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Foreword

The Helmholtz equation represents the time-independent part of the wave equation
for electromagnetic, seismic, and acoustic waves. It was named after the scientist
Hermann von Helmholtz (1821–1894). Today, it is one of the most used partial
differential equations in numerical simulation.

In the multibillion seismic imaging industry, being my field of expertise,
longitudinal wave fields are generated in complex geological media. These wave
fields show a broad range of space-variant wavenumbers. This broad range is caused
by seismic sources with a bandwidth up to five octaves (starting at a few Hz) and by
rock velocities that range from a few hundred m/s to many thousand m/s. In such
a challenging natural environment, accurate solutions need to be computed that are
used for the design of effective data collection geometries, for understanding the
very complex seismic responses, and for making imaging algorithms that utilize
solvers in reverse time.

Notorious problems are the accuracy of high-wavenumber solutions, where
avoiding numerical dispersion requires very fine spatial sampling. For the very
sizeable geological models, this makes these traditional solvers economically not
feasible.

I complement the authors for giving an elegant overview of Helmholtz solvers,
with emphasis on the latest developments. The book is particularly valuable by
showing the reader how to derive and use solvers that are independent of the
wavenumber. This could find wide application in all wave field simulations where
sizeable models and high wavenumbers are of large interest.

I hope that the new insights in this book will be widely used in academics and
industry to better solve the multiple forward and inverse problems that play a critical
role in the increasing amount of wave field applications worldwide.

Professor of Geosciences Emeritus, TU Delft Dr. A.J. (Guus) Berkhout
Director of the Centre for Global
Socio-Economic Change
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Introduction

We are very pleased to introduce this book on modern solvers for Helmholtz
problems. Ten years ago, in 2006, Erlangga, Oosterlee, and Vuik published their
seminal paper [1] that introduced the complex shifted Laplace preconditioner to
solve the discretized Helmholtz equation. To celebrate this tenth birthday, we
organized the TU Delft workshop entitled “Recent Developments in Fast Helmholtz
Solvers” in the spring of 2015.1 This seminar has motivated us to edit this book.
A number of speakers at the workshop contributed to this volume. The authors of
other chapters in this book accepted our invitation to share their unique insights
into the recent developments in fast and robust solvers for Helmholtz problems.
By collecting their contributions into a single volume, this unique and timely
monograph that overviews the field was created.

This book is subdivided into the following three parts, each consisting of three
chapters:

• Part I Algorithms: New Developments and Analysis

– In the first chapter of the book, Graham, Spence, and Vainikko discuss the
choice of the change in the shifted Laplace preconditioner that is approxi-
mately inverted by a domain decomposition approach.

– In the second chapter, Nannen reviews both perfectly matched layers and
Hardy space infinite elements for the treatment of unbounded domains.

– In the third chapter, Cools and Vanroose present their experiences with a
polynomial extension of the shifted Laplace preconditioner.

• Part II Algorithms: Practical Methods

– In the fourth chapter, Lahaye and Vuik elaborate on how deflation allows
to choose the shift in the shifted Laplace preconditioner to significantly
accelerate the iterative convergence.

1http://ta.twi.tudelft.nl/nw/users/domenico/ten_years_shifted_laplacians/index.html.
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xii Introduction

– In the fifth chapter, Erlangga, Garcia, and Nabben provide a theoretical
framework for the combined use of deflation and the shifted Laplacian along
with some numerical experiments.

– In the sixth chapter, Calandra, Gratton, and Vasseur describe a two-level
technique in which the coarse-level operator is approximated by the shifted
Laplacian.

• Part III Implementations and Industrial Applications

– In the seventh chapter, Plessix compares the time and frequency domain
approach for the inversion of seismic data.

– In the eight chapter, Antoine and Geuzaine review the Schwarz domain
decomposition methods for the scalar and vector Helmholtz equation.

– In the ninth and final chapter, Betcke, van ’t Wout, and Gelat present a bound-
ary element approach and give details on the discretization, preconditioning,
and fast evaluation of the involved operators.

We wish to sincerely thank a number of people and organizations who made the
TU Delft workshop and this book possible. We thank the workshop speakers for
accepting our invitation to take the stage and contribute to this book. We thank
the workshop sponsors for their financial contribution. We are grateful to Prof.
Berkhout for his foreword. We much appreciate the effort that authors took to write
their individual contributions. Both the seminar and the book would not have been
possible without the help of the support staff at the TU Delft and Springer. We hope
the reader will find this book pleasant and inspiring to read.

Delft, The Netherlands Domenico Lahaye
Delft, The Netherlands Jok Tang
Delft, The Netherlands Kees Vuik
2016
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1. Erlangga, Y.A., Oosterlee, C.W., and Vuik, C., A novel multigrid based preconditioner for
heterogeneous Helmholtz problems, SIAM Journal on Scientific Computing, 27(4), pp. 1471–
1492, 2006.



Part I
Algorithms: New Developments

and Analysis

In this part we foresee the description and analysis of new numerical solvers. Some
of them may lead to nice insights and implementation for practical use.



Recent Results on Domain Decomposition
Preconditioning for the High-Frequency
Helmholtz Equation Using Absorption

Ivan G. Graham, Euan A. Spence, and Eero Vainikko

Abstract In this paper we present an overview of recent progress on the devel-
opment and analysis of domain decomposition preconditioners for discretised
Helmholtz problems, where the preconditioner is constructed from the corre-
sponding problem with added absorption. Our preconditioners incorporate local
subproblems that can have various boundary conditions, and include the possibility
of a global coarse mesh. While the rigorous analysis describes preconditioners
for the Helmholtz problem with added absorption, this theory also informs the
development of efficient multilevel solvers for the “pure” Helmholtz problem
without absorption. For this case, 2D experiments for problems containing up to
about 50 wavelengths are presented. The experiments show iteration counts of
order about O.n0:2/ and times (on a serial machine) of order about O.n˛/, with
˛ 2 Œ1:3; 1:4� for solving systems of dimension n. This holds both in the pollution-
free case corresponding to meshes with grid size O.k�3=2/ (as the wavenumber
k increases), and also for discretisations with a fixed number of grid points per
wavelength, commonly used in applications. Parallelisation of the algorithms is also
briefly discussed.

1 Introduction

In this paper we describe recent work on the theory and implementation of domain
decomposition methods for iterative solution of discretisations of the Helmholtz
equation:

� .�C k2/u D f ; in a domain ˝; (1)

I.G. Graham (�) • E.A. Spence
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
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where k.x/ D !=c.x/, with ! denoting frequency and c denoting the speed of
acoustic waves in ˝ . Our motivation originates from applications in seismic imag-
ing, but the methods developed are applicable more generally, e.g. to earthquake
modelling or medical imaging. While practical imaging problems often involve the
frequency domain reduction of the elastic wave equation or Maxwell’s equations,
the scalar Helmholtz equation (1) is still an extremely relevant model problemwhich
encapsulates many of the key difficulties of more complex problems.

We will focus here on solving (3) on a bounded domain ˝ , subject to the first
order absorbing (impedance) boundary condition:

@u

@n
� iku D g on � D @˝ ; (2)

although the methods presented are more general.
The theoretical part of this paper is restricted to the case of k constant.

However the methods proposed can be used in the variable k case, and preliminary
experiments are done on this case in Sect. 5.3.

Important background for our investigation is the large body of work on “shifted
Laplace” preconditioning for this problem, starting from [12] and including, for
example [11] and recent work on deflation [28]. (A fuller survey is given in [17, 21]
and elsewhere in this volume.) In those papers (multigrid) approximations of the
solution operator for the perturbed problem

� .�C .k2 C i"//u D f ; with
@u

@n
� iku D g on � ; (3)

(suitably discretised and with carefully tuned “absorption” parameter " > 0), were
used as preconditioners for the iterative solution of (1). When k is variable, a slightly
different shift strategy is appropriate (see Sect. 5.3).

One can see immediately the benefit of introducing " in (3): When k is constant
the fundamental solutionGk;" of the operator in (3) (for example in 3D) satisfies, for
fixed x 6D y with kjx � yj D O.1/ and " � k2,

Gk;".x; y/ D Gk;0.x; y/ exp

�
� "

2k
jx � yj

� 
1C O

 �
"

k2

�2
kjx � yj

!!
; as k ! 1:

Thus, the effect of introducing " is to exponentially damp the oscillations in
the fundamental solution of problem (3), with the amount of damping proportional
to "=k. With slightly more analysis one can show that the weak form of problem
(3) enjoys a coercivity property (with coercivity constant of order O."=k2/ in the
energy norm (7) [21, Lemma 2.4]). This has the useful ramification that any finite
element method for (3) is always well-posed (independent of mesh size) and enjoys
a corresponding (albeit "- and k-dependent) quasioptimality property. Therefore
preconditioners constructed by applying local and coarse mesh solves applied to
(3) are always well-defined; this is not true when " D 0.
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A natural question is then, how should one choose "? To begin to investigate
this question, we first introduce some notation. Let A" denote the finite element
approximation of (3) and write A D A0. Then A is the system matrix for problem
(1), (2), which we want to solve.

Suppose an approximate inverse B�1
" for A" is constructed. Then a sufficient

condition for B�1
" to be a good preconditioner for A is that I � B�1

" A should be
sufficiently small. Writing

I � B�1
" A D .I � B�1

" A"/C B�1
" A".I � A�1

" A/;

we see that a sufficient condition for the smallness of the term on the left-hand side
is that

(i) I � A�1
" A should be sufficiently small, and

(ii) I � B�1
" A" should be sufficiently small.

At this stage, one might already guess that achieving both (i) and (ii) imposes
somewhat contradictory requirements on ". Indeed, on the one hand, (i) requires "
to be sufficiently small (since the ideal preconditioner for A is A�1 D A�1

0 ). On the
other hand, the larger " is, the less oscillatory the shifted problem is, and the easier
it should be to construct a good approximation to A�1

" for (ii).
Regarding (i): The spectral analysis in [14] of a 1-d finite-difference discreti-

sation concluded that one needs " < k for the eigenvalues to be clustered around 1
(which partially achieves (i)). The analysis in [17] showed that, in both 2- and 3-d for
a range of geometries and finite element discretisations, (i) is guaranteed if "=k � C1
for a small enough positive constant C1, with numerical experiments indicating that
this condition is sharp. Somewhat different investigations are contained in [11–13].
These performed spectral analyses that essentially aim to achieve (i) on a continuous
level, and explored the best preconditioner of the form (3) for (1) in the 1D case with
Dirichlet boundary conditions, based on the ansatz k2 C i" D k2.aC ib/, where a; b
are to be chosen; related more general results are in [30]. (For more detail, see, e.g.,
the summary in [17] and other articles in this volume.)

Regarding (ii): several authors have considered the question of when multigrid
converges (in a k-independent number of steps) when applied to the shifted problem
A", with the conclusion that one needs " � k2 [2, 8, 14]. Note that this question of
convergence is not quite the same question as whether a multigrid approximation
to A�1

" is a good preconditioner for A" (property (ii)) or for A0 (the original
problem), but these questions are investigated numerically in [8]. For classical
Additive Schwarz domain decomposition preconditioners, it was shown in [21] that
(ii) is guaranteed (under certain conditions on the coarse grid diameter) if " � k2

(resonating with the multigrid results). In fact [21] also provides "-explicit estimates
of the rate of GMRES convergence when A" is preconditioned by the Schwarz
algorithm. Although these estimates degrade sharply when " is chosen less than
k2, numerical experiments in [21] indicate that improved estimates may be possible
in the range k . " . k2.
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The contradictory requirements that (i) requires "=k to be sufficiently small, and
(ii) requires " � k2 (at least for classical Additive Schwarz domain decomposition
preconditioners) motivate the question of whether new choices of B�1

" can be
devised that operate best when " is chosen in the range k . " . k2. Such choices
should necessarily use components that are more suitable for “wave-like” problems,
rather than the essentially “elliptic” technology of classical multigrid or classical
domain decomposition. In fact our numerical experiments below indicate that, for
the preconditioners studied here, the best choice of " varies, but is generally in the
range Œk; k1:6�.

Domain decomposition methods offer the attractive feature that their coarse grid
and local problems can be adapted to allow for “wave-like” behaviour. There is
indeed a large literature on this (e.g. [4, 16, 18]), but methods that combine many
subdomains and coarse grids and include a convergence analysis are still missing.
The paper [21] provides the first such rigorous analysis in the many subdomain
case, and current work is focused on extending this to the case when wave-like
components are inserted, such as using (optimised) impedance or PML conditions
on the local solves.

Another class of preconditioners for Helmholtz problems of great recent interest
is the “sweeping” preconditioner [10] and its related variants—e.g. [7, 29, 31]. In
principle these methods require the direct solution of Helmholtz subproblems on
strips of the domain. A method of expediting these inner solves with an additional
domain decomposition and off-line computation of local inverses is presented in
[32]. Related domain decomposition methods for these inner solves, using tuned
absorption, and with applications to industrial problems, are explored in [1, 27].

Finally it should be acknowledged that, while the reduction of the complicated
question of the performance of B�1

" as a preconditioner for A into two digestible
subproblems ((i) and (ii) above) is theoretically convenient, this approach is also
very crude in several ways: Firstly the splitting of the problem into (i) and (ii) may
not be optimal and secondly the overarching requirement that kI � B�1

" Ak should
be small is far from necessary when assessing B�1

" as a preconditioner for A: for
example good GMRES convergence is still assured if the field of values of B�1

" A
is bounded away from the origin in the complex plane (in a suitable inner product)
and that B�1

" A is bounded from above in the corresponding norm. We use this in the
theory below.

2 Domain Decomposition

To start, we denote the nodes of the finite element mesh as fxj W j 2 I hg, for a
suitable index setI h. These include nodes on the boundary� of˝ . The continuous
piecewise linear finite element hat function basis is denoted f�j W j 2 I hg. To define
preconditioners, we choose a collection of N non-empty relatively open subsets ˝`

of ˝ , which form an overlapping cover of ˝ . Each ˝` is assumed to consist of a
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union of elements of the finite element mesh, and the corresponding nodes on ˝`

are denoted fxj W j 2 I h.˝`/g.
Now, for any j 2 I h.˝`/ and j0 2 I h, we define the restriction matrix .R`/j;j0 WD

ıj;j0 . The matrix

A";` WD R`A"R
T
`

is then just the minor of A" corresponding to rows and columns taken fromI h.˝`/.
This matrix corresponds to a discretisation (on the fine mesh) of the original problem
(3) restricted to the local domain˝`, with a homogeneous Dirichlet condition at the
interior boundary @˝`n� and impedance condition at the outer boundary @˝` \ �
(when this is non-empty).

One-level domain decompositionmethods are constructed from the inverses A�1
";` .

More precisely,

B�1
";AS;local WD

X
`

RT
`A

�1
";`R`; (4)

is the classical one-level Additive Schwarz approximation of A�1
" with the subscript

“local” indicating that the solves are on local subdomains˝`.
The overlapping subdomains are required to satisfy certain technical conditions

concerning their shape and the size and uniformity of the overlap. Moreover, each
point in the domain is allowed to lie only in a bounded number of overlapping
subdomains as the mesh is refined. We do not repeat these conditions here but refer
the interested reader to [21, Sect. 3]. The theorems presented in Sect. 3 require these
assumptions for their proof, as well as a quasi-uniformity assumption on the coarse
mesh which is introduced next.

Two-level methods are obtained by adding a global coarse solve. We introduce
a family of coarse simplicial meshes with nodes fxHj ; j 2 I Hg, where each coarse
element is also assumed to consist of the union of a set of fine grid elements. The
basis functions are taken to be the continuous P1 hat functions on the coarse mesh,
which we denote f˚H

p ; p 2 I Hg. Then, introducing the fine-to-coarse restriction
matrix .R0/pj WD ˚H

p .x
h
j / ; j 2 I h; p 2 I H ; we can define the corresponding

coarse mesh matrix A";0 WD R0A"RT
0 . Note that, due to the coercivity property for

problem (3), both A";0 and A";` are invertible for all mesh sizes h;H and all choices
of � 6D 0.

The classical Additive Schwarz preconditioner is then

B�1
";AS WD RT

0A
�1
";0R0 C B�1

";AS;local; (5)

(i.e. the sum of coarse solve and local solves) with B�1
";AS;local defined in (4).

The theoretical results outlined in the next section concern the properties of B�1
";AS

as a preconditioner for A" (i.e. criterion (ii) in Sect. 1). The hypotheses for the theory
involve conditions on k, " and H (the coarse mesh diameter) as well as Hsub (the
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maximum of the diameters of the local subdomains ˝`). This theory is verified by
some of the numerical experiments in [21] and we do not repeat those here. Instead,
in Sect. 5 below we focus in detail on the performance of (variants of) B�1

";AS when
used as preconditioners for the pure Helmholtz matrix A (hence aiming to satisfy
criteria (i) and (ii) of Sect. 1 simultaneously). The variants of (5) which we will
consider include the Restricted, Hybrid and local impedance preconditioners. These
are defined in Sect. 4.

First we give a summary of the theoretical results for (5). These are taken from
[21]. The proofs are based on an analysis of projection operators onto subspaces
with respect to the sesquilinear form which underlies the shifted problem (3). This
type of analysis is well-known for coercive elliptic problems, but [21] was the first
to devise such a theory for the high-frequency Helmholtz equation.

3 Main Theoretical Results

Here we describe the main results from [21], namely Theorems 5.6 and 5.8 in that
reference.

Since the systems arising from the discretisation of (3) are not Hermitian we need
to use a general purpose solver. Here we used GMRES. Estimates of the condition
number of the preconditionedmatrix are not then enough to predict the convergence
rate of GMRES. Instead one has to estimate either (i) the condition of the basis of
eigenvectors of the system matrix, or (ii) bounds on its field of values. Here we take
the second approach, making use of the classical theory of Eisenstat et al. [9] (see
also [3]). A brief summary of this theory is as follows.

Consider a nonsingular linear system Cx D d in C
n. Choose an initial guess

x0 for x, then introduce the residual r0 D d � Cx0 and the usual Krylov spaces:
K m.C; r0/ WD spanfCjr0 W j D 0; : : : ;m � 1g. Introduce a Hermitian positive
definite matrix D and the corresponding inner product on C

n: hV;WiD WD W�DV,
and let k � kD denote the corresponding induced norm.

For m � 1, define xm to be the unique element of K m satisfying the minimal
residual property:

krmkD WD kd � CxmkD D min
x2K m.C;r0/

kd � CxkD;

When D D I this is just the usual GMRES algorithm, and we write k � k D k � kI ,
but for more general D it is the weighted GMRES method [15] in which case its
implementation requires the application of the weighted Arnoldi process [22]. The
reason for including weighted GMRES in the discussion will become clear later in
this section.

The following theorem is then a simple generalisation of the classical conver-
gence result stated (for D D I) in [3]. A proof is given in [21].
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Theorem 1 Suppose 0 62 WD.C/. Then

krmkD
kr0kD � sinm.ˇ/ ; where cos.ˇ/ WD dist.0;WD.C//

kCkD ; (6)

where WD.C/ denotes the field of values (also called the numerical range of C) with
respect to the inner product induced by D, i.e.

WD.C/ D fhx;CxiD W x 2 C
n; kxkD D 1g:

This theorem shows that if the preconditioned matrix has a bounded norm, and
has field of values bounded away from the origin, then GMRES will converge
independently of all parameters which are not present in the bounds.

With this criterion for robust convergence in mind, the following results were
proved in [21]. These results use the notation A . B (equivalently B & A) to mean
that A=B is bounded above by a constant independent of k, ", and mesh diameters
h;Hsub;H. We write A � B when A . B an B . A. In all the theoretical results
below k is assumed constant.

In Theorem 2 and Corollary 1 below, the matrix Dk which appears is the stiffness
matrix arising from discretising the energy inner product for the Helmholtz equation
using the finite element basis. More precisely, the Helmholtz energy inner product
and associated norm are defined by

.v;w/1;k WD
Z
˝

�rv:rw C k2vw
�
dx; and kvk1;k D .v;w/1=21;k : (7)

For star-shaped Lipschitz domains, the norm kuk1;k of the solution u of the
Helmholtz boundary-value problems (1), (2) (or alternatively (3) in the case of
absorption) can be estimated in terms of the data f and g (measured in suitable
norms) with a constant that is independent of k and " (provided " grows no faster
than O.k2/). This fact is the starting point (and a crucial building block) for the
theory in [21]. If �` are the basis functions for the finite element space on the fine
mesh, then the matrix Dk is defined by

.Dk/`;m D .�`; �m/1;k for all `;m:

The matrix D�1
k appears as a weight in the result for right preconditioning in

Theorem 3. These weights appear as artefacts of the method of analysis of the
domain decomposition method which makes crucial use of the analysis of the
Helmholtz equation in the energy norm. Fortunately, in practice, standard GMRES
performs just as well as weighted GMRES (and is more efficient)—see Remark 1
below for more details.
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Theorem 2 (Left Preconditioning)

.i/ kB�1
";ASA"kDk .

�
k2

"

�
for all H;Hsub:

Furthermore, there exists a constant C1 such that

.ii/ jhV;B�1
";ASA"ViDk j &

� "
k2

�2 kVk2Dk
; for all V 2 C

n;

when

max

(
kHsub; kH

�
k2

"

�2)
� C1

� "
k2

�
: (8)

This result contains a lot of information. In particular, if " � k2 and kH; kHsub

are uniformly bounded, then (weighted) left-preconditioned GMRES applied to
systems with matrix A" will converge in a parameter-independent way. However
when "=k2 ! 0, the bounds degrade. Nevertheless, numerical experiments in [21]
(in the regime H � Hsub) suggest there is some room to sharpen the theory: In
particular, if " � k2 the convergence of GMRES is parameter-independent even
when kH ! 1 quite quickly (that is much coarser coarse meshes than those
predicted by the theory are possible). However if " � k then there appears not
to be much scope to further reduce the coarse mesh diameter H.

Combining Theorems 1 and 2 we obtain:

Corollary 1 (GMRES Convergence for Left Preconditioning) Consider the
weighted GMRES method where the residual is minimised in the norm induced
by Dk. Let rm denote the mth iterate of GMRES applied to the system A", left
preconditioned with B�1

";AS. Then

krmkDk

kr0kDk

.
�
1 �

� "
k2

�6�m=2

; (9)

provided condition (8) holds.

Nowadays both left- and right-preconditioning play important roles in system
solvers, and, in particular, right preconditioning is necessary if one wants to use
Flexible GMRES (FGMRES) [26]. Fortunately Theorem 2 can be adapted to the
case of right preconditioning as follows.

The first observation is that, for any n � n complex matrix C (and working in the
inner product h�; �iD induced by some SPD matrix D), we have, for any v 2 Cn and
w WD Dv,

hv;CviD
hv; viD D hw;C�wiD�1

hw;wiD�1

; (10)



Domain Decomposition Preconditioning for High-Frequency Helmholtz 11

where C� D C
>

denotes the Hermitian transpose of C. Thus estimates for the
distance of the field of values of C from the origin with respect to h�; �iD are
equivalent to analogous estimates for the field of values of C� with respect to
h�; �iD�1.

The second observation is that Theorem 2 also holds for the adjoint of problem
(3). In the adjoint case, the sign of " is reversed in the PDE and the boundary
condition is replaced by @u=@n C iku D g. In this case the estimates in Theorem 2
continue to hold, but with " replaced by j"j. This is also proved in [21].

To handle the right-preconditioning case, we consider the field of values of the
matrix A"B�1

";AS in the inner product induced by D�1
k . By (10) these are provided by

estimates of the field of values of B��
";ASA

�
" in the inner product induced by Dk. The

latter are provided directly by the (the extended version of) Theorem 2. The required
estimates for the norm of A"B�1

";AS are obtained by a similar argument.
The result (from [21]) is as follows.

Theorem 3 (Right Preconditioning) With the same notation as in Theorem 2, we
have

.i/ kA"B�1
";ASkD�1

k
.
�
k2

"

�
for all H;Hsub:

Furthermore, provided condition (8) holds,

.ii/ jhV;A"B�1
";ASViD�1

k
j &

� "
k2

�2 kVk2
D�1
k
; for all V 2 C

n:

Remark 1 As described earlier, the estimates above are in the weighted inner
products induced by Dk and D�1

k . It would be inconvenient to have to implement
GMRES with these weights, especially the second one. It is thus an interesting
question whether the use of weighted GMRES is necessary in practice for these
problems. We investigated both standard and weighted GMRES (in the case of left
preconditioning and with weight Dk) for a range of problems (some covered by the
theory, some not). In practice there was little difference between the two methods.
Therefore, the numerical experiments reported here use standard GMRES.

Remark 2 The theorems in [21] also allowed general parameter ı > 0 which
described the amount of overlap between subdomains, and included the dependence
on ı explicitly in the estimates. We suppressed this here in order to make the
exposition simpler.

4 Variants of the Preconditioners

In this section we describe the variants of the classical Additive Schwarz method
defined in (5) which are investigated in the numerical experiments which follow.
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The first variant which we consider is the Restrictive Additive Schwarz (RAS)
preconditioner, which is well-known in the literature [5, 23]. Here, to define the
local operator, for each j 2 I h, choose a single ` D `. j/ with the property that
xj 2 ˝`. j/. Then the action of the local contribution, for each vector of fine grid
freedoms v, is:

.B�1
";RAS;localv/j D

�
RT
`. j/A

�1
";`. j/R`. j/v

�
j
; for each j 2 I h : (11)

We denote this one level preconditioner as RAS1. (We shall in fact use a slight
variation on this—as described precisely in Sect. 5.)

From this we could build the RAS preconditioner (in analogy to the standard
Additive Schwarz method):

B�1
";RAS D RT

0A
�1
";0R0 C B�1

";RAS;local : (12)

However we shall not use this directly in the following. Rather, instead of
doing all the local and coarse grid problems independently (and thus potentially
in parallel), we first do a coarse solve and then perform the local solves on the
residual of the coarse solve. This was first introduced in [24]. As described in [20],
this method is closely related to the deflation method [25], which has been used
recently to good effect in the context of shifted Laplacian combined with multigrid
[28]. The Hybrid RAS (HRAS) preconditioner then takes the form

B�1
";HRAS WD RT

0A
�1
";0R0 C PT

0

�
B�1
";RAS;local

�
P0 ; (13)

where

P0 D I � ART
0A

�1
";0R0 :

Remembering that the local solves in B�1
";RAS;local are solutions of local problems

with a Dirichlet condition on interior boundaries of subdomains, and noting that
these are not expected to perform well for genuine wave propagation (i.e. " small
and k large), we also consider the use of impedance boundary conditions on the local
solves. Let A";Imp;` be the stiffness matrix arising from the solution of (3) restricted
to˝`, where the impedance condition @u=@n� iku is imposed on the boundary @˝`,
and dealt with in the finite element method as a natural boundary condition. This can
be used as a local operator in the HRAS operator (13). The one-level variant is

.B�1
";Imp;RAS;localv/j D

�eRT
`. j/A

�1
";Imp;`. j/

eR`. j/v
�
j
; for each j 2 I h ; (14)

Here (noting that the local impedance condition is handled as a natural boundary
condition on ˝`), eR` denotes the restriction operator . QR`/j;j0 D ıj;j0 , (as before) j0
ranges over all I h, but now j runs over all indices such that xj 2 ˝`.
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The hybrid two-level variant is

B�1
";Imp;HRAS WD RT

0A
�1
";0R0 C PT

0

�
B�1
";Imp;RAS;local

�
P0 : (15)

We refer to these as the one- and two-level ImpHRAS preconditioners.
In the following section we will concentrate on illustrating the use of the four

preconditioners defined in (11), (13), (14) and (15) for solving various problems
with system matrix A (i.e. the discretisation of (3) with " D 0). In our discussion
and in the tables below we will use the following notation for the preconditioners:

(11) D RAS1; (13) D HRAS; (14) D ImpRAS1; (15) D ImpHRAS :
(16)

5 Numerical Experiments

Our numerical experiments concern the solution of (3) on the unit square, with � D
k and " D 0, discretised by the continuous piecewise linear finite element method
on a uniform triangular mesh. Thus, the problem being solved here is the “pure
Helmholtz” problem without absorption and can be completely specified by the fine
mesh diameter, here denoted hprob. In [21] we also computed iteration numbers for
solving (3) with " > 0, thus an additional parameter "prob was needed to specify the
problem being solved. Here we restrict to the case "prob D 0. For the solver we shall
use domain decomposition preconditioners built from various approximate inverses
for (3). The choice of " > 0 which is used to build the preconditioner is denoted
"prec.

The experiments in Sect. 5.1 will be concerned with the case when the fine grid
diameter is hprob � k�3=2. This is the discretisation level generally believed to
be necessary to remove the pollution effect: roughly speaking the relative error
obtained with this choice of hprob is not expected to grow as k ! 1. (However
there is no proof of this except in the 1D case: See, e.g., the literature reviews in
[17, Remark 4.2] and [19, Sect. 1.2.2].)

However the case of a fixed number of grid points per wavelength (hprob � k�1) is
also frequently used in practice (especially in 3D) and provides sufficient accuracy
in a limited frequency range. This regime is often studied in papers about Helmholtz
solvers and so we include a substantial subsection (Sect. 5.2) on results for this
case, which was not specifically discussed in [21]. Nevertheless the question of
preconditioning the problem defined by hprob � k�1 and "prob � k did arise in [21],
as an “inner problem” in the multilevel solution of the problem with hprob � k�3=2,
"prob D 0. (This is discussed again in Sect. 5.1 below.)

Interestingly, it turns out that the asymptotics (as k increases) of the solvers
in each of the two cases hprob � k�3=2 and hprob � k�1 (both with "prob D 0)
are somewhat different from each other and the best methods for one case are not
necessarily the best for the other.
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In the general theory given in Sect. 3, coarse grid size H and subdomain size
Hsub are permitted to be unrelated. In our experiments here we construct local
subdomains by first choosing a coarse grid and then taking each of the elements
of the coarse grid and extending them to obtain an overlapping cover of subdomains
with overlap parameter ı. This is chosen as large as possible, but with the restriction
no two extended subdomains can touch unless they came from touching elements
of the original coarse grid. In the literature this is called generous overlap and
Hsub � H. Thus our preconditioners are completely determined by specifying the
values of H and ". In the case of constant k, we denote these by

Hprec and "prec : (17)

We also have to specify how the RAS subdomains (recall (11)) are defined.
Actually in our implementation involves a slight variation on (11) as follows. Our
RAS subdomains are the original elements of the coarse grid (before extension).
These overlap, but only at the edges of the coarse grid. Each node of the fine grid
lies in a unique RAS subdomain except for nodes on the coarse grid edges. At
these nodes the RAS operator (11) is extended so that it performs averaging of the
contributions from all relevant subdomains at all such edge nodes.

When designing good domain decomposition methods we should be aware of
cost. In the classical context (which we adopt here) where coarse grid and local
problems are linked, a large-sized coarse grid problem will imply small-sized local
problems and vice-versa. Coarse grids which are very fine and very coarse can both
lead to very good methods in terms of iteration numbers, but not necessarily optimal
in terms of time.

An “ideal” situation may be when all sub-problems are “load balanced”. Let hprob
be the fine grid diameter and let Hprec be the coarse grid diameter, so that in Rd, the
dimension of the coarse grid problem is O.H�d

prec/, while the dimension of the local
problems are O..Hprec=hprob/d/. Then the classical domain decomposition method

is load-balanced when Hprec � h1=2prob. If generous overlap is used, then a slightly
smaller Hprec will give us load balancing. For example, in the pollution-free case
hprob D k�3=2, the domain decomposition will be load-balanced at about Hprec D
k�0:8. While load balancing occurs at about Hprec � k�0:6 when we are taking a
fixed number of points per wavelength (hprob � k�1). We use these estimates as a
guide in the experiments below.

In all the experiments below the stopping tolerance for GMRES was that the
relative residual should be reduced by 10�6.

In the experiments below, the system being solved is always the pure Helmholtz
system Au D f. In the results given in Tables 1, 2, and 3 the right hand side vector f
was chosen so that the finite element solution is an approximation of a plane wave
(see [21, Sect. 6.2]). For the rest of the experiments f D 1 was used.
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Table 1 Comparison of HRAS and ImpHRAS for the problem with hprob � k�3=2, "prob D 0,
using various choices of Hprec and "prec

Hprec � k�1, "prec D k

k # HRAS # ImpHRAS

20 1292 17105

40 18� 21�

60 25� 27�

80 33� 35�

100 43� 45�

Hprec � k�1, "prec D k1:2

k # HRAS # ImpHRAS

20 1392 18105

40 18� 21�

60 25� 27�

80 32� 34�

100 42� 43�

Hprec � k�1, "prec D k2

k # HRAS # ImpHRAS

20 3793 34113

40 63� 56�

60 86� 78�

80 110� 101�

100 136� 123�

Hprec � k�0:6, "prec D k

k # HRAS # ImpHRAS

20 5163 2631

40 125133 5051

60 �� 6971

80 �� 7484

100 �� 8497

Hprec � k�0:6, "prec D k1:2

k # HRAS # ImpHRAS

20 4858 2632

40 114125 4851

60 �� 6970

80 �� 7483

100 �� 8495

Hprec � k�0:6, "prec D k2

k # HRAS # ImpHRAS

20 3943 3642

40 816 7366

60 113102 10491

80 135121 126111

100 156141 148131

Table 2 Iteration numbers for ImpHRAS with "prob D k1:2 D "prec, hprob D�=5k and
Hprec � k�1=2

k #ImpHRAS

20 1416

40 2123

60 2830

80 3231

100 3634

120 3938

140 4341

Table 3 GMRES iteration counts and timings for the inner-outer algorithm with "prob D 0,
hprob D k�3=2, Hprec D k�1 in the outer iteration, Hprec D k�1=2 in the inner iteration and
"prec D kˇ in both inner and outer iterations

ˇ

k 0 0.4 0.8 1 1.2 1.6 2.0

20
19(2) 19(2) 19(2) 19(2) 19(2) 25(1) 36(1)
3.86 [0.08] 3.72 [0.08] 3.72 [0.08] 3.68 [0.08] 3.66 [0.08] 4.00 [0.07] 4.96 [0.07]

40
22(4) 22(4) 22(4) 22(3) 22(3) 28(2) 61(1)
54.8 [0.73] 54.9 [0.73] 54.8 [0.72] 54.7 [0.71] 54.8 [0.71] 58.0 [0.69] 80.4 [0.68]

60
28(5) 28(5) 28(5) 28(5) 28(4) 35(2) 82(1)
370 [3.20] 371 [3.20] 372 [3.19] 370 [3.16] 369 [3.11] 383 [3.00] 539 [3.10]

80
36(6) 36(6) 36(6) 36(5) 35(5) 42(2) 104(1)
1288 [8.62] 1375 [8.69] 1300 [8.59] 1316 [8.51] 1273 [8.38] 1323 [8.08] 1909 [8.19]

100
46(8) 46(8) 46(7) 45(7) 44(6) 49(2) 126(1)
3533 [16.5] 3678 [16.01] 3586 [16.4] 3471 [15.9] 3483 [16.2] 3503 [15.5] 4832 [16.4]
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5.1 Pollution-Free Systems (hprob � k�3=2)

The timings given in Tables 1, 2, and 3 below were for implementation on a
serial workstation with Intel Xeon E5-2630L CPUs with 48GB RAM. The later
experiments were on a multiprocessor, described in Sect. 5.2.

The performance of GMRES for this case is investigated in detail in [21]. There
we first studied the performance of domain decomposition preconditioners for
systems with absorption (i.e. we set "prob D " > 0 and we studied the performance
of B�1

" as a preconditioner for A"). With respect to that question we found that:

(i) the performance of the solvers reflected the theory given in Sect. 3;
(ii) There was little difference between left- and right-preconditioning;
(iii) There was little difference between the performance of standard GMRES and

GMRES which minimised the residual in the weighted norm (in the case of
left preconditioning) induced by Dk (see Remark 1 at the end of Sect. 3);

(iv) There was a marked superiority for HRAS over several other variants of
Additive Schwarz;

(v) If Hprec is small enough (Hprec � k�1 is sufficient), then B�1
" is a good

preconditioner for A" even for rather small " (in fact, even " D 1 gives
acceptable results for HRAS);

(vi) If Hprec is small enough then it makes little difference whether the local
problems have Dirichlet or impedance boundary conditions;

(vii) For largerHprec, Dirichlet local problems performvery badly, while impedance
local problems work well for large enough Hprec. In this case the coarse grid
solver can be switched off without degrading the convergence of GMRES.

Based on these observations, the discussion in [21] then turned to the more
important question of the solution of problems without absorption (i.e. "prob D 0).
The discussion in the rest of this subsection is an expansion of the discussion in
[21].

We compare HRAS (Hybrid Restricted Additive Schwarz with Dirichlet local
problems), as defined in (13) with ImpHRAS (Hybrid RAS with Impedance local
problems), as defined in (15). In these experiments, hprob D k�3=2 and in Table 1
below we give the number of GMRES iterations (with # denoting iteration count)
for each of these two methods for various choices of Hprec and "prec. In Table 1, the
headline figure for each case is the iteration number for the Hybrid method (13) or
(15), while as a subscript we give the iteration count for the corresponding one level
methods (omitting the coarse grid solve), given respectively by (11) and (14). We
include iteration numbers for the three cases "prec D k; k1:2; k2. The optimal choice
turns out to be around "prec 2 Œk; k1:2�, while "prec D k2 is provided for comparison.
Data for a larger range of "prec andHprec is given in [21]. A 	 in the tables means the
iteration did not converge after 200 iterations.

Based on the results in Table 1, we can make the following observations:
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(i) When Hprec � k�1, the coarse grid is sufficiently fine and does a good job.
Using the data for Hprec � k�1 and "prec � k1:2 we observe that we have
#HRAS � k0:71. Since we are here solving problems of size n � k3, this
is equivalent to #HRAS � n0:24. (Throughout the paper, rates of growth are
obtained by linear least squares fits to the relevant log-log data.) Note that
when Hprec � k�1, there is little difference between HRAS and ImpHRAS, i.e.
it does not matter here whether the local problems have Dirichlet or Impedance
condition. This preconditioner has a competitive performance as n increases,
but it incorporates an expensive coarse grid solve of size H�2

prec � k2 and it
does not work without the coarse solve.

(ii) When Hprec � k�0:6 the local problems are rather large (size � k9=5) the
ImpHRASmethodworks reasonably well with a slow growth of iteration count
with respect to k (although higher actual iterations), while HRAS is not usable.
Moreover in the case of ImpHRAS, the coarse grid solve has almost no effect
and can be neglected.

(iii) In all cases the best choice of absorption parameter "prec seems to be about
"prec � kˇ with ˇ close to 1:2. We note that the choice "prec � k2 is remarkably
inferior. A more extensive study of the variation of iteration numbers with
respect to "prec and Hprec is given in [21].

These observations led to the formulation of an inner-outer strategy for problems
with hprob � k�3=2, with the outer iteration having preconditioner specified by
Hprec D k�1 and "prec D k1:2. This “outer preconditioner” is a discretisation of
(3) with hprob � k�1 and "prob � k1:2, which is to be solved by a preconditioned
inner iteration. So, as a precursor to formulating the inner-outer method, we study
iteration counts for typical instances of this inner iteration. Here are some sample
results with hprob D �=5k � k�1, "prob D k1:2 using ImpHRAS as a preconditioner,
with Hprec � k�1=2 and "prec D k1:2.

We see from Table 2 that, even without the coarse solve, the iteration numbers
grow slowly, and even seem to be slowing down as k increases. Extrapolation using
the last five entries of Table 2 (without the coarse solve) indicates that #ImpHRAS
grows with approximately O.k0:38/ D O.n0:19/, where n is the size of the systems
being solved in Table 2.

