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Abstract In recent work we showed that the performance of the complex shifted
Laplace preconditioner for the discretized Helmholtz equation can be significantly
improved by combining it multiplicatively with a deflation procedure that employs
multigrid vectors. In this chapter we argue that in this combination the precondi-
tioner improves the convergence of the outer Krylov acceleration through a new
mechanism. This mechanism allows for a much larger damping and facilitates the
approximate solve with the preconditioner. The convergence of the outer Krylov
acceleration is not significantly delayed and occasionally even accelerated. To
provide a basis for these claims, we analyze for a one-dimensional problem a two-
level variant of the method in which the preconditioner is applied after deflation and
in which both the preconditioner and the coarse grid problem are inverted exactly.
We show that in case that the mesh is sufficiently fine to resolve the wave length,
the spectrum after deflation consists of a cluster surrounded by two tails that extend
in both directions along the real axis. The action of the inverse of the preconditioner
is to shrink the length of the tails while at the same time rotating them and shifting
the center of the cluster towards the origin. A much larger damping parameter than
in algorithms without deflation can be used.

1 Introduction

The Helmholtz equation is a classical model equation for the propagation of waves.
Examples of its use in various branches of science and engineering are given in the
references cited. Fast and scalable methods to solve the linear system that arise after
discretization are urgently needed.

The advent of the complex shifted Laplacian in [1, 2] led to a breakthrough in
solver capabilities. The basis of this work was laid in [3] and [4]. A work in which
similar ideas are proposed albeit with a different perspective is [5]. The complex
shifted Laplacian was reconsidered in [6–10] and led to a boost in tackling various
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industrial applications as documented in [11–20]. For a survey we refer to [21].
Recent publications on various solution approaches include [22–31].

The convergence of the complex shifted Laplace preconditioners is analyzed in
[10, 32, 33]. The preconditioner introduces damping and shifts small eigenvalues of
the preconditioned system away from the origin such that the outer Krylov will be
faster to converge. As the wavenumber increases while the number of grid points
per wavelength is kept constant however, the number of small eigenvalues becomes
too large for the preconditioner to handle effectively, and the required number of
outer Krylov iterations increases linearly with the wavenumber. This motivated the
development in [34] of a deflation approach aiming at removing small eigenvalues
using a projection procedure. The paper [34] considers deflating the preconditioned
operator using the columns of the coarse to fine grid interpolation operator as
deflation vectors. Themultilevel extension of the method requires a Krylov subspace
acceleration at each level. The method is therefore called a multilevel Krylov
method. Some form of approximation is required to avoid the explicit construction
of the preconditioned operator and to render the method computationally feasible.
By the approximation proposed in [34], the projection property of the deflation
operator is lost. This renders the results of a model analysis of the method using
Fourier modes more tedious to interpret.

The method we developed in [35] borrows ideas from [34]. However, instead
of deflating the preconditioned operator, we instead deflate the original Helmholtz
operator. We subsequently combined the deflation and complex shifted Laplacian
multiplicatively. We thus avoid having to approximate a computationally expensive
operator and preserve the projection property of the deflation operator. This
construction allows to

• add a term to the deflation operator to shift a set of eigenvalues away from zero
without significantly disturbing the non-zero eigenvalues. This in turn allows
to extend the deflation method to multiple levels in a multigrid hierarchy. This
multilevel extension can be interpreted as a multigrid method in which at least
formally the complex shifted Laplacian acts as a smoother. As in [34], the method
requires a Krylov acceleration at each level of the multigrid hierarchy;

• deduce the algebraic multiplicity of the zero eigenvalue of the deflated operator
in a model problem analysis. This facilitates the computation of the non-zero
eigenvalues;

• re-use implementations of the multigrid approximate inversion of the complex
shifted Laplacian to code the operation with the deflation operator. In this re-use
one has to construct the coarser grid operators by Galerkin coarsening, to provide
a Krylov acceleration on the intermediate coarse levels and to provide a flexible
Krylov method on the finest level. This can be done with for instance the PETSc
software library [36].

In our model problem analysis we employ 10 or 20 grid points per wavelength on
the finest level. We also assume that Dirichlet boundary conditions are employed.
These conditions render the boundaries reflective for outward traveling waves and
act as a worst case in terms of convergence for situations in which Sommerfeld or
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other types of absorbing boundary conditions are imposed. The spectrum of the
operator after applying deflation without any preconditioning is real-valued and
consists of a tight cluster surrounded by two tails. These tails spread in opposite
directions along the real axis as the wavenumber increases. Elements in each tail
correspond to the elements in the near-kernel of the Helmholtz operator on either
side of zero. The role of the preconditioner is to scale and rotate the eigenvalues
of the deflated operator. The spectrum of the operator after applying both deflation
and preconditioning is complex-valued and consists of a cluster surrounded by two
tails. These tails spread along a line in opposite directions in the complex plane
away from the cluster with increasing wavenumber. The abscissa and slope of this
line as well as the spread of the eigenvalues along this line are functions of the
damping parameter in the preconditioner. Our results convincingly show that the
use of deflation allows to significantly increase the damping parameter. Results in
[35] give evidence for the fact the use of deflation results in a reduction of outer
Krylov iterations. Results in [37] illustrate how the reduction of iterations leads to a
significant speed-up of the computations.

This paper is structured as follows: in Sect. 2 we present the one-dimensional
problem we intend to solve. In Sect. 3 we discuss the eigenvalues distribution
of the complex shifted Laplace preconditioned matrix for the case of Dirichlet
and Sommerfeld boundary conditions. In Sect. 4 we combine the preconditioner
multiplicatively with a deflation operator that employs multigrid vectors. In Sect. 5
we derive closed form expressions for the eigenvalues of the preconditioned deflated
system matrix through a model problem analysis. In Sect. 6 we present numerical
results. Finally, we draw conclusions in Sect. 7.

