
Chapter 7
Creating and Controlling Complex
Biological Brains

Kevin Warwick

Abstract In this contribution, a look is taken at how animal and/or human brain
cells can be cultivated (grown) and given a robot physical body (as a controlling
brain) in which they can move around and interact with the world. This is realised
as a new form of Artificial Intelligence in which the complexity of a highly non-
linear biological neural network is employed to uniquely control a real-world robot.
The communication/control feedback loop is described and considered in terms of
learning, performance, long-term operation and specialisation within the neural
structure. Experimental results are presented and philosophical arguments opened
up, e.g. can the robot be considered to be a living, conscious entity?

7.1 Introduction

Considerable progress has been made towards hybrid systems in which biological
neurons are integrated with electronic components. As an example, Reger et al. [1]
demonstrated the use of a lamprey brain to control a small-wheeled robot’s
movements; meanwhile others were successfully able to send control commands to
the nervous system of cockroaches [2] or rats [3] as if they were robots. These
studies inform us about information processing and encoding in the brains of living
animals [4], however, they do pose ethical questions and can be technically
problematic since access to the brain is limited by barriers such as the skin and
skull, and data interpretation is complicated due to the number of neurons present in
the brain of even the simplest animal. Also, approaches which involve recording the
activity of individual neurons or small populations of neurons are limited by their
invasive, and hence destructive, nature. As a result, neurons cultured under labo-

K. Warwick (✉)
School of Systems Engineering, University of Reading, Whiteknights, PO Box 225, Reading
RG6 6AY, UK
e-mail: k.warwick@reading.ac.uk

© Springer International Publishing Switzerland 2016
G.M. Dimirovski (ed.), Complex Systems, Studies in Systems,
Decision and Control 55, DOI 10.1007/978-3-319-28860-4_7

141



ratory conditions on a planar array of non-invasive electrodes provide an attractive
alternative with which to probe the operation of biological neuronal networks.

In the past few years, research has focussed on culturing networks of some tens
of thousands of brain cells grown in vitro [5]. These cultures are created by
enzymatically dissociating neurons obtained from foetal rodent cortical tissue and
then culturing them in a specialised chamber, in doing so providing suitable
environmental conditions and nutrients. An array of electrodes is embedded in the
base of the chamber (a multielectrode array; MEA) providing an electrical interface
to the neuronal culture [6–9]. The neurons in such cultures spontaneously begin to
branch out and within an hour of placement, even without external stimulation, they
begin to reconnect with other nearby neurons and commence electrochemical
communication. This propensity to spontaneously connect and communicate
demonstrates an innate tendency to network. Studies of neural cultures demonstrate
distinct periods of development defined by changes in activity which appear to
stabilise after 30 days and, in terms of useful responses, last for at least 2–3 months
[10–12]. The cultures of neurons form a monolayer on the MEA, making them both
amenable to optical microscopy and accessible to physical and chemical manipu-
lation [9].

An aim of the ongoing project described here is to investigate the use of cultured
neurons for the control of mobile robots. In order to produce useful processing, the
disembodied biological network must develop in the presence of meaningful
input/output relationships as part of closed-loop sensory interaction with the
environment. This is evidenced by animal and human studies, which show that
development in a sensory-deprived environment results in poor or dysfunctional
neural circuitry [13, 14]. To this end the overall closed-loop hybrid system
involving a primary cortical culture on an MEA and a mobile robot body must exist
within a sufficiently rich and reasonably consistent environment. This then con-
stitutes an interesting and novel approach to examining the computational capa-
bilities of biological networks [15].

Typically, in vitro neuronal cultures consist of thousands of neurons generating
highly variable, multidimensional signals. In order to extract components and
features representative of the network’s overall state from such data, appropriate
pre-processing and dimensionality reduction techniques must be applied. Several
schemes have till now been constructed. Shkolnik et al. [16] created a control
scheme for a simulated robot body in which two channels of an MEA were selected
and an electrical stimulus consisting of a ±600 mV, 400 μs biphasic pulse was
delivered at varying inter-stimulus intervals. Information coding was formed by
testing the effect of electrically induced neuronal excitation with a given time delay
termed the inter-probe interval (IPI) between two stimulus probes. This technique
gave rise to a characteristic response curve which formed the basis for deciding the
robot’s direction of movement using basic commands (forward, backward, left and
right).