Therefore in [21] we proposed an inner-outer FGMRES iteration using (as the
outer solver) HRAS with Hprec D k�1 and (as the inner solver) ImpRAS1 with
Hprec D k�1=2. This method solves a system of dimension O.k3/ by solving O.k2 C
k/ independent subdomain problems of dimension O.k1=2 � k1=2/ D O.k/ and was
found to have competitive properties.

In particular the subproblems are sufficiently small as to be very efficiently
solved by a sparse direct solver. (Here we use umfpack included in the scipy
sparse matrix package.) In this regard, an interesting observation is that, while
positive definite systems coming from 2D finite element approximations of elliptic
problems are often reported to be solvable by sparse direct solvers in optimal time
(O.n/, for dimension n up to about 105), this appears not to be the case for the
indefinite systems encountered here. In our experience the computation time for
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the sub-systems encountered here grows slightly faster than linearly with respect to
dimension n.

The following table gives some sample results for the composite inner/outer
algorithm with "prec D kˇ (for both inner and outer iterations, for various ˇ) and
an inner tolerance 	 D 0:5 (found in [21] to be empirically best). The numbers
in bold font denote the number of outer (respectively inner) iterations, while the
smaller font numbers underneath denote the total time in seconds [with an average
time for each outer iteration in square brackets]. (Other choices of inner tolerance
are explored in [21]. Recall that the outer tolerance is 10�6.) The best results occur
with "prec D kˇ with ˇ 2 Œ1; 1:2�. Using the data in the column headed ˇ D 1

(and remembering that we are here solving systems of dimension n D k3), the outer
iteration count grows with about O.k0:53/ 
 O.n0:18/, while the time per iteration
is about O.n1:11/ and the total time is O.n1:43/. To give an idea of the size of the
systems being solved, when k D 100, n D 1; 002; 001.

An interesting observation in Table 3 is the relative insensitivity of the results to
the choice of ˇ in the range ˇ 2 Œ0; 1:6�, and the very poor performance of ˇ D 2.
Thus for this method the choice of absorption "prec D k2 is a relatively poor one,
while in fact the choice "prec D 1 D k0 is quite competitive. This is quite different to
the experience reported using multigrid shifted Laplacian preconditioners. Note also
that the number of inner iterations decreases as we read the rows of Table 3 from left
to right, because increasing ˇ means putting more absorption into the preconditioner
and hence makes the inner problem easier to solve.

The remainder of the experiments in the paper were done on a linux cluster of
130 nodes. Each node consists of 2 CPUs (Intel Xeon E5-2660 v2@ 2.20GHz) with
10 cores: in total 20 cores and 64GB RAM on each node. The nodes are connected
with 4x QDR Infiniband networks. This cluster was used in serial mode except for
the modest parallel experiment in Table 5, in which up to 10 of the 130 nodes were
used.

5.2 10 Grid-Points Per Wavelength (h � k�1)

5.2.1 Experiments with ImpRAS1 and ImpHRAS

In this section we consider the discretisation of (3) with " D 0 and h D �=5k (i.e. 10
grid points per wavelength). In this case the domain decomposition is load-balanced
at about H D k�0:6 and so we investigated the performance of preconditioned
GMRES only for H D k�˛ , with ˛ in the range Œ0:4; 0:8�. We found, for all choices
of ˛, the method HRAS not to be effective (with or without coarse grid solve), and
so we focused attention on ImpHRAS and its one-level variant ImpRAS1.

Sample results for ImpRAS1 (top) and ImpHRAS (bottom) are given in Table 4.
Here T denotes the timing for the total solve process, while Tit denotes the time per
iteration. Here the cost of the coarse grid solve is relatively small and the time per
iteration for ImpHRAS is almost the same as that for ImpRAS1. Overall ImpRAS1
is slightly quicker than ImpHRAS: Using the last six entries of each column for
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Table 4 Performance of ImpRAS1 (top) and ImpHRAS (bottom) with "prob D 0, "prec D k and
h D �=5k, for Hprec D k�0:5; k�0:4

ImpRAS1

H D k�0:5 H D k�0:4

k n #GMRES T Tit #GMRES T Tit
60 9409 35 6:83 0:15 20 4:67 0:16

80 16;129 39 13:01 0:27 23 9:21 0:30

100 25;921 43 24:21 0:47 25 18:8 0:59

120 35;344 45 37:10 0:69 29 29:50 0:83

140 52;441 49 63:85 1:12 28 43:31 1:27

160 68;121 51 84:65 1:43 33 67:15 1:73

180 82;369 54 113:86 1:85 32 91:01 2:43

200 104;329 57 159:67 2:47 30 114:27 3:26

220 119;716 59 190:50 2:86 34 160:46 4:11

240 141;376 61 249:48 3:64 35 203:30 5:12

260 173;889 66 323:79 4:43 35 262:77 6:67

280 196;249 70 390:81 5:07 39 354:60 8:17

300 227;529 68 459:72 6:13 38 420:12 9:98

ImpHRAS

H D k�0:5 H D k�0:4

k n #GMRES T Tit #GMRES T Tit
60 9409 33 5:09 0:11 21 4:36 0:14

80 16;129 40 10:87 0:22 25 9:18 0:29

100 25;921 43 20:80 0:40 24 17:11 0:57

120 35;344 47 34:08 0:61 29 27:99 0:79

140 52;441 52 61:25 1:01 27 40:45 1:24

160 68;121 55 82:11 1:28 32 63:16 1:67

180 82;369 53 103:99 1:69 32 88:40 2:37

200 104;329 56 147:72 2:29 31 115:10 3:20

220 119;716 59 180:19 2:66 35 161:90 4:05

240 141;376 60 233:24 3:42 35 198:54 4:99

260 173;889 64 295:08 4:05 34 252:30 6:56

280 196;249 69 361:86 4:63 37 332:66 8:01

300 227;529 67 430:55 5:69 37 403:04 9:76

ImpHRAS with H D k�0:4, #GMRES is growing with order O.n0:18/, while the
total time is growing with order O.n1:5/.

In Table 5 we give preliminary timing results for a parallel implementation of
the ImpRAS1 method. The implementation is in python and is based on numpy
and scipy with the mpi4py library used for message passing. The problem is run on
P D M2 processes, where M2 is the number of subdomains in the preconditioner.
Processes are mapped onto M cluster nodes with M processes running on each
node. The column labelled P is the number of processors, which coincides with
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Table 5 Parallel performance of ImpRAS1 with "prob D 0, "prec D k and hD�=5k, for
Hprec D k�0:4

k P D M2 nloc #GMRES T Tpar S

60 25 1444 20 4:67 0.38 12.25

80 36 1764 23 9:21 0.51 17.97

100 36 2916 25 18:8 1.02 18.54

120 49 2916 29 29:50 1.15 25.62

140 49 3969 28 43:31 1.62 26.66

160 64 3969 33 67:15 1.93 34.76

180 64 5041 32 91:01 2.37 38.43

200 64 6241 30 114:27 3.05 37.43

220 81 6084 34 160:46 3.24 49.53

240 81 6889 35 203:30 4.14 49.11

260 81 8281 35 262:77 5.34 49.23

280 100 8100 39 354:60 5.71 62.15

300 100 9025 38 420:12 6.73 62.43

Relative speedup S is shown for comparison of total time Tpar on P processes with serial
implementation time T

the number of subdomains. The column labelled nloc gives the dimension of the
local problem being solved on each processor. Note that nloc grows with about k1:2

while P grows with about k0:8 in this implementation. T is the serial time, Tpar is the
parallel time and S D T=Tpar. Based on the last six entries of the column Tpar, the
parallel solve time is growing with about O.k2:1/ D O.n1:05/ where n is the system
dimension.

5.2.2 A Multilevel Version of ImpRAS1

From Table 4 we see that the case H D k�0:4 provides a solver with remarkably
stable iteration counts, having almost no growth with respect to k. However
(although the coarse grid component of the preconditioner can be neglected), the
local systems to be solved at each iteration are relatively large, being of dimension
O..k0:6/2/ D O.k1:2/. We therefore consider inner-outer iterative methods where
these large local problems are resolved by an inner GMRES preconditioned with an
ImpRAS1 preconditioner based on decomposition of the local domains of diameter
k�0:4 into much smaller domains of diameter .k�0:4/2 D k�0:8. (Such inner-outer
methods are also investigated in different ways in [32].) The local problems to be
solved then are of dimension O..k0:2/2/ D O.k0:4/ and there are O.k1:6/ of them to
solve at each iteration.

The inclusion of this method in the present paper is rather tentative, because
(for the range of k considered), breaking up the local problems of size O.k1:2/ into
smaller subproblems is not competitive time-wise with the direct solver in 2D. The
times of this multilevel variant are far inferior to those reported in Table 4. However
even though the inner tolerance is set quite large at 0:5, the (outer) iteration numbers
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Table 6 Sample iteration counts for the inner-outer ImpRAS1 preconditioner "prob D 0, hprob D
�=5k, "prec D kˇ , Hprec D k�0:4 (for the outer iteration) and Hprec D k�0:8 (for the inner iteration)

ˇ

k 1.2 1.6

100 26(6) 31(4)

120 31(6) 36(4)

140 29(6) 35(4)

160 33(7) 39(5)

180 33(7) 38(5)

200 32(7) 39(5)

220 35(8) 42(5)

240 35(8) 42(5)

260 34(8) 42(5)

280 39(9) 45(6)

300 39(9) 45(6)

are remarkably unaffected (sample results are given in Table 6). In this table the
outer tolerance is (as before) relative residual reduction of 10�6. Similar results
(although slightly inferior) are obtained with "prec D k, in which case the inner
iterations are also almost identical with those reported in Table 4 for ImpRAS1 in
the case Hprec D k�0:4.

Since the action of this preconditioner involves the solution of O.k1:6/ inde-
pendent local systems of dimension only O.k0:4/, this method has strong parallel
potential and is also worth investigating in 3D, where the direct solvers are less
competitive.

5.3 Variable Wave Speed (h � !�3=2)

In this subsection we give some initial results on the performance of our algorithms
when applied to problems with variable wave speed. A more detailed investigation
of this problem is one of our next priorities and the discussion here should be
regarded as somewhat preliminary.

Domain decomposition methods have the advantage that the subdomains (and
possibly the coarse mesh) can be chosen to resolve jumps in the wave speed, if the
wave speed is geometrically simple enough. At present the variable speed case is
not covered by any theory, so this section is necessarily experimental.

We consider the analogue of the problem (3) with k D !=c where ! is
the angular frequency and c D c.x/ is the spatially dependent wave speed. For
the preconditioners we consider approximate inverses of problems with variable
absorption of the form:

��u � .1C i
/
�!
c

�2
u D f ; on ˝; (18)
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on a bounded domain˝ with impedance boundary condition

@u

@n
� i
�!
c

�
u D g on � (19)

where 
 D 
prec � 0 is a parameter to be chosen. Thus when c is constant, and
k WD !=c, the perturbed wavenumber is k2 C i
k2 and so the choice " D kˇ in (3)
corresponds to the choice 
 D kˇ�2 in (18). On the other hand when c is variable,
the amount of absorption added is proportional to .!=c/2 so more absorption is
effectively added where c is relatively small and less is added when c is relatively
large. We do not insert any absorption into the boundary condition (19).

We consider a test problem where ˝ is the unit square. An internal square ˝1

of side length 1=3 is placed inside ˝ and the wave speed is taken to have value c�
in the inner square and value 1 in ˝2 WD ˝n˝1. The square ˝1 is either placed
in the centre of ˝ (this is the case “discontinuity resolved”, where the coarse grid
described belowwill resolve the interface) or at a position a few fine grid elements to
the north and west of centre, with the distancemoved in the directions north andwest
equal to the size of the overlap of the subdomains. In the latter case the coarse grid
passes through the interface (and this is called “discontinuity unresolved” below).
We perform experiments with c� both bigger than 1 and less than 1 with the latter
case expected to be hardest.

The problem is discretised by a uniform fine grid with hprob � !�3=2 and with
the fine grid resolving the interface �1;2 between˝1 and˝2. No absorption is added
to the problem to be solved, i.e. 
prob D 0.

We apply the inner-outer algorithm as described in Sect. 5.1 (see Table 3) for
this problem. The outer solver is HRAS with Hprec � k�1 while the inner solver is
ImpRAS1 with Hprec � k�1=2. For both inner and outer solvers we set 
prec D !ˇ�2.
In all cases generous overlap is used and the RAS domains are determined by the
coarse grid as described in the introductory paragraphs to this section.

The coarse grid for the outer solve consists of uniform triangles of diameter �
k�1 which are chosen to resolve the square ˝1 when it is placed in the centre, and
do not resolve it when the square is moved. Numerical results, comparing the cases
c� D 1:5; 1; 0:66 are given in Tables 7, 8, and 9. In each row, for each value of ˇ,
the three figures indicate the number of outer HRAS iterations, the number of inner
ImpRAS1 iterations (in brackets) and the total time on a serial machine. The outer
tolerance is set at 10�6 while the inner tolerance is set at 0:5.

The times for ˇ D 1:6 grow with about O.n1:4/ in the case c� D 1:5 and c� D 1

(rather similar to the performance observed in Table 3). The actual times in the case
c� D 0:66 are considerably worse (which is to be expected as smaller c	 implies
larger effective frequency on that domain). But the rate of growth of time with n is
not affected very much, being about O.n1:5/ in Table 9. The case c� D 1:5 seems a
little easier to solve than the case c� D 1. There is not much difference in any case
between the resolved and the unresolved cases.
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Table 7 Performance of the inner-outer algorithm described in Sect. 5.3

ˇ

! 1.0 1.2 1.6 1.8

c� D 1:5, discontinuity resolved
10 19(1) 0:71 19(1) 0:55 20(1) 0:53 21(1) 0:54

20 20(2) 3:25 20(2) 3:22 27(1) 3:65 30(1) 3:84

40 22(3) 50:09 23(3) 50:55 29(2) 54:04 44(1) 62:99

60 25(4) 356:71 26(4) 358:10 35(2) 381:06 57(1) 445:19

80 29(5) 1244:13 29(4) 1240:80 40(2) 1394:72 66(1) 1606:64

100 35(6) 3479:95 35(5) 3697:02 45(2) 3820:97 78(1) 4309:29

c� D 1:5, discontinuity unresolved
10 18(1) 0:70 19(1) 0:56 20(1) 0:53 21(1) 0:54

20 20(2) 3:26 20(2) 3:25 27(1) 3:65 30(1) 3:87

40 22(3) 50:80 23(3) 51:30 29(2) 54:56 44(1) 63:76

60 25(4) 363:19 26(4) 364:96 35(2) 387:40 58(1) 454:04

80 30(5) 1273:11 30(4) 1347:66 40(2) 1417:61 66(1) 1623:74

100 35(6) 3545:44 35(5) 3541:62 45(2) 3660:37 78(1) 4042:62

Discontinuous wave speed, c� D 1:5

Table 8 Performance of the inner-outer algorithm described in Sect. 5.3

ˇ

! 1.0 1.2 1.6 1.8

c� D 1:0

10 18(1) 0:70 18(1) 0:54 19(1) 0:51 21(1) 0:54

20 19(2) 3:12 19(2) 3:16 25(1) 3:43 29(1) 3:73

40 22(3) 48:76 22(3) 48:58 28(2) 51:79 45(1) 62:22

60 28(5) 353:26 28(4) 352:74 35(2) 368:99 56(1) 429:53

80 36(5) 1253:44 35(5) 1244:01 42(2) 1361:78 66(1) 1476:53

100 45(7) 3487:02 44(6) 3693:13 49(2) 3728:06 79(1) 4179:60

Continuous wave speed c� D 1

6 Summary

In this paper we considered the construction of preconditioners for the Helmholtz
equation (without or with absorption) by using domain decomposition methods
applied to the corresponding problem with absorption.

These methods are related to the shifted Laplacian multigrid methods, but
the relative simplicity of the method considered here permits rigorous analysis
of the convergence of GMRES through estimates of the field of values of the
preconditioned problem. The flexibility of the domain decomposition approach also
allows for the insertion of sub-solvers which are appropriate for high frequency
Helmholtz problems, such as replacing Dirichlet local problems with impedance (or
PML) local problems.
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Table 9 Performance of the inner-outer algorithm described in Sect. 5.3

ˇ

! 1.0 1.2 1.6 1.8

c� D 0:66, discontinuity resolved
10 19(1) 0:73 20(1) 0:58 21(1) 0:54 23(1) 0:58

20 22(2) 3:38 22(2) 3:43 28(1) 3:68 33(1) 4:03

40 31(4) 55:03 32(3) 55:22 37(2) 57:46 54(1) 68:06

60 48(5) 418:78 48(4) 415:63 54(2) 426:52 79(1) 502:58

80 85(7) 1709:73 78(5) 1628:70 74(2) 1630:55 108(1) 1925:38

100 124(8) 4881:62 115(7) 4853:22 93(2) 4448:73 134(1) 5151:77

c� D 0:66, discontinuity unresolved
10 19(1) 0:72 19(1) 0:60 21(1) 0:54 23(1) 0:58

20 23(2) 3:54 23(2) 3:55 29(1) 3:84 34(1) 4:19

40 32(4) 58:89 32(3) 58:45 38(2) 61:33 55(1) 71:74

60 49(5) 450:16 49(4) 448:57 55(2) 458:60 80(1) 533:56

80 85(7) 1820:58 79(5) 1826:07 77(2) 1767:87 109(1) 2041:53

100 123(8) 5076:60 116(6) 5016:11 96(2) 4567:90 135(1) 5323:54

Discontinuous wave speed, c� D 0:66

For the analysis, two theoretical subproblems are identified: (i) What range of
absorption is permitted, so that the problem with absorption remains an optimal
preconditioner for the problem without absorption? and (ii) What range of absorp-
tion is needed so that the domain decomposition method performs optimally as a
preconditioner for the problem with absorption?

The ranges that result from studying problems (i) and (ii) separately have been
analysed, and this analysis is reviewed in the paper ( Sects. 1 and 3). Since these
ranges are disjoint, the best methods are obtained by using a combination of insight
provided by the rigorous analysis and by numerical experimentation. The best
methods involve careful tuning of the absorption parameter, the choice of coarse
grid and the choice of boundary condition on the subdomains.

Of those methods studied, the best (in terms of computation time on a serial
machine) differ, depending on the level of resolution of the underlying finite element
grid. For problems with constant wave speed and with mesh diameter h � k�3=2
(so chosen to resolve the pollution effect), a multilevel method with serial time
complexity O.n˛/ with ˛ 2 Œ1:3; 1:4� is presented, where n � k3 is the dimension
of the system being solved (Sect. 5.1). In this method a two level preconditioner
with a fairly fine coarse grid is used, and the coarse grid problem is resolved by an
inner iteration with a further one-level preconditioner with impedance local solves.

For discretisations involving a fixed number of grid points per wavelength,
similar time complexity is achieved by highly parallelisable one-levelmethods using
impedance local solves on relatively large subdomains.

We also illustrate the method when it is applied to a model problemwith jumping
wave speed (Sect. 5.3). A preliminary parallel experiment is also given.
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High Order Transparent Boundary Conditions
for the Helmholtz Equation

Lothar Nannen

Abstract We consider finite element simulations of the Helmholtz equation in
unbounded domains. For computational purposes, these domains are truncated to
bounded domains using transparent boundary conditions at the artificial boundaries.
We present here two numerical realizations of transparent boundary conditions:
the complex scaling or perfectly matched layer method and the Hardy space
infinite element method. Both methods are Galerkin methods, but their variational
framework differs. Proofs of convergence of the methods are given in detail
for one dimensional problems. In higher dimensions radial as well as Cartesian
constructions are introduced with references to the known theory.

1 Introduction

We consider finite element simulations of time-harmonic, scalar waves in open
systems. Since standard mesh based methods like finite element or finite difference
methods are restricted to bounded domains, for these methods unbounded domains
of propagation have to be truncated to a bounded computational domain. Typically,
such a truncation results in artificial reflections at the truncation boundary. Due to
the non-locality of the waves, the reflections may pollute the solution in the whole
computational domain.

The purpose of this chapter is to present some high order transparent bound-
ary conditions such that artificial reflections are minimized. Thereby we restrict
ourselves to finite element based transparent boundary conditions. For boundary
element methods we refer to the corresponding chapter in this book.

The simplest transparent boundary condition is the so-called first order absorbing
boundary condition. It has no extra costs, but the computational domain typically
has to be quite large in order to minimize artificial reflections. For a review of higher
order local absorbing boundary conditions we refer to [15, 24]. For these transparent
boundary conditions, as for all subsequent ones, additional unknowns are needed.
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Since the construction and the theoretical framework are quite complicated, we will
not present them in this chapter.

The so-called complex scaling or perfectlymatched layer (PML)method (see e.g.
[2, 8, 19, 31]) fits very well into the variational framework of finite element methods.
It surrounds the computational domain with an artificial, anisotropic damping layer.
It is very flexible and allows to reduce artificial reflections as much as necessary.
A downside is, that it can be difficult to find optimal method parameters, since it
depends on the damping profile, the thickness of the layer and on the finite element
discretization in the absorbing layer.

For infinite elements no artificial truncation is needed. The unbounded domain
outside of the computational domain is discretized with special basis and test
functions. For classical infinite element methods (see [12, 13]) these functions
fulfill the Sommerfeld radiation condition. Since the infinite elements are defined
on an unbounded domain, integration over these basis and test functions needs to be
done carefully. Moreover, the discretization matrices typically have large condition
numbers.

Hardy space infinite elements (see [20, 32, 33]) also discretize the whole
unbounded domain, but the basis functions are completely different to the classical
ones. The basis functions are constructed using the pole condition [22, 34] as radi-
ation condition. Roughly speaking this radiation condition characterizes outgoing
waves by the poles of their Laplace transforms. These Laplace transforms belong
to a certain class of Hardy spaces. The Hardy space infinite element method is a
Galerkin method applied to a variational problem in a space which is built using a
Hardy space. Just as the PML method, the Hardy space infinite element method
allows arbitrary small discretization errors. It is even more flexible as the PML
method and can be applied to time harmonic wave equations with phase and group
velocities of different signs, where PML methods fail (see [17, 18]).

For the Helmholtz scattering problems given in Sect. 2 we present the PML
(Sect. 3) and the Hardy space infinite element method (Sect. 4). To explain the
basic ideas, we start for both methods with a one dimensional model problem, even
though in one dimension there exists an easy to use exact transparent boundary
condition. These ideas are then generalized to higher dimensions using radial, as
well as Cartesian coordinates. In Sect. 5 we compare the two methods in terms of
efficiency and programming effort.

2 Helmholtz Scattering Problems

In this section we start with the problem setting and the most popular radiation
conditions in order to control the behavior of solutions u to the Helmholtz equation
for large arguments.
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2.1 Problem Setting

Let u be a solution to the Helmholtz equation

��u.x/� !2.1C p.x//u.x/ D 0; x 2 ˝;

for an unbounded Lipschitz domain ˝ � Rd, d D 1; 2; 3, with angular fre-
quency ! > 0. p is a coefficient function with compact support supp.p/ WD
fx 2 Rd W p.x/ ¤ 0g in an open ball BR WD fx 2 Rd W jxj < Rg of radius R > 0.

jxj WD
qPd

jD1 jxjj2 denotes the standard Euclidean norm.

Moreover, let the boundary @˝ be contained in BR and let u fulfill the boundary
condition

@u

@n
C ˛u D g; for x 2 @˝

with given functions ˛ and g and the unit normal vector n pointing to the exterior
of ˝ . We refrain from Dirichlet boundary conditions in order to simplify the
presentation.

Since problems on unbounded domains ˝ cannot be discretized with standard
finite elements, we introduce a bounded and star shaped Lipschitz domain D � Rd

such that @˝ � D and p � 1 in Rd nD. Then˝ is the disjoint union of the bounded
interior domain˝int WD ˝ \D, the unbounded exterior domain˝ext WD Rd nD and
the interface � WD @˝int \ @˝ext. For example, one could choose D D BR.

In˝ext, we are looking for solutions u of the homogeneous problem

��u � !2u D 0; in˝ext; (1a)

u D u0; on �; (1b)

u is outgoing for jxj ! 1: (1c)

The radiation condition (1c) ensures that (1) is uniquely solvable for all Dirichlet
data u0 2 H1=2.� / and all ! > 0, and that these solutions are physically
meaningful. For such a unique solution uu0 we define the so-called Dirichlet-to-
Neumann operator DtN W H1=2.� / ! H�1=2.� / by

DtN u0 WD @uu0
@n

:

Here, the unit normal vector n on � points to the interior of ˝ext. The interior
problem for u 2 H1.˝int/ in weak form is given by

Z
˝int

�ru � rv � !2.1C p/u v
�
dx C

Z
@˝

˛uv ds C
Z
�

.DtN uj� / v ds D
Z
@˝

gv ds

(2)
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for all test functions v 2 H1.˝int/. Representation formulas of the Dirichlet-to-
Neumann operator for d D 2; 3 will be the subject of the following subsections.

In one dimension solutions to (1a) are given by linear combinations of x 7!
exp.i!jxj/ and x 7! exp.�i!jxj/. Using the standard convention exp.�i!t/ for the
time-harmonic ansatz, x 7! exp.i!jxj/ is a radiating solution. Hence, the Dirichlet-
to-Neumann operator in one dimension is simply given by DtN u0 D i!u0.

2.2 Sommerfeld Radiation Condition

Following [28] for time-harmonic waves of the form < .u.x/ exp .�i!t//, the
averaged outward energy flux through the interface � is given by

J� .u/ WD � 1

2!
=
�Z

�

u
@u

@n
ds

	
:

Using Green’s first identity in a domain BR \˝ext, it can be shown that

J� .u/ D 1

4!2
lim
R!1

 
�
Z
@BR

ˇ̌
ˇ̌@u
@n

 i!u

ˇ̌
ˇ̌2 ds ˙

Z
@BR

 ˇ̌
ˇ̌ @u
@n

ˇ̌
ˇ̌2 C !2juj2

!
ds

!

(3)

for all solutions u 2 H2
loc.˝ext/

1 to (1a). Using (3) with the minus sign in the first
integral, J� .u/ is non-negative for solutions to (1a), if u fulfills the Sommerfeld
radiation condition

lim
jxj!1

jxj.d�1/=2
�
@u.x/

@jxj � i!u.x/

�
D 0 uniformly for all directions

x

jxj : (4)

Moreover, using (4) as radiation condition the problem (1) is uniquely solvable (see
e.g. [35, Sect. 9, Theorem 1.3]). So the Sommerfeld radiation condition leads to a
well defined Dirichlet-to-Neumann operator.

It can also be used to construct an approximation to the exact Dirichlet-to-
Neumann operator: If the interface is a sphere of radius R > 0, then the so-called
first order absorbing boundary condition is given by u0 7! i!u0. This Robin
boundary condition is only the exact DtN operator for d D 1. But since for
a numerical realization no extra costs are needed, it is widely used in practice.
Typically, R has to be quite large in order to guarantee, that the artificial reflections
at � are negligible.

1Hr
loc.˝/ denotes the space of functions, which belong to Hr. Ő / for each compact Ő � ˝.
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2.3 Dirichlet-to-Neumann Operator

For x 2 ˝ext D Rd n BR we can use polar coordinates x D rOx with r WD jxj > 0 and
Ox D x=r 2 @B1 in order to construct a representation formula for solutions u to the
exterior problem (1). In polar coordinates the Helmholtz equation (1a) is given by

�@
2u.rOx/
@2r

� d � 1
r

@u.rOx/
@r

� 1

r2
�Ox u.rOx/� !2u.rOx/ D 0; r > R; Ox 2 @B1:

��Ox is the negative Laplace-Beltrami operator. As it is hermitian and positive semi-
definite, all eigenvalues are non-negative. For example, in [11] it is shown, that for
d D 3 the eigenvalues are given by �� WD �.�C1/with multiplicitiesM� WD 2�C1,
� 2 N0.2 For d D 2 the eigenvalues are �� WD �2 with multiplicities M� WD 2 for
� 2 N and M0 WD 1 for � D 0. The corresponding eigenfunctions, the spherical
harmonics Y./� , build a complete orthonormal set of L2.@B1/. Hence, there holds

u.rOx/ D
1X
�D0

M�X
D1

u�;.r/Y
./
� .Ox/; r > R; Ox 2 @B1 (5)

with u�;.r/ WD R
@B1

u.rOx/Y./� .Ox/dOx. The series converges for each r > R in the
L2.@B1/ sense. If u is a sufficiently smooth solution to (1a), we can differentiate
under the integral and deduce that u�; is a solution to the (spherical) Bessel equation

� u00
� .r/� d � 1

r
u0
�.r/C

�
��

r2
� !2

�
u�.r/ D 0; r > R: (6)

Solutions to (6) with ! D 1 are linear combinations of the (spherical) Hankel
functions of the first and second kind. We denote the Hankel functions (d D 2) and
the spherical Hankel functions (d D 3) of the first and second kind byH .1;2/

� . Their
asymptotic behavior is given by

H .1;2/
� .t/ D Cd

t.d�1/=2 exp
�˙i

�
t � ��

2

�� �
1C O

�
1
t

��
; t ! 1; (7a)

H .1;2/0

� .t/ D ˙i Cd
t.d�1/=2 exp

�˙i
�
t � ��

2

�� �
1C O

�
1
t

��
; t ! 1; (7b)

with C2 WD p
2=� exp .i�=4/ and C3 WD exp .i�=2/. Hence, there holds

lim
r!1 r.d�1/=2 �H .1;2/0

�  iH .1;2/
� .r/

�
D 0:

2N denotes the set of all positive natural numbers and N0 WD f0g [ N.
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In particular, the functions u.rOx/ WD H .1/
� .!r/Y./� .Ox/ solve the Helmholtz equation

(1a) and satisfy the Sommerfeld radiation condition (4). Moreover, using (3) we
compute

J� .u/ D
(
1
!
; d D 2

2�
3!2
; d D 3

; (8)

i.e. the outward energy flux is positive and independent of � and . So these
functions radiate energy to infinity and are therefore physically meaningful.

Remark 2.1 A second way of motivating the choice of outgoing solutions is the
limiting absorption principle (see e.g. [35, Sect. 9]). Similar to the idea of shifted
Laplace preconditioners, we replace the positive frequency ! in the Helmholtz
equation by !.1 C �i/ with � > 0 adding artificial absorption to the problem.
Since the solutions to the perturbed problem should be bounded for r ! 1, these
solutions are given by u�.rOx/ WD H

.1/
� .!.1C i�/r/Y./� .Ox/. Passing � to the limit 0

leads again to the Hankel functions of the first kind.

Using the Hankel functions of the first kind in (5) and incorporating the boundary
condition (1b) leads to the series representation

u.rOx/ D
1X
�D0

M�X
D0

R
@B1

u0.ROx/Y./� .Ox/dOx
H

.1/
� .!R/

H .1/
� .!r/Y./� .Ox/; r > R; Ox 2 @B1:

(9)

For u0 2 L2.@BR/ it is shown in [11, Theorem 2.14], that this series as well as
the series of the term by term derivatives converges absolutely and uniformly on
compact subsets of˝ext D R3nBR. The results holds true for˝ext D R2nBR as well.
Moreover, it is indeed a solution to (1) with the Sommerfeld radiation condition and
each solution to (1) satisfying the Sommerfeld radiation condition is given by (9).
Hence, (9) can be used to construct the Dirichlet-to-Neumann operator on spheres
of radius R by

DtN u0 WD
1X
�D0

M�X
D0

�Z
@B1

u0.ROx/Y./� .Ox/dOx
�
!H .1/0

� .!R/

H
.1/
� .!R/

Y./� .Ox/: (10)

A second representation formula for solutions to (1) can be deduced using the
fundamental solution of the Helmholtz equation

˚.x; y/ WD
(

i
4
H

.1/
0 .!jx � yj/; d D 2

!
4�
H

.1/
0 .!jx � yj/; d D 3

:
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In [11, 35]) is shown, that for smooth boundary � a solution u of the exterior
problem (1) combined with the Sommerfeld radiation condition has the integral
representation

u.x/ D
Z
�

�
u.y/

@˚.x; y/

@n.y/
� @u

@n
.y/˚.x; y/

�
ds.y/; x 2 ˝ext: (11)

This representation can be used to construct a Dirichlet-to-Neumann operator for
arbitrary smooth boundaries � .

Remark 2.2 The representation formulas (9) and (11) can also be used as radiation
conditions. Since the (spherical) Hankel functions are holomorphic in fz 2 C W
<.z/ > 0g, the solutions u to (1) using these radiation conditions are holomorphic
with respect to complex frequencies ! with <.!/ > 0. This is not the case, if the
Sommerfeld radiation condition is used, since for ! with <.!/ > 0 and =.!/ < 0

the Hankel functions of the second kind fulfill the Sommerfeld radiation condition.
So for resonance problems, where the frequency is the sought complex resonance,
the Sommerfeld radiation condition is not useful.

3 Complex Scaling Method

For test functions v 2 H1.˝ext/ with compact support in ˝ext [ � , the variational
form of (1) is given by

Z
˝ext

�ru � rv � !2u v � dx D
Z
�

DtN u0 v ds: (12)

In the complex scaling or perfectly matched layer method the left hand side of
this equation is first reformulated such that the solution u and the integrand is
exponentially decaying for jxj ! 1. Then a truncation of the unbounded domain
˝ext to a bounded layer leads to an approximation of the Dirichlet-to-Neumann
operator on the right hand side. As we will see, this approximation converges
exponentially to the correct Dirichlet-to-Neumann operator with respect to the
thickness of the layer.

3.1 One Dimensional PML

For simplicity we start with a one dimensional problem. Let u 2 H1
loc.RC/ be an

outgoing solution to

Z 1

0

�
u0.x/v0.x/ � !2.1C p.x//u.x/v.x/

�
dx D �u0

0v.0/ (13)
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for all test functions v 2 H1.RC/ with compact support in R�0. u0
0 2 C denotes a

given Neumann boundary value of u0.0/. If p 2 L2.RC/ with supp.p/ � Œ0;R/, u is
given by

u.x/ D
(
uint.x/; x 2 ˝int WD .0;R/

uint.R/ exp.i!.x � R//; x 2 ˝ext WD .R;1/
(14)

where uint 2 H1.˝int/ is a solution to the interior problem.
For the complex scaling we use a continuously differentiable function 	 W R�0 !

R�0 with 	.0/ D 0 and 	.t/ � Ct, C > 0, for sufficiently large t. One might use
simply the identity. For � 2 C and R > 0 the complex scaling function is defined
by

��;R.r/ WD
(
r; r � R

.� � 1/	.r � R/C r; r > R
: (15)

��;R is continuous and at least continuously differentiable for all r ¤ R. For the
monomials 	.t/ D tk, ��;R is k � 1 times continuously differentiable at r D R and
arbitrary smooth elsewhere.

Since outgoing solutions u are given by (14), the complex scaled function u�;R WD
u ı ��;R is exponentially decaying for x ! 1 if and only if =.�/ > 0. As uj˝ext has
a holomorphic extension, u�;R solves the complex scaled Helmholtz equation

@

@x

 Qu0
�;R.x/

� 0
�;R.x/

!
� !2� 0

�;R.x/Qu�;R.x/ D 0; x > R: (16)

Hence,

Z
˝ext

�
u0v0 � !2uv

�
dx D

Z
˝ext

 
u0
�;Rv

0
�;R

.� 0
�;R/

2
� !2u�;Rv�;R

!
� 0
�;R dx

follows with partial integration on both sides for all test functions v 2 H1.˝ext/

with compact support in ŒR;1/ and all v�;R 2 H1.˝ext/ with v�;R.R/ D v.R/.

Theorem 3.1 Let !;R > 0, p 2 L2.RC/ with supp.p/ � Œ0;R/, and � 2 C with
positive imaginary part. Moreover, let the assumptions on 	 be fulfilled.

Then u 2 H1
loc.RC/ is an outgoing solution to (13) if and only if u�;R WD uı��;R 2

H1.RC/ is a solution to

Z 1

0

 
u0
�;Rv

0
�;R

� 0
�;R

� !2.1C p//� 0
�;Ru�;Rv�;R

!
dx D �u0

0v.0/; v�;R 2 H1.RC/:

(17)
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Proof The proof is a variant of the one in [10, Theorem 1]. We have already
shown the first direction. Vice versa, let Qu be a solution to (17). Using test
functions v�;R with compact support in .R;1/ and elliptic regularity results, Quext WD
Quj.R;1/ 2 H2..R;1// solves (16). Hence, Quext is a linear combination of x 7!
exp.˙i!��;R.x//. Since <.˙i!��;R.x// D !=.�/	.x�R/ and Quext 2 H2..R;1//,
we have Quext.x/ D Quext.R/ exp.i!.��;R.x/ � R//: Plugging this into (17) and using
partial integration in ŒR;1/ leads to

Z R

0

�Qu0v0 � !2.1C p/Quv� dx D i! Qu.R/v.R/� u0
0v.0/; v 2 H1.˝int/;

i.e. to the correct Dirichlet-to-Neumann operator at x D R. Thus, u defined by (14)
with uint WD Quj˝int is outgoing and solves (13). ut
Corollary 3.2 Let u be a solution to (17). Then uj˝int is independent of the damping
function ��;R.

Of course, (17) is still posed on an unbounded domain RC and cannot be
discretized directly using standard finite element methods. But since the integrand
is exponentially decaying,RC is typically truncated to a bounded domain .0;RCL/
with L > 0 sufficiently large. Then, the truncated problem on H1..0;R C L// is
discretized using standard finite element methods.

3.2 Convergence of a One Dimensional PML

Proving convergence of a truncated and discretized PML is typically done in the
followingway (see e.g. [1, 23]): Similar to the last proof, the problem in the perfectly
matched layer .R;R C L/ is solved analytically at first. This results into a perturbed
Dirichlet-to-Neumann operator at the interface x D R. Typically the error to the
correct Dirichlet-to-Neumann operator is bounded by the complex scaled function
at the truncation boundary RCL, i.e. the truncation error decays exponentially with
increasing layer thickness L. For sufficiently large L > 0 it is then shown, that
the truncated problem is uniquely solvable if the untruncated problem is uniquely
solvable.

Once this is established, compact perturbation arguments of strictly coercive
operators can be used to show, that the discrete problem on the truncated domain
is uniquely solvable for sufficiently fine discretization. Moreover, using the gener-
alized Céa Lemma the discretization error can be bounded by the approximation
error.

Here, we will use an approach, where truncation and discretization error are
treated simultaneously. For scalar waveguides this approach was proposed in [21].
For simplicity, let us assume that 	 is the identity. Then � 0

�;R.x/ � � for x > R and
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there exists a rotation � 2 fz 2 C W jzj D 1;<.z/ > 0g and a constant ˛1 > 0 such
that

<
�
�

Z 1

R

�
1

�

ˇ̌
u0ˇ̌2 � !2� juj2

�
dx

�
> ˛1kuk2H1..R;1//

; u 2 H1..R;1//:

Since <.�/ > 0, the Gårding inequality

<
 
�

Z 1

0

 
ju0j2
��;R

� !2.1C p/��;R juj2
!
dx C C

Z R

0

juj2dx
!
> ˛kuk2H1.RC/

(18)

holds for u 2 H1.RC/ with constants ˛ WD minf˛1;<.�/g > 0 and C > 0 suf-
ficiently large. Since L2..0;R// is compactly embedded in H1..0;R//, a Fredholm
operator of the form A�;R C K�;R W H1.RC/ ! H1.RC/ can be associated to (17).
A�;R is continuous and strictly coercive andK�;R is compact. Hence, Riesz-Fredholm
theory can be used to show convergence of the truncated and discretized problem
with homogeneous Dirichlet boundary condition at the truncation boundary. For the
more complicated case of an acoustic waveguide, the following theoremwas proven
in [21, Theorem 5.6].