2 Problem Formulation

The Helmholtz equation for the unknown field u.x/ on the one-dimensional domain
˝ D .0; 1/ reads

� �u � .1 � ˛�/k2u D g on ˝ ; (1)

where �, ˛ 2 R
C, k.x; y/ and g.x; y/ are the imaginary unit, the damping parameter,

the wave number and the source function, respectively. Here we are primarily be
interested in solving the hard case without damping, i.e., the case in which ˛ D 0.
We use the case with damping to illustrate various arguments. The wave number
k, the frequency f and the angular frequency ! D 2�f , the speed of propagation
c.x; y/ and the wavelength � D c.x;y/

f are related by

k D 2�

�
D !

c
: (2)
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On the boundary @˝ we impose either homogeneous Dirichlet or first order
Sommerfeld radiation boundary conditions. The latter are given by

@u

@n
� �ku D 0 on @˝ : (3)

This condition renders the end points of the one-dimensional domain transparent for
outgoingwaves. The spectrum of the coefficient matrix is such that the problemwith
Dirichlet boundary conditions is harder to solve than the problem with Sommerfeld
boundary conditions as observed in e.g. [32]. This statement remains valid even if
deflation is deployed.

2.1 Finite Difference Discretization

The finite difference discretization of the above problems on a uniform mesh with
mesh width h using the stencil

ŒAh� D 1

h2

��1 2 � .1 � ˛�/�2 �1
�
where � D k h ; (4)

results after elimination of the boundary conditions in the linear system

Ahxh D bh ; (5)

where

Ah D ��h � .1 � ˛�/k2Ih 2 C
.n�1/�.n�1/ : (6)

The discretization requires due care to avoid the pollution error [38, 39]. This can
be done by either imposing a minimum number of grid points per wavelength or by
imposing the more stringent condition that k2 h3 remains constant.

2.2 Eigenvalues of the Discrete Helmholtz Operator

The linear system matrix Ah is sparse and symmetric. In the case of no damping and
a sufficiently high wave-number (and thus a sufficiently fine mesh), Ah is indefinite
and has a non-trivial near-null space. In case that the constant wave number
one-dimensional problem is supplied with Dirichlet boundary conditions and is
discretized using a uniform mesh with mesh width h D 1=n, the eigenvalues of
Ah are easy to compute. As other types of boundary conditions introduce some form
of damping, the resulting spectrum is generally more favorable for the convergence
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of the outer Krylov acceleration. This implies that the use of Dirichlet boundary
conditions acts as a worst-case scenario in the analysis of the convergence of Krylov
methods via the spectrum. With these assumptions, the eigenvalues of Ah are the
negatively shifted eigenvalues of the discrete Poisson operator and are given by
Sheikh et al. [35] and Ernst and Gander [40]

�`.Ah/ D 1

h2
.2 � 2c` � �2/ ; (7)

for 1 � ` � n � 1, where

c` D cos.` � h/ : (8)

The corresponding eigenvectors are the orthogonal set of discrete sine modes
denoted by �` where 1 � ` � n�1. Each �` is thus a vector with n�1 components
indexed by i and given by

�`
i D sin.i h ` �/ for 1 � i � n � 1 : (9)

The mutual orthogonality of the �`’s implies that the matrix Ah is normal and that
theory for the convergence of GMRES applies. In case that damping is included in
the Helmholtz equation, a purely imaginary contribution is added to (7), shifting the
eigenvalues away from the origin. This increase in distance away from the origin
makes the damped version easier to solve. From (7), it follows that the eigenvalues
of the h2-scaled operator h2 Ah vary continuously between

�1.h2 Ah/ Ð ��2 and �n�1.h2 Ah/ Ð 4 � �2 (10)

where c1 Ð 1 and cn�1 Ð �1, respectively.
In case that damping is added in the Helmholtz equation (1) by setting the

damping parameter ˛ > 0, the imaginary component �˛k2 is added to the eigenvalue
expression (7). The eigenvectors remain unaltered. The eigenvalues are shifted
upwards in the complex plane, and the problem becomes easier to solve iteratively.

In case that the Dirichlet boundary conditions are replaced by the Sommerfeld
boundary conditions, both the eigenvalues and the eigenvectors change. An ana-
lytical computation of the spectrum in the limit of large k can be found in [41].
For the undamped case and for k D 100 and 10 grid points per wavelength, we
computed the spectrum of the h2-scaled matrix h2 Ah numerically. We plotted the
sorted real and imaginary part of the eigenvalues as a function of the index ` in
Fig. 1a and b, respectively. The sorting is such that different orderings are used
in both figures. The real part closely resembles the expression for the Dirichlet
case given by (7). The presence of a non-zero imaginary part in the eigenvalues
render the use of Sommerfeld boundary conditions similar to the case of damping
with Dirichlet boundary conditions with damping. The imaginary contribution shifts
the eigenvalues away from the origin and renders the problem easier to solve
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Fig. 1 Eigenvalues and magnitude of the second and fifth eigenmode of the discrete Helmholtz
operator with Sommerfeld boundary conditions for k D 100 using 10 grid points per wavelength.
(a) Sorted real part of eigenvalues. (b) Sorted imaginary part of eigenvalues. (c) Magnitude of
second eigenmode. (d) Magnitude of fifth eigenmode

numerically. The magnitude of the second and fifth eigenvector is shown as a
function of the grid index in Fig. 1c and d, respectively.

2.3 Multigrid Considerations

In the previous paragraph we assumed the mesh to be sufficiently fine to represent
the wavelength. In this paper we will however consider an approach in which the
Helmholtz equation without damping is discretized on a hierarchy of increasingly
coarser meshes. This is the essential difference with CSLP precondition in previous
work [1, 2] in which the original Helmholtz equation is discretized on the finest
mesh only and in which the Helmholtz equation with damping only is coarsened.

The discretization of the undamped Helmholtz equation on the multigrid hier-
archy motivates looking into properties of h2 Ah on the different levels of this
hierarchy. We will derive bounds on the eigenvalues and a measure for the diagonal
dominance of h2 Ah into account. For a fixed value of the wavenumber, each level
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Table 1 Eigenvalue bounds and diagonal dominance measure of the h2-scaled discretized
Helmholtz operator h2 Ah for fixed wavenumber and for various values of the number of grid
points per wavelength (gpw) on a multigrid hierarchy with five levels

� gpw �1.h2 Ah/ D ��2 �n�1.h2 Ah/ D 4 � �2 j2 � �2j
0.3125 20 �0.0977 3.9023 1:9023

