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Abstract It has been strongly advocated that increase in density of breast tissue is
strongly correlated with the risk of developing breast cancer. Accordingly change in
breast tissue density pattern is taken seriously by radiologists. In typical cases, the
breast tissue density patterns can be easily classified into fatty, fatty-glandular and
dense glandular classes, but the differential diagnosis between atypical breast tissue
density patterns from mammographic images is a daunting challenge even for the
experienced radiologists due to overlap of the appearances of the density patterns.
Therefore a CAD system for the classification of the different breast tissue density
patterns from mammographic images is highly desirable. Accordingly in the present
work, exhaustive experiments have been carried out to evaluate the performance of
statistical features using PCA-kNN, PCA-PNN, PCA-SVM and PCA-SSVM based
CAD system designs for two-class and three-class breast tissue density classification
using mammographic images. It is observed that for two-class breast tissue density
classification, the highest classification accuracy of 94.4% is achieved using only the
first 10 principal components (PCs) derived from statistical features with the SSVM
classifier. For three-class breast tissue density classification, the highest classification
accuracy of 86.3% is achieved using only the first 4 PCs with SVM classifier.

Keywords Breast tissue density classification · Statistical features · Principal com-
ponent analysis (PCA) · k-nearest neighbor (kNN) classifier · Probabilistic neural
network (PNN) classifier · Support vector machine (SVM) classifier · Smooth sup-
port vector machine (SSVM) classifier

Kriti
Jaypee University of Information Technology, Solan, Himachal Pradesh, India
e-mail: kriti.23gm@gmail.com

J. Virmani (B)
Thapar University, Patiala, Punjab, India
e-mail: jitendra.virmani@gmail.com

S. Thakur
Department of Radiology, IGMC, Shimla, Himachal Pradesh, India
e-mail: tshruti878@yahoo.in

© Springer International Publishing Switzerland 2016
A.I. Awad and M. Hassaballah (eds.), Image Feature Detectors and Descriptors,
Studies in Computational Intelligence 630, DOI 10.1007/978-3-319-28854-3_16

411



412 Kriti et al.

1 Introduction

Cancer comes under a class of diseases that are characterized by uncontrolled growth
of cells resulting in formation of tissue masses called tumors at any location in the
body [1]. The malignant tumor can destroy other healthy tissues in the body and
often travels to other parts of the body to form new tumors. This process of invasion
and destruction of healthy tissues is called metastasis [2]. Breast cancer is the type of
cancer that develops form breast cells. It is considered to be a major health problem
nowadays and is the most common form of cancer found in women [3]. For the
women in United Kingdom, the lifetime risk of being diagnosed with breast cancer
is 1 in 8 [4]. The study in [5] reported 1.67 million new incidences of breast cancer
worldwide in the year 2012. There are various risk factors associated with cancer
development: (a) Age, (b) History of breast cancer, (c) Formation of certain lumps
in the breasts (d) Higher breast density, (e) Obesity, ( f ) Alcohol consumption, (g)

Cosmetic implants.
It has been strongly advocated by many researchers in their study that high breast

density is strongly correlated with the risk of developing breast cancer [6–14]. The
association between increased breast density and breast cancer risk can be explained
on the basis of effects due to the hormones mitogens and mutagens. The size of
the cell population in the breast and cell proliferation is affected by mitogens while
the likelihood of damage to these cells is due to mutagens. Due to increased cell
population, there is an increase in reactive oxygen species (ROS) production and
lipid peroxidation. The products of lipid peroxidation; malondialdehyde (MDA) and
isoprostanes catalyze the proliferation of cells [15].

Even though breast cancer is considered to be a fatal disease with a high mortality
rate, the chances of survival are improved significantly if it can be detected at an early
stage. Various imaging modalities like ultrasound, MRI, computerized tomography,
etc. can be used for diagnosis of breast abnormalities butmammography is considered
to be the best choice for detection due to its higher sensitivity [16–23].Mammography
is an X-ray imaging technique used to detect the breast abnormalities. Mammograms
display the adipose (fatty) and fibroglandular tissues of the breast along with the
present abnormalities.

