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Preface

Extracting image features has become a major player in many image pertaining
applications. Feature detectors and descriptors have been investigated and applied
in various domains such as computer vision, pattern recognition, image processing,
biometrics technology, and medical image analysis. Driven by the need for a better
understanding of the feature detector foundations and application, this book volume
presents up-to-date research findings in the direction of image feature detectors and
descriptors.

This book includes 16 chapters that are divided into two parts. Part I details the
“Foundations of Image Feature Detectors and Descriptors” by four chapters. The
rest of the 16 chapters, 11 chapters, are grouped in Part II for covering the
“Applications of Image Feature Detectors and Descriptors.” Additionally,
“Detection and Description of Image Features: An Introduction” is placed in the
beginning of the volume for offering an introduction for all the chapters in the two
parts of the volume.

This book has attracted authors from many countries from all over the world
such as Egypt, Canada, India, Mexico, and Romania. The authors of accepted
chapters are thanked by the editors for revising their chapters according to the
suggestions and comments of the book reviewers/editors.

The auditors are very grateful to Dr. Janusz Kacprzyk, the editor of the Studies
in Computational Intelligence (SCI) series by Springer. The editors are indebted to
the efforts of Dr. Thomas Ditzinger, the senior editor of the SCI series, and Holger
Schipe, the editorial assistant of the SCI series. Finally, the editors and the authors
acknowledge the efforts of the Studies in Computational Intelligence team at
Springer for their support and cooperation in publishing the book as a volume in the
SCI series.

November 2015 Ali Ismail Awad
Mahmoud Hassaballah
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Detection and Description of Image Features:
An Introduction

M. Hassaballah and Ali Ismail Awad

Abstract Detection and description of image features play a vital role in various
application domains such as image processing, computer vision, pattern recognition,
and machine learning. There are two type of features that can be extracted from an
image content; namely global and local features. Global features describe the image
as a whole and can be interpreted as a particular property of the image involving all
pixels; while, the local features aim to detect keypoints within the image and describe
regions around these keypoints. After extracting the features and their descriptors
from images, matching of common structures between images (i.e., features match-
ing) is the next step for these applications. This chapter presents a general and brief
introduction to topics of feature extraction for a variety of application domains. Its
main aim is to provide short descriptions of the chapters included in this book volume.

Keywords Feature detection - Feature description - Feature matching - Image
processing - Pattern recognition - Computer vision * Applications

1 Introduction

Nowadays, we live in the era of technological revolution sparked by the rapid progress
in computer technology generally, and computer vision especially. Where, the last
few decades can be termed as an epoch of computer revolution, in which develop-
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ments in one domain frequently entail breakthroughs in other domains. Scarcely,
a month passes where one does not hear an announcement of new technological
breakthroughs in the areas of digital computation. Computers and computational
workstations have become powerful enough to process big data. Additionally, the
technology is now available to every one all over the world. As a result, hardware
and multimedia software are becoming standard tools for the handling of images,
video sequence, and 3D visualization.

In particular, computer vision, the art of processing digital images stored within
the computer, became a key technology in several fields and is utilized as a core part
in a large number of industrial vision applications [1]. For instance, computer vision
systems are an important part of autonomous intelligent vehicle parking systems,
adaptive cruise control, driver exhaustion detection, obstacle or traffic sign detection
[2, 3], and driver assistance systems [4]. In industrial automation, computer vision is
routinely used for quality or process control such as food quality evaluation systems
[5]. Even the images used in astronomy and biometric systems or those captured by
intelligent robots as well as medical Computer Assisted Diagnosis (CAD) systems
benefit from computer vision techniques [6]. A basic computer vision system contains
a camera for capturing images, a camera interface, and a PC to achieve some tasks
such as scene reconstruction, object recognition/tracking, 3D reconstruction, image
restoration, and image classification [7, 8]. These tasks rely basically on the detection
and extraction of image features.

Generally, feature extraction involves detecting and isolating desired features of
the image or pattern for identifying or interpreting meaningful information from the
image data. Thus, extracting image features has been considered one of the most
active topics for image representation in computer vision community [9]. Feature
extraction is also an essential pre-processing step in pattern recognition [10]. In
fact, image features can represent the content of either the whole image (i.e., global
features) or small patches of the image (i.e., local features) [11]. Since the global
features aim to represent the image as a whole, only a single feature vector is produced
per image and thus the content of two images can be compared via comparing their
feature vectors. On the contrary, for representing the image with local features, a set
of several local features extracted from different image’s patches is used. For local
features, feature extraction can often be divided into two independent steps: feature
detection and description. The main objective of a feature detector is to find a set of
stable (invariant) distinctive interest points or regions, while the descriptor encodes
information in spatial neighborhoods of the determined regions mathematically. That
is, the descriptor is a vector characterizing local visual appearance or local structure
of image’s patches [12].

In this respect, the number of extracted features is usually smaller than the actual
number of pixels in the image. For instance, a 256 x 256 image contains 65536
pixels, yet the essence of this image may be captured using only few features (e.g.,
30 features). There are many types of image features which can be extracted such as
edges, blobs, corners, interest points, texture, and color [13—16]. A large number of
feature extraction algorithms have been proposed in the literature to provide reliable
feature matching [17-19]. Many feature extraction algorithms are proposed for a
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specific applications, where they prove significant success and fail otherwise because
of the different nature of the other applications. A thorough comparison and a detailed
analysis of many extraction algorithms based on different application scenarios are
reported in [11, 20-22]. On the other hand, several trails have been done to make
these algorithms robust to various image artifacts such as illumination variation, blur,
rotation, noise, scale and affine transformation as well as to improve their execution
time performance to be applicable in real time applications [23, 24].

The use of local feature detection and description algorithms in some applications
such as large volume, low-cost, low-power embedded systems, visual odometry, and
photogrammetric applications is still limited or negligible to date due to the lack of a
worldwide industry standard [22]. Further, most of the aforementioned applications
have real-time constraints and would benefit immensely from being able to match
images in a real time, thus developing fast feature extraction algorithms is a must.
With all these factors and avenues to explore, it is not surprising that the problem of
image feature extraction, with various meanings of this expression, is actively pursued
in research by highly qualified people and the volume of research will increase in the
near future, which has given us the motivation for dedicating this book to exemplify
the tremendous progress achieved recently in the topic.

2 Chapters of the Book

This volume contains 15 chapters in total which are divided into two categories. The
following are brief summaries for the content of each chapter.

Part I: Foundations of Image Feature Detectors and Descriptors

Chapter “Image Features Detection, Description and Matching” presents a com-
prehensive review on the available image feature detectors and descriptors such as
Moravec’s detector [25], Harris detector [26], Smallest Univalue Segment Assim-
ilating Nucleus (SUSAN) detector [27], Features from Accelerated Segment Test
(FAST) detector [28], Difference of Gaussian (DoG) detector [29], Scale invari-
ant feature transform (SIFT) descriptor [29], and Speeded-Up Robust Features
(SURF) descriptor [30]. The mathematical foundations of the presented detectors
and descriptors have been highlighted. In general, the chapter serves as a good
foundation for the rest of the volume.

Chapter “A Review of Image Interest Point Detectors: From Algorithms to FPGA
Hardware Implementations” studies some image interest point detectors from the
hardware implementation viewpoint [31]. The chapter offers a review on the
hardware implementation, particularity, using Field Programmable Gate Array
(FPGA), for image interest point detectors [32]. The chapter emphasizes the real-
time performance of FPGA as a hardware accelerator. However, further researches
are demanded for improving the accelerator portability across different platforms.
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Chapter “Image Features Extraction, Selection and Fusion for Computer Vision”
addresses various research problems pertaining to image segmentation, feature
extraction and selection, feature fusion and classification, with applications in
intelligent vehicle, biometrics [33—35], and medical image processing. The chapter
describes different features for different applications from a holistic computer
vision perspective.

Chapter “Image Feature Extraction Acceleration” focuses on accelerating image
feature extraction process using hardware platforms [36]. It presents two focal-
plane accelerators chips, Application-specific Integrated Circuits (ASICs), that
aim at the acceleration of two flagship algorithms in computer vision. The chapter
offers the fundamental concepts driving the design and the implementation of two
focal-plane accelerator chips for the Viola-Jones face detection algorithm [37] and
for the Scale Invariant Feature Transform (SIFT) algorithm [29, 38].

Part II: Applications of Image Feature Detectors and Descriptors

Chapter “Satellite Image Matching and Registration: A Comparative Study Using
Invariant Local Features” is devoted for a comparative study for satellite image
registration using invariant local features. In this chapter, various local feature
detectors and descriptors, such as Features from Accelerated Segment Test (FAST)
[28], Binary Robust Invariant Scalable Keypoints (BRISK) [39], Maximally Sta-
ble Extremal Regions (MSER) [40], and Good Features to Track (GTT) [41],
have been evaluated on different optical and satellite image data sets in terms of
feature extraction, features matching, and geometric transformation. The chapter
documents the performance of the selected feature detectors for the comparison
purpose.

Chapter “Redundancy Elimination in Video Summarization” addresses the redun-
dancy elimination from video summarization using feature point descriptors such
as Binary Robust Independent Elementary Features (BRIEF) [42] and Oriented
FAST and Rotated BRIEF (ORB) [43]. A method for intra-shot and inter-shot
redundancy removal using similarity metric computed from feature descriptors
has been presented. Several feature descriptors have been tested and evaluated for
redundancy removal with a focus on precision and recall performance parameters.
Chapter “A Real Time Dactylology Based Feature Extractrion for Selective Image
Encryption and Artificial Neural Network” combines artificial neural network
with Speeded-Up Robust Features Descriptor (SURF) [30] for selective image
encryption in real time dactylology or finger spelling. Finer spelling is used in
different sign languages and for different purposes [44]. The integrity and the
effectiveness of the proposed scheme have been judged using different factors like
histogram, correlation coefficients, entropy, MSE, and PSNR.

Chapter “Spectral Reflectance Images and Applications” illustrates the use of spec-
tral invariant for obtaining reliable spectral reflectance images. Spectral imaging
can be deployed, for example, in remote sensing, computer vision, industrial appli-
cations, material identification, natural scene rendering, and colorimetric analysis
[45]. The chapter introduces a material classification method based on the invari-
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ant representation that results in reliable segmentation of natural scenes and raw
circuit board spectral images.

Chapter “Image Segmentation Using an Evolutionary Method Based on Allostatic
Mechanisms” proposes a multi-thresholding segmentation algorithm that is based
on an evolutionary algorithm called Allostatic Optimization (AO). Threshold-
based segmentation is considered as a simple technique due to the assumption
that the object and the background have different grey level distribution [46]. The
experimental work shows the high performance of the proposed segmentation
algorithm with respect to accuracy and robustness.

Chapter “Image Analysis and Coding Based on Ordinal Data Representation”
utilizes the Ordinal Measures (OM) [47] for image analysis and coding with an
application on iris image as a biometric identifier. Biometrics is a mechanism for
assigning an identity to an individual based on some physiological or behavioral
characteristics. Biometric identifiers include fingerprints, face image, iris patterns,
retinal scan, voice, and signature with broad deployments in forensic and civilian
applications [48].

Chapter “Intelligent Detection of Foveal Zone from Colored Fundus Images of
Human Retina Through a Robust Combination of Fuzzy-Logic and Active Con-
tour Model” proposes a robust fuzzy-rule based image segmentation algorithm for
extracting the Foveal Avascular Zone (FAZ) from retinal images [49]. The pro-
posed algorithm offers a good contribution toward improving the deployment of
retinal images in biometrics-based human identification and verification.
Chapter “Registration of Digital Terrain Images Using Nondegenerate Singular
Points” presents a registration algorithm for digital terrain images using nonde-
generate singular points. The proposed algorithm is a graph-theoretic technique
that uses Morse singularities [50] and an entopic dissimilarity measure [51]. The
experimental outcomes prove the reliability and the accuracy in addition to the
high computational speed of the proposed algorithm.

Chapter “Visual Speech Recognition with Selected Boundary Descriptors™ is
devoted for visual speech recognition using some selected boundary descriptors.
Lipreading can be used for speech-to-text for the benefit of hearing impaired indi-
viduals. In the chapter, the Point Distribution Model (PDM) [52] is used to obtain
the lip contour, and the Minimum Redundancy Maximum Relevance (mRMR)
[53] approach is used as a following stage for feature selection.

Chapter “Application of Texture Features for Classification of Primary Benign and
Primary Malignant Focal Liver Lesions” focuses on the classification of the pri-
mary benign and primary malignant local liver lesions. Statistical texture features,
spectral texture features, and spatial filtering based texture feature have been used.
In addition, Support Vector Machine (SVM) [54, 55] and Smooth Support Vector
Machine (SSVM) [56] have been evaluated as two classification algorithms.
Chapter “Application of Statistical Texture Features for Breast Tissue Density
Classification” aims to classify the density of the breast tissues using statistical
features extracted from mammographic images. It presents a CAD system that is
formed from feature extraction module, feature space dimensionality reduction
module, and feature classification module. Different algorithms have been used in
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the classification module such as k-Nearest Neighbor (kNN) [57, 58], Probabilistic
Neural Network (PNN) [59], and Support Vector Machine (SVM) classifiers.

Concluding Remarks

Detection and description of image features play a vital role in various application
domains such as image processing, computer vision, pattern recognition, machine
learning, biometrics, and automation. In this book volume, cutting-edge research
contributions on image feature extraction, feature detectors, and feature extractors
have been introduced. The presented contributions support the vitality of image
feature detectors and descriptors, and discover new research gaps in the theoretical
foundations and the practical implementations of image detectors and descriptors.
Due to the rapid growth in representing image using local and global features, further
contributions and findings are anticipated in this research domain.
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Image Features Detection, Description
and Matching

M. Hassaballah, Aly Amin Abdelmgeid and Hammam A. Alshazly

Abstract Feature detection, description and matching are essential components of
various computer vision applications, thus they have received a considerable attention
inthe last decades. Several feature detectors and descriptors have been proposed in the
literature with a variety of definitions for what kind of points in an image is potentially
interesting (i.e., a distinctive attribute). This chapter introduces basic notation and
mathematical concepts for detecting and describing image features. Then, it discusses
properties of perfect features and gives an overview of various existing detection and
description methods. Furthermore, it explains some approaches to feature matching.
Finally, the chapter discusses the most used techniques for performance evaluation
of detection and description algorithms.

Keywords Interest points * Feature detector - Feature descriptor - Feature extrac-
tion + Feature matching

1 Introduction

Over the last decades, image feature detectors and descriptors have become popular
tools in the computer vision community and they are being applied widely in a
large number of applications. Image representation [1], image classification and
retrieval [2-5], object recognition and matching [6—10], 3D scene reconstruction [11],
motion tracking [12-14], texture classification [15, 16], robot localization [17-19],
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and biometrics systems [20-22], all rely on the presence of stable and representative
features in the image. Thus, detecting and extracting the image features are vital
steps for these applications.

In order to establish correspondences among a collection of images, where fea-
ture correspondences between two or more images are needed, it is necessary to
identify a set of salient points in each image [8, 23]. In a classification task, fea-
ture descriptors of a query image are matched with all trained image features and
the trained image giving maximum correspondence is considered the best match. In
that case, feature descriptor matching can be based on distance measures such as
Euclidean or Mahalanobis. In image registration, it is necessary to spatially align
two or more images of a scene captured by different sensors at different times. The
main steps involved in performing image registration or alignment tasks are: feature
detection, feature matching, derivation of transformation functions based on cor-
responding features in images, and reconstruction of images based on the derived
transformation functions [24]. In the context of matching and recognition, the first
step of any matching/recognition system is to detect interest locations in the images
and describe them. Once the descriptors are computed, they can be compared to find
a relationship between images for performing matching/recognition tasks. Also, for
online street-level virtual navigation application, we need a feature detector and a
feature descriptor to extract features from planar images (panoramic images) [25].

The basic idea is to first detect interest regions (keypoints) that are covariant
to a class of transformations. Then, for each detected regions, an invariant feature
vector representation (i.e., descriptor) for image data around the detected keypoint
is built. Feature descriptors extracted from the image can be based on second-order
statistics, parametric models, coefficients obtained from an image transform, or even
a combination of these measures. Two types of image features can be extracted
form image content representation; namely global features and local features. Global
features (e.g., color and texture) aim to describe an image as a whole and can be
interpreted as a particular property of the image involving all pixels. While, local
features aim to detect keypoints or interest regions in an image and describe them. In
this context, if the local feature algorithm detects n keypoints in the image, there are
n vectors describing each one’s shape, color, orientation, texture and more. The use
of global colour and texture features are proven surprisingly successful for finding
similar images in a database, while the local structure oriented features are considered
adequate for object classification or finding other occurrences of the same object
or scene [26]. Meanwhile, the global features can not distinguish foreground from
background of an image, and mix information from both parts together [27].

On the other hand, as the real time applications have to handle ever more data or
to run on mobile devices with limited computational capabilities, there is a growing
need for local descriptors that are fast to compute, fast to match, memory efficient,
and yet exhibiting good accuracy. Additionally, local feature descriptors are proven
to be a good choice for image matching tasks on a mobile platform, where occlusions
and missing objects can be handled [18]. For certain applications, such as camera
calibration, image classification, image retrieval, and object tracking/recognition, it
is very important for the feature detectors and descriptors to be robust to changes
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in brightness or viewpoint and to image distortions (e.g., noise, blur, or illumina-
tion) [28]. While, other specific visual recognition tasks, such as face detection or
recognition, requires the use of specific detectors and descriptors [29].

In the literature, a large variety of feature extraction methods have been proposed
to compute reliable descriptors. Some of these feature descriptors were exclusively
designed for a specific application scenario such as shape matching [29, 30]. Among
these descriptors, the scale invariant feature transform (SIFT) descriptor [31] utilizing
local extrema in a series of difference of Gaussian (DoG) functions for extracting
robust features and the speeded-up robust features (SURF) descriptor [32] partly
inspired by the SIFT descriptor for computing distinctive invariant local features
quickly are the most popular and widely used in several applications. These descrip-
tors represent salient image regions by using a set of hand-crafted filters and non-
linear operations. In the rest of the chapter, we give an overview for these methods
and algorithms as well as their improvements proposed by developers. Furthermore,
the basic notations and mathematical concepts for detecting and describing image
features are introduced. We also explore in detail what is the quantitative relation
between the detectors and descriptors as well as how to evaluate their performance.

2 Definitions and Principles

2.1 Global and Local Features

In image processing and computer vision tasks, we need to represent the image by
features extracted therefrom. The raw image is perfect for the human eye to extract
all information from; however that is not the case with computer algorithms. There
are generally two methods to represent images, namely, global features and local
features. In the global feature representation, the image is represented by one multi-
dimensional feature vector, describing the information in the whole image. In other
words, the global representation method produces a single vector with values that
measure various aspects of the image such as color, texture or shape. Practically, a
single vector from each image is extracted and then two images can be compared by
comparing their feature vectors. For example, when one wants to distinguish images
of a sea (blue) and a forest (green), a global descriptor of color would produce quite
different vectors for each category. In this context, global features can be interpreted
as a particular property of image involving all pixels. This property can be color
histograms, texture, edges or even a specific descriptor extracted from some filters
applied to the image [33]. On the other hand, the main goal of local feature repre-
sentation is to distinctively represent the image based on some salient regions while
remaining invariant to viewpoint and illumination changes. Thus, the image is rep-
resented based on its local structures by a set of local feature descriptors extracted
from a set of image regions called interest regions (i.e., keypoints) as illustrated in
Fig. 1. Most local features represent texture within the image patch.
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Fig. 1 Global and local image features representation

Generally, using what kind of features might greatly depend on the applications
on hand. Developers prefer the most discriminative ones. For example, a person with
a bigger nose and smaller eyes, and a person with a smaller nose and bigger eyes
may have similar mug shot in terms of histogram or intensity distribution. Then, local
features or the global pattern distilled from local feature clusters seem to be more
discriminative. Whereas, for very large datasets in the web-scale image indexing
application, it is appropriate to consider global features. Also, global features are
useful in applications where a rough segmentation of the object of interest is avail-
able. The advantages of global features are that they are much faster and compact
while easy to compute and generally require small amounts of memory. Neverthe-
less, the global representation suffers from well-known limitations, in particular they
are not invariant to significant transformations and sensitive to clutter and occlusion.
In some applications, such as copy detection, most of the illegal copies are very
similar to the original; they have only suffered from compression, scaling or limited
cropping. In contrast, the advantage of local features is their superior performance
[34]. Meanwhile, using local features for large-scale image search have much higher
performance than global features provide [35]. Besides, as the local structures are
more distinctive and stable than other structures in smooth regions, it is expected
to be more useful for image matching and object recognition. However, they usu-
ally require a significant amount of memory because the image may have hundreds
of local features. As a solution for this problem, researchers suggest aggregating
local image descriptors into a very compact vector representation and optimizing the
dimensionality reduction of these vectors [35].

2.2 Characteristics of Feature Detectors

Tuytelaars and Mikolajczyk [27] define a local feature as “it is an image pattern
which differs from its immediate neighborhood”. Thus, they consider the purpose of
local invariant features is to provide a representation that allows to efficiently match
local structures between images. That is, we want to obtain a sparse set of local
measurements that capture the essence of the underlying input images and encode
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their interesting structures. To meet this goal, the feature detectors and extractors
must have certain properties keeping in mind that the importance of these properties
depends on the actual application settings and compromises need to be made. The
following properties are important for utilizing a feature detector in computer vision
applications:

e Robustness, the feature detection algorithm should be able to detect the same fea-
ture locations independent of scaling, rotation, shifting, photometric deformations,
compression artifacts, and noise.

e Repeatability, the feature detection algorithm should be able to detect the same
features of the same scene or object repeatedly under variety of viewing conditions.

e Accuracy, the feature detection algorithm should accurately localize the image
features (same pixel locations), especially for image matching tasks, where precise
correspondences are needed to estimate the epipolar geometry.

e Generality, the feature detection algorithm should be able to detect features that
can be used in different applications.

e Efficiency, the feature detection algorithm should be able to detect features in new
images quickly to support real-time applications.

e Quantity, the feature detection algorithm should be able to detect all or most of the
features in the image. Where, the density of detected features should reflect the
information content of the image for providing a compact image representation.

2.3 Scale and Affine Invariance

Actually, finding correspondences based on comparing regions of fixed shape like
rectangles or circles are not reliable in the presence of some geometric and photo-
metric deformations as they affect the regions’ shapes. Also, objects in digital images
appear in different ways depending on the scale of observation. Consequently, scale
changes are of important implications when analyzing image contents. Different
techniques have been proposed to address the problem of detecting and extracting
invariant image features under these conditions. Some are designed to handle scale
changes, while others go further to handle affine transformations. In order to address
the scale changes, these techniques assume that the change in scale is same in all
directions (i.e., uniform) and they search for stable features across all possible scales
using a continuous kernel function of scale known as scale space. Where, the image
size is varied and a filter (e.g., Gaussian filter) is repeatedly applied to smooth sub-
sequent layers, or by leaving the original image unchanged and varies only the filter
size as shown in Fig.2. More details about feature detection with scale changes can
be found in [36], where a framework is presented for generating hypotheses about
interesting scale levels in image data by searching for scale-space extrema in the
scale normalized Laplacian of Gaussian (LoG).

