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Abstract We consider the numerical simulation of acoustic wave propagation in
three-dimensional heterogeneous media as occurring in seismic exploration. We
focus on forward Helmholtz problems written in the frequency domain, since this
setting is known to be particularly challenging for modern iterative methods. The
geometric multigrid preconditioner proposed by Calandra et al. (Numer Linear
Algebra Appl 20:663–688, 2013) is considered for the approximate solution of the
Helmholtz equation at high frequencies in combination with dispersion minimizing
finite difference methods. We present both a strong scalability study and a com-
plexity analysis performed on a massively parallel distributed memory computer.
Numerical results demonstrate the usefulness of the algorithm on a realistic three-
dimensional application at high frequency.

1 Introduction

The efficient computation of wave propagation phenomena in three-dimensional
heterogeneous media is of significant research interest in many environmental
inverse problems [50, 58]. The core of these large scale nonlinear optimization
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problems usually consists of the approximate solution of a linear system issued
from the discretization of a Helmholtz scalar wave equation, typically written in the
frequency domain. Hence, as discussed in this book, the design of efficient direct or
iterative solvers for the resulting large scale linear systems is of paramount impor-
tance. In particular, efficient domain decomposition methods [17, 18, 25, 35, 47, 48]
or multigrid methods [6, 7, 15, 16, 19–23, 26, 33, 37, 38, 42, 54–56] have been
proposed in the past few years in this context; we also refer the reader to, e.g.,
[24, 52, Sect. 11.5] and references therein for comprehensive surveys.

In this chapter, we focus on the parallel performance of a geometric multigrid
preconditioner for the solution of wave propagation problems related to acoustic
imaging in seismic exploration. For such a purpose, we consider the geometric
two-grid preconditioner proposed in [11] for the numerical solution of Helmholtz
problems in three-dimensional heterogeneous media. This two-grid cycle is directly
applied to the original Helmholtz operator and relies on an approximate coarse grid
solution. A second multigrid method applied to a complex shifted Laplace operator
is then used as a preconditioner when solving the coarse grid system to obtain
an approximate coarse solution. In this chapter, we consider this preconditioner
in relation with high order dispersion minimizing finite difference schemes to
tackle propagation problems at relatively high frequencies. In particular, as main
contributions, we investigate the strong scaling properties of the numerical method
in a massively parallel setting and provide a complexity analysis related to a realistic
test case in geophysics.

The chapter is organized as follows. We introduce both the continuous and
discrete Helmholtz problems in Sect. 2. In Sect. 3, we describe the geometric
multigrid preconditioner that is considered throughout the chapter. Numerical
experiments performed in a massively parallel environment are reported in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Problem Setting

We specify the continuous and discrete versions of the heterogeneous Helmholtz
problem that we consider throughout this chapter.

2.1 Mathematical Formulation at the Continuous Level

Given a three-dimensional physical domain ˝p of parallelepiped shape, the propa-
gation of a wavefield in a heterogeneous medium can be modeled by the Helmholtz
equation written in the frequency domain [50]
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In Eq. (1), the unknown u represents the pressure wavefield in the frequency
domain, c the acoustic-wave velocity in m s�1, which varies with position, and
f the frequency in Hertz. The source term ı.x � s/ represents a harmonic point
source located at s D .s1; s2; s3/ 2 ˝p. The wavelength � is defined as � D c=f
and the wavenumber as 2�f=c. A popular approach—the Perfectly Matched Layer
formulation (PML) [4, 5]—has been used in order to obtain a satisfactory near
boundary solution, without many artificial reflections. Artificial boundary layers are
then added around the physical domain to absorb outgoing waves at any incidence
angle as shown in [4]. We denote by ˝PML the surrounding domain created by
these artificial layers. This formulation leads to the following set of coupled partial
differential equations with homogeneous Dirichlet boundary conditions imposed on
� , the boundary of the domain
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where the one-dimensional �xi function represents the complex-valued damping
function of the PML formulation in the i-th direction, selected as in [34]. The set
of equations ((2)–(4)) defines the forward problem related to acoustic imaging in
geophysics that will be considered in this chapter. We note that the proposed numer-
ical method can be applied to other application fields, where wave propagation
phenomena appear as well.