0.625 10 � 0.3906 3.6094 1:6094

1.25 5 �1.5625 2.4375 0:4375

2.5 2.5 �6.25 �2.25 4:2500

5 1.25 �25 �21 23

of the hierarchy corresponds to a number of grid points per wavelength, and thus
to a value of �. Here we will consider the case in which the Helmholtz operator
on the coarser levels is obtained via rediscretization and leave the case of Galerkin
coarsening to later in the paper. To obtain bounds for the eigenvalues of the discrete
Helmholtz operator on each level of the hierarchy in case of rediscretization, it
suffices to substitute the corresponding value for � into the bounds (10). As a
measure for the diagonal dominance, we will adopt the absolute value of the
diagonal element j2��2j. For a multigrid hierarchy consisting of five levels obtained
by standard h ! 2h coarsening each level except for the coarsest, the eigenvalue
bounds (10) and the value of j2 � �2j are tabulated in Table 1. Motivating this
measure for diagonal dominance is the fact that the weight of the off-diagonal
elements does not change in traversing the hierarchy. The middle columns of Table 1
shows that in traversing the multigrid hierarchy from finest to coarsest level, the
spectrum shifts in the negative direction and that on a sufficiently coarse level (here
at 2.5 grid points per wavelength) even the largest eigenvalue becomes negative.
From that level onward, the matrix ceases to be indefinite. The right-most column
of Table 1 shows that the measure for the diagonal dominance initially decreases
and increases again starting at a sufficiently coarse level (here again at 2.5 grid
points per wavelength). At this coarsest level, the problem can be easily solved
using the method of Jacobi for instance. For k D 1000 and for 10 grid points per
wavelength for instance, the problem becomes definite and diagonally dominant
starting from the third coarsest level onward. On these levels the use of complex
solution algorithms such as the CSLP preconditioner is unnecessary. Similar ideas
have already been discussed in [42]. We will return to this observation when
discussing how to choose the damping parameter in the complex shifted Laplace
preconditioner on the intermediate coarser levels.

3 Complex Shifted Laplace Preconditioner

In this section we introduce the complex shifted Laplace preconditioner [1, 2] and
derive closed form expressions for the eigenvalues of the preconditioner and the
preconditioned operator. We will in particular look into the effect of choosing a
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very large damping parameter in the preconditioner. The information collected in
this section will serve as a reference for our model problem analysis in Sect. 5.

Denoting by ˇ2 the strictly positive damping parameter, the complex shifted
Laplace (CSLP) preconditioner can be written as

Mh;ˇ2 D ��h � .1 � �ˇ2/�
2Ih where ˇ2 2 R

C n 0 : (11)

The value of ˇ2 needs to balance the quality of the preconditioner (favoring a
small value) with the ease of approximately inverting it (favoring a large value).
We assume that the boundary conditions implemented in Ah are imposed on Mh;ˇ2

as well. In both the case of Dirichlet and Sommerfeld boundary conditions, the
submatrices of Mh;ˇ2 and Ah corresponding to the interior nodes differ by a scalar
multiple of the purely imaginary constant diagonal matrix ��2Ih. In the absence and
presence of damping, the scalar involved is equal to ˇ2 and ˇ2 � ˛, respectively.

3.1 Eigenvalues of the CSLP Preconditioner

Given that the matrices Ah andMh;ˇ2 differ by a purely imaginary constant diagonal
contribution, the eigenvalues of Mh;ˇ2 are the eigenvalues of Ah shifted along the
imaginary axis. In both the case of Dirichlet and Sommerfeld boundary conditions,
the eigenvectors of Mh;ˇ2 and Ah are the same. In the one-dimensional problem
with Dirichlet boundary conditions, we have that the eigenvalues of the h2-scaled
preconditioner h2 Mh;ˇ2 for 1 � ` � n � 1 are given by

�`.h2 Mh;ˇ2 / D 2 � 2 c` � �2.1 � �ˇ2/ : (12)

Let 	`.h2 Mh;ˇ2 / denote the inverse of this eigenvalue. Separating this inverse into a
real and imaginary part, we obtain

	`.h2 Mh;ˇ2 / D 1

2 � 2 c` � �2.1 � �ˇ2/
(13)

D 2 � 2 c` � �2

Œ2 � 2 c` � �2�2 C �4ˇ2
2

� �
�2ˇ2

Œ2 � 2 c` � �2�2 C �4ˇ2
2

D 2 � 2 c` � �2

j�`.h2 Mh;ˇ2/j
� �

�2ˇ2

j�`.h2 Mh;ˇ2 /j
D ReŒ	`.h2 Mh;ˇ2 /� C �ImŒ	`.h2 Mh;ˇ2 /� :

From these expressions we conclude that for 1 � ` � n � 1

0 < ReŒ	`.h2 Mh;ˇ2 /� < 1 8ˇ2 > 0; (14)

�1 < ImŒ	`.h2 Mh;ˇ2 /� < 0 8ˇ2 > 0 ; (15)
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and that in the limit for strong damping that

ReŒ	`.h2 Mh;ˇ2 /� ! 0 as ˇ2 ! C1; (16)

ImŒ	`.h2 Mh;ˇ2 /� ! 0 as ˇ2 ! C1 : (17)

These results will be used to derive expressions for the eigenvalues of the precondi-
tioned operator and the deflated preconditioned operator in the next paragraph and
the next section, respectively.

3.2 Eigenvalues of the CSLP Preconditioned Operator

In deriving the eigenvalues of the preconditioned operator, we will assume the
preconditioner to be inverted exactly. We will consider both the case of Dirichlet
and Sommerfeld boundary conditions. In the former case, M�1

h;ˇ2
and Ah share the

set of discrete sine modes given by (9). In the absence of damping, the eigenvalues
of the preconditioned operatorM�1

h;ˇ2
Ah are the scaled and rotated eigenvalues of Ah

given by

�`.M�1
h;ˇ2

Ah/ D 	`.Mh;ˇ2 / �`.Ah/ (18)

D ReŒ	`.h2 Mh;ˇ2 /� �`.Ah/ C � ImŒ	`.h2 Mh;ˇ2 /� �`.Ah/

D �`.Ah/.2 � 2 c` � �2/

Œ2 � 2 c` � �2�2 C �4ˇ2
2

� �
�`.Ah/�

2ˇ2

Œ2 � 2 c` � �2�2 C �4ˇ2
2

:

This computation can be generalized to include non-zero damping (i.e., ˛ D 0) in
the Helmholtz equation. In the case of Sommerfeld boundary conditions, we will
resort to the numerical computations of the eigenvalues.

