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Abstract In image analysis, segmentation is considered one of the most important
steps. Segmentation by searching threshold values assumes that objects in a digital
image can be modeled through distinct gray level distributions. In this chapter it is
proposed the use of a bio-inspired algorithm, called Allostatic Optimisation (AO),
to solve the multi threshold segmentation problem. Our approach considers that an
histogram can be approximated by a mixture of Cauchy functions, whose parameters
are evolved by AO. The contributions of this chapter are on three fronts, by using: a
Cauchy mixture to model the original histogram of digital images, the Hellinger dis-
tance as an objective function, andAO algorithm. In order to illustrate the proficiency
and robustness of the proposed approach, it has been compared to the well-known
Otsu method, over several standard benchmark images.
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1 Introduction

Image segmentation is considered as an important operation for meaningful analy-
sis and interpretation of images acquired. In particular, image segmentation aims
to group pixels within meaningful regions. Commonly, gray levels belonging to
an object, are substantially different from those featuring by other objects or by
the background. Segmentation is typically conducted considering two main criteria:
similarity of image regions and discontinuity between adjacent disjoint regions [1,
2]. Among the segmentation approaches based on similarity, thresholding is consid-
ered the simplest technique [3, 4]. It involves the basic assumption that the objects
and the background in the digital image have distinct gray level distributions. Under
such assumption, the gray level histogram contains two or more distinct peaks and
threshold values separating them that can be obtained. Therefore, segmentation is
performed by assigning regions having gray levels below the threshold to the back-
ground, and assigning those regions having gray levels above the threshold to the
objects, or vice versa. Segmentation by thresholding has been used in several areas
where a correct separation of the objects in images is a vital step to perform fully
automatic vision systems for detection and classification such as medical imaging
[5–11], aviation [12], spacecraft imagery [13] and nondestructive tests [14], among
many other applications. Several thresholding segmentation approaches have been
reported in the literature [15–20], being the most popular the Otsu [21] method.

In statistics, the Gaussian distribution [22] is a standard modeling tool which
satisfies the central limit theorem. A Gaussian distribution assumes that the proba-
bility of any occurring value falls off rapidly as it is moved further away from the
central value. However, several problems, such as those that involve the presence
of several outliers in the population, cannot be appropriately modeled under such
assumption. Similar to the Gaussian distribution, the Cauchy distribution [23] is a
symmetric bell-shaped density function but with a greater probability mass in the
tails. This fact allows that the probabilities of points with large deviations from the
central value, such as outliers, do not drop off as precipitously as it is obtained by the
Gaussian distribution [24]. Although the Cauchy distribution possesses better mod-
eling capabilities (in presence of outlier data) than other distributions, it presents
serious difficulties in estimating its behavior parameters [25]. The capacity of the
Cauchy distributions to model complex process has been demonstrated in several
engineering applications such as impulsive noise cancellation [26], image denoising
algorithms [27, 28], among others.

In this work, the segmentation algorithm is based on a parametric model which
groups a mixture of several Cauchy density functions (Cauchy mixture, CM). CM
involves the model selection, i.e., to determine the number of components in the
mixture, and the estimation of the parameters of each component in the mixture
that better adjust the statistical model. In general, computing the parameters of each
Cauchy function is considered a difficult task, sensible to the initialization [29–31]
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and full of possible singularities [32]. In order to calculate such parameters, several
methods have been proposed in the literature [33–35], presenting most of them flaws
such as high computational overhead and sub-optimal values as a result of getting
trapped in a local minimum. In the proposed approach, the parameter estimation of
the CM has been faced as an optimization problem.

On the other hand, an impressive growth in the field of biologically inspired
evolutionary algorithms for search and optimization has emerged during the last
decade. Several bio-inspired algorithms have been proposed in the literature. Some
examples include methods such as the Evolutionary Algorithm (EA) proposed by
Fogel et al. [36], De Jong [37], the Genetic Algorithms (GA) proposed by Holland
[38], the Artificial Immune System proposed by De Castro and Von Zuben [39] the
Particle SwarmOptimization (PSO)method proposed by Kennedy and Eberhart [40]
and the Artificial Bee Colony (ABC) proposed by Karaboga [41].