DeMarse and Dockendorf investigated the computational capacity of cultured
networks by implementing the control of a ‘real-life’ problem, namely controlling a
simulated aircraft’s flight path (e.g. altitude and roll adjustments) [17]. Meanwhile
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Shahaf and Marom [18] reported one of the first experiments to achieve desired
discrete output computations by applying a simple form of supervised learning to
disembodied neuronal cultures. Recently, in [19] a Learning classifier system was
used to manipulate culture activity towards a goal level using simple input signals.
In both of these latter experiments, the desired result was only achieved in about
one-third of the cases, indicating some of the difficulties in achieving repeatability.

This should not really come as a surprise as this is a field of study very much in
its infancy. There are bound to be difficulties, however, there is much to be learnt. It
is apparent that even at this early stage, such re-embodiments (real or virtual) have
an important role to play in the study of biological learning mechanisms and
neurological behaviour in general. Our physical embodied robots provide the
starting point for creating a proof-of-concept control loop around the neuronal
culture and a basic platform for future––more specific––reinforcement learning
experiments. The fundamental problem is the coupling of the robot’s goals to the
culture’s input–output mapping, the design of the robot’s architecture discussed in
this paper therefore emphasises the need for flexibility and the use of machine
learning techniques in the search of such coupling.

In the section which follows, the general procedure for laying out the neural
culture (the biological component) is described; this is followed by a description of
the main elements of the closed-loop control system, including the culture as an
important element in the feedback loop. Details of the current system’s architecture
are given in Sect. 7.3. Section 7.4 includes a description of our initial tests and
preliminary results. Section 7.5 meanwhile provides a discussion of possible bio-
logical underpinnings providing the motivation and context for the use of the
machine learning (ML) methods, and Sect. 7.6 concludes with an overview of
current progress. Finally, Sect. 7.7 discusses new ongoing research and planned
future extensions.

7.2 Culture Preparation

To realise the cultured neural network, cortical tissue is dissected from the brains of
embryonic rats and neuronal cells enzymatically dissociated before seeding onto
planar multielectrode arrays (MEAs). The cells are restricted to lie within the
recording horizon of the electrode array by means of a template placed on the MEA
prior to seeding and removed immediately after cells have settled (∼1 h). The MEA
is also filled with a conventional cell culture medium containing nutrients, growth
hormones and antibiotics of which 50 % is replaced twice weekly. Within the first
hour after seeding, neurons appear to extend connections to nearby cells (even
within the first few minutes this has been observed) and within 24 h, a thick matt of
neuronal extensions is visible across the seeded area.

The connectivity between seeded cells increases rapidly over subsequent days.
After 7 days, electrical signals are observed in the form of action potentials which,
in the ‘disembodied culture’ (not connected within the closed loop), over the
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following week transform into dense bursts of simultaneous electrical activity
across the entire network. This bursting feature subsequently continues through to
maturity (30 days in vitro and onwards). It is not well understood what the bursting
actually means and how much it is part of normal neural development. However,
such continued behaviour, after this initial development phase, may subsequently
be representative of an underlying pathological state resulting from impoverished
sensory input and may differ from the activity of a culture developing within a
closed loop [20]. This is something which remains to be studied further.

Cultures usually remain active until approximately 3 months of age. During this
time, they are sealed with Potter rings [21] to maintain sterility and osmolarity, and
are maintained in a humidified, 37 °C, 5 % CO2 incubator. Recordings are
undertaken in a non-humidified 37 °C, 5 % CO2 incubator for between 30 min and
8 h dependent on environmental humidity and the resulting stability of activity.

7.3 Experimental Platform

The multielectrode array enables voltage fluctuations in the culture (relative to a
reference ground electrode outside the network) to be recorded in real-time at 59
sites out of 64 in an ‘8 × 8’ array (Fig. 7.1). This allows for the detection of
neuronal action potentials within a 100 μm radius (or more) around an individual
electrode. Using spike sorting algorithms [12], it is then possible to separate the
firings of multiple individual neurons, or small groups of neurons, as monitored on
a single electrode. As a result, multielectrode recordings across the culture permit a
picture of the global activity of the entire neuronal network to be formed. It is
possible to electrically stimulate via any of the electrodes to induce focussed neural
activity. The multielectrode array therefore forms a functional and non-destructive
bidirectional interface to the cultured neurons.