On the other hand, in the case of an affine transformation the scaling can be dif-
ferent in each direction. The nonuniform scaling has an influence on the localization,
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Fig. 2 Constructing the scale space structure

the scale and the shape of the local structure. Therefore, the scale invariant detec-
tors fail in the case of significant affine transformations. Hence, detectors designed
to detect the image features under uniform scaling need to be extended to be affine
invariant detectors that can detect the affine shape of the local image structures. Thus,
these affine invariant detectors can be seen as a generalization of the scale invariant
detector.

Generally, affine transformations are constructed using sequences of translations,
scales, flips, rotations, and shears. An affine transformation (affinity) is any linear
mapping that preserves collinearity and ratios of distances. In this sense, affine indi-
cates a special class of projective transformations that do not move any object from
the affine space R to the plane at infinity or conversely. Briefly, the affine transfor-
mation of R" is amap f : R” — R” of the form

f(Y) =AY +B (1)

for all Y € R", where A is a linear transformation of R". In some special cases, if
det(A) > 0, the transformation is called orientation-preserving, while, if det (A) < 0,
it is orientation-reversing. It is well known that a function is invariant under a certain
family of transformations if its value does not change when a transformation from
this family is applied to its argument. The second moment matrix provides the theory
for estimating affine shape of the local image features. Examples of affine invariant
detectors are Harris-affine, Hessian-affine, and maximally stable extremal regions
(MSER). It must be borne in mind that the detected features by these detectors are
transformed from circles to ellipses.

3 Image Feature Detectors

Feature detectors can be broadly classified into three categories: single-scale detec-
tors, multi-scale detectors, and affine invariant detectors. In a nutshell, single scale
means that there is only one representation for the features or the object contours
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using detector’s internal parameters. The single-scale detectors are invariant to image
transformations such as rotation, translation, changes in illuminations and addition
of noise. However, they are incapable to deal with the scaling problem. Given two
images of the same scene related by a scale change, we want to determine whether
same interest points can be detected or not. Therefore, it is necessary to build multi-
scale detectors capable of extracting distinctive features reliably under scale changes.
Details of single-scale and multi-scale detectors as well as affine invariant detectors
are discussed in the following sections.

3.1 Single-Scale Detectors

3.1.1 Moravec’s Detector

Moravec’s detector [37] is specifically interested in finding distinct regions in the
image that could be used to register consecutive image frames. It has been used as a
corner detection algorithm in which a corner is a point with low self-similarity. The
detector tests each pixel in a given image to see if a corner is present. It considers a
local image patch centered on the pixel and then determines the similarity between
the patch and the nearby overlapping patches. The similarity is measured by taking
the sum of square differences (SSD) between the centered patch and the other image
patches. Based on the value of SSD, three cases need to be considered as follows:

e If the pixel in a region of uniform intensity, then the nearby patches will look
similar or a small change occurs.

e If the pixel is on an edge, then the nearby patches in a parallel direction to the
edge will result in a small change and the patches in a direction perpendicular to
the edge will result in a large change.

e If the pixel is on a location with large change in all directions, then none of the
nearby patches will look similar and the corner can be detected when the change
produced by any of the shifts is large.

The smallest SSD between the patch and its neighbors (horizontal, vertical and
on the two diagonals) is used as a measure for cornerness. A corner or an interest
point is detected when the SSD reaches a local maxima. The following steps can be
applied for implementing Moravec’s detector:

1. Input: gray scale image, window size, threshold 7
2. For each pixel (x, y) in the image compute the intensity variation V from a shift
(u,v) as

V)= 3 UGatutay+vid) —Ia+ay+hl

Ya,bewindow
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Fig. 3 Performing the
non-maximum suppression p
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3. Construct the cornerness map by calculating the cornerness measure C (x, y) for
each pixel (x, y)
C(x, y) = min(Vy,(x, y)) 3)

4. Threshold the cornerness map by setting all C(x,y) below the given threshold
value T to zero.

5. Perform non-maximum suppression to find local maxima. All non-zero points
remaining in the cornerness map are corners.

For performing non-maximum suppression, an image is scanned along its gradient
direction, which should be perpendicular to an edge. Any pixel that is not a local
maximum is suppressed and set to zero. As illustrated in Fig.3, p and r are the
two neighbors along the gradient direction of g. If the pixel value of ¢ is not larger
than the pixel values of both p and r, it is suppressed. One advantage of Moravec’s
detector is that, it can detect majority of the corners. However, it is not isotropic;
intensity variation is calculated only at a discrete set of shifts (i.e., the eight principle
directions) and any edge is not in one of the eight neighbors’ directions is assigned
arelatively large cornerness measure. Thus, it is not invariant to rotation resulting in
the detector is of a poor repeatability rate.

3.1.2 Harris Detector

Harris and Stephens [38] have developed a combined corner and edge detector to
address the limitations of Moravec’s detector. By obtaining the variation of the auto-
correlation (i.e., intensity variation) over all different orientations, this results in a
more desirable detector in terms of detection and repeatability rate. The resulting
detector based on the auto-correlation matrix is the most widely used technique.
The 2 x 2 symmetric auto-correlation matrix used for detecting image features and
describing their local structures can be represented as

If(x,y) ley(X, y)
M(x,y) =D wlu,v) )
u,v IXIy(X, y) Iyz(xv y)
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Fig. 4 Classification of image points based on the eigenvalues of the autocorrelation matrix M

where I, and I, are local image derivatives in the x and y directions respectively,
and w(u, v) denotes a weighting window over the area (u, v). If a circular window
such as a Gaussian is used, then the response will be isotropic and the values will be
weighted more heavily near the center. For finding interest points, the eigenvalues of
the matrix M are computed for each pixel. If both eigenvalues are large, this indicates
existence of the corner at that location. An illustrating diagram for classification of
the detected points is shown in Fig.4. Constructing the response map can be done
by calculating the cornerness measure C(x, y) for each pixel (x, y) using

C(x,y) = det(M) — K (trace(M))? (5)

where
det(M) = Ay x Ay, and trace(M) = Ay + Ay (6)

The K is an adjusting parameter and A1, A, are the eigenvalues of the auto-correlation
matrix. The exact computation of the eigenvalues is computationally expensive, since
it requires the computation of a square root. Therefore, Harris suggested using this
cornerness measure that combines the two eigenvalues in a single measure. The non-
maximum suppression should be done to find local maxima and all non-zero points
remaining in the cornerness map are the searched corners.

3.1.3 SUSAN Detector

Instead of using image derivatives to compute corners, Smith and Brady [39] intro-
duced a generic low-level image processing technique called SUSAN (Smallest
Univalue Segment Assimilating Nucleus). In addition to being a corner detector,
it has been used for edge detection and image noise reduction. A corner is detected
by placing a circular mask of fixed radius to every pixel in the image. The center pixel
is referred to as the nucleus, where pixels in the area under the mask are compared
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with the nucleus to check if they have similar or different intensity values. Pixels hav-
ing almost the same brightness as the nucleus are grouped together and the resulting
area is termed USAN (Univalue Segment Assimilating Nucleus). A corner is found
at locations where the number of pixels in the USAN reaches a local minimum and
below a specific threshold value 7. For detecting corners, the similar comparison
function C(r, ry) between each pixel within the mask and mask’s nucleus is given
by

Loif |[I(r) —1(ro)| =T,
C(r,ry) = @)
0, otherwise,

and the size of USAN region is

n(ro) = Y. C(r, ) ®)

rec(r0)

where ry and r are nucleus’s coordinates and the coordinates of other points within
the mask, respectively. The performance of SUSAN corner detector mainly depends
on the similar comparison function C(r, ry), which is not immune to certain factors
impacting imaging (e.g., strong luminance fluctuation and noises).

SUSAN detector has some advantages such as: (i) no derivatives are used, thus,
no noise reductions or any expensive computations are needed; (ii) High repeata-
bility for detecting features; and (iii) invariant to translation and rotation changes.
Unfortunately, it is not invariant to scaling and other transformations, and a fixed
global threshold is not suitable for general situation. The corner detector needs an
adaptive threshold and the shape of mask should be modified.

3.1.4 FAST Detector

FAST (Features from Accelerated Segment Test) is a corner detector originally devel-
oped by Rosten and Drummondn [40, 41]. In this detection scheme, candidate points
are detected by applying a segment test to every image pixel by considering a circle
of 16 pixels around the corner candidate pixel as a base of computation. If a set of
n contiguous pixels in the Bresenham circle with a radius r are all brighter than the
intensity of candidate pixel (denoted by 1,) plus a threshold value ¢, I, + ¢, or all
darker than the intensity of candidate pixel minus the threshold value /,, — #, then p is
classified as a corner. A high-speed test can be used to exclude a very large number
of non-corner points; the test examines only the four pixels 1, 5, 9 and 13. A corner
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Fig. 5 Feature detection in an image patch using FAST detector [41]

can only exist if three of these test pixels are brighter than /,, + ¢ or darker than I, — ¢
and the rest of pixels are then examined for final conclusion. Figure 5 illustrates the
process, where the highlighted squares are the pixels used in the corner detection.
The pixel at p is the center of a candidate corner. The arc is indicated by the dashed
line passes through 12 contiguous pixels which are brighter than p by a threshold.
The best results are achieved using a circle with r =3 and n = 9.

Although the high speed test yields high performance, it suffers from several
limitations and weakness as mentioned in [41]. An improvement for addressing these
limitations and weakness points is achieved using a machine learning approach. The
ordering of questions used to classify a pixel is learned by using the well-known
decision tree algorithm (ID3), which speeds this step up significantly. As the first
test produces many adjacent responses around the interest point, an additional criteria
is applied to perform a non-maximum suppression. This allows for precise feature
localization. The used cornerness measure at this step is

Cee.y) =max( D |poj— Il =1, D |, =il = 1) ©)

j ESbrighr ./ eSdark

where I,,_, ; denotes the pixels laying on the Bresenham circle. In this way, the process-
ing time remains short because the second test is performed only on a fraction of
image points that passed the first test.

In other words, the process operates in two stages. First, corner detection with a
segment test of a given n and a convenient threshold is performed on a set of images
(preferably from the target application domain). Each pixel of the 16 locations on
the circle is classified as darker, similar, or brighter. Second, employing the ID3
algorithm on the 16 locations to select the one that yields the maximum information
gain. The non-maximum suppression is applied on the sum of the absolute difference
between the pixels in the contiguous arc and the center pixel. Notice that the corners
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detected using the ID3 algorithm may be slightly different from the results obtained
with segment test detector due to the fact that decision tree model depends on the
training data, which could not cover all possible corners. Compared to many existing
detectors, the FAST corner detector is very suitable for real-time video processing
applications because of its high-speed performance. However, it is not invariant to
scale changes and not robust to noise, as well as it depends on a threshold, where
selecting an adequate threshold is not a trivial task.

3.1.5 Hessian Detector

The Hessian blob detector [42, 43] is based on a 2 x 2 matrix of second-order
derivatives of image intensity /(x, y), called the Hessian matrix. This matrix can be
used to analyze local image structures and it is expressed in the form

Lo(x,y,0) Iy(x,y,0)
H(x,y, o) = (10)
Ly(x,y,0) Ly(x,y,0)

where I, Iy, and I, are second-order image derivatives computed using Gaussian
function of standard deviation o. In order to detect interest features, it searches for a
subset of points where the derivatives responses are high in two orthogonal directions.
That is, the detector searches for points where the determinant of the Hessian matrix
has a local maxima
det(H) = Lody, — I, (11)
By choosing points that maximize the determinant of the Hessian, this measure
penalizes longer structures that have small second derivatives (i.e., signal changes)
in a single direction. Applying non-maximum suppression using a window of size
3 x 3 over the entire image, keeping only pixels whose value is larger than the values
of all eight immediate neighbors inside the window. Then, the detector returns all the
remaining locations whose value is above a pre-defined threshold 7. The resulting
detector responses are mainly located on corners and on strongly textured image
areas. While, the Hessian matrix is used for describing the local structure in a neigh-
borhood around a point, its determinant is used to detect image structures that exhibit
signal changes in two directions. Compared to other operators such as Laplacian, the
determinant of the Hessian responds only if the local image pattern contains signif-
icant variations along any two orthogonal directions [44]. However, using second
order derivatives in the detector is sensitive to noise. In addition, the local maxima
are often found near contours or straight edges, where the signal changes in only one
direction [45]. Thus, these local maxima are less stable as the localization is affected
by noise or small changes in neighboring pattern.
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3.2 Multi-scale Detectors

3.2.1 Laplacian of Gaussian (LoG)

Laplacian-of-Gaussian (LoG), a linear combination of second derivatives, is a com-
mon blob detector. Given an input image /(x, y), the scale space representation of
the image defined by L(x, y, o) is obtained by convolving the image by a variable
scale Gaussian kernel G(x, y, o) where

L(x,y,0) =G(x,y,0) *1(x,y) (12)
and
Gy, o) = — o5 (13)
) 9)= 202

For computing the Laplacian operator, the following formula is used
VZL(x, v,0)=Ly(x,y,0) +Ly(x,y,0) (14)

This results in strong positive responses for dark blobs and strong negative
responses for bright blobs of size ~/2c". However, the operator response is strongly
dependent on the relationship between the size of the blob structures in the image
domain and the size of the smoothing Gaussian kernel. The standard deviation of the
Gaussian is used to control the scale by changing the amount of blurring. In order
to automatically capture blobs of different size in the image domain, a multi-scale
approach with automatic scale selection is proposed in [36] through searching for
scale space extrema of the scale-normalized Laplacian operator.

V:%ormL(x’ Y, O-) = GZ(LXX(xv Vs 6)+Lyy(x1 Y, G) (15)

Which can also detect points that are simultaneously local maxima/minima of
VformL(x, y, o) with respect to both space and scale. The LoG operator is circularly
symmetric; it is therefore naturally invariant to rotation. The LoG is well adapted
to blob detection due to this circular symmetry property, but it also provides a good
estimation of the characteristic scale for other local structures such as corners, edges,
ridges and multi-junctions. In this context, the LoG can be applied for finding the
characteristic scale for a given image location or for directly detecting scale-invariant
regions by searching for 3D (location + scale) extrema of the LoG function as illus-
trated in Fig. 6. The scale selection properties of the Laplacian operator are studied

in detail in [46].
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Fig. 6 Searching for 3D scale space extrema of the LoG function

3.2.2 Difference of Gaussian (DoG)

In fact, the computation of LoG operators is time consuming. To accelerate the com-
putation, Lowe [31] proposed an efficient algorithm based on local 3D extrema in the
scale-space pyramid built with Difference-of-Gaussian(DoG) filters. This approach
is used in the scale-invariant feature transform (SIFT) algorithm. In this context,
the DoG gives a close approximation to the Laplacian-of-Gaussian (LoG) and it is
used to efficiently detect stable features from scale-space extrema. The DoG function
D(x,y, o) can be computed without convolution by subtracting adjacent scale levels
of a Gaussian pyramid separated by a factor k.

D(x,y,0) =(G(x,y, ko) — G(x,y,0)) *I(x,y)

(16)
=L(x,y, ko) — L(x,y,0)

Feature types extracted by DoG can be classified in the same way as for the
LoG operator. Also, the DoG region detector searches for 3D scale space extrema
of the DoG function as shown in Fig.7. The computation of LoG operators is time
consuming. The common drawback of both the LoG and DoG representations is that
the local maxima can also be detected in neighboring contours of straight edges,
where the signal change is only in one direction, which make them less stable and
more sensitive to noise or small changes [45].
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Fig. 7 Searching for 3D scale space extrema in the DoG function [31]

3.2.3 Harris-Laplace

Harris-Laplace is a scale invariant corner detector proposed by Mikolajczyk and
Schmid [45]. It relies on a combination of Harris corner detector and a Gaussian
scale space representation. Although Harris-corner points have been shown to be
invariant to rotation and illumination changes, the points are not invariant to the
scale. Therefore, the second-moment matrix utilized in that detector is modified to
make it independent of the image resolution. The scale adapted second-moment
matrix used in the Harris-Laplace detector is represented as

If(x, v,op) ILl,(x,y,op)
M(x,y, o1, 0p) = o g(o7) (17)
LIy (x,y,0p) I;(x,y,0D)

where I, and I, are the image derivatives calculated in their respective direction using
a Gaussian kernel of scale op. The parameter o; determines the current scale at which
the Harris corner points are detected in the Gaussian scale-space. In other words, the
derivative scale o decides the size of gaussian kernels used to compute derivatives.
While, the integration scale o; is used to performed a weighted average of derivatives
in a neighborhood. The multi-scale Harris cornerness measure is computed using the
determinant and the trace of the adapted second moment matrix as

C(x.,y. 01, 0p) =det|M(x, y, 01, 0p)] — a.trace’[M(x, y, 01, 0p)] ~ (18)

The value of the constant « is between 0.04 and 0.06. At each level of the rep-
resentation, the interest points are extracted by detecting the local maxima in the
8-neighborhood of a point (x, y). Then, a threshold is used to reject the maxima of

small cornerness, as they are less stable under arbitrary viewing conditions

C(x,y,01,0p) > Thresholdyayyis (19)
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In addition, the Laplacian-of-Gaussian is used to find the maxima over the scale.
Where, only the points for which the Laplacian attains maxima or its response is
above a threshold are accepted.

07 |Lux(x, ¥, 07) + Lyy(x, y, 07)| > Thresholdapiacian (20)

The Harris-Laplace approach provides a representative set of points which are
characteristic in the image and in the scale dimension. It also dramatically reduces
the number of redundant interest points compared to Multi-scale Harris. The points
are invariant to scale changes, rotation, illumination, and addition of noise. Moreover,
the interest points are highly repeatable. However, the Harris-Laplace detector returns
a much smaller number of points compared to the LoG or DoG detectors. Also, it
fails in the case of affine transformations.

3.2.4 Hessian-Laplace

Similar to Harris-Laplace, the same idea can also be applied to the Hessian-based
detector, leading to a scale invariant detector termed, Hessian-Laplace. At first, we
build an image scale-space representation using Laplacian filters or their approxima-
tions DoG filters. Then, use the determinant of the Hessian to extract scale invariant
blob-like features. Hessian-Laplace detector extracts large number of features that
cover the whole image at a slightly lower repeatability compared to its counterpart
Harris-Laplace. Furthermore, the extracted locations are more suitable for scale esti-
mation due to the similarity of the filters used in spatial and scale localization, both
based on second order Gaussian derivatives. Bay et al. [32] claimed that Hessian-
based detectors are more stable than the Harris-based counterparts. Likewise, approx-
imating LoG by DoG for acceleration, the Hessian determinant is approximated using
integral images technique [29] resulting in the Fast Hessian detector [32].

3.2.5 Gabor-Wavelet detector

Recently, Yussof and Hitam [47] proposed a multi-scale interest points detector based
on the principle of Gabor wavelets. The Gabor wavelets are biologically motivated
convolution kernels in the shape of plane waves restricted by a Gaussian envelope
function, whose kernels are similar to the response of the two-dimensional receptive
field profiles of the mammalian simple cortical cell. The Gabor wavelets take the
form of a complex plane wave modulated by a Gaussian envelope function

K. |2 1Ky 11211212 . o2
Vs (2) = M s )I:elzl(m. _ eT] @1

o

where K,,,, = K, e, z = (x, y), u and v define the orientation and scale of the Gabor
wavelets, K, = K. /f" and ¢, = mu/8, K4 1s the maximum frequency, and f =
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V2 is the spacing factor between kernels in the frequency domain. The response of
an image / to a wavelet i is calculated as the convolution

G=1I%V (22)

The coefficients of the convolution, represent the information in a local image
region, which should be more effective than isolated pixels. The advantage of Gabor
wavelets is that they provides simultaneous optimal resolution in both space and spa-
tial frequency domains. Additionally, Gabor wavelets have the capability of enhanc-
ing low level features such as peaks, valleys and ridges. Thus, they are used to extract
points from the image at different scales by combining multi orientations of image
responses. The interest points are extracted at multiple scales with a combination
of uniformly spaced orientation. The authors proved that the extracted points using
Gabor-wavelet detector have high accuracy and adaptability to various geometric
transformations.

3.3 Affine Invariant Detectors

The feature detectors discussed so far exhibit invariance to translations, rotations and
uniform scaling; assuming that the localization and scale are not affected by an affine
transformation of the local image structures. Thus, they partially handle the challeng-
ing problem of affine invariance, keeping in mind that the scale can be different in
each direction rather than uniform scaling. Which in turn makes the scale invariant
detectors fail in the case of significant affine transformations. Therefore, building a
detector robust to perspective transformations necessitates invariance to affine trans-
formations. An affine invariant detector can be seen as a generalized version of a
scale invariant detector. Recently, some features detectors have been extended to
extract features invariant to affine transformations. For instance, Schaffalitzky and
Zisserman [48] extended the Harris-Laplace detector by affine normalization. Miko-
lajczyk and Schmid [45] introduced an approach for scale and affine invariant interest
point detection. Their algorithm simultaneously adapts location, scale and shape of
a point neighborhood to obtain affine invariant points. Where, Harris detector is
adapted to affine transformations and the affine shape of a point neighborhood is
estimated based on the second moment matrix. This is achieved by following the
iterative estimation scheme proposed by Lindberg and Garding [49] as follows:

1. Identify initial region points using scale-invariant Harris-Laplace detector.

2. For each initial point, normalize the region to be affine invariant using affine shape
adaptation.

3. Tteratively estimate the affine region; selection of proper integration scale, differ-
entiation scale and spatially localize interest points.

4. Update the affine region using these scales and spatial localizations.

5. Repeat step 3 if the stopping criterion is not met.
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Similar to Harris-affine, the same idea can also be applied to the Hessian-based
detector, leading to an affine invariant detector termed as Hessian-affine. For a sin-
gle image, the Hessian-affine detector typically identifies more reliable regions than
the Harris-affine detector. The performance changes depending on the type of scene
being analyzed. Further, the Hessian-affine detector responds well to textured scenes
in which there are a lot of corner-like parts. However, for some structured scenes,
like buildings, the Hessian-affine detector performs very well. A thorough analy-
sis of several state-of-the-art affine detectors have been done by Mikolajczyk and
Schmid [50].

There are several other feature detectors that are not discussed in this chapter due
to space limitation. Fast Hessian or the Determinant of Hessian (DoH) [32], MSER
[51, 52], are some examples. A more detailed discussion of these detectors can be
found in [44, 45, 53].

4 Image Feature Descriptor

Once a set of interest points has been detected from an image at a location p(x, y),
scale s, and orientation 6, their content or image structure in a neighborhood of p needs
to be encoded in a suitable descriptor for discriminative matching and insensitive to
local image deformations. The descriptor should be aligned with 6 and proportional
to the scale s. There are a large number of image feature descriptors in the literature;
the most frequently used descriptors are discussed in the following sections.