The interesting and complex behavior of biological organs from the human body
have fascinated and attracted the interest of researchers for many years. Biologists
have studied these phenomena to model organ operations, and engineers applied
these models as a framework for solving complex real-world problems. An impor-
tant biological phenomenon is Allostasis which explains how the modifications of
specialized organ conditions inside the body allow achieving stability when an unbal-
ance health condition is presented. Therefore, if a body decompensation happens,
according to the allostatic mechanisms, several set points compound by blood pres-
sure, oxygen tension and others indexes are proved in order to get a stability state.
Such set points are generated by using different specialized mechanisms.

In this chapter, amulti-thresholding segmentation algorithmbased on a newevolu-
tionary algorithm called Allostatic Optimization (AO) is presented. In the approach,
the segmentation process is considered as an optimization problem by approximat-
ing the 1-D histogram of a given image in terms of a Cauchy mixture model, whose
parameters are calculated through the AO algorithm. In AO, the searcher agents emu-
late different body conditions which interact to each other by using operators based
on the biological principles of the allostasis mechanism. The proposed approach
encodes the parameters of the CM as an individual. An objective function by using
the Hellinger distance evaluates the matching quality between the CM candidate
and the original histogram. Guided by the values of this objective function, the set
of encoded candidate mixtures are evolved using the operators defined by AO so
that they can fit into the original histogram. In order to illustrate the proficiency
and robustness of the proposed approach, it has been compared to the well-known
Otsu method. The comparison examines several standard benchmark images that
are commonly considered within the literature. Experimental results show a high
performance of the proposed method for searching appropriate threshold values in
terms of accuracy and robustness.
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2 Allostatic Optimization

2.1 Allostasis

Organ systems (OS) into the body are composed of organ groups working in coor-
dinated ways in order to maintain vital functions [42]; the human being has eleven
of such systems, and each one is responsible to perform several specialized tasks as
can bee seen in Table1.

Even though there are other forms to describe the body organization, in the expla-
nation given next it is only considered the organization based onOS. Communication
among cells belonging to different OS with the brain it is achieved by means of two
systems: the nervous and the endocrine, who are responsible of the coordination
among OS for regulation of each essential function inside the body. Once the brain
detects some external or internal change (stress, pollution, social status, disease, etc.),
it determines if the stability of the body is compromised, in whose case it uses those
channels to communicatewith the adequateOS, trying to copewith such perturbation
in order to get again the stability of the body. Chemical messages from the endocrine
system are sent through hormonal substances, which are in charge of triggering or
inhibiting responses from several tissues through target cells (who usually belong to
several OS), whereas the nervous systems mainly uses electrical messages, activated

Table 1 Organ systems in the body

No. Organ system Task(s) Some elements

1 Integumentary External protection,
sensory receptors

Skin, hair

2 Skeletal Internal protection of
tissues and organs

Bones

3 Muscular External and internal
movements

Muscles

4 Circulatory Carrying vital substances Heart, blood vessels

5 Respiratory Control and regulation of
the breathing process

Lung, nose

6 Digestive Turn substances in energy
to cells

Stomach, intestines

7 Excretory Disposal of wastes Kidney

8 Lymphatic Internal protection against
toxins and substances

T-cells, B-cells

9 Reproductive Sexual reproduction Testicles, ovaries

10 Nervous First communication
center

Neurons, Nerves

11 Endocrine Second communication
center

Pituitary, hypothalamus
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through neurotransmitters, also hormones, or a combination of them. Both chemical
and electrical messengers are referred simply as mediators. One of the main theories
that explains how the body achieves the stability of the body, or health, as well as
the coordination with the different OS, it is called ‘homeostasis’, which means ‘to
maintain stability (of a system, organ, OS, condition, health, etc.) through constancy
(of a determined mechanism’s set point (SP))’ [43–51]. Among the several types of
homeostasis are counted: of glucose, intestinal, of immunologic resources, of lipids,
of cholesterol, of zinc, of energy, pulmonary, of epidermis, of blood pressure, etc
[42].

