could affect its detection rate. DroidSIFT [13] per-
forms data flow analysis on Android apps. For every app, it generats a weighted
contextual API data dependence graph. Then similarities between graphs are
calculated to construct feature vectors. Compared with DroidADDMiner, it not
only lacks of the ability to automatically characterize the behaviors of malware
but also needs more time to analyze an app.

CHEX [16], Flowdroid [14], AmanDroid [17] are three tools designed to deal
with information leakage problem. CHEX [16] uses a ??spit?? based approach
to perform data flow analysis, each program split includes code reachable from
a single entry point. For every program split, a system dependence graph [18]
will be generated. Sources and sinks connections are extracted from this graph.
Amandroid [17] computes an inter-component data flow graph (IDFG) which
contains all objects?? points-to information in a both flow and context-sensitive
way. This IDFG can be used to solve security problems including information
leakage problem. Flowdroid [14] is quite different from CHEX [16] and Aman-
droid [17], it models data flow analysis problem within the IFDS [19] framework
for inter-procedural distributive subset problems. Flowdroid is faster than the
other two tools, because when performing data flow analysis, it only focuses on
the variables related to sources and sinks. DroidADDMiner is built based on
Flowdroid, so it can benefit from Flowdroid.
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8 Conclusion

In this paper, we propose a semantic-based approach which detects, classifies
and characterizes Android malware via API data dependency. For each app, we
extract API data dependence paths which we call modality embedded in the
app. Feature vectors are constructed for every app according to these modal-
ities. We present our prototype system, DroidADDMiner, extends FlowDroid
[13]. We evaluate our system using 5648 malware samples and 14280 benign sam-
ples. Experiments show that DroidMiner can achieve 98% accuracy in malware
detection, and it can label 96% malware instances to its right family. Although
performing data flow analysis, for most of the experimental samples, DroidAD-
DMiner can complete analysis in 60 seconds.
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Abstract. Nowadays, many daily duties being of a private as well as of
a business nature are handled with the help of online services. Due to
migrating formerly local desktop applications into clouds (e.g., Microsoft
Office Online, etc.), services become available by logging in into a user
account through a web browser. But possibilities for authenticating a user
in a web browser are limited and employing a username with a password
is still de facto standard, disregarding open security or usability issues.
Notwithstanding new developments on that subject, there is no suffi-
cient alternative available. In this paper, we specify the requirements for
a secure, easy-to-use, and third-party-independent authentication archi-
tecture. Moreover, we present KeyPocket, a user-centric approach aligned
to these requirements with the help of the user’s smartphone. Subse-
quently, we present its state of implementation and discuss its individual
capabilities and features.

Keywords: Multi-factor authentication · Mobile-based login architec-
tures · Security · Usability

1 Introduction

Whether booking a journey, transferring money to a bank account, or reading
the most recent news: Mobile devices with online capabilities are ubiquitous and
their usage is common today [1]. But service providers insist on the user to create
a user account, commonly secured by a username and a password, still. This
leads to the dilemma of having a trade-off between security and usability. Short
passwords, which do not contain special signs, numerics, or capital and lowercase
letters are good to remember, but have a lack of security. In contrast, a complex
password is hard to remember and users tend to write it down, which makes
it accessible for possible attackers [2]. Even in the pre-smartphone era, users
already had an average number of thirty user accounts and about 6.5 passwords
to secure them [3]. This results in a multiple or combined usage of the same
passwords for different services. But if one account is compromised, all accounts
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secured with its credentials are also compromised [4]. Furthermore, complex
passwords which have been robust against Brute-force attacks in the past, get
stolen by Phishing or Keylogging mechanisms today [5]. Parwani et al. stated,
that a huge number of private as well as of business accounts are accessed illegally
every day, which results in great personal and financial damage [6]. Therefore,
Bonneau et al. explored more than 35 different authentication approaches and
claim that their security and usability is not suitable to substitute authentication
systems based on usernames and passwords, yet [7]. Due to rapid development of
smartphones and their capabilities to act as a mobile sensor, hardware tokens, or
transmission systems, their inclusion in multi-factor authentication architectures
is accelerated. Target is the improvement of usability and security in relation to
conventional systems as well as the provision of a trustworthy and easy accessible
platform for managing different credentials and identities for a user. Still, we are
not aware of a login architecture which satisfies these needs concerning usability,
security, data privacy, and service-independence.

In the following, we first present some fundamentals related to mobile authen-
tication as well as a choice of current authentication concepts in order to explain
their technical and architectural concepts in Section 2. The following section
defines requirements for a login architecture as a function of usability, security,
and technical as well as conceptual circumstances. Afterwards, we present Key-
Pocket, a provider-independent, easy-accessible, and secured login architecture
along with some of its unique features in Section 4. Furthermore, this section also
deals with concrete insights into the system’s implementation. Section 5 explores
the mentioned concept in reference to the demanded requirements and discusses
its features in respect of possible threats for mobile authentication. Afterwards,
we summarize our findings and provide a glimpse towards open issues and future
tasks.

2 Related Work

In this section, we present some security fundamentals in context of mobile
authentication. Moreover, we provide a brief overview across recent mobile-
device-based authentication architectures.

2.1 Secure Data Encryption and Transmission

Procedures for encryption are essential for the development of a authentication
architecture based on a mobile device due to several reasons. On the one hand,
it guarantees a secure data storage, on the other hand data integrity and con-
fidence during a transmission process is ensured. Munro et al. proclaim, that it
was difficult to encrypt data on Android smartphones, so far. Especially PIN-
based encryption methods were susceptible for Brute-force attacks and did not
provide adequate protection for sensible data [8]. But since the introduction of
Android 5.0 Lollipop, hardware-based disk encryption is integrated into the oper-
ation system (OS). Therefore, a 128 bit Advanced Encryption Standard (AES)
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algorithm in combination with Cipher Block Chaining (CBC) is used. The mas-
ter key also uses 128 bit AES encryption. For secure usage a key length of 256
bit is recommended [9]. Until now, we are not aware of any successful attacks
onto recent Android versions. The procedure can currently be rated as secure
for encrypting data on Android devices.

Apple iOS offers its Keychain feature for secure credential management, which
was already part of Apples desktop operation system OS X. It realizes secure
handling and inspection of certificates as well as of user credentials. There also
occurred different security issues with the Keychain since its release, especially in
combination with the processor architecture of some older iPhone models and jail-
breaked devices. Referring to this issue, Heider et al. show that data can be stored
in a save way on recent iOS-devices by using the Keychain, still [10].

The TLS encryption protocol, formerly known as Secure Sockets Layer (SSL),
was originally developed for the combined usage with HTTPS in web browsers
and is a de facto standard for secured end-to-end communication in networks.
Therefore, the server provides a valid public key certificate (issued by a trustwor-
thy Certification Authority (CA)) to the client during the handshake procedure,
who is now able to validate it (e.g., period of validity, listed domain names, etc.)
[11,12]. Due to security vulnerabilities, which emerged during the last years,
there were doubts about the SSL technology’s reliability. Despite that, Georgie
et al. show that mainly inaccurate implementations (e.g., deactivated certifi-
cate validation) or poorly designed SSL libraries and not the protocol itself are
responsible for these flaws [13]. An example for a security leak, which got a lot
of attention during the last year was the Heartbleed bug. It was detected in
the OpenSSL framework and facilitated the readout of 24 - 55% of the memory
of popular HTTPS site’s servers. However, the bug was fixed in version 1.0.1g
[14,15]. In addition, Georgie et al. indicate that SSL can be used in a secure
manner without any issues, as long as configuration parameters are set explic-
itly and development guidelines are followed. Irrespective of that, HTTPS and
TLS/SSL do not protect the user from every kind of connection-aimed attacks.
Callegati et al. indicate that even HTTPS connections are not immune against
Man-in-the-Middle attacks (MitM) [16].

2.2 Smartphone-Based Login Architectures

Public-key-cryptography-based login architectures use encryption in order to
protect the user’s credentials from unauthorized access. In context of the cho-
sen architectural concept, the used technologies, assigned roles and identified
tasks are significantly dependent of the proposed system-design. All approaches
introduced in the following integrate a smartphone into their authentication
infrastructure. Its role differs in each individual concept (e.g., hardware token,
data transmission, identity management, etc.).

Czeskis et al. proclaim an authentication system for opportunistically pro-
vided cryptographic identity assertion, called PhoneAuth [17]. The approach is
called opportunistic because it is only used if the user fulfills the required system
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setup, consisting of a compatible web browser and a smartphone. In order to use
PhoneAuth, the user first visits the web page he desires to log in to and enters
his credentials. Subsequently, the browser redirects this data to the server, which
creates a login ticket with a challenge for authentication. This ticket is sent back
to the browser by using a TLS encrypted connection, which forwards it to the
user’s smartphone. The device functions as the second factor possession and is
registered explicitly as belonging to the user. By signing the browsers public
key contained by the login ticket with the user’s private key on the smartphone,
the user’s identity can be proofed without doubt to the server. As soon as the
user’s identity is verified, the server sets a cookie which is channel-bound to the
browser’s key pair and the user becomes logged in. The authors state, that all
MitM attacks are perceived by the usage of a TLS channel ID, which is unique
for each communication partner. However, in its current state the system is not
able to provide a reliable and usable management for complex passwords. They
still need to be entered manually into the websites login form.

Based on the research of the university of Tübingen, Borchert et al. present
a system for an indirect login under the usage of NFC [18]. For processing it, a
smartphone and a NFC smartcard containing the user’s asymmetric key mate-
rial is needed. In order to conduct the indirect login the server generates a
challenge, which is encoded together with the server’s address in a two dimen-
sional code (e.g., QR-Code) and shown at the login page. After scanning the
code, the login address is presented to the user for confirmation. This allows the
system to suspend MitM attacks. Subsequently, the user brings his smartcard
near the smartphone and the challenge as well as the server’s name are forwarded
from the mobile device to the card via NFC. The smartcard now computes the
response in terms of a private-key-signed challenge, which is sent back to the
sever in combination with the original challenge and the username. Because
of an in prior carried-out registration process, the user’s public key is already
known to the server, which is now able to verify the user’s proclaimed identity.
The authors do not make any specifications about the usage of the smartcard’s
PIN function. Furthermore, the smartphone’s only functionality is being a relay
between the smartcard and the server. The predecessor of the indirect NFC login
called ekaay was also developed by Borchert et al. and is a one-factor possession
architecture without the inclusion of a smartcard [19]. In this scenario, a new
key pair is created on registration and the pre-shared public key is sent to the
user. To proceed with the login, the user scans the shown QR-Code and signs the
contained challenge, which enables the server to verify the users authorization
permission. Because of the pre-shared key practice, this method is susceptible
for MitM attacks. In addition, the key is no one-time key, which means that as
soon as the system is compromised, a secure data exchange is not possible any
more.

Van Rijswijk et al. present tiqr, a concept similar to ekaay which facilitates
the binding of each service account to a unique key on its creation [20]. The tiqr
architecture itself is similar to ekaay and needs to be implemented on the service
provider’s website. Each user account is bound to a unique key. A difference
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to ekaay is, that the key pair with the pre-shared public key is created locally
on the user’s device and subsequently transfered to the server. For the sake of
login confirmation and protection from Phishing attacks, the user needs to check
the login address and complete the procedure by entering his PIN. By binding
accounts to individual keys as well as due to the constraint to implement tiqr
on a service provider’s server, the flexibility of the concept is weakened.

Snap2Pass also binds user accounts directly to a key and provides a symmet-
ric as well as an asymmetric encryption mode [21]. Using the symmetric mode,
a secret key is managed on the user’s device for each server. A new account
is created by scanning a QR-Code from the service provider’s login page. The
user provides only a username, the password is provided by the server in terms
of a pre-shared secret. For logging in, the user again scans a QR-Code, which
contains a challenge bound to the current browser session. The device computes
the corresponding HMAC-SHA1-hash and sends the signed challenge together
with the original challenge back to the server. The server now verifies both, the
user and the browser session and completes the login procedure. In public key
mode, a public key is generated on application startup on the user’s device and
is sent to the server, which now is able to verify the signed challenges. By using a
pre-shared secret and storing it on the mobile device, the system is downgraded
from the usage of two security factors (possession and knowledge) to one factor
(possession).

The QR-Code based authentication concept propagated by Galois Inc. is
similar to ekaay and tiqr, though it currently only exists as a loose concept
without implementation and was published on the company’s website [22]. For
registration, a QR-Code containing a random secret, which is also saved in a
session-bound cookie, must be scanned. In the following, either a username is
entered by the user inside the corresponding smartphone application or a Unique-
User-ID (UUID) is generated automatically. After sending the shared secret, the
random secret, the session cookie and the UUID to the service provider, the
registration process is completed. For logging in, the user scans a QR-Code
containing a random secret and a session cookie. The smartphone’s response
contains the corresponding UUID and the appropriate random secret for the
service’s website. After reviewing the credentials the user becomes logged in
automatically.

LastPass differs in multiple aspects from the systems mentioned above. It is
a cloud-based SSO login architecture, which perches on the usage of a browser-
plugin in order to communicate with the website of a service provider [23]. The
user’s inclusion into the LastPass system is carried out by using the correspond-
ing authenticator application. To use LastPass, the user clicks a button in the
browser to start the plugin. After entering his credentials, a one-time password is
sent to the user’s smartphone as a second authentication factor. This also needs
to be entered into the browser-plugin, in order to complete the login process on
the client’s side. An advantage of this concept is its device independence due to
storing and synchronizing user data in a cloud. By introducing the second fac-
tor possession, the system’s security is increased. But in this case, the increased
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security also leads to a lack of usability, resulting in the login procedure becom-
ing more complicated. Not only that the user needs to enter credentials for each
login, additionally a one-time password is required, which results in multiple
media breaks. Moreover, because of entering credentials in the browser-plugin
the concept is vulnerable to Keylogging and Phishing attacks.

Besides smartphone-assisted login architectures without complex account or
user management, there are also some commercially available architectures with
extensive possibilities of managing personal data. Most of these do not use
local, but cloud-based technologies to store user data, which leads to advan-
tages regarding a provider’s actionability, e.g., in case of device theft or loss.
Otherwise, this also indicates privacy issues. Due to their proprietary architec-
ture, the concepts presented in the following could not be evaluated completely
in respect of their specific conceptual or technical details.

Click2Pass presents a login via smartphone application in combination with
an own web API, which needs to be implemented on the provider’s server [24].
Some PHP code fragments serve as an implementation guideline for developers,
the comparatively protracted and complex registration process could discourage
potential users.

MyDigipass provides a cloud-based two-factor authentication solution com-
patible with mobile applications as well as with websites. After the registration
process, all personal data can be managed in a cloud. This offers a plus on
usability,e.g., regarding data migration on device theft. Passwords are stored on
a mobile device, which functions as a token. Currently, devices which are avail-
able as a token are Android and iOS smartphones and due to its eID function
the Belgian identification card, among others. In order to log in, the user enters
the MyDigipass launchpad where all registered services are listed. After choosing
one service by a click on its icon, the user needs to enter a PIN code and after
a successful verification he is redirected to the service’s website or its mobile
application.

LaunchKey and Zapper offer possibilities for multi-factor authentication
based on a platform specific registration and implementation process [25,26].
LaunchKey in particular features a decentralized architecture where the entire
authentication layer resides on the user’s mobile device. Therefore, a crypto-
graphic connection between the user and mobile device is initiated via SMS,
QR-Code, email or manual entry. Due to a variable usage of fingerprints, geofenc-
ing, bluetooth device check, PINs, etc., the implementation of granular security
levels is feasible. After the pairing and the security level setup, the reception of
authentication and authorization requests is possible.

Clef supplies a smartphone-based login working with OAuth 2.0, which is
also used by OpenID and Twitter [27,28]. A security enhancing feature of Clef is
the usage of geolocations as well as the device’s hardware information and usage
data for fraud detection.

OneID also facilitates a cloud-based approach, where all user data is saved
encrypted in order to enhance the users privacy [29]. For its transmission as well
as its decryption, a pre-shared key is used, which is stored on the user’s device.
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Additionally an individual PIN can be set in order to secure this key. Even if a
device gets lost, it is not possible to get access to the user’s data itself due to its
distributed storage in a cloud.

An authentication concept for Mac OS X based on BLE for an iPhone in
combination with a MacBook is Kocktounlock [30]. As soon as the mobile phone
is near the MacBook, it is prepared to become unlocked – only an additional
knock onto the phone screen is needed as a signal of intent. Kocktounlock is not
working anymore since Mac OS X Yosemite due to the lost feature of a MacBook
to act as an iBeacon. Furthermore, the approach is not applicable to websites
but only to unlock the OS’ lock screen.

A generic, smartphone-based authentication solution which uses the smart-
phone as a key for vehicles and security doors or barriers is BlueID [31]. The
communication between system components and the user’s device is secured
by an asymmetric public key infrastructure and the usage of certificates, which
are issued by the system’s own trust center. Data with login information is
transferred optionally via WiFi, Bluetooth Smart, mobile network or NFC. For
implementing the system on the service’s side, a software development kit is
provided.

3 Requirements of a Mobile-Based Login Architecture

In the context of developing an alternative login concept with the help of a
mobile device, there is a rash of different requirements to be considered. Thus,
we identified important basic points on basis of the concepts introduced before
and by respecting the paradigms of usability.

1. Security. There are several security aspects to be kept in mind: a) the user’s
account and personal data must be protected under all circumstances and
stay secret as well as with integrity, even in case of device theft or loss, b) it
must be ensured that only the user alone has access to personal data, and
c) all data transfer is secured and encrypted in order to eliminate all kind of
unwanted manipulation.

2. Usability. The system’s usage is as easy and its provided security as high
as possible.

3. Modularity, Compatibility and Scalability. Existing as well as new
service accounts can be integrated into the login architecture easily and
without technical limitations.

4. Privacy. The user itself is the only person having access to user sensitive
data.

5. Third-Party-Independence. The architecture is independent of imple-
mentations, limitations, and restrictions, stated by existing service architec-
tures or foreign providers.

6. Hardware Independence. The hardware requirements are as little as pos-
sible; there is no need for additional hardware except the user’s smartphone.
All used devices are standard versions and commercially available.
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4 KeyPocket - An Architecture for Secure and Usable
Web Service Access

In the following we present KeyPocket, a user-centric, secured, and easy-
accessible authentication architecture featuring multi-factor authentication as
well as a decentralized identity management. The only precondition for usage is
a smartphone and a computer with a compatible web browser. After highlight-
ing its core concepts and main components, we also provide detailed information
about its concrete implementation.

4.1 Architectural Concept

The KeyPocket architecture consists of three main components: 1) the user
entity, which is constituted of the user and a mobile device, 2) the relay-server,
and 3) a browser-plugin.

Fig. 1. Providing an overview across KeyPockets login process

Figure 1 illustrates the KeyPocket login concept in context of a flow chart.
Core features of the architecture are its independence from third-parties, the
decentralized user management as well as some unique security characteristics.
E.g., the deployment of one-time key pairs and the commitment of a system for
divided public key exchange. Instead of using a pre-shared key for encryption,
an individual key pair is created on-demand for each login process. Multi-factor
authentication becomes available due to knowledge (PIN), possession (the user’s
mobile device as a token) and being (e.g., analyzing the users fingerprint or
voice). Another security factor is the proof of geographical proximity of the user
to the device, which is about to become logged in due to QR-Code scanning. All
network-based communication is secured by the usage of HTTPS and TLS.
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4.2 Main Components

There are three main entities, which are essential for our architectural concept.

User-side Setup. On the one hand, the user’s smartphone is used as a storage
for credentials, on the other hand its camera is needed for optical data transmis-
sion and its network connection for transferring data to the relay-server. Before
the smartphone is ready to use, the KeyPocket application must be installed.
Afterwards, no further registration is needed. This enables the user to manage
data completely autonomous and on-device; privacy issues due to third-parties
can be suspended. To ensure the secure storage of data, it is encrypted before
saving and only available by entering a password or providing the correct bio-
metric information.

Browser-side Setup. The browser-plugin is the architecture’s control unit.
Here, required one-time key pairs (OTKP) are generated, encoded and provided
to the user on-demand. Moreover, the plugin is frequently polling at the relay-
server for requested user credentials. As soon as they are available at the plugin,
they become decrypted and filled into the form on the service provider’s website.
After confirming these values, the process is completed. The correct form fields
are identified by unique Cascading Style Sheet (CSS) selectors.

Relay-Server. The relay-server’s main tasks are the forwarding of request and
response calls (e.g., containing the users credentials) between the user’s smart-
phone and the browser-plugin as well as the provision of a part of the one-time
public key (OTPK). For realizing this connection, the relay-server supplies a
Representational State Transfer (REST) interface.

4.3 Third-Party Independence and Privacy Enhancement

On the one hand, KeyPocket is a third-party independent system in terms of
that there is no need to implement any code on the service provider’s server.
The service provider itself does not need to be aware of KeyPocket in order to
make it work and due to its generic design it basically works with all web-based
login sites without further conditions. On the other hand, the user downloads
and installs the browser-plugin as well as the mobile application and is ready
to use the architecture without any further registration processes. Moreover, no
personal data, not even the user’s email address for a registration is known to
the KeyPocket infrastructure – all data is encrypted, managed and stored on-
device. The relay-server only temporarily stores encrypted credentials until they
are retrieved for processing a login.

4.4 Processing a Login

The following process is visualized in Figure 1. A login is initiated by the user
opening a service’s login page in the browser. After entering a login page, the
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user clicks the KeyPocket plugin symbol and the browser-plugin generates a new
OTKP, containing a public key and a private key (1). A part of the public key
(Part1PubKey) is forwarded to the relay-server (2). There it is stored temporar-
ily and its hash is generated and sent back to the browser-plugin (3). There, a
QR-Code is computed and shown for scanning by the user. The code contains
three parameters: 1) the site ID, typically the domain name, 2) the hash of
Part1PubKey and 3) the second part of the public key Part2PubKey (4). The
smartphone now requests Part1PubKey from the relay-server (5). Due to the
split public key system, it is impossible for attackers to obtain the complete pub-
lic key and thereby is not able to channel malicious information into the system.
Furthermore, a better readable and less granular QR-Code for easier scanning is
created. As soon as the relay-server responds with Part1PubKey (6), the mobile
device is able to merge the public key from its two fragments. By affirming the
procedure due to provision of a password or a fingerprint, the user’s credentials
are decrypted from the device’s storage. Subsequently, they become encrypted
again with the one-time public key and transmitted to the relay-server (7). The
browser-plugin frequently polls for the requested crendentials (8) and once they
are available, they are transmitted to the plugin (9). The plugin encrypts the
parameters with its private key, fills them into the designated form fields on
the providers login page and confirms the procedure. If the user’s data is valid, he
is forwarded to the provider’s individual welcome page. The presented approach
is completely independent from third-party implementations and can generally
be used for any kind of service.

4.5 On-Device Identity Management

In order to avoid privacy issues as well as attacks onto a central database contain-
ing sensible data, KeyPocket resigns a cloud-based management of user data. All
user data is encrypted, respectively, is stored decentralized on-device. Depend-
ing on technical features of the used device, personal data is only available by
entering a password or by providing biometric features. As soon as credentials
become requested, the application searches for corresponding data on the user’s
device, encrypts them with the OTPK and returns them. If no suitable data is
found, the user can enter new credentials or link already existing account infor-
mation. Due to the fact that the user’s device is the only place where private
data is stored, the migration to other devices is feasible due to credential export
and import via encrypted database files, e.g., KeyPass’ .kdb. There is no data
distributed on a web server that needs to be updated.

An issue which is still unsolved within the current concept is a homogeneous
sync process for changing an existing account’s password on the smartphone as
well as in a service provider’s database. Currently, this procedure needs to be
done manually by the user. The use of background HTTP requests for posting a
new password entered on the user’s smartphone to the provider’s corresponding
website could be a solution. Still, this approach lacks of a generic potential
due to the need of knowing individual server addresses and parameter names.
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Therefore, this issue still needs to be addressed by further research in order to
solve it sufficiently.

4.6 Implementation

The current version of KeyPocket is available for Google Android and Apple iOS
– general as well as further information can be found on the project’s website1.
A second version with some major changes is about to be released within the
forth quarterly period of 2015. Some conceptual characteristics, e.g., the export
of user credentials via database file, are not featured by the current KeyPocket
version, but will be part of the next release. The following implementation details
are coined to the currently published version.

Fig. 2. Login process from the browser plugins point of view

Browser Plugin. Currently, browser-plugins for Google Chrome and Mozilla
Firefox are provided. Both are implemented with JavaScript and individually
optimized for the specific browsers. After their installation they are ready for
usage without any further registration or setup process. The plugins’ architec-
ture is based on a message-oriented-architecture and Figure 4.6 shows the login
process from a plugin’s point of view. Therefore, an asymmetric key pair with a
length of 2048 bit is created (1) with the Rivest Shamir Adleman (RSA) algo-
rithm. In the following, the public key is split into two parts and one part is
transferred to the relay server (2), which is responding with the corresponding
hash of the public key part (3). The other part of the public key is shown to the
user in the QR-Code. Subsequently, the plugin polls the server until it answers
with the user’s credentials or the login is terminated by the user (4). After the
plugin has decrypted the credentials (5), it fills them into the selected login
fields of a service’s website (6,7). The identification of input fields is realized

1 https://www.keypocket.de/

https://www.keypocket.de/
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with the help of CSS selectors provided by an offline database. If a website’s
input fields are not registered in the database, the user is asked to mark the
input fields manually with a mouse click. Unknown and new input fields become
added automatically to the database after a successful login.

Relay Server. The relay-server is based on Java 1.8 and was implemented
with the Play Framework2. It provides two REST interfaces, all data is JSON
encoded and the connection is secured by TLS/HTTPS. The /pubkeys interface
is used to transfer one part of the public key to the server, which hashes the
key and stores it temporarily in a database. The same interface also used for
the data’s retrieval. The /credentials interface allows the temporarily storing
and retrieval of the credentials, together with a corresponding hash. As soon as
the credentials were transferred to the browser-plugin for the login, they become
deleted automatically.

Smartphone Application. Within the current architectural concept, the
user’s smartphone is used to store all encrypted credentials, to transfer them
to the relay server and for scanning the browser-plugin’s QR-Code. Currently,
Android and iOS devices are supported. Due to the fact, that not all Android
devices are capable of using biometric data for securing the password vault,
a master password is used as a fallback for devices without fingerprint sen-
sor. In order to verify the password without storing it on device, a random
salt with a size of 128 bit and SHA1PRNG is created first. Subsequently, it
is hashed together with the user’s password with 2000 iterations, 256 bit and
PBKDF2WithHmacSHA1. The resulting hash is stored on device for password
verification – a second hash key is created and stored with another salt and the
users password, in order to use it for credential encryption. The credentials itself
are encrypted with the AES algorithm with 256 bit in combination with HMAC.
The creation of one hash key with i = 1000 iterations takes about v = 0.15 s,
with i = 2000 iterations it takes about v = 0.2 s on a Samsung Galaxy S3
smartphone. The same amount of time is needed to decrypt the password later
on for each decryption. This means, that even if an attacker had a CPU power
of f = 10000 times faster than the user and the user’s password an entropy of
n = 30 bits, the attacker would still need about v∗2n−1

f = 10.737 hours to crack
the password for i = 2000. In this context, the more iterations i are used, the
more difficult it is for an attacker to learn a secret. On the other hand, espe-
cially due to limited resources on mobile devices it is necessary to find suitable
parameters oriented on security as well as on usability.

For the iPhone implementation, we use the standard iOS Keychain in com-
bination with a password or, if a fingerprint sensor is available, the user’s finger-
print as a security feature.

2 https://www.playframework.com/

https://www.playframework.com/
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5 Discussion

In this section we want to discuss the different features of the proposed Key-
Pocket architecture on a qualitative basis. Therefore, we first match its security
characteristics to threats relevant in this context. The qualitative requirements,
which we identified in Section 3 are the system’s usability, modularity, com-
patibility, scalability, security, privacy protection, and its independence from
external hardware as well as from third-party providers. Finally, some general
issues which occurred during the implementation phase are mentioned.

5.1 Threat Robustness

There are lots of different possibilities for attackers to compromise a user within
the environment of mobile communication and authentication. In context of a
Man-in-the-Middle attack, the attacker engages between two communicat-
ing parties and monitors their communication secretly. The so gained informa-
tion can be modified, replaced or used for malicious purposes. Furthermore,
the aggressor could disguise as the legitimate communication partner (e.g., a
server) and response in this role to the other communication partner’s requests
in order thieve sensitive information [32]. Our application is not only robust to
MitM attacks because of the usage of secured and fully encrypted communication
channels. Furthermore, its split public key usage and the one-time key concept
enhance the robustness significantly. Only in step (6) of Figure 1 an attacker is
enabled to thieve a part of the key, which is useless without its counterpart. In
general, Brute-force attacks can be aggrevated significantly by using sufficient
passwords (e.g., sufficient length, special characters, capital and lowercase char-
acters) [8]. Our architecture facilitates a completely user controlled data storing
concept on the user’s mobile device. Hence, the existing potential of Brute-force
attacks is inevitable (e.g., on device theft). Nonetheless, as mentioned in Section
2, all data stored with the help of the iOS Keychain can be rated as relatively
secure. For Android, we use a custom tailored encryption approach, which forces
an attacker to invest several days or months in order to crack the user’s password
(accepting that the attacker has the CPU power of an up-to-date, high-end con-
sumer machine and the user uses a password of sufficient complexity, see Section
4.6). After all, if no biometric sensor is available, the encryption security highly
depends on the complexity of the user’s password. The recording and readout of
user input by the usage of malicious applications and without the user’s knowl-
edge is called Keylogging [33]. In general, our architecture offers no potential
for Keylogging, because only the KeyPocket application is used for entering data.
Still, if an attacker would be able to log the user’s input while using KeyPocket
(e.g., the OS security systems are compromised due to jail-breaking, rooting,
etc.), the only potential for Keylogging attacks is present while the user enters
his password or new account data. All already existing data is still safe due to
its complete encryption. Furthermore, for doing harm with knowledge about the
password, an attacker would still need the user’s device. This also extends for
Shoulder-surfing attacks, which means curious gazes across the user’s shoulder
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without his knowledge and in order to peek passwords or other sensitive data.
Within the scope of a classic Phishing attack, the user becomes redirected to
a fake website, which is based on a brands website the user knows and trusts in.
After entering his credentials into a faked website’s login form and confirming
it, the user is redirected to a site of the original provider and is probably not
aware of the attack or the resulting leak of private data. There are only a few
possibilities to take actions against these attacks on a technical basis. For the
most part it is up to the user to verify the authenticity of a website [34]. Related
to that, Phishing attacks are also a weakness of our proposed system, for it relies
on the user to check service addresses manually. But, although we cannot force
a user to carefully check an unknown server address, he still needs to take notice
of it and to confirm it manually. In context of Sweep attacks, an attacker is
able to steal multiple credentials at the same time due to the exploitation of a
password manager’s autofill functions [35]. This danger is suspended due to the
hold out on a clear signal of intention by the user before filling in credentials
into input fields.

5.2 Qualitative Requirements

In the following, we examine our architecture’s features in respect of the require-
ments for an mobile-based authentication architecture. Concerning its Usabil-
ity, KeyPocket offers an easy-to-use approach without ignoring the necessity for
security standards – the only precondition for usage is the installation of the
KeyPocket software. For logging in, there are only two steps: 1) scanning the
QR-Code, and 2) confirming the login by providing a second security factor. Due
to its need for only one password to be remembered by the user or the usage of
biometric data for opening the credential’s vault, the simplicity and usability is
enhanced significantly for the user. In contrast to some of the approaches intro-
duced in Section 2, KeyPocket facilitates no device pairing, which enables multi-
device usage. Missing multi-device support is mostly related to the necessity for a
registration process, an existing provider dependence, or pre-shared keys bound
to a specific service or device. In order to guarantee Modularity, Compati-
bility, and Scalability, new and existing user accounts can be added to the
application without restrictions and there are no limitations for their number
or the assignment of accounts to domains and vice versa. A disadvantage of the
KeyPocket architecture may be its need for a relay-server, which could be seen
as a Single-point-of-failure or, in case of a large amount of login requests, could
lead to scalability problems. Concerning Hardware Independence, there are
no preconditions except the need for a smartphone with internet and a camera
in order to use KeyPocket. Compared to other approaches, no additional tokens
(e.g., Smartcards or ID cards) are used. As already mentioned, no cloud-systems
or provider dependent storage is used in order to save and manage the user’s
credentials. There is no registration process and no information about the user
within the system except the encrypted data on the smartphone and a tempo-
rary copy of credential pairs during the login process on the relay-server. But
even this temporary copy is deleted after a few seconds. All of these routines
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and practices are strengthening the users Privacy significantly. Furthermore,
Third-Party Independence is strengthened due to the fact that no service
providers or third-parties are involved in the handling of confidential data and
no registration process is needed. Furthermore, there is no code about to be
deployed on the service provider’s systems. The user solely decides, where and
when to use the system without our or the service provider’s knowledge.

5.3 General Notes

In the following, some specific details concerning KeyPocket are to be men-
tioned. Our generic plugin-based approach enables the adaptability for nearly
each service provider featuring a website login without the providers inclusion.
However, due to the necessity of using selectors for identifying form fields, the
system’s reliability can be weakened because of external influences (e.g., updates
of provider sites, changes in technology, etc.). This may also lead to increased
costs due to maintenance work. Nonetheless, this problem is addressed due
to the feature of allowing users to mark unknown input fields manually and
to use these information to update our database constantly. Furthermore, due
to technical reasons the generation of on-demand key pairs took nearly 6 seconds
with Google Chrome in a worst case scenario. This is way to much for a system
with high usability requirements. In order to solve this problem, we changed
our initial protocol for key creation and create the first key pair already on
browser startup. Implying that the user is not logging in into different services
with a frequency higher than each 6 seconds, we found this optimization to be
sufficient. This pre-usage creation enables the system to simulate an on-demand
usage experience.

6 Conclusion and Future Work

Within the scope of this paper, we provided a secured, and third-party inde-
pendent platform for processing logins on websites under inclusion of the user’s
smartphone. The ability to manage digital identities without enforcing an addi-
tional registration process or effectuating privacy issues is provided to the user.
Additionally, we introduced some unique features, namely the usage of a split
one-time public key in combination with further security factors like possession,
being and geographical proximity.

Another issue which is still unsolved is the development of a holistic process
for updating and synchronizing account information automatically. Currently, it
is the user’s duty to do this manually.

Despite our efforts, there are still open issues as well as possibilities for exten-
sions. For example, scanning of QR-Codes has performance issues due to techni-
cal reasons and furthermore, it lacks of user acceptance. It could be substituted
with technologies featuring similar security aspects (e.g., geographical proximity,
protection against eavesdropping, etc.) in this context, e.g., NFC or BLE. This
could also increase the system’s usability due to the disposal of the additional
scanning interaction and is subject of our research for future KeyPocket versions.
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Abstract. We propose Dagger, a lightweight system to dynamically vet
sensitive behaviors in Android apps. Dagger avoids costly instrumenta-
tion of virtual machines or modifications to the Android kernel. Instead,
Dagger reconstructs the program semantics by tracking provenance rela-
tionships and observing apps’ runtime interactions with the phone plat-
form. More specifically, Dagger uses three types of low-level execution
information at runtime: system calls, Android Binder transactions, and
app process details. System call collection is performed via Strace [7], a
low-latency utility for Linux and other Unix-like systems. Binder transac-
tions are recorded by accessing Binder module logs via sysfs [8]. App pro-
cess details are extracted from the Android /proc file system [6]. A data
provenance graph is then built to record the interactions between the
app and the phone system based on these three types of information.
Dagger identifies behaviors by matching the provenance graph with the
behavior graph patterns that are previously extracted from the internal
working logic of the Android framework. We evaluate Dagger on both a
set of over 1200 known malicious Android apps, and a second set of 1000
apps randomly selected from a corpus of over 18,000 Google Play apps.
Our evaluation shows that Dagger can effectively vet sensitive behaviors
in apps, especially for those using complex obfuscation techniques. We
measured the overhead based on a representative benchmark app, and
found that both the memory and CPU overhead are less than 10%. The
runtime overhead is less than 63%, which is significantly lower than that
of existing approaches.

1 Introduction

With the proliferation of Android smartphones and applications, there is a grow-
ing interest in scalable tools and techniques for blackbox testing of applications.
Of specific interest are tools that enable screening for suspicious behavior pat-
terns commonly exhibited by malware. While a rich body of prior work exists,
contemporary static and dynamic analysis techniques fall short in many respects.

Static analysis techniques [48,55,56] analyze Android apps by disassembling
them into Dalvik (or Java) source code, and further evaluating the permissions
list, analyzing programming interfaces (i.e. Android APIs) and program logic
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 58–77, 2015.
DOI: 10.1007/978-3-319-28865-9 4



Using Provenance Patterns to Vet Sensitive Behaviors in Android Apps 59

used in the source. However, such approaches are unable to cope with complex
code obfuscation techniques (e.g., source encryption, noise insertion, and use of
Java reflection) or analyze code logic that uses the Android Native Development
Kit (NDK)1.

In contrast, dynamic analysis approaches monitor apps’ behaviors by running
them in real or emulated Android environments. Certain systems (e.g., [51]) rely
on application source instrumentation to record API invocation details (e.g.,
API names and parameter values). However, such approaches are blind to mali-
cious logic implemented using NDK. A few dynamic approaches [41,50] employ
virtual machine introspection (VMI) techniques to gather the lower-level sys-
tem information and thereby reconstruct high-level application semantics. Such
approaches typically incur high performance overhead, especially when taint
tracking is enabled. Thus, direct application of these approaches is impractical
for analysis of a large corpus of apps.

We present Dagger as a lightweight system to dynamically vet sensitive
behaviors in Android apps. Dagger avoids costly overheads and complexi-
ties associated with virtual machine instrumentation and modifications to the
Android kernel. Instead, Dagger reconstructs the apps’ semantics by tracking
its runtime interactions with the phone platform and building provenance rela-
tionships. More specifically, at an app’s runtime, Dagger uses the open source
SPADE [26] provenance middleware to collect three types of low-level execution
information, including Linux system calls, Android Binder transactions, and app
process details. System call collection is done via Strace [7], a low-latency utility
for Linux and other Unix-like systems. Binder activity is recorded by access-
ing transaction logs via sysfs [8]. App process details are extracted from the
Android /proc file system [6]. A data provenance graph is then built to record
the interactions between the app and the phone system based on these three
types of information. Dagger identifies behaviors by matching the provenance
graph with a library of sensitive provenance patterns that have been previously
extracted by carefully studying the inner workings of the Android framework.

We have built a prototype of Dagger, and evaluated both its effectiveness
and efficiency. We first used Dagger to vet three representative Android malware
families. These case studies demonstrate the effectiveness of Dagger in vetting
sensitive behaviors that are implemented in more evasive ways (e.g., code obfus-
cation or encryption). Then, we evaluated Dagger on a large corpus of apps,
which consists of over 1200 known malicious apps, and 1000 official apps ran-
domly selected from a set of over 18,000 samples downloaded from Google Play.
Our evaluation demonstrates that Dagger can effectively vet sensitive behaviors
in a large scale of apps. To evaluate system efficiency, we used a popular bench-
mark app called AnTuTu (v 3.0.3) [1] that measures Android system overhead.
We found both the memory and CPU overhead to be less than 10% and the
runtime overhead to be less than 63%, which is significantly lower than that of

1 The volume of apps involving native code has dramatically increased in recent
years [33,53].
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existing approaches that utilize VMI techniques (e.g., [50]). To summarize, the
salient contributions of this paper include the following:

1. Design of a lightweight approach for runtime tracking of sensitive behav-
ior that does not rely on the high overhead techniques of virtual machine
introspection or Dalvik monitoring.

2. Development of the Dagger prototype that automates the abstraction of
Android apps’ runtime low-level execution information into high-level behav-
ior semantics using the data-provenance approach.

3. Development of a library of sensitive provenance patterns for vetting Android
apps.

4. Comprehensive system evaluation on a corpus of over 2200 benign and mali-
cious applications that demonstrates how Dagger can be used to efficiently
vet sensitive behaviors with minimal memory and runtime overhead.

2 Background And System Goals

The Android operating system is built on the top of the Linux kernel and
organized in a layered architecture consisting of four layers: (i) the Linux ker-
nel, (ii) Android’s native system libraries and Dalvik virtual machine run-
time, (iii) Android’s application frameworks, and (iv) a collection of installed
applications.

Linux Kernel: The bottom layer of the Android system is a customized Linux
kernel. It provides services such as memory and process management, access
control, and a driver framework. As the abstraction between the hardware and
software, this layer provides generic services to the user space layer above while
hiding the details of the hardware. Android also enhances the standard Linux
kernel in several respects, including inter-application communication and power
management. Android implements a custom inter-process communication (IPC)
mechanism called Binder. Binder is used to mediate interactions between apps,
as well as between apps and the operating system.

Android Libraries and Runtime: This layer contains two major parts:
Android libraries and the Dalvik virtual machine runtime. The libraries consist
of C and C++ code that compiles to the native binary format. The functionality
in these libraries is exposed to applications from third party developers through
the Android framework.

Android Framework: Many of the application-level functionalities for inter-
acting with system resources are provided by the Android framework. It pro-
vides the interfaces (Android Framework APIs) to access the system apps; that
is, components that provide indirect access to the underlying system resources
(such as reading contacts, recording the current geographic location, or send-
ing SMS messages) by invoking system calls, low-level interactions between app
processes and GNU/Linux. For instance, the framework API of TelephonyMan-
ager.getDeviceId() provides the functionality of reading device ID; SmsMan-
ager.sendTextMessage() supports sending text messages. These framework APIs
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Table 1. Malicious Android app behaviors targeted by prior work

Work Type Financial Charge Privacy Leak Remote Control Rooting

System Technique Phone Call Send SMS Block SMS Steal Contact
Track

Location
Steal Phone
Number

Net Execute Shell

[54] Static
√ √ √ √ √ √

[51] Dynamic
√ √ √ √ √

[50] Dynamic
√ √ √

Table 2. Fined-grained sensitive behaviors associated with malicious behaviors

Index Malicious Behaviors Sensitive Behaviors Index Malicious Behaviors Sensitive Behaviors

1 Phone Call Phone Call 5 Steal Contact Read Contact and Net
2 Send SMS Send SMS 6 Track Location Read Location and Net
3 Block SMS Receive SMS, not Write SMSDB 7 Execute Shell Execute Shell
4 Steal SMS Read SMSDB and Net 8 Net Net

essentially achieve the functionalities by invoking low-level system calls, e.g.,
open(), which opens file operators, and execve(), which executes shell commands.
Thus, the usage of the low-level system calls and the access of Android resources
in the runtime can indicate rich high-level behavior semantics.

Applications: Android distributions include a collection of system apps, includ-
ing: one that provides the functionality of a phone, another that allows short
message service (SMS) and multimedia message service (MMS) messages to be
sent and received, an email client, a calendar, and a contact manager. The core
set of applications also export services to third party applications through APIs
in the Android application framework.

2.1 System Goals

Our objective is to design an effective and efficient system for vetting sensitive
behaviors in Android apps that does not rely on VMI techniques or modifications
to the operating system. In Table 1, we list a set of sensitive behavioral patterns
in Android apps (Phone Call, Send SMS, Block SMS, Steal SMS, Steal Contact,
Track Location, Steal Phone Number, Network Connection, and Execute Shell)
that have been targeted by prior studies as indicators of malicious behavior.

Instead of focusing on such coarse-grained malicious behaviors, we designed
Dagger to vet fine-grained sensitive behaviors that may be launched by both
malicious and benign apps. As seen in Table 2, the aforementioned malicious
functionalities can essentially be achieved by multiple fine-grained sensitive
behaviors. In Table 2, we list 9 fine-grained sensitive behavioral patterns asso-
ciated with the 8 malicious behaviors listed in Table 1. These are: Phone Call,
Send SMS, Receive SMS, not Write SMSDB, Read SMSDB, Net, Read Contact,
Read Location, and Execute Shell. (Read SMSDB and Write SMSDB refer to
reads from and writes to the Android provider content://sms/inbox/.)

3 System Design

A rich body of prior work have attempted to vet the behavior of desktop
applications by analyzing system call invocations. However, such approaches
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cannot be directly extended to vet the behavior on Android apps due to the
unique aspects of the Android system. (1) Android apps access kernel resources
through the Android application framework. Consequently, there is a seman-
tic gap between low-level system call invocations and high-level Android-specific
behavior. (2) Android apps interact with system services and the Android frame-
work through the Binder IPC mechanism, which is unique to Android. Thus,
vetting Android app behavior requires analysis of the Binder transactions that
occur between apps and the system. (3) Android is an event-driven system; its
multiple behavior patterns interweave together. Therefore, traditional temporal
monitoring approaches are not effective during analysis of Android malware.

Dagger’s design is motivated by the observations that an Android app’s
behaviors are achieved through (i) low-level interactions (system calls and Binder
IPC) between app process and the Android kernel and (ii) accesses to under-
lying system resources (e.g., contacts, geo location, SMS messaging). Dagger
uses data provenance analysis to first translate an app’s runtime behaviors into
a provenance graph that captures three types of low-level information: system
call invocations, Binder IPC transaction logs, and process details. Essentially,
the graph captures all interactions of the app with the Android application
framework and the OS kernel. Dagger further identifies sensitive behaviors by
matching the provenance graph with sensitive provenance patterns that have
been extracted and developed through careful analysis of the inner workings of
the Android framework.

To understand the internal logic of the Android framework, we ran Android
apps with selected input that is known a priori to trigger sensitive behavior. We
utilized two broad approaches for this investigation. In the first approach, we
manually selected representative malware samples that belong to particular fam-
ilies with known sensitive behavior. We then used Androguard, a static analysis
tool, to extract the relevant logic that would trigger sensitive behavior in each
piece of malware. In a complementary approach, we triggered flows in synthetic
apps that were developed to contain representative sensitive behavior.

3.1 Design Overview

Dagger is built on the open source SPADE provenance middleware [26]. Dagger
is composed of five major components, as illustrated in Figure 1: AppExecutor,
SysCall Collector, ProvEst Daemon, Graph Reporter, and Behavior Identifier.
Sample apps are first loaded into the App Executor, which automatically exe-
cutes the app in a sandbox Android runtime environment. Once the app is
executed, SysCall Collector starts to collect the system call invocations, and
ProvEst Daemon analyzes the binder transactions and collects more detailed
information of the process in order to build the provenance relationships of the
identities (e.g., processes and files) in the system call invocations. The Graph
Reporter outputs the data provenance graph according to the provenance rela-
tionships established by the ProvEst Daemon. Finally, the Behavior Identifier
detects sensitive behaviors from the provenance graph according to the working
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Fig. 1. Dagger takes a corpus of apps, runs each one, collects provenance records, and
performs pattern matching to identify potentially sensitive behaviors.

mechanism of the Android system. Below, we discuss each component in greater
detail.

1. App Executor is a Python script for controlling app execution. It first
extracts the package and activity names (including the main activity) from
the Android package (APK file), installs the package, and then automatically
launches selected activities by using Android debugger adb commands.

App Executor uses MonkeyRunner [9] to drive the app with randomly gen-
erated events (such as pressing buttons or touching the screen). It first extracts
the main activity of the app, and then sends an intent to initiate the activity.
App Executor continues till it has generated at least 500 events or the app has
run for at least three minutes.

2. SysCall Collector records low-level system call invocations (e.g., fork, read,
write, setuid32) using the strace utility. Each system call invocation is internally
recorded in the following format:

[pid][timestamp][syscall(paramenters)] = [return]
for example, “183 16:54:15.805684 open(”/dev/binder”, O RDWR) = 9”.

The output of SysCall Collector is persisted in non-volatile storage. To avoid app-
specific storage limits, the log is stored in the mobile device’s Secure Digital (SD)
card. The SysCall Collector functionality was developed by extending SPADE’s
Strace Reporter so it can run on Android (in addition to Linux).

3. ProvEst Daemon generates data provenance relationships by collecting
system calls, Binder transactions, and process details. A data provenance record
describes how a piece of information was derived, a historical approach which has
been widely used in a variety of fields such as performance optimization, scientific
computation, security verification, and policy validation. The data provenance
graphs in Dagger conform to the Open Provenance Model [34] which has the
following three types of elements, as illustrated in Figure 2. ProvEst leverages
significant functionality from SPADE (that is summarized below), and augments
the Strace Reporter with Android-specific details (from Binder transactions, for
example).

Process Vertices. These are created to record dynamic entities; typically, these
entities are operating system processes created by app execution. Each vertex
contains a range of annotations, including the name of the process, the pro-
cess identifier (pid), and the owner (uid) and group (gid). It also records the
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Fig. 2. Apps are represented with rectangular vertices, annotated with the properties of
the executing process. Data artifacts, such as files and Binder transactions, are denoted
with elliptical vertices. Edges have types define the operations being performed – for
example, an artifact is related to a process with a WasDerivedFrom edge when it has
been written to. In general, the types conform to the Open Provenance Model.

parent process, the command line with which it was invoked, and the values of
environment variables.

Artifact Vertices. These are used to represent static elements that are con-
sumed or produced by processes. There are four subtypes of such vertices: (i) File
Vertex, which represents a file read or written by a process at a particular point
in time; (ii) Binder Vertex, which denotes a Binder transaction that occurred
between a pair of processes; (iii) Socket Vertex, which indicates a communica-
tion from or to a process through a socket; and (iv) Command Vertex, which
records the details of high-level commands (e.g., AT commands, described in
Section 3.2) issued by a process.

Edges. These are directed and used to represent the dependency between a pair
of vertices. For example, an edge to a file vertex indicates that the file was read,
and an edge from a file vertex indicates that the file had been modified. There
are four types of edges: (i) WasTriggeredBy, from a process to another process;
(ii) WasGeneratedBy, from an artifact to a process; (iii) Used, from a process
to an artifact; and (iv) WasDerivedFrom, from an artifact to another artifact.

Given the design of the provenance graph, once a new entry is collected by
the SysCall Collector, the ProvEst Daemon parses it to extract the pid of its
process. Based on the pid, it further extracts its process details (e.g., process
name, GID, UID, command line, etc.) from the “/proc” file system [6]. All these
details are used to depict the process as a vertex in the graph. Every file, socket,
and pipe that is accessed by the process is depicted as a single artifact vertex.
Once the system call ioctl(), which leads to a Binder transaction, is invoked
by one process, the Daemon inspects the Binder transaction log from sysfs [8],
and extracts the communicated process in the transaction. Then, a directional
edge is built from the request process to the response process. Edges are also
generated to record accesses of sensitive system resources (e.g., read and write
operations of content providers) from the app’s process vertex to the resource
artifact vertex.
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4. Graph Reporter generates a provenance graph using Graphviz [2] and based
on the low-level provenance relationships established by the ProvEst Daemon.
Specific patterns can be further extracted from the graph by using our graph-
based query service, which is implemented by Neo4j [4], an open-source graph-
based database tool. This component uses SPADE’s Graphviz Reporter to replay
provenance records, sending them through SPADE’s Kernel, and to its Neo4
Storage.

5. Behavior Identifier detects sensitive behaviors by using the provenance
graphs output by the Graph Reporter. Intuitively, we abstract each sensitive
behavior into a provenance graph pattern, according to the internal working
logic in the Android platform to perform that behavior. We then identify an
app’s behaviors by mapping its provenance graph with these provenance graph
patterns. Next, we elaborate on a few exemplar sensitive provenance patterns.

3.2 Exemplar Sensitive Provenance Patterns

We describe motivating examples, illustrated with figures that use a previously
described [26] provenance data model.

Pattern 1: Send SMS, Receive SMS and Phone Call. Figure 3 illustrates
the working logic of an app on the Android platform when sending an SMS,
receiving an SMS, and making a phone call. When an app attempts to perform
one of these three behaviors, it will first communicate with a process from the
Telephony Manager Application Framework. The Telephony Manager will call
the Radio Interface Layer (RIL) daemon in the Android’s using sockets for com-
munication. RIL is radio-agnostic and provides an abstraction layer between the
Android Telephony Manager and the hardware. Once it receives communica-
tions from Android’s Telephony Manager, the RIL daemon dynamically loads
the Vendor RIL Library to dispatch the communications to the Vendor RIL.
The radio-specific Vendor RIL processes communicate with radio hardware by
using AT commands. The AT commands are used to control mobile modems
in order to perform the specified functions. For example, the AT commands for
sending an SMS, receiving an SMS and making phone calls are “AT+CMGS”,
“AT+CNMI”, and “ATD+CLCC”, respectively.

By exploiting an understanding of this functionality, the provenance patterns
of these behaviors can be abstracted as Figure 4. From this figure, we can see
that for each sensitive behavior, there is a provenance path from the app process
to the final AT command with different command parameters.

Pattern 2: Read Geolocation. Figure 5 illustrates the system logic in the
Android system that runs when an app gets the current location. Once an app
attempts to read the geographic location, it will interact with the Location
Manager Service, which will further request the location from the GpsLocation-
Provider. From this logic we can abstract the app’s provenance pattern as Figure
6, which has a path from the process vertex to the GpsLocationProvider.
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Fig. 3. Working logic of sending an SMS, receiving an SMS, and making a phone call.

Fig. 4. Provenance pattern for sending an SMS, receiving an SMS, and making a phone
call.

Pattern 3: Read SMSDB and Write SMSDB. The Android system work-
flow dictates that once an app reads or writes the SMS database (i.e., the
content provider of SMS inbox), it will first interact with the Telephony-
Manager, and then read and write in the “/data/data/com.android.providers.
telephony/database/” directory, to the “mmssms.db” file, in particular. The
provenance pattern that results is illustrated in Figure 7.

Pattern 4: Read Contact, Net, and Rooting. On Android, the local Con-
tacts resource is uniquely managed by the Acore process2. An app must interact
with this process to read the contact list. If an app reads the contact, there is
a path from the process of the app to the Acore process. Network usage can be
identified by analyzing whether the process (or its descendants) makes system
calls related to network sockets. Rooting behavior can be identified by analyzing
whether the process (or a descendant) invokes the exeve(“/system/bin/su”) sys-
tem call to attain root privilege. Since our data provenance graph will also record

2 The process is identified as “com.android.acore”.
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Fig. 5. Working logic of reading geo-
location.

Fig. 6. Provenance pattern for reading geoloca-
tion.

Fig. 7. Provenance pattern for reading from and writing to the SMS database.

the UID of the process, if the app successfully roots the phone, this behavior
can be further identified by checking the change in UID from a non-zero value
to zero.

After generating these provenance patterns, we can vet app behavior by
matching these patterns in apps’ provenance graphs as they are generated at
runtime. Note that these provenance patterns are uniquely defined according to
the working mechanism of the Android system, from the top layer to the bottom
layer, and are more likely to remain unchanged than the source code is. Thus, our
approach is more general than other approaches which rely on hooking specific
APIs whose functions may be changed later. Also, since the patterns cover all the
layers, our approach can identify those behaviors that are implemented by using
both the Android SDK and NDK, as long as they follow the same workflow.

4 System Evaluation

Our prototype implementation of Dagger is capable of running on both Android
phones and emulators. We evaluated the prototype implementation by running
the app in a customized Android emulator and using it to extract provenance
graphs with pre-settings of SMS inbox, contact list and geolocation informa-
tion. Before each run, we restored the image to a clean snapshot to mitigate
interference from other apps.

We evaluated the effectiveness of Dagger from the following three perspec-
tives: (i) vetting real-world malware case studies, (ii) vetting Android Genome
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Project malware, and (iii) vetting official market (Google Play) apps. Then, we
evaluated the efficiency of Dagger by using a popular benchmark app to measure
the performance overhead of Dagger including CPU overhead, memory overhead,
I/O overhead and processing time.

4.1 Effectiveness Case Study on Representative Malware Families

To evaluate the effectiveness and demonstrate its unique advantages, we applied
Dagger to vet sensitive behaviors on three representative real-world Android
malware families: Gamex, Gone60 and Zsone.

Gamex: Code Encryption. Gamex, one of the most evasive Android mal-
ware, uses complex code obfuscation techniques. In an attempt to slow down
discovery and detection, Gamex [5] uses encryption (byte XOR with 0x12) to
hide a package in a fake image file named “assets/logos.png”. When the mal-
ware is activated, it uses a decryption function to decrypt the file, and launch
sensitive functions. Thus, due to the encryption, the static analysis will only
find the paths that lead to the shell code execution function, instead of knowing
specific malicious behaviors. Upon using Dagger to vet Gamex samples (MD5:
50836808a5fe7febb6ce8b2109d6c93a), we find shell code execution as well as hid-
den sensitive behaviors, including attempts to read contact list information and
sensitive network communications, such as exfiltration of IMSI/IMEI numbers
and malicious software downloads.

Gone60: Privacy Leakage. Gone60 steals private user information such as
SMS messages, contact lists, recent call histories and browser-cached URLs
by using the standard query API on the content providers of SMS inbox and
browser. The app can access these content providers, which work as databases, by
setting specific local URLs as the parameters. However, such parameters (i.e.,
strings) are easier for malware authors to obfuscate than Android framework
APIs (e.g., by using complex string operations). Thus, simple approaches based
on static analysis may fail to detect such malware. Upon using Dagger to vet a
sample of Gone60 (MD5: 859cc9082b8475fe6102cd03d1df10e5), we successfully
identified many sensitive behaviors exhibited by this malware, including reading
of SMSDB and contact lists, as well as sensitive network communications. More-
over, since Dagger recognizes the access of content providers by checking the
read operation of the file system instead of statically analyzing the parameters
in the query function, it is more robust against string-obfuscating malware.

Zsone: SMS Service Usage. Dagger can also be used to vet the mali-
cious behavior of blocking SMS by checking for the absence of a certain pat-
tern in a specific event (i.e., receiving an SMS message but not writing to
SMSDB). We applied Dagger to an exemplar Zsone malware sample (MD5:
c0e6ba0e1b757e3c506a02282ffc5b4), which can both send and block SMS mes-
sages. In this experiment, we used Dagger to send the same pre-customized
SMS to the phone in two situations: running without and alongside the malware
sample. We found that while both receive the SMS message (observing the AT
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command “AT+CNMA=1”), the provenance graph in the first scenario includes
the behavior pattern of writing SMSDB, while the second scenario does not.
This validates that Dagger can be used to identify the blocking SMS behavioral
pattern.

4.2 Measuring Effectiveness Using a Large App Corpus

We further evaluated the effectiveness of Dagger on a corpus of 1,260 real-world
malware samples collected from the Genome Project [55], and another corpus
of 1,000 apps that were randomly selected from 18,527 official market (Google
Play) apps. For each app, to increase the code path execution coverage, we added
500 random UI events by using MonkeyRunner.

Table 3 shows the number of apps and corresponding malware families that
perform each behaviors. Since there is no easy way to obtain complete ground
truth about the sensitive behaviors found in these specific malware samples, we
simply show the absolute number instead of the false positive/negative rate.

As summarized in the table, we find that Dagger can find sensitive behav-
iors from all malware families. Moreover, Dagger can successfully find all three
types of sensitive behaviors (Send SMS, Net and Execute Shell) in the malware
families that were reported by a prior measurement study on the same malware
corpus [54].

After using Dagger to vet 1000 official apps from Google Play, we found the
following. (i) One app reads SMSDB, which is a TV Channel client embedded
with multiple advertisements, and reads users’ SMS messages. (ii) Four apps
have executed external/shell commands. After submitting them to VirusTotal,
one app was recognized as malware belonging to Plankton. This malware dynam-
ically downloads additional code from external server and executes it. The mal-
ware then executes shell commands (e.g., “/system/bin/cat /proc/cpuinfo”) to
get the system information. Two apps were recognized by VirusTotal as abusive
adware. Both of them executed the shell commands to use the Logcat to obtain
the system runtime log information. The fourth app was not recognized as mal-
ware by VirusTotal. However, it attempted to obtain root privilege by executing
“su”, which is recognized as a sensitive behavior by Dagger. (iii) Seven apps
read users’ geolocation information. More specifically, three apps use such geolo-
cation information for the usage of maps; two apps are used for car rental guides;
one app is for local shopping and another one is a photo editor app that can be
used by users to share photos with geolocation information to their friends. Our
findings confirm that our system has a low false positive rate, i.e., only a small
number (< 2%) of official apps are identified as performing sensitive behaviors,
and the majority of these are related to known malware/adware families.

Analysis of False Positives and Negatives. Since it is very challenging to
obtain a perfect ground truth for the Android malware dataset (i.e., knowing
the exact sensitive behaviors of each malware sample we collect), we further
evaluated the accuracy of Dagger by comparing it with other existing systems,
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Table 3. Sensitive behaviors in different malware families identified by Dagger.

Family Send Receive Read Write Read Read Execute Net
SMS SMS SMSDB SMSDB Contact GeoLocation Shell

ADRD 0 0 0 0 0 0 0 9
AnserverBot 0 7 3 3 3 2 61 78

Asroot 0 0 0 0 0 0 0 1
BaseBridge 0 1 1 1 1 0 16 37
BeanBot 0 0 0 0 0 0 0 1
Bgserv 0 1 0 0 0 1 0 3

CoinPirate 0 0 0 0 0 0 0 2
CruseWin 0 0 0 0 0 0 0 0
DogWars 0 0 0 0 0 0 0 0

DroidCoupon 0 0 0 0 0 0 0 0
DroidDeluxe 0 0 0 0 0 0 0 0
DroidDream 0 0 0 0 0 0 1 5

DroidDreamLight 0 0 0 0 3 1 1 9
DroidKungFu1 0 2 2 1 1 0 2 13
DroidKungFu2 0 1 1 0 1 0 5 8
DroidKungFu3 0 0 8 7 8 0 26 111
DroidKungFu4 0 4 5 3 4 2 7 47

DroidKungFuSapp 0 0 0 0 0 0 0 0
DroidKungFuUpdate 0 0 0 0 0 0 0 1

Endofday 0 0 0 0 0 0 0 0
FakeNetflix 0 0 0 0 0 0 0 0
FakePlayer 0 0 0 0 0 0 0 0

GamblerSMS 0 0 0 0 0 0 0 0
Geinimi 0 4 3 2 3 3 1 20

GGTracker 0 0 0 0 0 0 0 1
GingerMaster 0 0 0 0 0 0 0 2
GoldDream 0 1 1 1 1 2 0 20

Gone60 0 0 1 0 3 0 0 5
GPSSMSSpy 0 0 0 0 0 0 0 0
HippoSMS 0 0 0 0 0 0 0 3

Jifake 0 0 0 0 0 0 0 0
jSMSHider 0 0 0 0 0 0 7 4

KMin 1 1 0 0 13 0 0 17
LoveTrap 0 0 0 0 0 0 0 1
NickyBot 0 0 0 0 0 0 0 0
NickySpy 0 0 0 0 0 0 0 1
Pjapps 0 0 0 0 1 0 0 28

Plankton 0 0 0 0 0 0 0 5
RogueLemon 0 0 0 0 0 0 0 0
RogueSPPush 0 0 0 0 0 0 0 9
SMSReplicator 0 0 0 0 0 0 0 0

SndApps 0 1 0 0 0 0 0 0
Spitmo 0 0 0 0 0 0 0 0

Tapsnake 0 0 0 0 0 0 0 0
Walkinwat 0 0 0 0 0 0 0 1

YZHC 0 1 1 1 1 0 0 0
zHash 0 0 0 0 0 0 0 0
Zitmo 0 0 0 0 0 0 0 0
Zsone 2 1 0 0 1 0 0 12

instead of claiming accurate value of the false positive and false negative rate.
More specifically, we ran Dagger on 112 malware samples, which were randomly
selected from the Genome malware dataset. The specific number of malware
samples that perform each type of sensitive behaviors can be seen in Table 4.

To measure possible false positives, we examined those behaviors identified by
Dagger, which are not reported by [54]. [54] reports possible sensitive behaviors of
the malware samples in each family by statically extracting programming paths
that may execute sensitive behaviors. We found that only two apps, Asroot
and DroidKungFuUpdate, access the Internet but are not reported by [54]. We
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Table 4. Dagger analysis summary for 112 randomly selected malware samples.

Send Block Read Write Read Read Execute Net

SMS SMS SMSDB SMSDB Contact Location Shell

9 19 1 0 2 3 17 60

Table 5. Dagger’s performance overhead as measured using the AnTuTu benchmark
app.

Metric OffScore OnScore Overhead

CPU score 7,199 6,522 9.40%

RAM score 1,213 1,092 9.98%

manually examined these two apps, and found that they do indeed access the
Internet to load advertisements when they are activated.

To measure possible false negatives, we compared our system with Copper-
Droid. (Since CopperDroid is not open-source, we obtained its results by sub-
mitting apps to its public website.) Since CopperDroid instruments QEMU to
intercept all instructions that are executed in the Android emulator, it can report
most sensitive behaviors. Compared with CopperDroid, we find that Dagger
misses one network behavior and 2 reading contact behaviors due to the fail-
ure of triggering the execution paths. We also tested these malware samples on
TaintDroid, which only detects that 1 app reads location information, and 23
apps access the Internet.

4.3 Measuring System Performance Overhead

To evaluate the efficiency of Dagger, we tested the performance overhead of
Dagger by using AnTuTu (v 3.0.3) [1]. AnTuTu is a popular Android bench-
mark app developed to test the performance of Android devices. We are mostly
interested in the major performance benchmark metrics such as CPU score and
RAM score. CPU score represents the computation ability of the current CPU
status; a higher score implies the CPU has more free computation ability. RAM
score reflects the real processing ability of RAM; a higher score implies more
free space in RAM.

Table 5 shows the scores of each benchmark metric while turning Dagger
off/on
(denoted as OffScore and OnScore, respectively). In this table, the overhead
of each metric is calculated as: Overhead = (OffScore − OnScore)/OffScore.

From this table, we can find that the overheads of CPU and RAM after
turning Dagger on are acceptable, which are less than 10%. This clearly indicates
that Dagger is a lightweight vetting approach that consumes a very small number
of resources, an advantage makes it attractive for practical use.

Besides the above metrics, we also measure the time overhead generated by
Dagger. The time spent running the Antutu benchmark app on an unmodified
system was 1.89 seconds. When Dagger was used, Antutu took 3.07 seconds to
run. From this we can see that the time overhead is reasonably low: 62.43%. It
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is worth noting that in another representative approach based on system call
tracing, DroidScope [50], the slowdown was around 11 to 34 times (with taint-
tracking enabled). This experiment clearly demonstrates that Dagger is a very
lightweight tool.

In comparison with existing work, we can find that though it requires neither
instrumentation of the system nor modification the OS, Dagger can achieve
significantly high accuracy with appreciably lower performance overhead. Note
that queries are performed offline using an indexed graph database. This ensures
that complex graph queries can scale to large data sets, limited only by the
underlying database Neo4j (that is used in production environments).

5 Related Work

We broadly classify related work into four major categories: detection of Android
malware, security analysis and defense of the Android platform, and analysis of
behaviors in Android apps.

Detection of Android Malware: An extensive body of systems has been
developed to detect Android malware by monitoring system calls [15,27,30,39,
42,43,46,50], analyzing the usage of Android permissions [11,23,24,38], analyz-
ing the usage of Framework APIs [13,17,47,52,55,56], and extracting informa-
tion from the sysfs pseudofilesystem [12]. The design of these detection systems
requires deep domain knowledge about Android system and the development of
Android malware. Most of them also require effective and robust disassemblers
to disassemble the target apps into Dalvik bytecode. These static approaches
achieve limited effectiveness when detecting more evasive malware that is imple-
mented with complex obfuscation techniques (e.g, encrypting the source, insert-
ing noisy code, using Java reflection) and NDK. In contrast, Dagger does not
require robust (or any) disassembly or deobfuscation technology.

Android Security Analyses: A few existing studies focus on analyzing the
security mechanism of the Android platform and its applications. Stowaway [24]
is designed to find those over-privileged apps. SmartDroid [52] finds UI triggers
that result in privacy leakage. DroidChameleon [40] demonstrates the vulnerabil-
ity of existing android anti-malware tools. Other related studies include attempts
to detect component-hijacking vulnerabilities [32], inter-app communication vul-
nerabilities [19], and capability leaks [16,25]. In contrast to these analyses which
focus on the leakage of security privileges, we focus on the leakage of sensitive
data.

Android Platform Defenses: A variety of techniques have been developed
to extend the security policies that can be supported by Android. Quire [21] is
designed to prevent confused deputy attacks. Bugiel [14] et al. proposed a frame-
work to prevent collusion attacks with pre-defined security policies. Saint [37],
Porscha [36], and CRepE [20] were developed to isolate apps by designing more
fine-grained access control policies. AppFence [28] prevents privacy leaks by
either feeding fake data or blocking the leakage path. Checking at install time,
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Apex [35] allows for the selection of granted permissions, and Kirin [23] performs
lightweight certification of applications. Paranoid Android [39], L4Android [31]
and Cells [10] use virtualization as an isolation mechanism to manage the risk
of running malicious applications on Android. A prototype implementation of
SELinux on an Android [3] device[44] provides mandatory access control. Aura-
sium [49] protects the system by enforcing practical policies. Previous work that
relies on extensive modifications to the operating system that is brittle in the
face of evolving codebases. In contrast, we are able to support sensitive behavior
monitoring without modifying apps, the Dalvik virtual machine, or the Linux
kernel.

Behavioral Analysis of Android Apps: Besides detecting malware and
enhancing security mechanism of the Android platform, a few studies focus on
analyzing sensitive/malicious behaviors in Android apps.

Dalvik Monitoring. As summarized in table 6, TaintDroid [22] is one of the first
few systems that are designed to track possible sensitive leak from Android
apps. VetDroid [51] vets sensitive behaviors by checking the permission usage at
runtime. It requires modification to both the Android Dalvik virtual machine to
intercept API invocations, and the Android framework to monitor invocations of
app callbacks. Since these two approaches achieve the goal by mainly monitoring
the execution of the Java instructions in the Dalvik, they are not effective when
applied to finding sensitive behaviors that are implemented by Native Code. In
addition, depending on whether hooks in the source of Android OS are used,
these approaches are limited to the periodical change of the Android OS.

Virtual Machine Instrumentation (VMI). DroidScope [50] is designed to vet
behaviors in Android apps by reconstructing both OS-level and Java-level seman-
tics. NDroid [18] is a supplementary of TaintDroid, which is aware of the JNI
semantic to track the data flow in the native code. CopperDroid [41] reconstructs
malware behaviors by monitoring the system calls and the binder. Since these
approaches rely on instrumenting the Android emulator, which typically incurs
high overheads, especially when taint tracking is enabled, their direct applica-
tion to analysis of a large scale of Android apps is inefficient. In addition, similar
to the emulation-resistant desktop malware, Android malware can evade such
approaches by staying dormant or simply crashing themselves, once the malware
identifies that it is running within an emulated environment [29,45].

Motivated by the limitations of these approaches, Dagger is designed as a
complementary and lightweight system to effectively and efficiently vet sensitive
behaviors in Android apps. Dagger fills the semantic gap by representing Android
apps’ interactions with the system in a data provenance graph, and further
matching the provenance graph with a library of sensitive provenance patterns.

6 Limitations and Future Work

Since Dagger’s approach relies on the analysis of the inner working flow of the
Android system to vet sensitive behaviors, it has to be updated if the workflow
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Table 6. Comparison of Dagger with alternative sensitive behavioral vetting
approaches.

TaintDroid VetDroid DroidScope NDroid CopperDroid Dagger

Technique Taint Analysis
Taint Analysis
& Permission

Analysis

Taint Analysis
& VMI

Taint Analysis
& VMI

VMI & Monitoring
System Calls
and Binder

Data Provenance Analyiss
& Monitoring System Calls,

Binder and Process
Runtime

Modifications
Modifying
Android OS

Modifying
Android OS

Instrumenting
QEMU

Instrumenting
QEMU

Instrumenting
QEMU

None

Native Code
Support

No No Yes Yes Yes Yes

Overhead Medium Medium High High High Medium

of the Android system is significantly altered. However, due to the practical
implications of such design, e.g., changes on a huge system that is being used
by millions of devices, we believe that such significant changes are likely to be
infrequent.

In the current design of Dagger, failed system call invocations are not cap-
tured in its data provenance graph. Such failure information might be useful
in capturing certain sensitive behaviors that are missed by the current system.
In the future work, we plan to improve Dagger by incorporating these into our
analyses.

A common limitation of dynamic analysis techniques is that an exhaustive
search of the space of all possible behavior of a target piece of code requires
an untenable amount of testing. Consequently, techniques such as “fuzz testing”
use random inputs or other methods for selecting a sparse subset of the test
space. While Dagger is able to trigger security-sensitive behavior that matches
particular provenance patterns, it is not exhaustive.

Finally, Dagger requires some manual effort to fine-tune the extracted prove-
nance patterns that are currently used in vetting sensitive behaviors. We plan to
extend our system with a learning-based approach to automatically mine graph
patterns from apps that share similar sensitive behaviors. Furthermore, Dag-
ger’s provenance pattern library may be easily extended with additional verified
patterns.

7 Conclusion

This paper presents Dagger, a novel and lightweight approach to dynamically vet
sensitive behaviors in Android apps without system instrumentation or OS mod-
ification. Dagger achieves its goals by collecting three types of lower-level infor-
mation and summarizing the app’s system interactions through a lightweight
provenance graph. In addition, Dagger contains a library of sensitive provenance
patterns that can be used to automatically identify sensitive behaviors embed-
ded in Android apps. Our evaluation demonstrates that Dagger is able to quickly
and effectively isolate sensitive behaviors across a large corpus of (benign and
malicious) real-world apps, with significantly lower performance overhead than
prior studies.
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Abstract. Although many approaches have been proposed to protect
mobile privacy through techniques such as isolated execution, existing
mechanisms typically work at the app-level. As many apps themselves
might contain vulnerability, it is desirable to split the execution of an
app into normal components and sensitive components, such that the
execution of sensitive components of an app can be isolated and their
private data are protected from accesses by the normal components.

This paper proposes SplitDroid, an OS-level virtualization technique
to support the split-execution of an app in order to isolate the execu-
tion of sensitive components and protect its private data. SplitDroid is
enabled by porting the Linux Container to the Android environment
and the ability to split Android apps through programming and runtime
support. We also introduce a secure network channel to allow communi-
cation between the isolated component and normal Android apps, such
that non-privacy-related information can be interchanged to ensure its
correct execution. Finally, we demonstrate the feasibility and effective-
ness of SplitDroid through a case study.

Keywords: Mobile security · Isolated execution · Privacy protection ·
OS-level virtualization

1 Introduction

As the development of mobile Internet and smartphones, more and more mobile
applications (apps for short) have been developed to help people with their work,
entertainment and daily life. Currently, both Google Play and App Store have
over one million apps available for mobile users [2] to download.

As the number of mobile apps grows, people are storing more and more
sensitive information on smartphones, such as passwords, credit card numbers,
geo-locations, contacts information and even biometric information like finger-
prints. Unfortunately, these sensitive data are vulnerable to various attacks from
different malicious apps such as malware. For example, there are already a huge
number of malware aiming at stealing user privacy on the Android OS [30].

As a result, many approaches have been proposed to protect sensitive data on
smartphones based on various techniques, such as data encryption [9], data iso-
lation [8,13,15,17–19,27] and isolated execution [14,16]. In this paper, we focus
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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on approaches based on isolated execution because it is able to separate the exe-
cution of attackers and target apps into isolated environments, thus preventing
sensitive data from being stolen from target apps.

Researchers have proposed several isolated execution approaches to protect
mobile privacy. Solutions like L4Android [16] and Xen on ARM [14] support
multiple virtual machines (VMs) containing Android OS running simultaneously
on the same hardware. With bare-metal virtualization, these solutions provide
strong isolation guarantee between VMs. However, they are too heavyweight
to be used in smartphone environments considering the impact on memory
usage, performance, and energy consumption. Other solutions aim at isolat-
ing confidential data at the app-level. For example, TrustDroid [6], MOSES [22]
and AppCage [31] extend the Android framework to group apps into different
domains and enforce access control among domains to protect user confidential
data. These app-level solutions are lightweight in essence, but they assume that
the middleware layer can be trusted, which is not always true in reality.

Recent approaches like Cells [4] and Airbag [25] achieve isolated execution
by leveraging OS-level virtualization technologies. Both of them support mul-
tiple Android user spaces running simultaneously on the same Linux kernel.
OS-level isolation provides strong albeit lightweight isolation guarantee between
user spaces. However, these solutions typically protect each app as a whole,
which might not be enough in many cases.

Based on our observation, privacy leakage often occurs within one app, where
private data in one component may be leaked through another component in
the same app. For example, many apps employ “social login” capabilities, which
allow users to log in using popular third-party accounts such as Facebook or
Weibo. This technique is similar to single sign-on (SSO), and it allows users
to log into different apps with one account such as Facebook. However, one of
the potential vulnerabilities here is that, when a user logs into her Facebook
account within a different app, the account and password information might be
leaked through this app. In order to protect user information being leaked in
these situations, we need an environment where sensitive components in an app
can be executed in an isolated environment, for example, when a user enters her
passwords. After successful login, the app will receive a “log in successful” mes-
sage or an authentication token, but it cannot access the actual login credentials
such as passwords.

In order to achieve this kind of fine-grained protection on sensitive data, this
paper proposes SplitDroid, an OS-level virtualization technique to support the
split-execution of a mobile app. We introduce the concept of separating privacy-
related sensitive components from the rest of a mobile app and isolating the
execution of them in a secure environment. By porting the Linux Container to
Android, we build a trusted container with a separate Android runtime that
runs sensitive components alone. We also provide developers the ability to split
Android apps with dedicated programming and runtime support. We introduce
a secure communication channel across containers for exchanging non-sensitive
information with sensitive components from the normal Android environment.
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As a result, our approach is lightweight since both containers share the same OS
kernel, but it also provides strong protection with the Linux Container.

As a case study, we implement SplitDroid on a Nexus 5 smartphone and
demonstrate its feasibility by enabling the split-execution of an app using social
login. We also evaluate the performance overhead of SplitDroid to show its effec-
tiveness.

This paper makes the following main contributions:

– We propose SplitDroid, a fine-grained privacy protection technique based on
OS-level virtualization, which enables isolated execution of sensitive compo-
nents in an app.

– We successfully port the Linux Container to Android and demonstrate that
it is feasible to achieve execution isolation through OS-level virtualization.

– We introduce a mechanism to split the execution of an Android app through
programming and runtime support. Based on the mechanism, we implement
SplitDroid on Android and demonstrate its feasibility through a case study.

2 Preliminaries

In this section, we introduce some preliminaries to define the scope of our work.
We start by presenting a running example to demonstrate the motivation for
split execution of sensitive app components. Then we describe our design goals,
assumptions and the adversary model.

2.1 A Running Example

Figure 1 depicts our motivation for fine-grained privacy protection by isolat-
ing the execution of sensitive app components. The execution overflow on the
left side of Figure 1 shows a normal execution overflow of some mobile app A.
App A requires user login before accessing its services. This feature is reflected
in the execution of the “login” component in the normal execution overflow,
which means a user needs to provide her account and password to the remote
authentication server via the login UI in app A.

As app A runs in an open environment together with many other apps, mal-
ware may coexist with app A and steal the account and password combination
during the login procedure. Researchers have proposed many solutions to prevent
this kind of privacy leakage. An app can be easily isolated into a stand-alone
environment of many types, such as bare-metal VM, OS-level containers and
app-level sandboxes.

However, isolating the mobile app as a whole may not be enough to prevent
privacy leakage. As depicted in Figure 1, login credentials may be leaked through
another component in app A itself. For example, if app A provides the login
feature by integrating social login components from popular social networking
services such as Facebook, user’s Facebook password may be leaked through
vulnerabilities of components in app A.
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Fig. 1. A running example. Left: an app containing a login component, in which the
login credential might be stolen by adversaries; Right: the login component can be split
and executed in an isolated environment, the original app has no access to login cre-
dentials.

In order to prevent such kind of privacy leakage, we are motivated to build
an isolated execution environment to confine the sensitive component that con-
tains the private information. As depicted in the right side of Figure 1, software
components with sensitive data (e.g., the “login” component in app A) can be
split and executed in a fully-isolated environment. Threats on user privacy from
both inside and outside app A will be blocked by the isolation mechanism.

2.2 Goals

In order to provide fine-grained protection on user privacy, we propose Split-
Droid, which provides isolated execution of sensitive app components. Our design
of SplitDroid aims to meet the following goals:

– Privacy confinement. As more and more sensitive data congregate on
mobile devices, our work aims to confine user privacy by isolating the execu-
tion of software components that are related to the collection and transforma-
tion of these sensitive data. Isolated execution can be achieved by leveraging
virtualization technologies, which could support multiple execution environ-
ments running simultaneously and provide strong isolation among them.

– Ease of programming. We want to minimize developer efforts to utilize the
proposed mechanism to enable the spilt-execution of an app. The underlying
mechanism that facilitates the isolated execution should not be exposed to
developers. In other words, developers do not have to know how to construct
and manage the isolated execution environment. Building a new app based
on the SplitDroid should be as simple as building native Android apps with
Java.

– User transparency. App users should not notice the existence of the split-
execution in SplitDroid. For example, when a user clicks the “login” button in
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an app and then types in “username” and “password”, a user should not feel
the action or delay of switching environments, although the login credentials
collection UI and account authentication process actually happens in another
isolated execution environment.

– Low performance overhead. The influence of isolated execution on sys-
tem performance must be low. In order to meet this requirement, the perfor-
mance overhead of the isolated execution environment must be low compared
to the normal execution environment and the switch overhead between these
two environments must also be kept low. Since the isolated execution envi-
ronment is based on virtualization technologies and different virtualization
technologies bring different performance overheads and trusted computing
base(TCB) sizes, we must find a proper trade-off between them.

2.3 Assumptions

We make the following assumptions in our work.

– We assume that the isolated execution environment created by SplitDroid
is fully trusted as sensitive user data are confined in it. The whole software
stack within the isolated execution environment including the OS kernel,
middlewares and applications are all assumed to be trustworthy.

– We assume that the OS kernel inside the normal execution environment is
also trusted since we choose OS-level isolation to implement the isolated
execution. In fact, the OS kernel is shared between the normal execution
environment and the isolated execution environment.

– We assume that there exists a trusted communication channel between the
normal and isolated execution environments. The communication channel is
mainly used to exchange non-sensitive information such as “login successful”
notifications and tokens which do not contain user credentials.

– We assume that the external parties communicating securely with the iso-
lated execution environment can be trusted, such as login authentication
servers, mobile banking services, etc.

2.4 Adversary Model

SplitDroid aims to protect user privacy against the following adversaries. In
order to steal user’s sensitive data, attackers can compromise any part of the
user space in the normal execution environment and even gain access to the
interface with APIs we propose to support isolated execution. The attacker may
also have access to the persistent storage in the normal execution environment.
Attackers can be any app in the normal execution environment or even the rest
components of the same app, while the execution of its sensitive components
can be isolated leveraging SplitDroid. However, we do not consider side-channel
attacks or physical attacks in this paper.
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Fig. 2. Architecture of SplitDroid.

3 SplitDroid Design

In this section, we present the design of SplitDroid. We first give an overview
of SplitDroid. Then we elaborate on its key functionalities and detailed design
considerations.

3.1 Overview of SplitDroid

As depicted in Figure 2, SplitDroid separates the user space into two execu-
tion environments: a normal execution environment where an untrusted stack of
software (middleware and most apps) runs, and an isolated execution environ-
ment created by SplitDroid where the trusted middleware and privacy-related
app components run. By leveraging OS-level virtualization technology (Linux
Container in our case), sensitive components running in the isolated execution
environment is isolated from the untrusted code running in the normal execu-
tion environment. Besides, SplitDroid provides a secure communication channel
between the two execution environments.

In order to leverage SplitDroid to protect privacy, a mobile app needs to
be partitioned into two parts: one part consists of privacy-related component,
and the other part consists of non-sensitive components. SplitDroid provides
programming and runtime support for developers to develop and deploy the
split-execution of mobile apps.

SplitDroid includes the following major components:

– Isolated Execution Runtime. First, the isolated execution runtime com-
ponent in SplitDroid ensures the stand-alone execution of sensitive compo-
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nents in the isolated execution environment. Its tasks include managing the
execution lifecycle and providing isolated storage for sensitive components.

– LXC Management Service. The isolated execution environment is imple-
mented as a container enabled by porting the Linux Container (LXC) to
Android. The LXC management service is mainly responsible for the lifecycle
management of the isolated execution environment, including the initializa-
tion, creation, suspension and termination of it. Most importantly, the LXC
management service performs the environment switches when split-execution
happens in SplitDroid.

– App Stubs. We introduce app stubs as the proxies of the sensitive com-
ponents to the normal components of an app during split execution, and
vice versa. During the split execution of an app, two stubs are running in
the normal execution environment and the isolated execution environment,
respectively. For example, if the “login” components in a mobile app are
considered to be the sensitive part that are split and executed the isolated
execution environment, the stub in the normal execution environment will
serve as an agent of the “login” component, which offers exactly the same
interface as “login” components.

– Secure Communication Channel. A secure communication channel
between two execution environments is constructed through the shared OS
kernel. The communication channel is responsible to fulfill synchronization
between the two parts of the mobile app running in different execution envi-
ronments through trusted stubs. End-to-end security of the trusted commu-
nication channel can be achieved through encrypted communication between
the app stubs.

3.2 The Isolated Execution Environment

SplitDroid creates an isolated execution environment to run sensitive app compo-
nents separately. We introduce the isolated execution environment by adopting
OS-level virtualization. Compared to bare-metal virtualization, OS-level virtu-
alization is lightweight since the OS kernel can be shared by VMs.

Overview of the Linux Container. SplitDroid adopts OS-level virtualization
to create the isolated execution environment. In particular, we use a container-
based lightweight virtualization framework in mainstream Linux kernel called
Linux Container [3], which enables multiple isolated user-space instances running
on a shared Linux kernel, thus offering OS-level virtualization. LXC relies on
several Linux kernel features, in which Namespaces and Control Groups are the
key enablers.

Porting LXC to Android. LXC was originally targeted at the X86 architec-
ture for desktop Linux systems, so we need to port it to the ARM architecture
in order to support Android. Since the Linux kernel used in Android has been
optimized to support mobile environment, some kernel capabilities needed to
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run LXC have been turned off and the standard GNU C library libc has been
replaced by bionic libc. Thus, we first turn on those missing kernel capabilities
and recompile the Android kernel. Missing kernel capabilities can be found by
running the lxc-checkconfig script in the standard LXC-tools against the ker-
nel config file of Android. After recompiling the Linux kernel, we cross compile
and statically link all GNU libc independent libraries of LXC.

The most challenging part of constructing an isolated execution container
is device virtualization which includes multiplexing the framebuffer and input
devices.

In Android, all graphical contents shown on screen are updated by the screen
updater to the framebuffer memory, which is mapped from kernel to user space.
Since we have only one physical screen with two screen updaters from two VMs,
we modify the framebuffer driver such that it will receive update requests from
each container but will only allow the foreground VM to actually update the
framebuffer. The other background container can still update its display data in
a backend buffer, which will not be displayed until it switches to the foreground.

For input devices such as touch screen and physical buttons, we modify the
device drivers only to respond to the requests from the foreground VM while
input requests from the background container are discarded.

Resulting Environment. Based on LXC, SplitDroid creates a new container
at system boot time. The new container is initialized with a clean copy of the
same Android framework as the original Android running on the smartphone and
relevant SplitDroid components. The new container is designed to serve as the
isolated execution environment to confine the execution of sensitive components.
LXC-tools are provided to enable on-demand switching between containers when
the split execution of mobile apps starts. Two containers are configured to locate
in the same virtual local network provided by LXC. SplitDroid also provides a
secure communication channel between containers based on encrypted socket
connection.

3.3 Split-Execution of Android Apps

SplitDroid introduces the concept of split execution of Android apps to protect
user privacy. Specifically, an app can be split into sensitive components and
normal components. By isolating the execution of sensitive components in a
trusted environment, sensitive data can be protected from being leaked. Thus
the goal of app split is to identify software components inside an app containing
some specific sensitive data. In our current design, we provide app developer the
ability to split the Android apps through programming support, which enables
them to execute in a split manner with the provided runtime support. In the
future, we plan to leverage static analysis techniques such as taint analysis to
identify sensitive components automatically to help split Android app binaries.

App Split. Split execution of an Android app has been widely explored for
various purposes such as computation offloading [7], where the computation-
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intensive components of an app can be executed on a remote environment such
as a server or a cloud.

An Android app can be viewed as a state machine in which the states repre-
sent Android Activities and state transitions represent Activity switches. Each
Activity corresponds to a Java class that inherits from the ApplicationContext
class. Besides, an Activity may be related to other Java classes and string/img
resources depending on its actual business logic. Throughout the generation, pro-
cess and storage of sensitive data (e.g. passwords), one specific item of sensitive
data relates to at least one Activity (e.g. “Login” Activity).

In our design, we split an Android app on the granularity of Activities. Given
the sensitive data to be protected, all Activities inside an app will be analyzed
to check if they are related to the sensitive data. After the app is analyzed, all
privacy-related Activities (including the related classes and resources) will be
extracted from the original app and packaged as sensitive components. A stub
will be inserted in to the rest of the app to work as the interface proxy of the
extracted sensitive components.

Runtime Support. The isolated execution runtime component inside Split-
Droid provides runtime support for the split execution of Android apps. The
first task of the isolated execution runtime is managing the code of sensitive
components. In our design, there is a one-time configuration step to install the
code of sensitive components into the isolated execution environment in parallel
with the installation of normal components of an app into the normal execution
environment. As there may exist more than one app needing split execution, the
isolated execution runtime should not confuse among different sensitive compo-
nents from different apps. To keep track of sensitive components from different
apps, the isolated execution runtime maintains an identity table to enforce a
signature-based check before isolated execution.

SplitDroid also provides runtime support to manage the lifecycle of isolated
execution. Once receiving a request to run sensitive components from the normal
execution environment, the isolated execution runtime starts a new service pro-
cess to run the code. When sensitive components finish executing, the isolated
execution runtime will terminate the service process and issue a notification to
the normal execution environment through a callback function. To ensure isola-
tion, SplitDroid only supports sensitive components from one app to run in the
isolate execution environment at a given time.

Programming Support. SplitDroid provides programming support for devel-
opers to enable the split execution of Android apps. In order to enable isolated
execution of the sensitive components, a developer should go through the fol-
lowing procedure.

1. Define the interface for accessing the isolated components from
the normal execution environment. The first step towards developing
an app with SplitDroid is to specify which part of the app is privacy-related.
After figuring out privacy-related components, the developer must specify
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an interface to access these isolated components from the normal execution
environment. In the normal execution environment, the interface to access
isolated components should inherit from an ITrustedStub interface.

2. Implement the actual business logic running in the isolated exe-
cution environment. The developer should provide the actual code to be
executed in the isolated execution environment. There must be a core class
in the business logic code that inherits the IsolatedExecution class since
the trusted runtime service component in SplitDroid will search the core
class to start isolated execution. Meanwhile, the core class has to implement
the interface defined in the first step, which wires the interface in the trusted
stub to the actual business logic.

3. Interact with isolated components. After defining the interface and
implementation of isolated components, the developer can write code to start
to run these software components in the isolated execution environment and
interact with them at runtime. The first thing to start running isolated
components is to create an instance of the IsolatedExeEnv class and pass
an instance of the core class of the isolated components as parameter to
the initialize function of the instance. Then the developer can write code
to interact with isolated components using pre-defined interfaces from the
normal execution environment.

3.4 Usage Scenarios

To illustrate the applicability of SplitDroid, we present two real-world usage
scenarios: social login and mobile payment. The confidentiality and the integrity
of user privacy can be guaranteed by adopting SplitDroid in both cases.

Social Login. Social login within mobile apps is a form of single sign-on (SSO),
which enables a user logging into a third-party app with existing login informa-
tion from social networking services such as Facebook and Weibo. Social login
is beneficial to all parties involved.

However, malware in an untrusted environment or even malicious app compo-
nents inside a third-party app that integrates Facebook social login service could
steal user’s login credentials. Once the login credentials of a popular social net-
working account get stolen, all related third-parties are in danger. As described
in Section 2.1, SplitDroid can be used to eliminate this kind of privacy leakage
by isolating the social login components in an isolated execution environment.

Mobile Payment. With the development of e-commerce and e-banking, more
and more e-commerce services are moving to the mobile platform. While building
one’s own mobile payment system is expensive and insecure, many e-commerce
apps choose to integrate third-party payment plugins such as PayPal and Alipay.

For example, when users place orders in an e-commerce app that integrates
PayPal services. After adding desired products into her shopping-cart, a user
can choose to check out with PayPal. By logging into PayPal and choosing a
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proper bank account, the user can successfully place her order. Convenient on one
hand, this procedure contains potential risk of privacy leakage since PayPal login
happens in an untrusted environment. The user’s PayPal login credentials and
related bank account information could be potentially leaked. With SplitDroid,
we can prevent this from happening by isolating the software components of
PayPal login and payment service.

4 Case Study

4.1 Goal

As a case study, we implement a prototype of SplitDroid to demonstrate its
feasibility. Based on the prototype, we build a mobile app to show the effective-
ness on privacy protection of SplitDroid. We also evaluate the performance of
SplitDroid to show its practicality.

4.2 Implementation

Our implementation includes two parts: the prototype of SplitDroid and a mobile
app based on the split-execution mechanism provided by SplitDroid.

SplitDroid Prototype. We implemented a prototype of SplitDroid based on
CyanogenMod 11 (corresponds to Android 4.4) on a Nexus 5 smartphone. Then
we port LXC 1.0 to Android and modify device drivers as we have described
in Section 3.2. We use the same Android version for the runtime in both the
normal execution environment (the host) and the isolate execution environment
(the container created by LXC). We implement components in SplitDroid based
on our design discussed in Section 3. We implement the programming support
in SplitDroid by providing an SDK to app developers .

Mobile App Implementation. In a proof-of-concept implementation, we have
implemented a simple app integrating social login services provided by Weibo.
This usage scenario has been previously described in Section 2.1 and Section 3.4.

We implement the app by following the programming steps described in
Section 3.3 . As shown in Code Example 1, the isolated sensitive components of
Weibo social login function only has one interface, which is used to activate the
authorize action.

Code Example 1. Declaring the interface for an SSO service.

public interface ISSOService extends ITrustedStub

{

public void authorize(AuthListener authListener);

}
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Code Example 2 presents the core class from the implementation of the actual
business logic of Weibo social login service. The code example only shows some
key steps to conduct the SSO authorization based on the Weibo SDK since the
whole code base is relatively large and mostly irrelevant.
Code Example 2. Implementing the SSO service.

public class SSOService extends IsolatedExecution implements

ISSOService

{

public authorize(AuthListener authListener)

{

// Implements the authorize () function using the SSO SDK

......

mAuthInfo = new AuthInfo(this , Constants.APP_KEY ,

Constants.REDIRECT_URL , Constants.SCOPE);

mSsoHandler = new SsoHandler(WBAuthActivity.this ,

mAuthInfo);

mSsoHandler.authorizeWeb(authListener);

......

}

}

Code Example 3. The AuthListener Class.

class AuthListener implements WeiboAuthListener

{

@Override

public void onComplete(Bundle values)

{

// Parse login Token from Bundle

mAccessToken = Oauth2AccessToken.parseAccessToken (values)

;

if (mAccessToken.isSessionValid ())

{

// Handle login information

.........

} else

{

// Handle error

String code = values.getString ("code", "");

.........

}

}

}

Code Example 4. Calling the SSO service in Main Class.

IsolatedExeEnv isolatedExeEnv = IsolatedExeEnv.initialize(new

SSOService);

ISSOService sSOService = (ISSOService) isolatedExeEnv.

getTrustedStub ();

sSOService.authorize(new AuthListener ());
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Code Example 4 shows how we interact with sensitive components running
in the isolated execution environment. After initialization, the code running in
the normal execution environment receives a reference of isolated components
by calling the getTrustedStub function of the IsolatedExeEnv class instance.
Then the authorize function of isolated Weibo social login components can
be invoked directly through the definition of the ISSOService interface. Code
Example 3 shows the implementation of a callback handler of SSO authorization,
which is required as a parameter to call the Weibo social login Service.

4.3 Evaluation

To evaluate the effectiveness of our approach, we run the the mobile app we build
in the SplitDroid environment. Figure 3 shows the screenshots of the whole split-
execution process. The Weibo social login part of the app can be successfully
isolated in a trusted environment.

Fig. 3. Case Study: an Android app using the Weibo account login service.

To evaluate the performance impact of OS-level virtualization in SplitDroid,
we first run the AnTuTu benchmark [1] with three different setups. “Baseline”
means running AnTuTu in standard Android without SplitDroid. “NEE” means
running AnTuTu in the normal execution environment of SplitDroid. “IEE”
means running AnTuTu in the isolated execution environment created by Split-
Droid. We can see from the results shown in Figure 4, the impact of the OS-level
virtualization in SplitDroid on system performance is relatively low.

We then evaluated the performance of the mobile app running on SplitDroid
by comparing the execution time of split-execution with the execution time of
normal execution (normal app in standard Android environment) on the same
Nexus 5 smartphone. The execution time is measured between clicking the “login
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Fig. 4. Normalized performance impact of SplitDroid.

Table 1. Comparison of execution time (normal execution vs. split-execution).

Execution time (ms)

Max. Min. Avg.

w/o SplitDroid 75 29 45
w/ SplitDroid 223 179 190

with weibo” button, which is shown as the first step in Figure 3, and switching
back to the UI containing token information, which is shown as the last step in
Figure 3. The input time of user login credentials and network communication
time is subtracted to reflect only the overhead brought by SplitDroid. Results
are shown in Table 1. We can see that although the average execution time of
SplitDroid is more than three times of the normal Android, the worst execution
time is roughly one fifth of a second, which should be acceptable to most mobile
users.

5 Discussions

5.1 Limitations

Size of the Trusted Computing Base (TCB). The TCB size of a privacy
protection solution has long been a major concern in the research community.
People believe that smaller TCB will narrow the attack surface of the trusted
software components and ease the formal verification efforts. Compared to solu-
tions based bare-metal virtualization, SplitDroid has a larger TCB size due to
the inclusion of the OS kernel and a trusted container. However, LXC is more
lightweight than bare-metal virtualization to fit in the mobile environment. So it
is a trade-off we make between practical security protections and the TCB size.

Lack of Support for Legacy Mobile Apps. Although SplitDroid can be
used to isolate privacy-related sensitive components inside a mobile app, it still
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requires a source-code based approach, which means developers have to split the
app manually in advance. However, support of legacy apps can be implemented
with the help of program analysis in further studies.

Heavy Deployment Process. Our current implementation requires users to
reinstall a new ROM on their smartphones in order to use SplitDroid. The reason
is that the Android kernel has to be recompiled to support LXC by turning on
several kernel capabilities. However, if SplitDroid is employed as a standard
process in the future, the users do not to worry this any more.

5.2 Future Work

Automated App Split. The current way to support split-execution in Split-
Droid relies on the efforts of developers to leverage our programming support.
This would undermine the wide adoption of SplitDroid since it offers no support
for existing mobile apps. One potential future direction is to find an automated
way to split existing apps. This can be achieved by applying taint analysis on
the data flow of sensitive data, thus identifying sensitive software components
automatically.

SplitDroid Based on Cloud Services. Although SplitDroid can protect
mobile privacy information from being leaked in a fine-grained level, sensitive
data can still be retrieved by physical attacks of dumping memory or storage con-
tents. As future work, we can investigate on building isolated execution environ-
ment with both container technology and cloud service such as storage service,
which is similar to the idea of TinMan [26]. Sensitive data will never be leaked
on the mobile devices by not appearing in the local environment. However, this
requires a dedicated design on human computer interaction as the sensitive data
can not be provided directly on mobile devices.

6 Related Work

6.1 Privacy Protection on Smartphones

Many approaches have been proposed to protect sensitive data on smartphones.
Popular techniques include data encryption [9], data isolation [8,13,15,17–19,27]
and isolated execution. Besides, TaintDroid [10] extends the Android platform to
track the privacy data that flowing through third party applications. TaintDroid
can be applied to monitor the system behaviors related to sensitive data on
smartphones.

Our work focuses on isolated execution based privacy protection because
it can separate the execution of attackers and target apps into isolated
environments.
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6.2 Isolated Execution Based Privacy Protection

Bare-Metal-Level Virtual Machines. Bare-metal virtualization provides a
strong isolation guarantee to put different applications into separated VMs.
Some efforts tried to improve the security of the Android platform by intro-
ducing platform virtualization [5,12,14,16]. However, platform virtualization
is a heavyweight mechanism, which runs multiple software stacks in different
virtual machines. It is usually neither necessary nor affordable in the current
battery-powered mobile devices. Full platform virtualization requires the sup-
port of device virtualization to multiplex hardware to guest domains.

Application-Level Sandboxes. TrustDroid [6] introduces a lightweight iso-
lation framework to protect apps in separate domains of different trust levels.
TrustDroid can support the isolation between corporate applications and private
applications. TrustDroid relies on the MAC mechanism to enforce the isolation
policy of each domain. Meanwhile, TrustDroid also depends on the Android mid-
dleware to confine the inter-domain communication and data access. MOSES [22]
also targets a similar usage scenario: company smartphones used by employees.
MOSES introduces a policy-based framework to isolate apps with different secu-
rity profiles on Android. AppCage [31] proposes two user-level sandboxes: dex
sandbox and native sandbox to interpose and regulate an app’s access to sensi-
tive APIs. These app-level solutions all assume that the Android middleware is
trusted, which is often not true in real cases.

OS-Level Containers. Cells [4] is a virtual mobile smartphone architecture by
leveraging OS-level virtualization. It introduces a new device namespace mech-
anism and novel device proxies to multiplex a single set of phone hardware
into multiple virtual phones (VPs). Airbag [25] adopts a similar container-based
method to isolate suspicious apps. However, these work mainly focus on isolating
the execution of a mobile app as a whole, which is not enough for real usage
scenarios where software components from the same app can also steal sensitive
data. SplitDroid adopts similar OS level virtualization technology while achiev-
ing more fine-grained privacy protection.

6.3 Split Execution of Mobile Apps

There are several attempts focusing on splitting the execution of some certain
components inside mobile apps such as advertisement components [20,21,24].
These approaches mostly focus on isolating specific categories of untrusted com-
ponents. However, our work aims to separate and protect trusted components
with more strict isolation guarantee based on Linux Container.

Other previous work have investigated in split execution of applications such
as Java or Android apps in order to provide features such as computation offload-
ing [7]. These can be implemented by either splitting app binaries [7,11] or source
code redevelopment [28,29]. TLR [23] proposes the split execution of .Net apps.
Although the current design of SplitDroid requires developers to redesign the
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app to support split execution, it can also be implemented using an automated
approach based on program analysis to split Android binaries.

7 Conclusion

Although isolated execution has been studied in smartphone environments such
as Android, they typically isolate the apps as a whole. Since an app cannot
always be trusted to handled all private information such as credentials in third-
party login services, we introduce the concept of splitting the execution of an
app into normal components and sensitive components, such that the execution
of sensitive components of an app can be isolated and their private data is can
be protected from being accessed by the normal components.

We have presented SplitDroid, an OS-level virtualization technique that sup-
ports the split-execution of an app. SplitDroid creates an isolated execution
environment enabled by porting the Linux Container to the Android environ-
ment. SplitDroid also provides programming and runtime support for developer
to fulfill the split-execution of mobile apps. We have demonstrated the feasi-
bility and effectiveness of SplitDroid by building a prototype of SplitDroid and
evaluation through a case study.
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Abstract. In this paper we present a novel approach to ensure that
no malicious code can be executed on resource constraint devices such
as sensor nodes or embedded devices. The core idea is to encrypt the
code and to decrypt it after reading it from the memory. Thus, if the
code is not encrypted with the correct key it cannot be executed due
the incorrect result of the decryption operation. A side effect of this is
that the code is protected from being copied. In addition we propose to
bind instructions to their predecessors by cryptographic approaches. This
helps us to prevent attacks that reorder authorized code such as return-
oriented programming attacks. We present a thorough security analysis
of our approach as well as simulation results that prove the feasibility
of our approach. The performance penalty as well as the area penalty
depend mainly on the cipher algorithm used. The former can be as small
as a single clock cycle if Prince a latency optimized block cipher is used,
while the area overhead is 45 per cent for a commodity micro controller
unit (MCU).

1 Introduction

Embedded devices especially when used in automation systems are becoming
more and more often target of attacks. The modification of embedded systems
software is extremely dangerous. Especially in cyber-physical systems (CPSs)
such as energy distribution networks any penetration and modification can cause
disasters. Common approaches cannot ensure that an embedded system runs
the code that was initially deployed. Code injection attacks are feasible on any
architecture. By using return-oriented programming (ROP) attacks [33] code
can be injected even on Harvard architectures as shown in [17].

In order to prevent successful attacks and to detect alteration of the code
deployed on the embedded devices quite some approaches have been researched
in the last few years SWATT [32], SMART [15], etc. All these approaches share
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a common drawback. They check whether the code originally deployed was
changed or whether additional code was injected. Even if they work 100 per cent
correct they cannot prevent malicious code from being executed, nor can they
prevent ROP attacks. In this paper we present an approach we call intrinsic code
attestation. The core idea is to execute encrypted instructions, so only instruc-
tions that are authorized can be executed. Consequently, no malicious code can
be inserted. In addition we ”chain” instructions so that a certain instruction can
be executed only after its predecessor. This prevents ROP based attacks. As an
important side effect enciphered code to be deployed on the embedded devices
protects the code from being stolen by an adversary. We denote our approach
as intrinsic code attestation (ICA). The main contributions of this paper are:

– Introduction of core principles of ICA, especially how chaining of instructions
can be ensured for non-sequential program flows e.g. if jump instructions or
branches are used.

– Discussion of simulation results that show on the one hand that our approach
can be implemented with existing widely used micro controller unit (MCU)
architectures and on the other hand that the performance penalty is a single
clock cycle only.

– Thorough security analysis of the ICA approach including the discussion of
collisions of the nonce used for instruction chaining in ICA and brute forcing
encrypted instructions.

The rest of this paper is structured as follows. Section 2 details the ICA
concept. Our security analysis is presented in section 3. The following section
provides the implementation of ICA in an MSP430 simulation environment and
for a 8-bit VLIW RISC processor. Related work is discussed in section 5, while
section 6 and 7 present future work and conclusions, respectively.

2 Intrinsic Code Attestation

The core idea of intrinsic code attestation (ICA) is to ensure that only authorized
instructions can be executed on a certain MCU and that also their sequence is
fixed. The presented approach is based on a standard block cipher to provide
a high security level. We use the block cipher in the counter mode (CTR) to
overcome the block size limitation when encrypting sole instructions. The block
cipher is parametrized by an individual program key (IPK) and an instruction
individual key (IIK). The IPK guarantees that the program text cannot be read
by an adversary to gather intellectual property (IP). The IIK is used to built
an instruction chaining that ensures that instructions cannot be reordered or
invoked from extrinsic program locations.

2.1 Instruction Chaining

Figure 1 illustrates the idea of a crypto-based instruction chaining. Information
of instruction (n) are input of a cipher that decrypts instruction (n+1). In case
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of a manipulation of the program flow any out of order instruction is decrypted
with wrong cipher inputs, which results in an illegal or at least an unpredictable
instruction. Since an instruction chaining by using the instruction as input for
the cipher strictly binds an instruction to its previous instruction, non-sequential
program flows become infeasible. Due to such a restriction cannot be applied to
real applications our chaining is based on additional information. Hence, we
extended each instruction by an individual nonce, the IIK, that is encrypted in
conjunction with the instruction. The nonce is used as input for the cipher to
decrypt the succeeding instruction. Using individual nonces prevent a modifica-
tion of the program flow similar to applying the instruction to cipher. However,
in addition non-sequential program flows can be encrypted as well.

cipher

instructionn noncen

instructionn noncen

cipher

instructionn + 1 noncen + 1

instructionn + 1 noncen + 1

Fig. 1. An ICA can be enforced by a crypto-based instruction chaining so that an
instruction cannot be decrypted without executing the previous one.

An insuperable program code encryption can only be guaranteed if the
decryption unit is integrated in the processor’s data path without any bypass.
Hereby, each instruction must pass the decryption unit before its execution.
Wrong key information will result in illegal or unpredictable instructions, which
are passed to the instruction decoder and cause an illegal instruction trap or
an unpredictable behavior. Therefore, the IPK and the IIK must be stored in
a secure manner. The IPK storage will be illustrated in Section 4.3. The IIK is
decrypted with an instruction and hold inside the decryption unit for decrypting
the succeeding instruction. Any external access to the key is unnecessary and
may not be implemented.

Conditional Jumps. A non-sequential program flow is generated by each con-
ditional jump. As shown in Figure 2, a jump instruction has two possible suc-
cessors. Due to dynamic program flow both predecessor instructions must be
considered. Therefore, two identical IIKs are used to encrypt the jump instruc-
tion (instrA) and the instruction immediately before the jump target (instrC ).

But by using two identical IIKs for one instruction a program flow modifica-
tion becomes possible. It cannot be guaranteed that the program does not jump
from instruction instrC to instrB . The remaining risk of such a modification is
analyzed in Section 3.
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Fig. 2. Conditional jumps require that both possible jump target (instrB and instrD)
are encrypted with the same IIK (KinstrB).

Function Calls. Beside conditional jumps each function call generates a non-
sequential code sequence as well. Figure 3 illustrates a call of a function by two
different threads. Each caller attaches the nonce of the first callee instruction
to its call instruction. This ensures that the considered function can only be
called. Furthermore, each instruction just behind the call instruction must be
encrypted by the nonce that is attached to the return of the callee. Although,
this enforces that a return instruction cannot be used to jump to any instruction,
as is used by ROP attacks, an attacker can modify the program flow to jump
to any thread that calls the function. Although the instruction chaining reduces
the attack vector significantly a remaining risk is still there.

Fig. 3. Callers must attach the same nonce to the call instruction and instructions just
after the call must be encrypted by a nonce attached to the return of the callee.

Strict binding of a callee to a caller makes dynamic function calls impossible.
Therefore, function pointers and polymorphism cannot be used with ICA. How-
ever, this restriction can be mostly circumvented by using trampoline functions.

Asynchronous Events. On real processor the program execution flow can be
interrupted by an asynchronous event. Such an event is a signal from a peripheral
unit or an internal exception that needs immediate attention. Software includes
service routines to deal with event. The interruption is temporary, the processor
resumes to normal activity after finishing the service routine.
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The ICA approach has to deal with asynchronous events to be suitable for
real world applications. Due to that the asynchronous events can interrupt any
instruction the nonce must be provided externally and the current nonce must
be saved while handling the event. In case that nested events are allowed a nonce
stack to store the current nonces is necessary. However, the maximum stack size
is equal to the number of interrupts, which is usually small on embedded systems.

2.2 Instruction Key Expanding

Each instruction is encrypted with an individual nonce. Due to the fact that the
suffix inflates the program size a minimal nonce must be chosen. But since the
nonce is used as input of the block cipher it must be expanded to the size of the
block cipher. In a simple way as shown in Figure 4 (a) the nonce can be padded
to the block size with zeros.

Fig. 4. IIK expanding by padding zeros to the nonce (a) or including the instruction
address (b).

Since the nonce have no relation to the instruction address the enciphered
program code can be used on any location. It can be circumvented by applying
the instruction address to the cipher. Due to the decryption unit is integrated in
the MCU’s memory path the instruction address is available there. As shown in
Figure 4 (b), the address can be appended to the nonce and only the remaining
bits are padded by zeros. We discuss the advantage of such an instruction pinning
in more detail in Section 3.

2.3 Instruction Size Fitting

Depending on the MCU’s instruction set architecture (ISA) the block size of the
chosen cipher does not need to be identical to the length of the instruction plus
the nonce. Therefore, we use a symmetric block cipher in a CTR to generate
a temporary instruction key (TIK) as shown in Figure 5. The XOR-operation
uses the first n-bits of the TIK to decrypt the instruction and the nonce. Due to
non-sequential code the counter is reseted with each instruction. Therefore, the
TIK depends on the nonce and the address if used only.

If an instruction plus nonce is longer than a single cipher block the IIK
is incremented to generate an additional TIK block. The cipher stream builds
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Fig. 5. Instructions are decrypted by using the CTR of a symmetric block cipher. The
block cipher gets the IPK and a IIK to generate the TIK.

a TIK with a proper length. However, any additional block causes additional
performance penalty, a block cipher should be chosen that has a suitable block
size or encrypt speed.

3 Security Analysis

Due to it is difficult to quantify the security benefits of any given technology. The
effects of unexploited vulnerabilities cannot be predicted and real-world attacks
can be thwarted by trivial changes to those details. Therefore, our presented
security argument is informal. A more substantial argument (or a proof) would
require formal analysis and verification of the ICA hardware implementation.
The security of the ICA approach is based on the following assertions:

A1 The TIK calculated by the memory decryption unit (MDU) cannot be forged.
Since the TIK is the result of a strong block cipher with an adequate security
level.

A2 The program key can be accessed only from within the MDU. This is guar-
anteed by the absence of physical lines to read the key outside.

A3 Physical and hardware-based attacks on the MDU are beyond the adver-
sary’s capabilities.

A4 The MDU cannot be bypassed since it decouples the instruction memory
from the instruction decoder. All instructions must pass the MDU.

A5 The nonce cannot be replaced by a user defined value. The hardware guaran-
tees that the nonce is directly read from the encrypted instruction memory.

A6 An instruction can be only decrypted with the correct nonce. The nonce and
the instruction address are the initialization vector of the CTR block cipher.

A7 The program key update is forbidden or protected by a strong authentication
scheme.

A8 Any erroneous decryption results in an unpredictable program behavior or
leads to a hardware reset.

A9 The normal execution of an encrypted program should leak no information
about the program key and the encrypted nonces.

Considering these assertions the system’s security is mainly determined by
the resources spent for the ICA implementation. Especially the nonce size and
the ISA have a major impact on the remaining risk.



Intrinsic Code Attestation by Instruction Chaining for Embedded Devices 103

3.1 Remaining Risk

Due to our approach is mainly based on individual nonces, we focused our
remaining risk analyze on attacks on the nonces as well as on the instruction
chaining. We assume that a 16-bit nonce was chosen. It is a good compromise
between minimal nonce size and memory overhead. In the following we discuss
the effect of key collisions, brute-force attacks, and attacks based on ROP.

Instruction Key Collisions. In case of using all 16-bit nonces the number of
TIKs is determined by the number of images of the block cipher function. When
using the first 16-bit of a block cipher output with a block size larger than 16-
bit the number of images is approximately 216(1 − e−1). Using the instruction
address within that enlarges the input domain does not affect the number of
images. Due to commodity 16-bit MCUs have an address space up to 22-bit TIK
collisions cannot be avoided. On an architecture with 22-bit address space each
TIK may be used up to 100 times.

However, from the perspective of security the reduced number of TIKs and
their multiple used is harmless. Since an attacker does not know the IPK it
cannot qualify the correct set of TIKs. The probability of guessing a precise
nonce of an instruction remains 2−16. Furthermore, in case of randomly spreading
the nonces over all instructions the multiple use of a TIK does not increase the
probability as well.

Cipher Instruction Search Attack. The idea behind a cipher instruction
search (CIS) attack is presented by Kuhn [24]. It is based on a brute force attack
on the enciphered machine instructions and then observing the CPU reaction.
The adversary presents a large number of guessed encrypted machine instruc-
tions to the CPU to construct an enciphered program to gain more information
or to provide cleartext access to the instruction memory.

For a CIS attack the target device must be connected to a programming
device. We must assume that the device provides access to all processor regis-
ters except the MDU internal registers. Depending on the system architecture
instruction memory may be non-volatile memory (flash) or RAM. Due to flash
modifications are very complex and the low flash endurance, flash based attacks
can be neglected. An architecture that executes instructions located in the RAM
is much more vulnerable for CIS attacks. Depending on the speed of the program-
ming device an attack can be done quite fast. At an MCU clock speed of 20 MHz
a shot of a single instructions needs only few milliseconds. So brute forcing all
216 alternatives takes only few seconds. Furthermore, the brute force strategy
can applied to each instruction in the same way with the same effort. Hence,
on a von-Neumann architecture with shared instruction and data memory, an
enciphered program can be constructed in short time.

The success of a (CIS) attack can be significantly reduced on systems with
larger instructions. Furthermore, adding the instruction address to the nonce pad
prevents a copy of guessed program code and makes the reuse of an enciphered
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program code, which was constructed in a RAM, infeasible. Nevertheless, we
assume that a gain or an update of the IPK is infeasible by guessing a program
sequence if both are protected by additional schemes, which are not infected by
that attack.

Multiple Return Points. The instruction chaining presented in Section 2
uses the nonce that was encrypted together with the previous instruction for
decrypting the next instruction in a CTR wise fashion. Hence, for sequential code
that does not include any branches, a unique nonce is used for encryption of each
instruction. This uniqueness assures that only the legitimate previous instruction
can be the predecessor of the current instruction. Any other instruction comes
with a different nonce and will most likely propose a wrong TIK. That is because
a good block cipher behaves similar to a random function. Since we use the first
n bits of a block cipher output as the TIK, the probability that two given nonces
propose the same TIK is approximately 2−n. If a wrong TIK is used to decrypt
an instruction this will result in an illegal or unpredictable instruction.

As soon as there are branches a nonce will be used multiple times, thus allow-
ing an instruction to have multiple successors that can be decrypted with this
nonce. This introduces the possibility of undesired modifications in the program
flow: multiple instructions sharing a nonce are able to jump to each others succes-
sors. For example, in Figure 2 instruction instrC has a valid nonce for decrypting
instruction instrB. Nevertheless, the number of instruction that might be jumped
at is significantly reduced to the number of two.

A second risk occurs by legitimate jumps that might be taken when they are
actually not allowed: the return instruction of a function might have multiple
successors corresponding to multiple calling instructions. Although a jump to all
these successors is legitimate in general, only one of these jumps should be taken
at a certain point of time. Namely that one that returns to the instruction that
was actually calling the function. The same obviously holds true for conditional
jumps where both jumps are valid while only one of them should be taken at
a certain point in time. Again, in both cases the attack vector is significantly
reduced.

4 System Integration

To assess feasibility, practicality and impact of our approach we integrated it
in the MSPsim. The MSPsim is a Java-based cycle accurate instruction set
simulator (ISS) developed by the SICS [16]. It allows an execution of unmodified
MSP430 firmwares. The ICA integration was done by implementing an additional
Java module, which was bound to the instruction emulation module.

Beside the MSPsim extension we analyzed a more suitable tiny ISA and did
deeper investigations on block ciphers and tool chains.
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4.1 Secured MSP430

The MSP430 is a 16-bit MCU developed by Texas Instruments (TI). It uses a
classical von-Neumann architecture with a shared data and program memory.
The MCU is very popular in ultra low power applications and wireless sensor
networks (WSNs). We used the MSP430 due to the availability of soft cores
[20,28] and the MSPsim.

MSP430 Integration. All MSP430 instructions are structured in 16-bit words
and the length of the instruction depends on the addressing mode. It differs
from a single word up to four words. Therefore, the MSP430 instruction decoder
performs multiple memory accesses within a single instruction. An integration of
the MDU is shown in Figure 6. Each fetch is passed to the MDU and processed
separately.

Fig. 6. The MSP430 performs multiple fetches within a single instruction, which must
be separately decrypted. Finally the nonce is loaded and the TIK is updated.eps

The nonce is loaded automatically as an additional instruction word after
loading all words of an instruction. We must only extend the instruction decoder
to initiate the TIK update. The operation can be executed in parallel with the
final instruction phases.

Instruction Encryption. Due to the variable instruction size the instruction
encryption must be done in three steps. Listing 1 shows assembler text of a
short loop program. The program starts at address 0x4000 and loops between
the instructions at address 0x4006 and 0x4008. All instructions beside the move
instruction use a single word.

00004000 < c t o r s end >:
4000 : 31 40 80 02 mov #640, r1
4004 : 02 43 c l r r2

00004006 <LOOP>:
4006 : 12 53 inc r2
4008 : f e 3 f jmp \$−2

Listing 1. Assembler program of a simple loop implemented on an MSP430.
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The Listing 2 shows the instructions of Listing 1 extended by the nonces. We
chose 16-bit nonces driven by the architecture of the MSP430. Since each nonce
consumes two bytes of the address space the instruction addresses were changed.
Hence, the jump instruction at address 0x400e had to be adapted accordingly.

00004000 < c t o r s end >:
4000 : 31 40 80 02 00 01
4006 : 02 43 00 02

0000400a <LOOP>:
400a : 12 53 00 03
400 e : fd 3 f 00 04

Listing 2. Listing 1 extended by the nonce. Due to the new instruction length
the jump instruction had to be adapted.

In a final step the program is encrypted. Due to the CTR the size of the
instruction has not to be changed and the encrypted instructions can be placed
at their origin addresses.

Interrupt Handling. When an interrupt is requested from a peripheral the
MSP430 executes at least the following: the currently executed instruction is
completed, the program counter (PC) and the status register (SR) are pushed
onto the stack, the SR is cleared, and the content of the interrupt vector is
loaded into the PC. The next instruction continues with the interrupt service
routine (ISR) at the given address.

The interrupt processing is extended by storing the current nonce inside the
MDU and providing a predefined ISR nonce. Afterwards, the TIK can go on sim-
ilar to the normal program execution. The ISR terminates with the instruction
reti, which restores the PC, the SR and the instruction nonce. Since the MSP430
does not feature an in interrupt flag the ICA needs to be fully integrated in the
interrupt logic to detect interrupts.

For each interrupt a static nonce is needed. The current implementation uses
a single nonce for all interrupts. The nonce is stored inside the MDU and update
is handled similar to the IPK.

4.2 Secured tinyVLIW8

The tinyVLIW8 is a size-optimized soft-core processor for deeply embedded con-
trol tasks [36]. We analyzed the tinyVLIW8 soft-core processor in addition to the
MSP430 to evaluate the suitability of our approach on different system architec-
tures. In contrast to the MSP430 the tinyVLIW8 features a Reduced Instruc-
tion Set Computer (RISC) architecture with a uniform instruction format and
a Harvard architecture with a dedicated instruction, data, and IO memory. The
processor executes two 16-bit instructions coded in a single 32-bit instruction
word in parallel. Each instruction address points to a 32-bit instruction word.
Hence, the nonce can be easily added by widening the instruction memory. Any
adaptations to instruction address are not necessary.
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Fig. 7. The architecture of the tinyVLIW8 allows a placing of the MDU between the
instruction memory and the processing core. Due to the dedicated data memory is not
encrypted, it can be used unchanged.

Furthermore, due to the Harvard architecture a dedicated nonce load is not
necessary. Instead the data bus can be split into a lower 32-bit bus for the pro-
cessing core and additional n-bit bus for the nonce. Figure 7 shows a placement
of the MDU. Only the instruction bus must be routed via the MDU. The data
memory can be connected unchanged to the processing core. The interrupt han-
dling of the tinyVLIW8 is similar to one of the MSP430. On an interrupt request
the current instruction is completed and the PC is loaded from the interrupt vec-
tor table. But the processor provides an in interrupt flag that can be used to
easily detect an interrupt service.

The fixed instruction size of the processor simplifies the integration of our
approach in a significant manner. Furthermore, 32-bit instruction are much less
vulnerable for CIS attacks. Without deeper investigations we are convinced that
most of the RISC architectures with a uniform instruction length allow a similar
integration. Possible candidates are the Leon2 or ARMv7 cores.

4.3 Secure Key Storage

The primary target of an attacker may be the program key of the device. Clearly,
it cannot be stored in the systems memory, since malware code can easily access
it and use it to encrypt additional malicious code. Therefore, the key is stored
inside the MDU and readable from there only. However, installing new firmware
images requires an export or import of the symmetric key. While a public key
implementation could simplify the key management significantly, it comes with
an unacceptable overhead. Hence, we propose three different approaches for man-
agement of a symmetric key: one-time programmable (OTP) memory, password
protection, and physical unclonable function (PUF).

OTP Memory. An OTP memory is a memory where the setting of each bit is
locked by a fuse or an antifuse. The memory can be written only once. It is
possible after fabrication without any special equipment. Hence, the key can be
set by the device owner before the first deployment. External read lines are not
necessary, so that the key is only externally writable. But an OTP based key
cannot be updated later. In case of a key revealing the device becomes insecure
and must be replaced.
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Password Protection. A secure IPK update can simplify the key management in
case of a key revealing. Since the key is stored inside the MDU a memory mapped
IO interface can be implemented to access the key. The interface can be protected
by a password, which must be written in-front of the new key to unlock the
memory mapped IO. A key read function is not necessary. Similar to the MSP430
boot-strap loader protection [38], the password can be stored within the firmware
image. Because the firmware image is decrypted the password is protected by
the current program key. A special protected memory is not necessary.

PUF. A very high security level can be provided by a local re-encryption of
the firmware image. The firmware can be deployed with a shared program key,
which can be stored inside the current firmware image similar to the password,
described above. After deployment the image is re-encrypted with a device spe-
cific key on the device itself. Such a key can be based on a PUF, which provide
true random numbers [21]. The PUF-based IPK must never leave the MDU. Such
a re-encrypted firmware is bounded to the device, which prevents any firmware
copy or off-line attacks on alternative devices.

4.4 Design Size and Speed Estimation

Due to using the block cipher in a CTR the instruction decryption works in two
steps. First, the TIK must be generated by loading the nonce and running a block
decryption. Second, the TIK is combined with the encrypted instruction by using
an XOR-operation. As shown in Figure 8, the XOR-operation works in parallel
with the data fetch and does not consume any additional clock cycles. However,
the block cipher cannot be started before decoding the last instruction word
and loading the nonce. Some cycles may run in parallel with block decryption,
but the fetch of the next instruction must be delayed until the block decryption
is finished. Hence, the instruction execution time is strongly coupled with the
performance of block cipher.

fetch
instructionExecutefetch

instruction

clock

processor
pipeline

memory
encryption
unit

... ...

.........

fetch cycles execution cycles

encrypt cycles

fetch
nonce

Generate
TIK ...

XOR ... XOR XOR

Fig. 8. The TIK can be generated in parallel with the execution phase of the processor’s
pipeline. But the fetch of the next instruction must be block until the TIK generation
has been finished.



Intrinsic Code Attestation by Instruction Chaining for Embedded Devices 109

On the MSP430 few instruction are coded in four words. Hence, a 64-bit
cipher needs two block operations for those instructions. Depending on the speed
of the block cipher the instruction fetch may be interrupted twice. Therefore, on
such a system the cipher speed becomes more significant.

We used the AES in the MSPsim extension. Therefore, we analyzed the AES
algorithm as a candidate for a hardware implementation first. Table 1 gives an
overview about the design size of the algorithm and the number of cycles for a sin-
gle block decryption on a commodity FPGA. We analyzed a size-optimized and
speed-optimized version. However, both were inadequate. The speed-optimized
version need 12 clock cycles and is 8 times larger than our tinyVLIW8 processor
(see Table 2). Therefore, we analyzed the PRINCE algorithm next [8]. The algo-
rithm has a block size of 64 bits and is hardware-optimized. The size-optimized
version needs 750 LCs only and is faster than the speed-optimized version of
the AES. Furthermore, the PRINCE algorithm can be implemented in a fully
unrolled version with a moderate design size enlargement. It needs 1.9 kLCs only
and decrypts a block immediately. The maximum clock speed is limited by the
longest logical path. In simulations we could measure a maximum end-to-end
delay of 64,9 ns, which is equivalent to clock speed of 30.8 MHz.

Table 1. Design size of block ciphers (measured with Quartus II 11.0 Design Suite).

Cipher Cycles logical cells (LCs) Regs Fmax

AES [41] 60 2,403 428 53.7 MHz

AES [40] 12 8,855 792 104.9 MHz

PRINCE [8] 11 750 70 159.1 MHz

PRINCE (unrolled) [8] 0 1,875 0 30.8 MHz

Due to the power consumption is tightly coupled with the design size of the
MCU the ICA extension must be based on a tiny cipher implementation. To
evaluate the size impact of the block cipher, we analyzed soft-core MCUs on an
FPGA. Table 2 gives an overview about the results. The larges MCU has a size
less than 10 kLC and features a SPARC V8 ISA. The commodity MSP430 needs
2.8 kLC with a 16-bit ISA and 4.1 kLC with a 20-bit ISA. The size-optimized
tinyVLIW8 soft-core needs around 1 kLC only.

We chose the tinyVLIW8 soft-core and the unrolled PRINCE version for a
prototype implementation. Table 3 shows the sizes of the processor entities. The
MDU entity includes the PRINCE implementation, the CTR, interrupt han-
dling and the instruction decryption. Is quite smaller than the sole one, which
is reasoned by absence of the external FPGA pins. Furthermore, we integrated
a memory-mapped IO interface for a program key update. We can see, that the
MDU overhead is 156 per cent for the tinyVLIW8 processor. A similar imple-
mentation for an MSP430 will result in an overhead of just about 44 per cent.
1 The Leon2 design size could not be measured on Cyclone II, it was taken from [1].
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Table 2. Design size of soft-core MCUs (measured with Quartus II 11.0 Design Suite).

Soft-core LCs FPGA

Leon2 [1] 9,299 Altera Cyclone1.

openMSP [20] 2,841 Altera Cyclone II

IHP430X [28] 4,107 Altera Cyclone II

TinyVLIW8 [36] 1,162 Altera Cyclone II

The overhead is mainly driven by the cipher design size. The MDU, without
cipher, needs only 126 LCs and 165 registers.

Table 3. Design size of tinyVLIW8 processor extended by the ICA approach (measured
with Quartus II 11.0 Design Suite).

Entity Design Core MDU Peripherals Dbg.-Inf.

LCs 2979 818 1817 234 110

Registers 558 224 165 113 56

4.5 Compiler Tool Chain Extension

The generation of an encrypted firmware is split in two steps. First, all instruc-
tions of the firmware are extended by the nonce. For this purpose the firmware
must be analyzed to identify non-sequential instruction sequences. On an
MSP430 furthermore, all jumps and calls must be adapted to new addresses.
In a second step the instructions are encrypted.

The program analysis to identify non-sequential code can be done on the
final firmware image or as an integrated step of the build process. Depending
on the software and ICA the first approach could be complex. Therefore, we
analyzed common build chains to identify possible candidates for an extension.
The software of an MSP430 can be build with the GNU as well as the TI compiler.
But both are not designed to be easy to extend. A more promising approach is to
extent a modular build chain as provided by the LLVM project [25]. The LLVM
tool chain splits the build process in a front-end step, an unrestricted number of
optimization steps, and a back-end step. The two steps of the ICA encryption
can be integrated as replacement of the origin back-end step.

A similar approach is provided by the CoMet tool [39]. CoMet uses any front-
end compiler and can transform any intermediate code. In contrast to LLVM,
based on intermediate codes a program can be simulated with the integrated
simulator. Due to its flexibility and its simulation capability we decided to use
it to generate the encrypted firmware.
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5 Related Work

Approaches for a secure boot strap architectures to verify the program start [4]
and stack protection schemes to prevent program flow modifications [18,34] work
locally as well as with foresight, but leak a dynamic verification of the program
code. An enforcement that a software follows a path determined ahead of time
is provide in the work of Abadi et al. [2,3]. The control flow integrity (CFI)
approach shares many ideas with methods that attempt to discern program exe-
cution deviation from a prescribed static control flow graph (CFG) [27,31,42].
While these works are focused on fault-tolerance, the CFI approached concerns
with a persistent adversary that is able to change data memory, e.g. by exploiting
program vulnerabilities. It ensures that an attacker can never execute instruc-
tions outside the legal CFG. But CFI inserts inlined labels and checks, which
requires a program code modifications at run-time and does not provide any
program code integrity. Furthermore, we are convinced that a secure approach
must provide a dynamic program flow as well as a program code verification,
which can be provided by none of these approaches.

Device attestation is the process of verifying the local state of a device. Pre-
viously proposed attestation techniques are mainly based on remote attestation
protocols, where an external prover is used to verify the internal state of a
device. These approaches can be differentiated in software-based [13,22,29,32],
locally assisted by specialized secure hardware [15,30,35], and cluster-based pro-
tocols [23]. Though, the authors of software-based techniques argue that locally
assisted approaches require specialized hardware, these approaches have been
subject to successful attacks [10] and provide thus a disputable security level.
Hardware-based approaches, such those based on local read-only memory [15,30],
provide a secure anchor, which helps to overcome basic drawbacks of the soft-
ware approaches. Beside binary attestation property-based attestation protocols
are proposed [11,22]. These protocols are also assisted by specialized hardware
and allow a blind verification and revocation of mappings between properties
and configurations. Nevertheless, all these approaches work after the fact. If an
adversary has successfully injected malicious code the victim operates out of its
specification until a remote attestation detects the misbehavior.

Program code integrity and confidentiality is key in digital rights manage-
ment and smartcard systems. Specialized processors with an integrated MDU
are already state of the art. The DS5002FP and DS5240 secure microproces-
sors presented by Best [5–7] provide an execution of enciphered firmwares. But
reasoned by the weakness of the used cipher the system can be broken by a
CIS attack [24]. A security enhanced MMU (SMU) based on TDES is presented
by Gilmont et al. [19]. In contrast to Best the approach uses the TDES cipher
to encrypt the instruction memory. The work of Elbaz et al. gives an overview
about hardware-based memory-bus encryption techniques [14]. It illustrates and
compares the patent of Candelore [9], the SMU [19], the Xom approach of Lie
et al. [26], and the AEGIS project [37]. The work of Chen et al. [12] presents
a software-based approach, which uses a supervisor instance to decrypt instruc-
tions. But all these approaches are focused on memory encrypted to prevent
illegal copies or modifications of the static program code image. Although most
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of these approaches include the instruction address none of them check the pro-
gram flow. Therefore, ROP attacks at run-time are still possible and a secure
program execution or a program code attestation are addressed by none of them.

6 Future Work

In a first prove of concept integration the tinyVLIW8 soft-core processor was
extended by our approach. Since the processor is quite limited and not used
in any common system an extension of the MSP430 is planned. Due to the
von-Neumann architecture and the variable instruction format a more complex
implementation of the MDU is necessary. Nevertheless, we are convinced that the
logical overhead is quite moderate and the presented approach is still suitable.

Beside a hardware integration of our approach in an MSP430 soft-core an
adaptation of the nonce will be investigated. The current approach causes a sig-
nificant memory overhead on an MSP430. Each instruction expanded by a nonce
gets an address of the limited address space. But a nonce is necessary for non-
sequential instructions only. Therefore, we investigate the building of instruction
blocks instead of single instruction as well as the usage of the instruction as nonce
itself. But both approaches may have its own drawbacks and must be analyzed
carefully.

In this paper we did not consider side-channel attacks, but they are highly
interesting. Hence, we will investigate these effects on FPGA as well as on silicon
devices with different MCU cores. Especially the current separation of the code
execution and the block encryption may be an ideal entry point for side-channel
attacks and must be analyzed.

7 Conclusion

In this paper we introduced the concept of intrinsic code attestation (ICA),
shown its resistance against a wide variety of attacks and evaluated its over-
head. ICA allows to execute encrypted instructions that are even depending
on their predecessors. These features ensure that only authorized code can be
executed. Decrypting non authorized instructions does not result in valid instruc-
tions. The chaining prevents reordering of instructions to implement an attack
by ”re-using” authorized instructions. These features allow a continuous pro-
tection of the devices, which sets our approach apart from earlier approaches
that detect attacks only after the fact. Our simulations show that ICA comes
at reasonable cost. The performance penalty can be as small as a single clock
cycle. The related area overhead is then about 45 per cent for an MSP430 clone.
The latter is somewhat significant if production cost is taken into account. But,
if applications such automation control of energy distribution networks or sim-
ilar sensitive applications are considered, the additional cost of the MCU are
affordable and by far cheaper than costs resulting from a successful attack.



Intrinsic Code Attestation by Instruction Chaining for Embedded Devices 113

References

1. Running Leon2 on the Altera Nios Development Board, Cyclone Edition
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Abstract. Kernel driver purification is a technique used for detect-
ing and eliminating malicious code embedded in kernel drivers. Ideally,
only the benign functionalities remain after purification. As many kernel
drivers are distributed in binary format, a kernel driver purifier is effec-
tive against existing kernel rootkits. However, in this paper, we demon-
strate that an attacker is able to defeat such purification mechanisms
through two different approaches: (1) by exploiting self-checksummed
code or (2) by avoiding calling kernel APIs. Both approaches would allow
arbitrary code to be injected into a kernel driver. Based on the two pro-
posed offensive schemes, we implement prototypes of both types of rootk-
its and validate their efficacy through real experiments. Our evaluation
results show that the proposed rootkits can defeat the current purifica-
tion techniques. Moreover, these rootkits retain the same functionalities
as those of real world rootkits, and only incur negligible performance
overhead.

1 Introduction

Modern operating systems are often divided into a base kernel and various load-
able kernel modules. Kernel drivers are often loaded into the kernel space as mod-
ules. The ability to quickly load and unload these modules makes driver upgrade
effortless, as the new code can take an immediate effect without rebooting the
machine. While the base kernel is trusted, kernel drivers are sometimes released
by third-party vendors (i.e., untrusted) in binary format. This creates a problem
as it is much more difficult to detect malicious code at the binary level than at
the source level. Therefore, kernel drivers have been heavily exploited for host-
ing malicious code in the past. Sony’s infamous XCP rootkit in 2005 [1,22] and
its USB device driver rootkit in 2007 [18] have exemplified this risk. In addi-
tion, kernel drivers, which constitute 70% of modern operating system’s code
base [16],are a significant source of software bugs [7,10], making them substan-
tially more vulnerable to various malicious attacks than the base kernel.

During an attack, once an attacker gains root access, rootkits are then
installed to hide their track and provide backdoor access. Rootkits normally
hook to the kernel and modify its data structures such as system call table,
task list, interrupt descriptor table, and virtual file system handlers. Rootkits
can be either installed as a separate kernel module, or injected into an existing
kernel module. To protect against rootkits, different defense mechanisms have
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 116–134, 2015.
DOI: 10.1007/978-3-319-28865-9 7
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been proposed and can be categorized into two basic approaches: kernel rootkit
detection and kernel module isolation. In the former, various detection frame-
works are created using either an extra device to monitor system memory [23]
or virtual machine introspection techniques [9,15]. And in the latter, strict iso-
lation techniques are introduced to further isolate kernel modules from the base
kernel [5,30].

While the idea of enhancing the isolation of kernel drivers has been exten-
sively studied in the past, it has not yet been widely adopted by mainstream
operating systems. One of the key reasons is that it involves too much re-
implementation effort. Instead of isolating kernel drivers, safeguarding a kernel
driver itself looks more promising. As kernel drivers run at the same privilege
level as the base kernel, one can achieve this goal by detecting and eliminating
malicious code from kernel drivers before they are loaded into the kernel space.
This technique is called kernel driver purification. Based on this design principle,
Gu et al. [11] proposed and implemented a kernel driver purification framework,
which aims to detect malicious/undesirable logic in a kernel driver and elimi-
nate it without impairing the driver’s normal functionalities. Their experimental
results demonstrate that this technique can purify kernel drivers infected by vari-
ous real world rootkits. However, we observe that there are two approaches which
attackers can employ to defeat such a technique. The first approach uses self-
checksum code to protect malicious kernel API calls, and the second approach
is to simply avoid using kernel API calls altogether when writing a rootkit. We
show that both approaches can effectively defeat current kernel driver purifiers.

The major contributions of our work are summarized as follows:
• We first present a self-checksum based rootkit that is able to evade the detec-

tion of current kernel driver purifiers. While self-checksum has long been
proposed as a way to protect benign programs, as far as we know, we are
the first to use it for hiding kernel rootkits. We also develop a compiler level
tool, with which, attackers can automatically re-write existing rootkits and
convert them into self-checksum based variants that are resistant to kernel
driver purifiers.

• We present another approach of creating a more stealthy rootkit, which
avoids using kernel API calls. While our first approach attempts to protect
malicious kernel API calls from being removed by kernel driver purifiers, this
new type of rootkit demonstrates that most kernel API calls can be avoided,
and thus making the kernel driver purifier completely ineffective.

• We evaluate the functionality and performance of both rootkits. Our exper-
imental results show that the presented rootkits maintain the same set of
functionalities as most real world rootkits have and only incur minor perfor-
mance overhead.

2 Background

Kernel drivers have always been a major source of kernel bugs and vulnerabil-
ities, and improving their reliability has drawn significant attentions from the
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Fig. 1. Overview of kernel driver purification

research community. The kernel driver purification technique has been shown to
effectively sanitize kernel drivers infected by existing rootkits. In this section, we
present a brief overview of the kernel driver purification technique. The design
principle of kernel driver purification is based on two observations. First, mali-
cious/undesirable logic embedded within a kernel driver is normally orthogonal
to the driver’s base functionalities; second, its malicious goal is mainly achieved
by interacting with the base kernel via kernel API invocations.

Figure 1 illustrates how a kernel driver purifier works at a high level with
three different phases: profiling, testing, and rewriting.
• In the profiling phase, test cases are selected to exercise the common code

paths of the kernel driver, where all kernel API invocations and return values
are recorded. One key technique used in this phase is called driver-kernel
interaction tracking. To record the kernel API invocations and return values,
it is crucial to detect the transitions between the driver and the kernel code.
This is achieved by monitoring the program counter: if the current basic
block is within the driver’s memory space but the previous basic block does
not, it indicates that the control flow is transitioned from the kernel into the
driver, and vice versa. Exploiting these observations, one can track all the
transitions between the driver and the kernel code.

• In the testing phase, a subset of the kernel API invocations detected from the
profiling phase are removed. If all the test cases complete successfully, these
kernel API invocations can be viewed as not affecting the correct execution
of the driver code, and therefore, they are marked as non-critical. If any test
fails or the system crashes/halts/reboots, a divide-and-conquer approach is
then used to narrow down the offending kernel API invocation. In the end,
a list of non-critical kernel API invocations and their addresses are noted.

• In the rewriting phase, those non-critical kernel API invocations are removed
from the binary kernel driver, and a new binary file, i.e., the purified driver
binary file, is generated for use.
The above procedure ensures that malicious logic is removed while benign

logic is maintained in the newly generated kernel driver. Although there are
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several limitations to this approach, including test coverage, false positives of
the removed kernel API invocations, etc., the approach has been proven [11] to
be very effective in purifying trojaned drivers that have been infected by various
real world rootkits.

However, the two fundamental assumptions of this approach, i.e., (1) the
removal of kernel API calls made by the malicious code will not affect the base
functionality of the kernel driver and (2) rootkits have to call kernel APIs to
achieve its malicious goals, are challengeable. Although they might be true for
existing rootkits, we will show that generic enhancements to these rootkits will
void these assumptions, and thus, rendering the purification process ineffective.

3 Attack Model

In this section, we present our attack methods for defeating kernel driver purifier.
We will use KBeast [14] as an example as it has been widely used in case studies
in the past [28,32]. KBeast is a Linux kernel rootkit that hijacks system calls,
and it allows attackers to provide their own system call functions. By doing so,
attackers can hide malicious kernel modules, files, directories, processes, sockets,
and active network connections. Moreover, KBeast provides keystroke logging,
anti-kill, anti-delete, and anti-remove functions.

Below we show a snippet of KBeast’s code, which is the malicious version
of the unlink system call. This function executes the real sys unlink call when
removing normal files and directories, but denies those requests that attempt to
remove malicious files and directories.

1 asmlinkage int h4x_unlink(const char __user *pathname) {
2 int r;
3 char *kbuf=(char*)kmalloc(256,GFP_KERNEL);
4 copy_from_user(kbuf,pathname,255);
5 if(strstr(kbuf,_H4X0R_)||strstr(kbuf,KBEAST)){
6 kfree(kbuf);
7 return -EACCES;
8 }
9
10 r=(*o_unlink)(pathname);
11 kfree(kbuf);
12 return r;
}

The code above performs the following operations. Line 1: the start of the
function definition. Line 2 to Line 4: allocate a memory buffer and use that mem-
ory buffer to store the pathname of a file. Line 5 to Line 8: compare the pathname
with some predefined values to determine whether or not the file/directory in the
request is malicious, and if so, return and release the memory buffer. Line 10: for
any other ordinary files, invoke the original system call, i.e., sys unlink. Line 11
to Line 12: free the memory buffer and return. A driver purifier would remove
the kernel API calls such as kmalloc(), copy from user(), strstr(), and kfree()
used by the malicious code. When these function calls are removed, the rootkit
would lose its functionality partially or even completely. Therefore, from the
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attacker’s perspective, it is important to protect these calls from being removed,
or implement the rootkit without calling these kernel functions.

3.1 Self-Checksum Based Rootkit

We first present a self-checksum based approach to protect kernel API calls in a
rootkit from being purified. To do so, there are at least two different strategies
we can employ.

The first strategy is more straightforward, which is to add a conditional
statement after each kernel API invocation. The conditional statement would
test whether or not the preceding kernel API invocation is executed. It does
nothing if the call is executed as expected. However, if the call is not executed
(i.e., dynamically removed by a kernel driver purifier), it will trigger something
abnormal, such as crashing the system or causing other types of failures that
would result in the test cases to fail.

However, we found that it is very challenging to track whether or not a kernel
API function is called. This is because a kernel driver purifier can store the
return value of each kernel API invocation, and for each removed API function
invocation, it could fill the stored return value in the EAX register as if the
function was invoked and returned. Thus, we cannot determine if the function
is really called by checking the return value.

The key idea of our proposed approach is that when a kernel module is loaded
into the kernel, a special module initialization function will automatically get
called, and within this function, we embed the checksum code that computes the
checksum for each of the module’s functions. The pre-computed checksums are
then stored in memory. When a malicious function is invoked, we can re-calculate
the checksum and compare it with the stored value. By doing so, any modification
against h4x unlink() will be detected, and we can trigger a system crash (or
some other abnormal behaviors). One might think that this is a denial-of-service
attack, but in fact, it is not. The reason is that this attack is only mounted at the
testing phase of a kernel driver purifier tool, not at a real production scenario.

Using the approach we presented, the re-generated h4x unlink() function
looks like the following:

1 asmlinkage int h4x_unlink(const char __user *pathname) {
2 int r;
3 char *kbuf=(char*)kmalloc(256,GFP_KERNEL);
4 copy_from_user(kbuf,pathname,255);
5 if(strstr(kbuf,_H4X0R_)||strstr(kbuf,KBEAST)){
6 kfree(kbuf);
7 if(compute and compare checksum()==0)
8 crash the kernel();
9 return -EACCES;
10 }
11
12 r=(*o_unlink)(pathname);
13 kfree(kbuf);
14 if(compute and compare checksum()==0)
15 crash the kernel();
16 return r;
17 }
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In the code snippet above, lines 7, 8, 14, and 15 are inserted in the form of
pseudo code. The meaning of these lines of code are self-explanatory. One must
be careful that on lines 8 and 15 when we intentionally crash the kernel, we
should not invoke any kernel functions such as panic() or die(), because these
are also kernel API functions that could be removed by the purifier. In our
implementation, instead of calling any kernel API functions, we use a simpler
method of crashing the kernel by writing to the global NULL pointer so as to
force a null pointer de-reference. One could also crash the kernel by overwriting
the stack or performing badly-aligned memory operations [17]. Furthermore, as
simply crashing the system when tampering is detected can raise a red flag, one
can simulate different ways of code malfunctioning besides crashing the system,
as long as it can still fail the tests of the purifier.

3.2 Kernel API Call Less Rootkit

We now present another approach for defeating the kernel driver purifier. As we
described before, the kernel driver purifier assumes that rootkits have to invoke
kernel APIs to achieve malicious intents. However, this is not necessarily true.
To validate, we studied how many kernel APIs are used by real world rootkits
and what they are. Our study chooses three rootkits: KBeast, Adore-ng [26],
and DR [2]. These rootkits represent three different types of kernel rootkits.

KBeast uses the most straightforward approach. It achieves the malicious
goals by hooking to the system call table so that it can redirect the code path
to a malicious handler.

Adore-ng is more stealthy than KBeast. Instead of modifying the system
call table, it uses the Virtual File System (VFS) intercept method. Especially, it
intercepts functions at the VFS layer, which controls interactions to the ordinary
file system as well as the /proc file system. By intercepting functions at the VFS
layer and filtering malicious data, information can be hidden.

Among these three, DR is the most tricky one and is highly resistant to various
detection tools. It is based on the attributes of the Debug Registers. The Debug
Registers are special registers provided by IA32 processors used for supporting
debugging operations. However, these registers can also be used in a malicious
way. The DR rootkit sets a breakpoint at the system call handler, and replaces
the do debug() function, which is supposed to handle the debug operations, with
its own function. In doing so, every time a system call is invoked, the control is
first passed to the malicious function, in which malicious data are filtered.

A different kernel rootkit uses a different number of kernel API functions.
This is because they exploit different parts of the system and support different
auxiliary features. For example, there are 27 kernel API calls made by DR. These
27 API calls fall into five different categories, including memory operations,
string operations, hijacked functions, debug purposes, and miscellaneous, for
each of which, we will handle differently.

Strategy 1: Avoid using kernel API calls if possible. For example, the following
piece of code is a part of the hook getdents64() defined in the DR rootkit.
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...
struct dirent64 *our_dirent;
struct dirent64 *their_dirent;

...
their_dirent = (struct dirent64 *) kmalloc(count, GFP_KERNEL);
our_dirent = (struct dirent64 *) kmalloc(count, GFP_KERNEL);

/* can’t read into kernel land due to !access_ok() check in original */
their_len = original_getdents64(fd, dirp, count);

if (their_len <= 0)
{

kfree(their_dirent);
kfree(our_dirent);
return their_len;

}
...

To avoid using the functions kmalloc and kfree, we can use the struct variables
directly, instead of using pointers as shown below.

struct dirent64 our_dirent;
struct dirent64 their_dirent;

/* can’t read into kernel land due to !access_ok() check in original */
their_len = original_getdents64(fd, dirp, count);

if (their_len <= 0)
return their_len;

The major difference between these two code snippets is that, the for-
mer employs the kmalloc/kfree pair, which allocates/frees memory dynamically,
while the latter allocates/frees memory in a static way, though they should have
the same functionality.
Strategy 2: Re-implement kernel functions in the rootkit. Most of string oper-
ations can be implemented in a few lines of C code, such as strcmp and strstr.
In fact, since Linux kernel has implemented these functions, we can re-use the
code; however, instead of calling these kernel defined functions, we can include
these functions as part of the rootkit.
Strategy 3: Do nothing. Some kernel API calls are inherently critical calls,
e.g., those original system calls (hijacked by the rootkit). Apparently, the kernel
driver purifier would not eliminate these calls, as that would always cause the
system to crash. Some calls, such as printk, are only used for debugging purposes.
Thus, we do not need to do anything here as it does not matter even if they are
eliminated by a kernel driver purifier.

4 Implementation

4.1 Self-Checksum Based Rootkit

To implement this attack and evaluate its effectiveness in injecting real world
rootkits, we first add the checksum code to ensure that the injected rootkit
is not tampered with by a purifier. Any checksum algorithm would suffice
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(e.g., CRC32, MD5, SHA1). These algorithms are not new, and using one of
these algorithms to generate a checksum for a block of C code has been well
studied by Viega and Messier [29]. Our implementation is built on their work,
and the checksum code in our scenario consists of less than 200 lines of C code.