4.1 Scale Invariant Feature Transform (SIFT)

Lowe [31] presented the scale-invariant feature transform (SIFT) algorithm, where a
number of interest points are detected in the image using the Difference-of-Gaussian
(DOG) operator. The points are selected as local extrema of the DoG function. At
each interest point, a feature vector is extracted. Over a number of scales and over
a neighborhood around the point of interest, the local orientation of the image is
estimated using the local image properties to provide invariance against rotation.
Next, a descriptor is computed for each detected point, based on local image infor-
mation at the characteristic scale. The SIFT descriptor builds a histogram of gradient
orientations of sample points in a region around the keypoint, finds the highest orien-
tation value and any other values that are within 80 % of the highest, and uses these
orientations as the dominant orientation of the keypoint.

The description stage of the SIFT algorithm starts by sampling the image gradient
magnitudes and orientations in a 16 x 16 region around each keypoint using its
scale to select the level of Gaussian blur for the image. Then, a set of orientation
histograms is created where each histogram contains samples from a 4 x 4 subregion
of the original neighborhood region and having eight orientations bins in each. A
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Image gradients Keypoint descriptor

Fig. 8 A schematic representation of the SIFT descriptor for a 16 x 16 pixel patch and a 4 x 4
descriptor array

Gaussian weighting function with o equal to half the region size is used to assign
weight to the magnitude of each sample point and gives higher weights to gradients
closer to the center of the region, which are less affected by positional changes. The
descriptor is then formed from a vector containing the values of all the orientation
histograms entries. Since there are 4 x 4 histograms each with 8 bins, the feature
vector has 4 x 4 x 8 = 128 elements for each keypoint. Finally, the feature vector
is normalized to unit length to gain invariance to affine changes in illumination.
However, non-linear illumination changes can occur due to camera saturation or
similar effects causing a large change in the magnitudes of some gradients. These
changes can be reduced by thresholding the values in the feature vector to a maximum
value of 0.2, and the vector is again normalized. Figure§ illustrates the schematic
representation of the SIFT algorithm; where the gradient orientations and magnitudes
are computed at each pixel and then weighted by a Gaussian falloff (indicated by
overlaid circle). A weighted gradient orientation histogram is then computed for each
subregion.

The standard SIFT descriptor representation is noteworthy in several respects:
the representation is carefully designed to avoid problems due to boundary effects-
smooth changes in location, orientation and scale do not cause radical changes in the
feature vector; it is fairly compact, expressing the patch of pixels using a 128 element
vector; while not explicitly invariant to affine transformations, and the representation
is surprisingly resilient to deformations such as those caused by perspective effects.
These characteristics are evidenced in excellent matching performance against com-
peting algorithms under different scales, rotations and lighting. On the other hand,
the construction of the standard SIFT feature vector is complicated and the choices
behind its specific design are not clear resulting in the common problem of SIFT its
high dimensionality, which affects the computational time for computing the descrip-
tor (significantly slow). As an extension to SIFT, Ke and Sukthankar [54] proposed
PCA-SIFT to reduce the high dimensionality of original SIFT descriptor using the
standard Principal Components Analysis (PCA) technique to the normalized gradi-
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ent image patches extracted around keypoints. It extracts a41 x 41 patch at the given
scale and computes its image gradients in the vertical and horizontal directions and
creates a feature vector from concatenating the gradients in both directions. There-
fore, the feature vector is of length 2 x 39 x 39 = 3042 dimensions. The gradient
image vector is projected into a pre-computed feature space, resulting a feature vec-
tor of length 36 elements. The vector is then normalized to unit magnitude to reduce
the effects of illumination changes. Also, Morel and Yu [55] proved that the SIFT
is fully invariant with respect to only four parameters namely zoom, rotation and
translation out of the six parameters of the affine transform. Therefore, they intro-
duced affine-SIFT (ASIFT), which simulates all image views obtainable by varying
the camera axis orientation parameters, namely, the latitude and the longitude angles,
left over by the SIFT descriptor.

4.2 Gradient Location-Orientation Histogram (GLOH)

Gradient location-orientation histogram (GLOH) developed by Mikolajczyk and
Schmid [50] is also an extension of the SIFT descriptor. GLOH is very similar
to the SIFT descriptor, where it only replaces the Cartesian location grid used by
the SIFT with a log-polar one, and applies PCA to reduce the size of the descriptor.
GLOH uses a log-polar location grid with 3 bins in radial direction (radius is set to
6, 11, and 15) and 8in angular direction, resulting in 17 location bins as illustrated
in Fig. 9. GLOH descriptor builds a set of histograms using the gradient orientations
in 16 bins, resulting in a feature vector of 17 x 16 = 272 elements for each interest
point. The 272-dimensional descriptor is reduced to 128 dimensional one by com-
puting the covariance matrix for PCA and the highest 128 eigenvectors are selected
for description. Based on the experimental evaluation conducted in [50], GLOH has

Image gradients Keypoint descriptor

Fig. 9 A schematic representation of the GLOH algorithm using log-polar bins
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been reported to outperform the original SIFT descriptor and gives the best perfor-
mance, especially under illumination changes. Furthermore, it has been shown to be
more distinctive but also more expensive to compute than its counterpart SIFT.

4.3 Speeded-Up Robust Features Descriptor (SURF)

The Speeded-Up Robust Features (SURF) detector-descriptor scheme developed by
Bayetal. [32] is designed as an efficient alternative to SIFT. It is much faster, and more
robust as opposed to SIFT. For the detection stage of interest points, instead of relying
on ideal Gaussian derivatives, the computation is based on simple 2D box filters;
where, it uses a scale invariant blob detector based on the determinant of Hessian
matrix for both scale selection and locations. Its basic idea is to approximate the
second order Gaussian derivatives in an efficient way with the help of integral images
using a set of box filters. The 9 x 9 box filters depicted in Fig. 10 are approximations
of a Gaussian with o =1.2 and represent the lowest scale for computing the blob
response maps. These approximations are denoted by Dy, Dy,, and D,,. Thus, the
approximated determinant of Hessian can be expressed as

det(Happrox) = Dxnyy - (Wny)z (23)

where w is a relative weight for the filter response and it is used to balance the expres-
sion for the Hessian’s determinant. The approximated determinant of the Hessian rep-
resents the blob response in the image. These responses are stored in a blob response
map, and local maxima are detected and refined using quadratic interpolation, as
with DoG. Finally, do non-maximum suppression in a 3 x 3 x 3 neighborhood to
get steady interest points and the scale of values.

The SURF descriptor starts by constructing a square region centered around the
detected interest point, and oriented along its main orientation. The size of this
window is 20s, where s is the scale at which the interest point is detected. Then, the
interest region is further divided into smaller 4 x 4 sub-regions and for each sub-
region the Harr wavelet responses in the vertical and horizontal directions (denoted

Fig. 10 Left to right Gaussian second order derivatives in y- (Dyy), Xy-direction (D,,) and their
approximations in the same directions, respectively
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Fig. 11 Dividing the interest region into 4 x 4 sub-regions for computing the SURF descriptor

d, and d,, respectively) are computed at a 5 x 5 sampled points as shown in Fig. 11.
These responses are weighted with a Gaussian window centered at the interest point
to increase the robustness against geometric deformations and localization errors.
The wavelet responses d, and d, are summed up for each sub-region and entered in
a feature vector v, where

v=0Q dn D 1, D dy D ldy) (24)

Computing this for all the 4 x 4 sub-regions, resulting a feature descriptor of length
4 x 4 x 4 = 64 dimensions. Finally, the feature descriptor is normalized to a unit
vector in order to reduce illumination effects.

The main advantage of the SURF descriptor compared to SIFT is the processing
speed as it uses 64 dimensional feature vector to describe the local feature, while SIFT
uses 128. However, the SIFT descriptor is more suitable to describe images affected
by translation, rotation, scaling, and other illumination deformations. Though SURF
shows its potential in a wide range of computer vision applications, it also has some
shortcomings. When 2D or 3D objects are compared, it does not work if rotation is
violent or the view angle is too different. Also, the SURF is not fully affine invariant
as explained in [56].

4.4 Local Binary Pattern (LBP)

Local Binary Patterns (LBP) [57, 58] characterizes the spatial structure of a texture
and presents the characteristics of being invariant to monotonic transformations of
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the gray-levels. It encodes the ordering relationship by comparing neighboring pixels
with the center pixel, that is, it creates an order based feature for each pixel by com-
paring each pixel’s intensity value with that of its neighboring pixels. Specifically,
the neighbors whose feature responses exceed the central’s one are labeled as ‘1’
while the others are labeled as ‘0’. The co-occurrence of the comparison results is
subsequently recorded by a string of binary bits. Afterwards, weights coming from a
geometric sequence which has a common ratio of 2 are assigned to the bits according
to their indices in strings. The binary string with its weighted bits is consequently
transformed into a decimal valued index (i.e., the LBP feature response). That is,
the descriptor describes the result over the neighborhood as a binary number (binary
pattern). On its standard version, a pixel ¢ with intensity g(c) is labeled as

1, if g > &

. 25)
0, if g <8

S(gp — 8) = {

where pixels p belong to a 3 x 3 neighborhood with gray levels g,(p =0, 1,...,7).
Then, the LBP pattern of the pixel neighborhood is computed by summing the cor-
responding thresholded values S(g, — g.) weighted by a binomial factor of 2% as

7

LBP =" S(g, — 8:).2" (26)
k=0

After computing the labeling for each pixel of the image, a 256-bin histogram
of the resulting labels is used as a feature descriptor for the texture. An illustration
example for computing LBP of a pixel in a 3 x 3 neighborhood and an orientation
descriptor of a basic region in an image is shown in Fig. 12. Also, the LBP descriptor
is calculated in its general form as follows

N—1
. 1 >

LBPgy(x,y) = E S(n; —n.).2', S(x)=l =0 (27)

i=0

0, otherwise

where n, corresponds to the gray level of the center pixel of a local neighborhood
and n; is the gray levels of N equally spaced pixels on a circle of radius R. Since
correlation between pixels decreases with the distance, a lot of the texture information
can be obtained from local neighborhoods. Thus, the radius R is usually kept small.
In practice, the signs of the differences in a neighborhood are interpreted as a N-bit
binary number, resulting in 2V distinct values for the binary pattern as shown in
Fig. 13. The binary patterns are called uniform patterns, where they contain at most
two bitwise transitions from O to 1. For instance, “11000011” and “00001110” are
two uniform patterns, while “00100100” and “01001110” are non-uniform patterns.

Several variations of LBP have been proposed, including the center-symmetric
local binary patterns (CS-LBP), the local ternary pattern (LTP), the center-symmetric
local ternary pattern (CS-LTP) based on the CS-LBP, and orthogonal symmetric local
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Fig. 12 Computing LBP descriptor for a pixel in a 3 x 3 neighborhood [59] © 2014 IEEE
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Fig. 13 LBP and CS-LBP features for a neighborhood of 8 pixels [58] © 2009 Elsevier

ternary pattern (OS-LTP) [60]. Unlike the LBP, the CS-LBP descriptor compares
gray-level differences of center-symmetric pairs (see Fig. 13). In fact, the LBP has the
advantage of tolerance of illumination changes and computational simplicity. Also,
the LBP and its variants achieve great success in texture description. Unfortunately,
the LBP feature is an index of discrete patterns rather than a numerical feature, thus it
is difficult to combine the LBP features with other discriminative ones in a compact
descriptor [61]. Moreover, it produces higher dimensional features and is sensitive
to Gaussian noise on flat regions.

4.5 Binary Robust Independent Elementary Features (BRIEF)

Binary robust independent elementary features (BRIEF), a low-bitrate descriptor,
is introduced for image matching with random forest and random ferns classifiers
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[62]. It belongs to the family of binary descriptors such as LBP and BRISK, which
only performs simple binary comparison test and uses Hamming distance instead
of Euclidean or Mahalanobis distance. Briefly, for building a binary descriptor, it is
only necessary to compare the intensity between two pixel positions located around
the detected interest points. This allows to obtain a representative description at very
low computational cost. Besides, matching the binary descriptors requires only the
computation of Hamming distances that can be executed very fast through XOR
primitives on modern architectures.

The BRIEF algorithm relies on a relatively small number of intensity difference
tests to represent an image patch as a binary string. More specifically, a binary
descriptor for a patch of pixels of size S x S is built by concatenating the results of
the following test

1, if I(P)) > I(P)),
T = (28)
0, otherwise,

where I (p;) denotes the (smoothed) pixel intensity value at p;, and the selection of the
location of all the p; uniquely defines a set of binary tests. The sampling points are
drawn from a zero-mean isotropic Gaussian distribution with variance equal to %S 2,
For increasing the robustness of the descriptor, the patch of pixels is pre-smoothed
with a Gaussian kernel with variance equal to 2 and size equal to 9 x 9 pixels. The
BRIEF descriptor has two setting parameters: the number of binary pixel pairs and
the binary threshold.

The experiments conducted by authors showed that only 256 bits, or even 128
bits, often suffice to obtain very good matching results. Thus, BRIEF is considered
to be very efficient both to compute and to store in memory. Unfortunately, BRIEF
descriptor is not robust against a rotation larger than 35° approximately, hence, it
does not provide rotation invariance.

4.6 Other Feature Descriptors

A large number of other descriptors have been proposed in the literature and many of
them have been proved to be effective in computer vision applications. For instance,
color-based local features are four color descriptors based on color information pro-
posed by Weijer and Schmid [63]. The Gabor representation or its variation [64,
65] has been also shown to be optimal in the sense of minimizing the joint two-
dimensional uncertainty in space and frequency. Zernike moments [66, 67] and
Steerable filters [68] are also considered for feature extraction and description.
Inspired by Weber’s Law, a dense descriptor computed for every pixel depending
on both the local intensity variation and the magnitude of the center pixel’s intensity
called Weber Local Descriptor (WLD) is proposed in [28]. The WLD descriptor
employs the advantages of SIFT in computing the histogram using the gradient and
its orientation, and those of LBP in computational efficiency and smaller support
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regions. In contrast to the LBP descriptor, WLD first computes the salient micro-
patterns (i.e., differential excitation), and then builds statistics on these salient pat-
terns along with the gradient orientation of the current point.

Two methods for extracting distinctive features from interest regions based on
measuring the similarity between visual entities from images are presented in [69].
The idea of these methods combines the powers of two well-known approaches,
the SIFT descriptor and Local Self-Similarities (LSS). Two texture features called
Local Self-Similarities (LSS, C) and Fast Local Self-Similarities (FLSS, C) based on
Cartesian location grid, are extracted, which are the modified versions of the Local
Self-Similarities feature based on Log-Polar location grid (LSS, LP). The LSS and
FLSS features are used as the local features in the SIFT algorithm. The proposed LSS
and FLSS descriptors use distribution-based histogram representation in each cell
rather than choosing the maximal correlation value in each bucket in the Log-Polar
location grid in the natural (LSS, LP) descriptor. Thus, they get more robust geometric
transformations invariance and good photometric transformations invariance. A local
image descriptor based on Histograms of the Second Order Gradients, namely HSOG
is introduced in [70] for capturing the curvature related geometric properties of
the neural landscape. Dalal and Triggs [71] presented the Histogram of Oriented
Gradient (HOG) descriptor, which combines both the properties of SIFT and GLOH
descriptors. The main difference between HOG and SIFT is that the HOG descriptor
is computed on a dense grid of uniformly spaced cells with overlapping local contrast
normalization.

Following a different direction, Fan et al. [72] proposed a method for interest
region description, which pools local features based on their intensity orders in mul-
tiple support regions. Pooling by intensity orders is not only invariant to rotation and
monotonic intensity changes, but also encodes ordinal information into a descriptor.
By pooling two different kinds of local features, one based on gradients and the other
on intensities, two descriptors are obtained: the Multisupport Region Order-Based
Gradient Histogram (MROGH) and the Multisupport Region Rotation and Inten-
sity Monotonic Invariant Descriptor (MRRID). The former combines information
of intensity orders and gradient, while the latter is completely based on intensity
orders, which makes it particularly suitable to large illumination changes. Several
image features are analyzed

In spite of the fact that, a large number of image feature descriptors have been
introduced recently, several of these descriptors are exclusively designed for a spe-
cific application scenario such as object recognition, shape retrieval, or LADAR data
processing [73]. Furthermore, the authors of these descriptors evaluated their per-
formance on a limited number of benchmarking datasets collected specifically for
particular tasks. Consequently, it is very challenging for researchers to choose an
appropriate descriptor for their particular application. In this respect, some recent
studies compare the performance of several descriptors; interest region descriptors
[50], binary descriptors [74], local colour descriptors [75], and the 3D descriptors
[76, 77]. In fact, claims that describing image features is a solved problem are overly
bold and optimistic. On the other hand, claims that designing a descriptor for general
real-world scenarios is next to impossible are simply too pessimistic, given the suc-
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cess of the aforementioned descriptors in several applications. Finally, there is much
work to be done in order to realize description algorithms that can be used for general
applications. We argue for further research towards using new modalities captured
by 3D data and color information. For real time applications, a further path of future
research would be the implementation of the algorithms on parallel processing units
such as GPU.

5 Features Matching

Features matching or generally image matching, a part of many computer vision
applications such as image registration, camera calibration and object recogni-
tion, is the task of establishing correspondences between two images of the same
scene/object. A common approach to image matching consists of detecting a set of
interest points each associated with image descriptors from image data. Once the
features and their descriptors have been extracted from two or more images, the
next step is to establish some preliminary feature matches between these images as
illustrated in Fig. 14.

Without losing the generality, the problem of image matching can be formulated
as follows, suppose that p is a point detected by a detector in an image associated
with a descriptor

Q) ={#P) | k=12, ....K} (29)

where, for all K, the feature vector provided by the k-th descriptor is

D(p) = (i foys -+ Fon) (30)

The aim is to find the best correspondence ¢ in another image from the set of
N interest points Q = {q1, q2, - - ., gn} by comparing the feature vector ¢y (p) with
those of the points in the set Q. To this end, a distance measure between the two
interest points descriptors ¢ (p) and ¢, (g) can be defined as

Fig. 14 Matching image regions based on their local feature descriptors [79] © 2011 Springer
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di(p. @) = 19 (p) — r(9)] €2y

Based on the distance dj, the points of Q are sorted in ascending order indepen-
dently for each descriptor creating the sets

Y. Q) ={(p. Q) | k=12,....k} (32)

Such that,

Vep. O = {W v v €0 | dipov) < dip v Vi) (33)

A match between the pair of interest points (p, g) is accepted only if (i) p is
the best match for ¢ in relation to all the other points in the first image and (ii)
q is the best match for p in relation to all the other points in the second image.
In this context, it is very important to devise an efficient algorithm to perform this
matching process as quickly as possible. The nearest-neighbor matching in the feature
space of the image descriptors in Euclidean norm can be used for matching vector-
based features. However, in practice, the optimal nearest neighbor algorithm and its
parameters depend on the data set characteristics. Furthermore, to suppress matching
candidates for which the correspondence may be regarded as ambiguous, the ratio
between the distances to the nearest and the next nearest image descriptor is required
to be less than some threshold. As a special case, for matching high dimensional
features, two algorithms have been found to be the most efficient: the randomized
k-d forest and the fast library for approximate nearest neighbors (FLANN) [78].

On the other hand, these algorithms are not suitable for binary features (e.g.,
FREAK or BRISK). Binary features are compared using the Hamming distance
calculated via performing a bitwise XOR operation followed by a bit count on the
result. This involves only bit manipulation operations that can be performed quickly.
The typical solution in the case of matching large datasets is to replace the linear
search with an approximate matching algorithm that can offer speedups of several
orders of magnitude over the linear search. This is, at the cost that some of the nearest
neighbors returned are approximate neighbors, but usually close in distance to the
exact neighbors. For performing matching of binary features, other methods can be
employed such as [80-82].

Generally, the performance of matching methods based on interest points depends
on both the properties of the underlying interest points and the choice of associated
image descriptors [83]. Thus, detectors and descriptors appropriate for images con-
tents shall be used in applications. For instance, if an image contains bacteria cells,
the blob detector should be used rather than the corner detector. But, if the image is an
aerial view of a city, the corner detector is suitable to find man-made structures. Fur-
thermore, selecting a detector and a descriptor that addresses the image degradation
is very important. For example, if there is no scale change present, a corner detector
that does not handle scale is highly desirable; while, if image contains a higher level
of distortion, such as scale and rotation, the more computationally intensive SURF
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feature detector and descriptor is a adequate choice in that case. For greater accuracy,
it is recommended to use several detectors and descriptors at the same time. In the
area of feature matching, it must be noticed that the binary descriptors (e.g., FREAK
or BRISK) are generally faster and typically used for finding point correspondences
between images, but they are less accurate than vector-based descriptors [74]. Statis-
tically robust methods like RANSAC can be used to filter outliers in matched feature
sets while estimating the geometric transformation or fundamental matrix, which is
useful in feature matching for image registration and object recognition applications.

6 Performance Evaluation

6.1 Benchmarking Data Sets

There are a wide variety of data sets available on the Internet that can be used as a
benchmark by researchers. One popular and widely used for performance evaluation
of detectors and descriptors is the standard Oxford data set [84]. The dataset consists
of image sets with different geometric and photometric transformations (viewpoint
change, scale change, image rotation, image blur, illumination change, and JPEG
compression) and with different scene types (structured and textured scenes). In the
cases of illumination change, the light changes are introduced by varying the camera
aperture. While in the case of rotation, scale change, viewpoint change, and blur,
two different scene types are used. One scene type contains structured scenes which
are homogeneous regions with distinctive edge boundaries (e.g., graffiti, buildings),
and the other contains repeated textures of different forms. In this way, the influence
of image transformation and scene type can be analyzed separately. Each image set
contains 6 images with a gradual geometric or photometric distortion where the first
image and the remaining 5 images are compared. Sample images from the Oxford
data set are shown in Fig. 15.

6.2 Evaluation Criterion

To judge whether two image features are matched (i.e., belonging to the same fea-
ture or not), Mikolajczyk et al. [44] proposed an evaluation procedure based on the
repeatability criterion by comparing the ground truth transformation and the detected
region overlap. The repeatability can be considered as one of the most important cri-
teria used for evaluating the stability of feature detectors. It measures the ability of
a detector to extract the same feature points across images irrespective of imaging
conditions. The repeatability criterion measures how well the detector determines
corresponding scene regions. In this evaluation procedure, two regions of interest A
and B are deemed to correspond if the overlap error ¢ is sufficiently small as shown



40 M. Hassaballah et al.

Bark

Fig. 15 Test images Graf (viewpoint change, structured scene), Wall (viewpoint change, textured
scene), Boat (scale change + image rotation, structured scene), Bark (scale change + image rotation,
textured scene), Bikes (image blur, structured scene), Trees (image blur, textured scene), Leuven
(illumination change, structured scene), and Ubc (JPEG compression, structured scene)

in Fig. 16. This overlap error measures how well the regions correspond under a
homography transformation H. It is defined by the ratio of the intersection and union
of the two regions, that is the error in the image area covered by the two regions,

_,_ANH'BH) an
T T AUMET B H)

This approach counts the total number of pixels in the union and the intersection
of the two regions. Also, a match is correct if the error in the image area covered
by two corresponding regions is less than 50 % of the region union, that is, & <
0.5. The overlap error is computed numerically based on homography H and the
matrices defining the regions. Thus, to evaluate feature detectors performance, the
repeatability score for a given pair of images is computed as the ratio between the
number of region to region correspondences and the smaller number of regions in
the pair of images.