Let’s consider the bloodpressure of a personbeing sit: at such amoment, according
to the homeostatic theory, one mechanismmaintains the blood pressure into stability,
by keeping up a SP inside of a narrow range (around of 10 beats/min in healthy
people). As the hypothetical person is standing up, there is a difference between the
actual SP and the required SP of blood pressure of a standing person, due simply
to the gravity force; in other words, there is no stability of blood pressure. As the
brain detects this instability, also starts sending signals (Mediators) to the related
mechanism through the communication channels (Nervous and Endocrine systems),
in order to activate the adequate response from the tissues involved (to increase the
heart bumping, in this example changed to a new SP).

The problembeing solved has only one liberty degree. In otherwords, it is required
to find only one SP, and this must be inside a narrow margin. The homeostatic model
has demonstrated its utility in medicine [43, 44]; however, in some cases that model
is not enough to explain neither complex behaviors of OS in the body, nor even
some disease patterns, and therefore medical prescriptions homeostasis-based tend
to fail. By considering such a problem it was proposed an alternative model who is
called allostasis, that means ‘to maintain stability (of a system, organ, OS, condition,
health, etc.) through change (of several mechanisms)’ [51]; in this case, and different
to the homeostasis model, are taken in account several SPs of mechanisms and the
non-linear relationships among mediators, OS and the brain. A simple example of
allostasis is shown in Fig. 1.

The fundamental difference between this model and the homeostasis is the exis-
tence of several SPs in several mechanisms involved in returning to stability. As can
be seen from Fig. 1, some SPs are increased whereas other are decreased; moreover,
there are relationships among mechanisms, mediators, other mechanisms, as well
as OS, which are not fully understood by scientists working at medical areas [51].
Prior to the explanation of the proposed computational algorithm, it is important
to consider both a standard vocabulary and considerations. For instance, we will
consider that the communication groups of OS are Group A. In the computational
algorithm we consider only three groups of mediators, even though that could exist
more in natural allostasis; those groups are called Groups B1, B2 and B3, or simply,
Group B. Both groups, A and B, are responsible of coordination between brain and
mechanisms that directly changes the appropriated SPs that could cope with the per-
turbation found; also, we argue that those groups contain different versions of SPs
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Fig. 1 Allostasis, a simple illustration scheme

(in hormonal as well as other kind of signaling means) historically used. In other
words, we say that Groups A, B, and mechanisms, are different forms of SPs used
in the past. By considering the aforementioned, in allostasis, the generation of new
SPs is done by using the SPs historically used [49]. Whereas SPs of Group A do
not suffer collective changes, those contained in Group B are constantly modified
by collective operations. In order to generate new SPs, allostasis considers several
procedures, being the main the so called ‘combination’ [52], which combines infor-
mation of Groups A, B, and random variations. Once a new SP is generated, it is
evaluated its capacity to reach a stable state, and whether the new SP improves the
stability provided by the actual SP, a collective change is carried out over all elements
contained in Group B [47, 48, 50].
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2.2 Allostatic Optimization Algorithm

The computational approach of allostasis is called Allostatic Optimization (AO),
which implements operations that resembles the interaction rules modeled by the
mechanism of allostasis. In the algorithm, each candidate solution within the search
space represents a SP vector, whereas the fitness value equals to a degree of stability
(or allostasis) of each SP. The population of candidate solutions correspond to stored
SPs in natural allostasis. The optimum candidate solution corresponds to the whole
stability, or simply, stability. Finally, we consider a perturbation as a function of the
difference between the allostasis and the stability; such a function it is called err in
this chapter.

Also, the AO defines several operators, as the combination operation, which is
considered the main operator and is applied over all individuals of the population.
Other operators called collective (group operators: B1, B2 and B3) are also imple-
mented in AO, and they affect only a group of elements. Following the biological
model of allostasis, the AO approach divides the entire population in four different
groups: Group A, group B1, group B2 and group B3. The elements of group A are
only modified by the combination operator whereas the elements of groups B1, B2
and B3 are affected by the combination operator and other collective operations.
Even though in the natural process each group could have different sizes, in the com-
putational approach we consider the size of each group as one fourth of the entire
population. Thus, the population size must be selected in such a way that it can be
entirely divided by four (20, 40, etc.).