Electrically evoked responses and spontaneous activity in the culture (the neu-
ronal network) are coupled to the robot architecture, and thence on to the physical
robot, via a machine learning interface, which maps the features of interest to
specific actuator commands. Sensory data fed back from the robot is associated with
a set of appropriate stimulation protocols and is subsequently delivered to the
culture, thereby closing the robot-culture loop. Thus, signal processing can be
broken down into two discrete sections (a) ‘culture to robot’, in which an output
machine learning procedure processes live neuronal activity, and (b) ‘robot to
culture’, which involves an input mapping process, from robot sensor to stimulus.

It is important to realise that the overall system employed in this experiment has
been designed based on a closed-loop, modular architecture. As neuronal networks
exhibit spatiotemporal patterns with millisecond precision [22], processing of these
signals necessitates a very rapid response from neurophysiological recording and
robot control systems. The software developed for this project runs on Linux-based
workstations communicating over the Ethernet via fast server–client modules, thus
providing the necessary speed and flexibility required.
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In recent years, the study of neuronal cultures has been greatly facilitated by
commercially available planar MEA systems. These consist of a glass specimen
chamber lined with an 8 × 8 array of electrodes as shown in Fig. 7.1. It is just such
one of these MEAs that we have employed in our overall robot system.

A standard MEA (Fig. 7.1a) measures 49 × 49 × 1 mm and its electrodes
provide a bidirectional link between the culture and the rest of the system. The
associated data acquisition hardware includes a head-stage (MEA connecting
interface), 60 channel amplifier (1200 × gain; 10–3200 Hz band-pass filter),
stimulus generator and PC data acquisition card.

To this point, we have successfully created a modular closed-loop system
between a (physical) mobile robotic platform and a cultured neuronal network using
a multielectrode array, allowing for bidirectional communication between the cul-
ture and the robot. It is estimated that the cultures employed in our studies consist of
approximately (on average) 100,000 neurons. The actual number in any one
specific culture depends on natural density variations in proliferation post-seeding
and experimental aim. The spontaneous electrochemical activity of the culture

Fig. 7.1 a An MEA, showing the 30 μm electrodes which lead to the electrode column–row
arrangement, b Electrode arrays in the centre of the MEA seen under an optical microscope, c An
MEA at ×40 magnification, showing neuronal cells in close proximity to an electrode, with visible
extensions and interconnections
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realising signals at certain of the electrodes is used as input to the robot’s actuators
and the robot’s (ultrasonic) sensor readings are (proportionally) converted into
stimulation signals received by the culture, effectively closing the loop.

We are using a versatile, commercially available, Miabot robot (Fig. 7.2) as our
physical platform. This exhibits accurate motor encoder precision (∼0.5 mm) and
has a maximum speed of approximately 3.5 m/s. Hence it can move around quite
quickly in real time. Recording and stimulation hardware is controlled via
open-source MEABench software [23].

The overall closed-loop system therefore consists of several modules including
the Miabot robot, an MEA and stimulating hardware, a directly linked workstation
for conducting computationally expensive neuronal data analyses and a separate
machine running the robot control interface; a network manager routing signals
directly between the culture and the robot body.

The Miabot is wirelessly controlled via Bluetooth. Communication and control
are performed through custom C++ server code and TCP/IP sockets and clients
running on the acquisition PC which has direct control of the MEA recording and
stimulating software. The server sends motor commands and receives sensory data
via a virtual serial port over the Bluetooth connection, while the client programs
contain the closed-loop code which communicates with and stimulates the MEA

Fig. 7.2 The Miabot robot
with a cultured neural
network
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culture. The client code also performs text logging of all important data during an
experiment run.

This modular approach to the architecture has resulted in a system with easily
reconfigurable components. The obtained closed-loop system can efficiently handle
the information-rich data that is streamed via the recording software. A typical
sampling frequency of 25 kHz of the culture activity demands large network,
processing and storage resources. Consequently, on-the-fly streaming of
spike-detected data is the preferred method when investigating real-time
closed-loop learning techniques.