On the basis of density, breast tissue can be classified into the following categories:

(a) Fatty (F)/Dense (D) (Two-class classification)
(b) Fatty (F)/Fatty-glandular (FG)/Dense-glandular (DG) (Three-class classifica-

tion)
(c) Almost entirely fatty (B-I)/Some fibro-glandular tissue (B-II)/Heterogeneously

dense breast (B-III)/Extremely dense breast (B-IV) (Four-class BI-RADS classi-
fication)

The typical fatty tissue being translucent toX-rays appears dark on amammogram
where as the dense tissues appear bright on the mammograms. The fatty-glandular
breast tissue is an intermediate stage between fatty and dense tissues therefore a
typical fatty-glandular breast tissue appears dark with some bright streaks on the
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Fig. 1 Sample mammographic images depicting typical cases. a Typical fatty tissue ‘mdb012’. b
Typical fatty-glandular tissue ‘mdb014’. c Typical dense-glandular tissue ‘mdb108’

mammogram. The mammographic appearances of the typical breast tissues based
on density are depicted in Fig. 1.

The discrimination between different density patterns by visual analysis is highly
subjective and depends on the experience of the radiologist. The participating radi-
ologist i.e. one of the co-author of this work, opined that, in case of atypical cases
where there is a high overlap in appearances of the different density patterns, a clear
discrimination cannot be made by visual analysis easily. The sample mammographic
images depicting the atypical cases are shown in Fig. 2.

Fig. 2 Sample mammographic images depicting atypical cases a Atypical fatty tissue ‘mdb088’.
b Atypical fatty-glandular tissue ‘mdb030’. c Atypical dense-glandular tissue ‘mdb100’
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In order to correctly identify and analyze these atypical cases various computer
aided diagnostic (CAD) systems have been developed for breast tissue density clas-
sification. These proposed CAD systems can be categorized as: (a) CAD system
designs based on segmented breast tissue versus CAD system designs based on
Regions of Interest (ROIs). (b) CAD system designs for two class classification
(fatty/dense) versus CAD system designs for three class classification (fatty/fatty-
glandular/dense-glandular) versus CAD system designs for four class classification
based on BI-RADS (B-I: almost entirely fatty/B-II: some fibro-glandular tissue/B-
III: heterogeneously dense breast/B-IV: extremely dense breast). (c) CAD system
designs using standard benchmark dataset (Mammographic image analysis society
(MIAS), Digital database of screening mammograms (DDSM), Oxford, Nijmegen)
versus CAD system designs using data collected by individual research groups. A
brief description of the related studies is given in Tables1, 2 and 3.

From the above tables, it can be observed that most of the researchers have used
a subset of MIAS and DDSM databases and have worked on the segmented breast
tissue. It is also observed that only a few studies report CAD systems based on ROIs

Table 1 Summary of studies carried out for two-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Miller and Astley [24] Collected by
investigator

40 SBT Bayesian 80.0

Bovis and Singh [25] DDSM
(SBMD)

377 SBT ANN 96.7

Castella et al. [26] Collected by
investigator

352 256 × 256 LDA 90.0

Oliver et al. [27] MIAS
(SBMD)

322 SBT Bayesian 91.0

DDSM
(SBMD)

831 84.0

Mustra et al. [28] MIAS
(SBMD)

322 512 × 384 Naïve
Bayesian

91.6

KBD-FER
(Collected by
investigator)

144 IB1 97.2

Sharma and Singh [29] MIAS
(SBMD)

322 200 × 200 SMO-
SVM

96.4

Sharma and Singh [30] MIAS
(SBMD)

212 200 × 200 kNN 97.2

Kriti et al. [31] MIAS
(SBMD)

322 200 × 200 SVM 94.4

Virmani et al. [32] MIAS
(SBMD)

322 200 × 200 kNN 96.2

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifica-
tion Accuracy
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Table 2 Summary of studies carried out for three-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Blot and Zwiggelaar
[33]

MIAS (SBMD) 265 SBT kNN 63.0

Bosch et al. [34] MIAS (SBMD) 322 SBT SVM 91.3

Muhimmah and
Zwiggelaar [35]

MIAS (SBMD) 321 SBT DAG-
SVM

77.5

Subashini et al. [36] MIAS (SBMD) 43 SBT SVM 95.4

Tzikopoulos et al.
[37]

MIAS (SBMD) 322 SBT SVM 84.4

Li [38] MIAS (SBMD) 42 SBT KSFD 94.4

Mustra et al. [28] MIAS (SBMD) 322 512 × 384 IB1 82.0

Silva and Menotti
[39]