We also introduce the complex shifted Laplace operator defined as
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where the parameter 1C iˇ 2 C is called the complex shift.1 This operator will play
a significant role later in the definition of our multigrid preconditioner in Sect. 3.

1In [23] the authors have introduced the complex shifted Laplace with a negative imaginary part
for the shift in the case of first- or second-order radiation boundary conditions. Due to the PML
formulation considered in this paper, we have used a shift with positive imaginary part to derive an
efficient preconditioner as explained in [36, Sect. 3.3.2].
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2.2 Mathematical Formulation at the Discrete Level

2.2.1 Dispersion Minimizing Finite Difference Scheme

As frequently used in the geophysics community, we have considered a finite dif-
ference discretization of the Helmholtz problem ((2)–(4)) on a uniform equidistant
Cartesian grid of size nx �ny �nz. We denote later by h the corresponding mesh grid
size, ˝h the discrete computational domain and nPML the number of points in each
PML layer.

Since the standard second-order finite difference scheme is often found to be
too dispersive [3, 13, 29, 47], we have considered dispersion minimizing finite
difference schemes. These schemes are especially recommended when targeting the
solution of heterogeneous Helmholtz problems at high frequency, since they provide
a pollution-free solution [12, 34, 47, 51]. In the context of multilevel algorithms,
these schemes are also relevant for the discretization of the coarse grid operator
in order to provide the same dispersion level on both the coarse and fine scales
[47]. This feature has also been found beneficial by several authors, see, e.g.,
[12, 47, 54]. Hereafter, we have considered the compact finite difference scheme
proposed by Harari and Turkel [29] based on Padé approximations, which leads
to a finite difference discretization with a 27 points stencil. This scheme is formally
third-order accurate on general Cartesian grids and fourth-order accurate on uniform
grids. Following [3], given reference values for both the frequency fref and the step
size href and denoting by q the discretization order of the finite difference scheme,
we have used the following relation to determine the step size h, given a certain
frequency f ,

hq f qC1 D hqref f
qC1
ref : (8)

2.2.2 Properties of the Discrete Linear System

The discretization of the forward problem ((2)–(4)) with the dispersion minimizing
finite difference scheme leads to the following linear system Ah xh D bh, where
Ah 2 Cnh�nh is a sparse complex matrix which is non Hermitian and non symmetric
due to the PML formulation [5, 36, 45] and where xh; bh 2 Cnh represent the discrete
frequency-domain pressure field and source, respectively. In addition, the right-hand
side is usually very sparse. The condition (8) imposes to solve large systems of
equations at the (usually high) frequencies of interest for the geophysicists, a task
that may be too memory expensive for standard [45, 46] or advanced sparse direct
methods exploiting hierarchically semi-separable structure [59, 60] on a reasonable
number of cores of a parallel computer. Consequently, preconditioned Krylov
subspace methods are most often considered and efficient preconditioners must
be developed for such indefinite problems. We describe next in detail a multigrid
preconditioner that has been proposed in [11] for the solution of the forward problem
related to acoustic imaging.
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3 A Geometric Multigrid Preconditioner

We describe the geometric two-grid preconditioner proposed in [11] and detail
its salient properties. We first introduce notation related to multigrid methods to
make easier the description of the multilevel algorithm. We conclude this section by
briefly commenting the related parallel implementation.