Theorem 3.3 Let Vh;L � ff 2 H1..0;R C L// W f .R C L/ D 0g be a usual finite
element discretization of the truncated domain, such that for all v 2 H1..0;RC L//
with v.R C L/ D 0 the orthogonal projection converges point wise, i.e.

lim
h!0

inf
vh2Vh;L

kv � vh;LkH1..0;RCL// D 0: (19)

If (17) is uniquely solvable with solution u�;R 2 H1.RC/, then there exists for all
sufficiently small h > 0 and all sufficiently large L > 0 a unique solution uh;L 2 Vh;L

to

Z RCL

0

 
u0
�;Rv

0
�;R

� 0
�;R

� !2.1C p//� 0
�;Ru�;Rv�;R

!
dx D �u0

0v.0/; v 2 Vh;L: (20)

Moreover, there exists a constant C > 0 independent of h and L such that

ku�;R � uh;LkH1..0;RCL// � C

�
inf

vh;L2Vh;L

ku�;R � vh;LkH1..0;RCL// C ku�;RkH1..RCL;1//

�
:

(21)

Proof We define a finite dimensional subspace of H1.RC/ by

QVh;L WD f f 2 H1.RC/ W f j.0;RCL/ 2 Vh;L; f jŒRCL;1/ � 0g:

Since functions with compact support are dense in H1.RC/, the orthogonal projec-
tion onto QVh;L converges point-wise for h ! 0 and L ! 1. So the first part of
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the theorem follows with [27, Theorem 13.7], since (20) is the projection of (17) to
QVh;L. The error estimation is a consequence of Céa’s Lemma (see e.g. [27, Theorem
13.6]). ut
Equation (21) includes truncation and discretization error. Since

ju�;R.x/j D ju�;R.R/j exp.�!=.�/	.x � R//; x > R;

the second term of (21) decays exponentially with respect to L. For the first term we
introduce for fixed � > 0 and k 2 N the functions

g�;k.x/ WD
(
1; x � R C L � �
1 � �

xC��R�L
�

�k
; x 2 .R C L � �;R C L/

(22)

such that x 7! u�;R.x/g�;k.x/ belongs to Hk..0;R C L// and vanishes at R C L.
Hence, it can be approximated by functions vh 2 Vh;L using (19). The remaining
H1..0;R C L//-error of x 7! u�;R.x/.1 � g�;k.x// again decays exponentially with
respect to L for fixed � and k.

Remark 3.4 For functions u 2 HkC1.˝/ the approximation error of finite element
discretizations typically is bounded by

inf
vh2Vh

ku � vhkH1.˝/ � ChkkukHkC1.˝/: (23)

The constant C > 0 is independent of the mesh size h, but depends amongst others
on the order k 2 N of the used polynomials. See e.g. [6, Sect. 4.4] or [9, Theorem
3.2.1] for sufficient conditions on finite elements such that (23) holds.

For those (19) is satisfied by density of H2.˝/ in H1.˝/. Moreover, (23) can be
used to bound the approximation error of u�;Rg�;kC1.

3.3 Radial Complex Scaling

For problems in higher dimensions we may use radial complex scaling. Let us
assume, that the interface � between the interior and the exterior domain is
piecewise smooth, i.e. there exists a parametrization of � which is piecewise k times
continuously differentiable with k 2 N. Moreover, we require that for all x 2 � with
normal vector n� .x/ the scalar product x � n� .x/ does not vanish and that � is the
boundary of a domainD, which is star shaped with respect to the origin. Most often,
� is just a sphere, but e.g. convex polyhedrons are also possible.

Using the complex scaling function of Sect. 3.1 we define for all x 2 ˝ n f0g the
complex scaled variable

x� .x/ WD ��;R.x/.jxj/
jxj x with R.x/ WD supfr 2 RC W r x

jxj 2 ˝intg: (24)
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Fig. 1 Sketch of a complex scaling. The dotted lines indicate possible discontinuities of the
Jacobian Dxx� in ˝ext. (a) Radial; (b) Cartesian

If 0 is contained in ˝ , we define x� .0/ D 0. See Fig. 1a for a sketch of the radial
complex scaling.

For a spherical complex scaling, i.e. � D @BR, R.x/ D R becomes constant.
It is straightforward to see, that x� .x/ D x for all x 2 ˝int and that =.x� .x// D
=.�/ 	.jxj�R.x//

jxj x. Since 	 increases at least linearly for sufficiently large arguments,
for =.�/ > 0 the imaginary part of the Cartesian components of x� .x/ increase at
least linearly with respect to the distance of x to the interface � .

Lemma 3.5 Let Q� � � be parametrized by a k times continuously differentiable
function � and let the function 	 in the definition of the complex scaling function
��;R.x/ be also k times continuously differentiable. Then x� is k times continuously
differentiable in the pyramidal frustum frOx 2 Rd W r > 1; Ox 2 Q� g.

On the interfaces between the pyramidal frustums and to the interior domain
˝int, x� is at least continuous.

Proof For x 2 ˝ext [ � there exists at least one intersection point of the rays
frx 2 Rd W r > 0g with � , since � is the boundary of a domain containing the origin
and not containing x. This intersection point is unique, since otherwise the bounded
domain would not be star shaped or there would be an Ox 2 � with x � n� .Ox/ D
0. Clearly, this intersection point depends continuously on x. Hence, R.x/ in the
definition (24) of the complex scaling depends continuously on x, since it is the
Euclidean norm of this intersection point. Since the complex scaling function ��;R.x/
is continuous with respect to the argument and to R, x� .x/ is continuous in˝ .

Now, let x be in the interior of one pyramidal frustum frOx 2 Rd W r > 1; Ox 2 Q� g
and let Q� D �.S/ with S � Rd�1. We have to show, that for x D r.x/�.'.x//, ' 2 S,
the function r is k times continuously differentiable. Since R.x/ in the definition of
the complex scaling is given by R.x/ D jxj=r.x/ , this proves the claim.
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So we define F W ˝ext � .RC � S/ ! Rd by F.x; .r; '// WD x � r�.'/. Since
the Jacobian Dr;'F.x; .r; '// D .��.'/;�rD'�'/ is always invertible due to the
assumption Ox � n.Ox/ ¤ 0 with Ox D �.'/ and since F is k times continuously
differentiable, the implicit function theorem guarantees the smoothness of r. ut

Explicit forms of the Jacobian J� .x/ D Dxx� .x/ are complicated, but for the most
common situation � D @BR it is straightforward to compute

J�.x/ D ��;R.jxj/
jxj Idd C � 0

�;R.jxj/jxj � ��;R.jxj/
jxj3 xx>; x 2 ˝ n f0g: (25)

xx> 2 Rd�d denotes the dyadic product and Idd 2 Rd�d the identity matrix. In the
following we restrict ourselves to spherical interfaces in order to simplify the proof.

Theorem 3.6 Let � be a sphere of radius R and let u 2 H1
loc.˝ext/ be a radiating

solution to (12). If =.�/ > 0, then u� D u ı x� 2 H1.˝ext/ decays exponentially
and there holds

Z
˝ext

�
J�T
� ru� � J�T

� rv � !2u� v
�
det.J� /dx D

Z
�

DtN u0 v ds (26)

for all v 2 H1.˝ext/.
Vice versa, if =.�/ > 0 and if Qu 2 ff 2 H1.˝ext/ W f j� D u0g is a solution to

(26) for all v 2 H1
0.˝ext/, then (26) holds true for all v 2 H1.˝ext/.

Proof The series representation (9) of a solution u to (12) converges absolutely and
uniformly on compact subsets of˝ext. The same holds true for the series of the term
by term derivatives. Moreover, the spherical Hankel functions are holomorphic in
C n f0g and the Hankel functions are holomorphic in C n R�0. Hence, the series
representation has a holomorphic extension from x D rOx 2 ˝ext with r D jxj > R
and Ox D x=r to complex variables Qx D QrOx with complex radius Qr 2 C n R�0.

So u� is well defined and the last lemma guarantees, that u� 2 H1
loc.˝ext/. Based

on the integral representation (11) for a sphere in the interior of˝ext, it can be shown
that u� decays exponentially. So the first part of the theorem follows with the chain
rule for the transformation of the gradients.

The second part can be shown using a separation into (spherical) Bessel
problems. For the details see [10, Theorem 1]. ut

For a different kind of complex scaling it is shown in [4], that there holds a
Gårding inequality for a complex scaled bilinear form, which is similar to the one
in (26) with ˝ instead of ˝ext. Hence, for this modified complex scaling the same
approach as for the one dimensional problem in Sect. 3.2 can be used. The error
induced by truncation and finite element discretization is again bounded by an
exponentially decaying truncation error and the usual finite element approximation
error.
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3.4 Cartesian Complex Scaling

If � is the boundary of a rectangle (d D 2) or a cuboid (d D 3), usually a
Cartesian complex scaling is used. In the radial complex scaling (24) basically the
absolute value of x 2 ˝ext is scaled. Hence, all Cartesian components are scaled
simultaneously with the same scaling function. In Cartesian complex scaling, each
Cartesian component can be scaled individually.

W.l.o.g. we assume, that˝int D ˝\Nd
jD1.�Rj;Rj/ with Rj > 0, j D 1; : : : ; d. It

is possible to choose 2d different functions 	.1;2/j in the complex scaling function, but

we confine ourselves to one function 	 . Then for �.1;2/j 2 C, j D 1; : : : ; d, and x D
.x1; : : : ; xd/> 2 ˝ we define the complex scaled variable x� D ..x� /1; : : : ; .x� /d/>
by

.x�/j WD

8̂̂
<̂
ˆ̂̂:

�
�
.1/
j ;Rj

.xj/; xj > Rj

xj; xj 2 Œ�Rj;Rj�

��
�
.2/
j ;Rj

.�xj/; xj < �Rj

; j D 1; : : : ; d: (27)

In Fig. 1b a sketch of the Cartesian complex scaling is given. Since 	.0/ D 0,
x� is continuous everywhere. The regularity of 	 carries over to the regularity of
x� in fx 2 ˝ext W xj ¤ ˙Rj; j D 1; : : : ; dg. The Jacobian J� .x/ for a Cartesian
scaling is a diagonal matrix, where the diagonal entries are the derivatives of the
scaling functions. Therefore a Cartesian complex scaling is typically much easier to
implement than a radial complex scaling.

In contrast to the radial PML, the convergence theory is more involved, see e.g.
[5, 26]. In [5, Theorem 5.8] it is shown, that for 	.t/ D t and with some constraints
on � the truncation error decays exponentially with respect to the thickness of the
layer.

3.5 Choice of Complex Scalings and Bibliographical Remarks

Cartesian complex scaling typically is easier to implement than a radial one. But
if the most popular linear complex scaling 	.t/ D t is used, one has to take into
account the discontinuities of the Jacobian J� shown in Fig. 1. Since the solution
u� in this case is only in H1.˝/, a high order finite element method would suffer
a lot (confer with Remark 3.4). This can be avoided, if the finite element mesh
is chosen such that the discontinuities of J� are part of the skeleton of the mesh.
Hence, u� is smooth in the interior of each finite element, which guarantees the
standard approximation error estimates of high order methods. Of course, choosing
more regular damping functions also solves this issue.
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The choice of the thickness of the complex scaling layer, the damping function
and of the mesh in the layer is delicate. For a linear complex scaling one might use
a priori error estimators for the truncation error of the form exp.�!=.�/L/ with
L being a measure for the layer thickness. Afterwards, for the truncated problem
standard mesh refinement strategies can be used (see e.g. [7]).

There is a vast amount of literature using the complex scaling method. In com-
parison theoretical results are rare. Without claiming to be exhaustive, we mention
the following references, where unique solvability and exponential convergence of
the truncated complex scaling problem is shown for Helmholtz problems in free
space. Note, that in most cases for the truncated problems standard finite element
results can be used.

The results in [29, 30] include spherical complex scaling as in (24) with <.�/ D
1 and some additional assumptions on 	 . In particular, due to an assumption 	 00.t/ >
0, linear complex scaling is not covered from the theory there.

Spherical complex scaling is also studied in [23] with one main difference: In
this work, � has to be at least two times continuously differentiable in a bounded
transition zone .R; QR/. Moreover, for all r > QR the complex scaling is purely linear,
i.e. �.r/ D �r. So in contrast to (15) with 	.t/ D t, there is a translation by .��1/R.
A similar scaling is used in [4], where this translation is crucial for the existence of
a Gårding inequality.

In [3] spherical complex scalings are used with scaling functions of the form
�.r/ D r C i�.r/ with �.r/ D log. OR � 1/ � log. OR � r/ for r 2 .1; OR/ with OR > 1.
For this kind of complex scaling no truncation is needed, but the coefficients in the
complex scaled variational formulation become singular.

In [19] the spectral properties of untruncated radial complex scalings are
investigated for <.�/ D 1 and two times continuously differentiable scaling
functions. This work was extended in [25] with studies on truncated radial complex
scalings.

Cartesian complex scalings were studied e.g. in a series of papers by Joseph
E. Pasciak and coauthors [5, 26]. The last includes convergence results for linear
complex scaling under some constraints on � .

4 Hardy Space Infinite Element Method

Classical infinite element methods (see [12, 13]) directly discretize the exterior
variational formulation (12) with special test and basis functions for jxj ! 1. These
basis functions have to satisfy the Sommerfeld radiation condition (4). Hardy space
infinite element methods use the same idea, but they are based on the pole condition.
This is another kind of radiation condition, which is to some extent equivalent to the
classical ones.
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4.1 One Dimensional Pole Condition

We start with this pole condition for one dimensional problems of the form (13).
The details can be found in [20, Sect. 2].

Arbitrary solutions u to (13), which do not fulfill a radiation condition, are given
for x � R by u.x/ D Cuout.x� R/CDuinc.x� R/ with complex constants C;D 2 C

and

uout.r/ WD exp.i!r/; uinc.r/ WD exp.�i!r/; r � 0:

In the followingwewill use the Laplace transform .L v/.s/ WD R1
0 exp.�sr/v.r/dr,

<.s/ > 0, and for a complex constant �0 2 C n f0g a Möbius transform

.M�0 Ov/.z/ WD 1

z � 1 Ov
�
i�0

z C 1

z � 1
�
; z ¤ 1: (28)

The constant �0 will be the main parameter of the Hardy space infinite element
method. It is somehow equivalent to the complex scaling parameter � for a linear
complex scaling.

Since

.M�0L uout/ .z/ D 1
i.�0�!/zCi.�0C!/ ; z 2 C; (29a)

.M�0L uinc/ .z/ D 1
i.�0C!/zCi.�0�!/ ; z 2 C; (29b)

M�0L fu.�CR/g is a meromorphic functionwith poles at
�
!C�0
!��0

�˙1
. For ! > 0 and

<.�0/ > 0, the pole of M�0L uout has absolute value larger than 1. So M�0L uout
can be expanded into the Taylor series

.M�0L uout/ .z/ D 1

i.�0 C !/

1X
jD0

�
! � �0

! C �0

�j

zj; z 2 C;

which converges for all jzj � 1. In particular, M�0L uout is holomorphic in the
complex unit disk and belongs to the Hardy space3 HC.S1/ of the complex unit
sphere S1 WD fz 2 C W jzj D 1g.

If <.�0/; ! > 0, M�0L uinc 62 HC.S1/, since it has a pole with absolute value
smaller than 1. So we can use Hardy spaces in order to ensure, that a solution u to
(13) only contains the outgoing solution uout.

3HC.S1/ � L2.S1/ consists of functions of the form
P

1

jD0 ˛jz
j, z 2 S1, with a square summable

series .˛j/. These functions are boundary values of some functions, which are holomorphic in the
complex unit disk. Equipped with the L2.S1/ scalar product, HC.S1/ is a Hilbert space. For more
details to Hardy spaces we refer to [14].
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Definition 4.1 (Pole Condition) Let HC.S1/ denote the Hardy space of the
complex unit sphere S1 and let �0 2 C with positive real part be fixed.

Then a function u 2 L2loc..R;1// is outgoing, if M�0L u.� C R/ is well defined
and belongs to HC.S1/.

4.2 Hardy Space Variational Formulation in One Dimension

In order to be able to use this radiation condition, we have to reformulate (13).
First, we define interior functions uint WD uj.0;R/, vint WD vj.0;R/ and shifted exterior
functions uext.r/ WD u.r C R/, vext.r/ WD v.r C R/ for r > 0. For these functions
(13) is split into

�u0
0v.0/ D bint.uint; vint/C bext.uext; vext/;

with interior and exterior bilinear forms

bint.uint; vint/ WD
Z R

0

�
u0
int.x/v

0
int.x/ � !2.1C p.x//uint.x/vint.x/

�
dx;

bext.uext; vext/ WD
Z 1

0

�
u0
ext.r/v

0
ext.r/ � !2uext.r/vext.r/

�
dr:

Using test functions of the form vext.r/ D vint.R/ exp.i�r/ with =.�/ > 0 and
<.�=�0/ > 0, we can use the identity in [20, Lemma A.1] to show

bext.uext; vext/ D q�0.M�0L u0
ext;M�0L v0

ext/� !2q�0.M�0L uext;M�0L vext/;

(30)
with the bilinear form q W HC.S1/ � HC.S1/ ! C defined by

q�0.U;V/ WD �2i�0
2�

Z 2�

0

U.exp.i'//V.exp.�i'//d'; U;V 2 HC.S1/:
(31)

q�0 is almost the L2.S1/ scalar product: Let z 7! z denote the standard complex
conjugation and let C W HC.S1/ ! HC.S1/ denote the involution defined by
.CV/.z/ WD V.z/, z 2 S1. Then q�0.U;CV/ D �2i�0

2�
.U;V/L2.S1/. Moreover, the

monomials z 7! zj, j 2 N0; are orthogonal with respect to the bilinear form q�0 .
There are two main difficulties in (30). First we have to ensure, that our basis

and test functions are continuous at the interface x D R. Due to (29a), e.g. for the
test functions there holds vint.R/ D 1

2i�0
.M�0L vext/ .1/. The right hand side would

not be well defined for an arbitrary function V 2 HC.S1/ � L2.S1/. The second
challenge is the termsM�0L u0

ext andM�0L v0
ext, which have to be computed if test

functions forM�0L uext andM�0L vext are used.
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Both issues can be solved with one modification. We define the operators T˙ W
C � HC.S1/ ! HC.S1/ by

T˙.v0;V/.z/ WD 1

2
.v0 C .z ˙ 1/V.z// ; z 2 S1; .v0;V/ 2 C � HC.S1/:

(32)

Lemma 4.2 Let v 2 H1
loc.RC/ \ C.R�0/ be such that the Möbius and Laplace

transformed functionM�0L v is well defined. Moreover, we assume thatM�0L v 2
T�.C � HC.S1//, i.e. there exists .v0;V/ 2 C � HC.S1/ such that M�0L v D
1
i�0
T�.v0;V/.
Then v0 D v.0/ andM�0L v0 D TC.v0;V/:

Proof By a limit theorem of the Laplace transform, there holds

v.0/ D lim
r!0

v.r/ D lim
s!1 s.L v/.s/ D lim

z!1
i�0 ..z C 1/ .M�0L v/ .z// :

The limit of the right hand side exists, since by assumption .M�0L v/ .z/ D
1=.2i�0/.v0 C .z � 1/V.z// with V 2 L2.S1/. Hence, v0 D v.0/.

The second assertion follows from direct calculations with .L v0/.s/ D
s.L v/.s/ � v.0/. ut
Using this lemma, the exterior bilinear form becomes

bext;�0 ..u0;U/; .v0;V// WDq�0 .TC.u0;U/;TC.v0;V//

� !2q�0

�
1

i�0
T�.u0;U/;

1

i�0
T�.v0;V/

�
;

(33)

with .u0;U/; .v0;V/ 2 C � HC.S1/. u0 and v0 represent the Dirichlet values of
uext.0/ D uint.R/ and vext.0/ D vint.R/ respectively. This allows a continuous
coupling of classical finite elements for vint with infinite elements forM�0L vext.

Lemma 4.3 For <.�0/ > 0 there exists a rotation � 2 fz 2 C W jzj D 1;<.z/ > 0g
and a constant ˛ > 0 such that for all .v0;V/ 2 C � HC.S1/

< .�bext;�0 ..v0;V/; .v0;CV/// � ˛k.v0;V/k2
C�HC.S1/

: (34a)

Moreover, bext;�0 is continuous, i.e. there exists a constant C > 0 such that for all
.u0;U/; .v0;V/ 2 C � HC.S1/

jbext;�0 ..u0;U/; .v0;V//j � Ck.u0;U/kC�HC.S1/k.v0;V/kC�HC.S1/: (34b)

The norm on C � HC.S1/ is thereby defined as

k.v0;V/kC�HC.S1/ WD
q

jv0j2 C kVk2
L2.S1/

; .v0;V/ 2 C � HC.S1/:
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Proof The continuity of bext;»0 follows from the continuity of q�0 and of the
operatorsT˙. Since 2T˙.v0;V/.z/ D v0CzV.z/˙V.z/, the parallelogram identity
leads to

kT�.v0;V/k2L2.S1/ C kTC.v0;V/k2L2.S1/ D1

2
kv0 C �V.�/k2L2.S1/ C 1

2
kVk2L2.S1/

D1

2
jv0j2CkVk2L2.S1/ � 1

2
k.v0;V/k2C�L2.S1/:

The last identity yields by orthogonality of the monomials z 7! zj, j 2 N0, in L2.S1/.
Choosing � with <.�/ such that

<
��2i�0
2�

�

�
D 1

�
=.�0�/ and <

�
.�2i�0/.�!2/
2�.i�0/2

�

�
D !2

�j�0j2=.�0�/

are positive, yields the claim. ut
The last proof as well as the next two ones are simplifications of those in [21, Sect. 6]
and [20, Theorem 2.4].

Theorem 4.4 Let !;R > 0, p 2 L2.RC/ with supp.p/ � Œ0;R/, and �0 2 C with
positive real part. If u is an outgoing solution to (13) and uint WD uj.0;R/, then there
exists a function U 2 HC.S1/ such that .uint;U/ 2 H1..0;R//� HC.S1/ solves

� u0
0v.0/ D bint.uint; vint/C bext;�0 ..uint.R/;U/; .vint.R/;V// (35)

for all test functions .vint; v/ 2 H1..0;R// � HC.S1/. Vice versa, if .uint;U/ 2
H1..0;R// � HC.S1/ is a solution to (35), then uint is the restriction to .0;R/ of
an outgoing solution u 2 H1

loc.RC/ to (13).

Proof For a radiating solution u to (13),M�0L u.� C R/ D 1
i�0
T�.u.R/;U/ with

U.z/ D .! � �0/u.R/

.�0 � !/z C .�0 C !/
; z 2 S1: (36)

We have already shown, that .uint;U/ 2 H1..0;R// � HC.S1/ solves (35) for a
special kind of test functions. Since these test functions are dense in HC.S1/ (see
[20, Lemma A.2]) and since the bilinear form in (35) is continuous, (35) holds true
for all test functions in H1..0;R// � HC.S1/.

Conversely, let .uint;U/ 2 H1..0;R// � HC.S1/ be a solution to (35). As in the
proof of Theorem 3.1, we start with test functions .vint;V/ 2 H1..0;R// � HC.S1/
with vint � 0. (35) reduces to the exterior bilinear form with vint.R/ D 0, which is
coercive due to the last lemma. Hence, U is unique and due to the first part of the
proof given by (36). Plugging U into (33) with arbitrary test functions .vint;V/ 2
H1..0;R// � HC.S1/ leads to bext;�0 ..uint.R/;U/; .vint.R/;V// D i!uint.R/vint.R/,
i.e. the correct Dirichlet-to-Neumann operator. ut
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Corollary 4.5 Let .uint;U/ 2 H1..0;R// � HC.S1/ be a solution to (35). Then uint
is independent of the parameter �0.

4.3 Hardy Space Infinite Elements in One Dimension

Theorem 4.6 With the same assumptions as in Theorem 4.4 let Vint;h � H1..0;R//
be a standard finite element space such that the orthogonal projection onto Vint;h

converges point wise for all v 2 H1..0;R//. Moreover, let˘N � HC.S1/ denote the
set of polynomials of maximal order N 2 N0 and

Vh;N WD Vint;h �˘N � H1..0;R// � HC.S1/: (37)

If (36) is uniquely solvable with solution .uint;U/ 2 H1..0;R// � HC.S1/, then
for sufficiently small h and sufficiently large N there exists a unique solution
.uint;h;UN/ 2 Vh;N to (36) with test functions only in Vh;N. Moreover, there exist
constants C; c > 0 independent of h and L such that

kuint;h � uintkH1..0;R// � C

�
inf

vint;h2Vint;h
kuint � vint;hkH1..0;R// C exp.�cN/

�
: (38)

Proof Similarly to the linear complex scaling in Sect. 3.2 there holds a Gårding
inequality inH1..0;R//�HC.S1/ and the theorem is a consequence of the projection
method applied to a compact perturbation of a coercive operator [27, Theorems
13.6 and 13.7]. For �0 D ! there is no approximation error in the Hardy space.

Otherwise, U has a pole at p WD
�
!C�0
!��0

�
, which has absolute value larger than

one. Since U.z/ D uint.R/
P1

jD0 p�. jC1/zj, infVN2˘N kVN � UkL2.S1/ converges
exponentially with p�.NC1/. ut
In the one dimensional case the choice of the parameter �0 is obvious: If �0 D !,
we have U � 0 and the Hardy space method reduces to the correct Dirichlet-to-
Neumann operator. In higher dimensions this is no longer the case, but typically
�0 
 ! remains a good choice.

In contrast to the complex scaling method, no truncation error occurs and no
mesh in the exterior domain is needed. Moreover, we have exponential convergence
with respect to the number of unknowns in the Hardy space. But we have to
implement a new bilinear form and a new infinite element.

In the one dimensional case this is extremely easy. As basis functions for
.vint;h.R/;VN/ 2 C � ˘N we use ˚�1.z/ WD .1; 0/ and the monomials ˚j.z/ WD
.0; zj/, j D 0; : : : ;N. The operatorsT˙;N W C �˘N ! ˘NC1 D spanfz0; : : : ; zNC1g
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in this basis are given by the bidiagonal matrices

T˙;N D 1

2

0
BBB@
1 ˙1
: : :

: : :

1 ˙1
1

1
CCCA 2 R

.NC2/�.NC2/:

Since q�0 is orthogonal with respect to the monomials, we have

SN WD �
q�0
�
TC˚j;TC˚k

��N
j;kD�1 D .�2i�0/T>C;NTC;N ; (39a)

MN WD �
q�0
�
1=.i�0/T�˚j; 1=.i�0/T�˚k

��N
j;kD�1 D 2i

�0
T>�;NT�;N (39b)

and finally

�
bext;�0

�
˚j; ˚k

��N
j;kD�1 D SN � !2MN :

Only this matrix has to be implemented for Hardy space infinite elements in
one dimension. The first row and the first column belong to vint.R/ and uint.R/
respectively. Hence, they have to be coupled with the corresponding degrees of
freedoms of Vint;h � H1..0;R//.

4.4 Radial Hardy Space Infinite Elements

As for the complex scaling method there exists different ways to generalize one
dimensional infinite elements to two or three dimensions. For generalized Cartesian
Hardy space infinite elements in two dimensions we refer to [33, Sect. 2.3.1.]. Here,
we only use radial infinite elements. Since the correct mathematical framework is
rather involved, we restrict ourselves to the presentation of the numerical method.
For a mathematically correct construction of the method we refer to [20] and for
proof of convergence to [16].

We use the same assumptions on the interface � D ˝int \˝ext as for the radial
complex scaling in Sect. 3.3. For a parametrization � W S � Rd�1 ! � of the
interface, we parametrize the exterior domain by F W RC � S ! ˝ext with

F.r; '/ WD .1C r/�.'/; r > 0; ' 2 S: (40)

If � is piecewise smooth, due to Lemma 3.5 F is piecewise smooth in each segment
of the exterior domain (see Fig. 1a) and at least continuous everywhere. Hence, the
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exterior bilinear form in (12) is given by

Z
RC�S

 �
@ruext
r'uext

�>
J�1J�>

�
@rvext
r'vext

�
� !2uextvext

!
det.J/ d.r; '/;

with uext WD u ı F, vext WD v ı F and Jacobian J.r; '/ D .�.'/; .1C r/D'�.'// 2
Rd�d. Since J.r; '/ D OJ.'/

�
1 0

0 .1C r/Idd�1

�
with OJ.'/ WD .�.'/;D'�.'//, we define

det.OJ.'//OJ.'/�1 OJ.'/�> DW
�
G11.'/ G21.'/>
G21.'/ G22.'/

�
;

with G11 2 R, G21 2 R
d�1 and G22 2 R

.d�1/�.d�1/. For the exterior bilinear form
we have to discretize the two integrals

Z
˝ext

ru � rvdx D
Z
S

Z 1

0

�
.1C r/d�1@ruext.r; '/G11.'/@rvext.r; '/C

.1C r/d�2@ruext.r; '/G21.'/>r'vext.r; '/C

.1C r/d�2r'uext.r; '/
>G21.'/@rvext.r; '/C

.1C r/d�3r'uext.r; '/
>G22.'/r'vext.r; '/

�
dr d'

(41a)
and

Z
˝ext

u v dx D
Z
S

Z 1

0

uext.r; '/vext.r; '/.1C r/d�1det.OJ.'// dr d': (41b)

Similar to Definition 4.1 we formulate the radiation condition in terms of the
Möbius and Laplace transformed function: uext is outgoing ifM�0L uext.�; '/ exists
for all ' 2 S and belongs to the Hardy space HC.S1/. In order to use this radiation
condition, we transform the integrals

R1
0
.: : : /dr in radial direction as in the one

dimensional case into the bilinear form (31) using the identity [20, Lemma A.1].
Special attention has to be paid to the factors .1C r/˙1.

In order to treat these, we first study the Möbius and Laplace transformation
of a multiplication operator. If M�0L v and .M�0L v/0 belong to the Hardy space
HC.S1/, thenM�0L fr 7! rv.r/g D �1

2i�0
DM�0L v with

.DV/ .z/ WD .z � 1/2V 0.z/C .z � 1/V.z/; V 2 HC.S1/:

Hence, we deduce

M�0L
˚
r 7! .1C r/˙1v.r/


 D
�
I � 1

2i�0
D

�˙1
M�0L v; (42)
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with the identity operator I W HC.S1/ ! HC.S1/. For implementation the
orthogonal projection onto ˘NC1 of I � 1

2i�0
D W ˘NC1 ! ˘NC2 is useful. In

the monomial basis it is given by

D�0 WD IdNC2 � 1

2i�0

0
BBBBBBBB@

�1 1

1 �3 2

2 �5 3

: : :
: : :

: : :

N �2N � 1 N
N C 1 �2N � 3

1
CCCCCCCCA

2 C
.NC2/�.NC2/:

Note, that it is symmetric, i.e. D>
�0

D D�0 . For the inverse operator .I � 1
2i�0

D/�1

we use the inverse D�1
�0

as approximation.
We are now ready for a computation of the radial Hardy space infinite elements:

Let Vh � H1.˝int/ be a standard finite element discretization of H1.˝int/ and let
�1; : : : ; �N� withN� 2 N denote the non vanishing traces of the finite element basis
functions in H1.˝int/. We need standard finite element matrices on the interface �

M� WD
�Z

S
det.OJ.'// �j.'/�k.'/ d'

�N�

j;kD1
; (43a)

S00� WD
�Z

S
�j.'/G11.'/�k.'/ d'

�N�

j;kD1
; (43b)

S10� WD
�Z

S

�r'�j.'/
�>

G21.'/ �k.'/ d'

�N�

j;kD1
; (43c)

S11� WD
�Z

S

�r'�j.'/
�>

G22.'/r'�k.'/ d'

�N�

j;kD1
; (43d)

and for the basis functions˚�1; : : : ; ˚NrC1 2 C�˘Nr defined in the last subsection
the non-standard Hardy space infinite elements

Mr WD 2i

�0
T>�;Nr

Dd�1
�0

T�;Nr ; (44a)

S00r WD 2i

�0
T>�;Nr

Dd�3
�0

T�;Nr ; (44b)

S10r WD �2T>C;Nr
Dd�2
�0

T�;Nr ; (44c)

S11r WD .�2i�0/T>C;Nr
Dd�1
�0

TC;Nr : (44d)

For the tensor product basis functions˚j ˝�k the discretization of
R
˝ext

ru � rv dx
is due to (41) given by

S WD S11r ˝ S00� C S10r ˝ S01�
> C S10r

> ˝ S10� C S00r ˝ S11� : (45a)
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The infinite element matrix for
R
˝ext

uv dx is given by

M WD Mr ˝ M� : (45b)

As in the one dimensional case the basis functions ˚�1 ˝ �k, k D 1; : : : ;N� , have
to be coupled to the corresponding basis functions in H1.˝int/ in order to ensure
continuity at the interface � .

Remark 4.7 If uint is a solution to (2), Quext a solution to (1), uext D Quext ı F and

U.z; '/ WD 2i�0M�0L fuext.�; '/g.z/� uint.�.'//

z � 1 ;

then .uint;U/ belongs to a subspace of H1.˝int/ � HC.S1/˝ L2.S/. This subspace
is constructed such that the bilinear forms in (41) are continuous (see [20, Eq. (3.7)
and Lemma A.3] for a slightly different bilinear form or [16, Eq. (3.7)]). The
Hardy space infinite element method is in this space a Galerkin method with tensor
product elements. In [16] a Gårding inequality is shown leading to super-algebraic
convergence with respect to the number of unknowns in the Hardy space.

The numerical results in [20, 32, 33] confirm this result. The main parameters of
the method are �0, the number of unknowns in radial direction and the choice of the
interface � . The numerical results indicate, that �0 
 ! is recommendable. The
interface � has to be chosen carefully.

Of course, in order to minimize the computational effort in˝int, one would like to
choose˝int as small as possible. On the other hand the numerical results show, that
the number of radial unknowns has to be increased, if the distance of � to a source
of the scattered wave becomes smaller. For a distance of one or two wavelengths
typically less than 10 radial unknowns are needed to ensure, that the error of the
infinite elements is negligible. As mentioned in [16, Remark 3.3], highly anisotropic
interfaces � should be avoided, when radial infinite elements are used. For such
interfaces Cartesian infinite elements as in [33, Sect. 2.3.1.] are preferable.

5 Summary

We have presented PML and Hardy space infinite element methods for Helmholtz
problems in open systems. Both methods are Galerkin methods and for both
methods convergence can be shown. However, the type of convergence is different.

PML methods converge exponentially with increasing layer thickness. The
convergencewith respect to the finite element discretization of the perfectlymatched
layer depends on the used finite elements and typically is hk for polynomials of order
k. Hardy space infinite element methods converge super-algebraically with respect
to the number of unknowns in radial direction and with the usual finite element
convergence order for the interface unknowns. In a comparison in [33] the Hardy
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space infinite element method was superior to a complex scaling method for a two
dimensional problem with inhomogeneous exterior domain. Of course, this might
change in a different situation.

For the Hardy space infinite element method the programming effort typically
is noticeable larger than for a standard PML. A non-standard infinite element with
non-standard discretization matrix has to be implemented. The implementation of
the matrix itself is very easy and does not require a remarkable effort. On the other
hand a standard PML will not converge, if the layer thickness or the damping is not
increased. Realizing this in a given finite element code is not an easy task neither.

One big advantage of both methods is the flexibility. In this chapter we have
only used Helmholtz problems in free space, but the methods can be used for wave-
guides [1, 21] and inhomogeneous exterior domains [7, 33] as well. Moreover, they
are not restricted to scalar problems in frequency domain.

Acknowledgements Support from the Austrian Science Fund (FWF) through grant P26252 is
gratefully acknowledged.
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On the Optimality of Shifted Laplacian
in a Class of Polynomial Preconditioners
for the Helmholtz Equation

Siegfried Cools and Wim Vanroose

Abstract This paper introduces and explores a class of polynomial preconditioners
for the Helmholtz equation, denoted as expansion preconditioners EX.m/, that
form a direct generalization to the classical complex shifted Laplace (CSL) pre-
conditioner. The construction of the EX.m/ preconditioner is based on a truncated
Taylor series expansion of the original Helmholtz operator inverse. The expansion
preconditioner is shown to significantly improve Krylov solver convergence rates
for growing values of the number of series terms m. However, the addition of
multiple terms in the expansion also increases the computational cost of applying
the preconditioner. A thorough cost-benefit analysis of the addition of extra terms
in the EX.m/ preconditioner proves that the CSL or EX.1/ preconditioner is the
most efficient member of the expansion preconditioner class for general practical
and solver problem settings. Additionally, possible extensions to the expansion
preconditioner class that further increase preconditioner efficiency are suggested,
and numerical experiments in 1D and 2D are presented to validate the theoretical
results.

1 Introduction

1.1 Overview of Recent Developments

The propagation of waves through any material is often mathematically modeled by
the Helmholtz equation, which represents the time-independent waveforms in the
frequency domain. For high wavenumbers, i.e. high spatial frequencies, the sparse
linear system that results from the discretization of this PDE is distinctly indefinite,
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causing most of the classic direct and iterative solution methods to perform poorly.
Over the past few years, many different Helmholtz solution methods have been
proposed, an overview of which can be found in [18]. Krylov subspace methods
like GMRES [31] or BiCGStab [40] are known for their robustness and are hence
frequently used for the solution of Helmholtz problems [3, 22, 27, 36]. However, due
to the indefinite nature of the problem, Krylov methods are generally not efficient
as Helmholtz solvers without the inclusion of a suitable preconditioner.

In this chapter we focus on the class of so-called shifted Laplace preconditioners,
which were introduced in [25] and [15], and further analyzed in [16, 17]. It was
shown in the literature that contrary to the original discretized Helmholtz system,
the complex shifted Laplace (CSL) system (or damped Helmholtz equation) can
be solved efficiently using iterative methods [18, 29]. Originally introduced by
Fedorenko in [19], multigrid methods [7–9, 13, 37, 39] have been proposed as
scalable solution methods for the shifted Laplace system in the literature [17].
Typically only one multigrid V-cycle on the CSL system yields a sufficiently good
approximate inverse, which can then be used as a preconditioner to the original
Helmholtz system [14, 16, 28, 32]. The main concept behind the shifted Laplace
preconditioner is deceivingly simple: by shifting the spectrum of the Helmholtz
operator down into the complex plane, close-to-zero eigenvalues (leading to near-
singularity) that possibly destroy the iterative solver convergence are avoided, as
illustrated in Fig. 1. Nevertheless, the results in this work will show that this apparent
simplicity is exactly what makes the CSL preconditioner into a powerful tool for the
iterative solution of the Helmholtz equation.

Fig. 1 Top: spectrum of the 1D Helmholtz operator discretized using second order finite differ-
ences on a 48 � 48 equidistant grid with standard homogeneous Dirichlet boundary conditions.
Bottom: spectrum of the corresponding Complex Shifted Laplacian (CSL) operator
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1.2 Outline of This Chapter

This study presents a generalization of the class of shifted Laplace preconditioners,
which is based on a Taylor series expansion [2, 6, 26] of the original Helmholtz
operator inverse around a complex shifted Laplacian operator. This formulation
relates the original Helmholtz inverse to an infinite sum of shifted Laplace problems.
By truncating the series we are able to define a class of so-called expansion
preconditioners, denoted by EX.m/, where the number of terms m in the expansion
is a parameter of the method. The expansion preconditioner directly generalizes
the classic complex shifted Laplace preconditioner, since the CSL preconditioner
appears as the operator EX.1/, i.e. the first term in the Taylor expansion.

Using a spectral analysis [12, 16, 41], the incorporation of additional series terms
in the EX.m/ preconditioning polynomial is shown to greatly improve the spectral
properties of the preconditioned system. When used as a preconditioner the EX.m/
operator hence allows for a significant reduction of the number of outer Krylov
steps required to solve the Helmholtz problem for growing values of m. However,
the addition of multiple terms in the expansion also increases the computational
cost of applying the preconditioner, since each additional series term comes at
the cost of one extra shifted Laplace operator inversion. The performance trade-
off between the reduction of the number of outer Krylov iterations and the cost of
additional terms (CSL inversions) in the preconditioner polynomial is analyzed in-
depth. Furthermore, several theoretical extensions to the expansion preconditioner
are introduced to improve preconditioner efficiency. These extensions provide the
reader with supplementary insights into Helmholtz preconditioning. The proposed
methods show similarities to the research on flexible Krylov methods [30, 35] and
more specifically the work on multi-preconditioned GMRES [21].