MIAS (SBMD) 320 300 × 300 SVM 77.1

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifica-
tion Accuracy

Table 3 Summary of studies carried out for four-class breast tissue density classification

Investigators Dataset description

Database No. of images ROI size Classifier OCA (%)

Karssemeijer [40] Nijmegen
(SBMD)

615 SBT kNN 80.0

Wang et al. [41] Collected by
investigator

195 SBT NN 71.0

Petroudi et al. [42] Oxford (SBMD) 132 SBT Nearest
neighbor

76.0

Oliver et al. [43] DDSM (SBMD) 300 SBT kNN+ID3 47.0

Bosch et al. [34] MIAS (SBMD) 322 SBT SVM 95.4

DDSM (SBMD) 500 84.7

Castella et al. [26] Collected by
investigator

352 256 × 256 LDA 83.0

Oliver et al. [27] MIAS (SBMD) 322 SBT Bayesian 86.0

DDSM (SBMD) 831 77.0

Mustra et al. [28] MIAS (SBMD) 322 512 × 384 IB1 79.2

KBD-FER
(collected by
investigator)

144 76.4

Note SBMD Standard benchmark database. SBT Segmented breast tissue. OCA Overall Classifi-
cation Accuracy

extracted from the breast [26, 28–32, 39] even though it has been shown that the
ROIs extracted from the center of the breast result in highest performance as this
region of the breast is densest and extraction of ROIs also eliminates an extra step of
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preprocessing included in obtaining the segmented breast tissue for pectoral muscle
removal [44].

The chapter is organized into three sections. Section2 presents the methodology
adopted for present work, i.e. (a) description of the dataset on which the work
has been carried out (b) description of texture features extracted from each ROI
image and (c) description of the classificationmodule. Section3 describes the various
experiments carried out in the present work for two-class and three-class breast tissue
density classification using statistical texture features. Finally, Sect. 4 reports the
conclusions drawn from the exhaustive experiments carried out in the present work
for two-class and three-class breast tissue density classification.

2 Methodology

2.1 Dataset Description

In the present work a publicly available database, mini-MIAS has been used. This
database consists of the Medio Lateral Oblique (MLO) views of both the breasts of
161 women i.e. a total of 322 mammographic images. These images are selected
from the UK National Breast Screening Programme and were digitized using The
Joyce-Loebl scanningmicrodensitometer. The images in the database are categorized
into three categories as per their density namely fatty (106 images), fatty-glandular
(104 images) and dense-glandular (112 images). Each image in the database is of
size 1024 × 1024 pixels, with 256 gray scale tones and a horizontal and vertical
resolution of 96 dpi. The database also includes location of abnormality, the radius
of the circle enclosing the abnormality, its severity and nature of the tissue [45]. In
the present work CAD system designs have been proposed for (a) two-class breast
tissue density classification i.e. (fatty and dense class) and (b) three-class breast
tissue density classification i.e. (fatty, fatty-glandular and dense-glandular classes).
For implementing CAD systems for two-class breast tissue density classification, the
fatty-glandular and dense-glandular classes are combined and considered as dense
class resulting in 106 mammograms belonging to fatty class and 216 mammograms
belonging to dense class. The description of the dataset, used for two-class and
three-class CAD system designs is shown in Fig. 3.

2.2 Region of Interest (ROI) Selection

The ROI size is selected carefully considering the fact that it should provide a good
population of pixels for computing texture features [44]. Different ROI sizes that
have been selected in the literature for classification are 256 × 256 pixels [26], 512
× 384 pixels [28], 200 × 200 pixels [29–32] and 300 × 300 pixels [39]. Other



Application of Statistical Texture Features for Breast Tissue Density Classification 417

Fig. 3 Dataset description. a Two-class breast tissue density classification. b Three-class breast
tissue density classification

researchers have pre-processed the mammograms by removal of the pectoral muscle
and the background using segmented breast tissue for feature extraction [24, 25, 27,
33–38, 40–43]. The participating radiologist, one of the coauthors opined that for
accessing the breast tissue density patterns, visual analysis of texture patterns of the
center of the breast tissue is carried out during routine practice. Accordingly, for
the present work, ROIs of size 200 × 200 pixels are manually extracted from each
mammogram. The ROIs are selected from the center of the breast tissue as it has
also been asserted by many researchers in their research that the center region of
the breast tissue is the densest region and selecting ROI from this part of the breast
results in highest performance of the proposed algorithms [29–32, 44]. The selection
and extraction of ROI from the breast tissue is shown in Fig. 4.