7.4 Experimental Results

First an existing appropriate neuronal pathway was identified by searching for
strong input/output relationships between pairs of electrodes. Suitable input/output
pairs were defined as those electrode combinations in which neurons proximal to
one electrode responded to stimulation of the other electrode at which the stimulus
was applied (at least one action potential within 100 ms of stimulation) more than
60 % of the time and responded no more than 20 % of the time to stimulation on any
other electrode. An input–output response map was then created by cycling through
all preselected electrodes individually with a positive-first biphasic stimulating
waveform (600 mV; 100 μs each phase, repeated 16 times). By averaging over 16
attempts, it was ensured that the majority of stimulation events fell outside any
inherent culture bursting that might have occurred. In this way, a suitable
input/output pair could be chosen, dependent on how the cultures had developed, in
order to provide an initial decision making pathway for the robot.

Thus, in the initially developed culture, we found by experimentation a rea-
sonably repeatable pathway in the culture from stimulation to response. We then
employed this pathway to achieve desired robot control––for example, for the
obstacle avoidance task––if the ultrasonic sensor was active we mapped the culture
response onto the robot actuators in order to cause the robot to turn away from the
object being located ultrasonically. This ensures constant movement of the robot,
without bumping into any obstacles.

The robot followed a forward path within its corral confines until it reached a
wall, at which point the front sonar value decreased below a threshold (set at
approximately 30 cm), triggering a stimulating pulse as shown in Fig. 7.3. If the
responding/output electrode registered activity following the input pulse then the
robot turned to avoid the wall. Essentially, activity on the responding electrode was
interpreted as a command for the robot to turn in order to avoid the wall. It was
apparent that, in fact, the robot turned spontaneously whenever activity was reg-
istered on the response/output electrode. The most relevant result for the experiment
was the occurrence of the chain of events: wall detection stimulation response.
From a philosophical and neurological perspective, it is of course also of interest to
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speculate why there was activity on the response electrode when no stimulating
pulse had been applied.

The typical behaviour in the cultures studied was generally a period of inactivity
(or low-frequency activity) prior to stimulus, followed by heightened network
activity induced almost immediately (within few millseconds) after stimulus, which
decayed (typically after ∼100 ms) to baseline pre-stimulus activity. The study opens
up the possibility of investigating response times of different cultures under dif-
ferent conditions and how they might be affected by external influences such as
electrical fields and pharmacological stimulants [24]. At any one time we have
typically 25 different cultures available and hence such comparative developmental
studies are now being conducted.

With the sonar threshold set at approximately 30 cm from a wall, a stimulation
pulse was applied to the culture, via its sensory input, each time this threshold was
breached–effectively when the robot’s position was sufficiently close to a wall. An
indication of the robot’s typical activity during a simple wall detection/right turn
experiment is shown in Fig. 7.3. The green trace indicates the front sonar value.
Yellow bars indicate stimulus pulse times and blue/red bars indicate sonar
timing/actuator command timing.

As can be witnessed, these response events may occur purely spontaneously or
due to electric stimulation as a result of the sensor threshold being breached. Such
events are deemed ‘meaningful’ only in the cases when the delay between stimu-
lation and response is less than 100 ms. In other words, such an event is a strong
indicator that the electric stimulation on one electrode caused a neural response on
the recording electrode. The red vertical lines indicate the time that a rotation
command is sent to the robot. These events are always coupled (the first one starts
the right turn rotation and the second simply ends the rotation). Only the second
signals of each pair can be clearly seen here as the rotation initiation commands are
overlaid by the yellow electrode firing bars (as a result of electrode firing which
instantly initiates a rotation command). A ‘meaningful’ event chain would be for
example at 1.95 s, where the sonar value drops below the threshold value (30 cm)
and a stimulation-response subsequently occurs.

Fig. 7.3 Analysis of the robot’s activity during a simple wall detection/right turn experiment
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Table 7.1 shows typical results from a live culture test in comparison with a
‘perfect’ simulation. If the live culture acted ‘perfectly’, making no mistakes, then
the two columns would be identical. This of course raises the question as to what a
‘perfect’ response actually is. In this case it could be regarded as a programmed
exercise––which some might refer to as ‘machine-like’. In a sense therefore the
culture is asserting its own individuality by not being ‘perfect’.