On the other hand, the performance of a region descriptor is measured by the
matching criterion, i.e., how well the descriptor represents a scene region. It is based
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S

Region inimage 1 Regioninimage 2 Region projected from 2 to 1

Fig. 16 Illustration of overlap error for a region projected onto the corresponding region (ellipse)

on the number of correct matches and the number of false matches obtained for
the image pair. This is measured by comparing the number of corresponding regions
obtained with the ground truth and the number of correctly matched regions. Matches
are the nearest neighbors in the descriptor space [50]. In this case, the two regions
of interest are matched if the Euclidean distance between their descriptors D4 and
Dg is below a threshold 7. The results are presented with recall versus I-precision.
Each descriptor from the reference image is compared with each descriptor from the
transformed one and counting the number of correct matches as well as the number
of false matches.

No. correct matches
recall = ) (35)
Total No. correspondences

! . No. false matches (36)
— R —
preciston Total No. all matches

where, No. correspondences refers to the number of matching regions between image
pairs. While, recall is the number of correctly matched regions with respect to the
number of corresponding regions between two images of the same scene. An ideal
descriptor gives a recall equal to 1 for any precision value. In order to obtain the
curve, the value of 7 is varied. Practically, recall increases for an increasing distance
threshold t because noise introduced by image transformations and region detec-
tion increases the distance between similar descriptors. A slowly increasing curve
indicates that the descriptor is affected by the image noise. If the obtained curves
corresponding to different descriptors are far apart or have different slopes, then the
distinctiveness and robustness of these descriptors are different for the investigated
image transformation or scene type [50].
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7 Conclusions

The objective of this chapter is to provide a straight-forward, brief introduction
for new researchers to the image feature detection and extraction research field. It
introduces the basic notations and mathematical concepts for detecting and extract-
ing image features, then describes the properties of perfect feature detectors. Vari-
ous existing algorithms for detecting interest points are discussed briefly. The most
frequently used description algorithms such as SIFT, SURF, LBP, WLD,...etc are
also discussed and their advantages/disadvantages are highlighted. Furthermore, it
explains some approaches to feature matching. Finally, the chapter discusses the
techniques used for evaluating the performance of these algorithms.
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A Review of Image Interest Point Detectors:
From Algorithms to FPGA Hardware
Implementations

Cesar Torres-Huitzil

Abstract Fast and accurate image feature detectors are an important challenge in
computer vision as they are the basis for high-level image processing analysis and
understanding. However, image feature detectors cannot be easily applied in real-time
embedded computing scenarios, such as autonomous robots and vehicles, mainly
due to the fact that they are time consuming and require considerable computational
resources. For embedded and low power devices, speed and memory efficiency is
of main concern, and therefore, there have been several recent attempts to improve
this performance gap through dedicated hardware implementations of feature detec-
tors. Thanks to the fine grain massive parallelism and flexibility of software-like
methodologies, reconfigurable hardware devices, such as Field Programmable Gate
Arrays (FPGAs), have become a common choice to speed up computations. In this
chapter, a review of hardware implementations of feature detectors using FPGAs
targeted to embedded computing scenarios is presented. The necessary background
and fundamentals to introduce feature detectors and their mapping to FPGA-based
hardware implementations are presented. Then we provide an analysis of some rel-
evant state-of-the-art hardware implementations, which represent current research
solutions proposed in this field. The review addresses a broad range of techniques,
methods, systems and solutions related to algorithm-to-hardware mapping of image
interest point detectors. Our goal is not only to analyze, compare and consolidate
past research work but also to appreciate their findings and discuss their applicability.
Some possible directions for future research are presented.
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1 Introduction

Many computer vision tasks rely on the extraction of low-level image features or
interest points, which usually represent a small fraction of the total number of pixels
in the image. Interest points are salient image pixels that are unique and distinc-
tive, i.e., quantitatively and qualitatively different from other pixels in the image
[1]. Such interest points must be robustly detected, meaning that they should retain
similar characteristics even after image geometrical transformations and distortions,
or illumination changes in the scene. Image features are used in several well-known
applications ranging from object recognition [2], texture classification [3], and image
mosaicing [4]. Furthermore, image feature detectors and descriptors are the basis for
the development of other applications such as image retrieval to assist visual search-
ing in large databases, virtual and augmented reality, and image watermarking or
steganography [5]. The overall performance of all those applications relies signif-
icantly on both robust and efficient image interest point detection. Local features
in every image must be detected in the first processing step of the feature-based
perception and recognition pipeline [6], which broadly involves three main steps:
(1) the detection of interest points, e.g., corners and blobs, in every frame, (ii) the
description of an interest point neighborhood patch through a feature vector, and (iii)
the match of descriptor vectors.

A wide variety of feature detectors reported in the literature exist and their out-
put vary considerably as such algorithms make different assumptions on the image
content in order to compute their response [7]. To improve reliability in the detec-
tion, a recent trend is being made to combine the power of different detectors into
a single framework to achieve better results as information of a particular detector
can be complemented with the corresponding results of its counterparts [8]. This
yields methods that use more significant resources, such as memory and compu-
tational elements, usually only available on high performance parallel computing
systems. Despite of their inherent differences, most well-known interest point detec-
tors, at low-level processing of a bottom-up approach, are computationally similar
as window-based image processing operators are required to be applied locally on
every image position or scale [9, 10]. Window-based image processing, in spite
of its inherent data parallelism and computation regularity, makes the extraction
process computationally intensive as well as high-bandwidth memory demanding,
difficult to overcome in real-time embedded applications, such as robot navigation,
self-localization, object recognition, online 3D reconstruction, and target tracking.
Recall that real-time is a context relative measure, which for image processing and
computer vision applications is commonly considered as the processing of at least
VGA resolution images at a minimum rate of 30 frames per second.

Motivated for the steady increasing demand for high-performance embedded com-
puting engines, specific custom hardware architectures have been proposed as fea-
ture detector accelerators thanks to the inherent parallelism of hardware. Yet, size,
weight, and power constraints associated with embedded computing severely limit
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the implementation choices [11, 12]. In this sense, Field Programmable Gate Array
(FPGA) devices appear to fit particularly well computer vision applications thanks to
their regular parallel computational structure and the availability of on-chip distrib-
uted memory. Furthermore, FPGA technology is always improving in logic density
and speed, which constantly increases the complexity of the models that can be
implemented on them by software-like techniques, thus facilitating the design space
exploration and fast prototyping to build a viable embedded computer vision imple-
mentation.

While alternative parallel implementation media such as multicore platforms or
Graphics Processing Units (GPUs) have been used to speed up computations by using
mainly threads at programming levels [13, 14], major motivating factors for choos-
ing FPGAs are a good power-efficiency tradeoff for embedded applications, and the
further possibility to export an FPGA design to an optimized Application Specific
Integrated Circuit (ASIC). Far beyond the achievable performance improvements of
custom hardware implementations, it is also highly desirable to improve algorithms
and propose overall implementation strategies for feature detectors to be more suit-
able and amenable for embedded platforms. In this context, from a pragmatic point of
view, several other aspects should be considered for porting and deployment of image
feature detectors on embedded platforms in order to reduce the cost and guarantee
a good performance. Factors such processing time, numerical precision, memory
bandwidth and size, and power consumption—not easily discernible from sequen-
tial algorithmic representations—are particularly important for portable embedded
computing platforms. Although current embedded systems are equipped with high
performance multicore processors or portable GPUs, feature detectors still represent
a computational overhead, as the whole processing power is not fully available at any
time for just a single task. Also, recently, the computation needs of image processing
and computer vision have dramatically increased since image resolutions are higher
and there is a significant demand for processing high frame-rate videos or images
and several views derived from multiple cameras in systems with limited computa-
tional and energy resources [15]. Thus, efficient hardware implementations of image
feature detectors still remains an open challenge as hardware designers should be
actively involved in exploring design trade-offs among accuracy, performance, and
energy use.

In this chapter, a review of hardware implementations of well-known image inter-
est point detectors using FPGA devices as an implementation media is presented
and discussed. The review addresses a broad range of reported techniques, methods,
systems, and solutions related to hardware implementations of image interest point
detectors to highlight their importance for embedded computing scenarios. The rest
of this chapter is organized as follows. In Sect. 2, a background of feature detectors to
highlight the two main computational steps involved in most algorithms is presented
as well as a brief overview of FPGA technology and its potentials for efficient hard-
ware software codesign. Particularly, this section introduces an abstraction of the
computational flow found in well-known feature detectors, namely window-based
operators and operator sequencing. In Sect. 3, some relevant works related to image
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interest point detectors hardware implementation are analyzed, both for simple and
scale invariant interest point detectors. Finally, in Sect.4 some concluding remarks
and future directions are presented.

2 Background

2.1 Interest Point Detection

Interest points are simple point features, image pixels that are salient or unique
when compared with neighboring pixels. Basically, most interest point detectors
include two concatenated processing steps or stages: (i) detection that involves a
measure of how salient each pixel is, and (ii) localization that selects stable points
determined by local non-maxima suppression. Quantitative and qualitative criteria of
both processing steps are application dependent and specific values of free parameters
are used to control the response of a detector. Given the vast diversity of feature
detectors reported in the literature and the divergence on its results, a quantitative
performance evaluation is an important procedure to assess the quality of image
feature detectors under particular conditions [1, 16, 17].

To measure how salient or interesting each pixel x in an image is, an interest point
operator [18] is defined using a mapping « of the form:

k(x):RT - R (D

Interest point detectors differ on the nature and complexity of the operator « that
they employ to process neighbors around a pixel x. The « operator only computes
the interest measure for a given pixel based on local information; i.e., neighboring
pixels in an image patch. Usually, a detector refers to the complete algorithm that
extracts interest points from an input image I to produce an interest image I”.

Interest point localization is usually performed through non-maxima suppression
to eliminate highlighted pixels that are not local maxima. Normally, a thresholding
step is applied so that the response given by the initial feature enhancement can be
used to distinguish between truly features and non-features. Interest points that are
greater than a specified threshold are identified as local maxima of the interest point
measure response according to the following equation:

{(XC7yC)} = {(XC9yC)|K (XcayC) > K(Xi’Yi)’
V(xi,vi) €W(xe,Ve), kK (Xc,¥e) >t} 2

where { (x.,vy.) } is the set of all interest points found in the image, k (x,y)
is the interest point measure response computed at point (x,y), W(Xq, y.) is a
neighborhood centered around the point (x., y.), and t is a specified threshold.
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2.2 Overview of Well-Known Interest Point Detectors

Since this chapter is mainly focused on detectors that generate saliency responses
for each pixel in the image, this review does not consider some other feature detec-
tors proposed in the literature such as those detectors mainly oriented to highlight
regions in the images [7]. The interest point detectors considered in this work are
those based on widely used saliency measures such as gradient magnitude, Univalue
Segment Assimilating Nucleus (USAN), second moment matrix, among others. On
the other hand, scale-space interest point detectors are based in measures such as the
Hessian matrix, Laplacian of Gaussian (LoG), and Difference of Gaussian (DoG).
Such detectors are better known as blob detectors, which do not necessarily make
highly selective features, i.e., single salience pixels. In practice, a scale-space is rep-
resented as an image pyramid in which an image is successively filtered by a family of
smoothing kernels at increasing scale factors. Extrema detection or non-maxima sup-
pression to identify interest points is performed by searching for local extrema using
each scale in an image pyramid. Such image pyramid based scale-space representa-
tion requires a huge amount of memory and incurs heavy window-based operations
to produce an interest image.

The gradient magnitude is a measure used in several edge detection techniques
such as the Canny detector [19]. The USAN is used for edge and corner detection
in the Smallest USAN (SUSAN) detector [20], which places a circular mask over
the pixel to be tested (the nucleus). Every pixel is compared to the nucleus and the
response of SUSAN is given in terms of similar pixels to the nucleus. Harris detector
[21] is a well-known corner detector based on the eigenvalues of the second moment
matrix, which is often used for feature detection and for describing local image
structures. The FAST (Features from Accelerated Segment Test) feature detector,
proposed by Rosten and Drummond [22], is very fast to compute. In this detector,
a feature is detected at a given pixel if the intensities of at least 9 contiguous pixels
of a circular arc of 16 pixels are all below or above the intensity of the pixel by a
given threshold. However, these detectors are not invariant to scale and therefore not
very stable across scale changes; scale-space measures are used instead. The Hessian
matrix is the foundation of the detection step for scale-space SURF feature detec-
tor [23]. Difference of Gaussian is the basic detection step for SIFT features [24].
However, as exposed previously, computing window-based operators such as convo-
lutions at several image scales is computationally expensive, and in such detectors
non-maxima suppression is performed over the scale space.

The above mentioned detectors, summarized in Table 1, are a representative set
of detectors widely used to identify points of interest or blobs for object recognition
and other applications that have been addressed from a hardware implementation
perspective in different embedded scenarios.
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Table 1 Summary of selected well-known image interest point detectors that have been addressed
for embedded hardware implementations

Detector Saliency measure principle Feature type Scale invariance
Canny [19] Gradient magnitude Corner No
SUSAN [20] Univalue segment assimilating nucleus Corner No
Harris [21] Second moment matrix Corner No
FAST [22] Similarity of contiguous pixels Corner No
SUREF [23] Hessian matrix Blob Yes
SIFT [24] Difference of Gaussian Blob Yes

2.3 Underlying Principles of Interest Point Detectors

Low-level interest point detectors attempt to isolate image pixels that contain visu-
ally important data, such as edges, corners, or blobs. Some detectors are used as
stand-alone systems for low-level image analysis and others feed the results into
other systems performing further computational steps for higher-level image under-
standing tasks [15]. Many feature-based image embedded applications have real-time
constraints and they would benefit from being able to detect features in strict time
bounds in resource constrained computing platforms.

In spite of their differences, most feature detector algorithms perform similar
data-parallel window-based computations on all pixels of the input image to create a
resultant or intermediate image. Moreover, such window-based operators, probably
with different kernel sizes and larger memory requirements, might be repeatedly
applied in more complex and time consuming algorithms to the input images through
different processing steps, or at different scales, until a final output interest image
is generated. In order to assist in the understanding of the advances on hardware
implementation of image interest point detectors, this section presents two underlying
computational principles of feature detector algorithms that have been and should be
exploited for an efficient embedded hardware implementation [9]: (i) window-based
image operators to compute both the initial response of the detector and non-maxima
suppression, and (ii) operator sequencing as a buffering and sequencing mechanism
between intermediate window-based processing stages.

The first principle, window-based image operators, means that we have par-
allelism to be exploited by replicating computational elements at hardware level.
Managing the inherent data level parallelism and spatial locality of window-based
operators, under an appropriate computational model, are essential factors for extract-
ing high performance from modern and future custom hardware architectures. The
second one, operator sequencing, means that communication optimizations are pri-
mary and essential concerns that must be addressed to exploit efficiently the potential
parallelism of hardware structures and to reduce memory bandwidth requirements.
Communication latency and overhead can dominate the critical path of the com-
putation, and interconnect throughput can be the main performance bottleneck in
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embedded implementations. Furthermore, the parallelism can be exploited effec-
tively by minimizing latency and data traffic by a careful selection of the location of
operators and data in space, i.e., the datapath construction [25].

2.3.1 Window-Based Image Processing Operators

A window-based operation is performed when a window of k x k pixels or neighbor-
hood is extracted from the input image and it is transformed according to a window
mask or kernel, denoted by K, based on mathematical functions to produce a result
in the output image [10]. Usually a single output data is produced by each window
operation and it is stored in the same position as the central pixel of the window.
A window-based operator is conceptually shown in Fig. 1 over an input image I to
produce an interest image Y'. An output window W is computed by operating the
extracted pixels against the kernel values. This window is then reduced to a single
output pixel at location (r, c) in the output image Y. Figure 2 shows some typical

finlkij, Irevi,ovj)

fO\.l t (YIC)

— g &>
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Fig. 1 A conceptual view of a window-based operator over an input image I with a kernel K,
adapted from [9, 10]. An output window W is computed by operating the extracted pixels against
the kernel values, which are overlapped on every extracted neighborhood centered at location (r, c)
in the image. This window is then reduced to a single output pixel at location (xr, c¢) in the output
image Y’

7x7 square window Circular window Bresenham circle window

Fig.2 Some typical windows used for interest point detection. Gray pixels are used in the compu-
tation of the window-based operator around the dark pixel
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windows used for interest point detection. Gray pixels are used in the computation
of the window-based operator around the dark pixel.

Window-based image operations can be formalized as follows. Let T be the M x N
input image, Y the output image, and K a k x k kernel. A window operation can be
defined according to the following equation:

YrcZF(fin(kij’Ir+i,c+j))7V(ir j) €K,¥(r, c) €l 3)

where k; 5 represents a value or coefficient from the kernel K, I,.;,c+5 a pixel from
a k x k neighborhood Ny around the (r, c) pixel in the input image, f£;, defines
a scalar function, and F defines the local reduction function. Normally the output
value Y, is combined with other scalars, or compared to a threshold value by means
of a scalar function £, to produce a final response Y,

Y’ re = fout (Yre) (4)

Common scalar functions, usually two-input operands, include relational and
arithmetic-logic operations. Typical local reduction functions used in window-based
operators are accumulation, maximum/minimum, and absolute value, which operate
on multiple input operands related to the size of the kernel. The scalar and local
reduction functions form the image algebra upon which window-based image oper-
ators rely. The scalar and local reduction functions for some of the interest point
detectors, and for the interest point localization algorithm considered in this work,
are summarized in Table2. These sets of functions are either necessary nor suffi-
cient but they do incorporate some of the most common basic operations that are
commonly used by well-known interest point detectors.

The fundamental parts of window-based operations are shown graphically in
Fig. 1. Note that three concatenated computational elements can be identified in the
processing flow of a window operation [9]. These elements are organized in a three-
piece computational component, called henceforth the threefold operator, which can
be defined in terms of the scalar functions £;, and f_,., and the local reduction
function F. According to Fig. 1, from left to right, the first computational element
operates two windows of scalar values, by means of a set of scalar functions f;,
to produce concurrently a set of scalar values. The operands to this computational
element are an image window or neighborhood of pixels extracted from the input

Table 2 Common scalar and local reduction functions for Harris and SUSAN algorithms, and
non-maxima supression

Algorithm fin F fout
Harris X + +, —, X
SUSAN <, > + <, =, —
Localization X max >,and, =
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image at every pixel, and a kernel, denoted as N and K, respectively. The result-
ing output set of scalar values is denoted by W. This set of intermediate values is
the input operand to the following computational element of the threefold operator,
which applies the local reduction function F onto the window W to produce the scalar
value Y,.. This output value is then operated by a scalar function £, to produce
the final output value Y’ (r, c).

The sequencing order of the elements in the threefold operator shows the natural
and regular data flow in the window-based operator. Data can be regarded at two levels
of granularity: scalar values, and windows of scalar values that result from grouping
k x k scalar values. The threefold operator is a building block or a primitive for
describing more elaborated forms of image processing. Communication channels and
buffering schemes among window-based operators must be supported so that they can
be sequenced. In the following section, the mechanism that allows communication
for a sustained data flow among threefold operators is presented.

2.3.2 Operator Sequencing

Window-based image operators such as convolution and non-maxima suppression
are key components in image processing that by themselves receive considerable
attention by the community so as to propose efficient hardware implementations
[10, 26]. However, window-based operators are rarely used isolated as they usually
work in cascade to produce an output result in more complex applications.

For instance, the computations in Harris and SUSAN detectors can be described
as a sequence of threefold operators [9]. Figure 3 shows the main computational steps
to compute the Harris measure and how data flows between window-based operators.
Here we take the representative Harris corner detector as an example to illustrate the
idea of window-based operator sequencing. Harris corner detection is based on the
auto-correlation of gradients on shifting windows as it can be seen from Fig. 3. The
first order partial derivatives of the image (Step 1) are calculated and then smoothed
with a Gaussian kernel G, (Step 2). For each pixel in the image at position (x,y)
the Harris matrix is then computed:

yf(x,w:[i ;} (5)

where a, b and c are the scalar values that result from convolving a Gaussian kernel
against the first order partial derivatives of an image I over x and y directions, that
is, I, = g—i and I, = g—f/ The values of the elements in the Harris matrix are cal-
culated by the following expressions: a = G,*I2,b = GU*Ii, C = Ge*(Iyx x Iy).
The equation for computing the Harris measure (Step 3) at (%, y), is given by:

K(x,yv)=(axb—c?) —kx (a + b)? (6)
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Fig. 3 Sequencing of window-based operators throughout the computational flow of the Harris
detector measure, adapted from [9]

and k is a constant with a typical value of 0 . 04. The Harris measure is then used to
decide if a corner (k > 0), edge (k < 0) or flat region (k = 0) is found.

According to Fig. 3, to compute concurrently the Harris algorithm response, con-
nection and temporal storage among threefold operators must be supported so as to
avoid the use of external memory and to allow data to be rhythmically propagated
from one stage to the other. This connection can be provided by a stream storage
component that continually holds and groups scalar values to later pump them as
full-accessible windows to exploit data parallelism. The purpose of the stream stor-
age component is two-fold: it provides a mechanism for extracting neighborhoods, or
windows of pixels, from an input image, and it makes possible to sequence window
operators allowing a cascaded connection for stream processing. Yet, a coarse-grain
inter-operator pipeline can be exploited.

The conceptual representation of the storage component and its desirable func-
tionality to extract 5 x 5 neighborhoods from the input image is shown in Fig. 4. All
the pixels covered by the window are stored in registers or flip-flops and they are
all individually accessible, meanwhile remaining pixels of image rows are stored in
First-in-First-out (FIFO) structures. As an incoming pixel is shifted in, the oldest
pixel currently in the FIFO is shifted out; this mechanism allows the window to be
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image scanning order Pixels are fed sequentially to the delay line

Input image

Nk After some latency a full window is
N extracted in a parallel way
Sliding window in Sliding window in Sliding window in
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window-based operator sequencing
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3

Fig. 4 Graphic representation of the delay line used to extract image windows in a row-based
image scanning order (fop), the sliding window effect in horizontal and vertical directions (center),
and a pipelined scheme for three window-based operator sequencing using delay lines (bottom)
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moved or slided to the next position by reading a new pixel and moving all others
one step in the FIFO [27] as conceptually shown in Fig.4. Considering a kernel of
size of k x k values and an input image of width N, the required storage space L in
the component is L, = (k — 1) x N+ k. Moreover, window-based operators can
be organized in a coarse-grain pipeline for fast computation as shown Fig.4. Even-
tually, after some latency, the resultant pixels of the last windows-based operator can
be produced successively clock by clock.