The sample images of ROIs extracted from the mammographic images are shown
in Fig. 5.

2.3 Experimental Workflow for Design of CAD System
for Two-Class and Three-Class Breast Tissue Density
Classification

With the advancement in computer technology and artificial intelligence techniques
there has been a substantial increase in the opportunities for researchers to investigate
the potential of CAD systems for texture analysis and tissue characterization of
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Fig. 4 Sample mammographic image with ROI marked

Fig. 5 Sample ROI images. a Fatty tissue ‘mdb012’, b Fatty-glandular tissue ‘mdb014’, c Dense-
glandular tissue ‘mdb108’

radiological images [46–58]. Tissue characterization refers to quantitative analysis
of the tissue imaging features resulting in accurate distinction between different types
of tissues. Thus, the result of tissue characterization is interpreted using numerical
values. The overall aim of developing a computerized tissue characterization system
is to provide additional diagnostic information about the underlying tissue which
cannot be captured by visual inspection of medical images.
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Fig. 6 Experimental workflow for design of CAD systems for two-class and three class breast
tissue density classification

The CAD systems are used in themedical imaging as a second opinion tool for the
radiologists to gain confidence in their diagnosis. In radiology, CADsystems improve
the diagnostic accuracy for medical image interpretation helping the radiologists in
detecting the lesions present in the images which might be missed by them.

In general,CADsystemdesign consists of feature extractionmodule, feature space
dimensionality reduction module and classification module. For implementing the
proposedCADsystemdesign for breast density classification, 322ROIs are extracted
from322 images of theMIASdatabase. The block diagramof experimentalworkflow
followed in the present work is shown in Fig. 6.

For the present CAD system design, ROIs are manually extracted from the mam-
mograms of the MIAS database. In feature extraction module statistical features are
extracted from the ROIs. In feature space dimensionality reduction module, PCA is
applied to the feature set (training data) to derive its principal components (PCs).
The reduced testing dataset is obtained by projecting the data points of feature set
(testing data) in the direction of the PCs of feature set (training data). In feature
classification module 4 classifiers i.e. k-nearest neighbor (kNN) classifier, proba-
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bilistic neural network (PNN) classifier, support vector machine (SVM) classifier
and smooth support vector machine (SSVM) classifier are used for the classification
task. These classifiers are trained and tested using the reduced texture feature vectors
(RTFVs) i.e. set of optimal PCs obtained after applying PCA.

2.3.1 Feature Extraction Module

The feature extraction is the process used to transform the visually extractable and
non-extractable features into mathematical descriptors. These descriptors are either
shape-based (morphological features) or intensity distribution based (textural fea-
tures). There are a variety of methods to extract the textural features including statis-
tical, signal processing based and transform domain methods. The different methods
of feature extraction are depicted in Fig. 7.

In the present work, the statistical methods are used to extract the texture features
from an image based on the gray level intensities of the pixels of that image.

First Order Statistics (FOS) Features

Six features namely average gray level, standard deviation, smoothness, kurtosis and
entropy are computed for each ROI [59].

Fig. 7 Different feature extraction methods. Note: GLCM: Gray level co-occurrence matrix,
GLRLM: Gray level run length matrix, NGTDM: Neighborhood gray tone difference matrix, SFM:
Statistical feature matrix, FPS: Fourier power spectrum
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Second Order Statistics-Gray Level Co-occurrence Matrix (GLCM) Features

To derive the statistical texture features from GLCM, spatial relationship between
two pixels is considered. The GLCM tabulates the number of times the different
combinations of pixel pairs of a specific gray level occur in an image for various
directions θ = 0◦, 45◦, 90◦, 135◦ and different distances d = 1, 2, 3 etc. A total
of 13 GLCM features namely angular second moment (ASM), correlation, contrast,
variance, inverse differencemoment, sumaverage, sumvariance, difference variance,
entropy, sum entropy, difference entropy, information measures of correlation-1 and
information measures of correlation-2 are computed from each ROI [60–62].

Higher Order Statistics-Gray Level Run Length Matrix (GLRLM) Features

To derive the statistical texture features from the GLRLM, spatial relationship
between more than two pixels is considered. In a given direction, GLRLM mea-
sures the number of times there are runs of consecutive pixels with the same value.
Total of 11GLRLM features namely short run emphasis, long run emphasis, low gray
level run emphasis, high gray level run emphasis, short run low gray level emphasis,
short run high gray level emphasis, long run low gray level emphasis, long run high
gray level emphasis, gray level non uniformity, run length non-uniformity and run
percentage are computed from each ROI [63, 64].