In Fig. 2 we plotted the eigenvalues�`.M�1
h;ˇ2

Ah/ for 1 � ` � n�1 in the complex
plane for k D 1000 and 10 grid points per wavelength for four cases. In all four cases
we highlighted a small region around the origin with a circle. In Fig. 2a we consider
the case of Dirichlet boundary conditions without damping using ˇ2 D 0:5. We
used shaded and non-shaded symbols to distinguish the eigenvalues that correspond
to the index ` for which �`.Ah/ is negative and positive, respectively. Clearly both
the real and imaginary part of M�1

h;ˇ2
Ah are small for those values of ` for which

�`.Ah/ shows a change of sign, i.e., for the values of ` that correspond to the near-
kernel of Ah. These small eigenvalues hamper the convergence of the outer Krylov
acceleration.

In Fig. 2b we consider again the case of Dirichlet boundary conditions without
damping, this time using the larger value ˇ2 D 1. Comparing this figure with
Fig. 2a confirms that for larger values of ˇ2 the eigenvalues 	`.Mh;ˇ2 / and therefore
the eigenvalues �`.M�1

h;ˇ2
Ah/ shift towards the origin. This causes the quality of
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Fig. 2 Eigenvalues of the CSLP preconditioned operator for various preconditioning strategies
for k D 1000 using 10 grid points per wavelength. (a) No damping and ˇ2 D 0:5. (b) No damping
and ˇ2 D 1. (c) ˛ D 0:02 and ˇ2 D 0:5. (d) Sommerfeld and ˇ2 D 0:5

the preconditioner to degrade. The analysis in [32] shows that a similar shift of
eigenvalues towards the origin occurs as k increases while ˇ2 and � is kept constant.

In Fig. 2c we consider once more the case of Dirichlet boundary conditions, this
time using a damping coefficient ˛ D 0:02. Comparing this figure with Fig. 2a
shows that by introducing damping in the Helmholtz equation, the eigenvalues
close to the origin shift towards the right in the complex plane. The increase of
the magnitude of the eigenvalues that are small in size renders the preconditioned
systems easier to solve.

In Fig. 2d finally we consider the case of Sommerfeld boundary conditions. This
figure closely resembles to Fig. 2c. The introduction of the Sommerfeld boundary
conditions is seen to introduce damping that causes a shift of small eigenvalues away
from the origin. The preconditioned system again becomes easier to solve.
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4 Combining Deflation and Precondition Multiplicatively

In this section we describe how we combine the complex shifted Laplacian
preconditioner (CSLP) with a deflation technique. This approach is motivated by
the fact that the convergence of the CSLP preconditioned Krylov acceleration is
hampered by a few eigenvalues that are small in size. This is especially a problem
in cases without damping. The objective of deflation is to remove these undesirable
eigenvalues by a projection procedure. We describe the deflation technique on two
levels, its extension to multiple levels, and the multiplicative combination of the
preconditioner and the deflation technique.

4.1 Deflation by Two-Grid Vectors

Assuming p to be a non-zero natural number, we discretize the computational
domain ˝ D .0; 1/ by a uniform mesh with n D 2p elements and mesh width h D
1=n resulting in a fine mesh ˝h. The discretization of the Helmholtz equation results
after elimination of the boundary nodes in a discrete operator Ah 2 C

.n�1/�.n�1/.
Standard h ! H D 2h coarsening of the fine mesh ˝h results in a coarse mesh ˝H

with n=2 � 1 internal nodes. We denote by Zh;H 2 R
.n�1/�.n=2�1/ the coarse-to-fine

grid interpolation operator. We employ a linear interpolation operator that, for fine
grid points not belonging to the coarse grid, has the stencil

ŒZh;H � D 1

4

�
1 2 1

�h
H

: (19)

The columns of Zh;H are referred to as the deflation vectors. A deflation technique
that uses these vectors is referred as two-grid deflation. The restriction operator is
set equal to the full-weighting restriction operator. With this choice the restriction
is equal to the transpose of the interpolation. This construction fits the theoretical
framework of deflation methods.

The coarse grid operator EH is constructed by Galerkin coarsening

EH D ZT
h;H Ah Zh;H 2 C

.n=2�1/�.n=2�1/ : (20)

The spectral properties of EH will be discussed in the next section. We then define
the coarse grid solve operator Qh;H as

Qh;H D Zh;H E�1
H ZT

h;H 2 C
.n�1/�.n�1/ ; (21)

and the deflation operator Ph;H as

Ph;H D Ih � Ah Qh;H 2 C
.n�1/�.n�1/ : (22)
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The construction of EH by Galerkin coarsening is such that Ph;H satisfies the relation
P2
h;H D Ph;H . Ph;H is thus a projection and has eigenvalues 0 and 1. The matrix Ph;H

corresponds to the residual propagation matrix in a basic iterative solution method
based on the splitting Ah D Qh;H � .Qh;H � Ah/ for the linear system (5).

By applying deflation, the linear system (5) is transformed into

Ph;H Ahxh D Ph;H bh : (23)

The columns of Zh;H lie in the kernel of the deflated operator [43], i.e.,

Ph;H Ah Zh;H D 0.n�1/�.n=2�1/ : (24)

The matrix Ph;H Ah is thus singular and has a zero eigenvalue with multiplicity
n=2 � 1. The computation of the remaining n=2 eigenvalues will be shown in the
next section. The solution of the linear system (23) is defined up to a component in
the kernel of Ph;H Ah. Such a solution can be found by a Krylov subspace method
on the condition that in the application of Ph;H the coarse linear system with EH is
solved to full precision at each iteration. What this condition implies and how it can
be alleviated will be discussed in the next paragraph.

4.2 Multilevel Extension

For large problems in two or three dimensions, the exact inversion of the coarser
grid matrix EH is impractical and one has to resort to approximate coarser grid
solves. Without proper care, this will however lead to the zero eigenvalue of Ph;H Ah

to be replaced by a cluster of near-zero eigenvalues. Such a cluster impedes the fast
convergence of the outer Krylov acceleration. This can be avoided introducing a
shift over a distance 
 with Qh;H in the deflation operator Ph;H and to define Ph;H;


as

Ph;H;
 D Ph;H C 
 Qh;H D Ih � Ah Qh;H C 
 Qh;H : (25)

With this definition, the equivalent of (24) for Ph;H;
 is

Ph;H;
 Ah Zh;H D 
 Zh;H ; (26)

i.e., 
 is an eigenvalue with multiplicity n=2 � 1 of deflated matrix Ph;H;
 Ah. The
value of 
 is chosen once a choice for the preconditioner is made. We will give
details in the next paragraph. The shift away from zero of the eigenvalues of the
deflated matrix allows to solve the coarse grid system with coefficient matrix EH

approximately for instance by a recursive application of the two-level algorithm
described. The use of a Krylov subspace solver on the coarser level requires to resort
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to a flexible Krylov subspace solver on the fine level. The depth of the multigrid
cycle can be limited in accordance to the discussion given in Sect. 2.