There are two possible ways to calculate the checksum of a rootkit: either
compute one checksum for the whole rootkit, or compute one checksum for
each function. The former is simpler to implement, but it makes the rootkit
more detectable. This is because computing one checksum for the whole rootkit
means, any changes to the rootkit would lead to checksum mismatch, and there-
fore might crash the system or trigger some other pre-defined behaviors. Such
a property makes the rootkit suspicious, i.e., when a purifier detects that all
attempts to remove API invocations fail, it will realize that something is wrong.
In contrast, we use the latter approach, namely, for each function, we compute
a checksum, and compare all these checksums during runtime with their initial
values. To obfuscate the code, some obfuscating functions which also contain a
certain number of API invocations can be added. For instance, we can add some
functions that do nothing but just call the kernel print API to print some bogus
information. The following shows an example, where we include a function called
h4x bogus between two malicious functions: h4x unlink and h4x rmdir.

asmlinkage int h4x_unlink(const char __user *pathname) {
...
}

asmlinkage int h4x bogus (){
printk("some bogus information \"n);

}

asmlinkage int h4x_rmdir(const char __user *pathname) {
...
}

In this example, we do compute the checksums for h4x unlink and h4x rmdir,
respectively, but we do not compute the checksum for h4x bogus.

In addition, we compute the initial checksum during the module initialization
stage. One might think that the computation code in the module initialization
area could also be removed by the kernel driver purifier. This can be easily coped
with; if for some reason, the checksum has not been initialized properly, we can
assume the computation code has been removed and we will simply crash the
kernel. An alternative approach is, instead of computing the checksum during
the module initialization stage, we can compute it offline and store it on the disk,
and then read it into memory when the module is loaded. If this read operation
fails, we will also trigger a kernel crash.

To convert existing rootkits such that they are protected by the checksum
code and are resistant to kernel driver purifiers, we develop a compiler-like tool
to perform the insertion of the checksum code described above automatically.
Figure 2 illustrates the basic flowchart of this automation tool. The tool is imple-
mented as a perl script, and it includes less than 250 lines of Perl code. It takes
the original rootkit as input, inserts the checksum logic into the rootkit, and
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Entry Point

list of all the malicious functions 

Searching for module 
initialization code, inserting 

checksum computation code 
into the initialization code.

Inserting checksum computation 
and comparison code into each 

malicious function.

Generating a Self-Checksum 
Based Rootkit.

Original Rootkit 

Fig. 2. Flowchart of the automation tool

outputs the modified rootkit. Basically, it first parses the source file to get the
list of all the malicious functions defined in the rootkit. Next, for each malicious
function, it computes its checksum. Such a computation logic is included in the
module initialization code. Finally, the same computation logic, as well as a
comparison logic, is inserted into each function. After these steps, the modified
rootkit is generated.

4.2 Kernel API Call Less Rootkit

Using the strategies described in Section 3, we have implemented a kernel-API-
call less rootkit. For the sake of comparison, we develop our rootkit based on the
DR rootkit. This rootkit consists of 1298 lines of C code (including comments),
and our rootkit consists of 1381 lines of C code. Our rootkit does not call the
printk statements and any kernel functions except the original system calls. A
kernel driver purifier that removes the original system calls would certainly crash
the system, thus, it would mark them as critical and not remove them. As for
the printk statements, it is irrelevant whether or not they are removed as they
do not impact the the essential functions of the rootkit.

5 Experimental Evaluation

We use several real world rootkits in our evaluation. To demonstrate the effec-
tiveness of our proposed method, especially to verify that the attack maintains
the rootkit’s functionalities, we use KBeast. To measure the performance over-
head and the automation of our attack, we choose KBeast, Adore-ng, and DR
as our rootkits. The experiments are carried out in four steps. First, we evaluate
the effectiveness of our rootkit injection mechanism. For the checksum based
rootkits, we first use our compiler tool to automatically inject the checksum
code into a kernel driver infected by the rootkits. By simulating kernel driver
purification, we can verify if the modified rootkits (i.e., rootkits with checksum
logic) can evade detection and elimination. To verify the effectiveness of kernel-
API-call less rootkit, we manually examine its source code and the generated
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binary, ensure that it does not contain any calls to kernel API functions (except
the original system calls and debug statements).

Second, to confirm our rootkits still retain all the malicious functionalities,
we manually perform test cases to validate. Third, we evaluate the performance
impact of our rootkits. For the checksum based rootkit, we evaluate the kernel
driver in various formats: the vanilla uninfected driver, the infected driver with-
out the checksum code, and the infected driver with the checksum code. As a
large overhead caused by performing checksum could easily lead to its discovery,
we tune our checksum code so this does not happen. Finally, we validate the
effectiveness of our automation tool, which can automatically transform exist-
ing rootkits into a form that is resistant to kernel driver purifiers. We run our
experiments on a Linux Qemu-KVM based virtual machine. Our test machine is
a Dell Desktop (with Intel Xeon 3.07GHz Quad-Core CPU and 4GB memory)
running OpenSuSE 12.3. We used OpenSuSE 11.3 as the guest OS.

5.1 Effectiveness

We choose E1000 NIC driver as our target driver and inject the KBeast rootkit
into it. The injection method we use is described in Phrack issue 68 [27]. The
basic idea is, by redirecting the initialization function pointer to the malicious
init function rather than the original init function, the malicious init function
will be invoked when the module is loaded into the Linux kernel; therefore, the
malicious functions will be registered into the kernel and the original system
calls will be hijacked.

As mentioned before, the kernel driver purifier consists of three phases: pro-
filing phase, testing phase, and rewriting phase. The focus of our attack is on
the second phase, i.e., the testing phase. In the testing phase, the kernel driver
purifier attempts to eliminate all kernel API invocations that do not affect the
correct execution of the test suite.

To verify that our checksum based rootkit is indeed immune to such purifiers,
we conduct our experiments on a QEMU+gdb platform. By using gdb, we can
figure out the address of each function. Then we can disassemble each function,
and thus figure out the address of each kernel API invocation. We replace these
kernel API invocations with NOP instructions. We want to verify that when we
replace the kernel API invocation in a malicious logic, the system would crash;
however, when we replace the kernel API invocation in a benign logic with NOP
instructions, the system may not crash, especially, if it is a printk statement or
some other non-critical kernel API invocations.1 By doing so, we can prove that

1 In fact, the replacement of a kernel API invocation is more complicated than one
would expect. When the kernel API invocation has a return value and it is used
later, replacing such an invocation with a series of NOPs would cause an undefined
situation. However, since our goal is to detect code changes, we do not have to resolve
this issue. By adding some debugging statements, when system crashes, we can tell
whether it is caused by the checksum mis-match or by the “undefined situation”
problem.
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Fig. 3. System crashes when we replace the call of strstr with NOP instructions

our rootkit is resistant to kernel driver purifiers, because kernel driver purifiers
would attempt to remove every kernel API invocation, but if the removal of
certain invocations causes system reboot or crash, such invocations are marked
as critical and would be retained. Since we use the checksum based code, any
removal of the malicious invocation would cause system to crash; therefore, all
of the malicious kernel API invocations will be kept.

Case Study: The following is the disassembled code of the malicious function
h4x unlink in KBeast (with checksum code embedded). Compared with the C
code of h4x unlink(), we know that the following kernel APIs are invoked:
kmem cache alloc notrace, slab buffer size, copy from user, strstr, and kfree. To
verify that our checksum code makes the malicious logic resistant to kernel driver
purifiers, we attempt to replace any of these kernel API invocation instructions
with NOP instructions. And we expect that such a replacement would cause a
system crash.

The disassembled code of the function h4x unlink includes nearly 90 lines of
x86 assembly instructions. To save space, we omit most of the instructions, but
we do show those that call the kernel API functions copy from user and strstr.

1 gdb> disassemble h4x_unlink
2 Dump of assembler code for function h4x_unlink:
...
30 0xf7fbc039 <+105>: call 0xc03fa250 <_copy_from_user>
31 0xf7fbc03e <+110>: mov $0xf7fc2174,%edx
32 0xf7fbc043 <+115>: mov %ebx,%eax
33 0xf7fbc045 <+117>: call 0xc03f9b70 <strstr>
34 0xf7fbc04a <+122>: test %eax,%eax
35 0xf7fbc04c <+124>: jne 0xf7fbc088 <h4x_unlink+184>
36 0xf7fbc04e <+126>: mov $0xf7fc216d,%edx
37 0xf7fbc053 <+131>: mov %ebx,%eax
......
......
90 End of assembler dump.

As an example, we show the disassembled code after we have replaced the
strstr function call (i.e., line 33 of the above disassembled code), with five NOP
instructions. Since the original call instruction has five bytes, and each NOP
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instruction occupies one byte, to ensure the alignment, we use five NOP instruc-
tions to fill up one call instruction.

1 gdb> disassemble h4x_unlink
2 Dump of assembler code for function h4x_unlink:
...
30 0xf7fbc039 <+105>: call 0xc03fa250 <_copy_from_user>
31 0xf7fbc03e <+110>: mov $0xf7fc2174,%edx
32 0xf7fbc043 <+115>: mov %ebx,%eax
33 0xf7fbc045 <+117>: nop
34 0xf7fbc046 <+118>: nop
35 0xf7fbc047 <+119>: nop
36 0xf7fbc048 <+120>: nop
37 0xf7fbc049 <+121>: nop
38 0xf7fbc04a <+122>: add %al,(%eax)
39 0xf7fbc04c <+124>: add %bh,(%edx)
40 0xf7fbc04e <+126>: mov $0xf7fc216d,%edx
41 0xf7fbc053 <+131>: mov %ebx,%eax
......
......
94 End of assembler dump.

Figure 3 illustrates that the system indeed crashes when we replace the call
to strstr() with NOP instructions.

Similarly, we also verify that replacing the other kernel APIs invocations,
kmem cache alloc notrace, slab buffer size, copy from user, or kfree, with a
series of NOP instructions, has the same effect. In other words, they all crash the
system. Therefore, such a checksum based code is capable of protecting kernel
API calls from being eliminated by kernel driver purifiers.

5.2 Functionality

Next, we verify that all the malicious functions are still retained. According to
its user guide, KBeast has the following features:

• Hiding this loadable kernel module.
• Hiding processes/files/directories/sockets/connections.
• Keystroke logging to capture user activity.
• Remote binding backdoor hidden by the kernel rootkit.
• Anti-kill process.
• Anti-remove files.
• Anti-delete this loadable kernel module.
• Local root escalation backdoor.

We manually verify that all these functionalities are preserved after we add
the checksum code into the rootkit and inject such a rootkit into the E1000 NIC
driver. Similarly, we have also verified that our kernel-API-call less rootkit have
all the features enabled as the DR rootkit.
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5.3 Performance Overhead

We first evaluate the CPU overhead of the checksum code. We use the CPU inten-
sive benchmark Cuadro [8] to measure the CPU performance overhead. Cuadro
is a benchmarking program that measures CPU performance by numerically
seeking a solution and measuring the runtime of a two-dimensional heat equa-
tion in Cartesian coordinates. We compare the CPU performance for the original
E1000 NIC driver, the E1000 NIC driver infected by the original rootkit, and
the E1000 NIC driver infected by our self-checksum based rootkit. The results
are presented in Figure 4. For each group, the blue bar (leftmost) denotes the
original driver, the red bar (middle) depicts the trojaned driver without the
checksum code, and the green bar (rightmost) represents the trojaned driver
with the checksum code. From the results, we observe that the checksum code
induces negligible computation overhead to the trojaned driver: the checksum
code only incurs 1% to 2% additional overhead. One might wonder why we use a

Fig. 4. Comparison of normalized CPU performance among original driver, driver
infected by rootkit without the checksum code, and driver infected by rootkit with the
checksum code

Fig. 5. Comparison of normalized network throughput among original driver, driver
infected by rootkit without the checksum code, and driver infected by rootkit with the
checksum code
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CPU intensive benchmark to measure NIC driver. The reason is that the rootkit
code, which is injected into the NIC driver, includes various intercepted system
call code, and system calls are frequently used by various workloads; therefore,
such interception would incur CPU overhead. That is why, even without the
checksum code (the red bar), the infected driver performs worse than the vanilla
driver when running CPU intensive workload.

We also evaluate the network performance overhead of the checksum code.
We use Iperf [13] to measure the network throughput of the E1000 NIC driver
infected by various rootkits. Iperf is a commonly used network benchmark tool
and can create TCP and UDP data packets to measure the throughput between
two endpoints. Similarly, we compare the network throughput for the original
E1000 NIC driver, the E1000 NIC driver infected by the original rootkit, and
the E1000 NIC driver infected by our self-checksum based rootkit. The results
are presented in Figure 5. The blue bar (leftmost) denotes the original driver,
the red bar (middle) depicts the trojaned driver without the checksum code,
and the green bar (rightmost) represents the checksum based trojaned driver.
From the results, we observe that the checksum code induces negligible network
overhead to the trojaned driver: the checksum code only incurs about 1% to 5%
additional overhead.

Finally, we evaluate the CPU overhead of the kernel-API-call less rootkit.
Since this rootkit is built on the DR rootkit, we compare its CPU overhead with
that of the DR rootkit. We still use Cuardo as the CPU intensive benchmark.
Since we do not add any extra logic to the DR rootkit, we do not expect our
kernel-API-call less rootkit to cause any noticeable performance overhead, and
indeed, our experimental results show that our rootkit incurs less than 1% of
CPU overhead compared to the DR rootkit.

5.4 Automation

We choose KBeast, Adore-ng, and DR as our target rootkits, as they represent
three different types of kernel rootkit implementations.

Although the above rootkits make use of different techniques to accomplish
their malicious purposes, we have verified that, our compiler-like tool, written
in Perl script, can automatically convert all these rootkits to a format that is
resistant to kernel driver purifiers.

6 Defense Mechanisms

In this section, we first compare the two proposed rootkit injection methods,
and then we discuss the defense mechanisms against them.

6.1 Comparison between Our Two Methods

The checksum based rootkit has the advantage that it does not require an
attacker to be familiar with a specific rootkit and the Linux kernel. The attacker
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could simply download a rootkit from the Internet, and uses our compiler tool to
inject the rootkit along with the checksum code so it can circumvent kernel driver
purifiers. In contrast, kernel-API-call less rootkit would require an attacker to
be familiar with both the rootkit and various aspects of the kernel. The more
complex a rootkit is, the more effort it would require to inject such a rootkit.

The kernel-API-call less rootkits can completely and cleanly bypass a puri-
fier’s detection logic, and thus, they are more resistant to being detected. More-
over, as it does not introduce extra checksum logic, it incurs even less perfor-
mance overhead, which could further lower its chance of being detected by tools
that monitor performance anomalies.

6.2 Defense Mechanism

There are several ways to defend against the checksum based attack we have
proposed. A purifier can potentially add a NOP operation before each kernel API
call. If the kernel driver fails the test or crashes the kernel, it is an indication
that a piece of the driver code is performing suspicious activities. The kernel
driver purifier could use this approach to detect such an attack, which is shown
in Figure 6. A limitation of this approach is that it can detect whether or not
the checksum logic is present in the kernel driver, but its presence does not
equate to the presence of malicious code. The checksum code could very well be
a security mechanism to prevent malicious code from tampering with legitimate
code. This implies that system administrators would need to manually verify the
legitimacy of the kernel driver code by other means, e.g., check the MD5 value
of the binary driver against the published value released by an authoritative
source. An alternative defense is to do fine-grained testing and filtering in the
purifier. Current kernel driver purifiers only deal with kernel API calls, but one
could potentially perform the same trial-and-error steps at the binary instruction
level. With a sufficient amount of time, the checksum code embedded into the
kernel driver could all be removed, thus leaving only the original driver code
along with any injected malicious code. From there, the malicious code can be
detected using the same approach as the existing kernel driver purifier employs.

Original Driver Binary

Testing Phase

Rewriting Phase

Checksum Logic 
Dectected?

NoYes

Warning

Fig. 6. Kernel Driver Purifier with Checksum Detection
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The main challenge of this approach is time complexity, as generating all the
combinations of code at a granularity of the binary instruction level to test would
take an astronomical amount of time. One heuristic to make this approach more
practical is to perform trial-and-error steps at a granularity of basic blocks. This
could improve time complexity by at least several orders of magnitude. We have
not yet started working on the defense mechanisms and will consider this as our
future work.

While the above approaches might be effective in defending against the check-
sum based rootkit, they are certainly ineffective against our kernel-API-call
less rootkit. The kernel-API-call less rootkit actually subverts the fundamen-
tal assumption of the kernel driver purifier, and therefore we believe, any change
in the kernel driver purifier would just be in vain. To detect the kernel-API-call
less rootkit, defenders have to resort to some other approaches, for example, the
virtualization introspection based approaches.

7 Related Work

7.1 Kernel Protection from Buggy or Malicious Drivers

We first briefly summarize previous work related to kernel protection from buggy
or malicious drivers. Most existing research efforts can be divided into three
categories — isolation based, hypervisor based, and offline testing based.

The key idea of isolation based systems is to isolate the presumably malicious
or buggy drivers from the core part of the kernel. Nexus [30] and SUD [5] both
propose to move device drivers into user space. By introducing the notion of
API integrity and module principals, and using a compiler plugin, LXFI [21] can
isolate kernel drivers from the core kernel. Hypervisor based approaches such
as [31] and [25] require operating systems to run on top of a hypervisor, from
which, malicious behaviors can be monitored, tracked, and constrained.

While the above two approaches work in a runtime environment, some other
research projects attempt to handle buggy drivers offline. SDV [4] presents a
static analysis engine. By analyzing the source code, SDV locates kernel API
usage errors in drivers. In contrast, DDT [20] utilizes a symbolic execution tech-
nique to pinpoint bugs in a closed source binary device driver. Although these
offline testing based systems do not incur any runtime overhead, they target
bugs in drivers, instead of the malicious logic.

Note that the kernel driver purifier we target is orthogonal and complemen-
tary to all these previous projects mentioned above. The kernel driver purifier is
also an offline based method and does not incur any runtime overhead. In com-
parison to existing offline systems, the kernel driver purifier aims to eliminate
the malicious logic in the drivers.

7.2 Self-checksumming

Self-checksumming has been proposed as a technique for verifying or ensuring soft-
ware integrity. One of the earliest such proposals was made by Aucsmith [3] in 1996,
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and he used self-checksumming as a key part of building tamper resistance soft-
ware. Based on his work, other researchers have then proposed some alternative
approaches [6,12], which mainly focus on improving the performance and mak-
ing it easy to be included into existing software. Since then, self-checksumming
has become a popular tamper-resistance strategy, and it has mostly been used
in a defensive manner. For example, in the Pioneer system [24], by using self-
checksumming code, one can verify code integrity and enforce untampered code
execution; and based on this technique, the authors successfully built a kernel
rootkit detector. As another example, a self-checksumming algorithm is proposed
to build a timing-based attestation system for enterprise use [19]. While these sys-
tems make use of self-checksumming to protect benign code, in this paper, we
demonstrate that such a technique can also be used for malicious purposes.

8 Conclusion

In this paper, we have presented two offensive approaches to defeating kernel
driver purifiers. In the first approach, by incorporating a self-checksumming
algorithm into an existing rootkit and injecting the rootkit into a kernel driver,
we can successfully evade the detection of a kernel driver purifier. In the second
approach, the proposed kernel-API-call less rootkit avoids using kernel APIs and
hence subverts the fundamental assumption of a kernel driver purifier, making
the purifier completely ineffective. We have implemented the prototypes of the
proposed rootkits. Through real experiments, we have shown that both rootkits
preserve all the malicious functionalities as the original, with negligible per-
formance overhead. Finally, to highlight the advantage of the checksum based
rootkit technique, we have developed a compiler-like tool that automatically
transforms the existing rootkits into their variants that are resistant to kernel
driver purifiers.

We conclude that current kernel driver purification technique, though promis-
ing and effective in handling existing rootkits, is still too fragile to cope with
more sophisticated rootkits. In our future work, we will develop more advanced
kernel driver purifiers to defend against those self-checksum based rootkits. But
we believe that more fundamental changes are needed in the kernel driver purifi-
cation technique to defend against the kernel-API-call less rootkits.
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Abstract. Altering in-memory kernel data, attackers are able to manip-
ulate the running behaviors of operating systems without injecting any
malicious code. This type of attack is called kernel data attack. Intu-
itively, the security impact of such an attack seems minor, and thus, it
has not yet drawn much attention from the security community. In this
paper, we thoroughly investigate kernel data attack, showing that its
damage could be as serious as kernel rootkits, and then propose coun-
termeasures. More specifically, by tampering with kernel data, we first
demonstrate that attackers can stealthily subvert various kernel security
mechanisms. Then, we further develop a new keylogger called DLOG-
GER, which is more stealthy than existing keyloggers. Instead of inject-
ing any malicious code, it only alters kernel data and leverages existing
benign kernel code to build a covert channel, through which attackers
can steal sensitive information. Therefore, existing defense mechanisms
including those deployed at hypervisor level that search for hidden pro-
cesses/hidden modules, or monitor kernel code integrity, will not be able
to detect DLOGGER. To counter against kernel data attack, by classify-
ing kernel data into different categories and handling them separately, we
propose a defense mechanism and evaluate its efficacy with real exper-
iments. Our experimental results show that our defense is effective in
detecting kernel data attack with negligible performance overhead.

1 Introduction

When a system is compromised, attackers commonly leave malicious programs
behind so as to allow the attackers to: (1) regain the privileged access to the com-
promised system without re-exploiting a vulnerability, and (2) collect additional
sensitive information such as user credentials and financial records. To achieve
these two goals, attackers have developed various kernel rootkits. Over the past
years, kernel rootkits have posed serious security threats to computing sys-
tems. To defend against kernel level malware, a vast variety of approaches have
been proposed. These approaches, either rely on additional hardware [23,27], or
leverage the virtualization technology [13,32]for countering kernel level attacks.
With these defense mechanisms, we can ensure the integrity of kernel code and
read-only data, protect kernel hooks from being subverted to compromise kernel
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 135–154, 2015.
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control flow, and prevent malicious code from running at the kernel level. Thus,
most existing kernel level attacks can be effectively thwarted.

Therefore, attackers are aggressively seeking new vulnerabilities inside the
kernel. Ideally, the new attacks should not inject any malicious code running
at the kernel level. To this end, kernel data attack has already attracted some
attention. By altering kernel data only, without injecting any malicious code,
attackers are able to manipulate kernel behaviors. Compared to existing kernel
level malware, kernel data attack is more stealthy. This is because, most kernel
code does not change during its whole lifetime, and thus, can be well monitored
and protected with existing defenses. In contrast, most kernel data is supposed
to be inherently changeable (except for read-only data), making it much harder
to detect kernel data attacks.

Kernel data attack is first demonstrated by tampering with kernel data struc-
tures and showing four attack cases [4]. However, three of the four attack cases
still require attackers run their malicious code at the kernel level, and the remain-
ing case merely shows performance degradation. This raises several questions:
what damage can a kernel data attack cause? can this type of attack really
affect system security? can this type of attack achieve the same level of threat as
existing kernel rootkits do? We attempt to answer these questions in this study.

In this paper, we first assume the role of attackers and explore the attack
space of kernel data attack. Through novel kernel data manipulation, we demon-
strate that kernel data attacks can introduce security threats as serious as exist-
ing kernel rootkits, including disabling various kernel-level security mechanisms
and stealing sensitive information. And then we investigate, from the defenders’
perspective, how to detect kernel data attack. The major contributions of this
work are summarized as follows:
• We first systematically study the attack space of kernel data attack. After

analyzing Linux kernel source code, we reveal that the attack space is enor-
mous: in one of the latest Linux Kernel version (3.1.10), there are around
380,000 global function pointers and global variables in the Linux kernel,
and the vast majority of these data are subject to change during runtime.

• By examining various Linux kernel internal defense mechanisms, we observe
that the runtime behaviors of these mechanisms rely on some global ker-
nel data. Altering these in-memory global kernel data, attackers can subvert
these defense mechanisms. More specifically, we demonstrate that attackers
can tamper with the Linux auditing framework, subvert the Linux AppAr-
mor security module, and bypass NULL pointer dereference mitigation, on a
victim machine. Thus, it is clear that kernel data attacks are realistic threats,
even as serious as existing kernel rootkits, yet more stealthy than existing ker-
nel rootkits, as they do not require the injection of any kernel-level malicious
code.

• To further demonstrate the severity of kernel data attack, we design and
implement a novel keylogger: DLOGGER. DLOGGER exploits an inherent
property of the Linux proc file system, which is the bridge between the ker-
nel space and the user space. In particular, by redirecting a proc file system
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pointer to a tty buffer, attackers can construct a covert channel, and then uti-
lize this covert channel to monitor user input and steal sensitive information,
such as passwords. DLOGGER is more stealthy than existing keyloggers, as
it neither changes any kernel code nor runs a hidden process, which enables
it to evade existing rootkit/keylogger detection tools.

• We propose a defense solution to detect kernel data attack. Our defense is
built on the fact that there are different types of kernel data, which demon-
strate different running behaviors and characteristics during runtime. By
providing a kernel data classification and treating different types of data sep-
arately, we evidence that the proposed defense is effective in detecting kernel
data attack with negligible performance overhead.

2 Background

It is commonly known that operating systems have various vulnerabilities, and
these vulnerabilities are often exploited by attackers to break into a system
and gain root access. The focus of this paper, is not to discuss how to exploit
these vulnerabilities; in contrast, we study the problem that, after a system
is compromised by attackers, how to mask their presence and enable continued
privileged access to the system, as well as collect additional sensitive information.
To achieve these goals, attackers usually install rootkits. Modern rootkits usually
run at the kernel level, and these rootkits are called kernel rootkits. Most of
existing kernel rootkits attempt to modify kernel hooks and redirect these hooks
to some malicious functions injected by the attackers. However, recent research
work has demonstrated the effectiveness of protecting operating systems from a
hypervisor level or using additional hardware. These defense frameworks would
prevent attackers from installing any rootkits or running any malicious code at
the kernel level.

Therefore, attackers need new attack strategies which do not require injecting
any malicious code inside the kernel to compromise a victim system and gain a
strong foothold on it. Currently, there are two possible approaches for attackers
to reach this objective. First, return oriented programming (ROP) attack. ROP
is an exploit technique that directs the program counter to run existing code
while achieving malicious goals. Since its birth, it has drawn much attention, and
has been extensively studied. On the offense side, a number of approaches have
been proposed to make ROP more robust and resilient, such as [8,35].On the
defense side, a variety of defense mechanisms have been proposed, such as [19,
26].As an alternative, kernel data attack has not yet attracted enough attention.
Under a kernel data attack, attackers have full access to kernel memory, but
will not inject any new code or modify existing code that will be executed at
the root privilege level. Since the kernel stores its data in memory, attackers
can manipulate these data and then attempt to alter the running behaviors of
the victim system. To some extent, kernel data attack is similar to ROP attack,
as neither of them requires code injection. Therefore, ROP-based malware is
sometimes called data-only malware [39]. However, ROP attack is very different
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from kernel data attack, and the major differences are two-fold. First, ROP
attack generally starts with a buffer overflow vulnerability that enables attackers
to overwrite the return address or jump address. In contrast, kernel data attack
has nothing to do with buffer overflow vulnerability, but it requires that attackers
have control of the kernel memory. Second, to perform ROP attack, attackers
must have in-depth knowledge of stack structure and assembly code, and it takes
non-trivial engineering efforts to construct the so-called gadgets, which are the
foundation of ROP attack. In contrast, kernel data attack typically requires
attackers to understand kernel code, which is usually C code, and once attackers
know which data should be changed, mounting the attack is trivial.

2.1 Attack Space

Theoretically, attackers can exploit all the kernel data. However, there are dif-
ferent types of kernel data, which should be treated differently.

First of all, the kernel stores both local data and global data in its mem-
ory. While both of them may affect the running behaviors of an operating sys-
tem, exploiting global data is more feasible because the memory locations of
global data can be easily identified. Essentially, Linux exports all global sym-
bols (including function names and variable names) to user space via a proc
file system file, /proc/kallsyms. This file includes a symbol-to-virtual-memory-
address mapping. Meanwhile, the Linux kernel also provides various kernel APIs
for kernel modules to search and access these symbols. Therefore, identifying
the memory location of every global symbol is a trivial task. Once we are aware
of the memory location of our target symbol, which represents a piece of kernel
data, we can change its value by writing to that virtual memory address and
measure its impact to the system. By contrast, local data is usually stored in the
kernel stack or kernel heap, identifying its address is a non-trivial task. In this
work, we focus on global data but we plan to explore local data in our future
work.

Next, kernel data can also be classified into function pointers and variables.
Many existing kernel rootkits achieve their malicious goals by hooking function
pointers, including system call handlers and virtual file system interface pointers.
However, as we mentioned above, in order to evade the defense mechanisms
deployed at the hypervisor level, attackers should not inject any malicious code
that requires persistent running in the system. Therefore, we do not consider
hooking any function pointers and our focus is on variables only.

Furthermore, kernel data can also be divided into read-only data and read-
write data. Read-only data, literally, is the data that is not supposed to be
changed during runtime, and one can only read from but not write to the data.
A typical example is the system call table, which is a popular target for many ker-
nel rootkits. Existing hypervisor-based defense systems have shown their effec-
tiveness in the protection of kernel read-only data [13,43]. However, protecting
kernel read-write data is more challenging, as the vast majority of these data
are subject to change at runtime.
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Table 1. System Configuration

Components Specification

Host CPU Intel Xeon 3.07GHz, Quad-Core
Host Memory 4GB
Host OS OpenSuSE 12.3
Host Kernel 3.7.10-1.16-desktop x86 64
Qemu 1.3.1-3.8.1.x86 64
Guest Memory 1GB
Guest OS OpenSuSE 11.3
Guest Kernel 2.6.34-12-desktop i686

To assess the space of kernel data attack, we perform a systematic study over
Linux Kernel source code, and we quantify all the kernel global data, including
function pointers and variables. Our finding is that, in the kernel we study (ver-
sion 3.1.10), there are about 380,000 global variables and function pointers. It
is obvious that if all the kernel global data could be potentially exploited, the
attack space of kernel data attack is enormous. Even if we only consider the
global read write variables, the space is still fairly large.

3 Kernel Data Attacks

In this section, we show various attack scenarios on kernel data. These attacks
are by no means a comprehensive list of what is possible. We choose a few inter-
esting examples to demonstrate some common techniques that an attacker can
use to remain hidden while subverting various system security measures. These
scenarios are illustrated on a Linux Qemu-KVM based virtual machine with
configurations shown in Table 1. Although we perform our attacks on a virtual
machine, they can be easily done on a physical machine without any changes.
Section 3.1 shows how an attacker can bypass the Linux Auditing and AppArmor
frameworks to avoid detection while setting up a backdoor / rootkit to further
compromise a system. In Section 3.2, we show an attacker can leverage NULL
pointer dereferencing to gain elevated privilege from a normal user account.

3.1 Bypass Linux Auditing and AppArmor

Tampering with Linux Auditing Framework. The Linux Auditing frame-
work records security events in a system. It consists of a kernel daemon that
writes audit messages to disk, and several user-level utilities that are used to
define security policies about what types of events should be recorded. The
audit log can be examined to determine if certain security policies are violated,
and if so, by whom and also from running what command. Security policies used
by the Linux Auditing framework are defined in /etc/audit/audit.rules, and one
of the commonly used policies is to define a list of sensitive files that should be
monitored, such as follows.
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-w /etc/shadow -p rwxa

-w /etc/passwd -p rwxa

These two rules instruct the auditing system to keep track of all file accesses
to /etc/shadow and /etc/passwd, which contain critical user account information
such as user ID, group ID, and encrypted password. To avoid being detected,
an attacker with root access often turns off any auditing or monitoring tools
before making further changes to such sensitive files. Furthermore, the attacker
could also install a modified version of the auditing or monitoring tool to hide
any trojan processes or files. However, such changes are still easily detectable
by external monitoring tools, e.g., in the hypervisor. An alternative and less
conspicuous method to bypass the auditing system’s detection is by identifying
and modifying kernel data that has an impact to the auditing system’s code
executing path, and if modified in a certain way, a critical block of the secu-
rity code could be partially or even completely circumvented. In the case of the
Linux Auditing framework, we found that the kernel function audit filter syscall
(invoked by audit syscall entry) is responsible for writing audit records to a log.
The following code snippet (from kernel/auditsc.c) shows this procedure.

void audit_syscall_entry(int arch, int major,
unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)

{

...
context->dummy = !audit_n_rules;
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {

context->prio = 0;
state = audit_filter_syscall(tsk,

context,
&audit_filter_list[AUDIT_FILTER_ENTRY]);

}
...

}

We noticed that audit n rules is a globally defined variable. By identifying
its location via a symbol lookup and setting it to zero would prevent the Linux
Auditing system from keeping track of file system accesses. To evaluate the
effectiveness of this attack, we first enable the Linux Auditing system and let
it load the predefined rules. We then open /etc/passwd and /etc/shadow, and
as expected, the corresponding auditing messages are written to the system
log.These messages include detailed information, such as the name of the file
that was accessed, access time, message id, the accessing system call used and
its arguments.

Next we change the value of audit n rules. By searching in /proc/kallsyms,
we found its address is 0xc0a61ee4. After writing a zero to this address, we can
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easily set the audit n rules’s value. Consequently, it no longer writes auditing
messages to the system log when /etc/passwd and /etc/shadow are accessed.

Subverting the Linux AppArmor Framework. AppArmor stands for
Application Armor, and it is implemented as a Linux kernel module. Provid-
ing mandatory access control, it allows system administrators to associate each
program with a security profile that restricts its capabilities, e.g., access to cer-
tain resources such as files and sockets.

AppArmor supports three profile modes: enforce, complain, and kill.
“Enforce” means the predefined policies will be enforced. “Complain” means
AppArmor will only report violations but will not take any actions. And “kill”
means a program that violates a predefined policy will be killed. In addition,
AppArmor also supports auditing, and it implements five types of auditing ser-
vices including: normal, quiet denied, quiet, noquiet, and all.

To bypass Linux AppArmor, we manipulate two variables, which are
g profile mode and g apparmor audit. Both of them are defined in appar-
mor/lsm.c as enum type variables. The variable of g profile mode controls the
profile mode and g apparmor audit controls the auditing type. The values of
g profile mode and g apparmor audit can be altered so that AppArmor is run-
ning at the complain profile mode and the quiet audit type to prevent policy
violations from being reported.

To evaluate the effectiveness of this attack, we write a test program called
TestApp. This program attempts to read, write, and access certain files. We then
define a corresponding AppArmor policy for this program. The policy states that
TestApp is not allowed to read or write to File A, and is allowed to read File
B but not allowed to write to it. When TestApp runs, AppArmor correctly
identifies access violations according to the defined policy. Access violations are
prevented and also logged. However, after we set g profile mode to 1 and set
g apparmor audit to 2 (corresponding to the “complain” profile mode and the
“quiet” audit type) by directly altering their values in memory, AppAmor can no
longer prevent access violation or report anything even if the policy is violated.

3.2 Bypass NULL Pointer Dereference Mitigation

A NULL pointer dereference happens when a program attempts to read from
or write to an invalid (and more specifically, NULL) memory location. It is
commonly caused by a software bug in the program. In user programs, it causes
segmentation faults; and in kernel code, it could cause system crashes. It has
been demonstrated in recent years how the behavior of kernel NULL pointer
dereferencing can be exploited to facilitate privilege escalation [25,33,37]. As a
matter of fact, 2009 has been proclaimed by some security researchers as “the
year of the kernel NULL pointer dereference flaw” [10].

By default, a NULL pointer does not correspond to any valid memory
address. To exploit the NULL pointer dereference vulnerability, an attacker maps
the NULL page (i.e., page zero) with a mmap() system call, puts malicious shell-
code into it, and then forces a NULL pointer dereference. If done correctly, this
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(a) (b) (c)

Fig. 1. Exploiting Kernel NULL Pointer Dereference

(a) Initial state; (b) Map page zero and put malicious shellcode in page zero; (c)
Trigger kernel NULL pointer dereference

allows an attacker to gain root access with full control of the operating sys-
tem [12,34]. Figure 1 depicts this procedure.

To mitigate this exploit, Linux introduces a variable called mmap min addr,
which specifies the minimum virtual address that a process is allowed to map.
It is set to be 4096 on x86 machines as default. By setting mmap min addr
to 0, we can bypass this mitigation mechanism. Linux kernel actually exports
mmap min addr to user space via the proc file system, so that system adminis-
trators can tune this variable. Consequently, any manipulation to this variable is
noticeable by system administrators. To address this problem, we observe that
for many proc file system entries, Linux kernel associates them with one vari-
able and one pointer. While the variable is used by the core kernel, the pointer
is used by the proc file system. In a healthy system, this pointer points to the
memory location that stores this variable. Figure 2 shows this relationship. To
avoid detection, we can redirect it to another memory location, which we call a
safe memory location. A safe memory location refers to a memory address that
is rarely or never used by the kernel. For example, we observe that there is a
4K gap between the end of the kernel read-only data section and the start of
the kernel read-write data section, which can be used for this purpose as the
kernel normally does not access any of these addresses. We also set the safe
memory location’s value as the default mmap min addr value, which is 4096. By
doing so, we dissolve the connection between the pointer and the variable. This
new relationship is illustrated in Figure 3. Any subsequent read or write access
to /proc/sys/vm/mmap min addr would only access the safe memory location.
This leaves the attacker free from changing the value of the corresponding ker-
nel variable to anything he wishes without being detected by security tools that
monitor abnormalities in the proc file system.

To evaluate the effectiveness of this attack, we write a C program that invokes
the mmap() system call to map page zero. When mmap min addr is by default
set to 4096, our program simply fails, and the mmap() system call returns EAC-
CES (indicating permission denied). Next, we set the variable mmap min addr
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Fig. 4. Privilege Escalation Attack

to zero, and run the program again, this time the mmap() system call succeeds.
Once this has been done, by exploiting the notorious sock sendpage() NULL
pointer dereference vulnerability (available since 2001 and was only discovered
in 2009 [20]), we verified that a local unprivileged user can execute arbitrary
code in kernel context and gain root privilege. This privilege escalation attack
is shown in Figure 4.

4 Keylogger Design and Implementation

While the attacks we presented in Section 3 can passively bypass some of the
existing security frameworks, we now demonstrate an active kernel data attack
in the form of a keylogger. A keylogger is a type of surveillance software1 that

1 To be accurate, keyloggers can be classified into software and hardware types, but in
this work, our focus is on software keyloggers, in particular, kernel level keyloggers.



144 J. Xiao et al.

Table 2. Summary of Rootkits with/without Keylogger Feature

Rootkit Name Attack Vector Keylogger Code Injection

Complete Rootkits:
Adore-ng-2.6 proc fs file operations table No Yes

SucKIT-2 interrupt descriptor table No Yes
DR debug register No Yes

enyelkm v1.1 system call table, interrupt descriptor table No Yes
Knark 2.4.3 system call table, proc fs file operation table No Yes
KBeast-v1 system call table Yes Yes

Sebek 3.1.2b system call table Yes Yes
Mood-nt 2.3 system call table Yes Yes

Demonstrates Key Logging Only:
Linspy v2beta2 system call table Yes Yes

kkeylogger system call table Yes Yes
vlogger tty → ldisc.receive buf Yes Yes

records the keystrokes typed by a user. Over the years, keyloggers have been
demonstrated to be a tremendous threat in the real world. For example, in 2008,
a keylogger harvested over 500,000 online banking and other account informa-
tion [30]. And then in 2013, 2 million Facebook, Gmail, and Twitter passwords
were compromised by a keylogger [1].

Keyloggers are commonly implemented as a part of kernel rootkits. Before
we present the design of our keylogger, we first studied 10 existing rootkits,
as shown in Table 2. Most of these rootkits were also studied by many recent
research efforts [3,14,15,22,27,29].

From Table 2, we can see that among the 10 rootkits we have studied, six
of them have a keylogging feature, including KBeast, Sebek, Mood-nt, Linspy,
kkeylogger, and vlogger. Except for vlogger, the other five rootkits use similar
techniques to record keyboard inputs, i.e., by intercepting read or write sys-
tem calls. By contrast, vlogger [31] attempts to hijack the tty buffer processing
function, instead of intercepting read/write system calls.

We can also see from Table 2 that, no matter which approach they use, exist-
ing keyloggers rely heavily on hooking kernel function pointers to interpose its
own functions. As we described before, recent advances on the defense side have
already demonstrated their effectiveness in defeating this type of attack, there-
fore, a new attack method is needed. In this work, we propose a new keylogger,
called DLOGGER2, which only relies on manipulating kernel data. The key idea
behind DLOGGER is that, when the keyboard receives any input information,
that piece of information must be transferred into the kernel (via the keyboard
driver) and stored in a memory buffer. A keylogger should grab that information
and pass it to the user space. Since we are not allowed to run our own code, we
have to enable the kernel do the information passing, i.e., pass the data from
the kernel into the user space. Fortunately, the Linux kernel does provide such
an avenue, the proc file system (and also the sysfs file system), which bridges
the kernel space and the user space. Thus, if we can direct the kernel to pass the
information from its memory buffer into a proc file system buffer, or if we can

2 DLOGGER, denotes Data only attack based keyLOGGER.
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redirect a proc file system pointer to that memory buffer, then we can expect
that, by reading from a file under the /proc directory, an ordinary user can
collect that information.

The detailed explanation of our design is as follows. To receive user input, the
Linux kernel emulates several terminal devices, called ttys, and the first emulated
terminal device is referred to as tty1. For each emulated terminal device, the ker-
nel would generate a file under the /dev directory, as the Linux system views
every device as a file. So, /dev/tty1 represents the emulated terminal device
tty1. The kernel defines a data structure called struct tty struct (include/lin-
ux/tty.h), which refers to one tty terminal device. And struct tty struct has a
field called char * read buf, which is exactly the memory buffer to accommodate
the user input from that emulated terminal device. By opening the device file
/dev/tty1, we can get its file descriptor, which has a pointer pointing to the
struct tty struct. Once we access the struct tty struct, we can locate the address
of its read buf. Then we need to pick up a proc file system pointer, and let it
point to this memory buffer. The selected proc file system pointer should repre-
sent a proc file that is rarely accessed by system administrators. Given the fact
that there are a large number of files under a proc file system, a vast majority of
files under /proc would rarely, if not never, be accessed. In our experiments, we
choose /proc/sys/kernel/modprobe. In a healthy system, cat /proc/sys/kernel/-
modprobe would display the path of the modprobe binary3, which by default, is
/sbin/modprobe. The kernel defines a char pointer called modprobe path, which
just points to the string “/sbin/modprobe”. Consequently, if we set this char
pointer to the tty struct’s read buf, we can expect that any read to /proc/sys/k-
ernel/modprobe would display the content of the tty read buffer, which should
be the user input from keyboard.

Figures 5, 6, 7 illustrate how DLOGGER differs from existing keyloggers.
Figure 5 shows the normal data flow, i.e., when there is no keylogger. Figure 6
shows the data flow of a traditional keylogger, and Figure 7 shows the data
flow of DLOGGER. It can be seen from these figures, while existing keyloggers
actually change the data flow, DLOGGER does not, instead, it creates a new
branch to collect the information.

We then validate the efficacy of DLOGGER. After login as the root user from
a tty terminal, we input our password, and type several commands. We then try
to login remotely as an ordinary user, by reading the /proc/sys/kernel/modprobe
file, we can see the information typed in the tty terminal.

5 Defense

In this section, we first present a defense mechanism to detect kernel data attacks
by classifying kernel data into different types. Then, we evaluate the effectiveness
of the proposed defense and measure its overhead in terms of CPU and memory
usage.
3 The modprobe binary is a program to add or remove loadable modules to/from the

Linux kernel.
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5.1 Defense Mechanism

We observe that kernel data can be classified into the following four types:
• Type 1: Read-only data.
• Type 2: Modifiable data that normally remains constant across different sys-

tems.
• Type 3: Modifiable data that normally does not change, but can differ from

system to system.
• Type 4: Modifiable data that changes frequently.

The different types of data exhibit different runtime behavioral character-
istics. An effective defense mechanism, thus, should be tailored to the charac-
teristics of the different types. Our defense mechanism consists of two phases:
splitting phase and monitoring phase.

Splitting Phase. In this phase, we split different types of data into different
lists. To accomplish this, we first set up multiple identical virtual machines. In
our experiment we used two VMs, which we observed were as good as if we
had more VMs, VM1 and VM2. Algorithm 1 describes the subsequent splitting
procedure. Essentially, we get all the variable symbols from /proc/kallsyms and
put them into a list called ListAll. We then use List1, List2, List3, and List4
to represent the symbol lists for Type 1, Type 2, Type 3, and Type 4 data,
respectively. The algorithm consists of three steps:

– The first step is to get List 1. It is rather straightforward, as these symbols
are explicitly marked in the /proc/kallsyms with a “r” or “R”. Therefore,
we extract all these symbols and put them into List1, and leave the rest into
ListRW (denoting a list of read-write symbols).
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Algorithm 1. Get Type 1,2,3,4 symbols
Require: /proc/kallsyms, VM1, VM2
Ensure: VM1 and VM2 run the same OS, have the same configuration

ListAll ← Get all variable symbols from /proc/kallsyms
List1 ← Get all read only symbols from /proc/kallsyms
ListRW ← ListAll − List1
for each symbol in ListRW do

var1 ← get its value from VM1
var2 ← get its value from VM2
if var1 = var2 then

List2 ← insert symbol
else

ListDiff ← insert symbol
end if

end for
for each symbol in ListDiff do

var0min ← get its value from VM1
ListPair0 ← insert (symbol,var)

end for
wait for a predefined time interval T1
for each symbol in ListDiff do

vartmin ← get its value from VM1
var0min ← get its value from ListPair0
if var0min = vartmin then

List3 ← insert symbol
else

List4 ← insert symbol
end if

end for

– The next step is to extract List2 from ListRW. Since Type 2 data remain the
same across VM1 and VM2, for the symbols in ListRW, we get their values
from VM1 and VM2, identify those equivalent pairs, and put these symbols
into List2, and leave the rest into ListDiff.

– The final step is to extract Type 3 and Type 4 data from ListDiff. Since
data in Type 3 rarely change, for each symbol in ListDiff, we measure its
value from VM1 at multiple points during a span of multiple days. If no
changes were identified, we put it into List3; otherwise, we put it into List4.
To avoid false positives in the later monitoring phase, this step should be
run iteratively, so that we can ensure List 3 only contains data that rarely
change or never change.

Monitoring Phase. After we have built List1, List2, List3, and List4, we can
start the monitoring phase. Typically, an attack target falls into either Type 1,
Type 2, or Type 3 categories. As for Type 4 data, they can be divided into six
subtypes, which are shown in Table 3.

Type 4 data are very system-specific. An example of such data is jiffies, which
is a global variable Linux kernel used to keep track of the number of ticks since
the system last booted. It is highly unlikely that the jiffies values would be the
same between two systems. We did not discover any Type 4 data that could
have been attacked similarly to those we illustrated before, and thus, we focus
on the other data types for building our defense mechanism. Type 1 data are
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Algorithm 2. Monitor Type 2,3 symbols
Require: List2, List3, VM1, VM2
Ensure: VM1 and VM2 run the same OS, have the same configuration

for each symbol in List3 do
varinit ← get its value from VM1
ListPair0 ← insert (symbol,varinit)

end for
loop

for each symbol in List2 do
var1 ← get its value from VM1
var2 ← get its value from VM2
if var1 �= var2 then

Raise Alarm: Symbol Value Changed
end if

end for
wait for a predefined time interval T2
for each symbol in List3 do

varrun ← get its value from VM1
varinit ← get its value from ListPair0
if varrun �= varinit then

Raise Alarm: Symbol Value Changed
end if

end for
end loop

Table 3. Global Variables Belong to Type 4

Category Example Variable Meaning

Timing Related jiffies The number of clock ticks have occurred since the system booted
Random Numbers skb tx hashrnd A random hash value for socket buffer

Runtime Workload Related nr files Number of opened files
Index Related log start Index into log buf

Cookies fsnotify sync cookie Cookies used by fsnotify to synchronize monitored events
Spinlocks and Semaphores pidmap lock Spinlock for pidhash table

read-only, and prior works [13,43] have already demonstrated thoroughly how
to defeat such attacks.

To detect attacks against Type 2 data, one can use an approach similar to
PeerPressure [41], where collective information across peer machines dictates
what is normal and what is abnormal for data values. For Type 3 data, as
they normally do not change once initialized, one can record their initial values
and periodically compare their current values against initial ones, similar to the
Tripwire [17] approach. Algorithm 2 depicts this monitor procedure.

5.2 Defense Evaluation

To evaluate the effectiveness and performance overhead of our defense mecha-
nism, we conducted several experiments on a hypervisor running two VMs. Based
on Algorithm 2, we developed a tool that runs on the hypervisor level and mon-
itors both Type 2 and Type 3 data. Any kernel data attacks (those described in
Sections 3 and 4) can be easily detected. Naturally, the detection response time
and performance overhead are mainly dependent on the time interval described
in Algorithm 2. A shorter interval leads to a shorter response time but a higher
performance overhead. However, since the tool is rather lightweight, we do not
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Table 4. CPU Overhead (%)

��������
Benchmark

Interval
1000ms 500ms 100ms 0ms

Cuadro 0.35 1.69 2.88 3.28
Kernel Decompression 0.70 1.87 3.10 4.06

expect it to cause any noticeable performance overhead. For example, when we
set the time interval to 500 milliseconds, and we mounted the attacks presented in
Sections 3 and 4, all the attacks can be detected in about 1 second. We measured
the monitoring tool’s performance overhead by using the cuadro benchmark [11],
which shows the CPU overhead is less than 2% when the time interval is set to
500 milliseconds. We also run a Linux kernel decompression task, in which a
standard Linux kernel source package linux-2.6.34.tar.bz2 is decompressed with
the tar program. The result also shows that the monitor tools incurs less than
2% of runtime overhead when the time interval is set to 500 milliseconds. Table 4
lists these experimental results. We also observed that the memory usage of our
defense is no more than 0.3%. Therefore, the performance overhead induced by
our defense is negligible. Additionally, since we use an iterative approach in the
splitting phase, we ensure only those data that never change are classified as
Type 3, and thus, there is no false positive during the monitoring phase.

6 Discussion

In this section, we discuss the limitations and extensions of kernel data attack.
While we have mainly demonstrated malicious exploits based on global variables,
attackers can also potentially misuse local variables. Local variables are stored in
kernel stacks or heaps. A sophisticated attacker can explore the kernel memory
to identify the locations of any exploitable local variables. In fact, manipulating
local variables could make the attack even more undetectable as knowing what
is a good value of every local variable is almost impossible.

Linux kernel extensively uses linked list data structures. Many of these linked
lists change frequently, e.g., the linked list representing the current running pro-
cesses. An element is added to the list when a process is created, and is removed
when the process exits. In a running system, as there are a lot of process cre-
ation and destroy events, this linked list changes almost constantly, which makes
anomaly detection on the linked list a daunting task. A common attack many
existing rootkits use is to remove certain elements from the process linked list
(used by the ps command) to hide certain malicious processes. This works well
due to the fact that the CPU scheduler uses another process linked list when
scheduling processes. As stated earlier, it is becoming increasingly difficult to
inject malicious code and launch malicious processes as it is easily detectable
by many security tools. However, a similar attack can still be mounted, but in
a reverse manner, i.e., by removing an element from the CPU scheduler linked
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list but keeping it in the ps linked list, an attacker can prevent a benign process
(e.g., a process launched by a security tool) from being scheduled. Even if system
administrators periodically check if this process is still running by using the ps
command, they will be deceived to believe that the process is running normally.

A limitation of the kernel data attack is that it no longer works when the tar-
get system reboots as all the modified data are in memory. One could persist all
the kernel data changes by modifying system initialization scripts, but this will
render the attack more prone to be detected. However, as non-volatile memory
technology is getting cheaper and denser, many researchers [2,7,21,38] believe
that it will soon appear on the processor memory bus complementing the tra-
ditional memory. As non-volatile memory becomes more prevalent, it will make
kernel data attack easier to be mounted and last longer. In addition, some of
the global data can be accessed by multiple processes/threads, modifying these
data might cause side effects. Therefore, how to ensure the safe execution of the
OS kernel is something that attackers have to handle.

7 Related Work

Kernel Data Attack and Defense: Although kernel data consists of both
function pointers and variables, most attacks against function pointers still
require injecting new code. Therefore, we do not categorize these attacks as
kernel data attacks. Also, defeating such an attack is straightforward, either by
protecting function pointers [42] or monitoring system control flow integrity [29].
In contrast, kernel data attacks that only manipulate variables or variable point-
ers, instead of function pointers, are more stealthy and harder to defeat. This
type of attack is defined by Chen et al. [9] as non-control-data attack. But they
demonstrated the viability of such an attack at the application level rather than
at the kernel level. The possibility of mounting this type of attack at the ker-
nel level is first presented in [4]. However, among the four different attack cases
shown in the work, three of them still require attackers run their own code
at the kernel level; the remaining one merely degrades system performance by
manipulating memory page related data.

To defend against non-control data attacks, Baliga et al. [3] proposed Gibral-
tar, which infers kernel invariants during the training stage and protects the
integrity of these invariants at runtime. Petroni et al. [28] and Hofmann et al. [15]
both proposed a specification based solution, which requires users manually spec-
ify integrity check policies. Although these solutions are effective in defeating
several rootkits that manipulate non-control-data, they rely heavily on a prior
knowledge of the attacks, which limits themselves to deal with existing rootkits
only. As the space for kernel data attack is enormous, attackers have sufficient
target data to exploit and bypass these defense tools. In addition, Bianchi et
al. [6] designed Blacksheep, which aims to detect kernel data attack, but it ends
up failing to do so. The main reason is that their approach is mainly through
analyzing memory dump, which includes all kinds of kernel data. They computed
a difference for all the data between multiple dump images, and a significant dif-
ference between them would raise an alarm. They finally conceded that their
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approach is not effective against kernel data attack, and they attributed it to
that kernel data continues to change while taking memory dumps.

Keylogger: Keyloggers, including both software and hardware keyloggers, have
been studied extensively over the past years. Compared with software keyloggers,
hardware based keyloggers [5,18,40,46], either rely on an external device to col-
lect the acoustic or electromagnetic emanations of the keyboard, or utilize a GPU
to monitor the keyboard buffer. A common limitation of these hardware based
keyloggers is that attackers must have physical access to the victim system, which
to some extent, restricts the impact of this attack. In contrast, software based
keyloggers do not have this limit. To defend against software based keyloggers,
as well as other malware that collects user privacy information, a number of taint
analysis based solutions have been proposed [16,24,44,45]. The key observation
of these approaches is that keyloggers or malware usually incur suspicious access
to sensitive information. By tracking the information flow, these tools are able
to accurately detect privacy leakage. However, these approaches usually induce
significant performance degradation, and thus might not be suitable for deploy-
ing in production systems. For instance, Panorama causes a system slowdown by
a factor of 20. Moreover, Slowinska et al. [36] evaluated the practicality of taint
analysis, and found that most of the existing solutions have serious drawbacks;
finally, they concluded that taint analysis “may have some value in detecting
memory corruption attacks, but it is fundamentally not suitable for automated
detecting of privacy-breaching malware such as keyloggers”.

8 Conclusion

Without injecting any kernel-level malicious code, attackers can launch a kernel
data attack in a much more stealthy manner by merely altering kernel data.
However, whether kernel data attack could cause serious security damage to a
victim system is unanswered question. In this paper, we have demonstrated the
severity of kernel data attack. In particular, we have shown that by altering in-
memory global kernel data, attackers can bypass the Linux Auditing framework,
the Linux Apparmor framework, and the NULL pointer dereference mitigation,
which significantly facilitates malicious privilege escalation. To further demon-
strate the security threat posed by kernel data attack, we have designed and
implemented a new keylogger. Our keylogger is more stealthy than existing key-
loggers and is able to evade the existing rootkit/keylogger detection tools, as it
neither changes any kernel code nor requires running a hidden process. There-
fore, we conclude that kernel data attacks are indeed realistic security threats.
To counter against kernel data attacks, we have proposed a defense mechanism
that classifies kernel data into four different types and handles these different
types of kernel data separately. Our experimental results show that our proposed
defense is very effective against kernel data attacks.
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Abstract. Cybercrime caused by malware becomes a persistent and
damaging threat which makes the trusted security solution urgently
demanded, especially for resource-constrained ends. The existing indus-
try and academic approaches provide available anti-malware systems
based on different perspectives. However, it is hard to achieve high perfor-
mance detection and data privacy protection simultaneously. This paper
proposes a cloud-based anti-malware system, called RScam, which pro-
vides fast and trusted security service for the resource-constrained ends.
In RScam, we present suspicious bucket filtering, a novel signature-based
detection mechanism based on the reversible sketch structure, which pro-
vides retrospective and accurate orientations of malicious signature frag-
ments. Then we design a lightweight client which utilizes the digest of
signature fragments to sharply reduce detection range. Finally, we design
balanced interaction mechanism, which transmits sketch coordinates of
suspicious file fragments and transformation of malicious signature frag-
ments between the client and cloud server to protect data privacy and
reduce traffic volume. We evaluate the performance of RScam with cam-
pus suspicious traffic and normal files. The results demonstrate validity
and veracity of the proposed mechanism. Our system can outperform
other existing systems with less time and traffic consumption.

Keywords: Reversible sketch · Suspicious bucket filtering · Signature-
based · Anti-malware · Cloud-based

1 Introduction

Cybercrime caused by malicious software(malware) is a persistent and damaging
threat looms over businesses and consumers. Targeted attacks increase every
year and expose more interest in social media and mobile devices as they are
continuing to work their ways deeper into our digital lives. In the year of 2014,
496,657 web attacks blocked per day, and of the 6.3 million apps analyzied, one
million of these are classified as mobile malware [1]. The McAfee Labs indicate
attacks on the Internet of Things devices will increase rapidly due to hypergrowth
in the number of connected objects, poor security hygiene and the high value of
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data on these devices [2]. Hence, it is urgent to provide a trusted and one-stop
security solution to take care of data privacy in those resource-constrained ends.

To defend against various malware, signature-based detection approach still
plays an important role and takes up a large proportion after decades of devel-
opment in both industry and academic research. It is based on the theory that
the crux of various malware, called signature, is generally unchangeable and can
be detected at the early stage of propagation though the amount of malware
samples is limited [3]. This approach is implemented by scanning and check-
ing if a file contains the contents which match the known signatures. There
are several commonly used and effective signature matching algorithms, such as
Aho-Corasick [4] and Wu-Manber [5]. Besides, many heuristic and complex algo-
rithms [21,22] are proposed for detecting unknown signatures. However, most of
them consume a great mount of memory and time which is inapplicable for
resource-constrained devices.

Two primary kinds of anti-malware systems with signature-based approach
have been deployed according to their infrastructures in state-of-the-art tech-
nology. The first one is host-based systems which install detection agents in the
users’ devices and update the signature databases to ensure timely and com-
plete security protection. ClamAV [6] is an open-source anti-virus system most
widely used and many reformative works based on it are recently proposed,
such as GrAVity [7]. However, these systems have become increasingly bloated
with the development of malware attacks [8]. The problems mainly embody in
the following two areas: (1) heavy resource consumption caused by the growing
number of signatures, such as memory, time and network bandwidth; (2) system
vulnerabilities are easy to be aimed due to their complexity.

The other solution is cloud-based security service [2] which places different
types of detection agents over the cloud servers and offers security as a ser-
vice. This newly developed framework is lenitive and cost-saving for resource-
constrained ends. However, the existing cloud-based anti-malware technologies
cannot address the following problems: (1) security vendors are designed to
directly expose or deliver the signature databases to the clients which is unwill-
ingness for the vendors and do not actually lighten the consumption of clients,
such as SplitScreen [9]; (2) users have to upload the whole file contents which may
result in some important information(e.g., location, password) leakage without
realization, such as CloudAV [10]; (3) the optimization of traffic volume between
the server and client is often neglected which is significant for the improvement
of detection efficiency. Hence, it is hard to achieve high performance of security
detection and data privacy protection simultaneously.

To overcome above shortcomings, we propose a cloud-based anti-malware
system, called RScam, which provides fast and trusted security service for the
resource-constrained ends. Specifically, we make the following contributions:

• We propose a novel signature-based detection mechanism, called suspicious
bucket filtering, based on the structure of reversible sketch for cloud server.
It can provide retrospective and accurate orientations of malicious signature
fragments. As a result, the time and computation consumption in signature-
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based malware scanning are cut down. To the best of our knowledge, no
previous work has implemented similar endeavor.

• We implement a lightweight client which utilizes the digest of signature frag-
ments to rapidly classify the file contents into suspicious and clean parts. It
can dramatically reduce the scanning range with slight adjustable false pos-
itive and further avoid the accurate matching of the whole file contents.

• To protect the data privacy and reduce the traffic volume, we design the
balanced interaction mechanism. The client transmits the sketch coordinates
of suspicious file segments, instead of the whole file content, to the cloud
after fast matching. As for the cloud server, transformations of signature
fragments are sent back to the client, rather than the signature database.

We analyze the accuracy of the proposed mechanism theoretically to prove
its validity and veracity with appropriate parameters. Our implementation of
RScam consists of roughly 2.5K lines of C/C++ code for client and 4.5K for
server which makes it easily applied to the resource-constrained devices. In addi-
tion, we evaluate the system by normal files and suspicious traffic captured from
campus network with the number of signatures ranges from 460000 to 3700000.
Statistical results show that RScam can outperform ClamAV and SplitScreen
with lower time consumption and smoother increment when scanning increasing
number of samples. Moreover, the traffic volume in RScam is averagely 10 times
smaller than that in SplitScreen.

The rest of this paper is organized as follows: Section 2 introduces related
work about signature-based malware detection. Section 3 gives a detail descrip-
tion about the system architecture and signature-based detection mechanism,
followed by discussion of the system in Section 4. Section 5 presents the experi-
mental results and analysis. Finally, we conclude the paper in Section 6.

2 Related Work

Signature-based malware detection remains important and technically reliable
after decades of development in anti-malware industry.

ClamAV [6] is the most widespread and representative open-source anti-
malware system. The latest database(main v.55 and daily v.19688) approxi-
mately contains 3700000 signatures consist of MD5 and regular expression sig-
natures. Input file contents are sequentially matched with the signature database
when scanning. If a known signature is successfully matched, the file is claimed
to be infected by malware. The matching algorithms adopted are primarily Aho-
Corasick [3] and Wu-Manber [5].

Recently, several efforts to improve the detection performance based on host
have been proposed. Hash-AV [11] proposes a malware scanning technique which
aims to take advantage of improvements in CPU performance. It utilizes hashing
functions that fit in L2 caches to speed up the exact pattern matching algorithms
in ClamAV. GrAVity [7] is a massively parallel anti-malware engine which utilize
the good performance of GPUs to accelerate the process of scanning. Hardware
implementations provide better performance, but it is always impracticable for
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the resource-constrained devices, such as mobile phones and wearable devices.
Deepak et al. [12] design a signature matching algorithm which is well suited in
mobile device scanning, but its testing signatures are limited by fixed byte and
the performance declines with the growth of signatures volume.

Cloud servers provide high-performance computation support to reduce the
match consumption in malware scanning which is the main limitation of signature-
based mechanism. Now it is attracting lots of security vendors to start to deploy
their cloud solutions, like Trend Micro, Panda Security and Kaspersky Lab.

CloudAV [10] first puts forward the notion of cloud-based malware scan-
ning in academic research and the authors apply their strategy to a mobile
environment [13]. It runs a local cloud service consists of heterogeneous anti-
virus engines running in parallel virtual machines and uses an end-user agent
to transfer suspicious files to the cloud to be checked by all anti-virus engines.
CloudAV achieves high detection rate, yet obviously, exposes the sensitive data
which compromise users privacy. CloudSEC [14] achieves similar research which
moves the analysis and correlation of network alerts into network cloud which
also consists of plenty autonomous anti-malware agents, Jakobsson et al. [15]
proposed a strategy for malware scanning which allows trusted cloud servers to
look through the activity logs of clients in order to give timely monitoring and
protection.

SplitScreen [9] designs a distributed anti-malware system based on ClamAV
to speed up the malware scanning. SplitScreen designs its first scanning mecha-
nism based on Bloom filter [16] to perform slight comparisons with file data and
reduce the size to be accurately matched. However, bloom filter is not reversible
which is similar to sketch data structure due to the multiple-to-one nature of
hashing functions, so it does not store any information about the fragments.
Actually the first scanning is so coarse-grained that the client still spends plenty
of time and computation in exact pattern matching. Our study results show
SplitScreen averagely spends 74.3 percent of its time in accurate pattern match-
ing about 65 percent of pending files with small caches.

Our work is inspired by SplitScreen, but differs from it on two significant
fronts. First, we employ reversible sketch structure with buckets containing suspi-
cious signature fragments for malware detection. It is more efficient than Bloom
filter structure because of needless to accurately match the whole contents of
suspicious files. Second, we give consideration to the perspectives of both anti-
malware vendors and end-users. Given the rapid incremental trend of signature
volume and the security vendors unwillingness of directly exposing malware sig-
nature databases which are their core profit and competitiveness, the system
opts to transmit the sketch coordinates of file fragments and transformation of
malicious signature fragments between the client and cloud server which cut
down the traffic volume simultaneously.

3 Design

In this section, we present a lightweight cloud-based anti-malware system
called RScam, which can provide fast and trusted security protection for the
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resource-constrained ends. We first show the system architecture of RScam and
then give a detail description about the signature-based detection mechanism
via reversible sketch structure in the proposed system.

3.1 System Architecture

To break out of high time consumption, which is primarily caused by a vast sum
of signatures, RScam adopts the reversible sketch structure for effective rep-
resentation and orientations of signatures, while designing balanced interactive
mechanism to protect the data privacy and reduce the traffic volume.

Fig. 1. The system architecture of RScam

We illustrate the system architecture of RScam in Fig. 1. The cloud server
maintains the signature database, summarizes the signatures into the reversible
sketch. Meanwhile, the cloud generates a digest of the sketch which represents the
existence of signatures. The digest is stored in the client when RScam is firstly
installed. The cloud updates the signature database and sketch periodically and
sends the locations in the sketch where the changes take place to the client. The
detail operations will be described in Section 3.3. As for file scanning, the client
first initializes the file contents into the segments by the similarity method with
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the signatures(described in section 3.2), then sifts out the unmatched segments
with the digest. The matched ones are suspicious and their sketch coordinates in
the digest are sent to the cloud, rather than the whole file contents. We design the
suspicious bucket filtering(SBF) mechanism for the cloud to locate the malicious
signature fragments according to the sketch coordinates from the client. The
results which consist of transformation of malicious signature fragments and
short signatures are sent back to the client as a confirmed report according to
which the client takes corresponding security measures.

3.2 Signature Initialization

Let DB be the signature database managed in the cloud. Considering signatures
do not have uniform length generally, we set a sliding window with length w
to scan the signatures in DB. For an arbitrary signature S of length l, there
will be a set of segements with length w-byte after initial scanning, namely,
S → {S1, S2, . . . , Sl−w+1}. Moreover, we take account of the wildcards in specific
signatures to map down multiple versions of a malware that originated from the
same source. In a way, the initialization can be effective in handeling polymorphic
malware caused by wildcards [11]. However, it is still impractical to deal with
all possiblilties. In CloudEyes, the signatures with wildcard are roughly divided
into two portions.

(1) Fixed-Size Wildcard: It denotes the wildcards which contains numbered
probabilities. For example, ′′?′′ matches any byte, ′′a|b|c′′ matches ′′a′′ or ′′b′′ or
′′c′′. We adapt modulo(q) in the wildcard signature initialization, which maps each
string byte to a class between 0 to q − 1(q is a random number smaller than 256),
to support wildcard matching [17]. Therefore the matching space size is restricted
because matching any value between the range of [0,q − 1], instead of all possi-
ble values between 0 to 255, means successful hit. For instance, suppose a sig-
nature ′′abcd?efgh′′ is initialized with q = 4 and w = 9. The initialization is
processed by constructing four segments:′′abcd0efgh′′,′′abcd1efgh′′,′′abcd2efgh′′

and ′′abcd3efgh′′. Similarly, ′′abcd(x|y|z)efgh′′ is classified into three sub-
strings: ′′abcd0efgh′′,′′abcd1efgh′′ and ′′abcd2efgh′′ because character x would
be mapped to class 0 as ASCII(x) mod q = 0.

(2) Variable-Size Wildcard: It denotes the wildcards with unfixed size, such
as, ′′∗′′ matches any number of bytes, ′′{n}′′ matches n bytes. Considering the
large amount of probabilities lead to serious performance slowdown, we ignore
these wilcards and initialize the rest part of signature. For instance, a signature
′′abcdef∗ghijkl′′ or ′′abcdef{200}ghijkl′′ is initialized with w = 6, the corre-
sponding substrings are ′′abcdef ′′ and ′′ghijkl′′.

Additionally, if a signature does not contain a fixed fragment at least as long
as the window size, the signature cannot be initialized. Small value of w cannot
provide enough amount of unique fragments which raises the rate of collision to
an unacceptable level during mapping. Alternatively, if the value is too large,
there is not enough granularity to answer queries for smaller file fragments in
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detection. Study result of ClamAV’s signature set for the 16-byte window size
shows that the short-signature proportion is about 0.15% after initialization.
This infrequence does not significantly reduce performance. For convenience,
below we use X to represent a signature fragment after initialization.

3.3 Reversible Sketch Structure

Sketch structure is an aggregation method which maps diverse data streams
into uniform vectors based on the Turnstile Model [18]. Let I = α1, α2, . . . , be
a sequential input stream during a given time interval. Ecah item α = (αi, μi)
consists of a key αi ∈ {0, 1, . . . , n − 1} ⇔ [n], and a value μi ∈ R. The model
assigns a time varying signal T [αi] for each key αi ∈ [n], and update T [αi]
with an increment of μi if a new item (αi, μi) arrives. Most researches [19,20]
based on sketch are applied to analysis of elements in flow, such as source and
destination IP/Port, but rarely content. Our design is inspired by this structure
whose properties can be applied in identifying malicious data fragments from
large amount of suspicious data.

Reversible sketch(represented by RS) is based on the k-ary sketch data
structure which H is the number of hash tables and m is the size of per hash
table, i.e. m = k. In our design, each element of hash table consists of a con-
tainer called bucket(RB) which stores the information of signature and a bit
called digest(D) which stands for the bucket is empty or not, with the value
0 or 1 respectively. Let h1, h2, . . . , hH be H functions randomly chosen from
a class of 2-universal hash functions, each hash table adopts one independent
function respectively. Assume an arbitrary signature X with length of w-byte,
that is X = {x1, x2, . . . , xw}. As we adopt modulo(q) to deal with the signa-
ture contain fixed-size wildcards initially, each byte of X(or file content) needs
to do the same modulo arithmetic to avoid false negative rate in detection,
although it will bring slight false positive rate. Hence the hashing result of X is
hi(X) = hi((x1 mod q), (x2 mod q), . . . , (xw mod q)). Then we can use L(X) =
{L1(X), L2(X), . . . , LH(X)} which consists of Li(X) = (i, hi(X))(1 ≤ i ≤ H)
to be the sketch coordinate of X. When summarizing X into RS, Li(X) can
be utilized to locate the corresponding reversible bucket RB[i][j] and digest
D[i][j](j = hi(X)).

There are three operations related with RS:

(1) Insert(X,L(X)): Initially, RB contains no element and all the digests
value is 0. For X which has not been mapped, L(X) decides which buckets it
belongs to. Then the sketch is updated as follows.

RB[i][j] ← RB[i][j]
⋃{X}

D[i][j] ← 1, 1 ≤ i ≤ H

Fig. 2 illustrates the state of reversible sketch structure after inserting X1,X2

and X3. The buckets labeled by coordinates mean each contains at least one
signature and the rest stand for empties.
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Fig. 2. Reversible Sketch Sturcture

(2) Delete(X,L(X)): For the signature X that is proved to be incorrect or
reduplicate for malware description, the servers call delete operation to get rid
of X from the sketch with following steps:

RB[i][j] ← RB[i][j] − {X}
D[i][j] ← 0, if RB[i][j] = ∅, 1 ≤ i ≤ H

(3) Update(ΣX ,ΠL,OP): The cloud needs to periodically update the signa-
ture database with the increment of signature quantity. ΣX = {X1,X2, . . . , Xn}
is the set of signatures need to be updated, ΠL = {L(X1), L(X2), . . . , L(Xn)}
is the set of sketch coordinates to locate the signatures and OP is the set of
operations(Insert or Delete) corresponding to each signature. After the Update
operation, the RB and D complete the similar changes with the two operations
described above.

After summarizing the signature database into the reversible sketch, funda-
mental scanning about the database can be approximately answered very quickly
according to the previous work [20]. However, more information about signature
should be stored in the structure in order to insure the scanning veracity without
the accurate scanning process like SplitScreen. Generally speaking, the basic sig-
nature database contains plenty of two-tuples (signature,malwarename). Once
a signature is matched, the comprehensible malware name is needed to show
what kind of attack it is. So the malware name should be stored by certain
format into the RS with corresponding signature segment. To balance memory
consumption and searching speed in the implementation, we design the infras-
tructure based on red black tree for fast and dynamic operations. More theo-
retical analysis about the accuracy of reversible sketch structure is discussed in
section 4 below and details about the performance are illuminated in section 5.

3.4 Matching Mechanism

The design of matching mechanism in RScam is inspired by two purposes we
desired: (1) taking the demands of both security vendors and clients into account
and (2) ensuring high performance in file scanning. Hence we divide the process
of matching into two steps, fast matching and suspicious bucket filtering, for the
client and cloud respectively. Detail descriptions are listed below:
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(1) Fast Matching: In the RScam system, the reversible sketch structure,
which contains the reversible buckets and digest, is designed to store the sum-
marization of signature and service for matching. The digest is the crux of fast
matching process which is stored in the client when the system is firstly installed.
The files need to be initialized with w and q before scanning because of their
diverse types and sizes, that is the file content should be incised into regular
fragments and then do the modulo arithmetic. Let F be the set of file fragments
after initialization, the purpose of fast matching is picking out the suspicious set
of fragments Fsus and the corresponding set of sketch coordinates Πsus with the
digest D.

Algorithm 1 Fast Matching
Input: file fragments set F , digest D
Output: suspicious fragment set Fsus and sketch coordinate set Πsus

1: Fsus, Πsus = ∅
2: clear = 0
3: while each f ∈ F do
4: calculate L(f);
5: for i = 1 to H do
6: if D[i][hi(f)] = 0 then
7: clear = 1, break; //f is not suspicious
8: end if
9: end for

10: if clear = 0 then
11: insert f into Fsus and L(f) into Πsus

12: end if
13: end while

For each fragment in F , we calculate its sketch coordinate in the digest and
check the corresponding value to estimate its existence. Only successful match-
ing in all H hash tables make the fragment suspicious, the others are normal
because the hash functions bring no false negative during signature summariza-
tion. Algorithm 1 presents details of fast matching mechanism. This process is
easy to be applied in the client due to its lightweight and can largely reduce
the number of file fragments to be further confirmed. Considering the privacy
protection of client, we send the sketch coordinates of suspicious fragments to
the cloud after fast matching, which also can cut down the communincation
consumption for the client.

(2) Suspicious Bucket Filtering: This process aims at confirming the sus-
picion of the fast matching result. The basic idea is checking every reversible
bucket according each sketch coordinate sent from the client to find the sig-
nature fragment which exists in all the H hash tables. As we describe above,
different types of signature need to be initialized into regular segments. Let NS
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be the total number of signatures in the DB(including the signatures with wild-
cards after initialized), and l be the average length of the signatures, w is the
size of sliding window, m is the size of per hash table. So the number of seg-
ments after initialization is (l − w + 1) · NS , and each bucket averagely contains
t = (l − w + 1) · NS/m segments. One possible heuristic to find the target sig-
nature fragment is take the intersections of each bucket, nevertheless this can
lead to a enormous amout of fragments output that do not match and need-
less computation which called Reverse Sketch Problem [20]. So we build another
small red black tree Tmal as a filtering buffer which is indexed by the signature
fragments stored in the bucket to count their times of appearance.

Algorithm 2 Suspicious Bucket Filtering
Input: Sketch coordinates Πsus,reversible bucket RB
Output: Set of malicious signature fragments Rmal

1: Tmal, Rmal = ∅
2: while each L(f) ∈ Πsus do
3: for i = 1 to H do
4: if RB[i][hi(f)] �= ∅ then
5: for k = 1 to t do
6: insert Xk ∈ RB[i][hi(f)] into Tmal

7: end for
8: end if
9: else Tmal = ∅

10: end for
11: for each fragment X ∈ Tmal do
12: if count(X)= H then
13: insert X into Rmal

14: end if
15: end for
16: end while

Algorithm 2 shows the process of malicious bucket filtering. Tmal is a
signature-fragment buffer for each sketch coordinate L(f) in Πsus. First, we pass
over the L(f) which any one of the corresponding reversible buckets is empty
which is caused by the hashing collision. Then we insert all signature fragments
contained in the targeted RB into Tmal and pick out the fragments whose count
is H. The result Rmal consists of the confirmed signature fragments which can
be utilized to claim the malice of file fragment in the client. The filtering shrinks
the scope of malicious signature fragments in O(H · t) time at the price of slight
memory cost. After suspicious bucket filtering, the cloud sends the result back
to the client. The confirmed signature fragments and short signatures should be
compared with the suspicious file fragments to make sure the veracity of match-
ing mechanism. The cloud can take some simple transformation of the fragments
to avoid direct exposure. This can be implemented by using a bijective reversible
function from fragment space [N ] to [N ](N = 28w). The security vendors can
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also choose some classical encryption algorithms to ensure the secure communi-
cation which is beyond the scope of this work. The client will take some security
measures, such as deletion or isolation, with the infected files after validate the
matching results.

4 Discussion

In this section, we discuss the accuracy of the reversible sketch structure which
is measured based on the false negative and false positive rates generally. A false
negative occurs when a fragment summarized into the RS earlier is asserted as
clean when matching. While the false positive occurs when a query fragment
not summarized into the RS is incorrectly stated as present. There are two
types of false positives in RScam. The first one is caused by the hash functions
employed in the RS, which is called hashing false positive. Secondly, the modulo
arithmetic adopted in the initialization brings the possibility of collision between
two different fragments and modular hashing of signature fragments adopted in
the storage mechanism. Here we call it fragment false positive. In what follows
we will conduct the theoretical and statistical analysis of these measurements.

4.1 Fasle Negative

The false negative is caused by the initialization based on fixed-size slide window,
rather than the hash function. For example, suppose the signature ′′abcdefg′′

has been summarized into RS with window size of 6, which means two signature
fragments are constructed and mapped into the RS: ′′abcdef ′′ and ′′bcdefg′′.
Now if we scan the file content ′′bcdef ′′ will respond that the file was clean
which is incorrect. It is remarkable that false negative in RScam would occur
only for the short file content whose length is less than w bytes. So it greatly
depends on the length of the scanning content. However, this situation is seldom
in prevalent security detection because sizes of files to be scanned are always
larger than w bytes which we set in the evalutaion(more details in Section 5.4).
Hence we can adjust the value of w to minimize the false negatives and ensure
the false positives acceptable. Therefore we put our focus on calculating the false
positive rate in the rest of this section.

4.2 Hashing False Positive

The hash functions we use above are 2-universal which make the hash results
are nearly randomized. Hence the principle and accuracy of summarization is
similar with the Bloom Filter. This type of false positive comes from the hash
collisions which may lead to the conclusion that a specific fragment is suspicious
when it is not. Alternatively, the false negative will never exist. We learn about
the probability of false positive in a bloom filter can be calculated with following
relation.

FP = (1 − (1 − 1
m

)kN )k (1)
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where m is the length of bloom filter, k is the number of used hash functions
and N is the amount of inserted elements. We can easily conduct the hashing
false positive of a hash table in RS. As described earlier, each hash table uses
only one hash function and (l −w +1) ·NS fragments are inserted into it. So the
false positive of each hash table is:

α = (1 − (1 − 1
m

)(l−w+1)·NS ) (2)

There are H hash tables built in RS which makes the hashing false positive
tenable if and only if collisions exist in all the H ones. According to the relation
(2), let FPh be the hashing false positive of RS that is

FPh = (1 − (1 − 1
m

)(l−w+1)·NS )H (3)

4.3 Fragment False Positive

As we described in Section 3, the RScam system adopt the modulo arithmetic to
deal with the wildcards in specific signatures. However, this will introduce col-
lisions between different fragments. Specifically, there are two distinct scenarios
lead to fragment collision discussed below.

(1) Collision Before Summarization: This scenario occurs between two
unsummarized fragments, that is, the hashing value of them is uniform. Suppose
that S and S′ are two different strings(signatures or files) with same length of l.
Assume that S = s1s2 . . . sl and S′ = s

′
1s

′
2 . . . s

′

l
, and the number of classes by q,

then the collision happens if each byte of string belongs to same class after mod-
ulo. Let F1 be the false positive before summarization, which is calculated by:

F1 = (
	 256

q 

256

)l ≤ (
1
q

+
1

256
)l (4)

(2) Collision After Summarization: This scenario occurs when the unsum-
marized file content is matched which is incorrect. Suppose that S = s1s2 . . . sl is
initialized with the window length of w. As noted earlier, the number of w-byte
fragments after initialization is (l −w +1). The collision happens when all these
fragments are wrongly resulted in suspicion. Let F2 be the false positive after
summarization, we can conclude the relation below according relation (4):

F2 = (
	 256

q 

256

)w·(l−w+1) ≤ (
1
q

+
1

256
)w·(l−w+1) (5)

Consequently the probability of collisions are the sum of F1 and F2. However,
we should negate the situation that all the bytes in the string are really equal.
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Moreover, the collision is directly related to the number of signatures summarized
into the RS. Let FPf be the fragment false positive rate, then we have:

FPf = [F1 + F2 − ( 1
256 )l] · NS

≤ [(1q + 1
256 )l + (1q + 1

256 )w·(l−w+1) − ( 1
256 )l] · NS

(6)

In conclusion, the false positive of RScam can be computed by the summation
of relations (3) and (6). As observed in Fig. 3, the hashing false positive, denoted
by FPh, is much larger than the fragment false positive, denoted by FPf , with
different number of signatures after initialization. So FPf is negligible compared
to FPh. It is reasonable that FPh grows close to 1 when the number of signatures
grows close to the size of hash table because empty reversible buckets get rare.
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Fig. 3. Two types of false positive in RScam with m = 224, w = 16, l = 30, H = 4, q = 8
and different number of signatures between 460000 to 3700000. (a) is hashing false
positive and (b) is fragment false positive.

5 Evaluation

In this section, we evaluate the performance of the RScam system and make some
comparison with the ClamAV and SplitScreen. We have implemented RScam
based on the file and signature identification model of ClamAV with approx-
imately 7K lines of C/C++ code which consist of 4.5K for cloud server and
the rest for client. The signature databases which originate from the ClamAV
open source platform contain two types of signatures: whole file or segment MD5
signatures and regular expression signatures. We employ several versions from
Nov. 2008 to Nov. 2014, which the number of signatures ranges from 460000 to
3700000. If unspecified, we implement the evaluation with the latest database
(main v.55 and daily v.19688) and show the average results over 20 runs. Our
total 36GB suspicious data set consists of about 240000 unique samples by MD5
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Table 1. Memory Cost

Memory
The number of signature

530K 860K 1M 2M 3M 3.7M

Cloud(MB) 110 198 274 642 1032 1500

Client(MB) 39 39 43 46 51 55

SplitScreen Client(MB) 58 63 67 74 78 84

hash, which are captured by specific IDS from the campus network. The experi-
ments are performed on a CentOS 5.6 virtual cloud server(8 cores, 32-GB mem-
ory and 2.53 GHz) and a common open research network emulator based on
OpenVZ which provides different types of virtual machines.

5.1 Memory Analysis

As described earlier, we adopt the reversible sketch structure in the cloud server.
Each bucket averagely contains t = (l − w + 1) · NS/m signature segments, so
the entire memory cost is w · t ·m ·H bytes theoretically. We utilize the dynamic
red black tree structure to store these segments and prune the reduplicate ones
after initialization. Meanwhile, we assign each malware name a unique number
in advance to reduce the overhead. This process takes up a period of time, but
we don’t count it in the performance of RScam because it performs only once
at the starting of evaluation. Unless otherwise specified, we use w = 20,m =
224, q = 4,H = 2, l = 20 for the RS in our experiment. Table 1 lists the average
memory cost of the cloud server and client with various number of signatures
after we adjust from different versions when scanning 600MB suspicious samples.
As observed, the memory cost of cloud server in RScam mounts up with the
growth of signatures. However, it is acceptable for security vendors. In the side of
client, the cost does not grow with the number of signatures. We also evaluate the
memory cost of SplitScreen client and find our client appropriator less memory,
which means RScam is more applicable than SpliltScreen because the latter calls
the accurate scanning of ClamAV after its first scanning.

5.2 Time Analysis

We evaluate the time performance of the RScam system in the virtual machine
as a resource-constrained client with 350MB memory, 256KB L2 cache and 1GHz
CPU, and the bandwidth between the cloud and client is 1MB/s. The testing
data are the samples randomly chosen from our data set. The average size of each
sample is 2MB. Meanwhile, we make comparisons with the system of ClamAV
and SplitScreen in the same environment. We implement this with 1MB signature
database(main v.54 and daily v.13810) because ClamAV exhausts the system
memory when running with larger signature databases. Fig. 4 shows the details
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of the time cost. RScam outperform the others with lower time consumption
and smoother increment. We can conclude that small cache volume slows down
the detecting speed of SplitScreen distinctly. In some condition, SplitScreen even
runs slower than ClamAV.
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Fig. 4. Time performance of RScam, SplitScreen and ClamAV using different number
of samples.

Moreover, we are concerned about the composing of the time cost illustrated
in Fig. 5 which reveals the effect of our matching mechanism. The mean per-
centage of accurate scanning of SplitScreen is 74.3% while that of RScam is
16.4%. The fast matching takes account of all the file fragments which matched
in the digest to avoid the accurate scanning of whole file content, while the fast
scanning of SplitScreen only reserve the first matched file fragment to label the
file to be accurately scanned. In this way, we cut down a mass of computation
and time. Hence, we can confirm that the matching mechanism based on the
reversible sketch structure can largely improve time performance.

5.3 Traffic Analysis

Another important inspiration of our design is data privacy protection with
slight amount of traffic between the client and server. We achieve this through
the communication mechanism labored above. The client sends the sketch coor-
dinates of suspicious file fragments to the server and the server send the short
signatures and transformation of malicious signature segments back to the client.

Fig. 6 illustrates the average traffic between the client and server with dif-
ferent number of signatures in RScam and SplitScreen when scanning 2GB sus-
picious samples. The experiment parameters are same with section 5.2, besides
the client and server are connected with TCP protocol. As observed, the traf-
fic in RScam is averagely 10 times smaller than that in SplitScreen, and stand
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Fig. 5. The composing of time cost of RScam and SplitScreen. SSAS and SSFF stand
for the accurate and first scanning of SplitScreen, respectively. SBF and FM stand for
suspicious bucket filter and fast matching of RScam.
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Fig. 6. The traffic between the client and server with different number of signatures.

smooth with the growth of signatures. The traffic of RScam during scanning
is averagely 39.8 KB/S which is acceptable for the resource-constrained clients,
such as mobile phones and pads.

5.4 Practical Accuracy

We discuss the accuracy of the reversible sketch structure in Section 4 and con-
clude that it can be measured primarily by hashing false positive. Moreover,
we give a practical test of the accuracy in detecting 5972 clean PE files(totally
1.42GB) with different window size under the latest signatures database. Table
2 lists the details of the practical accuracy. The false positive of RScam is cal-
culated by the number of suspicious file fragments divided by the total number
of file fragments. For MD5 signatures, we fix the value of w to be 16, the other
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variable values are for regular expression signatures. The false negative is calcu-
lated by the number of short signatures divided by the total number of signa-
tures. Small window size cannot provide enough possibilities for the large amount
of signature fragments which caused high false positive. While large window size
will produce more short signatures which bring higher false negative and not
be fine-grained enough. Hence we can ensure the high accuracy of RScam with
considered window size and 20 seems to be the moderatest value.

Table 2. Practical accuracy of RScam

Window size Fasle Positive Short Sigs False Negative

w = 12 7.861% 3467 0.092%

w = 16 5.726% 5741 0.152%

w = 20 3.380% 7676 0.203%

w = 24 2.371% 10929 0.289%

6 Conclusion

In this paper, we proposed RScam, a cloud-based anti-malware system which
provide fast and trusted security protection for resource-constrained clients. In
RScam, we design a novel signature-based detection mechanism based on the
reversible sketch structure which dramatically reduce the scanning range and
provide retrospective and accurate orientations of malicious data fragments.
Meanwhile, we design the balanced interaction mechanism to protect the data
privacy and reduce the traffic volume for both the clients and security ven-
dors. Evaluations with suspicious campus network and normal files show that
the system is able to achieve fast and accurate malware detection with slight
traffic and acceptable memory requirement. As part of our future work, we are
planning to address several challenges. The memory cost in the cloud serve side
can be reduced ulteriorly by modular hashing of the signature fragments before
they are inserted into the buckets, and we are trying to enhance the detection
performance by adopting multiple hashing in each hash table.
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Abstract. Today, various anomalies and large number of flows in a
network make traffic anomaly detection a big challenge. In this paper,
we propose DTE-FP (Dual q Tsallis Entropy for flow Feature with
Properties), a more efficient method for traffic anomaly detection. To
handle huge amount of traffic, based on Hadoop, we implement a network
traffic anomaly detection system named TADOOP, which supports semi-
automatic training and both offline and online traffic anomaly detection.
TADOOP with a cluster of five servers has been deployed in Tsinghua
University Campus Network. Furthermore, we compare DTE-FP with
Tsallis entropy, and the experimental results show that DTE-FP has
much better detection capability than Tsallis entropy.

Keywords: Tsallis entropy · Traffic anomaly detection · Hadoop · Big
data · MapReduce

1 Introduction

Today the explosive growth of network size, users and applications generates
huge amount of traffic in the Internet. The obvious network traffic fluctuation
also reduces the efficiency in traffic anomaly detection. Besides, it is very diffi-
cult to use one way to detect all network anomalies, including both known and
unknown ones. All of the above make traffic anomaly detection in a network still
be a big challenge.

Entropy has been proved to be an effective metric on network traffic anomaly
detection [1], [2], [3], and entropy-based methods can detect both known and
unknown traffic anomalies. A typical method of entropy-based traffic anomaly
detection is to split the traffic into several time bins and compute the entropy
value of each time bin for anomaly detection. In recent years, Tellenbach et al.
[4] have presented a Traffic Entropy Spectrum (TES) to reveal traffic anomalies.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 175–192, 2015.
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The basic idea is using several different Tsallis entropy values corresponding to
different parameters to form TES. Berezinski et al. [5] have shown that Tsallis
entropy has better performance than Renyi entropy and Shannon entropy. In
order to find an easy and efficient method to detect traffic anomalies, we analyze
the characteristics of Tsallis entropy for flow feature distributions, and propose
DTE-FP (Dual q Tsallis Entropy for flow Feature with Properties), a new
method for anomaly detection. The basic insight is to use the two most efficient q
values for highlighting high and low probability feature distributions respectively,
which usually imply anomalies in network traffic. DTE-FP contains two parts:
DTE and FP. On one hand, we introduce DTE to reveal the high and low
probability events in a network. On the other hand, we calculate entropy value
for each flow feature with properties (FP). In this way, we can obtain both more
concise detection results and more details of the anomalies.

In order to process huge amount of flow data, big data analytics has been
widely used to process large scale data set in recent years. An increasing number
of people have leveraged MapReduce [6] and Hadoop [7] to mine network traffic
anomalies [8], [9], [10]. Zhang et al. [9] have implemented a Shannon entropy
based system with Mapreduce. Hodge et al. [10] have proposed a Hadoop based
framework for parallel and distributed feature selection. In this paper, we have
implemented TADOOP, a network Traffic Anomaly Detection system based
on hadOOP, to detect flow-level traffic anomalies. Finally, We have deployed
TADOOP with a cluster of five servers in Tsinghua University Campus Network.
The experimental results show that our system has strong capability in traffic
anomaly detection.

The key contributions of this paper are described as follows:

– First, we analyze the characteristics of Tsallis entropy for flow feature dis-
tributions, and present a new traffic anomaly detection method DTE-FP.

– Second, we implement TADOOP, which supports semi-automatic training,
offline detection and online detection, deploy our system with a cluster of
five servers in Tsinghua University Campus Network.

– Third, we compare DTE-FP with Tsallis entropy, and the results show
that DTE-FP performs much better than Tsallis entropy in traffic anomaly
detection.

The paper is organized as follows. Section 2 introduces the related work.
In Section 3, we analyze the characteristics of Tsallis entropy for network traffic
anomaly detection, and describe the details of DTE-FP. In Section 4, we describe
the implementation of TADOOP. Then the experimental results are presented
in Section 5. In Section 6, we emphasis on which kinds of anomalies can be
detected. Finally, Section 7 concludes this paper.

2 Related Work

Nowadays, network traffic anomaly detection [11] is still a big challenge for the
explosive growth of network traffic, so that big data analytics is very necessary
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for network traffic analysis because of their online and offline detection capa-
bility. There are several studies on network traffic analysis based on big data
analytics, e.g. [8], [12]. Till now, MapReduce [6] and its open source implemen-
tation Hadoop [7] are still the most popular big data programming model and
platform used in network traffic analysis. As a representative work of network
traffic analysis with Hadoop, Lee et al. [8] presented a Hadoop-based traffic mon-
itoring system that can perform network traffic analysis of both packet-level and
flow-level. However, this work was limited to simple IP packet statistics of the
traffic with Hadoop.

Shannon entropy has been proved as a good metric in network traffic anomaly
detection [1], [13], [4], [3], [14], and has shown stronger anomaly detection capa-
bility than volume-based methods [1]. Zhang et al. [9] implemented a Shannon
entropy based system with MapReduce. Besides Shannon entropy, Tsallis pro-
posed and analyzed Tsallis entropy in their works [15], [16], [17]. However, the
first work for using Tsallis entropy in anomaly detection was introduced in 2007
[13]. After that, Tellenbach et al. [4] proposed a Traffic Entropy Spectrum (TES)
method, in which different entropy values corresponding to different parameters
are used to form TES to reveal anomalies. Berezinski et al. [5] presented that Tsal-
lis entropy had better performance than Renyi entropy and Shannon entropy.

Entropy based detection method usually splits time into several time bins,
and calculates entropy values for flow feature distributions in each time bin [1].
Lakhina et al. used entropy values of source IP address/port and destination
IP/port for traffic anomaly detection [1]. Besides above feature distributions,
Nychis et al. employed Shannon entropy for in-degree, out-degree and flow size
distribution (FSD) to mine more anomalies [3]. In this paper, besides source
IP/port and destination IP/port, we not only introduce flow byte for traffic
anomaly detection, but also use flow feature with properties instead of one single
feature. For example, we use source IP as the main flow feature, and use flow
direction, protocol and TCP control bit as its properties.

3 DTE-FP

Entropy has been proved to be an efficient matric for traffic anomaly detection,
and widely used in anomaly detection systems. A typical mode of entropy-based
traffic anomaly detection is to split the traffic into several time bins and compute
the entropy values of flow feature distributions for all time bins. Finally, we can
find out the anomalous time bins, in which their entropy values deviate much
from the normal ones. In this section, we propose a new Tsallis entropy based
method for traffic anomaly detection.

3.1 Tsallis Entropy Characteristics for Anomaly Detection

Tsallis entropy STs = k
q−1 (1 − ∑n

i=1 pqi ) performs well in traffic anomaly detec-
tion. The parameter q means different sensitivity for different probability events,
which makes Tsallis entropy flexible and efficient for traffic anomaly detection.
We will illustrate its characteristics from two aspects: stability for normal flows
and sensitivity for anomalous flows.
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Stability for Normal Flows. The flow numbers in a network change all
the time, especially between day and night, which makes Tsallis entropy val-
ues change with the flow numbers. In order to know the effect of flow numbers
in a whole day, we analyze the flow data with few anomalies for the period
0:00 to 24:00. We divide the whole time into 8640 time bins by using 10s as
the time interval. We then obtain Tsallis entropy values with different q values,
such as q = 2.5, 1.5, 0.5,−0.5,−1.5, because the work of Tellenbach et al. finds
that the selection q = 2, 1.75, ...,−1.75,−2 gives sufficient information to detect
network anomalies [4]. We normalize Tsallis entropy values by dividing by the
max entropy value for each feature. As shown in Fig. 1, we can find that the
flow numbers obviously decrease in the night while increase during the daytime.
The corresponding Tsallis entropy values for source IP address decrease when
there are few flows in the night, and increase when there are many flows in the
day. Furthermore, Fig. 1 also shows that Tsallis entropy with a bigger q value is
more stable and less effected by flow numbers.

Sensitivity for Anomalous Flows. In order to test the sensitivity of Tsallis
entropy for different q values, we randomly select a normal data with 60 time tins.
We inject a DDoS attack of 20k flows into time bin #30. In this attack, a large
number of source IP addresses and ports launch a SYN flood to a same destina-
tion IP and port. As shown in Fig. 2, we can find that a small q value results in an
obvious fluctuation of entropy values, while a bigger q means a more steady entropy
value. We can also find that the Tsallis entropy value of destination IP address will
decrease sharply when q > 1, while the entropy value for source IP address has no
obvious increase. We thus observe that Tsallis entropy is sensitive to high probabil-
ity elements but insensitive to low probability elements when q > 1. Furthermore,

(a) Flow Number (b) q = 2.5 (c) q = 1.5

(d) q = 0.5 (e) q = −0.5 (f) q = −1.5

Fig. 1. Stability for Normal Flows
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the Tsallis entropy value for source IP address increases sharply, while the entropy
value for destination IP address decreases smaller, even increases when q < 1. The
situation above means Tsallis entropy is sensitive to low probability elements but
insensitive to high probability elements when q < 1.

Therefore, the characteristic of Tsallis entropy can be summarized into fol-
lowing points: (1) A bigger q value is less effected by total normal flow numbers
when q > 1. (2) Tsallis entropy is sensitive to high probability elements when
q > 1, and sensitive to low probability elements when q < 1.

(a) q = 2 (b) q = 1.5 (c) q = 1.2 (d) q = 0.8

(e) q = 0.5 (f) q = 0.2 (g) q = −0.5 (h) q = −1.5

Fig. 2. Sensitivity of Tsallis Entropy for The DDoS Attack

3.2 DTE-FP

According to the characteristic of Tsallis entropy for the normal flows and
anomalous flows, we propose DTE-FP, a new method for traffic anomaly detec-
tion. The basic insight is to use the two most efficient q values for highlighting
high and low probability feature distributions respectively, which usually imply
anomalies in network traffic. DTE-FP contains two aspects: DTE and FP. For
one thing, we present dual q Tsallis entropy (DTE), whose definition is shown
in Definition 1. For another, we calculate entropy for each flow feature with
properties (FP).

Definition 1.
SDTE =< SL, SH >,where

{
SL = k

ql−1 (1 − ∑n
i=1 pqli ), (ql < 1)

SH = k
qh−1 (1 − ∑n

i=1 pqhi ), (qh > 1)
(1)

DTE forDetection. In DTE, a pair of q value < qh, ql > is employed for different
anomalies. We use qh and ql to detect the anomalies with high and low probability
feature distribution respectively. As shown in Fig. 3, if a DDoS attack happens
in time bin #30, we can find the entropy value for source IP address exceeds its
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(a) q < 1 (b) q > 1

Fig. 3. DTE for DDoS Attack

upper threshold, and the entropy value for destination is below its lower threshold.
Therefore, a suitable q could find more anomalies. Note that we should guarantee
that qh > 1 and ql < 1. Normally, we can select qh and ql by training.

FP. Usually, the flows of an attack have the similar pattern. For example, the
flows of a DDoS attack have the same destination IP, destination port, protocol
number and TCP control bit. However, we cannot use each traffic feature to
compute entropy values, such as protocol numbers, because the entropy values
for protocol number distributions have little information, and they can hardly
help us to detect anomalies. But if we select some flow features as main features
and other features as their properties, we will obtain more precise results. As
shown in Fig. 4, we choose source IP/port, destination IP/port, and flow byte as
the main features, and use time bin of flow, flow direction, protocol number and
TCP control bit as the properties of main features. We use the time bin and flow
direction to divide the traffic into different feature distributions. Protocol number
and TCP control bit help to compute entropy value for each feature distribution.
FP will not only help to obtain more concise results, but also provide more details
of the anomalies for more detailed classification.
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Fig. 4. Flow Feature with Properties

3.3 Detection for Common Attacks

DDoS. As shown in Fig. 5, in time bin #30, we inject a DDoS attack of 20k
flows, in which a large number of source IP addresses and ports launch a SYN
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(a) q = 1.5 (b) q = 0.2

Fig. 5. DDoS Attack

(a) q = 1.5 (b) q = 0.2

Fig. 6. Spam

Table 1. Relationships between DTE-FP and Typical Traffic Anomalies

Anomaly
q < 1 q > 1

Protocol TCPctrlBit
sIp sPt dIp dPt sIp sPt dIp dPt byte

DoS: SYN flood ↓ ↓ ↓ 6 2

DoS: ACK flood ↓ ↓ ↓ 6 18

DoS: UDP flood ↓ ↓ ↓ 17 0

DoS: ICMP flood ↓ ↓ ↓ 1 0

DDoS: SYN flood ↑ ↓ ↓ 6 2

DDoS: ACK flood ↑ ↓ ↓ 6 18

DDoS: UDP flood ↑ ↓ ↓ 17 0

DDoS: ICMP flood ↑ ↓ ↓ 1 0

DRDoS ↑ ↑ ↓ ↓ 6 2

PortScan1 ↑ ↓ ↓ 1/6/17 0/2/0

PortScan2 ↑ ↓ ↓ 1/6/17 0/2/0

Spam ↓ 6 -

Worm ↓ ↓ 6/17 -

flood to a same destination IP and port. Then we can find the entropy value for
source IP address in this time bin sharply increases when q < 1, and entropy
value for destination IP address and port obviously decreases when q > 1.

Spam. As shown in Fig. 6, if a spam of 2k flows happens in time bin #30, the
Tsallis entropy value for the flow byte feature will decrease sharply.
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Other Attacks. We can use DTE-FP to detect the anomalies which deviate
from the normal situation. Table 1 introduces the relationships between entropy
and the typical traffic anomalies.

4 Implementation of TADOOP

In this section, we describe the architecture and implementation of TADOOP.
As shown in Fig. 7, our system consists of a traffic collector, a entropy calculation
module, a training module, a detection module and a web-based interface.
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Fig. 7. Architecture of TADOOP

4.1 Traffic Collector

The traffic collector receives NetFlow packets from the edge routers of an AS
or edge network, and supports NetFlow v5 and IPFIX format flow data. We
leverage “libipfix” [18] to decode IPFIX format data and use “p3” [8] to decode
NetFlow v5 format data. Besides, we anonymize all IP addresses by “IPANON”.

4.2 Entropy Calculation Module

Entropy calculation module aims at computing Tsallis entropy value pairs for
each flow feature distribution. We implement this module in MapReduce frame-
work. In our system, we use one-round MapReduce to achieve above function.
Algorithm Tsallis.map aims to extract and transform flow information. First,
it extracts flow features from each flow (line 2), and obtains flow direction and
time bin value (line 3-4), then outputs the final flow features with properties
(line 5-20). We divide all flows into outside flows, incoming flows, outgoing flows
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Algorithm 1. Tsallis.map
Input: The set of flow records decoded from NetFlow file (FR), the length of

each time bin (L), the set of owner As numbers (AS)
Output: The set of new < key, value > pairs (MS)

1 foreach flow f ∈ FR do
2 Extract(sIp, sP t, dIp, dP t, Bt, srcAs, dstAs, pro, bit, endT ime) from flow f ;
3 fD ← flowDirection(srcAs, dstAs, AS);
4 tNum ← endT ime/L;
5 %form new flow feature with property newSrcIp ← fD + tNum;
6 newSrcIpV al ← “sIp” + sIp + pro + bit + 1;
7 newSrcP t ← fD + tNum;
8 newSrcP tV al ← “sP t” + sP t + pro + bit + 1;
9 newDstIp ← fD + tNum;

10 newDstIpV al ← “dIp” + dIp + pro + bit + 1;
11 newDstP t ← fD + tNum;
12 newDstP tV al ← “dPt” + dPt + pro + bit + 1;
13 if bit == 19||bit == 27||bit == 31 then
14 newByte ← fD + tNum;
15 newByteV al ← “Bt” + Bt + pro + bit + 1;
16 MS ← MS ∪ < newByte, newByteV al >;

17 MS ← MS ∪ < newSrcIp, newSrcIpV al >;
18 MS ← MS ∪ < newSrcP t, newSrcP tV al >;
19 MS ← MS ∪ < newDstIp, newDstIpV al >;
20 MS ← MS ∪ < newDstP t, newDstP tV al >;

and inner flows. For example, if both the source and destination AS number
belongs to the network, the flow is inner flow.

Algorithm Tsallis.reduce is in charge of obtaining the final Tsallis entropy
value pairs for each flow feature distribution. First, it classifies all flow features
into five hash maps for source IP address, source port, destination IP address,
destination port and flow byte. It then employs function update hm to compute
the occurrence number of the same flow features and combine them into one
< key, value > pair (line 2-14). Second, it uses function TsallisEn to calculate
Tsallis entropy value pairs for all flow features in each time bin (line 16-18). At
last, it outputs the results (line 20-25).

4.3 Semi-automatic Training Module

Training module helps us to obtain the detection thresholds for all flow feature
distributions. First of all, we select a long time flow data for training, and mark
anomalous time bin for each flow feature. We then use Algorithm AutoTrain
to obtain the final threshold pair for each feature distribution. As described
in Algorithm 4 AutoTrain, we employ a while-loop to obtain the fine threshold
pairs step by step. We set the max false positive rate ( MFPR ) as the termination
condition. If the current false positive rate fp1 or fp2 is smaller than MFPR,
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Algorithm 2. Tsallis.reduce
Input: The set of < key, value − list > pairs (MS), ql, qh
Output: Tsallis entropy file EF

1 foreach < key, value − list >∈ MS do
2 create HashMap < String, int > set (HS) from hm 1 to hm 5;
3 foreach val ∈ value − list do
4 < flowObj, sum >← split(val);
5 if flowObj.contains(“sIp”) then
6 update hm(flowObj, hm 1);

7 else if flowObj.contains(“sP t”) then
8 update hm(flowObj, hm 2);
9 else if flowObj.contains(“dIp”) then

10 update hm(flowObj, hm 3);
11 else if flowObj.contains(“dPt”) then
12 update hm(flowObj, hm 4);

13 else if flowObj.contains(“Bt”) then
14 update hm(flowObj, hm 5);

15 % compute Tsallis entropy;
16 foreach hm i ∈ HS do
17 Sql i ← TsallisEn(hm i, ql);
18 Sqh i ← TsallisEn(hm i, qh);

19 % output Tsallis entropy;
20 srcIpEntro ←< Sql 1, Sqh 1 >;
21 srcP tEntro ←< Sql 2, Sqh 2 >;
22 dstIpEntro ←< Sql 3, Sqh 3 >;
23 dstP tEntro ←< Sql 4, Sqh 4 >;
24 byteEntro ←< Sql 5, Sqh 5 >;
25 entropy ← srcIpEntro + srcP tEntro + dstIpEntro + dstP tEntro

EF ← EF ∪ < key, entropy >;

Threshold Tql minuses δ or Tqh pluses δ. We obtain the final results when the
while-loop is over.

4.4 Detection Module

The detection module includes both an offline detection module and an online
detection module. The offline detection module is running on the whole Hadoop
platform, while the online detection module is running on a single node.

Offline Detection Module. Offline detection module can detect all the his-
torical data and find the anomalies. It calls the entropy calculation module to
compute the entropy values for all time bins, then uses the thresholds obtained
from training to detect anomalies.
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Algorithm 3. TsallisEn
Input: HS, k, ql, qh
Output: < Sql , Sqh > value pairs

1 foreach hmi ∈ HS do
2 total ← 0;
3 foreach val ∈ hmi do
4 total ← total + sum;
5 List lst ← val;

6 total1 ← 0;
7 total2 ← 0;
8 foreach val ∈ lst do
9 sum1 ← sum1 + ( val

total
)ql ;

10 sum2 ← sum2 + ( val
total

)qh ;

11 Sq1 ← k
q1−1

× (1 − sum1);

12 Sq2 ← k
q2−1

× (1 − sum2);

13 Output < Sq1, Sq2 > value pair
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Algorithm 4. AutoTrain
Input: Entropy value file eF ile, time bin list for all flow features (LST ), the

max false positive rate MFPR, increase/decrease degree δ, ql, qh
Output: Threshold Tql , Tqh , false positive rate pair < fp1, fp2 >, false negative

rate pair < fn1, fn2 >
1 % obtain initial threshold value;
2 Tqh ← 0;
3 Tql ← 1;
4 foreach flow feature i do
5 runF lag1 ← true;
6 runF lag2 ← true;
7 while runF lag1||runF lag2 do
8 foreach line ∈ eF ile do
9 < timeBin, Sql , Sqh >← readEntro(line, i);

10 if (Sql > Tql)&runF lag1 then
11 list1.add(timeBin);

12 if (Sqh < Tqh)&runF lag2 then
13 list2.add(timeBin);

14 < fp1 i, fn1 i >← compare(list1, LST );
15 < fp2 i, fn2 i >← compare(list2, LST );
16 if fp1 < MFPR then
17 Tql i ← Tql i − δ;

18 else
19 break;
20 Tql i ← Tql i + δ;
21 runF lag1 ← false;

22 if fp2 < MFPR then
23 Tq2 i ← Tq2 i + δ;

24 else
25 break;
26 Tq2 i ← Tq2 i − δ;
27 runF lag2 ← false;

28 if !(runF lag1||runF lag2) then
29 Output < Tql i, Tqh i, fp1 i, fn1 i, fp2 i, fn2 i >;

Online Detection Module. Online detection module achieves online detec-
tion without employing a distributed processing. It consists of two parts: entropy
calculation and anomaly detection. The entropy calculation part aims to calcu-
late entropy values for the current time bin. As shown in Fig. 8, after decoding
the NetFlow format data into text format flow information, the online detection
module extracts flow features with properties between the begin time and the
end time, and calculates entropy values for all flow features in this time bin after
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the end time. Finally, we obtain the detection results by comparing with the
thresholds, and show them on web page.

5 Experiments

5.1 Experiment Environment

We have deployed TADOOP with a cluster of five servers in Tsinghua University
Campus Network. Each server integrates two 2.60 GHz Intel Xeon E5-2630 CPU
with 12 cores, 32G memory and 9T hard disk. The five servers are connected
with a Gigabit Ethernet switch.

5.2 Data

We study the proposed anomaly detection methods using 1.3T IPFIX format
flow data collected from one edge router of Tsinghua University Campus Network
for the period from 2014-3-2 23:39:20 to 2014-3-11 13:03:00. The sampling ratio is
1:1. For our experiment, we use the data of the period from 2014-3-2 23:39:20 to
2014-3-6 10:58:00 for training, and use the rest data to detect traffic anomalies.

5.3 Detection in Tsinghua University Campus Network

In order to make comparisons, we leverage both Tsallis entropy and DTE-FP to
detect anomalies of incoming flows, in which only the destination IP addresses
belong to Tsinghua University.

Training for Detection Parameters. Before actual detection, the detection
parameters and thresholds should be obtained by the training module. Therefore,
we must obtain a fixed time interval, a suitable < qh, ql > value pair and all
thresholds for the used flow features in the training phase.

Tian et al. [19] shows that a smaller time interval is more sensitive for detect-
ing traffic anomalies by Shannon entropy, because there are less flows in a time
bin, and it is more likely for us to find the anomalies of a certain scale. Addition-
ally, we also find that, in a time bin of too many flows, some traffic anomalies
will be masked in our Tsallis entropy based method too. Therefore, we refer to
the experiment parameter in [19] and set 10s as our time interval.

The work of Tellenbach et al. finds that the selection q = 2, ...,−2 gives
sufficient information to detect network anomalies [4]. According to the exper-
iments shown in Fig. 1 and Fig. 2, we also find that the q of a too big or
small value will not results in a good detection result. Therefore, we select
q = 1.5, 1.1, 0.8, 0.2,−0.5 as q value candidates for DTE-FP, and use these q
values to calculate Tsallis entropy values for each flow feature. For calculating
the actual false positive rate, we analyze the whole training data, and both find
out and label all anomalous time bins for each feature. In order to obtain good
detection results, we ignore the time bins whose flow numbers is under 2k in
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training and detection, because it is likely that a lot of flows which should be in
these time bins were lost in the collection process.

After that, we set MFPR as 0%, 1%, 2% and 5% respectively, and employ
Algorithm 4 AutoTrain to obtain the upper threshold (UT) and lower threshold
(LT) for each feature. Table 2 shows the detection thresholds, anomaly number
(AN) and false positive number (FPN) for the training data. From this table, for
all MFPR values, we can clearly find that the detection capability for the lower
thresholds decrease obviously when q value becomes smaller from 1.5 to -0.5,
and we even cannot detect any anomaly by the lower threshold when q = −0.5.
However, the detection capability for the upper threshold becomes stronger when
q changes from 1.5 to 0.2, and it has the best detection capability when q = 0.2.
Therefore, we can use both the best q value for upper thresholds q = 0.2 and
the best q value for lower thresholds q = 1.5 to form the < qh, ql > value pair of
DTE-FP.

Detection Capability Comparison. After training, we can mine traffic
anomalies from the flow data for detection, Fig. 9 shows the detection results
by DTE-FP when MFPR = 5%, and all results are summarised in Table 3.

Table 2. Detection Thresholds and Capability in Training

FP q
Lower Threshold (LT) & Upper Threshold (UT) AN & FPN
sicip srcpt dstip dstpt byte LT UT both

0%

1.5 0.625,0.965 0.329,0.988 0.891,0.994 0.732,0.979 0.597,1 1860,0 36,0 1860,0
1.1 0.488,0.999 0.233,0.955 0.573,0.967 0.500,0.984 0.421,1 1243,0 73,0 1245,0
0.8 0.327,0.968 0.107,0.862 0.235,0.869 0.234,0.877 0.019,1 652,0 95,0 678,0
0.2 0.081,0.862 0.023,0.618 0.026,0.604 0.027,0.581 0.008,1 43,0 303,0 332,0
-0.5 0,1.000 0,0.578 0,0.392 0,0.515 0,1 11,0 123,0 134,0
DTE 0.625,0.862 0.329,0.618 0.891,0.604 0.732,0.581 0.597,1 1860,0 303,0 2003,0

1%

1.5 0.631,0.965 0.330,0.988 0.892,0.994 0.743,0.979 0.597,1 1862,1 36,0 1862,1
1.1 0.493,0.999 0.233,0.955 0.573,0.967 0.512,0.984 0.421,1 1392,2 73,0 1394,2
0.8 0.330,0.968 0.235,0.862 0.107,0.869 0.239,0.877 0.019,1 668,2 95,0 693,2
0.2 0.330,0.861 0.107,0.618 0.235,0.603 0.239,0.581 0.019,1 43,0 311,0 340,0
-0.5 0,1.000 0,0.578 0,0.391 0, 0.515 0, 1 11,0 125,0 136,0
DTE 0.631,0.861 0.329,0.618 0.891,0.603 0.732,0.581 0.597,1 1862,1 311,0 2011,1

2%

1.5 0.638,0.965 0.331,0.988 0.893,0.993 0.750,0.979 0.597,1 2112,3 58,0 2112,3
1.1 0.500,0.999 0.234,0.955 0.573,0.966 0.522,0.984 0.421,1 1495,3 76,0 1497,3
0.8 0.335,0.968 0.108,0.862 0.235,0.868 0.243,0.877 0.019,1 753,3 97,0 778,3
0.2 0.081,0.861 0.023,0.617 0.026,0.602 0.027,0.581 0.008,1 43,0 313,0 342,0
-0.5 0,1.000 0, 0.578 0, 0.390 0, 0.515 0, 1 11,0 126,0 137,0
DTE 0.638,0.877 0.331,0.613 0.893,0.599 0.750,0.580 0.597,1 2112,3 313,0 2256,3

5%

1.5 0.667,0.965 0.334,0.988 0.893,0.991 0.765,0.979 0.597,1 2344,4 130,0 2344,4
1.1 0.525,0.999 0.235,0.954 0.573,0.964 0.536,0.984 0.421,1 1665,5 88,0 1668,5
0.8 0.350,0.968 0.110,0.861 0.235,0.866 0.252,0.877 0.019,1 891,5 102,0 915,5
0.2 0.082,0.859 0.023,0.615 0.026,0.598 0.028,0.580 0.008,1 44,1 333,0 363,1
-0.5 0,1.000 0, 0.577 0, 0.385 0, 0.515 0, 1 11,0 131,0 142,0
DTE 0.667,0.859 0.334,0.615 0.893,0.598 0.765,0.580 0.597,1 2344,4 333,0 2502,4
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From this table, we can find that DTE-FP has better detection capability than
any single Tsallis entropy. If a bigger MFPR is selected, more anomalies will be
detected. We validate the anomalous time bins by using automatic and manual
check. If a time bin has obvious heavy hitters, we mark it as anomalous time bin.
For the rest detected ones, we manually check them by flow feature distribution.
For example, as shown in Fig. 10(a), by checking the heavy hitters for source
IP, source port and destination port in time bin 1, we find the source IP address
241.119.171.133 used 8534 flows to scan No.1443 port of a large number of hosts.
The same, we also find there was a port scan attack that scaned different ports
of 88.15.139.82 in time bin 2. Note that the IP addresses are anonymized by our
system.

(a) SrcIP (q = 1.5) (b) SrcIP (q = 0.2) (c) SrcPort (q = 1.5)

(d) SrcPort (q = 0.2) (e) Destination IP (q = 1.5) (f) DstIP (q = 0.2)

(g) DstPort (q = 1.5) (h) DstPort (q = 0.2) (i) Byte (q = 1.5)

Fig. 9. DTE-FP for Anomaly Detection

Anomaly Classification. We can classify the detection results by different
flow features. As shown in TABLE 4, we find 13 kinds of entropy patterns when
we detect anomalies by the thresholds of DTE-FP when MFPR = 5%.



190 G. Tian et al.

Table 3. Detection Capability

q
Anomaly Number & False Positive Number

MFPR=0% MFPR=1% MFPR=2% MFPR=5%
LT UT both LT UT both LT UT both LT UT both

1.5 659,0 4,0 659,0 721,0 4,0 721,0 756,0 6,0 756,0 841,0 23,0 841,0

1.1 299,0 18,0 301,0 348,0 18,0 350,0 387,0 20,0 389,0 445,0 23,0 448,0

0.8 81,0 74,1 146,1 87,0 74,1 152,1 94,0 75,1 160,1 102,0 75,1 168,1

0.2 0,0 415,0 415,0 0,0 423,0 423,0 0,0 425,0 425,0 0,0 445,0 445,0

-0.5 0,0 98,0 98,0 0,0 101,0 101,0 0,0 101,0 101,0 0,0 105,0 105,0

DTE 659,0 415,0 949,0 721,0 423,0 957,0 756,0 425,0 1047,0 841,0 445,0 1148,0

( 241.119.171.133 , 6000 )

( x.x.x.x ~ x.x.x.x , 1433 )

TCP SYN
8534

Time bin 1:
139427565 (2014/3/8 18:47:30 ~ 2014/3/8 18:47:40)

(a) port scan 1

( 164.205.37.228, 42180 )

( 88.15.139.82 , xx ~ xx )

TCP SYN
3417

Time bin 2:
139439302 (2014/3/10 3:23:40 ~ 2014/3/10 3:23:50 )

(b) port scan 2

Fig. 10. Examples for Anomaly Validation

Table 4. Anomaly Classification

Feature Anomaly Number

sicip srcpt dstip dstpt byte DTE-FP√
474√
10√ √
52√
10√ √
22√ √ √
8√

365√ √
122√ √
3√ √ √
8√ √
16√ √ √
31√ √ √ √
27

Total Anomaly Number 1148



TADOOP: Mining Network Traffic Anomalies with Hadoop 191

6 Discussion

DTE-FP is only used to detect the flow-level traffic anomalies with a certain
scale, such as DoS, DDoS, port scan, network scan, worm and spam. However, it
doesn’t care about other kinds of anomalies without flow-level feature deviation,
e.g. virus and Trojan.

In this paper, in order to make comparisons between DTE-FP and Tsallis
entropy, we use a constant threshold for entropy value to detect traffic anomalies.
But DTE-FP is independent of detection algorithm. We can use other detection
algorithms, such as a change-based algorithm for entropy, to detect anomalies.

7 Conclusion and Future Work

In this paper, we analyze the characteristics of Tsallis entropy for flow-level
network traffic anomaly detection, and propose a new traffic anomaly detection
method DTE-FP. Additionally, we implement a Hadoop-based system named
TADOOP, which supports semi-automatic training, offline detection and online
detection. finally, we deploy our system in Tsinghua University Campus Network,
and use it to mine traffic anomalies. The experiment results reveal that DTE-
FP performs much better than Tsallis entropy and TADOOP plays a good role
in traffic anomaly detection. In our future work, we plan to use a change-based
algorithm for entropy to detect traffic anomalies, and make comparisons between
the two methods.
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Abstract. Recent years have seen many virtualization-based Isolated
Execution Environments (IEE) proposed in the literature to protect a
Piece of Application Logic (PAL) against attacks from an untrusted
guest kernel. A prerequisite of these IEE system is that the PAL is
small and self-contained. Therefore, a PAL is deprived of channels to
interact with the external execution environment including the kernel
and application libraries. As a result, the PAL can only perform limited
tasks such as memory-resident computation with inflexible utilization
of system resources. To protect more sophisticated tasks, the applica-
tion developer has to segment it into numerous PALs satisfying the IEE
prerequisite, which inevitably lead to development inefficiency and more
erroneous code. In this paper, we propose SuperCall, a new function call
interface for a PAL to safely and efficiently call external untrusted code
in both the kernel and user spaces. It not only allows flexible interac-
tions between a PAL and untrusted environments, but also improved
the utilization of resources, without compromising the security of the
PAL. We have implemented SuperCall on top of a tiny hypervisor. To
demonstrate and evaluate SuperCall, we use it to build a PAL as part of a
password checking program. The experiment results show that SuperCall
improves the development efficiency and incurs insignificant performance
overhead.

1 Introduction

Numerous Isolated Execution Environments (IEE) [4,8,11,17,20,23] have been
proposed using virtualization techniques to tackle attacks from both the user and
kernel spaces. An IEE separates a Piece of Application Logic (PAL)’s execution
from the rest of the platform, including the operating system, so as to protect
its execution integrity as well as data secrecy. An indispensable prerequisite of

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 193–211, 2015.
DOI: 10.1007/978-3-319-28865-9 11
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an IEE’s protection over a PAL is the self-contained property stating that the
execution flow does not leave the PAL’s code, which implies no function calls
to external code including the kernel code. The reason of this restriction is that
sharing the same execution flow jeopardizes the security of the PAL and IEE.

One limitation of PAL-based IEE is its impact on the utilization of system
resources. Without dynamically resource (e.g., memory) allocation and deal-
location services, the PAL has to acquire all needed resources before execu-
tion and hold them till the end. For instance, the OS allocates to the PAL a
bulky memory region with the maximum size in estimation. Such resource usage
strategy is obviously not efficient. Moreover, the self-contained property requires
the PAL to assemble all needed inputs before its execution. Dynamic data or
events generated at runtime cannot be used as an input, which significantly lim-
its the PAL’s functionality. At last, the PAL based IEE also introduces great
efforts into the development of PAL. For instance, developers have to carefully
write their PAL code to avoid invoking library function calls. As a result, the
PAL capable of running within an IEE is either small with limited functional-
ity (e.g., computation only), or cumbersome with a higher chance of harboring
vulnerabilities.

In this work, we propose a novel interface for a PAL inside an IEE to safely
utilize external functions and system calls, e.g., to allocate/deallocate memory
buffers and to load encrypted files. It dismisses the self-contained PAL prereq-
uisite and allows the PAL developers to code PALs like a normal program. Our
new mechanism is called SuperCall as depicted in Figure 1. SuperCall separates
the execution flow of the external code from the isolated one, and ensures that
the invocation and return procedures always go through the predefined out-
and-back gates. Out gates are for safely switching isolation spaces (i.e., from
IEE space to non-IEE space) and facilitating call invocations, and back gates
are for securely resuming IEE’s execution flow, e.g., restoring execution con-
text as well as sanitizing and validating inputs (i.e., return values). Due to the
non-bypassable verifications in the back gates and the secure space switches,
SuperCall is able to defend against Iago attacks [5] and code reuse attacks [3],
and keep other desired security properties, e.g., code and data integrity, data
secrecy and control flow integrity.

SuperCall is a new interface, allowing existing IEEs to actively and securely
invoke external services. It is similar to upcall [16] that allows the hypervisor to
actively invoke guest services. Due to SuperCall needs to validate all inputs of
the back gates, developers should carefully select the external services to mini-
mize the validation costs. If the cost is quite high, e.g., requiring numerous code
or a long execution, we suggest to reconsider about the possibility of adding the
external service into the PAL. There are two typical scenarios for SuperCall.
One is to dynamically update resources (e.g., memory can be dynamically allo-
cated/released by malloc-like functions), providing flexible usage model, instead
of preserving them in a maximum estimation. The second one is to do securely
data exchange with untrusted environments, e.g., saving or reading encrypted
files. To demonstrate these two typical scenarios, we have implemented a
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Untrusted OS PAL 

PAL Apps 
App 

Hypervisor 

IEE 

Untrusted 

Secure Interface 

Channels  

Fig. 1. PALs within IEEs on virtualization-based system. PALs can securely
communicate with untrusted applications/OS functions via the SuperCall interface.

password authentication scheme called PwdChecker which is a secure login con-
sole in a multi-user system and uses passwords to authenticate users with secret
questions as a back-up means. It uses SuperCall to dynamically request mem-
ory, load an encrypted database (i.e., secure questions and answers) and get user
secure answers. Moreover, this case study also demonstrates that the develop-
ment efforts of PAL are much reduced. We have conducted performance evalua-
tion of SuperCall by using micro-benchmark tools. The results indicate that the
performance overhead of SuperCall is reasonably small.

Organization In the next section, we explain the background and the
setting of the problem we undertake to resolve, and present the overall design
of SuperCall. Then we describe the typical execution flow and a SuperCall and
present the typical application scenarios in Section 3 and Section 4. In Section 5,
we use a case to demonstrate the benefits of using SuperCall, and further evaluate
the incurred cost. We discuss the related work in Section 6. Section 7 concludes
the paper.

2 The Problem Definition and Design Overall

In this section, we first explain the background of the PAL in existing literature,
and then highlight our goals followed by a description of the security assump-
tions. At last, we generally describe how a SuperCall works.

2.1 Piece of Application Logic (PAL)

As shown in [23], PALs in various isolation systems share a common layout con-
sisting of three sections depicted in Figure 2(a). The private section contains
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the security related data, such as cryptographic keys, and other sensitive infor-
mation, such as credit card numbers. Accesses to the private section are only
allowed if they are from the PAL. Any external access is blocked. Note that the
PAL’s stack and heap regions are also in this section and they are not shared
with untrusted code.

The public section contains read-only information shared between the PAL
and untrusted code. It contains the PAL’s code and constant data, such as
constant numbers and strings. The public section defines the entry point address
for the PAL to start execution. Any execution flow not originating from the entry
point is not allowed by the IEE, so as to prevent ROP [3] like attacks whereby
the adversary twists the control flow to a chosen instruction for a malevolent
purpose.

The shared section is for data exchange between the PAL and the external
environment. Although it is writable for both of them, their accesses are exclusive
to each other. This is to deal with the Time-Of-Check-To-Time-Of-Use (TOCT-
TOU) attack which alters the data when the PAL is about to use sanitized data
in the section. Note that this section could be dynamically allocated at runtime
(Figure 2(b)).
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(b) The layout of PAL with
SuperCall support.

Fig. 2. The layout of PAL. The shared section (shaded region) could be dynamically
allocated for PALs with SuperCall support.

2.2 Desired Security Properties

We consider a PAL under the protection of the SuperCall. Specifically, the hyper-
visor maintains a table for a pre-registered PAL’s section information as well as
the entry points. It checks the initial integrity of the PAL’s public and private
sections and ensures that their memory pages are exclusively occupied by the
PAL. Upon this, SuperCall is able to ensure address space isolation and execu-
tion integrity of a PAL.
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Address Space Isolation. Address space isolation implies code integrity, data
integrity and secrecy. Various isolation mechanisms have been proposed [8,11,17,
23] which leverage the processor virtualization to prevent illicit software accesses.
Specifically, the hypervisor controls the attribute bits of the Extended Page Table
(EPT)1 entries to specify the desired access control permissions according to the
entity occupying the CPU. To prevent malware from making DMA access to
unauthorized memory regions, the hypervisor leverages device virtualization to
block illicit DMA accesses by configuring the IOMMU page table in the same way
as the EPT entries. Note that since all memory resources are allocated before
PAL execution, the address mapping is never changed during PAL execution.
Thus, the hypervisor can enforce the isolation in the beginning of the PAL and
freeze the address mapping until the PAL exits.

Execution Integrity. Execution integrity refers to the property that PAL
actually executes with inputs P ins and produces outputs P outs. It implies
control flow integrity (CFI), code and data integrity. The hypervisor enforces
that the execution flow of PAL always starts to run from a pre-defined entry
point, e.g., a back gate or the entry point. At runtime, hypervisor isolates the
entire execution environment of the PAL from the rest of the platform without
allowing any intervention, so that the PAL’s context and control flow are not
exposed to any untrusted code.

2.3 Design Goals

We aim to design the SuperCall mechanism for the PAL to securely call external
(untrusted) code without undermining the aforementioned security properties.
Through SuperCall, a PAL can efficiently invoke system calls and library func-
tions, e.g., invoking malloc to allocate memory buffers or issuing mmap2 for a
file reading.

To make SuperCall secure, efficient and practical, we use the following criteria
to guide our design.

– Small TCB. The TCB of SuperCall should be small and simple. It mini-
mizes the risk of subverting the TCB and allow for formal verification [12].
This property implies that the size expansion and complexity increasing of
the hypervisor should be minimum.

– High Efficiency. The SuperCall interface should have minimum perfor-
mance impact on the PAL execution, the IEE protection and the platform
as a whole. In addition, SuperCall should minimize the latency for one invo-
cation by reducing unnecessary operations and simplifying interactions.

– Easy to Use. The APIs of SuperCall should be easy to use. Thus, the
calling convention of SuperCall is the same as regular system calls. SuperCall
provides a routine as a wrapper to handle the minor differences which is
therefore transparent for PAL developers.

1 In AMD’s virtualization terminology, the Nested Page Table plays the same role as
Intel’s EPT.
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– Well Defined Entry Points. The entry point for the SuperCall should
be well defined, and the inputs of each entry point should be sanitized and
validated before using them, which aim to defend against Iago attack [5].

2.4 Assumptions

We consider a subverted commodity OS as the adversary. This is a realistic
threat, since the legacy OS usually has a large code base and a broad attack sur-
face. After gaining the root privilege, the adversary can launch arbitrary code
and DMA operations to access or even modify any memory regions and other
system resources, e.g., Model Specific Registers (MSRs). The purpose of the
adversary is to compromise the security properties of the PAL, for example, to
tamper with the PAL’s private data and/or to manipulate it execution logic.
SuperCall requires that the underlying platform supports hardware-assisted vir-
tualization techniques, and the hypervisor is trusted. We also assume all the
I/O devices are trusted and always behave according to their hardware specifi-
cations. In this paper, we do not consider attacks that involve physical control
of the platform. In addition, we do not consider side channel attacks.

2.5 Overview of SuperCall

The semantics of SuperCall is the same as a function call as shown in Figure 3
where the control flow transfers from the caller (X) to the callee (Y), and returns
back after the end of the execution of Y. During the development of a PAL, peo-
ple could simply replace the function with a SuperCall and add the corresponding
out and back gates/interfaces for parameter marshaling and inputs validation
(e.g., defending against Iago attack [5]).

Specifically, when caller X attempts to invoke callee Y through a SuperCall,
the PAL firstly transfers the control flow to the corresponding out gate. The
out gate prepares the stack frame needed by the called function (Y) and do
the parameter marshalling. The hypervisor saves the context of PAL, and iso-
lates the PAL by manipulating the guest context and transfers the execution
flow to the callee function. In SuperCall, this request is issued through a dedi-
cated hypercall, named as SuperEnter. When returns, the callee function2 issues
another hypercall, SuperExit, to notify the hypervisor return to the correspond-
ing back gate. In the back gate, all returns should be sanitized and validated
before they are used. The SuperEnter and SuperExit together indicate the start
and the end of a SuperCall. Their working style is similar to fast-system-call
instruction pair SYSENTER and SYSEXIT [14].

2 In the implementation, an inserted code issues the SuperExit hypercall for the callee
function (details in Figure 4).
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Fig. 3. The SuperCall mechanism. a SuperCall is quite similar to a traditional
function call, but it always go through well-defined interfaces and invoke the hypervisor
to protect the control flow transitions.

3 Typical Control Flow of SuperCall

A typical control flow of a SuperCall is also similar but relatively complex com-
paring to the control flow of the traditional function call. It always starts from
an out gate and ends with a back gate, involving two space switches driven by
a SuperEnter and a SuperExit respectively, as despited in Figure 4.
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Fig. 4. The execution path of the SuperCall interface. The shaded operations
are executed in the untrusted guest environment. Other operations are trusted and
executed either in the PAL or in the hypervisor.
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3.1 Out Gate

The out gate that is like a wrapper of the callee function shares the same calling
conversion and the same parameters with the callee function. After doing several
pre-processing operations, the out gate would transfer the control flow to the
callee function. Specifically, it does two main tasks: 1) prepare a stack frame
for the callee function, and 2) do argument marshalling. It is relatively easy to
finish the first task, as the out gate could reuse the stack frame prepared by
its caller. The only update is for the return address, which should point to the
entry of the prepared trampoline (Figure 4). During the argument marshalling,
all non-pointer arguments are kept the same in the stack frame. For pointer
arguments, the out gate will move the pointed data, e.g., structures or buffers,
into the shared section, and update the pointers to point to the new copies. After
these two tasks, the out gate will issue a SuperEnter to inform the hypervisor
to transfer the control flow to the callee function.

3.2 SuperEnter

The SuperEnter has two main purposes: 1) functional purpose which aims to
achieve the control flow transferring like the traditional function call (i.e., trans-
ferring the control flow from the caller to the callee), and 2) security purpose
that aims to keep the desired security properties of PALs.

Functional Requirement. SuperCall should be able to transfer the execution
flow to the callee function, and let the callee function execute as normal. To
achieve these, the following information should be provided and set properly:

– The arguments needed by the callee function. They are necessary for the
execution of the callee function.

– The starting address of the callee function. SuperEnter requires it to continue
the execution flow from an address specified by the caller function, and that
address can not be calculated in advance.

– The stack used by the callee function. Its stack should be different from the
one used by the PAL due to the security requirement.

– The return address: The callee will return to this address to indicate the end
of its execution flow.

– The entry point of a back gate: The control flow of the PAL will restart from
the specific back gate.

All stack-based arguments are handled by the out gate. Thus, the SuperEnter
only ask the hypervisor to handle the arguments that are passed through reg-
isters. Note that it is not safe that the out gate in the PAL space to directly
set those registers, because the values in some or all of them would be flushed
or replaced by the hypervisor during its execution for serving the SuperEnter
request.

Besides these arguments, the SuperEnter has to prepare some additional
information to smoothly transfer the control flow. In particular, the entry of
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the callee function and the callee’s stack should be provided. In addition, to
make the control flow correctly resume, the entry of the corresponding back
gate should be also specified. The provided information as well as the identity
of the PAL is safely saved in a dedicated list within the hypervisor space, which
is always inaccessible for the untrusted execution environment. Note that the
saved record will be used for the validation of the return flow, as well as the
context restoration.

Context Manipulation. After getting such information, the hypervisor needs
to manipulate the context to let the callee function execute as normal. The hyper-
visor achieves it by leveraging the processor virtualization technique. Specifically,
in hardware-assisted virtualization, almost all guest context information is auto-
matically stored in a dedicated control structure, named as the Virtual Machine
Control Structure (VMCS) in Intel VT-x [14]. Only the general registers are
manually saved by the hypervisor. The hypervisor is able to read and write the
VMCS and the saved general registers. Thus, it manipulates the values of the
corresponding registers before the processor enters the guest domain using VM-
entry instructions (i.e., VMLAUNCH and VMRESUME). More specifically,
the hypervisor can modify the IP value to let the guest start the execution from
the called starting address, and change the stack pointer SP to assign the top
of the stack for the callee function.

Security Requirement. The two basic security properties (i.e., address space
isolation and execution integrity) of the PAL should be guaranteed by the hyper-
visor during the SuperCall process. Specifically, the hypervisor should protect
both memory regions occupied by the PAL and the context registers temporally
used by the PAL. The private data and all code of the PAL are located in the
PAL memory regions. Any malicious modifications and/or illicit reads are possi-
bly lead to the integrity breaking and/or the leakage of the sensitive information.
Even worse, the modifications of control data (e.g., function pointer) will sub-
vert the control flow integrity. The context registers can contain temporal data
relevant to the private data or even the cryptographic keys. Moreover, a smarter
attacker is able to infer more sensitive information from the leaked seed-data.
Some registers can also impose the execution behaviors of the PAL, e.g., if the
stack pointer SP is illicitly modified, the PAL will fetch wrong local variables
or even use incorrect return address, violating the control flow integrity.

To protect the memory regions, the hypervisor could prepare two
EPTs/NPTs. One EPTiee is for the PAL, where the memory regions occupied
by the PAL are accessible, and another one EPTothers is for the untrusted code,
where all PAL memory regions are completely inaccessible. When the PAL occu-
pies the CPU, the hypervisor installs the EPTiee. When the PAL invokes the
SuperCall to transfer the control flow to an external function, the hypervisor
switches to another one EPTothers. In this way, the untrusted code occupying
the CPU still can not access the memory regions of the PAL.
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To protect the context information in the processor registers, the hypervisor
should save them before passing the control to the untrusted code, and restore
them after the execution flow returns. Specifically, the guest context includes
the general registers, flag registers, stack pointer, instruction pointer, as well
as the segment descriptors and selectors. After the backup, the hypervisor clears
the values of general registers, flags register, stack pointer, instruction pointer
and segment descriptors/selectors to avoid the potential data leakage. Note that
the stack pointer, instruction pointer and/or general registers will be set for the
callee function according to the request of the caller. Note that the SuperCall
states are maintained in PAL granularity and saved separately. Thus, those states
would not intervene with each other.

3.3 SuperExit

Similar to SuperEnter, the functionalities of SuperExit are also separated into
functional and security aspects. For the functional support, SuperExit is to
inform the exit of the previous SuperCall. Specifically, the caller function pre-
pares the return address for the callee function. When the callee function finishes
and returns, the processor automatically loads the prepared return address into
instruction pointer (IP ), and jumps to the specific address to continue the exe-
cution. The specific address is a prepared trampoline, which can be located in
the PAL public section or a pre-defined address (similar to the vdso on Linux
platform for assisting system calls [19]). Note that the data in the Private section,
before the SuperCall returns, is inaccessible. In order to allow the PAL to per-
form full operations (e.g., accessing the private data), the SuperExit is non-
bypassable. This exit request is sent through a dedicated hypercall - SuperExit.
More specifically, we put a SuperExit at the very beginning of the prepared
trampoline, which is able to guarantee that the processor immediately perform
the VMCALL instruction.

Context Validation. The primary purpose of the context validation is to
guarantee that the resumed control flow is correct. Recall that the hypervisor
saves the PAL and the entry of the back gate during the invocation of the
SuperEnter. Thus, the hypervisor will attempt to locate the record by searching
in the saved items. If there is one record matched, the hypervisor will remove the
record and close this temporal entry point from this PAL before returning to the
PAL. Otherwise, there must be something wrong in the current guest execution
flow. For such cases, the hypervisor can either inform the guest using an error
code or directly terminate the PAL with a fatal error.

The last task of the context validation is to restore the original context of
PAL. The unrelated registers, such as ESP and EBP, will be overwritten by
previously saved PAL’s context. If the hypervisor misses this step and directly
reuse the untrusted context left by the SuperExit, the execution integrity is
likely to be broken. Note that the hypervisor needs switching back to EPTiee to
allow the PAL to access its private data. At the same time, the hypervisor has
to restore the context of the PAL, as the context used by the SuperExit is not
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trusted. If the hypervisor reuse the context left by the SuperExit, the execution
integrity is likely to be broken, e.g., the start point of the resumed control flow
could be wrong.

3.4 Back Gate

When the callee function finishes and the execution flow returns to the PAL,
a SuperExit is immediately issued to indicate the end of the SuperCall. From
that time, the hypervisor isolates the PAL and restores the control flow. The
following work for the back gate is to un-marshal and validate the return values,
and continue the original execution flow. Unmarshalling return values is the
reverse operation of the parameter marshaling. If the return values are non-
pointer values, PAL could directly use them. If the return values are pointer
values, the back gate should move the pointed data into the private section, and
update the pointer accordingly.

After the unmarshalling of return values, the control flow will move to the
return validation procedure. In our SuperCall design, each back gate has its own
validation procedure, and guarantees that the control flow always goes through
the validation procedure before resuming the original control flow. The validation
code for a specific input is usually small and simple. Thus, the IEE developers
could manually verify its correctness. In addition, it is highly possible to formally
verified using certain formal verification methods [12]. As all inputs of back gates
are sanitized and validated, an adversary cannot bypass the verification to launch
Iago attacks [5] or code reuse attacks.

4 Typical Scenarios

There are two main scenarios for PALs to invoke external functions: 1) update
(i.e., allocate/release) memory resources (e.g., main memory and I/O ports),
such as allocating/deallocating memory, and 2) exchange data with outside,
such as getting file/socket content, reading the inputs of peripheral devices (e.g.,
user passwords, biometric information), or processing data instead of PALs (e.g.,
sorting data).

4.1 Resource Update

The first typical scenario is to update memory resource. In the real cases, a PAL
usually need extra memory for new inputs or generated data. For a PAL without
SuperCall support, it has to allocate a bulky memory with the maximum size in
estimation. Obviously the resource usage is not efficient in this situation. With
SuperCall support, a PAL does not need to do pre-allocation, instead it could
dynamically allocate memory according to the real demand.

To securely use the dynamically allocated memory, the PAL has to trace the
memory boundary and requires the protection from the hypervisor. Specifically,
in the validation step of the back gate, the PAL gets the boundary (i.e., the
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start address and the length) of the newly allocated memory resource. Once it is
done, the PAL issues a hypercall to the hypervisor to mark the occupied physical
memory into its own address space. If the memory is PAL’s private resource, it
will be marked into the private section. If it is for sharing with others, it will be
put into the shared region. Once the newly allocated memory resource is moved
into the PAL’s address space, the hypervisor will set proper access permissions
to grant legal PAL accesses and prevent illicit accesses that are originated from
outside of the PAL.

When the allocated memory is not needed, the PAL will release it for max-
imizing resource utilization. In such cases, the PAL needs to inform the hyper-
visor to remove the resource from its address space. In particular, the out gate
of the PAL collects the memory boundary of the memory resource and issues a
hypercall to inform hypervisor that it does not exclusively occupy this memory
resource. Note that there would be some problems if the releasing notification
to the hypervisor is done in the back gate, because the released memory could
be immediately reused by others, before the execution flow returns. In this case,
there will be exception to indicate the access violation. If it happens in the user
space, the corresponding process would be killed. If it is in the kernel space, it
could lead to unrecoverable events, such as system shutdown or rebooting.

4.2 Data Exchange with Outside

Another typical scenario of using SuperCall is to exchange data. In the real cases,
a PAL usually needs to exchange data with outside, such as sending dynamic
output data (e.g., log file, warning messages) or receiving dynamic input data
(e.g., user name, password and PIN number). In the PAL without SuperCall
support, it has to get all possible inputs at the very beginning and send all
output data at the final end. In this case, the developers have to predict all
possible inputs needed by the PAL. In certain extreme cases, the number of the
possible combination is extremely large, and consequently the needed memory
region is huge. In addition, the generated output data could also occupy a large
number of memory regions. If one of these two extreme cases happens, the PAL
has to be totally redesigned or divided into many smaller pieces. All these cases
imply the impracticality and inflexibility of the traditional PAL design. With the
help of SuperCall, the PAL could dynamically receive the inputs according to
the real demand. In addition, the PAL also does not need to hold the generated
output data to the end of the whole control flow, it could send output data as
normal.

To securely send the output data, the PAL has to prepare the data in its
private section or the shared section. For the common cases, the out gate could
handle them automatically, such as sending a string message or a binary stream.
For certain cases, the related data structures could be extremely complex. Facing
such conditions, SuperCall has to rely on the developers to manually handle those
output data. To facilitate the implementation of SuperCall and allow SuperCall
to automatically handle the output data, we recommend that all output data
are processed into a string or a binary stream.
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In addition, all I/O data could be selectively encrypted according to the
requirement of the PAL, achieving secure I/O. The encryption key will be pro-
vided by the hypervisor. As the hypervisor space is inaccessible for the untrusted
guest environment, the key generation process done by the hypervisor is secure.
The encrypted data could be safely stored in the hard drive or send to the remote
cloud server.

5 Evaluation

To evaluate SuperCall, we have implemented an exemplary application to use
SuperCall, and then measured its performance using several benchmark tools.

5.1 Case Study: PwdChecker

To conduct the case study, we develop an application called PwdChecker which
performs the back-end authentication of a remote server. The logic of Pwd-
Checker is as follows. It first loads user password file and the secure question
database from the disk to the main memory. It then accepts user inputs includ-
ing user name and password. If the password is incorrect, PwdChecker allows
the user to have another try and increases the login-attempt counter accordingly.
When the counter is more than three, it challenges the user with a predefined
question. The user has the last chance to get authenticated by supplying the
correct answers.

The details of the workflow is depicted in Figure 5 which shows runtime
inputs are fed in different stages. There are three dynamic inputs and one static
inputs. The static inputs are the inputs passed as parameters (i.e., username and
password), while the dynamic inputs are dynamically got at runtime according to
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Fig. 5. The work flow of PwdChecker.
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the demands (e.g., user answers). It is noteworthy that the dynamic inputs could
be passed as the static inputs through carefully modifying the code or even the
algorithm logic, e.g., the database containing the secure questions and answers
can be passed as a static input. However, it will lead to a waste of memory, e.g.,
the database occupies many memory pages but it may not be used in most cases.

According to this logic, PwdChecker makes at least three types of system
calls in order to acquire the needed resources and inputs during runtime.

– Memory allocation. It needs memory buffers to hold data, e.g, the secure
questions and answers.

– File operation. It needs to load the database which encloses user authenti-
cation related information.

– I/O operation. It needs to read from the device (e.g., a keyboard) the user’s
inputs, such as user name and passwords.

5.2 PwdChecker without SuperCall

We select the PwdChecker as a representative example to discuss the PAL devel-
opment, and SuperCall in particular, when considered in comparison with the
two alternatives available at current. The first alternative is to put everything
inside a single PAL. As a result, it needs great engineering effort to write their
own code or customize existing code, e.g., adding a memory management in the
PAL. This design will lower PAL’s security level because the size of PAL will
be dramatically enlarged. The other solution is to separate PwdChecker logic in
multiple PALs in order to maintain the self-contain property for each PAL. As
shown in Figure 5, PwdChecker is divided into three PALs. With this design, all
the three PALs are self-contained and isolated from each other, and the dynamic
inputs are now static inputs for each of them. However, this design is likely to
introduce the following issues: 1) it breaks the original logic into multiple pieces,
which may not be easily divided in most cases; 2) it would lead to a waste of
resource, e.g., the PALs will need to reserve the memory with the highest esti-
mation; and 3) it will increase the size and the complexity to manage shared
global states and the communication channels.

5.3 PwdChecker with SuperCall

With the support of SuperCall, developers can easily build a PAL with the
similar logic to the traditional insecure implementation, as well as the flexible
resource utilization. We only describe the additional operations to demonstrate
how easy to convert traditional code into self-contained with SuperCall.

The first operation is the stack switch. As introduced in Section 2.1, the stack
for the PAL should be separated with the one for the untrusted code. Thus, in the
entry point of the PAL, it immediately backups the untrusted stack and switches
to its private stack. Before exiting the execution, it switches the stack back to
prevent information leakage. To facilitate this step, we introduce two macros
with 6 SloC to perform all these backup, switch and restoration operations. The
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second operation is to prepare stack frame and marshal the arguments for the
untrusted callee function. Traditionally, the compiler generates suitable assembly
code to implicitly complete these operations. But now we must explicitly do such
operations via a dedicated function (i.e., the out gate). The out gate works like
a wrapper of the callee function. The caller function firstly invokes the out gate
as normal. In the out gate, it copies the arguments into the untrusted stack, and
adjusts the top of the untrusted stack. If there are pointers in the arguments,
the out gate must copy the content into the shared memory and update the
corresponding pointers to keep semantic consistency. SuperCall adds 12 SLOC
to achieve all these goals. The operations in the back gate are case by case due
to the return validation processes are different. However, the basic frame is the
same. Thus, we insert a framework for each back gate. The left things are to fill
the validation operations accordingly. The verification of the encrypted database
is to decrypt the ciphered database, re-calculate and compare the hash value
with the trusted one. As the memory allocation and deallocation are common
in the real cases, we summarize their verification operations into macros. Later,
developers could reuse the Macos to further simplify the development.

Although the out and back gates are manually added, we believe that all
code could be automatically generated. Even for pointer arguments, it is still
possible once the type and the size of the pointed data structure are collected,
e.g. from the data structure definitions and/or the runtime parameters.
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List 

Update 
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Fig. 6. External function invocations in PwdChecker based on SuperCall.

5.4 Performance Evaluation

We evaluated the performance of our SuperCall implementation and the example
app PwdChecker on Ubuntu 10.04 LTS with the Linux kernel 2.6.32.59. These
tests were run on a machine with Intel i5-670 CPU (3.47GHZ) and 4GB memory.
SuperCall is built upon the Guardian hypervisor [7]. The original Guardian is
about 25K SLOC, and the SuperCall service adds about 145 SLOC3.

Firstly, we measure the performance cost of an empty hypercall. It is the
baseline to launch a hypercall. This cost can be used later to evaluate the costs
of SuperEnter and SuperExit. We create an empty hypercall, and call it from
3 We use the tool sloccount [22] to calculate the source code.
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Table 1. The time cost of SuperCall.

Operations CPU Cycles Time (µs)
An Empty Hypercall 3879 1.12

SuperEnter 13794 3.98
SuperExit 13438 3.87
SuperCall 27232 7.85

the guest domain. We treat the hypercall as a whole, and measure the round
time from issuing the hypercall to its returning (i.e., from guest domain to guest
domain via the hypervisor). The time cost (i.e., 1.12µs on average) demonstrate
the basic cost of a hypercall. Based on this, we can evaluate the extra cost
added in SuperEnter and SuperExit. The measurement results of SuperEnter
and SuperExit are listed in Table 1. Because an empty SuperCall contains one
SuperEnter and one SuperExit only, the total round-trip time on a SuperCall
is about 7.85µs. To further demonstrate the performance cost, we also measure
the time cost in the PwdChecker example. The results in Table 2 show that the
performance overhead is small that is roughly the cost of one SuperCall. We do
not measure the third SuperCall due to the instability of typing answers through
keyboard.

Table 2. The measurement results of PwdChecker.

Operations Time (µs) Overhead (µs)
Original Malloc 0.08 8.33Malloc with SuperCall 8.41

Original LoadDB 30.69 9.45LoadDB with SuperCall 40.14

The code expansion is limited due to the support of SuperCall. In the Pwd-
Checker example, there are three out and back gates. All of them together need
180 SLoC in total, which is even far less than the memory allocation function
(e.g., malloc).