3.1 Notation

The fine and coarse levels denoted by h and H are associated with discrete grids ˝h

and ˝H , respectively. Due to the application in seismic exploration where structured
grids are routinely used, a geometric construction of the coarse grid ˝H is used.
The discrete coarse grid domain ˝H is then deduced from the discrete fine grid
domain ˝h by doubling the mesh size in each direction as classically done in vertex-
centered geometric multigrid [49]. In the following, we assume that AH represents
a suitable approximation of the fine grid operator Ah on ˝H . We also introduce
IHh W G .˝h/ ! G .˝H/ a restriction operator, where G .˝k/ denotes the set of grid
functions defined on ˝k. Similarly IhH W G .˝H/ ! G .˝h/ will represent a given
prolongation operator. More precisely, we select as a prolongation operator trilinear
interpolation and as a restriction its adjoint which is often called the full weighting
operator [28, 49]. We refer the reader to [53, Sect. 2.9] for a complete description of
these operators in three dimensions.

3.2 Algorithm Overview

A two-grid preconditioner for the numerical solution of Helmholtz problems in
three-dimensional heterogeneous media has been proposed in [11] in relation with
second order finite difference discretization schemes. This two-grid cycle is directly
applied to the original Helmholtz operator and relies on an approximate coarse
grid solution. As shown in [36], the main difficulty is to find efficient approximate
solution methods for the coarse level system AHzH D vH . In this chapter, as in
[11], we consider a preconditioning operator (the complex shifted Laplace operator)
based on a different partial differential equation for which an efficient multilevel
solution is possible. A second multigrid method applied to a complex shifted
Laplace operator is then used as a preconditioner for the approximate solution of
this coarse problem.

This combination of two cycles defined on two different hierarchies is detailed
next. First, a two-grid cycle using ˝h and ˝H only (as fine and coarse levels,
respectively) is applied to the original Helmholtz operator ((2)–(4)). A second
sequence of grids ˝k.k D 1; � � � ; l/ with the finest grid ˝l defined as ˝l WD ˝H
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Algorithm 1: Cycle applied to Ahzh D vh. zh D Tl;C.vh/

1: Polynomial pre-smoothing: Apply # cycles of GMRES(ms) to Ahzh D vh with � iterations
of !h-Jacobi as a right preconditioner to obtain the approximation z#

h .
2: Restrict the fine level residual: vH D IHh .vh � Ahz

#
h /.

3: Solve approximately the coarse problem AHzH D vH with initial approximation z0
H D 0H :

Apply #c cycles of FGMRES(mc) to AHzH D vH preconditioned by a cycle of multigrid
applied to S.ˇ/

l yl D wl on ˝l � ˝H to obtain the approximation zH .
4: Perform the coarse level correction: ezh D z#

h C IhHzH .
5: Polynomial post-smoothing: Apply # cycles of GMRES(ms) to Ahzh D vh with initial

approximation ezh and � iterations of !h-Jacobi as a right preconditioner to obtain the final
approximation zh.

Ωh

ΩH
AHzH = vH

Cycle applied to the Helmholtz operator

Ω1

Ω2

Cycle applied to the complex shifted Laplace operator S(β )
2

≡ S(β )H
used as a preconditioner when solving AHzH = vH

Fig. 1 Multigrid cycle applied to Ahzh D vh sketched in Algorithm 1 (case of T2;V ). The two-grid
cycle is applied to the Helmholtz operator (left part), whereas the second two-grid cycle to be used
as a preconditioner when solving the coarse grid problem AHzH D vH is shown on the right part.
This second multigrid cycle acts on the complex shifted Laplace operator S.ˇ/

H with ˇ as a shift
parameter

is introduced. On this second hierarchy, a multigrid cycle applied to a complex
shifted Laplace operator S.ˇ/

H WD S.ˇ/
l is then used as a preconditioner when solving

approximately the coarse level system AHzH D vH of the two-grid cycle. We note
that the complex shifted Laplace operator S.ˇ/

H is simply obtained by direct coarse
grid discretization of Eqs. (5)–(7) on ˝H.