4.3 Multiplicative Combining of Preconditioning and Deflation

The CSLP preconditionerMh;ˇ2 and the deflation operator Ph;H;
 including the shift
with 
 can be combined multiplicatively to construct a composite preconditioner. If
the precondition is applied after the deflation, the linear system to be solved can be
written as

Bh;H;ˇ2;
 x D .M�1
h;ˇ2

Ph;H C 
 Qh;H/ b ; (27)

where Bh;H;ˇ2;
 is the preconditioned deflated operator

Bh;H;ˇ2;
 D .M�1
h;ˇ2

Ph;H C 
 Qh;H/Ah : (28)

In case that 
 D 1, the matrix I � Bh;H;ˇ2;
 is the error propagation matrix of a
two-grid V.0; 1/ cycle applied to the linear system (5) with Galerkin coarsening and
with Mh;ˇ2 assuming at least formally the role of the smoother. In case that 
 ¤ 1,
the composite preconditioner can be implemented as the additive combination of
previously described V.0; 1/ cycle and a shift with 
 D 1. Closed form expressions
for the eigenvalues of Bh;H;ˇ2;
 defined by (28) for 
 D 0 and 
 ¤ 0 will be derived
in the next section.

4.4 Comments on a Practical Implementation

An implementation of a multigrid approximate inversion CSLP as preconditioner
can be easily extended to its combined use with the above described deflation
technique. The multigrid components already in place can be recycled. A flexible
Krylov acceleration on each level is required.

5 Model Problem Analysis

In this section we first derive closed form expressions for the eigenvalues of the
Galerkin coarse grid operator EH and the deflation operator Ph;H defined by (20)
and (22), respectively. Next we extend this analysis of the eigenvalues of the deflated
operator Ph;H Ah and the preconditioned deflated operatorM�1

h;ˇ2
Ph;H Ah given in the

left-hand side of (23) and (27) with 
 D 0, respectively. We consider the one-
dimensional problemwith Dirichlet boundary conditionswith and without damping.
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Based on the arguments on the resemblance of the eigenvalues in the problem with
damping and with Sommerfeld boundary conditions in Sect. 2, we assume here that
the problem with damping in the Helmholtz equation offers a good representation
of the problem with Sommerfeld boundary conditions. We will derive expression
for the eigenvalues by computing the action of these operators on the set of discrete
sine modes defined by (9). This analysis is referred to a Rigorous Fourier analysis to
distinguish it from a Local Fourier analysis in which the influence of the boundary
conditions is not taken into account. Assuming Dirichlet boundary conditions, the
set of sine modes �`

h given by (9) forms a basis in which both the discrete operator
Ah and the preconditionerMh;ˇ2 are diagonal. The analysis of the coarse operator EH

and the deflation operator Ph;H requires care in handling the grid aliasing effect in
the intergrid transfer operators Zh;H and ZT

h;H . The eigenvalue expressions resulting
from our analysis are fractions in which the eigenvalues of the coarse grid operator
EH appear in the denominator. These expressions form the basis for a subsequent
analysis. The scattering of the eigenvalues along both sides of the real axis in case
of 10 grid points per wavelength for instance can then be related to the near-kernel
eigenvalues of the coarse grid operator EH.

We assume the one-dimensional problem on ˝ D .0; 1/ with Dirichlet boundary
conditions to be discretized by a uniform mesh with mesh width h. The coarse
mesh obtained by standard coarsening then has a mesh width H D 2 h. The use
of Dirichlet boundary conditions was motivated in Sect. 2. We will perform a two-
level analysis and assume that the Galerkin coarse grid operator EH defined by (20)
is inverted exactly. By reordering the eigenvectors of Ah defined by (9) in a standard
way in .`; n � `/ pairs [44], we obtain the basis

Vh D f.�`
h; �n�`

h / j ` D 1; : : : ; n=2 � 1g [ f�n=2
h g : (29)

The modes �`
h and �n�`

h form a pair by coarse grid aliasing. In the basis (29)
first the deflation operator Ph;H , subsequently the deflated operator Ph;H Ah and
finally the preconditioned deflated operator M�1

h;ˇ2
Ph;H Ah can be written in a block

diagonal form. For a generic .n � 1/ � .n � 1/ matrix B, we will denote this block
decomposition as

B D �
.B/`

�
1�`�n=2

; (30)

where for 1 � ` � n=2 � 1 the block .B/` is of size 2 � 2 and where for ` D n=2

the block B` is a number. From this block diagonal form the eigenvalues of B can
be computed with relative ease. For the restriction operator ZT

h;H and the coarse grid
operator EH that have size .n=2 � 1/ � .n � 1/ and .n=2 � 1/ � .n=2 � 1/ the size
of the diagonal blocks reduces to 1 � 2 and 1 � 1, respectively.

In the following we will subsequently compute the eigenvalues of the Galerkin
coarse grid operator EH, the deflation operator Ph;H , the deflated operator Ph;H Ah

and finally the preconditioned deflated operator without shiftM�1
h;ˇ2

Ph;H Ah and with

shift .M�1
h;ˇ2

Ph;H C 
 Qh;H/Ah. As before, we will especially look into large values
of the damping parameter ˇ2.
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5.1 Eigenvalues of the Coarse Grid Operator EH

The block diagonal representation of the interpolation operator ZT
h;H in the basis (29)

can be obtained by a standard computation [44]. Using the fact that cn�` D �c`, one
obtains for 1 � ` � n=2 � 1 the 1 � 2 blocks

.ZT
h;H/` D 1=2

�
.1 C c`/ �.1 � c`/

�
: (31)

Given the n=2-th sine mode �n=2 is equal to zero in all the coarse grid nodes and
given the stencil (19), we have that

.ZT
h;H/n=2 D 1=2 : (32)