Sliding window operations and image interest point detectors are prone to bound-
ary problems. These occur when the window reaches outside of the boundaries of
the image. There two general methods to address this issue: the most straightforward
is simply omitting these values from the calculation and another used method is to
insert extra pixels around the image boundary, which is called padding [28].

2.4 Overview of FPGA Technology

Configurable hardware devices such as FPGAs are cheap and flexible semiconductor
devices that offer a good compromise between the hardware efficiency of custom
digital ASICs and the flexibility of a rather simple software-like handling for describ-
ing computations [29], allowing fast prototyping or reducing the time-to-market of a
digital system. State-of-the-art FPGAs offer high-performance, high-speed and high
capacity programmable logic that enhance design flexibility and their computational
capabilities to be applied in various and diverse application fields such as image and
signal processing [27, 29], computer arithmetics [30], mobile robotics [31], industrial
electrical control systems [32], space and aircraft embedded control systems [33],
neural and cellular processing [34, 35]. According to [36], since their introduction,
FPGAs have grown in capacity by more than a factor of 10, in performance by a
factor of 102, and cost and energy per operation have both decreased by more than
a factor of 10°.

FPGAs are digital devices whose architecture is based on a matrix or regular
structure of fine grain computational blocks known as Configurable Logic Blocks
(CLBs). Figure 5 shows a conceptual view of a generic FPGA architecture and its
associated design flow. Each CLB in the regular array is able to implement com-
binational logic functions (usually four to six input functions) as Look-up-Tables
(LUTs) and provides some multiplexers and a few elementary memory components
(flip-flops or latches) to implement sequential logic [37]. The CLBs can be efficiently
connected to neighboring CLBs as well as distant ones thanks to a rich configurable
and segmented routing structure. Also, the configurable communication structure can
connect CLBs to border Input/Output Blocks (I0OBs) that drive the chip input/output
pads. Memory cells control the logic blocks as well as the connections so that the
components can fulfill the required specifications by automatic tools that map the
application, specified at a high-level of abstraction, onto the chip, following the gen-
eral design flow shown in Fig. 5. FPGAs provide a fully customizable platform where
any kind of custom operation, either complex or simple, can be implemented, but the
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Fig. 5 Generic architecture of a current FPGA device and the main steps of the design flow to map
a high level specification into an FPGA

design of custom complex systems could be very challenging task that is still carried
out manually or in a semiautomatic way.

Recently, FPGA architectures have evolved to a higher level of abstraction and
some dedicated and specialized blocks such as embedded multiport RAM, Digital
Signal Processing (DSP) accelerators, embedded hard processor cores, such as the
PowerPC or ARM, and soft processor cores such as Nios or Microblaze are avail-
able on the same chip, transforming FPGAs into truly Systems-on-Chip (SoC). This
architectural evolution has its origin in the recent advances in VLSI technology and
boosted by the development of appropriate design tools and methods that allow cur-
rent FPGA-based implementations to be mapped from high-level specifications onto
new improved FPGAs [32]. Modern FPGA toolsets include high-level synthesis com-
pilation from C, CUDA and OpenCL to logic or to embedded microprocessors. As a
consequence, an embedded processor, intellectual property (IP), and an application
IP can now be developed and downloaded into the FPGA to construct a system-on-
a-programmable-chip (SoPC) environment, allowing users to design a SOPC module
by mixing hardware and software in one FPGA chip under a hardware/software
codesign approach. The modules requiring fast processing but simple and regular
computations are suitable to be implemented by dedicated hardware datapaths in the
FPGA running at hundred of MHz, and the complex algorithm parts with irregular
computations can be realized by software on the embedded processors in the FPGA.
The results of the software/hardware codesign increase the programmability and the
flexibility of the designed digital system, enhance the system performance by paral-
lel processing, and reduce the development time. The fast increase of complexity in
SoPC design has motivated researchers to seek design abstractions with better pro-
ductivity than Register Transfer Level (RTL). Electronic System-Level (ESL) design
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automation has been widely identified as the next productivity boost for the semicon-
ductor industry, where High-Level Synthesis (HLS) plays a central role, enabling the
automatic synthesis of high-level untimed specifications, to low-level cycle-accurate
RTL specifications for efficient implementation in FPGAs [38].

In spite of these architectural advances, current FPGA devices, however, are opti-
mized for regular computations and fixed point arithmetic, and they are not well
suited to floating point arithmetic. Moreover, although FPGAs have reasonably large
amounts of on-chip memory, for many applications is not enough, and it is often
required to have good interfaces to off-chip memory [39]. This is particularly impor-
tant for algorithms characterized by dependencies, such window-based operator algo-
rithms, as it is not possible to ensure that all the output values of an intermediate
computational step are directly available in a subsequent step. Thus, it might happen
that some of them have to be stored for later use introducing a memory overhead.

3 Interest Point Detectors on FPGAs

Recently, significant efforts have been made directed toward the increase of the per-
formance of image processing and computer vision applications, specifically in the
acceleration of image interest point and feature detectors algorithms. The motiva-
tion for this effort oriented to FPGA-based solutions relies on the high computation
requirements needed for achieving real-time or near-real-time processing capabil-
ities. Several works have shown that FPGAs are a real opportunity for efficient
embedded hardware implementations of image feature detectors but specific prob-
lems need to be solved by means of architectural innovations. Modern FPGA devices
incorporate embedded resources that facilitate architecture design and optimization.
For instance, the embedded DSP blocks, multipliers and adders, enable important
speedups in window-based image operators, and small internal RAMs, both distrib-
uted and block RAM, can be used as circular buffers to cache image rows for local
processing and data reuse [14].

FPGA implementations of image interest point detectors require some algorithmic
modifications to map efficiently the algorithms onto the hardware logic. Due to the
high cost of on-chip logic required for floating point units, a constrained fixed-point
arithmetic is preferable for computations on FPGAs. A systematic methodology is
required to evaluate different precision choices in the development phase. Most of
the reported works exploits the idea of designing in a way that reflects properly
the goal of parallel execution on FPGAs by fully exploiting the advantages of the
available parallel computational resources. Although FPGAs allow a great degree of
parallelism in the implementation of such algorithms, important data dependencies
exist, and it is necessary to reduce the total amount of hardware, keeping the final
cost at a reasonable point. Scheduling of processing units, techniques for hardware
sharing, pipelining, and accuracy versus resource utilization trade-offs should be
evaluated as well [14]. On the other hand, image interest point detectors performance
depends to a some extent on high clock frequencies and high bandwidth external
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memory. FPGA devices are limited in these two aspects, and specialized memory
management units have to be developed to optimize the scheduling to the external
memory accesses in the FPGA.

This section is focused on reviewing some relevant works of the state-of-the-art
that deal with the efficient implementation of image interest point algorithms onto
FPGA devices. The review follows the traditional categorization and refer the edges,
corners, regions as the important visual features. This section has been divided into
two main subsections devoted to review the existing FPGA-based implementations
for simple interest point detectors and some scale-invariant feature detectors algo-
rithms, which due to the nature of computational complexity and the huge demanding
of memory consumption require different implementation strategies. On the other
hand, a fair comparison of performance and resources utilization between the dif-
ferent hardware implementations is not straightforward, because a different FPGA
technologies and devices are used. Hence, it is not intended to compare the imple-
mentations in terms of basic resource such as LUT, register, DSP block, and BRAM
available in modern FPGA devices, but to highlight the implementation strategies,
simplifications and the achieved overall performance results.

3.1 Simple Interest Point Detectors

Several hardware architectures have been proposed for implementing simple interest
point operators, mostly based on delay-lines to extract image windows to be processed
on arrays of neighboring processing elements (PEs). This well-known approach
usually supports small windows, since the memory requirement for the delay-lines,
to store the pixels to be reused, is proportional to the size for the maximum supported
window, and the image width. Most of these implementations employ a pipeline
technique in which a raster-scan image is sequentially fed into a PE array and the
window-based operations are carried out in parallel in each PE. Table3 shows a
summary of FPGA-based hardware implementations of simple image interest point
detectors, highlighting image resolution, the operating frequency, the achieved frame
rate and the target device. The FPGA resource utilization in terms of LUT, register,
DSP block, and BRAM are shown Table4; it is important to point out that the
internal component for Xilinx and Altera FPGA architectures are not completely
equivalent and some works do not report the details of the resources used in their
implementations.

Hernandez-Lopez et al. [9] propose a flexible hardware implementation approach
for computing interest point extraction from gray-level images based on two differ-
ent detectors, Harris and SUSAN, suitable for robotic applications. The FPGA-based
architecture implements two different feature detectors by abstracting the fundamen-
tal components of window-based image processing while still supporting a high frame
per second rate and low resource utilization in a single datapath. It provides a unified
representation for feature detection and localization on an FPGA without altering in
any way the nature of the algorithms, keeping a reliable hardware response that is
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Table 3 Summary of selected FPGA-based hardware implementation of simple image interest

point detectors

First author Detector Image Frequency | Frames per | Device
size (MHz) second
Hernandez-Lopez [9] | SUSAN 640 x 480 |50 161 XC6VLX240t
Harris 640 x 480 |50 161 XC6VLX240t
Torres-Huitzil [40] | SUSAN 512 x 512 |60 120 XCV50
Possa [41] Canny 512 x 512 | 242 909 Arria V
5AGXFB3
Harris 512 x 512|232 869 Arria V
5AGXFB3
Xu [42] Canny 512 x 512 | 100 1386.9 XC5VSX240T
Lim [43] Harris 640 x 480 |- - Altera Cyclone
v
FAST 640 x 480 |- - Altera Cyclone
v
Kraft [44] FAST 512 x 512 | 130 500 Spartan-3
XC3S5200-4
Hsiao [45] Harris 640 x 480 |- 46 Altera Cyclone
1I2C35

Table 4 Comparison of hardware resource utilization of selected FPGA-based hardware imple-
mentation of simple image interest point detectors

First author Detector LUTs Registers | DSP BRAM
Hernandez-Lopez [9] | SUSAN/Harris | 24189 4347 (1%) |41 (5%) 0
(1%)
Torres-Huitzil [40] | SUSAN 685 (89%) | 540 (711 %) | — 0
Possa [41] Canny 3406 (2%) | 6608 28 (3 %) 553
(1.2 %) Kb(3 %)
Harris 8624 (6%) | 17137 76 (7 %) 863 Kb
(3.1%) (5 %)
Xu [42] Canny 82496 40640 224 (25 %) 16184 Kb
(65 %) (32 %) (87 %)
Lim [43] Harris - - - -
FAST - - - -
Kraft [44] FAST 2368 1547 0 216 Kb
(62 %) (40 %) (100 %)
Hsiao [45] Harris 35000 - 35 (83 %) 430 Kb
(23 %) (35 %)
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not compromised by simplifications beyond the use of fixed-point arithmetic. The
design is based on parallel and configurable processing elements for window opera-
tors and a buffering strategy to support a coarse-grain pipeline scheme for operator
sequencing. When target- ed to a Virtex-6 FPGA, a throughput of 49.45 Mpixel/s
(processing rate of 161 frames per second of VGA image resolution) is achieved at
a clock frequency of 50 MHz.

Torres-Huitzil et al. [40] present an FPGA-based hardware architecture for high
speed edge and corner detection based on the SUSAN algorithm using a 7 x 7 mask
to compute the USAN area. The architecture design was centered on the minimization
on the number of accesses to the image memory and avoiding the use of delay-lines.
The architecture employs a novel-addressing scheme, column-based scan order of
the image pixels, that significantly reduces the memory access overhead and makes
explicit the data parallelism at a low temporal storage cost. Interestingly, internal
storage requirements to extract image windows are only dependent on the mask size
but not on the image size. The design is based on parallel modules with internal
pipeline operation in order to improve its performance. The computational core of
the architecture is organized around a configurable 7 x 7 systolic array of elemental
processing elements, which can provide throughputs over tenths of Giga Operations
per Second (GOPs). The proposed architecture was implemented on an XCV50
FPGA clocked at 60 MHz to process a 512 x 512 images at rate of 120 frames per
second.

Possa et al. [41] present flexible parameterizable architectures for the Canny edge
and the Harris corner detectors. The architectures, with reduced latency and memory
requirements, contain neighborhood extractors and threshold operators that can be
parameterized at runtime to process a streamed image or sequence of images with
variable resolutions. Algorithm simplifications are proposed to reduce mathemati-
cal complexity, memory requirements, and latency without losing reliability. One
of the main computational blocks used to implement the detectors is the neighbor-
hood extractor (NE), which provides a sliding window with a fixed dimension to
the subsequent processing block. The NE design supports images with variable res-
olutions and automatically handles the image borders, keeping a reduced memory
requirement and minimizing the latency. The basic structure of the NE is a set of
cascaded line buffers connected to register arrays from where it is possible to read
the current and two or more previously stored pixels. In the Harris architecture the
partial derivatives and Gaussian filtering are computed using neighborhoods of 3 x 3
and 5 x 5, respectively. The Harris” output values were truncated to preserve an 8
bit-width datapath but an additional Gaussian filtering step using neighborhoods of
size 5 x 5 is needed to compensate for the saturated values and to enhance local-
ization. Then, non-maxima suppression is applied on neighborhoods of size 9 x 9.
The architecture is implemented on an FPGA clocked at a frequency of 242 MHz to
process a 512 x 512 image in 1.1 ms.

Xu et al. [42] propose a strategy to implement the Canny algorithm at the block
level without any loss in edge detection performance compared with the original
frame-level Canny algorithm. The original Canny algorithm uses frame-level sta-
tistics to predict the high and low thresholds and as a consequence its latency is



64 C. Torres-Huitzil

proportional to the frame size. In order to reduce the latency and meet real-time
requirements, authors presented a distributed Canny edge detection algorithm which
has the ability to compute edges of multiple blocks at the same time. To support
this strategy, an adaptive threshold selection method is proposed that predicts the
high and low thresholds of the entire image while only processing the pixels of an
individual local block, yielding three main benefits: (1) a significant reduction in the
latency; (2) better edge detection performance; (3) the possibility of pipelining the
Canny edge detector with other block-based image codecs. In addition to this imple-
mentation strategy, a low complexity non-uniform quantized histogram calculation
method is proposed to compute the block hysteresis thresholds. The proposed algo-
rithm is scalable and has very high detection performance. The proposed algorithm
is implemented using a 32 computing engine architecture and is synthesized on the
Xilinx Virtex-5 FPGA. The architecture takes 0.721 ms to detect edges of 512 x 512
images, when clocked at 100 MHz.

Lim et al. [43] propose FPGA implementations of two corner detectors, Harris
and FAST algorithms. The design solution for the Harris implementation is based
on the sliding window concept and internal buffers build from delay lines. The
operations involved in the Harris measure are computed using a combination of
addition, subtraction, multiplication (using hardware multipliers) and bitwise shift
operations. The Gaussian coefficients were chosen as powers of 2, so that convolution
can be done with bitwise shift operations but at the cost of some precision. The FAST
implementation requires 6 image rows to be buffered in a FIFO structure to extract
7 x 7 window. The 16 pixels in a Bresenham circle together with the center pixel are
passed to the corner classification module. Two binary vectors are computed using
subtraction and comparators to classify pixels as one of the following: brighter, darker
or similar in intensity. In the first binary vector, brighter elements are assigned 1,
while similar pixels are assigned 0. The second binary vector assigns 1 to darker
pixels, and O to similar pixels. By using two binary vectors, the corner classification
is simplified to a search for 9 consecutive 1s (in either vector), and this is efficiently
done using LUTs available in FPGAs. LUTs perform a function equivalent to and
operations on every possible segment of 9 consecutive pixels. There are only 16
patterns that correspond to a corner. An or operation is applied to their outputs to
determine if such a pattern is found. The proposed designs were implemented in a
low-end Altera Cyclone IV FPGA, however performance is not reported in terms of
frames per second and the operating frequency is not clearly specified. The stream
processing architecture allows the corner classification stage to be done within a
single clock cycle. Previously, Kraft et al. [44] present a complete FPGA architecture
implementing corner detection based on the FAST algorithm. BlockRAM memories
along with read/write address generation logic were used as FIFO delay buffers. The
FIFO depth is equal to the horizontal resolution of the image. The design is divided
into modules: the thresholder, the contiguity module, the corner score module and the
non-maximum suppression module. The proposed solution is capable of processing
the incoming image data with the speed of nearly 500 frames per second for a
512 x 512, 8-bit gray-scale image using a Xilinx’s Spartan 3 family, namely the
XC35200-4, at a clock frequency of up to 130 MHz.
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Finally, Hsiao et al. [45] analyze the data flow of multilayered image process-
ing, sequenced window-based operators, to avoid waiting for the result from every
previous steps to access the memory which occurs in many applicable algorithms
such as the Harris corner detector. By combining the parallel and pipelined strategies
to eliminate unnecessary delays in the algorithm dataflow, authors propose a visual
pipeline architecture and the use of FPGA to implement efficiently their hardware
scheme. Basically, authors chain together window-based operators in order to wait
until the result from previous process has been generated. This sequencing type of
image processing algorithms is named as multilayered image processing. By ana-
lyzing the Harris algorithm, authors obtain that the multilayered image processing
architecture has four layers in which all processes can be timely triggered and paral-
leled without waiting for the end of previous processes. The multiscale Harris corner
detector was validated on a platform with a FPGA chip of Altera Cyclone II 2C35,
achieving a processing rate of 46 frames per second of 640 x 480 images.

3.2 Scale-Invariant Detectors

Scale-invariant interest point detectors detect features at different scales by using
window-based operators in multi-scale filter banks. Although conceptually simple,
the computation of window-based operators with large kernels is computational
demanding for current multicore architectures. For instance, this implies that more
than 12.41 Giga Operations per Second (GOPs) are required to support a real-time
processing rate of 1280 x 720 30 frames per second HD video with a single 15 x 15
kernel. Clearly, the computational load and the complexity of memory access grow
exponentially as the kernel dimensions increase.

In general terms, the multiscale nature of the algorithms affects architecture map-
ping to the FPGA, it requires more on-chip memory resources than usually available,
and since the image pyramid construction is inherently sequential, it must be com-
pleted before the computation of interest point measures. However, a large amount
of fine grain parallelism can be exploited within each scale since each pixel can be
processed independently. On one hand, embedded memories represent a consider-
able cost of designs, typically limiting FPGA deployment in embedded environments.
One the other hand, the scalability is a major concern in implementations since the
architectures need major modifications when the kernel size increases.

Scale-invariant detectors receive great interest from the research community and
their computational challenges that must be faced, explains why this is still a top-
ical subject. For that reason a considerable number of recent papers on hardware
implementations can be found in the literature. Some hardware implementation
works propose implementation techniques and novel architectures for optimizing
area/performance trade-off or for offering higher design/operation flexibility, mainly
by (i) taking advantage of the separability of filters or properties of the coefficient
kernels that allows to make some simplifications, and (ii) a reformulation of the most
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computationally expensive phase of the algorithms so as to reduce the complexity of
computations by analyzing the operations and data involved [46].

A common used implementation technique employed as an alternative to speed up
computations in scale-invariant detectors is to decompose large kernels into linear
or simpler ones and then implement efficiently the simpler ones. For instance, to
reduce the computational complexity of the 2D Gaussian filtering, the separability
property of the Gaussian kernel is exploited. Under such approach, the 2D image
convolution with a Gaussian filter can be carried out by first convolving the image
with a horizontal projection of the 2D filter in the horizontal direction and then with
a vertical projection of the 2D filter in the vertical direction or vice versa as shown
in Fig.6. As a consequence, a two-pass processing over image data is required to
perform 2D filtering.

As another example of an efficient implementation technique, which allow fast
computation of any box-type convolution filter like the one use to obtain an approxi-
mation of the Hessian matrix in SUREF, is the use of integral images [47]. An integral
image is a representation proposed by Viola and Jones that allows to compute the
sum of all values within any rectangle in constant time. Figure 7 shows a conceptual
view of the integral image, and mathematically can be expressed as follows:

y X
Hx,y) =D D 1G,)) (7)

i=0 j=0

The integral image can be implemented effectively with sequential accumulations,
Ri(x,y) =Rix—1,y)+I(x,y)and Il (x,y) = II(x,y — 1) + R;(x, y), where R; is
the sum of row, and the initial values R;(—1,y) = 0 and II(x, —1) = 0. After con-
structing an integral image, the inner sum of any rectangle can be evaluated sim-
ply with one addition and two subtractions, as shown in Fig.7. The sum with the
highlighted box can be evaluated as 11(D) + II(A) — II(B) — II(C). Although the
usage of integral image can accelerate computation on interesting point detection
and description, the computation of integral image itself may introduce a memory
overhead that is proportional to the input image size.

—
* — % ) *
1D Gaussian
2D Gaussian hor!zoqtal
kernel projection 1D Gaussian
vertical
Input image Input image projection

Fig. 6 Exploiting the separability property of the Gaussian kernel so that the 2D convolution can
be carried out by first convolving the image with horizontal projection and then with the vertical
projection of the kernel
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Fig. 7 a Illustration of the integral image value at (x,y) computed as the sum of all pixels above
and to the left of such point. b The sum with the highlighted box can be evaluated in constant time
as [I(D) + II(A) — II(B) — 1I(C)

Similarly to simple image interest point detectors, Table 5 shows a summary of
FPGA-based hardware implementations of scale-invariant image interest point detec-
tors, highlighting image resolution, the operating frequency, the achieved frame rate
and the target device. As these hardware implementations are more resource demand-
ing in terms of memory, for reference, the resource utilization in terms of LUT,
register, DSP block, and BRAM are shown Table 6, However, the comparison of
resources utilization is not straightforward between the different implementations,
because different FPGA technologies are used and not all the solutions implement
the descriptor computation on custom hardware.