Edge Features (Absolute Gradient)

The edges in an image contain more information about the texture than other parts
of the image. The gradient of an image measures the spatial variation of gray levels
across an image. At an edge, there is an abrupt change in gray level of the image. If
the gray level variation at some point is abrupt then that point is said to have a high
gradient and if the variation is smooth the point is at low gradient. Absolute gradient
is used to judge whether the gray level variation in an image is smooth or abrupt. The
texture features computed are absolute gradient mean and absolute gradient variance
[65].

Neighborhood Gray Tone Difference Matrix (NGTDM) Features

NGTDM represents a difference in grayscale between pixels with a certain gray
scale and the neighboring pixels. Features extracted from NGTDM are: coarseness,
contrast, business, complexity and strength [26, 66].
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Statistical Feature Matrix (SFM) Features

SFM is used to measure the statistical properties of pixels at several distances within
an image. The features computed from SFM are coarseness, contrast, periodicity and
roughness.

Gray Level Difference Statistics (GLDS)

These features are based on the co-occurrence of a pixel pair having a given absolute
difference in gray-levels separated by a particular distance. The extracted features
are: homogeneity, contrast, energy, entropy and mean [67, 68].

2.3.2 Feature Space Dimensionality Reduction Module

The texture feature vector (TFV) formed after computing the texture features in the
feature extractionmodulemay contain some redundant and correlated features which
when used in the classification task can degrade the performance of the proposed
CAD system. These redundant features give no extra information that proves to be
helpful in discriminating the textural changes exhibited by different density patterns.
Hence, to remove these redundant features and obtain the optimal attributes for the
classification task, PCA is employed [69–71]. Steps used in the PCA algorithm are:

(1) Normalize each feature in dataset to zero mean and unity variance.
(2) Obtain co-variance matrix of the training dataset.
(3) Obtain Eigen values and Eigen vectors from the co-variance matrix. Eigen vec-

tors give the directions of the PCs.
(4) Project the data points in testing dataset in the direction of the PCs of training

dataset.

The obtained PCs are uncorrelated to each other and the 1st PC has the largest
possible variance out of all the successive PCs. The optimal number of PCs is deter-
mined by performing repeated experiments by going through first few PCs i.e. by
first considering the first two PCs, then first three PCs and so on, and evaluating the
performance of the classifier for each experiment.

2.3.3 Feature Classification Module

Classification is a machine learning technique, used to predict the class membership
of unknown data instances based on the training set of data containing instances
whose class membership is known. In this module, different classifiers like kNN,
PNN, SVM and SSVM are employed to classify the unknown testing instances of
mammographic images. The extracted features are normalized in the range [0, 1]
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by using min-max normalization procedure to avoid any bias caused by unbalanced
feature values. The different classifiers employed in the present work are described
as below:

k-Nearest Neighbor (kNN) Classifier

The kNNclassifier is based on the idea of estimating the class of an unknown instance
from its neighbors. It tries to cluster the instances of feature vector into disjoint classes
with an assumption that instances of feature vector lying close to each other in feature
space represent instances belonging to the same class. The class of an unknown
instance in testing dataset is selected to be the class of majority of instances among
its k-nearest neighbors in the training dataset. The advantage of kNN is its ability
to deal with multiple class problems and is robust to noisy data as it averages the
k-nearest neighbors [71–74]. Euclidean distance is used as a distance metric. The
classification performance of kNN classifier depends on the value of k. In the present
work, the optimal value of k and number of PCs to be retained is determined by
performing repeated experiments for the values of k ∈ {1, 2, . . . , 9, 10} and number
of PCs ∈ {1, 2, . . . , 14, 15}. If same accuracy is obtained for more than one value of
k, smallest value of k is used to obtain the result.