2.3 Description of the AO Algorithm

The AO algorithm starts by initializing the population randomly (candidate random
solutions or SPs) and later, the evolutionary process acts as follows: The combination
operator is applied to the first individual (SP) of the population, obtaining in such
a way a new individual. Whether the new individual is better than the original one
according to their allostasis (fitness value), the original individual is replaced by the
newonewhereas the groupsB1,B2 andB3 aremodified used collective operators.On
the other hand, if the original individual is better than the new individual, no changes
are executed to the population. An iteration is completed when the combination
operator has been applied to the last individual. This procedure is applied until a
termination criterion is met (i.e. the iteration number NI). Following the evolution
process of AO, the following operators are employed:
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1. Initialization.
2. Combination.
3. Collective B1.
4. Collective B2.
5. Collective B3.
6. Update the best element.

and the pseudo code of the proposal is

AO algorithm

1 Initialize S and determine its allostasis,

divide S in groups A and B

2 while (criterion){

for i=1 to Ns {

Generate new individual snew

by using the combination operator

if f(snew)<f(si){

if f(snew)<f(sbest){

Calculate e and m

Modify B1 by using collective operator B1

Modify B2 by using collective operator B2

Modify B3 by using collective operator B3

sbest=snew; f(sbest)=f(snew);

}

si=snew; f(si)=f(snew);

}

}

}

Next, each operator is defined.

Initialization

In the first part, the algorithm initializes a population S of Ns set point vectors
(S = {s1, s2, . . ., sNs}), where each set point (SP) si is a D-dimensional vector con-
taining parameter values to be optimized. Such values are randomly and uniformly
distributed between the pre-specified lower initial parameter bound slow

j and the upper

initial parameter bound shigh
j :

sij = slow
j + rand () ·

(
shigh

j − slow
j

)
; i = 1, . . ., Ns; j = 1, . . ., D (1)

with i and j being the individual and parameter indexes, respectively. Hence, sij is
the j th parameter of the i th individual. After initialization of SPs, it is found the best
individual from the population, e.g.
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Fig. 2 The combination operator

sbest∈ {
S| f

(
sbest

) = min( f (s1) , f (s2) , . . ., f (sNs))
}

(2)

where f (.) represents the cost function.

Combination

In allostasis, this operation combines each SP in the population, with information
provided by other SPs. In this work, such effect is simulated by using a single
operation of mutation, by replacing information of an original individual si with
information extracted from other sBc, obtaining in such a way a new individual
snew, who combines information from both individuals. In order to implement this
operator, two different integers are randomly generated, Bc inside the number of SPs
(1, . . ., Ns) and d inside the dimension number (1, . . ., D). The combination takes
place substituting the element sdi from the original si with the element sdBc from
the element sBc. Therefore, the only difference between si and sBc is the element
in the position d. Figure2 shows graphically the combination operation. Once the
new individual snew is generated by using the combination operator, it is compared
whether such individual is better than the original one si and also the best found to
far sbest , according to their fitness values. If snew is better, the elements si as well as
sbest are replaced by snew, whereas the groups B1, B2 and B3 are modified used the
collective operators. However, if si is better than snew, no changes are executed to
the population.
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Collective B1

This operator modifies only the elements of group B1, namely SPs from (Ns/4) + 1
to 2·(Ns/4). In the allostasis mechanism, SPs from Group B1 are substituted by
similar versions of the average answer produced by the entire set of SPs. In the AO
approach, the average answer a = {a1, . . ., aD} is computed as:

a j =
(

1

Ns

)
·

Ns∑
i=1

sij; j = 1, . . ., D (3)

The modification, applied to each element, depends on the existent difference
between snew and sbest . Such relationship, defined as m, is calculated by using:

m = ψ

[
1.1 − 1

eψ ·err

]
(4)

where ψ ∈ [0.01, 1.5] and err = ((
f (snew) − f (sbest)

)
/
(

f (snew) + f (sbest)
))

Therefore, the SPs of group B1 are updated according to:

sg1, j = a j − m + 2·m·rand () (5)

where j∈ {1, . . ., D}, g1∈ {(
Ns
4

) + 1,
(

Ns
4

) + 2, . . ., 2· (Ns
4

)}
and rand( ) is a number

randomly generated between 0 and 1.