To explain Table 7.1 further––‘Total closed loop time’ refers to the time
between wall detection and a response signal witnessed from the culture. ‘Mean-
ingful turns’ refer to the robot turning due to a ‘wall detection-stimulation-response’
chain of events. A ‘wall to stimulation’ event corresponds to the 30 cm threshold
being breached on the sensor such that a stimulating pulse is transmitted to the
culture. Meanwhile a ‘stimulation to response’ event corresponds to a motor
command signal, originating in the culture, being transmitted to the wheels of the
robot to cause it to change direction. It follows that for the culture some of the
‘stimulation to response’ events will be in ‘considered’ response to a recent stim-
ulus–termed meaningful, whereas other such events–termed spontaneous––will be
either spurious or in ‘considered’ response to some thought in the culture, about
which we are unaware.

By totalling the results of a series of such trials carried out (over 100), con-
siderable differences (as typically indicated in Table 7.1) are observed between the
ratio of expected and spontaneous turns between the simulation and the live culture.
Under the control of the simulation 95 ± 4 % (Mean ± SD) meaningful turns were
observed whilst the remaining spontaneous turns (5 ± 4 %) were easily attributable
to aspects of thresholding spike activity. In contrast the live culture displayed a
relatively low number of meaningful turns (46 ± 15 %) and a large number of
spontaneous turns 54 ± 19 % as a result of intrinsic neuronal activity. Such a large
number of spontaneous turns was perhaps only to be expected in an uncharacterised
system and current work aims to both quiet the level of on-going spontaneous,
reminiscent of epileptiform, activity present in such cultures and to discover more
appropriate input sites and stimulation patterns.

As a follow up closed-loop experiment, the robot’s individual (right and left
separately) wheel speeds were controlled by using the spike firing frequency
recorded from the two chosen motor/output electrodes. The frequency is actually
calculated by means of the following simple principle: A running mean of spike rate

Table 7.1 Basic statistics
from a wall avoidance
experiment

Results Simulation Live
culture

Wall - > Stimulation event 100 % 100 %
Stimulation - > Response
event

100 % 67 %

Total closed loop time 0.075 s 0.2–0.5 s
Run time 240 s 140 s
Meaningful turns 41 22
Spontaneous turns 41 16
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from both the output electrodes was computed from the spike detector. The detected
spikes for each electrode were separated and divided by the signal acquisition time
to give a frequency value. These frequencies were linearly mapped (from their
typical range of 0–100 Hz) to a range of 0–0.2 m/s for the individual wheel linear
velocities. Meanwhile, collected sonar information was used to directly control
(proportionally) the stimulating frequency of the two sensory/input electrodes. The
typical sonar range of 0–100 cm was linearly re-scaled into the range 0.2–0.4 Hz for
electrode stimulation frequencies (600 mV voltage pulses).

The overall setup can be likened to a simple Braitenberg model [25]. However,
in our case, sensor-to-speed control is mediated by the cultured network acting as
the sole decision-making entity within the overall feedback loop. One important
aspect being focussed on is the evocation of long-term potentiation (LTP), i.e.,
directed neural pathway changes in the culture, thereby effecting plasticity between
the stimulating-recording electrodes. Although this was not a major initial target in
carrying out this part of the experiment, it has been noted elsewhere that a
high-frequency burst time can induce plasticity very quickly [27, 28]. As a result,
we are now investigating spike timing dependent plasticity based on the coinci-
dence of spike and stimulus.

7.5 Learning

Inherent operating characteristics of the cultured neural network have been taken as
a starting point to enable the physical robot body to respond in an appropriate
fashion––to get it started. The culture then operates over a period of time within the
robot body in its corral area. Experimental duration, e.g. how long the culture is
operational within its robot body, is merely down to experimental design. Several
experiments can therefore be completed within a day, whether on the same or
differing cultures. The physical robot body of course can operate 24/7.