Probabilistic Neural Network (PNN) Classifier

The PNN is a supervised feed-forward neural network used for estimating the prob-
ability of class membership [75–77]. The architecture of PNN has four layers: input
layer, pattern layer, summation layer and output layer. Primitive values are passed to
the ‘n’ neurons in the input unit. Values from the input unit are passed to the hidden
units in the pattern layer where responses for each unit are calculated. There are
‘p’ number of neurons in the pattern layer, one for each class. In the pattern layer
a probability density function for each class is defined based on the training dataset
and optimized kernel width parameter. Values of each hidden unit are summed in
the summation layer to get response in each category. Maximum response is taken
from all categories in the decision layer to get the class of the unknown instance. The
optimal choice of spread parameter (Sp) i.e. the kernel width parameter is critical
for the classification using PNN. In the present work, the optimal values used for Sp
and optimal number of PCs to design a PNN classifier are determined by perform-
ing repeated experiments for values of Sp ∈ {1, 2, . . . , 9, 10} and number of PCs
∈ {1, 2, . . . , 14, 15}.

Support Vector Machine (SVM) Classifier

The SVM classifier belongs to a class of supervised machine learning algorithms.
It is based on the concept of decision planes that define the decision boundary.
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In SVM, kernel functions are used to map the non-linear training data from input
space to a high dimensionality feature space. Some common kernels are polynomial,
Gaussian radial basis function and sigmoid. In the present work, SVM classifier
is implemented using LibSVM library [78] and the performance of the Gaussian
Radial Basis Function kernel is investigated. The critical step for obtaining a good
generalization performance is the correct choice of regularization parameter C and
kernel parameter γ. The regularization parameter C tries to maximize the margin
while keeping the training error low. In the present work, ten-fold cross validation
is carried out on the training data, for each combination of (C, γ) such that, C
∈ {2−4, 2−3, . . . , 215} and γ ∈ {2−12, 2−11, . . . , 24}. This grid search procedure in
parameter space gives the optimum values of C and γ for which training accuracy is
maximum [79–83].

Smooth Support Vector Machine (SSVM) Classifier

To solve importantmathematical problems related to programming, smoothingmeth-
ods are extensively used. SSVMworks on the idea of smooth unconstrained optimiza-
tion reformulation based on the traditional quadratic program which is associated
with SVM [84, 85]. For implementing SSVM classifier, the SSVM toolbox devel-
oped by Laboratory of Data Science and Machine Intelligence, Taiwan was used
[86]. Similar to SVM implementation in case of SSVM also, ten-fold cross vali-
dation is carried out on training data for each combination of (C, γ) such that, C
∈ {2−4, 2−3, . . . , 215} and γ ∈ {2−12, 2−11, . . . , 24}. This grid search procedure in
parameter space gives the optimum values of C and γ for which training accuracy is
maximum.

Classifier Performance Evaluation Criteria

The performance of the CAD system for two-class and three class breast tissue den-
sity classification can be measured using overall classification accuracy (OCA) and
individual class accuracy (ICA). These values can be calculated using the confusion
matrix (CM).

OCA = � No. of correctly classified images of each class

Total images in testing dataset
(1)

ICA = No. of correctly classified images of one class

Total no. of images in the testing dataset for that class
(2)
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3 Results

Rigorous experimentation was carried out in the present work to characterize the
mammographic images as per breast tissue density. The experiments carried out
in the present work are described in Tables4 and 5, respectively for two-class and
three-class breast tissue density classification.

3.1 Experiments Carried Out for Two-Class Breast Tissue
Density Classification

3.1.1 Experiment 1: To Obtain the Classification Performance
of Statistical Features for Two-Class Breast Tissue Density
Classification Using kNN, PNN, SVM and SSVM Classifiers

In this experiment, classification performance of TFV containing different statistical
features is evaluated for two-class breast tissue density classification using different
classifiers. The results of the experiment are shown in Table6. It can be observed
from the table that for statistical features, the overall classification accuracy of 92.5,
91.3, 90.6 and 92.5% is achieved using kNN, PNN, SVM and SSVM classifiers,
respectively. It can also be observed that the highest in individual class accuracy
for fatty class is 83.0% with SSVM classifier and highest individual class accuracy
for dense class is 100%, using PNN classifier. Out of total 161 testing instances,
12 instances (12/161) are misclassified in case of kNN, 14 instances (14/161) are
misclassified in case of PNN, 16 instances (16/161) are misclassified in case of SVM
and 12 instances (12/161) are misclassified in case of SSVM classifier.