6 Related Work

PAL Protection. There are many existing schemes to protect a PAL [4,17,
18,23]. The Flicker [18] system aims to put a PAL into the isolated environment
protected by the DRTM technique [9]. Due to the high latency and the poor
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communication channel, many virtualization-based schemes proposed [4,17,23].
However, in all of them a PAL still has only limited functionalities, without
a secure interface to invoke untrusted services. This gap is addressed by our
scheme. In addition, many virtualization-based schemes [6,10,13] aim to protect
a whole high-insurance application, rather than a PAL. For all of them, the
interaction interfaces are system calls that are not well-defined, and therefore
surfer from the Iago [5] attack. In our scheme, back gates explicitly sanitize and
validate all inputs, with the purpose to defend against Iago attack. The Intel
SGX technique [15] and a similar architecture [21] are also promising techniques
to protect a PAL or a whole application [2]. Similar to SuperCall, both also
require adding specific well-defined interfaces for PALs.

Hypercall. Traditionally, a PAL has only one communication channel, through
which the PAL can issue hypercalls to ask for services from the hypervisor. But
it now has another new channel, allowing it to communicate with the untrusted
code without losing the security properties. The virtualization technique provides
hypercall, a communication channel for guest to actively communicate with the
hypervisor. In paravirtualization, the hypercall is implemented as an interrupt,
e.g., int 0x82 on Xen [1], similar to the traditional system call mechanism. In the
hardware-assisted virtualization, the processor is extended to support a series of
virtualization instructions [14], and one of them is to launch a hypercall. In the
original design of hypervisor, the return address of a hypercall is always the next
instruction of the hypercall instruction. But in SuperCall technique, we reuse
the virtualization instructions, and change the return behaviors of hypercalls.
Specifically, the SuperEnter returns to the specified callee function, instead of
the next instruction. The new return behavior (i.e., SuperExit) is similar to the
SymCall mechanism [16], but not the same.

Upcall. The SymCall [16] provides a synchronous way (upcall) to invoke a func-
tion in a running guest environment. It provides a shared structure between the
hypervisor and the guest domain. Through the shared structure, the hypervisor
is able to enumerate the available functions (like system calls in syscall table).
The guest and the hypervisor can directly read/write to this memory regions
without triggering any vm exit or protection violation. In our SuperCall design,
we choose the synchronous way, but do not use the shared structure, because
the hypervisor does not need to know the callee functions in advance. Dynami-
cally updating function information to the hypervisor increases the flexibility of
SuperCall. The direct benefit is that PAL can freely decide to use which function
at runtime, without needing the registration procedure to register to the hyper-
visor. Another benefit is saving memory and the corresponding maintain cost. If
a large number of PALs attempt to use many different functions, the size of the
shared structure will be dramatically enlarged in SymCall setting, while in our
design, the hypervisor only temporally maintains the function information and
throws it away after the end of the execution.
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7 Conclusion

In this paper, we introduced SuperCall as a new interface, through which a PAL
could securely and efficiently invoke untrusted external functions, increasing the
flexibility of interactions and improving the utilization rate of resources. The con-
trol flow is escorted by the hypervisor and all inputs of the SuperCall interfaces
are sanitized and validated, and therefore Iago attacks and code reuse attacks
do not work here. We implemented and evaluated a prototype of SuperCall on
Guardian hypervisor by adding 145 SLOC. The experiment results indicated
that SuperCall improved the development efficiency with insignificant perfor-
mance overhead.
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Abstract. Cloud computing brings abundant benefits to our lives nowa-
days, including easy data access, flexible management, and cost saving.
However, due to the concern for privacy, most of us are reluctant to use
it. To protect privacy while making full use of cloud data, secure keyword
search is proposed and attracts many researchers’ interests. However, all
of the previous researches are based on a weak threat model, i.e., they all
assume the cloud to be “curious but honest”. Different from the previous
works, in this paper, we consider a more challenging model where the
cloud server would probably be compromised. To achieve a privacy pre-
serving and personalized multi-keyword search, we first formulate differ-
ent users’ preference with a preference vector, and then adopt the secure
k nearest neighbor (KNN) technique to find the most relevant files corre-
sponding to the personalized search request. To verify the dynamic top-
k search results, we design a novel Multi-Attribute Authentication Tree
(MAAT). In particular, we propose an optimization scheme to reduce the
size of verification objects so that the communication cost between the
cloud and data users is tunable. Finally, by doing extensive experiments,
we confirm that our proposed schemes can work efficiently.

Keywords: Cloud computing · Privacy preserving · Personalized
multi-keyword search · Multi-Attribute Authentication Tree (MAAT) ·
Optimization

1 Introduction

Cloud computing brings abundant benefits to our lives nowadays, including easy
data access, flexible management, and cost saving. It becomes critically impor-
tant for data owners to outsource their data to the public cloud server while
allowing data users to retrieve them [1].

However, most of us are reluctant to use it. One of the most important
reasons is the concern for privacy. Data encryption would be an alternative way
to reduce the data leakage. However, data encryption obviously prevents the
plain-text based keyword search techniques. A trivial solution is downloading
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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all the encrypted data and decrypting them locally. But this is also impractical
because of the huge amount of communication cost. Therefore devising a secure
keyword search protocol is imperative.

Secure keyword search over encrypted cloud data has attracted several
researchers’ interests recently. Song et al. [2] first propose the notion of search-
able encryption, which is further developed by [3], [7]. However, extending these
researches to large scale cloud data will bring heavy computation and storage
overhead. Wang et al. [8] first consider the secure keyword search over encrypted
cloud data, which is followed by [9], [10], [11], [12]. These researchers not only
enrich the search capabilities, but also reduce the computation and storage cost.

However, all these schemes are based on the ideal assumption that the cloud
server is “curious but honest”. Unfortunately, in practical applications, the cloud
server may behave dishonestly with a lot of motivations, which mainly include:

– The cloud server may return forged search results. For example, an adver-
tisement may be ranked higher than his competitors since the cloud server
provider may earn profits from that advertising company.

– The cloud server may return incomplete search results in peak hours to avoid
suffering from performance bottlenecks.

Therefore, enabling authorized data users to authenticate the search results
would be significant. Additionally, a user-friendly system should enable data
users to achieve a personalized multi-keyword search. To verify the search results,
conventional solutions (including linked signature chaining [13] and the Merkle
hash tree [14]) need the data owners to pre-know the order of search results.
However, to enable personalized keyword search, search results have to be com-
puted on the cloud server according to different data users’ preferences, where
data owners cannot pre-know the order of search results. An example is illus-
trated in Fig. 1. As we can see, data owner has four files (F1, F2, F3, F4), each
file is attached with a file vector (each attribute in a file vector is a relevance
score between a keyword and a file). Given different search vectors (Q1, Q2, Q3,
Q4) (the order of search results is ranked by the inner product of the search
vector and the file vectors), the order of search results are totally different.

In this paper, we consider a more challenging model where the cloud server
would probably be compromised. A compromised cloud server would not only
reveal sensitive data but also return forged or incomplete search results. To
achieve a privacy-preserving personalized multi-keyword search, we first formu-
late different users’ preference into a preference vector, and then adopt the secure
k nearest neighbor (KNN) technique to find the most relevant files corresponding
to the personalized search request. To preserve the relevance scores between key-
words and files, we use an order and privacy preserving function. Additionally, we
propose a novel Multi-Attribute Authentication Tree (MAAT) to authenticate
the dynamic top-k search results. In particular, to reduce the size of verifica-
tion objects, we propose an optimization scheme so that the communication
cost between the cloud and data users is tunable. Finally, we conduct extensive
experiments on real-world datasets which confirms that our proposed schemes
work efficiently.
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File Vectors Search Vectors Order of Results 

F1: (0.82,0.63,0.28) 

F2: ( 0.92,0.54,0.43)

F3: ( 0.52,0.45,0.62)

F4: ( 0.25,0.62,0.68)

Q1: (0.1, 0.2, 0.7) F4, F3, F2, F1

Q2: (0.2, 0.3, 0.5) F4, F2, F3, F1

Q3: (0.5, 0.4, 0.1) F2, F1, F3, F4

Q4: (0.4, 0.6, 0.0) F1, F2, F3, F4

Fig. 1. An example of dynamic order of search results corresponding to different search
vectors

The main contributions of this paper are as follows:

– We consider a more challenging threat model where the cloud server would
behave dishonestly. Based on this model, we solve the privacy preserving
personalized multi-keyword search and dynamic top-k search results authen-
tication.

– We propose a novel Multi-Attribute Authentication Tree (MAAT) to authen-
ticate the dynamic top-k search results.

– We propose an optimization scheme to reduce the size of verification objects
so that the communication cost between the cloud and data users is tunable.

– We analyze security properties and conduct extensive performance experi-
ments for our proposed schemes.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 formulates the problem and introduces notations used in later
discussions. Section 4 describes the secure search schemes and Section 5 intro-
duces the authentication schemes. In Section 6, we introduce how to optimize the
parameters. In Section 7 and 8, we presents security analysis and performance
evaluation of our proposed schemes respectively. In Section 9, we conclude the
paper.

2 Related Work

2.1 Traditional Searchable Encryption

Encrypted data search has been studied extensively in the literature. Song et al.
[2] first defined the conception of searching on encrypted, proposed the crypto-
graphic schemes for the problem of searching on encrypted data, and proved the
security of their scheme. Goh et al. [3] defined a secure index to accelerate the
search operation. Chang et al. [7] proposed a privacy preserving keyword search
scheme, which not only enables data user to perform a keyword search over
encrypted data, but also prevent from leaking the data privacy. The researches
[4], [5], [6] further enhanced the search capabilities. But most of these works only
support the search of single or boolean keyword, extending these techniques to
large scale cloud data will bring heavy computation and storage overhead.
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2.2 Secure Keyword Search in Cloud Computing

Secure keyword search in cloud computing has attracted many interests. Wang
et al. [8] first defined the problem of secure ranked keyword search over encrypted
cloud data. Cao et al. [9], Xu et al. [12] and Wen et al. [15] proposed to address the
privacy preserving multi-keyword search over encrypted cloud data. To acceler-
ate the search process, Hore et al. [11] proposed to adopt a set of colors to encode
the presence of the keywords and create a search index. To enrich search func-
tionality, Li et al. [10] proposed fuzzy keyword search over encrypted cloud data,
respectively. To support multiple data owners to search over large scale cloud
data, Sun et al. [16] proposed secure attribute-based keyword search schemes.
Zhang et al. proposed to ensure secure ranked multi-keyword search to support
multiple data owners in [17], [18], [19], and achieve secure distributed keyword
search in geo-distributed clouds in [20], respectively.

However, all these schemes assume the cloud server to be “curious but hon-
est”. Different from these schemes, in this paper, we assume the cloud server
would be compromised, under this assumption, we propose to securely authen-
ticate the dynamic top-k search results.

2.3 Authenticating the Search Results

Methods used in authentication can be classified into two categories: the linked
signature chaining, and the Merkle hash tree.

The linked signature chaining schemes [13], [21], require to pre-know the
order of search result, so that the data owner can obtain an ordered link, and
sign for the consecutive data in the link, which forms the linked signature chain-
ing. Consequently, any data forging or deletion will be easily discovered once
the signature chaining is incomplete. However, as illustrated in [22], the linked
signature chaining will lead to very high computational cost, storage overhead,
and user-side verification cost.

The Merkle hash tree proposed in [14], [23], [24] is proposed to verify the
integrity of a very large data set. The merkle hash tree also require to pre-know
the order of search results. The data owner constructs the merkle hash tree and
signs for the root. Data users re-construct the merkle hash tree, and compare the
computed root with the returned root. Therefore, any data forging or deletion
will lead to the inconsistency of the comparison. However, as illustrated in Fig.
1, for the personalized keyword search, data owners cannot know the order of
search results in advance, we cannot use the existed authentication method here.
In this paper, we propose to construct a novel Multi-Attribute Authentication
Tree (MAAT) to authenticate the dynamic top-k search results.

3 Problem Formulation

3.1 System Model

There are three entities involved in our system model, as illustrated in Fig. 2,
they are data owner, cloud server and data users. The data owner has a collec-
tion of files F . To enable search operation on these files which will be encrypted,
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Fig. 2. Architecture of secure keyword search in cloud computing

the data owner performs some operations in advance which includes extracting a
keyword set W from F , computing relevance scores between keywords and files,
constructing and signing a multi-attribute authentication tree. Then the data
owner outsources all the encrypted data files, file vectors and signatures to the
cloud server. Once an authorized data user wants to perform a secure keyword
search over these encrypted files based on his preference, he first generates his
trapdoor Q̃ (encrypted query vector) and submits it to the cloud server. Upon
receiving the trapdoor Q̃, the cloud server first searches over the encrypted file
vectors stored on it, then it returns the top-k relevant data files and correspond-
ing verification objects. The authorized data user further verifies the integrity
of returned search results. If the search results pass the verification, data user
decrypts and obtains satisfied data files. Otherwise the search results are con-
sidered as contaminated and abandoned.

3.2 Threat Model

In our threat model, both data owner and authorized data users are trusted,
however, different from previous works [8], [9], [12], the cloud server is not trusted
and would be compromised, which is more challenging and takes a firm step
towards practical application. Specifically, the cloud server not only aims at
revealing the contents of encrypted files, keywords and relevance scores, but also
tends to return forged or incomplete data. Note that how to authorize a data
user is out of the scope of this paper, an outstanding example can be found
in [25].

3.3 Design Goals

Our system design should simultaneously satisfy security and performance goals
illustrated as follows:
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– Ranked multi-keyword search: The proposed scheme should enable per-
sonalized and ranked multi-keyword search. Specifically, a data user con-
structs the personalized search vector, and submits its encryption to the
cloud server. The cloud server returns the most relevant top-k results based
on the personalized search vector.

– Privacy preserving: The proposed scheme should prevent the cloud server
from learning the actual data of encrypted files, indexes, and signatures.

– Authenticating the integrity of result: When the cloud server behaves
dishonestly, i.e., cloud server returns forged or incomplete search results,
data user can discover the misbehavior.

– Efficiency: All the above goals should be achieved with low computation
and communication overhead.

3.4 Notations

– F : the plaintext file collection.
– C: the ciphertext file collection of F .
– W: the keyword dictionary.
– P : each file vector Pi corresponds to the file Fi.
– P̃ : the encrypted file vectors of P .
– P̂ : the encoded file vectors of P .
– Q: the search vectors issued by data users.
– Q̃: the encrypted search vectors of Q.
– H: a one-way hash function.

4 Privacy-Preserving and User-Specified Ranked
Multi-keyword Search

Since different data users may have different personal preferences. Additionally,
huge amount of files are stored on cloud servers, we cannot simply return indiffer-
ential files to data users for two reasons. First, returning all satisfied files would
cause tremendous communication overhead for the whole system. Second, data
users would only concern top-k relevant files corresponding to their queries. So
our scheme should also achieve ranked multi-keyword search.

Motivated by the secure k -nearest neighbor scheme proposed in [9] and [26],
we use the inner product of a file vector P and a search vector Q, i.e., P · Q, to
quantitatively evaluate the similarity of a file and a query. A file corresponding
to a higher value of the inner product will have higher probability to be returned.
The file vector is assembled according to the following principle: the ith data
item in the j th file vector is the relevance score between the ith keyword in the
keyword set W and the jth file in the file set. Meanwhile, the search vector is
formalized according to user’s preference. For example, data user wants to search
the ith and i′th keyword in the keyword set W, since he thinks the ith keyword
is more important than the i′th keyword, he gives each keyword a weight, say
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0.8 and 0.2. Then the ith data item in the search vector is assembled with 0.8,
and the i′th data item is assembled with 0.2.

Given a file vector Pi and a search vector Qj , we use the encryption method
proposed in [9] to encrypt them. Specifically, the data owner uses three secret
keys to encrypt them, i.e., a vector split indicator S, two invertible matrixes M1

and M2. The encryption process is divided into two phases. First, data owner
splits Pi into Pi′ , Pi′′ and Qj into Qj′ , Qj′′ as follows, if the kth bit of S is 0,
then Pi′ and Pi′′ are set the same as Pi, while Qj′ and Qj′′ are randomly set
so that their sum are equal to Qj . If the kth bit of S is 1, then Pi′ and Pi′′ are
randomly set so that their sum are equal to Pi while Qj′ and Qj′′ are set the
same as Qj . Second, data owner encrypts {Pi′ , Pi′′} as P̃i = {MT

1 ·Pi′ ,MT
2 ·Pi′′},

and {Qj′ , Qj′′} as Q̃j = {M−1
1 · Qj′ ,M−1

2 · Qj′′}. Therefore,

P̃i · Q̃j = {MT
1 · Pi′ ,MT

2 · Pi′′} · {M−1
1 · Qj′ ,M−1

2 · Qj′′} = Pi · Qj (1)

Finally, the cloud server returns the top-k relevant search results to the data
user according to the rank of P̃i · Q̃j . For more rigorous security requirement, we
can use the techniques proposed in [9].

5 Dynamic Top-k Results Authentication

In the aforementioned section, we introduce how to achieve privacy preserv-
ing and personalized ranked multi-keyword search in cloud computing. When
the cloud server behaves dishonestly, we need to verify whether there are false
search results corresponding to different users’ preference. In this section, we
first introduce the privacy preserving function [27], which will be used to protect
the privacy of relevance scores between keywords and files. Then we elaborate on
how to construct our proposed Multi-Attribute Authentication Tree (MAAT).
Finally, we describe how to authenticate the integrity of the dynamic top-k
search results with the proposed MAAT.

5.1 Privacy Preserving Function

The privacy preserving function F (x) is composed of a data processing part
f(x) and a disturbing part rf . The data processing part preserves the order
of x while the disturbing part rf prevents cloud server from revealing F (x).
Therefore, F (x) = f(x) + rf and the f(x) is defined as follows:

f(x) =
∑

0≤j≤τ

Aj · m2(x, j) (2)

where τ denotes the degree of f(x) and Aj denotes the coefficients of m2(x, j).
The m(x, j) is defined as follows: 1) j = 0, m(x, j) = 1; 2) j = 1, m(x, j) =

x + 1; 3) j > 1, m(x, j) = �(m(x, j − 1) + α) · (1 + λ · x)�, where α and λ are two
constant numbers.
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∀x1 ≥ x2, where x1 and x2 are positive integer numbers,

f(x1) − f(x2)
=

∑

0≤j≤τ

Aj · (
m2(x1, j) − m2(x2, j)

)

=
∑

0≤j≤τ

Aj · (m(x1, j) + m(x2, j))
· (m(x1, j) − m(x2, j))

≥ ∑

0≤j≤τ

Aj · λ · (x1 − x2) · m(x2, j − 1)
· (m(x1, j) + m(x2, j))

≥ λ · α2 · ∑

0≤j≤τ

Aj

(3)

Obviously, ∀x1 > x2, we have f(x1) > f(x2). Let ε be a system parameter
such that 2ε ≤ λ · α2 · ∑

0≤j≤τ Aj , then the disturbing part rf of F (x) is set
to 2ε − 1.

5.2 Multi-Attribute Authentication Tree

Definition 1. If each element (relevance score) in a file vector Pi is not smaller
than that in Pj, i.e, ∀k ∈ [1, n], Pi,k ≥ Pj,k, and at least one element in Pi is
greater than that in Pj, i.e., ∃k ∈ [1, n], Pi,k > Pj,k. Then we define Pi dominates
Pj, and Pj is dominated by Pi.

Definition 2. If the first k (k = 0, 1, · · · , n − 1) elements in Pi are equal to that
in Pj (i.e., Pi,0 = Pj,0, Pi,1 = Pj,1, · · · , Pi,k = Pj,k), for the (k+1)th element, if
Pi,k+1 > Pj,k+1, then we define Pi > Pj.

Algorithm 1 illustrates the process of constructing MAAT, which is com-
posed of two phases, i.e., generating the framework of MAAT, and aggregating
the hash value of MAAT. The first phase is divided into three steps described as
follows: first of all, sorting all encoded vectors in descending order according to
the comparison method defined in Definition 2. Second, initializing the root of
MAAT, i.e., the value of each item in the vector is a pre-defined maximum num-
ber. Finally, inserting the sorted vectors into the MAAT one by one. Specifically,
given P̂i, the algorithm inserts P̂i as follows: each time the algorithm traverses
from the root node, if the visited node P̂j dominates P̂i, then the algorithm
sets P̂i’s parent node to be P̂j , if P̂j has no child node, the algorithm finishes
inserting P̂i. If P̂j has child node, the algorithm visits P̂i’s whole child nodes, if
no child nodes of P̂j dominate P̂i, the algorithm finishes inserting P̂i, otherwise,
if P̂j ’s child node P̂c dominates P̂i, the algorithm sets P̂i’s parent node to be
P̂c, and conducts the insertion recursively. The MAAT framework is constructed
when all encoded vectors are inserted. The second phase is aggregating the hash
value of MAAT from the leaf nodes to the root node. Specifically, for a leaf node,
the algorithm only computes its hash value. For a non-leaf node, the algorithm
computes its hash value, conducts exclusive or operation on the hash value of
all its children, and combines them as its hash values.
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Algorithm 1.. The MAAT construction algorithm
Input:

Encoded file vectors ̂P and ciphertext of file vectors ˜P
Output:

MAAT
Step1: generate the framework of MAAT
1: Sort ̂P on their first encoded attribute.
2: root={ ̂Pmax} //initialize the MAAT
3: for i=1 to m do
4: ̂Pt = root
5: if ̂Pt has no child then
6: add ̂Pi to the child set of ̂Pt

7: continue
8: else
9: for each child ̂Pj of ̂Pt do

10: if ̂Pi is dominated by ̂Pj then
11: ̂Pt = ̂Pj

12: goto step 5
13: add ̂Pi to the child set of ̂Pt

14: for each node ̂Pi in the MAAT do
15: add ˜Pi to ̂Pi

Step2: aggregate the hash value of MAAT
16: for each node in the MAAT do
17: if node ̂Pi is a leaf node then
18: ̂Pi submits hash( ̂Pi|| ˜Pi) to its parent node
19: else
20: if ̂Pi has only one child then
21: ̂Pi set the received value as Hi and submits hash( ̂Pi|| ˜Pi||Hi) to its parent

node.
22: else
23: ̂Pi first aggregates the hash value to Hi by doing XOR operation on received

data from different child nodes and submits hash( ̂Pi|| ˜Pi||Hi) to its parent
node

24: return root

Now we give an example of constructing MAAT in Fig. 3, there are
10 encoded vectors, each vector includes four attributes. First, the algo-
rithm sorts the 10 encoded vectors and gets {P̂2, P̂1, P̂5, P̂4, P̂9, P̂3, P̂8, P̂7, P̂6}.
Then the algorithm initializes the root of MAAT to be P̂max, where
the value of each attribute in P̂max is set to be maximal. Further,
{P̂2, P̂1, P̂5, P̂4, P̂9, P̂3, P̂8, P̂7, P̂6} are inserted into MAAT subsequently. Finally,
the algorithm computes the hash value. Specifically, H3 = hash(P̂8||P̃8), H1 =
hash(P̂3||P̃3||H3), and H2 = hash(P̂1||P̃1||H1) ⊕ hash(P̂9||P̃9).
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Fig. 3. An example of constructing MAAT

5.3 Authenticating Integrity of the Dynamic Top-k Search Results

In this subsection, we will introduce how to verify the integrity of ranked top-k
search results based on MAAT. To enable the authorized data users to verify
the dynamic top-k search results, the data owner processes his data as follows:
first, the data owner extracts the file vectors from all of his files. Then, he
encodes these file vectors with the privacy and order preserving function. Fur-
ther, the data owner constructs the MAAT with the encoded file vectors. Finally,
the data owner outsources encrypted vectors, encoded vectors, sign(Hroot) (sig-
nature of the root of MAAT), and encrypted files to the cloud server. Once
the cloud server finds the encrypted search results {Ci1, Ci2, · · · , Cim}, it fur-
ther prepares the authentication data with the following steps: first of all, the
cloud server adds the nodes corresponding to {Ci1, Ci2, · · · , Cim} in MAAT
to a node set S. Then it adds all the ancestors of these nodes to S. Fur-
ther, it finds all the sibling nodes of nodes in S and adds them to S. Finally,
together with sign(Hroot), the encoded vector and encrypted vector correspond-
ing to nodes in S are returned as authentication data. For example, given
the search results {F1, F2}, the corresponding authentication data would be
{P̂1, P̂2, P̂5, P̂6, P̂9, P̃1, P̃2, P̃5, P̃6, P̃9,H1,H5, sign(Hroot)}. When the data user
attains the returned result and authentication data, he verifies the results with
the following steps: first of all, he reconstructs the MAAT with the corresponding
encoded vectors. Then, he checks whether the computed root of MAAT is equal
to Hroot. If they are not equal, the results are contaminated and discarded.
Finally, the data user checks whether the results are the most relative top-k files
with the help of the decrypted file vectors. If any false results are detected during
the process, the results are regarded as false and discarded.

6 MAAT Optimization

MAAT can achieve privacy preserving and dynamic top-k search results ver-
ification. However, when the keyword set is large, many encoded file vectors
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Fig. 4. An example of constructing optimized MAAT

would not be dominated by others. Consequently, the cloud server has to return
numerous verification data for search results verification, which is obviously inap-
plicable. In the following subsection, we first introduce the scheme of optimizing
the MAAT. Then we analyze the trade-off value between privacy and communi-
cation cost.

6.1 Optimizing Method

As we know, in real applications, when we want to perform a search, we often
issue a few keywords. Therefore we can specify the cloud server to return veri-
fication data for these keywords. This can reduce a large number of verification
data. Though telling cloud server which keywords we want to verify will bring
the threat of privacy revealing, we can issue some dummy keywords to obfuscate
the cloud server. The optimizing process is described as follows: first, we split
each encoded vector into T encoded sub-vectors. Then we use these encoded
sub-vectors to construct sub-MAAT. Finally, we combine the T sub-MAATs
and get the optimized MAAT. Fig. 4 shows the optimized MAAT of the one in
Fig. 3. As we can see, when {F1, F2} are the search results, and the data user
specifies to verify the first two attributes, the corresponding authentication data
would be {P̂1, P̂2, P̂5, P̃1, P̃2, P̃5,H1,H5,H

2
r , sign(Hroot)}. As we can see, com-

pared with the former verification cost, the optimized one will obviously reduce
verification cost.

6.2 Trade-off Between Privacy and Communication Cost

From the above discussion, when the number of items in each file vector is
very large, the privacy is well preserved, while the communication cost spent
on verification would be very large. On the other hand, when we split the file
vector into very small sub-vectors, i.e., the number of items in each sub-vector is
small, the communication cost would be reduced, while the privacy preservation
would be weakened. Therefore, we need to find a trade-off between privacy and
communication cost.
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Recall that, to obfuscate the cloud server of which keywords are actually
verified, we propose to add some dummy keywords in the specified keyword
set. In this paper, we use entropy to evaluate the uncertainty of determining
data user’s verified keywords from all the candidate keywords. Without loss of
generality, we define pi to be the probability that a keyword is specified to be
verified. For a sub-vector with d elements (keywords), the entropy of identifying
an individual element in the sub-vector is defined as

H(d) = −
d∑

i=1

pi · log2pi (4)

Obviously, when all the keywords in the sub-vector shares the same probability to
be verified, i.e., pi = 1/d, the maximum entropy is achieved, that is H(d) = log2d.
When the dimension (number of elements in the sub-vector) of sub-vector is D,
i.e., d = D, we get the maximum entropy log2D.

Now we investigate the relationship between the dimension of sub-vectors
and the communication cost of verification. To get this relationship, we conduct
experiment on a real data set [28], and get the empirical result. We set the size of
keyword set to be 64, and k = 10. Fig. 5(b) illustrates the relationship between
the dimension of sub-vectors and the communication cost of verification. The
corresponding fitting equation is y = 0.015 · d2 + 0.219 · d − 0.203.
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Fig. 5. Entropy and communication cost with dimension of sub-vectors

As we can see from Fig. 5(a) and Fig. 5(b), the larger the dimension of sub-
vectors is, the higher entropy we get, while the more communication cost is also
caused. Therefore, we need to find an optimal dimension(number of elements in
the sub-vector) of the sub-vector, so that we can maximize the entropy while
minimize the communication cost. The key idea is described as follows: first of all,
to allow consistent computation, we convert the data range of both entropy and
communication cost to the same range, say, [0,1]. Second, we define the difference
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between entropy and communication cost as the optimization objective. Finally,
we find the optimal dimension of sub-vector where the value of the difference is
maximized. For example, we denote the relationship between the entropy and
the dimension of sub-vector as y1 = log2x, and the relationship between the
communication cost and the dimension of sub-vector as y2 = 0.015 · x2 + 0.219 ·
x − 0.203. First of all, we encode them in the same range [0,1], therefore, we get
y′
1 = log2x/6 and y′

2 = 1.994 × 10−4 · x2 + 0.003 · x − 0.002. Then we define the
optimization objective as: f(x) = y′

1−y′
2 = log2x/6−1.994×10−4 ·x2−0.003·x+

0.002. Finally, we compute the optimal value of x. Obviously, when x ∈ (0, 22],
f(x) keeps increasing, when x ∈ (22, 64], f(x) keeps decreasing. Therefore, we
can easily conclude that when x = 22, f(x) gets the maximum data, i.e., the
optimal dimension of the sub-vector is x=22. To make the dimension (length) of
the original file vector divisible by the dimension of sub-vector 22, we can pad 2
dummy attributes into the original file vector.

7 Security Analysis

In this section, we analyze the security of our proposed scheme from the following
two aspects.

7.1 Privacy Preserving and User Specified Ranked Multi-keyword
Search

In our scheme, we use the inner product on the file vector P and the search
vector Q, i.e., P · Q, to quantitatively evaluate the similarity between a file and
a query. Since the vector encryption method has been proved to be secure in the
known ciphertext model in [26], the privacy of both P and Q are well protected
if the secret key {S,M1,M2} are kept secret.

7.2 Authenticating Dynamic Top-k Results

For search results verification, the cloud server only operates on random
cipher-text, and returns the encoded vector, encrypted vector, hash value and
sign(Hroot). The security of privacy and order preserving function is proved
in [27], therefore, the encoded vector is secure. The security of encrypted vec-
tor is proved [26]. Additionally, we adopt the RSA to get the signature, whose
security is also guaranteed. Therefore, the security of the verification scheme is
assured.

8 Performance Evaluation

In this section, we demonstrate a thorough evaluation on the storage overhead,
communication cost, and time cost of our proposed schemes.
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Fig. 6. Storage overhead of dimension of file vectors and number of file vectors

8.1 Experiment Settings

We conducted a performance evaluation on a real data set, i.e., US Census Data
(1990) Data Set [28]. The data set has 2458285 census instances, where each data
has 68 attributes. The data value of each attribute changes between 0 and 225.
Our experiment is implemented with C++ on a PC with 3.40GHz Intel Core
CPU and 4GB memory. We use RSA to sign the root node of MAAT with a
1024-bit key, and set the size of the hash digest to be 16 Bytes. Additionally, since
the max attribute value is 225, we use 8 bits to represent each attribute. The
performance of our scheme is evaluated regarding the effectiveness and efficiency
of our proposed MAAT, including the storage overhead, the communication cost,
and the construction time.

8.2 Experiment Results

Storage Overhead. Fig. 6(a) demonstrates the relationship between storage
overhead and dimension of file vectors. As we can see, the storage overhead
increases linearly with the dimension of file vectors increases. Additionally, the
more file vectors we involve, the higher storage overhead is caused. The fun-
damental reason is that, the larger the dimension of file vectors is, the more
storage overhead we spend to store the additional dimensions (attributes). Fig.
6(b) describes the relationship between the storage overhead and the number
of file vectors. As we can see, the storage overhead also increases linearly and
slowly with the number of file vectors. When D=16, and the number of file vec-
tors changes from 100 to 1000, the storage overhead increases from 0.5 KB to
35 KB, which is acceptable.

Communication Cost. In our scheme, since the communication cost between
the data owner and the cloud server is nearly the same with the storage overhead
of the cloud server, we do not consider it here. Instead, we only consider the
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Fig. 7. Communication cost with number of file vectors and dimension of file vectors

communication cost between the cloud server and the data users. When the
data users submit the query vector to the cloud server, the cloud server would
not only return top-k search results, but also return verification data. Since
different search requests will contribute to different size of verification data, we
show the average communication cost here.

Fig. 7(a) demonstrates the relationship between the communication cost and
dimension of file vectors. As we can see, when the dimension of file vectors
increases from 1 to 12, the communication cost increases slowly. When k=10,
N=1000, and the dimension of file vectors increases from 0 to 32, the commu-
nication cost increases from 0 KB to about 20 KB. Fig. 7(b) shows that the
communication cost increases linearly with the number of file vectors. As we
can see, when the dimension D=4 and D=8, their communication cost is rela-
tively small. However, when the dimension is more than 16, the communication
cost increases rapidly with the number of file vectors. As we can see, when the
dimension of file vectors is 16, and the number of file vectors changes from 100
to 1000, the communication cost increases from 1.75 KB to 5 KB. In our opti-
mized MAAT, we propose that splitting the large vector into small sub-vectors
will help reduce, and control the communication cost, which is proved by the
experiment.

Time Cost. In our scheme, we mainly consider the time cost caused by con-
structing MAAT and encrypting file vectors. Fig. 8(a) demonstrates that, the
encryption time increases linearly with the number of file vectors. As we can see,
when the dimension of file vectors is 16, and the number of file vectors increases
from 1000 to 10000, the encryption time increases from 0.3s to 3.2s. Fig. 8(b)
shows the time cost of constructing MAAT with different number of file vectors.
The time cost increases linearly with the number of file vectors. As shown in
Fig. 8(b), when the dimension of file vectors is 4, and the number of file vectors
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increases from 1000 to 10000, the time spent on constructing MAAT increases
from 0.1s to 4s, which is acceptable.

9 Conclusion

In this paper, for the first time, we consider a challenging security model where
the cloud server would probably behave dishonestly. We first formalize differ-
ent users’ preferences and adopt the secure k nearest neighbor techniques to
achieve privacy preserving personalized multi-keyword search. Then we use the
order and privacy preserving function to preserve the relevance scores between
keywords and files. Further, we propose a novel Multi-Attribute Authentication
Tree (MAAT) to authenticate the dynamic top-k search results. In particular,
we propose to optimize the MAAT, and compute the optimal parameter value
to trade off the privacy and communication cost. Finally, we conduct extensive
experiments on real-world datasets to confirm the efficacy and efficiency of our
proposed schemes.
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Abstract. On today’s online social networks (OSNs), users need to
reveal their content and their sharing patterns to a central provider.
Though there are proposals for decentralized OSNs to protect user pri-
vacy, they have paid scant attention to optimizing the cost borne by
users or hiding their sharing patterns. In this paper, we present Her-
mes, a decentralized OSN architecture, designed explicitly with the goal
of hiding sharing patterns while minimizing users’ costs. In doing so,
Hermes tackles three key challenges: 1) it enables timely and consistent
sharing of content, 2) it guarantees the confidentiality of posted private
content, and 3) it hides sharing patterns from untrusted cloud service
providers and users outside a private group. With extensive analyses of
Hermes using traces of shared content on Facebook, we estimate that the
cost borne per user will be less than $5 per month for over 90% of users.
Our prototype implementation of Hermes demonstrates that it only adds
minimal overhead to content sharing.

1 Introduction

Today, leakage of information from OSN servers [5,6], coupled with the need
for OSN providers to mine user data (e.g., for targeted advertisements), have
concerned users [12]. While posting encrypted data on OSNs [15,23] can work
in theory, it compromises the profit motives of an OSN if done at scale. Alterna-
tively, one could share private content with OSN friends by storing data outside
the OSN provider’s control. Prior works that follow this approach either store
private content in the cloud [4,13,29] or across client machines [24,27]. The for-
mer simply leaks private information to the cloud providers in lieu of the OSN
providers, and also increases user costs. The viability of an approach based on
the latter depends on the availability of consistent access to client machines.

Our Contributions: In this paper, we design a decentralized OSN architecture,
Hermes, with cost-effective privacy in mind. Hermes seeks to ensure that both
the content shared by a user and her sharing habits are kept private from both the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 233–255, 2015.
DOI: 10.1007/978-3-319-28865-9 13
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OSN provider and undesired friends. In doing so, Hermes seeks to (i) minimize
the costs borne by users, and (ii) preserve the interactive and chronologically
consistent conversational structure offered by a centralized OSN.

Hermes uses three key techniques to meet these goals. First, it judiciously
combines the use of compute and storage resources in the cloud to bootstrap
conversations associated with newly shared content. This also supports the high
availability of the content. Second, it employs a novel cost-effective message
propagation mechanism to enable dissemination of comments in a timely and
consistent manner. It identifies and purges (from cloud storage) content that has
been accessed by all intended recipients. Lastly, but most importantly, Hermes
carefully orchestrates how fake postings are included in order to hide sharing
patterns from the untrusted cloud providers used to store and propagate content,
while minimizing the additional costs incurred in doing so. A key feature of
Hermes is its flexibility in deployment; it can either be implemented as a stand
alone distributed OSN or as an add-on to today’s OSNs like Facebook (while
maintaining the decentralized nature of content sharing). To summarize, our
contributions are:

Design of Hermes: As our primary contribution, we design Hermes. It uti-
lizes extremely small amounts of storage, bandwidth, and computing on the
cloud to facilitate real-time, consistent and anonymous exchange of private con-
tent. Importantly, Hermes ensures that cloud providers cannot discover the users
involved in private conversations and is robust to the intersection attack [18].

Analyzing OSN Data to Determine Resource Requirements: Based on
1.8 million posts crawled from Facebook, we 1) perform an analysis to determine
key parameters for implementing Hermes, and 2) conduct realistic simulations
to show that (a) Hermes effectively anonymizes users’ sharing patterns and (b)
Hermes’s use of cloud resources is low enough to facilitate its practical deploy-
ment. Our analysis suggests that, for 90% of users, Hermes would typically
require 1) cloud storage of much less than 5 MB, and 2) a compute instance on
the cloud that is active for roughly 4 days every month. This corresponds to a
monthly cost of less than $5 per user. With this budget, Hermes ensures that
cloud service providers are unable to guess the members or the group size of
any private conversation. If the cloud provider attempts to randomly guess the
group members, it is correct less than 15% of the time.

Implementation and Evaluation: We implement a prototype of Hermes as
a rudimentary add-on to Facebook. Our evaluations show that Hermes incurs
low cost, and the user experience, in terms of delays, is similar to that with
Facebook.

Scope: The privacy preserving features of Hermes can be used in conjunction with
a centralized component that can be used for posts that are not intended to be
private. In fact, our prototype of Hermes as an add on to Facebook achieves just
that; private posts are directed to Hermes while other content is shared in the tra-
ditional way. We wish to also point out that we do not explicitly consider mobile
users; however, Hermes can be used in such contexts, and across multiple devices.
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2 Related Work

Improving Privacy in OSNs: Several systems propose to post encrypted con-
tent on OSNs to protect privacy (e.g., [15,16,21]). However, encryption precludes
OSN providers from interpreting posted content and/or hides users’ social con-
nections from OSNs. These are not in the commercial interests of OSN providers,
who may thus disallow such postings. Hermes does not post any encrypted con-
tent on an OSN; it uses either cloud storage or users’ personal devices to do
so. Further, it does not use a centralized OSN framework to inform users of
new content; doing so also informs the OSN provider of the specifics of ongoing
conversations.

Distributed OSNs: Other efforts propose storing private shared data on
devices other than OSN servers [4,24,27,29]. However, unlike Hermes, they either
expose user sharing patterns to cloud providers [4,29] or degrade user experience
in terms of timely and consistent sharing. Systems that store private data in the
cloud do not control either storage or bandwidth costs which increase over time
as the volume of shared data grows. While other systems store the data on users’
personal machines [24,27] to reduce costs, the low availability of these machines
(they may be turned off when not used) reduces the timeliness of conversations
and compromises data consistency. Hermes combines resources on cloud services
(within limit) with that on users’ personal machines to support cost-effective
sharing that is held privy from cloud providers.

Priv.io [33] is a new decentralized OSN that aims to minimize the cost
incurred for facilitating private content sharing. However, Priv.io critically relies
on support for advanced messaging APIs from cloud services, which restricts
the generality of Priv.io’s architecture. In contrast, Hermes only requires cloud
storage services to offer a minimal PUT, GET, DELETE interface. Most impor-
tantly, due to Priv.io’s reliance on messaging APIs offered by cloud services,
unlike Hermes, it does not attempt to hide sharing patterns (i.e., whom does a
user share data with) from cloud providers.

Other Related Work: Efforts [21,22,30] that secure the data stored on
untrusted servers or the cloud do not try to account for OSN-specific charac-
teristics (e.g., hiding content sharing patterns). Unlike Hermes, these solutions
would either significantly increase cost or degrade timeliness. Moreover, Hermes
enables anonymity in OSN conversations without requiring all members of a
conversation to be simultaneously online.

3 Goals and Threat Model

Goals and Challenges: Our over-arching goal is to design a decentralized,
private OSN architecture. In doing so, we have the following three objectives.

• High availability, timeliness, and consistency: First, we seek to preserve the
desirable properties enabled by a central provider. Specifically, (a) users should
always be able to access content shared with them, (b) content shared by a
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user should be received by the intended recipients in a timely manner, so as to
preserve the interactive comment “threads” associated with content shared on
OSNs, and, (c) all users involved in a conversation should receive comments in
the same causally consistent order. How do we preserve these desirable proper-
ties despite the fact that content is stored in a decentralized manner in Hermes?

• Protect the privacy of content and sharing patterns: While Hermes lacks any
central OSN provider, cloud services used to store and disseminate content
may be able to monitor conversations. How do we preserve the privacy of
shared content from cloud providers and prevent them from discovering the
participants in any conversation?

• Minimize cost: Finally, we seek to minimize the storage, bandwidth, and com-
pute costs incurred by users in Hermes’s use of cloud services. This is made
particularly challenging due to the previous two goals. For example, one could
enable timely dissemination of comments if every user were to maintain her
own compute instance in the cloud at all times. Similarly, the members of any
particular conversation can be hidden from cloud providers by having all users
constantly exchange fake comments with each other. However, such measures
will result in high cost.

Threat Model: We assume that all service providers (of cloud services or of a
centralized OSN) preserve the integrity and availability of the data that users
store on them. This may be either in fear of bad publicity or because users
pay for the service. However, we assume that all service providers may bene-
fit from inferring information associated with private conversations. Thus, we
treat all service providers as “curious but honest”, as in [33]. Moreover, if cloud
providers discover the members of private conversations, this information may
leak. Therefore, we seek to ensure that, when a group of users are involved in
a private conversation using Hermes, no one outside the group learns either the
size or membership of this group. Here, we assume that cloud providers can
perform network-level traffic analysis (e.g., a provider can map the IP addresses
from which it is accessed, to user identities). The use of anonymity networks such
as Tor [19] would not scale to meet the traffic demands of a large-scale OSN.
Lastly, ensuring the privacy of a users’ conversation group via fake messages (as
in Hermes) requires that the user has a sufficiently large set of friends; if a user
has very few friends (e.g, < 5), preserving the anonymity of a private conversa-
tion group is hard. We assume that users have friends of the order of hundreds,
as is typical on OSNs [3]; however, we assume the sizes of private conversation
groups to be much smaller.

4 Hermes Architecture

In this section,wedescribe theHermes architecturewith a simple running example.
Consider an OSN user (Alice), who wishes to share some content (say a

photo) meant only for her friends Bob and Chloe. To ensure that neither the
private content nor the intended recipients are exposed to anyone other than the



Resource Efficient Privacy Preservation 237

Alice
(Initiator)

Bob
(friend)

Chloe
(friend)

Upload Public 
Keys to OSN

Fetch other 
friends keys 
from OSN

Upload encrypted 
content to Alice's 

cloud storage

Download 
content from 

Alice's storage 

Upload encrypted 
comment on 
conversation

Download 
comment from 
Chloe's storage 

Time

Fig. 1. Illustration of conversation timeline.

intended recipients, Alice encrypts the photo with an appropriate key (known
only to Bob and Chloe) and shares it using resources in the cloud. There are
four main issues that we need to address to enable this: 1) how do Bob and
Chloe discover this content and the associated key to decrypt it?, 2) how can
comments on the content, posted by Alice, Bob, and Chloe, be disseminated in
a timely manner?, 3) how do we prevent the cloud provider from inferring the
members of this private exchange?, and 4) how to minimize costs incurred by
Alice, Bob, and Chloe? We next describe how Hermes tackles these questions.

Sharing New Content: As shown in Fig. 1, every user (including Alice) first
posts her public key component to enable an ECDH key exchange (details of
ECDH can be found in [25]) on her OSN profile1, which is visible to all of her
friends. Any user can thus, fetch the public key components from her friends’
profiles and derive pairwise keys with any of her friends.

To share a photo, Alice’s Hermes client chooses a new group key and creates
two encrypted copies (using a cipher such as AES) of this key, one copy encrypted
using her pairwise key with Bob and the other using her pairwise key with Chloe.
Alice’s client then stores these encrypted group key copies in Alice’s cloud store.
The client also puts the photo, encrypted with the group key (again using AES),
in her cloud storage.

Bob’s and Chloe’s Hermes clients periodically check Alice’s cloud store for
new content shared with them. When new content exists, they fetch their respec-
tive encrypted group key copies from Alice’s store (the process is discussed later)
and extract it using their respective pairwise keys with Alice. Bob’s and Chloe’s
clients then store the extracted group key locally on their personal devices. The
clients can fetch and decrypt the photo using this group key.

Enabling OSN-Like Conversations: We next describe how Hermes enables
OSN like conversations with low cost.

Disseminating Comments: After Bob and Chloe discover Alice’s photo, the
three of them may post comments on it. Our goal is to ensure that these
comments are disseminated in a timely and consistent manner, as is the case
with a centralized OSN. If all users involved in the conversation are always
online, whenever a user posts a comment, that user’s client can establish secure

1 This could be on her favorite OSN or Hermes’s servers depending on the implemen-
tation.
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connections with the clients of the other members of the conversation and inform
them of the new comment. However, in practice, Alice, Bob, and Chloe may come
online at different times. Thus, there has to be a common arbitrator that enables
a user to discover comments posted when she is not online and facilitates the
chronological ordering of posted comments.

For this, we propose that the user who initiates the conversation (Alice) uses
a computing instance in the cloud to act on her behalf as the arbitrator. Today,
there are many such online computation resources available (e.g., Google App
Engine [7], Heroku [9], and Amazon EC2 [1]). Alice’s instance acts as a proxy
for her.

Reducing Compute Instance Costs for Alice: However, keeping the com-
pute instance active at all times is not cost-effective for Alice. Thus, by default,
Alice’s Hermes client terminates her instance following a preset period after
Alice has shared any new content (discussed later in Section 6). However, there
may be users who come online much after the instance has been terminated. To
deal with such cases, Hermes uses log files called ufiles (update files). Every
user maintains a ufile in her cloud store for each friend; these ufiles are created
and the location of the ufiles are exchanged between friends either when a user
installs the Hermes client or when the user adds a friend. Thereafter, whenever
a user (Alice) posts a new piece of content relevant to a specific friend (Chloe),
Alice’s Hermes client adds an entry to the ufile for Chloe. In all subsequent
discussion, for the purposes of clarity, we only provide a high level description
of how ufiles are used and defer a detailed description to an appendix.

If Bob comes online after Alice’s compute instance has been terminated, his
client retrieves her ufile for him and locates any new updates. This allows Bob
to retrieve any content or comments shared by Alice. His client then indicates
that the content has been retrieved in his own ufile for Alice. Upon checking
this entry when Alice comes online, her Hermes client deletes the original entry
in her ufile for Bob.

Note that ufiles also enable a user to discover comments without waiting
for the initiator of a conversation to come online. For example, if Bob is also
Chloe’s friend, Bob’s ufile for Chloe will indicate that he has commented on
Alice’s photo. Chloe can thus retrieve the comment and associate it with the
original photo received from Alice (based on an associated conversation ID).

Ensuring Consistency of Comments with ufiles: The above framework
allows a user who comes online after the instance is terminated to retrieve the
object and reconstruct the conversation associated with it (i.e., put the comments
in chronological order using vector timestamps [26]) as long as all the group
members are his friends. However, if a group member (say Chloe) is not Bob’s
friend, Chloe is unable to read Bob’s ufiles; in fact, such a file for Chloe will
not exist in Bob’s cloud storage, since ufiles are only maintained for friends.
This violates the structure of an OSN conversation.

To deal with such cases, Alice relays the locations of the comments associated
with her content via her own ufiles for each member of the conversation (who
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are her friends since she initially shared the content with them). Since there may
be delays in relaying these locations (in rare cases where multiple users come
online much after the compute instance is terminated), there may be temporary
loss in the chronological consistency for a user who comes online at a late stage.
There is an inherent trade-off here; the longer Alice’s compute instance is active,
the less likely is that there is such a loss in consistency. However, this will incur
a higher cost.

Reducing Storage Costs: Finally, Alice cannot store her photo (or for that
matter, Bob cannot store his comment) on the cloud forever. This would result
in a monotonic growth in the consumed storage and thus, the associated cost.
Instead, with Hermes, content is removed from cloud storage after a certain time
(the duration can be set by Alice, but we discuss what might be appropriate in
Section 6). A simple way of ensuring that all group members have seen the
content before it is purged is for Alice to check if they have indicated this to
be the case in their ufiles for her. If a user (say Bob) comes online after a
prolonged absence (much after when the content was removed from the cloud),
he may still learn of its existence via Alice’s ufile meant for him. Via his own
ufile for Alice, Bob’s client then requests Alice for the purged content. When
Alice comes online next, her client then copies the requested content back on to
the cloud. In fact, Bob can request the purged content from any or all of the
group members of that conversation (information on the group can be embedded
as metadata in the encrypted content) to restore the content on the cloud for
him. Once a group member (say Chloe) restores the content, Bob’s ufiles can
be updated to indicate that the content is no longer needed from other members.

This process increases the complexity of Hermes’s design, and thus, is not cur-
rently implemented in our prototype; however, as we show in Section 6, such cases
are rare if one looks at typical content sharing on Facebook. Here, we also point out
that Hermes enables users to access their content from multiple devices; however,
we omit the details of how this is made possible due to space constraints.

5 Hiding Users’ Sharing Patterns

Next, we discuss how Hermes ensures that cloud providers cannot determine any
of the following: a) “when” a private conversation is occurring, b) the group size
of any given conversation, and c) the individual members taking part in that
conversation.

5.1 Hiding the Membership Information within Each Private
Conversation

First, let us consider a single private conversation initiated by Alice. Our goal
here is to ensure that the identities of the members of this private group and the
size of the group are not exposed to anyone outside the group.

Strawman Approach: To hide the group members in a given conversation
initiated by Alice, one simple approach is to make ufiles indistinguishable across
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all of Alice’s friends. Whenever Alice’s Hermes client needs to insert an entry into
the ufile for a particular friend, it can also insert dummy entries into the ufiles
for all of Alice’s remaining friends; the entries in the ufile for any particular
friend are encrypted with the shared pairwise key between Alice and that friend,
thus preventing the cloud provider from inferring which entries are fake. Thus,
based on the writes to and reads from the ufiles in Alice’s cloud storage, the
cloud provider will not be able to determine which subset of Alice’s friends are
involved in ongoing private conversations.

However, this simple approach has two limitations. First, it results in high
storage, bandwidth, and operational query costs for Alice, because a large num-
ber of fake entries will need to be stored by Alice and accessed by Alice’s friends.
Second, the cloud provider may still be able to infer the members of Alice’s
private conversation by observing which of Alice’s friends insert updates into
the ufiles in their own storage space; group members will post comments, but
friends who are not part of the group will not. We next discuss how we address
both of these issues in Hermes.

Obfuscating Group Size: Instead of making the ufiles for all of Alice’s friends
indistinguishable, Hermes attempts to hide the group members (G) among a sub-
set of Alice’s friends (D), where G is a subset of D (referred to as the anonymity
set). Whenever an entry has to be added to the ufile for any user in G, dummy
entries are also added to the ufiles for those users in (D − G). The number of
users in (D−G) follows an exponential distribution, with its minimum, mean, and
maximum values set to α, |(N −G)|/4 (rationale in Section 6), and |(N −G)| 2,
where N contains all of Alice’s friends. The parameter α allows us to handle
small groups and is set to max(15, |G|).

The effect of these parameters is that the size of the anonymity set is always
at least double that of the private group. As a result, random guessing as to
whether a particular user in the anonymity set is a member of the group will be
correct with a probability of at most 50%. For small groups of size less than 15,
randomly guessing as to whether a user in D is a group member succeeds with
probability |G|/(|G| + 15). In addition, the exponential distribution biases the
anonymity set towards smaller sizes. This reduces the additional storage and
bandwidth costs incurred for providing anonymity, as compared to a uniform
distribution that chooses the size of the anonymity set at random from the
range [α, |N−G|]. Lastly, note that it is insufficient to determine the size of the
anonymity set simply by inflating the group size by a fixed factor (since this
clearly reveals the group size).

Preventing Inference of Group Membership Based on Comments: So
far, Alice has been able to share content with G without revealing G or its
size (|G|). However, since only members of G will post comments on the shared
content, the cloud provider will be able to distinguish the users in G from all
those in D. Thus, the additional fake members in D must also post fake comments

2 Since private group sizes are typically small, we assume |(N − G)| > |G|.
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as part of the conversation (these fake comments are discarded upon retrieval
by group members).

A naive approach would require all the additional members in D to post as
per either some random distribution or based on their previous posting habits.
However, it is hard to provide any anonymity guarantees with such an approach.
Moreover, since we assume that the source code for the Hermes client is publicly
accessible, cloud service providers will have access to any distributions hard-
coded into the client software.

Instead, our approach for posting of dummy comments works as follows. We
divide time into slots, where all the members of a conversation can derive the
slot boundaries based on the time at which the conversation was initiated (see
Figure 2). We refer to each time slot as a round. In each round, every member
of the conversation who is online during that period posts at least one comment,
at a random point in time during that round. Those group members who have
no real comments to post in a particular round—this includes both the users in
(D−G) and the users in G who have no comments to post during that round—
post at least one dummy comment during that round. All entries added to any
ufile are padded to a fixed size in order to hide the number of comments being
posted by a user; this is necessary because a user who posts real comments may
post multiple comments in a single round.

Importantly, every user in D posts either real or fake comments at only
one particular time during each round. This ensures that the cloud provider
cannot distinguish between users in G and those in (D − G), since it observes
the same pattern of writing to and reading from ufiles for all users in D. Thus,
when all users in D are online, the cloud provider has only a G

D
probability of

correctly inferring whether a particular user in D is indeed a member of the
private group G.

Selecting the Length of a Round: A key design decision in instantiating
the approach described above is to determine how time should be divided into
rounds. Shorter rounds lead to more timely dissemination of comments. This is
because when one user posts a comment in a particular round, another user can
respond to this comment only in the next round; note that every user can post
comments only once in each round. In contrast, longer rounds result in lower
cost since fewer fake comments are posted, but compromise timeliness. Based on
this trade-off, we split the timeline of a conversation into rounds as follows.

Our design is based on the observation that the commenting activity asso-
ciated with most conversations is high when the conversation initially begins.
After this initial period, the conversation goes stale and users may have few new
comments.

Given this, to reduce the costs incurred to guarantee anonymity (hiding user
sharing patterns), we partition any conversation into two phases. The first phase
is when the conversation is fresh and one is likely to expect a comment in the
near future. In this phase, the timeliness of comment dissemination is important,
and therefore we keep a round’s length short. Once several rounds with no real
comments are observed, the conversation transitions to the second phase. The
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Fig. 2. Round structure in Hermes.

second phase aims to capture that phase of a conversation where no user has
posted a comment for a while and there is a low probability of new comments.
In this phase, we want to limit the cost associated with the conversation by
minimizing the number of fake comments. The key property we exploit in this
second phase is that, since the conversation is already stale, the timeliness of
straggler comments posted during this period is not of concern.

In the first phase, all rounds are of equal length as long as at least one
real comment is posted in each round. When there are no real comments in a
particular round, we increase the length of the round by a multiplicative factor.
The round length in the first phase is reset to its original value when a real
comment is posted in the previous round. After a certain number of consecutive
rounds with no real comments, the conversation transitions to the second phase.
We model round durations in the second phase as a geometric series also, but
use a larger multiplicative factor to increase round durations as compared to
that used in the first phase. When a real comment is posted in the second phase,
the conversation is reset to the first phase, but a fewer number of rounds of
inactivity transitions the conversation back to the second phase in this case.

Note that the users who are in D but not in G cannot distinguish between
real and fake comments; this is intentional, since we seek to hide group mem-
bership not only from cloud providers but also from users who are not in G.
Therefore, in every round, every user in G broadcasts to all of her friends who
are also in D as to whether a real comment was posted in the previous round or
not. Every user in D − G who receives this notification relays this on to all of
the user’s friends who are in D, exactly once. Thus, a user who receives a noti-
fication cannot distinguish between whether this was an original broadcast or a
relayed broadcast. Once a user receives this information, she can independently
determine what the length of the next round will be and when the transition
between phases is triggered. Note that, from the cloud provider’s perspective,
these notification messages that convey whether a real comment was posted in a
particular round are indistinguishable from real and fake comments. Moreover,
though the cloud provider may be able to infer when real comments are posted
based on when inter-comment spacings decrease, no one other than the users in
G can determine which users posted the real comments.
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5.2 Hiding Users’ Conversation Patterns by Handling Intersection
Attacks

Thus far, we have only considered hiding the identities of group members within
a conversation. Unfortunately, the above approach is insufficient in completely
hiding a users’ sharing patterns across conversations. If fake users (in D−G) are
chosen randomly from the user’s friends (N), the cloud provider can infer that
users who appear repeatedly in different conversations are likely to indeed be
real members of private groups.

To prevent such intersection attacks [18], we need to preserve anonymity
across conversations. For this, we seek to ensure that a consistent group of K
friends (K ⊂ N) appear across the conversations initiated by a user (Alice); we
refer to this group as the Top K group. Thus, if a private, repetitive, group
initiated by Alice is of size G, the provider can only randomly guess if a user in
the group of K friends (K >> G) is a true repetitive member with probability
G

K
. In essence, this provides |K|-anonymity [31].

Our approach to form the Top K group (algorithmically depicted below) is
to (1) tune the membership of D and (2) use fake conversations. We identify the
friends with whom Alice consistently has private conversations (say K1 ⊃ G)
and include them in the Top K group. We then fill the remainder of the Top K

group with other friends with whom Alice rarely initiates private conversations
(say K2).

Stage 1 Learn user habits
1: for Next M1 conversations do
2: {∀x ∈ G : x.count+ = 1}
3: set D = N and start conversation with entire friends list.
4: end for
5: Select K1 users with highest count values
6: Select K2 random friends s.t. {∀x ∈ K2 : x ∈ N ∧ x �∈ K1}
7: reset count Values
8: return K = K1 ∪ K2

Stage 2 Use learned habits
1: for Next M2 conversations do
2: Select size for |D| = α + Exp( |N|−|G|

4
)

3: ∀x ∈ (N − (G ∪ K)) : P(x ∈ D) = p
4: Fill D from K − G with probability of x ∈ D ∝ Max(c − x.count, delta), where

c = Max(∀x ∈ K : x.count)
5: ∀x ∈ D : x.count+=1
6: schedule �K−D

D
	 fake conversations with G = ∅ in current M2 conversations

7: end for

Tuning the Membership of D: As the first step, we need to determine which
of Alice’s friends consistently belong in private conversations. While doing so, in
order to preserve anonymity, we simply use the naive approach wherein all of her
friends are included in all conversations. This is referred to as the first stage or
the learning stage of anonymizing conversations (Stage 1). This stage is executed
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for M1 (tunable parameter) conversations. During this stage, the Hermes client
learns of the user’s posting habits and with which friends the user is more likely
to privately exchange information (set K1). It then forms the Top K group as
described above.

In the second stage (Stage 2) which is then executed for the subsequent M2

(tun able parameter) conversations, we reduce the total cost incurred by a user
(Alice) by only consistently including the Top K group in private conversations.
In each true conversation initiated by Alice, we now form the group D for that
conversation as follows. First, all the user’s friends that are neither part of the
conversation group G nor the Top K group (determined in the first stage) are
considered as candidates for inclusion in D. Each of these candidates is included
in D with a very small fixed probability p. This ensures that friends outside of
Alice’s Top K group, i.e., users with whom she rarely exchanges private content,
are included with a small probability; this protects against the server correctly
identifying true rare inclusions of such friends. Subsequently, Alice’s friends that
are part of her Top K group but not in G, are considered for inclusion. The
probability that a particular user (say Chloe) in the Top K group is selected is
proportional to the difference between the maximum number of conversations
any member of Top K group is involved in (both true or fake roles), and the
number of conversations that Chloe is involved is involved in (both true or fake
roles). This ensures that all of the members of the Top K group are consistently
involved in conversations.

Using Fake Conversations: In spite of filling the groups as above, it is possible
that real users appear more often than fake users. To address this, we schedule
�K−D

D
� fake conversations (with fake comments) where G = ∅ (since each real

conversation already includes ≈ D members from the Top K group). The groups,
D, for such fake conversations are filled exactly as the real conversations are filled.
Together, the above two steps of stage two ensure that every member of the Top
K group is in (approximately) the same number of conversations on average.

To cope with the dynamics of Alice’s sharing behaviors (she could converse
more often with Bob and Dave at some point in time, and at a different time,
exchange more private content with Chloe and Eve), we return to the first stage
periodically to recompute the Top K group. Here, we take care to ensure that
only minimal changes are made to the group K2 to prevent the server from
identifying these as fake users.

Finally, instead of using fake conversations, to reduce costs one can think of
suppressing an initiator’s conversations with particular users with whom she is
conversing too frequently. We do not explore this option as it violates our goal
of ensuring timely sharing as in a traditional OSN.

6 Quantifying Cost, Anonymity, and Timeliness
Trade-offs

In order to tune Hermes’s configuration, we seek to understand the trade-offs
between anonymity, timeliness, and cost. To do this, we crawl a large dataset
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from Facebook, and use the posting habits seen to perform a trace-driven sim-
ulation of Hermes.

Understanding the Temporal Nature of Conversations: We first seek to
understand how long a posting is likely to be of interest to a user’s friends, in
the common case. Our particular interest is the time gap between when specific
content was posted by a user and when the friends of that user lose interest in
viewing it (the interested friends have already viewed it with high probability).
However, it is impossible to accurately determine this duration without access
to Facebook’s server-side logs. Therefore, we instead use users’ comments on a
post as a proxy for their interest in the post. Though all users who find a posting
to be of interest may not comment on it, previous studies have shown that the
number of friends that see a post and the number of friends commenting or liking
it are positively correlated [17]. Thus, we ask the question: for those postings
that have associated comments, what is the time gap between the instant when
the posting was made and when the last associated comment was posted?

Due to the lack of a publicly available dataset on users’ posting habits, we
crawled the profiles of 68,863 Facebook users using a combination of FQL (Face-
book query language) and RestFB. Our crawled dataset, which spans a month,
roughly comprises 1) 1.8 million wall posts and associated comments, and 2) 40K
posts of either photos or videos with ≈ 35K associated comments. Remarkably,
70% of the 1.8 million posts did not have any associated comments. Thus, we
look at the other 30% and the photos/videos to determine the time-gap between
when the initial content was posted and when the last associated comment was
seen. Based on Fig. 3a, we set the duration for which a user caches data on her
cloud storage to 3 days; 90% of posts do not receive new comments beyond this
period. In outlier cases, where content is sought long after it was posted, we
sacrifice timeliness for resource thriftiness as discussed earlier.

A Simulation of Hermes: Next, we build a simulator to capture user inter-
actions with Hermes in a large-scale setting; the simulation provides both 1)
an understanding of how Hermes may perform, and 2) a validation of Her-
mes’s ability to provide anonymity with limited resources (small volumes of
storage and bandwidth, few operational queries, and short uptimes for a user’s
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computing instance). To the best of our knowledge, there does not exist a sim-
ulator that mimics user interactions on an OSN.

Determining Simulation Parameters: The first input required by our simu-
lator is a measurement of how often users come online. This dictates the expected
time for disseminating content across Hermes clients, and thus, impacts how long
the computing instance, or data stored on the cloud, will need to be active. Note
that the Hermes client on a user’s device does not need her to interact with it to
fetch new content. Thus, the only time of interest is when the device is powered
on and connected to the Internet. Here, we use data from [32], which provides
the time per day for which users’ devices are active. We assume that most pow-
ered on devices today are connected to the Internet. The weighted average of
this time for desktops is 9.7 hours a day. The weighted average of online time
for portable computers is comparable at 8.3 hours a day [32].

Second, to determine when a friend retrieves a private posting made by a
user, we compute the relative time-gap between when the user is online and
when the friend comes online later. We assume that users in similar time-zones
are online during similar periods; if users are in time zones far apart, this time gap
may be larger. Unfortunately, we were unable to access the location information
of users in our data set; Facebook does not allow programmatic access to this
information. Hence, we use two approximations to characterize the distribution
of when the friends of a user come online. 1) We assume that users come online
at random instances uniformly distributed over a 24 hour period, and stay online
for a uniformly distributed period with an average of 9.7 hours; we believe that
this model represents the likelihood that a user’s friends are distributed all over
the globe. 2) We consider a best case scenario wherein all of a user’s friends are in
her time-zone; here, we assume that the user and her friends come online within
a 12 hour period. Again, the time at which the user comes online is uniformly
distributed within this period, and the duration for which one stays online is
chosen as before.

Third, to accurately represent a user’s posting habits, we replay the posts
in our Facebook data set. Since the posts we crawl are those shared by a user
with all her friends, we obtain an estimate for the expected private group size
from [20] and [3]; these studies suggest that while the social group size of a user
is about 190, the more intimate size of a social group is 12. On this basis, we
consider expected group sizes of 15, and use a uniform distribution with variance
10 (to cover group sizes from 5 to 25).

Selecting System Parameters: To simulate Hermes, we also need to choose
the parameters that control how the system trades off timeliness for anonymity.
The two phases of a conversation, as discussed in Section 5, depend on four
factors, namely the initial length of a round (l), the multiplicative growth rate
in phase one (A1), the growth rate in phase two (A2), and the number of rounds
with no real comments in phase 1 (X), after which a conversation transitions
to phase 2. To set X, we observe from the Facebook data that 95% of the
time, the time gap between two consecutive comments is less than 24 hours. In
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other words, a conversation is unlikely to be of interest to friends if there are no
comments for about 24 hours. Hence, we transition a conversation from the first
to the second phase if we do not see a comment for 24 hours. Later we vary l
and A1 in our simulator and examine the effects on average cost and timeliness.
For phase 2, we seek an exponential growth, but want to simultaneously keep in
check the delay incurred in retrieving straggler comments; thus we set A2 = 2.

Simulator Design: Our simulator captures all the features of Hermes described
in Sections 4 and 5. In our simulation, every user initiates conversations and posts
comments as per her posting activity on Facebook. For each private conversation
initiated by a user, we select a randomly chosen subset of the user’s friends based
on her posting habits and the expected group size considered. We consider the
size of every shared photo as 2 MB and the size of all other private posts as 0.5
KB (these numbers are much larger than what we got from our crawled data).
Since a user’s comments in our crawled data may be on posts made by users
outside our crawled population, we post any comment by a user to a pre-existing
randomly chosen conversation that she is involved in.

Results and Interpretations: Our metrics of interest are (i) the time for which
a user’s compute instance needs to be active, (ii) the anonymity (likelihood of
guessing if a friend is a true group member) a conversational group is provided,
(iii) the total cost incurred, and (iv) the loss of timeliness due to users receiving
stale data.
Compute Costs: First, we seek to determine the time for which the instance
associated with any object (post) needs to be active. Recall that a Hermes client
of a group member obtains new content as soon as she comes online. Considering
the two approximations discussed above for when users come online, Fig. 3b plots
the distribution of the time it takes for all the members of a private group to
access the object. This is the time for which the compute instance has to be up.
To handle the common cases where the group size is small (< 15), the compute
instance needs be up for 6–7 hours even if a user’s friends are globally distributed;
if the friends are all local, it needs to be up for ≈ 4 hours. One may expect that
in a typical case (when a user has both global and local friends), the compute
instance will have to be up for a duration somewhere in between 4 and 7 hours;
we conservatively choose the duration to be 10 hours. In rare cases where not
all members access a posted object within the 10 hours, we trade-off timeliness
in serving the content for lower cost. Based on this, our simulations indicate
that, for ≈ 90% of the users, Hermes will need to keep their instances active
for less than 100 hours (or 4 days) in a month, in order to privately exchange
all the Facebook data that they shared in the entire month. In comparison, prior
solutions for OSN privacy [4,29] require every user to persistently have a compute
presence in the cloud.
Quantifying Anonymity: Second, we seek to quantify the anonymity provided
to a conversational group. First, we consider each conversation individually. We
define the anonymity score to be the probability that the server is unable to
correctly identify a group member as true or fake (as discussed in Section 5 this
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is (1− |G|
|D| )). In Figure 4a, we plot the anonymity score while varying the number

of fake group members. The x-axis represents the percentage of the initiator’s
friends outside the group, who are added as fake members (denoted as external
fake friends or EFFs). Specifically, D = G ∪ EFF where, EFF ⊆ {N − G}. The
y-axis represents the anonymity score. Since the likelihood that the server is
able to guess correctly is approximately proportional to the ratio of the number
of true members (fixed) to the size of the composite group (with true and fake
members), the anonymity score steeply increases as the size of the composite
group increases initially. Beyond a certain point, we reach a point of diminishing
gains, wherein the increase in the anonymity score is less significant with an
increase in the composite group size. To achieve an anonymity score of about
0.9, we need to add 25% of the friends outside the true group as fake members
in each conversation.
Per Conversation Anonymity vs. Cost Trade-Off: Next, in Figure 4b, we depict
the expected (total) cost incurred as a function of the percentage of EFFs. We
obtain the per-resource costs for different contributing factors from [1,2,8], and
multiply this with the amount of resources consumed. For an anonymity score
of 0.9 (% of EFFs = 25), we see that the expected total monthly cost per user
is relatively low (< $ 4) with both Google App Engine (GAE) and Amazon
EC2 (storage and computing are from the same provider). Thus, an EFF of 25%
(or |N − G|/4) presents the best trade-off between per conversation cost and
anonymity in Hermes.
Handling Intersection Attacks: In the scenario described above, we only consid-
ered the anonymity in a given conversation; the cost due to fake conversations
(included for protection against intersection attacks) was not considered. Next,
we present results that capture the effect of these conversations, which appear
at a rate of �K−D

D
� (recall Stage 2). The parameter K determines the level of

anonymity provided across conversations as discussed earlier. The value of G is
specific to each user and varies from 5 to 25; we fix an EFF of 25 % based on our
previous results. In Figure 5a, we change K by varying K2 (K1 is estimated in the
first stage of the process for each user as discussed in Section 5). We immediately
see that K ≈ 150 yields the highest anonymity at a reasonable cost. This is only
marginally higher than the value of D (with the chosen EFF value). This implies
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Table 1. Cost for various val-
ues of A1

A1
Avg. Delay Avg. Ops

(min) Cost ($)

1.025 2.8867 5.13

1.05 3.096 2.80

1.10 22.52 2.32

Table 2. Hermes’s resource consumption on
GAE

Operation MS/Req Bytes Rx Bytes Sent

Posts links 130 78 4

Check and
50 22 35

retrieve update

Add comment 45 42 2

that, on average, we need only one fake conversation for every real conversation
in order to thwart the intersection attack. In Figure 5b, we plot the difference in
the maximum and minimum number of conversations that the members of Top
K group have participated in. We see that this difference is no greater than 3
at all times; this demonstrates the high degree of anonymity within the Top K

group.
Cost Breakdown: Figure 5c shows the distribution (across users) of the total costs
due to the various components required by Hermes, viz., storage, bandwidth,
operational queries, and the computing instance, with GAE. We see that, for
about 95% of the users, the total cost is < $10 a month. In comparison, if a
compute instance is always active, the cost of this alone would be > $60 per
month. We also see that the cost due to operational queries and the instance
are the biggest contributors to the total cost. This is expected since storage
and bandwidth are relatively cheap, especially since Hermes purges the cloud
storage regularly. Operational costs are relatively high since storing, retrieving,
or even checking for content, incurs a cost [2,8]. The total cost with EC2 is
slightly lower than that with GAE (< $9 for 95% of the users) but the trends
in the cost components are similar; we do not plot the results here due to space
considerations.
Timeliness vs. Cost: In Figure 5d, we plot the expected delay incurred in access-
ing posts (a measure of timeliness) versus the expected (total) cost. We again use
GAE. If the length l of each round (recall Section 5) is reduced, the operational
costs are increased, but the timeliness is improved as well. If instead, we increase
l, the timeliness suffers but queries are made less often (to check for content) and
thus, cost decreases. Even if the desired expected delay is as low as 5 minutes,
the incurred cost with GAE is no more than $5 per month. With EC2, this cost
is even lower ($3). These results demonstrate that good timeliness is possible
with Hermes, with fairly low cost.
Timeliness vs. Anonymity: Next, we quantify the impact of varying A1 on timeli-
ness for a fixed l (set to 5 minutes for our experiments). We measure this impact
in terms of average costs and the average delay over all conversations in the simu-
lation. In Table 1 we show a representative subset of our results that is of interest.
As evident, increasing A1 decreases average cost but increases the average delay
of message propagation. From the table we see that when A1 is decreased to 1.05
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Fig. 6. End-to-end delays on Hermes and on Facebook

from 1.10, the marginal reduction in delay is significant; however, the additional
reduction is marginal when A1 is further reduced to 1.025. The cost growth is
almost linear. These results suggest that setting A1 (by default) to 1.05 provides
the best trade-off between delay and cost.

7 Prototype Implementation and Evaluations

Implementation: We prototype Hermes in Java as an add-on to Facebook. We
use the Facebook front end and a user’s profile therein is used for making her
public key component available. Hermes runs as a middleware and intercepts
posts classified as private. Dropbox and Google App Engine (GAE) are used for
storage and computation. Upon installation, the Hermes client requests OAuth
2.0 [10] access tokens from both Facebook and Dropbox and stores these locally
for later use. The client crawls the list of the user’s friends on Facebook and
creates one ufile for each of them on Dropbox. The client also initializes a
web-based application on GAE on behalf of the user.

The implementation of Hermes essentially follows the design as described
in the previous sections. ECDH is used to establish pairwise keys between the
initiator and each of her friends and these are then used to establish conversation
specific group keys. Then, the Hermes client uploads the content encrypted with
the group key, to the user’s space on Dropbox and requests Dropbox for the
public URLs for these files.3 When the user shares content, the Hermes client
also invokes a GAE instance and uses the GAE data store to save the encrypted
public URL to the file on Dropbox. All communications with the instance are
over HTTPS. For efficiency, the instance shuts itself down after a configurable
time has elapsed after creation (10 hours by default).

Both true and fake members access content as described earlier. The client
devices of fake users are provided with a group key whose prefix indicates that it
is a fake member; the server cannot detect a fake member, since the fake group
key is encrypted using the pairwise keys. The client of a fake member simply
3 With typical file sharing on Dropbox, when Alice shares a file with Bob, the shared

file is counted towards the storage capacity of both Alice and Bob. In our imple-
mentation, public links are simply pointers to Alice’s files; the files are then directly
accessed by Bob.
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discards all content retrieved with respect to the conversation (both the original
posting as well as comments).

Storage Overhead Associated with Shared Content: Our implementation
uses AES (256 bit key) to encrypt data and ECDH to establish a symmetric key
(using the P -256 curve defined in [11]). The parameters (such as the curve and
p) are defined in P -256 and available to all users.

Hermes adds overhead to shared content in three ways. (1) As described in
Section 4, each ufile entry occupies 16 bytes for a hash value and ≈ 20 bytes for
an encrypted URL on Dropbox. (2) Each ufile entry also includes the group key
encrypted with the pairwise key of the sender and its corresponding receiver, with
information for associating the entry with the receiver and authenticating her.
In our implementation, the size of each password tuple is 62 bytes. (3) Hermes
stores information about the uploaded files and the access tokens for writing to
a user’s Dropbox account on the user’s GAE instance. In our implementation,
every post accounts for 440 bytes of space on the GAE instance. In essence,
(1) Hermes’s storage overhead is a few KB for sharing data of any size; as an
illustration, storage overhead is 82, 820, and 1640 bytes for group sizes of 1, 10,
and 20 members (including fake), and (2) storage overhead of Hermes increases
linearly with the composite group size. Note that we expect private groups to
be typically small [3,20].

Efficiency of Hermes: We next evaluate our prototype by comparing the delay
incurred in sharing data with Hermes to that with Facebook. We share files of
different sizes and measure the total delay between when a user shares a file
and when a recipient completes receiving that file. To mimic the overhead seen
by real users, the receiver program contacts 250 compute instances (250 is the
average number of friends on Facebook [14]) to check for new content.

Fig. 6a shows the variance in delays incurred (the minimum, median, and
maximum values across 5 trials) in the above experiment. The overhead imposed
by Hermes as compared to sharing and receiving data on Facebook, especially
for delay-sensitive sharing of small files, is within reason (a few seconds). Delays
on Hermes are higher than delays on Facebook because Hermes not only posts
the shared content on Dropbox, but also sends the links to these files to the
user’s GAE instance. Furthermore, Hermes uploads and downloads ufiles in
addition to the content being shared.

We repeat the experiment on 6 PlanetLab [28] nodes, two on the US west
and east coasts, and one each in Europe, Asia, Australia, and South America,
and with 10 clients that access Hermes and Facebook via WiFi. Figs. 6b and 6c
show the variance in median access times across the PlanetLab nodes and across
the wireless clients. We see that the access times with Hermes are comparable
to that of direct data sharing on Facebook.

Resource Usage: Next, we measure the compute and bandwidth resources
consumed by the three Hermes client operations that require interactions with
the compute instance: (i) post links to newly shared content to the instance,
(ii) serve requests from friends who check if anything new has been shared with
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them (and download new comments, if any), and (iii) receive the link to a recip-
ient’s comment and post it to the conversation. We perform each operation 1000
times and examine GAE’s reports for resource usage. Table. 2 shows that the
compute time and incoming/outgoing network traffic incurred on average, for
each operation is low.

8 Conclusions

We design and implement Hermes, a practical, cost-effective, OSN architecture
for private content sharing. Hermes intelligently uses limited storage and com-
puting resources on the cloud to facilitate timeliness and high availability, while
minimizing resource usage. A key property of Hermes is that neither the cloud
providers nor other friends of a user can infer the membership of a private group.
Via an analysis of mined Facebook data and exhaustive simulations, we show
that Hermes greatly reduces costs compared to alternative solutions while ensur-
ing the anonymity of the private group.
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Fig. 7. Illustration of comment propagation in Hermes.

Consider a new bootstrapped conversation between Alice and all her friends.
We consider the scenario where Bob wants to post a comment (or reply) to
content that was originally shared by Alice.

Step 1: To comment on the content posted by Alice, Bob writes an update
to the ufiles that he maintains for his friends Alice and Chloe. Bob’s Hermes
client writes this update only to his ufiles for Alice and Chloe, and not his other
friends, since they are the members of the group. This update contains the tuple
< id, curl, 1, link >, where ‘1’ is an integer code to indicate that a new comment
in conversation c is in link,which is owned by Bob.

Step 2: When Alice and Chloe come online, they download their respective
ufiles from Bob’s storage and learn of the new comment in c. They individually
retrieve Bob’s comment and create new tuples of the form < id, curl, 2, link > in
their own ufiles for Bob. Here, ‘2’ is an integer code indicating that they have
received the last comment made by Bob in conversation c.

Step 3: When Bob comes online again and his client downloads the correspond-
ing ufiles from Alice and Chloe, it realizes that all his relevant friends have
read his latest comment. It then deletes the prior update < id, curl, 1, link >
from his ufiles; it also purges the corresponding comment from his cloud stor-
age. By doing this, the space occupied by the comment and ufiles do not simply
grow over time, thus drastically decreasing Hermes’s cloud storage requirements.
Upon returning online, Alice and Chloe notice that Bob’s original entry is deleted
from his ufiles. This implicitly tells them that Bob has received their update
and hence, they delete their update tuples from their ufiles for Bob.

Step 4: While Alice and Chloe get Bob’s comment, Dave is not Bob’s friend
and hence, does not receive it (Bob does not even maintain a ufile for Dave).
To allow Dave to see all the comments in a conversation he is part of (as with
Facebook), Hermes leverages the fact that Alice is a friend to all group members
and incorporates an additional step (shown in Fig. 7). When Alice notices Bob’s
update (step 2), she checks whether there exist group members who are not
friends with him. For each such member (e.g., Dave), Alice inserts an update
tuple < id, curl, 3, rc > in their respective ufiles; here ‘3’ is a code for the
relaying of a comment. rc refers to the relayed comment included in the tuple.
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Upon coming online, Dave downloads Alice’s ufile for him, finds the comment,
and notifies Alice of the receipt of this update. Alice and Dave then purge the
associated updates from their respective ufiles (steps 2-4 as before).

Note that the above scheme for distributing comments also works for other
types of notifications (e.g., ‘Likes’ on Facebook) by simply having different
update codes for different types of notifications.
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Abstract. Mobile devices are becoming increasingly popular. One rea-
son for their popularity is the availability of a wide range of third-party
applications, which enrich the environment and increase usability. There
are however privacy concerns centered around these applications – users
do not know what private data is leaked by the applications. Previous
works to detect privacy leakages are either not accurate enough or require
operating system changes, which may not be possible due to users’ lack of
skills or locked devices. We present Uranine (Uranine is a dye, which finds
applications as a flow tracer in medicine and environmental studies.), a
system that instruments Android applications to detect privacy leakages
in real-time. Uranine does not require any platform modification nor does
it need the application source code. We designed several mechanisms to
overcome the challenges of tracking information flow across framework
code, handling callback functions, and expressing all information-flow
tracking at the bytecode level. Our evaluation of Uranine shows that it
is accurate at detecting privacy leaks and has acceptable performance
overhead.

1 Introduction

Privacy encompasses an individual’s or a party’s control of information con-
cerning themselves. With the advent of smartphones and tablets, third party
applications play an important role in the lives of individual consumers and
in enterprise businesses by providing enriched functionality and enhanced user
experience, but have simultaneously also led to privacy concerns. On the con-
sumers’ side, how third-party applications deal with the wealth of private data
stored on mobile devices is not quite clear. Enterprises, on the other hand, need
to protect sensitive business data. With the implementation of Bring Your Own
Device (BYOD) policies to better accommodate the needs of employees, the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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issue is further aggravated, as the business data is stored on devices that are
not completely trusted. Leakage of business data to the Internet or from busi-
ness applications to personal applications is an important concern. Some leakage
of private data may be legitimate and even intended; yet, other leakages may
be questionable. We therefore believe that information about the privacy leaks
should be completely transparent and accessible to the user (or the IT adminis-
trator in case of enterprises). The user may then choose to allow or disallow the
leaks either through real-time interaction with an on-device controller or through
preset policies. In particular, apart from good accuracy and performance, the
detection of privacy leaks should have the following requirements.

– Real-time. Real-time detection, or detection immediately when leaks happen,
enables situationally-aware decision making. The situation (condition) under
which a leak happens is important—a privacy leak may be user-intended,
and in that case legitimate. For example, upload of a user’s address book to
a social network under user’s consent is legitimate. Offline detection of leaks
may be helpful, but does not usually identify the complete situation under
which a leak happens.

– No system modification. Mobile devices typically come locked, and it is diffi-
cult for an average user to root or unlock them to install a custom firmware.

– Easily configurable. The user should be able to enable the privacy leak detec-
tion just for the apps she is concerned about. Other parts of the device such
as system server processes and trusted apps from the device vendor should
be able to run without overhead.

– Portability. The framework should work across different devices with poten-
tially different architectures, e.g. ARM and x86, and with different runtimes,
e.g. Dalvik and ART (a recently introduced Android runtime1), with little
or no code modification.

There have been many earlier systems targeted at detecting privacy leaks,
but all have some drawbacks with regards to the above characteristics. Taint-
Droid [13] detects privacy leaks in real-time, but requires the installation of
a custom Android firmware, which possibly limits its accessibility to expert
users. Furthermore, TaintDroid’s firmware code modifications must be adapted
to different architectures and even different Android versions. Phosphor [4] is a
dynamic taint tracking system for Java which can work on Android. It instru-
ments the application and library code to detect privacy leaks in real-time. How-
ever, it requires modification of the bytecode of platform libraries, which again
requires custom firmware and hinders wide-scale deployment. Static analysis sys-
tems [2,14] fail on the real-time requirement—inputs from the user or from the
remote server may affect what is sent out of the device and thus the leak may
or may not be considered legitimate.

In this paper we propose Uranine, a real-time system for monitoring pri-
vacy leaks in Android applications without the need for platform modification.
The major challenge comes from the requirement of no platform modification,

1 https://source.android.com/devices/tech/dalvik/art.html

https://source.android.com/devices/tech/dalvik/art.html
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Table 1. Uranine compared with dynamic approaches. + is better, − is worse.

TaintDroid [13] Phosphor [4] Uranine

Real Time Yes (+) Yes (+) Yes (+)
System Modification Yes (−) Yes (−) No (+)
Configurability Little (−) Little (−) High (+)
Accuracy Good (+) Good(+) Good (+)
Performance (runtime) Good (+) Good(+) Good (+)
Portable No (−) Yes(+) Yes (+)

including being unable to instrument framework code:2 we need to approximate
flow through the framework code and for callbacks, i.e. application code called
by the framework code. This is further complicated by the existence of heap
objects, which often point to other heap objects and whose effects may easily
lead to missing leaks if not handled carefully.

Uranine provides a framework for instrumenting stock Android applications
without the need for the application source code. It begins by converting the
application bytecode to an intermediate representation (IR), which it instru-
ments employing the techniques presented in this paper. The instrumented IR
is assembled back into a new application installable on an Android device. As
the instrumented application runs, privacy leakages are automatically tracked.

Apart from being real-time and requiring no system modification, our app-
roach also brings the added benefit of instrumenting only apps that the user
is concerned about; the rest of the system, including the middleware and other
apps, run without overhead. Finally, since we do not touch the Android middle-
ware and the virtual machine runtime, our approach ensures portability. Table 1
summarizes the comparison between Uranine and other similar systems.

This paper makes the following contributions.

– We solve the problem of tracking private information through platform APIs
and libraries without modifying the platform, by developing appropriate data
structures and algorithms in Section 3.1.

– The Java language and especially the Android platform relies heavily on
callbacks, i.e. functions in app code that are called by the platform libraries.
We discuss the challenges of handling callbacks for real-time information flow
tracking, and propose the first solution for this problem in Section 3.1.

– Aspects of Java, including reference semantics for objects and garbage col-
lection, pose a problem with regards to developing a clean solution that does
not interfere with the Java model. Our solution, centered on hashtables with
weak references to hold necessary data-structures for different objects, solves
this problem (Section 3.1).

– We have developed a system prototype called Uranine for real-time detection
of privacy leakages in Android apps without system modification.

2 Throughout the paper, app code refers to the code contained in the app; framework
code refers to the code defined in the Android platform and may be called through
Android APIs.
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We evaluated (Section 5) a working prototype of Uranine on real-world appli-
cations from Google Play. The evaluation shows that Uranine is accurate in
tracking information flows. Our evaluation of performance overhead shows that
Uranine has acceptable overhead on real-world applications. We also note that it
is possible to further reduce the performance overhead of Uranine by performing
static analysis and instrumenting only paths along which private information
flows can take place.

The rest of this paper is organized as follows. Section 2 gives the back-
ground and states our approach together with the challenges involved. A detailed
description of the Uranine framework is covered in Section 3, while Section 4 cov-
ers the implementation aspects. Section 5 gives our evaluation of Uranine. We
then present some relevant discussion in Section 6 and related work in Section 7.
We finally conclude in Section 8.

2 Background and Problem Statement

2.1 Android Background

Android is an operating system for mobile devices such as smartphones and
tablets. It is based on the Linux kernel and implements middleware for telephony,
application management, window management, etc. Applications are typically
written in Java and compiled to Dalvik bytecode, which can run on Android.
The bytecode and virtual machine mostly comply with the Java Virtual Machine
Specification.

Unlike the JVM, The Dalvik Virtual Machine is a register-based VM. Each
method has its own set of registers (not overlapping with other methods).
Instructions address these registers to perform operations on them.

(a) Deployment by Vendor or Third-
party Service

(b) Deployment by Market

Fig. 1. Deployment by Vendor or Third-party Service
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2.2 Problem Statement

Static analysis has its own advantages for information flow tracking, but a
dynamic information flow tracking solution may also be desirable for the fol-
lowing reasons: (a) Static analysis may only tell what may happen but cannot
tell what actually happens. Runtime conditions, including inputs from the user
and the server may influence what actually happens, meaning that any privacy
leaks may be classified as legitimate or illegitimate. Even if a static analysis
can detect user interaction, what exactly a user confirms is very difficult for
it to capture. (b) Private sources in Android, which are based on URIs, such
as contacts, cannot be soundly tracked by static analysis (unless it marks all
database queries as possible private sources). Databases such as contacts are
accessed through corresponding URIs, which are simply wrapped strings and
may be obfuscated or inaccessible statically. Lastly, (c) static analysis is often
conservative due to scalability reasons, and thus may have false positives. In the
light of all these points, we focus on dynamic information flow tracking in this
paper.

Previous dynamic analysis approaches on Android for tracking information
flow have modified the Dalvik VM or the library code to propagate taints [4,13].
As this requires platform modification and thus limits the usability, it is rea-
sonable to ask whether dynamic information flow tracking is possible without
platform modification by rewriting the apps alone. Uranine answers this ques-
tion positively. It accepts stock apps from the user, and returns a ready-to-run
instrumented app enabled with information flow tracking.

Deployment Models. Figure 1 shows the two possible deployment models of
our approach. The first model is suitable when there is no control on the source
of apps. It is suitable for enterprise, third-party subscription services, individual
users, and smartphone vendors and carriers. As the user downloads a third-party
app, the downloaded app is passed to our system for instrumentation. Such a
system would typically reside in the cloud as a service supported by the vendor
or a third-party. It is also possible to place this service on the users’ own personal
computers or enterprise’s servers. Once the app has been analyzed and instru-
mented by the system, the app is installed on the user’s device. The app is then
constantly monitored on-device as it runs. We note that the whole process may
be completely automated with the use of an on-device app so the user needs to
only confirm the removal of the original app and installation of the instrumented
app. Furthermore, entry-level users may be provided with preset information
flow tracking and enforcement policies. The second deployment model, which is
more suitable for app markets and enterprise app stores, is slightly different in
that the apps are instrumented before the user downloads and installs the app.
We note that other existing real-time taint-tracking systems do not have similar
deployment models.

Android apps are digitally signed by their developers, so instrumenting an
app would require an application to be re-signed. The current app update sys-
tem at Google Play (and possibly other Android markets) depends on apps’
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signatures. Deployment by third party services will therefore need to provide
out-of-band mechanisms to notify users of available updates. This is however
not much of a concern: mobile app management and app wrapping products
such as Good [17] and MobileIron [22] already provide similar deployment mod-
els to enterprises in the context of API interposition similar to [9,35].

Fig. 2. A depiction of challenges C1 and C2 met in Uranine. There are paths between
app code and framework code depicted as meandering function call paths and return
paths, together with callbacks (the app code that is called by framework code). The left
path results from ordinary calls while the right path includes callbacks. Information flow
tracking can only be done for app code, requiring approximations for framework code.
Callbacks must be handled soundly. Objects on the heap point to each other and their
effect on information flow should be properly accounted for during approximations.

Challenges. Following are the challenges that we solve in creating Uranine.

C1 Framework code should not be modified, i.e. we cannot instrument frame-
work code. We summarize the effect of framework APIs according to a cus-
tom policy, combined with manual summarization for a few special cases.
Previous works on static or dynamic binary instrumentation [24,36,41]
have needed to summarize system calls or very simple functions in low-
level libraries like libc, which are much simpler. Static analysis works
also typically use summarization [15,21] to achieve scalability. However,
we show by example that in our context of dynamic analysis and complex
framework with Java data structures in Android, summarization alone is
not sufficient. Heap objects can be particularly challenging to handle, and
we need additional techniques for effective taint propagation.

C2 The effect of callbacks should be accounted for. Callbacks are functions
in app code that may be invoked by the framework code. Since frame-
work code cannot be instrumented, we cannot do taint propagation when
callbacks are invoked. We propose a technique which uses over-tainting to
avoid false negatives.

C3 In the Java language model, objects follow reference semantics, so we must
have a way to taint the locations referenced. Furthermore, objects are
deallocated automatically by garbage collection, so our taint-tracking data
structures should not interfere with garbage collection.
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As noted above, there are trade-offs between system modification and detec-
tion accuracy. However, we note that even though we resort to over-tainting to
solve some of the above challenges, our results demonstrate that a carefully con-
ceived design may still have a low false positive rate in practice. We discuss our
solutions in detail in the next section.

3 Uranine Design

Uranine offers a general framework for instrumenting applications statically and
for providing information flow tracking, which may be used in a number of appli-
cations, including tracking privacy leaks and hardening applications against vul-
nerabilities. Figure 3 depicts the architecture of Uranine. When an app is given to
Uranine, the app code is first converted to a custom intermediate representation
(IR) that can be instrumented for taint propagation to happen at runtime. The
instrumented IR is then converted back to bytecode and a new app is prepared.
Since the framework code cannot be instrumented, we approximate the effects
of framework code through a few general but customizable summarization rules.
The rest of this section first describes our techniques for taint storage/propaga-
tion and the instrumentation details. The latter part of the section then describes
our static analysis.

Fig. 3. Instrumentation flow in Uranine

3.1 Taint Storage and Propagation

The techniques for taint storage and propagation influence the accuracy and
runtime performance of privacy leakage detection. Our techniques focus on pro-
viding privacy leakage detection without false negatives under the constraint
that the platform not be modified. Much of the design for taint tracking here
is fairly routine and may be found in previous work [4,13,30]. We describe the
routine or obvious aspects very briefly and then discuss in detail the specific
challenges and corresponding solutions in our work.

Each entity that may be tainted is associated with a taint tag, which identifies
what kind of private information may be carried by the entity. In the Uranine
model, taints are stored and propagated for local variables (i.e. method registers),
fields, method parameters/returns, and objects. Different bytecode instructions
handle different storage types (i.e. local variables, fields, etc.) and accordingly
have different taint propagation rules. Additionally, in a complete system, IPC
(inter-process communication) taints and file taints may be handled at a coarser
granularity. For IPC, the entire message carries the same taint. Similarly, an
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entire file is assigned a single taint tag. In our design, tracking IPC and file taints
requires communication with an on-phone Uranine app, which keeps track of all
file taints and IPC taints from instrumented applications. This paper focuses on
taint tracking within Java code (more specifically, Dalvik bytecode) and further
discussion on IPC and file taints is out of the scope of this paper.

We next describe the taint propagation rules for the different situations. We
begin our discussion by assuming that we can instrument all the code (including
the framework) and then introduce changes that would be required to leave the
framework code intact.

Method-Local Registers. For each register that may possibly be tainted, we
introduce a shadow register that stores the taint for this register. Any move oper-
ations simply also move the shadow registers. The same also happens for unary
operations, while for binary operations, we combine the taints of the operands,
assigning this to the shadow register of the result. Instructions assigning con-
stants or new object instances cause the taint of the registers to be zeroed.

Heap Objects. Heap objects include class objects containing fields, and arrays.
For each field that may possibly be tainted, we insert an additional shadow
taint field in the corresponding class. The load and store instructions for instance
fields and static fields are instrumented to assign to or load from these taint
fields to the local registers. We note that we may not insert additional fields into
framework classes. In this case, we taint the entire object. How this is done and
the effects of this will be discussed shortly.

In the case of arrays, each array is associated with only a single taint tag.
If anything tainted is inserted into an array, the entire array becomes tainted.
This policy is used for efficiency reasons, and has been also adopted by other
works such as TaintDroid. We also support index-based tainting so that if there
is an array-get (i.e. a load operation) with a tainted index, the retrieved value
is tainted. We will discuss shortly how we associate taint with Array objects.

Method Parameters and Returns. Methods may be called with tainted
parameters. In this case, we need to pass on the tainted information from the
caller to the callee. We take a straightforward approach to achieve this—for each
method parameter that may be tainted, we add an additional shadow parameter
that carries the taint of the parameter. These shadow parameters may then
convey the tainted information to the local registers. Method returns are trickier.
Since we can return only one value, we instead introduce an additional parameter
to carry the taint of the return value. In Java, we have call-by-value semantics
only, so that making assignments to the parameter inside the callee will not
be visible to the caller. We therefore pass an object as the parameter, which is
intended to wrap the return taint. The caller can then use this object to see the
return taint set by the callee.

Our next part of discussion relates to specific challenges discussed in Section 2
and mostly relates to the requirement of not changing the framework code.
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Calls into the Framework (Challenge C1). Whereas the application code
may be instrumented for taint propagation, we may only approximate the effects
of calls into the framework code on taint propagation. We use a worst-case taint
policy to propagate taints in this case:

– Static methods. For static methods with void return, we combine the taints
of all the parameters and assign this to all the parameter taints. For static
methods with non-void returns, the taints of all the parameters are combined
and assigned to the taint of the register holding the return value.

– Non-static methods. Non-static methods often modify the receiver object
(the object on which the method is invoked) in some way. Therefore, we
combine the taints of all the non-receiver parameters; apart from its original
taint, the receiver object is now additionally tainted with this combined
taint. In case the method returns a value, the return taint is defined as the
receiver taint.

Note that these rules are not enough to summarize the effects of framework code.
Non-static methods often have arguments that are stored into some field of the
receiver. Consider the following piece of code.
1 List list = new ArrayList ();
2 StringBuffer sb = new StringBuffer ();
3 list.add(sb);
4 sb.append(taintedString);
5 String ret = list.toString ();

In this case, sb and list are untainted until line 4. Thereafter, sb is tainted
and ret should be tainted because it will include the contents of taintedString.
Our general solution is that when an object becomes tainted, any objects contain-
ing that should also become tainted. For every object o1 that may be contained
in another object o2, we maintain a set of the containing objects. If the taint
of o1 ever changes, we propagate this taint to all the containing objects. The
set of containing objects is updated whenever we have a framework method call
o2.meth(.., o1, ..), where meth is a method on o2 and possibly belongs to the
framework code. This is a worst case solution; in certain cases, such a method
would not lead o1 to be contained in o2. The update operation may be recursive,
so that an update to taint of o2 may lead to updating the taint of the objects
containing o2, and so on. Objects may point to (contain) each other and hence
there may be cycles; the update operation will however achieve a fixed point
eventually and then terminate.

Handling Callbacks (Challenge C2). A callback is a piece of code that is
passed onto another code to be executed later on. In Java, these are represented
as methods of objects that are passed as arguments to some code, and the code
may later invoke methods on that object. These objects typically implement an
interface (or extend a known class) so that code is aware which methods are
available on the object.

Android makes an extensive use of callbacks, which often serve as entry points
to the application. Examples of such callbacks are Activity.onCreate() and
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View.onClick() when overridden by subclasses. Apart from these, callbacks
may be found at other places as well. For example, toString() and equals()
methods on objects are callbacks. Identifying callback methods correctly may
be done using class hierarchy analysis. A class hierarchy analysis analyzes the
inheritance relationships between different classes and, based on these results, the
overriding relationships between different methods. The class hierarchy analysis
acts as a guide to the rest of the instrumentation by defining how different
methods are dealt with during instrumentation.

Since callback methods override methods in the framework code, their
method signatures may not be changed to accommodate shadow taint param-
eters and returns, lest the overriding relationships are disturbed. For example,
consider the following class.
1 class DeviceIdKeeper {
2 private String id;
3 public DeviceIdKeeper(TelephonyManager m) {
4 id = m.getDeviceId ();
5 }
6 public toString () { return id; }
7 }

The app code may call toString() on a DeviceIdKeeper instance. Since the
return here may not be instrumented to propagate taint, we may lose the taint
here. Furthermore, it is also possible that this method is called at some point by
the framework code.

Our Solution. In order to not lose taint in this case, our solution is to lift
the return taints of all callback methods to the receiver objects. That is, in
the instrumented callback method, the return taint is propagated to the receiver
object taint. In case a possible callback method is called by app code with tainted
parameters, we taint the receiver object with the taint of the parameters and
then inside the method definition taint the parameter registers with the taint
of the receiver. Since heap objects can carry taints in our model, such over-
tainting needs to be done only in case of parameters of primitive types. With
the parameter and return tainting in place, we may use the techniques described
for calls into the framework (Section3.1) to summarize the effect of this call. The
key to note here is that the receiver object of the callback serves as a convenient
taint carrier and thus taint is not lost in both the cases: when the callback is
called by an app method, and when it is called by the framework.

Fig. 4. Associating taint data-structures with objects
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Taint Data-Structures (Challenge C3). From the above, it is quite clear
that we need a way to taint objects. Java uses reference semantics to address
objects. That is, object variables are pointers to object values on the heap and
assignment for objects is only a pointer copy. Thus, we may have two types of
tainting, either tainting the pointer, or tainting the object. Storing pointer taints
is simple and has been discussed as storing taints for method-locals and fields. In
addition, we also need to associate a set of containing objects with each object
(Section 3.1).

Our Solution. In our solution, we use a global hashtable, in which the keys
are objects and the values are records containing their taints and the set of
containing objects. Any time the taints or containing objects needs to be accessed
or updated, we access these records through the hashtable. Our hashtable uses
weak references for keys to prevent interference with garbage collection. In Java,
heap memory management is automatic; so we cannot know when an object gets
garbage-collected. Weak references are references that do not prevent collection
of objects and so are ideally suited for our applications. We further note that
these data-structures should allow concurrent access as the instrumented app
may have multiple threads running simultaneously. A schematic of our global
hashtable is presented in Figure 4.

We considered but rejected an alternative method of keeping these data struc-
tures. With every object, we can possibly keep a shadow record, which is an
object that stores the object taint and the set of containing objects in its fields.
The instrumentation may then move this shadow record together with the main
object through method-local moves, function calls and returns, and heap loads
and stores. This technique however does not work well with the way we handle
calls into the framework. Consider the following code fragment.
1 // list is a List
2 // obj is an object
3 list.add(obj);
4 obj2 = list.get(0);

In the above code, obj and obj2 could be the same objects. However, since
the loads/stores and moves inside the List methods are not visible to us, we
cannot track the shadow record of obj there. The shadow record of obj2 may at
most depend on the record of list. Thus, there is no way to make the shadow
records of obj and obj2 the same, something that we achieve easily with our
approach of weak hashtables.

4 Implementation

We have implemented a working prototype of Uranine. We use a library called
dexlib [32] to disassemble and assemble Dalvik bytecode. The disassembled
representation is converted to an intermediate representation (IR). In addition,
we also use apktool [1] to disassemble the binary Android XML format (needed
to discover entry points for static analysis) and other tools from the Android
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Fig. 5. Uranine implementation depicting the use of existing code (white boxes) and
the features we implemented (gray, discussed in detail in Section 3).

SDK and elsewhere to prepare an instrumented app. Figure 5 provides these
details graphically.

We choose to work on an IR very close to the bytecode, and do not require
decompilation to either Java bytecode or the source code as some previous
works have required. Since decompilation is not always successful, this app-
roach improves the robustness of our system. The IR enables us to simplify
the bytecode instruction set to a smaller instruction set containing only the
details relevant to the rest of the analysis and instrumentation. Disregarding
details like register widths, the Dalvik bytecode instructions3 generally have
a direct correspondence with the instructions in the IR. Similar instructions
(such as all binary operations or all kinds of field accesses) are represented as
variants of the same IR instruction. Range instructions (invoke-*/range and
filled-new-array-*/range) access a variable number of registers; these are
converted to the simple representations of invoke-* and filled-new-array-*
instructions with a variable number of register arguments in the IR. Even though
we use this IR for instrumentation, it is also suitable for performing static con-
trol flow and data flow analysis. In fact, the same IR is used as input to our
class hierarchy analysis, the results of which then guide the instrumentation.
The instrumented IR is then finally assembled back to Dalvik bytecode.

Most of our instrumentation code is written in Scala, with about a hundred
lines of Python code. The taint-tracking data structures and related code is
written in Java. The instrumentation adds a compiled version of this code to
every app for runtime execution. The total Uranine codebase sizes to over 6,000
lines of code. We note that Scala allows for writing terse code; the equivalent
Java or C++ code is usually two to three times as long.

3 http://s.android.com/devices/tech/dalvik/dalvik-bytecode.html

http://s.android.com/devices/tech/dalvik/dalvik-bytecode.html
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Table 2. Accuracy evaluation of Uranine and comparison with TaintDroid

App Uranine TaintDroid App Uranine TaintDroid

mobi.android-
cloud.app.ptt.client

Contact Contact com.ama.lovetest.cal-
culator

IMEI, Phone# IMEI

com.enlightened.An-
droidskyjewelsfree

IMEI None com.flashlight.tre-
film.coins

IMEI IMEI

com.magmamobile.ga-
me.Slots

IMEI None com.silkenmermaid.g-
au.dldic

IMEI IMEI

me.zed 0xff.android.al-
chemy

IMEI None com.gamevolution.Ma-
rbleMadnessPro

IMEI IMEI

com.magmamobile.ga-
me.BubbleBlast2

IMEI None com.reverie.game.toilet-
paper

IMEI IMEI

com.rhs.wordhero Loc Loc com.red.white.blue.free IMEI IMEI
com.rferl.almalence.st-
aringcat

IMEI IMEI com.gameloft.andro-
id.ANMP.GloftGTFM

IMEI IMEI

app.win.conforl1 ICCID, IMEI,
Phone#

None com.alloright.trib IMEI, Loc,
Phone#

IMEI,
Loc

com.anbgames.open-
thedoor.hoola2

IMEI IMEI com.euro2012.geekbea-
ch.acquariusoft

IMEI IMEI

com.aceviral.top-
truckfree

IMEI IMEI com.fjj24512014.korea IMEI None

com.flirtalike.android IMEI, ICCID IMEI, ICCID net.aaronsoft.poker.eva IMEI IMEI
com.keithe.lwp.aq-
uarium

IMEI IMEI com.mobizi.scratchers IMEI None

com.androiminigsm.fs-
cifree

Contact, IMEI Contact, IMEI sg.vinay.FourpicsOne-
wordcheatsanswers

IMEI, Phone# None

mobi.jackd.android Loc Loc com.electricpocket.rin-
go

Contact Contact

com.topface.topface IMEI IMEI com.keek IMEI, ICCID IMEI
com.pilotfishme-
diainc.happyfish

IMEI, Loc,
Phone#

Loc com.phantomefx.re-
eldeal

IMEI IMEI

5 Evaluation

We evaluate Uranine on two aspects: accuracy and performance overhead. To
perform accuracy evaluation, we configured Uranine to detect the leakage of
location, phone identifiers (like IMEI and phone number), and contacts (address
book). Our sinks include all APIs that send data to the network, write to the
file system, or send SMS messages. We note that even though we restrict to a
few relevant sources and sinks, we can easily extend the privacy leakage tracking
by adding other private information sources and sinks as well.

Our app dataset consists of 1,490 apps randomly selected from Google Play.
Apps are instrumented automatically and run with random inputs (fuzz test-
ing) provided by the Android Monkey tool4. For understanding privacy leakage
results, we also conducted manual tests for a smaller set of apps.

5.1 Accuracy

In this section we evaluate how Uranine performs in detecting privacy leaks. We
use our dataset real-world applications from Google Play for the evaluation. We
use TaintDroid results to compare with our results. Our methodology involves
running Uranine-instrumented applications on a TaintDroid build, allowing us
4 http://developer.android.com/tools/help/monkey.html

http://developer.android.com/tools/help/monkey.html


Uranine: Real-time Privacy Leakage Monitoring without System 269

to generate both TaintDroid’s and Uranine’s results together in one run, and
thus eliminating any differences that may arise because of random inputs or
non-determinism in multiple runs.

Manual Tests. We conducted manual tests on a physical device (Samsung
Nexus S) over a small random subset of apps. These results enable us to carefully
study the differences between TaintDroid and Uranine. The results are depicted
in Table 2. The results, where neither TaintDroid nor Uranine detected any
leakage, are not shown in the table.

Our results show some disagreement with TaintDroid. We see that TaintDroid
does not detect any phone number leaks that we detect; a look into TaintDroid
code then revealed to us that TaintDroid has disabled tracking of phone numbers
with the comment “causes overflow in logcat, disable for now” in source code. In
all other cases of disagreement between Uranine and TaintDroid, we manually
confirmed the correctness of Uranine. It turns out that in the cases where Uranine
does detects an IMEI (or ICCID) leak while TaintDroid does not, there is some
kind of hashing of the identifier involved, such as the calculation of MD5 or SHA1
digests. It appears that TaintDroid does not propagate taint across the functions
that calculate these digests. This is also confirmed in AppsPlayground [26]. In
conclusion, our results are generally consistent with TaintDroid. Any apparent
inconsistencies result from implementation artifacts of taint tracking. It is worth
emphasizing here that our contribution is not to show an improvement over
other systems in terms of detecting more privacy leaks, but to do the detection
without system modification.

Automatic Tests. We further conducted automatic, random testing on a big-
ger dataset of 1,490 apps. The tests were conducted on the Android emulator
(provided with the Android SDK) running a TaintDroid image. Since the emu-
lator does not provide most of the device identifiers (such as IMEI and phone
number), we further added some code to our emulator image to provide real-
looking identifiers on the respective APIs for accessing these identifiers. Because
of these modifications, our emulator’s TaintDroid can also detect phone number
and IMSI leaks.

Our runs detected privacy leaks in a total of 360 apps; in the rest of the
apps, no leak was detected either by TaintDroid or Uranine. The results for
TaintDroid and Uranine differed for 177 apps. We have manually analyzed each
of these cases, and have found that Uranine was accurate in most cases. Below,
we detail our findings and bring out relevant insights.

For 92 apps where Uranine detected privacy leaks but TaintDroid did not—
we confirmed that these were TaintDroid’s false negatives. In all these cases, the
apps leak the device identifiers after hashing (with, for example, MD5). In most
cases, we were able to see the MD5 checksum of the device identifier being leaked
(IMEI leaks were most frequent) in plaintext. Further, in other cases, these leaks
were in ad libraries that are known to have the leaks flagged by Uranine. For
example, our analysis of an older version of the Admob library shows that it
leaks the MD5 of a string derived from the phone’s IMEI number.
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Uranine’s detection of leakage in 4 apps is likely to be a false positive. In
two apps, our logs reveal Uranine flags leakage when an empty string is being
written to a file. In the other two cases, Uranine detects IMEI leakages on writing
strings that look like base64 codes. Decoding those codes however does not reveal
the IMEI number nor anything that looks like a hash of that. False positives
are actually expected in Uranine, due to overtainting as part of our design.
Considering this, 0.2% false positives are insignificant.

Table 3. Leaks detected in automatic tests

Leak type Apps leaking Leak type Apps leaking

IMEI 310 IMSI 18
ICCID 16 Phone # 79
Location 107 Contacts 5

There was another set of 13 apps where Uranine flagged leakage but Taint-
Droid did not. In all these cases, we can see strings looking like MD5 or SHA
hashes being leaked, but were unable to derive them from known identifiers
(perhaps they were mixed with some salt before hashing). Though we could not
classify these cases, we believe them to be TaintDroid false negatives. Finally,
we detected 14 cases that were false negatives for Uranine—we could however
correct them by adding additional sinks that we missed earlier.

In summary, we found Uranine to be fairly accurate in detecting privacy leaks
with few errors. Table 3 shows the privacy leaks detected by Uranine.

5.2 Performance

Measuring the runtime overhead of applications instrumented by Uranine is not
trivial. First, there are no popular macrobenchmarks for Android. The DaCapo
benchmarks [6], which are popular Java benchmarks, are not easily ported to
Android (due to their use of Java-specific libraries and GUI) and moreover, may
also differ from real-world application workloads on Android. Second, conven-
tional microbenchmark suites for evaluating virtual machine performance may
also give skewed results as we are instrumenting applications here rather than
the virtual machine. A lot of the code for real applications runs in the frame-
work, is not instrumented, and runs without overhead—a microbenchmark will
thus misrepresent this situation.

We measure performance overhead using real-world Android applications.
However, most applications are GUI-intensive and interactive in nature. Thus,
one cannot simply run the benchmark application and obtain the results. We
devise our own methodology of evaluating performance of Android applications
in response to certain events. For our benchmarks, we select a total of six events
from three very popular applications: BBC News, Last.fm (a music application
with social networking features), and the stock Android application for managing
contacts. For each application, we evaluate the time to launch the main activity
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of the application and the time to complete a click of a pre-selected feature
on the application. The time to launch the main activity is as reported by the
ActivityManager (part of the Android middleware). The time to complete a click
is measured by instrumenting the click handler function to report the interval
from its beginning to the point it returns.

Table 4. Macrobenchmark performance. The reported times (Original/Instrumented
columns) are medians over five independent runs.

Benchmark Event Original (ms) Instrumented (ms) Overhead

BBC News (version 2.5.2 WW) Launch 953 1418 49%
BBC News (version 2.5.2 WW) Click (“Live BBC World Service”) 450 434 -
Last.fm (version 1.9.9.2) Launch 523 567 10%
Last.fm (version 1.9.9.2) Click (“Sign up”) 132 140 6%
Contacts (from AOSP 4.0.4) Launch 580 645 11%
Contacts (from AOSP 4.0.4) Click (“Done” after contact creation) 23 59 156%

Table 4 presents the comparison of the original applications and those instru-
mented for information flow-tracking. As can be seen from the table performance
overhead is usually low, almost always within 50% and often around 10%. We
attribute this to the fact that the Android framework does most of the heavy-
lifting during runtime, from creating the UI to managing the data structures
and data stores. Thus, even though we may expect a huge performance over-
head because each instruction is instrumented, real-world application overhead
appears quite low in comparison. Anecdotally, in our runs, we have seen notice-
able performance overheads, but the overheads have never been intolerable. Fur-
thermore, the performance of Uranine compares favorably with the reported
performance of TaintDroid (15-30% overhead) and Phosphor (50% overhead).

Finally, we would like to reiterate that our approach is highly amenable
to static analysis. We expect that in production, a tool such as Uranine will be
guided by a static analysis, which will be able to identify that most paths cannot
propagate the relevant information and thus do not need instrumentation.

6 Discussion

6.1 Static Analysis and Optimizations

We believe that Uranine has great potential for optimizations so that runtime
overhead can be minimized. First, it is possible to tune the instrumentation,
and perform constant propagation passes to reduce the instrumentation over-
head. Second and more importantly, it is possible to perform a static informa-
tion flow analysis that identifies the paths along which the relevant information
flow could take place. Such paths are usually small in number, and if Uranine
instruments those paths only, applications may run with negligible overhead. In
fact, the implementation of Uranine already includes hooks to attach a static
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analysis, which can then guide the instrumentation. We have performed prelim-
inary studies testing the use of static analysis to guide the instrumentation and
a complete study is part of future work. Note that the use of static analysis does
not obviate the need for a dynamic analysis system (Section 2.2).

We note that the opportunity for static analysis is present in our approach
only, involving no platform modification. Previous works such as Phosphor [4]
modify the platform libraries to track information flow and will therefore not
benefit much from optimizing instrumentation by static analysis.

6.2 Limitations

We discuss here our limitations and avenues of future work. While Uranine is
good for detecting privacy leaks in legitimate applications, a truly malicious app
may be able to evade the system through some of these limitations.

Implicit Flows. A fundamental limitation of dynamic taint tracking is the
inability to track implicit information flows via control flow [30]. Our work shares
this limitation. Static analysis may be used to track control flow. However, this
leads to the risk of severe over-tainting. Research is underway to make implicit
flow tracking practical [19].

Native Code. We currently do not support taint tracking through native code,
which some Android applications include in addition to bytecode. Previous works
such as Phosphor and TaintDroid, as well as static analysis works on Android
which only analyze bytecodes, all have this limitation.

Dynamic Aspects of Java. As a limitation of static instrumentation, the
dynamic aspects of JVM, such as reflection and dynamic class loading (using
DexClassLoader or similar features in Android) do not cleanly fit in. These
may however be supported by our approach in the future. We may apply worst-
case tainting for all method calls made by reflection as we do for other methods.
Furthermore, we can instrument calls by reflection and alert the user if they
do not pass certain security policies (such as restricting reflective calls to only
certain APIs in the Android platform). Code loaded by dynamic class loading
may also not be available during static instrumentation. In a deployment, it
may be possible to prompt the user to allow re-analysis whenever dynamic code
loading is detected, so that an instrumented version of the code being loaded
can be created.

Incorrect Summarization. Policy-based summarization of framework code,
as used in our work, not only has the problem of over-tainting, but could also
result in under-tainting of data passing through APIs that do not fit within
those policies. For example, some classes may update a global state when their
methods are called. We are not aware of such a situation but such cases could be
used to bypass the system. Manual summarization of known cases is obviously
one solution. Automatic method summarization is an open research problem in
static analysis, and any progress there will benefit our cause as well.
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7 Related Work

Information Flow Tracking. The closest to our work are TaintDroid [13] and
Phosphor [4]. The key advantage of our technique is that we do not require
modification of the Android platform as these do.

Dynamic taint analysis has been employed in a variety of applications from
vulnerability detection and preventing software attacks [24,25,33] and malware
analysis [31,37] to preventing privacy exposures [10,41]. We present a general
technique for taint tracking in this paper without modifying the Android plat-
form. Our technique may be used for the above applications, especially when
there is a constraint to run applications on an unmodified platform. There are
also works doing taint tracking by bytecode instrumentation. Haldar et al. [18]
implement taint tracking by instrumenting the Java String class. Chandra and
Franz [8] instrument the Java bytecode for taint tracking. These works share the
same limitation of Phosphor discussed earlier.

There are also a number of related works using static analysis. PiOS [11]
uses it to detect privacy leaks on iOS apps. Enck et al. [14] and Gibler et al. [16]
decompile Dalvik to Java bytecode and perform static analysis on that using
existing tools for Java. FlowDroid [2] also converts Dalvik back to Java byte-
code and builds on top of Soot5 while adding in Android-specific requirements
to the analysis. Chex converts Dalvik bytecode to the WALA6 IR and then
employs WALA for static analysis [21]. Cao et al. [7] automatically collected
implicit control flow transitions through the Android framework code to assist
static analysis tools. As discussed earlier, there are limitations of static analysis
over real-time dynamic analysis. Xia et al. [34] eliminate some limitations by
performing offline partial executions of apps after static analysis. However, they
are still unable to handle situations with external input from users or servers,
which is quite common.

Static Instrumentation. Static instrumentation has been used earlier for
Android applications [9,35]. These works have focused on API interposition
rather than tracking information flow; the latter is more challenging because
of the need to instrument many instructions and to encode the semantics of
information-flow tracking. AppSealer [38] statically instruments Android appli-
cations to repair component hijacking vulnerabilities. Capper [39] is a follow-up
work that detects privacy leakages without platform modification. Both these
works are similar to Uranine; however, their taint tracking will have false neg-
atives: they try to address C1 but do not solve it adequately and do not even
discuss C2 and C3. Instrumentation has been used in other applications as well,
some of which even use static analysis to optimize it. Saxena et al. use static
analysis to make their binary instrumentation efficient [28]. Xu et al. [36] instru-
ment C sources for taint tracking and further optimize it using static analysis.

Other Related Work in Mobile Device Security. Kirin [12] defines security
policies based on Android permissions. A number of works additionally prevent
5 http://www.sable.mcgill.ca/soot/
6 http://wala.sourceforge.net

http://www.sable.mcgill.ca/soot/
http://wala.sourceforge.net
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access of private information or supply fake data to apps [5,23,40]. The above
works enable access control while we provide information flow control. Another
line of works [3,20] investigates user perceptions as related to mobile privacy.
They conclude that users are often not aware of privacy leakages, and that proper
awareness and usable controls can mitigate users’ concerns about privacy. Rosen
et al. [27] perform static analysis of Android applications and provide end-users
with information about privacy-related behaviors of these applications. Our tool
could easily supplement such works by providing real-time insights about the
behaviors of these applications to the users. Finally, researchers have developed
proof-of-concept malware utilizing side channels that cannot be detected by a
traditional information-flow analysis such as ours [29].

8 Conclusion

This paper describes Uranine, a framework for dynamic privacy-leakage detec-
tion in Android applications without modifying the Android platform. To achieve
this, Uranine statically instruments Android apps only, and does not need sup-
port for information flow tracking from the platform. We present a design and
implementation of Uranine and evaluate its performance and accuracy. Our
results show that Uranine provides good accuracy and incurs acceptable per-
formance overhead compared to other approaches.
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Abstract. We explore practicality of using power consumption as a
non-destructive non-interrupting method to check integrity of software
in a microcontroller. We explore whether or not instructions can lead
to consistently distinguishable side-channel information, and if so, how
the side-channel characteristics differ. Our experiments show that data
dependencies rather than instruction operation dependencies are domi-
nant, and can be utilized to provide practical side-channel-based meth-
ods for software integrity checking. For a subset of the instruction set,
we further show that the discovered data dependencies can guarantee
transformation of a given input into a unique output, so that any tam-
pering with the program by a side-channel-aware attacker can either be
detected from power measurements, or lead to the same unique set of
input and output.

Keywords: Side-channels · Power consumption · Software integrity ·
Security · Embedded systems

1 Introduction

Checking software integrity is a fundamental problem of system security. Given a
device under test (DUT), a verifier tries to determines whether it runs the desired
code or not. Developers traditionally focus on realizing functionality, while ignor-
ing the fact that an attacker can change the behavior of the DUT by overwriting
its program and/or data remotely [15,17,18,23] or locally [7,11,13,25].

Many approaches have been proposed to try to enforce that a device runs the
original code. The approaches can be classified by where the verifier resides. An
internal approach resides in the same device with the target software. Hypervi-
sors [30,45], mandatory access control [1,42], and control flow integrity [14,19],
are internal software-based approaches that aim to prevent “anomalous behav-
ior” of programs that share the same hardware with the verifier. Watchdog
coprocessors [33,38] and TPM [4,9] are internal hardware-based approaches that
examine hardware status such as “signatures” of code that appear on buses or
statistics of software and firmware to prevent deviations from the original design.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 277–293, 2015.
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The verifier can also be outside of the DUT, leading to external verifica-
tion. Software attestation [27,34,44] and remote attestation [21] are approaches
in which a verifier external to the DUT asks the DUT to provide evidence of
integrity from time to time and checks it against prior knowledge of hardware
and software configuration and/or shared secrets.

Another promising external approach is to check evidence of integrity from
side-channels. Unlike attestation, which communicates with the DUT explic-
itly and actively, this approach tries to identify tampering by analyzing passive
information leakage from the DUT, such as timing of network traffic, power
consumption, electromagnetic (EM) emissions, light emissions, vibrations, etc.
[6,24,35–37]. These channels are “side” because they are unavoidable byproducts
of implementing the desired functionality on a physical device. A side-channel
approach has advantages over other approaches in that

1. It does not interfere with the normal execution of the DUT – the DUT does
not even know about the existence of the verifier;

2. since the DUT does not have a verifier implemented, an attacker who suc-
cessfully penetrates into the DUT still does not know about the existence or
the implementation of the verifier;

3. verification instrumentation and algorithms can be easily updated;
4. it works with legacy devices that cannot implement modern integrity check-

ing techniques;
5. it works with attacks against CAD tools which may tamper the debugging

and programming traffic and therefore fail all internal protection mecha-
nisms.

Previous research has been successful in using side-channels to check IC
integrity [6,24,35]. By comparing side-channel information of the DUT to that
of the “golden samples”, researchers are able to find minimal differences that
indicate tampering of the design. A great number of embedded systems, how-
ever, are based on general-purpose microcontrollers/microprocessors. Detailed
hardware information about the microcontrollers (μCs) are in general not acces-
sible to system developers. It is therefore hard to obtain “golden samples” for
side-channel analysis (SCA).

Using side-channel information for integrity checking of μCs without detailed
design information poses a great challenge. Given a set of samples of side-channel
emissions, we need to extract instruction-level information about the running
device. The sample is an aggregation of power consumption cost by reading
memory, executing instructions, accessing peripherals, and noise. In the worst
case the tampered code only gets executed once during sampling. The verifier
therefore does not have the advantage of reducing noise in samples by averaging
thousands of execution traces, as in DPA [26,28].

Previous attempts on instruction-level SCA have been focused on reverse
engineering of instruction operations [16,20,39] by using either the power con-
sumption or the EM side-channel, and have achieved different degrees of success.
One recent work [31] proposed using instruction-level power consumption SCA
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for software integrity checking, yet was found not repeatable on a different (but
simpler) μC [39].

Current trends in SCA demand more and more advanced acquisition equip-
ment such as broadband high-sensitivity oscilloscopes, Picosecond Imaging Cir-
cuit Analysis [37], micro magnetic-field probes [40], etc. Occasions that need
SCA-based checking for legacy or low-cost μCs are not always able to afford
such equipment. Another major obstacle is noise both from the ambient envi-
ronment and from the DUT. As shown by research on breaking cryptographic
embedded systems [5], power consumption is mainly due to bus traffic as opposed
to the smaller currents within a CPU.

In this work, we propose practical methods and results for power-based soft-
ware integrity checking. Our contributions are:

– We point out pitfalls in previous work that an attacker will always try to
replace instructions with those that have similar side-channel characteristics,
and thus turns any (< 100%) recognition rate on random code into near-0
on crafted code.

– We propose a systematic approach for SCA profiling which enables us to
design experiments and analyze the effects of runtime status on power con-
sumption efficiently.

– We show mechanisms that determine side-channel characteristics. The
results have direct implications on using simple (versus differential) SCA
for software integrity checking of embedded systems in practice.

– For a subset of the instruction set, we show that the data dependencies we
have discovered are enough to guarantee unique transformations of input
and output. So, the verifier can ensure that even if the program is altered
by a side-channel-aware attacker, as long as the side-channel measurements
are the same, the program still computes the same value.

2 Related Work and Pitfalls

Research on SCA is mostly focused on breaking cryptographic hardware, includ-
ing general-propose μCs, FPGAs, and ASICs. The goal is to extract secret
keys by analyzing several thousands of executions of cryptographic routines
[22,26,28,35]. Cryptographic routines are in general publicly available. In our
case, in contrast, only a single trace of side-channel emission is available, and we
also need to derive runtime instructions from side-channel measurements. Tech-
niques in breaking cryptographic hardware are therefore not directly applicable
to SCA for software integrity checking.

SCA for IC integrity relies on full knowledge of the IC design. By scanning
emissions of the IC for enough time, it is possible to detect untriggered trojan cir-
cuits [6,24,36,37]. For software-integrity checking of μCs, detailed knowledge of
the IC design is not available. It is therefore not possible either to use simulation
tools or to infer power consumption from the architecture design.

At the system level, SCA has been used to provide preliminary detection of
abnormal behaviors such as malware and anomalous reboots. Yang et al. [43]
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used external power measurements to distinguish between several categories of
failures in remote high-end sensing systems. WattsUpDoc [12] applies machine
learning to detect untargeted malware by monitoring system-wide AC (wall out-
let) power consumption of medical devices and SCADA systems that run variants
of the Windows operating system. WattsUpDoc specifically excludes malware
that is designed to evade power analysis. While an aggressive malware may be
visible at the system level through abnormal power consumption (e.g., by drain-
ing too much energy), a stealthy malware will hide itself in the noise introduced
from multiple components that are running in parallel in a big system. Real
malware detection requires instruction-level integrity checking techniques.

Previous work on instruction-level SCA uses random data input, PCA+LDA
and template analysis [16,20,31,39]. In particular, [39] claims a relevant recogni-
tion rate of 96.24% on test data and 87.69% on real code by using multi-position
localized EM emissions and semi-invasive access to the chip. In [31], a 100% clas-
sification rate was reported by using power measurements, However, neither [39]
nor us succeeded in repeating the authors’ results on a different (but simpler) μC.

There are two major shortcomings in all of the previous work. First, previous
work has been focused on recovering the instruction operations. Data, includ-
ing operands and values of registers are regarded as noise. Operands and other
runtime status such as PC are therefore not known.

The more significant drawback of previous research, however, is that little is
known about the reason for failure of recognition. Given any non-100% average
recognition rate, an attacker will naturally try to write malware utilizing only
the misclassified instructions to any extent possible, and therefore turns a high
recognition rate on random code into 0 on crafted code, in a way similar to [29].
This problem is fatal both for reverse engineering and for software integrity
checking. It is more demanding to discover whether instructions can lead to
distinguishable side-channel information or not and, if so, how the side-channel
characteristics differ.

3 A Systematic Approach for Instruction-level
Side-channel Analysis

We use PIC16F687 as our DUT, because most previous research in this area has
been performed on this IC [16,20,31,39]. We assume that the attacker is able
to modify the software of the DUT, for instance by reprogramming the device
or inserting trojans into the CAD software. The attacker is able to profile the
side-channel emissions of the DUT and to modify the software in a fashion that
minimizes side-channel deviations. The attacker is however unable to modify the
hardware, including the IC design and the PCB on which the DUT is mounted.

PIC16F687 is a 8-bit RISC μC in Harvard architecture. It has a 14-bit pro-
gram bus, which is connected to the program flash, and a 8-bit data bus, which
is connected to RAM, EEPROM, PORTs, ADC, etc. The instruction set has 35
operations, all executed in single instruction cycle, except branches. The proces-
sor has a two-stage pipeline, therefore unconditional and conditional branches
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Fig. 1. Measurement setup

take two instruction cycles if a branch is taken. Each instruction execution is
overlapped with the next instruction fetch. The working register is one of the two
operands of the ALU. There is a 128-byte register file including general purpose
registers and special function registers (SFRs).

Because there are so many factors that may affect power consumption, an
ad hoc experiment will soon become unmanageable. We develop a systematic
approach for instruction-level side-channel analysis:

– Build semantic models of the instruction set, using known architecture infor-
mation.

– Generate random testing code that is long enough to execute each instruction
operation many times.

– Calculate runtime status according to semantic models for each instruction.
– Cross-validate power consumption and the semantic models with respect to

instruction operations and runtime status.

We use random instructions rather than real code in order to evenly sample the
code space, avoiding overfitting to any specific code base. Potential high-order
side-channel characteristics that exist only among some particular instruction
pairs/blocks will be averaged out when using random code. While we may lose
some information for particular instruction blocks, we retain side-channel prop-
erties that are applicable to arbitrary programs. It is therefore not necessary
to reanalyze every new piece of software made to run on the target IC, as we
are able to develop general protection mechanisms. See Section 5 for additional
details.

Semantic models. Building semantic models of an instruction set includes elab-
orating the detailed operations, such as fetch, decode, and data read/write, that
happen during an instruction execution. Because the known architecture infor-
mation is not complete, our semantic models are only assumptions, which can
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be cross-validated with the side-channel measurements. This has numerous ben-
efits. First, this is necessary for predicting branches during code generation.
Second, analyzing the measurements with respect to the runtime status reveals
effects of data versus those of processing. Third, waveforms can also be checked
against the predicted runtime status in order to guarantee that the chip func-
tions correctly. This is necessary because using a large shunt resistor (see below),
introduces common impedance coupling and narrows the voltage drops between
VDD and VSS , whereas a large enough shunt resistor eliminates amplification
circuits which may introduce additional noise. Sanity checking of the waveform
against the predicted status helps in choosing the right resistor value besides the
bandwidth consideration.

Based on the limited architecture information described in the PIC16F687
datasheet [2,3], we deduce that potential data that may appear on buses, and
therefore are likely to cause the major power consumption, include values of the
program counter (PC), the operands and opcode of instructions, the working
register, the selected file register, and the STATUS SFR. Then we generate random
code traces and calculate bus traffic from instruction semantics.

Power traces are collected following the standard setup for power-based SCA,
as shown in Figure 1. The ground pin of the DUT is connected to a 82Ω shunt
resistor. Voltage drop across the shunt resistor is captured by the PicoScope
5444B 200MHz USB oscilloscope. The ground pin, instead of the power supply
pin, is used due to limitations of the oscilloscope. To mitigate the low-pass filter-
ing effects of the chip itself [28,32], we set the frequency to 125 kHz. The sample
rate is 31.3 MS/s. Higher frequency settings suffers more from the low-pass fil-
tering effects and do not work with the oscilloscope. The setup is low-cost and
reflects a worse-case scenario from the verifier’s perspectives.

To build side-channel models, the verifier needs to have access to the device.
For integrity checking, it is reasonable to assume that the verifier has access to
the exact DUT, thus to ignore small variations among chips of the same device
model resulted from the process technology. In all the following experiments,
tests are performed on the same device that is used to build the models.

3.1 Recognizing Operations Versus Recognizing Execution
Instances

For our 2K-memory μC, we generate 1435 instructions, which are randomly
selected from 29 instruction operations (excluding CALL, RETFIE, RETLW, RETURN,
SLEEP, and CLRWDT). Operands are also random.1 CALL, RETFIE, RETLW, and
RETURN are manually inserted in multiple places so that the program can exe-
cute normally. 1020 power traces are collected, among which 50% are used for
modeling and 50% are used for testing. A typical waveform is shown in Figure 2.
PIC16F687 has an instruction cycle of four clock cycles, denoted as Q1 to Q4.
The waveform exhibits sharp peaks at clock rising/falling edges, showing that

1 To have enough samples per operation, file register access is limited to 12 general-
purpose registers and the STATUS SFR.
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Fig. 2. Sample waveform of executing “MOVLW 0x69” and “ADDWF 0x40,F”

the low-pass effects are not prominent in our experiment setup. Samples are
time-aligned according to peak values.

We first build a model with respect to instruction operations, as in previ-
ous research [16,20,31,39]. Given a single trace of power samples of four clock
cycles, the verifier tries to recognize one out of 33 instruction operations, a typical
pattern recognition/classification problem. We apply various classifiers, includ-
ing naive Bayes, kNN, SVM, Multilayer Perceptron, etc., together with/without
feature selection by PCA, mutual information, and LDA. The best recognition
rate is obtained by using template analysis [10,16]. The power consumption is
approximated as multi-variate Gaussian signals, which yields very good results in
recognition/classification and separability analysis. One template is built for each
instruction operation ωi. When selecting l samples in one instruction cycle for
modeling, the templates are l-dimensional Gaussian distributions with parame-
ters estimated from power consumption observations when executing ωi.

p(x|ωi) =
1

(2π)l/2|Σi|1/2
exp

(
− 1

2
(x − μi)

T Σ−1
i (x − μi)

)

μi =
1
Ni

Ni∑

j=1

xij

Σi =
1

Ni − 1

Ni∑

j=1

(xij − μi)(xij − μi)
T

where xij is an l-dimensional observation of executing operation ωi in the mod-
eling data, Ni is the number of such observations in the modeling data. When
given a new observation x, the instruction operation is estimated by applying
the Bayes rule, which is the ωi that gives the maximum a posteriori probability.

ω̂ = argmax
ωi

p(ωi|x) = argmax
ωi

p(x|ωi)P (ωi)



284 H. Liu et al.

For integrity checking, the a priori distribution P (ωi) is meaningless, since the
verifier is unlikely to know with which instruction the attacker may use to replace
the original code. We therefore assume the a priori distribution is uniform, thus
reduce Bayes rule to the maximum likelihood criterion.

ω̂ = argmax
ωi

p(x|ωi)

One template is built for each operation. For file-register operations, each
template is built for writing to the file/working register. In total, 47 templates
are built. The resulting average recognition rate is 45.6%, which is comparable
to unoptimized results of [10,16] and the single-location result of [39]. While
some operations still have acceptable recognition rates, such as CLRW (99.0%
recognition rate), GOTO (97.8%), and COMF f,F (95.7%), other operations, such
as CLRF, DECFSZ f,W and IORWF f,F, are almost always misclassified.

To explore the sources of recognition errors, we perform the same template
analysis but now build one template for each instance of instruction execution.
The models thus incorporate power consumption caused by execution with dif-
ferent operands and runtime status. For the same data, we build 1435 templates.
Applying again the maximum likelihood criterion, the average recognition rate
is surprisingly 99.90%, in contrast with 0.0678% for random guess.

3.2 Separability

The high recognition rate can be explained by the separability of templates. One
measure of separability is the Bhattacharyya distance, which is related to the
upper bound of the minimum attainable error of the Bayes classifier [41].

Pe ≤ εCB =
√

P (ωi)P (ωj)
∫ ∞

−∞

√
p(x|ωi)p(x|ωj)dx

For multi-variate Gaussian,

εCB =
√

P (ωi)P (ωj)exp(−Bij)
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8
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2 |
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Building templates for instances of instruction execution, the 30 errors in
30,000 tests correspond to 4 out of 1,028,895 pairs that have the smallest Bhat-
tacharyya distances (from 3.98 to 11.45), showing that the multi-variate Gaus-
sian models are good approximators of the signals. In contrast, for templates of
instruction operations, the Bhattacharyya distances of the majority of template
pairs, especially logic and arithmetic operations, are near zero, corresponding to
recognition rates near to those of random guess.
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Fig. 3. Difference between two measurements. Although the same program is executing,
the register values are different.

4 Data Effects

To discover the effects of runtime status such as bus traffic, we change testing
programs by modifying initial values of registers and rerun the measurements.
Because register values affect results of conditional branches, code near condi-
tional branches is adjusted, so that only the instruction immediate after each
conditional branch test is different while majority of instruction execution stays
the same. The difference between the two resulting measurements is shown in
Figure 3.

The measurements of “MOVLW 0x9B” have significant difference at the edge
of Q2. After executing “MOVLW 0x9B”, the measurements of “ADDLW 0x83” and
“MOVLW 0x6E” are nearly identical. Executing “RRF 0x71,W” differs at Q2 and
Q4, whereas executing “ANDLW 0x60” has significant difference at Q2 and slight
difference at Q4. Q1 and Q3 are on the other hand almost the same at all
time. This phenomenon coincides with the architecture description in [2]: for
instruction execution, instruction is latched in Q1, data memory is read in Q2
(operand read), data is processed in Q3, and in Q4 data memory is written
(destination write). After executing “MOVLW 0x9B”, the working register and the
STATUS register are the same 2, and the traffic on the data bus during operand
read and destination write is therefore the same, which leads to the same side-
channel measurements. The contents of the file register 0x71 are different, which
results in different traffic on the data bus and accordingly different measurements
at Q2 and Q4. The result of “RRF 0x71,W” is written to the working register,
and thus causes further differences at Q2 and Q4 when executing “ANDLW 0x60”.
On the other hand, Q1 and Q3 do not show heavy data dependency, even though
data is processed in Q3.

2 The STATUS register is affected by previous code not shown.
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Further analysis shows that there are strong linear relationships between
runtime status and side-channel measurements. Let runtime status at time t
be a vector of random variables D, the power consumption at t be a random
variable Y , the linear dependence between Y and D is formulated as

Y = aT D + b

where a is a vector of weights, b encloses remaining components in the power
consumption at time t including offsets, time-dependent components, and noise,
and is assumed independent from other variables [8]. For two random variables
X = aT D and Y , the Pearson correlation coefficient is a measure of linear
dependence between X and Y :

r =
cov(X,Y )

σXσY
=

σX√
σ2

X + σ2
b

r tends to ±1 as σ2
b tends to 0. Spearman’s rank correlation is the Pearson

correlation between weakly-ordered values. The two correlations are identical for
values which are monotonically related. Spearman’s correlation is more sensitive
to outliers.

Analysis shows that the Hamming distance (HD) of PC and (PC+1) influ-
ences the peaks in Q1, regardless of operations. This corresponds to the fact
that the pipeline depth of the DUT is two: each instruction execution is over-
lapped with fetching the next instruction, and the PC is incremented in Q1 for
instruction fetch.

The Hamming distance of values of operands influences the peaks in Q2. In
Q2, different types of operations will load different types of operands. For bit-
oriented file register operations and byte-oriented file register operations such as
CLRF, MOVWF, RRF, DECFSZ, and BTFSC, the content of the file register is loaded,
even if it will not be used in the computation in Q3 (as in CLRF and MOVWF). For
literal operations, the literal is loaded. The power consumption is proportional
to the Hamming distance of the value already on the bus (which is the result of
previous instruction execution), and the data loaded for current instruction exe-
cution. For vector D = (HD(old data on bus,new data on bus)), the regression
coefficient vector a is (2.87, 44.70), in mV. The Pearson correlation coefficient
(r) is 0.971, and the Spearman’s rank correlation coefficient (ρ) is 0.969.

The plateaus following the peaks in Q2 and Q3, are linear to the Hamming
weight (HW) of next opcode, regardless of instruction operations. For vector
D = (HW (next opcode)), the coefficient vector is (0.836, 14.41), in mV; r =
1.000 and ρ = 0.991.

The peaks in Q3 are linear to the Hamming weight of next opcode
and the Hamming weight of current opcode: for vector D = (HW (current
opcode),HW (next opcode)), the coefficient vector is (1.32, 0.828, 28.43), in mV;
r = 0.998 and ρ = 0.998.

The peaks in Q4 is linear to the Hamming distance of values on the data
bus and the Hamming weight of next opcode: For literal operations, vector is
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(HD(literal, new value of working register),HW (next opcode)), coefficient vec-
tor is (3.10, 2.19, 34.36), in mV; r = 0.992 and ρ = 0.987. For operations with the
working register as destination, the vector is (HD(value of file register, new value
of working register),HW (next opcode)), coefficient vector is (3.00, 2.17, 35.29),
r = 0.998 and ρ = 0.997. For operations with the file register as destination,
the vector is (HD(old value of file register, new value of file register),HW (next
opcode)), coefficient vector is (3.60, 2.15, 36.22), r = 0.998 and ρ = 0.998. The
Hamming distance of values of the STATUS SFR surprisingly does not signifi-
cantly affect the power consumption in Q4, which is reflected by the fact that
its regression coefficient is one order lower than those of other variables.

The relationships reveal several valuable sources of side-channel leakage that
can be utilized for different verification purposes. First, they reveal that side-
channel measurements have strong dependencies on data and weak dependencies
on instruction operations. This explains why templates of logic and arithmetic
operations have small Bhattacharyya distances: they have small differences in
the Hamming weights of their opcode spaces and the distributions of operands
and results (except for COMF, whose Q4 always has large power consumption
since its (HD(old value of file register, new value of working/file register)) is
always 8). While not helping in template analysis with respect to instruction
operations, data dependencies in peaks of Q2 and Q4 help to match data values
with operations. Second, the strong linear relationships also help to validate our
semantic models. Third, the dependency in opcodes through Q2 to Q4 leaks
information about the control flow. While not directly revealing the neighboring
opcodes, this helps in identifying some instructions such as NOP (having the
unique 0 opcode) and the NOP executed after each branch. Fourth, coefficient
vectors of the order of mV per bit, given the dynamic range of the measurements
of (15, 70) mV, are resilient to noise in simple (versus differential) power analysis.

To increase the potential SNR of operation-related signals, we generate test-
ing programs composed of code of the same Hamming weight. Except GOTO
and instruction types that cannot have targeted Hamming weight (e.g. NOP and
CLRW), all logic and arithmetic operations are included. Repeating the experi-
ment, previous conclusions on data dependencies still hold. Q3 has nearly the
same value, which can be shown by the small standard deviations (σ) among
waveforms. For execution instances, the maximum σ, occurring at the peak of
Q3, is 0.324 mV, in contrast with the maximum σ in previous experiments,
which is 4.193. For instruction operations, the maximum σ is 0.121, in contrast
with the maximum σ in previous experiments, which is 2.495. This implies that
Q3 does not yield sufficient margins for classification. Applying various pattern
recognition techniques, the best average recognition rate is 33.16% for instruction
operations, obtained by SVM with polynomial kernel, five-fold cross-validation.
The recognition rate is still much worse than that obtained by template analysis
for instruction execution instances, which is 99.53%.



288 H. Liu et al.

5 Side-channel Programming

Above experiments show that because of significant data dependency of
power consumption, side-channel profiling according to instruction operations is
unlikely to have high recognition rates or large margins. It is more suitable to use
runtime data status for simple power analysis, especially in noisy environments.
On the other hand, although there are very strong linear relationships between
waveforms and data read in Q2 and destination write in Q4, it is the Hamming
distance rather than the exact data that is involved. For a side-channel-aware
attacker, it is easy to compute data pairs that have the same Hamming distance
with previous data on the bus in Q2, go through different operations, and again
have the same Hamming distance with the operands in Q4, thus evading side-
channel-based checking. This is feasible even when considering the Hamming
weight relationships through Q2 to Q4, since the opcode is quite compact.

The good news is that a change in data may have cascading effects: in order
to tamper with data in one instruction, previous and next instructions must be
modified accordingly. The developers of the μC can utilize aforementioned data
dependencies to guarantee tamper detection. For a given instruction set, the
developers can find a trace of side-channel measurements {Q2i, Q3i, Q4i}, i =
1, . . . , n that for any programs, when given a set of initial register values, lead
to a unique set of resulting values. The developers can just choose one program
that transforms the input to the output. Any tampering with the program can
then either be detected from side-channel measurements, or lead to the same
unique set of resulting values.

For a simple example, let us confine the instruction set to include only
the literal operations {ADDLW, ANDLW, IORLW, XORLW} that perform add/bit-
and/bit-or/bit-XOR operations with the working register and a literal, and then
write results to the working register. The runtime status that has strong lin-
ear relationships with the side-channel measurements includes (HD(old work-
ing register,literal)) in Q2, (HD(new working register,literal)) in Q4, and
(HW (current opcode)) and (HW (next opcode)) through Q2 to Q4. It is possi-
ble to find that given the initial value of the working register 0x55, execution
of any four-instruction programs leads to the same resulting working register
0x1F, given the runtime status constraints (HD(old working register,literal)) =
[3, 6, 3, 7] for Q2’s of the four instructions respectively; (HW (current opcode)) =
[10, 10, 9, 11] for Q3’s respectively (also for previous Q2, Q3, Q4); (HD(new
working register,literal)) = [5, 4, 2, 1] for Q4’s respectively. There are two pro-
grams of four instructions that satisfy such side-channel constraints: {ADDLW
0x7C, ANDLW 0x3F, XORLW 0xF1, ADDLW 0x3F} and {ADDLW 0x1F, ANDLW 0x9F,
XORLW 0xF4, ADDLW 0x3F}, but all lead to the same resulting working regis-
ter 0x1F. The developers can randomly pick one of the programs, say, {ADDLW
0x7C, ANDLW 0x3F, XORLW 0xF1, ADDLW 0x3F}. Even if an attacker is able to
profile the side-channel characteristics of the μC, she can at best modify the
code into {ADDLW 0x1F, ANDLW 0x9F, XORLW 0xF4, ADDLW 0x3F}, which results
in exactly the same value and thus renders the attack meaningless, since other
modifications will violate the side-channel constraints.
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Data: ∀q2 = [q2(1), . . . , q2(n)], q3 = [q3(1), . . . , q3(n)], q4 =
[q4(1), . . . , q4(n)],W0, F

Result: w, num, op, opr, w1p, w1

genPrgm(q2, q3, q4, W0, F)

begin
w(1) ← {W0}
for i = 1, . . . , n do

for w0 ∈ w(i) do
Opr ← {x|HD(x,w0) = q2(i)}
for f ∈ F do

for x ∈ Opr do
y ← f(w0, x)
if HW (x) + HW (opcode of f) = q3(i) and HD(x, y) = q4(i)
then

num(i) ← num(i) + 1
op(i, num(i)) ← f
opr(i, num(i)) ← x
w1p(i, num(i)) ← w0

w1(i, num(i)) ← y
w(i + 1) ← w(i + 1) ∪ {y}

Algorithm 1. genPrgm: Compute programs that satisfy a given side-channel
trace

Data: ∀Q2 = {q2i, i = 1, . . . ,M2}, Q3 = {q3i, i = 1, . . . ,M3}, Q4 = {q4i, i =
1, . . . ,M4},W0, F

Result: ops, oprs, q2, q3, q4,W1

genSCP(Q2, Q3, Q4, W0, F)

begin
for q2 ∈ Q2 do

for q3 ∈ Q3 do
for q4 ∈ Q4 do

[w, num, op, opr, w1p, w1] ←genPrgm(q2,q3,q4,W0,F)

if w(n + 1) is Singleton then
W1 ← w(n + 1)
ops, oprs ← backtrace op and opr through w1 and w1p
break to top

Algorithm 2. genSCP: Compute combinations of programs and side-channel
traces that produce unique output
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This leads to the idea of “side-channel programming”, in which software
engineers utilize side-channel characteristics of existing hardware during devel-
opment to guarantee tamper detection. General algorithms for finding such com-
binations of side channel constraints and programs of any length are shown in
Algorithms 1 and 2, where W0 is the initial value of the working register, F is
a set of functions that simulate the operations in the instruction set, W1 is the
resulting value of the working register, and (ops, oprs) compose programs that
satisfy a n-long side-channel trace {q2, q3, q4} and also output a unique W1. For
the above small instruction set, it takes just seconds to find side-channel traces
that guarantee unique transformations of input and output on a commercial PC.
As the instruction set increases, complexity increases. We leave it as future work
to efficiently perform “side-channel programming” for the full instruction set.

6 Conclusion and Future Work

For simple power analysis, we explore whether or not instructions can lead to
consistently distinguishable side-channel information, and if so, how the side-
channel characteristics differ. By building semantic models of the instruction
set and cross-validating with side-channel measurements, we show that data
dependencies, rather than instruction operation dependencies, are dominant. We
reveal strong linear relationships between runtime status and side-channel mea-
surements, which enable “side-channel programming” that utilizes side-channel
characteristics of existing hardware in software development to provide external
verification of software integrity. We show how to generate combinations of side-
channel constraints and programs of any length for a subset of the instruction
set that guarantee a unique transformation of a given input, so that any tamper-
ing with the program by a side-channel-aware attacker can either be detected,
or lead to the same unique set of input and output. Our future work involves
side-channel programming for the full instruction set.

Side-channel characteristics are determined by the IC design of the DUT. The
comparatively small instruction set and simple architecture of the μC under test
greatly ease side-channel analysis so that the problem is tractable in reason-
able period of time. As more complex IC designs are used in embedded sys-
tems, instruction sets support more operations executed in a variable number of
instruction cycles, pipelines get deeper and more complex, and more components
function in parallel. And therefore significantly more factors will need to be incor-
porated into the semantic models. It may not be possible to find side-channel
characteristics for more complex ICs as succinct as discovered in this work for a
simple IC. It is, however, fundamentally possible to derive side-channel character-
istics as long as the IC operates deterministically. Our future work also involves
applying the proposed approach to other microcontrollers/microprocessors.
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Abstract. A hardware trojan (HT) is produced through the malicious
tampering of an integrated circuit design. Depending on its placement
and purpose, an HT may cause data leakage or corruption, computa-
tional errors, reduced system performance, and temporary or permanent
denial-of-service through the disabling or destruction of the chip. The
varied geographic locales involved in designing, fabricating, and testing
a design allow an attacker ample opportunity to insert an HT. In this
paper we propose a method to enable the remote activation of HT, via
a covert temperature channel, across a network. Through experimenta-
tion, our activation method is shown to be feasible on modern computers.
In addition, its design is tolerant of process variation to ensure that it
can be reliably fabricated. The design was validated using industry stan-
dard STMicroelectronics 65 nm technology and shown to be undetectable
against present detection techniques. We discuss the major challenges
associated with such HT and future research needs to address them.