Collective B2

According to the allostasis mechanism, elements of group B2 are replaced by SPs
randomly generated inside the average answer. Such effect is simulated modifying
the elements of group B2 according to the following model:

sg2, j = a j ·rand () (6)

where g2∈ {
2· (Ns

4

) + 1, 2· (Ns
4

) + 2, . . ., 3· (Ns
4

)}
.

Collective B3

Following the allostasis model, SPs of Group B3 are replaced by those who
have demonstrated to be successful when a similar decompensation has hap-
pened. Such a behavior is emulated producing perturbed versions of the best SP
sbest = {

sbest
1 , sbest

2 , . . ., sbest
D

}
found so-far. Thus, the elements of group B3 are mod-

ified by using:
sg3, j = sbest

j − m + (2·m·rand ()) (7)

where g3∈ {
3· (Ns

4

) + 1, 3· (Ns
4

) + 2, . . ., Ns
}
.
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Update the Best Element

In order to update de best SP sbest seen so-far, the best found individual from the
current population sbest,k is compared with the best individual sbest,k−1 of the last
generation. If sbest,k is better than sbest,k−1 according to their fitness values, sbest is
updated with sbest,k , otherwise sbest remains without changes. Therefore, sbest stores
the best historical SP found so-far.

3 Parametrical Model

3.1 Histogram Approximation by Using a CM

Let consider an image holding L gray levels [0, . . . , L − 1]whose distribution is dis-
played within the histogram h(g). In order to simplify the description, the histogram
is normalized just as a probability distribution function, yielding:

h(g) = ng

N
, h(g) ≥ 0, N =

L−1∑
g=0

ng, and
L−1∑
g=0

h(g) = 1, (8)

where ng specifies the number of pixels with gray level g, whereas N represents
the total number of pixels contained in the image. The image histogram can thus be
approximated by a CM of the form:

p(x) =
K∑

i=1

Pi · pi (x) =
K∑

i=1

Pi

[
γi

2

(x − ρi )
2 + γi

2

]
(9)

where Pi is the a priori probability of class i , pi (x) is the probability distribution
of gray-level random variable x in class i , ρi and γi are the location and the scale
parameter of the i th Cauchy distribution and K is the number of classes contained
in the image. In addition, the constraint

∑K
i=1 Pi = 1 must be satisfied.

In the proposed approach, the parameters (Pi , ρi , γi , i = 1, . . . , K ) of the CM
are encoded in an individual (a possible candidate solution). In order to correctly
evaluate the matching quality between a candidate CM and the original histogram,
the Hellinger distance E [53] is used. Such distance is defined as follows:

E =
√√√√

L∑
j=0

[√
p(x j ) − √

h(x j )
]2

(10)
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where p(x j ) is the probability defined by the candidate CM, in the gray level point
x j whereas h(x j ) represents its respective histogram value. Therefore, Eq.10 is the
objective function used by the AO algorithm to assess the quality of each individual.

Once obtained the best histogram approximation by a CM, the next step is to
determine the optimal threshold values.At first, the location parameters are organized
such as ρ1 < ρ2 < · · · < ρK ; then, the threshold values are calculated by estimating
the overall probability error for two adjacent Cauchy functions:

E(Ti ) = Pi+1 · E1(Ti ) + Pi · E2(Ti ), i = 1, 2, . . . , K − 1 (11)

considering

E1(Ti ) =
Ti∫

−∞
pi+1(x)dx, and E2(Ti ) =

∞∫

Ti

pi (x)dx (12)

E1(Ti ) is the probability of mistakenly classifying the pixels in the (i + 1)th class
belonging to the i th class, while E2(Th) is the probability of erroneously classify-
ing the pixels in the i th class belonging to the (i + 1)th class. Pi