A variety of numerical experiments are performed to validate the EX.m/ precon-
ditioner and illustrate the influence of the number of series terms m on convergence.
Performance and computational cost of CSL- and EX.m/-preconditionedBiCGStab
[40] are compared for one- and two-dimensional Helmholtz model problems with
absorbing boundary conditions. These absorbing boundaries are implemented using
Exterior Complex Scaling (ECS) [1, 28, 34], a technique which has been related to
Perfectly Matched Layers (PMLs) [5] by Chew and Weedon [11].

The remainder of this chapter is organized as follows. In Sect. 2 we out-
line the theoretical framework for this work and we introduce the expansion
preconditioner class EX.m/. Following its formal definition, an overview of the
theoretical, numerical and computational properties of the expansion preconditioner
is given. Section 3 presents several possible extensions to the proposed EX.m/
preconditioner, which are shown to improve preconditioner efficiency even further.
The new preconditioner class is validated in Sect. 4, where it is applied to a
1D and 2D Helmholtz benchmark problem. A spectral analysis confirms the
asymptotic exactness of the expansion preconditioner as the number of terms m
grows towards infinity. Additionally, experiments are performed to compare the
efficiency and computational cost of the EX.m/ preconditioner for various values
of m. Conclusions and a short discussion on the results are formulated in Sect. 5.
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2 The Expansion Preconditioner

In this section we introduce the general framework for the construction of the
expansion preconditioner. Starting from the notion of the classic complex shifted
Laplace operator, we define the class of expansion preconditioners based on a
Taylor expansion of the original Helmholtz operator inverse around a shifted
Laplace problem with an arbitrary shift parameter. The definition of the expansion
preconditioner is followed by an overview of the fundamental analytical and
computational properties of the new preconditioner class.

2.1 The Complex Shifted Laplacian Preconditioner

In this work we aim to construct an efficient solution method for the d-dimensional
Helmholtz equation

.�� � k2.x// u.x/ D f .x/; x 2 ˝ � R
d; (1)

with outgoing wave boundary conditions

u D outgoing on @˝; (2)

where �k.x/2 is a distinctly negative shift. Here k 2 R designates the wavenumber,
which will be assumed to be a spatially independent constant throughoutmost of this
work for simplicity. However, note that the definitions in this section do not depend
on this assumption. The above equation is discretized using a finite difference, finite
element or finite volume scheme of choice, yielding a system of linear equations of
the general form

Au D f ; (3)

where the matrix operator A represents a discretization of the Helmholtz operator

A
dD .��� k2/. It has been shown in the literature that iterative methods in general,

and multigrid in particular, fail at efficiently solving the discretized Helmholtz
system (3) due to the indefiniteness of the operatorA [13, 18]. However, the addition
of a complex shift in the Helmholtz system induces a damping. This allows for
a more efficient solution of the resulting system, which is known as the complex
shifted Laplacian (CSL)

.�� � .1C ˇi/k2.x// u.x/ D f .x/; x 2 ˝ � R
d; (4)
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where ˇ 2 RC is the complex shift (or damping) parameter that is conventionally
chosen to be positive [15, 17]. The discretized shifted Laplace system is denoted by

Mu D f ; (5)

where M is the discretization of the complex shifted Helmholtz operator M
dD

.�� � .1C ˇi/k2/.
It is well-known that this system can be solved using multigrid when the shift

parameter ˇ is sufficiently large [14–16]. Furthermore, it has been shown in the
literature that the complex shift parameter ˇ should be chosen at least as large as
the critical value ˇmin. For a multigrid V-cycle with the standard linear interpolation
and full weighting restriction operators and a traditional !-Jacobi or Gauss-Seidel
type smoothing scheme, the rule-of-thumb value for ˇmin was shown to be 0:5 for a
V(1,0)-cycle [16], and lies roughly around 0:6when solving the CSL system using a
V(1,1) multigrid cycle [12]. Note that the latter value for the shift will be commonly
used throughout this chapter.

The exact solution to (4) is a damped waveform that is fundamentally different
from the solution to the original Helmholtz system (1). However, the inverse of
the shifted matrix operator M can be used as a preconditioner to the original
system. This preconditioning technique is known as the complex shifted Laplace
preconditioner, and was shown to perform well as a preconditioner for Helmholtz
problems, see [14, 16, 41].

2.2 The Class of Expansion Preconditioners

2.2.1 General Criteria for Preconditioner Efficiency

The aim of this work is to extend the existing class of shifted Laplace precondition-
ers to obtain a more efficient preconditioner to the original Helmholtz system (3).
Moreover, we would like to construct a preconditionerM such thatM 
 A or, as an
equivalent measure, we require that the eigenvalues of the preconditioned operator
M�1A are concentrated around one, i.e.

spec.M�1A/ 
 1: (6)

In the context of an efficient iterative solution, the condition number � D �.M�1A/
of the preconditioned system is often related to the number of Krylov iterations [23].
Although this relation is somewhat heuristic in the context of non-normal matrices
[38], we believe that it provides an insightful intuition on preconditioner efficiency.
The above requirement (6) can hence be broadened by requiring that the condition
number � approximately equals one, i.e.

�.M�1A/ 
 1: (7)
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We trivially note that by the above characterizations the best preconditioner to the
Helmholtz system (3) is (a good approximation to) the original operator A itself.
However, the discrete operator A is generally close to singular and hence cannot
be easily inverted in practice. On the other hand, given a sufficiently large complex
shift, the CSL system (4) can be approximately inverted using e.g. a (series of)
multigrid V-cycle(s). Note that the complex shifted Laplacian is generally not a very
precise approximation to the original Helmholtz operator unless the shift parameter
ˇ is very small, which in practice is not achievable due to stability requirements on
the preconditioner inversion, see [12].

Following the general idea of preconditioning, the optimal Helmholtz precondi-
tionerMopt thus ideally satisfies the following two key properties, which are inspired
by analogous conditions that were formulated in [20]:

(P1) M�1
opt is a good approximation to the exact inverse of the original Helmholtz

operator A�1, such that condition (6) is satisfied, i.e. the spectrum of the
preconditioned operatorM�1

optA is clustered around one,

(P2) for any given vector v, M�1
optv can be efficiently computed iteratively. This

implies a good approximation toM�1
optv is found after a ‘moderate’ number

of iterations of the chosen method, with a manageable cost per iteration.

In the context of this chapter condition (P2) is satisfied ifM�1
opt can be formulated

in terms of shifted Laplace operator inverses with a shift parameter ˇ that is
sufficiently large to ensure a stable iterative solution of the shifted Laplace inverses.
Indeed, given that the shift parameter ˇ is sufficiently large, a good approximation
to the CSL inverse can be computed using e.g. only one multigrid V-cycle, see [16].

Note that due to the strong indefiniteness of the Helmholtz operator conditions
(P1) and (P2) are generally incompatible. The classic CSL preconditioner trivially
satisfies the second condition given that the shift parameter ˇ is large enough,
however, the first condition is typically violated when ˇ is large. In the following
we aim at constructing a preconditioning scheme based upon the shifted Laplace
preconditioner, which effectively satisfies both of the above conditions.

2.2.2 Taylor Series Expansion of the Inverse Helmholtz Operator

The complex shifted Laplace preconditioning operator M can be written more
generally as

M.ˇ/
dD �� � k2.x/C P.ˇ; x/; (8)

where P.ˇ; x/ is a possibly spatially dependent linear operator in the shift parameter
ˇ 2 RC, satisfying P.0; x/ D 0, such that M.0/ D A. The above formulation
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(8) characterizes, apart from the complex shifted Laplace (CSL) operator, also the
concept of complex stretched grid (CSG), where the underlying grid is rotated into
the complex plane. This results in a damped Helmholtz problem that is equivalent
to complex shifted Laplacian, see [29]. For the remainder of this text we however
assume P.ˇ; x/ D �ˇik2.x/ as suggested by (4).

We define an operator functional f based on the general shifted Laplacian
operatorM as follows:

f .ˇ/ WD M.ˇ/�1 D .�� � .1C ˇi/k2/�1: (9)

Choosing ˇ � 0 in the above expression results in the inverse of the original
Helmholtz operator A D M.0/, whereas choosing ˇ > 0 yields the inverse of the
shifted Laplace operatorM.ˇ/. The derivatives of the functional f are given by

f .n/.ˇ/ D nŠ .k2i/n .�� � .1C ˇi/k2/�.nC1/; (10)

for any n 2 N. Constructing a Taylor series expansion [2, 6, 26] of f .ˇ/ around a
fixed shift ˇ0 2 R

C leads now to the following expression

f .ˇ/ D
1X
nD0

f .n/.ˇ0/

nŠ
.ˇ � ˇ0/n; (11)

where the derivatives f .n/.ˇ0/ are defined by (10). Note that the derivatives of f
in (11) are negative powers of the complex shifted Laplace operator M.ˇ0/. By
evaluating the functional f .ˇ/ in ˇ D 0 and by choosing a sufficiently large positive
value for ˇ0, Eq. (11) yields an approximation of the original Helmholtz operator
inverse in terms of CSL operator inverses, i.e.

f .0/ D M.0/�1 D
1X
nD0

.�ˇ0/n f
.n/.ˇ0/

nŠ

D
1X
nD0

.�ˇ0k2i/n .�� � .1C ˇ0i/k
2/�.nC1/

D
1X
nD0

.�ˇ0k2i/n M.ˇ0/�.nC1/: (12)

Hence, the computation of the infinite series of easy-to-compute inverse CSL
operators M.ˇ0/ with an arbitrary shift parameter ˇ0 asymptotically results in the
exact inversion of the original Helmholtz operatorM.0/ D A.
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2.2.3 Definition of the Expansion Preconditioner

By truncating the expansion in (12), we can now define a new class of polynomial
Helmholtz preconditioners. For a given m, each particular member of this precondi-
tioner class is denoted as the expansion preconditioner of degree m,

EX.m/ WD
m�1X
nD0

˛n .�� � .1C ˇ0i/k
2/�.nC1/; (13)

where the coefficients ˛0; : : : ; ˛m�1 are defined as

˛n D .�ˇ0k2i/n; .0 � n � m � 1/; (14)

by the Taylor series expansion (10)–(11). The expansion preconditioner EX.m/
is hence a degree m polynomial in the inverse complex shifted Laplace operator
M.ˇ0/�1 D .��� .1C ˇ0i/k2/�1. The above Taylor series approach appears quite
natural. However, other series approximations to the Helmholtz operator inverse
may be constructed using alternative choices for the series coefficients. We refer to
Sect. 3 for a more elaborate discussion on the choice of the series coefficients.

2.2.4 Properties of the Expansion Preconditioner

Following the formal definition (13), we formulate some essential properties of the
EX.m/ class of preconditioners in this section. Firstly, one trivially observes that the
classic CSL preconditioner is a member of the class of expansion preconditioners.
Indeed, the complex shifted Laplace inverse M.ˇ0/�1 is the first order term in the
Taylor expansion (12), and hence we haveM.ˇ0/�1 D EX.1/.

By including additional terms in the preconditioning polynomial (i.e. for m !
1), the EX.m/ preconditioner becomes an increasingly accurate approximation to
the original Helmholtz operator inverse A�1. Hence, the class of EX.m/ precondi-
tioners is asymptotically exact, since

lim
m!1EX.m/ D

1X
nD0

˛n .�� � .1C ˇ0i/k
2/�.nC1/ D M.0/�1: (15)

This implies that, if we assume that the computational cost of computing the inverse
matrix powers in (15) is manageable, EX.m/ satisfies both conditions (P1) and
(P2) for efficient Helmholtz preconditioning suggested in Sect. 2.2.1. It should
be stressed that (P1) in fact holds asymptotically, and is thus in practice only
satisfied when a large number of series terms is taken into account. The EX.m/
preconditioner is thus expected to be increasingly more efficient for growing m,
which suggests a significant reduction in the number of outer Krylov iterations. On
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the other hand, condition (P2) is satisfied when m is not too large. This creates a
trade-off for the value of m, which is commented on in Sect. 2.2.5.

While the approximation precision of the EX.m/ preconditioner clearly benefits
from the addition of multiple terms in the expansion, note that the accuracy of the
m-term EX.m/ approximation is governed by the truncation error of the series (11).
This truncation error is of orderO.ˇ0

m/ for any EX.m/ preconditioner (withm > 0),
i.e.

M.0/�1 D EX.m/C O.ˇ0
m/: (16)

The efficiency of the EX.m/ preconditioner is hence also intrinsically dependent
on the value of the shift parameter ˇ0. However, it is well-known that ˇ0 cannot
be chosen below a critical value for iterative (multigrid) solver stability, which
typically lies around 0:5 or 0:6, see [12, 16]. Consequently, it is clear from (16)
that convergence of the Taylor series (11) is slow, being in the order of ˇ0

m. This
indicates that a large number of terms has to be taken into account in the EX.m/
polynomial to obtain a high-precision approximation to the original Helmholtz
operator inverse.

2.2.5 Computational Cost of the Expansion Preconditioner

The inclusion of additional series terms yields a higher-order EX.m/ preconditioner
polynomial, which is expected to improve preconditioning efficiency as derived
above. Therefore, if the computational cost of the CSL inversions would be
negligible compared to the cost of applying one Krylov iteration, there would
theoretically be no restriction on the number of terms that should be included in
EX.m/. Unfortunately, even when approximating each CSL inversion by one V-
cycle, the computational cost of the CSL inversions is the main bottleneck for the
global cost of the solver in practice. Indeed, while the addition of multiple series
terms improves performance, it also increases the computational cost of applying
the preconditioner. In this section we briefly expound on the computational cost of
the EX.m/ preconditioner using a simple theoretical cost model.

We model the computational cost of the EX.m/ preconditioner by assuming that
its cost is directly proportional to the number of CSL operator inversions that need
to be performed when solving the preconditioning system. Each additional term in
the series (11) requires exactly one extra shifted Laplace system to be inverted, since
the EX.m/ polynomial can be constructed as follows:

EX.1/w D ˛0M.ˇ0/
�1w„ ƒ‚ …

WDv0
;

EX.2/w D ˛0v0 C ˛1M.ˇ0/
�1v0„ ƒ‚ …

WDv1
;
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:::

EX.m/w D
m�2X
nD0

˛nvn C ˛m�1M.ˇ0/�1vm�2„ ƒ‚ …
WDvm�1

; (17)

where w 2 RN is a given vector of size N, i.e. the number of unknowns. Note that
all complex shifted Laplace systems in (17) feature the same shift parameter ˇ0.
Hence, an additional CSL system of the form

M.ˇ0/ vi D vi�1; with v�1 WD w; .0 � i � m � 1/; (18)

has to be solved for each term in the expansion preconditioner, resulting in a total
of m inversions to be performed. We again stress that in practice the shifted Laplace
inverseM.ˇ0/�1 is never calculated explicitly, but the approximate solution to (18)
is rather computed iteratively by a multigrid V-cycle.

The question rises whether the reduction in outer Krylov iterations when using
the multi-term EX.m/ preconditioning polynomial compensates for the rising cost
of the additional (approximate) CSL inversions. Let the computational cost of
one approximate CSL inversion be denoted as one work unit (1 WU), and let
the total computational cost of the EX.m/ preconditioner in a complete EX.m/-
preconditioned Krylov solve be denoted by Ctot. If the number of Krylov iterations
until convergence (up to a fixed tolerance tol) is p.m/, then Ctot D m � p.m/WU.
Hence, it should hold that p.m/ < C=m for some moderate constant C for the
cost of the EX.m/ preconditioner to support the inclusion of multiple series terms.
Numerical experiments in Sect. 4 of this work will show that this is generally not
the case for the Taylor expansion polynomial in many practical applications, and
the classic CSL preconditioner is hence the optimal choice for a preconditioner in
the EX.m/ class. In the next section we propose several extensions to the EX.m/
preconditioner class to further improve its performance.

3 Extensions and Further Analysis

In this section we propose two theoretical extensions to the Taylor series rep-
resentation (11) for the inverse Helmholtz operator. These extensions provide
essential insights into the expansion preconditioners and aim at further improving
preconditioner efficiency. The primary goal is to improve the performance of the
expansion preconditioner class, resulting in a more cost-efficient preconditioner
with respect to the number of terms m. The theoretical results obtained in this
section are supported by various numerical experiments in Sect. 4 that substantiate
the analysis and illustrate the efficiency of the extended expansion preconditioner.
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3.1 The Expansion Preconditioner As a Stationary Iterate

We first consider an extension of the EX.m/ preconditioner class that allows manual
optimization of the series coefficients for each degree m. To this aim, we illustrate
how the EX.m/ preconditioner can be interpreted as the m-th iterate of a specific
fixed-point iteration. Consequently, a class of extended expansion preconditioners
is defined by optimizing the fixed-point iteration.

3.1.1 Taylor Series-Based Polynomial Preconditioners As Fixed-Point
Iterates

Recall that the foundation for the Taylor-based EX.m/ preconditioner class pre-
sented in Sect. 2 is the reformulation of the original Helmholtz operator inverse as a
Taylor series. Equation (12) can alternatively be reformulated as

f .0/ D M.0/�1 D M.ˇ0/
�1

1X
nD0

.�ˇ0k2i/n M.ˇ0/�n

D M.ˇ0/
�1 .I C ˇ0k

2i M.ˇ0/
�1/�1; (19)

where the last equation follows from the limit expression

1X
nD0

xn D 1

1 � x
for jxj � 1: (20)

For general (matrix) operators, this series is known in the literature as a Neumann
series [42]. Note that for the matrix equation (19) the requirement jxj � 1 is met if

.�ˇ0k2i M.ˇ0/�1/ � 1, which is trivially satisfied since j�j.M.ˇ0//j � j � ˇ0k2ij
for all j D 1; : : : ;N, where we assumeM.ˇ0/ 2 CN�N . For notational convenience,
let us denote

L WD �ˇ0k2i M.ˇ0/�1: (21)

so that the last line in (19) reads

M.0/�1 D M.ˇ0/
�1 .I � L/�1: (22)

Equation (22) shows that inverting the indefinite Helmholtz operator M.0/ is
equivalent to subsequently inverting the operator M.ˇ0/ followed by the inversion
of the operator .I � L/. The first operator is simply the inverse of a CSL operator
and can easily be solved iteratively. However, the second inversion is non-trivial, as
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it requires the solution u to the system

.I � L/u D b; (23)

given a right-hand side b 2 RN . The linear system (23) can alternatively be
formulated as a fixed-point iteration (or stationary iterative method)

u.mC1/ D Lu.m/ C b; m > 0: (24)

One observes that by setting u.0/ D 0, the m-th iterate of this fixed-point method
generates the EX.m/ preconditioner, since

u.m/ D
 
m�1X
nD0

Ln
!
b 
 .I � L/�1 b; (25)

which implies

M.0/�1 b 
 M.ˇ0/
�1 u.m/ D

 
M.ˇ0/

�1
m�1X
nD0

Ln
!
b D EX.m/ b: (26)

The fixed-point iteration (24) thus asymptotically generates the Taylor series
expansion (11).

The truncation analysis in Sect. 2.2.4 indicated that the Taylor series displays
a slow convergence. Alternatively, convergence behavior can now be analyzed by
studying the convergence of the fixed-point iteration (24), which is governed by the
spectral radius of the iteration matrix


.L/ D 

��ˇ0ik2 .�� � .1C ˇ0i/k

2/�1
�
: (27)

For ˇ0 > 0 this spectral radius tends to be relatively close to one, since


.L/ D max
1�j�N

ˇ̌
ˇ̌ �ˇ0ik2
�j � .1C ˇ0i/k2

ˇ̌
ˇ̌ D

�
min
1�j�N

ˇ̌
ˇ̌1 � �j � k2

ˇ0ik2

ˇ̌
ˇ̌��1


 1; (28)

where �j .1 � j � N/ are the eigenvalues of the negative Laplacian. Hence, the
slow convergence of the Taylor series is apparent from the spectral properties of the
fixed-point iteration.

3.1.2 Weighted Fixed-Point Iteration to Improve Convergence

To obtain a convergence speed-up, the fixed-point iteration (24) can be substituted
by a more general weighted stationary iteration

u.mC1/ D .1 � !/u.m/ C !Lu.m/ C !b; ! 2 Œ0; 2�; m > 0; (29)
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for b 2 RN , which can alternatively be written as

u.mC1/ D QLu.m/ C !b; ! 2 Œ0; 2�; m > 0; (30)

using the notation QL WD .1 � !/I C !L. Setting u.0/ D 0 as the initial guess, this
iteration constructs a different class of polynomial expansion preconditioners for
any choice of ! 2 Œ0; 2�, as follows;

EX!.m/ b WD M.ˇ0/
�1 u.m/; m > 0; (31)

where u.m/ is given by (30). We call this class of preconditioners the extended
expansion preconditioner of degreem, and denote them by EX!.m/ to indicate their
dependency on !.

The parameter ! allows us to modify the coefficients of the series expansion
to obtain a more suitable truncated series approximation to the original Helmholtz
inverse. Note that the Taylor expansion preconditioner EX.m/ can be constructed
from iteration (30) by setting the parameter ! D 1. Additionally, note that choosing
! D 0 trivially yields the CSL preconditionerM.ˇ0/�1 D EX0.m/ for all m > 0.

The careful choice of the parameter ! 2 Œ0; 2� in (31) possibly results in a series
that converges faster than the Taylor series generated by (24). Indeed, the parameter
! can be chosen to modify the polynomial coefficients such that


. QL/ < 
.L/; (32)

yielding a series that converges faster than the Taylor series (11). Consequently,
for the right choice of !, the EX!.m/ truncated series results in a more efficient
preconditioner than the original EX.m/ polynomial of the same degree. We refer to
the numerical results in Sect. 4 to support this claim.

3.2 GMRES-Based Construction of the Expansion Polynomial

The optimization of the series coefficients through the choice of the parameter !
in the EX!.m/ operator can be generalized even further by letting the coefficients
of the series expansion vary freely. Moreover, the coefficients can be optimized
depending on the degree m of the preconditioning polynomial. By replacing the
stationary fixed-point iterations in (24)–(30) by a more advanced Krylov solution
method, an optimal degree m polynomial approximation to the original Helmholtz
operator can be constructed.
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3.2.1 Optimization of the Expansion Preconditioner

For the fixed-point method (24) we essentially constructed the Taylor polynomial
EX.m/ using a fixed linear combination of the following basis polynomials

R.m/ D ˚
L; L .I C L/; L

�
I C L C L2

�
; : : :



: (33)

Alternatively, the extended expansion preconditioner EX!.m/ was formed as a fixed
linear combination of the basis polynomials

S .m/ D ˚
!L; .2! � !2/L C !2L2; : : :



; (34)

for the weighted fixed-point iteration (30). Note that in this section L designates the
inverse of the CSL operator as before, up to scaling by a scalar constant, i.e.

L WD M.ˇ0/
�1: (35)

As a direct generalization of the above constructions, we now consider the
coefficients in each step of the iterative procedure to be variable. This boils down to
constructing the preconditioning polynomial from the monomial basis

T .m/ D span
˚
L; L2; L3; : : : ; Lm



: (36)

Since the preconditioning polynomial asymptotically results in the exact Helmholtz
operator inverse, we can alternatively solve the preconditioning system

L v D g; with v D Au and g D Lf ; (37)

using m steps of GMRES [31], which results in construction of an m-term
polynomial from the Krylov basis

Km.L; A r0/ D span
˚
A r0; LA r0; L

2 A r0; : : : ; L
m�1 A r0



: (38)

After an additional multiplication with the operator L, the m-th Krylov subspace
exactly generates a preconditioning polynomial from the basis T .m/ (36). Hence,
a generalized expansion preconditioner can be constructed by applying m steps of
GMRES on the system Lv D g, which allows for a free choice of the polynomial
coefficients. Moreover, since GMRES minimizes the residual over the m-th Krylov
subspace, the resulting m-term preconditioner is the optimal polynomial approxi-
mation of degree m to the exact Helmholtz inverse. These concepts resemble the
principles of polynomial smoothing by a GMRES(m)-based construction, see [10].

3.2.2 Simultaneous Construction of Preconditioner and Krylov Solver
Basis

Further extending the above methodology, we outline the theoretical framework for
an integrated construction of the preconditioner polynomial in the Krylov subspace
construction at the solver runtime level. The key notions in this section show some
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similarities to the work on multi-preconditioned GMRES in [21]. We additionally
refer to the closely related literature on flexible Krylov solvers [30, 35].

Consider the Krylov method solution to the EX.m/-preconditioned Helmholtz
system

EX.m/Au D EX.m/ f ; (39)

for a fixed polynomial degree m. Using GMRES to solve this system, the k-th
residual rk D EX.m/.f � Au.k// is minimized over the Krylov subspace

Kk.EX.m/A; r0/ D span
˚
r0; EX.m/A r0; : : : ; .EX.m/A/

k�1 r0


: (40)

Note that this basis spans an entirely different subspace compared to the Krylov
subspace (38). Indeed, for the basis terms in (40) the preconditioning polynomial
degree is fixed at m while the power of the Helmholtz operator A is variable. To
form the generalized EX.m/ polynomial in (38) on the other hand, the powers of the
CSL inverse L vary but the power of A is fixed at one.

A combination of the two principles characterized by (38) and (40) can be
made by embedding the iterative procedure for the construction of the expansion
preconditioner polynomial EX.m/ in the governing Krylov solver. This results in a
mixed basis consisting of a structured mixture of powers of the inverse CSL operator
L and the original system matrix A applied to the initial residual r0. We denote the
mixed basis corresponding to the EX.m/ preconditioner by

K
EX.m/
k .A; r0/ D span

˚
Li	jAj r0 W 1 � i < m; 0 � j < k



; (41)

for any m � 1. One trivially observes from the definition (41) that

K
EX.m�1/
k .A; r0/ � K

EX.m/
k .A; r0/; (42)

which generalizes the embedding of the EX.1/ or CSL preconditioner in the class
of EX.m/ expansion operators to the mixed basis setting. The subspace spanned by
(41) theoretically allows for the simultaneous construction of the preconditioning
polynomial and the solution of the preconditioned system. However, the mixed basis
K

EX.m/
k .A; r0/ generally does not span a Krylov subspace for any m > 1, making

its practical construction non-trivial.
As mentioned earlier, the addition of extra terms in the EX.m/ polynomial

improves the polynomial approximation to the exact Helmholtz operator inverse,
resulting in faster convergence in terms of outer Krylov iterations. This implies
lower powers of the Helmholtz operator A in the mixed basis (41). However, the
addition of extra terms in the polynomial EX.m/ also increases the number of
vectors constituting the mixed basis, and hence gives rise to a higher computational
cost of the total method. This trade-off between preconditioner approximation
precision and computational cost in function of the number of terms m is apparent
from (41).



68 S. Cools and W. Vanroose

As a final remark, note that the extensions proposed in this section are mainly
intended as an insightful theoretical framework. In practice the GMRES-based
extended preconditioner proposed in Sect. 3.2.1 is unlikely to perform significantly
better than the extended EX!.m/ preconditioner proposed in the previous section.
This is a consequence of the fact that, given a sufficiently large shift parameter ˇ,
the convergence speed of any monomial-based series of this type is slow, as was
already pointed out in Sect. 2.2.4.

4 Numerical Results

In this section we present experimental results that illustrate the practical application
of the class of expansion preconditioners to enhance the Krylov convergence on
a 1D and 2D Helmholtz benchmark problem. The primary aim is to validate the
EX.m/ expansion preconditioner for degrees m > 1 and illustrate the asymptotic
behavior of the EX.m/ preconditioner as m ! 1. Initial numerical experiments
in Sects. 4.1–4.3 will use exact inverses of the complex shifted Laplace operators
appearing in the polynomial preconditioner. We then introduce a multigrid V(1,1)-
cycle as an approximate solver for the CSL systems in the expansion. The
performance of the EX.m/ preconditioner is consequently compared to that of
the classic complex shifted Laplace or EX.1/ preconditioner. Additionally, the
extensions to the class of generalized EX!.m/ preconditioners and the combination
of the preconditioner polynomial and Krylov basis construction (see Sect. 3) are
shown to display the potential to improve the preconditioner’s efficiency.

4.1 Problem Setting: A 1D Constant Wavenumber Helmholtz
Problem with Absorbing Boundary Conditions

Consider the one-dimensional constant wavenumber Helmholtz model problem on
the unit domain

.�� � k2/ u.x/ D f .x/; x 2 ˝ D Œ0; 1�; (43)

where the right-hand side f .x/ represents a unit source in the domain center. The
wavenumber is chosen to be k2 D 2 � 104. The equation is discretized using a
standard Shortley-Weller finite difference discretization [33], required to treat the
absorbing boundary layers (see below). The unit domain ˝ is represented by an
N C 1 D 257 equidistant point grid, defined as ˝h D fxj D jh; 0 � j � Ng,
respecting the physical wavenumber criterion kh D 0:5524 < 0:625 for a minimum
of 10 grid points per wavelength [4].
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To simulate outgoing waves near the edges of the numerical domains, we use
exterior complex scaling [11, 34], or ECS for short, adding absorbing layers to
both sides of the numerical domain. The absorbing layers are implemented by
the addition of two artificial complex-valued extensions to the left and right of
the domain ˝ , defined by the complex grid points fzj D exp.i�ECS/ xjg, where
xj D jh, for �N=4 � j < 0 and N < j � 5=4N. The ECS complex scaling angle
that determines the inclination of the extensions in the complex plane is chosen as
�ECS D �=6. The two complex-valued extensions feature N=4 grid points each,
implying the discretized Helmholtz equation takes the form of an extended linear
system

Au D f ; (44)

where A 2 C
3
2N� 3

2N . The discretized right-hand side f D .fj/ 2 C
3
2N is defined as

fj D f .xj/ D
�
1 for j D N=2;
0 elsewhere,

(45)

representing a unit source located in the center of the domain for this example.
The Helmholtz model problem (43) is solved using EX.m/-preconditioned

BiCGStab [40] up to a relative residual tolerance krpk=kr0k < tol D 1e�8. The
CSL operator inverses in the EX.m/ polynomial are either computed exactly using
LU factorization for the purpose of analysis, or approximated using onemultigrid V-
cycle as is common in realistic applications. Note that the complex shift parameterˇ
in the CSL operators is chosen as ˇ D 0:6, which guarantees multigrid V(1,1)-cycle
stability [12].

4.2 Spectral Analysis of the Expansion Preconditioner

To analyze the efficiency of the EX.m/ Helmholtz preconditioner we perform
a classic eigenvalue analysis of the EX.m/-preconditioned Helmholtz operator.
For convenience of analysis, the CSL inversions in the EX.m/ preconditioning
polynomial are solved using a direct method in this section.

The typical pitchfork shaped spectrum of the indefinite Helmholtz operator
with ECS boundary conditions is shown in the left panel of Fig. 2. The leftmost
eigenvalue is located near �k2 D �2 � 104, while the rightmost eigenvalue is close
to 4=h2 � k2 
 2:4 � 105, cf. [28]. The right panel of Fig. 2 shows the spectrum
of the EX.m/-preconditioned Helmholtz operator for various numbers of terms in
the Taylor polynomial EX.m/. Note how the spectra become more clustered around
1 when additional series terms are taken into account, illustrating the asymptotic
exactness of the EX.m/ preconditioner class.
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Fig. 2 Spectral analysis of the discretized 1D Helmholtz model problem (43). Exact precon-
ditioner inversion. Left: spectrum of the Helmholtz operator A with ECS absorbing boundary
conditions. Right: spectrum of the polynomial preconditioned operator EX.m/A for various values
of m. The spectrum becomes more clustered around 1 for increasing values of m

Fig. 3 Conditioning and EX.m/-BiCGStab performance on the discretized 1D Helmholtz model
problem (43). Exact preconditioner inversion. Left: condition number of the preconditioned
operator EX.m/A as a function of m. Right: number of EX.m/-BiCGStab iterations required to
solve the Helmholtz system (44) as a function of m

The condition number of the preconditioned operator �.EX.m/A/ is displayed
in the left panel of Fig. 3 as a function of m. One observes that conditioning
improves significantly by the addition of extra terms in the polynomial EX.m/. This
observation is reflected in the number of Krylov iterations required to solve the
problem, which is displayed in Fig. 3 (right panel) for a range of values of m. The
number of Krylov iterations (right panel) appears to be directly proportional to the
condition number of the preconditioned system (left panel).
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4.3 Performance Analysis of the Expansion Preconditioner

It is clear from the spectral analysis that the addition of multiple series terms
improves the conditioning of the preconditioned system. In this section, the
performance of the EX.m/ preconditioner is analyzed using the simple theoretical
cost model introduced in Sect. 2.2.5.

The experimentallymeasured performance of the EX.m/-BiCGStab solver on the
model problem (43) is displayed in Table 1. The table shows the number of Krylov
iterations required to solve system (44) until convergence up to tol = 1e�8 (first
column), the iteration ratio compared to the standard CSL preconditioner (second
column), and the effective number of work units (CSL inversions) for the entire
run of the method (third column). The EX.m/ preconditioner becomes increasingly
more efficient in reducing the number of Krylov iterations in function of larger
m. Comparing e.g. the EX.3/ preconditioner to the classic EX.1/ (CSL) scheme,
one observes that the number of Krylov iterations is slightly more than halved.
The largest improvement is obtained by adding the first few terms, which is a
consequence of the slow Taylor convergence. Note that the computational cost of
the Krylov solver itself is not incorporated into this cost model.

Although higher-order series approximations clearly result in a qualitatively
better preconditioner, the number of Krylov iterations is not reduced sufficiently
to compensate for the cost of the extra inversions. Indeed, while the addition of
multiple series terms in the EX.m/ preconditioner improves the spectral properties
of the preconditioned system, the increased computational cost of the extra CSL
inversions appears to be a bottleneck for performance. Hence, one observes that
standard CSL preconditioning—which takes only one series term into account—is
the most cost-efficient, requiring a minimum of 34 WU for the entire solve.

Table 1 Performance of
EX.m/-BiCGStab for
different values of m on the
discretized 1D Helmholtz
model problem (43)

m p.m/ p.m/
p.1/ m 	 p.m/

1 34 1.00 34 WU

2 22 0.65 44 WU

3 16 0.47 48 WU

4 13 0.38 52 WU

5 11 0.32 55 WU

Exact preconditioner
inversion. Column 1: number
of BiCGStab iterations
p.m/ required to solve the
system (44). Col. 2: iteration
ratio compared to classic
CSL. Col. 3: preconditioner
computational cost based on
p.m/
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Table 2 Performance of
EX.m/-BiCGStab for
different values of m on the
discretized 1D Helmholtz
model problem (43)

m p.m/ p.m/
p.1/ CPU time (s)

1 49 1.00 0.57

2 39 0.80 0.68

3 34 0.69 0.80

4 31 0.63 0.88

5 30 0.61 1.02

V(1,1)-cycle approximate precon-
ditioner inversion. Column 1:
number of BiCGStab iterations
p.m/ required to solve the system
(44). Col. 2: iteration ratio com-
pared to CSL. Col. 3: CPU time
until convergence (in seconds)

4.4 Multigrid Inversion of the Expansion Preconditioner

For convenience of analysis a direct inversion of the preconditioning scheme was
used in the previous sections. However, in realistic large-scale applications the
terms of the EX.m/ preconditioner often cannot be computed directly. Instead, the
CSL systems comprising the EX.m/ polynomial are approximately solved using
some iterative method. In this section we use one geometric multigrid V(1,1)-
cycle to approximately solve the CSL systems, which is a standard approach in
the Helmholtz literature [14, 16]. The V(1,1)-cycle features the traditional linear
interpolation and full weighting restriction as intergrid operators, and applies one
weighted Jacobi iteration (with parameter 2/3) as a pre- and post-smoother. The
choice of the damping parameter ˇ D 0:6 guarantees stability of the multigrid
solver for the inversion of the CSL operators, see [12].

Table 2 summarizes the number of Krylov iterations and CPU time1 required to
solve system (44) using EX.m/-BiCGStab for different values of m. The application
of the EX.m/ operator is approximately computed using a total of m V(1,1)-cycles,
see Sect. 2.2.5. The corresponding convergence histories are shown in Fig. 4. The
addition of terms in the EX.m/ preconditioner reduces the number of Krylov
iterations as expected, although the improvement is less pronounced compared to
the results in Table 1 due to non-exact inversion of the CSL operators. However,
the increased cost to (approximately) compute the additional series terms for larger
values of m is clearly reflected in the timings. Hence, in terms of preconditioner
computational cost, the classic CSL or EX.1/ preconditioner is the most cost-
efficient member of the EX.m/ preconditioner class for this benchmark problem.

1Hardware specifications: Intel Core i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.
Software specifications: Windows 7 64-bit OS, experiments implemented in MATLAB R2015a.
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Fig. 4 Convergence of EX.m/-BiCGStab and solution of the discretized 1D Helmholtz model
problem (43). V(1,1)-cycle approximate preconditioner inversion. Left: EX.m/-BiCGStab relative
residual history krpk=kr0k for various values of m. Vertical axis in log scale. Right: numerical
solution u.x/ to Eq. (43) up to the relative residual tolerance tol D 1e�8. The ECS absorbing
boundary layer rapidly damps the solution outside the unit domain ˝ D Œ0; 1�

Fig. 5 Spectral analysis of the discretized 1D Helmholtz model problem (43). Exact precondi-
tioner inversion. Left: spectrum of the preconditioned operator EX!.2/A for different values of the
parameter !. The spectrum for EX.m/A with ! D 1 is indicated in black, see also Fig. 2. Right:
condition number of the preconditioned operator EX!.2/A as a function of the weight !

4.5 Validation of the Extended Expansion Preconditioner

In this section we validate the generalizations to the expansion preconditioner
proposed in Sect. 3 on the 1D Helmholtz model problem (43).

The weighted fixed-point iteration (30) generates the generalized class of
expansion preconditioners EX!.m/. Figure 5 shows the spectrum (left panel) and
condition number (right panel) of the Helmholtz operator preconditioned by the
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Fig. 6 Performance of the EX.m/ preconditioner formed by the construction of the mixed
basis (41) on the discretized 1D Helmholtz model problem (43). Maximum power of L, i.e. the
polynomial preconditioner degree m, vs. maximum power of A, i.e. the number of Krylov iterations
p.m/. Red curve: theoretical upper bound required for cost-efficiency. Black curve: experimentally
measured results

two-term EX!.2/ polynomial for different values of the parameter !. Note that the
condition number of the standard EX.2/ preconditioner (! D 1) is �.EX.2/A/ D
17:29. A small improvement in conditioning is achievable through the right choice
of the parameter !, reducing the condition number to �.EX!.2/A/ D 15:13 for
parameter choices around ! D 2. With the optimal choice for !, the condition
number of the classic CSL preconditioner EX0.2/ is halved when using EX!.2/,
suggesting a halving of the number of Krylov iterations may be achievable by using
EX!.2/ instead of the classic CSL preconditioner. The smaller condition number
implies an increase in performance compared to the EX.2/ preconditioner, making
the addition of extra terms in EX!.m/ theoretically cost-efficient.