The diagonal block of the discrete operator Ah in the basis (29) are for 1 � ` �
n=2 � 1 given by

.Ah/
` D

�
�`.Ah/ 0

0 �n�`.Ah/

�
D 1

h2

�
2 � 2c` � �2 0

0 2 C 2c` � �2

�
; (33)

and for ` D n=2 by

.Ah/
n=2 D .�2 � 2/=h2 : (34)

The 1 � 1 diagonal blocks .EH/` of the Galerkin coarse grid operator are obtained
by the Galerkin coarsening of the individual blocks and results for all coarse grid
values of ` including ` D n=2 in

.EH/` D .ZT
h;H/`.Ah/

`.ZH;h/
` D 1

2h2
Œ2.1 � c2

`/ � �2.1 C c2
`/� : (35)

Given that in the basis (29) the operator EH is diagonal, we have that the `-th
eigenvalue �`.EH/ is equal to the `-th diagonal block .EH/`. The eigenvalues of
the H2-scaled operator EH are then for 1 � ` � n=2 given by

�`.H2 EH/ D �.2 C 2c2
`/ �2 C 4 � 4c2

` : (36)

In the end points of the range from ` D 1 to ` D n=2, these expressions reduce to

�1.H2 EH/ Ð �4�2 < 0 and �n=2.H2 EH/ Ð 4 � 2�2 > 0 ; (37)

where c`D1 Ð 1 and c`Dn=2 D 0, respectively. In the range of ` considered, close to
zero eigenvalues of �`.H2 EH/ thus exist. The expressions (36) are the coarse grid
equivalents of (10) and can be generalized to the case with damping by introducing
a shift with � ˛ �2.
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Fig. 3 Eigenvalues of the Helmholtz Galerkin coarse grid operator EH for k D 1000 as a function
of the index ` on a multigrid hierarchy consisting of five levels. On the finest level 40 grid points
per wave length are employed. On each coarser level the number of grid points per wave length is
halved. (a) 40 gpw; (b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw

In Fig. 3 we plotted �`.H2 EH/ given by (37) as a function of ` for k D 1000 using
various grid points per wavelength ranging from 40 (corresponding to � D 0:15625)
in the top left of the figure to 2:5 (corresponding to � D 2:5) in the bottom of the
figure. This figure clearly shows that in traversing the multigrid hierarchy from finest
to coarser level (and thus increasing �) the eigenvalues of the coarse grid operator
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EH shift towards the left on the real plane until all eigenvalues become negative and
bounded away from zero on sufficiently coarse grids (sufficiently large values of �).
This is in accordance with the bounds (37).

The fact that in problemswithout damping the matrixEH on fine and intermediate
levels has several close to zero eigenvalues will play a central role in the subsequent
analysis. By introducing damping, the issue of these small eigenvalues will be
alleviated to some extent.

5.2 Eigenvalues of the Deflation Operator Ph;H

The diagonal blocks .Ph;H/` of the deflation operator Ph;H are for 1 � ` � n=2 � 1

given by

.Ph;H/` D I � .Zh;H/` Œ.EH/`��1 .ZT
h;H/` .Ah/

` ; (38)

and for ` D n=2 by

.Ph;H/n=2 D 1 : (39)

As Ph;H is a deflation operator, the individual 2 � 2 blocks .Ph;H/` are projections
as well and therefore have 0 and 1 as eigenvalue. Less immediate results will follow
next.

5.3 Eigenvalues of the Deflated Operator Ph;H Ah

The diagonal blocks .Ph;H Ah/
` of the deflated operator Ph;H Ah are for 1 � ` �

n=2 � 1 given by

.Ph;H Ah/
` D .Ph;H/` .Ah/

`

D .Ah/
` � .Zh;H/` Œ.EH/`��1 .ZT

h;H/` Œ.Ah/
`�2 ; (40)

and for ` D n=2 by

.Ph;H Ah/
n=2 D .2 � �2/=h2 : (41)

Property (24) translates on the 2 � 2 block level to .Ph;H Ah/
`.Zh;H/` D 02�1. Block

.Ph;H Ah/
` thus has a zero eigenvalue with multiplicity one. The remaining non-

zero eigenvalue is then equal to the trace TrŒ.Ph;H Ah/
`�. Computations show that for
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1 � ` � n=2 � 1 the elements of the h2-scaled block h2 .Ph;H Ah/
` are given by

h2 .Ph;H Ah/
` D 1

�`.H2 EH/

 
pa`

11;h;H pa`
12;h;H

pa`
21;h;H pa`

22;h;H

!

; (42)

where the four matrix elements pa`
ij;h;H for 1 � i; j � 2 are polynomials of second

degree in �2. The diagonal elements pa`
11;h;H and pa`

22;h;H are more precisely given
by

pa`
11;h;H D .c` � 1/2.2c` � 2 C �2/.2c` C 2 � �2/ (43)

pa`
22;h;H D .c` C 1/2.2c` � 2 C �2/.2c` C 2 � �2/ : (44)

Observe that these expressions only differ by the sign in the first factor. As the
off-diagonal elements pa`

12;h;H and pa`
21;h;H are not required to compute the trace,

their detailed expression is omitted here. The non-zero eigenvalue of the `-th block
h2 .Ph;H Ah/

` is then given by

�`
�
h2 Ph;H Ah

� D TrŒh2 .Ph;H Ah/
`�

D 1

�`.H2EH/
Œpa`

11;h;H C pa`
22;h;H�

D 2

�`.H2EH/
.c2

` C 1/.2c` � 2 C �2/.2c` C 2 � �2/ : (45)

Give that the deflated operator involves a coarse grid solve, it is natural that the
eigenvalue �`.H2EH/ of the coarse grid operator appears in the denominator. In the
range from ` D 1 to ` D n=2, the eigenvalues (45) decrease from

�1
�
h2 Ph;H Ah

�
Ð 4 � �2 to �n=2

�
h2 Ph;H Ah

� D 2 � �2 (46)

where c`D1 Ð 1 and c`Dn=2 D 0, respectively. This decrease is however not
monotone. Indeed, for those values of ` that corresponds to the near-kernel ofH2 EH ,
the numerator of (45) is finite and the denominator very small. The eigenvalues
�`
�
h2 Ph;H Ah

�
thus become very large for those values of `. Stated differently, the

closest-to-zero eigenvalue of H2EH causes of a vertical asymptote to appear in the
plot of �`

�
h2 Ph;H Ah

�
versus `.