Jiang et al. [48] present a high-speed full FPGA-based hardware implementation
of the SIFT detector based on a parallel and pipelined architecture able of real-time
extraction of image features. Task-level parallelism and a coarse-grain pipeline struc-
ture are exploited between the main hardware blocks, and data-level parallelism and
pipelining are exploited inside each block architecture. Two identical random access

Table 5 Summary of selected FPGA-based hardware implementation of scale-invariant image
interest point detectors

First author | Detector Image Frequency Frames per Device
size (MHz) second

Jiang [48] SIFT 512 x 512 50-100 152.67 Virtex-5
LX330

Wang [49] SIFT 1280 x 720 159.160 60-120 XC5VLX110T

Chang [50] | SIFT 320 x 240 145.122 900 XC2VP30

Bonato [51] | SIFT 320 x 240 50-100 30 EP2S60F672

Zhong [52] | SIFT 320 x 256 106.57 100 XC4VSX35

Krajnik [53] | SURF 1024 x 768 75 10 VSEXT70-G
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Table 6 Comparison of hardware resource utilization of selected FPGA-based hardware imple-
mentation of scale-invariant image interest point detectors

First author | Device LUTs Registers DSP BRAM
Jiang [48] Virtex-5 LX330 |26398 10310 89 (46.35%) | 7.8Mb
(12.73 %) (4.97 %) (75.23 %)
Wang [49] XCSVLXI110T | 17055 (25 %) | 11530 (17 %) | 52 (81 %) 4.605Mb
(91 %)
Chang [50] | XC2VP30 6699 24 %) |5676 (20%) |- 1.958Mb
(79 %)
Bonato [51] | EP2S60F672 43366 (90 %) | 19100 (37 %) | 64 (22 %) 1.138Mb
(52 %)
Zhong [52] | XC4VSX35 18195 (59 %) | 11821 (38 %) | 56 (29 %) 2.742Mb
(81%)
Krajnik [53] | V5FXT70-G 15271 (34 %) | 16548 40 (31.25%) | 1.54Mb
(36.9 %) (29 %)

memories are adopted with pingpong operation to execute the key point detection
module and the descriptor generation module in task-level parallelism. While speed-
ing up the key point detection module of SIFT, the descriptor generation module
has become the bottleneck of the system’s performance. Authors propose an opti-
mized descriptor generation algorithm based on a novel window-dividing method
with square subregions arranged in 16 directions, and the descriptors are generated
by reordering the histogram instead of window rotation. Therefore, the main orien-
tation detection block and descriptor generation block can be computed in parallel.
The proposed system was implemented on an FPGA and the overall time to extract
SIFT features for a 512 x 512 image is 6.55 ms, and the number of feature points
can reach up to 2900.

Wang et al. [49] propose an FPGA-based embedded system architecture for SIFT
feature detection, as well as binary robust independent elementary features (BRIEF)
feature description and matching. The proposed system is able to establish accurate
correspondences between consecutive frames for 720-p (1280 x 720) video through
an optimized FPGA architecture for the SIFT feature detection. The architecture
aims at reducing the utilization of FPGA resources. The SIFT key-point detection
component consists of the DoG scale space construction module and the stable key-
point detection module. The DoG module is driven by the image stream directly from
the camera interface and it performs 2-D Gaussian filtering and image subtraction
taking advantage of the fact that Gaussian kernels are separable and symmetrical.
In this method, the 2-D convolution is performed by first convolving with an 1-D
Gaussian kernel in the horizontal direction and then convolving with another 1-D
Gaussian kernel in the vertical direction. The performance of the proposed system
was evaluated on the Xilinx XUPV5-LX110T development board. The proposed
system achieves feature detection and matching at 60 frame/s for 720-p video at
a clock frequency of around 160 MHz. It is important to mention, however, that
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architecture components might run at different clock frequencies, and as for other
cases it is not possible to report a single operating clock frequency.

Chang et al. [50] proposed a hardware architecture for the SIFT detector. In
this work, part of the algorithm was reformulated taking into account the poten-
tial for exploitation of data parallelism. To decrease the amount of multiplication-
accumulation operations and thanks to the separability property of Gaussian kernel
authors used the separable convolution. They introduced octaves processing inter-
leaving, which allowed to perform all convolution operations for a given scale in a
single processing unit. The main contribution of this architecture and the algorithm
that it implements is that as the number of octaves to be processed is increased, the
amount of occupied device area remains almost constant. This phenomenon is due to
the fact that all octaves for the same scale, no matter how many, will be processed in
the same convolution block. The proposed architecture was modeled and simulated
using Xilinx System Generator 10.1 and Simulink, and it was synthesized in a Xilinx
Virtex II Pro (XC2VP30-5FF1152) at a maximum frequency of 145.122 MHz. With
the achieved throughput it is possible to process high-definition video (1080 x 1280
pixels) at a 50 frames per second (fps) rate.

Bonato et al. [51] present an FPGA-based architecture for SIFT feature detec-
tion. Their implementation uses a hardware/software co-design strategy; except the
generation of descriptors, which is executed on a NIOS-II software processor, the
remaining stages of SIFT are implemented in hardware. This architecture consists of
three hardware blocks, one for the generation of DoG scale-space, one for the calcu-
lation of the orientation and magnitude, and one for the location of key-points. This
implementation operated at 30 frame/s on 320 x 240 images. The feature description
part of SIFT was on the NIOS takes 11.7 ms per detected feature, which makes it
infeasible to perform as a full real-time SIFT implementation. As a single image may
have hundreds of features, it is still far from satisfactory for the real-time performance.
The validation platform was centered around a Stratix II FPGA and the operating
frequencies for key point detection and descriptor computation components were 50
and 100 MHz, respectively.

Zhong et al. [52] presents a low-cost embedded system based on an architecture
that integrates FPGA and DSP for SIFT on 320 x 256 images. It optimizes the
FPGA architecture for the feature detection step of SIFT to reduce the resource
utilization, and optimizes the implementation of the feature description step using
a high-performance DSP. This hardware/software system detects SIFT features for
320 x 256 images within 10 ms and takes merely about 80 s per feature to form and
extract the SIFT feature descriptors. The feature detection part of their design can
achieve real-time performance. However, the feature description part of their system
was implemented in DSP, and it is not possible to guarantee real-time performance
when the number of features in an image reaches 400 or more. The architecture was
prototyped on a XC4VSX35 device at a frequency around 100 MHz.

Krajnik et al. [53] present a complete hardware and software solution of an FPGA-
based computer vision embedded module capable of carrying out SURF image fea-
tures extraction algorithm. Aside from the custom implementation of the main com-
putations of the detector, the module embeds a Linux distribution that allows to
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run programs specifically tailored for particular applications built upon SURF. The
module is based on a Virtex-5 FXT FPGA which features powerful configurable
logic and an embedded PowerPC processor. Authors describe the hardware module
as well as the custom FPGA image processing cores that implement the algorithm’s
most computationally expensive process, the interest point detection. Since the Fast-
Hessian detector is computed in hardware, the determinant calculation is done in
integer arithmetic with a limited precision for a specific number of octaves and scale
intervals and limited image size. The achieved frame rate for 1, 024 x 768 pixel
images is about 10 frames per second at a 75 MHz clock frequency. The architecture
power consumption is approximately 6 W.

4 Concluding Remarks and Future Directions

The final goal of embedded computer vision, focusing on efficiency, is often real time
processing at video frame rates or dealing with large amounts of image data. In spite
of the computation power of computing platforms increases rapidly over time, image
feature detection is not the final step, but just an intermediate one in a processing chain
of the computer vision pipeline, followed by matching, tracking, object recognition,
etc. Efficiency is therefore one of the major issues that should be considered when
designing or selecting a feature detector for a given application. Motivated by the
demand for high-speed performance, difficult to overcome on sequential processors,
alternative hardware architectures have been used as feature detector accelerators so
as to speed up computations. Thanks to the fine grain massive parallelism, flexibility
of software-like methodologies and a good power-efficiency tradeoff, FPGA devices
have become a common choice for embedded computer vision applications.

In this chapter, a review of FPGA-based hardware implementations of image
interest point detectors has been presented. An overview of some of the most widely
used interest point detectors and their FPGA-based hardware implementation were
presented so as to provide a starting point to the readers interested in techniques,
methods and solutions related to algorithm-to-hardware mapping of image interest
point detectors. It is noteworthy that in spite of their algorithmic differences, there are
natural and tight connections between the computational principles of such feature
detectors. The review highlights the notion of window-based operators and oper-
ator sequencing underlying in the algorithmic nature of interest point detectors as
computational primitives that should be supported and exploited to achieve efficient
hardware implementations. By taking into account these principles and combining
fixed-point arithmetics with parallel and pipelined implementation strategies to elim-
inate unnecessary delays and overlap operations, efficient hardware architectures that
use FPGAs can be designed. Most of the reviewed research works on image interest
point detectors implementations sacrifice the accuracy by avoiding floating-point
arithmetics and/or altering the original detector algorithm so as to ease the hardware
implementation of hardware-greedy arithmetic operators, for instance division and
square root, at the cost of some precision. Internal arithmetic operations are usually
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done with adequate precision, obtained experimentally, using fixed-point number
representation and the two’s complement format.

Reviewed works show that FPGA technology is appropriate for embedded hard-
ware implementations that provide real-time performance thanks to the fine-grain
parallel processing performed in the device and the on-chip memory facilities for
internal storage that promote internal data reuse. On the other hand, the smaller
operating clock frequency, compared to high-end embedded multicore processors,
and low power requirements naturally lead FPGA devices to be a very suitable
stand-alone platform for embedded applications. Interestingly, power consumption
is rarely reported in detail in the reviewed works and much work is still needed to
properly address this issue. On the other hand, comparing speed and resource utiliza-
tion among FPGA implementations for the same algorithm reported in the literature
should be done with caution, as different devices would have different speed grades
that may enable the same design to be faster, and a fair comparison should involve a
kind of normalization in terms of the used technology. Among the reviewed detec-
tors, SUSAN and FAST detectors are competitive with the standard, more computa-
tionally expensive feature detectors and according to the presented results they are
hardware compliant as they require fewer FPGA resources without important modi-
fications or simplifications compared to the others. SIFT is one of the most memory
demanding detectors that benefits of separability of filters or properties of the ker-
nel’s coefficients that allows to make some simplifications so as to make feasible
its FPGA implementation. Furthermore, the review shows that for a full embedded
implementation of scale-invariant feature detectors, a hardware/software co-design
is preferable. The computational-intensive detection principle is usually mapped into
an specialized parallel hardware architecture, meanwhile the more irregular compu-
tations involved in the descriptor are implemented on optimized software running
on embedded processors, taking advantage of the system-on-a-programmable-chip
(SoPC) platform offered by current FPGA devices.

Despite the observed encouraging results of using FPGA technology to imple-
ment image interest point detectors, further work is still needed to improve the
hardware accelerators portability across FPGA-based platforms in more realistic
proof-of-concept applications with shorter design cycles. Overall, further improve-
ments in hardware implementations depend on the ability to automatically extract
the parallelism from high level specifications and as a consequence it might become
a limitation to explore faster the design space. Recent trends suggest that the integra-
tion of both software and hardware functionalities in a single chip using an embed-
ded processor, Intellectual Property (IP) cores, and some customized peripherals,
providing a so-called system-on-programmable-chip (SoPC) solution. Might boost
FPGA-based embedded computing applications. On the other hand, the FPGA’s
performance for feature detectors can be increased by utilizing Double Data Rate
(DDR)-based external memory banks or newer memory technology, as currently most
prototyping platforms contain only one such memory bank. Moreover such memory
banks should math FPGA embedded memory size and organization (memory block
size(s), memory banking, and spacing between memory banks) that fits the needs of
the application. This is particularly important for achieving high performance for the
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multiscale interest point detectors due to a large extent to their iterative nature and
the related memory management challenges.

It is clear that porting algorithms that have been tailored to CPU-like architectures
to an FPGA is a difficult task, and the modifications and simplifications undertaken in
this endeavor might even affect the robustness of the original algorithm. In general,
this approach might be acceptable for some specific applications, but it is neither
suitable as a general-purpose standalone module, nor acceptable for many other
vision applications. Thus, real-time embedded hardware designs that may be used as
a stand-alone multi-detector module that can be easily adapted to diverse computer
vision applications are highly desirable and they should be further explored in the
future so as to define truly generic IP modules that can be customized and ported to
meet different user environment and system requirements. Far beyond the achievable
performance improvements of custom hardware implementations, it is also highly
desirable to improve algorithms and propose overall implementation strategies for
feature detectors to be more suitable and amenable for embedded platforms since
factors such processing time, numerical precision, memory bandwidth and size, and
power consumption are not easily discernible from sequential algorithmic represen-
tations.
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Image Features Extraction, Selection
and Fusion for Computer Vision

Anca Apatean, Alexandrina Rogozan and Abdelaziz Bensrhair

Abstract This chapter addresses many problems: different types of sensors, systems
and methods from the literature are briefly revised, in order to give a recipe for
designing intelligent vehicle systems based on computer vision. Many computer
vision or related problems are addressed, like segmentation, features extraction and
selection, fusion and classification. Existing solutions are investigated and three
different data-bases are presented to perform typical experiments. Features extraction
is aimed for finding pertinent features to encode information about possible obstacles
from the road. Feature selection schemes are further used to compact the feature
vector in order to decrease the computational time. Finally, several approaches to
fuse visible and infrared images are used to increase the accuracy of the monomodal
systems.

Keywords Obstacle detection - Features extraction and selection - Fusion -
Classification - Visible and infrared images - Intelligent vehicles

1 Introduction

Computer Vision (CV) applications aim at finding correspondence between two
images of the same scene or the same object, 3D reconstruction, image registra-
tion, camera calibration, object recognition, and image retrieval, just to mention
few among them. In recent years, the continuous progress in image processing and
CV algorithms has attracted more and more attention in research areas approach-
ing object detection, recognition and tracking. Autonomous intelligent vehicles,
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intelligent robots, personal assistants are just few of the applications where such
operations converge. Advanced techniques in features extraction, selection and fusion
have been successfully applied and extended therein.

Nowadays, machine learning have gained popularity in various applications, with
a significant contribution to equipping robots and vehicles with seeing capability, i.e.
vision by CV, but also with communication skills [1, 2]. Real-time robust systems
have been built thanks to the advancement of relevant CV techniques, some used
in combination with similar processing in speech or language domain, for voice
commands detection and interpretation among others.

Robots represent the ultimate challenge for real-time systems engineers because
they combine image, sound and text processing, artificial intelligence, and electro-
mechanical mechanisms, all collaborating. Nao [1] and Asimo [2] are really great
robots, able to detect persons and their faces and recognize thus humans identity;
they ask questions and make decisions based on answers; they move, play a ball,
jump or protect themselves at falling. Asimo can even act like a host, by serving you
the preferred drink. Advances in robot technology will further change how common
people interact with robots. Even today’s robots are generally perceived to perform
repetitive tasks (except the ones like Nao or Asimo), human-robot interaction will
soon become a necessity. Tomorrow visionary assume that sensors, communications
and other operational technologies will work together with information technologies,
to create intelligent industrial products.

Even more, a large number of small, communicating real-time computers found in
most smartphones, appliances, wearables, etc. promise to transform the way human
beings interact with their environment. Moreover, people are talking more and more
about the large adoption (at an industrial level) of the imminent technology called
Internet of Things (IoT) and a lot of sensation has been made around this subject,
assuming it will revolutionize the world just as Industry revolution and then Internet
revolution did [3-6]. This trend will encourage the development of low-cost solu-
tions involving more or less knowledge of machine learning, data or text mining
algorithms. These low-cost platforms for real-time intelligent applications generally
integrate multiple sensors and are able to adapt their functioning automatically to the
user/system behavior/functioning. Such systems have to continuously monitor not
only the surroundings, but also the user/system state and behavior. This is generally
accomplished with different types of sensors, vision systems, microphones and so on,
all needed to improve or generalize the IoT functionality. One such possible device
could help the driver, e.g. to detect that she/he closed the eyes, so fall asleep or it
has been too long without looking at the windshield or detect a users emotion and
predict her/his future affect state (healthy issues), among others.

The imminent [oT promise a world in which intelligent machines not only connect,
but cooperate with each other. Thus, a plenty of applications to improve health and
well-being of children and elderly will be available and this will be obtained with a
significant contribution of CV techniques.

In the Intelligent Vehicle (IV) field, the majority of research projects concentrated
at the exterior of the vehicle as more surveys prove it [7—16]; thus, the cameras were
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mostly oriented to the road. Still, recently, there are also research teams having the
main interest to the interior of the car, proposing solutions to monitor the driver
[17-19]. Smart environments and monitoring systems will be available by the large
adoption of the IoT technologies, but what about if a generic activity monitoring sys-
tem or simpler, a robot, will be able to completely observe and understand the driver
affect state? How far is then an intelligent autonomous car in the industrial sector,
to accomplish constraints such as real time functioning, low cost implementation,
robustness in all possible driving situations, or even more?

This chapter provides a background overview, addressing many CV problems:
after a short introduction in Sect. 1 in the IV field, different types of sensors, systems
and methods from the literature are surveyed in Sect. 2. Next, the proposed recipe for
designing intelligent systems for IV is presented in Sect.3. The CV related aspects,
like features extraction and selection, fusion and classification in the frame of applica-
tions from IV field are approached in Sect. 4. After reviewing more possible solutions
from the literature for these problems, our proposed solutions is provide as a guide
to obtain possible systems. To highlight each module from the proposed solution,
three databases are briefly presented and some typical experiments are described.

2 State of the Art in Intelligent Vehicles

2.1 Autonomous Intelligent Vehicles

The interest for the IV field has been increased during the last years to assure the
safety of both the driver and the other traffic participants. Leading car developers
such as Daimler Chrysler, Volkswagen, BMW, Honda, Renault, Valeo, among others,
have recorded significant contributions regarding this field. The developed consistent
research has shown that IVs could senses the environment by using active sensors,
like radars or laser scanners, combined with passive sensors, like VISible (VIS) or
InfraRed (IR) spectrum cameras. Systems combining multiple types of active and
passive sensors have been shown efficient for both obstacle detection and automatic
navigation during the DARPA Grand Challenge 2007, also known as the “Urban
Challenge” [20]. In the frame of VIAC, i.e. VisLab Intercontinental Autonomous
Challenge [21], four electric and driverless vehicles navigated a 13,000 km test from
Parma, Italy, to Shanghai, China. The VIAC vehicles were equipped with 4 lidars
and 7 digital cameras, providing frontal, lateral and rear sensing. The prototype
BRAIVE [22] is another VisLab contribution; being equipped with 10 cameras, 5
laser scanners, 1 radar, 1 GPS and inertial measurement unit and one emergency stop
system, it is able to detect obstacles, follow an in-front vehicle, warn for possible
collisions, recognize traffic signs, detect parking slot among others. Another relevant
example is the Google driverless car which considers the environmental data taken
with roof-mounted lidar, uses machine-vision techniques to identify road geometry
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and obstacles, and controls the cars throttle, brakes and steering mechanism, all being
performed in real-time [23].

Honda has implemented the first intelligent night vision system [24] using two far
infrared cameras, installed in the front bumper of the vehicle. It provides visual and
audio cautions (when it detects pedestrians in or approaching the vehicles path) for
the driver in order to help during the night driving. Another recent innovation to help
driver see better at night and in the most diverse weather conditions, is the BMW
Night Vision system [25]. With its long range detection capability (up to 300m for
a human being), their system assist the drivers, by providing more time to react and
avoid accidents. Similar systems equip today also some vehicles from Mercedes and
Audi.

The autonomous systems previously mentioned exist but they are prototypes,
generally used for research purposes and their implementation costs make them
unapproachable for a series vehicle. Such series vehicles, by a large adoption, could
really decrease to zero the number of accidents from the traffic road areas. Still, night
vision systems implemented on-board of more vehicles today proves their support,
attracting a larger segment of drivers every day. Even with all this commercial success,
existing on-board systems are far from an autonomous series intelligent vehicle.

2.2 The More, The Better

Is more, better? Not even in real life scenarios this is always valid, so the same is
when equipping a vehicle on the road. Each new sensor add its influence to the system
cost, possible interference problems, computational workload, difficulties in inter-
preting and storing the raw data, etc. By now, (semi)autonomous vehicles have been
developed, and they could also demonstrate intelligence, by seeing, understanding
or even interpreting the scene and taking decisions on how to react on this (i.e. detect
the road, the obstacles, even recognize the obstacle type, on daytime or night-time).
But these systems, generally either use some mixture of expensive sensors, or the
processing of data has been conducted on a powerful expensive workstation server-
like (ultra-high speed processing, multiple cores, large storage, etc.) or both. These
system setups could not be applicable to industrial sector due to the cost, space and
weight constraints.

To be a solution for equipping a series vehicle, the system should have sensors
with low cost, no interference issues, function in real time and prove robustness in
diverse atmospheric and illumination situations. Thus, to answer the question from
the beginning of the subsection, not every time more means better. In the frame of
IV systems, more and diverse sensors could add their benefits to improve the system
functionality, but the implementation cost generally constrict this to only a few, a
single type or even a single one.
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2.3 Sensors and Systems in Intelligent Vehicles

Many systems developed in the IV field and employing one or multiple sensors
are reviewed in literature [9, 10]. In [26], common sensors used in the IV field are
examined: some sensors may have many advantages, but also some strong limitations,
which will make them to be not-so-properly for the implementation of a general
Obstacle Detection and Recognition (ODR) system. In such an ODR system, the
hypothesis generation phase is first occurring, when Obstacle Detection (OD) or
ROI (Region Of Interest) estimation is accomplished. Obstacle Recognition (OR)
or hypothesis verification component follows, which would, first, help the detection
by discarding the false alarms, and second, it would assist the system in making
the appropriate decision in different situations according to the obstacle type. An
unsolved issue of the existing ODR systems is their limited ability to ensure a precise
and robust OR in real conditions.

What type of sensor is best? Generally, the sensors used in the IV field can be
classified according to different criteria: first, as concerns the perception about the
environment, i.e. the type of the measured information, they are proprioceptive and
exteroceptive; second, they can be classified about the spectrum position of the radi-
ation they use to function and third, they can be classified as active or passive con-
cerning the presence or absence of a radiation required in their functioning. Further
details and information can be found in [26].

One sensor which could provide enough information to detect obstacles
(even those occluded) in any illumination or weather situation, to recognize them
and to identify their position in the scene does not exist (at least today, as the authors
surveyed). In the IV domain there is no such a perfect sensor to handle all these
concerned tasks, but there are systems employing one or many different sensors in
order to perform obstacles detection, recognition or tracking or some combination of
them. Thus, there is not a single best sensor which could equip a vehicle to provide
autonomous driving functionality, but generally a combination of not-so-expensive,
complementary sensors is aimed.

Active or passive sensors? Many systems use radars, due to their strongest advan-
tage: insensitivity to atmospheric changes, like rain, snow or fog. Being an optical
sensor, laser scanner is affected by critical weather conditions (fog, snow), its func-
tioning and detection range being limited. Active sensors, like radars and laser scan-
ners, are mainly used for OD due to their capability to provide distance to possible
obstacles, and generally not adopted for OR. On the other side, passive sensors, like
cameras, provide richer frontal and lateral information of the road scene allowing
thus an efficient OR. Moreover, while IR cameras may be used for OD by objects
temperature, the OD task with VIS cameras could be implemented by stereo-vision
(allowing for depth information), and/or by an optical flow process (providing motion
information). Although the image processing could be computationally expensive,
fast algorithms and electronics are proposed all the time, allowing for real time
implementation of such CV-based systems. In this way, the implementation cost of



80 A. Apatean et al.

a system comprising only passive sensors could be a proper solution for equipping
a series vehicle.

To conclude, the sensors proposed for the implementation of an ODR system,
as motivated in [27], are only passive ones: their counterparts, the active sensors,
are extremely invasive, susceptible of interference problems in cluttered traffic and
present high acquisition price.