A first step towards a simultaneous construction of the EX.m/ preconditioning
polynomial and the outer Krylov basis resulting in the mixed basis (41) is illustrated
in Fig. 6. The black curve shows the experimentally determined maximum power of
A (Krylov iterations) versus the maximum power of L (terms in the preconditioning
polynomial) required to solve the Helmholtz benchmark problem (43) up to a
relative residual tolerance tol D 1e�8. Subject to this tolerance, a solution is
found either after 40 EX.1/-BiCGStab iterations or alternatively after one EX.70/-
BiCGStab iteration. Indeed, the incorporation of 70 terms in the EX.m/ expansion
preconditioner effectively reduces the number of outer Krylov iterations to 1.
However, note that to be cost-efficient with respect to the number of CSL inversions,
the same solution should be found using the EX.40/ (degree 40) polynomial
preconditioner. The red curve represents a constant number of CSL inversions
for the total run of the method. To ensure cost-efficiency of the class of EX.m/
preconditioners for m > 1, the experimental black curve should fall below the
theoretical red curve, which is not the case. Hence, the most simple case of the
EX.1/ or CSL preconditioner can again be considered optimal w.r.t. cost-efficiency.
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4.6 Problem Setting: A 2D Constant Wavenumber Helmholtz
Problem with Absorbing Boundary Conditions

To conclude this work we extend the above 1D model problem (43) to a two
dimensional Helmholtz problem. Numerical results for solution using EX.m/-
preconditioned BiCGStab and GMRES are provided, and we comment on the
scalability of the expansion preconditioner functionality to higher spatial dimen-
sions.

Consider the two-dimensional constant wavenumber Helmholtz model problem

.�� � k2/ u.x; y/ D f .x; y/; .x; y/ 2 ˝ D Œ0; 1�2; (46)

where the right-hand side f .x; y/ again represents a unit source in the domain
center and outgoing wave boundary conditions are implemented using Exterior
Complex Scaling with �ECS D �=6. We consider two different wavenumbers,
namely k2 D 5eC3 and k2 D 2eC4, corresponding to a moderate- and high-
energetic wave respectively. Equation (46) is discretized using nx D ny D 128

(for k2 D 5eC3) and nx D ny D 256 (for k2 D 2eC4) real-valued grid points
in each spatial dimension, respecting the wavenumber criterion kh < 0:625 [4] in
every direction. Note that the discretized 2DHelmholtz operator with ECS boundary
conditions can be constructed from the 1D Helmholtz operator using Kronecker
products, i.e. A2D D A1Dx ˝ Iy C Ix ˝ A1Dy , where Ix 2 Cnx�nx and Iy 2 Cny�ny are
identity matrices.

Figure 7 shows the EX.m/-BiCGStab solver convergence history for various
values of m (left) and the solution u.x; y/ (right) to the 2D model problem
(46) for different wavenumbers and corresponding discretizations. The EX.m/
preconditioner is approximately inverted using m multigrid V(1,1)-cycles with a
weighted Jacobi smoother (weighting parameter 4/5). The corresponding number of
BiCGStab iterations until convergence up to the relative residual tolerance tolD
1e�8 are displayed in Table 3. The observations from the 1D spectral analysis
extend directly to the 2D setting, as the table shows that the use of the EX.m/
preconditioner results in a significant reduction of the number of outer Krylov
iterations for growing values of m.

Table 3 additionally features the CPU timings for the wavenumbers k2 D 5eC3
and 2eC4. Note that although the number of Krylov iterations is reduced as a
function of the preconditioner degree m, the CPU timings are rising in function
of m. The computational cost of performingm multigrid V-cycles (compared to just
one V-cycle for the CSL preconditioner) has a clear impact on the CPU timings.
As a result, it is often advisable in view of cost-efficiency to restrict the expansion
to the first term only (CSL preconditioner), where only one V-cycle is required to
obtain an (approximate) preconditioner inverse. These observations are comparable
to the 1D results from Sect. 4.4.

In Table 4 results for solving the same system using EX.m/-preconditioned
GMRES are shown. Note that contrary to the BiCGStab results in Table 3, the
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Fig. 7 Convergence of EX.m/-BiCGStab and solutions of the discretized 2D Helmholtz model
problem (46). Top: wavenumber k2 D 5 � 103 and N D nx � ny D 128 � 128 unknowns.
Bottom: wavenumber k2 D 2 � 104 and N D 256 � 256 unknowns. V(1,1)-cycle approximate
preconditioner inversion. Left: EX.m/-BiCGStab relative residual history krpk=kr0k for various
values of m. Vertical axis in log scale. Right: numerical solution u.x; y/ to Eq. (46) up to the relative
residual tolerance tol D 1e�8

EX.m/ preconditioner does appear to be cost-efficient for the 2DHelmholtz problem
with wavenumber k2 D 2eC4 for values of m > 1. Indeed, in this case the optimal
preconditioner with respect to CPU time is the second-order polynomial EX.2/,
which reduces the number of outer Krylov iterations to 191 and minimizes the
CPU time to 477:3 s, compared to 540.8 s for EX.1/-GMRES. The main cause
for this phenomenon is the relatively high per-iteration computational cost of
the GMRES algorithm, which is caused by the orthogonalization procedure with
respect to the Krylov subspace basis vectors. This cost is especially pronounced for
larger iteration numbers. Hence, the good approximation properties of the EX.m/
preconditioner for higher values of m may prove useful when the Krylov iteration
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Table 3 Performance of
EX.m/-BiCGStab for
different values of m on the
discretized 2D Helmholtz
model problem (46)

nx � ny D 128 � 128 nx � ny D 256 � 256

k2 D 5eC3 k2 D 2eC4
m p.m/ CPU time (s) p.m/ CPU time (s)

1 37 14.7 140 157.0

2 26 19.0 112 210.8

3 22 23.1 105 277.9

4 20 26.3 104 351.0

5 18 30.5 103 436.2

EX(m)-preconditioned BiCGStab

V(1,1)-cycle approximate preconditioner inversion.
Columns 1 and 3: number of EX.m/-BiCGStab iter-
ations p.m/. Cols. 2 and 4: total CPU time until
convergence (in seconds)

Table 4 Performance of
EX.m/-GMRES for different
values of m on the discretized
2D Helmholtz model problem
(46)

nx � ny D 128 � 128 nx � ny D 256 � 256

k2 D 5eC3 k2 D 2eC4
m p.m/ CPU time (s) p.m/ CPU time (s)

1 67 19.0 233 540.8

2 50 22.9 191 477.3

3 41 26.8 175 497.5

4 37 31.8 168 547.8

5 34 35.9 165 611.3

EX(m)-preconditioned GMRES

V(1,1)-cycle approximate preconditioner inversion.
Columns 1 and 3: number of EX.m/-GMRES iter-
ations p.m/. Cols. 2 and 4: total CPU time until
convergence (in seconds)

cost is non-marginal compared to the cost of applying the preconditioner. The
idea of polynomial preconditioners for GMRES has recently been proposed in the
literature, see e.g. [24].

5 Conclusions

In this work we have proposed a theoretical framework that generalizes the classic
shifted Laplacian preconditioner by introducing the class of polynomial expansion
preconditioners EX.m/. This concept extends the one-term CSL preconditioner
to an m-term Taylor polynomial in the inverse complex shifted Laplace operator.
The outer iteration for solving the preconditioned system used in this work is a
traditional Krylov iteration such as BiCGStab or GMRES.

Key properties of the EX.m/ preconditioner class are its structure as a finite
m-term series of powers of CSL inverses (Neumann series), and its resulting
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asymptotic exactness, meaning EX.m/ approaches A�1 in the limit for m going
to infinity. The polynomial structure of the EX.m/ preconditioner makes it easy
to compute an iterative approximation to this polynomial, using e.g. m multigrid
V(1,1)-cycles (one for each term), which are guaranteed to converge given that the
complex shift is chosen to be sufficiently large.

The preconditioning efficiency of the EX.m/ preconditioner is validated using
a classic eigenvalue analysis. The addition of extra terms in the preconditioning
polynomial clusters the spectrum around 1, which reduces the condition number of
the preconditioned Helmholtz operator and suggests a significant reduction in the
number of outer Krylov iterations for large m.

Numerical results on 1D and 2D Helmholtz benchmark problems support the
theoretical results. The number of outer Krylov iterations is reduced significantly
by the higher degree expansion preconditioners. Unfortunately, the computational
cost of applying the EX.m/ preconditioner is directly proportionate to the number of
terms m, since an extra (approximate) CSL inversion is required for each additional
term in the polynomial. The use of a large number of series terms is thus not
necessarily guaranteed to result in a more cost-efficient preconditioner.

Following the numerical results of the 1D and 2D experiments, these conclusions
are expected to be directly generalizable to higher spatial dimensions. Moreover,
the constant wavenumber experiments performed in this paper are extensible
to Helmholtz problems with heterogeneous and/or discontinuous wavenumbers,
provided that the complex shift variable in the EX.m/ polynomial is large enough
to allow for a stable numerical solution of the shifted Laplace systems for all
wavenumber regimes occurring in the problem. Hence, from a practical precon-
ditioning interest, the simple one-term shifted Laplace preconditioner appears to
be the optimal member of the EX.m/ class for many applications and problem
configurations.

Furthermore, two generalizations to the class of expansion preconditioners were
presented and analyzed. These generalizations primarily prove to be insightful from
a theoretical point of view. It is shown that the Taylor expansion preconditioner
can be substituted by an optimal m-term polynomial which is theoretically cost-
efficient. However, in practical applications the reduction of the number of outer
Krylov iterations due to EX.m/ preconditioning often does not pay off to the cost of
the extra approximate multigrid inversions.

For systems in which the cost of applying the outer Krylov step becomes
significant relative to the cost of the preconditioner application, the use of multiple
terms in the EX.m/ expansion could result in a more cost-efficient solver. Possible
scenarios for this include the application of non-restarted GMRES as the outer
Krylov solver, the use of higher order discretization schemes for the original Laplace
operator (while maintaining second order discretization for the preconditioner), etc.

Additionally, the treatment of extremely large-scale HPC systems on massively
parallel hardware may warrant the need for higher-order polynomial precondi-
tioners. Since Krylov methods are typically communication (or bandwidth) bound
instead of compute bound in this context, polynomial preconditioning directly
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reduces the number of communication bottlenecks (dot-products) by reducing
the number of Krylov iterations, while simultaneously improving the arithmetic
intensity of the solver. A detailed analysis of these individual scenarios is however
well beyond the scope of this text, and is left for future work.

The generalization to the shifted Laplace preconditioner for Helmholtz prob-
lems proposed in this work is particularly valuable from a theoretical viewpoint,
providing fundamental insights into the concept of shifted Laplace preconditioning
by situating the classic complex shifted Laplace operator in a broader theoretical
context, and proving the classic CSL preconditioner to be the most cost-efficient
member of the EX.m/ preconditioner class for the most common practical problems.
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Part II
Algorithms: Practical Methods

and Implementations

In this part (parallel) algorithms will be described that are currently used in real
applications.



How to Choose the Shift in the Shifted Laplace
Preconditioner for the Helmholtz Equation
Combined with Deflation

D. Lahaye and C. Vuik

Abstract In recent work we showed that the performance of the complex shifted
Laplace preconditioner for the discretized Helmholtz equation can be significantly
improved by combining it multiplicatively with a deflation procedure that employs
multigrid vectors. In this chapter we argue that in this combination the precondi-
tioner improves the convergence of the outer Krylov acceleration through a new
mechanism. This mechanism allows for a much larger damping and facilitates the
approximate solve with the preconditioner. The convergence of the outer Krylov
acceleration is not significantly delayed and occasionally even accelerated. To
provide a basis for these claims, we analyze for a one-dimensional problem a two-
level variant of the method in which the preconditioner is applied after deflation and
in which both the preconditioner and the coarse grid problem are inverted exactly.
We show that in case that the mesh is sufficiently fine to resolve the wave length,
the spectrum after deflation consists of a cluster surrounded by two tails that extend
in both directions along the real axis. The action of the inverse of the preconditioner
is to shrink the length of the tails while at the same time rotating them and shifting
the center of the cluster towards the origin. A much larger damping parameter than
in algorithms without deflation can be used.

1 Introduction

The Helmholtz equation is a classical model equation for the propagation of waves.
Examples of its use in various branches of science and engineering are given in the
references cited. Fast and scalable methods to solve the linear system that arise after
discretization are urgently needed.

The advent of the complex shifted Laplacian in [1, 2] led to a breakthrough in
solver capabilities. The basis of this work was laid in [3] and [4]. A work in which
similar ideas are proposed albeit with a different perspective is [5]. The complex
shifted Laplacian was reconsidered in [6–10] and led to a boost in tackling various
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industrial applications as documented in [11–20]. For a survey we refer to [21].
Recent publications on various solution approaches include [22–31].

The convergence of the complex shifted Laplace preconditioners is analyzed in
[10, 32, 33]. The preconditioner introduces damping and shifts small eigenvalues of
the preconditioned system away from the origin such that the outer Krylov will be
faster to converge. As the wavenumber increases while the number of grid points
per wavelength is kept constant however, the number of small eigenvalues becomes
too large for the preconditioner to handle effectively, and the required number of
outer Krylov iterations increases linearly with the wavenumber. This motivated the
development in [34] of a deflation approach aiming at removing small eigenvalues
using a projection procedure. The paper [34] considers deflating the preconditioned
operator using the columns of the coarse to fine grid interpolation operator as
deflation vectors. Themultilevel extension of the method requires a Krylov subspace
acceleration at each level. The method is therefore called a multilevel Krylov
method. Some form of approximation is required to avoid the explicit construction
of the preconditioned operator and to render the method computationally feasible.
By the approximation proposed in [34], the projection property of the deflation
operator is lost. This renders the results of a model analysis of the method using
Fourier modes more tedious to interpret.

The method we developed in [35] borrows ideas from [34]. However, instead
of deflating the preconditioned operator, we instead deflate the original Helmholtz
operator. We subsequently combined the deflation and complex shifted Laplacian
multiplicatively. We thus avoid having to approximate a computationally expensive
operator and preserve the projection property of the deflation operator. This
construction allows to

• add a term to the deflation operator to shift a set of eigenvalues away from zero
without significantly disturbing the non-zero eigenvalues. This in turn allows
to extend the deflation method to multiple levels in a multigrid hierarchy. This
multilevel extension can be interpreted as a multigrid method in which at least
formally the complex shifted Laplacian acts as a smoother. As in [34], the method
requires a Krylov acceleration at each level of the multigrid hierarchy;

• deduce the algebraic multiplicity of the zero eigenvalue of the deflated operator
in a model problem analysis. This facilitates the computation of the non-zero
eigenvalues;

• re-use implementations of the multigrid approximate inversion of the complex
shifted Laplacian to code the operation with the deflation operator. In this re-use
one has to construct the coarser grid operators by Galerkin coarsening, to provide
a Krylov acceleration on the intermediate coarse levels and to provide a flexible
Krylov method on the finest level. This can be done with for instance the PETSc
software library [36].

In our model problem analysis we employ 10 or 20 grid points per wavelength on
the finest level. We also assume that Dirichlet boundary conditions are employed.
These conditions render the boundaries reflective for outward traveling waves and
act as a worst case in terms of convergence for situations in which Sommerfeld or
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other types of absorbing boundary conditions are imposed. The spectrum of the
operator after applying deflation without any preconditioning is real-valued and
consists of a tight cluster surrounded by two tails. These tails spread in opposite
directions along the real axis as the wavenumber increases. Elements in each tail
correspond to the elements in the near-kernel of the Helmholtz operator on either
side of zero. The role of the preconditioner is to scale and rotate the eigenvalues
of the deflated operator. The spectrum of the operator after applying both deflation
and preconditioning is complex-valued and consists of a cluster surrounded by two
tails. These tails spread along a line in opposite directions in the complex plane
away from the cluster with increasing wavenumber. The abscissa and slope of this
line as well as the spread of the eigenvalues along this line are functions of the
damping parameter in the preconditioner. Our results convincingly show that the
use of deflation allows to significantly increase the damping parameter. Results in
[35] give evidence for the fact the use of deflation results in a reduction of outer
Krylov iterations. Results in [37] illustrate how the reduction of iterations leads to a
significant speed-up of the computations.

This paper is structured as follows: in Sect. 2 we present the one-dimensional
problem we intend to solve. In Sect. 3 we discuss the eigenvalues distribution
of the complex shifted Laplace preconditioned matrix for the case of Dirichlet
and Sommerfeld boundary conditions. In Sect. 4 we combine the preconditioner
multiplicatively with a deflation operator that employs multigrid vectors. In Sect. 5
we derive closed form expressions for the eigenvalues of the preconditioned deflated
system matrix through a model problem analysis. In Sect. 6 we present numerical
results. Finally, we draw conclusions in Sect. 7.

2 Problem Formulation

The Helmholtz equation for the unknown field u.x/ on the one-dimensional domain
˝ D .0; 1/ reads

��u � .1 � ˛�/k2u D g on˝ ; (1)

where �, ˛ 2 RC, k.x; y/ and g.x; y/ are the imaginary unit, the damping parameter,
the wave number and the source function, respectively. Here we are primarily be
interested in solving the hard case without damping, i.e., the case in which ˛ D 0.
We use the case with damping to illustrate various arguments. The wave number
k, the frequency f and the angular frequency ! D 2�f , the speed of propagation
c.x; y/ and the wavelength � D c.x;y/

f are related by

k D 2�

�
D !

c
: (2)
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On the boundary @˝ we impose either homogeneous Dirichlet or first order
Sommerfeld radiation boundary conditions. The latter are given by

@u

@n
� �ku D 0 on @˝ : (3)

This condition renders the end points of the one-dimensional domain transparent for
outgoingwaves. The spectrum of the coefficient matrix is such that the problemwith
Dirichlet boundary conditions is harder to solve than the problem with Sommerfeld
boundary conditions as observed in e.g. [32]. This statement remains valid even if
deflation is deployed.

2.1 Finite Difference Discretization

The finite difference discretization of the above problems on a uniform mesh with
mesh width h using the stencil

ŒAh� D 1

h2
��1 2 � .1 � ˛�/�2 �1 � where � D k h ; (4)

results after elimination of the boundary conditions in the linear system

Ahxh D bh ; (5)

where

Ah D ��h � .1 � ˛�/k2Ih 2 C
.n�1/�.n�1/ : (6)

The discretization requires due care to avoid the pollution error [38, 39]. This can
be done by either imposing a minimum number of grid points per wavelength or by
imposing the more stringent condition that k2 h3 remains constant.

2.2 Eigenvalues of the Discrete Helmholtz Operator

The linear system matrix Ah is sparse and symmetric. In the case of no damping and
a sufficiently high wave-number (and thus a sufficiently fine mesh), Ah is indefinite
and has a non-trivial near-null space. In case that the constant wave number
one-dimensional problem is supplied with Dirichlet boundary conditions and is
discretized using a uniform mesh with mesh width h D 1=n, the eigenvalues of
Ah are easy to compute. As other types of boundary conditions introduce some form
of damping, the resulting spectrum is generally more favorable for the convergence
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of the outer Krylov acceleration. This implies that the use of Dirichlet boundary
conditions acts as a worst-case scenario in the analysis of the convergence of Krylov
methods via the spectrum. With these assumptions, the eigenvalues of Ah are the
negatively shifted eigenvalues of the discrete Poisson operator and are given by
Sheikh et al. [35] and Ernst and Gander [40]

�`.Ah/ D 1

h2
.2 � 2c` � �2/ ; (7)

for 1 � ` � n � 1, where

c` D cos.` � h/ : (8)

The corresponding eigenvectors are the orthogonal set of discrete sine modes
denoted by �` where 1 � ` � n�1. Each �` is thus a vector with n�1 components
indexed by i and given by

�`i D sin.i h ` �/ for 1 � i � n � 1 : (9)

The mutual orthogonality of the �`’s implies that the matrix Ah is normal and that
theory for the convergence of GMRES applies. In case that damping is included in
the Helmholtz equation, a purely imaginary contribution is added to (7), shifting the
eigenvalues away from the origin. This increase in distance away from the origin
makes the damped version easier to solve. From (7), it follows that the eigenvalues
of the h2-scaled operator h2 Ah vary continuously between

�1.h2 Ah/ Ð ��2 and �n�1.h2 Ah/ Ð 4 � �2 (10)

where c1 Ð 1 and cn�1 Ð �1, respectively.
In case that damping is added in the Helmholtz equation (1) by setting the

damping parameter ˛ > 0, the imaginary component �˛k2 is added to the eigenvalue
expression (7). The eigenvectors remain unaltered. The eigenvalues are shifted
upwards in the complex plane, and the problem becomes easier to solve iteratively.

In case that the Dirichlet boundary conditions are replaced by the Sommerfeld
boundary conditions, both the eigenvalues and the eigenvectors change. An ana-
lytical computation of the spectrum in the limit of large k can be found in [41].
For the undamped case and for k D 100 and 10 grid points per wavelength, we
computed the spectrum of the h2-scaled matrix h2 Ah numerically. We plotted the
sorted real and imaginary part of the eigenvalues as a function of the index ` in
Fig. 1a and b, respectively. The sorting is such that different orderings are used
in both figures. The real part closely resembles the expression for the Dirichlet
case given by (7). The presence of a non-zero imaginary part in the eigenvalues
render the use of Sommerfeld boundary conditions similar to the case of damping
with Dirichlet boundary conditions with damping. The imaginary contribution shifts
the eigenvalues away from the origin and renders the problem easier to solve



90 D. Lahaye and C. Vuik

20 40 60 80 100 120 140 160
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100 120 140 160
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

grid node

m
ag

ni
tu

de
 o

f e
ig

en
m

od
e

20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

grid node

m
ag

ni
tu

de
 o

f e
ig

en
m

od
e

(a) (b)

(c) (d)

Fig. 1 Eigenvalues and magnitude of the second and fifth eigenmode of the discrete Helmholtz
operator with Sommerfeld boundary conditions for k D 100 using 10 grid points per wavelength.
(a) Sorted real part of eigenvalues. (b) Sorted imaginary part of eigenvalues. (c) Magnitude of
second eigenmode. (d) Magnitude of fifth eigenmode

numerically. The magnitude of the second and fifth eigenvector is shown as a
function of the grid index in Fig. 1c and d, respectively.

2.3 Multigrid Considerations

In the previous paragraph we assumed the mesh to be sufficiently fine to represent
the wavelength. In this paper we will however consider an approach in which the
Helmholtz equation without damping is discretized on a hierarchy of increasingly
coarser meshes. This is the essential difference with CSLP precondition in previous
work [1, 2] in which the original Helmholtz equation is discretized on the finest
mesh only and in which the Helmholtz equation with damping only is coarsened.

The discretization of the undamped Helmholtz equation on the multigrid hier-
archy motivates looking into properties of h2 Ah on the different levels of this
hierarchy. We will derive bounds on the eigenvalues and a measure for the diagonal
dominance of h2 Ah into account. For a fixed value of the wavenumber, each level
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Table 1 Eigenvalue bounds and diagonal dominance measure of the h2-scaled discretized
Helmholtz operator h2 Ah for fixed wavenumber and for various values of the number of grid
points per wavelength (gpw) on a multigrid hierarchy with five levels

� gpw �1.h2 Ah/ D ��2 �n�1.h2 Ah/ D 4� �2 j2� �2j
0.3125 20 �0.0977 3.9023 1:9023

0.625 10 � 0.3906 3.6094 1:6094

1.25 5 �1.5625 2.4375 0:4375

2.5 2.5 �6.25 �2.25 4:2500

5 1.25 �25 �21 23

of the hierarchy corresponds to a number of grid points per wavelength, and thus
to a value of �. Here we will consider the case in which the Helmholtz operator
on the coarser levels is obtained via rediscretization and leave the case of Galerkin
coarsening to later in the paper. To obtain bounds for the eigenvalues of the discrete
Helmholtz operator on each level of the hierarchy in case of rediscretization, it
suffices to substitute the corresponding value for � into the bounds (10). As a
measure for the diagonal dominance, we will adopt the absolute value of the
diagonal element j2��2j. For a multigrid hierarchy consisting of five levels obtained
by standard h ! 2h coarsening each level except for the coarsest, the eigenvalue
bounds (10) and the value of j2 � �2j are tabulated in Table 1. Motivating this
measure for diagonal dominance is the fact that the weight of the off-diagonal
elements does not change in traversing the hierarchy. The middle columns of Table 1
shows that in traversing the multigrid hierarchy from finest to coarsest level, the
spectrum shifts in the negative direction and that on a sufficiently coarse level (here
at 2.5 grid points per wavelength) even the largest eigenvalue becomes negative.
From that level onward, the matrix ceases to be indefinite. The right-most column
of Table 1 shows that the measure for the diagonal dominance initially decreases
and increases again starting at a sufficiently coarse level (here again at 2.5 grid
points per wavelength). At this coarsest level, the problem can be easily solved
using the method of Jacobi for instance. For k D 1000 and for 10 grid points per
wavelength for instance, the problem becomes definite and diagonally dominant
starting from the third coarsest level onward. On these levels the use of complex
solution algorithms such as the CSLP preconditioner is unnecessary. Similar ideas
have already been discussed in [42]. We will return to this observation when
discussing how to choose the damping parameter in the complex shifted Laplace
preconditioner on the intermediate coarser levels.

3 Complex Shifted Laplace Preconditioner

In this section we introduce the complex shifted Laplace preconditioner [1, 2] and
derive closed form expressions for the eigenvalues of the preconditioner and the
preconditioned operator. We will in particular look into the effect of choosing a
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very large damping parameter in the preconditioner. The information collected in
this section will serve as a reference for our model problem analysis in Sect. 5.

Denoting by ˇ2 the strictly positive damping parameter, the complex shifted
Laplace (CSLP) preconditioner can be written as

Mh;ˇ2 D ��h � .1 � �ˇ2/�2Ih where ˇ2 2 R
C n 0 : (11)

The value of ˇ2 needs to balance the quality of the preconditioner (favoring a
small value) with the ease of approximately inverting it (favoring a large value).
We assume that the boundary conditions implemented in Ah are imposed on Mh;ˇ2
as well. In both the case of Dirichlet and Sommerfeld boundary conditions, the
submatrices of Mh;ˇ2 and Ah corresponding to the interior nodes differ by a scalar
multiple of the purely imaginary constant diagonal matrix ��2Ih. In the absence and
presence of damping, the scalar involved is equal to ˇ2 and ˇ2 � ˛, respectively.

3.1 Eigenvalues of the CSLP Preconditioner

Given that the matrices Ah andMh;ˇ2 differ by a purely imaginary constant diagonal
contribution, the eigenvalues of Mh;ˇ2 are the eigenvalues of Ah shifted along the
imaginary axis. In both the case of Dirichlet and Sommerfeld boundary conditions,
the eigenvectors of Mh;ˇ2 and Ah are the same. In the one-dimensional problem
with Dirichlet boundary conditions, we have that the eigenvalues of the h2-scaled
preconditioner h2Mh;ˇ2 for 1 � ` � n � 1 are given by

�`.h2Mh;ˇ2 / D 2 � 2 c` � �2.1 � �ˇ2/ : (12)

Let `.h2Mh;ˇ2 / denote the inverse of this eigenvalue. Separating this inverse into a
real and imaginary part, we obtain

`.h2Mh;ˇ2 / D 1

2 � 2 c` � �2.1 � �ˇ2/
(13)

D 2 � 2 c` � �2
Œ2 � 2 c` � �2�2 C �4ˇ22

� � �2ˇ2

Œ2 � 2 c` � �2�2 C �4ˇ22

D 2 � 2 c` � �2

j�`.h2Mh;ˇ2/j
� �

�2ˇ2

j�`.h2Mh;ˇ2 /j
D ReŒ`.h2Mh;ˇ2 /�C �ImŒ`.h2Mh;ˇ2 /� :

From these expressions we conclude that for 1 � ` � n � 1

0 < ReŒ`.h2Mh;ˇ2 /� < 1 8ˇ2 > 0; (14)

�1 < ImŒ`.h2Mh;ˇ2 /� < 0 8ˇ2 > 0 ; (15)
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and that in the limit for strong damping that

ReŒ`.h2Mh;ˇ2 /� ! 0 as ˇ2 ! C1; (16)

ImŒ`.h2Mh;ˇ2 /� ! 0 as ˇ2 ! C1 : (17)

These results will be used to derive expressions for the eigenvalues of the precondi-
tioned operator and the deflated preconditioned operator in the next paragraph and
the next section, respectively.

3.2 Eigenvalues of the CSLP Preconditioned Operator

In deriving the eigenvalues of the preconditioned operator, we will assume the
preconditioner to be inverted exactly. We will consider both the case of Dirichlet
and Sommerfeld boundary conditions. In the former case, M�1

h;ˇ2
and Ah share the

set of discrete sine modes given by (9). In the absence of damping, the eigenvalues
of the preconditioned operatorM�1

h;ˇ2
Ah are the scaled and rotated eigenvalues of Ah

given by

�`.M�1
h;ˇ2

Ah/ D `.Mh;ˇ2 / �
`.Ah/ (18)

D ReŒ`.h2Mh;ˇ2 /� �
`.Ah/C � ImŒ`.h2Mh;ˇ2 /� �

`.Ah/

D �`.Ah/.2 � 2 c` � �2/
Œ2 � 2 c` � �2�2 C �4ˇ22

� �
�`.Ah/�

2ˇ2

Œ2 � 2 c` � �2�2 C �4ˇ22
:

This computation can be generalized to include non-zero damping (i.e., ˛ D 0) in
the Helmholtz equation. In the case of Sommerfeld boundary conditions, we will
resort to the numerical computations of the eigenvalues.

In Fig. 2 we plotted the eigenvalues�`.M�1
h;ˇ2

Ah/ for 1 � ` � n�1 in the complex
plane for k D 1000 and 10 grid points per wavelength for four cases. In all four cases
we highlighted a small region around the origin with a circle. In Fig. 2a we consider
the case of Dirichlet boundary conditions without damping using ˇ2 D 0:5. We
used shaded and non-shaded symbols to distinguish the eigenvalues that correspond
to the index ` for which �`.Ah/ is negative and positive, respectively. Clearly both
the real and imaginary part of M�1

h;ˇ2
Ah are small for those values of ` for which

�`.Ah/ shows a change of sign, i.e., for the values of ` that correspond to the near-
kernel of Ah. These small eigenvalues hamper the convergence of the outer Krylov
acceleration.

In Fig. 2b we consider again the case of Dirichlet boundary conditions without
damping, this time using the larger value ˇ2 D 1. Comparing this figure with
Fig. 2a confirms that for larger values of ˇ2 the eigenvalues`.Mh;ˇ2 / and therefore
the eigenvalues �`.M�1

h;ˇ2
Ah/ shift towards the origin. This causes the quality of
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Fig. 2 Eigenvalues of the CSLP preconditioned operator for various preconditioning strategies
for k D 1000 using 10 grid points per wavelength. (a) No damping and ˇ2 D 0:5. (b) No damping
and ˇ2 D 1. (c) ˛ D 0:02 and ˇ2 D 0:5. (d) Sommerfeld and ˇ2 D 0:5

the preconditioner to degrade. The analysis in [32] shows that a similar shift of
eigenvalues towards the origin occurs as k increases while ˇ2 and � is kept constant.

In Fig. 2c we consider once more the case of Dirichlet boundary conditions, this
time using a damping coefficient ˛ D 0:02. Comparing this figure with Fig. 2a
shows that by introducing damping in the Helmholtz equation, the eigenvalues
close to the origin shift towards the right in the complex plane. The increase of
the magnitude of the eigenvalues that are small in size renders the preconditioned
systems easier to solve.

In Fig. 2d finally we consider the case of Sommerfeld boundary conditions. This
figure closely resembles to Fig. 2c. The introduction of the Sommerfeld boundary
conditions is seen to introduce damping that causes a shift of small eigenvalues away
from the origin. The preconditioned system again becomes easier to solve.
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4 Combining Deflation and Precondition Multiplicatively

In this section we describe how we combine the complex shifted Laplacian
preconditioner (CSLP) with a deflation technique. This approach is motivated by
the fact that the convergence of the CSLP preconditioned Krylov acceleration is
hampered by a few eigenvalues that are small in size. This is especially a problem
in cases without damping. The objective of deflation is to remove these undesirable
eigenvalues by a projection procedure. We describe the deflation technique on two
levels, its extension to multiple levels, and the multiplicative combination of the
preconditioner and the deflation technique.

4.1 Deflation by Two-Grid Vectors

Assuming p to be a non-zero natural number, we discretize the computational
domain ˝ D .0; 1/ by a uniform mesh with n D 2p elements and mesh width h D
1=n resulting in a fine mesh˝h. The discretization of the Helmholtz equation results
after elimination of the boundary nodes in a discrete operator Ah 2 C.n�1/�.n�1/.
Standard h ! H D 2h coarsening of the fine mesh˝h results in a coarse mesh˝H

with n=2 � 1 internal nodes. We denote by Zh;H 2 R.n�1/�.n=2�1/ the coarse-to-fine
grid interpolation operator. We employ a linear interpolation operator that, for fine
grid points not belonging to the coarse grid, has the stencil

ŒZh;H � D 1

4

�
1 2 1

�h
H
: (19)

The columns of Zh;H are referred to as the deflation vectors. A deflation technique
that uses these vectors is referred as two-grid deflation. The restriction operator is
set equal to the full-weighting restriction operator. With this choice the restriction
is equal to the transpose of the interpolation. This construction fits the theoretical
framework of deflation methods.

The coarse grid operator EH is constructed by Galerkin coarsening

EH D ZT
h;H Ah Zh;H 2 C

.n=2�1/�.n=2�1/ : (20)

The spectral properties of EH will be discussed in the next section. We then define
the coarse grid solve operator Qh;H as

Qh;H D Zh;H E�1
H ZT

h;H 2 C
.n�1/�.n�1/ ; (21)

and the deflation operator Ph;H as

Ph;H D Ih � Ah Qh;H 2 C
.n�1/�.n�1/ : (22)
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The construction of EH by Galerkin coarsening is such that Ph;H satisfies the relation
P2h;H D Ph;H . Ph;H is thus a projection and has eigenvalues 0 and 1. The matrix Ph;H

corresponds to the residual propagation matrix in a basic iterative solution method
based on the splitting Ah D Qh;H � .Qh;H � Ah/ for the linear system (5).

By applying deflation, the linear system (5) is transformed into

Ph;H Ahxh D Ph;H bh : (23)

The columns of Zh;H lie in the kernel of the deflated operator [43], i.e.,

Ph;H Ah Zh;H D 0.n�1/�.n=2�1/ : (24)

The matrix Ph;H Ah is thus singular and has a zero eigenvalue with multiplicity
n=2 � 1. The computation of the remaining n=2 eigenvalues will be shown in the
next section. The solution of the linear system (23) is defined up to a component in
the kernel of Ph;H Ah. Such a solution can be found by a Krylov subspace method
on the condition that in the application of Ph;H the coarse linear system with EH is
solved to full precision at each iteration. What this condition implies and how it can
be alleviated will be discussed in the next paragraph.

4.2 Multilevel Extension

For large problems in two or three dimensions, the exact inversion of the coarser
grid matrix EH is impractical and one has to resort to approximate coarser grid
solves. Without proper care, this will however lead to the zero eigenvalue of Ph;H Ah

to be replaced by a cluster of near-zero eigenvalues. Such a cluster impedes the fast
convergence of the outer Krylov acceleration. This can be avoided introducing a
shift over a distance � with Qh;H in the deflation operator Ph;H and to define Ph;H;�

as

Ph;H;� D Ph;H C � Qh;H D Ih � Ah Qh;H C � Qh;H : (25)

With this definition, the equivalent of (24) for Ph;H;� is

Ph;H;� Ah Zh;H D � Zh;H ; (26)

i.e., � is an eigenvalue with multiplicity n=2 � 1 of deflated matrix Ph;H;� Ah. The
value of � is chosen once a choice for the preconditioner is made. We will give
details in the next paragraph. The shift away from zero of the eigenvalues of the
deflated matrix allows to solve the coarse grid system with coefficient matrix EH

approximately for instance by a recursive application of the two-level algorithm
described. The use of a Krylov subspace solver on the coarser level requires to resort
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to a flexible Krylov subspace solver on the fine level. The depth of the multigrid
cycle can be limited in accordance to the discussion given in Sect. 2.

4.3 Multiplicative Combining of Preconditioning and Deflation

The CSLP preconditionerMh;ˇ2 and the deflation operator Ph;H;� including the shift
with � can be combined multiplicatively to construct a composite preconditioner. If
the precondition is applied after the deflation, the linear system to be solved can be
written as

Bh;H;ˇ2;� x D .M�1
h;ˇ2

Ph;H C � Qh;H/ b ; (27)

where Bh;H;ˇ2;� is the preconditioned deflated operator

Bh;H;ˇ2;� D .M�1
h;ˇ2

Ph;H C � Qh;H/Ah : (28)

In case that � D 1, the matrix I � Bh;H;ˇ2;� is the error propagation matrix of a
two-grid V.0; 1/ cycle applied to the linear system (5) with Galerkin coarsening and
with Mh;ˇ2 assuming at least formally the role of the smoother. In case that � ¤ 1,
the composite preconditioner can be implemented as the additive combination of
previously described V.0; 1/ cycle and a shift with � D 1. Closed form expressions
for the eigenvalues of Bh;H;ˇ2;� defined by (28) for � D 0 and � ¤ 0 will be derived
in the next section.

4.4 Comments on a Practical Implementation

An implementation of a multigrid approximate inversion CSLP as preconditioner
can be easily extended to its combined use with the above described deflation
technique. The multigrid components already in place can be recycled. A flexible
Krylov acceleration on each level is required.

5 Model Problem Analysis

In this section we first derive closed form expressions for the eigenvalues of the
Galerkin coarse grid operator EH and the deflation operator Ph;H defined by (20)
and (22), respectively. Next we extend this analysis of the eigenvalues of the deflated
operator Ph;H Ah and the preconditioned deflated operatorM�1

h;ˇ2
Ph;H Ah given in the

left-hand side of (23) and (27) with � D 0, respectively. We consider the one-
dimensional problemwith Dirichlet boundary conditionswith and without damping.
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Based on the arguments on the resemblance of the eigenvalues in the problem with
damping and with Sommerfeld boundary conditions in Sect. 2, we assume here that
the problem with damping in the Helmholtz equation offers a good representation
of the problem with Sommerfeld boundary conditions. We will derive expression
for the eigenvalues by computing the action of these operators on the set of discrete
sine modes defined by (9). This analysis is referred to a Rigorous Fourier analysis to
distinguish it from a Local Fourier analysis in which the influence of the boundary
conditions is not taken into account. Assuming Dirichlet boundary conditions, the
set of sine modes �`h given by (9) forms a basis in which both the discrete operator
Ah and the preconditionerMh;ˇ2 are diagonal. The analysis of the coarse operator EH

and the deflation operator Ph;H requires care in handling the grid aliasing effect in
the intergrid transfer operators Zh;H and ZT

h;H . The eigenvalue expressions resulting
from our analysis are fractions in which the eigenvalues of the coarse grid operator
EH appear in the denominator. These expressions form the basis for a subsequent
analysis. The scattering of the eigenvalues along both sides of the real axis in case
of 10 grid points per wavelength for instance can then be related to the near-kernel
eigenvalues of the coarse grid operator EH.

We assume the one-dimensional problem on˝ D .0; 1/ with Dirichlet boundary
conditions to be discretized by a uniform mesh with mesh width h. The coarse
mesh obtained by standard coarsening then has a mesh width H D 2 h. The use
of Dirichlet boundary conditions was motivated in Sect. 2. We will perform a two-
level analysis and assume that the Galerkin coarse grid operator EH defined by (20)
is inverted exactly. By reordering the eigenvectors of Ah defined by (9) in a standard
way in .`; n � `/ pairs [44], we obtain the basis

Vh D f.�`h; �n�`
h / j ` D 1; : : : ; n=2� 1g [ f�n=2

h g : (29)

The modes �`h and �n�`
h form a pair by coarse grid aliasing. In the basis (29)

first the deflation operator Ph;H , subsequently the deflated operator Ph;H Ah and
finally the preconditioned deflated operator M�1

h;ˇ2
Ph;H Ah can be written in a block

diagonal form. For a generic .n � 1/ � .n � 1/ matrix B, we will denote this block
decomposition as

B D �
.B/`

�
1�`�n=2 ; (30)

where for 1 � ` � n=2 � 1 the block .B/` is of size 2 � 2 and where for ` D n=2
the block B` is a number. From this block diagonal form the eigenvalues of B can
be computed with relative ease. For the restriction operator ZT

h;H and the coarse grid
operator EH that have size .n=2 � 1/ � .n � 1/ and .n=2 � 1/ � .n=2� 1/ the size
of the diagonal blocks reduces to 1 � 2 and 1 � 1, respectively.