′s are the a-priori
probabilities within the combined probability density function, and Ti is the thresh-
old value between the i th and the (i + 1)th classes. The Ti value is chosen as to
minimize the error E(Ti ). By differentiating E(Ti ) with respect to Ti and equating
the result to zero, it is possible to use the following equation to define the optimum
threshold value Ti :

AT 2
i + BTi + C = 0 (13)

where

A = γ 2
i − γ 2

i+1 (14)

B = 2 · (ρiγ
2
i+1 − ρi+1γ

2
i ) (15)

C = (γiρi+1)
2 − (γi+1ρi )

2 + 2 · (γiγi+1)
2 · ln

(
γi+1Pi

γi Pi+1

)
(16)

From Eq.13, it is only considered the solution whose value is positive and falls
inside the valid interval. Figure3 shows the determination process of threshold points,
considering only two consecutive Cauchy functions.
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Fig. 3 Determination of the
threshold points

3.2 Otsu’s Method

This method is a nonparametric technique for thresholding segmentation proposed
by Otsu [21] that employs the maximum variance value of the different classes as a
criterion to segment the image. In this approach the image histogram h(g) is divided
in m threshold values T = {T1, . . . , Tm−1}, considering T0 = 0 and Tm = L . Each
i-partition of m is defined as:

Ci = {g|g ∈ (1, . . . L − 1), Ti−1 < g < Ti }, i = 1, . . . , m (17)

Such values are calculated as follows:

q1 =
T1∑

i=0

h(gi ), μ1 =
T1∑

i=0

h(gi ) · i

q1
, σ 2

1 =
T1∑

i=0

(i − μ1)
2 · h(gi )

q1
(18)

qi =
Ti+1∑
Ti +1

h(gi ), μi =
Ti+1∑
Ti +1

h(gi ) · i

qi
, σ 2

i =
Ti+1∑
Ti +1

(i − μi )
2 · h(gi )

qi
(19)

where i = 1, . . . , m − 1. Therefore, the variance for the K -class is computed fol-
lowing the model:

σ 2
WC =

K∑
j=1

q j · σ 2
j (20)
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In order to find the threshold values, Eq.21 must be minimized:

σ 2
WC(T ∗

1 , . . . , T ∗
K ) = min

0≤T1≤···≤TK ≤L−1
σ 2

WC(T ∗
1 , . . . , T ∗

K ) (21)

The Otsu method is considered the most popular segmentation algorithm with
respectable results. Nevertheless, if the number of threshold values increases, the
number of function evaluations increases. Such fact is considered its main drawback.
Due to its wide popularity, the Otsu algorithm is used for comparing the performance
of the approach proposed in this chapter.

4 Experimental Results

In the proposed approach, the parameters of the CM are encoded as an individual.
An objective function by using the Hellinger distance evaluates the matching quality
between the CM candidate (individual) and the original histogram. Guided by the
values of this objective function, the set of encoded candidate mixtures are evolved
using the operators defined by AO so that they can fit into the original histogram.

In this section, several experiments have been conducted considering different
classes. Since each Cauchy function is defined by three parameters (P, ρ, γ ), each
individual l will have 3xK dimensions, if K different classes would be considered
[Pl

1, ρ
l
1, γ

l
1, . . . , Pl

K , ρl
K , γ l

K ]. Table2 shows the general parameters utilized by AO.
All the experiments are performed on a desktop computer with Intel® Core i7-2600
3.4GHz, 8GB of RAM and programmed in Matlab® 7.13.0.

Table 2 Parameters used in AO

Parameter Value Observations

L 256 Number of gray levels

Np 90 Population size

Nmax 200 Maximum number of iterations

xhigh
l L − 1 Higher limits of candidate l

xlow
l 0 Lower limits of candidate l

K [2, 7] Number of classes to find

T K − 1 Number of thresholds to find

Ψ 0.03 Tuning parameter of AO
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In order to demonstrate the performance of the proposed algorithm, several
images extracted from the Berkeley and the All-IDB databases [54, 55] have been
used. Figures4, 5, 6, 7, 8 and 9 present the experimental results after applying the
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Fig. 4 Image 233, a class distribution with seven classes (K = 7), b approximation considering
seven classes, c original image, d segmented image
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Fig. 5 Image Q24a, a class distribution with six classes (K = 6), b approximation considering six
classes, c original image, d segmented image
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Fig. 6 Image Im001_1, a class distribution with five classes (K = 5), b approximation considering
five classes, c original image, and d segmented image
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Fig. 7 Image Im002_1, a class distribution with five classes (K = 5), b approximation considering
five classes, c original image, and d segmented image
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Fig. 8 Image 61060, a class distribution with three classes (K = 3), b approximation considering
three classes, c original image, and d segmented image
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Table 3 Experimental results obtained from the comparison between the Otsu and the AOmethods