In Fig. 4 we plotted �`
�
h2 Ph;H Ah

�
given by (45) as a function of ` for k D 1000.

As in Fig. 3, we consider a sequence of five grids in which the number of grid points
per wavelength ranges from 40 on the finest to 2.5 on the coarsest. On each level we
consider a two-level construction of the deflation operator. For illustration purposes,
we superimposed in each plot of �`

�
h2 Ph;H Ah

�
a plot of �`

�
H2 EH

�
. On the y-axis

we labeled the extreme values 2 � �2 and 4 � �2. In the various subfigures of Fig. 4,
the eigenvalues are seen to be bounded by 2 � �2 and 4 � �2, except for values close
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Fig. 4 Eigenvalues of the Helmholtz Galerkin coarse grid operator EH (dashed line) and the two-
grid deflated Helmholtz operator Ph;H Ah (solid line) for k D 1000 as a function of the index ` on a
multigrid hierarchy consisting of five levels. On the finest level 40 grid points per wave length are
employed. On each coarser level the number of grid points per wave length is halved. (a) 40 gpw;
(b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw
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to a vertical asymptote. The value of ` for which this asymptote occurs, is seen
to coincide with the value of ` for which �`

�
H2 EH

�
Ð 0. This value of ` shifts

towards the right on coarser meshes until disappearing completely. This agrees with
our discussion of �`

�
H2 EH

�
in the previous paragraph. The number of eigenvalues

large in size of h2 Ph;H Ah is proportional to the number of close-to-zero eigenvalues
of H2 EH. This number is small on the finest mesh considered in Fig. 4, increases on
intermediate coarser meshes and is zero on the coarsest mesh.

The previous discussion implies that in a plot �`
�
h2 Ph;H Ah

�
on the real axis

(instead of versus ` as before), the spectrum appears clustered between 2 � �2 and
4��2, except for two tails that spread along both sides of the real axis. The spread of
these tails is inversely proportional to the size of the smallest eigenvalues of H2EH .
The number of elements in these tails is proportional to the number close-to-zero
eigenvalues of EH . For a fixed value of the wavenumber, the spread and number of
elements in the tail vary with the number of grid points per wavelength employed.

5.4 Eigenvalues of the Preconditioned Deflated Operator
M�1

h;ˇ2
Ph;H Ah

The diagonal blocks of the preconditioned deflated operator .M�1
h;ˇ2

Ph;H Ah/
` are for

1 � ` � n=2 � 1 given by

.M�1
h;ˇ2

Ph;H Ah/
` D .M�1

h;ˇ2
/` .Ph;H Ah/

` : (47)

and for ` D n=2 by

.M�1
h;ˇ2

Ph;H Ah/
n=2 D 2 � �2

2 � �2.1 � �ˇ2/
: (48)

From the singularity of the block .Ph;H Ah/
` and (47) follows that the `-th diagonal

block .M�1
h;ˇ2

Ph;H Ah/
` is singular as well. Its non-zero eigenvalue can thus be

computed by merely computing its trace. The diagonal blocks of the h2-scaled
preconditioner h2 Mh;ˇ2 in the basis (29) are for 1 � ` � n=2 � 1 given by

.h2 Mh;ˇ2/
` D

�
�`.h2 Mh;ˇ2 / 0

0 �n�`.h2 Mh;ˇ2 /

�
(49)

Assuming the preconditioner to be inverted exactly, the diagonal blocks of the
inverse of the preconditioner are given by

.h�2 M�1
h;ˇ2

/` D
�

	`.h2 Mh;ˇ2 / 0

0 	n�`.h2 Mh;ˇ2 /

�
: (50)
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The non-zero eigenvalue of the `-th diagonal block .M�1
h;ˇ2

Ph;H Ah/
` is then given by

�`.M�1
h;ˇ2

Ph;H Ah/ D TrŒ.M�1
h;ˇ2

Ph;H Ah/
`� (51)

D 1

�`.H2EH/

�
	`.h2 Mh;ˇ2 / pa

`
11;h;H C

	n�`.h2 Mh;ˇ2 / pa
`
22;h;H

�
:

Observe that the eigenvalues of the Galerkin coarse grid operator EH appear in the
denominator. The coefficients pa`

11;h;H and pa`
22;h;H are real-valued. It is thus easy

to split the non-zero eigenvalue �`.M�1
h;ˇ2

Ph;H Ah/ is a real and imaginary part and
obtain for 1 � ` � n=2 � 1

Re
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
D 1

�`.H2 EH/

�
Re
�
	`.h2 Mh;ˇ2 /

�
pa`

11;h;H C

Re
�
	n�`.h2 Mh;ˇ2 /

�
pa`

22;h;H

	
; (52)

and

Im
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
D 1

�`.H2 EH/

�
Im
�
	`.h2 Mh;ˇ2 /

�
pa`

11;h;H C

Im
�
	n�`.h2 Mh;ˇ2 /

�
pa`

22;h;H

	
: (53)

Next we will use the results derived in Sect. 3 to find upper bounds for this real
and imaginary part. These bounds will allow us to argue how the preconditioner
transforms the eigenvalues of the deflated operator and how in particular the value
of the damping parameter ˇ2 affects this transformation.

We start by considering the real part (52). The inequality (14) states that both
Re
�
	`.h2 Mh;ˇ2 /

�
and Re

�
	n�`.h2 Mh;ˇ2 /

�
are bounded above by 1. We thus have

that

Re
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
� 1

�`.H2 EH/

�
pa`

11;h;H C pa`
22;h;H

	
D �`.h2 Ph;H Ah/ ;

(54)

where we have used expression (45) for �`.h2 Ph;H Ah/. The distance between

Re
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
and �`.h2 Ph;H Ah/ can be increased by taking large values

of ˇ2. This is particularly interesting for those values of ` for which �`.h2 Ph;H Ah/

is large in size, i.e., for those values of ` corresponding to the near-null space of EH .
By taking large values of ˇ2, these large values of �`.h2 Ph;H Ah/ can be reduced,
i.e., brought back to the center of the cluster of the eigenvalues by the action of
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the preconditioner. Eigenvalues �`.h2 Ph;H Ah/ that lie in the interval from 2 � �2 to
4 � �2 are mapped to eigenvalues with a real part in a bounded interval. The length
of this interval shrinks and its midpoint shift to zero of ˇ2 increases. Despite of this
shift to zero, a larger damping than in the case without deflation can be chosen.