Table 4 Description of experiments carried out for two-class breast tissue density classification

Experiment 1 To obtain the classification performance of statistical features for two-class
breast tissue density classification using kNN, PNN, SVM and SSVM classifiers

Experiment 2 To obtain the classification performance of statistical features for two-class
breast tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and
PCA-SSVM classifiers

Table 5 Description of experiments carried out for three-class breast tissue density classification

Experiment 1 To obtain the classification performance of statistical features for three-class
breast tissue density classification using kNN, PNN, SVM and SSVM classifiers

Experiment 2 To obtain the classification performance of statistical features for three-class
breast tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and
PCA-SSVM classifiers
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Table 6 Classification performance of statistical features using kNN, PNN, SVM and SSVM
classifiers for two-class breast tissue density classification

Classifier CM OCA (%) ICAF (%) ICAD (%)

F D

kNN F 43 10 92.5 81.1 98.1

D 2 106

PNN F 39 14 91.3 73.5 100

D 0 108

SVM F 41 12 90.6 77.3 96.2

D 4 104

SSVM F 44 9 92.5 83.0 97.2

D 3 105

Note CM Confusion matrix, F Fatty class, D Dense class, OCA Overall classification accuracy,
ICAF Individual class accuracy for fatty class, ICAD Individual class accuracy for dense class

3.1.2 Experiment 2: To Obtain the Classification Performance
of Statistical Features for Two-Class Breast Tissue Density
Classification Using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM Classifiers

In this experiment, classification performance of reduced texture feature vector
(RTFV) derived by applying PCA to TFV containing different statistical features
is evaluated for two-class breast tissue density classification using different classi-
fiers. The results are shown in Table7.

It can be observed from the table that the overall classification values of 91.9, 91.3,
93.7 and 94.4% have been achieved using the PCA-kNN, PCA-PNN, PCA-SVM

Table 7 Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM classifiers for two-class breast tissue density classification

Classifier l CM OCA (%) ICAF (%) ICAD (%)

F D

kNN 6 F 43 10 91.9 81.1 97.2

D 3 105

PNN 4 F 39 14 91.3 73.5 100

D 0 108

SVM 7 F 43 10 93.7 81.1 100

D 0 108

SSVM 10 F 47 6 94.4 88.6 97.2

D 3 105

Note l No. of PCs, CM Confusion matrix, F Fatty class, D Dense class, OCA Overall classification
accuracy, I C AF Individual class accuracy for fatty class, I C AD Individual class accuracy for dense
class
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and PCA-SSVM classifiers, respectively. It can also be observed that the highest
individual class accuracy for fatty class is 88.6% using PCA-SSVM classifier and
that for dense class is 100% using PCA-PNN and PCA-SVM classifiers. Out of total
161 testing instances, 13 instances (13/161) are misclassified in case of PCA-kNN,
14 instances (14/161) are misclassified in case of PCA-PNN, 10 instances (10/161)
are misclassified in case of PCA-SVM and 9 instances (9/161) are misclassified in
case of PCA-SSVM classifier.

From the results obtained from the above experiments, it can be observed that for
two-class breast tissue density, PCA-SSVM classifier achieves highest classification
accuracy of 94.4% using first 10 PCs.

3.2 Experiments Carried Out for Three-Class Breast Tissue
Density Classification

3.2.1 Experiment 1: To Obtain the Classification Performance
of Statistical Features for Three-Class Breast Tissue Density
Classification Using kNN, PNN, SVM and SSVM Classifiers

In this experiment, the classification performance of TFV containing different sta-
tistical features is evaluated for three-class breast tissue density classification using
different classifiers. The results are shown in Table8.

It can be observed from the table that the overall classification accuracy of 86.9,
85.0, 83.8 and 82.6% is achieved using kNN, PNN, SVM and SSVM classifiers,
respectively. Thehighest individual class accuracy for fatty class is 94.3%usingSVM
classifier, for fatty-glandular class the highest individual class accuracy achieved is
88.4% using SSVM classifier and for the dense-glandular class, highest individ-
ual class accuracy achieved is 96.4% using kNN classifier. Out of total 161 test-
ing instances, 21 instances (21/161) are misclassified in case of kNN, 24 instances
(24/161) are misclassified in case of PNN, 26 instances (26/161) are misclassified in
case of SVM and 28 instances (28/161) are misclassified in case of SSVM classifier.