Keywords: Hardware Trojan · Remote activation · Covert channel ·
Detection

1 Introduction

Electronic devices are integral to almost every aspect of our lives, but the emer-
gence of hardware specific threats has led some to reconsider the trustworthiness
of the hardware used for information processing [2]. Globalization and cut-throat
competition in the electronics industry has led to the outsourcing of integrated cir-
cuit (IC) manufacturing to untrustworthy foundries [23]. Because chip designers
are no longer in control of the production of ICs, affordable, yet unreliable, third-
party fabricators make it possible for attackers to make malicious modifications
to a circuit before it is fabricated. Additionally, attackers could modify designs
through the compromise of the computer aided design (CAD) tools used by design-
ers; malicious circuitry may also already exist in the blackbox intellectual property
(IP) modules commonly used in IC design. These malicious and unintended addi-
tions to ICs are called hardware Trojans (HT), and they are of particular concern
to military, financial and industrial sectors as they can lead to functionality errors,
performance reduction, denial-of-service, or information leakage [9].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 294–310, 2015.
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In an attempt to evade detection, HT are often composed of two parts: the
payload, and the trigger [22]. The payload is the circuitry designed to effect the
goal of the attacker through interaction with the targeted IC. The trigger is
intended to keep the trojan stealthy by activating the payload only after some
attacker-defined event has taken place.

In this paper, we devise a remotely activated analog HT trigger that enables
the payload when a certain temperature is reached at the core of the infected cir-
cuit. Our target is a chip residing on, or connected to, the logic board in a computer
connected to the network. The trigger is influenced via a covert temperature chan-
nel, wherein an attacker is able the raise the computer’s temperature remotely by
sending a large number of requests to the target computer over the network.

A temperature sensitive trigger is ideal from an attacker’s point of view for
two reasons. Firstly, the possibility of remote activation allows an attacker to
achieve their ends without physical access to a target device. Secondly, an analog
temperature switch-based trigger is much smaller and quieter—i.e. its area and
static and dynamic power draw are lower—than the combinatorial and sequential
circuits conventionally used to trigger trojans. As will be shown in Section 6, our
trigger, which consists of a temperature switch (tuned to respond to a specific
temperature) along with a simple temperature sensor, uses much less power than
can be detected using current power-based side channel detection techniques
[4]. It should be noted that, rather than introducing an additional temperature
sensor, it would be possible to hijack the signal from a temperature sensor that
may already be present in an IC (such additions are extremely common for
monitoring), making our trojan trigger even stealthier. Because of its analog
nature and lack of interaction with the digital circuitry of the IC, our trojan is
also able to evade parametric detection techniques such as path delay [14].

Our threat model is detailed and validated in Section 2, while we discuss our
trigger design in Section 3. In Section 4, we present a modification to our design
that ensures it is tolerant to the process variation inherent in modern fabrication;
the design is verified via simulation in Section 5. Section 6 demonstrates that our
trigger is able to evade current detection approaches. Related trojans/triggers
are discussed in Section 7. Finally, Section 8 concludes the paper.

2 Threat Model

We consider an attacker who has implanted a gate-level trojan into a compo-
nent of interest that is later installed into a computer with a network interface
offering some service (e.g. web or database server; Figure 1). It is assumed that
the attacker knows the proximity of the infected component to the CPU in the
computer, and that the computer itself is in an environment with a steady, eas-
ily predicted ambient temperature, such as a temperature controlled data center.
The trojan is composed of an internal trigger and payload; through remote inter-
action with the computer the attacker is able to induce an internal state that
triggers the payload. Specifically, the internal trigger is designed to activate the
payload when the temperature of the component exceeds a pre-defined thresh-
old; i.e. we utilize a temperature-based covert channel [29]. Remote activation



296 P. Dash et al.

Fig. 1. Threat model: an attacker implants a temperature-triggered hardware trojan
into component that is installed in a server. The attacker activates the trojan by sending
it spurious requests that cause utilization to increase, causing a rise in temperature that
triggers the trojan.

is achieved by sending requests to the service running on the computer at a
rate sufficient to increase the CPU utilization, and hence the temperature of the
computer [18]. For example, in the case of a webserver an attacker in control of
a botnet could initiate new connections or issue page requests to cause excess
resource consumption. If the network interface is Internet/externally facing the
attacker could initiate the attack remotely, otherwise they would require access
to the private network on which the computer resides.

The payload will depend on the goals of the attacker and the component in
which the trojan is implanted. For example, data corruption or leakage could be
effected if the trojan is located in a southbridge-like component, controller for
the data storage device, memory controller, or even peripheral component (e.g.
Ethernet card). The attacker could also opt to simply disable the computer by
disconnecting the supply voltage of one of these components during the duration
of the attack, or even permanently by creating a short inside the component that
results in burnout.

Validation of Threat Model

While the existence of temperature-based covert channels is well established,
existing work has focused on either coarse-grained case temperature or CPU
temperature measurement [18,29]. Our threat model specifies that the attacker
knows only the proximity to the CPU. Thus, to establish the temperature thresh-
old at which to trigger the payload, the attacker must know how CPU utilization
will affect different regions of the computer.

To this end, we measured the temperature inside a Dell Optiplex 960 at four
different locations (Figure 2), using calibrated Texas Instruments LM35A tem-
perature sensors (accuracy ±0.2◦ [25]), at different CPU utilization levels. The
sampling rate was 100 S/s; every second the last 100 samples would be aver-
aged to obtain the temperature for the previous second. The cpulimit program
was used to control the utilization of the resource consumption busy program,
which spawns a specified number of threads that each execute an infinite loop
[1]. Data was collected for several utilization levels (e.g. 0,10,100,400%) and pro-
files (cycling between different utilization levels) over the course of many days,



Remote Activation of Hardware Trojans via a Covert Temperature Channel 297

Fig. 2. The experimental setup used to validate the threat model. Sensor locations are
located at circles. The case was closed during experiments

of which Figure 3 is representative. In this experiment we varied the utilization
level periodically: one hour at 400% and one hour at idle (the processor in the
computer is dual core with Hyperthreading enabled). We see that sensors closest
to the CPU experience the greatest increase in temperature, but that in each
case at least 1◦ increase is observed.

Thus, in this instance, it is feasible for an attacker to design a temperature
trigger based on the crossing of a threshold temperature and still have it be
effective at differing positions in the computer. Additionally, we note that the
maximum temperature achieved through our testing predictably occurred after
25 minutes of 400% utilization (Figure 3), a condition, given the underutilization
of most datacenter servers [6,7], that is unlikely to occur during regular or even
heavy usage. This helps to minimize the chance that a trojan will be activated by
benign workloads. Finally, it is possible that such increased, unscheduled CPU
activity could set off CPU workload monitor alarms. The attacker would need
to be aware of this possibility and initiate an attack at times when the targeted
machine is untended (e.g. during the nighttime) or set a target temperature that
can be attained before intervention can be performed.

3 Hardware Trojan Trigger Design

An effective HT trigger needs to be accurate and stealthy in its operation. An
accurate trigger will only switch the payload on after a specific event defined by
an attacker has taken place. Our trigger consists of an analog temperature sensor
circuit along with a multistage inverter designed to switch on at a certain trig-
gering temperature using a voltage signal provided by the sensor (Figure 4). The
output of the switching circuitry is connected to the gate of a MOSFET, whose
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Fig. 3. Temperature at different locations inside the computer with a varying utiliza-
tion level (0% to 400% periodic). The line color corresponds to the sensor locations
given in Figure 2.

Fig. 4. The proposed method for triggering the payload of a HT: Increased CPU
utilization causes a rise in the temperature of an infected IC. The trojan trigger utilizes
a low-power temperature sensor to feed switching circuitry designed to activate the
payload when the IC temperature exceeds a given threshold.

drain and source are connected to the payload ground line and the IC ground,
respectively. When the switching output is logic high the MOSFET switch is
closed, allowing power to flow to the payload. The transition temperature at
which the switching occurs is predetermined by the attacker before insertion, as
per Section 2. We now highlight the design of the sensing and switching compo-
nents of the trigger.

3.1 Temperature Sensor

The temperature sensor circuit used for our simulations is a BiCMOS design
based on the work of [27]. It consists of a cascaded configuration of p-type
MOSFETs and pnp BJTs (Figure 9, Appendix). The output of the sensor Vsen

is the sum of emitter-base voltage Veb of the BJT Q2 and source-gate voltage
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Vsg of the pMOSFET M2 (M1 is cascaded to the emitter of Q2 to obtain
the summed output). Under stable biasing both Veb and Vsg exhibit negative
temperature dependence. As Veb and Vsg exhibit complimentary non-linearity
against temperature, the linear combination of both voltages results in a high
linearity temperature sensor. The pMOSFET portion of the current reference
circuit (M4 and M6) provides stable biasing for M2. Q1 and Q2 are placed in
a current mirror configuration ensuring that the collector currents in both Q1
and Q2 remain the same. This configuration acts as bias for the pnp BJT Q2,
thereby reducing power consumption and augmenting the decrease in nonlinear
deviations in Veb.

The temperature sensor was selected based on the following criteria:

1. Sensitivity : This refers to the amount that the output voltage of the sensor
changes per degree Celsius. Typical values for solid state temperature sensors
range from ±0.5mV◦ to ±9mV◦ [10]. The higher the sensitivity the fewer
the number of stages needed in the switching circuitry, which reduces overall
power consumption (discussed in Section 3.2). The nominal sensitivity of our
sensor is -3.4mV◦ with a linearity of 99.96% [27]. We increased the sensitivity
of the circuit to -10.12mV◦ by increasing the width of the M1 transistor by
5.3 m.

2. Power : The power of the overall design should be minimized. This circuit
used 56.31nW at 1.2V, the lowest power circuit we could find.

3. Positive or negative voltage correlation: Refers to whether the output voltage
of the sensor increases or decreases with an increase/decrease in temperature.
Again, this affects our switching circuitry: a positive correlation requires an
even number of switching stages (four or six) to ensure that output of the
final stage is high to activate our payload power switch. Our sensor has a
negative correlation, therefore the switching circuit can use an odd number
of stages, which results in fewer inverters and hence less power.

3.2 Switching Circuitry

The overriding concern for our trigger is that the voltage present at the gate
of the payload power switch is high at exactly the temperature selected by the
attacker but not before. That is, the transition region between switch on and off
should be very small. To accomplish this we designed switching circuitry (Figure
10, Appendix) consisting of five common source amplifier stages in sequence [10].

The first stage has its amplifying transistor’s gate attached to the output
of the temperature sensor. The basic operation is that the final stage Tout will
remain at a low voltage until the infected IC heats up to the trigger temperature
and then it will quickly transition to the logic high value of the payload supply
switch. The logic level of the switch circuit should remain low until the trigger
temperature is reached to avoid false triggers. The transition point must reside
at an input voltage that corresponds to a temperature just below the maximum
temperature for swift response.

The transition from low logic to high logic has to be without any delay
for smooth payload activation. Therefore the sensitivity of the switch circuit
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Fig. 5. The effective sensitivity of our temperature sensor at the output of our switching
circuitry versus the number of stages in the switch.

is increased by adding additional inverter stages for sharp edge transition. In
Figure 5 the sensitivity of individual stages is plotted. The sensitivity values are
positive for an even number of stages and negative for odd stages. It can be
seen that after the initial increase from stage one to stage five the value remains
constant. That is, for a negative correlation sensor, adding additional stages will
only increase the power consumption without any improvement in the sensitivity.
Thus, the ideal number of stages for our switching circuitry is five, in terms of
both minimizing power consumption and providing a fast switching response.

The transition point of the switch circuit—i.e. the temperature at which pay-
load is activated—can be selected by changing the bias voltage of the transistors
in a particular stage. For an n-stage circuit, the relationship between the output
of a stage can be formulated with respect to the output of the previous stage as:

Vi = V DD − βn

2
(Vi−1 − Vth)2 Rpmos (1)

where Vi is the output of the i-th stage, V DD is the supply voltage, β the transis-
tor’s gain, Vth the threshold voltage of the transistor, and Rpmos the derivative
of the drain current ID with respect to drain-to-source voltage VDS of the pmos
transistor. The above equation is for the case of an ideal MOSFET; however, the
exact values obtained from simulation are close to the values obtained by the
above equation (error range of 11.82mV to -2.72mV).

Unfortunately, this switching architecture is extremely sensitive to changes
in threshold voltage. For example, a change in the threshold voltage by 1mV
results in a change in the transition point by far more than 1mV. This is quite
a significant problem with regards to the accuracy of the attack temperature, as
threshold voltage is deeply affected by process variation. That is, a significant
change in Vth will cause the payload to be powered at a temperature other than
that stipulated by the attacker. In varying the parameters that affect Vth in
a Monte Carlo simulation, we observed a standard deviation of the threshold
voltage of 45.62mV. Therefore we have need of a process tolerant switching
circuitry to ensure robust and accurate trigger operation.
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4 A Process Invariant Design

Continuous advancement in transistor dimensions scaling has led to rampant
variations in process parameters affecting the operations of integrated circuits.
Variability in channel length (L), oxide thickness (Tox), and transistor thresh-
old voltage (Vth) increase drastically in the nanometer technology [8]. Process
variation in nanometer technology is categorized into random variations and
systematic variations [3]. The systematic variations are caused by device man-
ufacturing process variation such as chemical-mechanical planarization (CMP)
[13]. Random variations, mainly caused by geometrical abnormalities, are consid-
ered to be the major contributors in 65 nm technology, with L and Vth being the
most significant contributors to the random component [30]. In the case of our
trigger, random parametric variations (threshold voltage and geometrical abnor-
malities), over which the attacker has no control, lead to unreliable triggering at
different temperatures. Therefore the need for process tolerant circuitry, with a
small area overhead, is unavoidable.

In this section we present a self-tuning inverter comparator circuit, based
on the work of [21], in combination with the parallel gates technique [12], to
achieve significant improvement in the circuit level variation tolerance. Our HT
trigger of Figure 4 is thus slightly modified to incorporate this new circuitry:
the output of the temperature sensor is connected to a self-tuning inverter cir-
cuit which in turn is fed to parallel gate inverter chains, replacing our original
switching circuitry, to obtain a highly reliable temperature dependent trigger
switch. Incorporating a self-tuning inverter comparator circuit gives complete
controllability to the attacker to choose the temperature at which the trojan is
activated. The process and temperature variation tolerant architecture provides
error free targeted trigger temperature operation.

4.1 Self-tuning Inverter Comparator Circuit

The inverter comparator circuit (Figure 11, though designed for PWM applica-
tion [21], is ideal for use in our trojan circuit due its low voltage operating range,
low power consumption, and small area. The basic purpose of the circuit is to set
its inherent threshold voltage to a predetermined voltage, independent of process
and temperature variation; this is achieved via the principle of negative feedback.
The inverter comparator consists of master and slave sub-circuits (Figures 11(a)
and 11(b)), with the transistors of both designed to be of the same dimensions.
The transistors MM2 and MM3 act as inverters, generating the desired output
voltage to tune the transistors MM1 and MM4 at the supply rails. The supply
rail transistors act as variable resistors to balance the variation in the master
input through a negative feedback loop (wire w1).

The inherent threshold voltage can be altered according to the attacker’s need
by changing the voltage at the master circuit’s bias node (connection between
MM1 and MM4 in Figure 11(a), Appendix) to the desired threshold value; i.e.
the voltage at this node determines the inverter’s threshold voltage. In the cases
where changing the voltage at the bias node using a voltage source would be
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undesirable or impossible, bias resistors can also be used to change the inherent
threshold voltage value, to a limited extent. For example, the threshold voltage
can be set at 0.5 V DD by using equal bias resistors (R1 and R2 in Figure 11(a)).
A threshold voltage of 0.5 V DD equals to 600 mV at V DD = 1.2V, which
causes the inverter logic in the master-slave circuit to switch at a temperature
of 27◦. The Miller capacitor C prevents tuning error and undesired oscillations
by providing high DC gain and low AC gain, respectively. The output of the
master-slave circuit, Sout, thus provides our cascaded inverter stages with an
appropriately biased, self-tuning input.

4.2 Parallel Gate Inverter Circuit

Even with the inclusion of a self-tuning inverter comparator circuit, our simple
cascade of inverter stages circuit is still subject to high output variability due
to the sensitivity of the cascaded-inverter circuitry to threshold voltage varia-
tions of nMOS and pMOS transistors. This is because small process-induced
variability present in early stages can be amplified until they lead to very large
fluctuations in the trojan trigger temperature. Therefore, the need for variation
tolerant inverter stages arises. The use of programmable threshold voltage invert-
ers [20] would lead to larger inherent voltage deviation, and the power overhead
associated with them is proportional to the bit count of digital circuits used
to program the inherent voltage. Body biasing techniques [26] have also been
proposed, but they are not suitable for our purpose as they are not efficient in
tackling random variations and also increase the circuit complexity (area and
power consumption).

The standard deviation of the threshold voltage of a transistor is inversely
proportional to the square root of the width of the transistor[19]. We therefore
increased the width of the transistors in the inverter circuit but failed to observe
a drastic reduction in output variation. It wasn’t until we also connected the
transistors in parallel (effectively increasing the width of the entire inverter)
that the random variations were reduced to an acceptable level. The efficacy
of the parallel structure can be explained by noting that the variations in each
transistor of an inverter is independent of the another transistor, hence using
single gates lead to the amplification of the overall random variation in the circuit.
Using a parallel gate structure as in Figure 12, Appendix, on the other hand,
leads to nullification of independent Vth variations in the corresponding parallel
transistors [12]. The parallel gate design also leads to a decrease in the input and
output capacitance leading to marginally less dynamic power consumption. The
higher area overhead is negated when the positive impact it has on suppressing
the process variation is considered.

5 Simulation

For the trigger circuit design and Monte-Carlo simulations Cadence Virtuoso IC
6.1.5 with 65 nm, 1.2 V technology library CORE65LPSVT of STMicroelectron-
ics was used. The circuit simulator involved was Spectre. The 65 nm technology
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was part of an STMicroelectronics kit used for standard, industrial circuit design
and simulations.

Initial simulation of the temperature sensor with the five stage inverter stage
led to a sharp switch from low to high at the Tout. The operation for a single
sweep maintains the switch transition at the required temperature levels. But
the simulation results above do not take process variation into account. There-
fore we ran a Monte-Carlo simulation with the STMicroelectronics kits inherent
parameter variations values in the model files. The resultant output was very
disappointing, as for only 10 iterations the standard deviation of the transition
point was 26.26◦. Large fluctuations from the desired trigger temperature can
cause uncertainty in executing the attack. It was a challenge to maintain the low
area and power consumption of the circuit. Numerous process variations tolerant
circuit lead to very high area and power overhead. Therefore a trade-off between
area, power and standard deviation was made improve the performance of the
trojan trigger.

The simulation result using our process tolerant circuit was improved and dis-
played accurate functioning of the trojan. The self-tuning inverter circuit along
with parallel gate structure when ran for 100 iterations of Monte-Carlo simula-
tions resulted in a standard deviation of 1.48◦ (Figure 6), which is acceptable in
a real attack scenario. We note that should an attacker be in a position to select
which chips are shipped to end-users, then they could select for shipment only
those chips that trigger most closely to the desired temperature.

The final total power consumption of our process tolerant trigger circuit
was 72.34nW, with the temperature sensor occupying 18.36 m with a draw of
46.31nW, the self-tuning inverter 6.52 m and 17.67nW, and the parallel gates
1.52 m and 8.36nW. The pMOS transistors width for the parallel gate circuit
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Fig. 6. The switching temperature for the final stage of the process resistant trojan
circuitry for 100 Monte Carlo simulations. Target switching temperature was 30◦. In
100 simulations a standard deviation of only 1.48◦ was observed.
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were half that of five stage switch circuit. Therefore the area overhead was
marginally more and the power consumption was also less considering a big-
ger circuit. The temperature sensor circuit used in our design can be directly
used from one of the many target device motherboard temperature sensors. Uti-
lizing on chip sensor will decrease the area requirement and power consumption
of the trojan trigger making it even more difficult to detect.

6 Detectability of Design

Trojan detection is challenging because conventional post manufacturing test
and validation processes are often incapable of discovering trojans with effective
triggers. Assumption of trigger nodes in a basic benchmark circuit can itself
lead to very large trigger sample space, making it almost impractical to test [5].
Therefore, deterministic and exhaustive testing approaches are infeasible. Many
detection techniques have been proposed: activation techniques, which attempt
to trigger trojans through various possible input combinations; side channel tech-
niques, which monitor circuit side-channel parameters to discover abnormalities
[4,17]; design for trust, which modifies the design process to make trojan inser-
tion difficult [24]; and reverse engineering, which thoroughly examines the phys-
ical manifestation of the circuit [15]. While these techniques are effective, they
are not comprehensive enough to eradicate trojans from modern circuitry. Addi-
tionally, these techniques commonly require a genuine, clean reference netlist to
find any difference.

An ideal detection technique would be 1) able to detect small trojans, 2) non-
destructive, 3) scalable, and 4) authenticate chips in a short time. We consider
a few comprehensive detection techniques to evaluate our trigger’s detectability.
The analog nature of the circuit makes it difficult to analyze the mixed signal
circuit as it does not cause any abnormal behavior during the target device
simulation. Only after the implementation can it go active when the trigger con-
dition is satisfied. Functional testing using automatic test pattern generation for
a mixed signal would not be able to detect it, as it does not alter the function-
ality of a genuine IC. Similarly, the path delay analysis [14], which examines
the propagation delay of the critical paths in a circuit and compares the values
obtained with those of a non-infected IC, would be evaded as our trigger is not
on a the functional path of the IC. Trojan detection and isolation using current
transient current analysis [28] detects switching activity by measuring power
consumption at different locations in the chip. Given the published data and our
trigger power draw, the trojan circuitry could hide safely in the process variation.
We therefore believe that a power-based side channel analysis, as exemplified by
[4], to be the most likely detection method to succeed.

In [4] the Karhunen-Loeve (KL) expansion is used to differentiate the noise
associated with process variation from the power consumed by the trojan. This
approach has been shown to identify small trigger instances with area equivalent
to 0.01% of the total size of the circuit, in the presence of random parameter
variation as high as ±7.5%. The method works by determining the eigenvalue
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Fig. 7. The eigenvalue spectrum of the trojan (blue) and non-trojan (green) traces. (a)
30 and (b) 50 contiguous points of 16 traces for the non-trojan and trojan devices.

spectrum of the residuals of the signals after measurement noise and nominal
power consumption are removed from a power trace for the IC. The spectrum
of a trace from a non-trojan device will tend to zero as the number of eigen-
vectors increases; because of the additional signal (that of the trojan circuitry)
the spectrum of a trojan trace will not approach zero at the same rate as the
non-trojan.

We used a 256-bit AES circuit as the benchmark circuit to evaluate its
detectability. The circuit was re-synthesized, flattened, power optimized, and
then analyzed for power consumption, as outlined in [4]. Synopsys Core Synthe-
sis Tools with 65nm, 1.2V technology library CORE65LPSVT of STMicroelec-
tronics was used for the synthesis of the circuit with and without the Trojan. We
used Cadence NCSim for the circuit simulation and switching activity analysis.
Synopsys PrimeTime PX was used for power analysis and trace file generation.
All the power traces were obtained by a time based power simulation with a 50
MHz clock frequency.

The process corner Synopsys library files from the CORE65LPSVT were used
to create power traces with differing levels of process noise, as follows: Each sam-
ple point of a record would consist of a value picked at random in the range of
the best and worst case. The nominal case was deemed to be the average of the
best and the worst case. Process noise was recovered by subtracting the nomi-
nal case from the generated traces. Following the procedure outlined by [4], we
performed the KL analysis on the portions of the trace with the lowest process
noise, consisting of 30 and 50 contiguous points using 16 traces for each of the
non-trojan and trojan traces (Figures 7(a) and 7(b)). We used the same points
with 300 and 500 traces, respectively (Figures 8(a) and 8(b)). A worst case anal-
ysis, consisting of 600 points from low-noise regions of the trace, along with 6000
traces for the non-trojan and trojan was also undertaken. In all cases the eigen-
value spectrums do not separate at any sample point and are indistinguishable;
thus, the trigger is undetectable.
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7 Related Work

There have been numerous active research papers on trojan detection techniques
and implementations [9]. Different trojan implementations with effects on circuit
parameters such as power, delay, and performance have been proposed [23]. Tro-
jans can also lead to circuit degradation without affecting the overall function-
ality over a large period of time [9]. Most closely related to our work are trojans
that leveraged thermal emissions to leak of data [16], and were triggered via a
thermal process [11]. In this latter work, a thermally triggered trojan was imple-
mented on a BASYS FPGA board. An increase in circuit activity increased the
temperature causing the Trojan to trigger. Ring oscillators and counters were
used to obtain the desired temperature level; i.e. the temperature was artificially
increased through high power consuming hardware implanted by the attacker.
Though the trigger was thermal based they needed physical access to the board;
also, the use of registers needed to activate the trojan would lead to notice-
able power consumption. Our low power trigger works in a mixed signal circuit
without the need for any physical access to the target device.

8 Conclusion

In this paper, we have presented a fully functional hardware trojan trigger
which targets computer logic boards but can also be extended to be maliciously
included in any networked device. The trojan can be triggered remotely by
increasing the core temperature of the targeted IC through increased network
activity, which in turn leads to higher core utilization levels. The low power con-
sumption, high process tolerant operation, and analog implementation mark the
trigger as a very potent trojan example. Adversaries with such flexible, accurate
and undetectable trojans pose a major threat to IC security. This new attack



Remote Activation of Hardware Trojans via a Covert Temperature Channel 307

vector points to the need for improved methods for detecting and preventing
mixed signal hardware trojans.
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Appendix: Circuits Used in the Trojan Trigger Design
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Fig. 9. The low power BiCMOS temperature sensor circuit used in our trojan trigger.
Based on [27]. The temperature sensor circuit is the core of the trigger as it must
accurately produce the voltage that corresponds to the selected triggering temperature.
The output of the temperature sensor Vsen is given to the switch circuit.

M1 M2 M3 M3 M5

M6 M7 M8 M9 M10
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Fig. 10. A cascaded chain of inverters that switch from logic 0 to V DD at a particular
temperature. The input to the inverter chain is Vsen, the output given from the temper-
ature sensor circuit. When the output Tout = V DD the trojan is triggered. Multiple
states are added to get a sharp transition and correct inversion of the logic only at the
specified temperature. Our switch circuit has an odd number of inverter stages as the
temperature sensor has a negative sensitivity.
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Fig. 11. The (a) master and (b) slave portions of our self-tuning comparator circuit.
The purpose of the circuit is to ensure that the first stage of the cascaded inverters has
a very low Vth variation, as switching variation caused by deviation in Vth is amplified
through each stage of the inverter chain. The output Sout serves as the input to the
cascade of parallel gates.
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Fig. 12. The process invariant parallel-gate switching circuitry.
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Abstract. Route leaks have become an important security problem of
inter-domain routing. Operators increasingly suffer from large-scale or
small-scale route leak incidents in recent years. Route leaks can redirect
traffic to unintended networks, which puts the traffic at risk of Man-in-
the-Middle attack. Unlike other security threats such as prefix hijacking
that advertises bogus BGP route, route leaks announce routes which
are true but in violation of routing policies to BGP neighbors. Since
the routing policies are usually kept confidential, detecting route leaks
in the Internet is a challenging problem. In this paper, we reveal a link
between routing loops and route leaks. We find that some route leaks
may cause routing loops. Hence detecting routing loops is expected to
be able to identify route leaks. We provide theoretical analysis to confirm
the expectation, and further propose a detection mechanism which can
identify the leaked route as well as the perpetrator AS. Our mechanism
does not require information about routing policies. It passively monitors
BGP routes to detect route leaks and hence it is lightweight and easy to
deploy. The evaluation results show that our mechanism can detect a lot
of route leaks that occur in the Internet per day.

Keywords: AS relationship · Routing policies · Route leaks · Routing
loops · Identification

1 Introduction

Border Gateway Protocol (BGP) is a path-vector routing protocol which under-
takes the exchange of reachability information between Autonomous Systems
(ASes). While BGP is crucial to the Internet, it is often under threats of attack
and misconfiguration due to lack of built-in security mechanism. Among the
threats, prefix hijacking has been considered the main security problem. Prefix
hijacking can take over the victim’s IP prefix by advertising bogus BGP routes.
In order to prevent prefix hijacking, a number of solutions [18,24,26,20] have
been proposed to ensure the correctness of BGP routing messages.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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DOI: 10.1007/978-3-319-28865-9 17



314 S. Li et al.

In this paper, we discuss another important BGP security problem: route
leaks, which draw the attention of many researchers recently [28,15]. Different
from prefix hijacking, route leaks do not advertise bogus BGP routes, but leak
routes in violation of routing policies to BGP neighbors. In other words, in a
route leak, the content of the leaked route is true, but the propagation of the
route is erroneous.

Routing policies are usually used to control the chosen and propagation
of BGP routes. They are created based on the business relationships between
ASes. In general, the business relationships are divided into three categories [12]:
provider-to-customer (p2c), peer-to-peer (p2p), and sibling-to-sibling (s2s). In a
provider-to-customer relationship, the customer AS pays the provider AS for
traffic destined for the rest of the Internet. In a peer-to-peer relationship, the
peering ASes have a settlement-free agreement which means neither AS pays the
other for the traffic destined to each other and their customers. In a sibling-to-
sibling relationship, the two ASes are administrated by the same organization
and they can freely exchange traffic without any expenses.

Previous research [12,13] shows that an AS commonly adopts the following
import and export routing policies according to the business relationships:

– Import policy: A customer-learned route is preferred over peer-learned route
over provider-learned route.

– Export policy: A customer-learned route can be exported to all neighbors;
a provider-learned route or peer-learned route can only be exported to cus-
tomers.

The export policy is also known as the valley-free rule. When an AS advertises
a route that violates the valley-free rule, it can be considered a route leak.
According to the neighbor’s import policy, the leaked route may be selected as
the new best BGP route, which will result in the relevant traffic being redirected
to the leaking AS. For instance, on February 23rd, 2012, the Australian route
leak incidents [16] misrouted large amount of traffic to AS38285, and led to the
interruption of Internet service in the country.

As more and more route leak incidents and their serious impacts are being
reported [3,7], it becomes necessary to detect or prevent route leaks in the Inter-
net. There are numerous BGP security proposals [18,21,31] so far. They have
focused on detection or prevention of bogus BGP routes. However, because route
leaks announce valid routes rather than bogus routes to BGP neighbor, those
solutions cannot defend against route leaks [16]. Another common way to pre-
vent route leaks is using route filter to reject the leaked routes. But as mentioned
in [16], it is difficult to maintain an accurate and timely route filter in practice,
especially for the larger providers.

In this paper, we reveal a link between routing loops and route leaks. Accord-
ing to BGP rules for route selection, when an AS receives a loop route with its
own ASN in the AS-Path, the route will be ignored. However, we find that
the ignored loop routes received from a peer or customer may imply that there
are route leaks which have occurred in the route. We further present a mech-
anism which identifies route leaks by detecting routing loops. Our mechanism
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can monitor the route leaks that occur in the Internet without having to know
routing policies. Moreover, it can identify the leaking AS (i.e., the perpetrator
AS), which is beneficial to mitigate the impact of route leaks in time.

The rest of the paper is organized as follows. Section 2 provides a brief
background on route leaks. In Section 3 we discuss the link between routing
loops and route leaks, and present the theorems and approaches for route leaks
identification. Section 4 provides the detection results of our approach. Some
discussions about the detection are given in Section 5. We describe the related
work in Section 6. Finally, Section 7 concludes the paper.

2 Route Leaks

Route leaks have often been discussed in the Internet community. However,
there has been no exact definition of route leaks until recently [9,28]. A route
leak involves three parties: the sending AS, the leaking AS and the receiving AS.
It occurs when the leaking AS mistakenly propagates the route learned from the
sending AS into the receiving AS in violation of the valley-free rule. In this sense,
a route leak can be expressed as an anomalous AS triple (ui−1, ui, ui+1) which
we call leaking triple, where ui is the leaking AS.

According to different methods of violating the valley-free rule, route leaks
can be grouped into the following four categories:

– Provider-Provider leaking: A provider route is mistakenly announced to
another provider. The leaking pattern is p2c-c2p.

– Provider-Peer leaking: A provider route is mistakenly announced to a
peer. The leaking pattern is p2c-p2p.

– Peer-Peer leaking: A peer route is mistakenly announced to another peer.
The leaking pattern is p2p-p2p.

– Peer-Provider leaking: A peer route is mistakenly announced to a
provider. The leaking pattern is p2p-c2p.

Figure 1 shows the four types of route leaks. The impact of route leaks on
the receiving AS is it can lead to traffic redirection. For instance, in Figure 1(a),
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Fig. 1. Four types of route leaks
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AS1 leaks the route learned from AS4 into AS2. According to the import policies
of AS2, the leaked route (peer-learned route) is preferred over the existing BGP
route (provider-learned route) in its routing table. Therefore, its traffic destined
for AS4 will be redirected to AS1, which gives AS1 a chance to perform a Man-
in-the-Middle (MITM) attack [23,17].

3 Routing Loops and Route Leak Detection

Intuitively, we need to know about the AS relationships between ASes in order
to identify route leaks. However, the business relationships and routing policies
are often kept confidential, which makes the identification of route leaks hard.
In this section, we present a novel method to detect route leaks without having
to know the relationships.

3.1 Routing Loops Caused by Route Leaks

As a path vector routing protocol, BGP eliminates routing loops by checking
if its own AS number (ASN) is contained in the AS-Path of received route. In
general, an AS is less likely to receive a route containing its ASN in the AS-Path
from its neighbors. This is because its neighbor will usually select the direct link
between them as the best path to it. For example, in Figure 2(a), AS1 has three
neighbors and it announces prefix P1 to them. There are two routes for prefix P1

in the routing table of AS2. One is {1}, and the other is {4 1}. Certainly, AS2
will select {1} as the best path to its neighbor AS1 rather than {4 1}. Therefore,
AS2 will not propagate {4 1} into AS1 and AS1 will not receive a route {2 4 1}
that contains its own ASN.

However, that could change in a route leak case. For instance, in Figure 2(b),
AS3 violates the valley-free rule and leaks the route learned from AS1 into AS2.
And hence there are three routes for prefix P1 in the routing table of AS2. Since
AS3 is the customer of AS2, AS2 will select the leaked route {3 1} as the new
best path to AS1 according to the common import policy. In the next step, AS2
will announce a new route {2 3 1} to AS1. And as a result, AS1 will receive a
route that contains its own ASN from its neighbor AS2, i.e., it receives a route
with routing loop from a peer neighbor (AS2). Similarly, in Figure 2(c), the route
leak will also make AS4 receive a loop route with its own ASN in the AS-Path
from a customer neighbor (AS2).

Since the above examples illustrate route leaks may cause routing loops, it
is intuitively expected that detecting routing loops in the Internet may identify
route leaks. We confirm this expectation below.

3.2 Route Leak Identification

First, it is important to note that the following conclusions do not consider
the complex relationships such as sibling and mutual transit [12,22]. Because
the sibling ASes belong to the same organization, they can exchange routes of
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each other’s customers, peers and providers. Therefore, as Figure 3(a) shows,
the sibling relationship can result in routing loops like route leaks do. Similarly,
as shown in Figure 3(b), the mutual transit AS pair provide transit service
mutually, which can also lead to routing loops. We will discuss the method of
distinguishing the routing loops caused by route leaks, sibling and mutual transit
relationships in the next section.

Second, we introduce the definition of downhill AS-Path [12]. A downhill
AS-Path (u1, ..., un) means that for 1 ≤ i < n, the relationship of (ui, ui+1) is
p2c or s2s.

Hypothesis 1. An AS does not have a p2p or c2p relationship with any AS
behind it in a downhill path.
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This hypothesis is based on the valley-free rule and the acyclic type-of-
relationship [19]. It means that if (u1, ..., un) is a downhill path, for 1 < i ≤ n,
the relationship between u1 and ui cannot be p2p or c2p. Here we introduce
this hypothesis to assume that the Internet AS topology is a directed acyclic
graph [19]. Given the hypothesis, we present the following theorem.

Theorem 1. Under the hypothesis 1, if an AS receives a route that is originated
by itself from its peer or customer, then it can identify the route is a leaked route.

Proof. We prove by contradiction. Suppose X and Y are BGP neighbors, and
the relationship between them is p2p/p2c. If X receives a route originated by
itself from Y , let us suppose the route is {Y, ...,X}. And then we get a full route
propagation AS-Path {X,Y, ...,X}, which includes a routing loop originated
from X.

Let us assume that the AS-Path {X,Y, ...,X} conforms to the valley-free
rule. Because {X,Y } is a p2p/p2c link, the path {Y, ...,X} can then only be a
downhill path according to the valley-free rule. However, given that the relation-
ship between Y and X is p2p/c2p, this means that Y has a p2p/c2p relationship
with an AS behind it (i.e., X) in the downhill path {Y, ...,X}. Clearly it contra-
dicts the hypothesis 1. Therefore, the preceding assumption that the AS-Path
{X,Y, ...,X} is valley-free is not true, i.e., the route {Y, ...,X} is a leaked route.

Corollary 1. Under the hypothesis 1, if an AS receives a route that contains
its own ASN from its peer or customer, then it can identify the route is a leaked
route.

Proof. Similarly, suppose X receives the route {Y, ...,X, ...}, where Y is its peer
or customer. According to Theorem 1, the route propagation path {X,Y, ...,X}
is not valley-free. Therefore, the propagation path {X,Y, ...,X, ...} is also not
valley-free, i.e., {Y, ...,X, ...} is a leaked route.

Corollary 2. Under the hypotheses 1, if a tier-1 AS receives a route that con-
tains its own ASN, then we conclude that

(1) The route is a leaked route.
(2) If there is only one route leak in the route, then the leaking AS is located

in the loop and the route leak is a Provider-Provider leaking.

Proof. Since the route received by a tier-1 AS must come from a peer or cus-
tomer, it is easy to draw the first conclusion based on Corollary 1. For the second
conclusion, we suppose that X is the tier-1 AS, and {u1, ..., un,X, ...} is the route
it receives. Then we have a propagation path {X,u1, ..., un,X, ...}. According to
Theorem 1, the sub-path {X,u1, ..., un,X} is not valley-free, i.e., there must be
route leaks occur in the loop. Consequently, if there is only one route leak in
the path {X,u1, ..., un,X, ...}, the leaking AS should be located in the loop path
{X,u1, ..., un,X}.

Next, we prove that the only one route leak is Provider-Provider leaking by
contradiction. Suppose the route leak is a Provider-Peer leaking, i.e., the leaking
pattern is p2c-p2p. Given that X is a tier-1 AS, the sequence of relationships
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in the loop path {X,u1, ..., un,X} will be {p2p/p2c, ..., p2c − p2p, ..., c2p/p2p}.
According to the valley-free rule, there are at least two route leaks in the path.
One is p2c-p2p, and the other occurs in {p2p, ..., c2p/p2p}. Therefore, it contra-
dicts the precondition that there is only one route leak in the route. In the case
of Peer-Peer or Peer-Provider leaking, a similar argument applies. Therefore, the
route leak can only be a Provider-Provider leaking.

Hypothesis 2. The relationship between a tier-1 AS and its non-tier-1 neighbor
is p2c.

This hypothesis is based on the fact that the tier-1 ASes are at the top of the
hierarchy of the Internet. And hence in the vast majority of cases, it is reasonable
that they provide transit services for their non-tier-1 neighbors.

Corollary 3. Under the hypotheses 1, 2, if a route contains two non-adjacent
tier-1 ASes, then we conclude that

(1) The route is a leaked route.
(2) If there is only one route leak in the route, then the leaking AS is located

between the two non-adjacent tier-1 ASes and the route leak is a Provider-
Provider leaking.

Proof. We begin with the proof of (1). Suppose the route that contains two
non-adjacent tier-1 ASes is {..., Y, u1, ..., un,X, ...}, where Y and X are tier-
1 ASes and ui is non-tier-1 AS. This implies that there is a best BGP route
{u1, ..., un,X, ...} in the routing table of Y .

Because tier-1 ASes peer with each other and form a full mesh topology [11],
Y and X must be neighbors and their relationship is p2p. Given that u1 is a
non-tier-1 AS (i.e., it should be a customer of Y according to hypothesis 2),
Y will advertise the customer route {u1, ..., un,X, ...} to X. Therefore, X will
receive a route {Y, u1, ..., un,X, ...} that contains its own ASN from its peer (Y ).
Hence, according to Corollary 2, the route {Y, u1, ..., un,X, ...} must be a leaked
route. And consequently, the route {..., Y, u1, ..., un,X, ...} is also a leaked route.

Next, we prove (2). First, let’s consider the route propagation path -
{X,Y, u1, ..., un,X, ...}. According to Corollary 2, the leaking AS must be located
in the loop {X,Y, u1, ..., un,X}. Given that {Y, u1} is a p2c link, we can con-
clude that Y is not a leaking AS. As a result, the leaking AS should be located
in {Y, u1, ..., un,X}, i.e., between X and Y . Second, if there is only one route
leak in the route {Y, u1, ..., un,X}, it can be proved as in Corollary 2 that the
route leak must be a Provider-Provider leaking.

3.3 Leaking AS Identification

Once a leaked route is detected, the most important thing is to identify the
leaking AS to mitigate and eliminate the impact of route leaks. The Corollary 2
and Corollary 3 give the general location of the route leak. We now discuss a
way to further determine the specific position of the leaking AS.
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First, in Corollary 2 the route leak has been proved to be a Provider-Provider
leaking, i.e., the pattern of the loop path {X,u1, ..., un,X} is: {p2p/p2c, ..., p2c−
c2p, ..., c2p/p2p}. This means that the leaking AS is at the bottom of the valley
path.

Second, according to [12], it is reasonable that a provider network is typically
larger than its customer network and hence it is common that a provider AS
has a higher degree than its customer does. To verify this point, we counted the
degrees of ASes in the Internet topology derived from BGP data in Routeviews
[8], and validated that 98.34% of the p2c links in the largest ground-truth data
of AS relationships [22] conform to the assumption that the provider’s degree is
higher than the customer’s degree.

Hence, on the basis of the above analysis, it is extremely likely that in Corol-
lary 2 the leaking AS should be the AS with the lowest degree in the loop path.
Similarly, in Corollary 3, the leaking AS is supposed to be the AS with the lowest
degree located between the two non-adjacent tier-1 ASes.

3.4 Detection Mechanism

The Theorem 1 and Corollary 1 can be used to detect route leaks in an AS. The
Corollary 2 and Corollary 3 can be exploited to build a distributed system to
detect route leaks that occur in the Internet. Figure 4 shows the architecture
of our route leaks identification system. Our system consists of three modules:
routes collection module, sibling and mutual transit inference module and leak
identification module.

Routeviews

Extract

Collecter

Identify

Mutual transit AS pairs

Leaked route
Leaking AS

Leaking triple

Sibling AS pairs

Tier-1 AS

Tier-1 AS

Routes contain two 
non-adjacent tier-1 

ASes

Loop routes

Alarm

Fig. 4. Architecture of route leaks identification system
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Algorithm 1. Route leaks detection algorithm
Input: Routes collected by Routeviews that contain two non-adjacent tier-1 ASes

Loop Routes received by tier-1 ASes
Ps: Set of sibling AS pairs
Pm: Set of mutual transit AS pairs

Output: Lr: The leaked route
LAS : The leaking AS
Ltp: The leaking triple

1: if route contains two non-adjacent tier-1 ASes: {..., Y, u1, ..., un, X, ...} then
2: extract sub-path l : {Y, u1, ..., un, X}
3: for 1 ≤ i < n do
4: if {ui, ui+1} ∈ Ps or {ui, ui+1} ∈ Pm then
5: return
6: end if
7: end for
8: Lr ← {..., Y, u1, ..., un, X, ...}
9: find that uj such that degree[uj ] = min

1≤i≤n
degree[ui]

10: LAS ← uj

11: Ltp ← {uj−1, uj , uj+1}
12: end if

13: if route contains routing loop: {X,u1, ..., un, X, ...} then
14: extract the loop path l : {X,u1, ..., un, X}
15: for 1 ≤ i < n do
16: if {ui, ui+1} ∈ Ps or {ui, ui+1} ∈ Pm then
17: return
18: end if
19: end for
20: Lr ← {X,u1, ..., un, X, ...}
21: find that uj such that degree[uj ] = min

1≤i≤n
degree[ui]

22: LAS ← uj

23: Ltp ← {uj−1, uj , uj+1}
24: end if
25: return

1. Routes collection module: This module collects anomalous routes from
Routeviews and tier-1 ASes. According to Corollary 3, we extract those
routes that contain two non-adjacent tier-1 ASes from Routeviews. And
based on Corollary 2, we also collect loop routes received by tier-1 ASes
for detecting route leaks.

2. Sibling and mutual transit inference module: This module is an assis-
tant module. It infers the AS relationships of sibling and mutual transit. The
inference methods are described in the next section. It should be mentioned
that the inferred database will be updated periodically (one month).
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3. Leak identification module: This module detects route leaks from the
collected routes. The detection algorithm is summarized in Algorithm 1.
The route will first be checked if it contains sibling or mutual transit AS
pairs. If not, then it will be identified as a leaked route and the leaking AS
will be further identified using the method presented above. Once the leaking
AS is determined, the leaking triple is also figured out, i.e., the route leak
incident is identified.

As we can see, the route leaks identification system does not need information
about routing policies. It only performs passive monitoring of BGP routes to
detect route leaks that occur in the Internet, and hence it is lightweight and
easy to deploy.

4 Detection Results

In this section, we present the detection results of route leaks. Our route leaks
identification system has been deployed since 01/01/2015. At present, the system
only collects BGP routes from Routeviews. Collecting loop routes from tier-1
ASes needs to contact with their operators one by one and is a part of our
future work. Nonetheless, it does not affect the evaluation of the effectiveness
of our mechanism, because the detection algorithms for the two types of input
data (i.e., loop routes and routes containing two non-adjacent tier-1 ASes) are
nearly identical, as illustrated in Algorithm 1.

For illustrative purposes, we provide detection results of one month from
01/01/2015 to 01/31/2015. It should be mentioned that we selected the ASes in
the clique inferred by [22] as tier-1 ASes. There were 471458 routes that contain
two non-adjacent tier-1 ASes (we call them T1-T1 routes) in the month. As
mentioned in the above section, those routes can be caused by route leaks or
complex relationships of sibling and mutual transit.

4.1 T1-T1 Routes Caused by Complex Relationships of Sibling
and Mutual Transit

Our detection system used the AS-to-organization data [1] derived from WHOIS
database to infer the sibling ASes. Those ASes belong to the same organization
were inferred to be siblings. There were 631995 sibling AS pairs in total.

Next, the set of mutual transit ASes is inferred as follows. Suppose a route
containing a tier-1 AS is {..., T1, u1, ..., ui, ui+1, ..., un}, where T1 is the tier-
1 AS. According to the heuristic algorithm described in [25,22] (i.e., the links
seen by a tier-1 AS are p2c), the link (ui, ui+1) should be p2c. Hence, if the
reverse-link (ui+1, ui) is also seen by a tier-1 AS, i.e., there exists another route
{..., T1, u1, ..., ui+1, ui, ..., um} in the global routing table, the relationship of
(ui, ui+1) is probably mutual transit. Note that a route leak can also results in
the reverse-link (ui+1, ui) being seen by a tier-1 AS. To distinguish between them,
our system picked out all the AS pairs that both their forward-link and reverse-
link were seen by tier-1 ASes every day during the last month. We believe that
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Table 1. Results for the detected T1-T1 routes

T1-T1 routes Number Percent

Routes containing sibling ASes 31236 6.60%
Routes containing mutual transit ASes 98635 20.90%
Leaked routes 341587 72.50%

those AS pairs are mutual transit because they lasted for one month, whereas a
route leak would generally last much shorter.

With the sibling and mutual transit data, our system filtered out the T1-T1
routes that contain sibling ASes and mutual transit ASes. Table 1 shows the
results for the detected T1-T1 routes. There are less than one-third of T1-T1
routes that are caused by sibling and mutual transit relationships, and the rest
of routes are identified as leaked routes. It should be mentioned that because
the inferred siblings and mutual transit ASes may be incomplete, the identified
leaked routes are probable leaked routes. Below we analyze those probable leaked
routes in detail.

4.2 Analysis of Leaked Routes

As illustrated in Section 3.4, our detection system identifies the leaked route
as well as the leaking AS and leaking triple. There were 268 leaking ASes and
447 leaking triples that were extracted from the 341587 leaked T1-T1 routes.
As mentioned in Section 2, a route leak incident can be represented as a leaking
triple. Figure 5 shows the number of leaking triples (i.e., route leak incidents)
per day.
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Note that not just the detected T1-T1 routes, any route containing those
leaking triples in the routing table were leaked routes. To gain insight into the
leaking triples, we also filtered out all routes that contain them in the month.
Figure 6 shows the number of leaked routes per day. By comparing Figure 5
with Figure 6, it can be seen that there was no positive correlation between the
number of route leak incidents and the number of leaked routes. This is because
there are big differences in the impact of route leak incidents (i.e., how many
ASes adopted the leaked routes). Some route leaks polluted quite a number of
ASes in the Internet, and other route leaks only impact a few ASes.

Since the route leak incident usually results from misconfigurations [30], the
leaking triple should be an anomaly and hence it should not appear or seldom
appeared in the global routing table before. To verify this, we studied the days of
appearance of the leaking triples in the Routeviews last month (i.e., December
2014). As Figure 7 shows, although 61.5% of the leaking triples appeared less
than 2 days, it is surprising that 28.4% of them appeared more than 5 days and
9.6% of them appeared every day last month.

We further investigated the long-term leaking triples that appeared for more
than 5 days. The prefix list based filtering was found to be the major cause of
the route leaks with a long persistency. Figure 8 shows an instance of long-term
route leaks caused by the prefix list based configuration.

In Figure 8, AS53309 is multi-homed to AS19109 and AS11232, and it owns
two prefixes: 74.116.252.0/23 and 74.116.254.0/23. As a provider of AS53309,
AS11232 provides transit to the prefixes of AS53309. Usually AS11232 will use
the prefix list of AS53309 to maintain a route filter. That is, the route with the
prefix included in the list can be exported to its own providers (i.e., AS3356 and
AS2828).

Most of the time, the above prefix list based filtering works properly. How-
ever, we found that in a special case of traffic engineering, the prefix list based
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configuration can lead to route leaks. For instance, due to possible traffic engi-
neering policy, AS53309 did not announce the prefix 74.116.254.0/23 to AS11232
and only announced it to AS19019 during December 2014. Consequently, there
was only one route destined for 74.116.254.0/23 in the routing table of AS11232,
which was {3356 19019 53309}. Since the prefix of the route can pass through
the route filter, AS11232 propagated the route to its upstream provider AS2828.
As a result, a typical Provider-Provider leaking occurred.

Note that besides the traffic engineering, when the link between AS11232
and AS53309 fails, the prefix list based configuration can also result in the route
leak above, as illustrated in [30].

It is reasonable that once the prefix list based filtering was configured, it
would not be changed unless the customer updates their prefix list. Therefore,
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the route leaks caused by the prefix list based configuration would last a long
time.

From Figure 8, we can see that the key feature of route leaks caused by prefix
list based configuration is the leaking AS and origin AS are BGP neighbors. By
checking if the long-term route leaks meet this condition, we found that there are
about 62.2% of the long-term route leaks that can be attributed to the prefix
based export configuration. The causes behind the rest long-term route leaks
were hard to identify because of the confidentiality of the routing policies. And
as a future work, we will do a survey of the ISP operators involved in those
long-term route leaks to learn the possible causes.

5 Discussion

5.1 Loop Routes Received from a Provider

We have proved that a loop route received from a peer or customer should be a
leaked route. However, some operators in the NANOG [6] mailing list provided
us with several loop routes received from their providers [5]. We studied those
loop routes and found that they were not leaked routes and also caused by the
traffic engineering illustrated in Figure 8.

As we can see in Figure 8, there are two ASes that receive loop routes. One
is AS3356, and the loop route it receives is from a peer. The other is AS53309,
and the loop route is received from a provider. According to the valley-free rule,
the former loop route is a leaked route and the latter is not. Hence, it can be
seen from this example that when an AS receives a loop route from its provider,
it cannot identify the route is a leaked route.

5.2 Complex Routing Policies

The term “route leaks” in our discussion refer to route advertisements that vio-
late valley-free rule. However, routing policies between ASes in the Internet are
sometimes complex than the valley-free rule. For example, one of the long-term
leaking triples we detected is {2914 17676 209}. Since AS2914 and AS209 are
tier-1 ASes and AS17676 is a non-tier-1 AS, this triple is typically in viola-
tion of the valley-free rule. But the results queried from IRR database [4] show
that AS17676 has complex routing policies which announce routes learned-from
AS209 to AS2914 and its other providers. This means that although the triple
{2914 17676 209} is not valley-free according to our definition, it is in a special
arrangement and not a real route leak.

Therefore, it should be emphasized again that the route leaks identified by
our system are advertisements in the sense of valley-free violation.

5.3 Limitations

Our detection system also has a few limitations. First, as mentioned in Section
4.1, the inferred siblings and mutual transit ASes may be incomplete, which
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might lead to false positives in detection of route leaks. Second, our system
identifies the leaking AS by comparing the degrees of ASes. But as described in
Section 3.3, it cannot be 100 percent certain that a provider AS has a higher
degree than its customer does. Hence the identified leaking AS might be false in
a few rare cases.

6 Related Work

While most existing work on BGP security has focused on the correctness of
routing information, some studies have been concerned with the correct appli-
cation of routing policies. More than a decade ago, Mahajan et al. [30] studied
the export misconfiguration (i.e., route leak) which violates the export rout-
ing policy. Then in [27,14], the valley-free violation in inter-domain routing has
been characterized and investigated. And recently, researchers formally define
the advertisement of BGP routes in violation of the valley-free rule as “route
leaks” [9,28].

There are a few proposals on prevention or detection of route leaks. Qiu et al.
[27] proposed a prevention mechanism that carries pattern information of path in
a transitive attribute. The new transitive attribute can be used by the receiver to
determine if the advertisement is a leaked route. Although their mechanism can
prevent propagating the leaked routes without revealing AS relationships, but
it would fail when the attached pattern information is tampered by attackers.
Another two similar approaches [29,10] also insert a flag in the BGP route to
mark the target (i.e., customer, peer or provider) of the advertisements, and they
further protect the integrity of flags by using cryptographic techniques such as
S-BGP [18] and BGPSEC [21]. However, they may face challenges because those
cryptographic techniques will cause high resource overhead and it is far from
the full deployment of them. In [28], three detection approaches are presented to
identify route leaks. Although they can address different types of route leaks, but
some of them require advertisements of false prefixes, which may be unacceptable
for operators.

Compared to the prevention mechanisms [27,29,10], our approach does not
require modification of BGP protocol. Moreover, unlike the detection mechanism
in [28] that can only be used by an AS to detect the leaked routes for its sake,
our approach can monitor the route leaks that occur around the Internet and
further identify the leaking AS and leaking triple.

7 Conclusions and Future Works

Route leaks detection is a challenging problem due to the confidential nature
of business relationships and routing policies between ASes. In this paper, we
studied the routing loops caused by route leaks and presented a novel mechanism
that identifies route leaks by monitoring routing loops. We provided a theoretical
analysis of the link between routing loops and route leaks. The theoretical analy-
sis shows that when an AS receives a route with loop from its peer or customer,
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there should be route leaks that occur in the route. We further extended the
theorem to the case of tier-1 ASes, and proposed a system to detect the leaked
routes in the Internet. In addition to the leaked route, our system can identify
the leaking AS and the leaking triple which can be helpful for mitigating and
eliminating the impacts of route leak incidents in time. The detection results
show that our system can discover a lot of route leak incidents that occur in the
Internet per day.

As part of our future work, we will continue building the submodule of gath-
ering loop routes from tier-1 ASes. We plan to start with those tier-1 ASes that
peered with our campus network (The China Education and Research Network,
CERNET [2]). We believe that once such a submodule is completed, we can
detect more route leaks by exploiting those routing loops.
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comments. This work was supported by National Natural Science Foundation of China
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Abstract. The security of network services and their protocols critically
depends on minimizing their attack surface. A single flaw in an imple-
mentation can suffice to compromise a service and expose sensitive data
to an attacker. The discovery of vulnerabilities in protocol implementa-
tions, however, is a challenging task: While for standard protocols this
process can be conducted with regular techniques for auditing, the situ-
ation becomes difficult for proprietary protocols if neither the program
code nor the specification of the protocol are easily accessible. As a result,
vulnerabilities in closed-source implementations can often remain undis-
covered for a longer period of time. In this paper, we present Pulsar,
a method for stateful black-box fuzzing of proprietary network proto-
cols. Our method combines concepts from fuzz testing with techniques
for automatic protocol reverse engineering and simulation. It proceeds
by observing the traffic of a proprietary protocol and inferring a gener-
ative model for message formats and protocol states that can not only
analyze but also simulate communication. During fuzzing this simula-
tion can effectively explore the protocol state space and thereby enables
uncovering vulnerabilities deep inside the protocol implementation. We
demonstrate the efficacy of Pulsar in two case studies, where it identi-
fies known as well as unknown vulnerabilities.

Keywords: Model-based fuzzing · Vulnerability discovery · Protocol
reverse engineering

1 Introduction

A myriad of network services and protocols is employed in today’s computer net-
works, ranging from classic protocols of the Internet suite to proprietary binary
protocols implemented only by particular vendors. While these network services
steadily expand their capabilities, securing their functionality still remains a
challenging task: A single vulnerability in the implementation of a protocol can
suffice to undermine the security of a network service and expose sensitive data
to an attacker. For example, a flaw in the implementation of the universal plug-
and-play protocol rendered roughly 23 million routers vulnerable to attacks from
the Internet [27].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 330–347, 2015.
DOI: 10.1007/978-3-319-28865-9 18
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Several methods for locating and eliminating vulnerabilities in protocol imple-
mentations have been proposed in the last years, each addressing different
aspects of the problem. For example, if the implementation of the protocol is
easily accessible, different techniques from program analysis can be applied for
hunting down security flaws, such as white-box fuzzing [e.g., 13,15], dynamic
taint tracking [e.g., 9,34], symbolic execution [e.g., 7,31] and static code analy-
sis [e.g., 18,25,36,37]. The situation, however, changes fundamentally if neither
the code nor the specification of the protocol are directly accessible. While in
some cases there are means for retrieving the implementation of a protocol, for
example by reading out a firmware image or reverse-engineering a binary package,
the complexity of this effort may still impede a sufficient security analysis.

Only few approaches exist [14,17] that can help spotting vulnerabilities in
settings where code and specifications are hard to obtain. These approaches
provide first means for automatically inferring fuzzers for proprietary protocols
if a program analysis is not possible or difficult to carry out. Due to the lack
of insights in the protocol code; however, these approaches are not capable of
guiding the fuzzing process through the implementation. As a consequence, flaws
that are linked to deep states in the protocol implementation are hard to reach
efficiently.

In this paper, we present Pulsar, a method for stateful black-box fuzzing of
proprietary network protocols. Our method combines concepts from fuzz testing
with techniques for automatic protocol reverse engineering and simulation. It
proceeds by observing the network traffic of an unknown protocol and inferring
a generative model for message formats and protocol states that can not only
analyze but also simulate communication. In contrast to previous approaches,
this model enables effectively exploring the protocol state space during fuzzing
and directing the analysis to states which are particularly suitable for fuzz testing.
This guided fuzzing allows for uncovering vulnerabilities deep inside the protocol
implementation. Moreover, by being part of the communication, Pulsar can
increase the coverage of the state space, resulting in less but more effective
testing iterations.

We empirically evaluate the capabilities of Pulsar in two case studies. First,
we analyze the standard text-based protocol FTP as an illustrative example and
then proceed to applying Pulsar to the proprietary binary protocol OSCAR,
implemented in many instant messengers. To demonstrate the efficacy of simulat-
ing network communication, we direct our fuzzer against clients of the respective
protocols, as these are harder to test with regular fuzzers due to their active role
in the communication. In both case studies, Pulsar is able to spot known flaws
in these clients, but also hints us to previously unknown vulnerabilities.

The rest of the paper is organized as follows: we introduce our method for
stateful fuzzing of proprietary protocols in Section 2 and evaluate its efficacy
in Section 3. Limitations and related work are discussed in Section 4 and 5,
respectively. Section 6 concludes the paper.
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Fig. 1. Overview of Pulsar and the different analysis steps.

2 Methodology

The goal of Pulsar is to be able to effectively fuzz the implementation of
proprietary protocols for which no specification exits and the underlying code is
hard to analyze. In order to achieve this, our method starts by inferring a model
of the protocol including its state machine and the format of the messages. The
combination of both elements allow us to actively control the communication in
order to guide the fuzzing process and to build faulty inputs that are sent to
the network service. As explained in Figure 1, Pulsar proceeds in the following
steps:

1. Model inference. A sample of network traces from the protocol under test is
captured and a model is inferred from its messages. This include a Markov
model representing the state machine of the protocol, templates that iden-
tify the format of the messages and rules that track the data flow between
messages during communication.

2. Test case generation. The extracted templates and rules enable defining a
set of fuzzing primitives that can be applied to message fields at specific
stages of the communication. Using these primitives, test cases for black-box
fuzzing are automatically generated.

3. Model Coverage. To increase the coverage of the security analysis, protocol
states that are particularly suitable for fuzzing are selected. To this end, the
fuzzer is guided to subgraphs in the state machine that are rarely visited
and contain the largest number of messages with variable input fields.

Pulsar is implemented as an open-source tool1 that once placed in the
network can operate as a service or client and simulate communication with the
corresponding party. In the following we describe the three steps conducted by
Pulsar in more detail.

2.1 Model Inference

While model-based fuzz testing outperforms brute force fuzzing [30], it also does
rely heavily on the quality of the specification used for the generation of the test
1 https://github.com/hgascon/pulsar

https://github.com/hgascon/pulsar
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cases. In the case of fuzzers whose goal is to identify errors in the implementation
of well-known protocols, these models can be built on the basis of existing RFCs
or proper documentation. On the contrary, poorly documented or totally closed
proprietary protocols represent a tough challenge for such methods.

To address this problem, our method builds on the techniques introduced by
Krueger et al. with PRISMA [19], a probabilistic approach to model both the
message content and the state machine of an unknown protocol solely relying
on standard captures of network traffic. The quality of these models surpasses
that of previous works targeting the problem of reverse engineering network
protocols without the need to access the binary implementation. As detailed in
Section 3, the inferred model allows our method not only to generate relevant
security test cases but to simulate the inputs and outputs of a real entity within
the environment of the system under test.

Data Acquisition. In a real scenario, a software application usually commu-
nicates with different entities in the network, establishing several connections
based on different protocols. As a fuzzing session of Pulsar targets an indi-
vidual service, we start by capturing all traffic transmitted and received by an
application between a unique combination of source and destination IPs and
PORTs. Then, we re-assemble the captured packages and feed the complete
streams into a session extractor. A session identifier is assigned to each one of
the streams. If no packet is received for a selected time interval, a session will
be marked as terminated, so that a new packet within the same connection will
belong to a new session. The interval can be provided as a parameter and tuned
to suit the rate of new connections established by the application under test.

We need to note here that a model learned from network traces alone may
naturally lack parts of the functionality of the protocol if this functionality has
not been observed during the training phase. Therefore, the analyst can generate
specific interactions with the test application to model the inputs and outputs
of the system that need to be audited.

Message Clustering. After traffic recording and session identification, we
model each message as a sequence of bytes. To infer common structures among
the series of messages we begin by mapping these sequences of bytes into a
finite-dimensional vector space for clustering by the following two strategies.

For text-based protocols, where messages are typically formed by string
tokens separated by pre-defined characters, each dimension is associated with
an individual token in the feature vector. Thus, each dimension indicates the
occurrences of a specific token within a message. In the case of binary protocols,
we follow a similar approach where each individual n-gram (i.e., series of bytes
of a specific length) within a message is mapped to the correspondent dimension
in the feature vector. As the goal of this analysis phase is to model the different
types of messages of the protocol, we proceed with a dimensionality reduction
phase that allows the clustering algorithm to focus on the most discriminative
characteristics from each message. Following the design of PRISMA [19], we use



334 H. Gascon et al.

a simple statistical test [16] to remove volatile features, such as cookies and
random strings, and constant elements that occur in almost every message.

Once that each message is represented as a vector, we use the Euclidean
distance as similarity metric to apply the clustering algorithm. This allow us
to extract common message structures which typically occur during a certain
stage of the modeled protocol. Since most protocols are assembled from parts,
we apply the non-negative matrix factorization algorithm (NMF) for part-based
clustering [21]. NMF is an effective and well-known clustering algorithm that
represents given data as a factorization of the data matrix (features × traces).
After elimination of duplicated entries, the solution to the optimization problem
let us identify clusters of messages that share similar structure and therefore
belong to the same type.

Protocol State Machine. Network protocols are inherently defined by their
state machine. As the exact state machine can only be inferred from the actual
implementation of the protocol, Pulsar approximates the state machine from
observed network traces. To this end, we annotate each message indicating if
it has been generated by the client or the server. For this annotated version, a
sliding window of size two links each message to previously observed traces. By
computing the probabilities over these linked messages, we finally arrive at a
second order Markov model that provides a probabilistic approximation of the
real state machine.

Next, we minimize this Markov model into a deterministic finite automaton
(DFA). To this end, we keep transitions with probabilities larger than zero and
their associated states and at each transition we modify the DFA to accept
the event of the second state. The DFA minimization algorithm introduced by
Moore [26] let us generate an equivalent DFA that accepts the same language but
with a smaller number of states, which allows the security analyst to manually
inspect the model if required.

Message Format. In the clustering step we identify common tokens in the
recorded messages. The position where these tokens occur in a session during the
communication can be linked to a correspondent transition in the state machine.
This enables us to correlate tokens with the state of the service. By analyzing the
tokens of messages which are observable at the same state, we can improve the
initial clustering stage and extract generic format definitions for these messages
that we call templates.

In particular, after tokenizing each message according to the type of protocol
(i.e. text-based or binary) and the embedding used (i.e. token or byte n-gram),
we assign each message of a session to the corresponding state of the Markov
model. For each one of the states we generate a unique group for all messages
with the same number of tokens. If all messages within a group contain the same
token at a specific position, this token is fixed as a constant. On the contrary,
we consider tokens that differ even if only once as variables and its position is
defined as a field. As a result, each state of the Markov model is associated with
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State AS State BC State CS

Session 1 ftp 3.14 USER anon 331 User anon ok

Session 2 ftp 3.12 USER ren 331 User ren ok
...

...
...

Session n ftp 2.0 USER liz 331 User liz ok

Template ftp � USER � 331 User � ok

Fig. 2. Example of template generation for a simplified FTP communication.

a series of templates that represent the generic type of messages that may be
observed at such state of the communication.

Figure 2 presents a generic example of the process based on a series of FTP
messages from different sessions.

Data Flow. Once the session information, the Markov model and the message
templates are defined, we infer a set of rules to characterize the flow of informa-
tion between different messages during a session. More specifically, we establish
dependencies so that data found in a preceding message can be used to fill the
different fields in a subsequent message.

In particular, we consider each possible combination of template occurrences
for the horizon of length k = 2, i.e. (t−2, t−1, t0) and find all messages assigned
to these k templates which are sent in a session in this exact order. For each
field f in such templates, we look for a rule that let us fill f with data content
of a different field from previous messages. If no rule matches, the tokens are
recorded and a new data rule is defined, indicating how to fill f with a random
choice over previously seen data.

Table 1 describes the different type of rules we have implemented in our
system. For instance, in the example from Figure 2 the field associated with the
state C can be filled with the field of the previous message in all cases.

Table 1. Rules checked during model building. Parameters like d and s are automati-
cally inferred from the training data.

Rule Description

Copy Exact copy of the content of one field to another.
Seq. Copy of a numerical field incremented by d.
Add Copy the content of a field and add data d to the

front or back.
Part Copy the front or back part of a field split by

separator s
Data Fill the field by randomly picking data d which we

have seen before.
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2.2 Test Case Generation

Up to this point, Pulsar is able to simulate both ends of the communication
with high accuracy. Furthermore, the templates and fields in our model give us
the opportunity to feed the other side of the connection with faulty inputs at a
certain point in a session. By applying fuzzing primitives to the data provided
by the rules, we can send an ill formatted message when the service expects to
parse a variable data field controlled by the remote side.

In particular, the system proceeds as follows: When a message from the other
end of the communication is received, it is matched to one of the templates of
the states for which a valid transition exist. As the state machine of the protocol
is defined as a Markov model of second order, a valid transition is represented
by the new matched template and the two previously matched templates in the
form of a chain A:B:C. This means that if templates A and B have been observed,
our system will try to match a received message to the template C that allow
this transition. The set of rules for this transition is used by the system to build
the next message in the case that a response is required.

In some cases, the received message at a certain stage of the communication
may differ from that observed in the training data. As a result, some tokens
or bytes may not allow for an exact template match even if the semantics of
the message are expected by the model. Thus, to trigger a transition we use
the Levenshtein string distance to measure the similarity between the received
message and all reachable templates and select the most similar template as
a match. This type of semi-valid transition has two effects. In the first place,
the probability of reaching a “fuzzable” state is increased and second, if the
semantics from the similarity matched template are too far from the semantics
of the correct message, the response can be understood as a faulty input in itself.
From the fuzzing perspective this is equivalent to a jump to an erroneous state
in the real state model of the protocol. This situation may also led to errors
in implementations where the network service is not able to handle a wrong
sequence of messages during a session or a message from a different session.

After selecting a template D , we use the rules describing the transition
B:C:D in combination with a fuzzing primitive to build the next message. Pos-
sible primitives to select during testing include: invalid UTF-8 byte sequence,
constant string overflow or random string overflow with or without a percentage
of non-alphanumeric characters. A modular architecture allows for new fuzzing
primitives to be added by the community to our open-source tool independently
of the fuzzer implementation.

2.3 Model Coverage

A classic problem shared by random and more advanced model-based fuzzers is
that of achieving a high coverage of the testing space. In the case of Pulsar,
the system is able to fuzz the communication but also to be an active part of it
as a network service. This allow us to guide the interaction between both ends
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and can be exploited in order to reach in less time those states where messages
can be fuzzed.

After a message has been received and matched to a template, we must
select a valid response template. For the purpose of simulating traffic as closed
as possible to the real protocol the response template can be chosen according
to the probability observed for each transition in the training data. However,
when a fuzzing session is active, we define the fuzzing subgraph (FS) algorithm
to effectively select the next response.

The FS algorithm controls the progress of the fuzzer across consecutive iter-
ations and along the different states of the model, that is, new connections
initiated by the application under test when a session is terminated. Its ultimate
purpose is not only to increase the exploration of the model but to reach fuzzable
states faster.

The algorithm proceeds as follows:

1. When a new fuzzing process is started, a fuzzing mask is assigned to each
one of the templates. A fuzzing mask is a binary array of size equal to the
number of fields in a template and indicates what fields are to be fuzzed the
next time this template is selected to build a message. If a template has N
fields, there exist 2N possible fuzzing masks for each one of the templates.
Initially, each mask is set to 2N .

2. A subgraph is defined by a root state and all the states that can be reached
in D transitions. The fuzzing weight of the subgraph is defined as the sum
of the weights of its states. The weight of a state is computed as the sum of
the fuzzing masks of its templates at a certain point in time.

3. When a message is received and matched, the state with the highest sub-
graph weight is selected from all states that represent a valid transition. The
response template is chosen from this state according to the probability of
occurrence in the training data.

4. The communication continues until a fuzzable state is reached. When a tem-
plate is selected for fuzzing its fuzzing mask is decreased by one.

Modifying the fuzzing mask changes what fields of a template are fuzzed
the next time the template is selected. Moreover, it also decreases the fuzzing
weight of its state and previous states’ subgraphs. As a result, the paths in the
model with more fuzzing opportunities at early stages will be walked first. As
the fuzzing masks of these templates decrease, the weight of the subgraph will
also decrease, allowing for the exploration of adjacent paths in the model. If all
states reachable from the current state through a valid transition have the same
subgraph weight, we select the next state randomly.

3 Case Studies

We proceed to demonstrate the capabilities of Pulsar in two case studies
with real-world protocols. In particular, we evaluate our method’s ability to
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derive stateful fuzzers for the well-known protocol FTP (Section 3.1) as well
as for the proprietary protocol OSCAR as used by different instant messengers
(Section 3.2).

3.1 Core FTP Client

At first, we evaluate our method’s ability to automatically discover vulnerabili-
ties in implementations of a classic text-based protocol. To this end, we employ
Pulsar to identify flaws in the Core FTP Client2, a commercial, closed-source
FTP client. This program has been found to contain several buffer overflow vul-
nerabilities, providing us with up-to-date ground truth for our analysis.

In June 2014, Gabor Seljan reported several heap-based buffer overflows in
the Core FTP Client that can possibly be exploited by attackers to run arbitrary
code in the context of the FTP client (CVE-2014-4643). These buffer overflows
can be triggered by sending overly long responses to client requests in various
stages of the communication. Clearly, to trigger these vulnerabilities the client
needs to transition into the vulnerable state. Hence, suitable responses must be
returned by the server and thus Seljan manually prepared a sequence of server
responses in his proof-of-concept exploit.

In order to automatically identify these vulnerabilities in the FTP client,
we record 987 traces from usual interaction between the client and the server
running vsftpd3. Based on these traces Pulsar automatically generates the state
machine depicted in Figure 3 as well as the corresponding message templates and
rules. States containing templates with variable fields are shaded for both ends
of the communication.

Every state in the state machine is labeled according to the terminology
defined by the Markov model: Namely, the observed event that triggers the
transition to that state and the event that is generated from this state. For
instance, an event labeled X.UAC, Y.UAS indicates that a message from the client
UAC has been observed and a response from the server UAS is required at this
stage and vice versa. X and Y indicate the cluster identifier of the messages and
the templates associated with that state. In case that templates without fixed
tokens are assigned to that state the identifier is set to *. This also implies that
the template is formed only by fields split by separators.

By using the state machine generated by Pulsar we are able to trigger all
of the 6 vulnerabilities reported by Seljan in the scope of CVE-2014-4643 and
two previously unknown buffer overflows vulnerabilities. Note that our approach
does not require any prior knowledge of the FTP protocol or programming to
trigger these bugs. Instead, it merely requires an independently learned state
machine in order to impersonate a FTP server and have the client connect to it.

Figure 4 shows the two message sequences exchanged between the client and
the fake FTP server—mimicked by Pulsar—resulting in the discovery of the
two buffer overflows. In both sequences Pulsar first imitates the login procedure,

2 http://www.coreftp.com
3 http://vsftpd.beasts.org

http://www.coreftp.com
http://vsftpd.beasts.org
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Fig. 3. State machine and example of template generated from FTP traces. The tem-
plate contain 26 tokens and 2 of them are identified as variable fields.

allowing the client to authenticate itself by issuing a USER followed by a PASS

command. The client then issues a PWD command in order to determine the
current working directory to which the fake server responds with a seemingly
valid directory. Next the client attempts to enter active mode by sending the
PORT command to the server.

At this point in the communication the message sequences of Figure 4(b)
and 4(a) diverge. While in Figure 4(b) Pulsar immediately responds with an
overly long string causing the client to crash, in Figure 4(a) a valid response is
sent back to the client and the dialog is kept alive. Subsequently the client issues
the LIST command and crashes as result of an overly long response. Note that
the client only crashes in response to the LIST command after entering active
mode while remaining operational in passive mode. This highlights the necessity
of stateful fuzzing to identify vulnerabilities located at deeper levels of the state
machine.

3.2 Pidgin ICQ/AIM

In our second experiment, Pulsar is employed to learn a state machine for the
Open System for Communication in Realtime (OSCAR) protocol, a lesser known
binary protocol used by the AOL Instant Messenger and ICQ. OSCAR is an
exceptionally complex protocol with a login procedure that comprises four stages
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the password.
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12 *.UAC | *.UAS230 Login 
successful.
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(a) Messages triggering a crash after a LIST

command.

FTP Client PULSAR

220 (vsFTPd 3.0.2) 12 *.UAC | *.UAS

START | *.UAC25

USER anonymous 32 *.UAS | *.UAC

331 Please specify 
the password.

14 *.UAC | *.UAS

PASS ******* 32 *.UAS | *.UAC

12 *.UAC | *.UAS230 Login 
successful.
SYST 31 *.UAS | *.UAC

215 UNIX Type: L8 13 *.UAC | *.UAS

PORT 10,0,0,4,58,70

31 *.UAS | *.UACPWD

257 "/" 11 *.UAC | *.UAS

32 *.UAS | *.UAC

14 *.UAC | *.UASCRASH

Empty message (timer) 

Matching 
Template

Markov Model 
State

(b) Messages triggering a crash after a PORT

command.

Fig. 4. Sequences of messages sent and received by the Core FTP client and Pulsar
which lead to the termination of the client as a result of buffer overflows when the
responses to the LIST and PORT commands are parsed.

and involves two independent servers, the authorization server and the BOS
server. The authorization server has the responsibility to verify user credentials,
generate an authorization cookie and redirect to a BOS server for all further
processing.

In the past, several vulnerabilities in processing of BOS server messages
have been identified in the popular instant messengers Pidgin and Adium. In
particularly, several remotely triggerable crashes are known, which result from
insufficient validation of UTF-8 strings sent to the client by the BOS server
(CVE-2011-4601). We explore whether Pulsar is capable of automatically trig-
gering these bugs, by generating a state machine for the BOS server from 512
network traces. To ensure that our BOS server is contacted, a firewall rule for
netfilter is used to redirect all traffic sent to the real BOS IP address to our
server, thus allowing the client to perform the first login stage with a real autho-
rization server but effectively redirecting to our system all further requests issued
from the client to the real BOS server.

Figure 5 shows the state machine learned for the communication between
the ICQ/AIM client and the BOS server on port 5190. For clarity, large paths
without fuzzable states are shown piled. The path through the model from the
beginning of the communication to the state where the fuzzed message triggers
the error in the client is highlighted.

Figure 6 shows in more detail the sequence of messages exchanged between
Pidgin and the fake BOS server simulated by Pulsar. In combination with the
Markov model it can be seen how the system is able to correctly complete the
protocol negotiation phase with the client. After this phase, the client consid-
ers itself completely authenticated and the user can start interacting with the
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Fig. 5. Markov Model from OSCAR traces.

application. When the user requests to add a buddy to the list, our system fuzzes
the response with an invalid UTF-8 sequence that triggers the crash of the client.

In summary, this experiment shows that Pulsar is capable of learning even
complex and unusual binary protocols and trigger vulnerabilities deep within
the state machine.

4 Limitations

Our experiments show that Pulsar is capable of identifying security flaws inside
protocol implementations. Since the discovery of vulnerabilities, however, cannot
be fully automated in the generic case due to Rice theorem [29], our method
naturally has certain limitations. In this section, we examine these limitations
and discuss possible improvements.

Our system strongly relies on the comprehensiveness and completeness of
the observed network traffic and is thus unable to model protocol paths which
do not occur in this traffic. This is a common problem of automatic inference
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Fig. 6. Sequence of messages sent and received by the ICQ/AIM client and Pulsar
to produce a crash as a result of a missed format verification when parsing a negative
response to a buddy list request.

approaches and can not be completely solved. Yet, it can at least be alleviated by
incorporating knowledge about the protocol under test. For example, the analyst
can specifically induce and record protocol functionality that is security sensitive
or might be prone to vulnerabilities. Moreover, depending on the particular
environment, the analyst may change relevant parameters of the protocol, such
as addresses and usernames, to help constructing corresponding templates and
rules in the model.

Similarly, our approach does not reconstruct type information of fields which
can be help to significantly reduce the range of tested values, thus improving the
efficiency of fuzzing. As a remedy, the analyst might manually assign types to
certain fields. However, the presented results show that our approach is already
capable to identify vulnerabilities without this information—thereby compensat-
ing the lack of type information.

As most network monitoring approaches, Pulsar is unable to deal with
encrypted network traffic. Although this problem can not be solved in general,
it might in some cases be possible to inspect traffic through a proxy that acts as
man in the middle. The model can then be learned from the collected traffic prior
to forwarding it to the destination. Similarly, the final fuzzing can be conducted
by transmitting fuzzed messages directly through the proxy.
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5 Related Work

Pulsar unites two research areas from computer security in the scope of net-
work protocols: First, we reverse engineer the protocol by automatic inference
and second, based on the learned specification fuzzy testing is applied to the com-
munications parties in order to reveal security vulnerabilities in the implemen-
tations. In the following we attempt to provide an overview of work conducted
in these two vivid fields of research.

Protocol Re-engineering. Originally, the task of reverse engineering a network
protocol has been a time-consuming, demanding and above all, manual task.
Over almost a decade of research, however, the community has significantly
advanced this field by proposing numerous techniques for automating the task
of protocol re-engineering.

Nowadays, state-of-the-art methods can be divided into two orthogonal
strains of research: On the one hand, methods that utilize and instrument an
existing implementation based on, for instance, dynamic taint-analysis [6,9,11,
24,28,34] and on the other hand, those that attempt to derive the protocol
specification from recorded network data only [8,10,19,20,22,23,33]. The task
of deriving a protocol model is especially challenging in case the analyst does
not have access to a concrete implementation showcasing the protocol interac-
tion, but network recordings only. This exactly is the specific field of operation
Pulsar acts in and therefore, we subsequently discuss this line of research in
more detail. Another key distinction can be made between stateless [5,10,20] and
stateful protocol inference [8,19,23,33]. Common to all approaches on reversing
engineering network protocols is the need to differentiate variable from constant
segments in the transferred data. In this respect many methods are based on or
influenced by early work from Beddoe [4] and the Protocol Informatics Project [3]
where sequence alignment algorithms from the field of bioinformatics were used
to break up the protocol’s messages into their individual components.

Roleplayer [10], for instance, extends this by certain heuristics for identify-
ing IP addresses and domain names. In essence the method does not respect
temporal states but already addresses the need for inter-field relations. Leita et
al. [23] present a system (ScriptGen) that also makes use of sequence alignment
algorithms but splits up its application over two phases of different granular-
ity. A later extension of ScriptGen [22] is more relevant in our context. The
authors enhance the approach such that it is able to address intra- as well as
inter-protocol dependencies of variable fields and contents. This is particularly
important for keeping alive recreated dialogs in a meaningful way. PRISMA [19]—
the protocol inference framework we chose to build our method on—is able to
accomplish this as well. Similarly, the authors of [33] make use of a Markov model
and a layered application of the sequence analysis proposed by Beddoe just as
ScriptGen does. Unfortunately, this approach is not able to relate variable fields
over temporal states.
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Protocol Fuzzing. Using fuzz testing it is possible to uncover security flaws in
software by strategically generating input in an automated fashion [see 32]. Two
levels of abstraction can be discriminated here: (a) black-box fuzzing [35] where a
tester observes the software from the “outside” only seeing what in- and output
is passed in or out respectively, and (b) white-box fuzzing [13] that allows the
tester to inspect the code (either binary or source code) and for instance, make
use of symbolic execution and constraint solving.

This separation obviously applies to protocol fuzzing as well. In this con-
text however, it is crucial to differentiate between stateless and stateful sys-
tems. Fuzzing multi-party communication in a completely random fashion is
foredoomed to fail. Only with the knowledge of the protocol’s states and seman-
tics at hand it is possible to navigate the fuzzer through the communication. This
lead to stateful network fuzzers like KiF [1], SNOOZE [2] or Peachfuzzer [9,12],
whereby one differentiates special purpose [1], specification-based [e.g., 12] and
model-based [e.g., 9,14,17] fuzzers. The latter kind is usually powered by pro-
tocol inference as discussed in the previous paragraph and as implemented by
Pulsar. Our approach differs from this work in that it operates in absence of
the code and the specification for a protocol and thus comes handy in cases
where proprietary protocols are used, for example, in embedded systems.

Closest to Pulsar are the approaches AutoFuzz [14] and the system
described by Hsu et al. [17], which both also infer the protocol state machine
and message formats from network traffic alone. Although these approaches share
the same practical setting with Pulsar, they do not make use of the inferred
information for fully simulating communication, likely due to the absence of
dependence rules that enable us to let data flow between protocol states.

6 Conclusion

Finding vulnerabilities in the implementations of proprietary protocols is a chal-
lenging problem of computer security. In this paper, we present a novel method
for black-box fuzzing that can help to spot vulnerabilities in protocol implemen-
tations, even if neither the code nor the specification of the protocol are available.
To this end, our method Pulsar builds on concepts of protocol reverse engineer-
ing and simulation that enable us to automatically infer and guide fuzzers for
proprietary protocols. Our evaluation demonstrates the utility of such fuzzers,
where we identify vulnerabilities in the implementations of a text-based and a
binary protocol.

While we have applied Pulsar against rather common network protocols,
the method is also suitable for searching bugs in unusual implementations, such
as in embedded devices inside cars and industrial control systems. Due to the
capability of operating without code and specification, a collection of network
traces is sufficient for Pulsar to infer a first fuzzer for an unknown protocol.
Moreover, the simple design of the generative model inferred by Pulsar also
enables a practitioner to inspect and manually refine the model which provides
a bridge to regular fuzzing with manually crafted protocol grammars.
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Abstract. As the Domain Name System (DNS) plays an indispensable
role in a large number of network applications including those used for
malicious purposes, collecting and sharing DNS traffic from real networks
are highly desired for a variety of purposes such as measurements and sys-
tem evaluation. However, information leakage through the collected net-
work traffic raises significant privacy concerns and DNS traffic is not an
exception. In this paper, we study a new privacy risk introduced by pas-
sively collected DNS traffic. We intend to derive behavioral fingerprints
from DNS traces, where each behavioral fingerprint targets at uniquely
identifying its corresponding user and being immune to the change of
time. We have proposed a set of new patterns, which collectively form
behavioral fingerprints by characterizing a user’s DNS activities through
three different perspectives including the domain name, the inter-domain
relationship, and domains’ temporal behavior. We have also built a dis-
tributed system, namely DNSMiner, to automatically derive DNS-based
behavioral fingerprints from a massive amount of DNS traces. We have
performed extensive evaluation based on a large volume of DNS queries
collected from a large campus network across two weeks. The evalua-
tion results have demonstrated that a significant percentage of network
users with persistent DNS activities are likely to have DNS behavioral
fingerprints.

Keywords: Domain Name System · Behavioral fingerprints · Privacy

1 Introduction

The Domain Name System (DNS) plays an indispensable role in the Internet
by providing fundamental two-way mapping between domains and Internet Pro-
tocol (IP) addresses. Its practical usage has gone far beyond the domain-IP
mapping service: it supports many critical network services such as traffic bal-
ancing [1] and content delivering [2]; it is also leveraged by attackers to build
agile and robust malicious cyber infrastructures, where salient examples include
fast-flux [3], random domain generator [4], and covert channels [5]. The impor-
tance and prevalence of DNS signifies the demand of its traces collected from
real networks, which are essential for many DNS-relevant designs by serving as
benchmark data or ground truth. For instance, DNS traces have been collected
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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to evaluate DNS cache algorithms [6] and to train statistical models for malicious
domain detection [7,8]. Although the specific type and granularity of informa-
tion extracted from DNS traces may vary for different applications, the demand
for DNS traces is generally increasing.

Despite their practical values, DNS traces may introduce significant privacy
concerns. For example, DNS queries that are triggered by the prefetching mech-
anisms of popular browsers can leak users’ search engine queries [9]; DNS queries
can also reveal the types of operating systems [10]. In this project, we study a
new privacy risk introduced by passively collected DNS traffic: to which extent
network users can be uniquely identified merely based on the way they issue DNS
queries? In other words, we intend to derive behavioral fingerprints from DNS
traces, where each behavioral fingerprint targets at uniquely identifying its corre-
sponding user and being immune to the change of time. Such DNS-based behav-
ioral fingerprints, once successfully derived, have strong privacy implications. For
example, they can be used to de-anonymize the DNS traces with anonymized
sources. To be more specific, when DNS traces are shared, the source (e.g., the
IP address) that issues the DNS query is usually anonymized (e.g., by obscur-
ing the IP address using hash functions). However, one can learn behavioral
fingerprints from un-anonymized DNS traces and use the acquired fingerprints
to reveal the presence of specific users in (other) anonymized traces. In addi-
tion, if one can get access to DNS traces collected from multiple access networks
(e.g., through open DNS services or collecting traces from multiple networks),
he/she can track users’ locations across different networks by using behavioral
fingerprints to reveal users in DNS traces.

This paper aims at investigating the extent to which behavioral fingerprints
can be derived and measuring their accuracy on identifying the presence of cor-
responding network users. As a means towards this end, we have proposed a set
of new patterns, which collectively form behavioral fingerprints. We also built a
distributed, scalable system, namely DNSMiner, to automatically derive DNS-
based behavioral fingerprints from a massive amount of DNS traces. Specifically,
we make the following contributions in this paper.

– We have designed five new patterns including domain set, domain sequence,
window-aware domain sequence, period behavior, and hourly behavior, which
collectively form behavioral fingerprints. These patterns systematically char-
acterize DNS behaviors from three aspects including the domain name, the
inter-domain relationship, and the temporal behavior. Although more pat-
terns might be discovered to enhance behavioral fingerprints, our proposed
patterns serve as a lower bound of the capabilities to use DNS behaviors to
fingerprint network users.

– We have built a system, namely DNSMiner, to automatically mine behav-
ioral fingerprints from a massive amount of DNS traces. The design of the
system leverages the MapReduce distributed infrastructure to scale up the
system performance. After being deployed in a 15-nodes Hadoop platform,
DNSMiner can process more than 467 million DNS queries using approxi-
mately 4 hours.
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– We have performed extensive evaluation based on a large volume of DNS
queries collected from a large campus network across two weeks.
The experimental results demonstrated that the behavioral fingerprints
derived from a historical DNS stream can effectively identify users in a new
DNS stream. To be more specific, 69.63% of users, who have behavioral
fingerprints in the historical DNS stream and experience persistent DNS
activities in the new DNS stream, can be identified using their behavioral
fingerprints. Among these identifiable users, our system accomplishes a high
accuracy of 98.74% and a low false positive rate of 1.26%.

The rest of this paper proceeds as follows. Section 2 elaborates the related
work. Section 3 shows the system design and Section 4 presents the evaluation
results. We discuss the possible limitations and potential solutions in Section 5,
and Section 6 concludes.

2 Related Work

Information leakage through collected network data has been recognized as a sig-
nificant privacy concern, thereby attracting a lot of research efforts. A rich body
of literature [11–16] have been proposed to infer application-level users’ activities
from (encrypted) network traffic. Chen et al. [13] have leveraged communication
patterns of HTTP connections to infer the activities taken by browser users.
In [14,15], Wright et al. have built statistical models to reveal languages and
even spoken phases from encrypted VoIP traffic. Zhang et al. [16] designed a
hierarchical classification system to identify users’ online activities (i.e., a user’s
running applications) based on network-level traffic patterns. Sun et al. [11] also
created traffic signatures to reveal webpages visited by users in encrypted net-
work traffic. Different from these works that focus on inferring users’ activities,
our work targets at inferring users’ identities.

Pang [17] et al. generated user fingerprints based on encrypted wireless traffic
patterns. However, compared to deriving user fingerprints from wireless traffic,
fingerprinting users based on DNS traffic is faced with unique challenges since
DNS traffic has less semantics. Particularly, although encrypted, the wireless
traffic can expose the set of SSIDs, packet sizes, and MAC protocol fields used
by a user. Comparatively, DNS queries only make visiable the domain name and
the timestamp if the source IP is anonymized. Therefore, how to design effective
patterns based on semantic-limited DNS queries becomes the key of our solution.
The work closest to ours is [18], where Herrmann et al designed a learning-
based approach to attribute sessions of DNS queries to their corresponding users.
However, our work significantly differs from the method proposed in [18] from two
perspectives. First, a single feature, the visiting frequency of popular domains for
each host, was adopted in [18] to characterize users’ behaviors while we designed
multifaceted features (i.e., total 5 features) to systematically characterize users’
behaviors from three different perspectives. Second, the method [18] needs to
separate a DNS stream into sessions according to the timestamp of DNS queries,
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Fig. 1. DNSMiner architecture

which implies the necessity for fine-grained timing information for DNS queries.
Despite the fact that our current implementation also used timestamp for DNS
queries, the first pattern (i.e., the domain set pattern) is time-independent; the
second and third patterns (i.e., the domain sequence and window-aware domain
sequence patterns) only concern the order in which DNS queries are issued in
each day. This implies that our mehtod can be used in DNS streams with coarse-
grained timing information. In fact, the domain sequence and window-aware
domain sequence patterns collaboratively accomplished a high detection rate
of 90.72% in our experiment. A few projects [9,10] investigated information
leakage from the same type of network traffic used by our work - the passively
collected DNS packets. However, their objectives are different from ours. To
be specific, Krishnan et al. [9] aimed at recovering search engine queries by
investigating correlated domain names and Matsunaka et al. [10] intended to
fingerprint operating systems rather than network users.

Several methods [19–21] have been proposed to de-anonymize network data.
Specifically, Coull et al. [19] has proposed techniques to de-anonymize network
flows by comparing the objects from the unanonymized and anonymized network
data directly. Narayanan et al. [20] and Wondracek et al. [21] have leveraged the
topology of an unanonymized social network to effectively identify users in an
anonymized social network. Despite the fact that our method leverages different
data sources, we do not need auxiliary information (e.g., the context of the
anonymized data and additional topologies of unanonymized social networks).
Nevertheless, DNS behavioral fingerprints extracted by our method complement
existing methods [17,19–21].

3 System

The architectural overview of DNSMiner is presented in Fig. 1. DNSMiner takes
as input a set of DNS-query streams, which is denoted as S = {S1, S2, . . . , SN}.
Each stream (e.g., Si) contains DNS queries issued by a user (e.g., ui) over a
certain time period (e.g., several days). A stream is a series of tuples, where
each tuple is denoted as < u, domain, timestamp >. u, domain, and timestamp
refer to the user identity, domain name, and the querying time, respectively. In
a network where an IP address can be associated with a user, we can use IP
addresses to represent users’ identities. DNSMiner aims at generating a DNS-
based behavioral fingerprint, namely Fi, for a user ui, where Fi is defined as a
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finite set of patterns (i.e., Fi = {F 1
i , F 2

i . . . FK
i }). Each pattern in the fingerprint

is named as a fingerprint pattern. Ideally, fingerprint patterns should be i) unique
to their corresponding user (i.e., persistent to their corresponding users) and ii)
immune to the change of time.

To illustrate the detailed design of DNSMiner, we first formulate the mining
process of fingerprints (see Section 3.1). Next, we will discuss specific patterns
used by DNSMiner and the motivations behind their design (see Section 3.2).
Finally, we briefly describe the implementation of DNSMiner that takes advan-
tage of MapReduce [22] to achieve high scalability (see Section 3.3).

3.1 Problem Formulation

Pattern Mining. DNSMiner aims at mining fingerprint patterns that exhibit
both significant persistence and uniqueness to a user. Towards this end, we
start from defining persistence and uniqueness of a fingerprint pattern. DNS-
Miner aggregates the DNS stream from a user (e.g., ui) into a set of transactions
(denoted as Ti = {T 1

i , T 2
i , . . . , TM

i }), where each transaction T k
i is a set of tuples

issued by ui within the same epoch. Since Internet activities usually exhibit
strong diurnal patterns [23], we currently use one day to represent an epoch. We
denote “T k

i satisfies F” if the pattern F is observed in T k
i . The specific meaning

of “satisfy” varies for different patterns and we will illustrate it along with the
introduction of the patterns. For instance, if F is a set of domains, then T k

i

satisfies F when all domains in F are contained in the set of domains that are
extracted from all tuples in T k

i . We introduce a function mt(F, Ti) that returns
all transactions in Ti that satisfy F . Specifically, mt(F, Ti) is defined as

mt(F, Ti) = {T k
i ∈ Ti | T k

i satisfies F} (1)

We subsequently define a function supp(F, Ti) to quantify the persistence of
a pattern (i.e., F ) across the transactions generated by a user ui. Its formal
definition is presented as

supp(F, Ti) =
|mt(F, Ti)|

|Ti| (2)

The supp(F, Ti) characterizes two trends. If a pattern F is persistent to ui,
supp(F, Ti) tends to be large. In contrast, a transient pattern is inclined to yield
small supp() value. We use a pre-defined threshold, namely α, to discriminate
between persistent patterns and transient ones. To be more specific, F is con-
sidered to be persistent to ui if supp(F, Ti) ≥ α. We denote the set of persistent
patterns for a user ui as P (Ti), where P (Ti) = {F |supp(F, Ti) ≥ α}.

However, the high persistence of a pattern does not guarantee its uniqueness
since a persistent pattern for ui could also be a persistent pattern for an another
user. We therefore define another metric, namely contrast confidence, to quantify
uniqueness of a persistent pattern (e.g., F ) for a user ui (i.e., how well it F can
differentiate ui from other users).
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conf(F, Ti) =
supp(F, Ti)∑

F∈P (Tj)
supp(F, Tj)

, where F ∈ P (Ti) (3)

conf(F,Ti) characterizes the following trends: if a pattern is persistent to
many users, then its contrast confidence tends to be low; otherwise, its contrast
confidence tends to be high. Again, a threshold β is introduced in our current
design to differentiate these two trends. A persistent pattern F will be considered
as a fingerprint pattern for ui if conf(F,Ti) ≥ β.

Pattern Matching. Given an unknown user uu and his/her associated DNS
stream, the pattern matching phase of DNSMiner aims at identifying whether
this DNS stream can be attributed to any known user. To this end, DNS-
Miner will first follow the same method discussed in Section 3.1 to obtain per-
sistent patterns for uu. Specifically, we will derive a set of DNS transactions
(denoted as Tu) for the unknown user uu and subsequently identify persistent
patterns P (Tu). It is worth noting that the same criteria for epoch representation
(e.g., 24 hours) and the same value of α will be applied. Next, we will evaluate the
similarity between an unknown user uu and a known user ui, whose fingerprint
is denoted as Fi. A distance function, denoted as dist(uu, ui), is consequently
defined as

dist(uu, ui) = 1 −
∑

conf(F k
i , Ti)

∑
conf(F j

i , Ti)
, (4)

where F k
i ∈ P (Tu) ∩ Fi and F j

i ∈ Fi

∑
conf(F k

i , Ti) is the accumulated confidence for all patterns that belong
to the intersection of ui’s fingerprint patterns and uu’s persistent patterns;∑

conf(F j
i , Ti) is the accumulated confidence for all patterns in ui’s fingerprint.

If P (Tu) ∩ Fi accounts for a large percentage of patterns in Fi, which implies
that two users tend to be similar, the distance tends to be small. If multiple
users who have fingerprints have non-zero distance wtih uu, we assign uu to the
user who has the smallest distance.

It is worth noting that a user with transient DNS behaviors may introduce
a large volume of noises when discovering persistent patterns. For example, if
a user is only active for one epoch (i.e., there is only one transaction for this
user), then all of patterns for this user would be persistent since they are active
for that transaction, resulting 100% for the supp() function. A large number of
“persistent” patterns generated by transient users may significantly affect the
effectiveness for both pattern generation and matching. In the pattern genera-
tion phase, these patterns may drastically decrease the contrast confidence of
persistent patterns for persistent IPs. In the pattern matching phase, a transient
user is likely to have a large overlap with a known user with respect to their pat-
terns, which implies a false positive. Therefore, in our current design, we only
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consider those users (or IP addresses) that are sufficiently persistent by them-
selves. Specifically, if a set of users (or IP addresses) subject to analysis have up
to M transactions, our implementation only considers those IP addresses that
are active for at least M

2 transactions. For example, if a set of IP addresses have
up to 7 transactions, we will only analyze their users that are active for at least
4 transactions.

3.2 Patterns

The querying behaviors of DNS are closely related to networking activities of
individual users. For example, visiting a website or starting a network appli-
cation (e.g., an instant messenger) usually triggers the resolution of associated
domain(s). The routine and personal networking activities of a user may lead to
persistent DNS patterns that are unique to him/her. Based on this intuition, we
have designed five types of DNS patterns that characterize a user’s DNS query-
ing behaviors from three perspectives, including the domain name (i.e., Pattern
1), the inter-domain relationship (i.e., Pattern 2 and 3), and temporal behavior
(Pattern 4 and 5). In this section, we will present the definitions of these patterns
and the motivation behind their design.

Pattern 1 - Domain Set: A user may have steady interest for certain websites
and use some applications routinely. These activities are likely to result in a set
of domains that are repeatedly queried by this user across multiple epochs. Since
the interest and application usage patterns are highly personal, the repeatedly
queried domains may vary drastically across different network users. We there-
fore introduce the domain set pattern (denoted as Fdomain), which is simply
a set of domains that meets the requirements of persistence and uniqueness.
Particularly, a transaction T satisfies the domain name pattern Fdomain if all
domains in Fdomain are observed in transaction T .

In order to identify Fdomain ideally, we can enumerate all possible domain set
based on all domains derived from each transaction of a user, where the smallest
domain set contains a single domain from this transaction and the largest domain
set contains all domains in this transaction. We can then evaluate the persistence
and uniqueness of these domain sets. Unfortunately, when the number of domains
involved in a transaction is large, the sheer volume of domain sets will become
overwhelming. In order to solve this problem, we generate domain sets that
contain up to N unique domains, where N = 2 for our current implementation.

Table 1 presents an illustrative example: two users, u1 and u2, are active
across five consecutive epochs, resulting in five transactions, respectively. All
domains queried by u1 and u2 for each epoch are listed in the second and third
columns in Table 1. If we configure α = 3

5 , the u1 has persistent Fdomain pat-
terns including {a}, {b} and {a,b} since supp({a}, T1) = |mt({a},T1)|

|T1| = 3
5 ≥ 3

5 ,

supp({b}, T1) = |mt({b},T1)|
|T1| = 3

5 ≥ 3
5 , and supp({a, b}, T1) = |mt({a,b},T1)|

|T1| =
3
5 ≥ 3

5 . Similarly, u2 will have two persistent patterns including {a} and {b},
where supp({a}, T2) = |mt({a},T2)|

|T2| = 3
5 ≥ 3

5 and supp({b}, T2) = |mt({b},T2)|
|T2| =
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Table 1. Transactions and their associated domains for two users across 5 epochs,
where {a,b} becomes the domain set fingerprint pattern for u1.

Transaction
Domains

Epoch
u1 u2

T1 a, b, c, d a, c 1

T2 a, b a, e 2

T3 b, a, f, k a, b, c 3

T4 e, f b, k 4

T5 c, d b 5

3
5 ≥ 3

5 . Considering only these two users, it is easy to reach a conclusion that
conf({a}, T1) = 1

2 , conf({b}, T1) = 1
2 , conf({a, b}, T1) = 1, conf({a}, T2) = 1

2 ,
and conf({b}, T2) = 1

2 . If we set β = 60%, {a,b} becomes the fingerprint pattern
for u1.

Pattern 2 - Domain Sequence: A network user’s routine networking activ-
ities could involve his/her individualized preferences and the order in which
network activities are carried might be able to reflect such preferences. We con-
sequently define a domain sequence pattern denoted as Fseq, where Fseq is a finite
sequence of domains. Given two domains in Fseq (i.e., di ∈ Fseq and dj ∈ Fseq),
di � dj means that di is issued before dj .

Similar to the domain set pattern, the ideal implementation to derive domain
sequence patterns should consider domain sequences with all possible lengths
derived from a transaction. Unfortunately, the ideal solution could result in a
prohibitively huge volume of domain sequence patterns when the number of
domains contained in a transaction becomes large. Therefore, we only generate
domain sequence patterns composed of two domains. To be more specific, Fseq =
(di, dj) where di � dj in the transaction.

Compared to domain set patterns, domain sequence patterns offer an addi-
tional dimension to differentiate two users. For example, if two users visit
facebook and twitter routinely, they will have two identical Fdomain pat-
terns (i.e., “www.facebook.com” and “www.twitter.com”). However, if the
first user always visits facebook before twitter while the second user fol-
lows the reverse order, DNSMiner will generate two disparate persistent
domain sequence patterns (i.e., (www.facebook.com,www.twitter.com) and
(www.twitter.com,www.facebook.com)) for these two users, respectively.

Pattern 3 - Window-Aware Domain Sequence: DNSMiner further
expands the domain sequence patterns by incorporating the first and last time
when a domain is visited. Specifically, rather than considering every possible
pairwise sequence for di and dj from all tuples within a transaction, DNS-
Miner considers the tuples in which di and dj are first and last observed.
To this end, we extract a 3-tuple for each domain (e.g., di) in a transaction
denoted as < di, si, ei >, where si and ei refer to the first and last time di is
observed in the transaction, respectively. In order to illustrate the design of this
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Table 2. Window-Aware Patterns

Window-Aware Patterns p∗’s Value

< di, dj , ss, p1 > if(si < sj) p1 = 0; else p1 = 1;

< di, dj , se, p2 > if(si < ej) p2 = 0; else p2 = 1;

< di, dj , es, p3 > if(ei < sj) p3 = 0; else p3 = 1;

< di, dj , ee, p4 > if(ei < ej) p4 = 0; else p4 = 1;

Table 3. A sequence of DNS queries

Timestamp t0 t1 t2 t3 t4 t5
Domain a b a b b a

pattern, we consider two domains, di and dj , whose 3-tuples are < di, si, ei >
and < dj , sj , ej >, respectively. Without loss of generality, we assume that di
alphabetically precedes dj . The comparison of both starting and ending times
of these two domains will result in four 4-tuples as illustrated in Table 2. The
third element in a 4-tuple indicates how two domains are compared. For exam-
ple, “ss” indicates that di’s starting time is compared to dj ’s starting time and
“se” indicates the comparison between di’s starting time and dj ’s ending time.
The second column in Table 2 shows rules we have used to assign values for the
fourth variable. It is worth noting that these four window-aware sequence pat-
terns might not be independent. For example, if p3 in < di, dj , es, p3 > is 0, which
means that the last time we observe di precedes the first time we observe dj , then
all p∗ variables in other 4-tuples for di and dj will always be 0. We exploit such
dependency in our implementation to reduce the number of patterns yielded for
each pair of domains.

Table 3 illustrates a series of domains queried by a user together with
their timestamps, where all these domains belong to one transaction and
t0 < t1 . . . t4 < t5. For this user, two 3-tuples in the form of < di, si, ei > will
be derived, including < a, t0, t5 > and < b, t1, t4 >. For example, < a, t0, t5 >
indicates that the domain a is first and last queried in this transaction at t0 and
t5, respectively. We follow the definition of window-aware patterns as indicated
in Table 2 to derive four window-aware patterns for this example, which includes
< a, b, ss, 0 >, < a, b, se, 0 >, < a, b, es, 1 >, and < a, b, ee, 1 >. As indicated in
this example, some patterns may imply others, making it possible to simplify the
generation of window-aware patterns. For example, if we know < a, b, ss, 0 >,
we can directly conclude that < a, b, se, 0 > without generating it from data.

Pattern 4 - Period Behavior: Network users’ networking activities often
exhibit strong temporal patterns. For example, a user could visit a news web-
site every morning while an another user surfs it over every afternoon. Con-
sequently, each domain together with its temporal information may well rep-
resent a user. We therefore introduce the Period Behavior pattern (denoted as
Fperiod), which is defined as a domain-period combination. The “period” refers to
a tag indicating “morning”, “afternoon”, and “evening”. In order to derive such
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Fig. 2. DNSMiner implementation of identifying persistent patterns

pattern, we first map the timestamp of each tuple into one of three period tags,
where “morning”, “afternoon”, and “evening” stand for [5:00AM, 11:00AM),
[11:00AM, 5:00PM), and [5:00PM, 5:00AM), respectively. Next, for each tuple,
we integrate its domain and its corresponding period tag into a domain-period
combination. For example, (www.facebook.com, 2013-09-17 08:30:23), a tuple in
a DNS stream, will generate (www.facebook.com, morning) as its Period Behav-
ior pattern.

Pattern 5 - Hourly Behavior: We further introduce the Hourly Behavior pat-
tern to characterize a user’s networking activities at a finer granularity. Rather
than mapping a timestamp into a period tag, DNSMiner maps a timestamp to
its corresponding hour, thereby leading to a domain-hour combination denoted
as Fhourly. For instance, the tuple (www.facebook.com, 2013-09-17 08:30:23) will
be mapped into (www.facebook.com, 08).

3.3 System Implementation

A network user may generate a large number of DNS queries. As the num-
ber of network users increases, the scalability of DNSMiner becomes a concern.
To address the challenge, we have implemented DNSMiner using the Hadoop
MapReduce platform. The two phases of Map and Reduce workflows in the
implementation are presented in Fig. 2. DNSMiner first identifies persistent
patterns for each user. Since the identification of persistent patterns for each
user is independent to that for other users, we can easily parallelize the compu-
tation by partitioning/mapping tuples (i.e., < uid, domain, timestamp >) into
reducers based on their uids (i.e., the step 1© in Fig. 2). Each reducer will then
enumerate all patterns for each transaction of ui; for each derived pattern F j

i , its
supp() value in the context of ui will be subsequently calculated; we consequently
apply the predefined threshold α and preserve all persistent patterns (i.e., pat-
terns whose supp() values are greater than α). These three actions together are
performed in reducers for the step 2© in Fig. 2. Next, we partition patterns
together with their associated uids and supp() values into reducers, where the
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Table 4. The # of IPs in D1 and D2, # of persistent IPs (|P1| and |P2|), # of IPs
with persistent patterns in P1 and P2, and # of IPs with fingerprint patterns in D1

(i.e., |FP1|)

Week # of IPs # of # of IPs with # of IPs with
Persistent IPs Persistent Patterns Fingerprint Patterns

Week 1 (D1) 55,459 16,003 12,900 11,921

Week 2 (D2) 54,751 9,120 7,119 -

pattern serves as the key (the step 3© in Fig. 2). Finally, each reducer will calcu-
late the contrast confidence for each pattern with respect to each user and yield
those unique ones in the step 4© (e.g., conf(F, T ) ≥ β).

4 Experiments

We have evaluated DNSMiner using DNS queries collected from a large campus
network. Our evaluation aims at answering three questions: “Can DNS-based
fingerprints effectively identify their corresponding network users?”, “How do
parameter values impact DNSMiner ’s effectiveness?”, and “How effective is each
category of patterns?”.

4.1 Data and Experiment Setup

We obtained DNS queries collected from a large campus network of Xi’an Jiao-
tong University, China, where the DNS queries are collected below the major
recursive DNS servers used by the campus network. Aiming at facilitating the
network management, the campus network assigns static IP addresses to the
vast majority of its users after they register at the network management cen-
ter. Only a few buildings use dynamic IP addresses and we have excluded DNS
queries issued from their corresponding subnets. Sensors were deployed to col-
lect DNS queries that are issued by all hosts in campus network. For each DNS
query, three pieces of information were extracted, including the domain name,
the timestamp, and the IP address that issues this query. We collected two sets of
DNS queries from two consecutive weeks at September 2013, which are denoted
as D1 and D2, respectively. As illustrated in the second column of Table 4, D1

and D2 contain 55,459 and 54,751 unique IP addresses, respectively. Both D1

and D2 contain a large number of DNS queries (i.e., 467,388,490 queries in D1

and 238,993,575 in D2).
As Internet activities typically show diurnal patterns [23,24], we considers

one day as one epoch. Specifically, an epoch starts from 5:00AM and lasts for
24 hours. Both transaction-sets for fingerprint extraction and matching contain
7 epochs (i.e., for 7 consecutive days). We configure α = 5

7 , which means that a
fingerprint pattern has to be persistent for at least 5

7 out of the active days for
its corresponding IP address. We also set β = 60%.
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Fig. 3. The CDF distribution of the maximum supp() for all persistent IP addresses
in D1 (i.e., all IPs in P1). A significant percentage (64.18%) of IPs in P1 have patterns
that are persistent across 7 epochs.

We use the queries of the first 7 days (i.e., D1) to derive DNS fingerprints
and those of the remaining week (i.e., D2) to evaluate the extent to which the
fingerprints can effectively de-anonymize users in a new DNS stream. As we have
discussed in Section 3, IP addresses with transient DNS behaviors are likely to
introduce noises. Therefore, we only consider those IP addresses that experience
sufficient persistence by themselves. Specifically, since D1 and D2 contain up to
7 transactions, we preserve those IP addresses that are active for at least half
of the 7 transactions (i.e., for at least 4 transactions). We use P1 to represent a
set of persistent IPs in D1 and P2 in D2. As illustrated in Table 4, P1 and P2

contain 16, 003 and 9, 120 IP addresses, respectively.

4.2 Fingerprint Extraction

The first step of DNSMiner is to assess the persistence of patterns for each
IP address in P1. Specifically, for each IP address in P1, we extract all of its
patterns, investigate their supp() values, and preserve those whose supp() values
are greater than the predefined threshold α. We identify the maximum supp()
value for each IP address and plot the distribution of maximum supp() value
for all IPs in P1 in Fig. 3. As illustrated in the distribution, a significantly large
percentage of persistent IPs (i.e., IPs in P1) indeed have persistent patterns.
Particularly, 64.18% of IPs in P1 have the maximum supp() value of 1, indicating
that each of these IPs has repeatedly shown at least one pattern across entire
7 epochs. In addition, a large percentage of 80.60% of IPs in P1 have at least
one persistent pattern whose supp() value is greater than α = 5

7 . This results in
12,900 IPs with persistent patterns in P1, which account for totally 313,248,287
persistent patterns.

The second step of DNSMiner is to investigate the uniqueness of persis-
tent patterns based on their contrast confidence (i.e., conf(F j

i , Ti)). Again,
conf(F j

i , Ti) quantifies the uniqueness of a pattern F j
i to its corresponding user

ui. In order to visualize the experiment results, for each IP with persistent pat-
terns, we derive the highest contrast confidence for all its persistent patterns;
we then present the distribution of the highest contrast confidence values for
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Fig. 4. The CDF distribution of the highest contrast confidence for each IP address
that has at least one persistent pattern. Approximately 70% have unique persistent
patterns (i.e., with contrast confidence of 1).

Fig. 5. The CDF distribution of the number of fingerprint patterns for each IP address.
IP addresses with fingerprint patterns tend to have a large number of fingerprint pat-
terns.

these IPs in Fig. 4. As illustrated in Fig. 4, about 70% percentage of IPs with
persistent patterns have patterns whose contrast confidence is 1, which indicates
that these patterns are unique for their corresponding users. In DNSMiner, we
use the predefined threshold β = 60% to further identify those persistent that
also experience significant uniqueness (i.e., fingerprint patterns). Totally, DNS-
Miner has identified 11,921 IP addresses that have fingerprint patterns, where
these IP addresses form a set namely FP1 and FP1 ⊆ P1. DNSMiner totally
generated 222,508,026 fingerprint patterns, among which the domain set pattern,
the domain sequence pattern, the window-aware domain sequence pattern, the
period pattern, and hourly behavior pattern account for 16.43%, 11%, 72.51%,
0.02%, and 0.04%, respectively. We count the total number of fingerprint pat-
terns for each IP address and plot their distribution in Fig. 5. The distribution
indicates that these IPs tend to have a large number of DNS fingerprint patterns,
implying strongly discriminative DNS behaviors. Particularly, more than 78% of
IP addresses in FP1 have at least 100 fingerprint patterns.
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Table 5. The accuracy of identifying users in a new DNS stream D2 using fingerprint
patterns extracted from a historical DNS stream D1. Among 69.63% IPs that are
identified by fingerprint patterns, 98.74% are correctly revealed.

Week |P2| |FP1 ∩ P2| |K| |KC| |KI| II(%) DR(%) FP(%)

Week 2 (D2) 9,120 4,894 3,408 3,365 43 69.63 98.74 1.26

4.3 Fingerprint Matching

As introduced in Section 4.2, FP1 represents a set of IPs in D1 whose DNS
behavioral fingerprints have been derived by DNSMiner. We also use P1 and P2

to represent sets of persistent IPs for D1 and D2, respectively. For fingerprint
matching, our objective is to use fingerprint patterns for IPs in FP1 to reveal
their presence in P2. Specifically, we perform the pattern matching as discussed
in Section 3 to identify all IPs in P2 whose distance (i.e., dist(uu, ui)) is smaller
than 1 compared to any IP in FP1, where these IPs together form a set named
as K. K can be further divided into two sets, namely KC and KI, which rep-
resent the IPs that are correctly and incorrectly identified, respectively (i.e.,
K = KC ∪ KI). Subsequently, we define the following three metrics to quantify
the effectiveness of fingerprint patterns.

– The percentage of identified IP addresses (II): |K|
|FP1∩P2| . We expect DNS-

Miner to identify all IPs in FP1 ∩ P2 since IPs in FP1 ∩ P2 indeed have
fingerprint patterns in the first week and are persistent in the second week.

|K|
|FP1∩P2| represents the overall effectiveness on identifying IPs in a new DNS
stream.

– The detection rate: |KC|
|K| (DR). This ration shows the ratio of the number

of correctly identified IPs over the number of all identified IPs.
– The false positive rate: |KI|

|K| (FP). This ration shows the ratio of the number
of incorectly identified IPs over the number of all identified IPs.

We have performed the evaluation of fingerprint matching using the DNS
stream of D2, where the evaluation results are presented in Table 5. Specifically,
4,894 IPs in P2 (i.e., persisent IPs in the second week) have fingerprint patterns
in the first week (i.e., |FP1 ∩ P2| = 4,894). In other words, the ideal objective
is to identify all these 4,894 IPs in the DNS stream of the second week (i.e.,
D2) using their fingerprint patterns extracted from the first week (i.e., D1). The
matching results show that totally 3,408 IPs have been identified, resulting in the
percentage of identified IPs of 69.63%. Among these 3,408 IP addresses, 3,365
IPs are correctly attributed to those IPs in FP1, resulting a high detection rate
of 98.74% and a low false positive rate of 1.26%.

We have deployed DNSMiner on a Hadoop platform with 15 nodes. The
entire process for both extracting and matching fingerprint patterns consumes
approximately 4 hours.
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Table 6. The detection performance under different α and β values. “PI” indicates the
percentage of IPs in P1 that have fingerprint patterns; “II” is denoted as the percentage
of IPs in FP1 ∩ P2 that are detected by fingerprint patterns; “DR” and “FP” refer to
the detection rate and false positive rate, respectively.

Parameter
α = 4/7 α = 5/7

PI(%) II(%) DR(%) FP(%) PI(%) II(%) DR(%) FP(%)

β = 30% 74.04 68.91 92.42 7.58 72.48 68.16 94.17 5.83

40% 73.28 69.45 93.33 6.67 71.29 68.70 95.81 4.19

50% 72.66 70.02 96.09 3.91 70.95 69.26 98.56 1.44

60% 72.35 70.39 96.25 3.75 70.82 69.63 98.74 1.26

70% 71.98 70.43 95.79 4.21 70.65 69.69 97.45 2.55

80% 71.86 70.49 94.78 5.22 70.36 69.77 96.16 3.84

α = 6/7 α = 7/7
PI(%) II(%) DR(%) FP(%) PI(%) II(%) DR(%) FP(%)

β = 30% 68.98 62.00 90.19 9.81 48.02 43.80 87.80 12.20

40% 67.66 62.50 91.74 8.26 47.53 44.15 88.85 11.15

50% 66.56 63.01 93.93 6.07 47.46 44.51 90.74 9.26

60% 66.29 63.34 94.04 5.96 47.34 44.74 90.82 9.18

70% 65.80 63.42 93.83 6.17 47.27 44.83 89.37 10.63

80% 65.01 63.68 93.07 6.93 47.15 44.99 89.14 10.86

4.4 Evaluating the Impact of Parameter Values

DNSMiner needs two parameters including α and β to be configured. While
the evaluation result based on the current configuration (α = 5

7 and β = 60%)
yields a high detection rate, we further investigate how parameter values affect
the system effectiveness. Specifically, we assign a wide range of values to α (i.e.,
α = 4

7 , 5
7 , 6

7 , 7
7 ) and β (i.e., β = 30%, 40%, 50%, 60%, 70%, 80%) and then perform

the fingerprint extraction and matching for each combination of α’ and β’ values.
The experimental results are summarized in Table 6, where each cell in the table
contains i) the percentage of IPs in P1 that have fingerprint patterns (i.e., |FP1|

|P1| ),

ii) the percentage of identified IPs (i.e., |K|
|FP1∩P2| ), iii) the detection rate (i.e.,

|KC|
|K| ), and iv) the false positive rate (i.e., |KI|

|K| ). Fig. 6 visualizes the trend of
detection rates when α increases from 4

7 to 7
7 for a fixed value of β.

As indicated by the experimental results, when both α and β increase, the
percentage of IPs in P1 that have fingerprint patterns drops. For example, 74.04%
of IPs in P1 have fingerprint patterns given α = 4

7 and β = 30% while the per-
centage is 47.15% given α = 7

7 and β = 80%. The changes of α and β affect K and
FP1 simultaneously, thereby impacting the percentage of identified IP addresses
(i.e., |K|

|FP1∩P2| ). This measure stays very stable (i.e., close to 70%) when α = 4
7 , 5

7

and all β values under investigation. When α ≥ 6
7 , this measure drops signifi-

cantly (i.e., around 63% for α = 6
7 and 44% for α = 7

7 ). Despite the fluctuation
of the percentage of persistent IPs with fingerprint patterns and the percent-
age of identified IP addresses along with the changes of α and β, DNSMiner
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Fig. 6. The trend of detection rates when α increases given a fixed value for β, where
DNSMiner achieves the best accuracy of 98.74% when α = 5/7 and β = 60%)

Table 7. The detection performance of DNSMiner for each category of patterns:
“Domain name” refers to the domain set pattern; “Inter-domain relationship” includes
the domain sequence pattern and window-aware domain sequence pattern; “Temporal
behavior” contains period and hourly behavior pattern.

Pattern Category II(%) DR(%) FP(%)

Domain name 29.65 85.83 14.17

Inter-domain relationship 43.21 90.72 9.28

Temporal behavior 32.50 87.90 12.10

accomplishes high detection performance. Specifically, for all combinations of α
and β values in our experiments, the detection rates are above 87.80%. Par-
ticularly, when we configure 4

7 ≤ α ≤ 6
7 , all β values lead to detection rates

higher than 90%. Such experiment results imply that our method accomplishes
the high detection accuracy over a wide range of parameter values. Nevertheless,
considering the percentage of users with fingerprint patterns (i.e., “PI”) and the
percentage of identified IPs (i.e., “II”), α ∈ [47 , 5

7 ] and β ∈ [40%, 70%] yield
the best detection performance with approximately (i.e., approximately 70% for
both “PI” and “II”, and detection rates higher than 95%).

We have also investigated the detection performance of DNSMiner when
only a category of patterns are used and the experiment results are presented in
Table 7, where α = 5

7 and β = 60%. As indicated in Table 7, patterns belonging to
the category of the inter-domain relationship resulted in the best detection rates
(i.e., a detection rate of 90.72% and a false positive rate of 9.28%) compared to
patterns in the other two categories. Nevertheless, all these patterns collectively
accomplish the best detection performance as indicated in Table 6, indicating
that all patterns complement each other in DNSMiner.
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5 Discussion

DNSMiner currently concentrates on network users whose DNS activities are
persistent. For example, network users who were active for at least 4 days out
of 7 days were considered in our experiments. Despite the fact that such design
mitigates the noises caused by network users with transit DNS activities, it
may actually result in limitations for the practical usage of DNSMiner. First,
DNSMiner by design cannot generate fingerprint patterns for those network
users with transit DNS activities. Second, DNSMiner requires that DNS queries
can be attributed to their corresponding users over a relative long period (e.g.,
across the epochs for fingerprint generation). Specifically, when we use an IP
address to represent a user, the IP address should not change across the epochs
for pattern generation and matching. For networks using static IP addresses, this
limitation can be easily overcome, which is actually the case for our evaluation.
However, when the IP address associated with a user changes frequently (e.g., in
networks that use dynamic IPs with small lease time), it becomes a challenging
problem to directly attribute IP addresses to their corresponding users across a
series of epochs.

We acknowledge such limitations in the current design and our future
work will focus on systematically addressing them. Specifically, a few poten-
tial improvements can be explored. First, we plan to design an algorithm that
can adaptively define epochs for each IP address and aggregate them into trans-
action set according to the DNS activities of this IP address. Particularly, the
transaction set will be discovered in a way that it is very unlikely for the host to
change its IP address across the epochs belonging to this transaction set. Sec-
ond, rather than manually defining fingerprint patterns, we intend to propose
methods that can automatically generate patterns and perform pattern selection.
Particularly, we expect that the patterns will give more weight on characterizing
the short-term DNS activities of a user.

6 Conclusion

This paper presents a novel system, DNSMiner, to automatically derive behav-
ioral fingerprints from DNS queries, where behavioral fingerprints are expected to
reveal the presence of their corresponding users in new DNS streams whose iden-
tities are unknown (e.g., anonymized). A behavioral fingerprint is composed of a
collection of patterns that systematically characterize each user’s DNS activities
from three different perspectives including the domain name, the inter-domain
relationship, and the temporal behavior. The extensive evaluation based on DNS
queries collected from a large campus network has demonstrated that these pat-
terns can accomplish a high detection accuracy of 98.74% and a low false positive
rate of 1.26%. Despite its high detection accuracy, more patterns could be discov-
ered and incorporated into DNSMiner. Nevertheless, DNSMiner demonstrates
the lower bound of the effectiveness of using DNS-based patterns to reveal users’
presence in network traffic.
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Abstract. Hidden service is a very important feature of Tor, which
supports server operators to provide a variety of Internet services without
revealing their locations. A large number of users rely on Tor hidden
services to protect their anonymity. Around 30,000 servers are running
hidden services every day [21]. However, hidden services are particularly
vulnerable to traffic analysis attacks especially when the entry guard of a
hidden server is compromised by an adversary. In this paper, we propose
a multipath routing scheme for Tor hidden servers (mTorHS) to defend
against traffic analysis attacks. By transferring data through multiple
circuits between the hidden server and a special server rendezvous point
(SRP), mTorHS is able to exploit flow splitting and flow merging to
eliminate inter-cell correlations of the original flow. Experiments on the
Shadow simulator [11] show that our scheme can effectively mitigate the
risk of traffic analysis even when robust watermarking techniques are
used.

Keywords: Tor · Hidden services · Anonymity network · Privacy ·
Multipath routing · Watermarking attack

1 Introduction

To address people’s needs for privacy, many low-latency anonymity systems have
been proposed to provide anonymity for Internet communications. Among them
Tor [5] is the most popular and widely deployed low-latency anonymous com-
munication system today, providing anonymity to millions of users on a daily
basis [20]. One major reason that contributes to the success of Tor is its com-
prehensive anonymous services, which provide three types of anonymity [17],
i.e., sender anonymity, receiver anonymity and sender-receiver unlinkability. In
particular, Tor allows general users to access Internet sites without disclosing
their actual identities to the destination and prevents adversaries from linking
two communicating parties (i.e., sender anonymity and unlinkability for general
users). Besides, Tor also allows server operators to hide their locations while
providing a variety of Internet services via so-called Tor hidden services. This is
a very appealing feature that makes Tor stand out. Other popular low-latency
anonymity systems such as Anonymizer [10] and Java Anon Proxy (JAP) [3]
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do not support such hidden service, since it is out of the scope of their initial
designs. Anonymous publishing is of great importance especially for people in
countries with strict censorship, therefore, a large number of users with strong
anonymity needs deploy their services such as SSH, instant messaging and web
servers on the Tor network for its practical support to location-hidden services
and low latency. According to the statistics of Tor Project [21], around 30,000
hidden servers are active daily in the Tor network.

However, according to recent studies Tor hidden services are still under the
risk of de-anonymization due to specialized traffic analysis attacks [16,4]. It is
argued that the current Tor design is vulnerable to traffic analysis attacks if
the adversary can monitor a user’s traffic entering and leaving the anonymous
network at both sender and receiver ends. Since the malicious client always
resides at one end of the anonymous path, she can successfully perform the traf-
fic analysis attack if she is able to observe the traffic at the hidden server end.
Øverlier et al. proposed the first documented attack against Tor hidden ser-
vices by exploiting traffic analysis techniques. They experimentally verified that
a hidden server can be located within a short period of time if the adversary is
able to control one Tor (or preferably two) router(s) [16]. Biryukov et al. also
confirmed the practicality of traffic analysis attacks by conducting an oppor-
tunistic de-anonymization attack to Tor hidden services [4]. The effectiveness of
such attacks is mainly caused by the low latency in anonymized paths, which
unwillingly preserves the inter-cell timing correlation between the original flow
and the anonymized flow. The adversary can exploit traffic analysis techniques
to correlate common patterns between the original flow and the anonymized flow
to infer identities and relations of the communicating parties. Therefore, the key
to mitigating the threats of traffic analysis attacks is to reduce the timing corre-
lation between cells. Dummy traffic is considered as an effective countermeasure
to obscure the timing features of the original flow [18]. However, due to the high
cost introduced by dummy traffic, it is not a practical solution for the already
heavily loaded Tor network.

In this paper, we propose a multipath routing scheme for Tor hidden services
(mTorHS) to defend against traffic analysis attacks. Our scheme routes data cells
between the rendezvous point and the hidden server through multiple circuits,
which exploits flow splitting and flow merging functionalities of multipath rout-
ing to remove identifiable patterns of the original flow. Through experiments on
the Shadow simulator [11], we show that mTorHS is resistant to traffic analysis,
even when robust watermarking-based techniques are employed. In addition, by
integrating multi-flow detection scheme [13] into mTorHS, our scheme is able
to combine multiple watermarked flows to detect the presence of watermarks, if
they have not been completed destroyed by multipath routing.

Because a large number of abbreviations are used in this paper, we summarize
the notions in Table 1. The remainder of this paper is organized as follows. After
introducing the background of Tor hidden services and two representative traffic
analysis attacks against Tor hidden services in Section 2, we present the threat
model in Section 3. Then, we elaborate the detailed design of our multipath Tor
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Table 1. Definitions of abbreviations used in this paper.

Abbreviation Term Abbreviation Term

HS Hidden server SRP Server’s rendezvous point

Alice Malicious client RC Rendezvous cookie

RP Rendezvous point DH Diffie-Hellman

OR Onion router IP Introduction point

hidden services in Section 4. In Section 5, we experimentally evaluate the effec-
tiveness of mTorHS against a very robust watermarking-based attack. Finally,
we review the related work in Section 6 and conclude this paper in Section 7.

2 Background

2.1 Tor

The onion-routing-based Tor network is an overlay network contributed by vol-
unteers running Onion Routers (ORs). A client selects three routers by default
to establish a circuit to the destination that he wants to access. Then, he packs
them into 512-byte cells, encrypts data packets in layers and sends data cells
through the circuit. Each router along the circuit peels off one layer of encryp-
tion and forwards the cell to the next router until it reaches the last relay (known
as “exit”), which further forwards the data to the original destination. Each hop
only knows who has sent the data (predecessor) and to whom it is relaying
(successor) due to the layered encryption. A router processes the cells that are
addressed to itself following the command in the cell, otherwise it simply relays
the irrelevant cell to the next hop.

2.2 Tor Hidden Services

The Tor hidden services proposed in [5] use rendezvous points(RPs) to support
hidden TCP-based services, such as web servers and instant messaging servers,
without revealing real IP addresses of hidden servers. Figure 1 illustrates basic
components of Tor hidden services: (1) To make a service reachable, the hid-
den server (HS) selects several routers at random as introduction points (IPs)
and builds circuits to them. IPs wait for connections on behalf of the hidden
server. (2) HS then uploads its service descriptor to the hidden service directory
(HSDir). The descriptor containing its public key and a set of introduction points
signed by the private key. After this step, HS is ready to accept connections from
clients. (3) To connect to the hidden service, we assume a client (Alice) learns
about HS’s onion address out of band. Then, Alice contacts HSDir and retrieves
the service descriptor of HS using this onion address. (4) After getting the set
of introduction points and HS’s public key from the service descriptor, Alice
randomly selects a router as the rendezvous point (RP) by assigning it a ren-
dezvous cookie (RC) which is a one-time secret, and builds a circuit to it (i.e.,
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Fig. 1. Tor hidden services architecture

client circuit). (5) After that, Alice sends an introduce message to one of the
introduction points and (6) asks the IP to forward it to HS. The message con-
taining the rendezvous cookie, RP address and the first part of a Diffie-Hellman
(DH) handshake is encrypted by HS’s public key. (7) After decrypting the intro-
duce message, HS establishes a new circuit to Alice’s RP (i.e., hidden server
circuit), and sends a rendezvous cell with RC and the second part of DH hand-
shake. (8) RP then relays the rendezvous cell to Alice. After verifying RC and
generating the end-to-end session key, Alice and HS start communicating with
each other through RP.

Because every connection (depicted by solid blue line in Figure 1) is a mul-
tihop Tor circuit, no one can learn the actual IP address of either end of the
connection. It is worth noting that the complete path between Alice and HS
generally consists of six routers in two circuits as shown in Figure 2: among
them, three routers including the rendezvous point are selected by Alice, and
the other three are chosen by HS. It was intuitively expected that network delay
jitter and flow mixing introduced by the six-hop path will make the original flow
indistinguishable from other flows, so that the adversary can neither correlate
the communication between Alice and HS nor identify the real IP address of HS.

2.3 Traffic Analysis Attack against Hidden Services

It is recognized that Tor hidden service is vulnerable to traffic analysis attacks.
In general, traffic analysis attacks can be classified into two categories: passive
traffic analysis and active traffic analysis. Passive traffic analysis correlates the
sender’s outgoing traffic with the receiver’s incoming traffic by comparing the
traffic features, such as packet timings and counts. To launch a successful passive
traffic analysis, the adversary needs to monitor the traffic for a long time to
obtain a reliable traffic pattern. The biggest advantage of passive traffic analysis
is its stealth, but it is time-consuming and less accurate compared with the
active attacks. To improve the accuracy and reduce the cost, many active traffic
analysis techniques have been proposed to generate traffic with a special pattern
at one end of the communication path and identify it at the other end.
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The security of Tor hidden services was first challenged by Øverlier et al. [16].
They experimentally attacked an early version of hidden services in which the
entry guard protection mechanism has not yet been implemented in Tor. In
response to a client request, HS will randomly select three routers to build a cir-
cuit to RP. Assume a malicious client controls a set of routers in the Tor network.
By establishing a large number of connections to HS, she can eventually force HS
to choose an entry router (i.e., the fist hop of a circuit) that she controls. Then
by requesting files of different sizes at different time from HS, the attacker can
generate a special traffic signature and exploit simple traffic analysis techniques
(e.g., packet counting combined with timing information) at the malicious entry
node and the RP to correlate flows with the same traffic pattern.

Another attack is proposed by Biryukov et al. [4]. They generated traffic with
a special pattern and applied packet counting traffic analysis to identify flows
with the injected pattern. For example, a malicious RP can send 50 padding
cells and a destroy cell to HS after receiving the rendezvous cell in Step (7)
(as shown in Figure 1). If the corresponding malicious entry guard observes 53
cells (including the destroy cell, 50 padding cells and 2 additional extended cells
in circuit construction) going towards HS and 3 cells (including the rendezvous
cell and 2 extend cells) leaving HS, the adversary can decide that this malicious
guard node is chosen as the entry node by HS.

However, these two attacks also suffer drawbacks. Since Øverlier’s attack was
conducted in the early stage of Tor with much fewer routers, clients and hid-
den servers, at that time their generated traffic pattern was unique enough and
hence can be preserved after going through the Tor network. Nevertheless, the
current Tor with much more traffic will make this simple packet counting based
analysis less effective. For Biryukov’s attack, because special cells (i.e., padding
cells) are used to generate a unique traffic signature, it may not be invisible
to hidden server. Therefore, more advanced active watermarking-based traffic
analysis techniques [23,14,9,8] are proposed, which can make the traffic analysis
attacks targeting Tor hidden services more efficient and stealthy. They embed
a specific traffic pattern to the victim’s flow on the sender side by manipulat-
ing the timings of selected cells. The adversary breaks the anonymity guarantee
if the watermark is uniquely identified on the receiver side. Compared to pas-
sive traffic analysis and other active traffic analysis techniques, watermarking is
more robust to flow transformations such as dummy traffic, flow mixing, traffic
padding and network jitter, so it is considered a more efficient and severe threat
to Tor hidden services.

3 Overview of the Problem and the Threats

The attacks described in Section 2.3 show that the adversary can successfully
correlate two communicating parties if she is able to observe the traffic at two
ends of a Tor circuit. As shown in Figure 2, the anonymous path between a
client and the hidden service server consists of 6 hops. Since a malicious client is
always at one end of the path, she only needs to trick HS to choose a compromised
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Fig. 2. Threat model in this paper where RP and OR1 are controlled by the adversary

router controlled by herself, i.e., OR1. Her success rate relies on the proportion
of compromised routers in the Tor network. Therefore, this attack particularly
threatens the hidden services. Moreover, the adversary can further select a node
that she controls to be the rendezvous point and build a one-hop circuit to this
RP. In this way, she can shorten the path to four and thus reduce the latency
between herself and HS to help correlate the traffic pattern. To mitigate this
threat, efforts can be made from two perspectives: (1) preventing an adversary
from controlling both ends of a circuit to impede the occurrence of traffic analysis
(2) reducing the success rate of traffic analysis even when both ends of a circuit
are compromised.

The concept of “entry guards” [16] is introduced into the current Tor design
to solve this problem following the first direction. Entry guards are a set of
routers that are considered reliable by a Tor node to be the first relay of an
anonymous path. By default, each user constructs its guard set of three routers,
which will expire in 30 to 60 days. After that, the entry guards will be reselected.
With entry guards, whenever the hidden server builds a circuit to the rendezvous
point in response to a client’s request, it will pick an entry guard from the set
for its first hop instead of choosing a random router in the network. Since the
entry guards are evaluated by several measures and considered reliable, they are
less likely to be controlled by the adversary. As a result, the chance that an
adversary controls both ends of a circuit is significantly reduced. However, it is
unreliable that the security of hidden servers merely relies on the goodness of
the entry guard set. Given enough time, a user will eventually select a malicious
entry node into his guard set. Johnson et al. showed that for an adversary with
moderate bandwidth capacity, it only takes 50 to 60 days to include a malicious
router to a user’s guard set [12]. As noted by Elahi et al., the design of entry
guard is still an unclear research problem [6] and subtle parameter selection
is required to achieve expected protection. Therefore, it is critical to develop
protection mechanisms which are parallel to the entry-guard-based solution to
enhance the resistance of Tor hidden services to traffic analysis attacks in case
the guard set is compromised.

In this paper, we make efforts following the second direction to reduce the
success rate of traffic analysis when the attacker has successfully controlled both
ends of a Tor circuit. Our work can be applied in concert with entry guard
protection mechanism. Figure 2 illustrates our threat model. We assume an
adversary Alice pretends to be a client of the hidden server and tricks the hidden
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server to select a node controlled by her (OR1) to be the entry node in the return
anonymous path. Alice then selects another controlled router as the rendezvous
point. We assume Alice can exploit any traffic analysis technique to passively
observe or actively manipulate the traffic passing through OR1 and RP. The
primary goal of the traffic analysis is to identify flows with the same traffic
pattern at OR1 and RP to confirm that both malicious nodes are recruited in
HS’s circuit, from which she can learn the location of the hidden server.

4 Multipath Tor Hidden Services (mTorHS)

To prevent the adversary’s RP and entry node from correctly identifying the
traffic pattern, we present a multipath routing scheme for Tor hidden services.
This scheme is based on the key insight that the traffic pattern observed or inten-
tionally generated at the malicious entry guard (e.g., OR1) will be somewhat
distorted by flow splitting and flow merging operations in multipath routing
and by the multiple routes with different network dynamics. The architecture
of mTorHS is illustrated in Figure 3. Different from the selection of rendezvous
point in the current Tor implementation, the hidden server also selects its own
“rendezvous point”. To distinguish two rendezvous points, the one selected by
the client is denoted as “CRP” and the one selected by hidden server is denoted
as “SRP”. In respond to a client’s request, HS builds an anonymous tunnel con-
sisting of m circuits, where m is a server specific parameter. HS then splits the
original flow onto m subflows and attaches each subflow to a circuit in the tun-
nel. All m circuits will go through the same entry guard OR1 and merge at SRP,
which further relays the merged flow towards the client. Next we will present
the detailed process of connection initiation and data transmission.

Fig. 3. mTorHS architecture

4.1 Connection Initialization at Client Side

For the client, the connection initialization remains the same as the current Tor
hidden services (i.e., step 3-6 in Section 2.2). More specifically, Alice first selects
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a client rendezvous point (CRP) and constructs a rendezvous circuit to it by
sending an establish rendezvous request. Then, she builds an introduce circuit to
one of HS’s introduction points and sends an introduce request, which requests for
the hidden service at HS and informs HS with CRP’s address (i.e., fingerprint).

4.2 Multipath Tunnel Construction on Hidden Server Side

After receiving the introduce request, HS decrypts it with its private key and
extracts the fingerprint of CRP, rendezvous cookie (RC) and the DH handshake
message. Then, HS selects its own rendezvous point (SRP) and constructs a
multipath tunnel to SRP, following the same approach described in [24].

SRP Selection. The selection of SRP is very critical. From Figure 3, we see
that subflow merging occurs at SRP. Hence, even when multipath routing is
adopted between SRP and HS, if the adversary controls SRP and OR1, she
can observe traffic patterns before merging from both ends of each subflow and
thus perform traffic analysis successfully. The adversary may follow the same
strategy as described in [16] to trick HS into selecting a controlled node as SRP
by continuously sending a large number of requests. If HS selects a new SRP for
each received access request, it may eventually select one of the compromised
router. Inspired by the entry guard idea, we propose “rendezvous guard” for
SRP selection, which is a set of reliable routers selected by the hidden server.
A hidden server initially selects three routers to compose its rendezvous guard
set, each of which stays in the set for a random period between 30 and 60 days.
Whenever HS builds a rendezvous circuit in response to the client request, it
sticks to the same rendezvous guard set and randomly picks one router from it.

Tunnel Initialization. As discussed previously, mTorHS constructs a tunnel
with multiple circuits to SRP instead of one anonymous circuit to CRP. In the
original Tor hidden service design, the hidden server responds to an introduce
request by establishing a four-hop anonymous circuit ending at CRP selected
by the client. To ease the presentation, we denote this anonymous circuit as
the primary circuit and the other m − 1 anonymous circuits in the tunnel as
the auxiliary circuits. As shown in Figure 3, all circuits merge at the SRP.
Therefore, it is the third router for every three-hop anonymous circuit in the
tunnel. Besides that, HS follows the default Tor path selection algorithm to
select all other routers to form the tunnel. When the circuit is established, HS
sends a multipath m cell1 along the primary circuit to SRP to request a multipath
connection. In response, SRP generates a unique 32-bit tunnel identifier (TID)
and incorporates it into the replied multipath ack m cell to indicate a successful
multipath tunnel construction. With TID, HS adds each auxiliary circuit to the
tunnel by sending a join m request to SRP along the circuit. SRP acknowledges
each successful joining with a joined m message. Finally, when HS receives m−1
acknowledgments, a multipath tunnel is successfully constructed. Note that all

1 To distinguish from the commands in current Tor, all the newly added commands
in mTorHS will end with an m.
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the cells are layered encrypted so only HS and SRP at two ends see TID and the
newly added tunnel construction command. This prevents the entry and middle
nodes of HS’s circuit from linking TID with HS. In fact, they even do not know
if they are involved in any tunnel construction.

Once the tunnel is established, HS follows the same process of the current
hidden service protocol to extend path construction to CRP and the client. In
particular, HS sends a rendezvous1 cell containing DH handshake message and
rendezvous cookie (RC) to CRP along the primary circuit, which verifies RC
and joins the client’s circuit with the server’s primary circuit. Then, CRP sends
a rendezvous2 cell containing the DH handshake message to the client to finish
the construction. Note that from CRP’s view, it sees only the primary circuit
connecting itself to SRP, and hence it has no idea about how many circuits are
involved in the multipath tunnel between SRP and HS.

Tunnel Management. The hidden server can add new auxiliary circuits or tear
down any existing circuit in the tunnel after it is established. In particular, a
new auxiliary circuit can join the tunnel by sending a join m command with the
corresponding TID. To tear down a circuit, HS immediately stops sending on this
circuit and informs SRP to drop it using a drop m message. Note that the number
of cells that have already been sent on this circuit (denoted as ns) should also be
passed to SRP to avoid packet loss. After receiving drop m cell, SRP extracts ns

and replies with a dropped m cell after it receives the remaining ns cells. Finally,
HS tears down the circuit when it receives the dropped m message. Since each
tunnel is constructed in response to a client’s request, it will be closed after the
request is completed. However, this will not result in the closure of all circuits
in the tunnel, since the circuits may be reused for other purposes until it gets
“dirty” - after its lifetime exceeding 10 minutes and no streams on it, similar as
in Tor circuit management.

4.3 Data Transmission between Client and HS

Once the connection is set up, the client and HS can communicate through the
anonymous path consisting of the server’s and the client’s anonymous circuits
joined at CRP. Data cells between SRP and HS can be routed through any circuit
in the tunnel. To indicate a cell is a multipath cell used in mTorHS, we add a
new cell command (i.e., MULTIPATH CELL). HS is responsible for assigning data
cells to circuits. Obviously, if HS schedules consecutive cells onto a same subflow,
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it is highly likely that the traffic pattern inserted by the malicious guard on this
subflow will be preserved in the merged flow and detected by the malicious CRP.
To reduce the likelihood of inter-cell correlations, HS randomly assigns data cells
to subflows with different capacities. As a result, a data cell from a fast circuit
needs to wait at SRP for earlier cells arriving from slow subflows to be merged
in an orderly manner. In this way, we utilize the network properties of different
circuits to distort or destroy potential traffic patterns inserted by the malicious
guard. This greatly reduces the likelihood of inter-cell correlation (we will explain
this in Section 4.4).

Data Cell Format. Since the capacity of each circuit in the tunnel varies,
different delays will be introduced to these subflows. Therefore, the data cells in
different subflows may arrive at SRP out of order. To solve this issue, we modify
the format of Tor data cell to incorporate a 4-byte sequence digest and a 4-byte
sequence number for multipath data packets, as shown in Figure 4. Originally
the 512-byte cell consists of a 3-byte cell header including a circuit identifier and
a cell command for cell type, and 509-byte cell payload with a payload header
and the payload data. We use 8 bytes of the cell payload as multipath header
for cell reordering, where 4 bytes are used as sequence digest for integrity check
and 4 bytes are used for sequence number. The multipath header is only used by
SRP and HS to reorder data cells, and the remaining 501-byte end-to-end cell
payload is used to carry the real payload data between client and HS.

Data Cell Encryption. In Tor anonymous routing, data cells are encrypted
in layers with the shared session keys of the intermediate relays in the order of
their relative positions in the anonymous path. Since the end-to-end cell payload
and the multipath header are designed for the client and SRP respectively, HS
needs to encrypt the two parts separately. The end-to-end cell payload should
be encrypted in five layers with the inner-most layer encrypted by the end-to-
end session key and the outer-most layer encrypted by the key of OR1, while the
multipath header is only encrypted in three layers with the keys of SRP, the mid-
dle router OR2 and the entry router OR1, respectively. When an intermediate
router receives a multipath cell, it applies its secret session key onto both end-
to-end cell payload and the multipath header to unwrap one encryption layer.
Consequently, at SRP the multipath header will be completely unwrapped and
recognized by SRP for further processing, while the end-to-end cell payload is
still encrypted and remains secure.

Data Cell Reordering. To merge multiple circuits in a tunnel, SRP orders
the received cells from all circuits according to their sequence number and tem-
porarily stores the out-of-order cells in a buffer. When SRP receives a multipath
data cell from a subflow, it first decrypts the multipath header and generates a
digest for the last four bytes of the multipath header using the symmetric key
shared with HS. If it is the same as the received sequence digest, SRP verifies
the sequence number is not tampered. If the sequence number of this cell is
what SRP expects, it will be immediately forwarded to CRP, otherwise it will
be stored and ordered according to the sequence number. The multipath header
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Fig. 5. Tor router queuing architecture [2]

field is only used for data cell reordering. Hence, after SRP reorders the cells
and merges them into one output stream, this field becomes useless. To avoid
unnecessary information leak, SRP will replace it with random bits. Similarly,
when the client sends data to HS, the client reserves these eight bytes for SRP
by padding them with random numbers.

4.4 Discussions

In Tor network, two Tor routers are connected over a TCP connection, which is
multiplexed by several circuits. Due to the multiplexing of a TCP connection,
flow mixing actually occurs at every router. However, we argue that the cell
distribution is well preserved after flow mixing so that a maliciously inserted
traffic pattern can still be observed by the attacker. First, let us explain the
data cell processing at a Tor router. When a cell arrives from a TCP connection,
it triggers the connection read event of libevent to first put it into the application-
layer input buffer and then send to the corresponding circuit queue according
to its circuit identifier. As shown in Figure 5, five different circuits arrive SRP
from four TCP connections. Then, a connection write event will select a circuit
based on pre-determined scheduling algorithms such as priority-scheduling [19]
to pull cells from the circuit queue and send them to the output buffer. As a
low-latency system, a router will send out cells in the circuit queue as fast as
possible until the output buffer is full. Therefore, it is not surprising that cells
from a same subflow will be outputted in a batch with inter-cell features well
preserved.

In this paper, we propose a multipath routing approach that introduces an
interdependent subflow mixing to SRP data cell processing. For example, in
Figure 5 suppose the circuits in gray belong to the same tunnel. Each of them
is associated to a subflow, which transfers a portion of data cells. Since the
malicious guard has no clue about the flow membership of the subflows passing
through it, it has to treat each subflow independently when inserting detectable
traffic patterns. Oppositely, SRP will treat subflows of a same flow in a way
that considers flow interdependency. In particular, when subflows are merged
at SRP, cells from one subflow may be inserted into two cells that are adjacent
in another subflow. This interpolation causes difficulty in pattern detection on
the merged flow. Passive traffic analysis such as packet counting will fail. More-
over, due to differences in router bandwidth and other network dynamics, the
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capacity of circuits vary [22,24]. Some cells with larger sequence numbers from
a fast circuit (e.g., cell 4 on the first circuit in Figure 5) may arrive earlier than
those with smaller sequence numbers but assigned to a slow circuit (e.g., cell 1
on the second circuit). The cells must be reordered at SRP. Consequently, the
waiting time introduced by such reordering will distort or destroy the inter-cell
timing correlations of a manipulated subflow and makes active traffic analysis
less effective.

5 Experiment Evaluation

In this section we test the performance of mTorHS against a well-known active
traffic analysis scheme, i.e., interval centroid-based watermarking (ICBW) [23],
and evaluate the enhanced anonymity in our multipath hidden services. In par-
ticular, we conducted experiments with the Shadow simulator [11], which is an
accurate, discrete event simulator running real Tor protocol over a simulated
Internet topology. We implemented the multipath Tor router (please read [24]
for details) and plugged it into the Shadow simulator to support multipath hid-
den services in a private Tor network. We also implemented an adversary node
following the threat model described in Section 3, which first inserted water-
marks to flows at the malicious entry guard OR1 using ICBW protocol, and
then examined packets at the malicious client rendezvous point for expected
traffic signatures.

5.1 Implementing ICBW Watermarking Scheme

To assess the resistance of the proposed scheme against traffic analysis, we imple-
mented a state-of-the-art traffic watermarking scheme, the interval centroid-
based watermarking (ICBW) protocol to attack low-latency anonymity sys-
tems [23]. The ICBW was verified on a leading commercial anonymizing service
platform www.anonymizer.com as an effective attack. Here we briefly explain its
working mechanism. As illustrated in Figure 6, ICBW embeds a watermark into
a sufficiently long flow by intentionally changing the centroid of several randomly
selected intervals. This scheme divides the duration of flow starting from an offset
O into 2n intervals of equal length T. The centroid is then calculated by aver-
aging each packet’s relative arrival time to the start of its interval. The intervals
are randomly grouped into two subsets ({IA1 , ..., IAl

} and {IB1 , ..., IBl
}), each

with l elements. Each element in set A and B contains r intervals for redundancy
such that n = rl. The random grouping is illustrated in Figure 6a. To encode a
watermarking bit 1 (or 0), two elements (IAi

and IBj
) of the set A and B are

selected, respectively. The packets in all intervals of IAi
(or IBi

) will be delayed
by a maximum value of a. Figure 6b illustrates the delaying, which actually
changes the distribution of relative arrival time from U(0, T ) to U(a, T ) where
U(, ) stands for uniform distribution. After encoding, the difference between the
average centroids of IA and IB will be a

2 for watermark bit 1 and −a
2 for water-

mark bit 0. To decode, the decoder starts from the same offset O and checks the
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existence of the watermark. Because each watermark bit is encoded by averaging
the delays of packets that are randomly selected from many intervals, ICBW is
very robust to network delay jitter and flow mixing along a circuit. We refer the
readers to [23] for details.