The resulting cycle is sketched in Algorithm 1. The notation Tl;C of Algorithm 1
uses subscripts related to the cycle applied to the complex shifted Laplace operator
with l denoting the number of grids of the second hierarchy and C referring to the
cycling strategy which can be of V , F or W type.

As an illustration, Fig. 1 depicts the simplest configuration .T2;V / based on a
two-grid cycle applied to the complex shifted Laplace operator. This cycle will be
considered later in Sect. 4.

As explained in [11], this cycle leads to a variable nonlinear preconditioner
which must be combined with an outer flexible Krylov subspace method [43, 44]
and [57, Chap. 10]. In [11], the efficiency of the preconditioner in combination
with FGMRES(5) [39] has been highlighted on both academic and realistic three-
dimensional test problems. We investigate in the next section its performance when
used in combination with a dispersion minimizing discretization scheme.
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3.3 Parallel Implementation

The parallel implementation of the cycle proposed in Algorithm 1 is based on
standard MPI (Message Passing Interface) [27]. We refer the reader to [53,
Chap. 6] for details on the parallelization of geometric multigrid methods based on
domain partitioning. In particular, the operations related to matrix-vector products,
restriction and interpolation require local communications between neighbouring
processes. As in [16, 56], the polynomial smoothing procedure is based on GMRES
[41], which requires both local and global communications. Local and global com-
munications also occur when solving the coarse grid system with the preconditioned
FGMRES Krylov subspace method [39]. We refer the reader to [40, Chap. 11]
for a discussion on parallel implementations of Krylov subspace methods. To take
advantage of the current multicore based computer architectures, we note that the
use of MPI and OpenMP would be relevant to consider. This is left to a future line
of development.

We investigate in the next section the performance of the proposed geometric
preconditioner, when a dispersion minimizing finite difference scheme is considered
for the discretization of the Helmholtz problem.

4 Numerical Results on the SEG/EAGE Salt Dome Model

In this section, we illustrate the performance of the multigrid preconditioner used
in combination with FGMRES(m) for the solution of the acoustic Helmholtz
problem ((2)–(4)) on a realistic heterogeneous benchmark velocity model. The
SEG/EAGE Salt dome model [2] is a velocity field containing a salt dome in a
sedimentary embankment. It is defined in a parallelepiped domain of size 13:5 �
13:5 � 4:2 km3. The minimum value of the velocity is 1500 m s�1 and its maximum
value is 4481 m s�1, respectively. This test case is considered as challenging due
to both the occurrence of a geometrically complex structure (salt dome) and to
the truly large dimensions of the computational domain. We first analyse the
strong scalability properties of the numerical method on this realistic application.
Then we investigate numerically the complexity of the numerical method, i.e., the
evolution of the memory requirements and computational times with respect to the
number of unknowns. We first define the settings and parameters of the multigrid
preconditioner used in this study.

4.1 Settings and Parameters

In the two-grid cycle of Algorithm 1, we consider as a smoother the case of one
cycle of GMRES(2) preconditioned by two iterations of damped Jacobi (# D 1,
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ms D 2 and � D 2), a restarting parameter equal to mc D 10 for the preconditioned
GMRES method used on the coarse level and a maximal number of coarse cycles
equal to #c D 10. In the complex shifted multigrid cycle used as an approximate
coarse solver, we use a shift parameter equal to ˇ D 0:5 and two iterations of
damped Jacobi as a smoother (�ˇ D 2). On the coarsest level we consider as an
approximate solver one cycle of GMRES(10) preconditioned by two iterations of
damped Jacobi (#ˇ D 1, mˇ D 10 and �ˇ D 2). Finally, the relaxation coefficients
considered in the Jacobi method are given by the following relation

.!h; !2h; !4h/ D .0:8; 0:8; 0:2/:

We consider a value of the restarting parameter of the outer Krylov subspace method
equal to m D 5 as in [10, 36]. The unit source is located at