A possible CV-based system could use a VIS stereo-vision sub-ensemble, aug-
mented with a monocular IR camera, in order to benefit from the complementary
characteristics of both types of passive sensors, as proposed in [27]. In the frame of
INSA laboratory, a VIS stereo-vision system was developed for OD of vehicles [28]
and pedestrians [29] and we aimed to continue this work by enhancing the system
with an OR component based on VIS—IR weighted fusion. The passive sensors
basic functioning is generally improved by fusion of multiple types of sensors or
different sensors of the same type; this can be accomplished at many possible levels:
sensors, raw-data, features, SVM-kernels, scores, classifiers, decisions, as presented
in what follows.

In the CV domain, images are mainly processed for detection, recognition or
tracking. Moreover, the algorithmic components of an ODR system implemented
on a generic platform can be decomposed into acquisition, preprocessing, detection
or segmentation, classification and tracking, although specific system implementa-
tions might not have one or more of these components. These steps could even be
generalized to many application domains [30].

The hardware implementation of these operations (from the CV domain) generally
aim an FPGA (Xilinx Virtex) platform, which cost could be relatively low for a series
vehicle. For example, in [31] the optimized Speeded-Up Robust Feature (SURF)
algorithm, which is specific to CV applications, was implemented on such a VLSI
architecture (supporting more tasks to be realized in parallel).

3 A Possible ODR System

Similarly to the way humans use their senses to relate to the world around them,
a computer system has to interpret the environmental data, and this is generally
accomplished by machine perception task. This also imply CV, with methods for
acquiring, processing, analyzing, and understanding images and, in general, process-
ing high-dimensional data from the real world. This will further produce numerical
or symbolic information, e.g., in the form of decisions. Computer vision has many
applications already in use today in the IV field: road detection and following, scene
understanding, pedestrian or vehicle detection, obstacles recognition, tracking, night
vision, geographical modeling, etc.

To address such applications, generally Machine Learning (ML) is used to build
computer systems that learn from experience or data. These systems require a learning
process that specify how they should respond (as a result of experiences or examples
they have been exposed to) to new examples, unknown.
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Almost all categorization systems developed by now in the IV field employ an OD
step followed by an OR module. Very often there is also a third module in which the
recognized obstacles are tracked in their trajectory until they are no longer viewed
in the scene. The OR module is supposed to support the OD module (which mostly
is based on stereo-vision) by its ability to deal with the great variability of obsta-
cles (mostly pedestrians and vehicles, but also cyclists or other type of obstacles),
appearances and occlusions in any illumination and weather conditions. Besides, the
variety of obstacles appearances (different type, shape, size, viewing angle, texture
and color, they could be occluded or not, etc.) combined with the outdoor environ-
ment, and the moving vehicle constraints make the ODR a challenging task. Also
a problematic task in the IV domain is the development of an intelligent automatic
pilot (for an autonomous vehicle) which could therefore entirely control the vehicle
like a human (or even in an improved way). Such a system has not only to recognize
the road trajectory and to detect any possible obstacle which may appear near or on
the road, but also to identify/recognize the obstacle type, to estimate its behavior
and propose certain actions. In addition, it could also monitor the driver state and in
critical situations, take over the vehicle control. This is generally accomplished by
ML mechanisms, and two directions for such systems addressing the ODR task can
be distinguished:

(a) most of them aim the detection of a particular type of obstacle (pedestrian or
vehicle most often) and perform thus a binary classification (it is or it is not the
obstacle they meant), while

(b) very few systems consider as obstacle anything obstructing the host vehicle
path and the detected obstacle enter in the recognition module where its type is
predicted by multiclass classification.

3.1 Main Processing

In a real system, when classification is implied, object detection or ROI estima-
tion/identification is generally followed or related by an object recognition process;
this latter can also be divided into two tasks: object verification and object identi-
fication. The former seeks to verify a new object against a stated object model (it
implies a one-to-one comparison) and it is often used to verify if the object is the
one a hypothesis claims it is—for example the ROI provided by an OD module for
a specific type of object (case a). In the latter, i.e. object identification, the task is
more general: it has to discover the object type, category or class. The sample of the
current object is compared with the existing models of the objects in the database
(one-to-many comparison). Using decision logic (generally with a threshold value),
a model matching the current object is chosen (case b). Assuming that the database
contains a sort of model for all the objects being identified, defines a closed set of
objects, but practically it is hard to have precise models for all objects that may appear
in a real scenario. In the IV domain, generally there are two possible situations:
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e to use an open set of objects, this corresponding to unsupervised methods, where
the identification models are trained using data from only the object it represents;
generally, objects present low intraclass variability, e.g. the case of recognizing
pedestrians—each possible pose represent a class, or

e to use an approximation of closed set, i.e. some representative models are used
to construct the database and this is the case of supervised methods; generally,
objects present high intraclass variability, e.g. recognizing all types of possible
pedestrians as a single class.

The most frequent case is to recognize objects by their specific appearance
(e.g. recognizing pedestrians from the frontal/lateral view) or behavior (e.g. recog-
nizing pedestrians by the human walk) and these are supervised methods because
they imply training and the availability of data.

The criteria used in the ODR task depends on the definition of what the obstacle
is. In some systems, the detection of obstacles is limited to the localization of spe-
cific shapes corresponding to obstacles (like vehicles, pedestrians, cyclists), which
is based on a search for specific patterns, such as shape, symmetry, edges, pedes-
trians head or vehicles lights. This search for patterns common or not to multiple
obstacle classes generally lead to the determination of a Bounding Box (BB). These
approaches are generally based on some knowledge about the obstacle type, and they
will be referred in what follows as knowledge-based. A more general definition of an
obstacle, which leads to more complex algorithmic solutions, identifies as an obstacle
any object that obstructs the path the host vehicle is driving on. In this case, instead of
recognizing specific patterns, the OD task is reduced to identifying the area in which
the vehicle can safely move and anything rising out significantly from the road surface
would be considered as obstacle. Due to the general applicability of this definition,
the problem is using more complex techniques, like those based on the processing
of two or more images, which are: the analysis of optical flow field or the processing
of nonmonocular (i.e. stereo) images. The optical flow-based technique requires the
analysis of a sequence of two or more images: a two-dimensional vector is computed,
encoding the horizontal and vertical components of the velocity of each pixel. The
obtained motion information can be used to compute ego-motion and moving obsta-
cles can be detected and/or tracked in the scene by analyzing the difference between
the expected and real velocity fields and by removing background changes. On the
other hand, the processing of stereo images requires identifying correspondences
between pixels in a pair of left and right images. Stereo-based approach is generally
more robust than the optical flow-based one, especially when both host-vehicle and
obstacles have small or null speeds.

To conclude, knowledge-based methods employ a priori knowledge about the
obstacle to hypothesize its locations in the image. Motion-based methods use opti-
cal flow techniques, while stereo-based approaches generally use an v-disparity
method or Inverse Perspective Mapping (IPM) to estimate the locations of obsta-
cles in images.



Image Features Extraction, Selection and Fusion for Computer Vision 83

3.2 CV-Based Systems in Intelligent Vehicles

The most developed systems are specific for one kind of object detection, either
pedestrian or vehicle. These dedicated systems are looking for obstacles in the scenes
using either an active sensor, like radar or laser scanner which will provide the
distance to the respective object, or a passive one like cameras. Besides, employing
active technologies, which are efficient and robust, but too expensive, is not the
frequent case when a series vehicle is aimed. In this chapter, the use of only passive
sensors (i.e. cameras) which are quite cheap, but their functioning still possible to
be improved (as they struggle in the presence of occlusions and in difficult lighting
conditions) are considered.

When the OD task is limited to the localization of specific patterns corresponding
to obstacles, e.g. in the knowledge-based approaches, the processing can be based on
the analysis of a single still image, in which relevant features are searched for. The
other systems, in which a more general definition of obstacle is exploited and all types
of obstacles are searched at a time, the OD assignment is reduced to identifying the
area in which the vehicle should safely move. Generally, in the frame of these type of
systems, the road detection is performed by a monocular camera, but the localization
of possible obstacles on the vehicle path is realized employing two cameras instead
of a single one (for stereo approaches) or by using a video sequence of images
(for motion-based approaches).

3.3 Background Overview

3.3.1 The Obstacle Detection Task

The majority of developed systems have used in the OD step one of the following
three methods: (1) knowledge-based, (2) motion based, or (3) stereo-based.

Motion-based methods detect objects based on their relative motion, extracted
from the optical flow information. Unfortunately they are quite slow, since they need
to analyze a sequence of frames. These methods have been shown more appropriated
for fixed cameras, employed for parking surveillance, than mounted on a vehicle
[32, 33].

Being designed according to the model of human perception of objects in space,
stereo-vision methods [34] are able to detect all types of objects, even the occluded,
static or moving ones, based on their distance with respect to the system. These
methods are mainly based on v-disparity and IPM algorithms. Generally, stereo-
vision is used for OD task, but there are systems employing it also to provide the
size/scale of the potentially objects for OR.

There are few directions for searching possible obstacles in the scenes, in the
case of knowledge-based methods: (1) to use sliding windows encoding an obstacle
specific shape of different sizes over the entire image or on some areas from the
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image (determined from perspective constraints), or (2) to look for areas presenting
symmetries or textures specific to possible obstacles, (3) to try to detect specific parts
of the proposed obstacles, e.g. pedestrians legs or head, the wheels, headlights or
the shadow produced by a vehicle. The simplest knowledge-based technique is the
one of sliding window, where windows at different scales and locations are shifted
over the image. This method is used nowadays with Haar, Haar-like and/or HOG
[35] features. Even the process is slow, there are speed-up variants with cascade
classifiers [36]. Template matching with the obstacles contour is another possible
approach, the templates generally being the head, legs or other parts of human body
shape; headlamps or tires of vehicle. The information is generally provided as an
image or as a set of features extracted from that obstacle samples. These methods are
application-specific, and could employ some constraints, like aspect-ratio, geometry
or even scene appearance area, which limit their generalization to multiple obstacles
detection [37]. The methods employing symmetry or edges detection allow efficient
OD only if the objects do not present strong occlusions (they should match an heuris-
tic obstacle model). A major drawback is that they use an inflexible model, fixed by an
important number of parameters that could affect the system robustness [38]. Meth-
ods performing the segmentation of an obstacle in sub-regions are quite promising,
since they not only simplify the representation, but they can also be used to detect
partially occluded objects [39, 40]. Another promising OD method is based on local
features matching and recognition using SIFT (Scale Invariant Feature Transform)
to detect and describe local features in images [41], and SURF (Speed Up Robust
Features) based on sums of Haar wavelet applied on integral images. In [42] pedes-
trian hypotheses are generated using a Hierarchical Codebook which is a compact
representation of local appearance of pedestrian heads in FIR (Far IR) images. Then,
BBs are constructed and overlapping ones are merged together by clustering.

3.3.2 The Obstacle Recognition Task

For the OR task, different features extractors together with classification algorithms
have been tested during the last years, in order to solve the obstacle categorization
problems. In [43] motion and appearance information (sum of pixels in various rec-
tangles subtracted from each other similar with Haar wavelets), were classified with
an AdaBoost cascade approach. Simple detectors (with a smaller number of fea-
tures) were placed earlier in the cascade, whereas complex detectors were activated
later. In [35] HOG features are processed by an SVM to detect pedestrians. In [44]
multiple cues (i.e. hierarchical shape matching and texture information) were com-
bined within a neural network. Another combination of features, i.e. HOG and Haar
wavelets proves efficient within an AdaBoost classifier [45], as it has been shown
as the top performer on Caltech database for pedestrian detection. Still, the existing
CV-based methods are generally difficult to compare because they are rarely tested
on a common data set and with common experimental setup. Just recently some
authors compared the results previously obtained by them or by other research teams
on the same database [46—48].
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Very few systems treat the problem of VIS—IR fusion. Among them, [49] have
used a four-camera system (stereo color visible and stereo infrared) for pedestrian
detection, based on v-disparity for the OD task and on an SVM classification of HOG
features for the OR. A local appearance model based on SURF features, combined
with an SVM classifier, within a multimodal VIS—IR fusion framework is used in
[42] to recognize both pedestrians and vehicles.

3.4 The Proposed ODR Module

The main component of an ODR system is the OD module, but because it has not yet
reach arobust and acceptable accuracy when working alone in an autonomous system,
almost all existing systems from the I'V literature provide a second component, the OR
module. The main purpose of the recognition module is to identify the type or class
of the detected obstacle, and to eliminate the false alarms, i.e. to reject them. The OD
with visible spectrum (VIS) cameras could be improved by stereo-vision, allowing for
depth information, and/or by an optical flow process providing motion information.
A system based on stereo-vision, augmented with a monocular IR camera, seems in
[27] the best solution for an ODR task. The system uses both VIS and IR to benefit
from the complementary characteristics of both types of passive sensors and thus
to assure a proper functioning in more and diverse situations. The architecture of
the system presented in [27], and given in Fig. 1 is based on three passive cameras:
a stereo-vision pair for OD (using the stereo matching method developed at INSA
laboratory), and an IR camera for OR to remove the false alarms. The BBs generated
by the OD component, as potential obstacles, have first to be projected on the IR
image and then they are given, together with the BB in VIS spectrum, as inputs to
the OR component.

The system has to discriminate between usual road obstacles like pedestrians,
vehicles and cyclists, but also to distinguish these types of obstacles from other
objects belonging to the background, as traffic signs, barriers, or regions of the
image scene without any particular significance. Moreover, the results from the OD

.
Class Label

Obstacle Detection Component
Obstacle Recognition Component

VIS objects projection on IR images
i e

Fig. 1 The proposed obstacle detection and recognition system
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Fig.2 A possible
segmentation in visible
domain

step are not trivial: it could provide several BBs for the same obstacle, the BBs could
be centered or not on the obstacle, or they even could overlap each other, providing
thus much more situations which have to be considered.

3.4.1 The Proposed Obstacle Detection Module

On the VIS domain, stereo configuration is required because the segmentation is hard
or even impossible using monocular VIS spectrum vision in the context of a cluttered
background and real time functioning. The detection part on VIS was already treated
in the frame of INSA laboratory, e.g. like in [28, 29] and it is still a work in progress.
Like other systems from the IV literature, the OD module has registered some false
alarms: possible examples of detected BBs, including unwanted false alarms, are
presented in Fig. 2.

On the IR domain, due to the pixels emphasis in intensity corresponding to hot
areas, even a simple threshold-based segmentation will provide good results, as it
can be noticed in Fig.3, where the results are after applying a simple binarization
operation. The method has been developed in a first attempt and it did not received
too much attention due to the small efforts in its development. Still, being based
on a simple intensity threshold-based segmentation in IR domain, it is a simple and
rapid way of segmenting obstacles in normal situations of day or night. It has to
be mentioned that, like other detection systems from the IV literature, the proposed
OD module will select the objects being very closed to each other as a single one,
i.e. as belonging to the same BB. Thus, it could be considered that those multiple
obstacles belong to the same class, or they are parts of the same obstacle. One
possible inconvenient is that in the evaluation stage, if the coordinates of the manually
annotated BB does not fit those provided by the OD module, the OR module could
be penalized; but this is more about the experimental setup.
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Fig. 3 A simple intensity threshold-based segmentation in infrared domain

The OD module from VIS could be separable from the OD module from IR,
and thus independent and parallel detection tasks could be accomplished. Diverse
illumination and weather situations will have to be studied and the modules calibrated
on some specific situations; different tests for more possible scenarios are needed due
to the adaptation to illumination and weather, e.g. hot day-normal day in summer,
day-night, summer-winter, etc.

The OD module functioning would be an intelligent one, due to the fact that
the system should recognize different possible setup scenarios and act according to
that specific illumination or weather situation. For example, during night, when less
obstacles are expected to be met on the road, the system could rely more on the IR
sub-ensemble. This is also required due to the lack of information in VIS on night.
On the other side, the IR based OD module could also have an important credit
during daytime, not only the VIS one. Still, on a hot summer day, the IR based OD
module could present some drawbacks due to the fact that even the pavement could
be detected as possible obstacle. By a proper and intelligent combination of both the
VIS and IR detection modules, the fused OD results will contain all the obstacles
from the scene, but also possible false alarms, as it is the case of other systems from
the literature. Next, the OR module will have to enter in action and eliminate these
false alarms as soon as possible. The remaining ROIs will be thus real obstacles from
the road and their type/class will be also known; thus, possible actions of obstacles
may be anticipated and the IV system would be prepared to intervene.

3.4.2 The Proposed Obstacle Recognition Module

The efficiency of the OD module could be improved by the use of complementary
VIS and IR information and by computing a compact, but pertinent bimodal signature
of obstacles. This could be accomplished via some extracted features from the BBs
corresponding to the obstacle. Thus, the authors concentrated on ML algorithms to
implement the OR stage: from images corresponding to possible models for each
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class to be detected, pertinent families of features have been extracted and Feature
Vectors (FV) have been constructed.

In the remaining part of this chapter, the OR component is more emphasized, with
the following being presented: the image databases on which the proposed schemes
have been experimented, the measures by which the performances of these schemes
have been evaluated, but also how the FV that will characterize/define each instance
within the system was composed. Our main purpose was not to develop a system
on the whole, but only the OR module which was intended to be based on fusion in
order to exploit the complementary information of VIS and IR cameras. Therefore,
in our work we intended to verify if it worth to perform the fusion: Will the VIS—IR
fusion bring in benefits from the OR point of view, besides the advantages it implies
in the OD step?

3.4.3 Offline and Online Setup

An obstacle recognition system consists in two main parts, as Fig.4 shows. In the
training step, a database with different BBs enclosing possible obstacles (manually
annotated) from the road is used. In the OR stage, there is also information provided
by the sensors, like in the OD case, but here it takes the form of a training and/or
testing database. The festing part comprises the same pre-processing module like the
training one, but here the test image provided by the OD module is aimed, because
the system runs on-line. A Features Extraction (FE) and Features Selection (FS)
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Fig. 4 Training and testing steps in the frame of an OR system
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module follows which together with the last module, i.e. the learning one, has to
accomplish the system parametrization and validation. This latter operation consists
in choosing the most pertinent features to compute an optimized FV which will best
characterize the data from the training database, but also in establishing the classifier
which will best learn the instances from the training set. In the testing step, the FV
used to characterize the test data will comprise the same features determined as being
relevant in the training step.

To conclude, our ODR system belongs to that category of systems based on pattern
recognition and consists of three main modules: (1) sensors (VIS and IR cameras) that
gather the observations to be classified, also including the pre-processing module,
(2) a FE mechanism (often attended by a FS operation) that digitize the observations,
and (3) a classification or description scheme that does the actual job of classifying
or describing observations, relying on the previously obtained information.

Applications based on pattern recognition aims to classify data (also called pat-
terns) based either on a priori knowledge or on some statistical information extracted
from the patterns. How well computers succeed in recognizing patterns depend on
a multitude of factors: how comprehensive is the training set (Does it cover all pos-
sible situations in which objects can appear?); How efficient is the classifier to be
used (Does it succeed in learning well all the objects from the training set and then
experiments performed on the test set provided high accuracies? What about the clas-
sification time? Is its value satisfactory from the viewpoint of a real time system?).
In the frame of our system, we tried to develop an OR module to give affirmative
responses to all these questions.

4 Features Extraction, Selection and Fusion

In the frame of CV applications, the image visual content represents the only available
source of information. To describe the content of an image, usually some numerical
measures with different possibilities to represent the information could be used. The
images numerical signature is via some extracted features (also called attributes).

The system must learn different classes of objects (like pedestrian, cyclist, vehi-
cle) from several available examples, and then it should be able to recognize similar
examples in new images, unknown. This imply the extraction of some relevant infor-
mation (features) from images, so that the characterization of an image to be made
with as less features as possible to shorten the computing time required by the system
to learn and then to recognize the objects. However, this operation of FE is a very
sensitive one because it has to select a number of features great enough to assure a
proper/good characterization of images, but also low enough to obtain a low process-
ing time. Next, the obtained FVs could be compacted, i.e. optimized, by using a FS
mechanism.

For our system, different families of texture-based features together with statistical
moments and size-related features have been extracted from each BB hypothesis
provided by the stereo-vision OD module. We have chosen to extract features as rich
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and diverse as possible in order to take advantage of their complementarity, but if
some features will prove redundant, they would be eliminated by the FS mechanism.

In order to further improve the performances of the system, but also to adapt
the system to various weather or illumination situations, different fusion schemes,
combining VIS and IR information, were proposed. Before presenting how these
steps have been accomplished in the developed experiments, the databases will be
described.

4.1 Image Databases for Our ODR System

4.1.1 The Tetravision Image Database

A visible-infrared image database (i.e. the Tetravision) was used in the most recent
experiments to recognize the type of obstacle previously determined as ROI by a
stereo-vision OD module. In the frame of the I'V field there are very few systems based
only on passive sensors and even less performing VIS and IR information fusion.
Among them, the Tetravision system proposed at VisLab [50, 51] at the University of
Parma, was designed for pedestrian detection from four stereo correlated VIS—IR
images. A Tetra-vision configuration, comprising stereo CCD cameras and stereo
un-cooled FIR cameras (working in the 7-14 pm spectrum) was used.

The annotated database was small, having only 1164 objects, but it is a very
difficult one, because of the high intra-class variability; for each class of objects,
there are three types of poses: Entire (E), Occluded (O) and Group (G) and two
viewing angles: Frontal (F) and Lateral (L) (Fig.5). We performed experiments for
the classification problems with 4 (P,V,C,B) and 8 (PE, PO, PG, VE, VO, VG, C, B)
classes of objects. The database was randomly divided into a training set (80 %) and
a testing set (20 %), the class instances being well balanced between the training and
testing sets; unfortunately, there is not a balanced distribution of objects in classes:
the cyclist class represents only 4.8 % of objects in our database. The Field of View
(FOV) of the stereo-vision cameras was with almost 0.10rad greater on each axis
than that of the FIR camera, so the obstacles does not have the same size in VIS and
IR images. Further details and information can be found in [27].

4.1.2 The Robin Image Database

Several companies and research centres, like Bertin technologies, CNES, Cybernetix,
DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES have engaged in 2006 in
the Robin project. This competition was for the evaluation of object detection, object
recognition and image categorisation algorithms. There were six datasets, with two
main competitions for each dataset: some detection tasks (object on a patch) and
some classification tasks (assign a category to a patch containing a centred object).
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Fig. 5 Different images from the tetravision database

Standmg Person Unknown posture Standine Person  Unknown posture

B

Motorbike Tourism car Utility car  Motorbike  Tourism car Utility car

Fig. 6 Objects belonging to the 5 classes (standing person, unknown posture, motorbike, tourism
car, utility car) from VIS and IR domains of Robin database

We subscribed for the dataset produced by Bertin-Cybernetix, where the proposed
dataset was made of colour and infrared images of vehicles and pedestrians (Fig. 6).