Next we consider the imaginary part (53). We use the expression in (18) to rewrite
the imaginary parts Im

�
	`.h2 Mh;ˇ2/

�
and Im

�
	n�`.h2 Mh;ˇ2/

�
to obtain that

Im
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
D �ˇ2�

2

�`.H2 EH/

�
pa`

11;h;H

j�`.h2 Mh;ˇ2/j
C pa`

22;h;H

j�n�`.h2 Mh;ˇ2 /j
	

: (55)

On meshes with a sufficient number of grid points per wavelength, �2 is a small
number. Expression (55) thus yields a small imaginary part except for those values
of ` for which �`.H2 EH/ Ð 0 and thus also �`.h2 Mh;ˇ2 / Ð 0. Eigenvalues
�`.h2 Ph;H Ah/ inside and outside the interval from 2 � �2 to 4 � �2 are mapped
to eigenvalues with an imaginary part that is small and that increases proportionally
to ˇ2, respectively.

In Fig. 5 we plotted the non-zero eigenvalues of M�1
h;ˇ2

Ph;H Ah in the complex
plane for k D 1000 and ˇ2 D 1. In traversing the hierarchy from the finest to the
coarsest level, the range in the real part of the eigenvalues is seen to first increases
to subsequently decrease starting from the third coarsest level with five grid point
per wavelength. This in accordance with our previous discussion.

We can summarize the discussion by stating the action of the preconditioner is
to contract and rotate the eigenvalues of the deflated operator. This is illustrated in
Fig. 6 in which the eigenvalues �`.M�1

h;ˇ2
Ph;H Ah/ are plotted in the complex plane

for k D 1000 and ten grid point per wavelength.

6 Numerical Results

In this section we present numerical results for the one-dimensional problem on
the unit interval and the two-dimensional problem on the unit square. For both
problem we consider the problem without damping supplied with homogeneous
Dirichlet boundary conditions discretized using either 10 or 20 grid points per
wavelength. We adopt a two-level variant of the deflation operator and assume the
both preconditioner on the finest level and the coarse grid operator to be inverted
exactly. As outer Krylov we run full GMRES with a zero initial guess. We declare
convergence at the k-th iteration if the relative residual norm kAhxkh � bhk2=kbhk2

drops below 10�6. We compare the following five algorithmic variants. The first
variant merely employs A-DEF1 (without CSLP) as a preconditioner. The second,
third and fourth variant combine A-DEF1 and CSLP multiplicative with ˇ2 equal to
0:5, 1 and 10, respectively. The fifth variant employs ˇ2 D 10 and approximates the
CSLP preconditioner by its diagonal. The required numbered GMRES iterations for
the one and two-dimensional problem are given in Tables 2 and 3, respectively. For
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Fig. 5 Eigenvalues of the preconditioned deflated operatorM�1
h;ˇ2

Ph;H Ah in the complex plane for
k D 1000 and ˇ2 D 1 on a multigrid hierarchy consisting of five levels. On the finest level 40 grid
points per wave length are employed. On each coarser level the number of grid points per wave
length is halved. (a) 40 gpw; (b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw

the second and third variant we compare the multiplicative combination of A-DEF1
and CSLP with merely using CSLP as a preconditioner.

From Tables 2 and 3 we conclude that for the one and two-dimensional problem
the combined use of A-DEF1 and CSLP

• results in a lower iteration count than either A-DEF1 or CSLP used separately.
This reduction grows with the wave number;

• allows to use a large damping parameter ˇ2 without significantly increasing the
iteration count;
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Fig. 6 Eigenvalues of the preconditioned deflated operator M�1
h;ˇ2

Ph;H Ah on a fixed mesh for
various values of the damping parameter ˇ2 using 10 grid points per wavelength for k D 1000.
(a) ˇ2 D 1; (b) ˇ2 D 10; (c) ˇ2 D 100

• allows to set ˇ2 D 10 and to approximate the CSLP preconditioner by its
diagonal without significantly increasing the iteration count.

7 Conclusions

In this paper we considered a solution method for the Helmholtz equation that
combines the complex shifted Laplace preconditionerwith a deflation technique that
employs multigrid vectors. We derived closed form expressions for the eigenvalues
of the deflated preconditioned operator through a model problem analysis. From this
analysis we conclude that a much larger damping parameter can be used without
adversely affecting the convergence of outer Krylov acceleration. Further research
is required to tune the algorithmic to large scale applications.
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Table 2 Iteration count for various methods for the 1D problem without damping

1D without damping

ˇ2 D 0:5 ˇ2 D 1 ˇ2 D 10 ˇ2 D 10

k A-DEF1 CSLP/CSLP+A-DEF1 CSLP/CSLP+A-DEF1 CSLP+A-DEF1 JACOBI+A-DEF1

10 gpw

10 5 7/3 8/4 5 5

20 9 10/5 12/6 7 7

40 15 16/8 20/8 9 9

80 15 23/8 33/9 9 9

160 20 36/13 55/14 14 12

320 30 61/19 97/20 19 19

640 45 108/33 179/33 34 32

20 gpw

10 9 7/3 8/4 5 6

20 13 10/4 12/4 5 6

40 14 15/5 19/5 6 6

80 15 22/6 33/6 6 7

160 19 37/8 56/8 8 8

320 18 59/9 95/9 9 9

640 28 104/14 174/14 14 15

1280 36 190/23 328/23 23 23

Table 3 Iteration count for various methods for the 2D problem without damping

2D without damping

ˇ2 D 0:5 ˇ2 D 1 ˇ2 D 10 ˇ2 D 10

k A-DEF1 CSLP/CSLP+A-DEF1 CSLP/CSLP+A-DEF1 CSLP+A-DEF1 JACOBI+A-DEF1

10 gpw

10 18 9/5 11/5 9 11

20 24 17/7 22/8 10 11

40 36 45/16 64/16 19 21

80 68 130/43 210/41 45 46

20 gpw

5 18 5/3 6/3 5 9

10 17 9/3 11/3 3 5

15 21 12/4 16/4 5 9

20 24 16/6 22/6 7 10

30 20 29/5 40/5 5 12
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