.s1; s2; s3/ D .h nx1=2; h nx2=2; h .nPML C 1//

where, e.g., nx1 denotes the number of points in the first direction and nPML is set to
10. A zero initial guess x0

h is selected and the iterative method is stopped when the
Euclidean norm of the residual normalized by the Euclidean norm of the right-hand
side satisfies the following relation

jjbh � Ahxhjj2
jjbhjj2 � 10�5:

This numerical study has been performed on Turing,2 a IBM BG/Q computer
located at IDRIS (each node of Turing is equipped with 16 PowerPC A2-64 bit cores
at 1.6 GHz) using a Fortran 90 implementation with MPI in complex single precision
arithmetic. Physical memory on a given node (16 cores) of Turing is limited to
16 GB.

4.2 Strong Scalability Analysis

We are interested in the strong scalability properties of the numerical method.
Hence, we consider the acoustic wave propagation problem ((2)–(4)) at a fixed
frequency (20 Hz) on a growing number of cores.The step size h is determined
by relation (8) with fref D 10 Hz, href D 15 and qref D 4. Table 1 collects
the number of preconditioner applications (Prec) and computational time (Time)
versus the number of cores. We note that the number of preconditioner applications
(which corresponds to the number of outer Krylov subspace iterations) is found to
be independent of the number of cores, which is a nice property. We also define a

2http://www.idris.fr/turing/.

http://www.idris.fr/turing/
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Table 1 Strong scalability
analysis

f (Hz) Grid # cores Prec T (s) �s

20 2303 � 2303 � 767 16;384 29 586 1:00

20 2303 � 2303 � 767 32;768 29 302 0:97

20 2303 � 2303 � 767 65;536 29 164 0:89

20 2303 � 2303 � 767 131;072 29 87 0:84

Case of T2;V applied as a preconditioner of FGMRES(5)
for the heterogeneous velocity field EAGE/SEG Salt dome.
Prec denotes the number of preconditioner applications, T
the total computational time in seconds and �s the scaled
parallel efficiency defined in relation (9)

scaled parallel efficiency as

�s D Tref
T

=
Cores

Coresref
; (9)

where Tref and Coresref denote reference values related to computational time and
number of cores, respectively. A perfect scaling corresponds to the value of 1. In
practice, we note that �s is close to this value. Only the last numerical experiment
performed on 131;072 cores leads to a moderate decrease in terms of scaled parallel
efficiency. This is partly due to the increased number of communications, which
leads to a significant decrease of the ratio computation/communication.

4.3 Complexity Analysis

We next analyse the complexity of the numerical method with respect to the
frequency or to the problem size, equivalently. In this numerical experiment, the
number of cores is kept fixed to 131;072, while the frequency is growing from
15 Hz to 40 Hz, respectively. The case of f D 40 Hz leads to a linear system with
approximately 56:7 billion of unknowns. The number of preconditioner applications
(Prec), computational times (T) and memory requirements (M) are reported in
Table 2. The number of preconditioner applications is rather moderate and is found
to grow almost linearly with respect to the frequency. This linear dependency has
been also observed for the complex shifted Laplace preconditioner in relation with
other dispersion minimizing finite difference schemes [12], on problems of smaller
size though. This behaviour is quite satisfactory, since huge linear systems can
be solved in a reasonable amount of computational time on a parallel distributed
memory machine.

Figure 2 shows the evolution of the computational time (T) versus the problem
size. If N denotes the total number of unknowns, the computational time T is
found to behave asymptotically as N1:32. This is quite competitive with advanced
sparse direct solution methods based on block low rank [1] or hierarchical matrix



150 H. Calandra et al.

Table 2 Complexity analysis

f (Hz) Grid # cores Prec T (s) M (TB)