In the following we will subsequently compute the eigenvalues of the Galerkin
coarse grid operator EH, the deflation operator Ph;H , the deflated operator Ph;H Ah

and finally the preconditioned deflated operator without shiftM�1
h;ˇ2

Ph;H Ah and with

shift .M�1
h;ˇ2

Ph;H C � Qh;H/Ah. As before, we will especially look into large values
of the damping parameter ˇ2.
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5.1 Eigenvalues of the Coarse Grid Operator EH

The block diagonal representation of the interpolation operator ZT
h;H in the basis (29)

can be obtained by a standard computation [44]. Using the fact that cn�` D �c`, one
obtains for 1 � ` � n=2� 1 the 1 � 2 blocks

.ZT
h;H/

` D 1=2
�
.1C c`/ �.1 � c`/

�
: (31)

Given the n=2-th sine mode �n=2 is equal to zero in all the coarse grid nodes and
given the stencil (19), we have that

.ZT
h;H/

n=2 D 1=2 : (32)

The diagonal block of the discrete operator Ah in the basis (29) are for 1 � ` �
n=2� 1 given by

.Ah/
` D

�
�`.Ah/ 0

0 �n�`.Ah/

�
D 1

h2

�
2 � 2c` � �2 0

0 2C 2c` � �2

�
; (33)

and for ` D n=2 by

.Ah/
n=2 D .�2 � 2/=h2 : (34)

The 1 � 1 diagonal blocks .EH/
` of the Galerkin coarse grid operator are obtained

by the Galerkin coarsening of the individual blocks and results for all coarse grid
values of ` including ` D n=2 in

.EH/
` D .ZT

h;H/
`.Ah/

`.ZH;h/
` D 1

2h2
Œ2.1� c2`/� �2.1C c2`/� : (35)

Given that in the basis (29) the operator EH is diagonal, we have that the `-th
eigenvalue �`.EH/ is equal to the `-th diagonal block .EH/

`. The eigenvalues of
the H2-scaled operator EH are then for 1 � ` � n=2 given by

�`.H2 EH/ D �.2C 2c2`/ �
2 C 4 � 4c2` : (36)

In the end points of the range from ` D 1 to ` D n=2, these expressions reduce to

�1.H2 EH/ Ð �4�2 < 0 and �n=2.H2 EH/ Ð 4 � 2�2 > 0 ; (37)

where c`D1 Ð 1 and c`Dn=2 D 0, respectively. In the range of ` considered, close to
zero eigenvalues of �`.H2 EH/ thus exist. The expressions (36) are the coarse grid
equivalents of (10) and can be generalized to the case with damping by introducing
a shift with � ˛ �2.



100 D. Lahaye and C. Vuik

0 500 1000 1500 2000 2500 3000 3500
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4(a)

0 200 400 600 800 1000 1200 1400 1600
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
k=1000, gpw = 20

(b)

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2

3

4
k=1000, gpw = 10

(c)

0 50 100 150 200 250 300 350 400
−7

−6

−5

−4

−3

−2

−1

0

1
k=1000, gpw = 5

(d)

0 50 100 150 200
−26

−24

−22

−20

−18

−16

−14

−12

−10

−8
k=1000, gpw = 2.5

(e)

Fig. 3 Eigenvalues of the Helmholtz Galerkin coarse grid operator EH for k D 1000 as a function
of the index ` on a multigrid hierarchy consisting of five levels. On the finest level 40 grid points
per wave length are employed. On each coarser level the number of grid points per wave length is
halved. (a) 40 gpw; (b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw

In Fig. 3 we plotted �`.H2 EH/ given by (37) as a function of ` for k D 1000 using
various grid points per wavelength ranging from 40 (corresponding to � D 0:15625)
in the top left of the figure to 2:5 (corresponding to � D 2:5) in the bottom of the
figure. This figure clearly shows that in traversing the multigrid hierarchy from finest
to coarser level (and thus increasing �) the eigenvalues of the coarse grid operator
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EH shift towards the left on the real plane until all eigenvalues become negative and
bounded away from zero on sufficiently coarse grids (sufficiently large values of �).
This is in accordance with the bounds (37).

The fact that in problemswithout damping the matrixEH on fine and intermediate
levels has several close to zero eigenvalues will play a central role in the subsequent
analysis. By introducing damping, the issue of these small eigenvalues will be
alleviated to some extent.

5.2 Eigenvalues of the Deflation Operator Ph;H

The diagonal blocks .Ph;H/
` of the deflation operator Ph;H are for 1 � ` � n=2 � 1

given by

.Ph;H/
` D I � .Zh;H/

` Œ.EH/
`��1 .ZT

h;H/
` .Ah/

` ; (38)

and for ` D n=2 by

.Ph;H/
n=2 D 1 : (39)

As Ph;H is a deflation operator, the individual 2 � 2 blocks .Ph;H/
` are projections

as well and therefore have 0 and 1 as eigenvalue. Less immediate results will follow
next.

5.3 Eigenvalues of the Deflated Operator Ph;H Ah

The diagonal blocks .Ph;H Ah/
` of the deflated operator Ph;H Ah are for 1 � ` �

n=2� 1 given by

.Ph;H Ah/
` D .Ph;H/

` .Ah/
`

D .Ah/
` � .Zh;H/` Œ.EH/

`��1 .ZT
h;H/

` Œ.Ah/
`�2 ; (40)

and for ` D n=2 by

.Ph;H Ah/
n=2 D .2 � �2/=h2 : (41)

Property (24) translates on the 2 � 2 block level to .Ph;H Ah/
`.Zh;H/` D 02�1. Block

.Ph;H Ah/
` thus has a zero eigenvalue with multiplicity one. The remaining non-

zero eigenvalue is then equal to the trace TrŒ.Ph;H Ah/
`�. Computations show that for
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1 � ` � n=2� 1 the elements of the h2-scaled block h2 .Ph;H Ah/
` are given by

h2 .Ph;H Ah/
` D 1

�`.H2 EH/

 
pa`11;h;H pa`12;h;H
pa`21;h;H pa`22;h;H

!
; (42)

where the four matrix elements pa`ij;h;H for 1 � i; j � 2 are polynomials of second

degree in �2. The diagonal elements pa`11;h;H and pa`22;h;H are more precisely given
by

pa`11;h;H D .c` � 1/2.2c` � 2C �2/.2c` C 2 � �2/ (43)

pa`22;h;H D .c` C 1/2.2c` � 2C �2/.2c` C 2 � �2/ : (44)

Observe that these expressions only differ by the sign in the first factor. As the
off-diagonal elements pa`12;h;H and pa`21;h;H are not required to compute the trace,
their detailed expression is omitted here. The non-zero eigenvalue of the `-th block
h2 .Ph;H Ah/

` is then given by

�`
�
h2 Ph;H Ah

� D TrŒh2 .Ph;H Ah/
`�

D 1

�`.H2EH/
Œpa`11;h;H C pa`22;h;H�

D 2

�`.H2EH/
.c2` C 1/.2c` � 2C �2/.2c` C 2 � �2/ : (45)

Give that the deflated operator involves a coarse grid solve, it is natural that the
eigenvalue �`.H2EH/ of the coarse grid operator appears in the denominator. In the
range from ` D 1 to ` D n=2, the eigenvalues (45) decrease from

�1
�
h2 Ph;H Ah

�
Ð 4 � �2 to �n=2

�
h2 Ph;H Ah

� D 2 � �2 (46)

where c`D1 Ð 1 and c`Dn=2 D 0, respectively. This decrease is however not
monotone. Indeed, for those values of ` that corresponds to the near-kernel ofH2 EH ,
the numerator of (45) is finite and the denominator very small. The eigenvalues
�`
�
h2 Ph;H Ah

�
thus become very large for those values of `. Stated differently, the

closest-to-zero eigenvalue of H2EH causes of a vertical asymptote to appear in the
plot of �`

�
h2 Ph;H Ah

�
versus `.

In Fig. 4 we plotted �`
�
h2 Ph;H Ah

�
given by (45) as a function of ` for k D 1000.

As in Fig. 3, we consider a sequence of five grids in which the number of grid points
per wavelength ranges from 40 on the finest to 2.5 on the coarsest. On each level we
consider a two-level construction of the deflation operator. For illustration purposes,
we superimposed in each plot of �`

�
h2 Ph;H Ah

�
a plot of �`

�
H2 EH

�
. On the y-axis

we labeled the extreme values 2� �2 and 4� �2. In the various subfigures of Fig. 4,
the eigenvalues are seen to be bounded by 2� �2 and 4� �2, except for values close
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Fig. 4 Eigenvalues of the Helmholtz Galerkin coarse grid operator EH (dashed line) and the two-
grid deflated Helmholtz operator Ph;H Ah (solid line) for k D 1000 as a function of the index ` on a
multigrid hierarchy consisting of five levels. On the finest level 40 grid points per wave length are
employed. On each coarser level the number of grid points per wave length is halved. (a) 40 gpw;
(b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw
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to a vertical asymptote. The value of ` for which this asymptote occurs, is seen
to coincide with the value of ` for which �`

�
H2 EH

�
Ð 0. This value of ` shifts

towards the right on coarser meshes until disappearing completely. This agrees with
our discussion of �`

�
H2 EH

�
in the previous paragraph. The number of eigenvalues

large in size of h2 Ph;H Ah is proportional to the number of close-to-zero eigenvalues
of H2 EH. This number is small on the finest mesh considered in Fig. 4, increases on
intermediate coarser meshes and is zero on the coarsest mesh.

The previous discussion implies that in a plot �`
�
h2 Ph;H Ah

�
on the real axis

(instead of versus ` as before), the spectrum appears clustered between 2 � �2 and
4��2, except for two tails that spread along both sides of the real axis. The spread of
these tails is inversely proportional to the size of the smallest eigenvalues of H2EH .
The number of elements in these tails is proportional to the number close-to-zero
eigenvalues of EH . For a fixed value of the wavenumber, the spread and number of
elements in the tail vary with the number of grid points per wavelength employed.

5.4 Eigenvalues of the Preconditioned Deflated Operator
M�1

h;ˇ2
Ph;H Ah

The diagonal blocks of the preconditioned deflated operator .M�1
h;ˇ2

Ph;H Ah/
` are for

1 � ` � n=2� 1 given by

.M�1
h;ˇ2

Ph;H Ah/
` D .M�1

h;ˇ2
/` .Ph;H Ah/

` : (47)

and for ` D n=2 by

.M�1
h;ˇ2

Ph;H Ah/
n=2 D 2 � �2

2 � �2.1 � �ˇ2/
: (48)

From the singularity of the block .Ph;H Ah/
` and (47) follows that the `-th diagonal

block .M�1
h;ˇ2

Ph;H Ah/
` is singular as well. Its non-zero eigenvalue can thus be

computed by merely computing its trace. The diagonal blocks of the h2-scaled
preconditioner h2Mh;ˇ2 in the basis (29) are for 1 � ` � n=2� 1 given by

.h2Mh;ˇ2/
` D

�
�`.h2Mh;ˇ2 / 0

0 �n�`.h2Mh;ˇ2 /

�
(49)

Assuming the preconditioner to be inverted exactly, the diagonal blocks of the
inverse of the preconditioner are given by

.h�2M�1
h;ˇ2
/` D

�
`.h2Mh;ˇ2 / 0

0 n�`.h2Mh;ˇ2 /

�
: (50)
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The non-zero eigenvalue of the `-th diagonal block .M�1
h;ˇ2

Ph;H Ah/
` is then given by

�`.M�1
h;ˇ2 Ph;H Ah/ D TrŒ.M�1

h;ˇ2 Ph;H Ah/
`� (51)

D 1

�`.H2EH/

�
`.h2Mh;ˇ2 / pa

`
11;h;H C

n�`.h2Mh;ˇ2 / pa
`
22;h;H

�
:

Observe that the eigenvalues of the Galerkin coarse grid operator EH appear in the
denominator. The coefficients pa`11;h;H and pa`22;h;H are real-valued. It is thus easy
to split the non-zero eigenvalue �`.M�1

h;ˇ2
Ph;H Ah/ is a real and imaginary part and

obtain for 1 � ` � n=2� 1

Re
h
�`.M�1

h;ˇ2 Ph;H Ah/
i

D 1

�`.H2 EH/


Re
�
`.h2Mh;ˇ2 /

�
pa`11;h;H C

Re
�
n�`.h2Mh;ˇ2 /

�
pa`22;h;H

�
; (52)

and

Im
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
D 1

�`.H2 EH/


Im
�
`.h2Mh;ˇ2 /

�
pa`11;h;H C

Im
�
n�`.h2Mh;ˇ2 /

�
pa`22;h;H

�
: (53)

Next we will use the results derived in Sect. 3 to find upper bounds for this real
and imaginary part. These bounds will allow us to argue how the preconditioner
transforms the eigenvalues of the deflated operator and how in particular the value
of the damping parameter ˇ2 affects this transformation.

We start by considering the real part (52). The inequality (14) states that both
Re
�
`.h2Mh;ˇ2 /

�
and Re

�
n�`.h2Mh;ˇ2 /

�
are bounded above by 1. We thus have

that

Re
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
� 1

�`.H2 EH/


pa`11;h;H C pa`22;h;H

�
D �`.h2 Ph;H Ah/ ;

(54)

where we have used expression (45) for �`.h2 Ph;H Ah/. The distance between

Re
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
and �`.h2 Ph;H Ah/ can be increased by taking large values

of ˇ2. This is particularly interesting for those values of ` for which �`.h2 Ph;H Ah/

is large in size, i.e., for those values of ` corresponding to the near-null space of EH .
By taking large values of ˇ2, these large values of �`.h2 Ph;H Ah/ can be reduced,
i.e., brought back to the center of the cluster of the eigenvalues by the action of
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the preconditioner. Eigenvalues �`.h2 Ph;H Ah/ that lie in the interval from 2� �2 to
4 � �2 are mapped to eigenvalues with a real part in a bounded interval. The length
of this interval shrinks and its midpoint shift to zero of ˇ2 increases. Despite of this
shift to zero, a larger damping than in the case without deflation can be chosen.

Next we consider the imaginary part (53). We use the expression in (18) to rewrite
the imaginary parts Im

�
`.h2Mh;ˇ2/

�
and Im

�
n�`.h2Mh;ˇ2/

�
to obtain that

Im
h
�`.M�1

h;ˇ2
Ph;H Ah/

i
D �ˇ2�2
�`.H2 EH/


pa`11;h;H

j�`.h2Mh;ˇ2/j
C pa`22;h;H

j�n�`.h2Mh;ˇ2 /j
�
: (55)

On meshes with a sufficient number of grid points per wavelength, �2 is a small
number. Expression (55) thus yields a small imaginary part except for those values
of ` for which �`.H2 EH/ Ð 0 and thus also �`.h2Mh;ˇ2 / Ð 0. Eigenvalues
�`.h2 Ph;H Ah/ inside and outside the interval from 2 � �2 to 4 � �2 are mapped
to eigenvalues with an imaginary part that is small and that increases proportionally
to ˇ2, respectively.

In Fig. 5 we plotted the non-zero eigenvalues of M�1
h;ˇ2

Ph;H Ah in the complex
plane for k D 1000 and ˇ2 D 1. In traversing the hierarchy from the finest to the
coarsest level, the range in the real part of the eigenvalues is seen to first increases
to subsequently decrease starting from the third coarsest level with five grid point
per wavelength. This in accordance with our previous discussion.

We can summarize the discussion by stating the action of the preconditioner is
to contract and rotate the eigenvalues of the deflated operator. This is illustrated in
Fig. 6 in which the eigenvalues �`.M�1

h;ˇ2
Ph;H Ah/ are plotted in the complex plane

for k D 1000 and ten grid point per wavelength.

6 Numerical Results

In this section we present numerical results for the one-dimensional problem on
the unit interval and the two-dimensional problem on the unit square. For both
problem we consider the problem without damping supplied with homogeneous
Dirichlet boundary conditions discretized using either 10 or 20 grid points per
wavelength. We adopt a two-level variant of the deflation operator and assume the
both preconditioner on the finest level and the coarse grid operator to be inverted
exactly. As outer Krylov we run full GMRES with a zero initial guess. We declare
convergence at the k-th iteration if the relative residual norm kAhxkh � bhk2=kbhk2
drops below 10�6. We compare the following five algorithmic variants. The first
variant merely employs A-DEF1 (without CSLP) as a preconditioner. The second,
third and fourth variant combine A-DEF1 and CSLP multiplicative with ˇ2 equal to
0:5, 1 and 10, respectively. The fifth variant employs ˇ2 D 10 and approximates the
CSLP preconditioner by its diagonal. The required numbered GMRES iterations for
the one and two-dimensional problem are given in Tables 2 and 3, respectively. For
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Fig. 5 Eigenvalues of the preconditioned deflated operatorM�1
h;ˇ2

Ph;H Ah in the complex plane for
k D 1000 and ˇ2 D 1 on a multigrid hierarchy consisting of five levels. On the finest level 40 grid
points per wave length are employed. On each coarser level the number of grid points per wave
length is halved. (a) 40 gpw; (b) 20 gpw; (c) 10 gpw; (d) 5 gpw; (e) 2.5 gpw

the second and third variant we compare the multiplicative combination of A-DEF1
and CSLP with merely using CSLP as a preconditioner.

From Tables 2 and 3 we conclude that for the one and two-dimensional problem
the combined use of A-DEF1 and CSLP

• results in a lower iteration count than either A-DEF1 or CSLP used separately.
This reduction grows with the wave number;

• allows to use a large damping parameter ˇ2 without significantly increasing the
iteration count;



108 D. Lahaye and C. Vuik

Fig. 6 Eigenvalues of the preconditioned deflated operator M�1
h;ˇ2 Ph;H Ah on a fixed mesh for

various values of the damping parameter ˇ2 using 10 grid points per wavelength for k D 1000.
(a) ˇ2 D 1; (b) ˇ2 D 10; (c) ˇ2 D 100

• allows to set ˇ2 D 10 and to approximate the CSLP preconditioner by its
diagonal without significantly increasing the iteration count.

7 Conclusions

In this paper we considered a solution method for the Helmholtz equation that
combines the complex shifted Laplace preconditionerwith a deflation technique that
employs multigrid vectors. We derived closed form expressions for the eigenvalues
of the deflated preconditioned operator through a model problem analysis. From this
analysis we conclude that a much larger damping parameter can be used without
adversely affecting the convergence of outer Krylov acceleration. Further research
is required to tune the algorithmic to large scale applications.
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Table 2 Iteration count for various methods for the 1D problem without damping

1D without damping

ˇ2 D 0:5 ˇ2 D 1 ˇ2 D 10 ˇ2 D 10

k A-DEF1 CSLP/CSLP+A-DEF1 CSLP/CSLP+A-DEF1 CSLP+A-DEF1 JACOBI+A-DEF1

10 gpw

10 5 7/3 8/4 5 5

20 9 10/5 12/6 7 7

40 15 16/8 20/8 9 9

80 15 23/8 33/9 9 9

160 20 36/13 55/14 14 12

320 30 61/19 97/20 19 19

640 45 108/33 179/33 34 32

20 gpw

10 9 7/3 8/4 5 6

20 13 10/4 12/4 5 6

40 14 15/5 19/5 6 6

80 15 22/6 33/6 6 7

160 19 37/8 56/8 8 8

320 18 59/9 95/9 9 9

640 28 104/14 174/14 14 15

1280 36 190/23 328/23 23 23

Table 3 Iteration count for various methods for the 2D problem without damping

2D without damping

ˇ2 D 0:5 ˇ2 D 1 ˇ2 D 10 ˇ2 D 10

k A-DEF1 CSLP/CSLP+A-DEF1 CSLP/CSLP+A-DEF1 CSLP+A-DEF1 JACOBI+A-DEF1

10 gpw

10 18 9/5 11/5 9 11

20 24 17/7 22/8 10 11

40 36 45/16 64/16 19 21

80 68 130/43 210/41 45 46

20 gpw

5 18 5/3 6/3 5 9

10 17 9/3 11/3 3 5

15 21 12/4 16/4 5 9

20 24 16/6 22/6 7 10

30 20 29/5 40/5 5 12
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The Multilevel Krylov-Multigrid Method
for the Helmholtz Equation Preconditioned
by the Shifted Laplacian

Yogi A. Erlangga, Luis García Ramos, and Reinhard Nabben

Abstract This chapter discusses a multilevel Krylov method (MK-method) for
solving the Helmholtz equation preconditioned by the shifted Laplacian precon-
ditioner, resulting in the so-called multilevel Krylov-multigrid (MKMG) method.
This method was first presented in Erlangga and Nabben (E. Trans. Numer. Anal.
31:403–424, 2008). By combining the MK method with the shifted Laplacian
preconditioner, it is expected that the issues related to indefiniteness and small
eigenvalues of the Helmholtz matrix can be resolved simultaneously, leading to an
equivalent system, whose matrix is spectrally favorable for fast convergence of a
Krylov method. The eigenvalues of the preconditioned system preconditioned by
the ideal MKMG operator lie on (or inside) the same circles known from the shifted
Laplace preconditioning. But they are much better clustered. Here, we distinguish
between the so-called ideal MKMG and the practical MKMG method. Numerical
results for the practical MKMG presented here suggest that it is indeed possible to
achieve an almost gridsize- and wavenumber-independent convergence, provided
that the coarse-grid system in the ideal MK method is properly and accurately
approximated.

1 Introduction

Fast iterative solvers for the Helmholtz equation have been an active research
area in the last 15 years. One of the main drivers comes from the oil industry,
where the Helmholtz solver is an important component in the frequency-domain
Full Waveform Inversion (FWI) for oil prospecting. For other benchmark elliptic
problems as the Poisson problem, there exist well-established fast solvers (e.g.,
multigrid) and the convergence can be made independent of the grid size with an
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error reduction factor of, say, 0:1: In contrast, for the Helmholtz equation, in addition
to grid-independent convergencewe require a scalable solver that requires a number
of iterations independent of the wavenumber k (or equivalently, the frequency f ). It
is evident that achieving an .h; k/-independent convergence is quite difficult and
challenging, but recent developments have demonstrated that it may not be out of
reach.

Some promising directions, for example, include wave-ray methods [8, 25]
and Krylov methods preconditioned by the sweeping preconditioner [12, 30, 36].
The wave-ray method was developed in the context of multigrid methods and is
based on the representation of components of multigrid errors, which are difficult
to reduce, by a ray function. The associated errors can be made smooth enough
such that the error reduction can be effectively performed (using the so-called ray
cycle). The sweeping preconditioner benefits from the use of a perfectly matched
layer [1, 2, 6, 7, 39] for the discretization of the Sommerfeld boundary condition.
This highly accuratemathematical representation allows the wave propagation in the
complete domain to be treated locally and rather accurately in smaller subdomains.
This approach can be viewed as a domain-decomposition method with interface
conditions that ensure continuous propagation of waves within subdomains.

Another direction was proposed by the authors, within the context of the
complex shifted-Laplacian (CSL) preconditioner and projection-type methods [15].
The shifted Laplacian preconditioner, initially introduced in [4, 5] and further
extended in [24] and [18, 19], leads to a preconditioned Helmholtz system, which
is spectrally favorable for fast convergence of a Krylov method. With a proper
choice of parameters involved in the preconditioning operator, the eigenvalues of
the preconditioned Helmholtz matrix can be bounded above (in magnitude) by one,
and this bound is independent of h and k.

The trouble comes from the smallest eigenvalues, which become too close to zero
as k increases. This suggests convergence deterioration with an increase in k, which
is confirmed by numerical experiments. The good news, nevertheless, is that the
number of iterations to reach convergence exhibits a linear increase with respect to
k, with a small constant, and for a fixed k, the convergence can be made independent
of h.

In many cases, for the system

Au D b; A 2 C
n�n; (1)

the convergence of a Krylov method can be measured by the spectrum of A. If A
is Hermitian positive definite (HPD), the convergence rate of CG can be bounded
in terms of the condition number of A, �.A/ [32], which in this case is the ratio of
the largest eigenvalue to the smallest one. For general matrices, convergence bounds
are somewhat more difficult to establish and do not express a direct connection with
the condition number of A. In either case, small condition numbers are desirable,
which qualitatively means clustering of eigenvalues around a value far from zero.
A good preconditioner is a (nonsingular, simple to invert) matrix M such that the
eigenvalues ofM�1A are more clustered and farther from zero than those of A.
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There exist methods to deal with small eigenvalues of A. One of them is called
deflation, proposed by Nicolaides [28] for conjugate gradient methods, which has
been interpreted and used in various ways; see, for instance, [9, 21, 26]. The
objective, generally speaking, is to (explicitly) shift small eigenvalues of A to 0.
For an HPD matrix A, following [21], this process can be represented by the matrix

PD D I � AZE�1ZT ; E D ZTAZ; (2)

which is therefore called the deflation matrix. In (2), Z 2 Cn�r is a full rank
matrix, whose columns form a basis for the deflation subspace. It is shown in [21]
that the spectrum of PDA contains r zero eigenvalues; see also [13, 27]. Since the
components of the residuals corresponding to the zero eigenvalues do not enter the
iteration, the convergence rate is now bounded in terms of the effective condition
number of PDA, which for a HPDmatrix A is the ratio between the largest eigenvalue
and the smallest nonzero eigenvalue of PDA.

For convergence acceleration, it is desirable to deflate as many small eigenvalues
as possible to zero. This however makes the matrix E D ZTAZ 2 Cr�r too large for
an efficient inversion by a direct method. While it is still possible to carry out this
inversion implicitly using an iterative method, care has to be taken in determining
the termination criteria [37], since deflation is rather sensitive to an inaccurate
computation of E�1 [27].

Originally, deflation methods were introduced with the columns of the matrix Z
consisting of (approximate) eigenvectors, corresponding to the small eigenvalues
of A. These eigenvalues are then deflated to zero. In the last decade, deflation
was used and analyzed in combination with domain decomposition and multigrid
methods [27, 37]. There, the rectangular matrices ZT and Z are known as the
restriction and the prolongation (interpolation) operator, respectively. The matrix
E D ZTAZ is the Galerkin or coarse-grid matrix, which is typically still very
large. Theoretical results established in [27, 37] were however based merely on
the assumption that Z is full rank. For implementations, Z was a sparse matrix
that corresponds to different interpolation techniques. For arbitrary matrices Z
the nonzero eigenvalues of PDA may differ from the eigenvalues of A. It is then
important to quantify the difference between the nonzero spectrum of the deflated
matrix PDA and the spectrum of the original matrix, and to determine if the nonzero
eigenvalues of PDA are shifted near zero or grow increasingly large.

An alternative to deflating eigenvalues to zero is by shifting them to the largest
eigenvalue [14]. To put this procedure in the framework of the shifted Laplacian
preconditioner for the Helmholtz system, we introduce an equivalent linear system
to (1):

OAOu D Ob; (3)

where OA D M�1
1 AM�1

2 , Ou D M2u, and Ob D M�1
1 b. Here,M1 andM2 are nonsingular

preconditioning matrices. The shift of r small eigenvalues to the largest eigenvalue
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of OA is done via the action of the matrix1

P ON D I � OAZ OE�1ZT C �nZ OE�1ZT ; OE D ZT OAZ; (4)

on the general system (3), with �n the largest eigenvalue (in magnitude) of OA.
With (4), we then solve the left preconditioned system

P ON OAu D P ON Ob

with a Krylov method.
The right preconditioning version of (4) can also be defined using the shift matrix

Q ON D I � Z OE�1ZT OA C �nZ OE�1ZT : (5)

Given (5), we then solve the preconditioned system

OAQ ONeu D Ob; Ou D Q ONeu (6)

with a Krylov method. Note that P ON and Q ON are nonsingular and an explicit
expression for the inverses for �n D 1 is given in [17]. Moreover, we have
�.P ON OA/ D �. OAQ ON/, with �.�/ the spectrum of the matrix in the argument.

Different from (2), P ON is insensitive to an inexact inversion of OE, which therefore
allows us to use a large deflation subspace to shift as many small eigenvalues as
possible. The Galerkin matrix OE can now be inverted implicitly and a (inner) Krylov
method with a less tight termination criterion can be used. That means that a few
steps of an inner Krylov method need to be performed. The convergence rate of
this inner iteration can be significantly improved if a shift operator similar to (4) is
also applied to the Galerkin system. The action of this shift operator will require
solving another Galerkin system, which will be carried out again by just a few steps
of a Krylov method. By this construction, however, the preconditioner is no longer
fixed, and hence a flexible Krylov method such as FGMRES needs to be employed.
A recursive application of this process leads to the so-calledmultilevel Krylov (MK)
method. To refer to the number of iterations on the second, third etc, level, we write,
e.g., MK(8,4,1), which means 8 iterations on the second level, 4 on the third, and
just one on all the other levels.

For the solution of the Helmholtz equation, in (3), we use M1 D I and M2 D M
as the complex shifted Laplace (CSL) preconditioner, to be inverted approximately

1Since OA is not necessarily symmetric, the more general form for the shift matrix is

P ON D I � OAZ OE�1YT C �nZ OE�1YT ; OE D YT OAZ;
where Y; Z 2 Cn�r are full rank and such that OE D YT OAZ is nonsingular. We however prefer to
start with (4) because in the end we will set Y D Z.
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by one multigrid (MG) iteration. The resulting method is called MKMG method,
or, in more detail, e.g., MKMG(8,4,1). Here, we have to distinguish between the
ideal (two-level)MKMG and the practicalMKMGmethod. In the ideal version, the
coarse grid system with system matrix OE D ZT OAZ D ZTAM�1Z is solved exactly.
This will require the exact inversion of M and an exact computation of OE. In higher
dimensions (2D or 3D) this approach is no longer feasible. Moreover, since in the
end the inverse of M is approximately computed by one multigrid iteration,M�1 is
not explicitly available. In this case we use some approximation of OE D ZTAM�1Z,
resulting in the practical MKMG method.

Algorithm 1 describes the preconditioning part of the MKMGmethod, which can
be a building block in a flexible Krylov method. As mentioned above, in the ideal
two-level MKMGmethod the coarse grid system will be solved exactly. In the other
cases the coarse grid systems will be approximated and solved by a few iterations of
a flexible Krylov method preconditioned by the same type of preconditioner. Note
that (5) can be written as

Q ON D I C Z OE�1ZT .�nI � AM�1/:

In Algorithm 2 we present a more detailed pseudocode for the practical MKMG
method incorporated in a flexible GMRES method.

Solve Ax D b by a flexible Krylov method right preconditioned by M�1 OQN

Multiplication of the preconditioner with a vector v

w WD M�1v /* Multigrid solve of shifted Laplacian */
s WD Aw /* Matrix vector multiplication */
t WD �nv � s /* Adding the shift */
Ot WD ZTt /* Restriction */

Os WD OE�1Ot /* Coarse grid solve, recursively with the same */
/* preconditioner or exactly */

s WD ZOs /* Prolongation */
w WD v C s /* Update */
z WD M�1w /* Multigrid solve of shifted Laplacian */

Algorithm 1:MKMG as a preconditioner

It is proven in [23] that the eigenvalues of OA OQN D AM�1 OQN (the ideal
MKMG operator) lie on exact the same circles as the CSL-preconditioned linear
system for Dirichlet boundary conditions and are enclosed by the same circles for
Sommerfeld boundary conditions. Moreover, they are better clustered. This holds
for any dimension, any wavenumber and any choice of Z. In [34] exact formulas for
the eigenvalues of AM�1 OQN in the 1D case are given. These theoretical results help
to explain the good performance of the MKMG method. Although the eigenvalue
formulas show that for k ! 1, the eigenvalues of AM�1 OQN move to zero, this
happens only for very high wavenumbers (see Fig. 6).
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Numerical experiments with the ideal MKMG suggests that an h,k-independent
fast convergence can be attained. For the practical MKMG method, our numerical
results demonstrate a convergence, which is mildly h-dependent and k-dependent
(Sect. 5). As h ! 0, the convergence can be made practically independent of
h. Considering the fast convergence of the ideal MKMG method, improvement
from the current practical MKMG can still be achieved by, e.g., having a better
approximation of the coarse-grid matrix OE.
Remark 1 Instead of preconditioning the matrix first and then deflate, alternatively,
one can first deflate and then precondition. This is done by the operator

B D M�1PD C ZE�1ZT :

Similarly to OQN , some eigenvalues are shifted to one if B is used as a preconditioner.
The operator B is called the A-DEF1 operator in [37]. Motivated by the MK
framework given in [15], a similar recursive structure using inner Krylov iterations
to solve the coarse grid systems with E is used in [35]. The resulting method can be
seen as a preconditionedMK method, see [34].

Remark 2 Elman et al. [10] used Krylov iterations (in this case, GMRES [33]) in
a multilevel fashion for solving the Helmholtz equation. However, their approach
is basically a multigrid method, specially adapted for the Helmholtz equation.
While at the finest and coarsest level, standard smoothers still have good smoothing
properties, at the intermediate levels GMRES is employed in place of standard
smoothers. Since GMRES does not have a smoothing property, it plays a role in
reducing the errors but not in smoothing them. A substantial number of GMRES
iterations at the intermediate levels, however, is required to achieve a significant
reduction of errors; see [29].

Remark 3 Even though the multilevel Krylov method uses a hierarchy of linear
systems similar to multigrid, the way it treats each system and establishes a
connection between systems differs from multigrid [14, 16]. In fact, the multilevel
Krylovmethod is not by definition an instance of a multigrid method.With regard to
the work in [10], we shall show numerically that the multilevel Krylov method can
handle linear systems at the intermediate levels efficiently; i.e., a fast multilevel
Krylov convergence can be achieved with only a few Krylov iterations at the
intermediate levels.

We organize this chapter as follows. In Sect. 2, we first revisit the Helmholtz
equation and our preconditioner of choice, the shifted Laplace preconditioner. In
Sect. 3, some relevant theoretical results concerning our multilevel Krylov method
are discussed. Practical implementations are explained in Sect. 4. Numerical results
from 2D Helmholtz problems are presented in Sect. 5. Finally, in Sect. 6, we
draw some conclusions and outlook. The material presented here is based on the
presentation in [15].
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2 The Helmholtz Equation and the Shifted Laplace
Preconditioner

The 2D Helmholtz equation for heterogeneous media can be written as

A u WD �
�
@2

@x2
C @2

@y2
C k2.x; y/

�
u.x; y/ D g.x; y/; in˝ � R

2; (7)

where k.x; y/ is the wavenumber, and g is the source term. Dirichlet, Neumann,
or Sommerfeld (non-reflecting) conditions can be applied at the boundaries � D
@˝; see, e.g., [11]. Discretization of (7) and the boundary conditions results in a
large linear system with sparse and symmetric but indefinite matrix. For this kind
of system, Krylov subspace methods with standard preconditioners, e.g., ILU, [20],
converge unacceptably slowly to a solution.

The general shifted Laplacian is defined as follows:

M WD � @2

@x2
� @2

@y2
� .˛ C Oiˇ/k2.x; y/; (8)

for some constants ˛; ˇ 2 R and Oi D p�1. The preconditioning matrix M is
obtained from a discretization of (8), with the same boundary conditions as for (7).
The solution u is computed from the (right) preconditioned system

AM�1 Ou D b; u D M�1 Ou; (9)

where A andM are the associated Helmholtz and preconditionermatrix respectively.
References [22, 40], e.g., discuss at length on how .˛; ˇ/ has to be chosen.

For our presentation, we shall only consider the pair .˛; ˇ/ D .1; 0:5/, which
in [18] is shown to lead to an efficient and robust preconditioning operator. Since
the convergence of Krylov methods is closely related to the spectrum of the given
matrix, we shall give some insight on the spectrum of the preconditioned Helmholtz
system (9) in the remainder of this section.

Theorem 1 Let A D L C OiC � K and M D L C OiC � .1 � 0:5Oi/K, with L, C and
K matrices associated with a discretization of the negative Laplacian, the boundary
conditions and the Helmholtz (k2) term, respectively.

1. For Dirichlet boundary conditions, C D 0 and the eigenvalues of M�1A lie on
the circle in the complex plane with center c D . 1

2
; 0/ and radius R D 1

2
.

2. For Sommerfeld boundary conditions, C ¤ 0 and the eigenvalues of M�1A are
enclosed by the circle with center c D . 1

2
; 0/ and radius R D 1

2
.

Proof The proof for arbitrary .˛; ˇ/ can be found in [40]. ut
Since �.M�1A/ D �.AM�1/, Theorem 1 holds also for AM�1. For the Helmholtz

equation with Dirichlet boundary conditions some detailed information about the
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spectrum, e.g., the largest and smallest eigenvalues, can also be derived. We shall
follow the approach used in [19], which was based on a continuous formulation of
the problem. The results, however, also hold for the discrete formulation as indicated
in [19]. For simplicity, we consider the 1D Helmholtz equation.

At the continuous level, the eigenvalue problem of the preconditioned system can
be written as

�
�

d2

dx2
� k2

�
u D �

�
� d2

dx2
� .1 � 0:5Oj/k2

�
u; (10)

with � the eigenvalue and u now the eigenfunction. By using the ansatz u D
sin.i�x/, i 2 N, from(10), we find that

�i D i2�2 � k2

i2�2 � .1 � 0:5Oj/k2 ;

with
8̂
<̂
ˆ̂:
Re.�i/ D .i2�2 � k2/2

.i2�2 � k2/2 C 0:25k4
;

Im.�i/ D �0:5.i2�2 � k2/k2

.i2�2 � k2/2 C 0:25k4
:

(11)

Notice that 0 < Re.�i/ < 1, and therefore

lim
i!1Re.�i/ D lim

k!1Re.�i/ D 1:

The real parts are close to zero if i2�2 are close to k2. The sign of the imaginary
parts depends on the mode i. Also, lim

k!1 Im.�i/ D 0:5 and lim
k!1 Im.�i/ D �0:5.

Eliminating i2�2 in (11) yields

.Re.�i/� 0:5/2 C Im.�i/2 D 0:25:

Thus, �i lie on the circle with center c D . 1
2
; 0/ and radius R D 1

2
, as suggested

by Theorem 1 (i). The largest j�ij is approached as i ! 1, where, in this case,
Re.�i/ ! 1 and Im.�i/ ! 0. Thus, lim

i!1 j�ij D 1. This result holds for any choice

of constant k.
Suppose now that for some i, i2�2 � k2 D ". For " � k, Re.�i/ 
 4"2=k4 and

Im.�i/ 
 �2"=k2, and hence

j�ij2 D Re.�i/
2 C Im.�i/

2 D
�
4"2

k4

�2
C
�
2"

k2

�2

 4"2

k4
:
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Fig. 1 Spectrum of a typical 1D Helmholtz problem preconditioned with the shifted Laplacian.
The wavenumbers k are 20 (left) and 50 (right). The Sommerfeld boundary condition is used

Therefore, while the spectrum of M�1A is more clustered than the spectrum of A,
some eigenvalues still lie at a distance of order O."=k2/ from zero.

Figure 1 shows spectra associated with a 1DHelmholtz problemwith k D 20 and
50 and the Sommerfeld condition at the boundaries. Clearly, the largest eigenvalue
for both k’s is essentially the same and close to one, but the smallest eigenvalue
moves towards zero as k increases.

3 Multilevel Krylov Method

In the following we choose M1 D I and M2 D M as the shifted Laplacian in (8).
As discussed in Sect. 1, one way to handle the small eigenvalues of OA D AM�1 is
by shifting them to the largest eigenvalue using either (4) or (5). Based on the result
stated below Eq. (11), we set �n D 1.