The VIS and IR images (with a resolution of 128 x 128 pixels) were not correlated
each other, which means that a scene captured in the VIS domain does not necessary
have a correspondent in the IR domain. Our task was the discrimination of humans
and vehicles, so the goal was to assign the correct label to a patch which may contain
an element of a class or some backgrounds. At the contest, the class of detected
object for each BB has to be decided. The Bertin-Cybernetix dataset contains a lot of
images, and every image represented a possible road scene, with one or more objects
therein (groups). The experiments performed on the Robin database comprised two
possible scenarios: classifying with 2 classes (P, V) or with 5 classes (Standing
Person, Unknown posture, Motorbike, Tourism car and Utility car).
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Fig. 7 Different cars and
pedestrians from the images
database Caltech

4.1.3 The Caltech Image Database

The images from the first experiments we developed were most of them provided
by the Caltech Database. A lot of indoor and outdoor images containing different
objects could be found there, but we considered only images with cars or pedestrians
in different arbitrary poses, like Fig.7 shows. The images were manually selected,
cropped and then resized at a dimension of 256 x 256 pixels. In order to increase the
processing speed of the entire algorithm, we considered images in gray level format.

The first experiments we have realized were developed on the Caltech database,
thus only on VIS images. Next, as we obtained the Robin dataset, with also IR
images, even not-correlated with the VIS ones, we developed the first experiments
on IR domain. Finally, when the Tetravision database has been obtained, the fusion
schemes we proposed could be tested.

4.2 Features Extraction

First, the features used to represent the image content in a digital or numeric for-
mat are obtained as FVs. The extracted features could be then compacted to reduce
the size of the image space representation (in the entire image database) by a FS
procedure. Numerical attributes generally describe the colorimetric and/or the geo-
metric properties of the images or of some regions within the images. The choice
of these attributes influences the classification results and the recognition process.
Transforming the visual information (which humans observe easily in images) in
some numerical values, features or attributes of low level (primitives) is not an easy
thing, due to the fact that there are no studies indicating what particular type of
attribute is good (i.e. it succeed in capturing the most relevant information) in any
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object recognition problem. Also, there is little or no research to indicate that types
of feature families are more appropriate on different specific modalities (i.e. in the
VIS and the IR domains). For computing the features, different families of features,
which then could be combined to ensure a wider representation of the image content,
have been aimed. Generally, different types of attributes capture different informa-
tion from the images (this is valid even for attributes belonging to the same family
of features). Thus, to represent the image content, some intuitive, generic and low
level features were used, such as color, texture and shape.

Color is a commonly used feature in the CV domain, especially to recognize
objects from nature, due to the multitude of colors that can represent different objects;
therefore, it can help in the segmentation or classification process. In the context of
IV applications, where IR images are represented by different gray levels, and VIS
images also suffer a reduction of information due to the existence of situations like
fog, night, etc. images on a single channel (in gray levels) have been considered.

Shape attributes are very useful for representing objects when some a priori infor-
mation is known about the shape of the object. For example, there are a multitude of
applications that use shape features specific to the pedestrian class (it is known that
a pedestrian should have a roughly circular area representing the head; also a pedes-
trian must fall into certain patterns concerning the ratio height/width). By extracting
some features that characterize objects in a general manner, i.e. globally, we believe
better results can be obtained than those based on shape (symmetry, snakes, template
matching), in which all shape of the object must be included in the BB in order to be
recognized in the OR stage.

Since FE is desired to be fast for real-time constraints, the performances of the
entire system depend heavily on the chosen features. We choose to extract obstacle
shape independent but fast to compute features, so we have concentrated on different
texture-based features. We did not select symmetries or edges because they are slower
and it might not work very well for obstacles with arbitrary poses or presenting
occlusions.

4.3 Features Extraction Experiments

In the experiments we performed, different families of texture-based features were
investigated for VIS and respectively IR images for monomodal (Caltech), or bimodal
systems with the possibilities that images were correlated eachother (Tetravision) or
not (Robin).

The experiments were conducted to find out if some features could be better suited
for the VIS domain and others better suited for the IR domain, because the final goal
was to prepare for the VIS—IR fusion. Also, their combination was considered, i.e.
bimodal FVs, to improve the recognition performance, considering their comple-
mentarity. First, the purpose was to find which features are more appropriate for VIS
and respectively for IR modality. Next, which of them are less time consuming, and
finally how to combine them in a proper manner to achieve best results?
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To extract the features characterizing an obstacle, texture-based features were
aimed, because they are shape independent and fast to compute; some statistical
moments and size-related features were also added.

4.3.1 Extracted Feature Families

Width and height of the initial BB enclosing the object were chosen to be part of
the FV because some of the applied transformations deformed the image by a resize
operation. In order to preserve the initial size of the BB, we retained width and height
(2 features for size, denoted geom). A vehicle will have a height approximately equal
to the width, or lower, while for a pedestrian these characteristics would be exactly
the opposite. However, considering that in the image-databases we used there are
also cyclists and backgrounds, or different kind of vehicles, and objects could be
occluded (so not the entire shape of the object will be comprised in the BB), or
grouped (so there will be more objects belonging to the same class in a single BB),
unfortunately these 2 features will not have the discrimination power that one may
think.

The mean, median, mode, variance, standard deviation, skewness and kurtosis
are the statistic moments (7stat) concerning the gray level information we have also
used.

Moments of Hu were also aimed, due to the fact that global properties of the
respective image could be exploited. A significant work considering moments for
pattern recognition was performed by Hu [52] by deriving a set of seven invariant
moments, using non-linear combinations of geometric moments. These invariants
remain the same under image translation, rotation and scaling.

The wavelet families were more extensive experimented in our work. In a first
attempt, wavelet families were aimed to construct the FV and they have been tested
with different mother wavelet and different scales on the first database we achieved,
i.e. the Caltech database. Wavelet transform was a relatively new analysis technique
and replaces the Fourier transform sinusoidal waves by a family generated by trans-
lations and dilations of a window called mother wavelet. A two-dimensional Discreet
Wavelet Transform (DWT) leads to a decomposition of approximation coefficients
at level j in four components: the approximations at level j+1 and the details in
three orientations (horizontal, vertical, and diagonal). Different wavelet families, like
Daubechies, Coiflet and biorthogonal wavelets, but also fractional B-spline functions
were used to compute different FVs. Different types of fractional B-splines wavelets
also have been investigated: causal, anti-causal, symmetric and generalized. By vary-
ing a parameter of the mother wavelet, a direct control over a number of key wavelet
properties can be obtained: the parametric form of the basis functions, their smooth-
ness, their space-frequency localization, but also the size of the basis functions. The
DWT of a signal was calculated by passing it through a series of filters (high and low
pass filters) and then downsampled. At each level, the signal was decomposed into
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low and high frequencies, and this decomposition halved the resolution since only
half the number of samples were retained to characterize the obstacle. To apply the
wavelet decomposition, for some mother wavelets a resize operation was need. Gen-
erally, a 3, 4 and 5 level decomposition was performed: for one image of 128 x 128
pixels, if a Haar wavelet transform was used, then at the first level of decomposition
resulted 64 x 64 pixels, at the second level 32 x 32 pixels, and so on.

Next, besides features like Haar wavelet, the Gabor wavelet have also been con-
sidered, because both types of wavelets offer complementary information about the
pattern to be classified and have proved good performance in other systems [53].
The mean and the standard deviation of the magnitude of the Gabor coefficients
were calculated for 4 scales and 4 orientations, obtaining thus 32 gbr features.

The Discrete Cosine Transform (DCT) tends to concentrate information, being
intensively used for image compression applications. The first nine DCT coefficients
are suggested to be used as texture features, but inspired by [54] the base component
was ignored. Therefore, we obtained a number of 8 dct features.

For the grayscale images, the co-occurrence matrix characterizes the texture of
the image and the generated coefficients are often called Haralick features. Only
4 of 7 are generally proposed to be used: the homogeneity, entropy, contrast and
correlation. The Gray Level Co-occurrence Matrix (GLCM) is used to explore the
spatial structure of the texture and it captures the probability that some pixels appear
in pairs with the same level of gray but with different orientations. We performed
the computation in 4 different directions: 0°, 45°, 90° and 135° as it is proposed in
[54]. In this manner, we obtained a number of 16 cooc features.

The Run Length Encoding (RLE) method works by reducing the physical size of
arepeating string of characters, i.e. sequences in which the same data value occurred
in many consecutive data elements are stored as a single data value and counted.
For a given image, the proposed method defines a run-length matrix as number of
runs (i.e. the number of pixel segments having the same intensity) starting from each
location of the original image in a predefined direction. Short run emphasis, long run
emphasis, gray-level distribution, run-length distribution and run percentage are the
five features proposed by Galloway. Two supplementary measures (low gray-level
run emphasis and high gray-level run emphasis) have also been considered. Thus, a
set of 7 features obtained in one direction have been chosen, but performed at 0° and
90° as proposed in [54] yield a number of 14 rle features.

Some signal processing techniques are based on texture filtering and analyze the
frequency contents in the spatial domain. Laws have suggested a set of 5 convolution
masks for FE based on texture. From these 5 masks, a set of 25 two-dimensional
masks have been further obtained and based on these 2D masks, 14 laws features
are reached. These features are then reported to the elements from the first diagonal,
in the following manner: the first 10 features are normalized with the first element
from the diagonal, and the rest of 4 features are normalized with the remaining 4
diagonal elements. To these 14 features, the mean and the standard deviation have
been applied as it is suggested in [54], resulting thus a number of 28 laws features.



96 A. Apatean et al.
4.3.2 Constructing Different Feature Vectors

In the developed experiments, in this stage our main purpose was to obtain a small
FV and a good classification rate (above 90 %).

Comparing the results we obtained, the level 4 of wavelet decomposition gives the
best solution for the obstacle recognition problem considering the size of the FV and
the achieved accuracy rates (recognition rates) on the Caltech database [52]. Also, the
results were better in the case of using 2 classes for the classification (the variability
between classes was smaller than in the case with 5 classes) when experimenting with
the Robin database [55]. When comparing different types of wavelets, the accuracy
given by Daubechies and Biorthogonal wavelets were better than their fractional
counterparts, while causal and generalized fractional wavelets were better than the
anti-causal and symmetric ones [56, 57].

To construct the FV, the wavelet features were combined with moments (i.e. within
a features fusion). The mother wavelet used to compute the wavelet decomposition
were causal and generalized B-spline functions (22 causal and 22 generalized), with
different scaling and translation parameters in [52]. Thanks to the fractional B-spline
functions the FVs dimension were reduced from 18 x 18 features (corresponding to
the 4th level of wavelet decomposition) to 10 x 10 4 7 + 7 features (corresponding
to the 5th level of wavelet decomposition combined with the 7 statistical moments
and the 7 moments of Hu) for the same classification percentage or even better. The
proposed FVs were tested using a Bayes classifier, a Bayes Net and a Radial Basis
Function (RBF) Network with a normalized Gaussian RBF. By adding moments,
one level of wavelet decomposition has been reduced, i.e. from a FV comprising 324
features, the new FV was having only 114 features, so a third the size of the initial
FV for the same or even better accuracy. In a further experiment, presented in [58]
Daubechies, Coiflet and biorthogonal wavelets were added, resulting in a number of
29 supplementary functions from which to compose the FVs. Like in the previous
case, when testing on Caltech database, the moments demonstrated their power to
increase the accuracy.

The FV from [55] corresponds to the height and width of the original BB of
the object, the 64 Haar wavelet coefficients, the 7 statistical moments, the DCT
coefficients, the GLCM coefficients and the Gabor coefficients. The recognition
rates obtained when experimenting on Robin database were the best in the case of
combining all features together. If compare the accuracy given by the KNN and SVM
classifiers with a 10f-CV test mode, the SVM was much better than the KNN in all
cases. Also the accuracy rates for 5 classes of objects were lower than for 2 classes
of objects, due to the fact that the variability between classes was higher.

When considering the Tetravision database, we concentrated on the Haar wavelet,
obtaining thus 64 features from each modality, VIS and IR. Because the images
representing objects have very small size (especially in VIS), the wavelet decom-
position was chosen to be performed at level one (for VIS images) or level two
(for IR images), and finally we obtained a number of 8 x 8 wavelet coefficients for
both types of images. To perform the fusion, for the image representation we choose
the width and height of the original BB, the 7 statistical moments, the wavelet and
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the gabor transforms, the dct, cooc, rle and laws coefficients. Therefore, a number
of 171 features have been extracted from each modality VIS and IR: VIS171 and
IR171 feature vectors were finally retained, as presented in [27]. Due to the fact that
the information is extracted individually from the VIS and IR images, the provided
FVs are called monomodals.

4.3.3 Feature Vectors Evaluation

Different algorithms of FE provide different characteristics (as we already mentioned,
grouped in feature-families) which can be combined in different FVs, representing
the inputs into the classifier. The accuracy of the classifier depends on how well these
features succeed in representing the information and it is not necessary proportional
with their number (or FV dimension). Is it possible that the same FE algorithm
applied on the VIS and on the IR domains to deliver distant results, i.e. to exist
some features better suited for the VIS domain and others better suited for the IR
domain. Also, their combination can bring in some improvements from the viewpoint
of the recognition performance, depending on how complementary they are when
representing the information. There are FE algorithms consuming less time than
others at the extraction of these features from images. There are also families of
features that can be separable (when calculating the coefficients of a family, they can
be calculated individually, and do not need to be calculated all if we do not need all
of them) and this will influence the extraction time of those coefficients.

To assess the performance representation of the numerical attributes, in this section
we present the results of an experiment in which we tested, using a simple classifier
KNN the representation ability of the visual content of each family of attributes.
It does not need a model-selection stage, as the SVM does, because it is not hav-
ing multiple parameters to be optimized before the usage. Still, because SVM is
more parameterizable and therefore better adapted to any classification problem, it
is expected that the recognition rates to be higher by the use of the SVM. First,
the concern was not to optimize the classifier on each family or combination of
feature-families, but to evaluate their individual importance.

Few questions were foreseen when preparing for fusion: 1. Are several features
better adapted for VIS and other better adapted for IR? Or, if a family is behaving
well on VIS, it will be also good on IR? 2. The number of features of one fam-
ily influences the classification rate? A family with many features will provide a
greater recognition rate compared to another family having less features? 3. Are the
chosen features pertinent for the learning process? Or they will suffer of overfitting
(will provide good results on the training set, but they would not predict very well
the test data)?

In the following, the importance of these coefficients but also the individual perfor-
mance of each family of features has been evaluated. To maximize the performance
of individual descriptors, new vectors have been formed as combinations of feature
families. Thus, we have combined the texture descriptors in a single FV of texture
(Text), comprising haar, dct, cooc, gbr, rle, laws and including 162 characteristics
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for each VIS and IR modalities. Adding the 7 statistical moments, a new vector
called (StatText) is obtained. If in addition, we add the 2 geometrical features, the
maximum size vectors (denoted AllFeatures) of 171 features has been obtained. In
order to answer these questions, we used all the vectors comprising families or com-
bination of feature-families and we performed 2 experiments for the classification
problems with 4 and 8 classes of objects. In a first experiment we considered only
the training dataset (932 objects), and the obtained accuracies for the classification
problem with 4 classes of objects was with approximately 10 % higher than those
obtained for the classification problem with 8 classes of objects (due to the reduced
number of instances per each object class).

In a first attempt, we used a KNN classifier, because the model selection was
avoided on purpose (the features complexity was aimed in this first set of experi-
ments). The obtained classification results on IR domain were slightly better than
those from the VIS one, but this could be due to the fact that in the dataset the images
from IR domain have a higher resolution compared with their VIS counterparts. We
have also noticed that if a family of features behaves well on IR images, it was pro-
viding also good results on VIS ones. From the obtained results, presented in Table 1,
can be observed that the families haar, gbr, laws and dct are better than stat, cooc,
geom and rle. However, the first group of families (except dct) had the largest number
of features, therefore the increased accuracies could be of that reason. In order to
highlight this aspect, we proposed a further careful investigation of individual and
correlated features contribution, by using several FS techniques. The obtained results
indicate that a finer selection process had to be performed, at the features level (not
at their families).

Table 1 Performance representation of monomodal FVs obtained using 10f-CV on the training set
for the classification problem with 4 classes of objects

Input vector Accuracy using 10f-CV| Inputs by decreasing bAcc for VIS
Attributes with KNN classifier Input Accuracy with KNN classifier
vector
Name Number | VIS IR VIS IR
geom 2 47.50 47.50 haar 77.00 79.60
stat 7 58.98 66.03 gbr 72.60 81.55
Texture | haar 64 77.00 79.60 laws 67.38 69.75
gbr 32 72.60 81.55 det 65.65 75.00
det 8 65.65 75.00 stat 58.98 66.03
cooc 16 54.23 66.10 cooc 54.23 66.10
rle 14 42.95 55.00 geom 47.50 47.50
laws 28 67.38 69.75 rle 42.95 55.00
Text 162 83.75 87.13
StatText 169 83.45 87.90
AllFeatures 171 83.67 88.00
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On IR, although the Haar wavelet coefficients are most numerous, they are
exceeded in their performance by Gabor features which are only half as concerning
their number. From the viewpoint of the performance, after gbr and haar features, on
the 3rd and 4th positions are dct and laws features, accounting 5 %, respectively 16 %
of the total vector, followed by cooc and stat, and finally rle and geom. The geom
features do not have to be ignored, because with only 1 % of the features, they suc-
ceed to obtain an accuracy of about 50-60 %, as presented in Table 1. The conclusion
is that the number of features of one family does not necessary assure a proportional
higher classification rate: there are families with fewer features providing a greater
recognition rate than another family having more features (e.g. gbr vs. haar).

The danger of overfitting is to find features that explain well the training data,
but have no real relevance or no predictive power (for the test set). Generally, one
can notice that the accuracies obtained in the learn-test (LT) stage overperformed
(or are very closed to) the values obtained using the 10f-CV procedure, so our data
is not presenting overfitting. Therefore, we can say we have chosen some general
features, which are capable to retain the pertinent information from both VIS and IR
individual domains.

Next, when running the experiments with the SVM classifier, we have focused on
the feature vector AllFeatures, incorporating all the 171 features, because only after
the FS process we will drop some features if they did not help in the classification
process, i.e. if they have been found as being not relevant.

4.4 Features Selection

In the experiments, we have chosen to extract features as rich and diverse as possi-
ble in order to take advantage of their complementarity, but we did not ignore the
possibility of some redundant information, which therefore has to be eliminated in
order to decrease: the learning complexity and the classification time, but also the
extraction time. In fact, even the number of features is not very high for a given BB,
when considering all the BB hypotheses within an image, it could reach a significant
value and increase significantly the extraction time. The FS step has thus to find a
compact, relevant and consistent set of features for the classification task.

Different FS methods have been tested in order to, first, evaluate the pertinence
of features individually allowing for a ranked list of features and, second, to evaluate
sub-sets of features in order to take into account the correlation between features. Chi
Squared, Information Gain, ReliefF, Significance and Symmetrical Uncertainty have
been first considered, as single-attribute evaluators (Rankers), while for the second
round Correlation and Consistency-based subset-attribute evaluators were used. In
the latter set of FS methods, the Best First, Linear Forward and Genetic Search were
used as subsets generation methods, while for the Ranker ones a thresholding step
was needed.
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Usually, the FS methods are applied only once on the whole training set, but
for a better robustness, we propose to apply the FS methods also according to a
cross-validation scheme. Further details can be found in [27].

4.5 Features Selection Experiments

The FS could be applied independently on VIS and respectively IR vectors or on the
correlated bimodal VISIR vector.

From all tested FS methods, we have retained only those which accomplished a
bi-level optimization criteria, allowing higher classification accuracy on a smaller
number of features: a Ranker one (Fs R75) and a Search one (FsScy), as shown in
Table?2. The FsR7s uses Information Gain to evaluate each feature independently
before providing a ranked list of features. After combining in a single list of relevance,
apercentage of 75 % features have been further selected. The retained features are the
ones which appeared at least in one of the 100 selection process (by using a 100f-CV
scheme). Even if a family of features provide good results when all features were
considered in a FV, it is possible that no feature of that family will be retained in
the FS process, like is the case of dct family on the VIS modality with the FsScy
method. Once the selected FVs obtained, the VISIR fusion process followed.

4.6 Fusion

We compared from the viewpoint of accuracy and robustness, three different proba-
bilistic fusion schemes: at the feature level, at the SVM kernels level and respectively
at the matching-scores level. A first fusion scheme is proposing the fusion to be per-
formed at the features level, therefore at a low-level. This fusion would be obtained in
the frame of the module which realize the FE and FS operations, and for this reason,
it could be performed in two possible ways: between the two modules or after both
of them. Another proposed fusion scheme is a high level one, being realized at the
outputs of the VIS and IR classifiers, combining thus matching-scores. Two possible
ways could be reached here too: a not-adaptive fusion and an adaptive fusion. The
last proposed fusion scheme realizes the combination of the VIS and IR information
at an intermediate level, i.e. at the SVM kernels. Further details and information
about the theory part we considered for the fusion schemes can be found in [27].
For the early features fusion, the results obtained with the bimodal AllFeatures
and selected FVs are shown in Table 3, where also the characteristics of the optimized
kernel are given. Single Kernel (SK) is the simple, i.e. classical kernel within the SVM
classifier, possible types being polynomial, RBF, sigmoidal, etc. The parameters of
the SK are also given: (SKtype and its hyper-parameters SKpar, and C), where C is
the complexity parameter. The results of a static adaptation of features fusion (sAFF)
scheme having the optimal modality-feature relative weight o are also given. All
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the results obtained with the early-fusion scheme outperformed those obtained with
the monomodal system. The best classification performance (bAcc of 97.7 %) was
obtained with the most compact bimodal sVISIR126 representation determined with
our FsScy method.

The kernel fusion has been also experimented, and it implies learning a BK
(bimodal kernel), as a linear combination of monomodal SKs, involving thus some
parameters to be optimized: BKtype, BKparamVIS, BKparamIR, C, «. Since there
are much more parameters to be optimized, the kernel fusion is more flexible than the
early fusion, and it is thus more promising, because it should fit better to VISIR het-
erogeneous data. As it could be noticed from Table 3, the best performance (96.9 %)
was obtained again with the very compact bimodal FsScy representation with a
static adaptation fusion of kernels (sAFK) scheme. The results obtained with the
intermediate-fusion scheme are better than those obtained with the monomodal sys-
tem, but they are unfortunately lower than those obtained with the early-fusion sys-
tem, we believe due to the fact that in our image set there is not enough data to train
such a complex fusion model.

The matching-scores fusion involves learning, in an independent manner, two
monomodal SKs and their hyper-parameters, before estimating the relative modality-
score weight «. For the dynamic dAFSc adaptation case, the optimal value « could
intervene with different values. The static adaptation weight was learned on the
validation set, while the dynamic one was estimated for each test object, on the
fly, during the classification process, in Table3 being given the average optimal
value. The matching-score fusion scheme outperforms monomodal VIS and IR sys-
tems, but also feature and kernel-fusion bimodal systems, with the best performance
(98.7 %) being obtained for both static and dynamic adaptation approaches, with the
sVISIR126 representation.

In the case of monomodal systems, the following single kernels were selected:
SK1=(R