15 1586 � 1586 � 492 131,072 19 30 0:56

20 2303 � 2303 � 767 131,072 29 87 1:67

25 3071 � 3071 � 1023 131,072 37 236 3:79

30 3839 � 3839 � 1279 131,072 45 552 7:20

35 4607 � 4607 � 1535 131,072 57 1158 12:2

40 5631 � 5631 � 1791 131,072 69 2458 20:9

Case of T2;V applied as a preconditioner of FGMRES(5) for the heterogeneous velocity field
EAGE/SEG Salt dome. Prec denotes the number of preconditioner applications, T the total
computational time in seconds and M the requested memory in TB
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Fig. 2 Complexity analysis of the improved two-grid preconditioned Krylov subspace method.
Evolution of computational time versus problem size. EAGE/SEG Salt dome. Results of Table 2

compression techniques [35, 59, 60]. To complement this study, it would be
interesting to perform the same complexity analysis, now when addressing linear
systems with multiple right-hand sides. Efficient block Krylov subspace methods
based on block size reduction at each restart [9, 10] or at each iteration [8] have
been proposed in this setting. This is left to a future line of research.

The evolution of the requested memory (M) versus the problem size is shown
in Fig. 3. As expected, the memory requirements grow linearly with the number of
unknowns, since no sparse factorization is involved neither at the global nor at local
levels in the preconditioner. We remark that the benefit of the proposed method
has to be viewed in the light of future parallel architectures with the most scalable
architectures having limited memory per core.
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Fig. 3 Complexity analysis of the improved two-grid preconditioned Krylov subspace method.
Evolution of memory requirements versus problem size. EAGE/SEG Salt dome. Results of Table 2

5 Summary and Outlook

In this chapter, we have focused on the performance of a geometric multigrid
preconditioner for the solution of wave propagation problems related to acoustic
imaging. We have proposed a two-grid preconditioner for the numerical solution
of Helmholtz problems in three-dimensional heterogeneous media. This two-grid
cycle is directly applied to the original Helmholtz operator and relies on an
approximate coarse grid solution. A second multigrid method applied to a complex
shifted Laplace operator is then used as a preconditioner to obtain the approximate
coarse solution. We have highlighted the efficiency of the multigrid preconditioner
on a concrete application in geophysics requiring the solution of problems of
huge dimension (namely, billion of unknowns) in combination with dispersion
minimizing finite difference schemes. Numerical results have demonstrated the
usefulness of the combined algorithm on a realistic three-dimensional application
at high frequency. Finally, a detailed complexity analysis has been provided to close
this chapter.

We would like to mention three recent contributions for the solution of heteroge-
neous Helmholtz problems exhibiting attractive complexities and almost frequency
independent rate of convergence. Zepeda-Núñez and Demanet [61] have proposed
an algorithm based on the combination of domain decomposition techniques and
integral equations with application to two-dimensional acoustic problems. Liu and
Ying [31, 32] have proposed enhancements of the sweeping preconditioner leading
to a O.N/ complexity for both the setup phase and the preconditioner application. A
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detailed performance comparison with the proposed numerical method on the same
benchmark problem would be interesting to perform.

In the context of inverse problems in seismic, e.g., acoustic full waveform inver-
sion, the solution of forward Helmholtz problems represents a major computational
kernel, as outlined above. For that purpose, the geometric multigrid preconditioner
used in combination with block Krylov subspace methods will play a key role to
address the solution of linear systems with multiple right-hand sides efficiently; see
[14] for a first attempt with a basic two-grid preconditioner developed in [36].

Advanced discretization methods based on Discontinuous Galerkin or high order
finite element methods on unstructured grids are nowadays frequently used in
geophysics for the solution of acoustic and/or elastic problems. Algebraic multigrid
methods [53, Appendix A] could be used as well to extend the proposed geometric
multigrid preconditioner and define an efficient numerical method in this setting;
see, e.g., [6, 33] for related contributions.

Finally, we will have to reconsider the global algorithm to fully exploit the
extreme core count of forthcoming parallel computers. Communication-avoiding
or minimizing Krylov subspace methods [30] with asynchronous variants of the
multigrid preconditioner should be developed in a near future to tackle this exciting
new challenge.
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