3.2.2 Experiment 2: To Obtain the Classification Performance
of Statistical Features for Three-Class Breast Tissue Density
Classification Using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM Classifiers

In this experiment, the classification performance of RTFV derived by applying PCA
to TFV containing different statistical features is evaluated for three-class breast tis-
sue density classification using different classifiers. The results are shown in Table9.
It can be observed from the table that the overall classification of 85.0, 84.4, 86.3
and 85.0% is achieved using PCA-kNN, PCA-PNN, PCA-SVM and PCA-SSVM
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Table 8 Classification performance of statistical features using kNN, PNN, SVM and SSVM
classifiers for three-class breast tissue density classification

Classifier CM OCA
(%)

ICAF
(%)

ICAFG
(%)

ICADG
(%)

F FG DG

kNN F 46 2 5 86.9 86.7 76.9 96.4

FG 2 40 10

DG 0 2 54

PNN F 41 8 4 85.0 77.3 82.6 94.6

FG 1 43 8

DG 0 3 53

SVM F 50 3 0 83.8 94.3 67.3 89.2

FG 12 35 5

DG 1 5 50

SSVM F 39 11 3 82.6 73.5 88.4 85.7

FG 3 46 3

DG 1 7 48

Note CM Confusion matrix, F Fatty class, FG Fatty–glandular class, DG Dense-glandular class,
OCAOverall classification accuracy, ICAF Individual class accuracy for fatty class, ICAFG Individ-
ual class accuracy for fatty-glandular class, ICADG Individual class accuracy for dense-glandular
class

Table 9 Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-SVM
and PCA-SSVM classifiers for three-class breast tissue density classification

Classifier l CM OCA (%) ICAF (%) ICAFG (%) ICADG (%)

F FG DG

kNN 9 F 44 4 5 85.0 83.0 73.0 98.2

FG 3 38 11

DG 1 0 55

PNN 6 F 43 6 4 84.4 81.1 84.6 87.5

FG 1 44 7

DG 0 7 49

SVM 4 F 47 4 2 86.3 88.6 76.9 92.8

FG 6 40 6

DG 0 4 52

SSVM 5 F 43 9 1 85.0 81.1 84.6 89.2

FG 4 44 4

DG 0 6 50

Note l Optimal number of PCs, CM Confusion matrix, F Fatty class, FG Fatty–glandular class,
DG Dense-glandular class, OCA Overall classification accuracy, ICAF Individual class accuracy
for fatty class, ICAFG Individual class accuracy for fatty-glandular class, ICADG Individual class
accuracy for dense-glandular class
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classifiers, respectively. The highest individual class accuracy for fatty class is 88.6%
using PCA-SVMclassifier, for fatty-glandular class the highest individual class accu-
racy achieved is 84.6% using PCA-PNN and PCA-SSVM classifiers and for the
dense-glandular class, highest individual class accuracy achieved is 98.2% using
PCA-kNN classifier. Out of total 161 testing instances, 24 instances (24/161) are
misclassified in case of PCA-kNN, 25 instances (25/161) are misclassified in case
of PCA-PNN, 22 instances (22/161) are misclassified in case of PCA-SVM and 24
instances (24/161) are misclassified in case of PCA-SSVM classifier.

For three-class breast tissue density classification, it can be observed from the
above experiments that highest classification accuracy of 86.9% is achieved using
the kNN classifier, however it should also be noted that PCA-SVMclassifier achieves
the highest classification accuracy of 86.3% by using only the first 4 PCs obtained
by applying PCA to the TFV of statistical features. Thus CAD system design based
on PCA-SVM classifier can be considered to be the best choice for three-class breast
tissue density classification.

Fig. 8 Proposed SSVM based CAD system design for two-class breast tissue density classification
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4 Conclusion

From the rigorous experiments carried out in the present work, it can be observed
that for two-class breast tissue density, PCA-SSVM based CAD system using first
10 PCs obtained by applying PCA to the TFV derived using statistical features yields
highest OCA of 94.4% using mammographic images. It could also be observed that
the PCA-SVM based CAD system using first 4 PCs obtained by applying PCA to the
TFV derived using statistical features yields highest OCA of 86.3% for three-class
breast tissue density classification using mammographic images. It can be concluded
that statistical features are significant to account for the textural changes exhibited
by the fatty and dense breast tissues. The proposed CAD system designs derived
using the above results are shown in Figs. 8 and 9 for two-class and three-class breast
tissue density classification, respectively.

Fig. 9 Proposed CAD system design for three-class breast tissue density classification
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The promising results obtained by the proposed CAD system designs indicate
their usefulness to assist radiologists for characterization of breast tissue density
during routine clinical practice.
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