For ICBW, we follow the suggested parameter setting: 32-bit watermarks
are randomly generated and the redundancy r is set to 20. The interval length
T and the maximum delay a are set to 500ms and 350ms, respectively. We
use an offset O = 10s to delay cells in the selected intervals according to the
watermark bits at the malicious guard and meanwhile log the arrival time of
each cell using the same offset at CRP. From the logged arrival time we compute
the difference between the average centroid of IA and IB to derive a watermark
bit 1 if it is closer to a

2 or 0 if it is closer to −a
2 . Hamming distance, which is the

number of mismatched bits, is computed between the derived watermark and
the original watermark to evaluate how successful the watermarking attack is.
Since the network delay is unknown, a set of different offsets are tested. The one
that matches most to the inserted watermarks is chosen as the correct decoding
offset to decode the watermark.

5.2 Implementing mTorHS

We implemented mTorHS on Tor v0.2.5.6-alpha. The construction of the client’s
circuit remains the same as in the current Tor hidden service design, but we
change the implementation for the server circuit construction. As explained pre-
viously, the server’s circuit consists of an entry guard, a middle relay, SRP and
CRP. Since we assume the malicious client controls the guard node and CRP, we
fix the selection of the two nodes in the implementation. The middle relay is ran-
domly selected from the Tor router set and SRP is randomly selected from the
“rendezvous guard set”. For simplicity, in our current implementation we form
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the rendezvous guard set with routers flagged as entry guard. This is because
the concept of “rendezvous guard set” is derived from the idea of entry guard
set to denote a set of routers trusted by the hidden server. In the future, we will
develop selection criteria to assist the selection of reliable rendezvous guards.

Finally, we build a small private Tor network in the Shadow simulator with
50 Tor routers, 1 hidden server, 20 general HTTP servers, 1 malicious client and
100 general web clients to run our experiments. Among the 50 routers, two are
configured as malicious CRP and OR1. This is a general case for evaluation.
Obviously, the fewer the general clients in the network, the more likely the
adversary identifies the hidden server. So, we choose an extreme setting for
comparison, where the adversary is the only client in the network. As pointed
out by Wang et al. in [23], the longer the flow, the more robust the watermark.
To ensure a sufficiently long flow for successful watermarking, we let the client
to request a 100MiB file at the hidden server under both settings.

5.3 Results

We perform the ICBW attack on the original Tor and the proposed mTorHS,
where m is set to 2, 4, 6 and 8. To rule out random noise, we repeat the water-
marking attack for ten times for each setting. The results shown below are the
average results of ten experiments. Table 2 shows the comparison in terms of
Hamming distance between Tor and mTorHS under different settings. A larger
Hamming distance indicates that the anonymity system can better transform
the original flow and prevent the traffic analysis. No matter in general cases
or extreme cases, mTorHS can better obscure the embedded watermark in the
victim’s flow. The Hamming distance achieved on mTorHS is always larger than
the maximum Hamming distance threshold (i.e., 8) [23]. When the Hamming
distance exceeds the threshold, the adversary has less confidence to correlate
the watermarked flow to the suspected flow. We note that with m increasing,
the Hamming distance does not increase obviously. One reason might be that
when we decode the watermark, we tried a set of different offsets and picked the
minimum value.

Table 2. Comparison of Hamming distance between Tor and mTorHS with different
m where each flow is encoded using different watermarks.

Tor mTorHS

m=2 4 6 8

General case 6 9 9 10 12

Extreme case 3 8 9 9 11

From the adversary’s perspective, if she wants to circumvent the multipath
routing scheme, she should use the same watermark for different flows. Since
two circuits between OR1 and HS multiplex the common TCP connection, the
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cells that HS sends out through two different subflows arrive at OR1 within
the same coding interval of 500ms. If the adversary uses different watermarks
to encode them, it is possible that one subflow is delayed while the other one
not, which causes the distribution of the delayed subflow is squeezed to U(a, T )
while the other one is still U(0, T ). When SRP receives these cells from two
subflows, SRP will merge them so that the distribution of the merged flow will
be a uniform distribution U(x, T ) where 0 < x < a depending on which subflow
the majority of the cells belong to. Therefore, when the malicious CRP receives
the merged subflow, she cannot recover the correct centroid of this interval. To
avoid this, the adversary ought to use the same watermark to encode all flows
going through OR1 so that they will have a same distribution. When they are
merged at SRP, the merged flow still preserves the distribution. Table 3 shows
the results when the adversary embeds the same watermark to all flows. In
order to verify this assumption without being influenced by general traffic, we
perform this experiment in the extreme cases. As shown in Table 3, when the
same number of subflows are used, the Hamming distance of the merged flow in
cases where a same watermark is embedded is always smaller than the one when
different watermarks are used.

Table 3. Comparison of Hamming distance between Tor and mTorHS with different
m where all flows are encoded using the same watermark.

Tor mTorHS

m=2 4 6 8

Extreme case 3 4 7 6 7

However, once the adversary encodes multiple flows with the same water-
mark, her watermarking is vulnerable to the multi-flow attacks [13] (from the
defending perspective, we call it multi-flow detection (MFD) in this paper.) The
idea of MFD is that the MFD detector will aggregate all flows into a single flow
after it collects a number of watermarked flows. This aggregation scheme in MFD
is different from our subflow mixing, which overlaps the relative arrival time of
each flow to the same start. If several abnormally long periods of silence (i.e., no
packets for hundreds of milliseconds) are observed in the aggregated flow, the
detector considers the presence of watermarking attack, extracts the watermark-
ing keys and removes the watermarks from the observed flows. Since SRP merges
multiple subflows, which is naturally compatible to MFD, we deploy the MFD
detector at SRP. Figure 7 shows the aggregated arrival time of six flows with and
without the presence of watermark. Compared to the aggregated unwatermarked
flows, the silence of the victim’s aggregated flow is more obvious and periodic.
Once SRP recognizes the existence of a watermark with higher confidence, it
can remove it by randomly delaying some cells on the suspicious flow.
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and unwatermarked flows.

6 Related Work

Attacks to Hidden Services. In addition to the two traffic analysis attacks
against Tor hidden services discussed in Section 2.3, clock skew based attacks are
also proposed to break the anonymity of hidden servers. [15,25] found that the
load changes on the victim’s computer will result in temperature changes, which
further cause the victim’s clock to deviate from the real clock time and results in
clock skew. Therefore, the adversary can periodically build many connections to
the victim to generate a specific clock skew pattern. Meanwhile, she can measure
the clock skew of a set of candidates and tries to detect a matched pattern.

Multipath Routing for Performance. The solution proposed in this work is
based on multipath routing in the current Tor network. Other multipath routing
schemes [1,24] have been proposed to improve the performance for general clients
on Tor. Alsabah et al. [1] exploited multipath routing solutions to improve the
performance for bridge and video streaming users, while Yang et al. [24] proposed
a scheme to better utilize low-capacity routers to support bandwidth-intensive
applications. We adopted the design of [24] in this work, but any multipath
routing based approach can be applied in the proposed scheme.

Defense for Hidden Services. Entry guard proposed in [16] is an effective
solution to protect hidden servers. Elahi et al. implement a framework to study
Tor’s entry guard design and empirically explores how the parameters affect the
anonymity [6]. Besides, Hopper proposed a protection mechanism for Tor hidden
services from another perspective – he explored the challenges in protecting Tor
hidden services against botnet abuse [7].
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7 Conclusion and Future Work

Tor hidden service is a very important tool to provide receiver anonymity to server
operators, but it is vulnerable to traffic analysis attacks especially when the entry
guard protection is broken. In this paper, we propose a multipath routing based
scheme that exploits flow mixing and flow merging to distort or destroy inserted
traffic patterns in a victim’s flow. We believe this is an effective complement to
the existing protection mechanism. Besides, since the multipath architecture is
naturally compatible to detection mechanisms based on multiflows, it can be fur-
ther integrated with multiflow detection protocols to detect the presence of water-
marks. We experimentally verify the effectiveness of our scheme in defending one
of the most robust watermarking schemes on the Shadow simulator.

The performance issues of Tor have been recognized as a big obstacle impeding
Tor’s further expansion, so it is important to evaluate the cost introduced by our
proposed multipath routing architecture. Based on the findings of other multipath
routing work on general Tor services [1,24], we believe that the multipath routing
schemes usually improve the performance when a larger aggregated auxiliary cir-
cuits bandwidth contributes to the tunnel. However, the proposed multipath hid-
den services introduce more complexity to onion routers (e.g., separate encryption
for end-to-end data and multipath header). In our future work, in addition to the
evaluation on the Shadow simulator, we will also deploy multiple onion routers in
the live Tor network to explore its impact on the performance of Tor hidden ser-
vices. Besides, we will also test different scheduling schemes when HS splits traffic
to multiple subflows, e.g., round-robin and proportional scheduling.
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Abstract. Network scans, a form of network attacker reconnaissance, often pre-
face dangerous attacks. While many anomaly-based network scan detection me-
thods are available, they are rarely implemented in real networks due to high 
false positive rates and a lack of justification for the chosen attribute sets and 
machine learning algorithms. In this paper, we propose a new method of scan 
detection by selecting and testing combinations of attribute sets, machine learn-
ing algorithms, and lower bounded data to find a Local Optimal Model. 
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1 Introduction 

Each year, new and devastating cyber attacks amplify the need for robust cybersecuri-
ty practices. Preventing novel cyber attacks requires the invention of intrusion detec-
tion systems (IDSs) that can identify previously unseen attacks. To this end, many 
researchers have attempted to produce anomaly-based IDSs using machine learning 
techniques [1, 2, 3, 4]. However, anomaly-based IDSs are not yet able to detect mali-
cious network traffic consistently enough to warrant implementation in real networks 
[2, 5]. It remains a challenge for the security community to produce anomaly-based 
IDSs that are suitable for adoption in the real world [5, 6]. 

One promising field of study has been anomaly-based network scan detection. This 
line of research aims to detect network scans that often precede cyber attacks so that 
potential attackers can be identified and blocked. Specifically, many researchers have 
focused on using network flow data as an anomaly-based scan detection medium  
[7, 8, 9]. To improve upon previous research in this field, we present a method for 
identifying an effective network flow-based machine learning model for scan detec-
tion on a given network. Network administrators utilizing this method on their own 
networks can use the scan detection models produced to create personalized anomaly-
based scan detection systems. In addition, we present an application of this method on 
the University of Maryland network. 

The remainder of this paper is organized as follows. Section 2 details the back-
ground of this paper and related work. Section 3 lists our contributions and defines 
terms specific to this paper. Section 4 details our method and an application of this 
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method on the University of Maryland network. Section 5 presents and discusses the 
results obtained and the possible limitations for our method. Finally, Section 6 
presents the conclusion. 

2 Background 

2.1 Scanning 

Network scanning, a form of network reconnaissance, often prefaces a cyber attack 
[7, 10]. Through various scanning techniques, an attacker will attempt to gain infor-
mation about network configurations, server implementations, and potential vulnera-
bilities before launching more invasive exploits. Thus, scan detection is vital to the 
security of a network [1].  

Scans can be classified into two broad categories: vertical and horizontal [10]. Ver-
tical scans are directed at a specific host and include an in-depth examination of ports 
and protocols being used by the host. Horizontal scans sweep over several hosts with-
in the targeted network and seek general information about configurations, operating 
system versions, and more. Vertical and horizontal scans can also be made “stealthy” 
by increasing the time between each successive port contact to avoid detection [11]. 

Rule-based thresholding is the most common method of scan detection [1, 7]. IP ad-
dresses are declared as scanners after their connection attempt count exceeds a predeter-
mined limit. This method has a low detection rate and an “unacceptable” false alarm rate 
[1, 6]. Other rule-based processes are burdensome, time consuming, and prone to human 
error; scan detection is often skipped or overlooked for this reason [9, 12].  

2.2 Anomaly Detection Systems in Scan Detection and Machine Learning 

At the most fundamental level, anomaly detection involves examining data for un-
usual patterns [3]. This method of detection aims to classify data as either normal or 
abnormal based on a given definition of normalcy. In the context of anomaly-based 
scan detection, we use the terms ‘benign’ to describe normal network users and ‘mali-
cious’ to describe network scanners. For the purpose of this paper, we define a user as 
a unique source IP address producing traffic on a network. 

In an anomaly-based scan detection system, a normal network user profile is 
created and anomalies are treated as network scans. The system’s classification suc-
cess is dependent upon the number of true positives, true negatives, false positives, 
and false negatives it produces [13]. Based on this convention, these terms are defined 
as follows: 

 
True positives: The number of correctly labeled malicious users. 
False positives: The number of benign users incorrectly labeled as malicious. 
False negatives: The number of malicious users incorrectly labeled as benign. 
True negatives: The number of correctly labeled benign users. 
 
In applying anomaly-based scan detection, an important goal to strive for is the re-

duction of false negatives and false positives [14]. This is because false positives 
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result in a waste of resources, while false negatives result in undetected malicious 
activity [2, 5, 7]. 

Machine learning classifies data instances using a set of predictive heuristics [12]. 
This technique uses learning algorithms and input data to create a predictive mathe-
matical model for classifying further data. Machine learning has been proven to be a 
useful tool for anomaly detection, with successful applications in fields such as keys-
troke dynamics, malicious system trace detection, and user behavior at the command 
line [4, 15, 16]. We will refer to machine learning models created for scan detection 
as ‘scan detection models.’ 

2.3 Previous Work  

Previous studies have analyzed the effectiveness of network flow-based scan detec-
tion models [7, 8, 17]. Network flow is a protocol for recording network traffic be-
tween two IP addresses and has proven to be a useful source of data for machine 
learning [8, 17, 18, 19]. When using network flow records, a minimum is often set on 
the number of network flow records a user must produce in order to be classified as a 
normal user or network scanner. This practice of setting a minimum number of 
records will be referred to as setting a ‘lower bound.’ This lower bound is similar to 
one used by the Threshold Random Walk scan detection method [17], which deter-
mines a minimal number of connection attempts a source IP address must make to 
distinct destination IP addresses to be accurately classified. However, network flow-
based scan detection studies often choose a lower bound without giving a strong justi-
fication for the choice [7]. Moreover, other studies attempt to classify IP addresses 
that have only produced one record, without verifying in detail whether one record 
provides enough data to make an accurate classification [19]. 

Another important aspect of creating scan detection models is the calculation of 
network flow attributes. Among the attributes calculated, researchers often attempt to 
identify a subset of the attributes that enables high classification performance when 
used to create scan detection models [8, 9]. This process (called attribute set selection) 
reduces storage costs and computing complexity, and it eliminates extraneous 
attributes that reduce the accuracy of machine learning classification [14, 20, 21]. 
Although other researchers often identify and utilize a reduced attribute set using an 
attribute selection algorithm [8, 9], there may exist other attribute sets which will 
better classify the users. Since the “quality of the… [attribute set] is crucial to the 
performance of a [machine learning] algorithm,” it is essential to test and evaluate 
multiple attribute sets [14]. Similarly, many studies classify users using only one or 
very few machine learning algorithms, and thus can only make claims about a specific 
group of algorithms and their classification success [7, 19]. 

Despite extensive research, the strategy of using anomaly-based scan detection in 
concert with machine learning has been “rarely employed in operational ‘real world’ 
settings” [2]. One of the primary challenges with machine learning applications is 
developing a realistic and accurately labeled network dataset for training; this issue 
stems from the loose definition of the term ‘scan’ and the high variability of networks 
[2]. Other studies use publicly available datasets that are over fifteen years old or are 
known to inaccurately model real networks [7, 12], such as the DARPA - 98/99, the 
KDD-99, and the Kyoto 2006 datasets [22, 23, 24]. Furthermore, some papers seek to 
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make claims about scan detection on datasets that have a disproportionately high 
number of malicious sources [5, 8]. This leads to training machine learning models on 
datasets that are not large enough or representative enough of the desired network to 
make successful classifications and prevents the work from being generalized to most 
other networks [2, 12, 22, 23].  

3 Contributions 

Motivated by previous work and the challenges associated with anomaly-based scan 
detection using network flow records, we present a general method for creating im-
proved machine learning scan detection models. In order to precisely define our task, 
we introduce the following terms: 
 

Aggregate Metric Value (AMV): A value calculated based on multiple classifi-
cation metrics for a given scan detection model. For the purpose of this paper, we 
use the average of accuracy, precision, and sensitivity. 
Local Optimal Model (LOM): The scan detection model with the highest per-
formance based upon a given AMV among all of the models generated. 

 
We frame scan detection model creation as an optimization problem with three va-

riables: (1) a network flow attribute set, (2) a machine learning classifier, and (3) a 
lower bound. Our method creates multiple scan detection models based upon combi-
nations of these variables. The AMV of each model is then calculated to find a specif-
ic network’s LOM. This framework for scan detection model creation seeks to resolve 
challenges inherent in using machine learning for scan detection, including network-
specific models and arbitrary selection of attribute sets, machine learning algorithms, 
and lower bounds. 
 

By proposing a solution to this problem, we contribute the following: 
 

 We provide a customizable method of identifying the combination of attribute 
set, machine learning classifier, and lower bound that creates a Local Optimal 
Model for a specific network. 

 We compare and evaluate the implications of applying lower bounds on the 
number of records necessary for classification. 

 We demonstrate an application of this method on the University of Maryland 
network. 

 
Our method utilizes supervised machine learning and is outlined by the work flow 

diagram in Figure 1. To implement machine learning for our experiment, we selected 
the Weka machine learning library [25]. 
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The subnets were scanned over the same time period as the network’s flow records 
were collected. Thus, the scanning records were inserted in real time into the Dataset 
1 and Dataset 2 databases alongside the network’s inherent flow records.  

Once the scans were finished, each complete scan was relabeled with a unique 
source IP address within its network flow data so that every scan seemed to originate 
from a new IP address. This was done because more than five scanners were desired 
for the dataset. This was also done to replicate the difficulty of detecting scanners 
who perform only a few scans. In turn, the scan detection models must become more 
robust to accurately classify these users. The list of malicious IP addresses produced 
in this step was stored separately for labeling.  

4.2 Network Flow Data Labeling 

Once the network flow data has been collected, every user must be labeled as mali-
cious or benign in order to perform supervised machine learning. For simplicity, our 
method identifies a network user as any unique source IP address that accesses a net-
work. The advantage of injecting scans into the dataset is that the injected IP ad-
dresses can be labeled as malicious because they are the output of the Nmap scans. 
Labeling the remainder of the network users confidently is much more difficult. It is a 
time consuming and imperfect process as described in Section 5.5. To label any inhe-
rent malicious users within the data, a set of heuristics that identifies a user as a net-
work scanner based upon the user’s network flow data must be defined and applied. 
These heuristics can be based upon accepted definitions of scans or based on the spe-
cific network’s configuration. For example, if access to port 22 is closed on the net-
work and analyzing network flow records reveals a user attempted to access the port 
on several hosts, the user could potentially be labeled a scanner. Users that do not fit 
these heuristics should be labeled as benign users.  

In our dataset, the labeling process occurred as part of the network flow attribute 
calculations. Users were automatically labeled as malicious if they were among the 
injected scans. For non-injected users, we defined a strict set of heuristics to identify 
any network scanners on the university network. A user was labeled as malicious if 
the IP address displayed horizontal or vertical scan detection behavior on the network. 
Additionally, any user who attempted to access a single closed port on the network 
was labeled as a scanner. All other users were labeled as benign. 

4.3 Attribute Calculation 

Statistics about a user’s network flow data must be calculated to classify the user as 
malicious or benign using machine learning. Choosing which network flow attributes 
to calculate is the first step in this process. Any attribute that is believed to differ be-
tween benign network users and malicious users can be chosen. Other researchers 
have identified potentially useful attributes [7, 8, 19]. Once the attributes have been 
selected, they need to be calculated for each user that accessed the network. The us-
er’s label must be added to calculated attributes for use by the machine learning algo-
rithms. An additional attribute that can be calculated in this step is the number of 
network flow records that the user produced. This attribute can be used to quickly 
implement lower bounding in the next step. 
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To perform these operations with our data, we first compiled a list of 34 network 
flow attributes to calculate based on the attributes used by Gates et al. [8] and Wil-
liams et al. [19]. A full listing can be can be found in Appendix A. We then created a 
script that individually queried the Dataset 1 and Dataset 2 databases for each user’s 
network flow records. The 34 attributes, the user’s label, and the number of records 
produced by the user were then calculated for each IP address in each set. This 
process generated two CSV files: a training dataset of Dataset 1’s users and corres-
ponding calculations, and a testing dataset that contained Dataset 2’s users and calcu-
lations.  

4.4 Lower Bounding 

A lower bound refers to the minimum number of network flow records a user must 
produce to be classified. Our study introduces the concept of varying lower bounds 
during model creation to discover how lower bounds affect a model’s AMV. Different 
lower bounds should be chosen in search of the LOM as they may impact the AMV, 
as demonstrated by our findings. To test the application of lower bounds, network 
users that did not produce certain numbers of network flow records should be re-
moved from the calculations dataset. Each lower bounded set of calculations should 
be saved separately for evaluation. 

For our experiment, we chose to test the lower bounds of 2, 4, 6, 8, 10, 30, and 50 
network flows, as well as no lower bound (a bound of 1 record). To perform the lower 
bounding, each calculation file was copied and all IP addresses that did not produce 
the minimum number of records removed from the file. The resulting files and the 
number of benign and malicious IP addresses left in each is detailed in Table 1. 

Table 1. Number of Malicious and Benign Users 

 Dataset 1 Dataset 2
Lower Bound Benign Malicious Benign Malicious 

1 149,600 91 103,663 57 
2 115,475 86 88,042 57 
4 85,874 85 73,328 57 
6 71,836 83 65,446 56 
8 63,384 83 59,821 56 

10 57,500 78 55,918 56 
30 33,913 59 39,396 50 
50 25,536 56 32,943 40 

4.5 Attribute Discretization 

Before attribute selection or model creation can occur, the attribute calculations must 
be converted into a machine learning format and discretized. The conversion is a sim-
ple formatting change into a syntax on which machine learning algorithms can oper-
ate. Then the calculations must be discretized so that each attribute’s range of calcu-
lated values for the users is no longer continuous but in nominal, categorized sets of 
values useful for machine learning. 
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In order for our data to be utilized by the Weka library, our calculations in CSV 
format were converted to ARFF (Attribute-Relation File Format) by means of a sim-
ple translation script. The ARFF files were then discretized using a modified version 
of Fayyad and Irani’s Minimum Description Length (MDL) discretize function im-
plemented in the Weka library that split an attribute’s range of values at least once 
(“binary discretization”) [30]. Without this modification, some attribute ranges would 
not have been split at all, resulting in only one discretized category for those 
attributes. Having a singular category for an attribute renders the attribute useless for 
classification since all users will have the same value for the attribute. 

4.6 Attribute Set Selection 

Following discretization, network flow attribute sets must be identified in order to 
build scan detection models. An attribute set refers to a subset of all the network flow 
attributes that were calculated for each IP address. Prior research has shown that 
choosing to classify instances based upon a strongly predictive subset of attributes 
instead of using all attributes can increase classification performance [30, 31]. 
Attribute sets are thus the second variable component of scan detection model crea-
tion that must be explored in search of the LOM. 

Attribute sets can be selected in a number of ways. Every combination of the net-
work flow attributes could be selected as an attribute set. However, testing all of the 
sets may prove infeasible if many attributes were calculated because the number of 
tests necessary grows exponentially with the number of attributes. Attribute sets can 
alternatively be selected manually or through the use of attribute selection algorithms. 
These algorithms are designed to identify which attributes are the most useful for 
distinguishing items of one labeled class from items of another class for a given data-
set. 

Given the 34 network flow attributes we identified and calculated for each user, se-
lecting every possible attribute set combination for testing was deemed infeasible 
because there are 17 billion ways of combining the attributes into subsets. We there-
fore turned to the Weka machine learning library for attribute selection algorithms. 
Making no assumptions about which network flow attributes would best differentiate 
normal network users from network scanners, we solely relied upon these algorithms 
to identify useful attribute sets to test. 

There are two types of attribute selection algorithms in the Weka library: subset 
evaluators and attribute evaluators. Subset evaluators attempt to identify the subset of 
all attributes that best differentiates between classes, while attribute evaluators simply 
rank all attributes by their perceived usefulness for differentiating between classes 
[32]. For our experiment, we selected every subset evaluator algorithm Weka pro-
vided that returned non-empty attribute sets, and we selected every attribute evaluator 
algorithm that ranked at least five attributes with nonzero scores. Thus, the CFS and 
Consistency subset evaluators were chosen along with the Chi-Squared, Gain Ratio, 
Info Gain, and Symmetrical Uncertainty attribute evaluators. 

These algorithms were run on each of Dataset 1’s lower bounded files. Since each 
attribute evaluator returned only rankings of attributes instead of a subset of them, 
constructing subsets from these rankings required choosing some number of the  
highest ranked attributes from the ranking list. For each of the attribute evaluator 
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algorithms we chose, we decided to create six subsets based upon the rankings re-
turned. The first subset contained the best 5 attributes, the second contained the best 
10 attributes, the third contained the best 15 attributes, and so on up to the sixth sub-
set, which contained the best 30 attributes. We also selected a control attribute set 
where all 34 attributes were selected. Along with the two subsets created by the subset 
evaluators, this amounted to 27 selected attribute sets per lower bounded file. In some 
cases, duplicate subsets were produced across algorithms and files with different low-
er bounds, so the final number of unique subsets created for testing was 122. 

4.7 Machine Learning Model Creation 

After attribute selection, machine learning algorithms must be selected so that scan 
detection models can be created and tested. Different machine learning algorithms 
may classify a dataset differently and are thus the third variable that should be tested 
in search of the LOM. Machine learning algorithm selection can be based upon the 
unique benefits of certain algorithms, an algorithm’s classification performance in 
other settings, the distribution of malicious and benign users within the data, or some 
other prior knowledge. Since justifying the selection of a machine learning algorithm 
can still be challenging, we propose selecting many algorithms to test in order to 
compare their classification results. 

Once the machine learning algorithms are selected, scan detection models are 
created by training each algorithm on the training datasets according to attribute sets. 
Each algorithm should train on each training dataset generated by applying a lower 
bound, using every attribute set selected for testing. This results in one unique scan 
detection model for every combination of the three variables. Afterwards, the models 
are tested on the corresponding lower bound testing dataset. The output of this stage is 
a classification confusion matrix for each of the scan detection models. 

For our experiment, we selected the following five machine learning algorithms 
implemented in the Weka Machine Learning Library: Random Forest, AODE, 
PRISM, SMO, and Decision Table. We sampled algorithms from different categories 
of machine learning algorithms, including Tree Based (Random Forest), Rule Based 
(Decision Table), and Bayes (AODE), among others. We trained each of these ma-
chine learning algorithms on each of the 8 lower bounds files with each of the 122 
attribute sets, resulting in 4,880 unique scan detection models. We then tested every 
scan detection data model on the corresponding lower bounded data from Dataset 2 
with the same attribute sets to generate a set of confusion matrices for comparison of 
the models. 

4.8 Model Evaluation 

Once scan detection models are created and confusion matrices are generated from 
testing, classification metrics can be derived from the matrices to determine which 
model best classified the data. Models can be evaluated according to a single metric 
such as accuracy. However, the base rate fallacy is a serious problem for scan detec-
tion, as the vast majority of the network users are usually benign [5]. This means that 
if a model classified every user as benign, it will still have a high classification accu-
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racy. Therefore, it is advisable to combine and weigh multiple classification metrics 
into a single score: what we call an Aggregate Metric Value (AMV). We term the 
model with the highest AMV to be the Local Optimal Model (LOM). The general 
method to produce a simple weighted AMV is as follows: 

 ∑  (1) 

where  is the assigned weight for the metric  and  is the total number of me-
trics. 

Once an AMV is selected, it should be calculated for every scan detection model 
generated from the previous step based upon its testing confusion matrix. Models can 
then be sorted by descending AMV to find the LOM. If the AMV of this model is 
deemed sufficient, it can be deployed as an anomaly-based scan detection system on 
the live network. For our data, we used the following AMV, based on conventional 
definitions of precision ( ), sensitivity ( ), and accuracy ( ): 

   (2) 

where 

  (3) 

  (4) 

  (5) 

 
We calculated this AMV for each of the 4,880 scan detection models generated in 

the previous step and sorted by descending AMV to find the LOM for our data. 

5 Results and Discussion 

The following section presents the results of implementing our method on the Univer-
sity of Maryland network. With these results, we will illustrate how each variable of 
lower bound, attribute set, and machine learning classifier impacts the AMV perfor-
mance of a scan detection model. While we analyze which values of the variables 
performed well on our network dataset, we recognize that these specific values may 
not extend to other networks.  

Table 2 displays the classification results of the LOMs created based on different 
AMVs. From this table, we see that the selection of our AMV for model evaluation 
returns nearly three times as many correctly identified scans than evaluating solely by 
accuracy. While evaluating models by our AMV identified the same LOM as evaluat-
ing by precision, this is simply a coincidence based on our particular selection of 
AMV as the average of sensitivity, precision, and accuracy.  
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Table 2. Comparison of AMVs 

Metric Lower 
Bound 

True  
Positives

False  
Positives 

False  
Negatives

True  
Negatives 

Accuracy 1 6 4 51 103659 
Precision 4 17 4 40 73324 
Sensitivity 1 57 103612 0 51 
Our AMV 4 17 4 40 73324 

5.1 The Role of Lower Bound on Metric Performance 

One of the unique aspects of our method is treating lower bound as another scan de-
tection model input variable. Table 3 compares the models with the same machine 
learning classifier and attribute set as our LOM, but with different lower bounds. The 
table illustrates a noticeable drop in performance if a lower bound other than 4 is cho-
sen. If no lower bound is used, (designated by the lower bound row 1) only two in-
stances are correctly classified as malicious. These results suggest that evaluating 
multiple lower bounds can produce models with higher AMV performance. 

The tradeoff of using lower bounds is that the model ignores users who only produce a 
few network flow records. Essentially, this is equivalent to requiring network scans to 
consist of at least a minimum number of flows. It is possible that the unlabeled users for 
one model could be labeled as malicious in another model with a different lower bound. 
However, neither model is “mislabeling” the data, as they are attempting to detect scans 
based on fundamentally different definitions. Based on these facts, it is important to note 
that the LOM returned by our method will use the definition of a scan based on the lower 
bound with the best performance for the given AMV. 

Table 3. Comparison of Lower Bounds by Descending AMV 

Lower 
Bound 

True  
Positives 

False  
Positives 

False  
Negatives 

True  
Negatives 

Our 
AMV 

4* 17 4 40 73324 0.7024 
6 15 9 41 65437 0.6307 

10 10 8 46 55910 0.5777 
8 12 13 44 59808 0.5644 
2 4 4 53 88038 0.5232 

30 5 10 45 39386 0.4773 
1 2 4 55 10365 0.4560 

50 4 11 36 32932 0.4551 
*Lower bound selected by method 

5.2 The Role of Attribute Sets on Metric Performance 

Table 4 shows the impact of the attribute set on performance, controlling for the  
lower bound and classifier. The impact of attribute set is more subtle than machine 
learning algorithm or lower bound selection, resulting in only minor variations in the 
false positive rate and the number of correctly classified instances. This reflects the 
tendency of the method to generate multiple viable attribute sets. 
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Table 4. Compa

Rank True  
Positives 

 1* 17 
2 18 
3 18 
4 14 
5 16 

*Attribute set selected by meth
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5.3 The Role of Machine Learning Classifiers on Metric Performance 

By controlling for lower bound and attribute set, Table 5 shows that machine learning 
algorithm selection has a significant impact on AMV performance. Random Forest 
outperforms the other algorithms by a considerable margin in terms of false positive 
rate, with only 4 false positives for the 17 correctly identified scans. 

Table 5. Comparison of Machine Learning Algorithm by Descending AMV 

Classifier True  
Positives 

False  
Negatives

False  
Positives 

True  
Positives 

Our  
AMV 

Random Forest* 17 40 4 73324 0.7024 
AODE 14 43 38 73290 0.5046 
Prism 24 30 425 72883 0.4972 
SMO 1 56 18 73310 0.3564 

Decision Table 0 57 67 73261 0.3328 
*Machine learning algorithm selected by method 

 
For classifiers, Random Forest was the most successful at achieving high AMV 

values. In fact, the top 26 models by AMV were all achieved using Random Forest, 
with AODE first appearing at position 27. The Prism machine learning algorithm was 
not used to generate any of the top 100 results, largely due to its propensity to label 
large portions of the data as malicious.  

6 Conclusions 

By treating the creation of scan detection models as an optimization of an AMV using the 
best combination of lower bound, attribute set, and machine learning algorithm, a flexible 
framework for identifying LOMs is created. We were able to evaluate our model on the 
University of Maryland network and successfully identify the LOM. Our results demon-
strate that different lower bounds, attribute sets, and machine learning algorithms are 
necessary to evaluate because they impact the AMV of a scan detection model. We im-
prove upon an arbitrary selection of these variables when creating models by using a 
model’s performance to justify the variables’ values. This will provide a more practical 
method of creating network specific scan detection models in operational settings. 

While our method successfully identified the LOM for the University of Maryland 
network, the method should be easily extendable to other networks. Network adminis-
trators should start by selecting their own network flow attributes to calculate. Then, 
they can create models using their own selection of lower bounds, attribute sets, and 
machine learning algorithms. Finally, the models should be compared using a custo-
mized AMV to produce a network specific LOM. 

Despite our method’s benefits, it is limited by its reliance upon supervised machine 
learning. Performing supervised learning requires every source IP address in the net-
work flow data to be labeled as malicious or benign prior to testing. This labeling is 
time consuming, and it requires a network administrator to have thorough knowledge 
of a network’s configuration and network scans to label every IP address in the net-
work flow data confidently. Even if a network administrator labels every IP address 
according to some strict set of heuristics, there is no ground truth regarding which 
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users are truly scanners. We attempted to counteract this problem by injecting scans 
into the network flow data that could be labeled with ground truth. However, injecting 
anomalous data into a network dataset can make the dataset no longer representative 
of a real world network [25, 34]. 

The alternative approach of semi-supervised machine learning would require ad-
ministrators to only label a few IP addresses in the network that are known to be ma-
licious or benign such as injected network scans or websites commonly visited over 
the network. An avenue for future research is evaluating if applying semi-supervised 
learning to such a method can produce scan detection models with classification suc-
cess similar to that of models produced using supervised learning. 

Appendix A: Calculated Network Flow Attributes 

Network Flow Attributes Calculated for Each Source IP Address 

Index Attribute Description

0 rt_w/o_ACK Ratio of flows that do not have the ACK bit set to all flows 
1 rt_under_3 Ratio of flows with fewer than 3 flows to all flows
2 max_ips_1sub Maximum number of IP addresses contacted in any one /24 subnet 
3 max_high Maximum number of high destination ports contacted on any one host 
4 max_low Maximum number of low destination ports contacted on any one host 

5 max_cnsc_high Maximum number of consecutive high destination ports contacted on 
any one host

6 max_cnsc_low Maximum number of consecutive low destination ports contacted on 
any one host

7 num_uniq_dsts Number of unique destination IP addresses contacted
8 num_uniq_srcp Number of unique source ports
9 avg_srcp/dest Average number of source ports per destination IP address 

10 rt_std_flags Ratio of flows with “standard” flag combinations (SYN and ACK set, 
along with either the FIN or RST bit set) to all flows

11 rt_over_60 Ratio of the number of flows with the average bytes/packet > 60 to all 
flows 

12 med_pack/dst Median value of packets per destination IP address

13 rt_std_pttrn 
Ratio of flows with “standard” combination (standard flag combination 
and at least three packets and at least 60 bytes/packet on average) to all 
flows 

14 rt_bksctr_pttrn 
Ratio of flows with backscatter combination (RST, RST-ACK, or SYN-
ACK for the flag combination and the average number of bytes/packet is 
<= 60 and the number of packets per flow is <= 2) to all flows 

15 rt_dst Ratio of unique destination IP addresses to the number of flows 
16 rt_srcp Ratio of unique source ports to the number of flows

17 rt_bksctr_flags Ratio of flows with backscatter flag combinations (R/RA/SA) to all 
flows 

18 min_pack Minimum number of packets of any one flow
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19 max_pack Maximum number of packets of any one flow
20 mean_pack Mean packets per flow
21 std_dev_pack Standard deviation of packets per flow
22 min_dur Minimum duration of any one flow
23 max_dur Maximum duration of any one flow
24 mean_dur Mean duration per flow
25 std_dev_dur Standard deviation of duration per flow
26 min_bytes Minimum number of bytes of any one flow
27 max_bytes Maximum number of bytes of any one flow
28 mean_bytes Mean bytes per flow
29 std_dev_bytes Standard deviation of bytes per flow
30 min_bpp Minimum number of bytes per packet of any one flow
31 max_bpp Maximum number of bytes per packet of any one flow
32 mean_bpp Mean bytes per packet per flow
33 std_dev_bpp Standard deviation of bytes per packet per flow
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Abstract. This paper considers exploiting browsers for attacking Web
servers. We demonstrate the generation of HTTP traffic to third-party
domains without the user’s knowledge, that can be used e.g. for Denial
of Service attacks.

Our attack is primarily possible since Cross Origin Resource Sharing
does not restrict WebSocket communications. We show an HTTP-based
DoS attack with a proof of concept implementation, analyse its impact
against Apache and Nginx, and compare the effectiveness of our attack
to two common attack tools.

In the course of our work we identified two new vulnerabilities in
Chrome and Safari, i.e. two thirds of all browsers in use, that turn these
browsers into attack tools comparable to known DoS applications like
LOIC.

Keywords: Denial of Service · Browser security · Web security ·
HTML5 security

1 Introduction

The last two decades of Web technology were governed by making Web browsers
more powerful, thus increasing the computational power at the “edges” of the
Internet. In particular, the power of JavaScript within the browser has grown
immensely since its inception. Although this is indeed very profitable for Web
developers, the potential for abuse of clients has also grown: at the moment,
there are browser compatible JavaScript libraries for controversial purposes,
such as bitcoin mining [7,19], cracking of cryptographic hashes [2,20], port-
scanning [16], TOR network bridging [9], and even an attack that can use the
users’ disk space beyond reasonable limits [1,6]. These are some examples where
functionality is pushed beyond its “intended” behaviour.

In spite of how worrisome the aforementioned examples may be, this paper
has a narrower scope and is limited to analysing a particular attack misusing
browsers, namely, using WebSockets for Denial of Service (DoS) against regu-
lar Web servers. This attack has an increased surface in comparison to existent
WebSocket-based DoS attacks, which targeted only servers implementing the
WebSocket protocol[15,26]. The main contributions of this paper can be sum-
marized as follows:
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 401–417, 2015.
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– Assess protection mechanisms from browsers against malicious code using
WebSockets to perform DoS attacks against third parties. Our analysis led
us to discover two previously unknown vulnerabilities affecting two famous
browsers.

– Evaluate and compare the impact of our attack executed in different browsers
by measuring network traffic and connections on the server side. The results
are further compared with two native tools doing HTTP and SYN flood DoS
attacks: LOIC [18], and Syn-GUI [10].

At the time of writing, browser statistics [28] indicate that 64.9% of users
utilize Chrome (or Chromium), while Safari is used by 3,8% of the market.
These are the browsers most affected by our findings, so roughly two thirds of
the browsers’ population can be employed to execute the DoS attack as presented
in this paper. Furthermore, every browser supporting WebSockets can already
contribute to the DoS attack although to a lesser extent.

The rest of the paper is organized as follows. First, we explain the details
of our attack in Section 2. Next, we describe our attack in Section 3. Section 4
shows the physical set up, measurements acquired and the discussion of the
results. Then, related work is covered in Section 5. Finally, we draw conclusions
from our research in Section 6.

2 Attack Details

DoS attacks from browsers scale very well since malicious content delivered to the
client can be rather small, and it is delivered only once. As shown in Figure 1, as
soon as the content is conveyed, the Web browser will open as many connections
as possible to the third-party domain (i.e. victim) without the end-user noticing
any of it.

Fig. 1. Attack

Browsers can spawn threads to execute heavy computation in the background
called WebWorkers [12]. We spawn 4 WebWorkers in the attack. Inside each Web-
Worker, a function opening the socket is called 500 times, although it could also
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be called endlessly if desired. In our particular case, the number of threads and
the number of sockets were selected after testing which configuration performed
best across different browsers. The code for each WebWorker should resemble
the following snippet:

var j = 0;

for(j=0; j<500; j++)

{

socket();

}

Due to the asynchronous nature of JavaScript, an infinite recursion is required
to keep a connection open at all times. To implement this, a callback is provided
to the socket’s close event handler so the socket creation function is called again
recursively. This is an example attacking victim.domain.

function socket(){

var wsUri = "ws://victim.domain";

var websocket = new WebSocket(wsUri);

websocket.onclose = function(evt) {

socket();

};

}

Although the WebSocket connection request is not really a “typical” GET
request, it is enough to make the server reply back with the content of the Web
site; therefore, using this code allows to successfully open HTTP connections
with third-parties, i.e victim servers.

Aside from Chrome (also Chromium), and Safari, this attack also affects a
more modest browser called Rekonq; nonetheless, measurements for this browser
were omitted due to its low current participation on the browser’s market.

3 Attack Prerequisites and Synergies

Analysing the aspects leading to the attack, and the facets intensifying its impact
is of paramount importance. This allows us to extract lessons learnt which can
be capitalized in the future. In this section we discuss the two triggering fac-
tors for the attack, i.e. CORS and the lack of backward protocol compatibility.
Afterwards, a synergy increasing the power of the attack is presented.

3.1 Cross Origin Resource Sharing

Cross Origin Resource Sharing (CORS) provides a mechanism to enable client-
side sharing of cross-origin requests [14]. It is an opt-in mechanism empowering
hosts to allow other domains to request their content through the browser. In
general, when the browser loads a Web site (Origin1.com) as depicted in step
(1) of Figure 2, and the loaded site (Origin1.com) contains JavaScript code
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Fig. 2. Pre-flight request CORS

attempting to acquire content from an external domain (External-domain.com),
the browser must determine, by means of a preflight request, whether the third-
party domain wants to serve HTTP requests commenced by Origin1.com.

As shown in step (2) of Figure 2, the preflight request to the third-party
domain (External-domain.com) gives information to the browser regarding
the HTTP methods and origins allowed by the third-party server (External-
domain.com). Subsequently, this information is used by the Web browser to
decide whether HTTP requests should be sent to the third-party domain or not.

In theory, CORS would block DoS attacks against third-party domains, since
it would require the victim to include the attacker’s domain in their preflight
request: a highly unlikely scenario. However, in practice, certain requests such
as image requests, iframe content requests, or creation of WebSockets are not
forbidden to avoid hindering functionality in Web sites. This yields the possibility
to generate certain requests to third-party domains making not only DoS, but
also other attacks such as port scanning possible.

3.2 Lack of Backward Protocol Compatibility

Huang et al. [13] have shown how the WebSocket handshake definition, as a
sequence of HTTP messages, brings security problems. Although not related to
DoS attacks, Huang et al. discovered that an HTTP header misinterpretation
allowed to poison the cache of transparent proxies in the network. This attack
forced every proxy client to load malicious content delivered by the attacker.
We exploited a different aspect of the WebSocket handshake, yet related to their
work since it benefits from an HTTP header omission. The issue pertains to the
first message of the WebSocket handshake, which is an HTTP GET request with
additional headers (e.g. Upgrade, Connection, Sec-WebSocket-Key) [21].

Whereas the WebSocket specification contemplates how a WebSocket server
deals with additional headers in the handshake, it disregards how a regular Web
server would reply to such request. Currently, when a WebSocket handshake is
sent to a plain Web server, the server will interpret the request as a regular GET
request, ignoring additional headers, and sending the content of the main page
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back. In this way, an attacker can generate requests for content to third-party
Web servers just by attempting to open a WebSocket with the host, even though
they are not WebSocket servers.

3.3 Browser Vulnerabilities

Antonatos et al. [4] have used several data sources, ranging from Alexa rank-
ing [3] to an instrumentation of their institution’s Web site to study users’
behaviour, in order to estimate from a theoretical perspective the impact of
a DoS attack abusing Web browsers. Their work revealed that the mean time
that users keep pages on their browsers open is around 74 minutes. They also
conclude that abusing browsers is a real threat; especially, because according
to their results, more than 20 percent of typical commercial sites could abuse
10.000 clients, and 4 to 10 percent of randomly selected sites can use more than
1.000 browsers.

We have discovered two new vulnerabilities, increasing the aggressiveness
of a DoS attack, after testing the most known browsers supporting WebSock-
ets: Chrome, Chromium, Firefox, Safari, and Opera. One vulnerability affects
Chromium and Chrome, and another one affects Safari. In this context, even
though browser vulnerabilities are not a prerequisite, they create a powerful syn-
ergy with the DoS attack. In the presence of a browser vulnerability, less popular
sites would still constitute a powerful ally for an attacker because clients would
generate more traffic than intended.

The Chrome (and Chromium) networking stack follows an asynchronous
design philosophy for performance reasons. Chrome was designed to restrict
the amount of connections generated by WebSocket handshakes. However, this
verification was implemented synchronously. As a result, when the user left the
malicious (or compromised) Web site, all the queued connections to third-party
domains were opened. We reported this behaviour through the Chromium bug
tracking site, i.e. the Open Source project in which Google Chromium is based
upon. This issue has been fixed by Chromium developers in the Chromium mas-
ter branch [22]. Also, we found, and reported through the apple’s developers bug
reporting site, that Safari does not cap the amount of connections generated
by WebSocket handshakes per tab. For both vulnerabilities, using WebWorkers
exacerbated the effect of the attack by opening several WebSocket connections
concurrently.

4 Testing and Analysis

In order to assess whether our attack is feasible in the real world, its impact must
be measured and compared to applications designed for DoS. In this section we
describe the physical and virtual set-up used to confirm the feasibility of our
attack, as well as the measurements obtained and the discussion around them.
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4.1 Set up

As illustrated on Figure 3, one router (MikroTik RouterBoard RB750 Series)
and four physical machines were used: three Dell Inspiron 15 with 6 GB RAM
memory and with an Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz processor (in
gray), and one Lenovo T430S with 16 GB RAM memory and with an Intel(R)
Core(TM) i7-3520M CPU @ 2.90GHz processor (in white). All the network con-
nections used Ethernet cables to ensure a fast, and reliable physical connection
between the physical machines. On every one of the Dell machines, a fresh instal-
lation of Kubuntu 13.10 saucy was performed; also, an Ubuntu 12.04 TLS was
installed in the Lenovo T430S hosting the attacker’s Web site.

Fig. 3. Testing environment

One of the Dell machines running Kubuntu had a VirtualBox Version 4.3.18
r96516 with a virtual machine running Windows 7 Enterprise Service Pack1,
where all the attacks were executed from. This machine was configured with
a Bridged VirtualBox network adapter, 4 GB of RAM memory, and 1 CPU
core without capping the execution. Inside this Virtual machine the following
programs were used for benchmarking the DoS attack: LOIC version 1.0.7.42,
and Syn-GUI version 2.0. The browsers compared to the DoS tools were executed
on the same virtual machine using Chrome version 39.0.2171.95 Official Build,
and Safari Windows version 5.1.7. The choice for the SYN-flood tool and Safari’s
version was stirred by our need to execute every attack on the same platform,
i.e. the Windows virtual machine. Nevertheless, the same behaviour observed in
Safari version 5.1.7, was also observed in newer versions running in Mac OSX
systems.

Due to the popularity of Apache and Nginx [25] they were used to run the
victim’s Web site on one of Dell machines natively in Kubuntu. The Apache
version was 2.4.6, and the Nginx version was 1.4.1. Both servers were used in
their default configuration, delivering only static (HTML) content.

On the network side, to hinder the interference of network capturing with the
measurements as much as possible, the router forwarded the traffic between the
victim site and the host running the attack to an external host (above, connected
with dashed line) for further offline analysis. The external host received the
traffic encapsulated with TaZmen Sniffer Protocol (TZSP), a protocol designed
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to encapsulate network traffic over the wire. Afterwards, the external host stored
the traffic at the end of the experiment. This configuration delivered better
results than capturing and storing traffic inside the router.

On the victim’s server, the total amount of TCP connections to port 80
(used by the Web servers) listed by the Operating System was stored every 100
milliseconds (ms) approximately. This connection count included not only the
fully established connections (i.e. ESTABLISHED state), but also those which
were in an intermediate step or momentarily unused, such as those with state
SYN RECV, TIME WAIT, or FIN WAIT. This approach was preferred because
it was observed that depending on server implementation aspects, connections
may be left inactive for longer or shorter periods depending on how the socket
and thread pools are handled. Also, the efficiency of the server can affect the
time required to fully establish or close the socket from the moment when a
SYN, or FIN packet is received respectively.

4.2 Measurements

For each server, a series of measurements were conducted while they were
attacked by two DoS tools and the two most affected browsers. Before each
measurement, the server was restarted in order to avoid affecting server perfor-
mance due to previous execution of attacks.

For Safari, Chrome, as well as for every DoS tool (i.e. LOIC and Syn-GUI),
a 20 second attack was performed. In the case of Chrome, a massive number of
connection requests was generated when the user left the Web site. As a result,
the measurements for Chrome were performed by opening the malicious Web
site, waiting for 20 seconds in the Web site, and then closing the tab. Naturally,
in the case of Chrome, the aggressiveness of the attack is proportional to the
amount of time spent on the malicious page.

From Figure 4 to Figure 9, the left Y axis represents the network statistics
obtained by counting the number of packets in a 100 milliseconds timespan
that matched certain criteria. The values plotted therein contain the following
measurements: the amount of SYN packets sent by the client (black continuous
line), the number of acknowledged connections from the server (red dots), and
the amount of HTTP requests answered by the server successfully (gray impulses
filling the curve). On the right hand Y axis, the number of connections on the
server side is shown with a dashed blue line. Unfortunately, unlike the left Y
axis, due to the divergence of the number of connections, the right Y axis scale
has to be adapted accordingly from graph to graph.

From now on, each subsection will show the results for a given attack tool,
such as Chrome, Safari or LOIC, for both target servers, i.e. Apache and Nginx.
At the end, we dedicate a subsection to the results obtained when attempting
the attack after a security patch has been applied on Chromium.

Chrome. In Figure 4 and 5, when the user leaves the tab roughly at the 20th

second of the measurement, there is a peak of SYN packets sent by the browser,
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Fig. 4. Chrome-Apache
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Fig. 5. Chrome-Nginx

i.e 100-200 packets/100 ms for Apache, and 100-150 packets/100 ms for Nginx.
At this point, the Web server stops replying with content.

The fact that the Web server does not reply is evidenced by the lack of
gray filling under the curve. Additionally, the server fails to acknowledge all
the connections requested, which is visible because the values for the number of
acknowledgements, represented as red dots, appear below the continuous black
line depicting the number of connection requests, i.e. SYN packets.

Also, whereas the network traffic is similar in both captures for Chrome,
i.e. Apache and Nginx, the amount of server side connections for Nginx is more
than twice of the values observed for Apache, reflecting that Nginx opens more
connections on the operating system level than Apache.
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Fig. 6. Safari-Apache

Safari. Safari can inhibit Apache from replying content from the beginning of
the attack. It can be seen in Figure 6 that, due to the peak of SYN packets
sent by Safari, the connections are not even acknowledged by the server, and
the HTTP responses are scarce and severely delayed. Further, when comparing
the two browsers for the Apache measurements, The number of SYN packets is
slightly higher in the case of Safari, i.e. 150-250 instead of 100-200 packets/100
ms in the case of Chrome.

In the case of Safari attacking Nginx in Figure 7, peaks of SYN packets
having 50-120 packets/100 ms force the server to stop replying to the HTTP
requests temporarily, however, Nginx starts to provide HTTP responses after-
wards. Eventually, it almost replies for every connection request. As expected,
Nginx opens a higher amount of connections than Apache on the Operating
System level, just like in the previous case.

LOIC. LOIC is a Windows application commonly used to perform DoS attacks.
This tool can be compared to the browser attack because it attempts to flood
the Web server with HTTP messages using a parametrizable amount of threads.

At first, we tested LOIC with 4 threads to have equivalent conditions to our
attack from the browsers; however, the impact was significantly lower than using
Safari or Chrome. As a result, this was modified to use the default configurations,
i.e. 10 threads and wait for server response, while our attack had 4 WebWorkers,
i.e. browser threads.

There are several differences in the network traffic when Chrome and Safari
are compared to LOIC’s attack against Apache and Nginx, see Figure 8 and
Figure 9. For example, when the user leaves the tab in Chrome or when the
attack is performed in Safari, the amount of SYN packets, and network traffic
produced in general, is considerably higher than the traffic produced by LOIC.
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Fig. 7. Safari-Nginx
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Fig. 8. LOIC-Apache

This situation allows Chrome and Safari to coerce Apache and Nginx to stop
replying, which is not achieved by LOIC.

However, LOIC has higher impact than the browsers on the amount of con-
nections opened on the server side by Nginx and Apache. Moreover, in the par-
ticular case of LOIC’s attack against Nginx, a special behaviour was observed.
LOIC induces a concurrency problem for Nginx due to the amount of opened
connections on the server side.

For Linux systems each socket is treated as a file descriptor [17], and in the
particular case of LOIC against Nginx, the number of connections is consistently
around 2500 connections for periods of up to 5 seconds. As a result, Nginx replies
with an HTTP 500 error code, see black triangles in Figure 9, due to too many
open file descriptors, which is evidenced in the log files.
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Fig. 9. LOIC-Nginx

Syn-GUI. Syn-GUI implements a SYN flood attack by sending SYN packets
massively to the server without implementing the HTTP protocol in the appli-
cation layer, as previously mentioned attacks do. Comparing the browser attack
to a SYN flood attack is relevant, since the strongest property observed for
browsers was the power to generate a high amount of SYN packets during the
initial hand shake of the TCP connection. As a result, the analysis presented
hereafter focuses only on this aspect; also, because other measurements, such as
the number of HTTP responses cannot apply to a SYN flood attack.
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Fig. 10. SynGUI-Apache

As it can be seen in Figure 10 and Figure 11, the peaks of SYN packets sent
by Syn-GUI are still smaller compared to the peaks observed for Chrome and
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Safari. However, the amount of SYN packets is higher that the packets sent by
LOIC.

Withal, it must be mentioned that certain countermeasures are effective
against SYN flood attacks, but they fail to thwart LOIC or the browser attack.
For example, SYN cookies avoid the allocation of resources on the server side
until the TCP connection is actually opened. Although this would be effec-
tive against a SYN flood, it will not work neither against LOIC, nor against
the browsers because they actually open the TCP connections and send HTTP
request to the server subsequently.

Fixed Browser. We executed the trunk raw build of Chromium, including the
security patch, to test the fix of the previously reported vulnerability. For this
graph, both of the Y axes have been adjusted to a narrower scale in order to
show the behaviour of the packets in the network and the connections opened. In
Figure 12 and Figure 13, the amount of connections is controlled when the user
leaves the tab. Further, the number of requests, and SYN packets in the network
is not increasing beyond 8 packets/100 ms: A pretty low value, considering that
it was around 40 packets/100 ms in the unpatched version, even before the user
left the tab.

4.3 Discussion

The comparison between browsers and the SYN flood tool demonstrated that
the amount of connection requests generated from the browser is comparable
to the number of requests generated by the SYN flood application. Neverthe-
less, abusing browsers has an additional advantage in respect to SYN flood:
the browser implements the whole TCP, and HTTP network stack. As a result,
countermeasures against browsers need to be more complex; for example, SYN
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Fig. 12. Chromium Fixed-Apache
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Fig. 13. Chromium Fixed-Nginx

cookies would thwart the SYN flood attack, yet they will fail against a Web
browser attack.

Moreover, Safari and Chrome hinder the server from replying requests right
after the attack is performed due to the sudden increase of TCP connection
requests. To mitigate the impact from an attack exploiting browsers on the server
side, configuring firewall rules to drop SYN packets after a certain amount of con-
nections has been reached with given IP seems reasonable. However, these rules
would have to be generated dynamically; especially, because different browsers
execute the malicious JavaScript code while they visit the malicious Web site.
This makes the set of browsers to be banned a constantly moving target, due to
the high churn of visitors that a Web site has. Furthermore, if the browser attack
is programmed in a less aggressive manner, recognition on the server side could
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be avoided, yet achieving the goal of the attack as long as the proper amount
of browsers are available. This is the case of existent attacks [4,5] which are
described in more detail in Section 5.

LOIC excels in a different aspect. Although it does not coerce the server
to stop replying like Safari or Chrome, is capable to force Nginx to reply with
an internal server error as it opens more file descriptors than the limit allowed
by the underlying operating system. This could be tackled by increasing the
maximum limit for concurrent opened file descriptors in the server Operating
System; however, this only would cure the symptom. To solve this problem on
the server side, specific business logic on how sockets and file descriptors are
handled by Nginx would have to be modified.

So far, possible server-side countermeasures have been discussed. Now, we
focus on client-side modifications which could help to address the problem. It has
been previously shown, in Section 4.2, that the fixed Chromium version behaves
mercifully with the server. Withal, It must be noted that although this dimin-
ishes the power of one single browser against a server, the problem of detecting
when several browsers are colluding against a domain remains unsolved. We
consider that employing machine learning techniques for malicious JavaScript
code detection can help to detect properties of the DoS attacks [8,23]. Further,
a technique favouring early detection malicious code, such as the work presented
Schütt et al. [24], may be the best match in order to stop the attack as early as
possible. However, the main challenge is the identification of the proper features
to process in the algorithms, as well as finding proper data sets, so learning
algorithms can be trained and validated afterwards.

Last but not least, from the measuring perspective, collecting network traffic
during a DoS attack characterizes it better than only counting TCP connections
on the server side; however, this method still yields results specific to the server
platform. This is unavoidable because there are a number of possible resources
that could be exhausted, such as open ports, files opened by the server, CPU
time, etc. However, common patterns observed allowed us to conclude which are
the strong and weak points of each attack and how they perform.

5 Related Work

Puppetnets was a term coined by Antonatos et al. for a botnet of browsers exe-
cuting port-scanning, DoS, and worm propagation [4]. The authors described
a simple DoS attack which did not exploit any implementation aspects of the
browser. Still, they spent significant efforts on estimating the impact of an even-
tual attack. Their findings indicate that around 20 percent of commercial sites
could be used to steer around 10.000 browsers, while the top-500 popular sites
could leverage up to 100.000 browsers. They enumerate several possible coun-
termeasures against the three aforementioned attacks, but they concluded that
none of the presented options was completely satisfying. Athanasopoulos et al.
performed measurements on the network level focused on the impact of RTT
times in the generation of HTTP traffic from browsers, yet leaving any practical
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DoS evaluation of the scope of the paper. Instead, we focus on the validation of
the attack by demonstrating its impact on real world server implementations,
and the generation of traffic from one browser.

Grossman et al. [11] presented that it is possible to use browsers to conduct
a DoS attack using Ad Networks to deliver the malicious JavaScript code, yet
spending a small amount of money. Furthermore, although the DoS attack is
already feasible due to the wide reach of an Add Network, its power can be
further increased when there is a vulnerability on the browser’s side. Grossman
et al. discovered a vulnerability in Firefox. The exploitation consisted of using
the browser’s JavaScript API to attempt to load an image, but changing the
HTTP scheme to FTP in the url. This allowed an attacker to create a higher
amount of requests. Instead, we use the WebSocket API combined with the
spawning of WebWorkers to generate requests from the browser, and we found a
vulnerability affecting the handling of WebSocket handshakes for Chrome, and
Chromium, and another one for Safari. Grossman et al. show the effectiveness
of the attack by measuring the amount of HTTP connections on the server side
for one server implementation, i.e. Apache. Instead, we monitored not only the
established connections on the server side, but also the network traffic on the
router level for two different server implementations, i.e. Apache and Nginx.
This allows us to analyse more deeply the impact of each attack. Moreover, the
comparison between common DoS tools and the proposed browser attack is also
missing in the work presented by Grossman et al.

According to a recent technical report [5,27], an anti-censorship project in
China called GreatFire.org suffered a large scale DoS attack. The attack was exe-
cuted from browsers of innocent Web site visitors located all around the world.
The report includes the JavaScript code suspected of launching the attack. The
presented code lacks of the mixture of WebWorkers and WebSockets presented
in our work. In contrast to our approach, the discovered attack sends GET
requests using the AJAX get function provided by jQuery. This shows that it
neither employs WebWorkers, nor exploits cross-protocol or browser implemen-
tation problems to increase its power, as we do.

There is also existing work on executing DoS attacks using WebSockets from
browsers [15,26]; however, this kind of attack only targets WebSocket-enabled
servers, and the existent work does not include detailed measurements. More
to the point, our attack has an increased surface in comparison to the existent
WebSocket-based DoS attacks, since it can be directed against any Web server,
even if it does not implement the WebSocket protocol.

6 Conclusion and Future Work

We showed in our paper how to turn modern Web browsers into attack tools by
exploiting certain features of WebSockets. We measured the effectiveness of our
attack, against two different Web server implementations, by combining server
side measurements of the number of TCP connections with a network layer cap-
ture analysis. This allows us to confirm that the impact of the DoS attack from
browsers is comparable, or in some cases more effective than using DoS tools.
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The massive DoS attack discovered recently [5,27] shows the significance
of studying and understanding DoS attacks steering innocent browsers against
victim servers, such as the attack discovered in our research. Also, Google
Chromium’s team decision to implement a security patch based on our vulnera-
bility report reassures the relevance of the proposed attack, and it also enables
our research to achieve real world impact. However, from a wider perspective,
we consider that the criteria for moving functionality to the client side should
be further researched, so future attacks can be prevented. For instance, if infi-
nite trivial recursions including network operations such as the one presented
would be forbidden, the attack would have been less powerful. Besides, prevent-
ing WebWorkers to open WebSockets, like Firefox does, would have also been a
good countermeasure to limit the power of the attack. This proves, once again,
that taking the least-privilege path when enabling functionality will always be
the most secure approach.

Also, since the first study of browser-based DoS attacks [4], its detection
has proven to be a difficult due to the number of possibilities to obfuscate,
and dynamically modify and execute JavaScript code. We consider that future
research efforts should study the feasibility of applying advanced algorithms,
e.g. machine learning detection methods [8,23,24], for code property detection
to assess their usefulness in this realm.

Finally, the risk of malicious code being executed transparently to the user
could be mitigated by developing specific mechanisms within the browser. For
instance, users could be empowered to control or monitor browser resource usage
such as number of connections, number of spawned threads, etc.
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Abstract. We consider a special type of multicast communications
existing in many emerging applications such as smart grids, social net-
works, and body area networks, in which the multicast destinations are
specified by an access structure defined by the data source based on a
set of attributes and carried by the multicast message. A challenging
issue is to secure these multicast communications to address the preva-
lent security and privacy concerns, i.e., to provide access control, data
encryption, and authentication to ensure message integrity and confi-
dentiality. To achieve this objective, we present a signcryption scheme
called CP ABSC based on Ciphertext-Policy Attribute Based Encryption
(CP ABE) [2] in this paper. CP ABSC provides algorithms for key man-
agement, signcryption, and designcryption. It can be used to signcrypt a
message/data based on the access rights specified by the message/data
itself. A multicast destination can designcrypt a ciphertext if and only if
it possesses the attributes required by the access structure of the data.
Thus CP ABSC effectively defines a multicast group based on the access
rights of the data. CP ABSC provides collusion attack resistance, mes-
sage authentication, forgery prevention, and confidentiality. It can be
easily applied to secure push-based multicasts where the data is pushed
from the source to multiple destinations and pull-based multicasts where
the data is downloaded from a repository by multiple destinations. Com-
pared to CP ABE, CP ABSC combines encryption with signature at a
lower computational cost for signcryption and a slightly higher cost in
designcryption for signature verification.
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1 Introduction

We consider a special type of multicast communications existing in emerging
applications such as smart grids, social networks, and body area networks: a
multicast message carries an access structure specified by the data source based
on a set of attributes to define the right set of destinations - a recipient of the
message can read the data only if it possesses the set of attributes required
by the data source. Such multicasts can be either push-based or pull-based. For
examples, a service provider in smart metering can employ push-based multicast
to deliver a software update command to the smart meters of model A or B
located at a certain area manufactured by company X after the year Y and
the message carries an access structure defined by attributes {location, time,
company, model} based on the AND and OR relations; a smart meter reading
together with its access policy (e.g., only the service providers in Washington
DC or Bethesda MD can access this data), again defined by AND and OR
relations, can be stored in a data repository for future downloads (being pulled)
by the service providers designated by the attributes (e.g., service providers in
Washington DC or Bethesda MD).

Push-based multicasts under our consideration are very similar to the tra-
ditional ones except that no identities of the destinations are carried by the
message; pull-based multicasts require the data to be stored in a repository and
then downloaded by multiple users on-demand. Both multicast scenarios require
the data to be protected for confidentiality, integrity, authentication, and access
control. Specifically,

– All the multicast messages must be protected from adversaries as the data
may disclose private information of the data source. For example, the elec-
tricity usage data could reveal the activities of the residents in a household
[6], which places a significant privacy concern.

– The data source should provide access control and intelligently determine
who should or should not have access to its data. An access structure should
be defined based on the attributes required by the data source. The data
should be accessible only by the destinations specified by the data source;
no third party including the data repository should be able to read the data.

– The authenticity of the data source and the integrity of the data should be
verifiable.

To achieve these objectives, we propose a signcryption scheme termed
CP ABSC based on Ciphertext-Policy Attribute-based Encryption (CP ABE)
[2] to address the secure multicast problem and provide the required security
services mentioned above. CP ABSC combines signature and encryption, and
provides a new mechanism for data encryption, access control, and authentica-
tion to ensure security and privacy. The basic idea of CP ABSC is to signcrypt a
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data item based on its access policy (represented by an access tree and specified
by the data (data source) itself) and designcrypt the corresponding ciphertext
with a secret key computed from a set of attributes. The access tree defines the
access rights of the data based on the attributes and is carried by the ciphertext.
This implies that any user possessing the set of attributes that satisfy the access
policy defined by the data itself can access the data. Because a multicast group
is uniquely defined by the data itself via the access policy, secure multicasts are
effectively achieved. Moreover, other than supporting the traditional push-based
multicast that “pushes” the data to all destinations, CP ABSC can also support
pull-based multicast, in which the data is stored in a repository and delivered to
a multicast destination only when the destination needs the data and actively
“pulls” the data.

The contributions of this paper can be summarized as follows:

– We develop a novel scheme called Ciphertext-Policy Attribute Based Sign-
cryption (CP ABSC) based on CP ABE, which ensures security and privacy
of the data by combining signature and encryption without requiring a cer-
tificate for verification.

– We prove the correctness of the proposed scheme and analyze its efficiency
and feasibility. In particular, we discuss the security of the proposed scheme
under four major attack scenarios: collusion, message authentication, forgery,
and confidentiality. We also conduct a quantitative performance analysis, and
our results indicate that the proposed CP ABSC is efficient and feasible.

– We demonstrate how to apply the proposed signcryption scheme to secure
different multicast communications in smart grids. Particularly, we develop
a protocol to secure the instructions sent from utility companies to smart
meters (push-based multicast); we also develop a procedure for the smart
meter data to be securely stored and accessed by different service providers
based on CP ABSC (pull-based multicast).

The remainder of this paper is structured as follows: In Section 2, we present
the motivations, our system model, and the most related work. Section 3 pro-
poses our signcryption scheme CP ABSC and illustrates how to use it to secure
multicast communications. Section 4 proves the correctness of CP ABSC and
analyzes its security strength and computational cost. Conclusions and future
research are presented in Section 5.

2 Motivations, System Model, and Related Work

In this section, we describe a few real world applications to motivate our problem
formulation, present our system model, and then summarize the most related
research.

2.1 Push-Based Multicast Communications

Traditional multicast communications are usually push-based, in which the data
source pushes the data to all recipients (the multicast destinations) whose
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identities are unique and known to the source ahead of time via one or more
simultaneous transmissions. In this study, we consider a variation of the tra-
ditional multicast, in which the destinations are defined based on a set of
attributes, i.e., the destinations must possess certain attributes in order to receive
a multicast message. Such multicasts are popular in emerging applications such
as smart grids and social networks.

Fig.1 illustrates a push-based multicast in smart metering, in which a service
provider sends instructions or commands to a group of smart meters specified by
their locations, models, the connected smart devices, and other attributes. For
example, a service provider may broadcast a critical software update message to
all smart meters at the Inverness Village whose connected devices include the
smart fridges with model number 00000 or 11111 manufactured by XYZ com-
pany. This multicast message does not need to specify the identities of the smart
meters (and smart devices); instead, it carries the following access structure
defined by AND and OR relations: Inverness Village AND smart fridges AND
manufactured by XYZ company AND (model 00000 OR model 11111). Such an
access structure clearly specifies the set of destinations that should receive the
multicast message - it may not be practical to include a unique identity for each
device in the multicast message. A similar scenario is observed in friend discov-
ery in mobile social networks (see Fig. 2), in which a user who wants to make
friends who share similar interests (reading certain types of novels, traveling to
the east coast, enjoying sea food, etc.) broadcasts a query message carrying an
access structure that specifies the type of friends the user is looking for.

These applications require a secure push-based multicast that can provide
access control (not every recipient should be able to access the content of the
message), data encryption (the query or the instruction should be kept confi-
dential), and authentication (the data source should be verifiable and the data
integrity should be protected) to ensure message integrity and confidentiality.
But unfortunatley push-based multicast authentication schemes such as TELSA,
Biba, HORS, and OTS [8,10,13–16,20] focus on authentication while ignoring
access control and confidentiality. Moreover, the multicast destinations in our
problem are defined by an access structure specified by the data source, which
renders many popular secure multicast protocols inapplicable.
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2.2 Pull-Based Multicast Communication

A pull-based secure multicast in which the data is stored after being generated
and later is pulled by multiple authorized users may be as desirable for some
cases in applications such as smart grids and body area networks. For example,
multiple service providers may need to retrieve the electricity usage data of a
smart meter for different purposes at different times; thus the smart meter should
store its data at a data repository for future downloads. This poses significant
security and privacy concerns because the access of the data in a data repository
is completely out of the control of the smart meter who generated the data but
it should be the smart meter’s decision whether or not to disclose its electricity
usage of certain smart devices to certain service providers – a service provider
in California may not need the utility usage data of a microwave in a house at
Washington DC. Moreover, not all service providers need the same data. Thus
smart meters should have the right to decide who should have the access right
to their data. Fig. 3 illustrates such a pull-based multicast scenario in smart
metering. Fig. 4 demonstrates a similar example in body area networks (BANs),
in which the data collected by the body sensors is stored in a data repository
and later accessed by different people for different purposes: the primary doctor
has the full access rights to pull the patient’s medical information while a nurse
is able to read only the meta data.

These applications require the data source to specify the set of users that
can access the data: different users should have different access right to different
data stored in the repository. Similar to the push-based multicast mentioned in
Section 2.1, we resort to an access structure defined by the data source: only
the user who possesses certain attributes can access the data stored in the data
repository. This implies that the data source should store the access structure
defining the access right in the repository as well. Note that pull-based multicast
allows the destinations to actively and asynchronously pull the data from the
repository while push-based multicast feeds the data to all destinations at one
time.

2.3 System Model

We make the following observations from the application scenarios described in
Sections 2.1 and 2.2: The multicast destinations are defined by a set of attributes



A CP ABSC Scheme to Secure Attribute-Defined Multicast Communications 423

forming an access structure specified by AND and OR relations. The message
caring the data does not carry the identity of the destinations but carry an
access structure: any user receiving the data is able to access the data only if it
possesses the attributes specified in the access structure. Such multicast should
provide access control, data encryption, confidentiality, and authentication to
protect the data and the data source. These observations motivate us to consider
a communication system depicted in Figure 5.

There are four entities in our system model: Key Generation Center (KGC),
Data Source, Destinations, and Data Repository. The KGC generates and dis-
tributes keys for all entities. A data source produces the data to be broadcasted
and defines the access structure of the data; it is assumed to have sufficient com-
putational capacity to signcrypt the data. Destinations are defined by an access
structure carried by the data; they are able to designcrypt a message and verify
the authenticity of the source and the integrity of the data. A data repository
stores signcrypted data generated by a data source.

PU
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Data Repository 

Data Source 

Destination 

Push-based multicast 

Pull-based multicast 

Destination Destination 
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PUSH  

Key Generation Center (KGC) 

Fig. 5. A generical communication architecture.

This system model involves two types of multicasts: the multicast from a data
source to all the destinations defined by an access structure (push-based multi-
cast), and the retrieval of the data from a repository by multiple destinations
(pull-based multicast).

2.4 Related Work

The most related works are IBE and ABE, which have received a significant
amount of attention in recent years. There exists two different and complemen-
tary notions of ABE: Key-Policy ABE (KP ABE) [5] and Ciphertext-Policy ABE
(CP ABE) [2]. In KP ABE, encryption is completely determined by the full set
of descriptive attributes possessed by the data source while the decryption key
is computed by a Key Generation Center (KGC) from an access policy defined
by the KGC. In order to decrypt a ciphertext, a user must go to KGC to get a
decryption key. In CP ABE, encryption is completely determined by an access
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tree defined from the set of attributes possessed by the data source, and the
ciphertext carries the access policy; the decryption key is computed by KGC
and is associated with a user possessing a certain set of descriptive attributes.
In other words, KGC helps a user compute a deception key based on the user’s
attributes. A user can decrypt a ciphertext if and only if its attributes satisfy
the access tree carried by the ciphertext. Therefore in CP ABE, a data source
is able to intelligently decide who should or should not have access to its data.
A new construction of CP ABE, named Constant-sized CP ABE (denoted as
CCP ABE), was presented in [21], which reduces the ciphertext length to a con-
stant size for an AND gate access policy with any given number of attributes at
the cost of long secret keys and complicated access structures.

A scheme that employs IBE to provide a zero-configuration encryption and
authentication solution for end-to-end secure communications was proposed in
[19]. The concept of IBE was utilized by [11] to construct a signature and later
verify the signature. KP ABE was adopted by [3] to broadcast a single encrypted
message to a specific group of users. The Lewko-Waters ABE scheme [9], was
used by [17] to ensure access control. The above schemes can not ensure mes-
sage integrity and confidentiality. A signcryption scheme based on KP ABE was
proposed in [4], which does not meet the requirements of many practical appli-
cations as the data source can not intelligently decide who should or should not
have access to its data.

In this paper, we present a signcryption scheme termed Ciphertext-Policy
Attribute-Based SignCryption (CP ABSC) to provide the security services
required by the multicast communications mentioned above. Compared to
CP ABE, CP ABSC provides both encryption and signature without significantly
increasing the computational cost (actually only the computational cost of design-
cryption is slightly increased compared to CP ABE due to signature verification
in CP ABSC). CP ABSC has strong security strength in terms of collusion resis-
tance, message authentication, forgery prevention, and confidentiality.

3 CP ABSC: A Ciphertext-Policy Attribute Based
Signcryption Scheme

3.1 Preliminary Knowledge for CP ABSC

Bilinear Mapping and the Bilinear Diffie-Hellman Problem. Let G1,
G2, and G3 be three bilinear groups of prime order p, and let g1 be a generator
of G1 and g2 be a generator of G2. Our proposed scheme makes use of a bilinear
mapping: e : G1 × G2 → G3 with the following properties:

1. Bilinear: A mapping e : G1 × G2 → G3 is bilinear if and only if for ∀P ∈
G1,∀Q ∈ G2, and ∀a, b ∈ Zp, e(P a, Qb) = e(P,Q)ab holds. Here Zp =
{0, 1, . . . , p − 1} is a Galois field of order p.

2. Non-degeneracy: The generators g1 and g2 satisfy e(g1, g2) �= 1.
3. Computability: There is an efficient algorithm to compute e(P,Q) for

∀Q ∈ G2.
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With a bilinear mapping, one can get the following Bilinear Diffie-
Hellman problem (BDH): Given three groups G1, G2, and G3 of the same
prime order p. Let e : G1 × G2 → G3 be a bilinear mapping and g1, g2 be
respectively the generators of G1 and G2. The objective of BDH is to compute
e(g1, g2)abc, where a, b, c ∈ Zp, from the given (g1, ga

1 , gc
1, g2, g

a
2 , gb

2).
Note that the hardness of the CBDH - i.e., the Computational Bilinear Diffie-

Hellman problem (CBDH) - forms the basis for the security of our scheme.

Secret Sharing. Another important cryptographic primitive used by our
CP ABSC is secret sharing [7,18]. In the context of a dealer sharing a secret
with n participants u1, . . . , un, a participant learns the secret if and only if it
can cooperate with at least t − 1 other participants (on sharing what they learn
from the dealer), where t ≤ n is a pre-determined parameter. The secret to be
shared by the dealer is s ∈ Zp, where p > n. Before secret sharing, each partici-
pant ui holds a pairwise secret key ki ∈ Zp, which is only known by ui and the
dealer.

The dealer follows a two-step process. First, it constructs a polynomial func-
tion f(z) of degree t − 1, i.e., f(z) = s +

∑t−1
j=1 ajz

j , by randomly choosing t − 1
i.i.d. coefficients (the aj ’s) from Zp. Note that all (additive and multiplicative)
operations used in (3.1) and throughout the rest of the paper are modular arith-
metic (defined over Zp) as opposed to real arithmetic. Also note that s forms the
constant component of f(z) - i.e., s = f(0). Then, in the second step, the dealer
transmits to each ui a secret share si = f(ki) computed from ki, the secret key
known only by ui and the dealer.

We now show how t or more users can cooperate to recover s by sharing the
secret shares received from the dealer. Without loss of generality, let u1, . . . , ut

be the cooperating users. These t users can reconstruct the secret s = f(0) from
s1 = f(k1), . . . , st = f(kt) by computing

s = f(0) =
t∑

j=1

⎛

⎝sj

∏

i∈[1,t],i �=j

0 − ki

ki − kj

⎞

⎠ . (1)

Note that the cumulative product in (1) is essentially a Lagrange coefficient.
The correctness of (1) can be easily verified based on the definition of f(z).

3.2 Access Control Policy – The Access Tree

Our main idea is to design an attribute-based signcryption scheme that views
an identity as a set of attributes, and enforces a lower bound on the number
of common attributes between a user’s identity and its access rights specified
by the sensitive data. We use an access tree structure proposed by [2], which
is illustrated in Figure 6, to control the user’s access to the encrypted data. In
Figure 6, each non-leaf node x is associated with two parameters, numx and
kx, where numx is the number of child nodes of node x, and kx ∈ [1, numx] is
its threshold value indicating that node x performs the OR operation over all
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subsets of kx child nodes of x, with each subset supporting an AND operation;
each leaf node x is described by an attribute and a threshold value kx = 1. We
also associate an index with each node x in T , denoted by index(x). Since a tree
with |S| number of attributes can have at most 2|S| − 1 nodes, we can assign a
unique number in {1, 2, · · · , 2|S|−1} to each node in the tree based on pre-order
tree traversal. Other tree traversal techniques such as in-order or post-order can
also be applied. Let parent(x) be the parent node of x in T .

Note that any attribute-based access structure can be represented by a tree T
shown in Figure 6. For example, the following access structure may be specified
for a data item: Third-Party Service Provider AND Arlington, VA OR Washing-
ton, DC, which indicates that only the third-party service providers in Arlington,
VA or Washington, DC have the access to this data. Thus a user located in Wash-
ington DC with a set of attributes {Third-Party Service Provider, Washington
DC, Air-Conditioner} has an access right to the data mentioned above. The
corresponding access control tree for this example is illustrated in Figure 7. The
indices of the root node and its two children are respectively 1, 2, and 3 based
on pre-order tree traversal.

3.3 CP ABSC: Ciphertext-Policy Attribute Based Signcryption

In this subsection, we propose our CP ABSC, a Ciphertext-Policy Attribute-
Based SignCryption scheme. CP ABSC consists of four primary algorithms.
Algorithm 1 is executed by KGC to provide system initialization. It generates
and distributes to all the involved entities the public parameters of the system.

Algorithm 2 is also executed by KGC to generate three keys for an attribute
set S: the key SK for ciphertext designcryption, the signing key Ksign for signing
the ciphertext message, and the verification key Kver for signature verification.
For example, a utility company possessing the attribute set S can use its signing
key Ksign to sign its commands or instructions sent to the smart meters, and
use its designcryption key SK to designcrypt the smart meter data stored in
ciphertext format (signcrypted data) at the data repositories; its verification
key kver is published for others to verify the signature of its ciphertext.

Algorithm 3 details the signcryption procedure, which is the core of the pro-
posed CP ABSC. This algorithm is mainly performed by data sources to sign-
crypt its data before transmitting to the data repositories or to other receivers.
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Algorithm 1 System Initialization

1: Select a prime p, the generators g1 and g2 for G1 and G2, respectively, and a bilinear
mapping e : G1 × G2 → G3.

2: Choose two random exponents α, β ∈ Zp.
3: Select a hash function H1 : {0, 1}∗ → Zp. This function H1 is viewed as a random

oracle.
4: Publish the public parameters given by

PK = (p,G1,G2, H1, g1, g2, h = gβ
1 , t = e(g1, g2)

α) (2)

5: Compute the master key MSK = (β, gα
2 ).

Algorithm 2 Key Generation (MSK, S)
Inputs: The master key MSK and a set of attributes S belonging to an entity.

1: Select random numbers ren, rsn ∈ Zp

2: Compute the secret key component Den = g
(α+ren)

β

2 and signing key Ksign =

g
(α+rsn)

β

2 .
3: for each attribute j ∈ S do
4: Select a random number rj ∈ Zp

5: Compute the secret key components Dj = gren
2 · g

(H1(j)·rj)

2 and D′
j = g

rj

2

6: end for
7: The secret key SK for designcryption is:

SK = (Den, ∀j ∈ S : Dj , D
′
j). (3)

8: Compute the verification key: Kver = grsn
2

9: Send SK and Ksign to the owner of the attribute set S, and publish Kver for others
to verify the owner of S.

In a typical application, a data source encrypts a message/data whose access
control is specified by an access tree T , and signs the message with its signing
key. Note that Lines 1 to 7 is executed only once for all the data with the same
access structure. Algorithm 3 is designed to provide confidentiality, access con-
trol, integrity, authentication, and non-repudiation to ensure the security and
privacy of the data sources. Note that encryption is completely determined by
the access policy of the data itself.

Algorithm 4 implements verification and decryption. The ciphertext receivers
execute it to decrypt the ciphertext according to their attributes. Note that
Algorithm 4 calls a function DecryptNode described in Algorithm 5, which was
originally proposed by [2]. Here we include DecryptNode for completeness and to
help the readers without the knowledge of CP ABE to understand CP ABSC.
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Algorithm 3 SignCryption(M, T, Ksign)
Inputs: The public parameter PK; plaintext message M ; the tree T rooted at node
R specifying the access control policy of message M ; and the signing key Ksign.

1: Choose a polynomial qx and sets its degree dx = kx − 1 for each node x in the tree
T .

2: Choose a random number s ∈ Zp and sets qR(0) = s;
3: Choose dR random numbers from Zp to completely define the polynomial qR.
4: for any other node x in T do
5: Set qx(0) = qparent(x)(index(x)).
6: Select dx random numbers from Zp to completely define qx.
7: end for
8: Let Y be the set of leaf nodes in T . The ciphertext CT is constructed based on the

access tree T as follows:

CT = (T, C̃ = M ⊕ ts, C = hs, ∀y ∈ Y : Cy = g
qy(0)
1 , C′

y = g
(H1(att(y))·qy(0))
1 ) (4)

9: Choose a random ζ ∈ Zp; compute δ = e(C, g2)
ζ , π = H1(δ|M), and ψ = gζ

2 ·
(Ksign)π.

10: Output the message:

CTsign = (T, C̃, C, ∀y ∈ Y : Cy, C′
y; W = gs

1, π, ψ)

Algorithm 4 DeSignCryption (CTsign, SK, S)
Inputs: The CTsign = (CT, W, π, ψ); the private key SK for designcryption; and the
set of possessed attributes S.

1: A = DecryptNode(CT, SK, R)
2: if A �=⊥ then
3: Ã = e(C, Den)/A
4: end if
5: Compute

δ′ =
e(C, ψ)

(e(W, Kver) · Ã)π
(5)

6: if H1(δ
′|M ′) = π then

7: return M = M ′

8: end if
9: Return ⊥

3.4 CP ABSC v.s. CP ABE

In this section, we compare CP ABSC and CP ABE[2] to illustrate their differ-
ences. The characteristics of CP ABSC and CP ABE are summarized in Table 1.
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Algorithm 5 Function DecryptNode (CT, SK, x)
Inputs: A ciphertext CT = (T, C̃, C, ∀y ∈ Y : Cy, C′

y); the secret key SK, which is
associated with a set S of attributes, the node x from T .

1: if x is a leaf node of T then
2: Let i = att(x)
3: if i ∈ S then

Return Fx =
e(Ci, Di)

e(C′
i, D

′
i)

= e(g1, g2)
renqx(0) (6)

4: else Return ⊥
5: end if
6: else
7: for Each child node z of x do
8: Fz = DecryptNode(CT, SK, z)
9: end for

10: end if
11: Let Sx be an arbitrary kx-sized set of child nodes of x such that Fz �=⊥ for ∀z ∈ Sx.
12: if Sx exists then
13: for Each node z ∈ Sx do
14: iz = index(z)
15: S′

z = {index(z) || z ∈ Sx}
16: �iz,S′

z
(y) =

∏

j∈S′
z,j �=iz

y−j
iz−j

17: end for
18: Return

Fx =
∏

z∈Sx

F
�iz,S′

z
(0)

z =
∏

z∈Sx

(e(g1, g2)
ren·qz(0))

�iz,S′
z
(0)

=
∏

z∈Sx

e(g1, g2)
ren·qx(iz)·�iz,S′

z
(0)

= e(g1, g2)
ren·qx(0)

19: else
20: Return Fx =⊥
21: end if

System Initialization. This procedure creates the groups, the group generators,
and the bilinear mapping. The difference between CP ABSC and CP ABE is
that the former uses asymmetric groups while the latter uses symmetric groups.

Key Generation. The Key Generation algorithm in our scheme CP ABSC is
different from the key generation in CP ABE [2] in two aspects: i) since we
are designing a signcryption scheme, we need to compute a signing key (which
will be sent to the signcryptor) and a verification key (which will be public)
while CP ABE only needs one key for decryption; and ii ) due to the fact that
CP ABSC utilizes asymmetric groups, its key generation is more computation-
ally efficient than the one proposed in [2] according to our comparison study in
Section 4.3.
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Table 1. Comparison between CP ABE and CP ABSC

The scheme System Initialization Key Generation Encryption Decryption

CP ABE [2] symmetric groups private(encrypt) key encryption decryption
CP ABSC asymmetric groups private(encrypt+sign) key signcryption decryption& verification

Encryption (SignCryption). The SignCryption in CP ABSC combines signature
and encryption, while the one in [2] performs only encryption. The computational
cost of our SignCryption algorithm is less than the sum of the two computations
(encryption and signature), and is also less than that of the encryption algorithm
in [2], according to our analysis in Section 4.3, which is attributed to the adopted
asymmetric groups.

Decryption (DeSignCryption). The DeSignCryption in CP ABSC includes
decryption and verification, while the decrypt algorithm in [2] performs only
decryption. The computational cost of DeSignCryption is only slightly higher
than that of the decyption algorithm in [2], according to our analysis in
Section 4.3.

3.5 Application of CP ABSC in Smart Grids

In this section, we illustrate how to use CP ABSC to secure the two typical
multicast communications in a smart grid. Initially, KGC computes the public
parameters PK according to Algorithm 1, and posts PK to all active entities
(smart meters and service providers) in the system. Each entity also needs to
register with KGC to get the corresponding keys computed from Algorithm 2. For
example, a utility company needs a private key SK for designcryption based on
its access attributes, a signing key Ksign to sign its commands, and a verification
key Kver for others to verify its signature.

Push-Based Multicast Communication in Smart Grid. When a service
provider wants to send instructions or commands to one or more smart meters,
the service provider constructs an access structure T that describes the set of
smart meters satisfying the access policy. It then signcrypts an instruction I with
a timestamp ts. The timestamp can be the current time or the current time with
an expiration time. Generally speaking, the timestamp can help the receivers
decide whether or not instruction I is valid and resist replay attacks. The fol-
lowing procedure implements a push-based multicast for a service provider to
broadcast I to certain smart meters.

1. The service provider broadcasts the following signcrypted instruction to the
smart meters according to Algorithm 3:

Service provider → Smart meters : SignCryption(I||ts, T,Ksign).

2. When a smart meter receives the signcrypted instruction, it designcrypts and
verifies the message according to Algorithm 4. If the verification is passed,
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the smart meter executes the instruction and sends a response to the service
provider to notify that it has received the instruction (proving that it has
the required privilege).

3. When the service provider receives the feedback response, the communication
is completed; otherwise, the service provider sends the instruction again.

Pull-Based Multicast Communication in Smart Grid. In order to protect
the power usage data, a smart meter signcrypts the data of its household devices
using Algorithm 3 based on the access policy specified by the data, and then
sends the signcrypted data CTsign to a data repository. When a service provider
possessing an attribute set S wants to get the data for a particular household
device, it contacts the data repository and gets the signcrypted data CTsign. The
following procedure details the process implementing a pull-based multicast.

1. A smart meter signcrypts its reading M with a timestamp ts, M ||ts, based
on Algorithm 3 and then sends CTsign to the data repository. This step can
be performed whenever a new data item is generated.

Smart meter → Data repository : CTsign.

2. When a service provider holding an attribute set S needs to access the smart
meter data, it contacts the data repository to obtain the signcrypted data
CTsign:

Data repository → Service provider : CTsign.

3. Upon receiving the signcrypted data CTsign, the service provider design-
crypts CTsign and verifies the message according to Algorithm 4: it first
recovers the plaintext M ′ based on its private key SK and then computes
δ′; if H1(δ′|M ′) = π, which demonstrates the successful designcryption of the
data, the service provider accepts M ′; otherwise, the message is dropped.

4 Correctness and Performance Analysis

In this section, we prove the correctness of CP ABSC and analyze its security
strength. We also carry out a simulation based performance analysis to quanti-
tatively study the efficiency and computational cost of CP ABSC.

4.1 The Correctness of CP ABSC

In this subsection, we show that CP ABSC is indeed feasible and correct. First,
from the decryption procedure we have

M ′ = C̃ ⊕ Ã = C̃ ⊕ (
e(C,D)

A
) = C̃ ⊕ (

e(C,D)
A

)

= C̃ ⊕ (
e(hs, g

(α+ren)/β
2 )

e(g1, g2)rens
) = M ⊕ e(g1, g2)αs ⊕ (

e(gβs
1 , g

α+ren/β
2 )

e(g1, g2)rens
)
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= M ⊕ e(g1, g2)αs ⊕ (
e(g1, g2)βs·(α+ren)/β

e(g1, g2)rens
)

= M ⊕ e(g1, g2)αs ⊕ (
e(g1, g2)(αs+rens)

e(g1, g2)rens
)

= M ⊕ e(g1, g2)αs ⊕ e(g1, g2)αs = M.

which indicates that Algorithm 4 can correctly decrypt the ciphertext if the
designcryptor satisfies the access policy (posessing the designcryption key SK).

Second, the receiver verifies whether the message M ′ has been forged or
falsified, and whether the received message is indeed sent by the generator of
the message. The designcryptor (the receiver) computes δ′ by:

δ′ =
e(C,ψ)

(e(W,Kver) · Ã)π
=

e(gβs
1 , gζ

2 × g
(α+rsn)

β π

2 )
(e(gs

1, g
rsn
2 ) · e(g1, g2)αs)π

= e(g1, g2)βs(ζ+
(α+rsn)

β π)−srsnπ−αsπ = e(g1, g2)βsζ+s(α+rsn)π−srsnπ−αsπ

= e(g1, g2)βsζ = e(C, g2)ζ = δ.

If H1(δ′|M ′) = π, M ′ is valid, i.e., M = M ′, and the message is not modified
and is indeed sent by the generator; otherwise, M ′ is invalid.

4.2 Security Strength

In this subsection, we analyze the security strength of the proposed scheme
CP ABSC by examining how it can counter four major attacks.

Collusion. In CP ABSC, the set of attributes composes of the user’s identity. In
order to provide different types of users with different access rights, the scheme
provides an access tree structure for each signcrypted data item, and requires
only a subset of the attributes for designcryption. Since the secret key computa-
tion involves a unique random number for each attribute in the access policy, our
scheme can defend against collusion attacks. For example, assume that neither
user U1 nor user U2 possesses a sufficient number of attributes to successfully
designcrypt the ciphertext CTsign alone but the combined attribute set has suf-
ficient number of attributes for the designcryption. Then U1 and U2 may collude
by combining their attributes. However, they are not able to combine their secret
keys (the SKs) to get a secret key for the combined set of attributes according
to Algorithm 2 because the KGC generates different random numbers ren for U1

and U2. Thus they could not designcrypt the message, and the proposed scheme
is secure against collusion attacks.

Message Authentication. Assume that a user U wants to get a message M
from the data repository. Before the data is stored in the data repository, the
data generator has signcrypted it with Algorithm 3. When U plans to obtain the
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Table 2. The details of Functions and Operations between CP ABE and our scheme

CP ABE [2] CP ABSC

Key Generation nG1 + (n + 2)G2 + nHG2 (2n + 5)G2

Encryption (k + 1)G1 + kG2 + 1G3 + kHG2 (2k + 2)G1 + 2G2 + 2G3 + 2 (pairings)
Decryption (2k′ + 1) (pairings) (2k′ + 3) (pairings)

Notes: G1 in the table means an exponentiation operation in G1 group; G2 and G3 are defined
similarly. HG1 means hashing an attribute string or a message into an element in G1; HG2 is
defined similarly.

Table 3. The Computational Cost (Run Time) of Different Operations in Charm
Library

Group G1 G2 G3 (pairings) HG1 HG2

SS512 3.73 3.70 0.48 3.92 8.34 8.39
MNT159 1.12 9.84 2.62 8.42 0.10 34.82

Notes: Time is in ms. The result in this table is the aver-
age of 1000 runs.

data from the data repository, it needs its private key SK = (D = g
(α+ren)

β

2 ,∀j ∈
S : Dj = gren

2 · g
(H1(j)·rj)
2 ,D′

j = g
rj

2 ), which is computed by Algorithm 2. Mean-
while, U obtains the data source’s verification key from KGC. It designcrypts
the ciphertext to get the message M ′ by Algorithm 4: if H1(δ′|M ′) = π, the
decrypted message M is valid; otherwise, it is discarded.

Forgery. An adversary who wishes to forge the signcryption of a legal user
must possess the user’s signing key. An adversary cannot infer the signing key
Ksign or the root node of the access tree T because the random number r for
each attribute in S (In Algorithm 2) and the s for the root of T (in Algorithm
3) are chosen randomly and secretly. An adversary cannot create a new, valid
ciphertext from other user’s ciphertexts. If the adversary changes the ciphertext
of a message, the receiver can verify that the ciphertext is illegal by Algorithm
4. Moreover, colluding users can not forge a ciphertext, as analyzed before. Thus
we claim that our proposed scheme is unforgeable.

Confidentiality. Decryption requires the knowledge of e(g1, g2)αs. The decryp-
tion procedure takes the same idea as that of CP ABE [2], and thus CP ABSC
has the same security strength as that of the CP ABE. The designcryption
requires the knowledge of δ = e(C, g2)ζ . For a passive adversary, the available
information is CTsign. It is difficult to get s from the W in CTsign since it is diffi-
cult to compute the discrete logarithm problem. Even if the adversary constructs
the bilinear mapping e via C and the public parameter g2 to obtain e(C, g2),
it can not get ζ, which is randomly chosen by the signcryptor. The adversary
may try to get ζ from ψ, but it has to get the Ksign first. Even if the Ksign

is compromised, the adversary still can’t get ζ from ψ due to the difficulty of
computing the discrete logarithm problem. Given the discussion above and the
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Fig. 8. Key generation
time

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

number of attributes in access structure

ru
nn

in
g−

ti
m

e 
in

 m
s

 

 

CP_ABE(SS512)
CP_ABE(MNT159)
CP_ABE(MNT159.S)
CP_ABSC(SS512)
CP_ABSC(MNT159)
CP_ABSC(MNT159.S)

Fig. 9. Encryption time

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

number of attributes to designcrypt

ru
nn

in
g−

ti
m

e 
in

 m
s

 

 

CP_ABE(SS512)
CP_ABE(MNT159)
CP_ABE(MNT159.S)
CP_ABSC(SS512)
CP_ABSC(MNT159)
CP_ABSC(MNT159.S)

Fig. 10. Decryption time

fact that CP ABE is proven secure under chosen-ciphertext attacks, our scheme
is secure under chosen-ciphertext attacks too.

4.3 Efficiency and Cost Analysis

In this subsection, we present a quantitative performance study on CP ABSC.
Our scheme CP ABSC does not incur a high computational cost in Key

Generation, SignCryption, and DeSignCryption compared to CP ABE. Table 2
reports the amount of operations performed by CP ABE and CP ABSC. The
notations are explained as follows: n is the number of attributes a user holds, k is
the number of leaf nodes in the access tree T , and k′ is the number of attributes
a user possesses. G1 denotes an exponent operation in G1 group, and the same
definitions hold for G2 and G3. HG1 means hashing an attribute or message into
an element in G1, and HG2 is defined similarly.

Starting with Key Generation, as described in Algorithm 2, there is
2n + 5 exponent operations in G2, which includes 5 exponent opera-
tions {gren

2 , gβ
2 , grsn

2 ,Den,Ksign}, and 2n exponent operations {Dj ,D
′
j}. In

CP ABE[2], the total operations is nG1 + (n + 2)G2 + nHG2 .
Moving next to the Signcryption in Algorithm 3, there are 2k + 2 exponent

operations in group G1 and 2 exponent operations in group G2. Additionally,
there are 2 map operations and 2 pairing. The combined overhead is thus (2k +
2)G1 + 2G2 + 2G3 + 2 (pairings). Similarly, in CP ABE, the total operation is
(k + 1)G1 + kG2 + 1G3 + kHG2 .

For Designcryption (in Algorithm 4), there are (2k′+3) (pairings) operations.
In CP ABE, there are (2k′ + 1) (pairings) operations.

We run the experiment with Ubuntu 12.04 running as a VM on a MAC-
Book Air with one 1.8GHz core and 1GB memory. The implementation uses a
Python library called Charm-crypto [1], which is a framework used to proto-
type advanced cryptosystems such as IBE and IBS (Identity-Based Signature).
The core mathematical functions behind Charm are from the Stanford Pairing-
Based Cryptography (PBC) library [12], which is an open source C library that
performs mathematical operations underlying pairing-based cryptosystems.
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We execute the implementation under both symmetric (SS512) and asymmet-
ric groups (MNT159 and MNT159.S), both with 80 bits of security, to compare
CP ABE and CP ABSC. In SS512, the map is G1 ×G2 → G3, where G1 and G2

are the same group. In MNT159, the map is G1 × G2 → G3, where G1 and G2

are different groups, and G2 and G3 are extension groups of G1. The elements
in G2 and G3 are longer than those in G1. The longer the element, the larger
the computational cost in exponential operations. In MNT159.S, we swapped
the G1 and G2 group so that most of the key generation operations are in G1

instead of G2.
Table 3 lists the run time of each operation and function in SS512 and

MNT159. One can see that some operations are more efficient in SS512 than
in MNT159 while others are the opposite. For example, the operations HG1 and
G1 have less run time in MNT159 than in SS512 but the operations of G2 and
HG2 have less runtime in SS512 than in MNT159.

The performance analysis compares the efficiency and computational cost
between CP ABSC and CP ABE for Key Generation, Signcryption/Encryption,
and Designcryption/Decryption. The results are reported in Figures 8-10. Figure
8 shows the run times of Key Generation. MNT159.S has the best performance
since we swapped G1 and G2 and most of the operations are in G1 after the swap.
Figure 9 reports the encryption run times. The run time in CP ABE and that in
our scheme CP ABSC is almost linear with respect to the number of leaf nodes in
the access policy. The polynomial operation at leaf nodes does not significantly
contribute to the run time. Comparing the run time between CP ABE encryption
and CP ABSC signcryption, one can see that our scheme costs less time than
CP ABE because we don’t need to compute HG2 . Figure 10 illustrates the run
times of decryption. Our scheme is slightly higher than that of CP ABE due
to the fact that we add the signature verification process. However, because
the computational cost of ABE is more expensive as the number of attributes
increases, the cost of signature verification is relatively trivial in practice.

Considering all three processes of KeyGeneration, SignCryption, and DeSign-
Cryption, MNT159.S has considerably better performance than MNT159. We
recommend executing the schemes in asymmetric groups and swapping G1 and
G2 to gain a better performance.

Due to space limitation, we omit the part of comparison between the proposed
scheme and Attribute based signature, which will be included in the extended
version.

In summary, the run time is predictable for key generation and encryption in
our scheme and is correlated with the number of attributes. Comparing the run
times of key generation, encryption, and decryption between CP ABE and our
scheme CP ABSC, the run times of our scheme is a little higher than CP ABE
for some cases. However, considering that our scheme combines encryption and
signature, CP ABSC is feasible and more desirable than the encryption-only
CP ABE.



436 C. Hu et al.

5 Conclusion and Future Work

In this paper, we present a signcryption scheme called CP ABSC that can pro-
vide access control, data confidentiality, and authentication based on an access
structure specified by the to-be-protected data itself. We analyze the compu-
tational cost and security strength of CP ABSC, and illustrate how to apply
CP ABSC to protect the multicast communications in smart grids. Particularly,
we employ CP ABSC to secure two types of multicasts: the push-based multi-
cast of instructions/commands from service providers to smart meters and the
pull-based data retrieval from data repositories to service providers.

Our future research lies in the following directions: design more efficient
signcryption approaches with less computational and storage requirements; and
develop a dynamic scheme that could dynamically add attributes to adapt to
the changing requirements of applications.

Acknowledgement. This research is supported by National Natural Science Foun-
dation of China under grant 61373027, and the US National Science Foundation under
grants CCF-1442642, IIS-1343976, CNS-1318872, and CNS-1550313.
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4. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold attribute-based signcryption.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 154–171.
Springer, Heidelberg (2010)

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

6. Hart, G.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891
(1992)

7. Chunqiang, H., Liao, X., Cheng, X.: Verifiable multi-secret sharing based on lrsr
sequences. Theoret. Comput. Sci. 445, 52–62 (2012)

8. Kgwadi, M., Kunz, T.: Securing rds broadcast messages for smart grid applications.
International Journal of Autonomous and Adaptive Communications Systems 4(4),
412–426 (2011)

9. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588.
Springer, Heidelberg (2011)

10. Li, Q., Cao, G.: Multicast authentication in the smart grid with one-time signature.
IEEE Transactions on Smart Grid 2(4), 686–696 (2011)



A CP ABSC Scheme to Secure Attribute-Defined Multicast Communications 437

11. Lu, R., Liang, X., Li, X., Lin, X., Shen, X., et al.: Eppa: An efficient and privacy-
preserving aggregation scheme for secure smart grid communications. IEEE Trans.
on Parallel and Distributed Systems (2012)

12. Lynn, B.: On the implementation of pairing-based cryptosystems. PhD thesis,
Stanford University (2007)

13. Neumann, W.D.: Horse: an extension of an r-time signature scheme with fast sign-
ing and verification. In: International Conference on Information Technology: Cod-
ing and Computing, Proceedings. ITCC 2004, vol. 1, pp. 129–134. IEEE (2004)

14. Perrig, A.: The biba one-time signature and broadcast authentication protocol.
In: Proceedings of the 8th ACM conference on Computer and Communications
Security, pp. 28–37. ACM (2001)

15. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The tesla broadcast authentication
protocol. CryptoBytes 5(2), 2–13 (2002)

16. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002)

17. Ruj, S., Nayak, A., Stojmenovic, I.: A security architecture for data aggregation,
access control in smart grids. Arxiv preprint arXiv: 1111.2619 (2011)

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
19. So, H.K.H., Kwok, S.H.M., Lam, E.Y., Lui, K.S.: Zero-configuration identity-based

signcryption scheme for smart grid. In: IEEE International Conference on Smart
Grid Communications, pp. 321–326. IEEE (2010)

20. Wang, Q., Khurana, H., Huang, Y., Nahrstedt, K.: Time valid one-time signa-
ture for time-critical multicast data authentication. In: IEEE INFOCOM 2009,
pp. 1233–1241. IEEE (2009)

21. Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and
broadcast encryption. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 753–755. ACM (2010)

http://arxiv.org/abs/1111.2619


Generation of Transmission Control Rules
Compliant with Existing Access Control Policies

Yoann Bertrand(B), Mireille Blay-Fornarino, Karima Boudaoud,
and Michel Riveill

University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France

{bertrand,blay,boudaoud,riveill}@i3s.unice.fr

Abstract. Access Control (AC) is a well known mechanism that allows
access restriction to resources. Nevertheless, it does not provide notifi-
cation when a resource is retransmitted to an unauthorized third party.
To overcome this issue, one can use mechanisms such as Data Loss/Leak
Prevention (DLP) or Transmission Control (TC). These mechanisms are
based on policies that are defined by security experts. Unfortunately,
these policies can contradict existing AC rules, leading to security leak-
age (i.e. a legitimate user is allowed to send a resource to someone who
has no access rights in the AC).

In this article, we aim at creating TC policies that are compliant
with existing AC policies. To do so, we use a mapping mechanism that
generates TC rules directly from existing AC policies. Thanks to the
generated rules, our solution can make inferences to improve existing
AC and enhance security knowledge between infrastructures.

Keywords: Security · Access Control · Security policies · Transmission
Control · Transmission security · Data Loss Prevention · Data Leak
Prevention · Data leakage

1 Introduction

To add security to an infrastructure, one can start by controlling access to certain
resources by using Access Control (AC) mechanisms. Unfortunately, traditional
AC mechanisms are not useful to notify and manage what can happen to the
resource once it is accessed. Indeed, a legitimate user can access then retransmit
(legitimately or not) the resource to an unauthorized third party. If the third
party does not have access to the resource in the AC, this retransmission can be
seen as a violation of AC, and thus, as a data leakage. To tackle this problem,
one can use Data Loss/Leak Prevention (DLP) or other Transmission Control
mechanisms (TC). Such mechanisms are based on policies that aim at monitoring
and notifying unauthorized resource transmission. DLP / TC are often used on
top of AC, leading security experts to manage both paradigms. This double
management can lead to data leakage.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 438–455, 2015.
DOI: 10.1007/978-3-319-28865-9 24
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Let us take an example. Imagine an AC policy containing a rule mentioning
that “user Chris can access the resource docA.pdf” and a TC rule saying that
“Chris can send all pdf files”. If Chris accesses docA.pdf and wants to send it to
Ana (who does not have access to docA.pdf in the AC), several remarks can be
made. First of all, the fact that Chris can access docA.pdf does not violate the
AC policy. Secondly, the fact that Chris sends docA.pdf to Ana does not violate
the TC policy. Nevertheless, the transmission will cause a violation of the AC
policy because Ana does not have access to docA.pdf.

This simple, but yet explicit example, shows that even if both AC and TC
policies are correct, TC rules can violate existing AC policies and consequently
lead to data leakage.

Our objective is to work with Transmission Control (TC) policies that
do not contradict the existing Access Control (AC) policies.

To do so, we propose a mechanism that generates TC policies based
on existing AC policies. Thanks to the generated TC policies, our solution
offers mechanisms that :

– help improving existing AC policies (M1);
– help integration and enhancement of security knowledge between infras-

tructures or companies (M2).

The rest of the paper is organized as follows. Section 2 presents the main
works related to access and transmission control. Section 3 describes the vocab-
ulary we are using. Section 4 details our solution. Section 5 presents the results
of our evaluation while section 6 concludes the paper and outlines future works.

2 Related Works

This section presents the main Access Control models and Data Loss/Leak Pre-
vention (DLP) notions. The last part of the section presents existing solutions
that aim at linking both AC and TC paradigms in common models or frame-
works.

2.1 Access Control Models (AC)

Access Control (AC) encompasses sets of controls to restrict access to certain
resources. Several contributions have been made to create efficient and fine-
grained AC mechanisms. The following subsections present the main AC models.

Mandatory Access Control (MAC). MAC is a type of access control that
secures resources by assigning sensitivity labels on resources and comparing these
labels to the accreditation level a user is operating at. These levels are defined
and controlled by the system, independently of user operations and choices. MAC
is often used in confidential and military infrastructures. Famous models, such
as Bell-LaPadula [1] or Biba [2] are based on MAC principles.
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Discretionary Access Control (DAC). DAC allows users to determine and
set the permissions over all the resources they own. The main DAC models are
Access Control Lists (ACL) and Capability-based access control. Access Control
Lists [3] represent resource rights as a table of subjects mapped to their individ-
ual rights over the resource. ACLs are data-oriented and provide a straightfor-
ward and rather simple way of granting or denying access.

Capability-based [4] access is more subject-oriented. A capability is an
unforgeable token used to access a resource. It can be represented as a pair
(x, r) where x is the name of a resource and r is a set of access rights. Thus, sub-
ject’s capabilities are stored with the subject. Systems such as Plessey System
250 [5] are based on capabilities.

Role Based Access Control (RBAC). The paradigm behind RBAC [6] is
based on the notion of role. A role is a set of users that share common attributes
(for instance, a role “Network-Staff” containing all the network engineers of a
company). In this model, users are members of one or several groups and this
membership gives them access to certain resources.

Attributes Based Access Control (ABAC). NIST defines ABAC as “An
access control method where subjects requests to perform operations on objects are
granted or denied based on assigned attributes of the subject, assigned attributes
of the object, environment conditions, and a set of policies that are specified in
terms of those attributes and conditions” [7]. Attributes can represent various
things about a subject (age, sex, etc.) or an object (resource security level, type,
etc.). Thus, ABAC can be seen as an extension of RBAC.

Policy Based Access Control (PBAC). Policy Based Access Control [8]
allows access rules to be defined and updated in a policy-oriented fashion. Poli-
cies are sets of rules that can be combined to determine if an access is authorized
or not, depending on various attributes regarding the subject, object or environ-
ment. For these reasons, PBAC can be viewed as a standardization of ABAC for
companies or other governance oriented structures.

Traditional AC models offer an easy way to restrict access to resources. Never-
theless, they do not tackle retransmission problems. To overcome this issue, solu-
tions have been proposed. These solutions include Data Loss/Leak Prevention.

2.2 Data Loss/Leak Prevention (DLP)

This subsection presents the main notions of Data Loss/Leak Prevention1.

1 DLPs have been described in various terms, including Information Leak Detection
and Prevention (ILDP), Information Leak Prevention (ILP) or Content Monitoring
and Filtering (CMF). Nevertheless, DLP is the most commonly used name.
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Definition and Classification. DLPs have been described as “systems that
monitors and enforce policies on fingerprinted data that are at rest (i.e. in stor-
age), in-motion (i.e. across a network) or in-use (i.e. during an operation) on
public or private computer/network.” [9].

Policy Definition. DLPs are based on policies. These policies can help security
experts defining fine-grained rules that help the DLP to detect and prevent
leakage (for instance: “deny the transmission if data x is sent to user U1”).
Industrial DLPs, such as the one provided by Symantec2 or RSA3, offer graphical
user interfaces to generate these rules.

DLP can provide efficient TC mechanisms thanks to policies. As stated in
the introduction, such policies can be in contradiction with an existing AC,
leading to AC policy violations. To overcome this issue, one solution can be to
combine both Access Control and Transmission Control in an unified paradigm
and define both aspects at the same time. Such solutions are presented in the
next subsections.

2.3 Unifying AC and TC

Several works have been proposed to unify AC and TC in common formalisms
or frameworks. By doing so, a security expert can define at the same time both
AC and TC policies, reducing the risk of contradiction. This subsection presents
the main works in the domain.

Usage Control (UCON). UCON [10] has proposed to add the notion of
ongoing usage to AC. Based on the notions of Authorizations, Obligations and
Conditions, UCON offers a unified framework that covers traditional AC models
and enhance them to tackle prerequisites within network-connected environ-
ment. UCON has been followed by many works, tackling policy definition [11],
decentralized systems [12] or existing company mechanisms enforcement [13].

Organization Based Access Control (OrBAC). OrBAC defines a concep-
tual and industrial framework to meet the needs of information security. It covers
a lot of issues such as conflict detection [14] or interoperability and deployment
in companies Workflows [15]. In [16], OrBAC has been enhance to tackle infor-
mation flow control problematic.

eXtensible Access Control Markup Language - Data Loss Prevention
(XACML-DLP). XACML is a XML standard that defines a declarative AC.
In October 2014, a new version of XACML has been implemented. This version,

2 https://www.symantec.com/data-leak-prevention/
3 http://www.emc.com/security/rsa-data-loss-prevention.htm?fromGlobalSelector

https://www.symantec.com/data-leak-prevention/
http://www.emc.com/security/rsa-data-loss-prevention.htm?fromGlobalSelector
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named XACML-DLP4, embeds both Access Control and Transmission Control
in a same formalism.

Linking AC and TC in a common formalism allows security experts to define
at the same time both paradigms, reducing the risk of contradiction between
them. Nevertheless, these solutions do not use the existing AC. Moreover, they
cannot help enhancing the existing AC policies (M1) and ease the integration
between companies thanks to inferences (M2). Following sections present a solu-
tion providing such mechanisms.

3 Context and Vocabulary

This section gives information about the concepts and vocabulary we are using.
It first describes the scope of our study. Then, it presents a generic AC formalism
and sets some working hypothesis regarding the existing AC policies.

3.1 Scope of the Study

In this paper, we have considered only 3 actions: Read, Read-Write, and no
access. Also, we have decided to represent subjects as individuals instead of
roles or groups. In term, we intend to broaden our solution to encompass more
sophisticated actions and subjects representation.

Concerning the validation of the generated TC policies, a checking mechanism
has been implemented to verify that generated TC rules are coherent with the
existing AC policies. In this article, we focus on the generation process itself, for
that reason, details about this validation mechanism are intentionally omitted.

3.2 Generic Access Control Model

To take into account the main AC models of the literature, we have been inspired
by [17] and more specifically [18] and [19] to represent a generic AC as a set of
rules (1). A rule is always composed of three fundamental things; Subject, Action
and Resource (2).

GenericAC =< σ1, σ2, ..., σn >,∀σ ∈ Rules (1)
σ =< s, a, r >, s ∈ Subject, a ∈ Action, r ∈ Resource (2)

Subjects, Actions and Resources are subsets of Entity (3). An entity can be
formalized has a unique identifier (for instance a name) and a set of param-
eters (i.e. attributes) (4). A parameter can represent for instance a role (ex:
role=”manager”) or an accreditation level (ex: ”accreditationLevel = ”3”). The
main properties of the identifier is that it cannot be empty (5) and it must be
unique (6).

4 http://docs.oasis-open.org/xacml/xacml-3.0-dlp-nac/v1.0/csprd01/xacml-3.
0-dlp-nac-v1.0-csprd01.html

http://docs.oasis-open.org/xacml/xacml-3.0-dlp-nac/v1.0/csprd01/xacml-3.0-dlp-nac-v1.0-csprd01.html
http://docs.oasis-open.org/xacml/xacml-3.0-dlp-nac/v1.0/csprd01/xacml-3.0-dlp-nac-v1.0-csprd01.html
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Fig. 1. Correspondences between the ABAC rule “Managers can read all pdf files” and
the generic AC rules.

{Subject, Action,Resource} ⊂ Entity (3)
entity = {identifier,< p1, p2, ..., pn >} (4)

∀e ∈ Entity, e(identifier) �= ∅ (5)
∀ei, ej ∈ Entity, ei(identifier) �= ej(identifier) (6)

A parameter is a pair of key/value (7). Both key and value cannot be empty
(8). For a particular entity (ex: subject ”Bob”), two parameters cannot have the
same key (9).

parameter =< key, value > (7)
∀p ∈ Parameter, p(key) �= p(value) �= ∅ (8)

∀(pi, pj) ∈ P 2, pi(key) �= pj(key) (9)

Thanks to this formalism, we consider that traditional AC models can be
represented. For instance, in the case of ABAC, a rule such as “every Manager
can access all the pdf files in read mode” is equivalent to an enumeration of the
rules (i.e. Cartesian product) among set “Manager” and set “pdf” (see Fig. 1.).
We underline that such transformation can generate a huge amount of rules.
Nevertheless, conducting tests in Section 5 show that our model is efficient for
quite large sets of rules.

We make some hypothesis concerning the original AC. First of all, we consider
that the original AC does not contain contradictory rules (for instance, a subject
has both access and no access to a particular resource). Secondly, we consider
that the correspondence between the original AC and the generic AC rules is not
destructive, meaning that the semantic is conserved (no information is added,
modified or removed). Finally, we consider that the corresponding generic AC
can contain duplicate rules.

In this section, we have presented the generic model used by our solution.
This generic model has been defined in order to take into account several AC
models such as traditional ACL, RBAC or ABAC. Working hypothesis have
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been made concerning the correspondence with generic AC rules. The following
section describes our contribution in detail.

4 Contribution

In this section, we present our model. The first subsections describe our Trans-
mission Control paradigm (4.1) and representation (4.2). Then, we present the
generation mechanism that transforms Access Control policies into Transmission
Control policies (4.3). The last subsections present a mechanism that notifies
possible AC improvement (4.4) and propose an example to illustrate that our
solution can ease integration and improve security knowledge between infras-
tructures (4.5).

4.1 Transmission Control List

Transmission Control model aims at answering the question: “who can send
what to whom?”. To do so, we have defined a Transmission Control List (TCL),
formalized as a set of transmissions regarding a specific resource (10). Thus,
a specific TCL cannot describe transmission rights of more than one resource
(11). A transmission embeds the following elements: a source subject (i.e. the
sender), a destination subject (i.e. the receiver), the actions of the sender and
the receiver and a transmission type (12). A transmission type represents if a
transmission is authorized (TRANSMISSION AUTH) or if the transmission is
denied (TRANSMISSION DEN).

∀tcl ∈ TCL, tcl = {resource,< τ1, ..., τn >} (10)

∀tcl1, tcl2 ∈ TCL, tcl1(resource) �= tcl2(resource) (11)

τ =< sender, receiver, senderAction, receiverAction, type >,

sender, receiver ∈ Subject,

senderAction, receiverAction ∈ Action, type ∈ TransmissionType

(12)

4.2 Representation

For the sake of understanding, we represent ACL and TCL as matrices. ACL can
be represented as a two-dimensional matrix, where columns represent resources,
rows represent subjects, and intersections represent the action that the corre-
sponding subject can perform on the corresponding resource (Fig. 2.a).

For a specific resource, the corresponding TCL can be represented as a two-
dimensional matrix, where rows represent senders, columns represent receivers,
and intersections represent the transmission type (ex: TRANSMISSION AUTH)
between the sender and the receiver (Fig. 2.b). We underline that actions of
senders and receivers are also conserved in the TCL, due to the TCL formalism
defined in 4.1. We also underline that the only subjects that are present in the
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(2.a) (2.b)

Fig. 2. Graphical representation of a generic ACL (2.a) and a corresponding TCL (2.b)

corresponding TCL are the subjects with an explicit access right to this resource
(we call such subjects “marked subjects”). Thus, the size of the TCL depends
on the number of marked subjects. Indeed, a resource with many access rights
in the ACL will generate a bigger TCL than a resource that can be accessed by
fewer subjects.

4.3 Generation Mechanisms

After having described both ACL and TCL, we now discuss the generation
mechanisms that aim at transforming existing ACL into TCLs. This subsection
presents the main parts of the generation mechanism.

Creation of the TCL Structure. To create the general structure of the TCLs,
the mechanism starts by retrieving all resources of the ACL. For each resource,
the mechanism retrieves every marked subjects. Then, the mechanism creates
the general structure of the matrices (one matrix per resource) by adding for
each row and column the marked subjects as senders and receivers.

Mapping Rules Concept. Once the TCLs have been generated, they must
be filled. A naive approach could be to fill every intersection with TRANSMIS-
SION AUTH, because every subject in a specific TCL is a marked subject and
thus, has access to the resource in the original AC (see Fig. 3). Nevertheless,
allowing every single transmission between marked subjects can be too permis-
sive. In order to restrict transmissions in certain cases, we have defined Mapping
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Fig. 3. Illustration of the creation of TCLs structure. For every resource in the ACL, a
corresponding TCL is created. The size of the TCL depends on the number of marked
subjects. Moreover, each marked subject is both sender and receiver.

Rules (MR). A MR can be represented as a function that takes parameters of a
sender, actions, receiver and resource and returns a transmission type (13).

f(sender, senderAction, receiver, receiverAction, resource) → type

type ∈ TransmissionType
(13)

For each element of the matrix (i.e. each row/column intersection), the mech-
anism retrieves all the parameters concerning the sender, the receiver, the action
of the sender, the action of the receiver and the resource, then output a trans-
mission type.

To define how the transmission type is chosen depending on the entry param-
eters, we have defined a syntax. Details about this syntax are given below.

Mapping Rules Syntax. We have defined a syntax called Mapping Rules
Syntax (MRS). MRS is based of three different things: targets, operators and
inputs. A target can be formalized as an entity and an element (14). An entity
can be a sender, a receiver, an action of the sender, an action of the receiver or a
resource (15). An element can be an entity identifier (ex: “John”), a parameter
key (ex: “role”), or a parameter value (ex: “manager”)(16).

target = (entity, element) (14)
entity = {sender, receiver, senderAction, receiverAction, resource} (15)

element = {identifier, parameter(key), parameter(value)} (16)

MRS uses two types of operators: arithmetic operators and logical opera-
tors (17):

arithmeticOperator : {=, �=, <,>,≥,≤}
logicalOperator : {∨,∧} (17)
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Finally, the last component of MRS is the input, which is just a String (i.e.
any word in the alphabet A) (18).

input ∈ A∗ (18)

Generic Rules. Thanks to previous definitions, generic rules can be defined
and applied. A generic rule is defined by a target, an arithmetic operator, another
target and a transmission type (19):

genericRule = targetA, arithmeticOperator, targetB → type

targetA, targetB ∈ Target

type ∈ TransmissionType

(19)

Generic rules can provide predefined and generic patterns to security experts.
For instance, a generic rule such as “you cannot send any resource to someone
with an accreditation level lower than yours” can be defined. Considering that
subjects have a parameter “level” describing such accreditations, the previous
generic rule will be:

rule1: (sender, level) > (receiver, level) → TRANSMISSION DEN

With this formalism, we aim at providing general patterns that can be auto-
matically applied to every row/column intersection. Such mechanism can then
easily transform ACLs into TCLs.

Nevertheless, a security expert might want to define particular rules, adapted
to her/his business or infrastructure. To do so, we have defined specific rules.

Specific Rules. Our model defines a specific rule as a target, an arithmetic
operator and an input (20):

specificRule = target, arithmeticOperator, input → type (20)

Specific rules are used to define specific conditions on parameter values. A
specific rule such as “if the receiver does not have read and write permission, the
transmission is denied” will be defined by:

rule2:
(receiverAction,identifier) �= “Read-write” → TRANSMISSION DEN

To express even more complex rules, conditions and rules can be combined
with logical operators. For instance, a set of conditions can be used to define
the rule “if John sends docA.pdf to a manager, the transmission is authorized”.
This rule will be formalized as follows:
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rule3:
(sender, identifier) = ”John” ∧ (resource, identifier) = ”docA.pdf” ∧
(receiver, identifier) = ”manager” → TRANSMISSION AUTH

Thanks to generic and specific rules, conditions on entities and parameters
can be defined and applied. Generic rules provide a toolkit that can automati-
cally be applied while specific rules formalism can be used by a security expert
to express specific conditions, depending on her/his infrastructure and security
concerns.

Confidential Transmission. Because TRANSMISSION AUTH does not
modify the medium, we empathize that sending a resource in cleartext is not
secured and can be viewed as sending a resource to everyone. Thus, we have
added another type of transmission, called TRANSMISSION CONF, which
allows a security expert to express confidentiality. This transmission type can
be used with generic or specific rules. For instance, the rule “resource ’docX.pdf’
needs to be sent with confidentiality” will be expressed as follows:

rule4: (resource, identifier) = ”docX.pdf” → TRANSMISSION CONF

Conflict Detection. Our model is able to express generic and specific rules.
Nevertheless, definition and combinaison of these rules can lead to conflicts.
Indeed, imagine for instance that a security expert defines and combines two dif-
ferent rules r1 and r2, where r1 defines “When managers are sending a resource,
the transmission must have confidentiality property” and r2 defines “John can-
not send docA.pdf” (even if he has access to it in the ACL). Imagine now that
John is a manager. The mapping mechanism will have issues deciding which
transmission type to apply for every element in the row ”John” for the TCL of
docA.pdf.

Indeed, for this resource, the system will not be able to determine if the
resource can be sent (r1) or not (r2). To overcome this issue, we have defined
several mechanisms.

The first one is to notify the security expert of the inconsistency and ask
her/him for an answer. She/he can chose the transmission type of her/his choice,
or implement an ad hoc rule.

To avoid multiple notifications, another mechanism that we have defined is
the decision strategies (DS). To use decision strategies, a security expert first
needs to set levels for transmission type. For our example, we have considered
that a denied transmission is more secure than the other types of transmission.
Thus, we have chosen the following order:

Level 1: TRANSMISSION AUTH < Level 2 : TRANSMISSION CONF <
Level 3: TRANSMISSION DEN
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Once the levels have been defined, the security expert can use one of the
following decision strategies:

– HIGHEST: apply the transmission type with the highest level
– LOWEST: apply the transmission type with the lowest level
– MOST PRESENT: apply the transmission type which is the most present

in the sequence of rules
– DEFAULT: apply the default transmission type

In our example, the following rule will be applied automatically, depending
on the strategy:

Strategy Applied rule
HIGHEST r2
LOWEST r1

MOST PRESENT cannot answer, DEFAULT is applied
DEFAULT TRANSMISSION DEN

To transform AC policies into TC policies, we have defined a specific syntax,
called Mapping Rules Syntax (MRS). MRS can express generic and specific
rules. Generic rules provide a toolkit that applies generic security policies while
Specific rules can be use to define ad hoc rules. Thanks to this syntax, an ACL
(which can be represented as a two-dimensional matrix) can be transformed
into many TCLs matrices. Each TCL represents all the transmissions marked
subjects can/cannot do for a specific resource.

4.4 Inference Mechanisms to Enhance Existing AC Policies (M1)

One of our objective is to provide a solution that is capable of improving an
existing AC model. To do so, we use inference mechanisms. This subsection
presents the main inferences that our solution is able to make.

Similarities Between Subjects. In the same TCL, if two couples of
row/column are identical, it means that for a particular resource, two subjects
have the same transmission behavior (i.e. they can send and receive the resource
in the same way). If this reasoning is generalized for all TCLs, it means that
these two subjects have exactly the same transmission rights for all the resources
they have been marked for. Such inference mechanism is able to notify security
experts that two or more subjects are similar in terms of transmission rights.

The model is also able to determine if these similar subjects have common
parameters (such as ”role” or ”group”). If the existing ACL is based on RBAC
or ABAC, the exact original classification is detected. However, if the original
AC was a model without roles or attributes, notifications can help a security
expert to have a better understanding of her/his ACL. With this knowledge,
the security expert can decide to migrate her/his original ACL to a RBAC or
ABAC model, using the notification to create roles or categories. Fig. 4. gives
an example of the similarities between subjects.
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Fig. 4. Representation of the subject similarities mechanism for a single resource. In
this case, security expert will be notified that Bob and Franck have the same behavior.

Similarities Between Resources. The same inferences can be applied to
resources. In this case, if two TCLs are strictly equivalent, it means that for
two different resources, the same subjects have strictly the same transmission
behavior. The same assumption can be made for more than two resources. Thus,
the same reasoning as subject similarities can be applied, meaning that the model
is able to determine if similar resources (in term of transmission behavior) have
properties in common (for instance, type=”pdf”). Once again, these notifications
can help security experts to have a better understanding of the original AC.

4.5 Inference Mechanisms to Help Integration and Enhance
Security Knowledge (M2)

Inference mechanisms can also be used to detect security indulgences between
two infrastructures regarding the same resources. Indeed, imagine that a com-
pany A wants to buy another company B. Both companies can be very different
in terms of hierarchy, policies and sensibilities toward security. After the buy-
out, security experts from company A might have some issues equalizing the two
environments. Our solution can be interesting in such case.

Indeed, imagine that documentX.pdf is both used by company A and B.
By applying our model in both companies, two different TCLs, TCL A and
TCL B, will be generated. TCL A (resp. TCL B) will represent the transmission
behavior of documentX.pdf inside company A (resp. company B). Inferences
mechanisms presented previously cannot be applied, mainly because the two
companies do not share the same subjects. Nevertheless, it is possible to compare
the “tendencies” of the two TCLs. By tendencies, we mean general statistics such
as the total number of subjects who have access to the resource (i.e. the size of
the TCL) or the transmission types distribution (i.e. the percentage of each
transmission type). To give an example, Fig. 5. represents TCL A as a small
matrix filled with confidential transmissions, while TCL B is represented as a
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very big TCL with a lot of non-confidential transmissions. Tendencies underline
that there is a difference of security level regarding documentX.pdf. With such
comparison, our model is able to notify security experts that company B has
an indulgent security policy concerning documentX.pdf. Security experts can
then modify mapping rules to generate a less permissive TCL B, or tackle the
problem at its root and modify the AC of company B in order to reduce the size
of TCL B.

Fig. 5. Illustration of the tendency inferences, applied to a buyout example. Based
on tendencies, notification can underline that company B is more indulgent regarding
documentX.pdf security.

5 Evaluations

This section presents the results of several tests conducted in order to show that
the proposed solution can be applied in real-life scenarios. For these tests, we
aim to answer the following three questions:

– Q1: Are generation and inference mechanisms time-consuming?
– Q2: Is our solution suitable for small and medium-sized companies?
– Q3: Do specific ACL characteristics have any effects on the computational

time?

5.1 Implementation

To generate ACLs, we have implemented an automatic rules generator. For the
tests, several ACLs have been generated in order to simulate small and medium-
sized company in term of subjects and resources. Information about these ACLs
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are given in Table 1. The last column of this table (Ratio) is the proportion
between the number of subjects and the number of resources (Ratio = NbRe-
sources/NbSubjects). A ratio greater than 1 is more likely to be found in a
company. Indeed, the total amount of resources is often bigger than the total
amount of subjects. We have based our sets on this assumption and have gener-
ated ACLs with different size and ratio. These ACLs try to simulate the amount
of subjects and resources that can be found in small and middle-sized compa-
nies. We empathize, however, that these ACLs are purely speculative. Future
works will focus on asking companies for insight about realistic volumetry and
ratios (to that end, an online survey can be found here: http://goo.gl/forms/
l0VIKDYBGt).

From a technical point of view, we have used a MacBook Pro Retina (Intel
Core i7, 2,4 GHz, 16GB RAM, 256 GB SSD hard drive) and Java 7. Java Virtual
Machine has been tweaked with a heap size of 4096 bytes.

We have used two mapping rules. The first one was “you cannot send a
resource to someone with a lower accreditation level than you” while the second
was: “confidential resources need to be sent with confidentiality property”. Thus,
we have created subjects with a parameter “accreditationLevel” and resources
with a parameter “securityLevel”. In order not to distort results with human
interactions, we have used Decision Strategy “STRONGEST” with the secu-
rity level described in 4.3. Thus, in case of conflict, the first rule was applied
automatically.

5.2 Generation Tests

In these tests, we have measured the time-consumption of the process that allows
our model to generate TCLs based on ACL. To do so, we have measured the
time between the loading operation of an ACL and the end of the process (i.e.
when all TCLs have been generated and saved as serializable objects in the hard
drive). Results in Fig. 6.A show the generation process results. For very little set
such as ACL1, it takes less than 1 second to compute. For sets ACL2 / ACL3 and
ACL4 / ACL5, we can notice that the ratio slightly influences the computation.
It can be explained by the fact that for ACL4, the maximum size of a TCL
would be 1000 rows and columns (if everyone has access to the corresponding
resource), whereas the maximum size of a TCL generated with ACL5 would

Table 1. Access Control Lists used for the tests.

ID Rules Subjects Actions Resources Ratio

ACL1 50 10 3 40 4

ACL2 1500 250 3 1000 4

ACL3 1500 50 3 1250 25

ACL4 5000 1000 3 4000 4

ACL5 5000 200 3 4000 20

ACL6 10000 200 3 7000 35

http://goo.gl/forms/l0VIKDYBGt
http://goo.gl/forms/l0VIKDYBGt
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(A) (B)

(C)

Fig. 6. Results for the generation process tests (A), subjects similarities tests (B) and
resources similarities tests (C).

be “only” 200. Thus, these results show that it is algorithmically easier to do
operations on a lot of smaller TCLs, rather than manipulating fewer, but bigger
ones. Moreover, the saving process that consists of storing the generated TCLs
is quite time-consuming, especially for big serialized objects.

Finally, ACL6 results show that our model can compute medium-size compa-
nies sets in less than 2 minutes. We consider these results has acceptable, espe-
cially for a process that needs to be done several times a day to be up-to-date.

5.3 Inferences Tests

We have tested the subjects and resources inferences mechanisms. Results in
figure 6.B show that the subjects similarities computational time depends on
the size of the ACL, with no significant impact regarding the ratio. Results
in figure 6.C, however, show that ratio has a little impact for resource sim-
ilarities. Indeed, even if ACL4 has 400 more resources, results shows that
resources similarities process in ACL4 is faster than in ACL3. This results can be
explained by the fact that once again, it is easier to compare many smaller Java
objects.

Thanks to the conducted tests, questions Q1, Q2 and Q3 have been
answered. Results show that the mechanisms involved in our model (i.e. gen-
eration and inferences) are quite fast, even with ACLs that embeds hundred
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of subjects and thousands of resources (Q1). Despite the fact that these ACLs
generate thousands of TCLs, results have shown that our model is scalable and
can be used for small and medium-size companies volumetry (Q2). Finally, tests
have shown that ratio between subjects and resources can have an impact on
the processing time (Q3). Indeed, bigger ratio reduces the computational time
for some mechanisms. Fortunately, this kind of ratio is more likely to be found
in a real life scenario.

6 Conclusion

Over the years, Access Control (AC) mechanisms have been proposed to control
access of resources. Unfortunately, traditional AC do not provide notification
mechanisms when a resource is retransmitted to an unauthorized third party. To
overcome this issue, Data Loss/Leak Prevention or other Transmission Control
(TC) mechanisms can be implemented on top of AC. Nevertheless, TC policies
can contradict existing AC policies, leading to potential data leaks. One solution
can be to link both paradigms in a common formalism, allowing a security expert
to define both policies at the same time. Nevertheless, proposed solutions do not
always provide TC rules that are compliant with existing AC policies. Moreover,
they do not offer notification mechanisms that can help enhancing the existing
AC policies and facilitate the integration between companies and infrastructures.
To cover these drawbacks, we have defined a new transformation mechanism that
takes existing AC policies and generates TC policies. Thanks to the generated
TC policies, two notification mechanisms have been implemented.

The first mechanism can help enhancing the existing AC (M1). This mech-
anism has been implemented thanks to resources and subjects similarities fea-
tures. Such features can help a security expert to have a better understanding
of her/his existing AC, by detecting resources and subjects with the same trans-
mission behavior (Section 4.4). The second mechanism can be used to ease the
integration between infrastructure and increase security knowledge (M2). Once
again, we have used generated TCLs to infer tendencies that fulfill such purpose.
To give an example, we have proposed a simple case study of a company buyout
(Section 4.5). Finally, we have tested our solution with various ACLs. Results
show that the model is interesting in terms of computational time for small and
medium-sized companies.

In the future, we intend to modify our model to take into account more
sophisticated entities by using capability-based security. Moreover, we will aim
at reasoning with clusters of entities rather than single entities to simplify pol-
icy management and reduce the number of generated files. Secondly, we aim
at creating realistic ACLs (in term of subjects and resources ratio) by asking
companies about the volumetry of their ACLs. Finally, we would like to offer a
formalized approach of the complexity of our mechanisms.
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Abstract. Protocol signature specifications play an important role in
networking and security services, such as Quality of Service(QoS), vul-
nerability discovery, malware detection, and so on. In this paper, we
propose ProParser, a network trace based protocol signature inference
system that exploits the embedded contextual correlations of n-grams
in protocol messages. In ProParser, we first apply markov field aspect
model to discover the contextual relations and spatial structure among
n-grams extracted from protocol traces. Next, we perform keyword-based
clustering algorithm to cluster messages into extremely cohesive groups,
and finally use heuristic ranking rules to generate the signature specifi-
cations for the corresponding protocol. We evaluate ProParser on real-
world network traces including both textual and binary protocols. We
also compare ProParser with the state-of-the-art tool, ProWord, and find
that our approach performs more accurately and effectively in practice.

Keywords: Protocol signatures · Markov random field · Network
security

1 Introduction

Protocol signatures are a set of unique byte subsequences that can be used to
distinguish the network traces of individual protocols. Protocol signature specifi-
cations play an important role in networking and security services, such as Qual-
ity of Service(QoS), Intrusion Detection and Prevention Systems(IDSes/IPSes),
malware detection, vulnerability discovery, and so on [5, 15, 16, 25, 27]. To
be specific, Internet Service Providers(ISPs) uses protocol signature specifica-
tions to understand the components of protocol traffic passing through their
networks. With an in-depth analysis of the composition of protocols, ISPs can
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impose meaningful and appropriate policies on protocol traces to provide a bet-
ter service experience in practice. Furthermore, protocol signature specifications
are also crucial for IDSes/IPSes. IDSes/IPSes match the packet payload against
the protocol signatures to discover abnormal behaviors or activities in protocol
traffic. Besides traffic monitoring and IDSes/IPSes, protocol signature specifica-
tions are also helpful for vulnerability discovery. For example, existing penetra-
tion testing tools often need protocol signatures to generate the protocol traces
for vulnerability detection.

Prior arts for protocol signature inference are generally divided into
two categories: reverse engineering-based approaches and network trace-based
approaches. In this paper, we concern the problem of automated protocol sig-
nature inference based on the packet payload of protocol traces. Notice that
many network trace-based approaches have been proposed in prior arts, such as
Discoverer [1], ACAS [2], Veritas [20], ProDecoder [3], ProWord [21, 26] and so
on. The most recent and relevant work is ProWord [21, 26] proposed by Zhang
et al. ProWord is an elegant solution for network trace-based protocol signature
specification inference. ProWord has two key modules, and it works as follows:
ProWord first breaks packet payload into candidate words based on a modified
Voting Experts algorithm. Then, ProWord infers protocol signature specifica-
tions by a ranking algorithm that selects the highest ranked words as protocol
feature words. However, ProWord has two major limitations. 1). to infer pro-
tocol signatures, ProWord breaks the packet payload into a set of candidate
words. However, this naive solution ignores the spatial coherence of candidate
words in protocol messages, and thus leads to a reduced performance on accu-
racy in practice. For example, message “MAIL FROM” is a protocol signature
of SMTP (Simple Mail Transfer Protocol). However, ProWord often breaks the
above signature “MAIL FROM” into two parts, “MAIL” and “FROM”. Note
that the divided messages “MAIL” and “FROM” are not true protocol signa-
tures for SMTP. 2). The computational efficiency of ProWord presents one of
its main limitations. For examples, the memory space requirement in ProWord
is very high due to the construction of a prefix tree in the VE algorithm.

In this paper, we propose ProParser, which performs automated protocol
signature inference based on the network traces of application protocols. The
input of ProParser is the network traces of a given protocol, and the output is
the protocol signatures, where each protocol signature is represented by a set of
n-grams. ProParser has four functional modules in practice: n-Gram Extraction,
Keyword Inference, Message Clustering, and Signature Generation. Specifically,
we first extract n-grams from the packet payload of protocol traces. Next, we
use a Markov field aspect model to infer protocol keywords, which are used to
define protocol signature specifications. Then, we utilize a hierarchical clustering
algorithm called sequential Information Bottleneck(sIB) algorithm [6] to group
similar protocol messages into clusters of the same type according to their pro-
tocol keywords. Finally, we generate the final protocol signatures using heuris-
tic ranking rules that find the invariant field among messages in each cluster.
The key novelty of ProPaser lies in its exploitation of the spatial coherence of
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keywords in protocol messages that is usually missed under the previous condi-
tional independence assumptions. Therefore, ProPaser is a more robust network
trace-based system for automated protocol signature inference.

In order to test and verify the effectiveness of ProParser, we apply ProParser
on a set of real-world application traces, including a text protocol SMTP and a
binary protocol DNS, and then we utilize precision and recall as the metrics to
evaluate our experimental results. The experimental results show that ProParser
has precisely parsed the protocol signatures with an average recall of 98% and
an average precision of 98.5%. In summary, our contributions are highlighted as
follows.

– We introduce and present a Markov random field approach to extract the
protocol keywords from the packet payload of protocol traces. The proposed
approach considers the spatial coherence of keywords in protocol messages
that would be missed under the previous conditional independence assump-
tions.

– We design a system called ProParser, which can automatically infer the pro-
tocol signatures of a specific protocol from its real-world traces with no prior
knowledge about the protocol specification. We propose a new technique to
extract protocol keywords that is independent of the type of the target pro-
tocol.

– ProParser is able to handle both textual and binary protocols. Compared to
the state-of-the-art method ProWord, our approach performs better experi-
mental results on effectiveness and efficiency.

The rest of the paper is organized as follows. We state our problem scope and
review related work in Section 2. We describe the design and technical details of
ProParser in Section 3. We present datasets, evaluation methods, experimental
results in Section 4. Finally, we conclude the paper in Section 5.

2 Related Work

Prior arts for protocol signature inference can be generally divided into two
categories: reverse engineering-based approaches [10, 11, 12, 19] and network
trace-based approaches [1, 2, 8, 9, 17-22]. In the remainder of this section, we
introduce some typical prior arts of the two categories.

2.1 Reverse Engineering-Based Methods

The reverse engineering based methods implement the executable code and ana-
lyze the received application messages to infer protocol signature. Caballero et al.
proposed Polyglot, an automatic protocol reverse engineering approach by using
dynamic binary analysis [10], they implemented executable codes and monitored
the data to extract the protocol signature. Lim et al. implemented an analysis
tool which extracts network packet formats by means of working on executable
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binary code [11]. Cui et al. presented Tupni in [12], a reverse engineering method
by analyzing a set of input, including record sequence, record types and input
constraints. These researches have some limitations. First, unknown protocols’
executable code is often difficult to obtain, even if it is available, it still suffers
from tedious manual effort and harsh operating condition. Additionally, reversing
process is significantly difficult once the executable code uses code obfuscation or
code compression. As a consequence, we assume the executable code of protocols
is not available and focus on network trace based methods.

2.2 Network Trace-Based Methods

Cui et al built Discoverer, which automatically extracted protocol signatures
from network traces [1]. Discoverer first separated messages into tokens and
classified them into clusters based on the token pattern of the messages. Then,
Discoverer implemented recursive clustering to divide the clusters into simi-
lar clusters with same message formats. Finally, it merged the clusters using
sequence alignment to avoid over-classification. However, the predefined delim-
iters using in tokenization phase are obviously invalid for binary protocols. In
the meanwhile, the sequence alignment algorithm is time-consuming and not
that necessary to be a part of signature inference. We notice that the protocol
signatures represented by n-gram sets are more efficient. By contrast, ProParser
does not depend on delimiters and it uses some heretics ranking rules to extract
protocol signatures.

Ma et al. built a statistical and structural content model to identify protocol
from network traces automatically [14], they believed that the first 64-bytes can
approximately draw a complete distribution of the entire session. However, this
assumption often does not hold in reality especially for binary protocols. Haffer
et al. proposed ACAS, which explored automatically extracting application sig-
natures from IP traffic payload contents [2]. They also regarded first 64 bytes of
each TCP Flow as feature vectors leading to the information loss. ProParser use
whole bytes of flows to infer protocol signature.

Zhang et al. proposed ProWord [21], an unsupervised approach to extract
protocol signature. They built a word segmentation algorithm to generate candi-
date feature words and then used a ranking algorithm to select the top-k words.
Their work achieves decent accuracy and conciseness while suffers from some
obvious drawbacks. ProWord broke payloads into candidate words to discover
semantics information while its precision and recall are barely satisfactory, espe-
cially for binary protocols. By contrast, ProParser can handle these problems
because it does not rely on word boundaries. In addition, the signature pruning
phase of ProWord needs manual efforts while ProParser is fully-automated.

Finamore et al proposed KISS in [8], which first extract statistical features
from network traces, and then build a support vector machines(SVM) based
classifier. Zhang et al. vectored captured protocol traces and employed K-means
algorithm to cluster them in [17]. Xie et al. proposed a multi-classifier SubFlow
using statistical features from network traces in [18]. However, these methods
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Fig. 1. Architecture of ProParser

suffer from relatively low accuracy caused by protocol behavior confusion or pay-
load byte stuffing. ProParser can address these problems because it has redun-
dant information of protocol messages by using both sematic correlation and
statistical distribution.

3 ProParser

The input of ProParser is the network traces of a given protocol, and the output
is the protocol signatures, where each protocol signature is represented by a
set of n-grams. As shown in Fig. 1, ProParser has four functional modules in
practice: n-gram extraction, keyword inference, message clustering and signature
generation. Next, we provide the technical details for each module.

3.1 n-Gram Extraction

The input to this n-Gram Extraction module is a set of packet traces of the
same protocol, and the output to this module is protocol messages, where each
protocol messages is denoted by a sequence of n-grams. An n-gram is defined
as a subsequence of n elements contained in a given sequence of at least n ele-
ments. For example, considering messsage “\x48\x7e\x0a\x3c\x0d” in BitTor-
rent protocol, we can decompose it into 3-grams as follows: “\x48\x7e\x0a”,
“\x7e\x0a\x3c”, “\x0a\x3c\x0d”. More generally, given a byte sequence
“c1c2 · · · cm”, we break it into n-grams as follows, “c1c2 · · · cn”, “c2c3 · · · cn+1”,
· · · , “cm−n+1cm−n+2 · · · cm”. In practice, we note that a larger value of n will
generate a tremendous set of n-grams and the execution time is also high, while
a smaller value of n will introduce noise data and further identify inaccurate
protocol keywords. Therefore, we give a tentative value in this paper, and we set
the value of n to be 3.

In addition, we should also consider the total number of n-grams considered
in the n-gram vocabulary. Theoretically, a given n-gram collection may involve
approximately 256n items. In reality, more items can provide more semantics
information for the protocol under analysis. However, this enormous amount of
items causes prohibitively expensive time consumption. In this paper, we select
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Fig. 2. Markov Random Field Dirichlet Allocation

a P -percent subset from the origin n-gram collection with high frequency of n-
gram occurrence to make a trade-off. We vary the range of P = {40%, 60%, 80%}
to find the most appropriate value for protocol signature inference.

3.2 Keyword Inference

In the module keyword inference, we aim to identify the protocol keywords that
are in the given network traces of an application protocol. The input to this
module is a sequence of n-grams extracted by the previous module, and the out-
put to this module is a distribution of protocol keywords inferred by ProParser.
In prior work, ProDecoder [3] uses a model called Latent Dirichlet Allocation
(LDA) to infer protocol keywords from the network traces of individual pro-
tocols. However, the basic LDA model is based on a bag-of-words assumption.
In other words, LDA model assumes that its n-grams are drawn independently
from the keyword mixture θm, and thus it ignores the spatial structure of the
packet. In practice, we notice that the Markov Random Field model (MRF) can
reflect such local interactions for spatial contiguity.

Basic of Markov Field Aspect Model. Given a protocol packet corpus
D ≡ {{wm,i}Nm

i=1}M
m=1 of M packets, where wm,i represents the i-th n-gram in

packet m, and Nm is the number of n-grams considered in packet m. Remember
that in the basic LDA model, each n-gram wm,i corresponds to a specific key-
word indicator zm,i. More specifically, each packet m is modeled as a probability
distribution of protocol keywords, denoted by θm = p(z|m), where each key-
word z = k ∈ {1, · · · ,K} is in turn a probability distribution over the n-gram
terms t = {u}W

u=1, denoted by ϕk = p(t|k). To improve the spatial coherence
for keyword inference, we consider to move from a multinomial distribution over
hidden variables z to a representation of Markov random field as shown in Fig.
2. Our Markov random field based inference model can be formulated as a prod-
uct of MRF and LDA over protocol keyword z, and thus the proposed model
can be called Latent Dirichlet Markov Random Field model (abbr. LDMRF).
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The detailed mathematical derivation of our target posterior distribution
p(z|M,w) can be found as follows,

p(z|M,w)
︸ ︷︷ ︸

Posterior Distribution

= p(z|M)
︸ ︷︷ ︸

MRF

· p(z|w)
︸ ︷︷ ︸

LDA

=
M∏

m=1

1
Z

ψc(zm|M)

︸ ︷︷ ︸
MRF

·
M∏

m=1

θm

︸ ︷︷ ︸
LDA

=
M∏

m=1

1
Z

Nm∏

i=1

ψc(zm,i)

︸ ︷︷ ︸
MRF

·
M∏

m=1

Nm∏

i=1

θm,i

︸ ︷︷ ︸
LDA

=
1
Z

M∏

m=1

Nm∏

i=1

(ψc(zm,i) · θm,i)

=
1
Z

M∏

m=1

Nm∏

i=1

(exp{−Ec(zm,i)} · θm,i)

(1)

where M corresponds to the states of Markov random field, and Z is a normal-
ization constant. In addition, ψc is a potential function, and Ec denotes clique
potential in the Potts model. From Equation 1, we clearly find that the transition
of raw LDA to LDMRF is equivalent to placing a Markov random field prior on
the probability of keyword θm,i. Note that determining keyword indicator z of
LDMRF model is the core problem of learning the proposed protocol keyword
model. By using z, we can easily calculate the two types of distributions: (1)
the n-gram distribution for each keyword k, denoted ϕk, and (2) the keyword
distribution for each packet m, denoted ϑm. In the rest of this paper, we use
parameter sets Φ = {ϕk}K

k=1 and Θ = {ϑm}M
m=1 to denote the above two types

of distributions, respectively.

Approximate Inference. Next, we would like to discuss about estimating the
parameter z in LDMRF. Remember that our target posterior distribution is
p(z|M,w), and it can be formulated as follows,

p(z|M,w) =
p(z,w) · p(z|M)

p(w)
(2)

Note that exact inference of the target distribution p(z|M,w) in the LDMRF
model is particularly difficult. Thus, in this paper, we obtain an approximate
inference result through Gibbs sampling, an example of Markov Chain Monte
Carlo (MCMC) algorithm [7]. Gibbs sampling is an iterative algorithm, where
in each iteration the value of each variable is updated by a value drawn from
the target distribution of that variable conditioned on the rest of variables. To
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estimate the parameter z in the LDMRF model, the updating rule for Gibbs
sampling algorithm is as follows,

p(z(m,i) = k|z¬(m,i),w,M) ∝ n
(t)
k − 1 + β

∑W
i=1 n

(t)
k − 1 + Wβ

·

n
(k)
m − 1 + α

∑K
k=1 n

(k)
m − 1 + Kα

·

exp

⎛

⎝
∑

i∼j

ΔΛ(zm,i, zm,j)

⎞

⎠ ,

(3)

where n
(t)
k is the number of times that n-gram term t is assigned to keyword k,

and n
(k)
m denotes the number of times that an n-gram from the packet m has been

assigned to keyword k. Λ is an indicator function, which decides if the keyword
indexes for neighbors zm,i and zm,j are the same. Δ is a strength parameter, and
a positive value of Δ awards configurations where neighboring nodes have the
same label. After a sufficient number of iterations, the Gibbs sampling algorithm
converges, and we can obtain keyword assignments for z, which are then used to
estimate the two parameter sets Θ and Φ according to the following equations:

ϕk,t =
n
(t)
k + β

∑W
t=1 n

(t)
k + Wβ

(4)

ϑm,k =
n
(k)
m + α

∑K
k=1 n

(k)
m + Kα

(5)

Perplexity. In order to ensure that the Gibbs sampling algorithm in LDMRF
has converged and that the LDMRF model with the estimated parameter sets
θ and φ is generalizable, we employ perplexity as the metrics to quantify the
quality of our estimation. Perplexity, which is defined as follows, is a well-known
measure of the ability of a model to generalize to unseen data [24].

perplexity(D) = exp

{

−
∑M

m=1 log p(wm)
∑M

m=1 Nm

}

(6)

where Nm is the total number of n-grams in message m. In ProParser, we prefer
a lower perplexity score as a lower perplexity score denotes better generalization
performance in practice. Perplexity also allows us to determine the right number
of keywords for the given corpus of messages.