For (5) the following spectral property holds.

Theorem 2 Let OA be normal, with eigenvalues �1; : : : ; �n 2 �. OA/ � C, ordered
increasingly in magnitude. Let Z 2 Cn�r, with r < n, be a full rank matrix whose
columns are eigenvectors associated with the r smallest eigenvalues (in magnitude)
of OA. Let Q ON be defined as in (5). Then

�. OAQ ON/ D f�n; : : : ; �n; �rC1; : : : ; �ng:

Proof The proof requires the identity P OD OAZ D 0, where P OD D I � OAZ OE�1ZT , which
is easily verified by a direct computation (see, e.g., [21]), and Theorem 3.5 of [14],
which establishes the spectral equivalence �.P ON OA/ D �. OAQ ON/, with P ON as in (4).
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First, for i D 1; : : : ; r, we have P ON OAZ D P OD OAZ C �nZ OE�1ZT OAZ D �n. Next, for
r C 1 � i � n, we have that

P ON OAzi D OAzi � OAZ OE�1ZT OAzi C �nZ OE�1ZT OAzi D �izi;

due to orthogonality of eigenvectors. Finally, by using Theorem 3.5 of [14],
�.P ON OA/ D f�n; : : : ; �n; �C1; : : : ; �ng D �. OAQ ON/: ut

The above theorem can be generalized to the case where OA is non-normal, with
the term ZT in (5) replaced by YT . Here the columns of Z and Y are, respectively,
right and left eigenvectors of OA.

Thus, after applying Q ON to OA, r eigenvalues are no longer small and have been
shifted to �n. The smallest eigenvalue (in magnitude) is now �rC1, and the rest of
the spectrum remains untouched. If �rC1 is of the same order of magnitude as �n, a
Krylov subspace method is expected to converge faster.

The computation of eigenvectors, however, is very expensive for large linear
systems and the use of eigenvectors for the columns of Z leads to a dense matrix.

In the following we consider the deflation and the shift operator under any full
rank Z. We start with the deflation operator. Since

OAQ ODZ D OAZ � OAZ OE�1ZT OAZ D OAZ � OAZ D 0;

with Q OD D I � Z OE�1ZT OA, we obtain

�. OAQ OD/ WD f0; : : : ; 0; rC1; : : : ; ng:

Thus, OAQ OD has r zero eigenvalues for any matrix Z. In contrast to Theorem 2, the
remaining eigenvalues rC1; : : : ; n are not, in general, eigenvalues of OA. Thus, r
eigenvalues of OA are shifted to zero, and the rest to i.

The following theorem establishes a spectral relationship between deflation and
the shift operator with any full rank Z.

Theorem 3 Let Z 2 Cn�r be of rank r, OA be nonsingular, and let Q OD D I �
Z OE�1ZT OA. If Q ON is defined as (5), and Z is such that

�. OAQ OD/ WD f0; : : : ; 0; rC1; : : : ; ng;

then

�. OAQ ON/ D f�n; : : : ; �n; rC1; : : : ; ng:

Proof Combine Theorems 3.4 and 3.5 of [14]. Note that the columns of Z are the
left eigenvectors of OAQ OD corresponding to the eigenvalue equal to zero. We obtain

OAQ ONZ D �nZ:
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Theorem 3.5 of [14] gives

�. OAQ ON/ D �.P ON OA/:

Now, if

OAQ ODxi D ixi;

for r C 1 � i � n and some eigenvectors xi, we easily obtain

P ON OA.Q ODxi/ D i.Q ODxi/;

which completes the proof. ut
Thus, while Q OD shifts r eigenvalues of OA to zero, Q ON shifts r eigenvalues to �n.

Under the arbitrariness of Z, the rest of the eigenvalues is also shifted to i, i D
r C 1; : : : ; n, but these eigenvalues are the same for both OAQ OD and OAQ ON . Their exact
values depend on the choice of Z. In general, n ¤ �n. However, for any n and
�n, there exists a constant ! 2 C such that n D !�n. The constant ! is called
the shift scaling factor. A shift correction can be incorporated in (5) by replacing
�n with !�n. With this scaling, the spectrum of OAQ OD and OAQ ON differ only in the
multiplicity of eigenvalue zero and n. If the convergence can be measured merely
by the ratio of the largest and smallest nonzero eigenvalues, a similar convergence
for both methods can be expected.

As mentioned in Theorem 1, with Dirichlet conditions, the eigenvalues of the
system preconditioned by the shifted Laplacian lie on a circle in the complex
plane, and for Sommerfeld conditions inside this circle. For the ideal two-level
MK method, where the coarse-grid (or, second-level) system OE D ZTAM�1Z is
solved exactly, the eigenvalues of AM�1Q ON lie on the same circle as the eigenvalues
of AM�1 for Dirichlet conditions. For Sommerfeld conditions the eigenvalues lie
inside the same circle as the eigenvalues of AM�1. Moreover, they are much better
clustered. These surprising results are proven in [23]:

Theorem 4 Let Z 2 Cn�r be of rank r. Let Q ON be defined as in (5) with �n D
1. Then, for Dirichlet boundary conditions the spectrum of AM�1Q ON lies on the
boundary of the same circle as the spectrum of AM�1, i.e. the spectrum of AM�1Q ON
lies on the boundary of the circle with center c D . 1

2
; 0/ and radius R D 1

2
, for

.˛; ˇ/ D .1; 0:5/. For Sommerfeld boundary conditions the spectrum of AM�1Q ON is
enclosed by the same circle. Moreover, in the case of Dirichlet boundary conditions,

j�min.AM
�1/j � j�min.AM

�1Q ON/j:

Proof The proof for arbitrary .˛; ˇ/ is given in [23]. ut
Note that this theorem holds for any dimension, any wavenumber, and any

choice of full rank Z. Figure 2 illustrates the spectral result in Theorem 4 for a
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Fig. 2 Spectra of a preconditioned 1D Helmholtz problem with a Dirichlet boundary condition,
and with k D 20 (left, a) and 50 (right, b). The number of grid points is n D 100 and 250,
respectively. Eigenvalues of AM�1 are shown by “open circle”, and of AM�1Q ON by “asterisk”. In
Q ON , Z is a random matrix of rank r D n=2
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Fig. 3 Interpolation in 1D: piecewise-constant interpolation (left) and linear interpolation (right)

1D Helmholtz problem with a Dirichlet condition. To generate the spectrum, we
used a full rank random matrix for Z in Q ON . For k D 20, j�min.AM�1/j D 0:2230 <

0:4197 D j�min.AM�1Q ON/j.
Using a dense matrix, like a random matrix or eigenvectors matrix, is not

practical due to possibly excessive memory requirements, especially when r is quite
large. Moreover, eigenvectors, in particular, are expensive to compute. For Z, we
require that this matrix is sparse to avoid excessive memory requirements. A class
of matrix satisfying this requirement is the multigrid prolongation/interpolation
matrices. In this case, ZT is a restriction operator, and OE D ZTAM�1Z is the
(Galerkin) coarse-grid approximation to A. Figure 3 shows two possible options for
the transfer operator in a 1D setting: zeroth-order (piecewise-constant) interpolation
and linear interpolation.

Spectra of AM�1Q ON with Z based on the above-mentioned interpolations are
shown in Fig. 4. Here, a Dirichlet condition and k D 20 or k D 50 are used
to construct A and M. The spectral result of Theorem 4 is clearly satisfied:
the eigenvalues lie on the circle, but now are much more clustered around one.
Furthermore, using the linear interpolation yields the minimum eigenvalue (in
magnitude), which is farther from the origin than that using the piecewise-constant
interpolation.
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Fig. 4 Spectra of AM�1Q ON . A is associated with a 1D Helmholtz problem with a Dirichlet
boundary condition, and with k D 20; 50. The number of grid points for each k is n D 100.
In Q ON , Z is of rank r D 50, and represents either the piecewise-constant interpolation or linear
interpolation. (a) Piecewise-constant. k D 20. (b) Piecewise-constant. k D 50. (c) Linear
interpolation. k D 20. (d) Linear interpolation. k D 50

Finally, we compute eigenvalues of AM�1Q ON , for the case where the Sommerfeld
boundary condition is imposed, and with Z associated with the piecewise-constant
and linear interpolation. The spectra are shown in Fig. 5, again for k D 20 and
k D 50, which suggest a tight clustering of eigenvalues around 1. Furthermore, the
eigenvalues are enclosed inside the circle.

We performed numerical experiments based on the 1D Helmholtz problem with
constant wavenumber, withM and OE inverted exactly (the ideal MKMG). We apply
GMRES to (6) and measure the number of iterations needed to reduce the relative
residual by six orders of magnitude. Convergence results are shown in Table 1, with
Z 2 Cn�r based on either piecewise-constant interpolation or linear interpolation.
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Fig. 5 Spectra of a preconditioned 1D Helmholtz problem with the Sommerfeld condition. The
number of grid points for each k is n D 100 (for k D 20) and 250 (for k D 50), and r D n=2. (a)
Piecewise-constant, k D 20. (b) Piecewise-constant, k D 50. (c) Linear interpolation, k D 20. (d)
Linear interpolation, k D 50

In all cases, r D n=2, where n D 1=h and h is the mesh size. The mesh size h
decreases when the wavenumber k increases, so that the solutions are solved on
grids equivalent to 30, 15 or 8 gridpoints per wavelength. (The use of 8 gridpoints
per wavelength on the finest grid is, however, too coarse for a second-order finite-
difference scheme used in this experiment, as the pollution error becomes dominant,
see, e.g., [3, 5]. For a second-order scheme, the rule of thumb is to use at least
12 gridpoints per wavelength. For this reason, this is the only example where 8
gridpoints per wavelength are used.)

For the case withoutQ ON , denoted by “standard”, we observe convergence, which
depends linearly on the wavenumber k. The convergence becomes less dependent
on k if Q ON is incorporated. In particular, if Z is the linear interpolation matrix, the
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Table 1 Number of preconditioned GMRES iterations for a 1D Helmholtz problem

k = 20 k = 50 k = 100 k = 200 k = 500

Standard (no Q ON ) 14/15/15 24/25/26 39/40/42 65/68/78 142/146/157

Q ON , piecewise-constant 4/5/7 4/6/10 5/7/14 6/10/20 7/15/37

Q ON , linear interpolation 3/4/5 3/4/7 3/4/8 3/5/10 3/5/12

Equidistant grids equivalent to 30/15/8 gridpoints per wavelength are used, and r D n=2. The
relative residual is reduced by six orders of magnitude
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Fig. 6 Spectrum of OA (left) and OAQ ON (right) for ˛ D 1, ˇ D 0:5. k D 10;000 and kh D 0:314

convergence can be made almost independent of k, unless the grid is too coarse.
Convergence deterioration is worse when piecewise-constant interpolation is used.

In [34] exact formulas for the eigenvalues of AM�1 OQN in the 1D case are given,
which explicitly indicate better clustering of eigenvalues than AM�1. Although the
eigenvalue formulas show that for k ! 1, the eigenvalues of AM�1 OQN move
to zero, thus suggesting a convergence deterioration, this happens only for very
high wavenumbers (see Fig. 6). Numerical results in Sect. 5 indicate, however, that
for this ideal MKMG setting and for wavenumbers within the range of practical
interests, the convergence is practically independent of k.

4 A Practical Multilevel Krylov Method for Helmholtz
Systems

The ideal implementation of the multilevel Krylov method for the Helmholtz
equation, where M and OE are inverted explicitly as done in Sect. 3, is not at
all practical, especially in higher dimensions (2D or 3D). Furthermore, since the
inverse ofM will be approximately computed by one multigrid iteration,M�1 is not
explicitly available.
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A practical implementation can be based on the following approximation to OE:
OE WD ZT OAZ D ZTAM�1Z


 ZTAZ.ZTMZ/�1ZTZ D AHM
�1
H BH DW OAH; (12)

where the products AH WD ZTAZ, MH WD ZTMZ, and BH WD ZTZ are the Galerkin
matrices associated with A, M, and I respectively. The corresponding coarse-grid
system then looks like this:

v0
R D AHM

�1
H BHvR; (13)

where the solution vector vR is computed only approximately by using a Krylov
subspace method. A fast convergence of a Krylov method for (13) can still be
attained by applying a projection on (13). While the approximation (12) is effective
for convergence acceleration (see Sect. 5), there exists no mathematical foundation
that justifies this approach and, hence, no measure on its accuracy.

To construct a multilevel Krylov algorithm, we shall use notations which
incorporate level identification. For example, for the two-level Krylov method
discussed above, A,M, and Z are now denoted by A.1/,M.1/, and Z.1;2/, respectively.
In addition, B.1/ D I. We set a sequence of coarse-grid matrices

OA. j/ D A. j/M. j/�1B. j/; j D 2; : : : ;m

where A. j/ D Z. j�1;j/T A. j�1/Z. j�1;j/, M. j/ D Z. j�1;j/TM. j�1/Z. j�1;j/, and B. j/ D
Z. j�1;j/T B. j�1/Z. j�1;j/.

If the coarse-grid matrix on the coarsest level (i.e., j D m) is small, the associated
Galerkin system

A.m/M.m/�1B.m/v.m/R D .v0
R/
.m/

can be solved exactly. For j D 2; : : : ;m � 1, the coarse-grid systems are solved
approximately using a Krylov method. To accelerate the convergence, for each
coarse-grid system, the following shift matrix

Q. j/ON D I � Z. j�1;j/ OA. jC1/�1Z. j�1;j/T OA. j/ C !. j/�. j/n Z. j�1;j/ OA. j/�1Z. j�1;j/T ;

is used as the (right) preconditioner, leading to the preconditioned system

A. j/M. j/�1B. j/Q. j/ON v
. j/
R D .v0

R/
. j/; j D 2; : : : ;m � 1:

At this stage, the only non-practical part of the implementation involves inversion
of M. j/. At j D 1, the inverse of M.1/ is computed approximately by one multigrid
iteration as is done for the standard shifted-Laplacian preconditioned Helmholtz
system. Since M.2/ is a coarse-grid approximation to M.1/ and, in general, M. jC1/
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is a coarse-grid approximation to M. j/, all M. j/, j D 2; : : : ;m � 1 are also inverted
approximately by one multigrid iteration; M.m/ is inverted exactly due to its small
size. Using Z. j�1;j/ as the interpolationmatrix in multigrid, clearly the multilevel and
multigrid part now share the same coarse-grid matrices and interpolation matrices.
They only need to be constructed once in the initialization phase.

Algorithm 2 summarizes the practical implementation of multilevel Krylov
with multigrid iterations included, hence leading to the name “Multilevel Krylov-
Multigrid” or MKMG. The Krylov method used for this implementation is

/* Initialization: */
Number of levels: m; Number of iterations on each level it. j/.
for j D 1 W m

if j D 1

set A.1/ D A,M.1/ D M, B.1/ D I

set �.1/n D 1 and choose !.1/

else
construct Z. j�1;j/

compute A. j/ D Z. j�1;j/T A. j�1/Z. j�1;j/

compute M. j/ D Z. j�1;j/TM. j�1/Z. j�1;j/

compute B. j/ D Z. j�1;j/T B. j�1/Z. j�1;j/

set �. j/n D 1 and choose !. j/

end if
end for

/* Iteration phase: */
Set j D 1

function x = MKMG(A. j/;M. j/;B. j/; Z. j;jC1/; b; it. j/; �. j/n ; !. j/; j)
begin

Set x0 D arbitrary, r0 D b � A. j/x0, ˇ D kr0k, v1 D r0=ˇ
for ` D 1; : : : ; it. j/ do

/* Computation of OA. j/Q. j/
ON
v` 
 A. j/M. j/�1

B. j/Q
. j/
ON
v` */

/* Computation of Q. j/
ON
v`: */

vM;` D B. j/v`
/* Multigrid solve of shifted Laplacian vM;` D M. j/�1

v` */

vM;` D MULTIGRID.M. j/; v`; cycle; smooth/
s` D A. j/vM;`
t` D s` � !. j/�

. j/
n v`

/* Restriction */

v0

R;` D Z. j;jC1/T t`
k D j C 1

if k D m
/* Direct solve: */

vR;` D B.m/
�1
M.m/A.m/

�1
v0

R;`

else
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/* Recursive solve on coarse grid: */

vR;` D MKMG.A.k/;M.k/;B.k/; Z.k;kC1/; v0

R;`; it.k/; �
.k/
n ; !

.k/
n ; k/

end if
/* Interpolation: */

vI;` D Z. j;jC1/vR;`
q` D v` � vI;`

/* End of computation of Q. j/
ON
v.l/ */

p` D B. j/q`
/* Multigrid solve of shifted Laplacian g` D M. j/�1

p` */

g` D MULTIGRID.M. j/; p`; cycle; smooth/
w` D A. j/g`
/* End of computation of OA. j/Q. j/

ON
v` 
 A. j/M. j/�1

B. j/Q
. j/
ON
v` */

/* FGMRES part */
Compute v`C1 and H` by orthogonalizing w` against v1; : : : ; v`
Generate G` D Œg1; : : : ; g`�
/* With V` D Œv1; : : : ; v`� it holds AG` D H`V` */
Compute y� D argminykˇe1 � H`yk2 , and set x`C1 D x0 C G`y�

if (j D 1 and stopping criteria satisfied) then stop
end for

end function

Algorithm 2:MKMG method

FGMRES [31] due to the non-constant preconditioners. Note that the action of Q. j/ON
on a vector v` is broken down as follows:

Q. j/ON v` D .I � Z. j�1;j/ OA. jC1/�1Z. j�1;j/T OA. j/ C !. j/�. j/n Z. j�1;j/ OA. j/�1Z. j�1;j/T /v`
D v` � Z. j�1;j/ OA. jC1/�1Z. j�1;j/T .s` � !. j/�. j/n v`/;

where

s` D OA. j/v` D A. j/M. j/�1B. j/v`:

At the level j of the multilevel Krylov method, multigrid with m � j levels is
called to approximately invert M. j/ with the corresponding coarse-grid matrices
M. jC1/; : : : ;M.m/. Once the multilevel Krylov method reaches the level j D m � 1,
the Galerkin problem at level j D m is solved exactly.

Remark 4 In solving the Galerkin problems by a Krylov subspace method, a zero
initial guess is always used. With this choice, the initial residual does not have to be
computed explicitly because it is equal to the right-hand side vector of the Galerkin
system. Hence, we can save one vector multiplication with A. j/M. j/�1B. j/.
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Remark 5 At every level j, we require an estimate of �. j/n . In our implementation,
we set �. j/n D 1, j D 2; : : : ;m � 1.

5 Numerical Experiments

In this section we present numerical results for the 1D and 2D Helmholtz equation
with Sommerfeld’s boundary conditions. Otherwise stated, the numerical results are
based on the practical MKMG. At each level j > 1 of MKMG, FGMRES [31] is
applied to the preconditioned Galerkin system. In principle it is not necessary to use
the same number of FGMRES iterations at each level. For the practicalMKMG, we
use the notation MKMG(6,2,2), for instance, to indicate that 6 FGMRES iterations
are employed at level j D 2, 2 at level j D 3 and 2 at level j D 4; : : : ;m � 1. At
level j D m the coarse-grid problem is solved exactly. Following [18], we employ
one multigrid iteration to invert the shifted Laplacian, with an F-cycle, one pre-
and postsmoothing, and Jacobi with underrelaxation (!R D 0:5) as smoother. The
coarsest level for both the multilevel Krylov and multigrid part consists of only one
interior grid point. Convergence for the practical MKMG is declared if the initial
relative residual at the finest level . j D 1/ is reduced by FGMRES by six orders of
magnitude.

5.1 1D Helmholtz

In this section, we use the same problem as the one in Sect. 3. Convergence results
for the practical MKMG are shown in Tables 2 and 3. To obtain these convergence
results, we have used the linear interpolation matrix Z in Q ON . Results in the tables
suggest convergence of MKMG which is only mildly dependent on the grid size h.
Furthermore, the number of iterations to reach convergence increases only mildly
with an increase in the wavenumber k. These results are worse than the ideal
situation where the Galerkin system at the second level is solved exactly; cf. Table 1.
The multilevel Krylov step, however, improves the convergence of the Krylov
method with only shifted Laplacian preconditioner (shown in Table 2).

Table 2 Number of practical
MKMG(6,2,2) iterations for
1D Helmholtz problems with
constant wave number

g/w k = 20 k = 50 k = 100 k = 200 k = 500

15 11 (19) 11 (29) 11 (43) 15 (66) 25 (138)

30 9 (18) 11 (28) 12 (42) 14 (68) 22 (136)

60 9 (18) 9 (28) 12 (43) 12 (68) 19 (141)

g/w stands for “# of grid points per wavelength”. For com-
parison, the number of shifted-Laplacian preconditioned
FGMRES iterations is shown in parentheses
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Table 3 Number of practical
MKMG(8,2,2) iterations and
MKMG(8,2,1) (in
parentheses) for 1D
Helmholtz problems with
constant wave number

g/w k = 20 k = 50 k = 100 k = 200 k = 500

15 11 (11) 15 (16) 19 (18) 22 (21) 33 (33)

30 10 (10) 13 (13) 13 (13) 15 (15) 20 (20)

60 9 (9) 13 (13) 10 (12) 14 (14) 17 (18)

g/w stands for “# of grid points per wavelength”

The importance of the number of iterations at the second level in the prac-
tical MKMG can also be seen in Tables 2 and 3. While the convergence for
MKMG(8,2,2) is slightly better than MKMG(6,2,2), this convergence is not,
however, better than MKMG(8,2,1). In general, one FGMRES iteration at level
j � 4 is sufficient for fast convergence, if enough iterations are spent on the
second and third level. We note here that, for all cases, the `2 norms of the error
at convergence fall below 10�5.

5.2 2D Helmholtz

We consider 2D Helmholtz problems in a square domain with constant wavenum-
bers. At the boundaries, the first-order approximation to the Sommerfeld (non-
reflecting) condition due to Engquist and Majda [11] is imposed. We consider
problems where a source is generated in the middle of the domain.

Following the 1D case, the deflation subspace Z is chosen to be the same as the
interpolation matrix in multigrid. For 2D cases, however, care should be taken in
constructing the interpolation matrix Z. Consider a set of fine grid points defined by

˝h WD f.x; y/ j x D xix D ixh; y D yiy D iyh; ix D 1; : : : ;Nx;h; iy D 1; : : : ;Ny;hg;

associated with the grid points on level j D 1. The set of grid points ˝H

corresponding to the coarse-grid level j D 2 is determined as follows. We assume
that .x1; y1/ 2 ˝H coincides with .x1; y1/ 2 ˝h, as illustrated in Fig. 7 (left). Starting
from this point, the complete set of coarse-grid points is then selected according to
the standard multigrid coarsening, i.e., by doubling the mesh size. This results in the
coarse grid, with H D 2h,

˝H WD f.x; y/ j x D xix D .2ix � 1/h; y D yiy D .2iy � 1/h;

ix D 1; : : : ;Nx;H ; iy D 1; : : : ;Ny;Hg:

As shown in [18], this coarsening strategy leads to a good multigrid method for
the shifted Laplacian preconditioner. Moreover, from a multilevel Krylov method
point of view, this coarsening strategy results in larger projection subspaces than if,
e.g., .x1; y1/ 2 ˝H coincides with .x2; y2/ 2 ˝h.
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Fig. 7 Fine (white circles) and coarse (black circles) grid selections in 2D multigrid. Black circles
also coincide with the fine grids. The right figure illustrates coarsening where the last indexed
gridpoints do not coincide
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Fig. 8 Fine (white circle) and course (black circle) grid selection indicating the bilinear interpo-
lation in 2D multigrid for (a) interior points, (b) points with fine grid points on the right boundary,
(c) points with fine grid points on the upper boundary, and (d) points with fine grid points at the
right top corner. Black circles coincide with the fine-grid points

Having defined the coarse-grid points according to Fig. 7 (left), the deflation
vectors are determined by using the bilinear interpolation process of coarse-grid
value into the fine grid as follows [38], for level 2 to level 1 (see Fig. 8a for the
meaning of the symbols):

IhHv
.1/.x; y/ D

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

v.2/.x; y/; for �;
1
2
Œv.2/.x; y � h/C v.2/.x; y C h/�; for �;
1
2
Œv.2/.x � h; y/C v.2/.x C h; y/�; for 4;
1
4
Œv.2/.x � h; y � h/C v.2/.x � h; y C h

Cv.2/.x C h; y � h/C v.2/.x C h; y C h/�; for ı

In some cases, however, such a coarsening may result in the last-indexed coarse-
grid points which do not coincide with the last-indexed fine-grid points. This is
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illustrated in Fig. 7 (right). There are three possible situations for such coarse-
grid points, which are summarized in Fig. 8b–d. The interpolation associated with
.Nx;hh; jh/, .ih;Ny;hh/, .Nx;hh;Ny;hh/ 2 ˝h are given as follows:

• For fine-grid points (x D Nx;hh; y D iyh) (Fig. 8b)

IhHv
.1/.x; y/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

v.2/.x; y/; for �;
1
2
Œv.2/.x; y � h/C v.2/.x; y C h/�; for �;
v.2/.x � h; y/; for 4;
1
2
Œv.2/.x � h; y � h/C v.2/.x � h; y C h/�; for ı :

• For fine-grid points (x D ixh; y D Ny;hh) (Fig. 8c)

IhHv
.1/.x; y/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

v.2/.x; y/; for �;
v.2/.x; y � h/; for �;
1
2
Œv.2/.x � h; y/C v.2/.x C h; y/�; for 4;
1
2
Œv.2/.x � h; y � h/C v.2/.x C h; y � h/�; for ı :

• For fine-grid points (x D Nx;hh; y D Ny;hh) (Fig. 8d)

IhHv
.1/.x; y/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

v.2/.x; y/; for �;
v.2/.x; y � h/; for �;
v.2/.x � h; y/; for 4;
v.2/.x � h; y � h/; for ı :

Based on the interpolation matrix IhH , we set Z.1;2/ D IhH, and similarly for the
coarser grid levels.

For benchmarking, we first show convergence results for the ideal MKMG,
where the preconditionerM.1/ is inverted exactly, and the coarse-grid matrix A.2/ D
Z.1;2/

T
A.1/M.1/�1Z.1;2/ is computed explicitly and then inverted exactly (see Table 4).

Note that due to excessive memory requirement for explicitly forming and storing
A.2/, we could not run the ideal MKMG for problems that require very fine grid
(about 1502) (indicated by “–” in Table 4). The results suggest, however, that the
convergence is independent of h and k.

Possibly the closest practical MKMG to the ideal MKMG method is the one that
uses two-level MK and an exact inversion of the preconditionerM.1/. Convergence
for this practical two-level MKMG is compared with the ideal ones in Table 4 (in
parentheses). Even though slower than the ideal one, we can still attain a practically
.h; k/-independent convergence, provided that the h is sufficiently small (which is
often times needed for an accurate solution).
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Table 4 Number of ideal
MKMG iterations for 2D
Helmholtz problems with
constant wave number

g/w k D 20 k D 30 k D 40 k D 50

15 4 (7) 4 (8) 4 (9) 4 (11)

20 4 (6) 4 (7) 4 (7) – (8)

30 4 (6) 3 (6) – (6) – (7)

g/w stands for “# of grid points per wave-
length”, and “–” means “not computable”.
In parentheses are the number of iterations
of two-level MK with exact inversion of the
shifted Laplacian preconditioner

Table 5 Number of two-level MKMG iterations (two-level MK and two-level MG)

k

g/w 20 40 60 80 100 120 200

15 13 ( 9) 17 (12) 19 (15) 23 (14) 28 (21) 33 (26) 61 (48)

20 14 (10) 16 (11) 17 (12) 19 (13) 21 (15) 23 (17) 33 (25)

30 17 (12) 18 (13) 19 (14) 19 (14) 20 (14) 20 (14) 23 (16)

g/w stands for “# of grid points per wavelength”. Performance of Jacobi smoother is compared
with Gauss-Seidel (in parentheses)

Table 6 Number of practical
MKMG(5,2,1) iterations for
2D Helmholtz problems with
constant wave number

k

g/w 20 40 60 80 100 120 200 300

15 11 14 15 18 19 21 31 52

20 12 13 15 15 16 18 25 37

30 11 12 12 13 13 14 18 28

g/w stands for “# of grid points per wavelength”

Table 5 shows convergence results for two-level MKMG, with two-level MG
steps. In this case, the method has two sources of inaccuracy: from the coarse-
grid approximation and from an approximate inversion of the shifted-Laplacian
preconditioner, expecting a slower convergence as compared to, e.g., the ideal
MKMG is Table 4. The convergence is however only mildly dependent on k if h
is taken sufficiently small, except for the low wavenumber, where the number of
iterations to converge seems to behave irregularly in k. This convergence, based on
Jacobi smoother in the MG steps, can be improved by using, for instance, one pre-
and post-Gauss-Seidel smoothing; see in the same table between parentheses.

Finally, convergence results of the practical MKMG(5,2,1), MKMG(6,2,1), and
MKMG(8,2,1) are shown in Tables 6, 7 and 8 for various wavenumbers. From
these tables, for low grid resolutions (e.g., 15 grid points per wavelength) we
observe convergence of MKMG, which tends to increase rapidly in terms of
numbers of iterations, with increasing k. As observed in the previous tables, the
convergence becomes less dependent on k if the grid size h is taken sufficiently small
(e.g., 30 gridpoints per wavelength). Out of these three practical MKMG settings,
MKMG(8,2,1) performs best, indicating the importance of an accurate solve of the
second-level problem.
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Table 7 Number of practical
MKMG(6,2,1) iterations for
2D Helmholtz problems with
constant wave number

k

g/w 20 40 60 80 100 120 200 300

15 11 14 14 18 18 20 28 47

20 12 13 15 15 16 17 25 36

30 11 12 12 13 13 14 16 25

g/w stands for “# of grid points per wavelength”

Table 8 Number of practical
MKMG(8,2,1) iterations for
2D Helmholtz problems with
constant wave number

k

g/w 20 40 60 80 100 120 200 300

15 11 14 14 17 18 21 27 39

20 12 13 15 14 15 16 20 28

30 11 12 12 12 13 14 15 19

g/w stands for “# grid points per wavelength”
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Fig. 9 CPU time for the iteration phase of MKMG(8,2,1) and CSL-preconditioned GMRES, with
15 (left) and 30 (right) gridpoints per wavelength

To gain insight into the total arithmetic operations needed by MKMG, in
Fig. 9, we compare CPU time spent in the iteration phase of MKMG(8,2,1) and
GMRES preconditioned by complex shifted Laplacian (CSL-GMRES). The elapsed
time was measured on a LINUX maxchine with an Intel Xeon Processor for the
iteration phase with the MATLAB command tic ... toc. We note that since
the for loop is used heavily in the construction of the matrix, the measured
overall time is too pessimistic, and thus is not presented. From Fig. 9 we observe
that, for low wavenumbers, CSL-preconditioned GMRES is faster in CPU time
than MKMG(8,2,1), but is outperformed by MKMG(8,2,1) when the wavenumber
becomes sufficiently large.
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6 Conclusions and Outlook

We have discussed a new multilevel method for solving the Helmholtz equation.
The method is based on the multilevel Krylov framework. This framework consists
of several ingredients which are a flexible Krylov method, a preconditioner, a shift
operator which includes a restriction and prolongation and a subspace system. In
contrast to multigrid methods the subspace system is solved by a few steps of a
flexible Krylov method preconditioned recursively by the MK method.

The MK method is applied to the Helmholtz system preconditioned by the
shifted-Laplacian preconditioner. With the latter inverted approximately by one
multigrid iteration, this new method, called MKMG, is purely iterative and requires
only matrix-vector multiplications. With the two methods combined, it is expected
that issues related to indefiniteness and small eigenvalues can be resolved simulta-
neously.

Numerical results show that the method converges to the solution at a rate, which
is mildly dependent on the grid size h and wavenumber k. Based on the convergence
results of the ideal MKMG, we argue that it is possible to attain an almost .h; k/-
independent convergence, provided that the preconditioner is inverted accurately
and the coarse-grid matrix is approximated well. The construction of the coarse-
grid approximation used in this chapter was mainly driven by practicality rather
than accuracy. Numerical experiments nevertheless suggest that, so long as the
preconditioner is inverted very accurately, an .h; k/-independent convergence can
still be achieved. Accurate approximation of inverse of the preconditioner and the
coarse-grid approximation are open problems and subject to future’s research.

Some other open problems include spectral analysis within the ideal MKMG
framework, for Helmholtz problems with PML boundary conditions. Spectral
analysis and computations have suggested that better clustering is attained with
radiation conditions than the Dirichlet conditions (considered as the worst case),
and depending on the choice of the deflation matrix Z the eigenvalues are enclosed
by a circle whose radius is smaller than 0.5.

Since the good convergence rate in MKMG is determined by an efficient
interplay between MK an MG, ideally convergence analysis and spectral analysis
should take into account the two components of MKMG. Given the complicated
nature of the MK part, which in this case uses GMRES, with available convergence
bounds not immediately useful, a quantitative analysis similar to LFA for multigrid
that can guide into a proper choice of MKMG components seems to be still far away.
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A Geometric Multigrid Preconditioner
for the Solution of the Helmholtz Equation
in Three-Dimensional Heterogeneous Media
on Massively Parallel Computers

H. Calandra, S. Gratton, and X. Vasseur

Abstract We consider the numerical simulation of acoustic wave propagation in
three-dimensional heterogeneous media as occurring in seismic exploration. We
focus on forward Helmholtz problems written in the frequency domain, since this
setting is known to be particularly challenging for modern iterative methods. The
geometric multigrid preconditioner proposed by Calandra et al. (Numer Linear
Algebra Appl 20:663–688, 2013) is considered for the approximate solution of the
Helmholtz equation at high frequencies in combination with dispersion minimizing
finite difference methods. We present both a strong scalability study and a com-
plexity analysis performed on a massively parallel distributed memory computer.
Numerical results demonstrate the usefulness of the algorithm on a realistic three-
dimensional application at high frequency.

1 Introduction

The efficient computation of wave propagation phenomena in three-dimensional
heterogeneous media is of significant research interest in many environmental
inverse problems [50, 58]. The core of these large scale nonlinear optimization
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problems usually consists of the approximate solution of a linear system issued
from the discretization of a Helmholtz scalar wave equation, typically written in the
frequency domain. Hence, as discussed in this book, the design of efficient direct or
iterative solvers for the resulting large scale linear systems is of paramount impor-
tance. In particular, efficient domain decomposition methods [17, 18, 25, 35, 47, 48]
or multigrid methods [6, 7, 15, 16, 19–23, 26, 33, 37, 38, 42, 54–56] have been
proposed in the past few years in this context; we also refer the reader to, e.g.,
[24, 52, Sect. 11.5] and references therein for comprehensive surveys.

In this chapter, we focus on the parallel performance of a geometric multigrid
preconditioner for the solution of wave propagation problems related to acoustic
imaging in seismic exploration. For such a purpose, we consider the geometric
two-grid preconditioner proposed in [11] for the numerical solution of Helmholtz
problems in three-dimensional heterogeneous media. This two-grid cycle is directly
applied to the original Helmholtz operator and relies on an approximate coarse grid
solution. A second multigrid method applied to a complex shifted Laplace operator
is then used as a preconditioner when solving the coarse grid system to obtain
an approximate coarse solution. In this chapter, we consider this preconditioner
in relation with high order dispersion minimizing finite difference schemes to
tackle propagation problems at relatively high frequencies. In particular, as main
contributions, we investigate the strong scaling properties of the numerical method
in a massively parallel setting and provide a complexity analysis related to a realistic
test case in geophysics.

The chapter is organized as follows. We introduce both the continuous and
discrete Helmholtz problems in Sect. 2. In Sect. 3, we describe the geometric
multigrid preconditioner that is considered throughout the chapter. Numerical
experiments performed in a massively parallel environment are reported in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

2 Problem Setting

We specify the continuous and discrete versions of the heterogeneous Helmholtz
problem that we consider throughout this chapter.

2.1 Mathematical Formulation at the Continuous Level

Given a three-dimensional physical domain ˝p of parallelepiped shape, the propa-
gation of a wavefield in a heterogeneous medium can be modeled by the Helmholtz
equation written in the frequency domain [50]

�
3X

iD1

@2u

@x2i
� .2�f /2

c2
u D ı.x � s/; x D .x1; x2; x3/ 2 ˝p: (1)
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In Eq. (1), the unknown u represents the pressure wavefield in the frequency
domain, c the acoustic-wave velocity in m s�1, which varies with position, and
f the frequency in Hertz. The source term ı.x � s/ represents a harmonic point
source located at s D .s1; s2; s3/ 2 ˝p. The wavelength � is defined as � D c=f
and the wavenumber as 2�f=c. A popular approach—the Perfectly Matched Layer
formulation (PML) [4, 5]—has been used in order to obtain a satisfactory near
boundary solution, without many artificial reflections. Artificial boundary layers are
then added around the physical domain to absorb outgoing waves at any incidence
angle as shown in [4]. We denote by ˝PML the surrounding domain created by
these artificial layers. This formulation leads to the following set of coupled partial
differential equations with homogeneous Dirichlet boundary conditions imposed on
� , the boundary of the domain

�
3X

iD1

@2u

@x2i
� .2�f /2

c2
u D ı.x � s/ in ˝p; (2)

�
3X

iD1

1

�xi.xi/

@

@xi
.

1

�xi.xi/

@u

@xi
/ � .2�f /2

c2
u D 0 in ˝PMLn�; (3)

u D 0 on � ; (4)

where the one-dimensional �xi function represents the complex-valued damping
function of the PML formulation in the i-th direction, selected as in [34]. The set
of equations ((2)–(4)) defines the forward problem related to acoustic imaging in
geophysics that will be considered in this chapter. We note that the proposed numer-
ical method can be applied to other application fields, where wave propagation
phenomena appear as well.

We also introduce the complex shifted Laplace operator defined as

�
3X

iD1

@2u

@x2i
� .1C iˇ/

.2�f /2

c2
u D ı.x � s/ in ˝p; (5)

�
3X

iD1

1

�xi.xi/

@

@xi
.

1

�xi.xi/

@u

@xi
/� .1C iˇ/

.2�f /2

c2
u D 0 in ˝PMLn�; (6)

u D 0 on � ; (7)

where the parameter 1C iˇ 2 C is called the complex shift.1 This operator will play
a significant role later in the definition of our multigrid preconditioner in Sect. 3.

1In [23] the authors have introduced the complex shifted Laplace with a negative imaginary part
for the shift in the case of first- or second-order radiation boundary conditions. Due to the PML
formulation considered in this paper, we have used a shift with positive imaginary part to derive an
efficient preconditioner as explained in [36, Sect. 3.3.2].
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2.2 Mathematical Formulation at the Discrete Level

2.2.1 Dispersion Minimizing Finite Difference Scheme

As frequently used in the geophysics community, we have considered a finite dif-
ference discretization of the Helmholtz problem ((2)–(4)) on a uniform equidistant
Cartesian grid of size nx �ny �nz. We denote later by h the correspondingmesh grid
size, ˝h the discrete computational domain and nPML the number of points in each
PML layer.