Image Clases AO μ(σ) Otsu μ(σ)

T1 T2 T3 T1 T2 T3

233 2 98(1.09) NA NA 90(0) NA NA

Q24a 2 117(1.94) NA NA 125(0) NA NA

Im001_1 3 105(1.36) 154(0.54) NA 97(0) 148(0) NA

Im002_1 3 97(2.81) 154(0.63) NA 96(0) 148(0) NA

61060 4 84(1.18) 157(0.96) 241(1.89) 91(0) 162(0) 215(0)

253036 4 142(1.77) 189(3.84) 232(3.61) 138(0) 191(0) 222(0)

AO-based algorithm. In all figures, the approximation results over the original his-
togram are also shown.

In order to enhance the performance analysis, the proposed approach has been
compared with the Otsu method [21]. Table3 shows some results obtained by both
methods, considering the mean and standard deviation of threshold values obtained
by each algorithmwhen they have been executed 50 times for each image. The results
have been presented in the format mean value μ (standard deviation, σ ) whereas the
elements that not correspond for a specific experiment are marked by NA (Figs. 4,
5, 6, 7).

Figure10 shows two images proposed in [54] as segmentation benchmarks. Such
problems consist in segmenting different cells, considering that their optimal results
havebeen alreadyobtainedby ahumanexpert (ground-truth).Under these conditions,
it is possible to compare the segmentation results obtained by our approach and the
Otsu method in terms of the optimal results. Figure11 presents the results obtained
by the Otsu method and the AO-based algorithm considering the benchmark images
from [54]. A visual inspection of Fig. 11 demonstrates that the Otsu method presents
more undesirable artifacts as a consequence of a poor segmentation.

In order to appropriately compare the results from Fig. 11, the Hausdorff distance
in terms of the ground-truth has been used. Table3 shows the averaged Hausdorff
distances considering both images from Fig. 11. Considering the mean value μ of
the Hausdorff distance, it is clear that the proposed method produces better results,
than Otsu’s method, as can be seen from Table4.
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Fig. 9 Image 253036, a class distribution with two classes (K = 2), b approximation considering
two classes, c original image, and d segmented image
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Fig. 10 Benchmark images for comparison with ground-truth. a Oiginal image with a single cell,
b ground-truth, c original image with multiple cells and d ground-truth

Fig. 11 Some results of the Otsu method and the AO-based algorithm. a AO-based. b Otsu.
c Ground-truth images

Table 4 Hausdorff distance of AO against Otsu method

Method Hausdorff distance

μ σ

AO 2.1364 0.6535

Otsu 2.4655 2.9779 ×10−15

5 Conclusions

In this chapter, a multi-thresholding segmentation algorithm based on a new evo-
lutionary algorithm called Allostatic Optimization (AO) has been proposed. In the
approach, the capacity of the Cauchy distribution to model complex problems (in
presence of outliers) is exploited. Our approach assumes that the segmentation
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process is considered as an optimization problem by approximating the 1-D his-
togramof a given image in terms of aCauchymixture (CM)model, whose parameters
are calculated through the AO algorithm.

In AO, the searcher agents emulate different body conditions which interact to
each other by using operators based on the biological principles of the allostasis
mechanism. The proposed approach encodes the parameters of the CM as an indi-
vidual. An objective function by using the Hellinger distance evaluates the matching
quality between the CM candidate and the original histogram. Guided by the values
of this objective function, the set of encoded candidate mixtures are evolved using
the operators defined by AO so that they can fit into the original histogram.
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