3.3 Message Clustering

The Message Clustering module aims to partition the messages which contain
identified keywords into multiple clusters. The fact that an application protocol



A Markov Random Field Approach 467

always has many types of signatures representing different protocol grammar,
so it is critical to guarantee the purity of each cluster, that is, one cluster can
contain messages from only one protocol while messages from one protocol can be
partitioned into multiple clusters. Take a message set of HTTP as an example.
For the following cluster of three messages, the first two messages should be
partitioned into one cluster and the third one should be set alone.

1) GET /activity.ini HTTP/1.1
2) GET /stat.xml HTTP/1.1
3) POST / HTTP/1.1

Algorithm 1. Sequential Information Bottleneck
Input: Clustering threshold K; Feature vector X; Maximum iteration M ; Convergence

multiplier θ.
Output: A partition C of X into K clusters.
1: function sIB(K, X, M , θ)
2: Partition C ← φ
3: for ith period of partition Ci do
4: Ci ← random partition c1, c2, · · · , ck from X
5: changeF lag ← 0, itF lag ← 0
6: while itF lag < M and changeF lag > θ|X| do
7: ifF lag ← itF lag + 1
8: for j from 1 to |X| do
9: pop x from cj

10: d(x, cnew) ← argminc∈Cd(x, cnew)
11: if d(x, cnew) < d(x, cj) then
12: insert x into cnew

13: changeF lag ← changeF lag + 1
14: else
15: insert x into cj
16: end if
17: end for
18: end while
19: C ← argmaxc∈CScore(c)
20: end for
21: end function

Taking probability correlated keywords as message features, we adopt the sIB
clustering algorithm to accomplish this task. This method aims to obtain the
relevant information of the messages sharing the same message format, denoted
by a cluster. sIB has two objective progresses comparing with aIB, a hierarchical
clustering algorithm been used by ProDecoder. First, as an agglomerative clus-
tering method, aIB is irreversible and cannot guarantee the global optimum, sIB
performs multiple reruns and multiple iterations in each run to avoid losing the
optimal solution. Second, it is observed that sIB has more rapid convergence to
global optimum so that decrease the execution time.
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The input of sIB is cluster threshold K and the joint probability distribution
p(x, y) where the random variable X denotes the message feature vector and
random variable Y denotes the relevant features of X. The output of sIB is a
partition C with K clusters. Initially, we randomly divide the feature vectors
in X into a partition C with K clusters, i.e. C = {c1, c2, · · · , ck}. Then we
step into a loop. Iteratively, we choose every object x ∈ X out of its current
cluster c(x) and reallocate it to a new cluster Cnew which satisfies Cnew =
argminc∈Ccost(x, c). The cost function is defined as follows:

d(x, c) = (p (x) + p (c)) ∗ JS [p (y|x) , p (y|c)] , (7)

where p(x), p(y) represent cluster prior probabilities, and JS is Jensen-Shannon
divergence that represents the possibility of p(x) and p(y) derived from the same
distribution and can be calculated by the following equations:

Dkl(p‖q) =
∑

x∈X

p (x) log
p (x)
p (y)

. (8)

JSπ1,π2(p‖q) = π1Dkl (p‖r) + π2Dkl (q‖r) . (9)

More details about the above equations can be seen in [6]. There are two stop
conditions of the above loop: maximum iterations maxL and convergence multi-
plier θ, that is, when the time of iteration is greater than maxL or the changed
elements in the current loop are less than θ ∗ |X|, the loop is terminated. Now,
we obtain a converged partition C∗. We calculate its score F (C∗) = I(Y ;C),
where I(Y ;C) denotes the mutual information between C and Y . The I(Y ;C)
can be calculated by the following equation:

I(Y ;C) =
∑

y,c

p (y, c) log
p (y, c)

p (y) p (c)
. (10)

In order to find out an optimal partition of X, we run sIB n
times with random initialization. As a consequence, we will get a par-
tition set S = {C1, C2, · · · Cn}, and their corresponding scores F =
{F (C1), F (C2), · · · , F (Cn)}. Finally, we select the partition C∗, which satis-
fies the equation C∗ = argmaxC∈SF (C). In ProParser, we heuristically set the
cluster threshold K to 1.5 times the number of keywords in keyword inference
module. Up to this point, we acquire message clusters with extremely cohesive
set of messages.

3.4 Signature Generation

Given the clusters of highly related messages, the main goal of this module is to
discover protocol signature represented by the 3-grams, i.e., the invariant part
among messages. As shown in Fig. 2, the input of this module is the messages in
each cluster and the output is the common subsequence represented by 3-grams.
To this end, we exploit a ranking method to identify 3-grams that are most
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Fig. 3. An Example of Signature Generation

likely to be the protocol signature. We first grade the possible keywords of each
cluster and choose the higher ones as candidates relatively. Then we combine
the candidates together and prune the redundancy.

1) 3-grams Ranking: Considering messages in a specific cluster, protocol sig-
nature can be a set of 3-grams with any length and location, it is important
to develop a strategy to identify the proper ones. Inspired by the information
retrieval heuristics proposed in [23] and aggregation methods proposed in [21], we
build several ranking rules and adapt the heuristics to protocol reverse engineer-
ing to choose the accurate 3-grams from aforementioned clusters. The ranking
rules consist of frequency rule, location rule and position rule.
Frequency Rule. Given a candidate set S of a cluster, we define the number of
occurrence of s ∈ S as gram frequency, the number of message which contains
s ∈ S as message coverage. We would like to give a higher score to s with
higher gram frequency. If the gram frequency is the same, we appreciate the s
with higher message coverage. The intuition of this rule is that we believe the
3-grams with substantial amount of appearance is more likely to be the protocol
signature.
Location Rule. We define the specific location with maximum number of occur-
rence of s ∈ S as max location, the number of message which contains s ∈ S
in the max location as location coverage. We are willing to give a higher score
to s with higher location coverage. For max location calculation, we count all
candidates in every possible location in the message and choose the maximum.
The intuition of this rule is we believe that s occurs in several locations in a
message while the location with maximum occurrence is more valuable. Also,
considering the situation where s1, s2 ∈ S have the same value of message cov-
erage, s1 appears at a fixed location while s2 scatters at several locations, we
prefer s1 apparently.
Position Rule. We define the message byte offset of s ∈ S as gram position.
The gram position at the beginning or the end of a message deserves a higher
score. The intuition of this rule is that we find the bytes that occur at such
position is more likely to be used as a protocol signature.

We compute the scores of candidates using the rules of frequency, location
and position separately and combine them by multiplication. This aggregation
method is proved to obtain proportional fairness of multipliers in [23].

2) 3-grams Combination: Based on the ranking method, we get many 3-
grams corresponding to the clusters. Note that the 3-grams may be separated
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into several clusters, we need to combine them according to their ranking scores.
We normalized the scores of 3-grams in each cluster due to its different capacity,
then sum them up and sort them in the decreasing order.

3) 3-grams Pruning: Note that the quality of the extracted 3-grams directly
affects the accuracy of whole system, we establish several pruning rules to elim-
inate the unreasonable 3-grams.
Length Scale. Message format is designed to exchange data among network
hosts, a long signature will burden the data transmission while a short signature
lacks the ability to distinguish protocols. In this paper, we control the protocol
signature in a reasonable range of [3, 10] for eliminating.
Score Threshold. Based on our ranking method, even candidates with low
frequency or coverage can get a score. To increase the compactness of extracted
3-grams, we define a score threshold K and select the top-K 3-grams with higher
score, the remaining 3-grams are discarded.
Gram Redundancy. Considering two 3-grams in the gram set, if one with
lower score is a substring of another, we will remove it. If one with higher score
is a substring of another, we will retain both.
Gram Irrelevance. Irrelevant payload data in protocol traces may generate
irrelevant 3-grams, such as date field like “2015/04/15”, message ending field
like “\x0d\x0a” and message padding field like “\x00\x00\x00”. These strings
often occur in protocol messages but have no relevance to the protocol, and
hence they should be removed.

4 Experimental Results

We evaluate our approach on two kinds of protocols, including textual and binary
protocols. ProParser takes network traces of specific protocol as the system input
and automatically outputs protocol signatures. In the remainder of this section,
we first describe our data sets, then show our evaluation methodology and met-
rics. Finally, we present the experimental results including parameter tuning,
method performance and efficiency. Comparative experimental results are also
presented in this section.

4.1 Datasets

Our dataset consists of two well-known protocols, namely SMTP and DNS. We
collect the traces from a backbone router of a major ISP on the Internet. The
details of the network traces are shown in Table 1. The ground truth of a network
trace means its generating application. In order to build the ground truth, we
use both the port number and the DPI information to filter network traces.
The traces are all raw packets with complete payload semantics. We separate
the above mentioned datasets into two parts, one for training and the other for
testing. The testing dataset consists of both positive and negative samples. For
example, the SMTP set consists of abundant SMTP traces and the same amount
of non-SMTP traces, including DNS, HTTP, IMAP and other protocols.
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Table 1. Summary of The Traces

Protocol Size(B) Packets Flows Collection Time

SMTP 673M 1.54M 179K Aug 2014

DNS 438M 1.33M 145K Sep 2014

4.2 Evaluation Methodology and Metrics

In this section, we present our evaluation methodology first. We split datasets
into two parts, one for training and the other for testing, the training set contains
90% of the dataset traces and the remaining 10% traces contribute to testing set.
The amount of each protocol in the dataset is limited because of the high compu-
tation complexity of keyword inference and message clustering, while we believe
that the number is large enough for extracting good protocol specification. In
the training process, we rerun keyword inference several times to adjust the
appropriate parameters and perform the message clustering in multiple servers
simultaneously to reduce the time consumption. In testing process, we repeat the
experiment several times and calculate the average values of metrics to eliminate
the variation of different runs.

Table 2. The Confusion Metrics of Trace Prediction

Actual DNS Actual not DNS Total

Predicted DNS True Positive(TP) False Positive(FP) Predicted Positive

Predicted Not False Negative(FN) True Negative(TN) Predicted Negative

Total Actual Positive Actual Negative

To measure the correctness and effectiveness of ProParser, we put forward
our evaluation metrics. Given a prediction of packet of targeted protocol, all
possible situations are listed in the above confusion table. Table 2 reports the
confusion metrics of DNS prediction. There are four possible outcomes of a
prediction for a two-class case shown in the table. TP means when the packet is
actually positive and is predicted as positive sample correctly. TN means when
the packet is actually negative and is predicted as negative sample correctly. FP
means when the packet is actually negative but is predicted as positive sample
incorrectly. FN means when the packet is actually positive but is predicted as
negative sample incorrectly. Based on the above four fundamental measurements,
we introduce three evaluation metrics as follows.

recall =
TP

TP + FN
. (11)

precision =
TP

TP + FP
. (12)

We combine recall and precession into F-Measure to take advantage of their
own strengths.
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Table 3. Values of Tunable Parameters

Parameter Name Parameter Value

Iteration in sIB 2000

Rerun Times in sIB 5

Cluster number in sIB 1.5 ∗ K

top-k for pruning in Ranking 100

length range[a, b] of 3-grams [3, 10]

F − Measure = 2 ∗ precision ∗ recall

precision + recall
. (13)

4.3 Experimental Results

In this section, we first present the procedure of parameter tuning, and then show
the performance and efficiency of our approach. We also exhibit comparative
experiments.

1) Parameter Tuning: There are several parameters in each module of
ProParser. Next, we would like to talk about how to select the optimal parame-
ters in each module. Notice that the parameter tuning is performed only on the
training data set, and it is unnecessary for the test data set. We discuss some
parameters in details and list others in Table 3 due to space limitation.
Iteration Count L. Gibbs sampling algorithm, used in keyword inference, is an
iterative algorithm which is directly relative to the correlation of the n-grams.
Thus it is vital to select a proper iteration count L to ensure that the algorithm is
convergent. By varying L from 1000 to 10000 and changing P of 40%, 60%, and
80% for DNS and SMTP protocols, respectively, the corresponding perplexity
are drawn in Fig. 3. We observe that the complexity values converge at 4000
iterations for DNS and 6000 iterations for SMTP.
Keywords Number K. Keyword number K is another predefined parameter in
keyword inference. In this module, markov random field model outputs K key-
words with their corresponding probabilities. The K keywords in each message is
regarded as K attributes of message clustering. To choose the proper K, we range
K from 10 to 180 with a step length of 10 and change P as 40%, 60%, and 80%,
respectively. Fig. 4 reports that the perplexity value drops substantially at first
and increases gradually later under each P of DNS and SMTP. Thus we record the
functional minimum value as the appropriate K for each P of DNS and SMTP.
Strength Parameter Δ. In this part we display the tuning of hyper param-
eters α, β as well as the strength factor Δ in markov random field model. We
fix the proper L and K for each P of each protocol, and then we vary α =
{0.1, 0.5, 0.9}, β = {0.001, 0.005, 0.01, 0.05, 0.1}, Δ = {0.01, 0.05, 0.1, 0.5, 0.9}
and P = {40%, 60%, 80%} to compute the precision and recall for ProParser.
Due to space limitations we will omit the selection of α and β. Next we empha-
size the tuning of Δ and the corresponding recall and precision results. Fig. 5
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Fig. 4. Selection of Iteration for DNS and SMTP Protocols.
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Fig. 5. Selection of the optimal number of keywords for DNS and SMTP.

shows the precision and recall for DNS by varying Δ and P values. The optimal
parameter values for SMTP are α = 0.1, β = 0.005, Δ = 1.0 and P = 0.8,
and the corresponding precision and recall are 98% and 99%. Fig. 6 shows the
precision and recall for SMTP by varying Δ and P values. The optimal param-
eter values for SMTP are α = 0.1, β = 0.01, Δ = 1.0 and P = 0.8, and the
corresponding precision and recall are 99% and 97%.

2) Performance Results: As shown in the parameter tuning, ProParser
achieves a decent recall and precision for both textual and binary protocols. We
also implement ProWord which is an unsupervised protocol signature extraction
approach. Fig. 7 presents the precision and recall for ProParser, with compar-
ison to the results of ProWord. It is obvious that ProParser can significantly
enhance the recall without decreasing the precision of ProWord. Additionally,
ProWord uses manual inspection for keywords pruning while ProParser is totally
automated. Furthermore, ProWord claims that it is more concise and compact
with top-K signatures. In oder to hold the decent accuracy, the K of ProWord is
100 while the volume of ProParser is approximately 250. Note that the two



474 Y. Zhang et al.

0.4 0.5 0.6 0.7 0.8
90

92

94

96

98

100

P−percent

Pr
ec

is
io

n

 

 

Δ = 0.01
Δ = 0.1
Δ = 1.0

0.4 0.5 0.6 0.7 0.8
90

92

94

96

98

100

P−percent

R
ec

al
l

 

 

Δ = 0.01
Δ = 0.1
Δ = 1.0

Fig. 6. Precision and Recall of ProParser for DNS.
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Fig. 7. Precision and Recall of ProParser for SMTP.
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Fig. 8. Comparison of ProParser with ProWord for DNS and SMTP Protocols.

tools both run offline for signature generation, and thus it is not necessary to
consider the training latency. The feature matching latencies of the two tools are
approximately the same.
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5 Conclusion

In this paper, we propose ProParser, a network trace-based approach for auto-
mated protocol signature inference. Our method builds on markov random field
model to discover sematic relationship and spatial structure of protocol mes-
sages, which promotes the effect of message clustering. It also relies on heuristic
ranking rules to find the invariant field among protocol messages. We evaluate
our protocol signature inference system on real-world network traces including
both textual and binary protocols. We also compare ProParser with the state-
of-the-art tool, ProWord, and find that our approach performs more accurately
and effectively in practice.
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Abstract. We consider delegation attack in authentication systems in
which a credential holder shares their credentials with a third party that
we call helper, to allow them to use their account. We motivate this prob-
lem and propose a model for non-delegatable authentication and a novel
authentication system, based on behavioural biometrics, that achieves
non-delegatability. Our main observation is that a user’s behaviour in
complex activities such as playing a computer game, provides an imprint
of many of their personal traits in the form of measurable features, that
can be used to identify them. Carefully selected features will be “hard” to
pass on to others, hence providing non-delegatability. As a proof of con-
cept we designed and implemented a computer game (a complex activ-
ity), and used the feature points in the game play to construct a user
model for authentication. We describe our implementation and experi-
ments to evaluate correctness, security and non-delegatability. Compared
to using traditional biometrics, the system enhances user privacy because
the user model is with respect to an activity and do not have direct rela-
tion to the user’s identifying information. We discuss our results and
deployment of the system in practice, and propose directions for future
research.

1 Introduction

We consider the problem of credential sharing, where a user wants to share their
credential with a third party with the goal of bypassing the system security. We
refer to this as delegation attack. The problem naturally arises in authentica-
tion systems (e.g. online subscription systems) where users have incentives to
share their credentials and let a third party use their privileges, or assume their
roles. Traditional authentication systems do not provide protection against this
attack. Authentication systems use credentials such as, what a user knows (e.g.
passwords, secret keys), what a user has (e.g. tokens, cards), and what a user is
(biometric) to ensure correct identity claims. They may also use user attributes
such as their expected location or distance from the verifier, to provide stronger
security guarantees. In all cases security of an authentication system is primarily
against an outside attacker who, without having access to the user credentials,
tries to impersonate them.

We consider a scenario that a user actively shares their credential. In this
case security of all known traditional authentication systems will be severely
compromised. Systems that rely on secret keys (or passwords) and tokens cannot
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 477–499, 2016.
DOI: 10.1007/978-3-319-28865-9 26



478 M. Alimomeni and R. Safavi-Naini

provide any security guarantee. Biometric systems that rely on the user’s unique
characteristics (e.g. fingerprint, voiceprint) may also become insecure if the user
is willing to share their biometric templates [Fid13]. Systems that use attributes
such as distance of a user to the verifier usually rely on a secret key (symmetric
or public key) and cannot guarantee security if the secret key is passed on.

Credential sharing is a well known problem in subscription services such as
Netflix [Wor13] and online games [TBB12] and can effectively bypass the security
of the subscription system. The problem is widely studied and a range of solu-
tions including trusted hardware and tamper-proof software have been proposed.
However solutions that provide sufficient usability for the system (e.g. allowing
multiple devices), quickly become ineffective. In corporate world credential shar-
ing is a known problem, commonly used for reasons such as ease of access to
documents (e.g. an executive shares their password with their assistants to allow
them access). A less studied problem however, is credential sharing by dishonest
employees with motivations such as employing “cheap labour” from outside the
company to perform one’s allocated tasks, or organizing more systematic col-
lusion (e.g. espionage) attacks to provide access to outsiders. The former case
has been a real concern of software companies where employees delegate soft-
ware development tasks to developer sites that offer this service [TH13]. Correct
authentication of remote users is also increasingly important due to the wider
adoption of work-from-home model, and the need for companies to cater for
mobile workforce.

An immediate solution for providing security against credential sharing is to
use additional factors such as a hardware token, in the authentication process.
Tokens however, although make it harder for users to pass on their credentials,
cannot protect against credential sharing: a software developer [TH13] in the
US outsourced their work to a Chinese firm by sending the RSA token that was
required for authentication. A second solution is to use biometric based authen-
tication systems. Biometric templates although in general are unique to indi-
viduals, in some cases may be recorded and replayed for authentication [Fid13].
However in the above application scenarios, it is perceivable that one will not
be willing to share their biometric data because of the permanency and sensi-
tivity of this data. Biometric systems have disadvantages such as the need for
extra hardware and deployment cost, in addition to careful management of the
collected biometric data throughout the lifetime of the system. Using biomet-
ric authentication in corporate environment also introduces privacy concerns for
employees who may move from one employer to another, and do not want to
leave a biometric trace behind. A third solution is to strengthen password sys-
tems using extra behavioural features of users. Existing behavioural authentica-
tion systems capture simple users’ behaviours such as keyboard typing pattern
or mouse dynamics [MR00] and have no real guarantee that these behaviours
cannot be taught or transferred to others. Our method can be seen as develop-
ing this approach by designing activities that capture complex non-transferable
characteristics of users.
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1.1 Our Work

Intuitively, to prevent delegation of authentication credential, one must use
intrinsic properties of users that are “hard” to pass on to others. Such prop-
erties can be grouped into personality traits, and behavioural and cognitive fac-
tors. Identifying individuals using their intrinsic properties have been subject of
extensive studies in psychology. Trait theory approach to personality promotes
the idea that individuals can be identified through their personality traits such
as abstractedness, perfectionism and reasoning. Cattell suggests 16 personality
factors [Cat57] are sufficient to identify individuals. Human behaviour refers to
one’s actions and manners in response to stimuli (inputs) that could be internal
or external, and conscious or subconscious. Human behaviour has been shown to
be effective in distinguishing individuals [BSR+12,MR00]. Cognitive abilities in
domains such as language, reasoning, memory, learning and visual perception,
as well as higher order abilities such as intelligence, have been measured through
well designed experiments and shown to be able to identify individuals [Car93].
We use personal traits to refer to both these types of human intrinsic properties
when they are, (i) measurable in the interactions of users with the environment,
and (ii) are relatively stable. Stability of a trait intuitively refers to the property
that the measurements of the trait correspond to a narrow probability distribu-
tion that could be used to differentiate users in a population. Stable traits may
change over time. We assume this change can be represented by a (slow) shift
over time. Traits may have different levels of transferability. Some traits may be
learnt or imitated by training and practice (with different degrees of success).
For example, traits related to the user behaviour (personal preferences) can be
learnt more easily than skill based traits such as speed of performing an action.

Our work aims to capture trait related information of an individual in a com-
plex activity. A measurement in an activity is modelled by a random variable,
representing in general, multiple personal traits. The user profile consists of these
variable, also called features. Features are chosen to be non-delegatable in the
sense that they are “hard” to be learnt by a helper that is assisted by the user.
We call authentication systems built on these profiles, a Hard to Delegate (HtD)
authentication system. As a proof of concept we designed and implemented a
target shooting game to model a complex activity. In an authentication attempt
a challenge is presented to the user and their response is received. The challenge
is a game (in our case a target), and the response is a set of measurements during
their game play (in our case, an arrow shot at the target). The response measure-
ments is matched against the stored user profile. To analyze the system, we first
give a formal definition of non-delegatability in authentication systems. This is a
new security property that captures protection against a user credential sharing.
We then use user experiments in small groups to select non-delegatable features,
followed by large group experiments for evaluating correct user authentication.
We also design and implement special experiments to show that the system
provides protection against non-delegatability.

We note that non-delegatability is a strictly stronger security requirement
than user impersonation, because the credential holder assists the attacker to
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succeed in impersonating them and the proposed system is also a new secure
authentication system using user game play.
Selecting Features in Activities. A feature in an activity is a measurement that
corresponds to a random variable X. This variable is sampled in each run of the
activity, producing a feature point x. The randomness of the variable is due to
the user’s intrinsic randomness that results from the complex combination of
their personal traits. Suitable features to support non-delegatability must be, (i)
strongly correlated with stable user traits and stay stable over time and, (ii) be
hard to transfer. Selecting such features in our system has been through small
group experiments. The experiments (described in Section 5.3) suggests that
selecting effective features is a rich direction for future research. An interesting
case is tightly coupled features that provide strong non-delegatability. These are
pairs of features that are negatively correlated, but successful impersonation
requires both to be modified in the same direction. For example in our target
shooting game, the speed at which a user aims at the target and the error in
hitting the target are negatively correlated (i.e. reducing aim time increases
error). However to imitate a (skilled) user one needs to reduce aim time and
error at the same time.
Applications. Non-delegatable authentication systems can be used in conjunction
with traditional password based (or key-based) authentication to provide non-
delegatability. Our motivating example was providing security for work from
home environment that could pose major threat to the enterprise network.
Another important application is providing protection against credential sharing
in massively multiplayer online (MMO) games with incentives such as bypassing
subscription fees, allowing a more experienced player to play on one’s behalf, or
hijacking an account [CH07] to take advantage of the user’s progress in the game.
An important advantage of behavioural authentication system such as the one
proposed in this paper is privacy enhancement because of using the behavioural
attributes instead of personally identifiable information.

Ethics Approval. The experiments described in this paper involved human sub-
jects. We obtained ethics approval from the Conjoint Faculties Research Ethics
Board at the University of Calgary, under the file number 7630. The first author
completed a course on ethics, entiled Ethical Conduct for Research Involving
Humans Course on Research Ethics (TCPS 2: CORE). All experiments were
performed in accordance with these ethics guidelines.

1.2 Related Works

Behavioural biometrics [Rev08] is a relatively new research area. Human
computer interaction based biometrics such as those based on keystroke
dynamics[MR00] and mouse movement [PB04], have been shown to be effec-
tive way of identifying users. In [YG09], authors showed that measuring the
player’s strategy in a poker game is effective for user verification. Our approach
of using feature points that are behaviour based is distinctly different from col-
lecting feature points related to the user strategy as used in [YG09] for the game
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of poker. This latter type of points are not chosen for non-delegatability and in
fact may be delegatable. Alayed et al. [AFN13] used a first person shooter game
to distinguish between normal behaviour of the players, and cheating behaviour.
The output of their classifier is a binary value, indicating cheating or no cheating.

Implicit memory for authentication was proposed by Denning et al.
[DBvDJ11]. Bojinov et al. [BSR+12] used implicit learning to defend against
“rubber hose attacks” in authentication. Implicit learning cannot directly pre-
vent delegation attack because a dishonest user may memorize the password
during the training phases and later pass it on to the helper. HtD authen-
tication however can achieve the goals of [DBvDJ11] and [BSR+12] without
requiring password.

Paper Organization. Section 2, gives a model for HtD property. Section 3 is
on behavioural biometric using complex non-debatable features. Section 4, is our
proof of concept game, the collected features of users and describe the experi-
mental setup and the results. Section 3.2 is on deployment issues and attacks on
HtE games, and cheat-proofing techniques for preventing these attacks.

2 Non-delegatable Authentication

A HtD system has three computational entities, a Server S, a Client C, and
a device D with three interfaces DI1, DI2 and DI3, that are used to present a
challenge to the user, collect the response from the user, and communicate with
the network, respectively. S sends the challenge to C on the device D using DI1.
The user responds using DI2 that is passed to C, which is finally forwarded to S
via DI3.

2.1 HtD Authentication Systems

We consider a multiparty setting where participants receive inputs and pro-
duce outputs. An honest participant follows the protocol and a dishonest one
deviates arbitrarily, in all cases using probabilistic polynomial-time (PPT) algo-
rithms. A participant can be a prover denoted by P (also referred to as a user
U), a verifier denoted by V, or an adversary denoted by A. The adversary cor-
rupts participants and uses them to defeat security of the system. The verifier V
always behaves honestly. A prover however may be corrupted, in which case it is
denoted by P∗. A prover P has a set of attributes some measurable directly (e.g.
location, IP), and some indirectly through imprints that are obtained during a
user activity. These can be estimated through random variables that are mea-
sured during user activities. The random variables in general take different values
in different measurement rounds, following a (slow changing) distribution. For
example, the error in hitting the target in a target shooting game, carries user
intrinsic attributes such as their skill level in the game play. A prover P thus is
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intrinsically probabilistic and its attributes in general can be represented as a
vector of random variables1.

Authentication Protocol. An HtD authentication protocol is a two party
protocol between two interactive PPT algorithms, a trusted verifier V and a
prover P. We also use V and P to refer to the verifier and the prover, respectively.

A protocol run (instance) between P and V is denoted by exp = V (x; rV ) �
P (y; rP ) where x and y are the private values of V and P , respectively, and rP
and rV are the explicit randomness that of the verifier and prover algorithm,
respectively. In some protocols (e.g. password authentication) only explicit ran-
domness is used. However protocols can also include the intrinsic randomness
of P through user activities. The experiment can be extended to include an
adversary A who interacts with the parties in the system. The expanded exper-
iment is shown by exp = (P (x; rP ) � A(rA) � V (y; rV )). A participant in a
protocol instance has a view consisting of all its inputs, coins, and messages that
it can see. The view of A includes all its communications with P and V . At the
end of a protocol instance the verifier V outputs out ∈ {0, 1} which is 1 if the
authentication claim of the claiming prover is accepted, and 0 otherwise. The
prover does not have an output. We use Prr[E : exp] to denote the probability
of the event E in the protocol instance, and r to denote that random coins used
in the protocol.

Definition 1. A Hard to Delegate (HtD) Authentication system is a tuple
(Reg, P, V ) defined as follows. Reg is a registration protocol, run between P and
V that takes a security parameter s, explicit randomness r and implicit random-
ness of P, and outputs (sP , sVp

) (denoted by (sP , sVp
) ← Reg(1s, r, Vreg, Preg)),

where sP and sVp
are the values given to the prover P and the verifier V,

respectively. We assume the protocol is always played honestly by the partici-
pants (secure registration) and treat it as a single function outputting the pair
(sP , sVp

). The protocols satisfy the following properties.

1. Termination:
(∀s)(∀r; rV ) if (sP , sVp

) ← Reg(1s; r, Preg, Vreg), and for any run of the
protocol (R � V (sP ; rV )), between the verifier and an (unbounded) prover
algorithm R, V halts in Poly(s) computational steps;

2. δ-correctness: (∀s) we have

Pr

[

out = 0 :
(sP , sVp) ← Reg(1s; r, Preg, Vreg))
P (sP ; rP ) � V (sVp ; rV )

]

≤ δ

where sP ← Reg(1s, r, Vreg, Preg), Pr[out = 1 : exp] is the probability that
verifier outputs 1 after the experiment is completed and the probability is
over the randomness {r; rP ; rV }.

3. εd-Delegation resistance (εd-HtD)]
The probability that an adversary A (helper colluding with the user) success-
fully emulates P, given access to registration information (sP , s′

V ), and after
1 A vector of biometric feature points such as fingerprint minutiae that is collected
from a user during an authentication session fits this definition also.
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observing a number of instances of the authentication protocol P � V , is
bounded by εd:

Pr

⎡

⎣out = 1 :
(sP , sVp) ← Reg(r, Preg, Vreg)
P (sP ) � A1 � V (sVp)
A2(sP , s′

V , V iew(A1), aux) � V (sVp)

⎤

⎦ ≤ εd

Here (s′
P , s′

Vp
) ← Reg(r, Vreg, Preg), is obtained by the interaction between

P and a simulated verifier, and then given to A by P∗. The adversary is
shown by a pair of algorithms, (A1, A2). A1 observes authentication sessions
between P and V, and provides its view to A2. We use aux to denote other
side information that P∗ gives to A.

Remark: Non-delegatability is an insider collusion attack. A corrupted registered
participant P∗ colludes with the helper A, and gives them their registration
information sP as well as s′

Vp
that is obtained by simulating the Reg protocol.

Note that s′
P and s′

Vp
will have the same distribution as the same intrinsic

randomness of P is used. Security against delegation attack implies security
against impersonation attack which is an outsider attack. This can be seen by
using A() with no privileged inputs instead of A(sP , s′

Vp
, aux).

3 Authentication Games

To construct an HtD authentication system we use a challenge-response protocol
where the verifier sends a challenge to the prover and receives a response. We use
the following terminology and definitions. A feature with respect to a game, or a
feature for simplicity, is a random variable that is associated with a game play
and can be measured in each instance of the game play. An identifying feature
is a complex function of one or more identifying personal traits. The measured
value of a feature in a game instance is called a feature point. A feature vector is
a vector of feature points that are collected in a game play.

3.1 An Authentication System Using Games

We consider the same setting of Section 2.1, and a two phase authentication
system. A prover registers by participating in the registration protocol that is
run by the verifier (or a trusted third party) and generates a profile of the user. In
each instance of the game (a round of challenge-response), a vector of b feature
points F = (f1, f2, . . . , fb) is sampled, and sent to S as the response to the
challenge. Let RP (n) denote a sequence of n feature vectors F1, F2, . . . , Fn, that
are collected in n consecutive runs of the game. RP (n) is the user profile held by
V. That is, Reg algorithm, here the n times game play, is used to produce the
profile RP (n). (For example in our target shooting game, the user will have n
runs to throw the arrow at the target.) Note that a user P can always simulate V
algorithm and construct R′

P (n). Assuming P game play is stationary, R′
P (n) will

have the same distribution as RP (n). The set of users’ profiles forms the profile



484 M. Alimomeni and R. Safavi-Naini

database DB, that will be used to verify users. During the authentication phase
a user will be presented with n′ consecutive challenges (game instance) one by
one, and the collected set of n′ responses (feature vectors) form RP (n′) that will
be used by the verification algorithm, to decide whether RP (n) and RP (n′) are
generated by the same P (same intrinsic distribution). Let mtc(RP ′(n′),P) be a
matching algorithm that matches a given set of feature vector RP ′(n′), against
the stored profile RP (n) of the user P. The matching algorithm uses a distance
function (Section 4.2) to compute the distance between RP ′(n′) and RP (n), for
all P ∈ DB and outputs Accept (1) or Reject (0) if the distance was lower than
a threshold.

Correctness and Security. For correctness, the distance between RP (n) and
RP (n′) must be small for the same user, and the distance between RP (n) and
RP ′(n) must be large for any two distinct users in DB. For security, P ′’s response
must not result in the matching algorithm to output 1, assuming P ′ is given the
simulated profile of P (i.e., R′

P (n)). We formalize these requirements as follows.

Definition 2. A (b,m, n, (α, β), γ,mtc)-Authentication Game is a game played
between a user P who is a user in a set of m users, and the server S. In each
instance of the game play a vector of b feature points, (f1, . . . , fb), is sampled. The
user profile RP (n) consists of n feature vectors that are sampled in n consecutive
rounds of the game. The matching algorithm mtc measures the distance of RP (n′)
to user profiles in DB, and outputs 1 if the distance is less than a threshold.

1. (α, β)- correctness:
– α-FRR: For n′ < n, the algorithm mtc outputs 1 with high probability

given RP (n′) and P :

Pr
P

[
mtc(RP (n′), P ) �= 1

]
≤ α.

– β-FAR: For a user P, the probability that RP ′(n′) of user P ′ �= P is
matched as P is bounded:

∀P, Pr
P ′ �=P

[
mtc(RP ′(n′), P ) = 1

]
≤ β.

2. γ-Hard to Emulate (HtE): A game satisfies HtE if it is “hard” (measured
empirically by the required time and training) for A to play in lieu of P and
result in mtc to output P as the matched user. We assume A has RP (n),
and additional information including possibility of observing game play of P,
denoted by Obs. Let RA(n′) denote a set of n′ feature vectors collected from
A’s game play when it is playing in lieu of P. We require

Pr
A�=P

[
mtc(RA(n′), P ) = 1 | I = {RP (n), Obs}

]
≤ γ,

holds for all P where I denotes the additional information available to A.
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Proposition 1. An (b,m, n, (α, β), γ,mtc)-authentication game is an authenti-
cation system satisfying definition 3, providing δ-correctness, and εd-resistance
against delegation attack. We have δ = α + β, εd = γ and s = f(b,m, n).

The proposition follows by comparing definitions 1 and 2 and noting that in an
authentication game, errors in honest game play of users will be in the form of
FRR and FAR. A more detailed argument will be provided in the final version
of the paper.

Feature Selection. Features are in general complex functions of multiple per-
sonal traits and can range from those that are mostly skill based and so learnable,
to those that have deeper cognitive and behavioural base and so harder to learn
by others.

Orthogonal Features. Our experiments show that one can use more features
to increase accuracy of user authentication. In some cases a similar level of
distinguishability can be obtained by reducing the number of features that are
less correlated.

Tightly Coupled Features. For security against delegation attack features must
be “hard” to transfer to others. For example, choosing objects in categories (e.g.
clothing, pets) can be considered a personal trait that can form a feature in
a game play. However such preferences cannot be used for HtE authentication
as one can effectively pass on their preferences to others. To reduce the success
chance of delegation, tightly coupled features can be chosen. These are dependent
pairs and an attempt to change one will affect the other. For example, precision
and speed of doing a task are tightly coupled features and increasing precision
needs higher concentration and so more time, which will decrease the speed of
performing the task. Tightly coupled features must be transferred together and
this increases the difficulty of training the helper. In the above example training
the helper to mimic higher precision of a skilled player should be together with
mimicking their higher speed of playing the game.

3.2 Deploying Authentication Games

We analyzed the proposed authentication mechanism assuming a system design
that enforces authentication by playing the game. 1- Overtaking network commu-
nication: where the helper injects data packets directly into the network without
playing the game. This attack would be successful if a fixed game is used and
the user’s response can be recorded. 2- Modifying the game client: where the
client software is modified to change the data input by the user to match the
stored profile. 3- Automated game play (bot) where a software is trained to emu-
late the behaviour of the legitimate prover in the game play. In our game, each
challenge is freshly generated and developing a software agent that can learn the
user behaviour in a complex game play requires major effort in learning theory
and implementation to produce correct response in real time. In Appendix 6 we
outline the prevention mechanisms against these attacks.
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4 A Proof of Concept HtE Game

Our proposed HtE authentication game is an archery target shooting game. The
game has a number of levels. In each level eight features, three primarily skill
based, and five mostly behaviour based, are measured. More details on these
features are given in Section 4.1. The game provides a clear goal for users to
focus on. This is important for providing consistent game play statistics.

4.1 The Game Design

The implementation uses a 2D Physics engine to simulate the shooting of an
arrow towards a target. The player drags and tilts the arrow (for example by
using mouse) to choose the initial speed and the angle of throw, and release it
to the target. The user wins if the arrow hits the centre of the target

Features Selection. In each shot of the arrow the following features are sam-
pled. t1-Hit Error. The distance between the arrow and center of the target after
hitting. This is a floating point number in the interval [−120, 120] as shown in
Fig. 2.

Fig. 1. Screen-shot of the
game

Fig. 2. Hit error

t2-Aiming time. The time in milliseconds that it takes for the player to aim
and shoot at the target. This is the time difference between the start of dragging
and when the arrow is released which is a positive floating point number in
(0, 10]. t3-Wait time. The time in milliseconds that it takes for the player to
begin dragging a new arrow, after the game is reset . This is a positive floating
point number in the (0, 5]. t4, t5-Relative initial Mouse click coordinates. The
x, y coordinates of the mouse initial clicking on the screen to drag the arrow,
relative to the coordinate of the arrow’s tail as the center. These are two floating
point numbers greater than 0 and independent of the screen resolution. t6, t7-
Initial velocity and angle. The velocity and relative angle of the arrow when it is
released toward the target. t8-Miss count. The number of misses between each
two successful shots.

We note that the only varying parameter in the game that affects the mea-
surements of features (e.g. t1 and t7) is the target location (in level 4). For both
features, we measure them relative to the location of the target center. This makes
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the user feature points independent of the game parameters and our experiments
shows stability of the values of these features over time. Features t1, t2, t6, t7 and
t8 are mostly based on personal traits such as concentration and cognition, reac-
tion time and coordination: they measure precision and speed of a player in aiming
at the target (selecting the angle and velocity of the arrow) considering the vari-
able parameters of the game. Features t3, t4 and t5, measure traits that are mostly
subconscious including personal preference in where the arrow is grabbed. Our
experiments show that decreasing the hit error and aiming time at the same time,
is hard. Thus the pairs (t1, t2) and (t2, t8) are tightly coupled features: a player
trying to decrease the hit error, needs to increase the time of aiming at the target.
Our experiments suggest that the features t1, . . . , t8 are stable and using consec-
utive measurements can identify users in a group (Section 5). Removing each of
the features from the user game-play will reduce FAR and FRR.

Game Levels. The game design has evolved over a period of 2 months as
we performed continued tests with 4 local participants. For our final evaluation
using Amazon Mechanical Turks, we used 4 levels. Our observations on the affect
of the design on the correctness and security are summarized in Section 5. In
the first three levels of the 4 level game, the location of the target is fixed. The
first level is the easiest: the target is fixed in the center of the screen and the
player has to choose the speed and the angle of throw, and hit the center of the
target. In the second level, there is a blocking wall that prevents the player to
shoot at the target in straight line (Fig. 1. The player must adjust the angle and
speed to prevent hitting the wall. The third level is the same as the first, but
the target has a vertical periodic (sinusoidal) movement, and the player must
predict the location of the target before releasing the arrow. The forth level is
different from the previous 3 levels: the target will jump around and changes its
location. It also fades away, and so forces the player to release the arrow within
the time period that the target is visible. Otherwise the chance of hitting the
target reduces.

4.2 Verification Function

The verification function is a matching algorithm that matches the user response
in an authentication attempt against a stored profile. The stored profile RP (n) is
a set of n = 120 feature vectors that are collected during the registration phase
when the correct user is playing n rounds of the game challenge and response.
Each authentication attempt consists of n′ = 30 rounds of the game challenge
and responses, where a user claims identity P. The user profile is stored in
the database DB indexed by the user identity and is used to match RP (n′).
We experimented with a number of candidate matching algorithms including
SVM and random forest method, and chose the following algorithm because it
provided the best accuracy (lowest FAR and FRR). The verification function
takes as input two sets of feature vectors RP (n) and RP ′(n′) and outputs a
bit, 1 or 0. The verification function estimates the probability distributions of
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features using the two sets of feature vectors, and compares the two distributions
using statistical distance.

Converting Samples to Distribution. To construct a probability distribution
for a feature from the profile (or an authentication attempt), one can construct
the corresponding histograms (by defining bins and counting the number of
samples in each bin), and then find a suitable parametrized density function
that fits the data. Parameters of the density function will be determined using
a goodness of fit algorithm, resulting in the probability distribution.

Our empirical results showed that cumulative distribution function (cdf)
is more effective in distinguishing users. Our goal was thus to construct the
cdf associated with a set of feature vectors, RP (n) = (F1, F2, . . . , Fn), where
Fi = {f1i, f2i, . . . , fbi}, i ∈ [n]. Here fji is the ith measurement of the fea-
ture fj . Constructing the cdf of a multi-dimensional variable depends on the
order that the variables are considered (corresponding to feature) and so the
final distribution will depend on this order. To overcome this problem, we con-
struct the cdf of each variable independently, use each to calculate a score for
the corresponding feature in the authentication data, and then combine the
results using the weighted average of these scores. To estimate the cdf of a
feature fj , we first extract the values of fj from the set of feature vectors
Cj = {fj1, fj2, . . . , fjn}. Assuming that the elements of Cj are samples of a
distribution X, we want to estimate cdf(X) given by cdf(x) = Pr[X ≤ x], for a
probability distribution Pr(X). Since we do not have the probability distribution
X, we estimate the cdf which we call empirical distribution function (edf) by,

edfCj
(x) = Prn[X ≤ x] = 1

n

n∑

i=1

I(Cji ≤ x), where Cji is the ith element in Cj ,

and the function I returns 1 if the input condition is true and 0 otherwise. Thus
edfCj

(x) outputs the fraction of the sample points below value x.

The Distance Function. Given two sets of samples Cj , C
′
j of size n and m

respectively, we calculate the score as,

scorej =
( mn

m + n

)1/2

max
x

∣
∣
∣edfCj

(x) − edfC′
j
(x)

∣
∣
∣ .

scorej measures the distance between the two empirical distributions associated
with the two sets of sample data. This function had been used in the Kolmogorov-
Smirnov (KS) test as a measure of similarity between two datasets. The KS test
measures the probability that two datasets are generated by the same distribu-
tion. The score is illustrated in Fig. 3 for 4 features measured in the game.

Finally, for the two sets of feature vectors RP (n) and RP (n′), we define the

score as a weighted sum of scorej for j ∈ [b], score =
b∑

j=1

wjscorej , where wj is

the weight of the feature j. The score can be considered as a measure of the
likelihood that two sets of feature vectors are drawn from the same multivariate
distribution. For a given profile RP (n) of user P and a response set RP (n′), the
verification function outputs 1 if the score is less than a threshold τ .
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Fig. 3. The smooth edf of the features for 7 random users

5 Experiments

These experiments can be broadly divided into two groups and were performed
over a six months period with a total of 186 users. There were 4 local users
who participated in our experiments from the design stage, and allowed us to
refine the design and parameter selection of the game. For the evaluation of our
final design we used Amazon Mechanical Turks. The collected data from this
latter group were filtered appropriately to exclude outliers as will be explained
below. Our evaluation consists of two types of experiments, first for evaluating
correctness and security as given in section 5.2, and second HtE property of the
authentication game given in section 5.3.
Graphs in this Section. The figures used in this section illustrate the values of
features measured through game play of users. The x-axis represent the feature
value and the y-axis is frequency, or probability in the case of PDF or CDF. The
graphs describe user behaviour as follows. Graphs for the timing of action such
as targeting and wait time, shows the time spent for each feature. The user has
spent less time for a feature, if the graph is towards the y-axis with higher peaks
closer to value x = 0. For the feature “hit error”, the user is more skilled in
hitting the center of the target if the graph peak is around x = 0.

5.1 Considerations in Using Amazon Mechanical Turk

We had to ensure that users play the game consistently and to the best of their
ability, and not at random and inconsistent way. To achieve this goal, users were
instructed to play the game to achieve a minimum score at each level of the game.
The minimum was set to be achievable by the weakest users. In each phase, the
users were required to play the game for a required number of rounds without
delay in between rounds. We measured timing parameters from the game to
verify the users followed the requirements.

We note that feature measurements in general will be affected by the device
and software platform including screen resolution or CPU speed. This is a known
problem in behavioural authentication system that can be handled by consider-
ing multiple profiles for each user and introducing appropriate restrictions during
deployment of the system.
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5.2 Experiment 1: Correctness and Security

For correctness and security evaluation, we recruited approximately 150 Mechan-
ical Turks, with only 97 of them passing our minimum requirements. Thus 101
users were used in the experiment, including our colleagues.

In the registration phase we collected 120 feature vectors (120 shots to the
target) from each user, and in the authentication phase collected 30 feature
vectors (on average taking around two minutes to complete) . The data for both
phases were collected during a 6 hour period with roughly an hour in between
registration and verification. This is to remove effect of learning, change of user
experience and the like in measuring correctness. We will deal with these issues
separately in Section 5.2.

Correctness (Single User). Our experiments showed that the measured fea-
tures are fairly stable for user’s recorded profiles. This means that the change in
the values are so small that does not affect the matching algorithm. We exam-
ined users’ data in two consecutive time slots and then constructed a histogram
of the measurements. Fig. 4 is the histogram (cdf) for the two consecutive mea-
surements for the two features, hit error and aim time, for one user.

In this experiment, we measured the stability of feature values during reg-
istration and authentication phases. We measured the distance (as described
in Section 4.2) between the profile of the users constructed in the registration
phase, and the measured feature vectors during authentication phase. The graphs
in Fig. 4 are the histograms of the measured feature points of two features, hit
error and aiming time. In each graph, the feature points during the registra-
tion and authentication are plotted separately. For 91 users (out of 101), the
distance function outputs a very small difference between the registration and
authentication data. This shows the stability of features during the two mea-
surements indicating correctness of authentication game. Fig. 4 shows stability
of measurements when performed in two consecutive time slots.
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Fig. 4. User verification accuracy; measurements matching the profile

User Learnability and Profile Update. An important issue is the usage of the
system over time. When a user profile is constructed at time t1, one expects
all (most) authentication attempts at times t > t1 be successful. However, the
change in the user’s behaviour and skill over time could result in failed authenti-
cation attempt. We asked users to make login attempts over a period of 5 days.
Each user on average made 20 login attempts at each level of the game. Fig. 5
shows the change in user behaviour over this period.
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Fig. 5. The smooth histogram of the feature points for 1 user, illustrating how the
features change over time.

There are 4 sub-figures in Fig. 5 illustrating the changes of two features, namely
aiming time and hit error, over time. All sub-figures are extracted from one user
data but the trends were the same for all users. The two sub-figures on the left
show the behaviour of the user over time for 5 distinct measurements in the order
numbered in the sub-figure legend. As shown in the sub-figures on the left, the
behaviour and skill of users change over time and this can result in higher false neg-
ative in the matching algorithm. For example for the sub-figure related to aiming
time feature, as the user becomes more experienced, less time is spent on aiming
the arrow. For example, comparing the graphs on days 1 and 3, the peak of the
graph 1 is on feature point 0.75 (seconds) compared to the peak 0.7 (seconds) in
graph 3. The average value of aim time decreases as the user becomes more experi-
enced in the game. For the sub-figure related to the hit error, the user’s behaviour
changes over time, but not necessarily towards lower error.

To compensate the affect of behaviour and skill change, the profiles of users
were updated upon each successful login. The sub-figures on the right of Fig. 5
illustrates how updating the profile alleviates this problem. In the sub-figures on
the right, the measurements are performed in the same order. For the measure-
ments on days 1 and 3 the profile is updated, and authentication measurements
on day 2 and 4 are compared against profile 1 and 3 respectively for verifica-
tion. The results show that profile update is an important factor in accurate
authentication over time. Without profile update around 70% of the authentica-
tion attempts (average over all users) failed, and this was mainly after a number
of successful verification attempts. With profile update the same collected data
showed 93% success rate in verification.

Security Against Impersonation: Multiple Users. Here the goal is to
evaluate performance of the system in detecting a false claim: that is a user P’
claiming to be P. In this experiment, we used the matching algorithm of Section
4.2 to evaluate how the feature points can distinguish users. The threshold was
set to have a low FAR (level 4). Fig. 6 and 3 illustrate the histogram (pdf
and cdf resp.) of feature points of 7 users’ profiles. The user’s histograms were
distinguishable and the matching algorithm could correctly verify 91 out of 101
users. From the 9 users who were not verified, 4 were very close to the verification
threshold. The other 5 users (all from Mechanical Turk) were far from their
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Fig. 6. The smooth histogram of the feature points for 7 users, illustrating how the
features can distinguish among a group of people.

profile. However because of using Turks, it was not possible to ensure that the
game plays were generated by the same user.

Entropy of the Authentication Information. The simplest attack on an
authentication system is guessing attack where the attacker guesses the responses
to the challenges. We used min-entropy which is the best success chance of guess-
ing a variable, to measure guessability of a user profile. The measurements used
NIST tests for estimating min-entropy explained in [BK12]. The measurements
shows that the feature vector for each shot in the game has on average (over
all users) at least 32 bits of entropy and so for 30 shots guessing entropy is
960 = 30 × 32 bits, making guessing attack impossible.

5.3 Experiment 2: HtE Property

We considered HtE property in the following scenario. A user registers to the
system by playing the required number of game instances. The authentication
information are passed on to a helper who will try to authenticate as the user.
To evaluate HtE property, we considered an experiment where a group of users
(helpers) all (independently) aim to emulate a target user. This would give us an
estimate of the fraction of population who could successfully emulate the target
user. Intuitively, this fraction would depend on the skillfulness of the target
player. We chose two skill levels: a higher skill level and a lower skill level. There
were a number of challenges in performing the experiment. Firstly, we had to
ensure that the users (helpers) are incentivized to do their best to emulate the
target users. We provided this incentive to Mechanical Turks who played the role
of the helper, by offering a bonus of $20 for the task of successful emulation of the
target, in addition to the standard payment. We also provided information that
were “helpful” to the Turks so that they can modify their game play towards
the target user. Providing plain user profile was soon proved to be not useful.
Therefore, we initially provided a set of information about the target user to
the Turks, and then provided feedback after each authentication attempt. The
set of information included i) a video recording of the target user playing the
game, and ii) the statistics of the feature points in the target user’s profile such
as maximum, minimum and average values of each of the features. The feedback
information included i) the statistics of the feature points in the Turk’s data
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from each verification attempt (Table 2), ii) direct instructions on how the user
should change behaviour to match the target user as in Table 1, and iii) the
graphs comparing the distribution of the target user’s profile and the Turk’s
verification attempt as in Figures 7 (c,d).

In our experiments we hired 2 local users, one a more skilled user and a
less skilled one, as delegation targets. We hired 15 Mechanical Turks and 2 local
users to emulate each of the target users. The 2 target users also tried to emulate
each other, so the total number of participants (who satisfied our requirements)
was 36. The Mechanical Turks were selected with varying skill levels, based on
their previous scores, and new users who had not played the game before. These
choices were to make the experiments unbiased. The user tried to emulate the
behaviour of the target users at least 20 times over a period of 5 hours. The
task was allowed to be continued if the users were interested in making more
attempts to win the bonus payment. In total we had, 904 and 1606 login attempts
to emulate the behaviours of the user 1 and 2 respectively.

Our first observation in evaluating HtE property is that any false positives
in authentication phase implies that HtE property will not be satisfied. In other
words, if the authentication algorithm matches authentication attempts of user
A to the profile of user B, this implies that user A can emulate the behaviour
of user B. So in experiment 5.2, we counted the number of users who could
authenticate as another user. Note that in experiment 5.2, the users were not
asked to emulate the behaviour of another user. But their data was close enough
to another user that resulted in a false positive.

HtE Property of the Game. A player X from Mechanical Turk was given
the following information about the target player Y (local): the record of feature
measurements, feature statistics (average, min, max), graphs of feature points
(as used by the verification algorithm), the information from visually observing
the game play of Y and instructions on how to change behaviour to get closer
to user Y. With this, player X had to emulate user Y in several authentication
rounds, each consisting of 30 game plays. After each round, we provided feedback
(increase or decrease the feature values) to X on how to change their game play
to get closer to the target. The player X was also told about how the matching
algorithm rated the feature points compared to Y’s profile. We had asked player
X to play as themselves in their first attempt so that we could compare and
measure the progress in the behaviour emulation. We repeated this experiment
with direct supervision of the 4 local users, trying to emulate the behaviour of
the two target users.

Table 1. Instructions provided after
each attempt

Increase aiming time by 0.5 seconds.
Decrease wait time by 0.3 seconds.
Decrease hit error by 10 pixels.
Increase Mouse X by 20 pixels.

Table 2. Statistical information of
behaviour

Feature Min Max Average
Aiming time 0.5 2.3 1.2
Wait time 0.2 1.3 0.7
Hit error -89.45 56.31 5.3
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The Affect of Tightly Coupled Features. From the 36 users attempting to
emulate the behaviour of our players, three Turks could emulate the behaviour
of the local users. However, only one Turk could repeat their success in emulating
the behaviour of the weaker user such that the matching algorithm outputs 1
in around 26% of the attempts. We note that the behaviour of this participant
was relatively close to the weaker user in their first attempt. The other two
participants could only emulate the behaviour of the local users once or twice in
all their attempts. In total, for 1606 attempts to emulate the behaviour of the
stronger user, only 2 attempts were successful and matching algorithm output
1 with 95% success. For the weaker local user however, out of 904 emulation
attempts, 13 attempts were successful.
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Fig. 7. (a,b) HtE property; measurements for two single features (c,d) Increase in hit
error results in increase in aiming time.

Fig. 7 (a,b) illustrates the attempts made by a user to emulate a second
user. The histogram of feature measurements of user X is shown in dashed line
before passing on Y’s information. The histogram of feature measurements of
user Y (from Y’s profile) are shown in a blue thick lines. The remaining graphs
correspond to attempts made by user X to emulate the behaviour of user Y for
two sample features, hit error and aiming time. As shown in the figures, user
X has lower hit error initially, while aiming time is roughly similar to Y. But
an attempt to increase the hit error results in longer aiming time, even when
X is trained to emulate the behaviour of user Y. Therefore user X could not
emulate both features at the same time. This is illustrated in Fig. 7 (c,d) for
one attempt to simulate the behaviour of another user. In general, time and
coordinate related features were harder to emulate. For example the difference
in wait time of two users, although it could distinguish the users, but was not
significant so that a user can emulate the exact delay of the second user2.

Stronger Versus Weaker Users: Our experiments showed that it is easier to
emulate the behaviour of weaker users compared to the more skilled users and
for the former group, a helper could improve its emulation of the target user.
For strong users however, some of the users could not have any progress in their
emulation attempt and the rest could not get close enough to the behaviour of
the target user.
2 The user trying to emulate a second user had this comment: “How can I delay for
0.3 seconds more in each game play?!”
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Game Design and Parameters. The game was developed over a period of few
months taking into account the effect of varying parts of the game on accuracy of
authentication and the HtE property. Using the feedback of the 4 local users, the
game variables including the gravitational force, the speed of target movement,
appearance of obstacle in the arrow path, and making the target hidden, were
modified to examine their effect on correctness, security and HtE properties.
We finally selected 4 levels (described in Section 4.1) for the main experiments.
Variations such as target movement in the game can significantly reduce con-
vergence of user profiles. This observation was supported by our experiments as
shown below. The value of FRR for the 4 levels of the game is 28%, 18%, 24%,
9% and value of FAR is 12%, 6%, 13%, 6% respectively. As can be seen, level
4 results in the lowest FRR and FAR and thus is more suitable for providing
non-delegatability. The target in level 4 fades in and out in different locations
and this makes it harder to achieve higher scores. The issue that may rise here is
that the variations may cause instable feature measurements over time. However,
relative measurements (to the variations in the game) can mitigate this issue.

6 Deploying Authentication Games

In the following, we discuss possible attacks and prevention mechanisms on
authentication games. There is an ongoing research on the topic of cheat pre-
vention in online games that enables hackers to modify the client, or change
the network communication so that they win without playing. A survey and
classification of these attacks can be found in [WK12]. The success of an online
multi-player game is very much dependent on its fairness among players and
thus gaming industry invests on developing anti-cheating mechanisms due to its
financial significance.

In the following sections, we will summarize the methods in this line of work
that can be used to protect a HtE game against the three mentioned attacks.

Tampering with Network Communication. In this attack the delegatee
uses a trained software that can emulate the behaviour of a legitimate prover, to
bypass the game client and sends the information to the verifier over network.
To prevent this attack we assume a secure communication between the verifier
and game client. This can be achieved by obfuscating a shared key K inside the
game client. We assume this key is not retrievable/modifiable by the users of
the system, neither the prover, not the delegatee. Note that we do not restrict
access to the same game client software by any party, so the delegatee may
acquire a copy of the game client with the same shared key. Assuming the shared
key, a secure authentication mechanism can be implemented in the game client
to prevent any tampering with the network, including replay attack where the
delegatee only replays the responses from the prover. We note that this is not
a full proof solution, but it is assumed in many cheat-proofing mechanisms for
games [HARD10] as it effectively prevents cheating.

Game Client Modifications. The delegatee might modify the client to bypass
the authentication system in two ways. First by installing a cheat along with the
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game client as a patch or loadable module to help in emulating the behaviour
of the prover, and in second method by retrieving/modifying the shared key
with the verifier to be able to tamper with the network communication. To
mitigate these attacks, authors in [TBB12] propose to symbolically execute the
client to find the constraints on the state of the client implied by the responses
received from it, and then using constraint solvers to find if such constraints
could be generated by user input. An extension of this approach was proposed
in [HARD10] which uses Accountable virtual machines (AVM). In this approach,
the game is run in a virtual machine that monitors the state of the game during
user game play and outputs a log of the game events (e.g. mouse click, key
stroke, etc) which will be sent to the verifier. Having all the logs, the verifier
can simulate running the game with the events in the log to find inconsistencies.
There are also solutions based on tamper-resistant hardware [BM07] that use a
dedicated hardware to check the state of the client.

Automated Game Play (bot). A game bot is a software/hardware agent that
can emulate game play. In this attack, a game bot can be trained to be able to
emulate the behaviour of the prover, without client modification or tampering
with the network. For example one type of game bots can generate the sequence
of mouse clicks and key strokes to play the game, by image processing the game
environment. Depending on the graphics of the game, such tools can get very
complex and harder to implement. There are general protection mechanisms to
mitigate these attack such as Intel hardware protection mechanism [SGJ07], and
software techniques such as human interactive proofs (e.g. Captcha) [MY12]. In
[GWXW09], human observational proofs (HOP) are used to distinguish between
human and bots. HOPs differentiate bots from human players by monitoring
actions taken by the player that are difficult for a bot to perform. [CPC08]
tries to distinguish human behaviour from bots by arguing that certain human
behaviours are difficult to perform by a bot because they are AI-hard. Note
that the methods in [GWXW09,CPC08] collect feature from game play and can
be simply incorporated into our proposal by unifying the collected features and
doing further analysis on the feature vector to detect bots, and then verify the
identity of prover.

D-MiM Attacks. In a delegation Man-in-the-Middle attack (D-MiM) the
helper forwards the challenge to the colluder, receive its response and passes
it on to the verifier. This attack is only possible if the colluding prover is on-
line at the time of the challenge. Although this is a valid attack if the time is
coordinated before hand, it becomes increasingly hard if the verifier use the sys-
tem in continuous authentication mode (e.g. in scenario of work-at-home) and
send challenge blocks at random times to the user. Similar to other MiM attack,
providing protection against D-MiM can be achieved by using extra mecha-
nisms such as distance bounding protocols to verify the distance of the user
from the verifier. Note that although distance bounding protocols are primarily
for wireless environments, there are distance bounding protocols that work over
the Internet. Distance bounding over wired networks has been considered in a
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number of works. Drimer et al. [DM07] proposed to use DB over wired networks
to prevent relay attacks between bank terminals and smart cards. Watson et al.
[WSNA+12] also proposed DB to estimate the location of a server over a wired
network which describes a method to achieve an estimation error of 67 km for
distance.

7 Concluding Remarks

We proposed a novel approach to challenge response authentication using
behavioural biometrics in a complex activity. Exploring possible activities that
can be used for user authentication, and feature selection for these activities is
an interesting direction for future work. Another important direction for future
work is privacy of user data. A user profile is a set of feature vectors that is
only meaningful with respect to the activity. Developing a privacy model and
evaluating it experimentally is also an interesting direction for future research.
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Abstract. To ensure the security of sensitive data, people need to encrypt them 
before uploading them to the public storage. Attribute-based encryption (ABE) 
is a promising cryptographic primitive for fine-grained sharing of encrypted da-
ta. However, ABE lacks user and authority accountability. The user can share 
his/her secret key without being identified, while key generation center (KGC) 
can generate any user’s secret key. In this paper, we propose a practical large 
universe ciphertext-policy ABE (CP-ABE) with user and authority accounta-
bility in the white-box model. As embedding the user’s identity information in-
to this user’s secret key directly, the trace stage has only O(1) time overhead. 
The property of accountability is proved against the dishonest user and KGC in 
the standard model. We implement our scheme in Charm. Experiments show 
that CP-ABE of Rouselakis and Waters in CCS 2013 is enhanced in user and 
authority accountability by our method with small computational cost. 

Keywords: Attribute-Based Encryption · User accountability · Authority  
accountability · White-box model 

1 Introduction 

Cloud computing is changing the way we deliver large-scale web applications. Various 
computing resources are delivered as services over the Internet. The openness and shar-
ing of cloud has caused important issues of information security. More and more enter-
prises and individuals choose to put their data into the cloud. However, cloud service 
providers are generally assumed to be untrusted parties, that is, they may be curious 
about the content of their users’ data for advertising or even sell the data to data owner’s 
competitors. A natural solution is that data owners should encrypt sensitive data before 
outsourcing them. Attribute-based encryption (ABE), as an excellent cryptographic 
access control mechanism, is quite preferable for sharing of encrypted outsourced data. 

The concept of ABE was first proposed by Sahai and Waters in 2005 [21]. Then 
ABE comes into two flavors, key-policy ABE (KP-ABE) [10,19,2] and ciphertext-
policy ABE (CP-ABE) [4,8,25]. In KP-ABE, ciphertexts are associated with sets of 
attributes and user’s secret keys are associated with access structures. When cipher-
texts are created, data owners do not know who will have access to them later.  
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KP-ABE focuses on the specific need of user. Whatever user needs, key generation 
center (KGC) will generate secret keys corresponding to the proper access structures. 
In CP-ABE, the situation is the opposite. Users’ secret keys are labeled by attributes 
and ciphertexts are associated with access structures. Before encrypting, the data 
owner clearly knows what kind of people is allowed to access.  

Nevertheless, ABE has a major drawback which is known as the lack of user ac-
countability. As secret keys do not include identity information, a dishonest user need 
not worry about being caught if this user shares his/her secret key with others or pro-
duces a pirate decryption device and sells it on the Internet. Almost all ABE systems 
suffer from this problem which does not exist in traditional public key encryption 
(PKE) as users’ public keys are certificated with their identities by public key infra-
structure (PKI). Thus the general method for user accountability is to embed the iden-
tity-related information to the user’s secret key. Notice that ABE is a one-to-many 
communication and its public key in the conventional sense consists of public para-
meters and attribute sets. 

In addition, there is also another problem named the lack of authority accountabili-
ty. As KGC in ABE has the power to generate secret key for any user with any 
attribute set, it is hard to distinguish whether the traitor founded by using the tech-
nique of user accountability is innocent or not. The general method is to embed secret 
information which is hidden from the KGC’s view into the user’s secret key. That 
secret information can be called key family number [9], which means there are a clus-
ter of secret keys related with each user. We can tell that KGC is to blame if the key 
family number of the suspected key does not match with that of the accessible users. 

There are two models about accountability, white-box model and black-box model. In 
white-box model, we can get the content of secret key of suspected user. While in black-
box model, the secret key is encapsulated in a decryption box. A judge should be able to 
decide if this box was created by a dishonest user or KGC only by constructing the input 
and observing the output of the box. Notice that Liu et al. [16] use the word “traceability” 
other than “accountability”. In this paper, they are used interchangeably. 

1.1 Related Work 

In ABE, most of the concern is user accountability [11] which assuming that the KGC 
can be trusted. Hinek et al. [11] proposed a token-based ABE. When decrypting, users 
must request a decryption token from a third party token server. Therefore, the token 
server is required to be online. Yu et al. [26] proposed a KP-ABE scheme by combining 
anonymous ABE with traitor tracing in broadcast environments. The content provider 
would choose particular types of ciphertexts and trick pirate devices into decrypting 
them. Li et al. [13] proposed an accountable, anonymous CP-ABE. User accountability 
can be achieved in black-box model by embedding additional user-specific information 
into the attribute secret key. Liu et al. proposed white-box [16] and black-box [15] trace-
able CP-ABE respectively. Both can support any monotone access structures while the 
schemes prior to Liu et al.’s work only support AND gate with wildcards. However, both 
schemes use bilinear groups of large composite order and are inefficient. Ning et al. [18] 
proposed a large universe CP-ABE with user accountability in white-box model on bili-
near groups of prime order. “Large universe” means that a scheme can support flexible 
number of attributes. Liu and Wong [17] proposed both large universe KP-ABE and  
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CP-ABE with user accountability in black-box model on bilinear groups of prime order. 
The scheme supports revocation for the dishonest user. 

Wang et al. [24] achieved authority accountability in white-box model by combining 
accountable authority identity-based encryption (IBE) [14] and KP-ABE [10]. As the 
user’s secret key contains the secret information unknown to KGC, if KGC forges secret 
key in accordance with the user’s identity, we can find whether KGC or the user is dis-
honest according the key family number. But yet it does not support large universe. 

In multi-authority ABE [6,7], different authorities operate simultaneously and each 
hands out a user’s partial secret key for a different set of attributes. Li et al. [12] pro-
posed a multi-authority CP-ABE scheme with user accountability. However, it only 
supports access structure with AND gate with wildcards. 

1.2 Our Contributions 

The main contributions of our work can be summarized as follows. 
1) We propose a ciphertext-policy attribute-based encryption scheme with user and 

authority accountability (UaAA-CP-ABE) in white-box model. 
2) Our scheme has the property of large universe and is proved selectively secure 

in the standard model. The accountability property is also proved against dishonest 
user and KGC in the standard model. 

3) By embedding a user’s identity into this user’s secret key directly, the only thing 
needed to do is to check whether the suspected secret key is well-formed at trace 
stage. If that key is well-formed, we can easily find out the dishonest user or KGC. It 
is more practical than existing ones [16,18]. More analysis can be seen at Section 1.3. 

4) Our scheme is very efficient. We enhance CP-ABE of Rouselakis and Waters 
[20] in user and authority accountability with small computational cost. 

We compare our work with other related works in Table 1. 

1.3 Our Main Ideas 

In this section we will briefly describe the main ideas in our scheme. 
We extend large universe CP-ABE of Rouselakis and Waters [20] to support ac-

countability for user and authority. To find out the identity of the dishonest user, Liu 
et al. [16] use an identity table to connect the user’s identity with secret key. There-
fore, the table grows linearly with the number of users in the system. To address this 
issue, Ning et al. [18] remove the identity table and use Shamir’s threshold scheme 
[23] to trace the dishonest user. As every user has a unique identity  in the system, 
can we embed  into the user’s secret key directly? If succeeded, the trace stage 
would become very simple, the only thing is to check whether the suspected secret 
key is well-formed or not. Liu et al. [16] in their extensions give some suggestions by 
using another signature scheme in [5]. However, they do not give a complete con-
struction and proof. And their scheme uses bilinear groups of composite order and 
merely supports user accountability in white-box model. In our scheme, we success-
fully embed the signature scheme in [5] into our prime order construction and give 
complete proof. 
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Table 1. Comparisons with other related works 

Schemes Category Large 

Universe 

Supporting 

Monotonic 

Access Structure 

Order of 

Bilinear 

Groups 

User 

Accountability 

Authority 

Accountability 

Security 

Model1 

LRZ+[13] CP-ABE   prime black-box2  
selectively 

secure 

WCL+[24] KP-ABE   prime white-box white-box 
selectively 

secure 

LCW[16] CP-ABE   
compo-

site 
white-box  

Fully 

secure 

LCW[15] CP-ABE   
compo-

site 
black-box  

fully 

secure 

NCD+[18] CP-ABE   prime white-box  
selectively 

secure 

LW[17] 
KP-ABE 

CP-ABE 
  prime black-box  

selectively 

secure 

RW[20] CP-ABE   prime   
selectively 

secure 

Ours CP-ABE   prime white-box white-box 
selectively 

secure 
1All schemes are secure in the standard model. 
2[16] gives a “compare-before-output” technique to avoid the tracing algorithm from identifying the dishonest user in Appendix A. 

 
In order to achieve authority accountability, we borrow some ideas from accounta-

ble authority IBE [9]. Nevertheless, in IBE, both secret key and ciphertext contain the 
user’s specific identity information. In ABE, the ciphertext is used for sharing and 
cannot contain the user’s specific identity information. However, we finally succeed 
in embedding secret information hidden from the KGC’s view into the user’s secret 
key. We owe it to the secret key and ciphertext structure of Rouselakis and Waters 
[20] which employ “attribute” layer and “secret sharing” layer and use a “binder 
term” to connect them. We can embed secret information into the “secret sharing” 
layer in the user’s secret key and need not change the ciphertext. This trick does not 
affect the normal computation in the decryption phase other than a change in expo-
nential factor. 

1.4 Organization 

The remainder of the paper is organized as follows. Section 2 introduces the  
background. In Section 3, we give the formal definition of UaAA-CP-ABE and its 
security model. Section 4 proposes the construction of our UaAA-CP-ABE scheme. 
In Section 5, we analyze our proposed scheme in terms of security and performance. 
Finally, we give a brief conclusion in Section 6. 
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2 Background 

2.1 Access Structures and Linear Secret Sharing Schemes 

Definition 1. (Access Structures [3]) Let , , … ,  be a set of parties. A col-
lection 2 , ,…,  is monotone if B, C: if  and  then . An 
access structure (respectively, monotone access structure) is a collection (respectively, 
monotone collection)  of non-empty subsets of , , … , , i.e., 2 , ,…, \ . The sets in  are called the authorized sets, and the sets not in 

 are called the unauthorized sets. 
In our context, the role of the parties is taken by the attributes. In this paper, we 

mainly focus on monotone access structure. 

Definition 2. (Linear Secret Sharing Schemes (LSSS) [3]) A secret sharing scheme Π 
over a set of parties  is called linear (over ) if 

1) The shares for each party form a vector over . 
2) There exists a matrix an M with  rows and  columns called the share-

generating matrix for Π. For all   1, … , the  row of M we let the function  
defined the party labeling row  as . When we consider the column vector , , … , , where  is the secret to be shared, and , … ,  are 
randomly chosen, the M  is the vector of  shares of the secret  according to Π. 
The share M  belongs to party . 

According to [3], every LSSS according to the above definition also enjoys the li-
near reconstruction property. Suppose that Π is an LSSS for the access structure . 
Let  be any authorized set if 1, and let 1,2, … ,  be defined as : . Then, there exist constants  such that, if  are 
valid shares of any secret s according to Π, then ∑ · . 

2.2 Bilinear Maps 

Definition 3. (Bilinear Maps) Let  and  be two multiplicative cyclic groups 
of prime order . Let  be a generator of  and  be a bilinear map : 

. The bilinear map  has the following properties: 

1) Bilinearity: for all ,  and , , we have , , . 
2) Non-degeneracy: , 1. 
3) Computable: there exists an efficient algorithm for : .  
Notice that the map  is symmetric since , , , . 

2.3 Assumptions 

In our paper, we adopt the -type assumption of Rouselakis and Waters’ scheme 
[20]. 
 
 



 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 505 

Assumption 1. -type assumption 

Initially the challenger calls the group generation algorithm with input the security 
parameter, picks a random group element , and 2 random exponents , , , , … , . Then he sends to the adversary the group description , , ,  and all of the following terms: ,   , , , ,  , ,  

   , , 2 , ,    
   , 2 ,   1 ,   , , , ,    

It is hard for the adversary to distinguish , from an element which 
is randomly chosen from . 

Definition 4. We say that the -type assumption holds if no probabilistic polynomial 
time (PPT) adversary has a non-negligible advantage in solving the -type problem. 

Assumption 2. -Strong Diffie-Hellman assumption [5] 

Given a 1 -tuple , , , … ,  as input, it is hard for the adversary to 
output a pair , ⁄  where . 

Definition 5. We say that the -SDH assumption holds if no PPT adversary has a 
non-negligible advantage in solving the -SDH problem. 

2.4 Miscellaneous Primitives 

Zero-knowledge Proof of Knowledge of Discrete Log. A zero-knowledge proof1 is 
a method by which one party (the prover) can prove to another party (the verifier) that 
a given statement is true, without conveying any information apart from the fact that 
the statement is indeed true. As a realistic cryptography application, a zero-knowledge 
proof of knowledge (ZK-POK) of discrete log protocol [9,22] enables a prover to 
prove to a verifier that it possesses the discrete log  of a given group element  in 
question. 

3 CP-ABE with User and Authority Accountability 

In this section we give the definition and security model of a large universe CP-ABE 
scheme with user and authority accountability (UaAA-CP-ABE). 
 

                                                           
1 http://en.wikipedia.org/wiki/Zero-knowledge_proof 
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3.1 Definition 

A UaAA-CP-ABE scheme consists of the following five algorithms: 
Setup 1 , : This is a randomized algorithm that takes a security pa-

rameter  encoded in unary. It outputs the public parameters  and master 
key . 

KeyGen , , , : This is a randomized algorithm that takes as in-
put the public parameters , the master key , a user’s identity  and a set of 
attributes . It outputs this user’s secret key . 

Encrypt , ,  : This is a randomized algorithm that takes as input the 
public parameters , a plaintext message , and an access structure . It outputs 
the ciphertext . 

Decrypt , ,  : This algorithm takes as input the public parameters 
, a secret key  for a user  with a set of attributes , and a ciphertext  

encrypted under access structure . It outputs the message  if 1. 
Trace A user's ID or "KGC" or : This algorithm has two 

stages. In the first stage, it takes as input a decryption key  and outputs a 
user’s identity  with a key family number  or the special symbol  if 

 is ill-formed. In the second stage, it compares the key family number  of the secret key of the user  with . If , it outputs  assuming the 
user  is dishonest. Otherwise, it outputs “KGC”. This definition of Trace is for the 
white-box setting.  

3.2 Selective Security Model for UaAA-CP-ABE 

In this part, we will define selective security for our UaAA-CP-ABE scheme. This is 
described by a game between an adversary  and a challenger  and is paramete-
rized by the security parameter . The phases of the game are as follows. 

Init: The adversary  declares the challenge access structure  which he wants 
to attack, and then sends it to the challenger . 

Setup: The challenger  runs the Setup 1  algorithm and gives the public pa-
rameters PK to the adversary . 

Phase 1: The adversary  is allowed to issue queries for secret keys for users 
with sets of attributes , , , , … , , . For each , , the chal-
lenger   calls KeyGen , , ,  and sends  to . The only 
restriction is that  does not satisfy . 

Challenge: The adversary  submits two equal length message  and . The 
challenger  flips a random coin 0,1 , and encrypts  with . The ciphertext 
is passed to . 

Phase 2: Phase 1 is repeated. 
Guess: The adversary  outputs a guess  of . 
The advantage of an adversary  in this game is defined as | Pr 1 2⁄ |. 



 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 507 

Definition 6. A ciphertext-policy attribute-based encryption scheme with user and 
authority accountability is selectively secure if all PPT adversaries have at most neg-
ligible advantage in  in the above security game. 

3.3 Accountability Model for UaAA-CP-ABE 

In this part, we will define three games for accountability, one for the dishonest KGC 
and two for the dishonest user.  

a) The DishonestKGC Game 
The intuition behind this game is that an adversarial KGC attempts to calculate us-

er’s key family number  in the user’s secret key. The DishonestKGC Game for our 
scheme is defined as follows. 

Setup: The adversary (acting as an adversarial KGC) runs the Setup 1  algo-
rithm and gives the public parameters  and a user’s identity  to the challenger. 
The challenger checks that  and  are well-formed and aborts if the check fails. 

Key Generation: The challenger chooses  randomly and sends  to the 
adversary. The challenger also need to give to the adversary a zero-knowledge proof 
of knowledge of the discrete log of  with respect to . Then the adversary calls 
KeyGen , , ,  and sends  to the challenger. The challenger 
also check that  is well-formed and aborts if the check fails. 

Key Forgery: The adversary will output a decryption key  related with . 
The challenger checks that  is well-formed and aborts if the check fails. 

Let  denote the event that the adversary wins this game which happens the 
key family number of  equivalent to ’s. The advantage of an adversary in this 
game is defined as  . 

b) The DishonestUser-1 Game 
The intuition behind this game is that the adversary cannot create a new ’s se-

cret key or even generate a new key  with an existed  appeared at Key 
Query stage. At Key Query stage, the adversary has already got . In this game, a 
new key with an existed  means that the identity-related information in  is 
successfully changed by the adversary. A tuple ,  represents identity  with 
the identity-related information. The DishonestUser-1 Game for our scheme is de-
fined as follows. 

Setup: The challenger runs the Setup 1  algorithm and gives the public parame-
ters  to the adversary. 

Key Query: The adversary issues queries for secret keys for users with sets of 
attributes , , , , … , , . The challenger responds to each query by 
calling KeyGen , , , . 

Key Forgery: Eventually, the adversary outputs a decryption key  related with ,  and wins the game if 
(1) ,  is not any of , , … , , , and  
(2)  is well-formed. 
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Let 1 denote the event that the adversary wins this game. The advantage of an 
adversary in this game is defined as  1 . 

c) The DishonestUser-2 Game 
As the same with DishonestKGC Game, we must assure a dishonest user cannot 

create another key family number (denoted by ) in that user’s secret key. The Dis-
honestUser-2 Game for our scheme is defined as follows. 

Setup: The challenger runs the Setup 1  algorithm and gives the public parame-
ters  to the adversary (acting as an adversarial user). The adversary checks that 

 are well-formed and aborts if the check fails. 
Key Query: The adversary issues queries for secret keys for users with sets of 

attributes , , , , … , , . The challenger responds to each query by 
calling KeyGen , , , . 

Key Forgery: The adversary will output a decryption key  related with , ,  and wins the game if 
(1) ,  is one of , , … , , , we assume ,  is equivalent to , , and  
(2)  does not equal to , and 
(3)  is well-formed. 
Let 2 denote the event that the adversary wins this game. The advantage of an 

adversary in this game is defined as  2 . 

Definition 7. A ciphertext-policy attribute-based encryption scheme with user and 
authority accountability is fully accountable if all PPT adversaries have negligible 
advantage in the above three security games. 

4 Our Construction 

Let  be a bilinear group of prime order , and let  be a generator of . In 
addition, let :  denote the bilinear map. A security parameter  will 
determine the size of the groups. For the moment we assume that users’ identity s 
and attributes are elements in , however, s and attributes can be any meaningful 
unique strings using a collision resistant hash function : 0,1 . 

Our construction follows. 
Setup 1 , : The algorithm calls the group generator algorithm 1  and gets the descriptions of the groups and the bilinear mapping , , , . Then it picks the random terms , , , ,  and α, , . 

The published public parameters  are , , , , , , , , , . 
The master key  are α, , . 
KeyGen , , , , , … , : After the user  is au-

thenticated, the KGC gets  from  where  chooses  randomly.  
also needs to give to KGC a zero-knowledge proof of knowledge of the discrete log 
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(as in Section 2.5) of  with respect to  .  Then it picks 2  random 
nents , , , , … , . It outputs this user’s secret key  (Notice that  
is owned by the user secretly, and is part of ): , ⁄ · , , , , , , , , , , . 

Here 1⁄  is computed modulo . In the unlikely event that 0 we will pick another random . 
Encrypt , , ,  : To encrypt a message  under an access 

structure encoded in an LSSS policy , . Let the dimensions of  be . 
Each row of  will be labeled by an attribute and  denotes the label of  row 

. Choose a random vector , , … ,  from  where s is the random 
secret to be shared among the shares. The vector of the shares 
is , , … , . It then chooses  random value , , … ,  and 
publishes the ciphertext as: , , , , , , , , , , , , . 

Decrypt , ,  : To decrypt the ciphertext  with the decryption 
key SK, proceed as follows. Suppose that  satisfies the access structure and let : . Since the set of attributes satisfy the access structure, there exist 
coefficients  such that ∑ · 1,0, … ,0 . Then we have that ∑ . Now it calculates , , , . , , , , , , , , , . ⁄ . 

Trace A user's ID or "KGC" or : If  is ill-
formed, the algorithm will output the special symbol . Otherwise, it outputs 

 and key family number  in . If  does not exist, the 
algorithm outputs “KGC” which means the dishonest KGC create a fake user’s identi-
ty. Otherwise, it compares  with the key family number  of the secret key of a 
real user . If , it outputs  assuming the user  is dishonest. Other-
wise, it outputs “KGC”. Notice that we do not need to compare the signature part 

 in these two keys, because key family number  is enough to distinguish 
dishonest user or KGC. 

5 Analysis of Our Proposed Scheme 

5.1 Selective Security Proof 

In our original scheme, the KGC does not have complete control over SK because it 
does not know  in . For this reason, the scheme is difficult to be proved selec-
tively secure. A similar situation occurs in accountable authority identity-based en-
cryption (A-IBE) scheme [9]. In the part of security proof of A-IBE, the simulator 



510 X. Zhang et al. 

uses a knowledge extractor to extract the discrete log. In our proof, we will use the 
same technology and assume that the simulator knows . 

In the selective security proof, we will reduce the selective security of our CP-ABE 
scheme to that of Rouselakis and Waters’ [20] which is proved selectively secure 
under Assumption 1. 

Theorem 1. If Rouselakis and Waters’ scheme [20] is selectively secure, then all PPT 
adversaries with a challenge matrix of size , where , , have a negligible 
advantage in selectively breaking our scheme. 

Proof. To prove the theorem we will suppose that there exists a PPT adversary  
with a challenge matrix that satisfies the restriction, which has a non-negligible ad-
vantage  in selectively breaking our scheme. Using this adversary we will 
build a PPT simulator  that attacks Rouselakis and Waters’ scheme ( ) [20] 
with a non-negligible advantage. 

Init: The adversary  declares a challenge access policy ,  which he 
wants to attack, and then sends it to the challenger .  sends this received challenge 
access policy to . Notice that  is a  matrix, where , . Each row 
of  will be labeled by an attribute and  denotes the label of  row of . 

Setup:  gets the public parameters , , , , , , ,  from 
. Then  chooses ,  randomly, and gives the public parameters PK= , , , , , , , , ,  to . Notice that this way  is information-

theoretically hidden from . 
Phase 1: Now  has to produce secret keys for tuples which consists of non-

authorized sets of attributes , , … , , a user’s identity , and an element 
 computed with a zero-knowledge proof. The only restriction is that  does not 

satisfy . As analysis in the beginning part of this section, we assume  knows . 
At first,  will issue  to  and get the corresponding decryption key as 
follows: , ̃ , ̃ , , ̃ , , ̃ ̃ . 

Then  picks random exponents  , and sets ̃ ·⁄  
and ⁄  implicitly. Here 1⁄  is computed modulo . In 
the unlikely event that 0,  will pick another random . Then  
computes ⁄ ⁄ ̃⁄ ⁄ · . ·⁄ ̃ ·⁄ , , . , , ⁄ ̃ ⁄ . , , ⁄ ̃ ⁄ ̃⁄ . 

Finally,  sends the decryption key , , , , , , ,  , , ,  to . Notice that  is owned by . 
Challenge: The adversary  submits two equal length message  and . Then 

 submits  and  to , and gets the challenge ciphertext as follows: , , , , , , , , , . 
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Notice that C has two forms indeed according to the proof part of Rouselakis and 
Waters’ scheme [20], one is well-formed ( , ), and the other is random. 

Then  computes , . Finally,  sends the chal-
lenge ciphertext , , , , , , , , , , ,  to . 

Phase 2: Phase 1 is repeated. 
Guess: The adversary  outputs a guess  of  to . Then  sends  to 

. 
Since the distributions of the public parameters, secret keys and ciphertexts of our 

scheme and Rouselakis and Waters’ in the above game are the same, the adversary in 
selectively breaking Rouselakis and Waters’ scheme has the same advantage as ad-
versary  in selectively breaking our scheme. As Rouselakis and Waters’ scheme is 
selectively secure, so do ours.          □ 

5.2 Accountability Proof 

a) Analysis of the DishonestKGC Game 

Theorem 2. Assuming that computing discrete logarithm is hard in , the advan-
tage of an adversary in the DishonestKGC Game is negligible for our scheme. 

Proof. To prove the theorem we will suppose that there exists a PPT adversary  
which has a non-negligible advantage  in the DishonestKGC Game in our 
scheme. Using this adversary we will build a PPT simulator  that attacks the dis-
crete logarithm problem with a non-negligible advantage.  proceeds as follows. 

Setup: The adversary  (acting as an adversarial KGC) runs the Setup 1  al-
gorithm and gives the public parameters PK= , , , , , , , , ,  and a 
user’s identity  to the simulator .  checks that  and  are well-formed 
and aborts if the check fails. 

Key Generation:  invokes the challenger , passes on  to it and gets a chal-
lenge . Then  engages in the key generation protocol with  to get 
a decryption key for  as follows. Notice that  should give to   a zero-
knowledge proof of knowledge of the discrete log of  with respect to , however, 

 does not know . A similar situation occurs in A-IBE [9]. In the part of security 
proof of the FindKey game in A-IBE,  simulates the required proof without know-
ledge of . In our proof, we will use the same technology and assume that  suc-
cessfully gives to  a zero-knowledge proof of knowledge. Then  calls KeyGen , , ,  and sends  to . 

Key Forgery:  will output a decryption key , , ,, , , , , , , ,  related with .  checks that  is well-
formed and aborts if the check fails. If  is well-formed,  sends  to . 

If   in the DishonestKGC Game is non-negligible, we have built a PPT si-
mulator  that attacks the discrete logarithm problem with a non-negligible advan-
tage. Since computing discrete logarithm is believed to be difficult, there does not 
exist a PPT adversary  which has a non-negligible advantage  in the Disho-
nestKGC Game in our scheme.                □ 
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b) Analysis of the DishonestUser-1 Game 

Theorem 3. The advantage of an adversary in the DishonestUser-1 Game is negligi-
ble for our CP-ABE scheme under the -SDH assumption. 

Proof. To prove the theorem we will suppose that there exists a PPT adversary  
which has a non-negligible advantage  in the DishonestUser-1 Game in our 
scheme (the probability that  wins the game is at least ). Using this adversary we 
will show how to build a PPT simulator  that is able to solve the -SDH assump-
tion with a non-negligible advantage. 

We first give some intuition for the proof. Assuming  issues  queries, For 
each secret key, we record a tuple , , . At Key Forgery stage, the 
adversary outputs a decryption key SK related with , , . There 
are two possibilities when the adversary wins the game,  or 

. We distinguish between two types of adversaries. 
Type-1 adversary: an adversary that either 
1) makes a secret key query for user’s identity  at Key Query stage, or 
2) outputs a decryption key  related with  at Key Forgery stage. 
Type-2 adversary: an adversary that both 
1) never makes a secret key query for user’s identity  at Key Query 

stage, and 
2) outputs a decryption key  related with  at Key Forgery stage. 
We will show that either adversary can be used to solve the l-SDH assumption. 

However, the simulator  works differently for each adversary type. Thus,  will 
choose a random bit 1,2  that indicates its guess for the type of adversary 
that  will emulate. 

 is given a bilinear mapping , , ,  and a random instance , , , … ,  of the -SDH problem 
for some unknown . Then  proceeds as follows. 

Setup:  chooses 1 random elements , , … , . Let  be 
the polynomial ∏ . Expand  and write ∑  
where , , … ,  are the coefficients of the polynomial . Compute:    . 

Notice that we may assume that , otherwise,  for some  
which means that  just obtains the secret key  of the -SDH problem. 

Then  picks the random terms , , , ,  and  
If 1,  picks a random  and gives  the public parameters 

 , , , , , , , , , . 
If 2,  picks a random x  and gives  the public parameters 

 , , , , , , , , , . 
Notice that in either case,  provides the adversary  with a valid public  

parameters. 
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Key Query: The adversary  can issue up to  queries for secret keys adaptive-
ly. In order to respond,  maintains a list H-list of tuples , , . Then for the 
th query , : 

Let  be the polynomial ⁄ ∏ , . Expand 
 and write ∑  where , , … ,  are the coefficients 

of the polynomial . Compute 

⁄ . 
If 1, check if . If so,  just obtains the secret key  of the -

SDH problem which allows it to compute , ⁄  for any  easily. At this 
point  successfully solves the -SDH assumption. 

Otherwise,  sets ⁄ . If 0,  reports failure and ab-
orts. Otherwise, it picks 1 random exponents , , , … ,  and outputs 

’s secret key  (  is owned by the adversary secretly, and is part of ) , · ⁄ · , , , ,  , , , , , , . 
Apparently, this is a valid user’s secret key. 
If 2,  sets ⁄ . If 0,  reports failure and 

aborts. Otherwise, it picks 1 random exponents , , , … ,  and outputs 
’s secret key  (  is owned by the adversary secretly, and is part of ) , ⁄ · ⁄ · , , , ,  , , , , , , . 
Apparently, this is a valid user’s secret key, too. 
In either case  adds the tuple , ,  to the H-list. 
Key Forgery: Eventually, the adversary outputs a decryption key  related  

with ,  where  SK  is well-formed and ,  is not any of , , … , , . Notice that by adding dummy queries as necessary, we may 
assume that the adversary made exactly 1 queries. Let . Then  
searches  from the H-list. There are two possibilities: 

Type-1 adversary: No tuple of the form ·,·,  appears on the H-list. 
Type-2 adversary: The H-list contains at least one tuple  , ,  such that 

. 
Let 1 if  produced a type-1 adversary. Otherwise, set 2. If 

,  reports failure and aborts. 
If 1, check if . If so,  can solve the -SDH assump-

tion successfully. Otherwise, compute ⁄ ⁄ ⁄ . 
Let . Notice that  when adversary is type-1. 
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Using long division we write the polynomial f as  for 
some polynomial ∑  and . Then ⁄ ⁄ ∑  and hence  ⁄ ∑ . 

Notice that 0, since ∏  and . Then  
computes · ⁄ ⁄ · ∑ · ⁄  ⁄ . 

and returns , ⁄  as the solution to the -SDH problem. 
If 2, let , ,  be a tuple on the -list where . 

Since , we know that . We 
know that , , , otherwise, the adversary failed to forge a secret key 
SK and would lose the game. Therefore, ⁄ . As  
knows x,  can solve the -SDH assumption successfully. 

Now we complete the description of simulator . Notice that,  
1) the view from  is independent of the choice of , 
2) the public parameters are uniformly distributed, and 
3) the secret keys that  queries are well-formed. 
Therefore,  produces a valid secret key with probability at least . 
It remains to bound the probability that  does not abort. We argue as follows: 
If 1 ,  aborts when  forged a secret key with 

. This happens with probability at most 1 ⁄ . 
If 2,  does not abort. 
Since  is independent of  we have that Pr 1 2⁄ . It 

now follows that  produces a valid tuple , ⁄  with probability Pr  not abort && win| 1 · Pr 1  Pr  not abort && 2 · Pr 2   · 1 1 ⁄ · 1 4⁄ · 1 4⁄ 2⁄ 1 · 4⁄ 2⁄ .    □ 

c) Analysis of the DishonestUser-2 Game 

Theorem 4. Assuming that computing discrete logarithm is hard in , the advan-
tage of an adversary in the DishonestUser-2 Game is negligible for our scheme. 

Proof. To prove the theorem we will suppose that there exists a PPT adversary  
which has a non-negligible advantage  in the DishonestUser-2 Game in our 
scheme. Using this adversary we will build a PPT simulator  that attacks the dis-
crete logarithm problem ,  with a non-negligible advantage.  proceeds as 
follows. 

Setup:  runs the Setup 1  algorithm and gives the public parameters  to 
the adversary . Notice that the generation of ,  is different from the original 
Setup.  picks the random terms ,  and calculates , . How-
ever, in ’s view, they are identical. 
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Key Query: The adversary  issues queries for secret keys for users with sets of 
attributes , , , , … , , . As space limited, we only give the differ-
ent parts from the original KeyGen here. For query , when  gives  a zero-
knowledge proof of knowledge of the discrete log of  with respect to ,  will 
use a knowledge extractor [9] to extract the discrete log . Then  chooses  
and implicitly sets · .  can calculate ·  by · · .  can use 
the same method to calculate , , ,  even if  does not 
know . Other parts in the secret key will follow the same method in KeyGen. Final-
ly,  sends  to . 

Key Forgery: The adversary  outputs a decryption key  related with , , . We assume ,  is equivalent to ,  and  does not equal to . 
In this case,   generates a new secret key successfully.  

Now we will analyze the security of the discrete logarithm problem. Let’s review 
the user’s secret key firstly. For simplicity, we omit  and  in  and : , ⁄ · , , , , , , , , , , . 

And the adversary  outputs a forged secret key  where : , ⁄ · , , , , , , , , , , . 
Firstly, we will analyze  and . As ⁄  and  in  is infor-

mation-theoretically hidden from . If  can forge  successfully, then we can 
assume that · · · . Similarly, since  in ,  is information-theoretically hidden from , if  can forge ,  successfully, 
we can assume that , , · . Then we get two equations: · ·· . 

From ’s view,  knows , , , . If · , then ·⁄ . 
Apparently, the probability of ·  is negligible. Then  can compute . As 
 equals to · , then ⁄ . Therefore, if  forges a secret key  where 

, we can conclude that  have solved the discrete logarithm problem. How-
ever, as we assumed that computing discrete logarithm is hard in , then  cannot 
forge a secret key  where .  Therefore, the advantage of an adversary in 
the DishonestUser-2 Game is negligible for our scheme.       □ 

5.3 Performance Analysis 

There are two aspects to consider for performance analysis, the performance of nor-
mal functions and the capability of the accountability. As for accountability, the ad-
vantage of our scheme is obvious and we have explained it in Section 1.3. Therefore, 
we mainly focus on the performance of normal functions in this section. We com-
pared our scheme with Rouselakis and Waters (RW’13) [20] as ours is based on 
RW’13. We wanted to know how much computational efficiency to lose for security 
enhancements of RW’13. We implemented both schemes in Charm2 [1]. We use 
                                                           
2 You can download our codes from https://github.com/zlwen/charm-example. 
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Abstract. Distributed applications are often composed of autonomous
components that are controlled by different stakeholders. Authoriza-
tion in such a scenario has to be enforced in a decentralized way so
that administrators retain control over their respective resources. In
this paper, we define a flexible access control model for a data-driven
coordination middleware that abstracts the collaboration of autonomous
peers. It supports the definition of fine-grained policies that depend on
authenticated subject attributes, content properties and context data. To
enable peers to act on behalf of others, chained delegation is supported
and permissions depend on trust assumptions about nodes along this
chain. Besides access to data, also service invocations, dynamic behavior
changes and policy updates can be authorized in a unified way. We show
how this access control model can be integrated into a secure middle-
ware architecture and provide example policies for simple coordination
patterns.

Keywords: ABAC · Delegation · P2P · Coordination middleware

1 Introduction

Modern distributed systems are often not managed by a single organization,
but require collaboration of multiple stakeholders that provide data and offer
services. Due to evolving application requirements and availability of different
providers for specific tasks, distributed workflows should be dynamically config-
urable and enable ad-hoc coordination. Examples for such complex interactions
include cloud-based business-to-business transactions, peer-to-peer (P2P) net-
works that enable efficient data replication, and connected smart devices.

As mutual trust cannot be assumed in such dynamic communication net-
works, a suitable access control model is necessary that enables participants to
specify who can access their data and services. To address the flexibility of dis-
tributed systems with dynamically changing security requirements, each member
shall be able to manage its own access control policy independently of others [1].
This requires an authentication concept that supports identity providers from
different security domains, which may be linked to different trust levels. In order
to cope with indirect access on behalf of other users, support for delegated iden-
tities is needed. For instance, a customer may want to access a company’s data
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 519–537, 2015.
DOI: 10.1007/978-3-319-28865-9 28
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storage via a cloud service. The company may allow a trusted cloud service to
read data associated with the delegating customer, while denying direct customer
access in order to make security administration simpler and more reliable.

In order to adhere to the principle of least privilege, permissions shall be
specifiable in a fine-grained way. Access decisions may depend on the environ-
mental context (e.g. previous interactions), while the administration of policies
itself shall be governed with meta-level policies [2]. For instance, resource own-
ers may delegate their administrator privileges to other trusted users, or a cloud
provider may allow users to control access to their deployed services themselves.

Current security mechanisms for distributed systems usually rely on central-
ized servers, which limits their use to networks controlled by a unified adminis-
tration. There still is a lack of powerful security models for the collaboration of
autonomous peers in dynamic scenarios. Although some research has been done
on decentralized authentication and authorization [3,4,5], most approaches do
not model fine-grained access control policies that support content- and context-
based rules as well as arbitrary forms of delegation.

In this paper, we present a flexible and expressive security concept that tar-
gets the dynamic coordination of autonomous components in a fully decentral-
ized environment. We assume that applications are designed using a data-driven
coordination model [6], which hides the complexity of remote communication and
provides intelligible abstractions for service invocation and data access. Applica-
tion logic is encapsulated in decoupled software components termed peers, whose
interactions are specified declaratively. Although the security mechanisms are
shown in the context of this specific architecture, the concept is applicable to
any business process that is implemented using interconnected components.

We propose an extended middleware architecture for this coordination model
called Secure Peer Space that enables decentralized authorization with support
for complex delegation chains and fine-grained access control rules. Rules depend
on the accessed content, the environmental context and the subject. We com-
bine elements of attribute-based and discretionary access control, as decisions
are based on authenticated attributes, while each owner of a peer may govern
access to its own services and data. In contrast to usual access control con-
cepts that place controls on few entry points, we support access control at any
involved component of a workflow. The access control model is suitable for cross-
organizational collaboration, as it provides a way to specify trust in attributes
from distributed sources. It is also possible to depict multitenant scenarios, as
users may dynamically inject sub-peers into another peer if permitted by its
owner. The security mechanisms, including policy administration, are largely
bootstrapped using existing coordination features of the middleware.

The paper is structured as follows: Section 2 describes the addressed coordi-
nation middleware. On top of that, Section 3 presents a security concept and a
middleware architecture for the Secure Peer Space. Section 4 provides examples
for the usage of this secure middleware in the form of reusable coordination pat-
terns. Section 5 discusses the benefits of the presented approach and compares it
to related work. Finally, Section 6 concludes the paper and outlines future work.



Decentralized Access Control for Dynamic Peer Collaboration 521

2 Modeling Coordination with the Peer Model

When designing distributed applications, middleware can help to hide the com-
plexity of remote communication and offer proven coordination primitives for
common tasks like synchronization, data access and service invocations. A coor-
dination model provides a high-level abstraction on how to program the coordi-
nation logic of a distributed system, i.e. the interactions of individual software
components. The Peer Model, originally described in [6], allows for modeling
of data-driven workflows among highly decoupled components (i.e. peers) in a
distributed environment. In the following, we describe the basic concepts of the
Peer Model and its associated middleware runtime, the Peer Space.

A peer is an addressable component consisting of space containers [7], which
hold its internal state, and wirings, which connect containers within and between
peers. Thus, wirings describe the component behavior and its coordination logic.
Space containers, which are inspired by Linda tuple spaces [8], store typed data
items termed entries and provide methods to write and query them. Different
kinds of data and messages that are required in a distributed system can be
modeled by entries, including events, user data, service requests and responses.
Besides its payload, each entry contains a set of (possibly nested) key/value
pairs termed coordination properties, which determine how an entry is affected
by wirings. Each peer provides a Peer-In-Container (PIC) and a Peer-Out-
Container (POC), forming its input and output stages, respectively. Peers may
also be nested so that parts of their functionality are encapsulated into sub-peers.

Wirings are triggered by a specific combination of entries, execute
application-specific logic and output their results as entries. A wiring consists
of one or more guards, zero or more services and zero or more actions. Guards
impose certain conditions on the content of containers. When all guards of a
wiring are fulfilled, they provide the services with a set of input entries from
these containers. The services may modify the entries or create new ones based
on the input. The resulting output entries are then distributed to their target
containers by the actions. A wiring may only access containers of the enclosing
peer and those of its direct sub-peers. Each guard is specified via a source con-
tainer, an operation type, and a query that selects a certain subset of entries in
the given container. By default matching entries are deleted from the source con-
tainer when a wiring is triggered (operation type “move”), but they may also be
only read (operation type “copy”). The query consists of the required entry type,
optional selectors on further coordination properties (e.g. “[size < 10 kB]”), and
a count parameter, which defines the minimum and maximum number of entries
to be selected (default: min = max = 1). A query is only fulfilled when at
least the minimum number of entries matching the type and selector criteria
are available in the source container. After the services have been executed, the
actions operate on the resulting entries. Each action has a query that selects
from these entries and a target container where matching entries are written to.
Unlike guards, an action does never block as the output entries are fixed after
service execution.
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Fig. 1. Peer Model example with dynamic state.

The Peer Space middleware runtime executes the modeled wirings and real-
izes remote communication between peers. We denote a specific instance of a
collaborative interaction as a flow, which is usually started by a single user
request and may involve the (possibly concurrent) execution of several wirings
located at multiple (possibly distributed) peers. To provide the glue that cre-
ates a distributed process out of the modeled behaviors of involved peers, there
are several predefined coordination properties that determine how entries are
treated: A unique FlowID helps the framework to correlate entries that belong
to the same flow. Timing constraints may be addressed by time-to-live (TTL)
and time-to-start (TTS) properties, which limit the lifecycle of an entry and
delay its activation, respectively. The destination (DEST) property of an entry
provides the mechanism to model directed remote communication. It specifies
the target container using the address of its peer and a container name (default:
PIC). The entry is then injected into this container by the Peer Space.

We also introduce a meta-model approach for the dynamic adaptation of
behavior by adding and replacing wirings and peers. Besides PIC and POC, each
peer also has a Wiring Specification Container (WSC) and a Peer Specification
Container (PSC). Each wiring corresponds to a meta entry in the WSC that
includes the wiring specification as payload. Similarly, the PSC contains the
specification entries for each direct sub-peer. The behavior of the sub-peers is
then specified recursively. These meta entries may be accessed like regular entries
in a PIC or POC. Thus, they can be injected via remote communication, may
be written or deleted by local wirings and are garbage-collected based on their
TTL. This mechanism is also required to allow queries with parameters that
dynamically depend on the application logic. For that, a wiring must create a
suitable wiring specification entry in its service and write it to the WSC of the
corresponding peer. Depending on its specification, such a dynamic wiring may
run as continuous subscription until explicitly deleted or only as a one-off query.

Fig. 1 outlines an example model that dispatches tasks to remote worker
peers based on client requests and a configurable lookup directory. Wiring W1
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takes one request (of type R) and a copy of its internal lookup directory D from
the PIC of peer P1 and passes them to its service, which creates a task of type
T for a specific worker peer. The wiring’s action writes this entry to the PIC of
sub-peer P2, which is responsible for reliably forwarding the task to the target
peer. Its sending action is indicated by the dashed arrows, which can be viewed
as wirings that are dynamically set by the runtime when it encounters an entry
with a specified destination, like P3 in our example. To keep the model simple,
the internal behavior of P2 and P3 is not detailed here. The second wiring W2

updates the lookup directory by taking the corresponding entry together with
any new advertisements of type A that have been sent to the peer to indicate
changes in the list of available peers. The example also shows the dynamic state
of the model during execution. We assume that there are currently three requests
and one directory entry in the PIC of P1. This means that W1 can be triggered
three times, while W2 is currently waiting for at least one entry of type A. Finally,
the figure also depicts the meta model, as sub-peers and wirings are represented
by corresponding entries in the PSC and WSC, respectively.

3 Security for the Peer Model

The Peer Model supports a flexible and comprehensible way of modeling coor-
dination within distributed applications, but it lacks a suitable security model.
In the following, we describe Peer Model extensions that provide the required
security concepts and a corresponding middleware architecture for the Secure
Peer Space. The main elements are an attribute-based representation of identi-
ties with support for chained delegation, a fine-grained rule-based authorization
mechanism for access to entries in regular containers and the meta model, and
a secure runtime architecture that authenticates incoming entries and enforces
access control on them. The proposed security concept is based on previous work
on an access control model for space containers [9], which is adapted to the needs
of the Peer Model. Major additions are a trust model based on delegation chains,
support for dynamic behavior changes via meta containers, and the introduction
of hierarchic policies based on nested peers.

3.1 Identity Representation with Delegation Support

A unified representation of identities forms the foundation of the decentralized
security model. We use the notion of a principal, which represents a specific
user (i.e. a system or a person) within the distributed system. The identity of a
principal is represented by a data set managed by an identity provider. For each
runtime, there is an explicit principal termed runtime user that represents the
Peer Space when communicating with remote runtimes.

Management of permissions must be scalable. Instead of assigning permis-
sions to each user separately, access control should rely on roles and other
attributes of authenticated principals. Therefore, the Secure Peer Space sup-
ports attribute-based access control (ABAC) [10], where rules depend on one or



524 S. Craß et al.

more validated attributes. Role-based access control (RBAC) [11], where rules
grant access for principals with specific roles, can be seen as a special case of
ABAC, as role information can be included via attributes. Additional attributes
may vary, but at least a user ID and an associated domain (e.g. the user’s orga-
nization) must be included to be able to uniquely identify the principal.

Access control in the Secure Peer Space targets any operation on containers,
which includes (possibly consuming) queries by wiring guards, write operations
by wiring actions and entry injection via remote communication. The responsible
entity for a specific operation with regard to access control is called the subject.
A subject may correspond to a single principal, but it may also represent a
composition of several principals in case of delegation. The subject that writes
an entry to a container is assigned as the entry owner. Its identity is represented
via nested subject properties, which are a special form of coordination properties
that are attached to each entry and represent the authenticated attributes.

As peers and wirings are specified by writing entries into meta containers,
they also have dedicated owners, which are called peer owners and wiring own-
ers, respectively. Peer owners are able to administrate the access control policies
of their peers, which is detailed in Section 3.2. Wirings and sub-peers are usually
created by the owner of their parent peer, but they may also be inserted dynam-
ically by different subjects that were authorized by the peer owner. Whenever
a wiring tries to select entries from a container via its guards, the wiring owner
is the relevant subject for checking if the wiring is allowed to do so. Similarly,
when entries need to be written by a wiring action, the corresponding wiring
owner determines the subject relevant for access control and thus also the owner
of the emitted entries. The entry owner is not necessarily the original creator
of an entry. Even if a wiring modifies only some properties of an entry or sim-
ply forwards it to another container, the entry owner is changed. A wiring may
choose to use direct access and set the entry owner to the wiring owner, or it
may apply indirect access on behalf of another subject to support delegation.

The simplest way to model delegation would be for a server to use the pro-
vided credentials from a user to authenticate at another site and perform some
action on the user’s behalf. However, this would allow servers to impersonate
other principals, which is not feasible as we do not assume inherent trust in any
principal. The path to the ultimate target of a request from the initial request
issuer may involve several machines that are not equally trusted [12]. A suitable
delegation concept for the Secure Peer Space must therefore support chained del-
egations (e.g. User1 delegates to User2, who delegates to User3 etc.) and allow
access control decisions that depend on a combination of the involved principals.
The first element of the delegation chain is the initial issuer of a request, while
the last element corresponds to the principal that has actually written the entry
to its current container. For better readability, we depict a subject by listing the
principals in reverse order (User3 for User2 for User1). For most examples in
this paper, we just specify the principals’ user IDs, even though their identities
actually consist of multiple attributes that are stored in the subject properties.
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Fig. 2. Chained authentication with different identity providers.

Delegation is triggered when a service within a wiring emits an entry using
indirect access mode. Subject properties of an entry cannot be directly manip-
ulated by the service, which prevents malicious wirings from issuing requests
or writing data on behalf of arbitrary principals. Instead, they may select any
of the owners of their input entries as delegating subject. Thus, a wiring with
owner A that fetches two entries with owners B and C, respectively, may use the
subjects “A for B”, “A for C”, or simply “A” (when using direct access). When
another wiring (with owner D) subsequently copies or moves this new entry, it
may itself use indirect access and add its own identity to the delegation chain
(e.g. “D for A for B”). This approach prevents impersonation, as the wiring
owner is always included as the responsible actor for any action performed by
the wiring. Thus, delegation may be used to restrict access based on the identity
of the delegating subject, but not to escalate the privileges of the wiring owner,
which still has to be authorized to induce the subsequent steps in the flow.

As authentication is performed in a decentralized way, additional challenges
arise. Principals that are part of a subject need not necessarily be directly
authenticated at the local Peer Space. For instance, when a delegation chain
spans several runtimes with runtime users U1 to Un, the last Peer Space only
directly authenticates Un−1 and it has to trust this runtime that Un−2 has indeed
been correctly authenticated and so forth. A similar problem occurs when a
wiring with an owner different from the local runtime user wants to send an
entry to a remote Peer Space (using the DEST property). As the runtime must
not impersonate the wiring owner directly, it authenticates at the remote site
using the identity of its own runtime user, while claiming that the wiring owner
has been authenticated at its site (or at another runtime that it trusts).

Each principal in a delegation chain may be authenticated by a different Peer
Space runtime, which is illustrated in Fig. 2. In this example, a separate entity
(IdP 1-4) is responsible for asserting attributes for each principal, but multiple
runtimes may also share the same identity provider. The identity providers act as
anchors of trust, which prove the validity of the authenticating principal’s iden-
tity using some form of authentication mechanism (e.g. certificates) not detailed
in this paper. However, they are not responsible for the identity of any previously
authenticated principal in the chain. Instead, the runtime that has authenticated
a principal has to guarantee the validity of the claimed subject properties when
it forwards this information. It is not only necessary to trust that the principals
in the delegation chain are in fact acting legitimately on behalf of previous prin-
cipals, but also that the claimed identities of these principals are in fact valid
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and were not modified by any runtime on the path from the original authenti-
cator to the current runtime. Therefore, each principal in the delegation chain
is associated with a separate authentication chain that specifies the identities of
the runtimes that have forwarded its authenticated attributes.

The delegation concept is based on the establishment of explicit trust rela-
tionships among collaborating principals by means of access control rules. Each
peer owner can independently select which forms of delegations are trusted by
including constraints on the delegation and authentication chains of an incoming
entry. For instance, it may be specified that only peers with a certain role may
act on behalf of other principals and that owners of the delegating peers must
be authenticated by a runtime owned by a specific organization. If such rules are
defined for every peer, an explicit chain of trust can be established that states
which peers and runtimes are trusted to act on behalf of prior peers.

As the entries that constitute a delegated access and their authentication data
are relayed on the same path (via the participating Peer Spaces), the delegation
chain and the individual authentication chains can be combined in a single data
structure called subject tree. The root of this tree represents the local runtime
user. Its direct children are the principals within the subject that were directly
authenticated by the runtime. Each inner node depicts a runtime user that has
been authenticated by its parent and has authenticated its children. The leaves
correspond to principals that are part of the delegation chain, while the path
from each leaf to the root forms the respective authentication chain. The order
of principals in the delegation chain is defined via a left-to-right tree traversal.

This subject tree is iteratively extended as entries are processed and for-
warded along a flow. When an entry is received from a remote runtime, the
authenticated security attributes of the sender are written to the root node of
the entry’s subject tree. Then, the local runtime user is added as the new root.
When a service triggers delegation using indirect access, the subject trees of the
delegating input entry owner and the wiring owner are merged to form the sub-
ject tree for the output entries. As both root nodes represent the local runtime
user, they are replaced by a common root, whereas the child nodes associated
with the wiring owner are placed after those of the input entry owner to ensure
the correct order of the delegation chain.

An example for such a subject tree is shown in Fig. 3, which can be mapped
to the Peer Model example from Fig. 1. The subject tree depicts the owner
of the task entry that arrives at peer P3, assuming that the original request
came from another remote peer P0 owned by user “evakuehn” from TU Wien
and that P1 together with its sub-peer and wirings are owned by a system user
from organization “OrgA”. Each of the three peers P0, P1 and P3 are hosted by
different Peer Space runtimes with separate runtime users. The delegation chain
can be represented as “SystemUser for evakuehn”, whereas the other principals
are part of the authentication chains. User “evakuehn” has been authenticated
by runtime user “SBCServer” when she has registered P0. When sending the
request from P0, this runtime then authenticates at the runtime of P1 (with
runtime user “Server123”), which happens to be a cloud node that may host
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Fig. 3. Subject tree example for delegation.

peers of different companies and has also earlier authenticated the owner of P1 as
“SystemUser”. This runtime then provides its authentication data together with
the forwarded claims of the other principals to the final target runtime, which
is owned by the runtime user “Server42” from organization “OrgB”. The target
peer has to specify if it trusts such a subject tree via its access control rules.
For the textual representation of a subject tree, we depict authentication chain
edges with the “@” symbol. The example subject tree can thus be abbreviated
as “(SystemUser for (evakuehn@SBCServer))@Server123@Server42”.

3.2 Rule-Based Authorization

Based on the proposed delegation concept, a decentralized authorization mech-
anism can be defined, where for every peer an access control policy is specified
by its owner. Each policy consists of a set of access control rules that need to be
evaluated to form an access decision. It determines which entries can be written
to as well as read or removed from a container. As all interactions in the Peer
Model are based on entries, this protects access to a peer’s internal state and its
services. Due to the data-centric modeling of service invocations, requests as well
as their responses can be authorized. Rules may not only apply to regular peer
containers, but also to the meta containers that specify sub-peers and wirings.
Thus, a peer owner may allow trusted subjects to inject their own logic into the
peer, which supports the management of multitenant environments.

Fine-grained access control policies should exceed the expressiveness of simple
access control lists on peers or containers. Therefore, we adapt a policy language
from our previous work on secure space containers [9] to domain-specific assump-
tions introduced by the Peer Model. This approach is inspired by the XACML
standard [13], which provides a declarative, XML-based language for expressing
access control policies based on authenticated subject attributes, used oper-
ations, accessed content, and context-dependent conditions. Rules may either
permit or deny a specific access request, whereas combination algorithms are
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used to determine a final result. However, XACML policies are rather complex
and often not very comprehensible. As during the execution of a flow usually
several peers managed by different owners are involved, which need to define
their own access control policies, the effect of the individual policies and their
combination must be easy to comprehend.

Each access control rule in the Secure Peer Space is associated to a specific
peer and consists of a unique ID, a list of affected subjects, the involved con-
tainers and operations as well as restrictions on the entry content and context
information. The subjects field contains one or more subject templates that are
compared with the authenticated subject of the access operation that has to be
authorized. The rule applies only if the subject matches at least one of these
templates. Such a template is represented by a tree where each node consists of
a set of predicates on the subject properties of the corresponding principal in the
subject tree. These predicates resemble the selectors used in guard and action
queries and may check for equality or inequality with a specific value or use
comparison operators (e.g. “age ≥ 18”). Additionally, wildcards for single nodes
(“*”) and chains (“**”) are supported. A subject tree node matches its corre-
sponding node in the template if each of its predicates is fulfilled. The root node
can be omitted, as it always corresponds to the local runtime user. An example
template that matches the subject tree from Fig. 3 would be “([domain = OrgA]
for ([domain = TUW, role = prof ] @ **)) @ [domain = CloudProvider1]”.
This means that the rule targets delegated access by any peer from organization
“OrgA” on behalf of a professor from TU Wien, which was transmitted via a
runtime managed by the organization of “CloudProvider1”. The wildcard states
that the creator of the rule does not care whether the professor was directly
authenticated at the cloud provider or indirectly via a chain of one or more
other runtimes. Thus, it is not guaranteed that this authentication data was
relayed only along trusted nodes. However, it could be assumed that the cloud
provider is already responsible for doing these kind of checks. If every runtime
trusts its direct predecessors in a flow to only accept input from other trusted
nodes, a chain of trust can be established that allows for very simple subject
templates.

The resources field specifies the container(s) for which the rule applies, while
the operations field distinguishes between three access types: read, take, and
write. Read access is relevant for copy guards, while take privileges are required
by move guards. Write permissions are necessary for actions, including those
that inject entries into remote containers via the DEST property.

The optional scope field states for which kind of entries the rule is valid.
This is expressed via the same query mechanism as used by guards and actions,
however without the count parameter. Thus, the rule’s scope may be restricted
to a certain entry type or to entries with specific coordination properties. A com-
bination of queries using disjunction, conjunction and negation is possible, thus
enabling complex rules. The optional condition field allows restrictions based
on the current state of the peer, which depicts context information that may
depend on previous interactions. It consists of one or more condition predicates
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that can be combined using disjunction, conjunction and negation. Each predi-
cate consists of a container name and a query as used by the scope mechanism.
If at least one entry in the specified container matches the query, the predicate
is fulfilled. The rule only applies if the combination of predicates is satisfied. A
condition may, e.g., be used in rules that allow access to a container only if an
internal state entry in the PIC has a specific value or if a specific sub-peer is
registered in the PSC. For our example, a rule that allows users to write requests
to the PIC of P1 may be defined as follows:

SUBJECTS: [role = prof ] @ [ID = SBCServer, domain = TUW ]
RESOURCES: PIC
OPERATIONS: write
SCOPE: R
CONDITION: PIC � D [peerCount > 0]

The subject template matches any professor that was authenticated via a
specific runtime user from TU Wien. The scope limits permissions to entries of
type R, while the condition checks that the coordination property “peerCount”
of the directory entry D in the PIC has a value greater than zero, which prevents
access when no peers are available that are able to process tasks.

In contrast to XACML, we support only “permit” rules, which simplifies the
combination of rules for finding an access decision. If access to a specific entry for
a given subject is not permitted by at least one active rule, it is automatically
denied. Due to the fine-grained rules and the possibility to specify hierarchic
security policies (one for each sub-peer), most access restrictions can still be
expressed easily. A rule permits access if the subject tree of an operation matches
any given subject template, the operation type and the accessed container are
included in the rule, the condition (if available) evaluates to true and the written
or selected entries fulfill the scope query. If no scope query is specified, access to
the whole container is granted. Access control is transparent for wirings: Guards
only select entries from the subset of entries the wiring owner is permitted to
access, while other entries are not visible by the query mechanism. Thus, a wiring
cannot distinguish if an entry does not exist or if the subject does not have the
necessary permissions. When actions try to write entries to a container, the set
subject must be allowed to write each of them, otherwise the action is skipped.

In order to let permissions not only depend on the context of the peer, but
also on the context of the accessing subject, we introduce context variables that
can be used instead of any coordination property value in scope and condition
queries as well as subject templates. These variables are prefixed with a “$” sym-
bol followed by a name that represents a specific subject property for the current
access. To simplify the specification of such constraints, the original issuer of a
flow (i.e. the leftmost leaf in the subject tree) is aliased as “originator”. This
allows, e.g., to specify that the domain of a runtime user in the authentica-
tion chain must be the same as the domain of the original issuer of a request
(“domain = $originator.domain” in the subject template), or that entries may
only be accessed on behalf of the principal that was responsible for writing them
(“originator = $originator” in a scope query).
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To reduce the number of rules and prevent users from being locked out of
their own peers, peer owners may implicitly access their own containers without
any restrictions. However, if delegation is used (peer owner on behalf of another
subject), explicit access control rules are required, which supports restrictions
based on the identity of the delegating subject.

3.3 Secure Runtime Architecture

The security concept can be integrated into the Peer Space runtime architecture,
resulting in the Secure Peer Space. The runtime hosts peers and is responsible
for storing entries, executing wirings, handling remote communication as well as
enforcing authentication and authorization. Fig. 4 shows the architecture of this
middleware framework. As the runtime has input and output stages in the form
of a remote communication interface, it can be represented in the meta model by
a runtime peer that is owned by the runtime user. Incoming entries are written
to the PIC and dispatched to the corresponding peer, either according to the
address in the given DEST property or using explicit wirings. Similarly, entries
that need to be sent to a remote runtime are written to the POC. Top-level peers
and wirings can be added by writing to the PSC and WSC of the runtime peer.

Authentication is done by an authentication manager that intercepts received
entries before writing them to the PIC of the runtime peer (or to a meta con-
tainer, e.g. when adding peers). It is responsible for verifying the credentials
that were sent with each entry. If authentication is successful, the authenticated
attributes are attached to the entry’s subject tree, otherwise the entry is dis-
carded. The authentication manager may be configured to accept attributes from
one or more identity providers, which may be restricted to specific domains to
prevent that an identity provider for one organization issues identities associated
with a competitor. The security mechanism is independent of the used authen-
tication method, whose details are therefore out of scope of this paper. Identity
providers may either directly communicate with the authentication manager or
indirectly via information already included in the received entry. As the level
of trust in a subject may depend on the used authentication method and the
responsible identity provider, information about the authentication context is
also included in the subject properties by the authentication manager.

Fig. 4. Secure Peer Space runtime overview.
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Before an entry is sent to a remote runtime, the credential manager attaches
the credentials of the runtime user to the outgoing entry (e.g. by using a digital
signature), so that the remote runtime’s authentication manager may correctly
authenticate the entry. We assume that the used communication channels are
cryptographically secured to ensure confidentiality and integrity for entries.

The access control policy for each peer is managed via an additional meta
container named Security Policy Container (SPC) that holds the access control
rules as individual entries. The policy can be managed by writing and removing
rules via (dynamic) wirings, which allows for flexible permission changes. Rules
may target any container of the corresponding peer, including the SPC itself.
Thus, a peer owner may grant administrator privileges to another subject by
specifying a rule that permits (possibly restricted) access to the SPC.

The policy for the entire Peer Space is defined in a hierarchic way via the
SPCs of the runtime peer and all hosted (sub-)peers. An administrator may
define general rules that specify who is trusted to communicate with the Peer
Space, while the owners of the hosted peers may restrict access to their services
to specific subjects. If necessary, more fine-grained permissions may be set in
sub-peers. As entries are always passed up or down along this hierarchy, each
involved stakeholder can control what kind of interactions are allowed. This also
applies when using the remote communication mechanism, as the runtime moves
an entry with set DEST property recursively through the POC of each parent
peer until the POC of the runtime peer is reached. On the receiving side, the
entry recursively passes the PICs of child peers until the destination is reached.
The entry owner must be permitted to write to each of these containers.

The enforcement of the access control policy can be embedded into the
container implementation using a mechanism described in [14]. Each container
access is intercepted and evaluated with regard to the active policy stored in the
responsible SPC. The runtime determines rules with matching subject, operation
and container. Then, conditions are evaluated by querying the specified contain-
ers. Finally, for all remaining (i.e. applicable) rules the scope is evaluated, either
on the set of written entries or on the entire container (for read/take access). The
container operation is only performed if it is allowed according to the specified
rules, whereas denied entries are treated as invisible for query operations.

4 Secure Coordination Patterns

Coordination patterns provide reusable design solutions to recurring problems
for the interaction of autonomous components. Due to the high decoupling pro-
vided by the Peer Model, complex applications may be designed by configuring
and composing such “building blocks” consisting of several peers and their coor-
dination logic [15]. In the following, we outline two coordination patterns with
respective access control rules as examples for the usage of the Secure Peer Space.



532 S. Craß et al.

4.1 Request-Response with Cloud Service

For the first example, we address a request-response scenario, where a client
peer sends a request entry (Req) to a server peer, which generates a response
entry (Resp) that is returned to the client. The server is hosted at a generic
cloud platform that may act as runtime peer for several server peers managed
by different principals. The Peer Model representation of this pattern is depicted
in Fig. 5, which also shows the relevant security attributes of the peer owners and
the subjects for the individual operations. For the sake of simplicity, we assume
that all principals share a domain. To prevent misuse, several access control rules
need to be defined by the respective peer owners. For the server peer AppPeer1
(owned by App1), the following rules may be defined in its SPC:

SUBJECTS: [role = Client] SUBJECTS: [ID = App1] for **
RESOURCES: PIC RESOURCES: POC
OPERATIONS: write OPERATIONS: write
SCOPE: Req SCOPE: Resp

The first rule allows clients to invoke the server using a request entry, while
the second rule indicates that there are no restrictions on whose behalf a response
entry may be sent. Taking a request from its PIC is implicitly allowed for the peer
owner App1. The same (or more general) rules must also be set by the owner
of the runtime peer CloudRTP . To enable the dynamic adaptation of server
peers via meta containers, additional rules have to be specified by the runtime
user, which are not detailed here. Finally, the client, which owns runtime peer
ClientRTP , may want to ensure that a server only sends a response entry when
it acts on the client’s behalf. That is achieved using the following rule:

SUBJECTS: ([role = Server] for [ID = User1]) @ [ID = Cloud1]
RESOURCES: PIC
OPERATIONS: write
SCOPE: Resp

Fig. 5. Cloud-based request-response pattern with responsible subjects.
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4.2 Data Exchange via Shared Memory

The second example outlines a shared memory on a server peer that can be
accessed by several nodes that want to exchange data. A possible use case would
be home automation, where several devices may want to exchange sensor data
to collaboratively achieve a task. Fig. 6 depicts such a scenario, where two robot
peers that are part of an alarm system application share their sensor data via a
central home server. The following rule regulates access to this storage peer:

SUBJECTS: [role = Node]
RESOURCES: PIC
OPERATIONS: write, read, take
SCOPE: Data [originator.app = $originator.app]

It ensures that any peer with role Node may write and retrieve data entries.
However, data may only be accessed within the same application, which prevents,
e.g., that the entertainment system reads sensitive data from the alarm system.
This is achieved via a context-aware selector in the scope, which ensures that only
entries sharing the subject property app with the entry owner are considered.
Optionally, the rule may be extended with additional conditions, e.g. to ensure
that the application is currently active based on a status entry. Read and take
access are realized via dynamic wirings. In the example, RobotPeer2 retrieves
the data of RobotPeer1 by writing the wiring specification for W1 to the WSC of
StoragePeer. This requires additional rules that allow write access for nodes to
the WSC and the POC, as well as a rule on RobotPeer2 that permits the dynamic
wiring to respond via the PIC of the robot peer, using “[ID = Robot2] @ [role =
Server]” as subject template to express trust in the server.

Fig. 6. Shared memory pattern in home automation scenario with responsible subjects.
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5 Discussion and Related Work

The proposed Secure Peer Space architecture offers an abstraction for model-
ing secure collaboration of autonomous peers in distributed systems with fine-
grained, context-aware permissions for stored data as well as service invocations.
Due to its explicit trust model, it supports multiple identity providers and het-
erogeneous authentication mechanisms. Authorization is decentralized, as each
user regulates access to its own peers based on the trustworthiness of the request
issuer, the delegated principals, and the involved runtimes. Also for multitenant
environments, security constraints can be expressed in a natural way due to the
support for access control on meta-model operations and the hierarchical layers
of protection provided by the nested peer structure. As policy administration
is bootstrapped using meta containers, a holistic security model for collabora-
tive scenarios is provided that allows for specifying flexible access control rules
targeting all kind of peer interactions and administrator tasks.

The underlying Peer Model separates coordination and computation in a
business process, while the proposed concept adds access control in a decoupled
way. Consequently, each component can be administered independently allowing
reuse of secured peers in different workflows. As a tradeoff, administrators have
to know the basic functionality of involved peers. While simpler ways of handling
authorization are possible, the expressiveness of our model enables the definition
of complex constraints that would otherwise have to be included directly in the
application code. If such complexity is not desirable, an actual implementation
could simplify rules, e.g. by defining the scope only by means of entry types and
omitting conditions. It is also possible to model a peer that dynamically changes
rules based on a high-level security policy, which may be easier to comprehend
than the combination of individual rules in different policy containers.

Chained delegations are already an established concept for access control in
cross-organizational communication networks. Earlier approaches [3,12,16] focus
on providing cryptographic assurance that delegation is authorized by delegat-
ing principals along the chain, thus preventing malicious nodes from acting on
behalf of arbitrary principals. PERMIS [4] supports decentralized ABAC and
RBAC, where authorization of delegation chains is based both on policies of the
identity provider (included in the credentials) and of the receiving node. Trust-
related access control rules on the target define which attributes specific identity
providers are trusted to issue. In the Secure Peer Space, we use subject tem-
plates to combine such rules with regular privilege-based rules. As we focus on
fine-grained authorization instead of authentication, the receiver of an entry is
responsible for evaluating if the delegation chain appears trustworthy. However,
an authentication mechanism that ensures a delegation was also authorized by
the originator could be included in a similar way as in PERMIS.

Other related systems emphasize the importance of a decentralized autho-
rization approach, but do not support delegation chains. P-Hera [5] provides
secure content hosting for P2P infrastructures, where resource and data owners
can dynamically establish trust via fine-grained XACML rules. Similar to the
Secure Peer Space, each subject may express its own constraints based on its
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role in the network. Opyrchal et al. [17] suggest an access control model for
a publish-subscribe middleware in pervasive environments, where owners can
authorize other users to subscribe to their events. Fine-grained rules can be
specified using conditions on attributes of the request, the addressed event, and
context information. As in our approach, secure policy administration is boot-
strapped via rules that allow users to modify a policy. LGI [1] provides a secure
message exchange mechanism for open groups of distributed agents. Members
may independently define their own access control policy, as long as it conforms
to a common coalition policy. Expressive Prolog-based rules can be specified that
may depend on the current state of the interaction. The Secure Peer Space also
supports a hierarchy of policies via nested peers. A shared policy may be enforced
by an administrator that manages distributed coalition peers, which contain sub-
peers owned by the respective members. TuCSoN [18] supports coordination via
distributed tuple spaces connected in a tree topology, where gateway nodes con-
trol visibility and authorization of their children. Such an architecture may also
be enforced with the Secure Peer Space by only allowing access if an entry was
forwarded by a gateway peer. Like in our runtime architecture, access control is
realized using features of the space-based middleware itself. Similar to our app-
roach, SMEPP [19] is a service framework on top of a tuple space abstraction,
where service requests and replies are modeled as data entries in shared spaces.
However, access control is based on groups and thus rather coarse-grained.

6 Conclusion

We have presented a decentralized access control model that addresses interac-
tions of autonomous peers which do not fully trust each other. Each principal
may specify its own security policy that governs access to its data and services.
By using the Peer Model as a data-driven abstraction for collaborative work-
flows and meta-level operations, we are able to specify a wide range of security
constraints via fine-grained rules on (meta) containers that depend on properties
of the authenticated subject, the accessed entries and context data. Due to an
expressive delegation mechanism, trust-based rules can be specified that depend
not only on the request originator, but also on the trustworthiness of users that
have forwarded the request and security attributes of other principals.

For the proposed middleware architecture, we are currently developing a
prototype that should be applicable for different domains, including cloud archi-
tectures and P2P networks. Even in situations where the runtime itself is not
feasible, e.g. due to limited resources of embedded systems, the secured Peer
Model version can still be helpful in the design phase to model all kind of security
constraints in a unified way. Future work will also involve additional research on
secure coordination patterns in order to provide an extensive pattern catalogue
that covers the most relevant forms of interaction in collaborative scenarios.
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15. Kühn, E., Craß, S., Schermann, G.: Extending a peer-based coordination model
with composable design patterns. In: 23rd Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, pp. 53–61. IEEE (2015)

16. Gasser, M., McDermott, E.: An architecture for practical delegation in a distributed
system. In: IEEE Computer Society Symposium on Research in Security and Pri-
vacy, pp. 20–30. IEEE (1990)



Decentralized Access Control for Dynamic Peer Collaboration 537

17. Opyrchal, L., Prakash, A., Agrawal, A.: Designing a publish-subscribe substrate
for privacy/security in pervasive environments. In: 2006 ACS/IEEE International
Conference on Pervasive Services, pp. 313–316. IEEE (2006)

18. Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and access control in
open distributed agent systems: the TuCSoN approach. In: Porto, A., Roman, G.-C.
(eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 99–114. Springer, Heidelberg
(2000)

19. Benigni, F., Brogi, A., Buchholz, J.L., Jacquet, J.M., Lange, J., Popescu, R.: Secure
P2P programming on top of tuple spaces. In: 17th Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, pp. 54–59. IEEE (2008)



Using a 3D Geometrical Model to Improve
Accuracy in the Evaluation and Selection
of Countermeasures Against Complex

Cyber Attacks

Gustavo Gonzalez Granadillo(B), Joaquin Garcia-Alfaro, and Hervé Debar
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Abstract. The selection of security countermeasures against current
cyber attacks does not generally perform appropriate assessments of the
attack and countermeasure impact over the system. In addition, the
methodologies used to evaluate and select countermeasures are gener-
ally based on assumptions, estimations, and expert knowledge. A great
level of subjectivity is considered while estimating parameters such as
benefits and importance of the investment in cost sensitive models. We
propose in this paper a decision support tool that uses a Return On
Response Investment (RORI) metric, and a 3D geometrical model to
simulate the impact of attacks and countermeasures on the system. The
former is a cost sensitive model used to evaluate, rank and select secu-
rity countermeasures against complex cyber attacks. The latter, is a tool
that represents the impact of attacks and countermeasures in a three
dimensional coordinate system. As a result, we are able to automati-
cally select mitigation strategies addressing multiple and complex cyber
attacks, that are efficient in stopping the attack and preserve, at the
same time, the best service to legitimate users. The implementation of
the tool and main results are detailed at the end of the paper to show
the applicability of our model.

Keywords: Countermeasure selection · Geometrical volume · Security
impact · CARVER · Response actions

1 Introduction

Innovation in Information Technology has brought numerous advancements but
also some consequences. Cyber attacks have evolved along with technology,
reaching a state of high efficiency and performance that makes the detection
and reaction process a challenging task for security administrators.

Current research focuses on approaches to detect such sophisticated attacks
and to demonstrate their robustness and the difficulty in their mitigation [1,3].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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On the contrary, research on mitigation strategies receives considerably less
attention, owing to the inherent complexity in developing and deploying
responses in an automated fashion. Mitigation strategies are part of a reaction
process that requires security administrators to remediate to threats and/or
intrusions by selecting appropriate security countermeasures.

The definition of countermeasures to protect these systems is a process that
requires a great expertise and knowledge. Inappropriate countermeasures may
result in disastrous consequences for the organization [5]. Typically, the selection
of a given countermeasure requires a manual intervention of security operators.
No appropriate assessment of the countermeasure impact over the system is
currently performed, and service dependencies among the numerous components
of large systems in complex environments are not considered.

There is a need for automated mitigation strategies addressing multiple and
complex cyber attacks that enable to select optimal countermeasures that are
efficient in stopping the attack and preserve, at the same time, the best service
to legitimate users.

An attack surface with regard to an information system being attacked is
defined as a model that measures quantitatively the level of exposure of a
given system, i.e., the reachable and exploitable vulnerabilities existing on the
system [11].

Howard et al., [6] consider three dimensions to determine the attack surface
of an operating system (e.g. Linux, Windows): Target and enablers, Channels
and protocols, and Access rights. However, the approach does not provide a sys-
tematic method to assign weights to the attack vectors; it focuses on measuring
the attack surfaces of operating systems; and it is not possible to determine if
all attack vectors have been identified.

Manadhata et al. [10] measure the attack surface of a software system (e.g.,
IMAP server, FTP daemons, Operating Systems) based on the analysis of its
source code, through three dimensions: methods, channels, and data. However,
in the absence of source code, the proposed methodology is useless. The damage
potential estimation includes only technical impact (e.g., privilege elevation)
and not monetary impact (e.g., monetary loss). The model only compares the
level of attackability between two similar systems; no attempt has been made
to compare the attack surface of different system environments. The method
does not make assumptions about the capabilities of attackers or resources in
estimating the damage potential-effort ratio. The methodology does not allow
the security administrator to evaluate multiple attacks occurring simultaneously
in a given system.

Petajasoja et al. [13] propose an approach to analyze a system’s attack surface
using CVSS. As a result, it is possible to identify most critical interfaces in order
to prioritize the test effort. However, this approach limits the attack surface to
known vulnerabilities, it is not meant to be used as a reaction strategy and only
compares relative security of similar infrastructures.

Microsoft has recently developed an attack surface analyzer tool [4], that
identifies changes made to an operating system attack surface by the installation



540 G.G. Granadillo et al.

of new software. However the tool can be used only for Windows operating
systems and is useless to measure a network attack surface.

Taking into account the aforementioned limitations, we propose in this paper
a method of selecting countermeasures for a service of an information system,
against complex cyber attacks. The method comprises:

– identifying elements of the service exposed to the cyber attack(s),
– calculating the return on response investment (RORI) of each countermea-

sure with respect to the cyber attack(s),
– ranking the countermeasure(s) on the basis of the RORI metric
– simulating the impact of the attack(s) and countermeasure(s) on the system,

the countermeasure to be implemented being selected as a function of the
result of the simulation.

The rest of the paper is structured as follows: Section 2 introduces the Return
On response Investment (RORI) index. Section 3 describes our proposed geo-
metric volume model and details the different types of volumes considered in
the approach, as well as the system dimensions. Section 4 discusses the method-
ologies to select optimal countermeasures. Section 5 presents our approaches to
calculate the financial impact of attacks and countermeasures. Section 6 presents
our model implementation and main results. Finally, conclusions and perspective
for future work are presented in Section 7.

2 Return on Response Investment

TheReturnOnResponse Investment (RORI)wasfirst introducedbyKheir et al. [8]
as an extension of the Return On Security Investment ROSI [14]. RORI identifies
three cost dimensions for intrusion response i.e. the response collateral damages
(CD), the response operational costs (OC), and the response goodness (RG). This
latter is computed as the difference between the expected intrusion impact before
response (ICb) and the combined impact of intrusion and response (RC).

The deployment of the RORI index into real world scenarios has presented
the following shortcomings:

– The absolute value of parameters such as ICb and RC is difficult to estimate,
whereas a ratio of these parameters is easier to determine, which in turn
reduces errors of magnitude.

– The RORI index is not defined when no countermeasure is selected. Since
the operational cost (OC) is associated to the security measure, the RORI
index will lead to an indetermination when no solution is enacted (hereinafter
denoted as NOOP).

– The RORI index is not normalized with the size and complexity of the
infrastructure.

Gonzalez Granadillo et al. [5] propose an improvement of the RORI index
by taking into account not only the countermeasure cost and its associated risk
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mitigation, but also the infrastructure value and the expected losses that may
occur as a consequence of an intrusion or attack. The improved RORI handles the
choice of applying no countermeasure and provides a response that is relative
to the size of the infrastructure. RORI is used as a quantitative approach to
evaluate, rank, and select a set of countermeasures. The proposed RORI index
is calculated according to Equation 1.

RORI =
(ALE × RM) − ARC

ARC + AIV
(1)

Where:

– The Annualized Loss expectancy (ALE) refers to the impact cost that is
produced in the absence of countermeasures. It is expressed in currency per
year and includes loss of assets (La), loss of data (Ld), loss of reputation (Lr),
legal procedures (LP ), loss of revenues from clients or customers (Lrc), as
well as other losses (Lo), contracted insurances (Ins), and the annual rate
of occurrence (ARO) of the attack.
ALE = (La + Ld + Lr + LP + Lrc + Lo − Ins) × ARO

– The Annual Infrastructure Value (AIV ) corresponds to the fixed costs that
are expected on the system regardless of the implemented countermeasure.
AIV is strictly positive and is expressed in currency per year. AIV includes
the following costs: equipment costs (Ce), personnel costs (Cp), service costs
(Cs) and other costs (Co), as well as the resell value (Vr).
AIV = Ce + Cp + Cs + Co − Vr

– The Risk Mitigation (RM) refers to the risk reduction associated with a
given countermeasure. RM is computed as the product of the Countermea-
sure Coverage (Cov, which corresponds to the percentage of the attack cov-
ered by the countermeasure) and the Effectiveness Factor (EF , which refers
to the degree at which a countermeasure protects a target against an attack).
RM = Cov + EF

– The Annual Response Cost (ARC) refers to the costs associated to a given
countermeasure. ARC is always positive and expressed in currency per year.
It includes direct costs such as the cost of implementation (Cimpl), the cost of
maintenance (Cmaint), as well as other direct costs (Cod) and indirect costs
(Ci) that may originate from the adoption of a particular countermeasure.
ARC = Cimpl + Cmaint + Cod + Ci

3 3D Geometrical Model

In analogy with access control models [7,9], we identified three main dimensions
that contribute directly to the execution of a given attack: User account (sub-
ject), Resource (object), and Channel (the way to execute actions, e.g., connect,
read, write, etc). This latter is represented as the transitions between subjects and
objects. For instance, in order to access a web-server (object) of a given organiza-
tion, a user (subject) connects to the system by providing his/her login and pass-
word (action).
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3.1 Coordinate System

Our geometric model is proposed to represent services, attacks and countermea-
sures in a three dimensional coordinate system (i.e., user account, channel, and
resource).

User Account: A user account is a unique identifier for a user in a given system
that allows him/her to connect and interact with the system’s environment. A
user account is associated to a given status in the system, from which his/her
privileges and rights are derived (i.e., system administrator, standard user, guest,
internal user, or nobody).

Channel: In order to have access to a particular resource, a user must use
a given channel. We consider the IP address and the port number to repre-
sent channels in TCP/IP connections. However, each organization must define
the way its users connect to the system and have access to the organization’s
resources.

Resource: A resource is either a physical component (e.g., host, server, printer)
or a logical component (e.g., files, records, database) of limited availability within
a computer system. We defined two levels of privileges (i.e., kernel, user), and
seven levels of transitions (i.e., read, write, execute, and their combinations),

Table 1. Weighting Factor (WF) Results

Dimension C A R V E R Total WF

U
se

r
A

cc
o
u
n
t Super Admin 10 9 8 10 10 9 56 5

System Admin 8 8 7 9 8 7 47 4
Standard User 6 7 6 7 7 5 38 3
Internal User 4 5 4 6 5 5 29 2
Guest 3 3 2 5 4 2 19 1
Nobody 1 1 1 1 1 1 6 0

Class 1 10 9 8 8 7 8 50 4
Class 2 8 7 6 5 5 6 39 3

IP
-P

o
rt Class 3 7 8 5 7 5 6 38 3

Class 4 3 2 3 4 3 5 20 1
Class 5 2 1 1 3 1 1 9 0
Public 8 7 5 7 6 5 37 3
Private 5 1 4 3 4 3 20 1
Reserved/ Special purpose 2 1 3 1 1 1 9 0

Kernel & R-W-X 10 10 9 9 9 9 56 5
Kernel & W-X/R-X/R-W 8 9 9 9 7 8 50 4

R
es

o
u
rc

e Kernel & W/X 6 7 7 8 7 5 40 3
Kernel & R / User & R-W-X 5 5 7 7 6 6 36 3
User & W-X/R-X/R-W 5 5 6 5 4 5 30 2
User & W/X 3 3 5 3 2 3 19 1
User & R 1 2 2 1 1 3 10 0
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and we assigned numerical values to each privilege and transitions based on
their characteristics.

Each dimension contributes differently in the volume calculation. This contri-
bution represents the criticality of a given element in the execution of an attack.
Following the CARVER methodology [12], which considers multiple criteria (i.e.,
criticality, accessibility, recuperability, vulnerability, effect, recognizability), we
assign numerical values on a scale of 1 to 10 to each entity within the dimension.
Table 1 summarizes this information.

As a result, we are able to represent graphically services, attacks and coun-
termeasures in the same coordinate system. It is therefore possible to deter-
mine through geometrical operations the impact of attacks and countermeasures
within a particular system, the residual risk (i.e., the volume of the system that
is being attacked but is not covered by any countermeasure), as well as, the
potential collateral damage (i.e., the volume of the system that is not being
attacked but is covered by a countermeasure, and whose implementation could
cause a damage over the target element).

3.2 Volume Calculation

The projection of the three axis in our coordinate system generates a paral-
lelepiped in three dimensions. For a system S, having three vectors CoAcc(S),
CoCha(S) and CoRes(S) in a three dimensional space R

3, these vectors form
three edges of a parallelepiped. The volume of this parallelepiped is equal to
the absolute value of the scalar triple product of all three vectors, as shown in
Equation 2.

V (S) = |CoAcc(X) · (CoCha(X) × CoRes(X))| (2)

The volume calculation requires the computation of the contribution of each
axis represented in the coordinate system. This contribution is determined as
the sum of each set of axis entities (e.g., user account type, port class, resource
type) times its associated weighting factor, as shown in Equation 3.

CoAxis(S) =
n∑

i=0

Count(E ∈ TypeAxis(S)) × WF (TypeAxis(S)) (3)

3.2.1 System Volume
It represents the maximal space a given system (e.g., S1) is exposed to users
and attackers. This volume includes tangible assets (e.g., PCs, mobile phones,
network components, etc.), as well as intangible assets (e.g., confidential infor-
mation, business reputation, etc) that are vulnerable to known and unknown
threats. Each of these assets are represented in the system volume as user
accounts, channels, and/or resources. The system volume is calculated as the
product of its dimension’s contribution, as shown in Equation 4.

SV (S) = CoAcc(S) × CoCha(S) × CoRes(S) (4)
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3.2.2 Attack Volume
Within the complete system volume exposed to attackers (including all possible
vulnerable resources of the given system), we concentrate on a given attack to
identify the portion of the volume being targeted based on the vulnerabilities it
can exploit. These vulnerabilities are related to all the dimensions that comprise
the system volume (i.e., user accounts, channels, and resources). The attack
volume is calculated as the product of its dimension’s contribution, as shown in
Equation 5.

AV (A) = CoAcc(A) × CoCha(A) × CoRes(A) (5)

The coverage (Cov) of a given attack (A) respect to a given system (S) is a
value that ranges between zero and one. Such coverage is computed as the ratio
between the attack volume overlapping with the system volume (AV(A∩S)) and
the system volume (SV(S)), as shown in Equation 6:

Cov(A/S) =
AV (A ∩ S)

SV (S)
(6)

Where AV(A ∩ S) represents the volume that results from the elements of
system (S) that are compromised by attack (A).

3.2.3 Countermeasure Volume
The countermeasure volume represents the level of action that a security solu-
tion has on a given system. In other words, the countermeasure volume is the
percentage of the system volume that is covered and controlled by a given coun-
termeasure. An attack is covered by a countermeasure if their volumes overlap.
The countermeasure can exceed the attack volume and cover part of the system
that is not covered by the attack. The countermeasure volume is calculated as
the product of its dimension’s contribution, as shown in Equation 7.

CV (C) = CoAcc(C) × CoCha(C) × CoRes(C) (7)

The coverage (Cov) of a given countermeasure (C) respect to a given attack
(A) is a value that ranges from zero to one. Such coverage is calculated as the
ratio between the countermeasure volume overlapping with the attack volume
(CV(C ∩ A)) and the attack volume (AV(A)), as shown in Equation 8:

Cov(C/A) =
CV (C ∩ A)

AV (A)
(8)

Where AV(C ∩ A) represents the volume that results from the elements of
attack (A) that are mitigated by countermeasure (C). From Equation 8, the
higher the ratio, the greater the mitigation level.

4 Countermeasure Evaluation

The process of evaluating and selecting security countermeasures is depicted
in Figure 1. The process starts by receiving an alert indicating the presence
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of a malicious entity in the system (1). A determination is made as whether
the system detected multiple attacks (2). In such a case, the system calculates
the impact of multiple simultaneous attacks (2a). For this, the system repre-
sents graphically each attack in our 3D coordinate system, and calculates their
coverage with respect to the system (using Equation 6). Such coverage is then
transformed into the annual loss expectancy as detailed in Section 5.

Fig. 1. Countermeasure Selection Process

In case the system detects only one attack (2b), the system calculates the
monetary impact of such attack (i.e., ALE) using a methodology as the one
described in Section 2. Then, the system selects the countermeasure candidates
to be evaluated (3). In order to perform the countermeasure evaluation, the sys-
tem requests the input parameters (ALE, AIV, RM, and ARC) to the internal
database (4). If parameters such as the ALE or the RM are missing for that par-
ticular attack (5), the system will request them to the graphical representation
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module (5a). Upon reception of all the parameters (5b), the system performs
the individual evaluation of all the countermeasures (6).

The resulting RORI indicates the expected return that can be obtained if
a given countermeasure is implemented in the system to mitigate the effects
of a given attack. A determination is made as whether countermeasures could
be combined (7). In such a case, it is necessary to select the desired approach
to combine countermeasures (e.g., perform all possible combinations, combine
only those countermeasures whose RORI index is above the average or a pre-
defined threshold), and to consider countermeasures that are totally restrictive,
mutually exclusive and partially restrictive in order to obtain the list of combin-
able countermeasures (7a). Then, it is possible to generate groups of 2, 3, ..., n
countermeasures, where n is the total number of elements to be combined.

In order to calculate the RORI index for combined countermeasures, it is
necessary to determine their risk mitigation and annual response cost (8). For
that we need to calculate the coverage and effectiveness of each group of coun-
termeasures with respect to the attack. A simulation is then performed using our
geometric volume tool, which considers Resources, Channels, and User accounts
(hereinafter denoted as RCU) that are protected by each countermeasure. The
countermeasure coverage is calculated using Equation 8. Then we can compute
the RORI for each group of countermeasures (6), taking into account that the
cost of multiple countermeasures is estimated as the sum of all the individual
countermeasure costs and the risk mitigation of a combined solution is calculated
as the probability of the union of events. More details of these calculations are
given in [5]. The Annual Infrastructure Value and the Annual Loss Expectancy
remains unchangeable for all combined solutions.

When no other countermeasure combination is possible, the system compares
the RORI index of all countermeasure candidates and selects the one with the
highest value (7b). The higher the RORI index, the better for the organization.

5 Impact Calculation

We propose to develop a conversion factor in order to transform cubic units
(hereinafter denoted as units3) into monetary values (e.g., , e). For this pur-
pose, we need to estimate the monetary value of the system (e.g., the dollar
value of the whole infrastructure), and to calculate its volume (as proposed in
Equation 4). The conversion factor will be, therefore, the resulting value between
these two parameters (e.g., /units3).