In our studies thus far, learning and memory [26] investigations are at an early
stage. However, we were able to observe that the robot appeared to improve its
performance over time in terms of its wall avoidance ability. We are currently
investigating this and examining whether it can be repeated robustly and subse-
quently quantified. What we have witnessed could mean that neuronal
structures/pathways employ some form of adaptive processes which allow the
system to adjust to the closed-loop stimulation environment. In fact, such adapta-
tion may underlie some forms of plasticity and hence learning. Typically, learning
is considered to involve creating representations of the relationships between dif-
ferent objects or inputs. This is the so called associative learning paradigm and in its
broadest form it includes auto associative and hetero associative paradigms such as
classical or Pavlovian conditioning, operant conditioning and many others. How-
ever, psychologists also recognise other broad class of learning paradigms which do
not involve association (at least not explicitly). Forms of such non-associative
learning include sensitisation and habituation. The latter involves gradual
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adjustment of responses to repetitive stimuli and has been well documented in the
psychological literature. Putative biological mechanisms of habituation have been
well characterised in invertebrates.

We believe, that the experiment involving the robot wall avoidance task may
constitute a natural setup for a form of habituation to take place. The observed
improvement of the robot performance due to repetition of a satisfactory action may
then be a result of the strengthening of neural pathways through a process of
adaptation–learning due to habit.

This hypothesis opens a plethora of further interesting questions which we are
addressing. What processes, structures or pathways in the cortical neural cultures
support such habituation?

What is the ‘cognitive’ capacity of such form of learning? The issue involves
characterisation of behavioural repertoire that can be supported by habituation. This
includes the complexity of behaviours that can be exhibited as well as the number
of different behaviours that can be simultaneously acquired by this form of learning.
What are the dynamics of habituation? The length of time over which the habitu-
ation takes place, the level of robustness of the acquired behaviours, and what are
the properties of degradation of them over time, if the behaviour is not maintained.

Another, more practical but far from trivial, problem that needs to be addressed
is how to characterise the habituation and elucidate all the problems and issues
highlighted above from data. The signals collected from a culture are highly
dimensional, noisy and non-stationary. Moreover, operation in the closed loop
requires a quick turnaround time which means that, in spite of the potentially long
times over which the experiments are run; the data are of finite and short duration.
Hence, the issue of reliable recognition and characterisation of neural responses in
such circumstances comes to the fore.

We are encouraged by the fact that such habituation processes in animals have
been reported on elsewhere, e.g. [29, 31], and experimentation has been carried out
to investigate the effects of sensory deprivation on subsequent culture development.
In our case we are monitoring changes and attempting to provide a quantitative
characterisation relating plasticity to experience and time. The potential number of
confounding variables is however, considerable, as the subsequent plasticity pro-
cess, which occurs over quite a period of time, is (most likely) dependent on such
factors as initial seeding and growth near electrodes as well as environmental
transients such as feed rate, temperature and humidity.

On completion of these first phases of the infrastructure setup, a significant
research contribution, it is felt, lies in the application of machine learning
(ML) techniques to the hybrid system’s closed-loop experiments. These techniques
may be applied in the spike sorting process (dimensionality reduction of spike data
profiles, clustering of neuronal units), the mapping process between sensory data
and culture stimulation as well as the mapping between the culture activity and
motor commands, and the application of learning techniques on the controlled
electrical stimulation of the culture, in an attempt to exploit the cultured networks’
computational capacity.
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7.6 Conclusions

We have successfully realised a closed-loop adaptive feedback system involving a
(physical) mobile robotic platform and a cultured neuronal network using a mul-
tielectrode array (MEA), which necessitates real-time bidirectional communication
between the culture and the robot. A typical culture being employed presently
consists of approximately 100,000–150,000 neurons, although at any one time only
a small proportion of these neurons are actively firing.

Trial runs have been carried out with the overall robot and comparisons have
been made with an ‘ideal’ simulation which responds to stimuli perfectly as
required. It has been observed that the culture on many occasions responds as
expected, on other occasions, however, it does not, and in some cases it provides a
motor signal when it is not expected to do so.

The concept of an ‘ideal’ response is difficult to address because a biological
network is involved, and it should not be seen in negative terms when the culture
does not achieve (what is in our eyes) an ideal. We know very little about the
fundamental neuronal processes that give rise to meaningful behaviours, particu-
larly where learning is involved, we therefore need to retain an open mind as to a
culture’s performance.

The culture preparation techniques employed are constantly being refined and
have led to stable cultures that exhibit both spontaneous and induced
spiking/bursting activity which develops in-line with the findings of other groups,
e.g. [15, 32].