By calculating the volume of attacks and countermeasures on the system,
we are able to determine the monetary impact value for single and/or multiple
entities.

5.1 Attack Impact

The Annual Loss Expectancy measures the monetary impact of a given attack
over a target system. Several methodologies have been developed to compute
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this metric. The simplest way to compute it is by the product of the single loss
expectancy (SLE) and the annual rate of occurrence (ARO) [2].

For single attacks, we compute its volume on the system (in units3) and we
calculate the corresponding monetary value using the previous conversion factor
(CF). The resulting value represents the SLE of such attack on the system, and
the ARO (i.e., Likelihood) is estimated as the number of times per year an attack
is expected to occur in the system [2]. For instance, let us assume that the volume
of attack A1 is calculated as AV(A1) = 100,000 units3, and the conversion factor
CF = 0.1 e/unit3. The single loss expectancy for A1 is therefore, SLE(A1) =
10,000.00 e. Considering that A1 has a likelihood estimated as 12 times per year,
we calculate the annual loss expectancy as: ALE(A1) = 120,000.00 e/year.

For multiple attacks occurring simultaneously in the system, we determine
the union and/or intersection of the different volumes, and we estimate the
total volume of the group of attacks (in units3). The resulting volume is then
transformed into its corresponding monetary value in order to calculate their
single loss expectancy. The ALE is then computed as the product of the SLE and
the ARO. This value is further used in the countermeasure evaluation process.

5.2 Countermeasure Impact

Each countermeasure is represented as a geometrical figure that covers a set
of resources, channels, and users (RCU) from a given system. Such coverage
is calculated using Equation 8. For this, it is necessary to determine the RCU
elements that belong to both: the attack and the selected countermeasure.

For instance, considering that A1 affects resources R1:R3 (WF=5), channels
Ch1:Ch3 (WF=3), and users U1:U3 (WF=2), the attack volume is equivalent
to (AV(A1) = (3 × 5) × (3 × 3) × (3 × 2) = 810 units3); and countermeasure
C1 protects resources R2:R5, channels Ch2:Ch5, and users U2:U5, (CV(C1)=
1,920 units3), the RCU elements that are covered by C1 respect to A1 are the
following: R2:R3, Ch2:Ch3, U2:U3. The coverage volume of C1 with respect to
A1 is therefore equivalent to:

CV (C1 ∩ A1)= [(2 × 5) × (2 × 3) × (2 × 2)]= 240 units3.

The coverage of C1 with respect to A1 is calculated as:

Cov(C1/A1) = 240units3

810units3 = 0,2962%

As a result, only 29,62% of the total volume of A1 is covered by C1. This value
helps improving the accuracy in the evaluation and selection of security counter-
measures. The remaining 70,38% of the attack is considered as a residual risk.
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6 Implementation and Results

We developed a Python software application to generate the graphical represen-
tation of multiple attacks and countermeasures within a particular system, and
to evaluate, rank, and select optimal countermeasures against complex attacks.
This section describes the tool and the resulting geometrical figures, as well as,
the approach to calculate the monetary impact of attacks and countermeasures
and the process of countermeasure selection.

A software prototype of our approach is available at http://j.mp/3d-rori. It
implements all the modules introduced in this section, i.e., input data, RORI and
geometrical calculation, and graphical representation. The prototype has been
implemented using the Python language. It has been tested using real-world
scenarios.

6.1 Tool Description

Our proposed tool is composed of three modules: Input data processor, RORI &
Geometrical Calculation, and Graphical Representation, as depicted in Figure 2.
For more information about the tool, please see http://j.mp/3d-rori.

Fig. 2. Decision Support Tool

6.1.1 Input Data Processor : This module stores information about the
Organization, Policy Enforcement Points (PEPs), Attacks, and Countermea-
sures.

Organization: provides information of a given organization regarding its secu-
rity infrastructure (e.g., name, description, annual infrastructure value). An
organization has one or more Policy Enforcement Point -PEP (RFC2904) , and
it is exposed to one or many attacks.

http://j.mp/3d-rori
http://j.mp/3d-rori
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PEPs: refer to the list of security equipments i.e., Policy Enforcement Points
that are associated to a given organization to protect the confidentiality, integrity
and availability of its resources against attacks. Examples of PEPs are: firewall,
IDS, Access Control, SIEMs, etc. The tool allows assigning a name, a category
and the countermeasures that the PEP can implement on the system, as well as
the annual cost of each PEP. The sum of all PEP’s annual costs represents the
annual infrastructure value.

Attacks: correspond to any kind of detrimental event (e.g., intrusions, attacks,
errors) to which the organization is exposed and that could cause damage to
the system’s organization. Each attack is assigned a name, a description, a risk
level (e.g., low, medium, high), and one or more countermeasures. In addition,
it is possible to assign one or more attacks to a given organization, with a
given likelihood and severity, the product of these two parameters represents the
annual loss expectancy.

Countermeasures: are mitigation actions used to stop or minimize the impact
of a given attack. Countermeasures are assigned a name, a description, a per-
centage of the risk that is mitigated, the annual response cost, and restrictions
if they exist. A countermeasure is associated to one or more attacks.

6.1.2 RORI & Geometrical Calculation: This module allows to perform
the evaluation, rank and selection of individual and combined countermeasures
against a cyber attack in a given organization. it uses the Return On Response
Investment (RORI) metric to compare multiple alternatives. It communicates
with the geometrical calculation sub-module to obtain more accurate information
about input parameters, in particular the financial impact of individual and
multiple attacks (i.e. ALE), as well as the impact coverage of single and multiple
countermeasures (i.e., Cov(CM)).

6.1.3 Graphical Representation: This module provides a graphical rep-
resentation of attacks and countermeasures in a three-dimensional coordinate
system (i.e., Resource, Channel, and User account - RCU), making it possible
to identify the size of each attack and countermeasure in a given system, as well
as priority areas (e.g., areas affected by most attacks, or those with insufficient
protection).

6.2 Use Case: Olympic Games

For testing purposes, we stored the RCU information of a target system from an
Olympic Games scenario. The case study responds to the needs of improving the
security of a system whose mission is to provide services and real time informa-
tion for games of around 20 disciplines that spans more than 60 competition and
non-competition venues, involving more than 10,000 athletes, 20,000 members
of the media, and 70,000 volunteers.
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The target system has 100 network resources (e.g, workstations, databases,
servers, etc.); 171 channels (e.g., public IP address, credential connections); and
71 user accounts (e.g, IT professionals, partner staff, volunteers). Table 2 sum-
marizes this information.

Table 2. RCU Information of the target system

Dimension Range Description Q WF Range

Resource R1:R16 Server 16 5 0:80
R17:R17 Access Control Tool 1 4 80:84
R18:R19 Database 2 4 84:92
R20:R22 IDS 3 4 92:104
R23:R25 Firewall 3 4 104:116
R26:R35 Network device 10 4 116:156
R36:R100 Workstation 65 3 156:351

Channel Ch1:Ch91 Public IP address 100 3 0:300
Ch92:Ch103 Credentials 71 3 300:513

User Account U1:U40 IT professional 40 4 0:160
U41:U47 Partner staff 7 3 160:181
U48:U71 Volunteer 24 1 181:205

The annual infrastructure value (AIV) has been calculated as 12.800 e/year.
This latter corresponds to the annualized cost of operation and maintenance of
the security infrastructure. Applying Equation 4, we calculate the volume of sys-
tem S1 as: SV(S1) = (351)×(513)×(205) = 36,912,915 units3. Considering that
the complete infrastructure value is estimated as 450,000 euros, the conversion
factor (currency/units3) is therefore computed as: CF = 450,000/36,912,915 =
0.01219086 e/unit3.

6.3 Attack Scenario

A first attack (i.e., A1) is detected in the Olympic Games scenario. The general
process starts when the attack accesses the URL of an external web application
and studies its behavior (the attacked web application could also be internal).
Then, he/she rewrites the URL of the web application to bypass any imple-
mented security check (login, cookies, session). As a result, the attacker bypasses
security checks and accesses restricted information.

Attack A1 affects resources R1:R12 (range 0:60), channels Ch1:Ch12 (range
0:36), and users U1:U71 (range 0:205). The volume of A1 is calculated using
Equation 5 as: AV(A1) = (12×5) × (12×3) × [(40 × 4)+ (7 × 3) +(24 × 1)] =
442,800 units3.

A second attack (i.e., A2) is executed simultaneously on the system. A2 is
based on modification of data sent between client and web applications in HTTP
headers, requests for URLs, form fields, and cookies. This kind of attack allows
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unauthorized access to restricted information and operations. It affects resources
R9:R16 (range 40:80), channels Ch1:Ch16 (range 0:48), and users U1:U71 (range
0:205). The attack volume is calculated as: AV(A2) = (8 × 5) × (8 × 3) × [(40
× 4)+ (7 × 3) +(24 × 1)] = 393,600 units3.

Attacks A1 and A2 are partially joint, each attack has an estimated “Signif-
icant” severity Level and a “High” likelihood (one attempt per month, starting
four months prior to the Games event). The union of both attacks is treated as
a new attack (i.e., A3 = A1 ∪ A2) that affects resources R1:R16 (range 0:80),
channels Ch1:Ch16 (range 0:48), and users U1:U71 (range 0:205), and whose
volume is calculated as: AV(A3) = (16 × 5) × (16 × 3) × [(40 × 4)+ (7 × 3)
+(24 × 1)] = 787,200 units3.

Applying the previously calculated conversion factor, we obtain the mon-
etary impact loss expected from the combined attack as: SLE(A3) = 787,200
units3× 0.0121986 e/unit3= 9,596.65 e. Using the Lockstep methodology [2],
we transform the likelihood value into the annual rate of occurrence (i.e., high
likelihood = 12), then the ALE for attack A3 is expected to be equivalent to:
ALE(A3) = 115,159.69 e/year. This latter is the monetary impact expected on
the system in yearly basis, if both attacks are realized.

6.4 Countermeasure Analysis

The following are sample countermeasures associated to attack A3, (i.e., the
combination of URL-rewriting attack ‘A1’, and data modification attack ‘A2’).
We assume security experts providing the list of countermeasures.

– C0. No Operation (NOOP): This solution considers to accept the risk
and does not require any modifications. The cost and risk mitigation level
are equal to zero.

– C2. Activate abnormal behavior rules: this countermeasure requires to
update the existing rules (i.e., default security policies) to be more restrictive
and/or to activate new rules that disable other less restrictive ones.

– C6. Deny or redirect requests: URL requests coming from origins that
are generating an unusual amount of requests are denied or redirected. This
is similar to blocking requests from the offending IPs. The downside is that
false positives may be denied access to the URL resources.

– C7. Disable URL-rewriting mode: either at the server side or at the
application level. An attractive option is a Servlet filter which wraps the
response object with an alternate version and changes the encoded URL
and related methods into no-operations. However, disabling also defensive
URL rewriting increases the risk of other attacks.

– C8. Activate automatic expiring URLs: a URL that expires a short
period of time after it is requested (e.g., 10 minutes) would greatly reduce
the window of opportunity for an attacker to perform a URL rewriting attack
but still allow legitimate users enough time to work with the resource.

– C9. Enable HTTPS: when enabling HTTPS security, some systems allow
applications to obtain the SSL/TLS session identifier. The use of SSL/TLS
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session identifier is suitable only for critical applications, such as those on
large financial sites, due to the size of the systems.

– C13. Generate new SID: even though an attacker may trick a user into
accepting a known SID, the SID will be invalid when the attacker attempts to
reuse the SID. However, session regeneration is not always possible. Problems
(e.g., logouts, session separation, etc.) are known to occur when third-party
software such as ActiveX or Java Applets is used, and when browser plug-ins
communicate with the server. For this reason, session regeneration is only
advised when performing sensitive operations or accessing sensitive links.

Table 3 summarizes the RCU information of each security solution except
for C0 (NOOP), since this latter implies no changes in the system. In addition,
we provide information about the coverage of each countermeasure based on the
detected attack. Such coverage is calculated using geometrical operations from
the geometrical calculation module. For instance, having the RCU of attack A3
(0:80, 0:48, 0:205), and the RCU of countermeasure C2 (0:156, 0:105& 300:513,
0:205) we compare both entities and we obtain the RCU intersection (i.e., 0:80,
0:48, 0:205), then we compute the volume (using Equation 7) and we deter-
mine the percentage of the attack volume that is covered by the countermeasure
volume (using Equation 8). As a result, C2 covers 100% of attack A3.

Table 3. RCU Information of the security countermeasures

CM Resource Range Channel Range User Range Coverage

C2 R1:R35 [0,156] Ch1:Ch35&
Ch101:Ch171

[0,105]&
[300,513]

U1:U71 [0,205] 1.00

C6 R1:R17&
R20:R25

[0,84]&
[92,116]

Ch1:Ch17&
Ch20:Ch25

[0,51]&
[57,75]

U1:U71 [0,205] 1.00

C7 R1:R13 [0,80] Ch1:Ch13 [0,39] U1:U71 [0,205] 0.81
C8 R1:R13&

R36:R100
[0,80]&
[156,351]

Ch1:Ch13&
Ch36:Ch100

[0,39]&
[105,300]

U1:U71 [0,205] 0.81

C9 R1:R16 [0,80] Ch1:Ch16 [0,48] U1:U71 [0,205] 1.00
C13 R1:R17 [0,84] Ch1:Ch17 [0,51] U1:U71 [0,205] 1.00

We determine the annual response cost and effectiveness of each security
countermeasure. The risk mitigation value (RM) is calculated as the product
of the Effectiveness (EF) and the Coverage (COV). This latter is obtained
via the geometrical calculation module. The RORI index is calculated using
Equation 1. Table 4 summarizes this information.

From the list of proposed countermeasures, C7 (Disable URL-rewriting mode)
provides the highest RORI index. By taking this action, the risk is expected to be
reduced 72%, resulting in a RORI index of 0.609. The graphical representation of
each countermeasure vs. the detected attacks is depicted in Figure 3, where the
blue parallelepiped represents attack A3 and the green parallelepiped represents
the countermeasures.
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Table 4. Countermeasure Evaluation Information

CM EF COV RM ARC RORI Restriction

C0 0.00 0.00 0.00 0.00 0.00 all
C2 0.68 1.00 0.68 400.00 0.590 C0
C6 0.55 1.00 0.55 500.00 0.472 C0
C7 0.89 0.81 0.72 700.00 0.609 C0
C8 0.79 0.81 0.64 450.00 0.552 C0
C9 0.49 1.00 0.49 550.00 0.418 C0
C13 0.39 1.00 0.39 250.00 0.342 C0

Attack A3 remains the same (in size and affected elements) for all the differ-
ent cases, whereas countermeasures change their size according to the elements
they cover. Therefore, the bigger the countermeasure, the smaller the graphical
representation of the attack. That explains why in Figure 3(a) the attack looks
smaller than the one represented in Figure 3(c).

We evaluated all possible combinations of security countermeasures (consid-
ering mutually exclusive, partially restricted and totally restrictive countermea-
sures) and taking into account that for a combined solution, the cost is computed
as the sum of all the individual countermeasure costs (Pessimistic Approach)
and the risk mitigation is calculated as the probability of the union of events
(using the effectiveness and coverage parameters as detailed in [5]). The Annual
Infrastructure Value and the Annual Loss Expectancy remains the same for all
combined solutions. Table 5 presents the results of the five best combinations of
security countermeasures.

(a) A3 and C2 (b) A3 and C6 (c) A3 and C7

(d) A3 and C8 (e) A3 and C9 (f) A3 and C13

Fig. 3. Graphical representation of attack A3 and all individual countermeasures



554 G.G. Granadillo et al.

Table 5. Countermeasure Combination Results

N CM c EF c COV c RM c ARC c RORI c

1 C2+C7 0.68 0.81 0.85 1,100.00 0.695
2 C2+C7+C13 0.39 0.81 0.85 1,350.00 0.681
3 C2+C7+C8 0.68 0.71 0.86 1,550.00 0.679
4 C6+C7 0.55 0.81 0.82 1,200.00 0.669
5 C2+C6+C7 0.55 0.81 0.85 1,600.00 0.668

From Table 5, the value of EF c corresponds to the minimum effectiveness
value of the combined solution, whereas COV c corresponds to the value of
the intersection coverage of the combined countermeasures. RM c and ARC c
represent the risk mitigation and the annual response cost respectively for each
combination. RORI c is the resulting RORI index for the combination.

After comparing the RORI index on all the different options, we determined
that the best solution is to combine C2 and C7, which proposes to activate
abnormal behavior rules and to disable URL-rewriting mode. As a result, the
risk is expected to be reduced 85%, and the RORI index is expected to be 0.695.
This combined solution becomes the selected countermeasure for a combined
attack based on URL-rewriting and data modification in the attack scenario
described in Section 6.3.

7 Conclusion and Future Work

In this paper we introduced a 3D geometrical model (i.e., Attack volume), as
an improvement of the attack surface model proposed by Howard et al. [6] and
Manadhata et al. [10] . The attack volume is fully integrated with a cost sensi-
tive metric (i.e., Return On Response Investment) to evaluate, rank and select
security countermeasures against complex attack scenarios.

The 3D geometrical model proposes to measure the volume of multiple enti-
ties (e.g., system, attack, countermeasures) by using geometrical operations in
order to calculate their coverage. Entities are plotted as cubes or parallelepipeds
in a three dimensional coordinate system that represents user accounts, channels
and resources in each axis.

Implementation and main results of our model are presented at the end of
the paper, using a real case scenario where two cyber attacks are detected in
the Olympic Games Infrastructure. Using the attack volume model, we improve
RORI results by providing more accurate values of the the financial impact of
multiple attacks and countermeasures.

Considering that the number of axis could change, the system should be
flexible to model the information into two or more dimensions, resulting in a
variety of geometrical figures (e.g., lines, surfaces, hyper-cubes, etc). Future work
will therefore concentrate in evaluating such figures through other geometrical
operations (e.g., length, area, hyper-volume).
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Abstract. This paper proposes MpDroid, an API-level multi-policy access con-
trol enforcement based on the ‘Rule Set Based Access Control’ (RSBAC) 
framework. In the MpDroid, we monitor and manage resources, services and 
Android inter-component communication (ICC) based on multiple policies me-
chanism, so as to restrict the applications access to the sensitive APIs and pre-
vent privilege escalation attacks. When installing an application, we build the 
mapping relationships between sensitive APIs and the application capability. 
Each rule in the user-defined and context policies is regarded as a limitation of 
the application capability. Moreover, system policy is used for matching the il-
legal ICC communications. Experimental results showed that we can realize the 
API-level access control for Android middleware, and prevent the illegal ICC 
communication on the Android 4.1.4. 

Keywords: Android middleware · Multi-policy · Permission re-delegation ·  
Inter-component communication · Privilege escalation attacks 

1 Introduction 

Apex [1] allows to selectively grant permissions at install time, and defines constrains 
at runtime. MockDroid [2] allows to provide fake or ‘mock’ data to applications by 
the user-defined policies. CRePE[3] designs a fine-grained framework by introducing 
the context policy. Saint [4] proposals a novelty framework that developers design 
policies based on application requirement. Xmandroid [5] deals with privilege escala-
tion attacks based on the system policy that calling and callee permissions are 
matched. However, None of them can design a flexible and security framework that 
comprehensively solves the problem of Android framework. 

In this paper, we expand the android framework layer based on the RSBAC. We 
monitor and manage resources, services and Android inter-component communication 
(ICC) based on multiple policies mechanism, so as to restrict the applications access 
to the sensitive APIs and prevent privilege escalation attacks. Our MpDroid is inte-
grated into the Android system, which can be used to realize the permission manage-
ment. It is applied to manage android market applications in this paper. 
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2 MpDroid Architecture 

The MpDroid Architecture was inspired by RSBAC [6]. In RABAC framework, users 
should define some policies for constraining capabilities of subject and object. In our 
framework, AEC is responsible for obtaining the request of the subject and analysis 
the object type. As the subject always is the application and the object type belongs to 
resource, service, component or application. Then AEC transfers the request and the 
object property to the ADM, in which the states of subject and object are loaded. In 
this paper, we name these states as Application State (AS). AS are three-tuple

, where type is the application type, is the set of application 

capabilities and is the set of application components. 

 

 
Fig. 1. MpDroid Architecture 

3 Experiment 

The malicious samples are from VirusTotal Malware Intelligence Service [7], Android 
Malware Genome Project [8] (Totally 118 applications). The benign samples are from 
the Google Play application market of top 50 popular software. The experiments can 
be classified as following: 

Table 1. The experiment of access API 

Experiment 
samples 

The number of 
access sensitive API 

Access entities of system 
component 

The number of rules 
for access control 

Known  
Attacks[32,33] 

623 Location/Bluetooth Manager, 
Telephony/SMS Manager, 
Calendar/ Contact Content 

Provider, Internet 

623 rules in UDP,  
977 rules in CP 

Walk and Text 5 Contact Content Provider, 
SMS/Telephony Manager 

5 rules in UDP,  
10 rules in CP 

What’s App 9 Contact Content Provider, 
SMS/Telephony Manager, 

Internet 

9 rules in UDP,  
15 rules in CP 

Twitter 7 Contact Content Provider, 
SMS/Telephony Manager 

7 rules in UDP,  
12 rules in CP 

 compocap SStypeS ,, capS

compoS
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Table 2. The experiment of ICC communication 

Experimental Samples Escalation type ( , ,Policies)  

Malicious contacts 
manager 
(READ_CONTACTS) 
and malicious wallpaper 
(INTERNET) 

Colluding 
applications 

=untrust_app, =read_contacts 

= untrust_app = Internet 

Policy = SP 

Malicious location 
manager 
(ACCESS_FINE_LOCAT
ION) and malicious wall-
paper (INTERNET). 

Colluding 
applications 

=untrust_app,

=access_fine_location = untrust_app 

=Internet Policy = SP 

Malicious app (No 
CALL_PHONE) and 
vulnerable  dialer [17] 

Confused 
deputy attacks

=untrust_app, =NULL 

= system_app = send_sms 

 Policy = SP 
Malicious contact 

manager 
(READ_CONTACT) and 
vulnerable SMS sender 
(SEND_SMS). 

Confused 
deputy attacks

=untrust_app, =read_contacts 

= system_app = send_sms 

Policy = SP 

 
The subject which sends request to the Service/Providers are tagged by AEC. Our 

policy serves as a kind of firewall, making it much more difficult for applications to use 
the default permission to access the sensitive data. We test experiment samples by ap-
plying UDP and CP to the system to prevent the application access to the sensitive API. 
For example, the application, Walk and Text, gains the telephone number and device id, 
and uploads that to the remote server. The application accesses 5 sensitive API. In the 
experiment, we success in managing every behavior using policies. The ICC communi-
cation can be defined as the tuple .The MPDroid runtime 
control is achieved by mapping the AS and policy to the parameters. We use the tuple 

 to realize access control (Table 2). Attacks targeting con-
fused deputies in system component are tackled by the system policy. By assigned ap-
plication types, we can address the ICC between colluding applications. 

Table 3. The time consuming comparison of access API 

 Sample Num-
bers 

Number of access 
the sensitive API 

Average time 
consumes(ms) 

The original API access 50 269 0.149 
MpDroid API access 50 281 0.399 

Table 4. The time consuming comparison of ICC 

 ICC call times Average time Std. Dev(ms) 
The Original Reference 

Monitor  
80721 0.168 18.932 

MpDroid ICC  87453 6.334 45.128 

callingUidS calleeUidS
.typeScalleeUid capcallingUid.SS

.typeScalleeUid capcallingUid.SS

.typeScallingUid .typeScalleeUid

capcallingUid.SS

capcallingUid.SS

.typeScalleeUid capcallingUid.SS

.typeScalleeUid capcallingUid.SS

.typeScalleeUid capcallingUid.SS

.typeScalleeUid capcallingUid.SS

),,( PoliciesSS calleeUidcallingUid

),,( PoliciesSS calleeUidcallingUid
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As Table 3 shows, When running the applications in the original system, the results 
is nearly 0.153ms. When running the applications in the MpDroid-based Android 
system, the average time is 0.399ms. Table 4 lists our performance results. In total 
80721 ICC calls occurred during the testing. The average runtime for original Refer-
ence Monitor time is 0.168ms, and the MpDroid ICC time is 6.334ms. 

4 Conclusions 

In this paper, we propose a multi-policy access control enforcement MpDroid based on 
RSBAC framework. Multiple policies makes our framework more efficient to resist the 
diverse attacks. The experiment results shows that we can realize the API-level access 
control for Android middleware, and prevent the illegal ICC communication on the 
Android 4.1.4. The system policy time consuming is 6.334ms. However, from the 
experiment, we learn some collusion attacks that can not be fully tackled by system 
policy. Besides, we hope we can make more efficiency policy to deal with more  
attacks. 
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tion of China (No. 91118003, 61272106, 61003080) and 985 funds of Tianjin University, Tian-
jin Research Program of Application Foundation and Advanced Technology under grant No. 
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Abstract. We are investigating a novel approach towards reliable and efficient 
protection of consumer privacy in the Advanced Metering Infrastructure (AMI). 
In the smart grid, one of the main concerns of consumers is associated with the 
usage of the smart meters and how utility companies handle energy consump-
tion data, which can potentially reveal sensitive and private information about 
consumers. Current solutions provide privacy-preserving protocols using zero-
knowledge proofs and homomorphic encryption, which work on aggregated 
smart meter data. There is still lack of an integrated solution that enables priva-
cy preservation with access to fine-grained data such that opportunities of mak-
ing energy consumption more efficient are not sacrificed. Such access will also 
enable other forms of advanced intelligent analysis like energy fraud detection. 
In this regard, we propose a three-tier privacy preservation model that includes 
secure communication among smart meters, utility company, and a Trusted 
Third Party (TTP) using Certificateless Public Key Encryption and AES 128. It 
is a flexible framework allowing protection of consumer privacy such that only 
consumers can securely retrieve their fine-grained readings through the TTP’s 
web-portal. This protocol supports dynamic rate utilization as well as data min-
ing for advanced analysis. In addition, the proposed secure framework satisfies 
computational resource limitations in the Advanced Metering Infrastructure and 
provides a scalable solution for efficient consumer privacy-preserving billing. 

Keywords: Security · AMI · Privacy-preserving protocol 

1 Introduction 

We introduce a three-tier model for secure smart meter communication that enables con-
sumer’s privacy preservation as well as retention of fine grained data analysis capability. 
The model comprises of Smart Meters (SMs), Utility Companies (UCs), and a Trusted 
Third Party (TTP). TTP has direct access to fine-grained consumer data and has the ca-
pability to include additional advanced analysis features, such as fraud detection. The 
data are secured in such a way that TTP cannot link energy consumption readings with 
any particular consumer. In the proposed model, SMs encrypt all the energy consumption 
data and send the encrypted traffic to TTP through a separate collector entity in the UC’s 



564 V. Ford and A. Siraj 

smart metering network. However, UC can only relay the energy measurements to TTP 
without having the ability to decrypt them. 

Many existing solutions [2, 3, 4] propose different protocols that have to be used in 
the smart grid at the same time for load monitoring, aggregation, billing and fraud 
detection. Instead of using varied protocols for the above-mentioned operations, the 
proposed architecture utilizes one protocol with minimal overhead to SMs. 

2 Approach 

The following describes the proposed model for the AMI infrastructure. The three-tier 
system consists of SMs, UCs, and TTP storage system. TTP is an independent private 
organization, whose service is purchased by UCs. TTP can manage meter data from 
several different electricity providers and thus release the AMI infrastructure from 
unnecessary computations, such as aggregation, fraud detection, and energy consump-
tion analysis. There is also a collector(s) installed by UC, which facilitates collection 
of energy consumption data from various SMs. Fig. 1 shows the high-level architec-
ture (solid lines correspond to an internal UC network and dashed lines correspond to 
the Internet connectivity). 

Third 
party 

Smart 
meter 1

Smart 
meter 2

Utility 
company

Collector

Consumer 1

Consumer 2

Utility 
company

InternetInternet

Intranet (e.g. ZigBee, 
Wi-Fi)

 
Fig. 1. Proposed architecture 

In the proposed model (Fig. 1), TTP is connected to UC via the IP-based commu-
nication line in the Internet. SMs are not directly connected with the TTP and instead 
connected through UC. This is because SMs connect with their UCs via an internal 
network to decrease the possibility of attacks that are common in the Internet.  

In this model, UC deploys SMs and has limited control over them. The control is 
restricted for preserving consumer privacy and UCs are only allowed to provide ad-
ministrative support for AMI, such as verifying SMs availability. 

When UC deploys SM, it generates a random identification number (ID) for SM in 
the household. SM and TTP initiate a Certificateless Public Key Exchange Protocol 
(CLPKE) [1], where UC serves as the Key Generation Center. Once public/private 
keys are distributed to both parties, TTP generates a session key for securely commu-
nicating energy consumption data from SM to TTP and sends it via an encrypted con-
nection (using public/private keys) to SM. SM stores the session key in its TPM and 
uses it for sending energy readings to TTP via UC.  
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SM encrypts energy consumption (EC) measurements and sends them to the col-
lector. The main responsibility of the collector is to temporarily store the encrypted 
EC data and send them to UC in a predefined time interval. UC forwards the en-
crypted EC data to TTP. Without knowledge of the key, UC cannot decrypt the data 
and thus, privacy is preserved for their clients. TTP decrypts all received data and 
stores them in its database. 

At the time of billing, UC sends TTP a request for EC readings to be billed, includ-
ing the anonymized meter’s ID and price ranges for different periods of time. TTP 
authenticates UC, queries the requested data from its database, and aggregates energy 
on a daily/monthly basis depending on the policy and bill calculation requirements. 

When a consumer receives the bill, he/she can check the correctness of the billing 
computations. Consumers can connect to the TTP web-service, authenticate without 
revealing their real identity, and gain access to their fine-grained data.  

The features of the proposed protocol are as follows: 

 Energy data are encrypted by SMs and anonymized by UC prior to being sent to TTP. 
 Lightweight efficient encryption is used for the main parts of communication. We 

use Advanced Encryption Standard (AES) 128-bit keys for securing communication 
between SM and UC as well as SM and TTP. 

 UC forwards the anonymized and encrypted data to TTP via a wide area network. 
UC cannot decrypt the data, preserving consumer privacy. 

 UC can acquire aggregated decrypted data from TTP on request for billing purposes. 
 TTP cannot identify real consumers because of anonymization of SM’s ID. 
 Additional consumer energy consumption analysis can be done at TTP without dis-

closure of any sensitive information about consumers.  
 UC cannot ask a consumer to pay a fee different from the one that was produced by 

TTP for billing. 

3 Protocol Phases 

There are three main phases in the proposed protocol: registration phase (Fig. 3), 
session key exchange phase (Fig. 4), and data transmission phase (Fig. 5). The regis-
tration phase describes the steps that SMs and TTP have to follow for receiving their 
public/private key pairs from UC based on the CLPKE [1]. Those keys will allow SM 
and TTP to establish a secure and private connection for exchanging a session key 
used for further communication between SM and TTP at the data transmission phase. 

1) Registration phase. 
UC serves as a Key Generation Center. SMs and TTP communicate with UC in or-

der to obtain public/private keys. Any communication between SM and UC is en-
crypted with the pre-shared key SSM-UC. When SM sends UC an encrypted (with SSM-UC) 
message, it concatenates its IDSM so that UC can identify the meter upon receiving the 
message and decrypt it accordingly. The message consists of a request to generate keys 
and a timestamp against replay attacks. UC generates the keys and sends them to SM. 
UC and TTP have to establish a TLS connection before UC sends the keys for TTP. 
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2) Session key exchange phase. 
When SM and TTP complete the registration phase, they initiate a session key ex-

change phase in order to share a secret key used for encrypting/decrypting fine-grained 
meter readings. SM uses TTP’s public key for encrypting the message containing a 
request to share a key and a random number used as an extra security measure against 
man-in-the-middle attacks. In addition, SM sends an HMAC to preserve integrity. 
Upon receiving the message, TTP generates the session key SSM-TTP, concatenates the 
random number, encrypts the packet with SM’s public key, and forwards it to SM via 
UC. 

3) Data transmission phase. 
The session key established at the session key exchange phase is used for sending 

meter readings from SM to TTP. Thus, only SM and TTP can decrypt the fine-grained 
measurements. SM sends energy consumption ( ) along with a timestamp t to UC by 
encrypting the data with SSM-TTP. It also concatenates an HMAC to the message by hash-
ing  ||  and its real IDSM. UC verifies HMAC and forwards the received data to 
TTP, replacing IDSM with an-IDSM found in its table mapping real IDSM with the anony-
mized an-IDSM. TTP decrypts  ||  by using SSM-TTP and retrieves the data. 

4 Conclusion and Future Work 

Proposed secure AMI preserves consumer privacy in terms of billing and advanced 
fine-grained data analysis, such as fraud detection. It takes into account the limited 
capabilities of Smart Meters and can be implemented with minimum changes to the 
current grid. Also, consumers can access their own fine-grained data stored at TTP. We 
are currently working on formal and empirical evaluation of the proposed privacy pre-
serving protocol for AMI infrastructure. 
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Abstract. As a kind of covert communication technology, stegangoraphy can 
transmit cryptography using public cover on the internet. However, the beha-
vior is easy to be found because of the cover distortion. To solve this problem, 
we define two distortion functions to measure the impact of embedding secret. 
They are called cover perception distortion (CPD) and statistical property  
distortion (SPD). Then a security stegangoraphy strategy can be generated 
adaptively by minimizing the two distortion functions. The experiment results 
demonstrate the effectiveness of our work. 

Keywords: Steganography · Steganalysis · Distortion function · Modify 
path · Modify style 

1 Introduction 

Steganography can embed secret to the open cover such as images, audio and video in 
public communication mode without arousing suspicion. Compared with other kinds 
of multimedia, hiding data in audio is more challenging because of the sensitivity of 
human auditory system (HAS). 

In the past years, several methods have been proposed based on the characteristics 
of digital audio signals and the human auditory system (HAS). Among the embedding 
algorithms, the least significant bits (LSB) substitution is one of the earliest tech-
niques and used widely in audio and other media types. Hiding data in LSBs of audio 
samples can obtain the high data rate of embedding information, but it also faces chal-
lenges of various steganalysis system. So many kinds of algorithm based on LSBs 
have been proposed to improve the security with different transform domain or differ-
ent embedding rules. 

The goal of this paper is to design an audio steganography method which is more 
undetectable and imperceptibility. The novelty of this work is derived from distortion 
minimizing framework in image field [2]. We construct an embedding strategy in-
cludes security modify path and riskless modify style. They are established adaptively 
depends on minimizing two distortion functions. In details, first, every element in 
cover is assigned by the value of CPD, and then STCs is employed to find an optimal 
path. The elements belong to the modify path can be seen the less important parts 
according to CPD. Different from exiting distortion functions, the CPD is attained by 
an unsupervised algorithm. At last, SPD is used to determine the modify style for the 
elements on the path. 
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2 Proposed Method 

The principle of novel steganography system is shown as follow, which can generate 
the embedding strategy adaptively for different covers. 
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Fig. 1. The principle of novel steganography system 

From Fig.1, we can see there are three key steps in the novel steganography system, 
they are depicted as follows. 
Step 1(framing and DCT): We divide the audio cover ( )tx into D non-

overlapping frames ix , each frame is L samples. These DCT coefficients of each 
frame collectively form the new data matrix [ (1), ( )]D X X X . 
Step 2 (Finding security modify path): A perception value is assigned for each  
element in cover, which represents the influence strength when the corresponding 
element is modified. The distortion function is defined as, 
Rule 1:            ( , ) arg min ( , )CPDMP DX Y X Y                  (1) 
Then STCs [2] is employed to find a modify path which is subject to make the 

( , )CPDD X Y is minimal as Rule 1 describes.  The theory of independent compo-
nent analysis (ICA) is applied to construct CPD, and the procedure is shown in Fig. 2. 
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Fig. 2. The procedure of constructing CPD 
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               (a)                                   (b) 

Fig. 3. Related results of CPD (a) Feature base matrix W (b) An example for distribution of 
cover perception energy.  

Step 3 (Generating optimal modify strategy): The sender has to introduce modifi-
cations from cover X to stegoY at LSB. We design a distortion function to decide 
the modify style ( 1 or 1 ) which is based on the statistical property of  cover. 
Rule 2:            ( , ) argmin ( , )SPDMS DX Y X Y                  (2) 

The modify style is chosen when the ( , )SPDD X Y  is minimal as shown in rule2. 
Specially, generalized Gaussian distribution (GGD) is introduced to estimate the  
distribution of the DCT coefficients of each frame. The shape parameter is used to 
construct SPD as follows. 
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Fig. 4. The procedure of constructing SPD  

The stego audio is attained after the inverse DCT ofY . The secret can be extracted as 
(3) after the LSB of coefficients Y are extracted. 

                    T YH m                           (3) 

Where  0,1H is the parity check matrix of the used STCs shared between send-

er and receiver. 
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3 Experimental Setup 

We evaluate our algorithm using the dataset from TIMIT. The data is monophonic 
waveform with 16-kHz sampling. And the number of DCT coefficients in each frame 
is 1024. Our method is in comparisons with the algorithm in [1] used distortion func-
tion AIH-IntDCT (blocks M=16) and our improvement version exploited STCs. The 
security performance is evaluated as follows. 

Table 1. Ratio of Score lower than 3.8 evaluated by PESQ 

Payload (bpf) 
Algorithms 

AIH-IntDCT AIH-IntDCT-STC Our  method 

0.1 2.2% 0 0 
0.2 3% 0.8 % 0 
0.3 4.5% 0.9% 0.52% 
0.4 12.5% 8.2% 7.2% 
0.5 13.5% 9.6% 7.4% 

 
Fig. 5. Objective evaluation results: (a) SegSNRs results at payload 0.5 (b) Steganalysis results 
using CC-PEV features in [3]. 

4 Conclusion  

With the motivation to improve security, two distortion functions have been con-
structed to measure the impact of embedding secret. They guide the embedding posi-
tions and strategy respectively. Experiment results have shown that our method has 
good performance with lower distortion and larger error detection. 
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Abstract. With users’ increasing awareness of security and privacy
issues, Android’s permission mechanism and other existing methods fall
short to provide effective protection over user data. This paper presents
SARRE, a Semantics-Aware Rule Recommendation and Enforcement
system to detect critical information outflows and prevent information
leakage. SARRE leverages runtime monitoring and statistical analysis
to identify system event paths. Then, an online recommendation algo-
rithm is developed to automatically assign and enforce a semantics-aware
security rule to each event path. Our preliminary results on real-world
malware samples and popular apps from Google Play show that the rec-
ommended rules by our system are effective in preventing information
leakage and enabling protection policies for users’ private data.

1 Motivation

With its increasing popularity among all smartphone platforms, Android con-
tinues to claim the largest share of malware [1], a lot of which collects and leaks
users’ private data. In addition, users’ information can even leak out through
apps downloaded from Google Play [7]. Information leakage and user privacy
remain to be challenging problems for hardening smartphone security.

The limitations of Android’s current permission-based security mechanism
have been well recognized in prior work [6]. A number of proposals are made to
tackle this challenging problem using techniques such as enhanced Access Con-
trol [6] and data obfuscation [8]. However, the burden of manually constructing
extensive security rules for various apps still lies with smartphone users or app
developers, who may find it overly convoluted and difficult to adjust on the fly.
The problem is further complicated when different information flows accessing
the same data require differentiated security rules. For instance, while GPS coor-
dinates are routinely queried by information flows in map/tracking apps, it could
raise serious privacy concerns if they are accessed by an alarm clock app, whether
it contains repackaged malware or advertisement libraries collecting users’ loca-
tion. Recent studies have begun to investigate automated rule assignment in
smartphone systems [5], but only consider a one-size-fits-all solution for each
data source and fall short on providing fine-grained security rules for different
information flows and app semantics.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 572–576, 2015.
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2 Our Approach

We propose SARRE, a Semantics-Aware Rule Recommendation and Enforce-
ment system that automatically assigns and enforces security rules for event
paths to prevent information leakage. SARRE consists of four main parts: (i)
Event Monitor, (ii) Path Identifier, (iii) Rule Recommender, and (iv) Camouflage
Engine. The interconnections between different parts are depicted in Figure 1.

Event Monitor intercepts and logs timestamped events (within a configurable
list) at Android’s framework level. Monitored events include: (i) apps’ calls to
APIs that can be leveraged for data collection, processing, and transmission, such
as API calls to access location and network services; and (ii) other system events
or phone state changes that are not directly related to information flows, but
facilitate characterization of them, for example, incoming phone calls and new
SMS notifications frequently serve as different triggers for information flows. The
log files generated by Event Monitor are encrypted and transmitted periodically
to Path Identifier by Secure Sender.

Path Identifier quantifies the correlations between events within the log file
through statistical analysis to construct an Event Graph for each app. Each ver-
tex on the graph is a monitored event, and an arc between two events exists if
and only if their correlation is statistically significant. A weight is assigned to
each arc measuring the correlation significance. Path Identifier then leverages
our path cover algorithm to extract the event paths with largest accumulated
weights, covering all the events’ occurrences in the log file. The Event Graph con-
structed for a malware sample com.nicky.lyyws.xmall [2], is depicted in Figure 2.
Because of space limitation, the event names are shown in an abbreviated man-
ner. The numbers at the end of vertices denote counts of event occurrences in
the log file. Paths identified for this sample are also shown in the figure.

Next, Rule Recommender assigns fine-grained security rules to newly-
identified event paths. A rule Rr is numerically denoted and Rr ∈ [0, 1], indi-
cating level of protection needed for the sensitive data associated with the event
path. In specific, the recommender leverages two types of knowledge: (i) known
security rules of similar paths and (ii) the corresponding apps’ semantic informa-
tion. A recommendation is made for an event path by calculating the weighted

Fig. 1. Overview of System Design
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Fig. 2. Event Graph and paths of nickispy
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average of the rules for K nearest event paths with matched semantic infor-
mation. This approach allows SARRE to construct security rules that are both
effective and in-context in an unsupervised manner.

Finally, recommended security rules are enforced by Camouflage Engine for
the sensitive information flows on event paths at run time. The camouflage
action is selected based on the underlying data property. For example, numerical
GPS coordinates can be obfuscated by adding random noise to reduce their
resolutions, while fields in structured data like contacts data can be selectively
hidden depending on the recommended security rule.

3 Evaluation of Effectiveness

We prototyped SARRE on Android Open Source Project v4.1.2. We collected
malware samples from an online sharing site [4], and top ranking apps on Google
Play. Then, we manually select one from some pre-defined labels1 such as Games
and Social to each sample based on the app description. The label denotes the
app’s declared functionality, and serves as the semantic information in current
evaluation. We present the effects of the recommended rules for two examples.
− My Tracks: Since malware normally doesn’t present harvested data when

stealthily eavesdropping on users’ location, we use a tracking app My Tracks to
emulate malware by intentionally replacing its actual label ‘Tracking/Maps’ with
‘Games’. We choose a tracking app because it has a UI showing GPS coordinates
update, which makes it convenient to compare the data when different rules
are enforced. An event path identified for My Tracks involving location data is
written in an abbreviated manner, as follows:

GPS updated → getLocation → Socket.getOutputStream → Socket.connect

The recommended rule for this path is 0.4, which means a security action cor-
responding to 0.4 needs to be applied when it shows up in a game app. When
we replace the actual label ‘Tracking/Maps’ back, the rule recommended is 1,
meaning such an event path in a ‘Tracking/Maps’ app should be left intact. The
tracks with rules 1 and 0.4 enforced are shown in Figure 3. Malware like nick-
ispy [2] eavesdropping users’ location exhibit similar event paths, and after rule
enforcement the location data sent should be similar to the right one in Figure 3.
− Love Chat [3]: This malware doesn’t show an UI, but has an event path as

follows, in which data is accessed, stored locally and sent out by network socket.

getLine1Number → getDeviceId → query(contacts) → io.FileOutputStream
→ Socket.getOutputStream

Based on this sample’s declared functionality, we attach ‘Communication’ as
its label. The recommended rule for this path is 0.2. With examination of the

1 In our design, such labels are assigned by our system based on apps’ functionality
descriptions, and they cannot be manipulated by the apps.
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Fig. 3. Intact track (left) when rule
‘1’ is enforced, and track with noise
(right) when rule ‘0.4’ is enforced

Fig. 4. Contacts on the phone (left) and data
sent by Love Chat when rule ‘1’ (upper right)
or ‘0.2’ (lower right) is enforced

Reference Rule DB, we see that although this malware disguises as a ‘Commu-
nication’ app, it doesn’t get a rule with large number, because paths similar to
the above path are popular among privacy-stealing malware, but not ‘Commu-
nication’ apps. This makes sense and shows the necessity to use event path as
reference for rule recommendation. To see the enforcement effect, we redirect
packets sent by this sample to an external server. We input some made-up con-
tacts data on the phone as shown in Figure. 4 (left). The contents in the files
that are sent to the external server before and after rule enforcement are also
shown in the figure (right). We can see the effectiveness of the rule enforcement
by hiding contacts’ first names and scrabbling some digits in the phone numbers.
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Abstract. Industrial plants are heterogeneous networks with different
computation and communication capabilities along with different secu-
rity properties. The optimal operation of a plant requires a balance
between communication capabilities and security features. A secure com-
munication data flow with high latency and low bandwidth does not pro-
vide the required efficiency in a plant. Therefore, we focus on assessing
the relation of security, capacity and timeliness properties of an industrial
network for overall network performance.

Keywords: Security modeling · Network assessment · Routing · Path
planning

1 Introduction

The goal of industrial automation is to automate the operations involved in
industrial processes with minimal or reduced human intervention. Technological
advances in terms of computing power and communication capabilities bring
operational benefits inside plants, but also increase the exposure of cyber secu-
rity attacks. Therefore, industrial automation security has constantly gained
attention over the last years both in academia and in industry. Along with cyber
security requirements on industrial plants, it is also necessary to consider other
important requirements of plants in terms of availability and timeliness. There-
fore, it is important to understand the network capabilities during network design
to avail the required network performance in a heterogeneous network system.
The network planning phase should capture the properties of the system and
identify constraints on the network to achieve an overall secure solution. In this
work, we explore how a network path can be chosen inside a plant between two
devices, where the network will consider the required levels of communication
security, capacity and timeliness. In a multi-hop heterogeneous network, data
communication between source and destination can be possible through multi-
ple paths involving devices with varying capabilities. The problem is that, some
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 577–580, 2015.
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devices can score high on one particular performance parameter, whereas, score
very low on other performance parameters. If the decision of choosing a flow
path between a source and destination is done based on one performance crite-
ria only, such as, security or path reachability or link capacity, then one segment
of a network may be overloaded.

There is a set of work where different models are used to assess network secu-
rity. Security monitoring and incident modeling by combing automated analy-
sis of data from security monitors and system logs with human expertise is
shown in [1]. There are some research on attack graph construction and perfor-
mance evaluation [2]. in [3], two layers attack graph is proposed. Attack models
also can be used to assess network security. A hierarchical attack representation
model is proposed in [4], where a two-layer hierarchy is proposed to separate the
network topology information from the vulnerability information of each host.
A ranking scheme to identify a relevant portion of the attack graph is proposed
in [5]. In [6], a framework for an experimentation environment for network indus-
trial control system is proposed which can reproduce concurrently physical and
cyber systems. Most of these work focus on run-time analysis of network traffic
or generate attack graphs. In this paper, we provide a model which can be used
during network design to identify optimized network paths.

2 Proposed Idea

To assess security, capacity and reachability for heterogeneous industrial net-
works, we propose to analyze the systems globally, identifying flow paths based
on application requirements and directing resources efficiently to increase the
confidence in the system. For an efficient flow path estimation, our model requires
the topology of the system along with the performance related attributes as
input. The key performance indicators required for successful operations of a
network are also identified. Once we have a mathematical model, then we can

Fig. 1. Architecture for Secure and Robust Path Identification
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individually analyze the effect of each key performance indicator on a network
flow. Based on this analysis, we can study the effects of a local performance
indicator of each node on the global performance indicator of a flow path keep-
ing overall security, capacity and timeliness in the system. This helps us to rank
the each communication flow path based on the key performance indicators of
the network. This information is useful when designing a plant with a service
level agreement. Figure 1, presents the architecture of the component required
for path identification.

3 Results

Figure 2 shows the result from our proposed model. We apply the proposed idea
on an example network to analyze the network flow value. We consider a small
network and estimate the flow value of each flow path. Then we present how the
flow value between two devices changes based on the change in local performance
metrics node assurance value, link capacity and hop count.

We can see from the graph that with an increase of node assurance value the
flow value gradually increases until the node assurance value reaches maximum
allowed limit. With the increase of link capacity, the flow value increases until it
reaches the minimum of the rest of link capacity set in the flow path. Once the
link capacity reaches the minimum of the set, there is no change in the flow value.
The increase of hop count decreases the flow reachability and in turn decreases
the flow value.

Fig. 2. Change in Flow Value with change in Node Assurance Value, Link Capacity
Value and Hop Count
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4 Conclusions

We introduce a concept to balance secure, high capacity and reachable flow
path in a heterogeneous industrial network during planning phase. We use the
concept of flow awareness value to determine the trustworthiness of a network.
This value is a probabilistic measure of confidence in the security properties of
devices and communication flows. The flow awareness value captures the risk of
a flow path getting affected from the nodes in the flow path. We also introduce
the concept of link bandwidth and hop count to model the flow capacity and flow
reachability. This model can assist plant operators to rank each communication
flow path based on security, capacity and reachability. We have observed that,
if there is a bottleneck with a low capacity link in the network, the increase of
trustworthiness of nodes will not improve the flow path value. Similarly, if we
have a high number of intermediate nodes with low capacity and high security
between the source node and destination node, we might not get a high rank flow
path. This type of information is useful when designing a plant with a service
level agreement.

In this network model, we do not consider the throughput of the system which
can be an average rate of successful message delivery over a communication link.
This throughput can only be available to the network operator during run-time
when the message sending rate is also available along with the fixed topology.
Therefore, we need to analyze the working flow paths rather than all possible
flow paths. Then we can validate the performance of a network after choosing
the identified flow path as described in our model. We plan to explore this option
in our next work.
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Abstract. To strike a balance between usefulness of network traces and privacy 
protection, offline prefix-preserving anonymization has been studied extensive-
ly to anoymize IP addresses while preserving their prefix nature. In this paper,  
a novel Dynamic Subtree-scheduling Packet Anonymization scheme called  
DS-PAn is developed for measurement systems based on the prefix-preserving 
algorithm Crypto-PAn. DS-PAn makes online anoymization practical to be  
operated at a high rate, while using less memory compared to precomputed 
Crypto-PAn. Performance evaluations validate that the proposed algorithm out-
performs the conventional anonymization mechanism in terms of computation 
speed as well as memory requirement. 

Keywords: IP address anonymization · Dynamic subtree-scheduling · Crypto-PAn  

1 Introduction 

Network traces are valuable data for network researchers. Sensitive header fields need 
to be sanitized before the trace is made public. Prefix-preserving IP address anonymi-
zation is implemented in TCPDpriv[1] and Crypto-PAn[2], and seems to be suit for 
offline way. However, when online anonymization is required with a case that traffic 
traces are anonymized as soon as they are collected in a measurement node, the per-
formance of offline anonymization algorithm should be improved. In this paper, we 
present a novel IP address anonymization algorithm based on Crypto-PAn and it is 
able to anonymize IP address at line speed with moderate memory requirement.  

2 Crypto-PAn 

The anonymization is a one to one mapping from original IP addresses to anonymized 
ones. Let  be a function from 0,1   to 0,1 , for 1,2, ,31  and    is a con-
stant function, and     is defined as ,  
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where  returns the “least significant bit” and  represents Rijndael cryptographic 
computation and  is a padding function. Then given the original address 

, the anonymization function could be defined as: 

 

where , 1,2 .  
Since the input of  is a bit sequence whose length varies from 0 to 31, and the 

output is a 0 or 1, the results of   can be organized as a perfect binary tree, as 
shown by Figure1, where a black node represents 1 and a white node represents 0.  

3 The Proposed Algorithm 

3.1 DS-PAn Algorithm 

For the proposed anonymization scheme DS-PAn, the anonymization tree is divided 
into two parts: the first k levels of the anonymization tree (level 0 to level k-1)  
stay unchanged, and the remaining part of anonymization tree is comprised of 2   
subtrees, as shown in Figure1. 

 
Fig. 1. Anonymization trees of Crypto-PAn and DS-PAn 

When k is 24, for example, the the first 24 bits of the original IP address is anony-
mized as precomputed Crypto-PAn, and the remaining 8 bits are anonymized accord-
ing to one of the 2  subtrees. If the desired subtree has been computed and stored in 
memory, it is accessed directly, otherwise the corresponding subtree has to be calcu-
lated and stored to memory for later use. 

As more IP addresses are anonymized, the subtrees stored in memory will increase 
gradually. Subtree removal is necessay when memory limitation is reached. We refer 
to this strategy that subtrees are dynamically constructed and destructed during the 
anonymization process as subtree scheduling. 

When k is larger than 24, the size of subtree is smaller, thus constructing a subtree 
is quicker. However, the number of subtrees grows, so managing these subtrees is 
more time-consuming. When k is set to a smaller number, constructing a subtree may 
take more time, but it is less likely that an inserting or removing action is needed. 
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3.2 Detail of Anonymization Tree 

The detailed design of DS-PAn is demonstrated in Figure2. For simplicity, it shows a 
scenario in which only 3 subtrees exist in memory. If the maximum size of pointers 
array is 32, for example, then 5 bits is long enough for each pointer index. A pointer 
index either denotes the position of a pointer in pointer array or is null, which means 
the corresponding subtree is not in memory.  

When accessing a subtree, DS-PAn first look up the pointer index using the k-bit pre-
fix of the original IP address, if the corresponding index is not null, then the position of 
the pointer to the desired subtree can be reached directly in pointer array by index. Oth-
erwise, the subtree is not in memory, it need to be computed immediately and the corres-
ponding pointer need to be inserted into a proper position in pointer array.  

 
Fig. 2. Subtree-scheduling anonymization tree 

Note that every subtree has a counter with it. The counter counts the time of ac-
cesses, and is used to determine which subtree should be removed when necessary.  

4 Performance Evaluation 

The performance of different algorithms is compared and listed in Table 1. 

Table 1. Performance of Crypto-PAn and DS-PAn 

 Initialization time 
(s) 

Speed 
(IP addresses /s) 

Memory 
(MB) 

Crypto-PAn 0 344687 0 
Crypto-PAn 

(precomputed) 113 3396960 512 

DS-PAn 
(k=21) 0.056 1448964 71 

k212 k22 k32 k1 2 3 4
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5 Conclusion 

In this paper, we presented a novel prefix-preserving IP address anonymization  
algorithm called DS-PAn which is capable of online IP address anonymization on 
commodity hardware. When adequately configured, DS-PAn is able to provide link-
rate anonymization speed while eliminating the initialization delay and requiring 
small memory. The performance improvement is achieved by precomputation and the 
utilization of localized distribution of IP addresses in network traces, thus the security 
level of DS-PAn is completely the same as Crypto-PAn.  
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Abstract. Attribute-based encryption (ABE) allows user to encrypt and decrypt 
data based on user attributes, and can be applied in some promising area such as 
mobile cloud storage. Since these are massive users in these applications, secure 
online transmission of decryption key is necessary. In this paper, a cipher-
text-policy attribute-based encryption (CP-ABE) method with secure decryption 
key generation and outsourcing decryption of ABE ciphertexts is proposed. In 
the method, a user’s public key information is embedded into his decryption key 
in the key generation algorithm. Both the user’s decryption key and private key 
are needed to decrypt a ciphertext. With only the decryption key, a ciphertext 
cannot be decrypted, so the decryption key is secure and can be directly trans-
mitted online. This saves some costs comparing to other transmission ap-
proaches, such as Secure Sockets Layer (SSL). Furthermore, the method sup-
ports outsourcing the decryption of ABE ciphertexts. Our analysis and experi-
ment results prove that our method is more efficient than the existing outsourcing 
methods which generally use key transformation technique. 

Keywords: CP-ABE · Secure decryption key generation · Outsourcing · Mobile 
cloud storage 

1 Introduction 

Attribute-based encryption provides a solution for a user to specify access control 
policy without prior knowledge of who will receive the use’s messages. ABE can be 
applied in some new promising areas, such as mobile cloud storage [1]. Since these are 
massive users in these applications, secure online transmission of decryption key is 
necessary. An existing solution is to use SSL. There are much costs of SSL including 
setup, identification and key exchange, data encryption/decryption, etc. 

In mobile cloud storage, since the size of ciphertext and the decryption time grow 
with the complexity of the access formula in ABE, the decryption process becomes a 
burden for mobile devices with limited computation ability. Some research works 
provide methods for outsourcing the decryption of ABE ciphertext [2-4]. The disad-
vantage of the existing outsourcing method is that the key transformation time grows 
linearly with the number of attributes, and this cost is not negligible for mobile devices 
in mobile cloud storage applications. 
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Our Contribution. In this paper, we propose a simple and efficient ciphertext-policy 
attribute-based encryption method with secure decryption key generation and outsourcing 
decryption of ABE ciphertexts.  

In the set up algorithm of the method, each user establishes his public/private key. A 
user’s public key information is embedded into his decryption key in the decryption 
key generation algorithm. In the decryption algorithm, both a user’s decryption key and 
private key are needed to decrypt a ciphertext. With only the decryption key, ciphertext 
cannot be decrypted, so the decryption key can be directly transmitted online. It is 
secure from online attack, such as stealing by attackers. In existing secure transmission 
approaches, such as SSL, the user’s key is regarded as structureless data bytes. Com-
paring to our method, SSL incurs extra costs, including extra costs data encryp-
tion/decryption. 

The decryption algorithm of the method is divided into two stages. In the first stage, 
only the user’s decryption key is used and a middle result is obtained. If the user de-
cides to outsource the first stage computation to a third party, such as a cloud proxy, he 
sends his decryption key to the cloud. The cloud proxy gets the ciphertext and com-
putes a middle result with the decryption key. The middle result is an ElGamal type 
ciphertext, and the cloud proxy can’t further decrypt it. In the second stage, a user uses 
his private key, and uses part of his decryption key if needed, to get the final decrypted 
message. The advantage of our method is that the decryption key can be directly sent to 
the third party, while in the existing outsourcing methods, the user needs to use a secret 
key to turn his decryption key into a single transformation key, then he sends the 
transformation key to the third party. So our method is more efficient than the existing 
methods with outsourcing of ABE ciphertexts. 

2 Our Construction 

In this chapter, we give our new construction of CP-ABE algorithms that apply our 
method in research work [5]. The detailed description is given below. 

Set up (λ) → GP. The setup algorithm takes as input a security parameter λ, it first 
generates , , , , where  is a λ-bit prime,  and   are two multiplicative 
cyclic groups with prime order , Let  be a generator of   and  is the bilinear 
pairing : . Next it chooses : 0,1 . 

The authority chooses random exponent ,  as its master key ,  , 
his public parameters are: , ,  , / . 

Each user j chooses a random exponent  as his private key, and computes 
the corresponding public key  as . 

Message Encryption( , M, ).  A user encrypts a message  under tree 
access structure  as follows: 

The algorithm first chooses a tree access structure  the same as in [5], and then the 
cipher-text is then constructed by giving the tree access structure  as follows: , , , , : ,                                                 ) 
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KeyGen( , , . Suppose user j with public key  holds a set of 
attribute . The authority generates user j’s decryption key. The algorithm chooses 
random , and then chooses random  for each attribute . Then it 
computes the decryption key as , : · ,  

FirstStageDecrypt ( , . If the user decides to outsource the first stage com-
putation to a third party, such as a cloud proxy，then the cloud proxy performs all the 
computation of this stage. The detailed process is described is as follows. 

If the node  is a leaf node then we let , and define as follows: If   , then , , ,, · ,,, ,, ,  

If , then we define , , .We now consider the re-
cursive case when  is a non-leaf node. Then let  be an arbitrary -sized set of 
child nodes  such that . If no such set exists then the node was not satisfied and 
the function returns .Otherwise, we compute ∆ , , , :               , · ∆ , , ·  

If the tree is satisfied by , we set  ,, · , ·
。 

SecondStageDecrypt ( , , , . User j now decrypts C with part of his 
decryption key  and his private key    by computing: 

（ , /  ,, / , ·  

The security proof of the construction is omitted for sake of space. 
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3 Performance 

We implemented our new scheme of CP-ABE with access tree structure, and evaluated 
the performance. We made comparison with the existing method with key transfor-
mation technique [2] (shown with “-T” in the figure). We ran the tests on two hardware 
platforms: a 3.3 GHz Intel Core Duo platform with 4 GB RAM running Linux Kernel 
version 3.2.0, and a Google Nexus one mobile phone with 1 GHz Qualcomm Snap-
dragon (QSD) single core processor, 512 MB ARM running Android 2.3. We gener-
ated a collection of 100 distinct ciphertext policies of the form (A  AND A  AND … 
AND AN), where A  is an attribute. Each experiment was repeated vast times and 
averaged to obtain our decryption timings. The results are shown in Fig. 1. 

Comparing the existing transmission approach such as SSL using HTTPS protocol, 
the decryption key generated in our method can be directly transmitted online using 
HTTP protocol. The key generation time of the method (SDKeyGen) with key trans-
formation technique (KeyGen-T) need much more time. The main advantage of our 
method is that our method needs no key transformation, so the key generation time of 
our method is much smaller than the corresponding time of the method with key 
transformation technique.  

 

 

Fig. 1. Results with our CP-ABE scheme 

4 Conclusion 

In this paper, we propose a simple and efficient ciphertext-policy attribute-based en-
cryption method with secure decryption key generation and outsourcing decryption of 
ABE ciphertexts. The analysis and experiments show that our method is more efficient 
than SSL and existing methods with outsourcing of ABE ciphertexts.  
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Abstract. Vehicular adhoc network allows vehicles to exchange their
information for safety and traffic efficiency. However, exchanging infor-
mation may threaten the driver privacy because it includes spatiotem-
poral information and is broadcast publicly on a periodical basis. In this
paper, we propose a context-adaptive privacy scheme which lets a vehi-
cle decide autonomously when to change its pseudonym and how long it
should remain silent to ensure unlinkability. This scheme adapts dynami-
cally based on the density of the surrounding traffic and the user privacy
preferences. According to the experimental results, the proposed scheme
demonstrates a significant reduction in traceability with a better qual-
ity of forward collision warning application compared with the random
silent period scheme.

Keywords: Context-adaptive privacy · Safety application · Forward
collision warning · Random silent period

1 Introduction

Vehicular adhoc networks (VANET) are those networks formed among vehicles
and roadside units (RSUs) to provide diverse traffic-related and infotainment
applications. VANET is envisioned to enhance traffic safety and efficiency by
increasing the awareness of vehicles about their surrounding traffic. To attain
this awareness in real-time, vehicles are required to broadcast periodically their
current state (i.e., position, speed, heading, etc.) in authenticated beacon mes-
sages. These messages may threaten the driver location privacy when they are
collected by an external eavesdropper because the driver trajectories can be re-
identified [1]. There are many privacy schemes that suggest to preload vehicles
with a pool of pseudonyms where a single pseudonym is used at a time and
changed periodically [7]. However, it is required to change pseudonyms in an
unobserved zone in which the adversary cannot monitor the vehicle movements.
This zone is often realized by a silent period [8] or in predetermined locations
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(i.e., mix-zone) [6]. The silent period scheme lets a vehicle stop sending mes-
sages for a random period before changing its pseudonym. After this period, the
vehicle resumes broadcasting beacon messages with a new pseudonym. When
it is sufficiently long, a silent period prevents an adversary from tracking vehi-
cle movements and linking old and new pseudonyms but at the cost of safety.
Therefore, it is important to consider the impact of a privacy scheme on safety
applications to better understand this trade-off between privacy and safety.

In this paper, we propose a context-adaptive privacy scheme (CADS) that
utilizes silent period to deliver unlinkability among subsequent pseudonyms. This
scheme is a significant improvement of our recent work, context-aware privacy
scheme (CAPS) [4]. The CADS minimizes the required parameters by adapting
the internal logic according to the density of the surrounding traffic. We integrate
also the driver privacy preferences into the scheme to offer privacy constraints
only when it is needed by the driver which minimizes the costs on the safety
applications.

2 Methodology

The system and adversary models are assumed to be similar to those proposed
in [4]. We used realistic vehicle traces [9] for Cologne city and selected half an
hour for the middle 64 km2 region. The resultant traces are 19,704 where each
vehicle appears once with an increasing density ranging from 1,929 to 4,572
simultaneous vehicles in the first and last time steps, respectively. Finally, we
add a random noise of 0.5 m to positions.

For privacy evaluation, the vehicle tracker proposed in [2,3] is employed to
measure the traceability Π of vehicles as explained in [4]. Some vehicles never
change their pseudonyms during their lifetime. Thus, the normalized traceability
Πn is additionally calculated by excluding these vehicles. For the QoS evaluation
of safety applications, we employ our methodology proposed in [5] to evaluate the
impact of a privacy scheme on a forward collision warning (FCW) application. In
this method, the probability of correctly calculating the main application factors
is estimated using Monte Carlo analysis.

3 Context-Adaptive Privacy Scheme (CADS)

The CADS improves the CAPS by allowing a driver to choose low, normal or
high privacy preferences. The CADS also minimizes the required parameters
by dynamically adapting its context-awareness module according to the density
of the surrounding traffic. To optimize the scheme parameters with respect to
the surrounding traffic, we investigate the performance of the CAPS in different
densities. First, we select two relatively short sub-datasets from the realistic
vehicle traces with low and high traffic densities, respectively. Second, the CAPS
is evaluated using each sub-dataset with several parameter combinations and
obtain the resulting privacy and safety metrics. Third, the results of the sub-
dataset experiments are divided into three categories according to the achievable
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privacy. Fourth, we identify the parameters that result in the best compromise
between privacy and safety in each category. Last but not least, these categorized
parameters of each density are integrated into CADS and bound according to
the real-time vehicle density and the input privacy preference.

The CADS was evaluated in two different scenarios. In the first scenario,
all drivers select the same privacy preference whether low, normal or high level.
Figure 1(a) displays the Π, Πn and the QoS of each privacy preference. As a kind
of comparison, the measurements for the CAPS scheme of 11 s maximum silent
time are shown as dashed lines. The Π and Πn of CADS decreases when vehicles
use a higher privacy level with a concurrent slight decrease in the QoS appli-
cation. Compared to the CAPS, CADS achieves a better compromise between
traceability and QoS.
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Fig. 1. The CADS evaluation when (a) all vehicles use the same privacy preference
compared to the CAPS of 11 s max silent time and (b) vehicles use a random privacy
preference based on the specified percentages

In the second scenario, vehicles randomly select the preferred privacy level
based on given percentages. The purpose of this scenario is to confirm the
enhancement of privacy when some vehicles use a higher privacy level than
others. Each experiment is repeated five times using a different random assign-
ment of privacy preferences to vehicles. The mix of low, normal and high pri-
vacy preferences for each of the four experiments is specified along the x-axis of
Figure 1(b). Although the groups tested in the first two experiments had different
percentages of normal and high privacy preferences, we found similar (normal-
ized) traceability achievable by each group in both experiments. Furthermore,
the high privacy preference group in the fourth experiment achieves a lower trace-
ability than that achieved by the normal group in the third experiment. Also,
the high privacy group in the fourth experiment achieves a higher traceability
than that achieved by the same group in the second experiment. This result may
attributed to the major privacy preference group being low in the fourth exper-
iment but normal in the second. Regarding the QoS, we notice that it follows
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the QoS of the major group with a slight effect from the minor. For example,
the QoS in the first experiment is the same as that in the 100% high-privacy
experiment, and the QoS in the fourth experiment is similar to that in the 100%
low-privacy experiment. From all these observations, we can conclude that the
traceability is mainly affected by the configured privacy preference with a slight
effect from the surrounding traffic. However, this slight change in traceability is
compensated positively in the QoS.

4 Conclusion

In this paper, the context-adaptive privacy scheme (CADS) is proposed and
evaluated. In CADS, a driver can choose the desired privacy level and the scheme
can automatically identify the appropriate parameters that fit this desired level
based on the real-time traffic density. Based on the experimental results, CADS
reduces traceability than the CAPS does when normal or high privacy levels are
selected with a slight reduction in the QoS. In future work, we will compare
CADS with advanced privacy schemes such as mix-zones.
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1 Introduction

The popularity of smart devices has grown rapidly in recent years, and now they
are necessary elements connecting us to the Internet everywhere. As the number
of smartphone users has explosively increased, malware authors are moving their
targets from legacy computers to the smart devices. Therefore, we are facing new
types of threats.

Many research proposals have been suggested so far to detect and prevent
those threats, and these can be classified into two main categories: (i) static anal-
ysis, which investigates the source code of malware to detect malicious behavior
[1–3]. and (ii) dynamic analysis, which monitors the runtime behavior of mal-
ware to detect its forbidden operations [4,5]. Each method has clear advantages
and disadvantages. While the static method does not add much overhead to the
device, it can be evaded by some advanced attack methods (e.g., obfuscation).
The dynamic analysis method provides better chances of detection even if the
malware employs some advanced evasion ways, however, it commonly adds more
overhead to the device.

Observing that dynamic analysis method can increase the chance of malware
detection, we have investigated if it is possible to employ a dynamic analysis
method, but with less cost to the smartphone. And, we have found that corre-
lating several different features that do not add much overhead can present sim-
ilar detection results compared to existing detection systems based on dynamic
analysis.

In our approach, we minimize the use of high overhead functions (e.g.,
control-flow tracking) and replace them to lightweigt features (e.g., function call
monitoring). Here is the approach how we have leveraged those features instead
of using high overhead operations. First, we monitor the network connections.
It is likely that malicious apps are trying to connect to some suspicious hosts
with relatively poor reputations. By watching whom, an app connects to, we can
infer its malicious behavior (a good heuristic for malware detection). Second, all
Android apps run on application program interface (API) provided by Android
platform. Hence, malicious behavior of an Android app can be monitored by
capturing the invocation of some sensitive Android APIs. Third, we monitor
pattern of permission usage of an app. By monitoring the permission usage, we
can verify malicious behaviors which are related to those permissions.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 594–597, 2015.
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2 System Architecture

Our system consists of three engines: (i) host domain reputation analysis engine,
(ii) critical API call pattern analysis engine and (iii) Android permission use
analysis engine. Each of them makes own decision whether a monitored app is
malicious, then, the correlator takes all decisions and combines them into a final
decision. To employ multiple engines is a good way in reducing the chance of
missing malicious apps by compensating errors with ohters’ decisions.

Host Domain Reputation Analysis Engine. It is likely that malicious apps
are connecting to the host with bad domain (or low reputation). By leveraging
this fact, we have designed the host domain reputation analysis engine which
monitors to whom the monitored app connects to. In this design, we try to
leverage existing knowledge, and we select features employed by the work of
EXPOSURE [6], which is known as a decent malicious domain detection system.

To build this engine, we use the Support Vector Machine (SVM), one of the
most popular machine-learning classifiers. To train the model, we have collected
sample malicious/benign domains (we have collected them from the local DNS
server on campus from July to August in 2013) and built a SVM model.

Critical API Call Pattern Analysis Engine. We have observed that there
is a special set of APIs frequently or hardly invoked by malwares (let us call
those critical APIs). Based on this, we have designed the second engine that
monitors the invocation of critical APIs. We have followed three steps to build
our engine;

(i) Critical APIs Extraction: By running malicious/benign apps, we have
extracted APIs that are frequently used by malicious apps but seldom by benign
apps and vice versa. We further use this list of APIs as critical APIs.

(ii) Training a Model: We group apps into clusters by the pattern of using
critical APIs. We extract call ratios of every single app from sample (by running
them), make groups (or clusters) by K-means which is a well-known clustering
algorithm. Apps whose call ratios of critical APIs are in the same cluster must
have the similar pattern of usage of those APIs.

(iii) App Prediction: In this phase, we finally predict whether a unknown
app is malicious or benign. From apps, extracting call ratio of critical APIs, we
match this to the most close cluster. By figuring out the portion of malicious
apps in that cluster, this engine could determine its decision.

Android Permission Use Analysis Engine. Like critical APIs, there also
is a set of permissions that well-used by malicious apps (let this be critical
permissions). We have extracted critical permissions as same as we did for the
critical APIs. By training a SVM model based on usage of critical permissions,
the third engine has been finally built.
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Correlation Engine. To build a correlation engine, we again use SVM-
classifier. We have let the sample apps be tested by three engines, and collected
their responses, then finally trained our model for the correlation engine. When
predicting an unknown app, the correlation engine makes a final decision with
decisions from three engines and pre-trained model.

Fig. 1. System design of a malware detection system

3 Evaluation

Collection of Malware/Benign Apps. To train models and test our system,
we have downloaded malware sample (795 apps) from the drebin1. Also we have
collected benign apps (826 apps) by crawling and downloading from Google
Playstore which is the official app market of Google. We have divided them into
training sample and test sample (half for the training, half for the test).

The Precision of Single Engine. To show the precision of our system, we
first measured the efficiency of each engine. The results are shown in table 1.

Table 1. The Precision of Each Engine

engine result

Host Domain
Reputation Analysis

Engine

87 apps out of 415 benign apps which have connected to
at least one remote host, were alarmed, 173 apps out of
340 malicious apps (with at least one connection) were

alarmed.
Critical API Call
Pattern Analysis

Engine

358 apps out of 413 benign apps have been rightly not
flagged (86.80%) and, 363 apps out of 398 malicious apps

have been rightly flagged (91.39%).

Android Permission
Use Analysis Engine

394 apps out of 413 benign apps have been rightly not
flagged (95.40%) and, 283 apps out of 398 malicious apps

have been rightly flagged (71.11%).

1 The link for download is http://user.informatik.uni-goettingen.de/˜darp/drebin/
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Final Decision. As we mentioned previous section, each engine makes its own
decision and then these are correlated into a final decision. Table 2 presents how
precise the final decision is. Through the result, we found that, by combining
decisions from multiple engines, the precision gets better.

Table 2. The Precision of Final Decision

by SVM
predicted as

benign
predicted as

malware
precision

rate

benign 350 63 84.75%

malware 8 390 97.99%

TN& TP 97.77% 86.09% 91.25%

by Naive
Bayes

predicted as
benign

predicted as
malware

precision
rate

benign 358 55 86.68%

malware 26 372 93.47%

TN& TP 93.23% 87.12% 90.01%

Decision
Tree

predicted as
benign

predicted as
malware

precision
rate

benign 395 18 95.64%

malware 78 320 80.40%

TN& TP 83.35% 94.67% 88.16%

majority
rule

predicted as
benign

predicted as
malware

precision
rate

benign 320 93 77.48%

malware 26 372 93.47%

TN& TP 92.49% 80.00% 85.33%

The tables show results each by SVM (upper left), by Naive Bayes (upper
right), by Decision Tree (bottom left) and with the decision by majority (bottom
right).

Performance. For the last, we have measured performance of our system (i.e.,
performance overhead). We have run two widely-used Android benchmark tools:
Vellamo Benchmark and GFX Bench.2 The results show that our system has
caused 7.27% and 0.16% (by average of three tasks) performance overhead from
each benchmark tool.
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Abstract. Correlation Power Analysis (CPA) is one of effective means
of power analysis in side channel analysis. The noisy power traces can
affect the power of CPA. It is significant to select the helpful power traces
to improve the efficiency of analysis. In this paper, we present a new pre-
processing method that is based on Improved Singular Value Decompo-
sition (ISVD) for selecting the traces when using CPA to attack. The
ISVD is a combination of SVD and Z-score. Experimental results show
that our method is effective to improve the efficiency when analyzing
both the unprotected implementation and the masked implementation.

Keywords: Improved Singular Value Decomposition · Side Channel
Attack · Correlation Power Analysis · Selecting traces

1 Introduction

When performing a real power analysis attack on cryptographic device, the num-
ber and dimension of power traces are always very large. For the goal of high
efficiency of attack, many researches pay attention on how to decrease the dimen-
sion. We think it is necessary to select a helpful subset of power traces to improve
the efficiency when performing CPA. However, of the today,there are rare lit-
erature on selecting power traces for CPA. In paper [4],the authors present a
method by using the mean and variance of the power consumption on the most
relevant time to the processed data. This method require the exact time when
processing data. We think this assumption is stringent, our method just need
the near range that contains the point of data processing. Paper [3] proposed a
method that is based on Principal Component Analysis (PCA). They sort the
power traces by the first principle component of the noise matrix. The efficiency
is desirable. Nevertheless, the methods proposed in these papers only focus on
the unprotected implementation and did not demonstrate whether it is effective
on protected implementation.
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In this paper, we propose a new method that combine the SVD and
Z-score to develop improved singular value decomposition to select power traces
when performing CPA. The selected traces by this method can easily recover the
key. We utilize this method both on unprotected implementation and masked
implementation. The efficiency is outstanding and it can practically improve the
effiency of CPA.

2 Background Knowledge

2.1 SVD

In the fields such as picture processing and machine learning, the data is always
very large. In this scenario, the feature should be extracted to present the orig-
inal data. Eigenvector is one of the methods that can achieve the purpose. We
denote the original data is A∈Rn×n. The eigenvector ν∈Rn×1 can be computed
by Aν=λν. The eigenvalue decomposition is a good method to extract the char-
acteristic but the precondition is that the array of data must be square matrix. In
the condition where data is not square matrix, the SVD is an alternate method.
SVD is a method that can decompose any kind of array into lower dimension
matrix and extract the characteristic of the original data. Further details on
SVD may be found in [2].

2.2 ISVD

Before calculating the singular value, we introduce the Z-score to eliminate the
huge difference of row vectors of ATA. The calculation of Z-score as follow,

z =
x − u

σ
(1)

where x is row vectors of matrix,u is the mean vector of all row vectors of matrix,
σ is the standard deviation of x,z is the row vectors after processing.

3 Using ISVD in CPA

Let m power traces also known as samples and each of them contain n variables
also known as sample points be L∈Rm×n. This is not a square matrix. However,
we can calculate its singular values and corresponding singular vectors. We first
let L be the AT of Equation (3), so it is converted into

(LLT )ν = λν (2)

Before calculating Equation (2). We normalize the matrix LLT by Z-score
described in subsection 2.2 to ensure the amount of positive eigenvalue is equal
to m.We denote B=Z-score(LLT )(B∈Rm×m), the problem changes to calculate

Bν = λν (3)
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From Equation (3), we can acquire all the singular values λi and corresponding
singular vectors νi∈Rm×1(i ∈ [1,m]). The eigenvectors can be used to represent
the original data, so we suppose the singular vector corresponding to the biggest
singular value should contain most of information about the original data. Note
that the dimension of singular vector is equal to the number of samples. So we
can sort the first singular vector ν′ from large to small and get the corresponding
index. The algorithm of this method is presented in Algorithm 1.

Algorithm 1. ISVD for Selecting Power Traces
Input:L∈Rm×n (represents m power traces and n sample points),

k(represents the needed number of power traces ,and k ≤ m)
Output:Select(1:k)(represents the indexes of selected traces)
1: function ISVD(L,k)
2: A = LLT

3: B = Z-score(A)
4: Calculate λi, νi,such that Bνi = λiνi(i = 1, 2, . . . ,m)
5: Choose the ν′ corresponding to the largest λ
6: Sort ν′ by descend, and get the corresponding subscript Order(1 : m)
7: Select(1:k)= Order(1:k)
8: Return Select(1:k)
9: End function

4 Experiments

In this section, we will perform a series of experiments on both unprotected
implementation and protected implementation, the real power traces come from
the DPA contest [1](the data of DPA contest are public data and they are widely
used in testing methods in side channel attack). We use CPA based on our select-
ing method and randomly choosing method to analysis. Besides, for comparison,
the PCA method that proposed in [3] is also used in the experiments. Success
Rate (SR) proposed in [5] will be used as the evaluation metric. SR is defined
as the probability that one can successfully recover the correct key, and it is
widely used in side channel attacks to evaluate the key-recovery efficiency of an
attacking method.

4.1 Unprotected Implementation

The power traces of unprotected implementation comes from DPA Contest v2.
This attack is performed by first-order CPA by the selecting methods. The result
is shown in Fig. 1 (a).

4.2 Protected Implementation

The power traces are acquired from DPA Contest v4. This attacks is performed
by second-order CPA by the selecting methods.The result is showed in Fig. 1
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Fig. 1. (a)Success rates by using first-order CPA based different methods of selecting
traces on DPA Contest v2.(b)Success rates by using second-order CPA based different
methods of selecting traces on DPA Contest v4.

(b). The real experiments on both unprotected and protected implementation
verify that the practical advantage of our method is remarkable.

5 Conclusions

In this paper, we proposed a method that using the improved singular value
decomposition of the original power traces to select traces in order to enhance
the efficiency of CPA. This method can select the power traces of high signal to
noise ratio for analysis. This method is useful when performing the first-order
CPA on the unprotected implementation and when performing the second-order
CPA on the masked implementation. The results of experiments indeed verify
the conclusion.
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Abstract. Application size and complexity are the underlying cause of
numerous security vulnerabilities in code. In order to mitigate the risks
arising from such vulnerabilities, various techniques have been proposed
to isolate the execution of sensitive code from the rest of the application
and from other software on the platform (e.g. the operating system).
However, even with these partitioning techniques, it is not immediately
clear exactly how they can and should be used to partition applications.
What overall partitioning scheme should be followed; what granularity of
the partitions should be. To some extent, this is dependent on the capa-
bilities and performance of the partitioning technology in use. For this
work, we focus on the upcoming Intel Software Guard Extensions (SGX)
technology as the state-of-the-art in this field. SGX provides a trusted
execution environment, called an enclave, that protects the integrity of
the code and the confidentiality of the data inside it from other software,
including the operating system. We present a novel framework consisting
of four possible schemes under which an application can be partitioned.
These schemes range from coarse-grained partitioning, in which the full
application is included in a single enclave, through ultra-fine partitioning,
in which each application secret is protected in an individual enclave. We
explain the specific security benefits provided by each of the partitioning
schemes and discuss how the performance of the application would be
affected. To compare the different partitioning schemes, we have parti-
tioned OpenSSL using four different schemes. We discuss SGX properties
together with the implications of our design choices in this paper.

1 Introduction

Applications have grown tremendously in functionality and size. This growth in
sensitive applications and libraries such as Apache and OpenSSL has long ago
surpassed the feasible limit for assurance techniques such as formal verification
to verify the correctness of the code, and numerous factors have rendered manual
review equally insufficient for that task. Accompanying the growth of the code
in these applications, more classes of vulnerabilities have been identified, such
as stealing secrets and modifying sensitive code [1] [2]. An example that demon-
strates this was the HeartBleed bug in the OpenSSL library where an attacker
was able to obtain sensitive information including user names and passwords,
credentials, and sensitive keys from remote servers [3].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
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Much research has considered the design of systems based on well-known
operating systems and hardware components to protect sensitive code. Many of
these systems leverage virtualisation and trusted computing to isolate the execu-
tion of the entire application [4–12]. However, many applications have thousands
lines of code which makes it hard to gain assurance that no vulnerability exists
in the code. Moreover, when virtualisation is used to provide isolation between
different executions, there are many trust assumptions that make these systems
limited in their security properties. For example, the Virtual Machine Monitor
(VMM) or the code providing isolation needs to be trusted, loading the Trusted
Computing Base (TCB) with thousands lines of code. The TCB is defined by the
size of code that runs inside the same environment such as an isolated environ-
ment. The isolation of a software partition protects the data and the execution
from external code, e.g. the OS and applications running in the same system. It
follows that software partitioning of the application into several trusted parti-
tions and untrusted partition, is expected to produce smaller partitions of code
when considering the whole application as one partition. The latter, when parti-
tioning to smaller chunks is feasible, may allow to formally verify the partition,
which is protected by an isolated environment from external code and vulnera-
bilities such as vulnerabilities in other partitions of the same application.

Other systems [13–20] provide isolation for the execution of a sensitive code
without defining the portion of the application running on the trusted space, the
granularity of these approaches to port sensitive code, or the feasibility to port
small code such as merely few methods of an existing library. For instance, the
TrustVisor [14] authors appreciate the complexity of porting security sensitive
code in trusted environment. Porting security sensitive code is straightforward
if the program is privilege-separated and modular. However, it is a greatest
challenge in complex applications such as Apache + OpenSSL [14].

To overcome the above mentioned shortcomings, processor extensions have
been proposed in several pieces of research [21,22] to protect software execution
and reduce the TCB. Protecting the code execution of the TCB is achieved with
Trusted Execution Environment (TEE) in hardware, which prevents external
software from tampering with the execution, or modifying an existing code/data.
Intel has also proposed security extensions to Intel? Architecture called Intel?
Software Guard Extensions (Intel? SGX) [23],extensions that enable provisioning
of sensitive data within applications. These extensions allow an application to
instantiate a protected container to ensure the confidentiality and integrity of
the data even in the presence of malware, while also relying on hardware to
prevent external access to the container’s memory area. The protected container
protects the inner code/data from external software, even privileged one, and is
referred to as an enclave.

Generally, the code and data are freely available for inspection and analy-
sis prior to loading them into the enclave. Once loaded into the enclave and
measured, they become protected against external software access. In order to
store data outside the enclave’s boundary, e.g. on the disk, the application can
request from the enclave to seal the data beforehand. Furthermore, the platform
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key, which is used to encrypt the data, ties the data to the platform and can
be used to report platform identity to remote parties. Overall, these capabili-
ties extend the ability of enterprises and personnel to design secure applications
by relying strongly on hardware instead of traditional software techniques. The
aforementioned hardware provides another layer of protection against exploits
of vulnerabilities missed by the tools verifying the correctness of the code or in
manual reviews.

However, even though many technologies are available, it is not necessarily
obvious exactly how they can and should be used to partition applications. For
some simple cases, the choice of partitioning scheme might indeed be obvious,
but as applications increase in size and complexity, the number of possible parti-
tioning schemes increases and the choice of the optimal approach becomes a very
important non-trivial consideration. From a technical perspective, partitioning
schemes vary in terms of the security guarantees they provide and their impact
on the performance of the application. The choice of partitioning scheme has
also other indirect implications, such as the effort for the application developers
or software maintainers, but these are beyond the scope of this paper.

In this paper we investigate different software partitioning schemes using pro-
tected container, a TEE, to protect secrets from vulnerabilities in applications.
Each scheme defines a different TCB size in each partition, which has immediate
consequences on the economics of the TCB assurance process, in particular, its
relation to the number of undetected vulnerabilities.

As a rule, we isolate software partitions as defined in each scheme, and use an
enclave to protect its execution and data from access by untrusted code. Previous
research [23]addressed the threat model and components of SGX; our paper
explores the use of hardware primitives, such as those offered by SGX, to provide
secure design of applications through partitioning to keep the confidentiality
and integrity of application’s data. We implement two of the four partitioning
schemes using SGX and test their ability to protect the system against an exploit
of the HeartBleed bug.

Our main contributions are:

– Proposing framework for different software partitioning schemes of an appli-
cation.

– Investigation of different software-partitioning schemes using SGX, with an
empirical focus.

– Proposing and investigating an evaluation matrix for partitioning schemes.

The paper is divided into seven sections. Section 2 provides a brief back-
ground on SGX and some of its instructions and features. Section 3 discusses
the rationale of this paper, objectives, and adversary model. In section 4 we
demonstrate the rationale behind software partitioning and several partitioning
schemes. Section 5 presents a real-world case study partitioned based on our pro-
posed schemes, with security and efficiency evaluation of each scheme. Section 6
discusses related work, and finally section 7 concludes the paper.
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2 Background

2.1 Isolation Mechanisms

In this section we list different mechanisms used for isolation, and briefly list
examples of systems that make use of such mechanisms.

2.1.1 Software-Enforced Isolation
There are several ways to create separation between partitions. The most com-
mon approach used in software is using privileged code such as an OS or Virtual
Machine Monitor(VMM) that enforces access control semantics [14]. A VMM will
typically use hardware assistance for virtualisation, however the access control is
enforced by software using meta-data of a memory address table. In contempo-
rary operating systems the OS enforces access control between processes. Each
process has its own code and data in memory, and the OS prevents one process
from accessing another process space, that includes memory addresses and code.

2.1.2 Hardware-Enforced Isolation
In order to isolate a partition from the rest of the system, hardware primitives
have been proposed to provide TEE [13,21]. The TEE isolates the code execution
from the rest of the system in hardware and enforces memory access semantics
between the code running in the TEE. We refer to the code in the TEE as trusted
code, and the code of the rest of the system as untrusted code. Arm TZ allows
switching to a TEE from the untrusted space on TEE instruction invocation: the
hardware moves the processor to TEE mode where data and code are separated
from the rest of the system.

2.2 Software Guard Extensions (SGX)

An overview of the SGX protection model [24] was given by Mckeen et al. In
their paper they present the core of this technology, the extensions that enable
instantiating a protected container, describe the SGX instruction set, security
model, threat model, and the hardware component on which this technology
is based. In this section we give the background on SGX and its protection
capabilities that is relevant to this work.

– Enclave - Intel SGX provides hardware features that creates a form of user-
level TEE. The enclave is an isolated region of code and data within an
application’s address space. Data within an enclave can be accessed only
with code within the same enclave. The enclave is able to protect its data
using Enclave Page Cache (EPC); a secure storage used by the processor to
store pages when they are part of an executing enclave. The EPC is built
from chunks of 4KB pages; aligned on a 4KB boundary and each page has
security attributes in the Enclave Page Cache Map (EPCM), an internal
micro-architecture structure that is not accessible by software. It tracks the
content of each EPC page, and enforces access control for accessing the pages.
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– Measurement - a cryptographic hash of the code and data residing in an
enclave at the time of initialisation. The measurement is used to verify that
the loaded enclave is what the enclave claims it is.

2.2.1 SGX Enclave Instructions and Protection Rings
The enclave instructions available with SGX are divided under two protection
rings; ring 0 and ring 3 [25]. The allowed set of instructions is determined accord-
ing to the privilege level of the executing software. For the most part, ring 0
instructions; ECREATE, EADD, and EINIT are used for EPC management thus
executed by privileged software such as OS and VMM. While ring 3 instructions
e.g. EENTER, EEXIT, EGETKEY, EREPORT, and ERESUME are used by
the user-space software to execute functionality within or between enclaves.

2.2.2 Enclave Life Cycle
In order to provide strong security features, managing an enclave is done in
hardware through enclave build instructions. To create an enclave, ECREATE
instruction is used. It builds the enclave and sets base and range addresses.
Once an enclave is created, EADD is used to add 4KB protected pages of data
and code. This is followed by measuring the enclave’s content using EEXTEND
to protect the integrity of the data within the enclave. To elaborate on the
latter, adding and measuring the enclave’s pages are done by software prior
to EINIT instruction. Once called, it finalises the measurement of the enclave
and establishes an enclave identity. Executing within an enclave prior to this
instruction is not allowed. On success of EINIT, entry to the enclave is enabled
and permitted to run on the processor in privileged mode called enclave mode.

In order to enter and exit the enclave under program control, EENTER
and EEXIT are used respectively. On enclave entry, the cached addresses are
flushed, including addresses that overlap with the addresses used by the enclave
to ensure the protection of the memory accesses within the enclave. Similarly, on
enclave exit any cached addresses referring to the protected space in an enclave
are cleared. The purpose of this is to prevent external software from using the
cached addresses to access the enclave’s protected memory.

2.2.3 Asynchronous Exit and Resuming Execution
Exiting the enclave asynchronously occurs due to events such as exceptions and
interrupts in which the processor handles such events by invoking the internal
routine Asynchronous Exit (AEX). The AEX saves the registers used by the
enclave which are consequently cleared to prevent leaking secrets. In particular,
one saved address to be stored is the location of the returning address, also called
the faulting address, where the execution resumes on the resuming enclave’s
execution. While saving the enclave’s state is essential for resuming the enclave’s
execution, equally important is clearing the data used by the enclave to prevent
secret exposure. Once AEX finishes execution, the processor exits enclave mode
and goes back to normal mode where every instruction is treated as an external
instruction.
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On the other hand, the ERESUME instruction restores the enclave’s state
and gives back control to the enclave from the point it was interrupted. It is
important to mention that the event whom the AEX was called upon may be
triggered again in case of failure when the event is an exception or faults within
the enclave.

3 Objectives and Adversary Model

3.1 Security Objectives

Applications consist of data, e.g. keys, passwords, and code of third-party
libraries such as OpenSSL. Protecting secrets is a major priority; an applica-
tion would like to keep the confidentiality and integrity of these secrets, and the
integrity of the code executing using these secrets. The exposure of one element
is enough to compromise the entire system. Furthermore, sensitive parts of an
application constitute a small fragment of the code as a whole in most applica-
tions. Thus, isolating the data storage and execution of sensitive parts from the
rest can decrease the impact of vulnerabilities.

Our security objective is to keep the Confidentiality even in the presence
of malware (including malware running within the privileged operating sys-
tem), and reduce the impact of vulnerabilities in code. It has been shown that
hardware-assisted partitioning technology, such as Intel SGX, can be used to
achieve this [23,26].

The enclave keeps the confidentiality of the data by encrypting its content
when leaving the processor in enclave mode e.g. in memory. Our objective is to
protect secrets such as passwords, keys, and sensitive code from vulnerabilities
in applications. One approach to achieving this when considering a trusted OS is
to use a different process for each partition,relying on the OS to enforce memory
access control semantics between processes. However, we assume untrustworthy
OS, an OS that might have vulnerability or malware, thus, using the processes
is not an option. To elaborate on the latter, we do not consider an OS that is
untrustworthy as a result of an adversary booting malicious OS. We assume that
the OS is coming from trusted source but may have vulnerabilities or malware
which may risk the exposure of secrets in applications.

It is important to note that using systems with one TEE such as ARM Trust-
Zone [21], and Flicker [13] does not scale in flexibility for partitioning applica-
tions. These systems address how to isolate trusted code from untrusted code
using one TEE, and managing the TEE for different partitions requires interven-
tion of software and not hardware. On the other hand, SGX does allow instan-
tiating of many containers using hardware operations, thus, it is well suited for
our partitioning schemes and in evaluating the security of each scheme.

3.2 Adversary Model

In this paper, we consider an adversary with the capabilities to insert malware
into the system, read the memory, and manipulate the OS including booting
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another OS. An adversary aims to exploit vulnerabilities in application code who
may be able to obtain secrets or cause malfunction, which eventually may lead to
exposure or modification of sensitive data. The adversary may have knowledge
of the software running, but does not have physical access to the system’s CPU
and physical parts of the platform including memory controller or the buses
interconnecting between platform components [27,28]. The adversary may be an
insider with a limited physical access to the system, or a remote adversary. We
do not aim to protect against attacks such as denial of service or side channel
attacks.

4 Application Software Partitioning

We are proposing a partitioning scheme framework and that will be illustrated
and explained with a concrete example of OpenSSL. However, the approach
taken here is applicable to all types of applications that protect secret data.
In the trusted part we would like to port sensitive functions and data such as
hashing functions, random number generator, certificates, keys and passwords.
The untrusted code will be located out of the TEE with the ability to call
protected functions to be executed in TEE. While the untrusted code may be
able to request for encryption and decryption services from the trusted code,
it is unable to read/write the keys and the cryptographic functions that reside
within a TEE to provide these services. The untrusted code may merely call the
interface TEE functions for execution. The trusted part is considered as a Black
Box to the untrusted part, thus, protecting the confidentiality and integrity of
the code and data.

The application must be partitioned into several parts by identifying the sen-
sitive partitions that require isolation from other parts of the application. The
design guideline is to keep a sensitive partition minimal and within feasibility
borders to allow formal verification of the code. While the TEE can protect its
execution and secrets from external vulnerabilities, it does not protect against
badly written code with flaws. Thus, a partition with small code is a corner stone
for designing a secure application and has been long advocated by Saltzer and
Schroeder [29]. However, it is important to bear in mind the efficiency of the exe-
cution when partitioning the code. A partition scheme that substantially impairs
system efficiency will often be unfeasible regardless of its security characteristics.

4.1 Partitioning Schemes

In this section, we describe several possible partitions schemes. We start with
basic partitioning configuration and develop it further as a function of the TCB
and number of enclaves that yield different partitioning schemes. These schemes
may differ in their ability to protect the confidentiality of the data, which we
will be investigating in more details in section 5.

Initially, we started by defining a partitioning scheme that considers two
guidelines: 1) the number of available enclaves 2) the TCB size inside each
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enclave. In scheme 1, we started with the most basic configuration, one enclave
and without any limitation on the size of the TCB inside that enclave. Our aim
is clear and simple; to protect the secrets as described in detail in section 3 from
the rest of the code. In scheme 2, we chose to increase the number of enclaves by
one, two enclaves with a reduction in the TCB as explained in 4.1.2, which led
us to scheme 3. In Scheme 2, the size of the TCB inside each enclave is reduced
to an optimal level. However, accounts/connections/users have to use the only
available two enclaves, thus, no separation between the different accounts/con-
nections/users. In scheme 3, we built on scheme 2 and adopted a similar TCB
inside an enclave but with open approach toward the number of enclaves that iso-
late between different accounts/connections/users. Scheme 3 proved to be very
complex both for security and implementation. For instance, a trusted channel is
needed between every two enclaves that wished to talk to each other, thus, with
the adopted open approach in scheme 3 many trusted channels are needed. Also,
with this approach every piece of code inside an enclave needed to be duplicated
for full separation between the accounts/connections/users. Hence, we identified
a potential implementation and performance issues prior to evaluating the app-
roach. It follows, in scheme 4 we took scheme 3 and optimised it by considering
reducing the number of enclaves, TCB, and duplication of code.

4.1.1 Scheme 1 - Whole Application
In this scheme we choose to put part of an application such as a library inside
one enclave. The residents of the enclave which may be code and data, include
all secrets such as keys (e.g. private key, storage key, session key), passwords,
credentials, and the code.

4.1.2 Scheme 2 - All Secrets
In this scheme we apply smaller granularity compared to scheme 1. We use two
enclaves, we divide the code in two partitions, based on the frequency of accessing
the code and port the code that generates secrets and has high frequency for
accessing the secrets. The rationale is to opt-out the code that does not have
high frequency of accessing the secrets which will result in reduction of code’s
lines number, hence, reduction of the TCB. However, it is important to mention
that an application with different users has all its users’ secrets within the same
enclave. Thus, it is the responsibility of the software running inside the same
enclave to enforce isolation between users’ data.

4.1.3 Scheme 3 - Separate Secret
Scheme 3 is smaller in granularity compared to the previous two schemes. We use
multiple enclaves to secure the secretes. Each enclave contains one secret such
that each key resides in a separate enclave. For example code using the session
key lies in one enclave and code using the private key lies in another enclave. We
use multiple enclaves per account/user/connection, where each enclave contains
the secrets generation relevant code and its relevant key, and one enclave for the
code that has high frequency of accessing the code after generation.
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4.1.4 Scheme 4 - Hybrid
In this scheme we apply smaller granularity than Scheme 1 and Scheme 2 but
less than Scheme 3. We use multiple enclaves to protect Application’s secretes.
Each account/user/connection has a separate enclave. One enclave per accoun-
t/user/connection, that includes keys (e.g. private key, session key), generation
code, and functions with high frequency for accessing the secrets. For example,
an application with multiple users, each user’s secrets reside within the same
enclave. However, in order to reduce the number of enclaves used, we use an
enclave that contains code but not secrets to give services to all accounts. When
a secret is needed, it’s sent to another enclave which is assumed not to store any
data. This scheme is similar to scheme 2 in the definition of the TCB residing
inside an enclave, however, while scheme 2 has all secrets of all users/connection-
s/account in an enclave, scheme 4 isolates between users/connections/account
by having enclave for each. On the other hand, scheme 4 is similar to scheme 3
in the way it isolates the secrets of each users/connections/account.

4.2 Partitioning Using SGX

The application uses SGX to protect the execution of sensitive partitions by
porting different sensitive partition into different enclaves. The number of TCBs
is the influential factor for the number of partitions constructed prior to running
the application, and during the run time, SGX enforces access between these
partitions. It is important to mention that porting the code to run in trusted
space is not the only action required when partitioning the code, the same ported
code should be able to handle I/O operations and external operations and exit
enclave mode when necessary. The interface to the enclave is limited and the
creation process requires the intervention of privileged software that runs in
ring 0, e.g. SGX driver. As a rule, the privileged software creates an enclave
using ECREATE, adds, and measures the code of the desired partition. It uses
EADD and EEXTEND respectively to perform the latter, which is then followed
by EINIT to finalise the creation process, and entering the enclave by the same
application that created it. In order to enter an enclave, the application uses
synchronous entry instruction EENTER to switch the processor to enclave mode
and to execute the relevant call.

As an essential part of the design, I/O operations are excluded from the
enclave since they require the intervention of the OS, thus, when I/O opera-
tion is required, synchronous exit (EEXIT) is called to switch the processor to
normal mode to handle the requested external operation. In a similar way the
OS interrupts are handled through Asynchronous Exit and Resuming Execution
instructions. Once done, the trusted part resumes by re-entering the enclave
with ERESUME.

Once the enclave finishes execution it exits the enclave mode using EEXIT
and the processor returns to normal mode of execution. The life cycle of the
enclave and its content can be terminated by the application using privileged
software; the privileged software tears down the pages inside the enclave (ERE-
MOVE) and removes all the meta-data associated with it.
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5 Security and Efficiency Evaluation

We use a MiniServer + OpenSSL library to examine several software partitioning
schemes. The MiniServer is a web server that serves multiple clients and pro-
vides authentication, and secure communication channel. The MiniServer runs
on Linux and uses merely minimal code to establish secure connections with
clients. Furthermore, it uses the OpenSSL library for establishing secure connec-
tion between the server and the client [30].

To meet our objectives we choose to consider two main components in the
SSL protocol: the handshake protocol and the data exchange. During the hand-
shake, the client and the server generate keys which are unique for each con-
nection session. The session defines a set of cryptographic security parameters
which can be shared among multiple connections. For the most part, the hand-
shake protocol allows the server and the client to authenticate each other and
to negotiate a cryptographic suit. The handshake protocol consists of several
messages exchanged between a client and a server prior to establishing a secure
channel. It is followed by the second part of the protocol execution in which data
is exchanged between client and server.

In order to evaluate the security and efficiency of the proposed schemes we
consider partitioning the OpenSSL library 1.0.2-beta1. On the security side we
investigate: 1) the ability of a scheme to protect against vulnerabilities in code
such as the HeartBleed vulnerability; 2) the number of trusted channels required
between partitions; and 3) the size of the TCB. Our primary reason for consid-
ering these evaluation items is their impact on the attack surface. For example,
the size of the TCB has a direct impact on the number of vulnerabilities in code.
Also, an application with various enclaves requires trusted channels for commu-
nicating between these enclaves, thus increasing the complexity of the system
and expanding the attacks surface since there are more components to protect.
On the efficiency side, we consider the number of enclaves, the number of entries
to these enclaves, and the size of each enclave. Moreover, context switching is
required when moving in to and out of the enclave, introducing an overhead that
increases with the number of enclaves and entries to these enclaves. We evaluate
the security and efficiency of the proposed partitioning schemes from section 4
and present the calculated results in table 1.

5.1 Case Study

In this section we use the OpenSSL library to examine the proposed software
partitioning schemes. In particular, we choose a vulnerability from the buffer
over-read class of attacks, the HeartBleed vulnerability [31], to evaluate each
scheme. The aforementioned vulnerability will demonstrate the ability of each
scheme to meet our objective of protecting the private and session keys. While,
a straightforward solution is to fix the vulnerability when found, our proposed
method of isolating software partitions from each other aims to counter the
over-read class of attacks when a vulnerability is missed during the verification
process.
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The vulnerability known as HeartBleed results from missing bounds check
in the heart beat extension which is a ‘keep-alive’ mechanism between two end-
points to keep the connection alive. The latter was classified as a buffer over-read
vulnerability and it allows more data to be read than was initially negotiated
between the client and server, thus revealing secrets and sensitive data. The sen-
sitive data is not limited to secret keys used within the OpenSSL library, but
also includes user names and passwords of the application that happen to be in
the requested memory space. For the most part, applications rely on privileged
software such as the OS to prevent external access to an application space. How-
ever, in the presence of vulnerability in an application such as in a third-party
library, the OS does not play any part in protecting the data of the entire appli-
cation, specifically, data that is generated by the application but not used by
the imported third-party library.

5.2 First Scheme - Whole Application as One Partition

In the first scheme the entire SSL library resides in a single enclave and includes
the heart beat code. The code within an enclave has memory access to every
memory address inside the same enclave, thus when a client requests more data
than it has sent, the heart beat code is still able to extract the requested length,
notwithstanding its content e.g. session and private keys, and send it back to the
client. Moreover, data from the application using OpenSSL, such as user-names
and passwords, can be extracted when residing in adjacent memory addresses
to the requested data. Hence, the rest of the application is vulnerable to secrets
exposure.

Using TEE does not protect against vulnerabilities in the code. While the
data is protected with encryption from external software when it resides in the
memory, it is not protected from vulnerabilities that reside in the enclave. To
illustrate this using the HeartBleed example, the heart beat code resides within
an enclave, thus it is part of the same TCB that contains the secret keys and
functions used during the SSL session. As a result, the security properties pro-
vided by the enclave are transparent to the contained software, and accessing
secrets from an inner function, such as the heart beat code, can be achieved
without the enclave’s interference.

Scheme 1 uses one enclave and thus doesn’t require any trusted channels.
However, the big drawback is the large size of TCB that includes the buffer
over-read vulnerability, which in return it doesn’t protect the confidentiality of
secrets upon implementation.

5.3 Second Scheme - All Secrets

In the second scheme we used two enclaves to isolate part of the OpenSSL library
including the handshake protocol, private key, session key, and data exchange.
We partition the code such that only key handling the code (both session and
private) are inside the enclave, but heartbleed code is outside that enclave.
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Scheme 2 protects against exploitation of the HeartBleed vulnerability since
the heart-beat code can not access the session key which is encrypted in memory
as part of an enclave. The TCB is smaller than that of scheme 1. However, other
secrets of the application, such as the user-names and passwords of the server
which are not part of the enclave, are not protected. Also, one might question
the security of having all the session keys within the same enclave used by the
same code. To state the obvious, mutual exclusion between the different sessions
is not achieved with this scheme.

5.4 Third Scheme - Separate Secrets

In scheme 3 each connection has two enclaves, one for the handshake protocol
and session key, and one for the data exchange. To elaborate on the latter, since
each connection has two enclaves, it’s obvious that some duplication of code is
inevitable. Nonetheless, the private key resides in a different enclave and can be
used by other enclaves that require access to it.

In scheme 3 isolating each secret in a different enclave protects against code
vulnerabilities, such as HeartBleed, compromising the confidentiality or integrity
of the session key or private key. The TCB in each of the enclaves is significantly
smaller than in scheme 1 . However, this approach brings with it other challenges:
In order to prevent malicious software from exploiting the different enclaves, a
trusted channel must be established between the different enclaves to assure
secure communication and execution of the partitions combined. The latter may
impair the execution efficiency in favour of isolating connections. However, more
detailed empirical work is needed to examine this, which is beyond the scope of
this paper.

5.5 Fourth Scheme - Hybrid Software Partitioning

In this approach we considered a hybrid partitioning of the code, which is a com-
bination of the aforementioned schemes. The main code resides in the untrusted
space and only a part of the code and data resides in the enclave. The heart beat
code resides in the untrusted space of the application and is thus unable to access
the secrets within the enclave. The heart beat code could reside in a separate
enclave if need be. The main focus of our design is on partitioning the application
in such a way that sensitive partitions with secrets are isolated from other unre-
lated partitions. In scheme 4, the TCB is smaller than in schemes 1 and isolation
between the sessions is achieved. However, TCB is not as small as in scheme 3. The
advantage of scheme 4 over scheme 3 is a reduction in the number of enclaves. The
number of trusted channels required between different enclaves is smaller, which
results in less overhead in the system and the trusted channel being a target for
adversaries. To test this framework, we implemented the hybrid approach using
SGX - a combination that proved to be resilient to read-overflow vulnerabilities
such as HeartBleed. In addition, with this scheme the size of the TCB inside the
enclave proved to be much smaller than scheme 1. In table 1 we summarise the
analysis of the 4 different partition schemes discussed.
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Table 1. Comparison between the 4 schemes
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Number of Enclaves
(10 Connections)

1 2 21 11

Trusted Channels between Enclaves
(One connection)

0 0 3 2

TCB in enclave L S S S

Duplication of Code No No Yes Yes

Capacity Used M S L M - L

Size Scale : L - Large, M - Medium , S - Small

6 Related Work

In the last decade the topic of executing sensitive code in isolated and trusted
environment has caught the attention of many researchers. McCune et al. pre-
sented Flicker [13]- an infrastructure for code execution in isolated and trusted
environment. In their work they rely merely on 250 lines of code in the TCB to
provide strong isolation. For the most part, they appreciate that 250 lines of code
is a tiny code, therefore formal assurance of its execution is more trusted as a
result of the feasibility to verify the code. Nonetheless, an application running in
an isolated execution environment can be thousands of line of code and isolation
between several parts in the application space is essential to prevent exploits by
unfortunate vulnerabilities. The same group presented TrustVisor [14] a pointed
purpose hypervisor that provides code and data integrity and secrecy for sensi-
tive portions of an application. TrustVisor provides application developers with
a strong secure environment for code execution and data storage on untrusted
platforms. Moreover, they argue that small TCB code is easier to be formally
verified, thus, it is more trusted when executing in TEE. Another research effort
that takes a similar approach is that of Singaravelu et al. [32] where they showed
that reducing TCB complexity can result in enhancing the security of the sen-
sitive part of the application. The sensitive part is executed in a process called
AppCore while the rest of the application is executed on a virtualised untrusted
operating system. This approach is supported by three real world case-study
applications.

In [33] Strackx proposed Fides: a security architecture that consists of two
parts: a run-time security architecture and a compiler. The run-time security
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architecture is based on memory access control to protect applications. The
modules are divided into a private section, where sensitive data is protected
and accessed by the relevant module through limited interface, and a public
section that contains the module’s code. The second part is the compiler which
is responsible for compiling standard C code into protected modules. In another
work [34], Cheng et al. presented DriverGuard, a hypervisor protection mech-
anism to shield I/O flow from a malicious kernel. DriverGuard protects a tiny
fraction of the code that is sensitive, such as biometric authentication. However,
they assume secure boot-up and load-time attestation to ensure the hypervisor’s
security in the bootstrapping phase.

In [10] Li et al. introduce MiniBox, a two way sandbox that isolates the
memory space between OS protection modules and applications. Unlike most
approaches it aims to protect the OS from untrusted applications, but also pro-
tects the applications from a malicious OS. In Minibox, the authors focus on the
two-way Sandboxing and don’t address the porting efforts for legacy code, and
suffice by mentioning that the porting efforts are similar to the porting effort on
NaCl [17].

In [35] Vasiliadis et al. introduce PixelVault, a system that uses GPUs to
secure cryptographic keys. In PixelVault the private key is created inside the
GPU and never leaves or leaks it even in the presence of malicious OS. However,
this is limited to the private key since PixelVault can not use the GPU to secure
keys negotiated at run-time such as the session key or key pairs. Thus, malicious
software can act as a man in the middle.

Partitioning privileges between hardware and software is not a new
paradigm [36]. Hardware/Software partitioning has shown improvement in per-
formance, energy consumption, and optimised run-time. However, there hasn’t
been much work that addresses hardware and software partitioning from security
point of view.

Our approach differs in the granularity and feasibility of isolating sensitive
code. Most approaches rely on software to isolate the execution of sensitive code
from the rest of the system. These approaches face significant difficulties when
partitioning the code into trusted and untrusted sections. While it is straightfor-
ward to isolate an entire application using SGX, it is still feasible for program-
mers to partition the code into trusted and untrusted sections even when the
application is not modular or privilege-separated. Unlike some hardware-based
isolation techniques, SGX enables concurrent execution of more than one secure
enclave. This allows applications to use various different partitioning schemes to
achive the required balance between security and performance.

7 Conclusions and Future Work

In order to protect the execution of sensitive code and data, it is desirable to
use a trusted execution environment that does not include untrusted entities
such as the OS. This can be achieved by keeping the TCB as small as possible
and excluding irrelevant parts of the code. Fine-grained software partitioning of
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the code provides a good means of isolating different parts of the application
and defining trust relationships between the partitions. Such an approach can
protect the execution of a sensitive code from untrusted partitions when access
is enforced properly. SGX proves to be a good candidate that keeps the OS out
of the TCB and protects the execution of a partition from untrusted code using
hardware. It is widely expected that the adoption of technologies like SGX will
facilitate the design of secure applications and add another level of protection
against various vulnerabilities in the code. In this paper we have proposed a
framework that describes exactly how these technologies could be used to achieve
this. We have explored four possible partitioning schemes that differ in terms of
security guarantees and performance. We have demonstrated how our schemes
could be realized using SGX to secure the execution of low level sensitive code
in the SSL library as a proof of concept to our claims.

Another key point is that although the TEE is an important and desirable
security feature, it is not a silver bullet against vulnerabilities in code. We demon-
strate a logical use of TEE and the feasibility of different software partitioning
schemes with SGX in merely one example: the OpenSSL library. In future work
we plan to perform broader research on fine-grained software partitioning using
SGX with different applications that includes bench-marking each of the schemes
described above. Eventually, we intend to develop a methodology to help devel-
opers partition applications effectively using these new technologies in order to
balance security with performance.
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Abstract. Spam, an unsolicited or unwanted email, has traditionally been and 
continues to be one of the most challenging problems for cyber security. Image-
based spam or image spam is a recent trick developed by the spammers which 
embeds malicious image with the text message in a binary format. Spammers 
use image based spamming with the intention of escaping the text based spam 
filters. On the way to detect image spam, several techniques have been devel-
oped. However, these techniques are vulnerable to most recent image spam and 
exhibit lack of competence. With a view to diminish the limitations of the exist-
ing solutions, this paper proposes a robust and efficient approach for image 
spam detection using machine learning algorithm. Our proposed system analyz-
es the file features together with the visual features of the embedded image. 
These features are used to train a classifier based on back propagation neural 
networks to detect the email as spam or legitimate one. Experimental evaluation 
demonstrates the effectiveness of the proposed system comparable to the exist-
ing models for image spam classification. 

Keywords: Image spam · Spam filtering · Machine learning · BPNN 

1 Introduction 

Nowadays, e-mails have become a very common and convenient medium to millions 
of people worldwide for daily communications due to the rapid advances of Internet. 
However, along with the emergent significance of the emails, there has been a striking 
growth of spam in recent years which has become a key problem to the internet users 
and vendors. Spam is commonly defined as an unsolicited or unwanted bulk e-mail 
sent indiscriminately, directly or indirectly, by a sender having no current relationship 
with the recipients [1]. The current trend of spam messages alarms that it will climb to 
95% of the total email traffic very shortly, which was accounted about 70% in 2012 
[2]. Due to the recent upsurge in spam emails, it has been a significant concern for the 
researcher to develop unbeaten techniques for fighting against spam. 

Until last decade, the spam messages were based on textual content only. That’s 
why, the spam filters [3-6] were designed to analyze only the text content of the mes-
sages to classify them as spam or legitimate email. However, in recent years, spam-
mers has introduced a new trick by developing multimedia enriched spam, where the 
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text message is embedded into the attached image with an intention to defeat the text-
based anti-spam filters. Fig. 1 shows the examples of spam images. Approaching to 
detect and filter image spam, several techniques have been recently proposed [7-12]. 
However, these proposed solutions exhibit several weaknesses and their effectiveness 
has not been thoroughly investigated so far. 

 

   
Fig. 1. Examples of spam images: (a) image with embedded text (b) image with text and pic-
ture. 

Many researchers have contributed to fight against the arms racing of spam by de-
veloping new techniques. In recent years, machine learning based text categorization 
techniques have been widely investigated for textual content analysis [13-17]. The 
success of machine learning techniques for text categorization has inspired research-
ers to explore learning algorithms in developing spam filtering. In particular, Baye-
sian techniques and Support Vector Machines (SVM) are most effective methods for 
text categorization, which are widely used by the researchers for spam classification 
[3]. 

It is a matter of fact that the unbeaten response of the content-based filters has 
forced spammers to originate increasingly complex attacks to escape these filters. On 
the way to struggle against the spammers’ tricks, researchers have employed learning 
capability with these filters to train those using machine learning algorithms. Learn-
ing-based filters have the potential to learn and enhance the self-performance at real-
time, so that they can adapt themselves to the wide genre of spam. 

In this paper, a new architecture of spam classification has been proposed based on 
back propagation neural network (BPNN). The system will analyze the file features of 
the embedded image and extract the low level visual features as well. These features 
are then fed into the BPNN classifier to train the network. To test the effectiveness of 
the proposed network and verify the accuracy, we use a large data set consisted of 
both spam and non-spam images. Experimental evaluation confirms that the proposed 
system is robust and efficient to detect the embedded message as spam or legitimate 
email. 

The remainder of the paper is organized as follows. Section 2 provides an overview 
of relevant work in this research area. Section 3 describes our proposed approach for 
image spam classification. Section 4 demonstrates the experimental results and per-
formance of the proposed system with a critical discussion. Finally, Section 5 con-
cludes the paper with future research directions. 



624 M. Chowdhury et al. 

2 Related Works 

Many techniques have been proposed by the researchers in last recent years for de-
tecting image spam. In this section we provide a brief discussion on relevant work in 
image spam classification.  

Wu et al. [18] proposed an image spam classification technique based on text area 
and low-level features of the image. They argued that computer-generated graphics 
like banner, advertisement are spam images attached with emails. They considered the 
ratio of the banners and graphic images to the total number of attached images as 
features based on the assumption that most of the spam images are banners and com-
puter-generated graphics as advertisements. Banners were detected considering the 
aspect ratio, height, and width. To identify the computer-generated graphics they 
assumed that graphics contain homogeneous background and less texture. A one class 
classifier based on SVM was used in their work.  

Aradhye et al. [19] proposed a technique for image spam detection based on ex-
tracted overlay text and color features. It can monitor outbound e-mails by corpora-
tions to detect communications including proprietary or confidential material of the 
corporation. The method consists of three stages: (i) extraction of the text containing 
in the spam image, (ii) identification of spam-indicative features from the image, and 
(iii) learning the features with a SVM for image spam categorization. 

A fast classifier using Maximum entropy, Naïve Bayes and Decision tree was pro-
posed by Dredze et al. [20] based on image metadata and low-level features. The 
technique exploits information like image height, width, aspect ratio, file format (e.g., 
gif, jpg), and file size. Visual features like average red, green and blue values, features 
based on edge detection were also considered. 

Wang et al. [21] proposed an image spam classification technique based on low-
level features and similarity of images. The similarity measure is estimated for each 
set of features. The distance measure is then compared to a threshold. The threshold is 
set different for each feature space. Based on the threshold value, the image is de-
tected as spam or legitimate one. The image features are extracted from color histo-
grams, Haar wavelet transform, and edge orientation histograms. They used Nearest 
neighbour detection in their technique. 

Another image spam classification algorithm based on low level image processing 
technique was proposed by Biggio et al. [22]. This method can recognize the noisy 
texts in the malicious image. This technique can identify the presence or absence of 
noisy text, or measure the amount of noise in a proper scale.  

Mehta et al. [8] proposed a two-class SVM classifier based on the low level color 
features and similarity of images. Their proposal assumed that spam images are artifi-
cially generated and are related to color, shape and texture of the images. Their distri-
bution was approximated with Gaussian mixture models. They stated that the low-
level features could help the email recipients to achieve the highest capability for 
discriminating the spam and non-spam images. 

Zhang et al. [23] proposed a technique based on image similarity where similarity 
is computed on the basis of color, texture, and shape features of the image. They used 
a two-class SVM classifier trained on spam and legitimate images. This technique 
consists of three steps: (i) image segmentation, (ii) feature extraction and similarity 
calculation and (iii) spam image clustering. 
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Bowling et al. in [24] suggested an approach for image spam classification using 
artificial neural networks. Their method identifies image spam by training an artificial 
neural network. The process consists of three steps. The initial step is the image prep-
aration. In the next step the neural network is trained with training data. In the final 
stage, the neural network is tested to identify whether the embedded image is spam or 
non-spam. The neural network was implemented with 22,500 inputs, two hidden lay-
ers of 50 or 75 nodes each, and one output node. The input nodes are the pixels of an 
image. The output layer is the +1 or -1 indicating spam or non-spam. 

3 Proposed Architecture of Image Spam Detection Technique 

The overall framework of our proposed method for image spam detection is shown in 
Fig. 2. The aim of this paper is to develop a classifier that can detect the image spam 
and legitimate emails. The proposed system consists of three main components:  
(i) Features extraction, (ii) Features selection and (iii) BPNN Classification. This 
section presents the proposed methodology for extracting the feature points from the 
embedded image and a feed forward back propagation neural network, which pre-
tends as a classifier for detecting the image as spam or legitimate one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Proposed approach for image spam classification. 
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3.1 Features Extraction and Selection 

One of the key tasks underlying image spam classification is feature extraction. This 
paper extracts two types of features for image spam classification: one is file features 
and another is visual or color features of the image. Selected features are then feed 
forward to BPNN classifier. 

3.1.1   File Features Extraction 
Image spam can be detected based on their file type. The authors [11] derive some 
features of the image file for detecting image spam using decision trees and support 
vector machine. In this work, we only extract the basic file features of an image with 
an intension of requiring low computation cost. The basic useful features of an image 
file include: image file type, file size and the dimension (width and height) denoted in 
the header of the image file. Empirically we find that image spam mostly contains 
images of GIF (graphics interchange format), PNG (portable network graphics) or 
JPEG (joint photographic experts group) file types. Therefore, we consider these three 
image file formats in our work. The file features of an image are reported in Table 1. 

Table 1. File features of an image 

File features Description 
f1 Image width denoted in header 
f2 Image height denoted in header 
f3 Aspect ratio: f1/ f2 
f4 File size 
f5 Image area: f1× f2 
f6 Compression: f5/ f4 

 
We can obtain the image dimensions by parsing the headers of the image files with 

a minimal parse. However, an issue related to GIF files is that there will be presence 
of virtual frames, which may be either larger or smaller than the actual image width 
[11]. This problem can be detected by decoding the image data. In addition to this 
problem, another issue could be impressed in case of corrupted images as well as 
PNG and JPEG images. This problem is that the lines near the bottom of the image 
will not be decoded properly and no further image data can be decoded after that 
point. This issue can be a useful trick to the spammers. 

We measure the signal to noise ratio (SNR) to estimate the volume of information 
in the image obtained from the file features. The SNR can be defines as the following 
equation:  

 (1) 

 where,  is the mean value of the spam,  
               is the mean value of legitimate or non-spam, 
              is the standard deviation of spam, 
              is the standard deviation of legitimate or non-spam. 
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3.2 The BPNN Classifi
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The sigmoid function transforms the input, which can have any value between plus and 
minus infinity, into a reasonable value in the range between 0 and 1. The input value is 
passed through the sigmoid activation function. The sigmoid function can be expressed as, 

                                                                                   (6) 

Fig. 5 show the flow diagram of the BPNN classifier model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 5. Flowchart of Back Propagation Algorithm. 
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4 Experimental Evaluation 

We develop an efficient image spam classification system based on image features 
using back propagation neural network. A histogram based method is used for visual 
features extraction. The file features of the image are selected based on the file type, 
file size and dimension of the image file. Experimental evaluations demonstrates the 
effectiveness of the propose system. To test our algorithm, we use a benchmark data 
set developed by G. Fumera et al. [17]. The corpora contains 5087 images combined 
of 3209 spam and 1878 non-spam images. 

We evaluate our system by estimating three performance measures: Accuracy (A), 
Precision (P), and Recall (R). The measures can be defined as follows: 

                                                         (7) 

 
                                                                   (8) 

 
                                          (9) 

where, 
TP (true positive)  = No of spam emails and identified as spam,  
FP (false positive) = No of non-spam emails but identified as spam, 
TN (true negative) = No of non-spam emails and identified as non-spam,  

         FN (false negative) = No of spam emails but identified as non-spam. 
 
False positives are generally considered to be more harmful than false negatives. 

Therefore, our target is to ensure the low false alarm rate. If the value of precision is 
high, it obviously indicates that the false negative is high. In other words, the detector 
has misclassified many spam messages as legitimate (non-spam) message. On the 
other hand, a high recall indicates that the false positive is high, i.e. many legitimate 
messages are misevaluated as spam. We concern about the trade-off that exists be-
tween the spam and non-spam when we consider precision and recall values. 

Table 2 illustrates the Signal to Noise ratio (SNR) for spam and non-spam image of 
GIF, JPEG and PNG format. Based on the SNR obtained for different features of an 
image it is possible to isolate spam message from the legitimate message. By analyz-
ing our test dataset we find that most of the spam images in e-mails are GIF and non-
spam images are JPEG type. A comparison of the performance between our proposed 
technique and other methods is reported in Table 3. Experimental results confirm that 
our proposed spam detection technique gives better performance comparable to exist-
ing methods. 
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Table 2. File features of an image 

File features JPEG GIF PNG 
f1 0.268 0.192 0.498 
f2 0.298 0.144 0.273 
f3 0.010 0.032 0.312 
f4 0.283 0.131 0.625 
f5 0.312 0.803 0.451 
f6 0.271 0.545 1.489 

 

Table 3. Performance comparison of the proposed system with other techniques. 

Measures Accuracy (%) Precision (%) Recall (%) 

Naïve Bayes  94.53 83.15 96.65 
SVM  95.09 96.38 97.04 

BPNN (proposed) 97.89 93.75 98.02 

5 Conclusion 

In this paper, we present an efficient and robust method for image spam classification 
using back propagation neural network. The system analyzes the file features of the 
embedded image and extract the low level visual features as well. A gradient histo-
gram based algorithm is utilized to extract the color feature points from the image. 
The extracted file features as well as the visual features are feed forwarded to the 
BPNN classifier to train the network. Experimental results confirms the effective 
performance of our proposed system comparable to the state-of-the-art methods. The 
results show the performance near to 98% accuracy and 0.03 false positive rate. Our 
future plan is to improve the algorithm to develop a complete classification system 
that is also capable of detecting textual spam image.  
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Abstract. Software testing is an integral part of software development life cycle 
which ensures the quality of the software. An exhaustive testing is not always 
possible because of combinatorial optimisation problem. Thus, in the software 
testing phase, generation of optimal number of test data accelerate the overall 
software testing process. We identified that the reduction of interactions among 
the input parameters significantly reduces the number of test data and generate 
an optimal test data set. This interaction is known as ‘t’-way interaction. Over 
the last decade, a large number of ‘t’-way test data generation strategies have 
been developed. However, generating optimum number of test data appears to 
be a NP-hard problem where the test data generation time becomes significantly 
higher. This paper proposes an effective test data generation strategy based on 
‘Kids Card’ game known as MTTG. The proposed strategy significantly reduc-
es the test data generation time. The result and discussion section shows that, 
MTTG outperforms all other strategies. 

Keywords: t-way testing · Test data generation strategy · Test optimization · 
NP-Hard problem 

1 Introduction 

On 4th June 1996, the European Space Agency launched the maiden flight of the Ari-
ane 5. But it exploded 40 seconds after lift-off at an altitude of 3700 m. This accident 
was investigated by the Massachusetts Institute of Technology research team. Their 
report indicated that, a component was erroneously putting a 64-bit floating number 
into a 16-bit floating number. This eventually causes overflow error which affects 
rocket alignment [1]. This error was caused by lack of software testing which can be 
disastrous and life threatening.  

About 50% of the total cost and resources are allocated to software testing which is 
considered an important and integral part of the software develop life cycle. Paying 
attention to the software testing can lead to an overall reduction in costs. The cost 
reduction can be achieved through process automation. However, an optimum and 
effective test data set by reducing the amount of test data required can also reduce the 
overall software testing costs [4-21]. To understand what the test data is and its mag-
nitude, let’s consider a very simple system having 5 parameters with 10 values each. 
It produces 105 number of test data. To a further extend, if we consider Figure 1, 
which is a single ‘Indents and Spacing’ under the ‘Paragraph’ dialog in ‘Microsoft 
Word’. It consists of non-uniform parameterized values i.e. one parameter ‘Align-
ment’ which has four values, ‘Outline level’ has 10 values, ‘Indentation Special’ has 
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two values and ‘Line Spacing’ has six values. Therefore, this single tab will have 
about 14 x 110 x 12 x 16 = 480 numbers of test data. A manual testing will take about 
24 hours to complete the testing of this tab [22]. When the system becomes more 
complex, number of test data increase exponentially. 

 

 
Fig. 1. Paragraph dialog box in Microsoft word. 

To reduce the exponent number, a third parameter known as ‘t’ i.e. interaction lev-
el is considered. This interaction among parameters has an important role resulting in 
error in the software or hardware system. The ‘t’ usually resides  between 2 to 6. Re-
search indicates that the appropriate reduction of the ‘t’ significantly reduces the 
number of test data by maintaining the standard quality. When the value of the ‘t’ is 2, 
it is known as 2-way testing or pairwise testing. On the other hand, when ‘t’ is greater 
than 2 (t > 2), it is known as t-way testing. The value of ‘t’ ranges from 2 up to a max-
imum number which is equal to the number of input variables. In the field of software 
testing, it is referred to as t-way testing.   

Researchers have developed many t-way test data generation strategies to optimize 
the number of test data including OA [22], CA [23], MCA [24], TConfig [25], CTS 
[26], AllPairs [27], AETG [28], mAETG [29], TCG [30], mTCG [31], GA [14], ACA 
[14], IPO [32], IPOG [3], Jenny [20], TVG [19], ITCH [33], GTway [34], PSTG [35]. 
A brief description and scrutinizing analysis has been conducted throughout the ap-
propriate section of this paper. Our empirical analysis identifies a basic problem in 
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current test data generation strategies. Exhaustive analysis of test data produces com-
binatorial explosion problem (CEP) [3-21] which is also a NP-hard problem in com-
mon scientific and mathematical practice [5-21]. Thus, no abovementioned strategy 
can produce optimum number of test data in every input configuration. In addition  
to that, we also identifies that the complexity of the algorithm is very high and take 
non-polynomial time to generate the optimum test data set. Much effort has been 
expended to optimize the principal problem (CEP) through traditional computing 
analysis over the past decade [29-32]. However, through parallelization, CEP may be 
alleviated, but the development of complex software and hardware still poses the 
same question to the researchers. In addition, the parallel computing for test data gen-
eration is an expensive solution. Apart from this, the problem is also known as the 
NP-hard problem, where it is impossible to produce the optimum solution in every 
case (because of the nature of the problem itself). However, our study shows that 
most of the strategies take substantial time to produce the optimal test data. We have 
also identified the following research question [22, 29-37]: 

1. What is the optimal and smaller set of test data to choose over the large data-
set i.e. what strategy to choose that can produce optimal test data set? 

2. Which test data generation strategy to choose in terms of complexity i.e. 
which strategy to choose that can produce faster test data? 

3. What strategy to choose that supports maximum interaction level? 
 
In the next section, we examined the available t-way test data generation strategies 

and explored the significance of generating a faster test data generation strategy. 

2 Literature Review 

Many attempts are taken to classify the existing t-way and pairwise test data genera-
tion strategies. Cohen et. al. has classified the number of test date generation strate-
gies mainly into two groups (Cohen et. al. 2004). i) algebraic strategies ii) computa-
tional strategies. Grindal et. al. extends and expands the abovementioned strategies 
and identified three main sub-categories based on the randomness of the solution of 
the strategy: i) Non-deterministic ii) Deterministic iii) Compound. Non-deterministic 
strategies always produce random number of test data in each execution. It employs a 
random selection of test data over the search space. Artificial intelligence strategies 
are found to be non-deterministic.  Thus, each solution produces different number of 
test data. On the other hand deterministic strategies appear to be producing same test 
data set in each execution. Usually, algebraic strategies found to be deterministic. 
Compound strategies are the combination of both deterministic strategy and non-
deterministic strategy.  The following sub-section analysied available ‘t’ way test data 
generation strategies. 

2.1 Analysis of Test Data Generation Strategies  

There are few strategies which uses arithmetic operation to generate test. These 
strategies are usually arithmetic strategies. All most all of these strategies are limited 
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to 2-way interaction level. To generate test data, these strategies are based on OA 
(Orthogonal Array), CA (Covering Array) and Mixed Level Covering Array (MCA). 
Orthogonal Arrays (OA) uses few different algebraic and the mathematical concepts 
[22]. This strategy uses ‘Latin squares’ to generate test data which significantly used 
in compiler design [22]. Analysis shows that OA strategy is deterministic. But the 
biggest impediment of orthogonal array is it’s limitation to pairwise test data genera-
tion. It only uses symbolic data and no real data is uses as a part of data generation. 
Thus the practitioner’s require mapping the real data with the symbolic data before 
operating the strategy. In addition, OA cannot support non-uniform input configura-
tion which means each parameters require same number of values. Having the simi-
larity with orthogonal array, CA is another form of array which can generate test data 
set. The major different of CA is it reduced the restriction of λ=1 which has been 
mentioned in other section. CA is also a deterministic approach. The major difference 
between CA and OA is CA supports 3-way test data generation where OA only sup-
ports pairwise or 2-way test data generation. Similar to OA, CA also cannot support 
non-uniform values. In addition, the strategy doesn’t consider real input data as part 
of test data generation.   

William et al. in 2000 proposed a computational tool using both OA and CA. He 
proposed an algorithm that can generate OA which in terms can be used as an initial 
block of larger CA. Thus his proposed algorithm uses both algebraic and combinato-
rial approach to generate test data set. TConfig is a deterministic approach. Although 
it uses the basics of OA and CA, it can support non-uniform values. It overcomes the 
limitation of CA and OA, however it is still limited to 6-way test data generation. 
Input configuration can be both symbolic and real data. Combinatorial Test Services 
(CTS) uses algebraic recursion as part of the generation of test data set. The algorithm 
uses C++ programming language. It is also referred as combinatorial recursive con-
struction. It analyse all the possible input configurations. Based on the configurations, 
it selects the best covering array. The covering array can generate best test data set.  
CTS is a deterministic approach with the support of both uniform and non-uniform 
input configurations. However, input configurations can only be index values, thus no 
actual data can be used as a part of test data generation. Considering interaction level, 
CTS only supports only 2-way and 3-way. There are no published works found on 
AllPairs. It is mostly a tool developed in Perl (programming language) by Bach et al. 
in 2004. Later on, Cunningham developed a Java version of the tool. The tool only 
supports pairwise test data generation. The complexity of the tool is low. The tool 
generates test data in a deterministic approach. The tool supports both index values 
and real values as part of test data generation. In addition, the tool also supports non-
uniform parameterized values. AETG starts with empty test data set and then add as 
many test data in the empty set. Finally choose the best test data which covers the 
most interaction levels. Our observation states that, AETG is the first computational 
strategy proposed by Cohen et al. in 1994. Later on few modifications alone with 
comparative results were shown in different publications.  Analysis shows that AETG 
is a random approach which means it generates different number of test data set in 
different execution. Though the authors claim that AETG supports general t-way 
strategies but the publish results was limited to pairwise and 3-way. Input configura-
tion was limited to index values, thus there were no supports for real data. However, 
AETG supports non-uniform values.  A modified version of AETG was proposed by 
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Myra in her PhD thesis (2004). She has shown two basic difference of mAETG as 
compared to AETG. First difference was the randomness. Although AETG was non-
deterministic, the number of test data was same for same configuration (the test data 
set was different). mAETG has a variable number of test data, which means it gener-
ate different number of test data for same input configuration in different execution. 
Second difference was the way to choose uncovered pairs. AETG was selecting the 
covered pairs first then later on it chooses the uncovered pairs randomly where 
mAETG chooses highly covered pairs first then it fix some variable to choose the 
uncovered pairs. Like AETG, mAETG is non-deterministic. mAETG can only sup-
port pairwise and 3-way test data generation. Input configurations are index values 
and no support for actual data. mAETG also supports non-uniform values.  

TCG is a deterministic strategy. Yu-Wen et al. used TCG in 2000 used as a test data 
generator in ‘Jet Propulsion Laboratory’. The algorithm used in TCG is similar to 
AETG which first generates empty test set and then add single test data until all t-way 
interaction is covered. Despite of that similarity, the test data generation is TCG always 
generates same test data in the same input configuration each time. TCG only supports 
pairwise test data generation. For the input configuration, it can only be symbolic. 
There is no support for actual data to be used. However, the strategy appears to be 
supporting non-uniform values. Similar to mAETG, Myra modified the original TCG 
and proposed mTCG. She modified the original rule based test data selection process 
to random based test data selection process. In the test data generation process, when 
mTCG finds the same test data covering similar number of pairs, mTCG choose any 
one randomly. Since mTCG uses random selection of test data, it is a non-deterministic 
approach. The strategy is limited to pairwise thus there is no support for 3-way. Input 
configuration can only be index values and there are no supports for actually data. 
However, mTCG can support non-uniform parameterized values.  

For the first time, Shiba et al. in 2004 modified the original AETG and proposed an 
artificial intelligent based strategy known in test data generation. Each test data in GA 
is defined as chromosome. A number ‘m’ will generate randomly which is known as 
candidate test data. These test data will loop through an evaluation process. After that 
there will be crossover and mutation candidates based on few criteria and finally a set 
of test data will be chosen from that candidate set. Our analysis shows that GA is non-
deterministic. Regarding t-way interaction, GA can only support t up to 3 levels. 
About the input configuration there is no support for actual data to be used as a part of 
test data generation. However, test data generation from non-uniform values are also 
supported by GA.  Apart from GA, Shiba et al. worked on other artificial intelligent 
based strategy and implemented artificial ant colony algorithm in test data generation. 
ACA also used AETG as a base algorithm to generate test data. Implementation of 
ACA is a motivation of nature and an understanding how ants select their best path in 
orders to find out foods from various locations. ACA is a random search process thus 
appears to be non-deterministic. It can only supports pairwise and t = 3. There is no 
supports for real data to be used as a part of test data generation. However, ACA also 
supports non-uniform parameterized values.  

IPO is a deterministic approach and the test data generation of IPO is very fast com-
paring to other test data generation strategies. It was first implemented in a tool called 
PairRest. IPO first generate an exhaustive number of test data from the first two pairs. 
After than other parameters are added by checking that if that parameter’s value is paying 
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the highest number of coverage or not. In the way it adds new values at the end of the 
each test data set and completes a test data set. IPO generates same number of test data in 
same input configuration which is a deterministic approach. IPO only support pairwise 
test data generation thus no supports for t=3. In input configuration IPO cannot support 
real input values and only supports index values. Our analysis also shows that IPO sup-
ports non-uniform values. IPOG is a basic strategy which is implemented in a popular 
tool known as FireEye. Development of FireEye tool was a collaboration work among 
ITL (Information Technology Laboratory) and NIST (National Institute of Standard and 
Technology) and the University of Texas, Arlington. The basic of IPOG is similar to 
IPO. It is developed to support higher t which was not supported in IPO. IPOG is a de-
terministic strategy and the supporting interaction level is up to 6. Input configuration can 
only be symbolic and no original data can be used as a part of test data generation. How-
ever, IPOG supports non-uniform parameterized values.  

Jenkins in 2003 proposed a tool to generate test data which is known as Jenny. 
Jenkins stated that, Jenny starts generating test data by covering 1-way first, then 2-
way, after that 3-way and until the proposed t-way. After generating 1-way, it checks 
if all 2-way has been covered or not. And when it covers 2-way, it checks that all 3-
way has been covered or not. This is the way when the defined t-way covered, it re-
lease the test data set. Jenny produces same number of test data every time, shows that 
it is deterministic. Regarding interaction level, Jenny supports ‘t’ up to 8. About input 
configuration, Jenny doesn’t support original input as a part of test data generation. 
Jenny also supports non-uniform values. Test Vector Generation (TVG) is a tool pro-
posed and developed by Schroeder et al. in 2003. The tool consists of three tech-
niques. In the first technique, it produces test data randomly which supports only 
pairwise interactions. On the secondly technique, it was extended to support higher t-
way interaction. And in the third technique, TVG uses an input and output relation-
ships to reduce the number of exhaustive test data, hence generate the complete test 
data set. TVG is a deterministic strategy. As mentioned previously, TVG’s second 
technique supports higher ‘t’, however it is limited to ‘5’ level only. In the input con-
figuration, both real input and symbolic input can be uses in the part of test data gen-
eration. In addition, TVG can also support non-uniform parameter values.  

IBM developed test data generation strategy which is known as ITCH. And the win-
dows version of the tool is known as WITCH. In ITCH, user can specify the number of 
test data. Based on that number ITCH, choose the proper interaction levels. Users can 
also specify the ‘t’ levels, which in terms can generate the number of test data set. It ap-
pears that ITCH is a deterministic strategy. Our observation also stated that, ITCH can 
support only 4 levels of interaction. Input configurations can be both symbolic and real 
data. In addition, ITCH can support non-uniform parameterized values. Klaib et al. in 
2009 proposed a backtracking based test data generation strategy. It uses the basic IPO to 
choose the best coverable test data set. Once all the interactions are covered, it uses a 
backtracking algorithm to choose other test data set. He has also provided automation 
support in test data execution. Our analysis found that, GTway can support as much as 12 
interaction levels. Input configuration can be both symbolic and real data. In addition, 
GTway also supports non-uniform parameterized values. 
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3 Design of MTTG 

The proposed strategy has been created inspiring kids “Set” game, where the deck has 
total of 81 cards varying in four features: number (one, two, or three); symbol (diamond, 
squiggle, oval); shading (solid, striped, or open); and color (red, green, or purple) There 
are various versions of the game is available. However, in the most playing game, a 
player randomly take cards from the deck and try to make a complete ‘Set’ of a particular 
card by transferring to other members. The proposed strategy utilises the same strategy 
used in the ‘Set’ game. The cards are illustrated as the individual test data. Each test data 
is categorised by the combination of different parameters. A unique strategy runs over all 
the parameters, identifies the missing parameter and replaces it with a most effective 
parameter. The overall design can be divided into 3 major steps.   

3.1 Step 1: Development of N-Tuples: 
In first steps, the strategy reads the number of parameters and values and creates the N-
Tuples. The number of N-Tuples depends on the ‘t’ i.e. interaction level. Figure 2 shows 
an N-Tuples generated from 3 parameters and 2 values in a 2-way/pairwise interaction. 

 
Fig. 2. Illustration of N-Tuples 

The following equation has been used when creating N-Tuples: p! ! ! 
Where, N denotes N-Tuples, t denotes the interaction level and P is the number of 
parameters. 

3.2 Step 2: Identification of ‘Missing Parameter’ 
In the second step, MTTG reads all the N-Tuple values. It identifies the missing pa-
rameter and adds 0 to the missing parameter of that Tuple. Thus MTTG an iteratively 
search the missing parameter and can replace it with the best possible value to pro-
duce the ‘Set’. Figure 3 illustrates the missing parameter. 
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Fig. 3. Identification of Missing parameter 

3.3 Step 3: Updating the Missing Parameter 

This step involves searching for the 0th parameter and replacing it with an appropriate 
value so that a best coverage is possible. Replacing is possible based on two selection 
criteria i) Appropriate parameter ii) Appropriate value of the parameter. The algo-
rithm ‘Test data construction’ has been shown as a pseudocode in the Figure 4.  
 

Begin 

Let NT = {} as a dataset represents the N-Tuples 
Let NST = {} as empty dataset represents the subset of NT 

based on specific single Tuple. 

Let NTS = {} as final test data set 

For each value ‘N’ in NT 

NST = N 

For each value V in NST 

If V == 0 

 Read position of ‘V’ as P 

Find position of Parameter from P 
 End If 

End For  
For each values in P 
 Replace 0 with the values 

Create test data C 
Calculate coverage of C = PC 

If PC == ‘Acceptable Number’ 
 Add C to NST 
End if 
End For 

End For 
End 

Fig. 4. Test data generation pseudo code.  
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4 MTTG Flowchart 

The flowchart of MTTG has been shown in the Figure 5. It starts with ‘Generate Pair’ 
section when the pairs are generated based on the interaction level. N-tuples are gen-
erated based on a formula from the generated pair. The N-Tuples are iterated bases on 
the coverage. It reads 0th parameter, replace with a possible value and calculate the 
coverage. If the coverage is acceptable, the test data is added to the final test data set. 

 
Fig. 5. Complete workflow of MTTG 
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5 Results and Discussions 

To evaluate the MTTG, we carried out a number of experiments both in terms of 
‘Number’ of test data and the test data generation ‘Time’ i.e. complexity. The overall 
experiments are divided into four different groups: 
 
G-1: ‘P’ and ‘V’ is constant, ‘t’ varies from 2 to 6. 
G-2: ‘t’ and ‘V’ is constant, P varies from 5 to 15. 
G-3: ‘P’ and ‘t’ is constant, V varies from 2 to 10. 
G-4: TCAS dataset. 12 10-valued parameters, 1 4-valued parameters, 2 3-valued pa-
rameters and 7 2-valued parameters.  

The results for test data size and complexity are separated into two tables for each 
group. Hence there are eight different tables have been used. The darken cell in each 
row represents the outperforming result. In some cases, there are more than one dar-
ken cell in each row means that more than one strategy have similar results. Cell 
marking NA (not available) indicates there are results unavailable or no published. NS 
(not supported) indicates that the strategy doesn’t support that specific configuration. 
Regarding complexity analysis, we were not able to run all the strategies into same 
platform however, a near proximity system configuration has been utilised for the 
evaluation.  

Table 1a. Size for G-1  
P & V constants (10, 5), but t varied up to 6 

T-Way IPOG WHITCH  Jenny Tconfig TVG II GTWay MTTG 

2 48 45 45 48 50 46 58 

3 308 225 290 312 342 293 372 

4 1843 1750 1719 1878 1971 1714 2194 

5 10119 NS 9437 NA NA 9487 11384 

6 50920 NS NS NA NA 44884 54166 

Table 1b. Complexity (in Seconds) for G-1 
 P & V constants (10, 5), but t varied up to 6 

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 0.11 1 0.43 1 0.141 0.265 0.019 

3 0.56 23 0.78 88.62 5.797 6.312 0.193 

4 6.38 350 17.53 >8hr 276.328 201.235 1.533 

5 63.8 NS 500.93 >24hr >24hr 3636.110 8.277 

6 791.35 NS NS >24hr >24hr 21525.063 24.719 
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Table 1a and 1b shows the result of G-1 in terms of Size and Time respectively. In 
terms of test data size WITCH, Jenny and GTway has outperform all other strategies. 
However, In terms of test data generation time, MTTG outperforms all others. The 
last row where ‘t’ = 6 shows a significant improvement of complexity comparing 
other strategies. 

Table 2a. Size for G-2  
t & V constants (4, 5), but P varied (from 5 up to 15) 

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
5 784 625 837 773 849 731 730 

6 1064 625 1074 1092 1128 1027 1032 

7 1290 1750 1248 1320 1384 1216 1321 

8 1491 1750 1424 1532 1595 1443 1614 

9 1677 1750 1578 1724 1795 1579 1890 

10 1843 1750 1719 1878 1971 1714 2194 

11 1990 1750 1839 2038 2122 1852 2485 

12 2132 1750 1964 NA 2268 2022 2807 

13 2254 NA 2072 NA 2398 2116 3165 

14 2378 NA 2169 NA NA 2222 3564 

15 2497 NA 2277 NA NA 2332 3884 

Table 2b. Complexity (in Seconds) for G-2 t & V constants (4, 5), but P varied (from 5 up to 
15) 

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

5 0.19 5.26 0.44 31.46 1.468 0.047 0.32 

6 0.45 14.23 0.71 231.56 5.922 0.563 0.45 

7 0.92 59.56 1.93 1,120 18.766 3.046 0.63 

8 1.88 115.77 4.37 >1hr 55.172 15.344 0.88 
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Table 2b. (continued) 

9 3.58 210.87 9.41 >3hr 132.766 63.516 1.28 

10 6.38 350 17.53 >8hr 276.328 201.235 1.53 

11 10.83 417 30.61 >23hr 548.703 599.203 2.94 

12 
17.52 

628.94 50.22 >24hr 921.781 1682.844 4.71 

13 27.3 >24hr 76.41 >24hr 1565.5 4573.687 7.40 

14 41.71 >24hr 115.71 >24hr >24hr 11818.281 11.96 

15 61.26 >24hr 165.06 >24hr >24hr 28793.360 18.74 

 
Table 2a and 2b shows the result of G-2 in terms of Size and Time respectively. In 

terms of test data size, there is a uniformed distribution was found. Almost all strate-
gies have achieved good results into a particular configuration. However, In terms of 
test data generation time, MTTG outperforms all others.  

Table 3a. Size for G-3 
P & t constants (10, 4), but V varied (from 2 up to 10) 

 

V 

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 46 58 39 45 40 46 50 

3 229 336 221 235 228 224 277 

4 649 704 703 718 782 621 1950 

5 1843 1750 1719 1878 1971 1714 2194 

6 3808 NA 3519 NA 4159 3514 4531 

7 7061 NA 6482 NA 7854 6459 8245 

8 11993 NA 11021 NA NA 10850 13928 

9 19098 NA 17527 NA NA 17272 21944 

10 28985 NA 26624 NA NA 26121 32966 
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Table 3b. Complexity (in Seconds) for G-3 (Time) 
P & t constants (10, 4), but V varied (from 2 up to 10) 

V IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
2 0.16 1 0.47 14.43 0.297 1.282 0.04 
3 0.547 120.22 0.51 379.38 3.937 7.078 0.18 
4 1.8 180 4.41 >1hr 46.094 25.250 1.34 
5 6.33 350 17.53 >8hr 276.328 201.235 1.69 
6 16.44 >24hr 134.67 >24hr 1,273.469 765.453 3.81 
7 38.61 >24hr 485.91 >24hr 4,724 2389.812 6.78 
8 83.96 >24hr 1410.27 >24hr >24hr 6270.735 10.66 
9 168.37 >24hr 2125.8 >24hr >24hr 15672.531 16.18 
10 329.36 >24hr 5458 >24hr >24hr 35071.672 24.28 

 
Table 3a and 3b shows the result of G-3 in terms of Size and Time respectively. In 

terms of test data size GTway has outperform almost all other strategies. However, In 
terms of test data generation time, MTTG outperforms all others.  

Table 4a. Size for G-4 
TCAS Module (12 multi-valued parameters, t varied from 2 to12) 

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
2 100 120 108 108 101 100 100 
3 400 2388 413 472 434 402 406 
4 1361 1484 1536 1476 1599 1429 1404 
5 4219 NS 4580 NA 4773 4286 4355 
6 10919 NS 11625 NA NS 11727 13667 
7 NS NS 27630 NS NS 27119 35313 
8 NS NS 58865 NS NS 58584 70600 
9 NS NS NA NS NS 114411 127811 
10 NS NS NA NS NS 201728 212400 
11 NS NS NA NS NS 230400 230400 
12 NS NS NA NS NS 460800 460800 

Table 4b. Complexity (in Seconds) for G-4 
TCAS Module (12 multi-valued parameters, t varied from 2 to 12) 

T-
Way 

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 0.8 0.73 0.001 >1hr 0.078 0.297 0.07 
3 0.36 1,020 0.71 >12hr 2.625 1.828 0.13 
4 3.05 5,400 3.54 >21hr 104.093 58.219 1.00 
5 18.41 NS 43.54 >24hr 1,975.172 270.531 5.47 
6 65.03 NS 470 >24hr NS 1476.672 19.36 
7 NS NS 2461.1 NS NS 4571.797 41.90 
8 NS NS 11879.2 NS NS 10713.469 53.59 
9 NS NS >1day NS NS 14856.109 45.29 
10 NS NS >1day NS NS 10620.953 27.43 
11 NS NS >1day NS NS 363.078 12.92 
12 NS NS >1day NS NS 12.703 8.06 
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Table 4a and 4b shows the result of G-4 in terms of Size and Time respectively. In 
terms of test data size GTway and IPOG has better results than others. However, In 
terms of test data generation time, MTTG outperforms all others. Based on the results 
found in the above tables, an interesting observation can be summarized. It is clear 
that no single strategy has domination over others in terms of test data size. However, 
concerning test data generation time, MTTG is dominating in all the cases. On the 
other hand, WHITCH and TConfig appear to be a caterer for smaller configuration 
where ‘t’ is below 4. In addition to that, MTTG and GTway appear to be more effec-
tive for complex configurations. In terms of test data generation time, Table 3b shows 
the effectiveness of MTTG. In that scenario, GTway takes about 20 hours where 
MTTG takes less than 1 minute. Thus, concerning complex configuration MTTG is 
highly acceptable than all other strategies. 

6 Conclusion 

We propose MTTG (Multi-Tuple Test Generator) which is an effective test data gen-
eration strategy. The performance of the MTTG has been compared with other strate-
gies in terms of test data size and time complexity. It is to remember that, the NP-hard 
problem prevented any strategy from outperforming others in terms of both efficiency 
and complexity. Thus our approaches involves in generating test data in most of the 
cases so that it can be acceptable in all aspect. In some cases, the testing professional 
often knows the importance of a particular parameter over others. Thus, it might be 
important to implement different interactions among different parameters. As an ex-
ample, if A, B, C are three parameters containing 3 values each in a configuration, 
and parameter C is less important to consider then, a 3-way interaction might be re-
quire to apply between A and B where, A and C or B and C might require only a 2-
way interaction.  
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Abstract. With the increasingly popularity of mobile devices (e.g. iPhones and 
iPads), Mobile Ad hoc Networks (MANETs) have emerged as a topical 
research area in recent years, and adapting and implementing voice protocols 
over MANETs is a popular area of inquiry. Successful implementation of voice 
over MANETs would present a more efficient and cheaper way of 
communication. In this paper, we propose a cross-domain Session Initiation 
Protocol (SIP), a widely used voice over Internet Protocol (VoIP) protocol, 
solution for MANETs using dynamic clustering by extending the scheme of 
Aburumman and Choo. Our enhanced solution allows us to scale across 
domains, and deal with outbound requests using the reputation method. 
Advantages of this solution include avoiding the shortcomings associated with 
centralized approaches, such as a single point of failure. To demonstrate the 
utility of the solution, we simulate and evaluate the proposed solution under 
different conditions and using metrics such as trust level, overhead, network 
delay, success ratio, and network management packet. 

Keywords: Mobile Ad hoc Networks (MANETs) · Session initiation protocol · 
Security · Privacy · Wireless ad hoc networks · Voice over IP (VoIP) ·  
VoIP over manets · Cross-domain · Dynamic clustering SIP · Network 
Simulator 3 (NS3) 

1 Introduction 

Wireless devices are an integral role in our daily communications, supporting 
applications such as Radio Frequency Identification (RFID) and Voice over Internet 
Protocol (VoIP). VoIP, for example, can be used to deliver voice and video contents 
over the internet in real-time, instead of the Public Switched Telephone Network 
(PSTN) [17][18]. In the past decade, there have been significant advances in the 
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wireless arena; consequently, we have witnessed an increase in consumer adoption of 
wireless technologies. The two most popular signalling protocols for an IP-based 
network are the H.323- defined by the ITU, and the Session Initiation Protocol (SIP) - 
defined  in RFC3261 [4]. Increasingly, SIP is becoming more popular than H.323, 
mainly due to SIP’s flexibility and relative simplicity [1][2]. Due to the popularity of 
802.11/Wi-Fi enabled devices with more powerful built-in capabilities, such as smart 
mobile devices (e.g. iOS and Android devices) [19], Ad hoc networks can be used to 
support VoIP and other applications. For example, students physically present on the 
same campus can communicate with each other using MANET-based VoIP services 
[2]. However, implementing VoIP services over MANETs remains a challenge due to 
the inherent characteristics of MANETs (e.g. self-configuration of IP addresses). 

One potential solution is to modify VoIP signalling services in order to support 
decentralized infrastructure-less networks. The challenge, however, is to modify 
existing SIP services for deployment in a peer-to-peer (P2P) communication 
environment without compromising on availability, flexibility and efficiency (e.g. 
accepted call ratio) [1] [3].  

In this paper, we propose a Cross-Domain SIP solution for MANETs using 
dynamic clustering to provide scalability, reliability and availability. In the proposed 
solution, we extend the cluster-based logical overlay network from our previous work 
[16] by introducing new functionalities to the proposed entities with an enhanced 
reputation equation. The solution would allow SIP users to communicate with each 
other either directly or to request for contact information from the logical SIP servers 
distributed among the network; thus, solving the bottleneck issue due to a standalone 
SIP server serving numerous client requests. In addition, our proposed solution 
employs security mechanism on different levels (i.e. servers and clients). As found in 
literature, this is one of few publications to date that supports the secure use of SIP 
over MANETs. This is, probably, due to the fact that SIP has its own architecture, 
which is more suitable for networks with a predefined infrastructure.  

This paper is organized as follows: Section 2 reviews the background and related 
work. Sections 3 and 4 describe our proposed cross-domain SIP solution for 
MANETs, and our implementation, respectively. We discuss the findings from our 
implementation in Section 5. Finally, Section 6 concludes this paper. 

2 Background and Related Work 

2.1 Background 

SIP is a signalling protocol for initiating, managing and terminating the multimedia 
sessions for voice and video across packet switched networks. The main components 
of SIP are shown in Fig. 1 and explained below. 

SIP main components are:  

 User Agents (UAs) are a SIP endpoint entities that interact with other SIP 
components and used to either generate requests and send them to servers (i.e. User 
Agent Client - UAC) or receive requests, process them and generate responses (i.e.  
User Agent Server - UAS). 
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 Servers (Proxy, Registrar and Redirect) they hold a predefined set of rules to handle 
requests and response generated by UAs and they play the role of mediator to 
communicate with each other or with the UA providing service to enforce those rules. 

 Location Service/Server is used to store the addresses registered by the registrar. 
 Gateway is used to translate SIP to other protocols, if to be used by different type 

of network (e.g. PSTN [4][5].  

 
Fig. 1. SIP Overly Network architecture. 

An Address of Record (AoR), a SIP User Resource Identifier (URI), allows one to 
call other SIP users. The AoR will point to a domain with a location service, which 
maps the URI to one where the user might be available. 

Similar to other protocols on the IP stack, SIP may suffer from various 
vulnerabilities. Despite the range of security mechanisms proposed for SIP-based 
applications [4][6], securing SIP-based applications remain an active research 
challenge. 

Wireless ad hoc networks are collections of autonomous nodes. These nodes form 
a temporary network without the need for a centralized administration. A key 
difference between a wireless ad hoc network and a traditional wired networks is that 
in the former, changes in the network needed to be tracked due to the absence of an 
administrator point [2][3]. This complicates the establishment of a secure VOIP 
session. SIP would be more practical solution for secure SIP (rather than another 
signaling protocol) deployment in a real-world implementation, since it is the 
dominating signaling protocol for VoIP service. 

2.2 Related Work 

By implementing all the necessary functionalities of a SIP, Leggio et al. [7] proposed 
a decentralized ad-hoc network framework. This approach elects a registrar to control 
manage while other newcomers who joined the network are being bounded with the 
registrar. It is possible to have SIP services with the decentralized approach; however, 
the issues of fault-tolerance and scalability remain.   
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Bai a et al. [8] use a test-bed infrastructure to form a distributed wireless 
multimedia network based on SIP protocol that allow text, voice and video 
communication to both wired and wireless devices. Utilizing Authentication, 
Authorization, and Accounting (AAA) server and SIP server, Bai approach still 
require a centralized controlled authentication which is not application in an Ad hoc 
network and other decentralized environment.   

Focusing on the two different MANET environments, which are standalone 
MANETs and Multihop Cellular Networks (MCNs), the research detailed in [9] aims 
to address the service provisioning aspects in both environment. The research 
proposed a business model that defines the relationship and interfaces of MANET and 
the service provision in the MANET. The approach is tailored for closed environment 
setting with the voice service and security mechanisms that are agreed in advance.   

By using an emulator architecture and local multipath for SIP services, 
Kogoshima, Kasamatsu and Takami [10] built a SIP_MANET emulator, which is 
evaluated using a SIP_VoIP call. The simulation of SIP service in MANET suggested 
a high probability of preserving the required path by implementing an enhanced 
adaptive AODV routing protocol.  The simulation was conducted in a test bed 
environment with limited nodes. Other important factors, such as performance 
analysis, scalability, and security, were not addressed in their research.  

As security concerns are increasingly important in SIP services, including those for 
Ad hoc networks, Alshingiti [11] suggested the combination of cryptographically 
generated addresses (CGA) with the social network paradigm for authentication and 
message integrity. Although this approach did not cost traffic overhead in terms of the 
registration process, it significantly increases the traffic on the call establishment and 
termination process. Scalability of the SIP services in MANET in this approach was 
also not considered.  

Leggio et al. [12] proposed a fully distributed location service to locating SIP users 
in as small scaled network to avoid a single point of failure. This is done using by 
embedding a sundet of SIP proxy and registrar server functionality in all nodes.   

In our previous work [13], we presented a secure nomination–based solution to 
implement SIP functionality in Ad hoc networks by combining Distributed SIP 
Location Service with two security techniques, namely; the Digest Authentication 
Access (DAA) and Simple/ Multipurpose Internet Mail Extensions(S/MIME). Both 
DAA and S/MIME are used to provide secure log in service for users and data 
exchanged between proxies, respectively. In the proposed solution, a node is elected 
to be a proxy server (PS) that handles SIP functionality and another node, Change 
D’affair (CD), is elected to be a backup for the server. The proxy is set to be the first 
node in the network, and then it will broadcast an election message to select a CD to 
be the next proxy after the PS delivers the task to the elected CD. 

Abdullah et al. [14] proposed a secure cluster-based SIP service over Ad hoc 
network to protect the adapted SIP service from several types of attacks. This research 
eliminates the shortcomings of centralized approaches such as single point of failure, 
as well as reducing the overhead presented in fully distributed approaches. 

Almobaideen et al. [15] proposed an adapted and semi distributed SIP protocol that 
works using clustered MANETs (referred to as FCSIP). In FCSIP, a new role for SIP 
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server was introduced, where the SIP server also acts as a cluster-head to be the 
discovery servers to allow SIP agents to get information about other clients in the SIP 
cluster. It was claimed that such implementation would perform better than the fully-
distributed SIP protocol over MANETs. 

In [16], we presented a solution addressing the scalability limitation in a domain-
based distribution of SIP services. We used a dynamic clustering to maximize the 
usage of resources to facilitate the deployment of SIP over MANETs. Our simulation 
results demonstrated that scalability of SIP service is increased, while minimizing the 
overheads by eliminating or dividing the workload among servers (i.e. cluster heads). 
However, security was not considered in this work. 

It is clear from the literature that improving the scalability and security of SIP 
services on MANETs is an ongoing research challenge. This is not surprising as SIP 
relies on the resources of server functions, and unfortunately in a MANET 
environment, servers play a limiting role. As the size of the network increases, the 
load on the servers increases; consequently, this affects the level of reliability and 
availability. The dynamic, unpredictable and self-configuring nature of MANETs also 
complicates efforts to maximize the scalability and security of SIP services over 
MANETs. 

In this paper, we aim to contribute to addressing the literature gap. More 
specifically, we extend our previous solution in [16] in order to enhance the 
scalability and security of implementing SIP over MANETs.  

3 Our Proposed Solution  

This section describes our proposed cross-domain SIP solution for MANETs using 
dynamic clustering proposed in our previous work [16], which allows calls to be 
established between peer-nodes ubiquitously using infrastructure-less environment. It 
is assumed that the SIP application can perform at least one-hop message 
broadcasting. 

In the proposed solution, we introduce the functionality of redirect servers 
inherited from the SIP standard protocol for Backup Servers (BS). The BS will be 
directing the outbound requests; requests from nodes in neighboring domains. SIP 
entities comprise SIP User Agent (UA) and SIP Proxy (a combination of SIP 
Registrar and SIP Discovery Server - SIP DS), and are implemented on the protocol 
stack. Nodes can also function as Registrar or as DS to register other SIP UAs or 
provide address-of-record (AoR) resolution respectively.  

Cluster-based solutions can address various limitations associated with Ad hoc 
networks, such as in routing, traffic coordination and fault-tolerance. Our proposed 
solution, therefore, builds logical clusters over the SIP network at the application 
level. In our approach, the SIP network’s clusters are formed based on the positions of 
the nodes within the network and the neighborhood degree. Such an approach allows 
us to eliminate the need for additional message types, as we are able to reuse SIP 
messages by inserting additional headers (and indicating the nature of the exchanged 
message). The clusters consist of Cluster Head (CH). 
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We assume that the network is subject to various types of attacks. For example, 
external attackers could seek to flood the network with messages, which affects the 
availability of the SIP network (e.g. poisoning information to SIP users so that the SIP 
network is unable to establish calls). We also assume that SIP users will pre-share or 
establish their security associations with each other (e.g. they have exchanged their 
security keys offline or via other secure means), and all SIP users are capable of using 
basic security algorithms, such as Message Authentication Code (MAC) 
cryptographic algorithm.  

The aim of our solution is to support both standard and ad-hoc SIP operations with 
the following design goals: 

 Provide a scalable SIP service over MANET, within the constraint of the existing 
network; 

 Enable Ad hoc node peers to establish calls over the decentralized SP-based Ad 
hoc network environment;  

 Overcome existing limitations of relying on static, fixed, and centralized entities;  
 Prevent unnecessary expensive overheads (e.g. eliminating the need to distribute 

all SIP functionalities over the entire network) without affecting scalability or 
resulting in higher energy and bandwidth consumption; and 

 Provide a compatible solution complying with the standard SIP.  
 

Next, we will outline the modifications required to deploy the SIP standard 
components in MANETs to implement our proposed solution. 

3.1 Proposed Server Functionality 

The Primary Server (PS) is a node elected to act as a SIP Proxy and Registrar server 
to transmit and receive peer-to-peer (P2P) connection requests for the nodes in the 
cluster that it manages.  

This server maintains three different tables containing node data, namely: tables for 
local node, global node and server. The PS has other duties, such as servicing special 
invite requests of new nodes and merging and splitting the cluster based on the node 
count.  

The Backup Server (BS) is a backup node with the capability to redirect outbound 
requests that will take over or be promoted to act as the PS, if the PS goes offline, as 
well as supporting the PS with load balancing functionality. The BS keeps an 
identical set of the tables containing node data.   

3.2 Proposed New Clustering Mechanism 

For the SIP service to be able to be utilized by MANETs, we need SIP servers for the 
initialization and teardown of the P2P sessions as well as AoR resolution. Nodes in 
MANETs typically have relatively little CPU power and battery life; therefore,  
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limiting the number of users in this service before latency issue occurs. To address 
this limitation, we propose a clustering mechanism to dynamically elect or retire 
servers to load balance based on a pre-determined threshold. Once the latter is 
reached, a function will be automatically activated to ensure a balanced and uniform 
service level. 

The proposed clustering mechanism assigns one server to a specified set of nodes 
referred to as a cluster head. Each cluster has a maximum and a minimum saturation 
limit of nodes, which is used to trigger the respective SPLIT and MERGE functions in 
the cluster forming a dynamic clustering mechanism. In a cluster SPLIT Function, the 
BS node becomes the PS in the new cluster taking approximately half of the nodes and 
then performing an election to select a BS. Conversely, MERGE function triggers once 
a cluster falls below the minimum saturation limit, the PS of that cluster will send merge 
requests to other clusters to amalgamate into an efficient cluster size – see [16]. 

3.3 Server’s AoR Entities 

Address-of-records (AoR) are extended for the servers to have a global and local view 
of the (inbound and outbound) network, which are referred to Global Node Table 
(GNT) and Local Node Table (LNT), respectively. The GNT contains a list of all 
registered nodes in the domain, and each node can only be updated by their respective 
PS or BS. The table is distributed and installed on all in-domain active servers (i.e. 
participating clusters). This is a slight variation from our work in [16], as the BS will 
have a field to register outbound extended-domain. Alien-domain records will be able 
to redirect requests to either neighboring domains (e.g. different divisions in the same 
university) or Alien domains (e.g. other universities). To differentiate between these 
two domain types, an enhanced reputation mechanism will be used to deal with such 
requests and decision will be made by the BS server and recorded on both PS and 
BS’s AoR (see Section 3.4) 

The LNT holds the records of the local in-cluster nodes installed on every server, 
which include information such as the Name, Status, Priority and Offline duration for 
all nodes in the cluster. This table is stored on both PS and BS to keep track of all 
nodes in the cluster. This arrangement also provides redundancy, in case the table in 
one of the servers is corrupted. 

The Server Table contains information about the cluster servers such as Type, 
Public keys, Cluster ID, Server name and Priority. The priority field of the server 
cannot, however, be updated by itself – this field can only be updated by the in-
domain active servers (cluster heads).  

3.4 Reputation-Based Election 

In this section, we will use two levels of reputation-based Elections for both inbound 
and outbound requests. For inbound requests, a reputation-based technique is used to 
select a PS or BS in order to ensure that the chosen server is a trusted entity [12]. 
However, in such an approach, the preference of a server needs to be updated each 
time they are elected; hence, affecting the stable operation of the network. To avoid 
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this limitation, we adapted our priority algorithm in [16] which takes into account the 
amount of time that a server has been operational when increasing its priority. This is 
to ensure that reliable servers are selected in preference to others.  

For outbound requests, another reputation-based technique is used to authenticate 
PSs in other domains. This is done using a ranking system that uses a counter of valid 
digital signatures to be calculated on each PS along the way. The combination 
algorithm is based on extended-domain digital signatures (PSDS) and Alien digital 
signatures (PSds) and will be recorded, updated and saved in the AOR and used on 
each server along the way. The final decision to authenticate this request will be made 
by the BS at the receiving end (i.e. the value will have to pass a minimum pre-
determined threshold in order to be allowed to proceed and for the invitation to be 
forwarded to the intended recipient).   

Our proposed priority algorithm is as follows:  

AUTH= PSDS + PSds/2 +TLAoR > X (1) 

In the algorithm (see Equation 1), AUTH denotes the Reputation Point Count and 
TLAoR denotes the Trust Level of the PSs, initialized as Zero. All servers receiving 
the requests will include their digital signature on outbound forwarded requests to 
‘earn’ more points. Invalid signatures will be counted as Zero. This algorithm gives 
more weight to PSDS, assuming that most of these domains are an extension of the 
same service as mentioned earlier (e.g. a division within a university). Those requests 
that have not passed the minimum pre-determined threshold will need to send more 
requests (referred to as the warm-up period).  

The priority algorithm computes the reputation of selected functioning servers, 
which is used to determine their eligibility and authenticity as PS. To be able to scale 
better and achieve a higher priority score, servers will have to serve longer in the 
network.  

Our priority algorithm sets AUTH in AoR to Zero, if PS is inactive for a significant 
period of time (T) using a dynamic time counter every time the record is updated. T is 
a dynamic decreasing timer calculated based on how active the PS involved is 
(Number of valid digital signatures) and the status of the outbound requests (extended 
or Alien). 

4 Implementation  

In this section, we will briefly summarize the steps involved in initiating SIP-service 
over MANETs in the domain level. 

4.1 Service Initiation and In-domain Clustering 

In the startup phase, the node initiating the service; Cluster Head and Proxy Server 
(CH and PS, respectively), will advertise to all other nodes that are in range of the 
service. The first interested and eligible node will be assigned to act as the BS. 
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Should the PS decides to exit the service (e.g. due to insufficient battery power or 
mobility), the BS will be promoted to be the new PS by the departing PS. On the other 
hand, if the PS or BS is to exit the service, a LEAVE message will be sent allowing to 
promote an eligible node to replace it. 

In case of undeclared leave from both functioning servers PS or BS, either server 
with no backup will either elect or take over and promote eligible node to replace it.  

The handover process should not affect any client node cluster affiliation or the 
progress of already initialized SIP P2P communications, although nodes sending 
messages to the server may experience minor delays.  

Dynamic clustering is also employed as described in Section 3.2 and involves 
Merge and/or Join functions, which will be triggered based on pre-determined 
thresholds. This would allow the optimization of the network and better scalability.   

4.2 Cross-Domain Communication 

We classify domains as either extended or Alien; the former is an extension of the 
same service, e.g. divisions in the same university, while the latter is an external or 
anonymous domain. The key difference between the two is the level of trust which 
will be built through the PS in each domain. 
 

 
Fig. 2. A cross-domain SIP solution for MANETs 

We assume that domains are built using our own solution, such as [16].  We 
introduce a new BS functionality in order for the BS to act as redirect servers. This 
would allow the BS to redirect outbound requests, and calculate AUTH. Its reputation 
builds over time and the local decision whether to either invitations to clients in the 
cluster or require more authentication points are required (see Equation (1)).  

Once domains have been built and communication within clusters in the domains is 
up and running, subsequent requests from other domains (outbound requests) will be 
handled as follow: 
 

1. PS authenticates the request using public keys of the initiating PS. 
2. Once authenticated, PS will then sign the requests using its private key and 

forward them to the redirect server (BS). Points will also be gained by the PS. 
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3. BS authenticates this request using the sender PS’s public key. Once 
authenticated, the AUTH field will be updated in its AOR against the PS 
who initiated the request. This will trigger the dynamic timer, T. 

4. BS forwards the requests to the next functioning PS where the same process 
will be repeated until the request reaches its intended recipient.  

5. Once the PS who holds the record in the location service table of the client 
who is the intended recipient of the invitation receives the request, will 
forward the request to its functioning BS without signing the request. 

6. BS will then make a decision based on the AUTH field of the request 
initiator PS.   

7. If the request is authenticated, ACK will be sent back to the caller allowing 
P2P communication between both parties to be established (see Fig. 2). 

 
Fig. 3. Call flow through SIP proxy server and backup server 

Fig. 3 illustrates a typical call flow, and in this example, user Sam initiatives a 
request from domain X to another user, Ray, from domain Z, passing through domain 
Y. The call flow involves the following steps: 

 
1. Sam initiates an INVITE request to call Ray. 
2. PS authenticates (Auth) Sam as part of this cluster and domain before 

signing the request with its private key. 
3. PS forwards the message to its functioning BS. 
4. BS at domain X labels this request as outbound and forwards it to the next 

available PS, and in this context, PS at domain Y. 
5. PS at domain Y will authenticate the PS at X using its public key and 

forward it to its BS. 
6. BS at domain Y will update its AUTH field using equation (1) and forward 

the request to the next available PS, and in this context, PS at domain Z. 
7. PS at domain Z receives the request and authenticates (Auth) Ray as part 

of this cluster and domain and forwards the INVITE to its BS. 
8. BS at domain Z will then update its AUTH field in its AoR and make a 

decision on either to forward the request to Ray or not. The decision is 
made based on the threshold calculated against the points resulted from 
Equation (1). 
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9. Once the threshold is achieved and the decision has been made by BS at 
domain Z, BS forwards the INVITE request to Ray at domain Z. 

10. Once an INVITE received by Ray at domain Z, the P2P communication 
channel will be established between both parties. 
 

Note that if the INVITE requests routes through additional PSs and the involved PS 
stay online longer, the reputation of the PS involved will be increased. This will result 
in more eligible or ‘trustworthy’ PS, and consequently, increasing the scalability of 
the network. This concept is analogous to passport and visa, where requests are 
similar to passports, and the more visas the passport holder receives, the more 
‘international exposure’ the individual is (in our context, cross-domain). 

5 Discussion 

We evaluate our implementation outlined in Section 4 using the following parameters: 

 Overhead: The average number of SIP messages received per second. 
 Success Ratio: The average rate of invitations successfully delivered to the 

intended recipient over time. 
 Scalability: The performance of the implementation when the number of nodes and 

area increases. 
 Stability: The effect on the service request time when the number of nodes increases. 
 Time: The amount of time in seconds for the running of the network. For each second 

of run-time, the power of the nodes is decreased by one unit to take into consideration 
that the simulation time is not equivalent to one second in real-time network.  

 Power: The measurement of power consumed in each node. 
 Mobility: The movement of the node and its effect on the node. 

 
Fig. 4. Number of nodes per cluster over time 
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We conducted 100 simulations under different conditions, and computed the 
average of the findings, also taking into consideration that all the nodes are changing 
position (i.e. mobility) with time. 

Fig. 4 presents the findings of the effect of the number of packets measured in 
kilobits over the lifetime of the network. As observed in the simulation of the 
implementation, at the startup of the scenario, the number of SIP management 
messages increases significantly until it reaches a stable position that ranges between 
700 and 1000 messages across the network. This is due to the fact that at the initiation 
of the simulation, the discovery messages dominate the computational resources. 
Once the network reaches an ‘acquainted’ state (i.e. where PSs are familiar with 
neighboring clusters and domains), the network stabilizes and behaves normally 
according to the proposed solution. It is also observed that the network might face 
some what is shown in the figure as peaks and drops. The peaks are justified as an 
impact of authenticating a new domain which adds up a significant number of nodes 
to the network allowing the number of SIP messages through the redirect servers to 
increase, conversely, the drops are justified by un-authenticating a domain which 
significantly decreases the number of nodes, hence an overall decrease of the number 
of SIP messages through redirect servers.  

 

 
Fig. 5. Stability  

As shown in Fig. 5, as the number of nodes increases, the overhead in our 
implementation remains relatively low – in the range of 100 to 500 nodes. Once the 
simulations hit the ballpark range of 600 to 1500, the overhead gradually increases 
with a reasonable delay time. This is due to the restriction that our proposed solution 
had on the number of messages. This ensures that the success rate is consistent and 
the system does not degrade over time.  

It is also evident in the simulations that the impact on the network is kept to a 
minimal; the dynamic multi-clustering mechanism in our proposed solution divides 
the load, resulting in a fair distribution of the load carried by each cluster.  
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However, once the simulations are 1500 or more, the overhead increases rapidly 
which produces a significant delay time. This may cause messages to be dropped. 
This is due to the large number of inbound and outbound messages influenced by the 
large number of nodes. This limitation will be the subject of future investigation.  

 

 
Fig. 6. Scalability (number of nodes against the simulation time) 

As shown in Fig. 6, our cross-domain approach has significantly increased the 
number of participating nodes; addressing one of existing challenging issues. We 
were able to achieve this by employing a new functionality of the redirect servers and 
by dividing the network into clusters and domains to evenly share the network load 
using dynamic clustering across domains in the same domain. The approach is 
simulated in different terrain areas to achieve an optimized solution. Our simulations 
suggested that the average success ratio is inversely proportional to the number of 
nodes for a smaller terrain area for the network layout. On the other hand, our 
simulations suggested a gradual increase of the average success ratio as the number of 
nodes increases in a bigger terrain area, from an average starting point of 50% to an 
average of slightly above 80%. This is due to the impact of the increased number of 
available routes, which reduces disconnections among cluster and domains. We also 
remark that the domain can choose not to authenticate and register other domains 
based on the AUTH equation as the domain may not be stable or is known to be 
compromised.  

As shown in Fig. 7, our cross-domain approach has also been simulated using four 
different terrain areas. We achieved an average success ratio of 65%-60% for the 
condensed scenario (i.e. between 500 and 1,800 modes), and 50%-45% for the 
scattered scenario for the 1,000 m2 terrain area. For the 1,500 m2 terrain area, we 
achieved an average success ratio of 60%-50% for the condensed scenario and 45%-
35% for the scattered scenario. In the 2,000 m2 terrain area, the average success ratio 
is 50%-45% for the condensed scenario and 35%-30% for the scattered scenario; and 
for the 2,500 m2 terrain area, the average success ratio is 45%-35% for the condensed 
scenario and 30%-25% for the scattered scenario.  
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Fig. 7. The impact of terrain area on the success ratio 

The simulations indicated that a condensed network results in better performance. 
This is, probably, due to a higher probability of finding routes and a lower probability 
of disconnections (i.e. gap between connections). As the number of nodes increases, 
the success ratio decreases as the increased number of SIP messages would cause a 
high overhead. Consequently, this leads to a significant delay, which causes the 
packets to be dropped.  

 

 
Fig. 8. Reputation 

Fig. 8 shows a linear relationship between reputation and time resulting from 
implementing the equation (1) which ensures a growth of the trust level over time, 
and points rewarded ensures the most stable servers are preferred and maintain a 
global list of the authenticated registered entities  (i.e. based on number of times the 
local and global entities were selected). 
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Table 1. Comparative summary 

  
Kagoshi
ma et al. 

[10] 

Leggio 
et al. 
[12] 

Abdullah 
et. al. 
[14] 

Almobaide
en et al.  

[15] 

Aburum
man et al.  

[16]

Our 
Solution 

Priority Dynamic Static N/A N/A Dynamic Dynamic 

Scalability Up to 10 
nodes 

Up to 
100 
nodes 

Up to 50 
Nodes 

Up to 100 
Nodes 

Up to 350 
Nodes 

Up to 
1500 
Nodes 

Average 
number of 
management 
packets 

*Gradual 
Increase 

*Rapid 
Increase 

*Rapid 
Increase 

 
*Gradual 
Increase 

 
Gradual 
Increase 

 
Gradual 
Increase 

Stability Stable Limited Stable Limited  Flexible 
Overhead Low Varies High Average  Average 

*The results may vary depending on the conditions of the network, which relies on the applied parameters 
for the simulated network. 

 
We proposed a solution that is able to enhance and overcome issues previously 

identified in [13], [14] and [16]. In other words, we were able to address the 
shortcomings associated with scalability without compromising on reliability and 
security.   

Existing approaches (see Table 1) do not generally address security and stability 
[10], security and scalability [12, 15], and scalability and overhead [14]. Our 
proposed solution attempts to address these issues; using an improved priority 
mechanism, we enhance the trust level associated with the functionalities of SIP 
entities and consequently, enhance the overall security and availability. This allows 
one to virtually organize and administrate the network in a dynamic way, and across 
domains.  

6 Concluding Remarks 

In this paper, we proposed a cross-domain SIP solution for MANETs using dynamic 
clustering, which resulted in a stable, secure and scalable MANET service. Our 
proposed solution introduced new functionalities designed to scale across domains, 
providing an effective way to deal with outbound requests. We demonstrated the 
utility of our solution by simulating the implementation under different settings, and 
evaluated using different metrics and parameters.  

Future work includes deploying the solution in a university campus involving 
student and staff mobile participants, which will allow us to evaluate and refine the 
design. 
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Abstract. The IT infrastructure of today needs to be ready to defend
against massive cyber-attacks which often originate from distributed
attackers such as Botnets. Most Intrusion Detection Systems (IDSs),
nonetheless, are still working in isolation and cannot effectively detect
distributed attacks. Collaborative IDSs (CIDSs) have been proposed as
a collaborative defense against the ever more sophisticated distributed
attacks. However, collaboration by exchanging suspicious alarms among
all interconnected sensors in CIDSs does not scale with the size of the IT
infrastructure; hence, detection performance and communication over-
head, required for collaboration, must be traded off. We propose to par-
tition the set of considered sensors into subsets, or communities, as a lever
for this trade off. The novelty of our approach is the application of ensem-
ble based learning, a machine learning paradigm suitable for distributed
intrusion detection. In our approach, community members exchange data
features used to train models of normality, not bare alarms, thereby fur-
ther reducing the communication overhead of our approach. Our exper-
iments show that we can achieve detection rates close to those based
on global information exchange with smaller subsets of collaborating
sensors.

1 Introduction

The continuous growth and sophistication of cyber-attacks poses a serious threat
to networked infrastructure. To contest this, Intrusion Detection Systems (IDSs)
monitor a host or a network for signs of intrusions or security policy violations.
Detecting intrusions within IDSs is typically performed through misuse analysis
or anomaly detection. Misuse analysis assumes the availability of fingerprints of
previously seen attacks, so that they can be detected upon their next occur-
rence. Anomaly detection establishes a model of normal system behavior. Each
deviation from this model is an anomaly and thus a potential attack. Models of
normal behavior can be manually provided or automatically learned [1]. IDSs
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usually operate isolated from each other. There is no communication or inter-
action between them and, as a result, isolated IDSs fail to detect distributed
attacks as different monitoring points are not exchanging information.

To create a holistic view of the monitored network, collaboration between
IDSs is required, which has led to the development of Collaborative IDSs (CIDSs)
[2]. These systems consist of sensors and one or several analysis units that
attempt to detect distributed attacks collaboratively. CIDSs can be either cen-
tralized or distributed. In centralized CIDSs, sensors send their monitored infor-
mation directly to a central analysis unit, while in distributed CIDSs sensors
exchange data among each other and do a distributed analysis. Distributed
CIDSs provide better scalability than centralized CIDSs while reducing the com-
munication overhead. However, compared to centralized systems, this usually
comes at the cost of a decreased detection precision, i.e., the ratio between true
alarms (or true positives) and the total number of alarms (true positives + false
positives), as there is no component in the system with global information.

CIDS exchange data either on the alarm or detection level. Information
exchange on the alarm level, e.g., [3], encompasses the exchange of intrusion
alarms for post processing. The main goal of this type of collaboration is to ease
the manual task of analyzing all issued alarms by creating summaries and to
discover related attacks. In contrast, collaboration on the detection level encom-
passes the exchange of monitored information (or data features) to collabo-
ratively create or improve mathematical models. These mathematical models
aim to improve the detection accuracy and, thus, lower the number of False
Alarms (FAs). However, to the best of our knowledge, there is no CIDS that
currently supports data exchange on the detection level [2]. We recognize that
on the detection level, however, ensemble learning can be applied as a distributed
machine learning method [4]. Furthermore, ensemble learning has been demon-
strated to be effective in the generic setting of improving anomaly detection [5].

In this paper, we propose a CIDS concept for learning models of normality to
detect network anomalies. Our focus is not to introduce a full-fledged CIDS, but
rather to demonstrate the applicability of ensemble learning on intrusion detec-
tion in a distributed and collaborative setting. We propose the establishment of
communities of sensors that exchange data to build anomaly detection models
and detect anomalies collaboratively. A sensor is able to participate in multiple
communities concurrently, which enables the applicability of ensemble learning
techniques. Each sensor shares data with its communities, so that subsets of the
entire dataset are created. This allows each community to create an alternative
hypothesis from each subset. Each hypothesis represents a particular interpre-
tation of normal behavior and all hypotheses can be used together to determine
whether arbitrary network traffic is normal or not. We evaluate our novel CIDS
concept with a modified version of the DARPA dataset [6] that reflects a dis-
tributed monitoring setting. Our results indicate that a community-based CIDS
approach performs better, in terms of detection accuracy and precision, than
isolated IDSs in the task of learning models of normality.
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The remainder of this paper is organized as follows: Section 2 introduces
the related work on anomaly detection and CIDSs. Section 3 presents our
community-based CIDS concept. Section 4 evaluates our community concept
using anomaly detection. Finally, Section 5 concludes the paper and gives insights
into future directions.

2 Related Work

In this section, we give a brief overview of related work for anomaly detection
algorithms as well as distributed CIDSs.

2.1 Anomaly Network Intrusion Detection

Discovering anomalies in categorical data is of particular interest to anomaly-
based IDSs as they heavily rely on the analysis of categorical attributes [7].
For example, IP addresses are normally represented as categorical rather than
numerical attributes. This is an important issue to take into account as not every
machine learning technique is able to work well with network data. There are,
however, many machine learning algorithms that are well suited for this task.

Rule induction techniques are examples of algorithms suitable for handling
categorical attributes. Mahoney and Chan published the Packet Header Anomaly
Detector (PHAD) algorithm [8]. It focuses on finding rules describing the normal
appearance of the Ethernet, IP, TCP, UDP, and ICMP protocols. Detection of
anomalies in this context is limited to packets not adhering to one of the learned
protocols. Learning Rules for Anomaly Detection (LERAD) [8], finds rules on its
own through a stochastic sampling algorithm. Instead of modeling hand picked
rules, LERAD is capable of finding a subset of effective conditional rules that
describe normal network data.

Rule learning algorithms, such as LERAD, are prime candidates for building
ensembles of learners. An ensemble is a collection of classifiers that come together
to classify novel instances as a group. Ensemble learning is comprised of a set
of techniques to join the decisions made by different classifiers. The two most
common techniques are called Bagging and Boosting [9]. Bagging is the process
of sampling, with replacement, instances from a large dataset to create subsets.
These subsets are used by many classifiers to learn different models of normality
(for anomaly detection). To classify a novel instance, each classifier makes a
decision. Multiple techniques can be used to mix all the classification decisions
into one final decision. A popular technique is to consider each classifier output
as a vote and use the class with the most votes. In this paper, we use a technique
where the decision of the classifier with the most confidence in classification is
used. LERAD is able to output not only the class, but also the confidence of
detection as an anomaly score. Therefore, for one particular novel instance, the
LERAD classifier with the highest anomaly score is taken as the classification
decision.
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2.2 Distributed CIDSs

CIDSs can be classified, with respect to their communication architecture, as cen-
tralized, hierarchical or distributed [2]. In centralized CIDSs, e.g., [10], sensors
deliver data to a central analysis unit responsible for performing data analytics.
However, centralized CIDSs do not scale with an increasing number of sensors as
each additional sensor increases the communication overhead of the central anal-
ysis unit. Additionally, the central unit represents a single point of failure. Hier-
archical CIDSs employ a hierarchical tree structure of sensors, e.g., [11]. Within
this hierarchy and starting from leaf positions, monitored data is correlated, pre-
processed, and detection algorithms are employed until the data converges to a
central analysis unit at the root of the tree. Distributed CIDSs follow a flat P2P
architecture and disseminate the functionality of the central analysis unit across
multiple sensors. Thus, each sensor also conducts data analysis, so that sensor
data is correlated, aggregated, and analyzed in a completely distributed manner.
Beside structured CIDS approaches, e.g., [12], several unstructured proposals
have been made, e.g., [13,14]. However, all existing CIDS approaches operate
on the alarm level for the exchange of information [2], while our approach of
communities establishes collaboration on the detection level.

3 Community-Based Collaborative Intrusion Detection

In this section we give insights into our community-based CIDS. We provide a
description of our concept followed by a formal model and a discussion on how the
parameters of the formal model affect the properties of a CIDS. Subsequently, we
describe our community formation algorithms and how the formed communities
are used to perform intrusion detection.

3.1 Basic Concept

Sensors are grouped into communities to create samples of the network traffic
all sensors are capable of observing. The samples are used to learn models of
normality and perform anomaly detection. This idea is inspired by ensemble
learning and guarantees the reduction of variance in the process of learning
[9]. The overall outcome is an increased detection performance, in contrast to
isolated sensors, and the reduction of communication overhead, in contrast to
centralized systems.

In each community, one sensor becomes a community head. Community heads
retrieve monitored data features from all other sensors in their community and
perform intrusion detection. Upon detecting attacks, community heads forward
alarms to a central administration interface where further correlation may take
place. Selecting community heads can be done either stochastically or coupled
to specific sensor properties such as their computational capabilities.

This paper focuses on the detection accuracy and precision a distributed
CIDS can achieve. We leave out the practical realization of distributed commu-
nity formation. However, sensors could be grouped together into a P2P network
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using Distributed Hash Tables (DHTs) or P2P-based gossiping techniques [15].
Afterwards, techniques like flooding can be applied on top of the overlay to
establish communities in a distributed way.

3.2 Formal Model

Our community-based CIDS overlay can be modeled as a graph G = (V,E) where
the nodes V represent computer systems capable of communicating between each
other through an overlay communication links E that exist between them. Let
S ⊂ V be the set of intrusion detection sensors capable of collaborating among
each other to detect attacks. Additionally, let u ∈ V be a central administration
interface responsible for collecting the alarms issued by all IDSs s ∈ S and for
generating intrusion reports. A community is a subset C ⊆ S of sensors, with
nc = |C| members. The set of all communities is C, and the total number of
communities is nt = |C|. Each community C has one sensor s�

C ∈ C chosen
as the community head; responsible for performing data analysis and intrusion
detection. Every other member s ∈ C is connected by an edge e = (s, s�

C) ∈ E to
s�

C . Each sensor s is responsible for sending all features extracted from the data
they collect to {s�

C |∀C ∈ C : s ∈ C}, i.e., all other community heads they are
connected to. The community heads of all communities are summarized in the
set S� =

⋃
C∈C

s�
C . Each sensor s ∈ S may be repeated up to ns times between

different communities.
Fig. 1 shows three different parametrization scenarios. The parameters spec-

ify how sensors s and community heads s�
C are grouped together. In Scenario 1,

two communities are shown (nt = 2). These communities have four sensors each
(nc = 4) and each sensor is allowed to be used only once (ns = 1). Scenario 2
depicts three communities (nt = 3), each having three members (nc = 3), where
the sensors are allowed to be repeated at most twice (ns = 2). Lastly, Scenario 3
shows four communities (nt = 4) with two members each (nc = 2) where sensors
cannot be repeated more than once (ns = 1).

3.3 Parameters for Building Communities

When doing collaborative intrusion detection with communities, we recognize
three dimensions that influence accuracy, scalability and communication over-
head. First, we discuss the influence of the size of communities nc and second, the
number of communities nt. These two parameters allow to model a centralized
CIDS, a fully distributed CIDS, or communities. Third, we discuss the impact
of the number of times ns a single sensor can be part of different communities.

Number of Sensors per Community (nc). The community size nc signifi-
cantly influences the detection accuracy. When nc = |S|, there is one community
with all sensors. The sensor head s∗

C of this single community observes all data
in the network and, thus, has full knowledge. This is equivalent to a central-
ized system that can access all data from one single location. In contrast, when
nc = 1, the scenario reflects |S| isolated sensors learning without any data being
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Fig. 1. Two communities (left), three communities (center), and four communities
(right), with sensors s and community heads s�.

shared and no collaboration involved. In this scenario, each community has one
sensor that must also be the community head. The size of nc is bounded by
1 ≤ nc ≤ |S|.

The communication overhead affected by nc can be expressed as the edges
connecting the sensors s ∈ S to the community heads s� ∈ S�; being inversely
proportional to nc. This overhead is calculated as |S| − |S|

nc
and represents the

number of edges required to interconnect all sensors to their respective commu-
nity heads. Furthermore, with a small nc, the system as a whole becomes more
scalable as communities become responsible for analyzing less data. By increas-
ing nc, more information becomes available to each community head and a more
accurate model can be derived; however, the communities become less scalable
as more computational power and memory is required from every community
head.

Number of Communities (nt). The second parameter that has an influence
on the detection accuracy and precision is the total number of communities
nt. When nt = 1, only one community is established. This is equivalent to
nc = |S|. On the other hand, when nt = |S| and ns = 1, all sensors are their own
community and no collaboration is involved. This is analogous to the scenario
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where nc = 1. This shows that both nt and nc are inversely related to each other.
The number of communities nt is bounded according to 1 ≤ nt ≤ |S|.

The parameter nt affects scalability only in combination with nc. Having
a high number of communities does not imply anything unless nc is taken into
account. The main scalability issue in any distributed environment is the amount
of data that needs to be collected and processed. For instance, a large nt and low
nc implies that there are many communities processing small amounts of data.

Sensor Repetitions in Multiple Communities (ns). We define ns as the
upper bound of the total number of times a sensor can be repeated in different
communities. This parameter leverages the impact one specific sensor can have
when communities are established stochastically. It is bounded according to 1 ≤
ns ≤ nt. A sensor cannot be repeated within a community; otherwise, it would
introduce bias because of the redundant data being shared.

As this parameter increases, more data is allowed to be repeated among many
communities. The availability of all data can be augmented by increasing ns.
However, as this parameter increases, the communication overhead increases as
well because sensors must transmit the same information to multiple community
heads. The parameter ns also directly affects the size of each community. As ns

increases, the number of sensors |C| of each community is increased on average.
More members equates to more communication overhead.

3.4 Community Formation

The construction of communities demands criteria for coupling together the set
of sensors S into communities C ∈ C. The coupling depends on parameters that
affect how these are formed, i.e., the community size nc, the total number of
communities nt, and the maximum sensor repetitions within different communi-
ties ns. The remainder of this section contains a detailed discussion of coupling
criteria and the algorithms that implement these criteria.

Coupling Criteria. One important design question of our CIDS concept is how
to assign sensors to communities, or, more precisely, how the data of all sensors
is distributed for analysis. We base our ideas on the bagging ensemble technique.
The bagging technique trains a classifier multiple times using different subsets of
a dataset. Bagging reduces the variance of the detection accuracy [9]: it reduces
the disagreement that might exist when communities are trained on different
subsets of a dataset. To create different subsets of the data, data records are
sampled with replacement from the entire dataset. To make a decision, every
learner classifies the training dataset independently and a combination of all
decisions is used to classify each individual training data.

Our proposed community-based CIDS behaves like an ensemble of learners.
Each community C ∈ C is a classifier that learns with the data supplied by its
members s ∈ C. Sensors can appear in different communities, which is analogous
to sampling batches of data observed by different sensors with replacement.
The community size nc specifies how much will be sampled. The number of
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communities nt specifies how many classifiers will be built. Bagging does not
usually limit the sampling in any way, we introduce ns, however, to limit the
bias one single community may have in the whole system.

Ensemble methods traditionally split samples of the data randomly (with
replacement) among the set of available learners. This is the motivation behind
our stochastic creation of communities. We do recognize that in the context
of network data more intelligent decisions can be used to split the data. For
instance, network traffic can be split according to common network services, IP
addresses or other network-related criteria. In this paper, we focus on stochastic
community creation and leave other alternatives as future work. We are trying
to demonstrate how ensemble methods are able to perform well in the task of
anomaly detection when coupling criteria are as general as possible.

Community Construction Algorithms. Multiple strategies can be used to
form communities by varying the parameters nt, nc and ns. Each parameter can
be fixed to a specific value for all communities to share or vary for each indi-
vidual community. Because of this, we propose two different algorithms to build
communities. Algorithm 1 fixes nc to a particular value such that all communi-
ties exhibit the same size. The other two parameters, nt and ns, are left to vary
for each community. In contrast, Algorithm 2 fixes the parameters ns and tries
to fix nt whenever it is possible, while leaving nc to vary for each community.

Algorithm 1. comm1(S, nc)
1 C ← {∅}, T ← {∅}
2 for s ∈ S do
3 if s /∈ T then
4 C ← {s}
5 T ← T ∪ {s}
6 for |C| ≤ nc do
7 s ← rand(S − C)
8 C ← C ∪ {s}
9 T ← T ∪ {s}

10 C ← C ∪ {C}
11 return C

Given all sensors S and nc as input, Algorithm 1 outputs a set of commu-
nities C. This algorithm consists of two parts: In its first part (lines 2 - 5), the
algorithm selects an initial sensor, not belonging to any other community, to
start a new community. The list T is used to track sensors that already belong
to a community. This restriction ensures that all sensors appear at least once
among all communities while forming as few communities as possible. The sec-
ond part of the algorithm (lines 6 - 9) adds random sensors to C from the set
S − C until |C| = nc.
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Given all sensors S, nt and ns as inputs, Algorithm 2 outputs a set of com-
munities C where |C| = nt and no sensor is repeated more than ns times among
all communities. In contrast to Algorithm 1, this algorithm creates communi-
ties of different sizes. Equally to the nc parameter of Algorithm 1, nt has the
property of generalizing how the community members collaborate as described
in Section 3.3.

Algorithm 2. comm2(S, nt, ns)
1 if ns > nt then
2 ns = nt

3 C1, C2, . . . , Cnt ← {∅}, {∅}, . . . , {∅}
4 C ← {C1, C2, . . . , Cnt}
5 for s ∈ S do
6 x ← Uniform(1, ns)
7 T ← {∅}
8 for 1 to x do
9 C ← rand(C − T )

10 C ← C ∪ {s}
11 T ← T ∪ {C}
12 return C

Algorithm 2 follows the following strategy. Lines 3 and 4 initialize the set
C with nt empty communities. The first loop of the algorithm (line 5) iterates
over each available sensor s ∈ S to distribute it in the second loop (line 8).
Each sensor s is placed, according to a uniform distribution in [1, ns], in multiple
communities. It is possible that some communities are never chosen in line 9 and
communities from the initial set C remain empty. These empty communities are
discarded.

3.5 Community-Based Intrusion Detection

Each community C ∈ C represents an overlay where all sensors s ∈ C are able
to freely communicate with the community head, s∗

C . All sensors s ∈ S extract
features from the network they monitor and forward them to their respective
community head where all these are bundled into one aggregated training dataset.
Each s∗

C ∀C ∈ C learns a model of normality using its aggregated training dataset,
performs anomaly detection, and sends all resulting alarms to the central admin-
istration interface u. The unit u receives the alarms of all |S∗| community heads,
sorts the alarms by anomaly score, and reports the top-most anomalous alarms
according to a predefined threshold limited by the FAs.

After establishing a model of normality with the aggregated training dataset,
the community heads perform anomaly detection using an aggregated testing
dataset also gathered within the community. Sensors keep sending the same
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extracted data features used for creating the aggregated training dataset to the
community head. However, the data features are now bundled into an aggregated
testing dataset. The outcome of performing anomaly detection is the raising of
alarms. Every community head sends these alarms to a central unit where alarm
correlation and further analysis takes place.

4 Evaluation

This section presents the results of detecting attacks in a modified version of
the DARPA dataset using our novel idea of communities (cf. Section 3) coupled
with the anomaly detection algorithm LERAD (cf. Section 2). This evaluation
demonstrates how communities outperform isolated sensors in the task of detect-
ing intrusions using anomaly detection.

In our tests we compare the network intrusion detection capabilities of cen-
tralized, isolated, and community-based CIDSs. Community-based systems are
a variant of centralized and isolated ones that represent a trade-off between
scalability and accuracy. Each community analyzes the network traffic of mul-
tiple sensors and provide better scalability than centralized systems and better
accuracy than isolated systems.

4.1 The DARPA Dataset

The dataset used for evaluation purposes is the DARPA dataset [6]. Regardless
of this dataset being outdated and not representing modern traffic patterns, we
argue that its usage does not disturb the evaluation results: The dataset is used
to compare the performance of three different systems under the same conditions;
all of them utilizing the same labeled data. Moreover, the general availability of
this dataset and the precisely labeled traffic, without incorrect labels, makes this
dataset more useful in this particular context than other alternatives such as the
MAWILab [16] or the CDX [17] dataset.

For the evaluation of our approach, we modified the DARPA dataset to reflect
the placement of multiple sensors at different points in the network rather than
only at one. The description of how this is performed follows.

Modifications to the DARPA Dataset. The DARPA intrusion detection
dataset [6] is a collection of network traffic obtained from a simulated military
computer network with labeled attacks. In this evaluation, only the data records
of incoming traffic are taken into account. There are a total of three weeks of
training data and two weeks of testing data in the form of packet captures (pcap
files). Only the third week of training data and both weeks of testing data are
used. The training data does not contain attacks and is used to create models
of normality. The testing data contains normal network traffic and 201 attacks
ranging from denial of service to exploitation attempts. Due to the modifications
described in the following paragraphs, 19 attacks are removed, i.e., traces of these
attacks have been dropped as if no sensor was able to pick these up.
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In the original dataset all network packets are captured by a single sensor at
the ingress point of external traffic. For the purpose of testing the performance
of multiple sensors analyzing the data independently of each other and within
communities, the DARPA dataset is split according to the visible end-hosts in
the local network. The incoming external traffic is split as if only end-hosts
captured the traffic. Our modified DARPA dataset emulates multiple sensors,
each monitoring a single computer system, gathering data independently of each
other. As a consequence, the original testing and training network traffic is split
according to the local IPs found in the training set as if captured by multiple
sensors instead of only one.

Fig. 2. Modifications made to the 1999 DARPA Dataset.

The DARPA modifications are illustrated in Fig. 2. The red sensor icons
indicate the locations where network data is gathered. In the original DARPA
dataset, one sensor, at the ingress point, collected all network traffic. Our mod-
ified DARPA dataset emulates multiple sensors, each monitoring a single com-
puter system, gathering data independently of each other.

Splitting the original dataset caused two important changes in the resulting
dataset. First, all packets targeting an IP address of a non-existent endpoint
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in the local network are discarded as if no sensor would have seen these. The
discarded packets were mostly generated by services that probed a large range
of arbitrary IP addresses. Second, we discarded all packets targeting a local IP
address in the testing dataset targeted by incoming traffic that is not present in
the training dataset. Many packets in the original testing dataset targeted local
IP addresses not associated with normal traffic. Hence, for such traffic we cannot
derive a model of normality. The end result was a training dataset containing 15
sensors (15 different IP addresses).

4.2 The LERAD Integration

LERAD [8] is used as the detection mechanism of all community heads s∗ ∈ S∗.
Each community head runs LERAD on its aggregated training data to learn rules
that describe the network traffic of its community. These rules are the model of
normality used for finding anomalies in the aggregated testing dataset. Records in
the aggregated testing dataset are compared with the learned rules and the ones
violating these are assigned an anomaly score. The rule violations, or alarms,
are sent to the central administration interface u. The role of u is to collect and
sort all alarms by anomaly score.

In the process of building the aggregated testing and training datasets, net-
work traffic goes through pre-processing to extract 23 features which are effective
for LERAD [8]. For each observed TCP stream we extract the date and time; the
destination and source address; the destination and source port; the duration of
the TCP stream; the TCP flags of the first, second to last and last packets of the
TCP stream; the byte length of the stream; and the first 8 words of the stream.

4.3 Experimental Setup

We evaluate the accuracy and the precision of detection. Accuracy is defined
as the total number of attacks detected over the total number of attacks. The
precision equates to the true alarms (or true positives) over the total number of
alarms (true alarms + false alarms). Due to the stochastic nature of LERAD,
we run each experiment 500 times and average the accuracy and precision of all
runs. The confidence intervals of these measurements are omitted in the figures,
except for Figure 3(a), as they are insignificant.

The detection accuracy and precision are measured using the alarms the
central administrator interface u receives from all community heads. In a pre-
processing stage, duplicated alarms within a time-frame of 60 seconds are
removed as, according to the original DARPA competition, alarms are deemed
true if they detect an attack withing 60 seconds of its occurrence. We analyze
each alarm, from highest to lowest anomaly score, assessing if the alarm is a
true or false positive. This process continues until a predefined number of FAs is
reached and all remaining alarms are discarded. In every experiment, we test the
accuracy and precision with different numbers of random communities. Three
cases can be distinguished given the size of the community:
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Centralized System (nc = 15): All sensors send the extracted features to
a single community head.
Isolated System (nc = 1): A community for each sensor (|C| = 15) on its
own without any cooperation.
Communities (nc = x | 1 < x < 15): Variable number of communities.

On the one hand, the community of size 15 is expected to outperform all others,
in terms of detection accuracy and precision, given that all the features extracted
are available in one single location for analysis. On the other hand, it is expected
that 15 single independent communities will perform the worst overall as there
is no collaboration involved. In the following Subsection, we show that as com-
munities include more sensors, the detection accuracy and precision is improved
while at the same time leveraging the communication overhead. In addition, we
show that under certain conditions the communities achieve a detection precision
similar to the centralized system with a better detection accuracy.

4.4 Results

The analysis baseline is shown in Figure 3, where we compare the detection
accuracy and precision of every possible community size nc, as built by Algo-
rithm 1. Figures 3(a) and 3(b) show the outcomes of our experiments varying
the FA limit, i.e., changing the threshold for raising alarms. Each anomaly detec-
tion experiment is carried out until a predefined number of FAs are issued. At
this point, the detection is stopped and the results are recorded. We measure
the detection capabilities using 100, 150, 200 and 400 FAs. The testing data
corresponds to two weeks (10 total days) of data; as such, 100 FAs equates to
an average of 10 FAs per day, 150 to 15 FAs per day, and so on. The shaded
area around the solid lines in Figure 3(a) show the confidence intervals of the
measurements.

After 100 FAs are found in the sequential analysis of each alarm, from high-
est anomaly score to lowest, the accuracy and precision of the detections are
reported. Figure 3(b) shows that as communities grow in size, the precision is
improved. This translates to our hypothesis that the centralized system would
have the highest accuracy and precision rates. As seen in both Figures 3(a)
and 3(b), if the 100 FA restriction is relaxed, some community sizes are able to
improve the detection accuracy in contrast to the centralized system (when nc =
15). At 200 FAs, most community sizes have better detection accuracy than the
centralized system. In addition, relaxing the FA restriction allows the detection
precision to converge to the one of the centralized system. Lastly, at 400 FAs,
a point is reached where every community is able to outperform, in terms of
accuracy, both the individual approaches as well as the centralized system. It
should be noted that above the 400 FA limitation, no significant changes are
observed. However, as seen in Figure 3(b), the precision drops as the FAs are
increased. With the 200 FAs limitation, communities with nc ∈ [9, 11], quickly
approach the precision ratio of the centralized system.



678 C.G. Cordero et al.

(a) Detection accuracy evaluated at different False
Alarm (FA) rates.

(b) Precision of detections at different False Alarms
(FA).

Fig. 3. Detection accuracy and precision at different FAs when communities are built
using Algorithm 1.

The number of repeating sensors (ns) has also some interesting properties
that impact the detection accuracy of fixed community sizes. We show the exper-
iments of varying ns ∈ [1, 5] with Algorithm 2 in Figure 4(a). The graphs being
plotted show the impact ns has on the detection accuracy with respect to the
number of communities nt. As more sensor repetitions are allowed, the overall
accuracy is improved. Here we also see the centralized system (nt = 1) still out-
performing all others. Furthermore, Figure 4(b) strengthens our aforementioned
statement that as nt increases, the impact of ns decreases.

To sum up, our results indicate a number of interesting facts. First, as
expected, a centralized architecture outperforms all others when the threshold
for raising alarms is set high, i.e., when the number of FAs is constrained to low
values. Nevertheless, communities provide fair detection and precision ratio and
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(a) Detection accuracy depending on the number of
communities nt evaluated using different repetitions
ns.

(b) Detection accuracy depending on the number of
sensor repetitions ns.

Fig. 4. Accuracy when the communities are built using Algorithm 2.

better communication overhead in comparison to a centralized system, while
already outperforming individual IDSs at the lowest tolerated FA limit of 10
average alarms per day (100 FAs). Isolated sensors perform no collaboration
and, in consequence, create less accurate models of normal traffic than the ones
created by collaborating communities. Second, as the threshold for raising alarms
is lowered (allowing 200 or more FAs), communities start to perform similarly
to the centralized system; finally being able to outperform it (in terms of detec-
tion accuracy). This performance can be explained by the fact that, due to the
stochastic nature of our algorithm, there is a point where communities are able
to gather together enough sensors to generate accurate enough models of nor-
mality that explain general network traffic patterns. In addition, these results
also comply with our initial argumentation that our community-based CIDS has
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properties similar to ensemble learning. We are able to improve performance by
using different models of normality learned by different communities. Overall,
our results in Figures 3(a) and 3(b) indicate that it is possible to find a com-
bination of parameters nt, nc, ns and a particular threshold for raising alarms
that enables communities to perform close the a centralized system while reduc-
ing the communication overhead. For the particular instance of the modified
DARPA dataset, we found that the best results are found when the community
size nc = 9, the repetitions ns = 3, the total communities nt = 4 and the FA
threshold is set to allow 200 FAs.

5 Conclusion

The continuous sophistication of network attacks urges the development of novel
IDSs and architectures. Collaborative IDSs (CIDSs) focus on techniques that
group sensors and create a holistic view of the monitored network. In this paper,
we presented a CIDS concept that applies the novel idea of communities of
sensors that collaborate exchanging features of network traffic to create suffi-
ciently accurate normality models for performing anomaly detection. We devel-
oped stochastic algorithms that group sensors into communities and demon-
strate how these communities are able to leverage the detection capabilities and
communication overhead of CIDSs. Our experimental results indicate that our
community-based CIDS concept, performs better than isolated systems in terms
of detection accuracy and precision. Furthermore, we demonstrated that commu-
nities can perform similarly to centralized systems even though less information
is distributed to build normal models for anomaly detection and, as such, less
communication overhead is involved. Lastly, we observed that if the threshold
for raising alarms is lowered, communities are able to outperform the centralized
system.

Future work will comprise additional criteria for community creation. For
instance, we will investigate sensor coupling on the basis of exchanged finger-
prints of locally monitored traffic, to interconnect sensors with similar traffic
patterns. Moreover, we will focus on distributed algorithms for community for-
mation.
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based network intrusion detection: Techniques, systems and challenges. Computers
& Security 28(1–2), 18–28 (2009)

2. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Taxonomy and
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Abstract. As a main method in database intrusion detection, database anomaly 
detection should be able to detect users’ operational behaviours for timely pre-
vention of possible attacks and for guarantee of database security. Aiming at 
this, we apply cluster analysis techniques to anomaly detection and propose a 
novel density-based clustering algorithm called DBCAPSIC, which is adopted 
to clustering database users according to their behavior types and behavior fre-
quencies. Privilege patterns are extracted from the clusters and serve as a refer-
ence in anomaly detection. The simulation experiment proves that the algorithm 
can recognize the anomalous operations with few mistakes. 

Keywords: Database anomaly detection · Database security · Cluster analysis · 
Privilege pattern 

1 Introduction 

Computer science and network technology are developing rapidly, leading to data 
explosions in almost every field. Data has become an important asset today and  
database security is gaining more and more attention. [8-9] [14] As a crucial part in 
database security protection, database intrusion detection should be able to detect 
users’ operational behaviours for timely prevention of possible attacks.  

However, there is currently few intrusion detection researches focusing on database 
and the built-in security mechanisms are far from effective to detect and prevent ano-
malous behaviour of applications and intrusions from attackers [8-9].The existing 
intrusion detection systems are insufficient to make ideal intrusion detection for data-
bases. Therefore, the study of intrusion detection aiming at databases, especially the 
anomaly detection, is of great significance both theoretically and practically. 

Data mining techniques are widely adopted in the fields of business, medicine, 
education and engineering [10,19-23] because of the capability of discovering lots of 
useful knowledge automatically in the analysis of massive information. This inspire 
us to adopt some of the methods in our research. 
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In this paper, we focus on database anomaly detection and propose a “density-based 
clustering algorithm via pre-sampling and inferior centroid” (denoted as DBCAPSIC). 
We embed DBCAPSIC into the anomaly detection algorithm. With the privilege pat-
terns extracted from clusters generated by DBCAPSIC, we can detect the real-time 
operations on the monitored DBMS and recognize the anomalous operations. 

The rest of the paper is organized as follows: Section 2 introduces some prelimi-
nary concepts in the field of database intrusion detection. Section 3 first illustrates 
proposes the algorithm DBCAPSIC and states the anomaly detection method based on 
DBCAPSIC. Section 4 presents the experiment and analyses the experimental result. 
Section 5 concludes the whole paper.  

2 Preliminaries 
Before the description of the algorithm, we first provide some preliminary definitions 
in this section. 

2.1 Definitions of Objects 

Definition 1 The 2-tuple consisting of a database object and an operational  behaviour 
type is defined as a behaviour pattern (BP),i.e.  

 ,BP object type , 

where object is a database object such as a table, a view and so on, and type is the 
type of the behaviour operated on object, such as SELECT, UPDATE and so on. 

Definition 2 The 3-tuple consisting of a database object, an operational behaviour 
type and a frequency value of the behaviour is defined as a behaviour object (BO), i.e.  

 , ,BO object type frequency , 

where frequency is the times of the behaviour of type operated on object by a certain 
database user in a period of history. For example, if a user has made 3 SELECT    
operations on the table discount, then we get a BO like this: 

 , ,3discount SELECT . 

Definition 3 The 2-tuple consisting of a database user and its corresponding  
behaviour object set (BOS) is defined as a user object (UO), i.e. 

 ,UO user BOS , 

where user the database user, usually represented by the user’s account name, and 
BOS is the set of behaviour objects affiliated to the same user, i.e. 

 1 2, ,..., nBOS BO BO BO . 

For the convenience of the following narration, the definition of frequency function is 
given here. 
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Definition 4 The frequency function F(user,BP) is defined as the operational times 
(frequency) of operated by user in a period of history. 

Obviously for a certain behaviour object which is affiliated to user, let’s say 
 0 0 0 0, ,BO object type frequency , the following condition is satisfied that 

 0 0,frequency F user BP , 

where  0 0 0,BP object type . 
With the definition of frequency function we can have  

  0 0 0, ,BO BP F user BP , 

which is called the behaviour object’s 2-tuple definition. 
Furthermore, for the behaviour object set BOS affiliated to user, we can get the  

behaviour object set’s 2-tuple definition: 

 ,BOS BPS FS , 

where  1 2, ,..., nBPS BP BP BP and       1 2, , , ,... , nFS F user BP F user BP F user BP . 

2.2 Definition of Measurements 

Definition 5 Let UO1 and UO2 denote two user objects: 

 1 1 1,UO user BOS ,  2 2 2,UO user BOS , 

where BOS1 and BOS2 are represented with the 2-tuple definition, i.e. 

 1 1 1,BOS BPS FS ,  2 2 2,BOS BPS FS . 

Then the similarity function is defined as 

   
1 2

1 2

2 1
1 2

1 2

( , ) ( , )min( , )
( , ) ( , )

,
max ,

a BPS BPS

F user a F user a
F user a F user a

similarity UO UO
BPS BPS

 


, 

where BPS refers to the capacity of BPS. 

Definition 6 The distance function is defined as 

   1 2 1 2, 1 ,dist UO UO similarity UO UO  , 

From the definition, we know 0 1dist  , and the more similar the two use objects 
are, the smaller the distance value is, and vice versa. Specially, when the distance 
value reaches 1, the two user objects have completely different BPSs, and they 
represent database users of different classes.  
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3 Anomaly Detection with DBCAPSIC 

3.1 Basic Idea of DBCAPSIC 

The algorithm DBCAPSIC learns from the idea of k-means-type algorithms and den-
sity-based clustering algorithms, and it avoids the user-defined cluster numbers and 
the random selection of starting points, thus overcoming classic k-means algorithm’s 
susceptibility to initial conditions; Moreover, via “pre-sampling method”, 
DBCAPSIC managed to reduce the time complexity to  O n ,and by introducing the 
concept of “inferior-centroid”, it solves the “Clustering Failure” problem which 
common density-based clustering algorithms will meet on certain cases.  

For the convenience of the following narration, here we provide definitions of den-
sity and radius. 

Definition 7 For the data set denoted as  1 2, , , nE x x x … , the elements’ radius is 
defined as  

   
1 1

2 ,
1

n n

i j
i j i

radius dist x x
n n   


   , 

where n  is the capacity of E , that is n E .  

Definition 8 The element’s density is defined as 

    
1

, ,
n

j
j

x E density x sign radius dist x x


    ,where  
1, x 0
0, x 0

sign x


  
. 

3.2 Inferior-Centroid to Avoid “Clustering Failure” 

The initial algorithm we adopted runs like this: firstly we calculate the distance of 
each pair of objects and then we get radius; with radius we can calculate the density 
of each object to construct density set, i.e. 

  |densitySet density UO UO UOS  . 

We choose UOm from UOS, which has the largest density in densitySet,as a centroid. 
With UOm, we can find all objects within the radius of UOm and remove their densi-
ties from densitySet. We will repeat the process until densitySet becomes an empty 
set. Then we get the centroidSet. Next,we assign each object to its nearest centroid 
and get clusterSet. Finally we reset the centroid of each cluster to select the object 
with the largest density to represent the cluster. 

During the process of clustering with the density-based algorithms, we discover the 
following problems: The first problem is the high time complexity which reaches 
 2O n thus meeting a bottleneck when dealing with massive data. The second prob-

lem is the “Clustering Failure” —Some of the final clusters may contain user objects 
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that are complete different, that is to say, different classes of UOs are assigned into 
the same cluster.  

As for the first problem, we can use “pre-sampling method” to reduce the high 
time complexity. But for the second problem of “Clustering Failure” , we think it is 
the defect of common density-based algorithm. 

The cause of “Clustering Failure” is because when we judge whether an object UO 
is “qualified” to be added into the cluster clusteri, we just consider the similarity be-
tween UO and the current centroid icentroid and ignore the similarity between UO 
and other objects that already have the “quality” to join clusteri. Therefore, it may 
cause that objects that belong to the same cluster have low similarity or no similarity 
at all. 

To avoid “Clustering Failure”, we propose the definition of “inferior-centroid”. 

Definition 9 Inferior-centroid is the element in the cluster that is farthest from the 
centroid of the cluster, i.e. the object x is the inferior-centroid of cluster iff

,x cluster  and      , max , |i idist centeroid x dist centeroid x x cluster  . 

3.3 Description of DBCAPSIC Algorithm 

In DBCAPSIC, “pre-sampling method” is adopted to reduce the time complexity to a 
linear level and inferior-centroid is introduced to avoid “Clustering Failure”. 
  The description of DBCAPSIC is shown in Algorithm 1. 
 
Algorithm 1. DBCAPSIC Based on behaviour Type and behaviour Frequency  
 
1.Input: 
UOS---The database user object set ,i.e.  1 2, , , nUOS UO UO UO  . 
 ---The artificially specified merge coefficient, which belongs to the interval [0,1]. 
2.Radius Calculation. 

2.1 Pre-Sampling. Make a simple random sampling of UOS and get the sample set 
sUOS, with the capacity of n 

  ([ ] means to round down). 

2.2 Radius Estimation. The radius of sUOS ,denoted as sradius can be calculated 
and it serves as the approximated radius for UOS, i.e. radius sradius . 

3.Density Calculation. 
UO sUOS  ,calculate density(UO), and   |densitySet density UO UO sUOS  . 

4.Center User Object Selection. 
Initialize the center user object set cUOS and the inferior center user set iUOS, i.e. 
cUOS   , iUOS   . 
While densitySet   ,execute the following sub-steps: 

4.1 Select the UO with the largest density, denoted as UOm, then 
 mcUOS cUOS UO  ,  mdensitySet densitySet d  ;the current center user ob-

ject cUO=UOm ,the current inferior center user object iUO is null.  
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  4.2 iUO UOS  , 
  if iUO cUOS or iUO iUOS , then traverse the next user object 1iUO  ; 
  else if dist(cUO,UOi)>radius, turn to Step 4.3; 
  else we have  1,dist cUO UO radius , then execute the following sub-sub-steps: 

  4.2.1 If iUO is null, make iUO  the current inferior-centroid and put it into  
  iUOS , i.e. iiUO UO  iiUOS iUOS UO  , 

     and remove its density from densitySet , i.e. 

       densitySet densitySet density UOi  , then turn to Step 4.3. 

  4.2.2 If iUO is not null, then judge whether it is satisfied that    
   , idist iUO UO radius .If so, turn to Step 4.2.3, else turn to Step 4.3. 
  4.2.3 If dist(cUO,UOi)>dist(cUO,iUO),then update the current inferior-centroid,  

     i.e.  iUOS iUOS iUO  , iiUO UO  iUOSet iUOSet iUO  , 
     then turn to Step 4.3;else directly turn to Step 4.3.  

4.3 Repeat Step 4.1 and Step 4.2 until densitySet  , then we get the center user   
  object set cUOS and the inferior center user set iUOS . 
5.User Objects Clustering. 

5.1 Combine the center user object set with the inferior center user object set, i.e.                     
cUOS cUOS iUOS  . 
5.2 Initialize a cluster for each center user object in cUOS , then we get the  
cluster set, that is  1 2, , , rclusterSet cluster cluster cluster … , where r cUOSet  and 

. 
5.3 UO UOS  ,traverse cUOS  and find a certain center user object jcUO that sa-

tisfies      , min , |jdist UO cUO dist UO cUO cUO cUOS  , jcUO is the nearest 

center user to UO ,then remove the UO from UOS  and assign it into the jcUO ’s 

cluster, i.e.  UOS UOS UO  ,  j jcluster cluster UO  . 
5.4 After Step 5.3 has finished, we get UOS   , which means each user object has 
been assigned to a cluster, then we get the clusterSet as the initial clustering result. 

6.Cluster Merging. 
6.1 Set the merge threshold, i.e. MergeValue radius  . 
6.2 Select the two object 1cUO  and 2cUO  from cUOS that have the largest similari-
ty. If  1 2,dist cUO cUO MergeValue , which means the two clusters are still  
not so similar to merge, then Step 6 has finished, turn to Step 7; else merge  
the two clusters and remove the two center user objects from cUOS , i.e. 

3 1 2cluster cluster cluster  ,  1 2,clusterSet clusterSet cluster cluster  , 

 1 2,cUOS cUOS cUO cUO  .Then execute Step 6.3. 

,i icluster clusterSet cluster  
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6.3 Select a new centroid for 3cluster . Make a random sampling of 3cluster and get 

the sample set 3scluster with the capacity of 3cluster 
  , calculate the average  

distance between objects in 3scluster and make it the radius of 3scluster , named 
_clt radius ,with it we can calculate the objects’ density in 3scluster , choose the  

user object with largest density in 3scluster as the approximate optimal center  
user object, named 3cUO ,then 3cUO is selected as the center user object of 3cluster , 
i.e.  3clusterSet clusterSet cluster  ,  3cUOS cUOS cUO  , then return to  
Step 6.2. 

7.Center User Object Adjusting. 
7.1 Re-initialize cUOS , i.e. cUOS   . 
7.2 Pre-Sampling. 

icluster clusterSet  , make a random sample of icluster , the sample set is 

iscluster with the capability of icluster 
  . 

7.3 Cluster Radius Calculation. 
For each iscluster , calculate the approximated radius for icluster , i.e. 

   
1 1

2_ ,
1

i in n

i j k
j k ji i

clt r dist UO UO
n n   


   , 

where ,j i k iUO scluster UO scluster  and in is the capability of iscluster , i.e. 

i i in scluster cluster     . 

7.4 User Object Density Calculation. 

iUO cluster  ,     
1

_ _ ,
in

i j
j

clt density UO sign clt r dist UO UO


  . 

7.5 icluster clusterSet  ,choose the user object from its sample set iscluster with 
the maximum density , the user object is set as the final center user object of  

icluster , i.e. 0icUO UO ,  0cUOS cUOS UO  . 
8.Output; 
The user object cluster set clusterSet and the center user object set cUOS . 

3.4 Analysis of DBCAPSIC 

We adopt “pre-sampling method” in Step 2, Step 6.3 and Step 7.5 to get a linear time 

complexity (the time complexity is    
2

O n O n    ). 

We will explain how the inferior-centroid is adopted to solve the problem of  
Clustering Failure” . 
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In the process of clustering, the inferior-centroid gradually moves away from the 
centroid with the update. Finally the distance may be close to radius . The objects in 
the cluster may be divided into two classes, some of them are closer to the centroid 
while the others are closer to the inferior-centroid. We denote it as “Two-Class-
Cluster” (Fig.4). 

In summary, with inferior-centroids, the clusters can have at most two actual 
classes of elements. We can find that the inferior-centroid may become the potential 
centroid. Therefore, we have reason to put both centroids and inferior-centroids into 
centroid set in the step “Centroids Selection”, which means the clusters are all split 
into two clusters since inferior-centroids are regarded as centroids equally.  

Now we have guaranteed that elements of different classes are assigned into differ-
ent clusters. However, every “One-Class-Cluster” is also split into two clusters, that 
causes objects of the same classes may be also assigned into different classes. Since 
Clusters split from “One-Class-Clusters” usually have high similarity to each other 
and Clusters split from “Two-Class-Clusters” have low similarity to each other (The 
two clusters split from a “Two-Class-Clusters” each contain one class of objects). We 
then set a threshold  to merge clusters split from “One-Class-Clusters” (See Step 6). 
 should be set relatively high so that clusters split from “One-Class-Clusters” can be 
merged back into one cluster while clusters split from “Two-Class-Clusters”remain 
separate. After the clustering made by DBCAPSIC, we finally get clusters that 
represent each class of user objects.  

3.5 Anomaly Detection  

Through DBCAPSIC, we can get several user object clusters, each of which contains 
similar users, and we also get the center user object of each cluster. Because we think 
the BPS of the center user object represent the BPSs of user objects in the same clus-
ter, we extract the BPS of the center user object from the cluster and use it as the pri-
vilege pattern ( PP ) for anomaly detection. 

Definition 10 For a class of user objects, the 2-tuple consisting of a database user set 
and the behaviour pattern set(BPS) of the center user object of this class is defined as 
the privilege pattern ( PP ), i.e. icluster clusterSet  , correspondingly we have 

icUO cUOS , icUO is the center user object of icluster , thus the privilege pattern 
( PP ) of icluster  is  ,i i iPP US BPS ,where  . |i iUS UO user UO cluster   and  

.i iBPS cUO BPS .  

We embed DBCAPSIC into anomaly detection. DBCAPSIC is adopted to make 
cluster analysis of database user objects (UOs) and mine out the privilege patterns 
(PP) for each class of users from the clusters. With these PPs, we can determine 
whether the operations under detection is anomalous or not.   
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The description of anomaly detection algorithm is shown in Algorithm 2. 

 

Algorithm 2. Anomaly Detection Algorithm 

1.Input:  
HR ---Normal operational behaviour records collected in a long history period, 
R ---Current operational behaviour records for anomaly detection. 
2.UOS Construction. 

2.1 Initialize the user object set, i.e. UOS   . 
2.2 Traverse the operational behaviour records in HR . 

2.2.1 As for the ith record iHRitem , extract the user account name user , the data-
base object object , and the behaviour type type . 
2.2.2 If UO UOS  ,  ,UO user BOS , then turn to Step 2.2.3; else generate a 

new user object, that is  ,newUO user newBOS , where { }newBOS newBO , 

    , ,newBO object type frequency and 1frequency  . 

   Then add newUO to UOS , i.e.  UOS UOS newUO  ., and turn to Step 2.2.4. 

2.2.3 If BO BOS  ,  , ,BO object type frequency , then update its frequency, i.e.      
   . . 1BO frequency BO frequency  ; else generate a new behaviour object, i.e.  
    , ,newBO object type frequency , where 1frequency  . 

   Then add newBO to BOS , i.e.  BOS BOS newBO  , and turn to Step 2.2.4. 
2.2.4 If there still exists some record not traversed, then let 1i i  and return to 
step 2.2.1; else the traversal has finished and we get the user object set UOS . 

3.PPS Construction. 
3.1 Use DBCAPSIC to make cluster analysis to get clusterSet and cUOS . 
3.2 icluster clusterSet  , correspondingly we have icUO cUOS , and icUO is the 
center user object of icluster .With icluster and icUO we can construct the privilege 
pattern iPP , thus we get the privilege pattern set PPS , i.e. 

  1 2, ,..., rPPS PP PP PP , where r clusterSet . 
4.Anomaly Detection. 

Ritem R  ,extract the account name Ruser , the database object Robject and the  
behaviour type Rtype . 

4.1 If PP PPS  , .Ruser PPUS , then we need another judgment: If
.BP PP BPS  ,  ,R RBP object type , then Ritem is marked as normal; else  

Ritem is marked as anomalous. 
  4.2 Else Ritem is marked as anomalous. 
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4 Experiment and Analysis 

4.1 Evaluation Setting 

To evaluate the performance of anomaly detection, detection rate and false alarm rate 
are usually adopted as two evaluation indexes.  

Let N denote the number of operational behaviour records detected in a period, I
denote the total number of anomalous behaviour records among the whole records, C
denote the number of behaviour records that are considered anomalous, and M is the 
number of anomalous behaviour records that are neglected. 
 
Definition 11 The detection rate is defined as  

100%I M
I

 
  . 

Definition 12 The false alarm rate is defined as 

100%C M I
N

  
  . 

From the definition we know that the higher the detection rate is and the lower the 
false alarm rate is, the more perfect the detection result is.  

We target at the database of a simulated business system and collect the operational 
behaviour records with the database audit system (DAS) developed in our laboratory, 
The DAS capture the data packets and resolve from the packets the database user  
account name, the operational behaviour type, the database object, the source IP, the 
operational time and other useful information, which forms the operational behaviour 
records and can be used for intrusion detection.  

We select 11 main tables as the database objects,that is 

, , , , , ,
_ , , , ,

customer company discount product kind sales
sales item shopcart delivery goodback warehouse
 
 
 

. 

The operational behaviour types are  

 , , , , ,INSERT DELETE UPDATE SELECT DROP TRUNCATE . 

The database users has 7 main classes: 
Admin, Manager,SalesMan,StoreKeeper, TallyMan, HighCustomer, LowCustomer. 
After the collection and process of the normal operations in a period, we comprise 

a data set with the capacity of 2000000. 
The Anomaly Detection is based on the privilege pattern set ( PPS ) extracted from 

clusterSet and cUOS output from the DBCAPSIC.  
In this paper the anomalous behaviours are divided into 3 types: 
(1) An unknown user (illegal user) makes a database operation. 
(2) A legal user makes a database operation where the operational behaviour type 

is within its privilege pattern but the operational object is out of its privilege pattern,    
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(3) A legal user makes a database operation where the operational object is within 
its privilege pattern but the behaviour type is out of its privilege pattern. 

To validate the anomaly detection algorithm, we need to construct a record set that 
contains a large proportion of normal records and a small proportion of anomalous 
records. The record set serves as R in Algorithm 2 and we would like to find whether 
the anomaly detection algorithm is able to recognize the anomalous records in the set. 

The description of the anomalous records construction is shown in Algorithm 3. 
 

Algorithm 3: Anomalous Records Construction Algorithm 
 
1. Input: 
PPS --- The privilege pattern set extracted from clusterSet and cUOS ; 
HRSet ---The set of normal operational records collected by the database audit system     
        in a period. 
2. Initialize the anomalous record set, i.e. anomalousR   . 
3. HRitem HRSet  , extract from HRitem the account name user , the database ob-
ject object and the operational behaviour type type. Traverse PPS and find the
PP PPS that meets .user PPUS . Then randomly choose one way from Step 3.1, 
Step 3.2 and Step 3.3 to make transformation of HRitem . 

3.1 Select or construct an account name useranomalous that meets .anomaloususer PPUS , 
then construct the new behaviour record Ritem with useranomalous, object, and type. 
3.2 Select or construct a database object objectanomalous, that meets 

 . , ,anomalousBO PP BOS BO object type   , then construct the new behaviour 
record Ritem with user, objectanomalous, and type. 
3.3 Select or construct a behaviour type typeanomalous, that meets 

 . , , anomalousBO PP BOS BO object type   , then construct the new behaviour 
record HRitem with user, object, and typeanomalous. 

4. HRitem HRSet  ,we have made a transformation according to Step 3.1, Step 3.2 
or Step 3.3 and get n anomalous records correspondingly. Add the n anomalous 
records to anomalousR thus we get the anomalous record set. 
5. Output; 
The anomalous record set anomalousR . 

 
With Algorithm 3, we generate some anomalous records and mix them with many 

normal records, constructing several record set with the capacity of 1000. We adopt 
the anomaly detection algorithm (Algorithm 2) to validate whether it can detect the 
anomaly record correctly. 
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4.2 Result and Analysis 

In DBCAPSIC we set the merge coefficient 0.8  and 7 clusters are generated by 
DBCAPSIC. Each cluster has one privilege pattern, 7 privilege patterns mined out 
from the 7 clusters respectively compromises the privilege pattern set.1 

We generate some anomalous records based on Algorithm 3 and mix them with 
normal records, constructing several record sets with the capacity of 1000. We adopt 
the anomaly detection algorithm to validate whether it can detect the anomaly record 
correctly. 

The result of the anomaly detection is shown in Tab.1. 
From Tab.1 we can find that based on the privilege patterns extracted from clusters 

generated through DBCAPSIC we can detect the anomalous behaviour records effec-
tively. The detection rate reaches 100% but there are still some false alarmed 
records(that is, some normal behaviour records are mistaken as anomalous ones). This 
is because we use the center user object’s behaviour pattern set as the privilege pat-
tern of the cluster it belongs to; but sometimes the center user object’s behaviour pat-
terns cannot cover all normal behaviour patterns of users in the cluster. It is  because 
the center user does not make such operations or the operations has not been captured 
by the database audit system (the packet loss of the database audit system is not dis-
cussed here). Therefore, some normal operations will be mistaken it as anomalous 
ones. 

Table 1. Experimental Result of Anomaly Detection 

No. Capacity A.R. D.R. F.R. I.R.    
1 1000 25 30 5 0 100% 0.50% 
2 1000 25 26 1 0 100% 0.10% 
3 1000 30 32 2 0 100% 0.20% 
4 1000 30 30 0 0 100% 0.00% 
5 1000 30 33 3 0 100% 0.30% 

A.R.---The number of anomalous records.      
D.R.---The number of records detected as anomalous ones. 
F.R.---The number of records detected falsely as anomalous ones.  
I.R.--- The number of anomalous records neglected.     
 

However, if a normal operational behaviour is false alarmed,it can be corrected by 
human review, whereas if an anomalous behaviour is neglected, it may cause unex-
pected hazards afterwards, thus the neglected anomalous behaviour is more terrible 
than the false alarmed normal behaviour. It is plausible to eliminate neglected ano-
malous records at the expense of a little increase of false alarm rate. 

                                                           
1 We cannot present the mined privilege patterns due to space limit, please refer to 

http://yunpan.cn/cw9LYX9FnTPLr  (with the password :d7f3) for the full version of this 
paper. 
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5 Conclusion 

Anomaly detection is an important aspect in database security and is attracting more 
and more attention recently. We adopt cluster analysis techniques in anomaly detec-
tion and propose a novel clustering algorithm called DBCAPSIC. With DBCAPSIC, 
we can mine out the privilege patterns for different classes of users from massive 
history operational records, and then we can detect the real-time operations made by 
various types of database users and discover the anomalous operations among them. 
The simulation experiment shows a relatively good performance of our method. This 
is of enormous practical value since it enriches methods for the database audit system 
in anomaly detection and improves the adaptability.of the database audit system under 
unsupervised conditions to discover intrusion behaviours. More effort is needed in 
future study to improve the representation of privilege pattern for each cluster so that 
the false alarm rate can be further reduced.   
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Abstract. In this paper, we investigate user selection algorithms for
massive MIMO downlink wireless channel using secrecy rates. Massive
MIMO is new disruptive wireless communication technology that exploits
the benefits of having large number of antennas at the base station (BS).
Given the fact of large antenna dimensions at BS, still the number of
devices/users in the system are larger than total antennas. Hence, selec-
tion of an optimal set of devices/users for efficient resource allocation
is a critical issue. This paper investigates user selection algorithms in
massive MIMO downlink/broadcast wireless system. Traditional selec-
tion algorithms are generally based on channel strength, channel angle
information, algorithm complexity and capacity maximization. In this
paper, we investigate selection algorithms based on secrecy rate which
is important parameter for secure transmission and compare the perfor-
mance of this new approach with existing algorithms.

Keywords: Conventional MIMO · Massive MIMO · Secure transmis-
sion · User selection · Secrecy rate · Active attack

1 Introduction

Security in any wireless communication is an utmost important issue due to the
nature of wireless transmission. At the application layers, security is achieved
through encrypting data before transmission. In most of the wireless networks, it
is assumed that encrypting data at the application layer inherently incorporates
the physical layer security as well. However, such encryption techniques do not
consider the challenges and problems at the physical layer implementation. In [1],
authors showed that using large number of antennas in a communication system
makes it more robust and protective against passive eavesdropping attacks. It
is also shown that with massive MIMO and passive eavesdropper, the situation
of physical layer security (PLS) changes dramatically. This enhanced security
is due to the fact that in conventional MIMO, the two rates of a legitimate
device and an eavesdropper are of similar order of magnitude, whereas in massive
MIMO these two rates have a considerable difference and hence the secrecy rate
becomes an important measure. Massive MIMO also provides an advantage that
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wireless channels of different devices/users are almost orthogonal to each other
that helps the BS to align and beamform transmission signals to intended users
more efficiently.

Massive MIMO is one of the major disruptive technologies for next genera-
tion 5G wireless networks where huge amount of devices will communicate with
each other via internet [17]. Authors of [17] proposed that massive MIMO can be
used to multiplex signals from several devices on each time-frequency resource
and can be beamformed towards the intended users while minimizing the inter-
ference for other devices. It is anticipated that with a large number of devices
communicating simultaneously; security, privacy and data integrity will become
critical issues in designing future generation wireless networks. Authors of [18],
present a new concept of embedded security at the physical layer by realizing that
current security solutions fall short in terms of scalability with sheer number of
devices connected in 5G systems. Their proposal is to exploit the reciprocity and
fading of wireless channel information and to establish a common secret code
between sender and transmitter from the channel information measurements.
This information will not be accessible / decodable by the eavesdropper.

So the challenging task here is that when there are large number of devices
contending for the resource from base stations, how to schedule a proper set of
devices such that information to them can be transmitted securely? In massive
MIMO system we have large number of antennas at the BS compared to con-
ventional MIMO systems. Therefore, this new system can accommodate a large
number of devices simultaneously. However, with the introduction of new wire-
less paradigms, such as Internet of Things (IoT), where each device is connected
to the other device and access point (BS), proper device scheduling within given
resources is an important issue. In conventional MIMO, efficient selection and
scheduling of devices play a key role in the system throughput [9, 10, 11, 15].
However, in massive MIMO the research area of efficient and secure selection
of devices is yet not fully explored. In this paper, we focus our attention to the
problem of device selection and secure transmission of the information. We first
discuss some already existing device selection algorithms for conventional MIMO
that we can extend to massive MIMO systems. Then we propose a new device
selection algorithm based on secrecy rate that can make sure that the infor-
mation can be transmitted securely since it satisfies the condition of secrecy
rate. Each device calculates its channel information and sends it back to the
base station through an error free and minimum delay feedback channel. The
base station calculates the secrecy rate for each device knowing that there is
an eavesdropper and also knowing its channel information. BS then selects only
those devices having data rates higher than the secrecy rate making sure that
signal transmitted for a device is beamformed in its direction and the leakage
signal towards eavesdropper is minimum. This algorithm performs reasonably
well compared to other existing algorithms.

Rest of the paper is organized as follows. Section 2 describes Multiple Input
Multiple Output (MIMO) systems. In this section, we describe both conventional
and massive MIMO systems in detail. Section 3 presents system and wireless
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channel model used in this paper. Section 4 discusses user selection algorithms.
In this section, we present both traditional and secrecy rate based user selection
algorithms. Section 5 presents simulation results and discussion on the results.
Finally, in Section 6 we conclude the paper.

2 Multiple Input Multiple Output (MIMO) Systems

In this section we introduce and discuss multi-user MIMO systems. Although,
MIMO technologies are being used in the current wireless networks, its new and
advance versions are still being introduced. We will highlight the importance and
advantages of MIMO in wireless communication systems. We will also discuss
conventional and massive MIMO and present the main differences in the two
different yet similar technologies.

2.1 Conventional MIMO

In conventional MIMO systems, range of BS antennas, generally, is assumed
between 2 to 8. Such MIMO systems promise high system throughput without
increasing the transmit power or using large bandwidth since both are scarce
resources. With the emergence of MIMO technology in mid 1990s, there has
been a lot of interest in MIMO systems research and now is being used in most
of the contemporary wireless communications. In addition to conventional time
and frequency dimensions, MIMO leverages the benefits of spatial dimension
[8, 9, 10, 11]. A typical conventional multi-user MIMO communication system
is shown in Figure 1.

Efficient resource allocation and user selection is one of the important
research areas of MIMO wireless systems. With the introduction of various new
applications in wireless communication systems, the number of users (devices)
has been increased exponentially as well. It became difficult for MIMO systems to
serve all of these mobile devices / users simultaneously. Besides this, some users
/ devices / applications demand different resources than others. This has made
user selection problem a trivial problem to solve for MIMO systems. In conven-
tional MIMO, a number of researchers proposed user selection and scheduling
algorithms based on various criterion such as channel strength, angle of separa-
tion among users, rate supported and complexity [9, 10, 11] few to name. We
will further discuss different user selection algorithms in Section 4 of the paper.

2.2 Conventional MIMO Security Model

In conventional MIMO systems, secrecy capacity is defined as the system capac-
ity that promises the integrity and confidentiality of the transmitted data. Most
common MIMO security model is known as wiretap channel model where a
transmitter sends some legitimate confidential information to one user for which
it is intended whereas the other user is an eavesdropper [12]. In this paper, our
discussion provides an insight on user (device) selection algorithms based on the
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Fig. 1. A typical single user (left) and multi user (right) conventional MIMO wireless
communication system.

secrecy rate that guarantees the promised data rate for intended user and makes
the rate zero for an eavesdropper. The security model for a received signal, yk,
using MIMO system can be written as follows:

yk = hkwk(sk + ak) +
M∑

j=1,j �=k

hjwj(sj + aj) + nk, (1)

where ak represents the attack vector from a non-legitimate user. It is worth
noting that secrecy rate in conventional MIMO model is of similar magnitude
as that of other rates, making it difficult to select an efficient user subset.

2.3 Massive MIMO

In massive MIMO (or large-scale MIMO) systems, number of antennas at the
base station is in the range of hundred or more. This new MIMO paradigm has
recently been proposed by T. L. Marzetta in his paper cited as [4] and later on
many others such as [5, 6]. There has been a lot of interest in massive MIMO
from academic and industrial communities. This is due to the reasons that mas-
sive MIMO potentially can fulfill the demand of big data services and the high
bandwidth requirements in emerging Internet of Things (IoT) technologies. The
author in [4] presented a multi-user MIMO system with an infinite number of
base station antennas in a multi-cellular environment. We refer such a MIMO
system as massive MIMO system here. In [6], authors discussed the potential
advantages of massive MIMO system and highlighted that with the availabil-
ity of large Degrees of Freedom (DoF), hardware-friendly signal shaping can be
achieved for the better system performance. With the introduction of many sig-
nal streams in massive MIMO systems, security challenges grow as well. The
system needs to integrate more efficient and effective encryption before trans-
mitting the data to intended users.
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3 System and Transmission Model

In this section, we present system and transmission model. We consider a single
cell multiuser massive MIMO downlink (from BS to users) where base station
(BS) transmits signals to multiple mobile terminals (MT) simultaneously as
shown in Figure 2. These MTs can be either hand held devices or any other
mobile device with the wireless communication capability. Let us assume that
the BS has M transmit antennas and there are K number of MTs where each MT
has a single receive antenna. This system model can easily be extended to MTs
with multiple receive antennas, but for the sake of simplicity we assume MTs
with a single receive antenna in this paper. Let us consider that the BS transmits
a confidential data signal sk to the kth MT. We can then denote the signal vector
to all K MTs by s which is given as s = [s1, s2, · · · , sK ]T ∈ C(K×1) where each
signal vector is precoded using a beamforming matrix, W = [w1,w2, · · · ,wK ] ∈
C(M×K) before transmission. Let us assume the total transmit power to be P and
there is equal transmit power allocated to each MT, denoted by p and defined
as p = P/K. Then the received signal at kth MT denoted by yk and at the
eavesdropper denoted by ye is given by:

yk =
√
phkwksk +

K∑

j=1,j �=k

√
phjwj + nk, (2)

and
ye =

√
pHWs + ne, (3)

where hk ∈ C1×M represents the wireless channel vector of the kth MT with
its elements being complex Gaussian random variables with zero mean and unit
variance. Let us denote the rate of kth MT by Rk and is given as follows:

Rk = log2 det
(

IM + pwkhkhH
k wH

k

)

, (4)

where (.)H represents Hermitian operator. Similarly, the capacity of an eaves-
dropper represented by Ce is given as follows:

Ce = log2 det
(

IM + pwkhehH
e wH

k

)

. (5)

Before transmission of the signal, it has to be precoded at the BS in order to
minimize the interference for other users and also preventing for an eavesdrop-
per. In conventional MIMO systems, typically Zero Forcing (ZF) and Minimum
Mean Square Error (MMSE) based precoding schemes are used. However, due
to huge computational complexity of these schemes for large dimensional arrays,
typically of complexity order as O(L3) where L is the array size [13], we adopt
the precoding approaches of simple ZF and conjugate beamforming (CB) as
discussed in [19]. Therefore, the precoding vector for each user using ZF beam-
forming can be calculated as wk = hH

k /||hk||.
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Fig. 2. Massive MIMO downlink / broadcast system used in this paper.

3.1 Feedback Model

In MIMO broadcast system, BS selects a set of devices based on certain infor-
mation that it receives from devices. In most of the cases, this information is
relevant to the wireless channel condition of the device. BS transmits a pilot
signal for all active MTs in its vicinity. All MTs receive this pilot signal and
send the information back to the BS via an error free low time delay feedback
channel. It is assumed in the system model that this feedback has no error and
eavesdropper or adversary user cannot tamper this information. However, this
assumption may not be very realistic since active eavesdroppers can access this
information and then can modify it to benefit the wireless transmission in their
own favor. However, for the sake of simplicity, we assume that this feedback is
error free and attackers cannot access this information. BS then uses this feed-
back in the selection process. We refer this channel information as the Channel
State Information at Transmitter (CSIT) in the remaining paper. The feedback
path is shown in Figure 2.

4 User Selection Algorithms

Although in massive MIMO systems, number of antennas at the BS are very
large, we still consider that total number of users in the system are larger than
total number of antennas at the BS. Therefore, BS needs to select a subset of
users from all active users for transmission. Let us assume that the BS selects a
subset S of users from K total active users such that S ≥ K . BS then precodes
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the signals of these selected users before transmission by using the precoding
matrix W . There are a large number of user selection schemes available in con-
ventional MIMO systems that can be used in massive MIMO systems as well.
However, in this paper we discuss only three existing schemes. Our contributions
in this paper are to extend these techniques from conventional MIMO to massive
MIMO while considering the secure transmission in the selection process. Also
we present a new user selection technique that is based on secrecy rate and we
compare its performance with other existing schemes. In particular, user selec-
tion schemes that we present in this paper are: (i) Exhaustive Search (ES), (ii)
Frobenius Norm based Selection (FNS), (iii) Round Robin Selection (RRS), and
(iv) Secrecy Rate based Selection (SRS). The user selection techniques generally
introduce extra computational complexity in the system, but on the other hand
they also maximize the system performance which is essential for securing the
data transmission at physical layer. Among all user selection techniques, ES is
the best and optimal selection technique as discussed in Section 4.1. ES guar-
antees the maximum achievable system throughput, however, it also has very
high search complexity. Also its search domain increases exponentially with the
increase of users in the system. Therefore in practical systems, where number
of users is generally very large, ES cannot be implemented. For example, in
our system model we are required to select S users out of total K users with
M number of antennas at the BS in such a way that for each user the secrecy
rate condition is satisfied. Then the search domain for BS using ES selection
technique becomes as follows:

DS =
(
K

S

)

=
K!

S! × (K − S)!
(6)

Example: Let us consider that we have a conventional MIMO system where BS
performs the user selection. We are interested to calculate the search complexity
in this system for the BS. Let us assume that there are K = 50 active devices
in the system and the BS has M = 10 antennas so that is why it can possi-
bly select S = 10 maximum devices for transmission simultaneously. This is a
common scenario in most of the current wireless communication systems. Then
the search domain for this selection process using ES with Equation (6) will
become as 1.0272 × 1010 combinations which is very large considering the real
time communication scenario. Therefore, it is important that we find such selec-
tion schemes that have low complexity for practical considerations, yet provide
an acceptable system performance. In the following we discuss each device/user
selection scheme.

4.1 Exhaustive Selection (ES)

In general Exhaustive Selection (ES) process computes all possible combinations
therefore it has the largest search space; as a result its complexity grows expo-
nentially with the linear increase in dimensions. ES in particular is not suitable
for massive MIMO systems with large number of devices in the system. But on
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Table 1. FNS based selection algorithm

Initialization: S = ∅, BS transmits pilot signal.
Step 1: Let H ∈ CK×M be the channel matrix of all
active MTs and is defined as H = [h1,h2, · · · ,hK ] where

hk ∈ C1×M is the channel vector of the kth MT
and k = 1, 2, · · · ,K.
Step 2: Compute ||h||2F using Equation (7) for each MT.
Step 3: Each MT sends its ||h||2F value as a scalar feedback
to the BS using error free feedback channel as shown in Figure 2.
Step 4: BS orders all received ||h||2F such that
∥

∥h1

∥

∥

2

F
>
∥

∥h2

∥

∥

2

F
> · · · , ∥∥hK

∥

∥

2

F

where hk =
∥

∥hK

∥

∥

2

F
represents the ordered values.

Step 5: Construct at the BS: H = [h1,h2, · · · ,hK ].

Step 6: Select S MTs from H such that S = {m1,m2, · · · ,mS}
is the set of MTs for transmission.
Step 7: Calculate the precoding matrix for S selected MTs

such that W = [w1,w2, · · · ,wS ] where wk =
h
H
k

‖hk‖ .

Step 8: Calculate the rates of transmission for S MTs
using Equation (4).
Step 9: Terminate the algorithm.

the other hand it is an optimal selection scheme in the context of maximizing
the system throughput. In this paper, we use ES only to benchmark the other
schemes since this is the maximum throughput that can be achieved in a multi
user / device MIMO communication system.

4.2 Frobenius Norm Based Selection (FNS)

In Frobenius Norm based Selection (FNS), each MT on receiving the pilot signal
from BS, calculates the squared Frobenius norm of its wireless channel h with
dimensions 1 × M as follows [14]:

||h||2F = (hHh). (7)

Different variants of FNS algorithm are available in MIMO literature such as
[9, 10, 15] few to mention here. FNS is attractive in practical implementations
since it requires only scalar feedback to be transmitted back to the base station.
In a large device regime, such as IoT, this algorithm can be a favorable choice.
The complete FNS algorithm implemented at BS is given in Table 1.

4.3 Round Robin Selection (RRS)

Round Robin Selection (RRS) is the simplest and the fairest selection technique
which does not require CSIT. In this technique a subset or group of MTs is
selected with equal probability. In a single MT case, required transmit/ receive
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antennas are selected from total antennas randomly and the channel capacity is
based on these selected antennas. In multi MTs, however, the subset of required
MTs is selected randomly. The sum capacity of the system is based on these
selected devices. The selection probability is kept uniform, so as to eliminate the
fairness problem completely. The performance of this approach is very poor and
it only sets the lower limit for performance. It has least computational complexity
and also does not cause fairness problem but on the other hand results in the
lowest sum capacity.

4.4 Secrecy Rate Based Selection (SRS)

In this selection algorithm, we make sure that a user / device receives guaranteed
rate for transmission. In this proposed scheme, the BS selects a subset of devices
in such a way that the secrecy rates of the selected MTs are greater than zero.
A similar user selection algorithm for conventional MIMO downlink system is
presented in [16]. Our proposed algorithm is different from the algorithm pre-
sented in [16] that it is for massive MIMO downlink systems and it is based on
the selection process given in the following criteria [7].

Rsec
k = [Rk − Ce]+ (8)

where [x]+ = max{0, x}, Rk and Ce are rates of kth MT and capacity of the
eavesdropper respectively. In case, if BS does not find any user greater than the

Table 2. SRS based selection algorithm

Initialization: S = ∅, BS transmits pilot signal and
it knows the channel information of eavesdropper i.e. He.
Step 1: Let H ∈ CK×M be the channel matrix of all
active MTs and is defined as H = [h1,h2, · · · ,hK ] where

hk ∈ C1×M is the channel vector of the kth MT
and k = 1, 2, · · · ,K.
Step 2: Each MT measures its wireless channel hk ∈ C1×M

and sends this information back to the base station.
Step 3: BS calculates the secrecy rate Rsec

k using
Equations (4, 5, 8).
Step 4: BS orders all secrecy rates Rsec

k such that

R
sec
1 > R

sec
2 > · · · , Rsec

K

where R
sec
k represents the ordered value of secrecy rate.

Step 5: Construct at the BS: R = [R
sec
1 , R

sec
2 , · · · , Rsec

K ].

Step 6: Select S MTs from R such that S = {m1,m2, · · · ,mS}
is the set of MTs for transmission.
Step 7: Calculate the precoding matrix for S selected MTs

such that W = [w1,w2, · · · ,wS ] where wk =
h
H
k

‖hk‖ .

Step 8: Transmit S MTs with the calculated secrecy rates.
Step 9: Terminate the algorithm.



706 M. Arif Khan and R. Islam

secrecy rate, it does not transmit any user during that particular time slot. The
complete SRS algorithm implemented at the BS is given in Table 2.

5 Numerical Results and Discussions

In this section we present some numerical results and prepare discussion on these
results. First experiment is based on the total system capacity where we compare
the sum-capacity lower bound results of massive MIMO with conjugate beam-
forming and zero forcing precoding as described in [19]. This sets the benchmarks
for other results. Figures 3 and 4 show these results. The system is operating
at -6.0 dB SINR and number of users are varied as K = [16, 32, 64, 128]. It is
interesting to note that both results have different operational insight for the sys-
tem. Figure 3 shows expected growth in system capacity along with base station
antennas and number of users in the system. However, in Figure 4 with ZF pre-
coding the system performance does not increase as that of with CB precoding
and it shows a number of interesting crossing points as for as system operation is
concerned. For example, for considerable large number of base station antennas,
system performance still remains below 0 bits/sec/Hz which suggests that ZF
precoding is not optimal under such conditions. It is also interesting to note that
ZF with large number of users and base station antennas does not perform well
compared to less number of users and base station antennas, for example, see the

Fig. 3. Total capacity versus number of base station antennas for massive MIMO down-
link with CB precoding.
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curve with K = 128 users. One of the reasons for this poor performance could
be that since ZF requires channel matrix inversion for nulling the interference,
with large number of users and base station antennas this channel inversion may
have some error and hence does not reduce the interference properly.

In figure 5, we show the sum rate per user with different user selection algo-
rithms. The figure shows results of four different user selection algorithms. Black
curve shows the sum rate when base station has perfect channel state informa-
tion and we call this as perfect CSIT. This is the maximum data rate that
base station can transmit theoretically since achieving perfect CSIT in practical
systems is not feasible. The red curve shows Round Robin (RR) user selection
algorithm when base station randomly selects M number of users and transmits
them. In all the simulations we have K = 100 and M = 50 . This result clearly
shows inferior performance compared to other algorithms which shows that we
need to apply some type of selection algorithm at the base station. However,
one interesting feature of RR algorithm is that it is very simple to implement at
the base station and does not require high computing resources. So in scenarios,
where performance of the system does not matter very much, RR will be the
algorithm of choice. Green curve in the figure shows Frobenius norm (FNS) user
selection. In this algorithm as mentioned previously, base station calculates the
Frobenius norm of all users and then selects M best users for transmission based
on its channel norm. In blue curve, we show the result of eavesdropper capacity.

Fig. 4. Total capacity versus number of base station antennas for massive MIMO down-
link with ZF precoding.
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Fig. 5. Sum rate per user versus signal to noise ratio (SNR) with different user selection
algorithms.

Fig. 6. Secrecy rate of a real user and eavesdropper comparison showing when user
should be selected for transmission.
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We assume that eavesdropper has perfect channel knowledge and it can achieve
maximum capacity of single user equivalent. It is interesting to note that sum
rates of FNS and eavesdropper cross each other at high SNR regime. In the
proposed scheme if base station selects a user with its sum rate greater than
eavesdropper rate then it is not possible for the eavesdropper to decode that
users data.

Figure 6 shows an interesting implication that when a user must be selected
for transmission securely. It shows the rate comparison of a single user with
the rate of an eavesdropper and also shows the times when a real user is safe
for selection without the ability of eavesdropper to decode its data. When the
channel rate of a real user is higher than the data rate of eavesdropper, then it
should be selected for transmission as shown in Equation (8). This result shows
the evidence that it is not feasible for a user to be selected every time even
though its channel may support a good data rate.

6 Conclusion

In this paper, we discussed the problem of user / device selection based on secrecy
rate in massive MIMO downlink system. This is particular interesting for future
5G based systems where large number of users / devices are expected to share
the available resources. Security, privacy and data integrity in such situations
become even more important than in the systems today. Our results show that
if a user / device is selected based on its secrecy rate, it has high probability
of secure transmission. We have also shown the comparison of two precoding
schemes for multi-user downlink scenarios. It is interesting to note that a user /
device may not be suitable to transmit to every time if its data rate is less than
the data rate of an eavesdropper. In future, we will extend these results with
other layers and applications in the context of future wireless communication
systems. Also we are interested in exploring the embedded security concept in
future wireless networks.
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Abstract. Human surveillance is an important research activity for security 
concern. Due to the increasing demand of security in different domains, devel-
opment of smart and efficient surveillance system has attracted immense inter-
est in recent years. Most of the existing surveillance systems are based on mo-
nocular camera and limited by their fixed view angles and hence cannot provide 
sufficient three-dimensional depth information for person recognition and track-
ing. This paper proposes an efficient and cost-effective human surveillance sys-
tem using stereo vision technique. The system uses a multi-view stereo camera 
pair for image capturing and analyzes the stereoscopic pictures to estimate the 
3D depth information for accurate detection and tracking of the human objects. 
The system can provide automatic warning in case of unrecognized people and 
entrance in the restricted zones. Experimental results are arranged to demon-
strate the robustness and efficiency of our proposed system. Our system is very 
inexpensive and computationally fast comparable to the existing state-of-the-art 
surveillance systems. 

Keywords: Security · Surveillance system · Access control · Stereo vision · 3D 
depth information · Person detection and tracking 

1 Introduction 

Human surveillance is attracting more importance nowadays due to the increasing 
demand of security and defense in different environments including door access con-
trol, border surveillance, immigration control, monitoring employee activities, identi-
fying suspicious people, theft and vandalism deterrence, preventing criminal acts and 
so on [1, 2]. 

Several techniques have been developed in last decades for automatic surveillance 
of people using CCTV cameras and sensors. According to the number of cameras 
used in these techniques, surveillance systems can be classified into two categories: 
monocular and multi-camera based system. Most of the conventional surveillance 
systems widely used for security applications in supermarkets, airports, stations, ATM 
booths and other public places, employ monocular or single camera [3-7]. They are 
limited by their fixed view angles, fixed resolutions and limited depth information. 
These limitations make it complex to estimate and recover the precise 3D information 
as well as motion behavior of human objects for accurate and robust tracking. 



712 M. Chowdhury et al. 

Due to the recent advancement in vision technology, multiple camera based sur-
veillance systems have attained the superiority for tracking people with different view 
angles [8-10]. These systems are capable of viewing an object from multi-viewpoints 
and hence can deal better with occlusions. However, such systems are very expensive 
and difficult to set up due to the problems of establishing their geometric relationships 
or synchronizations since they require a large number of cameras [11]. 

In recent years, researchers have proposed stereo vision based surveillance systems 
for security applications [12-14]. Stereo vision has the advantage to estimate the 3D 
position of an object in a given coordinate system from two stereoscopic images [15]. 
Stereo vision based surveillance systems can easily segment an image into objects to 
distinguish people from their shadows and provide more accurate location informa-
tion for their tracking. Most of these systems generally employ a static pan-tilt-zoom 
(PTZ) camera, whose pose can be fully controlled by pan, tilt and zoom parameters. 
The PTZ cameras are able to obtain multi-angle views and multi-resolution informa-
tion However, the main disadvantage of these cameras is that they are unidirectional 
and their image resolution is poor [16, 20]. The existing stereo based surveillance 
systems are computationally expensive and hence they are not suitable for real time 
applications. 

To overcome the aforesaid challenges in surveillance systems, we propose an effi-
cient, computationally fast and cost-effective surveillance model for security applica-
tions. The system employs a low-cost stereo camera pair for image capturing and 
recovers the 3D depth information of the human object exploiting a fast stereo vision 
algorithm. The proposed system includes robust and efficient algorithms for human 
face identification, stereo correspondence matching, 3D depth extraction, and location 
estimation of the human objects for security monitoring. 

The rest of the paper is structured as follows. Section 2 provides a brief discussion 
on most related works in this area. In Section 3, we present the architecture of our 
proposed surveillance system. Experimental results with real time image sequences 
are reported in Section 4. Finally, Section 5 concludes the paper and gives directions 
for future work. 

2 Related Works 

In the last few decades, lots of related research works have been performed by the 
researchers to develop smart and efficient human surveillance systems. In this section 
we attempt to review some of them which are more relevant.  

Chen et al. [16] propose a vision system based on an omnidirectional camera and a 
PTZ camera. The omnidirectional camera monitors the surveillance object and the 
PTZ camera captures the image of the target object. These two cameras work in a 
master-salve mode. This surveillance system is employed mostly in indoor environ-
ment. Adorni et al. [17] propose a binocular vision system using two omnidirectional 
cameras which is generally used in robot vision. The system is capable of enlarging 
view fields. The main disadvantage of these vision systems is that the image resolu-
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tion of the omnidirectional camera is poor. This drawback has great limitation to-
wards their application in real time.  

Munoz-Salinas et al. [18] propose an object tracking method which can combine 
color and depth information using dual static cameras. In another work [19], they use 
plan-view maps to represent stereo information more efficiently. The main drawbacks 
associated with these systems are that they cannot obtain multi-resolution and multi-
visual-angle information. 

Bimbo et al. [20] propose a novel framework exploiting two PTZ cameras aiming 
to relate the feet position of a person in the image of the master camera with the head 
position in the image of the slave camera. Benjamin et al. [21] present a multi camera 
based surveillance system that can automatically extract useful information from a 
given scene. It also alerts the user if the tracked object breaks certain defined regula-
tions. Wang [22] illustrates an overview of the recent advances in the field of multi 
camera video surveillance. It compares the existing solutions and also describes the 
prevalent technical challenges. 

Darrell et al. [23] propose a system for tracking people using stereo cameras. The 
stereo method is used to isolate people from other objects and background. They inte-
grated color and face detection modules in the system. Bahadori and Iocchi [24] pro-
pose a semi-automatic surveillance system for museum environment using stereo 
vision. The system can detect the situations for providing warning messages to the 
surveillance personnel. 

Manap et al. [25] propose a system for smart surveillance using stereo imaging. 
The system uses two smart IP cameras to obtain the position and location of objects. 
The position and location of the object are automatically extracted from two IP cam-
eras and subsequently transmitted to an ACTi Pan-Tilt-Zoom (PTZ) camera, which 
then points and zooms to the exact position in space. This work involves video analyt-
ics for estimating the location of the object in a 3D environment and transmitting its 
positional coordinates to the PTZ camera.  

Cui and Li [26] propose a surveillance system mainly used for indoor scene moni-
toring using binocular vision. The system uses two PTZ cameras and employs a recti-
fication-disparity-based method to establish correspondence between two image se-
quences. The system utilizes depth information to deal with occlusion problem in 
object tracking. 

However, these existing surveillance systems are commercially expensive and re-
quire high computation time. With a view to overcome the limitations of the existing 
systems, we attempt to propose an effective and inexpensive surveillance model using 
a fast stereo vision technique. The proposed system can measure the precise 3D posi-
tion of the human object for accurate detection and tracking. 

3 Proposed System Architecture 

The proposed human surveillance system consists of the following components:  
(i) Pre-processing for image refinement, (ii) Face detection for person identification, 
(iii) Stereo correspondence matching for finding disparities in the image sequences, 
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(iv) Dense depth estimation for recovering the 3D position of the human object, and 
(v) Person tracking or localization. Fig.1 shows the general architecture of the pro-
posed system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Architecture of the proposed surveillance system. 

3.1 Preprocessing of the Stereo Images 

In real time stereo vision systems, there may be significant amount of noise in the 
captured image pair due to the differences in camera orientation and lighting condi-
tion. For this reason, we employ a fuzzy median filtering technique [27] for refining 
the stereoscopic images corrupted by noise. This filter employs fuzzy rules for decid-
ing the gray level of the pixels within a window in the image. This is a variation of the 
Median filter and neighbourhood Averaging filter with fuzzy values. 

3.2 Face Detection 

Human face plays an important role in person recognition in vision-based surveillance 
system. Face detection is concerned with determining the part of an image which 
contains face. Different techniques [28-32] have been developed for face detection in 
last decades, which includes: geometric modeling, genetic approach, neural network, 
principal component analysis, color analysis and so on. 

Stereo image pair 

Correspondence Matching 

Disparity Estimation 

Pre-processing 

Human Face Detection 

Person Identification 

Access Allowed or Alarm 
Message for entrance in the 

restricted zone 

  Face Database 

    Location Estimation 

3D Depth Extraction 



 Human Surveillance System for Security Application 715 

This paper proposes a fast and robust face detection technique based on skin color 
segmentation. For detecting the face area, the image is first enhanced using histogram 
equalization because, the face images may be of very poor contrast because of the 
limitation of lighting conditions. Then the face skeleton is detected from the largest 
connected area of the skin color segmented image. The method considers the frontal 
view of the face in color scale image. The overview of the proposed color histogram 
based face detection method is shown in Fig. 2. 

The efficiency of color segmentation of a human face depends on the color space. 
While the input colour image is typically in RGB format, the RGB model is not used 
in the detection process because the RGB colour model is not a reliable model for 
detecting skin colour [29]. The RGB components are subject to luminance change and 
hence face detection may fail if the lighting condition changes from image to image. 
Consequently, we use HSV color model for fast and effective detection process. 

 
 
 
 
 

Fig. 2. Block diagram of the face detection method. 

In the HSV color model a color is described by three attributes Hue, Saturation and 
Value. Hue is the attribute of visual sensation that corresponds to color perception 
associated with the dominant colors, saturation implies the relative purity of the color 
content and value measures the brightness of a color. The HSV space classifies simi-
lar colors under similar hue orientations. The image content is converted from RGB to 
HSV color space using the following equations: 
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Where R, G, B are the red, green and blue component values which exist in the 
range [0,255]. 

Let a color image I(x, y) consists of three color channels  ,,, BGR IIII  at (x, y) 
of size M × N. First a hue histogram H(i) is obtained by counting the number of pix-
els, given by the following equation:  
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coordinates of the corresponding pixels is known as disparity, which can be expressed 
by the following equation:   

RL xxd                                                           (5) 

Stereo algorithms are mainly classified into two categories: local and global me-
thods [33]. The local algorithms [33-36], also referred to as window-based or area-
based algorithms are typically faster and suitable for real time applications rather than 
global approaches [37- 40]. However, they have less accuracy compared to global 
methods. The local or window-based stereo algorithms traditionally estimate dense 
disparity by means of pixel correspondence matching through window cost computa-
tion using any one of the following statistical measures: sum of absolute differences 
(SAD), sum of square differences (SSD), or normalized cross correlation (NCC) [15, 
34]. To determine the correspondence of a reference pixel in the left image, the win-
dow costs are calculated for all target pixels on the same epipolar line in the right 
image within a search range. The pixel in the right image that gives the best window 
cost i.e., the minimum SAD/SSD value or the maximum NCC value indicates the 
corresponding pixel of the reference pixel in the left image. 

In this work, we consider the detected face area in the left image as a reference 
block and match with another target face block in the right image. The window cost 
WC (x, y, d) of a reference pixel at position ),( yx  in the left image block with dispari-
ty d is computed with the following SAD measure, employing a window centered at 
position (x, y) in the left image block and another window centered at position (x+d, 
y) in the corresponding right image block. 

  
 


m n

SAD
c

mi nj
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Where ),( yxfL  and ),( yxfR are the intensities of the pixels at position (x, y) in 
the left and right image blocks, respectively. (2m+1) and (2n+1) are the width and 
height of the rectangular window, respectively. 

In this paper, we propose a fast algorithm based on local approach to compute the 
window costs for correspondence matching. To determine the correspondence of a 
pixel in the left image block, we just compute the window cost for candidate pixels in 
the right image block whose intensities are different within a certain threshold value 
(). To achieve a substantial gain in accuracy with less expense of computation time, 
our algorithm perform correspondence matching only on the diagonal pixels of  
the square windows rather than employing conventional matching upon all pixels  
in the windows. Empirically we find that this diagonal matching operation reduces 
significant computation time compared to the state-of-the-art stereo methods, which is 
a fruitful contribution towards the development of a fast and effective surveillance 
system. 
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The proposed fast correspondence matching or disparity estimation algorithm is 
depicted as follows: 

 
 
 
 
 
 
. 
 
 
 
 
 

3.4 Depth Extraction and Location Estimation 

In stereo vision, the depth or 3D information of points in the images can be calculated 
from the estimated disparity map and the geometry of the camera settings. This 
process is illustrated in Fig. 5 where, L and R are two pinhole cameras with parallel 
optical axes; OL and OR are two center points of the left and right camera respectively 
with same focal length f. The baseline, which is the line connecting the two lens cen-
ters of the cameras is perpendicular to the optical axes. Let b is the baseline distance 
and xL is the x-coordinate of the projected 3D point onto the left camera image plane 
and xR is the x-coordinate of the projection onto the right image plane. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dense depth estimation in stereo image pair using triangulation 
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For a world 3D point P(xp,yp,zp), we can extract the dense depth information from 
the camera geometry as follows: 

                      
)( RL xxb

fz
b
z pp
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This is the distance of the target object from the stereo camera positions. 
We can recover the 3D point P from its projections PL and PR. Therefore, we have: 
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Since the depth, zp indicates a distance value (i.e. in mm or cm), we have to modify 
the equation (8) for its uniformity because, the parameters (b, f, d) in the equation 
possess different units. This modification is vital during measuring the distance of 
objects, otherwise it gives erroneous result. Accordingly, we can reform the equation 
(8) through converting the unit of the disparity value (d) by dividing it with the pixel 
size (normally in mm/pixel) of the camera. Thus the depth or distance of the target 
object becomes, 

                         
ds
bfz p                                                         (11) 

Where, s is the size of a pixel of the stereo camera. Thus, once we can estimate the 
3D depth or distance value of the target, we can easily track or localize the human 
object. 

4 Experimental Evaluation 

The effectiveness and robustness of this approach is justified using different images 
captured by the stereo camera pair with different positions, expressions and lighting 
conditions. Experiments are carried out on a computer with 2.2 GHz Intel Core i5 
processor and 4GB RAM. The algorithm has been implemented using Visual C++.  
We use two SONY VISCA cameras of same focal length and intrinsic parameters for 
stereo imaging. 

The face images are analyzed to demonstrate the feasibility of the proposed detec-
tion method. When a complex image is subjected in the input, the face detection result 
highlights the facial part of the image. The face detection results with our proposed 
method are depicted in Fig. 6. Images of different persons are taken at different envi-
ronments both in shiny and gloomy weather. To evaluate our proposed method we 
consider images with different expressions, pose, orientation, structural components 
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and illumination. The system can also cope with the problem of partial occlusion. Our 
system demonstrates better performance in case of the frontal face images in simple 
background while provides worst results for the images in complex background. We 
perform experiments to compare our proposed algorithm with RGB and YIQ (Lumin-
ance, Hue, Saturation) based face detection methods. The results as shown in Table 1 
and Table 2, confirms the robustness of our proposed face detection algorithm compa-
rable to others methods. 

Fig. 7 represents the stereo matching results with our proposed stereo algorithm. 
The algorithm computes the disparity values through matching the correspondence 
pixels within the selected blocks in the left and right image pair. The left and right 
image sequences are captured through the left and right camera respectively, placed in 
same epipolar axis. The correspondence matching is accomplished using SAD meas-
ures using a window of size 3×3 pixels. The disparities are computed with a search 
range of –10 to +10 pixels for a threshold level of 25. We estimate these parameters 
empirically in order to optimize quality of disparity results. 

Experientially we find that computational cost increases with the enlargement of 
the window size. Fig. 8 represents a plot of computational time for different window 
size, which shows that a window of size 3×3 pixels is a good choice in respect to 
computational speed. We compare our algorithm with similar stereo methods in terms 
of execution time, as reported in Table 3. Experimental results confirm that our pro-
posed disparity estimation algorithm outperforms with significant reduction of com-
putation time compared to other existing methods. 

 

(a) Original image  (b) Detected face (a) Original image (b) Detected face 

Fig. 6. Face detection process: (a) the original image, and (b) detected face image. 
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We estimate the distance or location of the human objects for five real image pairs 
using the obtained disparity values and known camera parameters. The focal length of 
the stereo cameras used in this simulation is 35 mm, pixel size is 0.1165 mm, and the 
baseline distance between two cameras is 20 cm. Table 4 shows the results of the 
location estimation process. 

 

 

 
(a) Left image  (b) Right image (c) Estimated disparity 

Fig. 7. Stereo matching process: (a) Left image, (b) Right image, and (c) Disparity map. 

Table 1. Performance of different detection methods in terms of detection accuracy (in %) 
 

Type of Face image 
No. of test 

image 

Detection Accuracy (%) 
RGB 
Color 
Based 

YIQ 
Color 
Based 

HSV Color Based 
(Proposed  
method) 

Frontal 50 62.37 78.24 98.18 
Tilted 50 58.42 74.65 95.34 

Partial Occluded  20 56.72 72.29 91.56 
Complex Background 30 50.35 67.17 86.72 

 

Table 2. Performance of different detection methods in terms of computation time 

Detection Method Computation Time (second) 

RGB Color Based 1.23 
YIQ Color Based 0.87 
Proposed Method 0.46 
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Table 3. Performance

Method 
Linear Stereo Matchi
Conventional Area B
Large-scale Stereo M

 

Fig. 8. 

Ta

Test Actual Dist
(cm) 

Test 1 150 
Test 2 200 
Test 3 250 
Test 4 300 
Test 5 350 
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Abstract. Advances in information and communications technology has led to 
a significant advances in noncontact portable devices capable of monitoring vi-
tal signals of patients. These wearable and implantable bio-monitoring systems 
allow collections of wearable sensors to be constructed as a Body Area Net-
work (BAN) to record biological data for a subject. Such systems can be used to 
improve the quality of life and treatment outcomes for patients. One of the main 
uses for a bio-monitoring system is to record biological data values from a sub-
ject and provide them to a doctor or other medical professional. However, 
wearable bio-monitoring systems raise unique security considerations. In this 
paper, we discuss some of the security considerations that have arisen in our 
work around communications agnostic bio-monitoring, and how we have ad-
dressed these concerns. Furthermore, the issues related to the identifying and 
trusting sender and receiver entities are discussed. 

Keywords: Bio-monitoring systems · Medical monitoring · Mobile communi-
cations · Information security · Information privacy · Telemetry · Medical tele-
metry 

1 Introduction 

It is a modern reality that portable medical monitoring systems are already with us, 
with such devices currently being used in hospitals using short range transmission 
infrastructure to allow patient sensors to communicate with ward-based central base-
stations. Indeed, in both the academic and commercial worlds, there is much ongoing 
research into wearable bio-monitoring systems, looking at how we can build wearable 
networks of sensors and transmitters to monitor and care for patients while not physi-
cally confining them to a hospital ward. Such systems are intended to be used by pa-
tients in a hospital or in a remote location such as the home. They can provide moni-
toring for non-critical care patients or for those who require ongoing. Such systems 
are intended to be used by patients in a hospital or in a remote location such as the 
home. They can provide monitoring for non-critical care patients or for those who 
require ongoing monitoring during recovery from illness or operation. They can also 
be used for extended diagnosis-related data collection.  
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Bio-monitoring systems have been the subject of a significant amount of research 
over the past several years. These researches have produced wearable monitoring 
systems suitable for many applications such as: 

 Athletes attempting to reach peak physical performance where monitoring deter-
mines biological and physiological status to define where they can focus training. 

 Hospital patients who are mobile yet require ongoing monitoring can be allowed to 
wear a monitoring system and thus not be restricted to the hospital ward. 

 Outpatients may require the collection of diagnostic data over a possibly extended 
period of time. 

 The elderly or infirm who are not in a continuous care scenario but may need to be 
monitored in their homes, to preserve quality of life but ensure ongoing wellbeing.  

The potential of wireless sensor networks for telemedicine and biometric monitor-
ing, where sensors with communications capabilities interact to form a body area 
network for use in medical monitoring is well known. However, one of the concerns 
of the research into such systems is that the security of data is sometimes implied or 
assumed, but not explicitly considered as a requirement of the overall solution [3]. 
Because of the potential sensitivity and ethical concerns around the ability to access 
biological data measurements for a specific patient, any system transmitting and stor-
ing this data should enforce privacy and/or security mechanisms to prevent unautho-
rised access to the data. In this paper, we address this problem through the application 
of obfuscation of data and the ability to directly apply encryption to patient readings 
independently of the carrier that is used to transmit the data. 

Our work relates to a communications carrier-agnostic bio-monitoring solution, 
where we allow the wearable monitoring system to seamlessly select and use the best 
available carrier to transmit bio-monitoring data and provide the best opportunity for 
the system to successfully send its data back to the doctor, As part of this research, we 
have had to consider the impacts that an agnostic approach has on the transmission of 
data, including how data is secured and how much data can be transmitted over each 
of the different carriers. Carrier agnosticism means that we cannot rely on the specific 
capabilities of any one carrier if such capability is not available across our suite of 
carriers. This includes assuming the presence of native carrier data encoding, identify-
ing and trusting the senderand encrypting sensitive medical data. In developing the 
protocol, we have had to consider how to address limitations caused by our inability 
to rely on the capabilities of a specific carrier. In this paper, we discuss security con-
siderations that have arisen in our work, and how we have addressed these concerns in 
the context of remaining carrier agnostic.  

The rest of the paper is organized as follows. In Section 2, the background and re-
lated work are presented. In Section 3, security concerns for bio-monitoring data is 
presented. In Section 4, the issues related to the identifying and trusting sender and 
receiver entities are discussed. The conclusion is given in Section 5. 
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2 Background and Related Work 

A bio-monitoring system is a system that converts information such as respiration, 
heart rate, temperature, brain activity, heart activity, or blood glucose levels into data 
that can be processed and recorded. These systems usually consists of set of sensors that 
collect data from the subject and communicate it to the gateway (e.g., smartphone) that 
transmits the collected data to a server or directly to the hospital [11].  

Figure 1 is a general schematic of a wearable bio-monitoring system that uses mo-
bile technologies with devices such as smartphones being used to co-ordinate the 
medical sensors and transmit sensor data to the medical professional. The systems are 
typically wholly body-portable – powered by batteries, worn or carried on the person, 
and disconnected from physical cables or power infrastructure. Measured data is sent 
through the wireless network to an acquisition point, which collects the data and 
transfers it to a database server. Using such a portable system, a patient in a non-
critical-care situation can be monitored from the comfort of their own homes or at 
other remote locations, while on the move, at the shops or out for a walk.  

Respiration 
Rate Sensor

Blood Oxygen 
Sensor

Blood Pressure 
Sensor

Smart Phone

Base Station Database

The base station is 
responsible for converting 
data from the monitoring 
system into human readable 
form

The database will store the 
data from the system for 
further analysis, with 
appropriate security and 
identification

Heart Rate 
Sensor

Temperature 
Sensor

 
Fig. 1. A general wearable bio-monitoring system 

There are a number of data types that we might conceivably record in a wearable 
bio-monitoring system. Budinger [2] discusses some of the data types we might want 
to encode as the output of a bio-monitoring system. Table 1 summarises the types, 
sizes, # Octets required to encode the data and min/max values for the sorts of medi-
cal data that we might have to record and transmit through the system. Data such as 
the above may be sampled, digitised and encoded quite readily. However, while these 
values are discrete and readily encoded, other values may be used in bio-monitoring. 
The recording of more extensive digitised data may require significant data capacity. 
As an example, the American Heart Association has stated that a single ECG (electro-
cardiogram) record showing heart activity could require up to 1.36 gigabytes of sto-
rage to allow it to be stored at a meaningful resolution [6]. 

Throughout the past ten years or so there has been a significant amount of research 
into wearable monitoring systems. Although many novel and unique systems have 
been suggested or developed to remotely monitor subjects, much research focus exists 
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for the specific elements of the bio-monitoring system – the hardware, the sensors, the 
infrastructure and networking between the hardware which are used to make up a 
cohesive and wearable bio-monitoring system. However, security is not the main 
issue in the design of such systems.  

Table 1. Medical data types 

Type Min Max Unit  Type # 
Octets 

Example 

Temperature 0 ~50 Degrees C Binary 1 00100101 
Heart Rate 0 ~200 Beats per minute Binary 1 00111100 
Blood Pres-
sure 

0 ~200 mmHg (x 2 measure-
ments) 

Binary 2 01111000 
01010000 

Respiration 
rate 

0 ~50 Breaths per minute Binary 1 00001110 

Blood oxy-
gen concen-
tration 

0 100 Percentage Oxygen 
Saturation (SpO2) 

Binary 1 01100100 

Blood glu-
cose concen-
tration 

0.0 ~50.0 Mmol/L – a decimal 
value (to 1 decimal 
place) 

Binary 
coded 
ASCII 

3 8.2 

 
Varshney [10] identifies several potential issues with existing and proposed wire-

less health monitoring systems, including the following requirements which, it is as-
serted, would need to be met by any viable solution for application to the real-world: 
(i) A high level of security; (ii) A high level of privacy for patient data; and (iii) High-
ly reliable and usable wireless infrastructure. However, the research focus of many 
proposed systems in the field concentrates on specific implementations of a BAN and 
its sensors. There is often an assumption that communications are ubiquitously avail-
able and that a pervasive Internet connection is always available. As communications 
are considered ubiquitous, little consideration is given to the communications back-
bone as a significant component of the proposed bio-monitoring solution, and issues 
such as security of data during transmission from the patient to the doctor seem to be 
assumed and/or implied. 

Kwak et al [7] assert that there are three main areas of concern around healthcare 
monitoring systems. Of specific relevance to our work, they state that the areas of 
privacy and security are paramount in the implementation of any bio-monitoring sys-
tem. We assert that a bio-monitoring system must consider the privacy and security of 
data as part of the fundamental system requirements. Kwak el al [7] state that most 
papers they reviewed take security against attack into account and that is highly rele-
vant to medical systems. However, while the authors also identify privacy and obfus-
cation of data and the encryption of transmissions as requirements for bio-monitoring, 
these issues do not seem to be given the same levels of concern in the research we 
have reviewed. The presence of these capabilities seems to be assumed and not spe-
cifically implemented as part of the proposed systems. As our proposed communica-
tions protocol is carrier agnostic, these issues are concerns for us. We cannot rely on 
an assumption that our carrier will encrypt and/or ensure our data is private. To re-
main truly carrier agnostic, we must implement security and privacy ourselves. 
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Borec-Lubecke et al [12] discuss the looming use of the Internet of Things to assist 
in the monitoring of patients for healthcare purposes [12]. They identify the issues of 
data privacy and communication security as fundamental to the implementation of a 
functional eHealthcare solution. However, while identifying the issues, their paper 
does not propose any solutions to widespread transmission of patient data and/or 
records. Hanson et al [8] identify a number of the traits that a medical bio-monitoring 
system must possess or incorporate into its design, including security of access and 
configuration, privacy of information and encryption of data. Once again, privacy and 
encryption are key facts. Hanson also mentions configurability as a requirement of a 
solution and on this point we wholly agree. Our proposed communications protocol 
considers the need to reconfigure a monitoring system “over the air” while it is dep-
loyed in the field. In evaluating how this might be achieved, this has identified addi-
tional security and identification concerns that must be addressed in an operational 
real world solution. 

Table 2. Fields in the message protocol 

Field Nbr. Field Name Abbrev. 
1 Start of Message Frame SOMF 
2 Message Protocol Format MFMT 
3 Message Type MTYP 
4 Application ID APID 
5 Sender Device ID SDID 
6 Recipient Device ID RDID 
7 Message ID MSID 
8 Message Structure MSTR 
9 Generation Timestamp GENT 
10 Validity Period VAPD 
11 User Data Segment Length UDSL 
12 User Data Segment Encryption ID UDSE 
13 Header Checksum HCHK 
14 User Data Segment Checksum UCHK 
15 Combined Message Checksum MCHK 
16 User Data Segment UDSG 

3 Security Concerns for Bio-monitoring Data 

While a large binary data set such as an ECG may not be readily human readable, the 
data types shown in table 1 are quite easily interpretable. As with other transmissions, 
messages transmitted from a bio-monitoring system to a doctor may be intercepted by 
a third party during the transmission process. Where message data is not obfuscated 
and/or encrypted in such a way as to render the data incoherent to an external unau-
thorised attacker, patient data could be compromised. We would assert that the devel-
opers of bio-monitoring systems must consider the protection of information during 
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transmission as a fundamental system requirement. The protection of data is especial-
ly important if we facilitate transmission of the data via an open network such as the 
Internet, where many devices may “see” a message between source and destination. 
To this end, both obfuscation and encryption of data should be considered an essential 
part of the overall capabilities of a bio-monitoring system. 

3.1 Communications Protocol  

In our research, we are creating a robust communications protocol to facilitate bio-
monitoring communications via a carrier agnostic approach. Being carrier agnostic 
allows us to use carriers such as Internet, Packet Radio, Mobile Data, MMS and SMS. 
We have chosen a carrier agnostic approach due to the nature of medical monitoring 
and potential ramifications if the system cannot deliver a monitoring message for a 
critical medical situation. A remote wearable monitoring system must have every 
opportunity to “get the message through” to its base station. By supporting multiple 
carriers in the same monitoring system, our solution can select the best available 
communications method at the point of transmission and fail over between carriers as 
required. We have developed a simple communications protocol which consists of a 
header block and a user data segment,that can be transmitted via any of a number of 
possible carriers, including Internet, Mobile or Fixed Line Data call, SMS, Multime-
dia Message and Packet Radio. In being carrier agnostic however, we have had to 
facilitate a number of key features, including obfuscation of data, identification of 
sender and recipient, and encryption of the user data. The structure of our packet is 
shown In Table 2. 

3.2 Obfuscation 

In the context of a bio-monitoring system, the obfuscation of data removes the ability 
to associate data with the subject without the provision of a key to the data. As part of 
our research, we have created a communications protocol (see table 2 above) that can 
be used to transmit bio-monitoring data and associated header information. The com-
munications packet header identifies the sender device, receiver device and the moni-
toring “application” in which a message is intended to be used. By remaining carrier 
agnostic, we cannot assume identification elements such as IP address or telephone 
number will exist in our message. However, we only identify devices in the header. 
No personally identifying details (such as patient ID, patient name etc) are incorpo-
rated into the message.  

While the user data segment of our message may contain biological readings from 
a specific subject (amongst other possible uses for the data segment), the message 
itself contains no information that can associate a specific subject with their readings. 
To make the association between subject and biological readings transmitted in a 
message, the reader of the message needs to correlate the sender device ID (i.e. the ID 
of a specific bio-monitor) to a subject ID. This correlating data is stored at the base 
station used by the doctor, and is never transmitted over the network. As such, to 
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perform this correlation implies access to data that is only available via direct access 
on the base station itself. 

Because we divorce the data in the transmission from the identity of the subject, it 
is difficult for an attacker who intercepts a transmission to re-associate the data to a 
specific subject unless the attacker also gains access to the base station. To this end, 
we propose that the first security tool that any bio-monitoring system should imple-
ment is the effective obfuscation of the subject’s data from its identification details. 
This can be further supplemented by the implementation of a rule that states that no 
personally identifying data is ever transmitted within a bio-monitoring application 
such that it could be intercepted and used to establish the link between the subject and 
their monitoring data. 

3.3 Encryption of Data 

Our communications protocol facilitates the control, management and transmission of 
data within a bio-monitoring system consisting of wearable bio-monitors and a central 
doctor’s base station (for example at the hospital). In this system, the user data seg-
ment of our messages is used to transmit system data such as the biological readings 
of patients. Consider, for example, a hypothetical encoding scheme where user data 
segment is encoded with biological readings via a number of type/value pairs. In this 
instance the first octet defines the type and the next X octets define the data for that 
data type, repeated in each message as shown in Fig. 2. 

ID
1

Value
Temperature 

reading

ID
2

Value
Heart Rate BPM

ID
3

Value
Blood Pressure 

Systolic

Value
Blood Pressure 

Diastolic

ID
4

Value
Respiration Rate 

BPM

ID
5

Value
Blood Oxygen 
Concentration

ID
6

Value
Blood glucose 10's

Value
Blood glucose 1's

Value
Blood glucose .1's

 
Fig. 2. Hypothetical Values and Octets of data in the User Data Segment 

This data is obfuscated and cannot be related back to a specific subject without the 
index that shows which sender device ID relates to which patient. However, despite 
the obfuscation, if such data were encoded into a message without any form of en-
cryption, in would in most cases be clearly readable by taking the data octets and 



732 B. Townsend and J. Abawajy 

decoding their binary values. The type/value pair encoding mechanism does provide a 
level of obfuscation to the data. To correctly interpret the data requires the attacker to 
“understand” what each type value means and what size the data for that type is. 
However, it could be argued that simple obfuscation of this nature is not enough to 
protect the data against a determined attempt to compromise the system and interpret 
the values. 

Consider also an alternative scenario, where our user definable data segment may 
carry biological data encoded in a standards compliant packet of medical telemetry – 
for example using the IEEE 11073-20601 standard that has been defined specifically 
for this purpose. Where a standard’s based format is used to transmit data, it is possi-
ble that the attacker could, through analysis, determine the standard in use and there-
fore have a ready “map” of the methods of encoding data within a message. It is as a 
result of these sorts of scenarios that we must consider whether the data we are trans-
mitting requires encryption, over and above the obfuscation discussed previously. Our 
research makes use of a number of communications carriers, including public carriers 
such as the packet radio network and the Internet. This means that, in some cases, our 
transmissions may be broadcast and could be intercepted by anyone who is listening. 
For certain types of transmission, we may determine that our data should be protected 
over and above the capabilities of an obfuscated data set, and thus we must consider 
how we protect the data appropriately. 

Where the need for encryption rather than obfuscation is identified, one might ar-
gue that many carriers provide encryption capabilities as a native part of their feature 
set. For example, GSM mobile communications including both mobile data and SMS 
have typically been encrypted using the A5 family of algorithms [1]. However, in 
recent years, A5 and other encryptions have been broken and there are a number of 
published solutions that allow decryption of GSM based mobile transmissions poten-
tially in real time [1][5]. As noted earlier, the nature of our research is carrier agnos-
tic, and this requires that we allow our system to utilise multiple communications 
mechanisms and thus maintain an ability to fail over to an alternate carrier when the 
preferred carrier is unavailable. As a result of the need to support multiple carriers, we 
cannot rely on encryption provided natively by a specific carrier unless the same ca-
pability exists across all of our potential carriers. Our research has identified that, 
where our data is to be transmittable via the best available carrier from a pool that 
might include Internet, Packet Radio, Mobile Data, MMS or SMS, we must accept 
that encryption does not exist natively in each of these carriers. As such, in taking the 
lowest common denominator of features from our carrier pool, we must not expect the 
carrier to provide the encryption.  

Our solution therefore requires the bio-monitoring system implement the ability to 
apply encryption to the data as part of the system’s capabilities and not rely on the 
carrier. While this is something we considered in our work through the necessity of 
our agnostic approach, we would strongly recommend the encryption of data trans-
missions be implemented as a native capability of any monitoring system over and 
above any capabilities offered by the carrier. 
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3.4 Appropriate Encryption 

While encryption is a requirement of the bio-monitoring systems’ transmissions, we 
must also consider that for some of our potential carriers the data capacity of a mes-
sage may be limited. For example, in an ideal world we would use an unlimited Inter-
net data stream, but in our system we may have to fall back to slow packet radio 
transmission at 9600 baud [4] (TAPR 1995) (TAPR 1995), or even use an SMS mes-
sage with a mere 140 octets of data capacity [6]. Because we do not always have the 
luxury of an unlimited data stream, we must not only consider that encryption is es-
sential. We must also consider whether the encryption to be applied is appropriate for 
the full gamut of prospective carriers in our system. In defining an appropriate en-
cryption algorithm for use with our protocol, we believe that a number of factors must 
be considered: 

 The encryption algorithm should require a (relatively) low overhead to store en-
crypted data. The number of additional octets of data required to encrypt the data 
should low when compared to the data content to be encrypted. Where we have 
length limited carriers, we do not want the encryption overhead to outweigh the vo-
lume of data in the message. 

 The encryption algorithm should provide a level of data security that is commensu-
rate with the requirements for data protection imposed by the application. For ex-
ample, obfuscation of the data and the removal of personally identifying detail in 
all messages may reduce the need for complex, high overhead encryption. While 
monitoring data is personal and should be confidential, if it has no contextualisa-
tion to a specific subject in the case of interception of a specific message, do we 
need to make use of 1024 bit encryption that would take longer than the lifetime of 
the universe to break?  

 Any encryption algorithm should ideally have a low processing overhead to en-
crypt or decrypt data. The remote monitoring system is likely to be battery operat-
ed may not have significant processing power.  

 The time to encrypt or decrypt a message must allow us to treat messages urgently, 
so it is not acceptable to allow encryption to cause significant delays before the 
transmission can occur. 

From the above set of constraints, it is apparent that the appropriate encryption 
needs to have a low processing overhead and a low data overhead (in terms of the 
additional octets that are required to encrypt the data). If we are using 1024 bit RSA 
encryption, for example, the overhead is such that we could not use SMS as one of 
our potential carriers (as the RSA encrypted data would exceed the 140 octets of the 
SMS payload). To facilitate the ability to encrypt user data, we have allowed our 
communications protocol to implement application specific encryption through the 
use of an application-defined encryption ID that is transmitted as part of the commu-
nications packet header. This single octet value allows the application using the pro-
tocol to select one of 255 possible encryption mechanisms that can be applied to the 
user data segment data. In this way, the application can define the types of encryption 
to be used based on the capabilities of the potential carriers in the system. For exam-
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ple, the ID may be used to identify different key sets for public key encryption, fur-
ther securing the data by the use of multiple possible rolling keysets. Thus an encryp-
tion ID value of 1 may signify key set 1 is in use. An ID of 2 signifies keyset 2 in use 
etc. Alternatively, the encryption mode may change based on the carriers that are 
currently active. For example, where SMS is a potential carrier, only low overhead 
encryption may be used identified by a specific set of encryption ID’s. Alternatively, 
if the carriers in use all have large possible data payloads (such as Internet, Packet 
Radio and Mobile Data Call), then higher overhead encryption may be defined on an 
application specific basis. 

4 Identifying and Trusting Sender and Receiver 

In a bio-monitoring system, it is highly likely that the component transceivers within 
the system will be known as part of the system configuration. This includes both the 
base station and any wearable monitors in use within a particular application. Because 
the component devices are known, this allows us to utilise device identification to 
assist us in trusting messages sent or received on the network. Because our communi-
cations are carrier agnostic, we cannot depend on any of the identification details that 
may be included in a carrier specific message (for example, IP address, telephone 
number etc). We must be cognizant of the fact that some of our potential carriers 
(such as packet radio) may not include a system level station ID as part of their mes-
sage transmission. Therefore, as part of our protocol, we have implemented a number 
of identification fields to specifically identify one of the transceiver stations in the 
system. Four identification fields are part of our standard message header block, 
namely an Application ID, Sender Device ID, Recipient Device ID and Message ID. 

The application ID is a single octet used to identify one of 255 possible applica-
tions that may use the same communications infrastructure. This is specifically rele-
vant where one or more of our carriers are part of a broadcast infrastructure, for ex-
ample over radio or Internet. In these cases, many participating (and non-
participating) devices may “listen” to the same transmission, even if it is not ad-
dressed to them. The application ID allows segmented use of the communications 
infrastructure by defining different logical applications on the same infrastructure. 
Applications using our protocol must check the application ID matches their own 
application prior to actioning a message. 

The sender device ID and receiver device ID are 24 bit numbers that identify a 
specific device within the application. While this may identify up to 16 million unique 
devices per application, it is unlikely that a single monitoring application would re-
quire this number of devices for an application. As there is no requirement that we 
sequentially allocate ID’s to devices on an incremental basis, we are able to use the 
ID to establish a trust relationship. To do this, device ID’s are allocated according to 
an algorithm. The algorithm can be application defined based on the requirements of 
the system using the agnostic-communications protocol. By using algorithmic alloca-
tion of ID’s, only certain device ID’s will be valid within the network. This will allow 
the application to implement checks to ensure that a device ID fits the allocation algo-
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rithm and may thus make it more difficult for a rogue device to easily obtain a valid 
ID and masquerade on the network to “listen” to the transmissions going back and 
forth. 

The sender and receiver ID identify the source and destination of a message as part 
of the message header’s addressing. This allows us to build an application where a 
message is only “read” by the device it is intended for. The receiver should check that 
its own ID value matches the receiver ID in the message. The sender ID allows us to 
define specific message types that will only be actioned when they come from a spe-
cific sender. For example, a message to change the configuration of a remote monitor 
may only be accepted if the sender ID is the same as that of the base station at the 
hospital.  

Finally each message has its own internal identification, encoded in the message 
ID field. For our protocol, the message ID is a 24 bit number, and thus 16 million 
unique messages per sender and receiver pair can be identified using the message ID 
alone. The message ID is allocated by the sender of the message, using the next avail-
able ID from its pool of message ID’s. Message ID’s are used in conjunction with the 
application, sender and receiver ID’s to provide a highly unique message identifier 
within the system. With 16 million (approx.) ID’s available, we would assert that this 
is sufficient for a bio-monitoring application, as even sending 1 message per second, 
24 hours per day, this would give us a monitoring period of 194.18 days before the 
pool was exhausted and had to cycle back to 1. If we reduce messages to 5 second 
intervals, we have over 900 days before the pool is exhausted. 

To manage message addressing, we combine all of the identification fields togeth-
er. The application, receiver, sender and message ID’s provide a total of 10 octets or 
80 bits of identification. To set the message ID, the sequence of messages between a 
sender and receiver pair is tracked by the sender. Thus, in application 1, for a combi-
nation of sender ID 1 and receiver ID 2, the message ID relates to the sequence of 
messages sent between this sender and receiver and is incremented for each message 
sent in that direction. When sending between sender ID 2 and receiver ID 1, the mes-
sage ID relates to the sequence between sender 2 and receiver 1 and so tracks that 
series of communications in that direction. This will thus provide 16 million messages 
per sender/receiver pair. For example, see Table 3. 

Table 3. The use of message ID between specific sender and receiver pairs 

Transmission 
number 

Sender ID Receiver ID Message ID 

1 1 2 1 
2 1 2 2 
3 2 1 1 
4 1 2 3 
5 2 1 2 
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By combining the application, sender and receiver ID’s, and the message ID in a 
sender/receiver directional pairing, we can ensure that messages come from a known 
and accepted source, that the message is being actioned by the correct device, and that 
the message was sent by a sender we will accept. By maintaining an application spe-
cific set of sender authorisations, we can also ensure we do not action specific types 
of message (for example, configuration messages) unless they come from a station 
that is authorized to make configuration changes (for example, the base station). By 
using the message ID in conjunction with the sender and receiver, we can also track 
the sequence of messages, and ensure we do not miss messages (for example, if the 
message ID between sender 1 and destination 2 suddenly jumps from message ID 10 
to message 12, we can infer message ID 11 may have been lost). 

5 Conclusion 

Security of data, the need to obfuscate data and the ability to identify and trust a send-
er and receiver within a transmission can all be beneficial attributes to the successful 
implementation of a bio-monitoring system. Obfuscation prevents the transmitted data 
from being associated with a specific subject without additional data that is never 
transmitted over the network. In any system that transmits data over a public network, 
we should assume that the data may be intercepted and this, obfuscation should be the 
first line of defence for any biological monitoring data transmission. Encryption pro-
vides the ability to protect data from unauthorised access, even if that data has already 
been obfuscated. However, when using carriers with limited payload capacity it must 
be considered that encryption can have an additional bandwidth and encoding over-
head, so we assert that the encryption used for the transmission of bio-monitoring data 
must be appropriate to the application. We identify a number of factors to inform the 
decision of what constitutes an appropriate data encryption mechanism. The use of 
message fields to uniquely identify the members of a bio-monitoring system facili-
tates a number of capabilities in the system. The use of algorithmic allocation of de-
vice ID’s can make it more difficult for a rogue device to generate an ID masquerade 
as part of the network as any ID needs to match the allocation algorithm, which is not 
published by the network. The ability to specifically identify sender and receiver pro-
vides an ability to action messages only when they are received at the correct station, 
and allows us to restrict the use of certain message types (i.e. configuration messages) 
unless they are sent from an appropriate sender. We have found that all three elements 
are required to properly implement a carrier agnostic approach to bio-monitoring 
communications and must be considered as fundamental requirements of our system. 
However, given their benefits, we would assert that all of these features should be 
considered as security requirements of any medical bio-monitoring system. 
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