A stable robotic infrastructure has been set up, tested and is in place for future
culture behaviour and learning experiments. This infrastructure could be easily
modified in order to investigate culture-mediated control of a wide array of alter-
native robotic devices, such as a robot head, an ‘autonomous’ vehicle, robotic
arms/grippers, mobile robot swarms and multi-legged walkers.

In terms of robotics, this study and others like it, show that a robot can have a
biological brain to make its ‘decisions’. The 100,000–150,000 neuron size is due to
present day limitations––clearly this will increase. Indeed it is already the case that
3-dimensional structures are being investigated [20]. Simply increasing the com-
plexity from 2-dimensions to 3-dimensions (on the same basis) realises a figure of
30 million neurons (approximately) for the 3-dimensional case. The whole area of
research is therefore a rapidly expanding one as the range of sensory inputs is
expanded and the number of cultured neurons encapsulated rises. The potential
capabilities of such robots, including the range of tasks they can perform, therefore
needs to be investigated.

Understanding neural activity becomes a much more difficult problem as the
culture size is increased. Even the present neuron cultures are far too complex at
present for us to gain an overall insight. When they are grown to sizes such as 30
million neurons and beyond, clearly the problem is significantly magnified, par-
ticularly with regard to neural activity in the centre of a culture volume, which will
be (effectively) hidden from view. On top of this, the nature of the neurons may be
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diversified. To this point rat neurons are employed in our studies–however, any
animal neurons could be used. Human neurons, which are readily available are
particularly suitable due to the fact that any results obtained could be more
immediately relevant to human studies. The author wishes to record his feelings
here that it is important to stress the need for ethical concerns to be listened to in
such circumstances.

7.7 Future Research

There are a number of ways in which the current research programme is being taken
forward. First the robot is being extended to include additional sensory devices such
as extra sonar arrays, audio input, mobile cameras and other range-finding hardware
such as an on-board infrared sensor. This will provide an opportunity to investigate
sensory fusion in the culture and to perform more complex behavioural experi-
ments, possibly even attempting to demonstrate links between behaviour and cul-
ture plasticity, along the lines of [29], as different sensory inputs are integrated.

Provision of a powered-floor for the robot’s corral will provide the robot with
relative autonomy for a longer period of time while different learning techniques are
applied and behavioural responses monitored. For this the Miabot must be adapted
to operate on an in-house powered-floor, providing the robot with an unlimited
power supply. This feature, which is based on an original design for displays in
museums [30] is necessary since learning and culture behaviour tests will be carried
out for hours at a time.

Current hardcoded mapping between the robot goals and the culture input/output
relationships can be extended using learning techniques to eliminate the need for an
a priori choice of the mapping. In particular, reinforcement learning techniques can
be applied to various mobile robot tasks such as wall following and maze navi-
gation, in an attempt to provide a formal framework within which the learning
capabilities of the neuronal culture will be studied [35, 36].

To increase the effectiveness of culture training beyond the ∼30 % success rate
seen in previous work, biological experiments are currently being performed to
identify physiological features which may play a role in cellular correlates of
learning processes. These experiments also investigate possible methods of
inducing an appropriate receptive state in the culture that may allow greater control
over its processing abilities and the formation of memories [26] involving specific
network activity changes, which may allow identification of the function of given
network ensembles. In particular, in terms of cholinergic influences, the possible
effect of acetylcholine (ACh) [33] in coordinating the contributions of different
memory systems is being investigated.

The learning techniques employed and the results obtained from the culture need
to be benchmarked. In order to achieve this we are developing a model of the
cultured neural network, based on experimental data about culture density and
activity. In doing so we hope to gain a better understanding of the contribution of
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culture plasticity and learning capacity to the observed control proficiency. At
present we are investigating hidden markov models (HMMs) as a technique for
uncovering dynamic spatiotemporal patterns emerging from spontaneously active
or stimulated neuronal cultures [34, 37]. The use of hidden markov models enables
characterisation of multichannel spike trains as a progression of patterns of
underlying discrete states of neuronal activity.

Key for the future, however, will be the possible employment of 30 million
human neurons as the brain of a robot body. Through technical development, it is
envisioned that the number of neurons will subsequently increase further still [38].
As the 100 billion typical number of neurons is approached, other issues then
become apparent––as the sheer size of the robot brain tends to approach that of a
human––e.g. what, if any, rights should the robot have?
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