Since the standard second-order finite difference scheme is often found to be
too dispersive [3, 13, 29, 47], we have considered dispersion minimizing finite
difference schemes. These schemes are especially recommended when targeting the
solution of heterogeneousHelmholtz problems at high frequency, since they provide
a pollution-free solution [12, 34, 47, 51]. In the context of multilevel algorithms,
these schemes are also relevant for the discretization of the coarse grid operator
in order to provide the same dispersion level on both the coarse and fine scales
[47]. This feature has also been found beneficial by several authors, see, e.g.,
[12, 47, 54]. Hereafter, we have considered the compact finite difference scheme
proposed by Harari and Turkel [29] based on Padé approximations, which leads
to a finite difference discretization with a 27 points stencil. This scheme is formally
third-order accurate on general Cartesian grids and fourth-order accurate on uniform
grids. Following [3], given reference values for both the frequency fref and the step
size href and denoting by q the discretization order of the finite difference scheme,
we have used the following relation to determine the step size h, given a certain
frequency f ,

hq f qC1 D hqref f
qC1
ref : (8)

2.2.2 Properties of the Discrete Linear System

The discretization of the forward problem ((2)–(4)) with the dispersion minimizing
finite difference scheme leads to the following linear system Ah xh D bh, where
Ah 2 Cnh�nh is a sparse complex matrix which is non Hermitian and non symmetric
due to the PML formulation [5, 36, 45] and where xh; bh 2 Cnh represent the discrete
frequency-domainpressure field and source, respectively. In addition, the right-hand
side is usually very sparse. The condition (8) imposes to solve large systems of
equations at the (usually high) frequencies of interest for the geophysicists, a task
that may be too memory expensive for standard [45, 46] or advanced sparse direct
methods exploiting hierarchically semi-separable structure [59, 60] on a reasonable
number of cores of a parallel computer. Consequently, preconditioned Krylov
subspace methods are most often considered and efficient preconditioners must
be developed for such indefinite problems. We describe next in detail a multigrid
preconditioner that has been proposed in [11] for the solution of the forward problem
related to acoustic imaging.
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3 A Geometric Multigrid Preconditioner

We describe the geometric two-grid preconditioner proposed in [11] and detail
its salient properties. We first introduce notation related to multigrid methods to
make easier the description of the multilevel algorithm. We conclude this section by
briefly commenting the related parallel implementation.

3.1 Notation

The fine and coarse levels denoted by h and H are associated with discrete grids˝h

and˝H , respectively. Due to the application in seismic explorationwhere structured
grids are routinely used, a geometric construction of the coarse grid ˝H is used.
The discrete coarse grid domain ˝H is then deduced from the discrete fine grid
domain˝h by doubling the mesh size in each direction as classically done in vertex-
centered geometric multigrid [49]. In the following, we assume that AH represents
a suitable approximation of the fine grid operator Ah on ˝H . We also introduce
IHh W G .˝h/ ! G .˝H/ a restriction operator, where G .˝k/ denotes the set of grid
functions defined on ˝k. Similarly IhH W G .˝H/ ! G .˝h/ will represent a given
prolongation operator. More precisely, we select as a prolongation operator trilinear
interpolation and as a restriction its adjoint which is often called the full weighting
operator [28, 49]. We refer the reader to [53, Sect. 2.9] for a complete description of
these operators in three dimensions.

3.2 Algorithm Overview

A two-grid preconditioner for the numerical solution of Helmholtz problems in
three-dimensional heterogeneous media has been proposed in [11] in relation with
second order finite difference discretization schemes. This two-grid cycle is directly
applied to the original Helmholtz operator and relies on an approximate coarse
grid solution. As shown in [36], the main difficulty is to find efficient approximate
solution methods for the coarse level system AHzH D vH . In this chapter, as in
[11], we consider a preconditioning operator (the complex shifted Laplace operator)
based on a different partial differential equation for which an efficient multilevel
solution is possible. A second multigrid method applied to a complex shifted
Laplace operator is then used as a preconditioner for the approximate solution of
this coarse problem.

This combination of two cycles defined on two different hierarchies is detailed
next. First, a two-grid cycle using ˝h and ˝H only (as fine and coarse levels,
respectively) is applied to the original Helmholtz operator ((2)–(4)). A second
sequence of grids ˝k.k D 1; � � � ; l/ with the finest grid ˝l defined as ˝l WD ˝H



146 H. Calandra et al.

Algorithm 1: Cycle applied to Ahzh D vh. zh D Tl;C.vh/

1: Polynomial pre-smoothing: Apply # cycles of GMRES(ms) to Ahzh D vh with � iterations
of !h-Jacobi as a right preconditioner to obtain the approximation z#h .

2: Restrict the fine level residual: vH D IHh .vh � Ahz
#
h /.

3: Solve approximately the coarse problem AHzH D vH with initial approximation z0H D 0H :
Apply #c cycles of FGMRES(mc) to AHzH D vH preconditioned by a cycle of multigrid
applied to S.ˇ/l yl D wl on ˝l 
 ˝H to obtain the approximation zH .

4: Perform the coarse level correction:ezh D z#h C IhHzH .
5: Polynomial post-smoothing: Apply # cycles of GMRES(ms) to Ahzh D vh with initial

approximationezh and � iterations of !h-Jacobi as a right preconditioner to obtain the final
approximation zh.

Ωh

ΩH
AHzH = vH

Cycle applied to the Helmholtz operator

Ω1

Ω2

Cycle applied to the complex shifted Laplace operator S(β )2 ≡ S(β )H
used as a preconditioner when solving AHzH = vH

Fig. 1 Multigrid cycle applied to Ahzh D vh sketched in Algorithm 1 (case of T2;V ). The two-grid
cycle is applied to the Helmholtz operator (left part), whereas the second two-grid cycle to be used
as a preconditioner when solving the coarse grid problem AHzH D vH is shown on the right part.
This second multigrid cycle acts on the complex shifted Laplace operator S.ˇ/H with ˇ as a shift
parameter

is introduced. On this second hierarchy, a multigrid cycle applied to a complex
shifted Laplace operator S.ˇ/H WD S.ˇ/l is then used as a preconditioner when solving
approximately the coarse level system AHzH D vH of the two-grid cycle. We note
that the complex shifted Laplace operator S.ˇ/H is simply obtained by direct coarse
grid discretization of Eqs. (5)–(7) on˝H.

The resulting cycle is sketched in Algorithm 1. The notationTl;C of Algorithm 1
uses subscripts related to the cycle applied to the complex shifted Laplace operator
with l denoting the number of grids of the second hierarchy and C referring to the
cycling strategy which can be of V , F orW type.

As an illustration, Fig. 1 depicts the simplest configuration .T2;V / based on a
two-grid cycle applied to the complex shifted Laplace operator. This cycle will be
considered later in Sect. 4.

As explained in [11], this cycle leads to a variable nonlinear preconditioner
which must be combined with an outer flexible Krylov subspace method [43, 44]
and [57, Chap. 10]. In [11], the efficiency of the preconditioner in combination
with FGMRES(5) [39] has been highlighted on both academic and realistic three-
dimensional test problems. We investigate in the next section its performance when
used in combination with a dispersion minimizing discretization scheme.
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3.3 Parallel Implementation

The parallel implementation of the cycle proposed in Algorithm 1 is based on
standard MPI (Message Passing Interface) [27]. We refer the reader to [53,
Chap. 6] for details on the parallelization of geometric multigrid methods based on
domain partitioning. In particular, the operations related to matrix-vector products,
restriction and interpolation require local communications between neighbouring
processes. As in [16, 56], the polynomial smoothing procedure is based on GMRES
[41], which requires both local and global communications. Local and global com-
munications also occur when solving the coarse grid system with the preconditioned
FGMRES Krylov subspace method [39]. We refer the reader to [40, Chap. 11]
for a discussion on parallel implementations of Krylov subspace methods. To take
advantage of the current multicore based computer architectures, we note that the
use of MPI and OpenMP would be relevant to consider. This is left to a future line
of development.

We investigate in the next section the performance of the proposed geometric
preconditioner,when a dispersion minimizing finite difference scheme is considered
for the discretization of the Helmholtz problem.

4 Numerical Results on the SEG/EAGE Salt Dome Model

In this section, we illustrate the performance of the multigrid preconditioner used
in combination with FGMRES(m) for the solution of the acoustic Helmholtz
problem ((2)–(4)) on a realistic heterogeneous benchmark velocity model. The
SEG/EAGE Salt dome model [2] is a velocity field containing a salt dome in a
sedimentary embankment. It is defined in a parallelepiped domain of size 13:5 �
13:5� 4:2 km3. The minimum value of the velocity is 1500ms�1 and its maximum
value is 4481ms�1, respectively. This test case is considered as challenging due
to both the occurrence of a geometrically complex structure (salt dome) and to
the truly large dimensions of the computational domain. We first analyse the
strong scalability properties of the numerical method on this realistic application.
Then we investigate numerically the complexity of the numerical method, i.e., the
evolution of the memory requirements and computational times with respect to the
number of unknowns. We first define the settings and parameters of the multigrid
preconditioner used in this study.

4.1 Settings and Parameters

In the two-grid cycle of Algorithm 1, we consider as a smoother the case of one
cycle of GMRES(2) preconditioned by two iterations of damped Jacobi (# D 1,
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ms D 2 and � D 2), a restarting parameter equal to mc D 10 for the preconditioned
GMRES method used on the coarse level and a maximal number of coarse cycles
equal to #c D 10. In the complex shifted multigrid cycle used as an approximate
coarse solver, we use a shift parameter equal to ˇ D 0:5 and two iterations of
damped Jacobi as a smoother (�ˇ D 2). On the coarsest level we consider as an
approximate solver one cycle of GMRES(10) preconditioned by two iterations of
damped Jacobi (#ˇ D 1, mˇ D 10 and �ˇ D 2). Finally, the relaxation coefficients
considered in the Jacobi method are given by the following relation

.!h; !2h; !4h/ D .0:8; 0:8; 0:2/:

We consider a value of the restarting parameter of the outer Krylov subspace method
equal to m D 5 as in [10, 36]. The unit source is located at

.s1; s2; s3/ D .h nx1=2; h nx2=2; h .nPML C 1//

where, e.g., nx1 denotes the number of points in the first direction and nPML is set to
10. A zero initial guess x0h is selected and the iterative method is stopped when the
Euclidean norm of the residual normalized by the Euclidean norm of the right-hand
side satisfies the following relation

jjbh � Ahxhjj2
jjbhjj2 � 10�5:

This numerical study has been performed on Turing,2 a IBM BG/Q computer
located at IDRIS (each node of Turing is equippedwith 16 PowerPC A2-64 bit cores
at 1.6GHz) using a Fortran 90 implementationwith MPI in complex single precision
arithmetic. Physical memory on a given node (16 cores) of Turing is limited to
16GB.

4.2 Strong Scalability Analysis

We are interested in the strong scalability properties of the numerical method.
Hence, we consider the acoustic wave propagation problem ((2)–(4)) at a fixed
frequency (20Hz) on a growing number of cores.The step size h is determined
by relation (8) with fref D 10Hz, href D 15 and qref D 4. Table 1 collects
the number of preconditioner applications (Prec) and computational time (Time)
versus the number of cores. We note that the number of preconditioner applications
(which corresponds to the number of outer Krylov subspace iterations) is found to
be independent of the number of cores, which is a nice property. We also define a

2http://www.idris.fr/turing/.

http://www.idris.fr/turing/
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Table 1 Strong scalability
analysis

f (Hz) Grid # cores Prec T (s) 	s

20 2303 � 2303 � 767 16;384 29 586 1:00

20 2303 � 2303 � 767 32;768 29 302 0:97

20 2303 � 2303 � 767 65;536 29 164 0:89

20 2303 � 2303 � 767 131;072 29 87 0:84

Case of T2;V applied as a preconditioner of FGMRES(5)
for the heterogeneous velocity field EAGE/SEG Salt dome.
Prec denotes the number of preconditioner applications, T
the total computational time in seconds and 	s the scaled
parallel efficiency defined in relation (9)

scaled parallel efficiency as

	s D Tref
T
=

Cores

Coresref
; (9)

where Tref and Coresref denote reference values related to computational time and
number of cores, respectively. A perfect scaling corresponds to the value of 1. In
practice, we note that 	s is close to this value. Only the last numerical experiment
performed on 131;072 cores leads to a moderate decrease in terms of scaled parallel
efficiency. This is partly due to the increased number of communications, which
leads to a significant decrease of the ratio computation/communication.

4.3 Complexity Analysis

We next analyse the complexity of the numerical method with respect to the
frequency or to the problem size, equivalently. In this numerical experiment, the
number of cores is kept fixed to 131;072, while the frequency is growing from
15Hz to 40Hz, respectively. The case of f D 40Hz leads to a linear system with
approximately 56:7 billion of unknowns. The number of preconditioner applications
(Prec), computational times (T) and memory requirements (M) are reported in
Table 2. The number of preconditioner applications is rather moderate and is found
to grow almost linearly with respect to the frequency. This linear dependency has
been also observed for the complex shifted Laplace preconditioner in relation with
other dispersion minimizing finite difference schemes [12], on problems of smaller
size though. This behaviour is quite satisfactory, since huge linear systems can
be solved in a reasonable amount of computational time on a parallel distributed
memory machine.

Figure 2 shows the evolution of the computational time (T) versus the problem
size. If N denotes the total number of unknowns, the computational time T is
found to behave asymptotically as N1:32. This is quite competitive with advanced
sparse direct solution methods based on block low rank [1] or hierarchical matrix
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Table 2 Complexity analysis

f (Hz) Grid # cores Prec T (s) M (TB)

15 1586 � 1586 � 492 131,072 19 30 0:56

20 2303 � 2303 � 767 131,072 29 87 1:67

25 3071 � 3071 � 1023 131,072 37 236 3:79

30 3839 � 3839 � 1279 131,072 45 552 7:20

35 4607 � 4607 � 1535 131,072 57 1158 12:2

40 5631 � 5631 � 1791 131,072 69 2458 20:9

Case of T2;V applied as a preconditioner of FGMRES(5) for the heterogeneous velocity field
EAGE/SEG Salt dome. Prec denotes the number of preconditioner applications, T the total
computational time in seconds and M the requested memory in TB
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Fig. 2 Complexity analysis of the improved two-grid preconditioned Krylov subspace method.
Evolution of computational time versus problem size. EAGE/SEG Salt dome. Results of Table 2

compression techniques [35, 59, 60]. To complement this study, it would be
interesting to perform the same complexity analysis, now when addressing linear
systems with multiple right-hand sides. Efficient block Krylov subspace methods
based on block size reduction at each restart [9, 10] or at each iteration [8] have
been proposed in this setting. This is left to a future line of research.

The evolution of the requested memory (M) versus the problem size is shown
in Fig. 3. As expected, the memory requirements grow linearly with the number of
unknowns, since no sparse factorization is involved neither at the global nor at local
levels in the preconditioner. We remark that the benefit of the proposed method
has to be viewed in the light of future parallel architectures with the most scalable
architectures having limited memory per core.
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Fig. 3 Complexity analysis of the improved two-grid preconditioned Krylov subspace method.
Evolution of memory requirements versus problem size. EAGE/SEG Salt dome. Results of Table 2

5 Summary and Outlook

In this chapter, we have focused on the performance of a geometric multigrid
preconditioner for the solution of wave propagation problems related to acoustic
imaging. We have proposed a two-grid preconditioner for the numerical solution
of Helmholtz problems in three-dimensional heterogeneous media. This two-grid
cycle is directly applied to the original Helmholtz operator and relies on an
approximate coarse grid solution. A second multigrid method applied to a complex
shifted Laplace operator is then used as a preconditioner to obtain the approximate
coarse solution. We have highlighted the efficiency of the multigrid preconditioner
on a concrete application in geophysics requiring the solution of problems of
huge dimension (namely, billion of unknowns) in combination with dispersion
minimizing finite difference schemes. Numerical results have demonstrated the
usefulness of the combined algorithm on a realistic three-dimensional application
at high frequency. Finally, a detailed complexity analysis has been provided to close
this chapter.

We would like to mention three recent contributions for the solution of heteroge-
neous Helmholtz problems exhibiting attractive complexities and almost frequency
independent rate of convergence. Zepeda-Núñez and Demanet [61] have proposed
an algorithm based on the combination of domain decomposition techniques and
integral equations with application to two-dimensional acoustic problems. Liu and
Ying [31, 32] have proposed enhancements of the sweeping preconditioner leading
to a O.N/ complexity for both the setup phase and the preconditioner application. A
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detailed performance comparison with the proposed numerical method on the same
benchmark problem would be interesting to perform.

In the context of inverse problems in seismic, e.g., acoustic full waveform inver-
sion, the solution of forward Helmholtz problems represents a major computational
kernel, as outlined above. For that purpose, the geometric multigrid preconditioner
used in combination with block Krylov subspace methods will play a key role to
address the solution of linear systems with multiple right-hand sides efficiently; see
[14] for a first attempt with a basic two-grid preconditioner developed in [36].

Advanced discretization methods based on Discontinuous Galerkin or high order
finite element methods on unstructured grids are nowadays frequently used in
geophysics for the solution of acoustic and/or elastic problems. Algebraic multigrid
methods [53, Appendix A] could be used as well to extend the proposed geometric
multigrid preconditioner and define an efficient numerical method in this setting;
see, e.g., [6, 33] for related contributions.

Finally, we will have to reconsider the global algorithm to fully exploit the
extreme core count of forthcoming parallel computers. Communication-avoiding
or minimizing Krylov subspace methods [30] with asynchronous variants of the
multigrid preconditioner should be developed in a near future to tackle this exciting
new challenge.
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Part III
Implementations and Industrial

Applications

In this part real applications based on Helmholtz solvers and their challenges are
described and solved.



Some Computational Aspects of the Time and
Frequency Domain Formulations of Seismic
Waveform Inversion

René-Édouard Plessix

Abstract Seismic waveform inversion relies on efficient solutions of the elasto-
dynamic wave equations. The associated inverse problem can be formulated either
in the time domain or in the frequency domain. The choice between these two
approaches mainly depends on their numerical efficiency. Here, I discuss some
of the computational aspects of the frequency-domain solution of the visco-
acoustic vertical transverse isotropic wave equations based on a Krylov subspace
iterative solver and a complex shifted Laplace preconditioner. In the context of
least-square migration or non-linear impedance inversion, the frequency domain
approaches are currently not attractive because a complete frequency band response
is required. However, in the context of waveform tomography when a small number
of frequency responses are inverted, the frequency-domain approaches become
relevant, especially when viscous effects are modeled, depending on the geological
context.

1 Introduction

Characterizing and understanding the structure of the Earth interior and its evolution
represent a major goal in global seismology and exploration geophysics. Very few,
and only sparsely sampled, direct observations exist, for instance outcrops and well
logs. Geophysicists rely on measurements of the responses to physical phenomena
that interact with the Earth. They infer information on the Earth structure through
an inversion, also called imaging, approach. Surface seismic data, that measure
the earth responses to a mechanical excitation, provide indirect information on the
elastic properties of the Earth. In the Earth, the elasto-dynamic wave equations
govern the propagation of the seismic waves [1, 2] and the seismic waves diffract
on the Earth elastic discontinuities. Figure 1 displays a typical shot gather from
an active marine seismic acquisition. One distinguishes different types of events
notably the early transmitted arrivals at long offsets (distances between source and
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Fig. 1 A typical shot gather
from a marine (synthetic)
seismic acquisition
corresponding to the pressure
response to an explosive
source. The source and
receivers are a few meters
below the sea surface
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receivers), and the reflected waves at shot offsets. The goal of seismic imaging is to
reconstruct an Earth model from the seismic data set. Due to the propagative nature
of the seismic waves in the Earth, in a high frequency representation, an event can be
characterized by its traveltime and its amplitude once deconvolved from the source
signature [2, 52]. One imaging approach consists of first picking the traveltimes
and the amplitudes of dedicated events, then carrying out a traveltime inversion to
retrieve the propagation velocities, and an amplitude versus offset (AVO) inversion
to deduce impedance variations at the discontinuities. Another imaging approach
consists of directly minimizing the data misfit between observed and modeled
seismic data [7, 27, 46], which is known as seismic full waveform inversion (FWI).

Seismic full waveform inversion relies on our ability to synthesize a seismic
experiment, that is to solve efficiently the elasto-dynamic wave equations since
a seismic data set consists of thousands to hundreds of thousand shot gathers in
real applications. This raises the question of the modeling domain [28]. In the
time domain, the elasto-dynamic wave equations are hyperbolic equations that
can be efficiently solved with a time marching and an explicit scheme. In the
frequency domain, the elasto-dynamic wave equations are parabolic equations and
their discretization gives a linear system. This linear system is challenging to invert
because it is indefinite, has negative and positive eigenvalues, and is very large for
3D real-sized applications. A review of the different modeling approaches can be
found in [50]. The choice of the modeling domain, that is frequency or time, depends
on the behavior of the inverse problem, principally the possibility to invert or not
the frequencies independently. Due to the lack of low frequencies in seismic data,
the least-squares data misfit is a very oscillatory function [46] because of the cycle
skipping between observed and modeled data. Unfortunately, the computation cost
of solving the elasto-dynamic wave equations forces us to use local optimization
techniques to invert this misfit function.With a local optimization, it was recognized
soon after the introduction of the waveform inversion [27, 45] that the behavior
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is different for reflection and transmission data [24]. With transmission data, the
smooth part, that is the low or intermediate wavenumbers, of the velocities could
be retrieved. This leads to waveform tomography [24, 41]. With reflection data,
the rough part, that is the high wavenumbers of the impedance, could be retrieved.
This leads to reverse time migration and non-linear impedance inversion [27, 45].
The physical reasons of this behavior are explained for instance in [24, 31, 41, 49].
Figures 2 and 3 illustrate the two different behaviors in two very simple cases. In
the transmission case, the gradient of the least-squares data misfit function obtained
with the narrow band data set is a good estimation of the velocity perturbation.
A frequency continuation approach can be used in waveform tomography, and
in fact is recommended, to retrieve the low-to-intermediate wavenumbers of the
velocities. One can carry out the inversion per frequency (or per small groups of
frequencies) [41, 49]. In the reflection case, the resolution of the image/gradient is
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Fig. 2 Gradients and data residuals with long offset transmission data. The observed data are
computed with a linear velocity (v.z/ D 1500 C 0:4z), with the depth z in meter and the velocity
v in m/s. The gradient and data residuals are computed with a perturbed linear velocity (v.z/ D
1500 C 0:37z). The gradient should then be negative. The full band data set corresponds to a flat
source spectrum between 2 and 30Hz. The narrow band data set corresponds to a source spectrum
between 4.9 and 5.1Hz. (a) Gradient (full band). (b) Gradient (narrow band). (c) Data residual
(full band). (d) Data residual (narrow band)
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Fig. 3 Gradients and data residuals with short offset reflection data. The observed data are
computed in a two-layer velocity model (the velocity of the first layer is 1500m/s and the one
of the second layer 2000m/s with the interface at 1.5 km depth). The gradient and data residual
are computed with a 1500m/s homogeneous layer. The gradient should indicate the discontinuity
convolved with the source wavelet square. The full band data set corresponds to a flat source
spectrum between 2 and 30Hz. The narrow band data set corresponds to a source spectrum between
4.9 and 5.1Hz. (a) Gradient (full band). (b) Gradient (narrow band). (c) Data residual (full band).
(d) Data residual (narrow band)

determined by the bandwidth. For migration and impedance inversion, a sufficiently
large frequency band needs to be inverted.

In waveform tomography, a frequency-domain solver of the elasto-dynamicwave
equations becomes attractive when it is faster than the time-domain scheme to
compute one frequency response. In non-linear migration or impedance inversion,
it becomes attractive only when it is faster than the time-domain scheme to compute
the time response after Fourier transform. The linear system associated to the
discretization of the frequency-domain approach can be solved either with a direct
solver or with an iterative solver [34, 38]. The advantage of a direct solver resides in
its efficient computation of the frequency responses due to many source points, that
is many right-hand sides, after having performed the LU decomposition [28, 33, 51].
However, the LU decomposition remains challenging for large 3D problems. The
difficulties with the iterative solver come from the indefiniteness of the system and
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the definition of an efficient preconditioner. Several different approaches have been
recently proposed [18, 19, 21, 25, 35]. A Krylov subspace iterative solver with a
complex shifted Laplace preconditioner [21, 22] gives a robust approach at seismic
frequencies and has been used to successfully invert real-sized 3D data sets [39, 40].

In this work, I discuss the computational aspects of the time-domain formulation
and the frequency-domain formulation based on the shifted Laplace preconditioner
in the context of seismic waveform inversion. I do not include the developments
based on deflation and multilevel Krylov method that improve the convergence
of the iterative solver [23]. A priori, these new developments would not change
the main conclusions of this paper. They could potentially increase the relevance
of the iterative solver when the frequency-domain formulation competes with the
time-domain formulation. More works in these directions are required to evaluate
them in real-sized applications and when high-order finite-difference schemes are
used to reduce the problem size. For this discussion, I consider real-sized seismic
imaging problems, and anisotropy and viscous effects. I only focus on exploration
geophysics applications that invert body compression waves. This means that only
acoustic wave equations are discussed. Solving the elastic frequency-domain wave
equations with large 3D problems remains a challenge for both the direct and
iterative solvers [9].

I first review the general modeling aspects of the time and frequency domain
formulations and their numerical complexity. Then I present some numerical results
of the iterative solver with a complex Laplace shifted preconditioner. I present a
land example and a marine example because the iterative solver behaves differently.
Finally, I compare the computational aspects of the time and frequency domain
formulations of the waveform inversion.

2 The Modeling Aspect

Given a source excitation and earth medium properties, a seismic shot gather can be
synthesized by solving the time-domain visco-elasto-dynamic equations [1, 15, 47]:

8<
:

.x/@ttui.xs; x; t/ D @j�ij.xs; x; t/C fi.xs; x; t/I
�ij.xs; x; t/ D R

dt0 @t ijkl.x; t � t0/@kul.xs; x; t0/C mij.xs; x; t/I
dmod.xs; xr; t/ D Su.xs; xr/u.xs; xr; t/C S� .xs; xr/�.xs; xr; t/I

(1)

where t is the time, x the coordinate vector of the sub-surface point, xs of the source
point and xr of the receiver point. u D .ui/ is the particle displacement vector,
� D .�ij/ the stress tensor, f D . fi/ the source force vector, m D .mij/ the source
moment tensor, 
 the density and  D .cijkl/ the stress-strain relaxation tensor that
depends on time to account for the visco-elastic effects, that is the history of the
strains in Hooke’s law. dmod denotes the modeled seismic traces, it may correspond
to particle displacement, velocity or acceleration or pressure and Su and S� are
sampling operators.
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The frequency-domain visco-elasto dynamic equation is simply obtained by
Fourier transform:

8<
:

�!2
.x/ui.xsx; !/ D @j�ij.xs; x; !/C fi.xs; x; !/I
�ij.xs; x; !/ D cijkl.x; !/@kul.xs; x; !/C mij.xs; x; !/I
dmod.xs; xr; !/ D Su.xs; xr/u.xs; xr; !/C S� .xs; xr/�.xs; xr; !/I

(2)

with ! the angular frequency. I use the same symbols in the time and frequency
domains. The time-convolution is transformed into a multiplication in the frequency
domain with c D .cijkl/ the frequency-dependent complex stress-strain stiffness
tensor. This makes the frequency formulation attractive when modeling visco-elastic
effects. Indeed, we can consider any frequency dependency.

Many discretizations of these two systems have been proposed after having
added some boundary conditions (see for instance the references in [50]). For the
discussion here, I consider the same discretization for the spatial derivatives of the
time and frequency formulations.

The discretization of the frequency formulation, system (2), gives an implicit
linear system of the type:

�
A.x; !/u.xs; !/ D f.xs; !/I
dmod.xs; xr; !/ D S.xs; xr/u.xs; !/I (3)

where A is a complex matrix depending on the earth parameters, u the vector of the
discretized fields containing particle displacements or stresses, f the source vector
and S the sampling operator. Each frequency response is computed independently.

Evaluating a general time convolution at each time step of the discretization of
the time formulation, system (1), would lead to an unaffordable numerical scheme.
To obtain an efficient time-domain formulation, the structure of the time (hence
frequency) dependency of the strain-stress tensor is restricted to a series of P
standard linear solid models [10, 13]:

 ijkl.x; t/ D c0ijkl.x/

0
@1C

PX
pD1
.Qp

ijkl.x//
�1 exp.�!pt/

1
AH.t/ (4)

with c0 D .c0ijkl/ the stiffness tensor at 0Hz frequency, !p the angular relaxation
frequency of the pth standard linear solid model, .Qp

ijkl/
�1 the strength of the pth

standard linear solid model proportional to the inverse of the quality factor and H
the Heaviside function.

After introducing the memory variables rpij, the time-domain visco elasto-
dynamic equations read [10, 13]:

8̂
<
:̂

.x/@ttui.xsx; t/ D P

j @j�ij.xs; x; t/C fi.xs; x; t/I
�ij.xs; x; t/ D P

kl c
0
ijkl.x/.1CP

p.Q
p
ijkl.x//

�1/@kul.xs; x; t/CP
p r

p
ijmij.xs; x; t/I

@tr
p
ij.xs; x; t/ D �!pr

p
ij.xs; x; t/�P

kl !p.Q
p
ijkl.x//

�1@kul.xs; x; t/:
(5)
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The evolution equations for the P memory variables are obtained after time
derivation of the memory variables defined by:

rpij.t/ D �
X
kl

c0ijkl

Z
dt0 !p.Q

p
ijkl/

�1 exp.�!p.t � t0//H.t � t0/@kul.t/: (6)

These equations are stiff. To avoid a too small time stepping, an implicit Crank-
Nicholson scheme is generally used. This still leads to an efficient explicit overall
scheme when we stagger the time discretization of the stresses and memory
variables in a first-order velocity-stress formulation or when we stagger the time
discretization of the memory variables and the displacements or stresses in a second-
order formulation (although the stability condition is reduced compared to the pure
elastic case). With the initial conditions u.xs; t�2/ D u.xs; t�1/ D 0, a general form
of the discrete scheme is:

�
u.xs; tn/ D B1.x/u.xs; tn�1/C B2.x/u.xs; tn�2/C f.xs; tn/I
dmod.xs; xr; tn/ D S.xs; xr/u.xs; tn/I (7)

where B1 and B2 are matrices depending on the earth parameters, tn the time
discretization, u the vector field containing particle displacements or stresses and
memory variables, f the source vector and S the sampling operator. I abuse the
notations since for instance I use the same notations u and f in Eqs. (3) and (7)
whereas they have a different meaning.

The discrete Fourier transform relates the frequency and time representations of
the model data. This assumes that d is periodic which is not the case, although the
signal vanishes at long time making the Fourier transform meaningful.

With a finite-difference, finite-volume or finite-element spatial discretization
scheme the size of u is in O.M/ with M the number of grid points or cells (O.M/
means of the order ofM). The matrices A, B1 and B2 are sparse matrices with O.M/
nonzero elements. In the rest of the text, I assume that M D N3, which corresponds
to a 3D regular discretization of a cubic problem with N the number of points in
each direction. The frequency-domain linear system can be solved either with a
direct method [33, 51] or with an iterative method [19, 22, 38]. The computational
time complexities are with Ns the number of source points, Nt the number of time
steps, N! the number of frequencies, Nit the number of iterations of the iterative
scheme [34, 38]:

1. For the time-domain approach:NsNtN3. In the time domain the spatial discretiza-
tion is governed by the maximum frequency, fmax, one needs to model. Hence N
is proportional to fmax. The stability condition tells us that Nt is also proportional
to fmax when the grid spacing is adapted to frequency. This leads to the classic
time domain complexity in Nsf 4max.

2. For the frequency-domain approach with an iterative solver: NsN!NitN3. In the
frequency domain, the spatial discretization can be adapted to the frequency, f ,
one models. If we want to model only one frequency the complexity is NsNitf 3.
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If we want to model a frequency band regularly discretized up to fmax, the

complexity is in NsNitf 4max because
R fmax
0

f 3df D f 4max
4
. When Nit is proportional

to f , this gives a complexity in Nsf 5max.
3. For the frequency-domain approach with a direct solver: N!N6 (since the

bandwidth of the matrix is N2 with a finite-difference scheme). With a direct
solver, the LU decomposition of the matrix A is the most expensive part. The
approach therefore becomes almost independent of the number of source terms.
At least the complexity does not increase as long as Ns is not larger than O.N2/
which is the case for realistic seismic applications. This gives a complexity in f 6

when modeling only one frequency and in f 7max when modeling a full frequency
band.

In this complexity analysis, I just discuss the order of magnitude in terms of
number of points. The actual computational time of the simulations is given by C
times the complexity order. This multiplicative constant, C, depends on the earth
model and does play a role in the efficiency of the different approaches. I shall
attempt to address this point later. This discussion on the complexity of the different
approaches shows that the time-domain approach appears the most efficient one
in 3D when modeling a complete frequency band or a time response. Indeed, the
Shannon-Nyquist theorem tells us that N! is in O.Nt/, henceO.N/. Even with Ns D
O.N2/, the time-domain formulation in O.N6/ has a smaller complexity than the
frequency-domain formulation, in O.N7/ with the direct solver or in O.NitN6/ with
the iterative solver, that is O.N7/ when Nit is proportional to f .

In real applications, the computational domain may be adapted to the acquisition
geometry in order to reduce the spatial discretization. With the time-domain
formulation the shots are processed separately and we can define a computational
domain per shot. Similarly with the frequency-domain formulation and an iterative
solver, although there are studies to process multiple right-hand sides. The number
of right-hand sides would a-priori stay small because of the memory constraints
of current computer architectures and the communication costs. So, for simplicity,
we consider that with the iterative solver we process one shot at a time. With the
frequency domain formulation and a direct solver, the situation is different because
the LU decomposition of the matrix A is the most expensive part. Consequently, we
a-priori want a single matrix for all the right-hand sides. With a streamer acquisition,
when a boat tows the sources and receivers, the domain covered by all the shots is
much larger than the one covered by only one shot. This makes the direct solver
approach much more expensive a-priori, since the complexity is in N6. In an ocean
bottom node (OBN) acquisition, most of the nodes are active when a source is
triggered. Therefore, all the shots more or less illuminate the same part of the earth
and we can see the acquisition as a fixed spread acquisition. We can then consider a
common computational domain for all the shots. With this OBN acquisition, when
modeling only one (or a few) frequency response, the approach with the direct
solver may be competitive as long as the number of shots is in O.N2/. This is
generally the case in modern OBN 3D acquisition. The application of the frequency-
domain formulation with a direct solver is therefore limited to this fixed-spread
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acquisition. Moreover most of the current applications consider only an acoustic
wave equation and it remains unclear whether an elastic approach would soon be
feasible in a realistic situation. Indeed, because the shear velocities are smaller than
the compressional velocities, let us say between 2 and 5 times smaller in typical
cases, N is larger by a factor 2 to 5 in typical elastic cases. The computational time
of the LU decomposition increases by a factor 64 to 15,625 in the elastic case,
and the memory requirement, that is in O.N4/, by a factor between 16 and 625.
To reduce this very high computational cost, approximate LU decompositions are
currently proposed [34].

The recent developments on the Helmholtz iterative solver leads to a number
of iterations in O.N˛/, that is in O.f ˛/ with ˛ generally smaller or equal to 1.
With a deflation approach and multi-level Krylov solvers, ˛ may be smaller than
1 [23]. This means that the iterative solver may compete with the direct solver and
is more flexible. However, we should say that currently with an OBN survey, the
published results seems to indicate that the direct solver is probably more efficient,
although the two approaches have the same complexity. Most of the published
works concentrate on the isotropic acoustic case. Accounting for anisotropy, that
is crucial in real applications, can be challenging with the iterative solver that relies
on a preconditioner built through a multi-grid approach. On the other hand, the
iterative solver with a complex shifted Laplace preconditioner performs better in
presence of viscous effects. Before discussing the seismic imaging with the time
and frequency domain approaches, I then present some results obtained with the
complex shifted Laplace preconditioner and a BI-CGSTAB Krylov solver. The
above complexity analysis indicates that the frequency-domain approach could be
relevant with waveform tomography.For non-linear impedancewaveform inversion,
that requires the modeling of a large frequency band, the frequency-domain iterative
solver could become competitive only when the number of iterations,Nit, is inO.1/,
that is frequency independent. The direct solver is a-priori not competitive for non-
linear impedance inversion.

3 An Iterative Solver for the Vertical Transverse Isotropy
Visco-Acoustic Wave Equation

Solving iteratively the linear system (3) is challenging because the matrix A is
indefinite with positive and negative eigenvalues. Over the years, different subspace
methods have been tested with different preconditioners [18, 21, 35]. The complex
shifted Laplace preconditioner shows an interesting behavior [21, 22] and has been
successfully implemented to invert seismic data [38]. Here I describe its behavior
with a BI-CGSTAB iterative solver [48] and a multi-grid approximation of the
inverse of the preconditioner when solving the visco-acoustic vertical transversely
isotropic (VTI) wave equations. Improvements to the approach, based notably on
deflation and projection to tackle the issue of the eigenvalues close to zero [23] are
not considered here.
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Researchers in exploration geophysics have developed anisotropic wave equa-
tions in order to better approximate the kinematics of the P-waves without account-
ing for the shear velocities [3, 17]. In this way, the spatial discretization can
be relatively coarse since the slow shear velocity are not considered. This leads
to efficient schemes in seismic imaging from active data when we focus on the
compressional waves. However, these acoustic anisotropic wave equations, obtained
by zeroing the shear velocities, are not physical. In an elastic anisotropic medium,
the kinematics of the P-waves depends on the shear velocities. The relevance of this
acoustic approximation imposes weak anisotropy. Because of the natural layering
in the earth crust, a common anisotropy is the vertical transverse isotropy (VTI).
Under the VTI assumption, the second-order visco-acoustic wave equations read,
for instance:( � !2


v2n .1�{=Q/pn � @x 1
 @xph � @y 1
 @yph � 1p
1C2ı @x

1


@x

pnp
1C2ı D snI

� !2


v2n .1�{=Q/ph � .1C 2�/@x
1


@xph � .1C 2�/@y

1


@yph � 1p

1C2ı @x
1


@x

pnp
1C2ı D shI

(8)

with vn the normal moveout (NMO) velocity, � the anelliptic parameter, ı the
stretched parameter, 
 the density, pn D �p

1C 2ı �xx D �p
1C 2ı �yy and

ph D ��zz the ‘NMO’ and ‘horizontal’ pressures and sn and sh the source terms.
From the stiffness coefficients, we have 1 C 2" D c11=c33,

p
1C 2ı D c13=c33,

� D ." � ı/=.1 C 2ı/ and vn D p
1C 2ı

p
c33=
. The parameter Q is the quality

factor. The pure isotropic case corresponds to Q D 1. Here, we consider only
one Q factor, which means that the viscous effect is assumed similar for the NMO
and horizontal velocities. These equations are completed with standard boundary
conditions, for instance absorbing conditions with the perfectly matched layer (pml)
conditions [8] and free-surface conditions on the top of the earth model.

The spatial discretization of this system gives a non-symmetric discrete system
A, Eq. (3), with the vector u containing the discretized elements of ph and pv and
the vector f the discretized elements of sh and sv . Compared to the isotropic case,
we lost the symmetry (which is a consequence of working with a non-physical wave
equation).

The linear system associated to the discretization of Eq. (8) can be solved with
a Krylov subspace iterative method [42] after preconditioning to speed up the con-
vergence. With isotropic systems, the complex shifted preconditioner significantly
improves the convergence [21]. With such a preconditioner, the number of iterations
of the Krylov subspace solvers becomes roughly proportional to frequency [22, 38].
From a physical point of view this preconditioner corresponds to the discretization
of a heavily dampedwave equation.One obtains the equations for the preconditioner
by replacing 1=.1� {=Q/ by ˇr C {ˇi in system (8) where ˇr and ˇi are the real and
imaginary parts of the complex shift added to the equations.

After discretization, we obtain the preconditioning system:

Mu D f; (9)

with u the unknown vector and f the source vector.
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Now we aim to solve the preconditioned system, that is equivalent to system (3),
with v an intermediate unknown vector:

AM�1v D fI with Mu D v: (10)

Solving system (9) exactly could be costly.With a sufficiently largeˇi the system (9)
becomes close to a diffusive system and one cycle of a multi-grid solver [12] leads
to a fair approximation of M�1 [22, 38]. However, a too large ˇi results in a poor
preconditioner. In practice ˇr D 1 and ˇi D 0:5 gives a satisfactory compromise
for the isotropic acoustic applications [22, 38]. This more or less corresponds to
a quality factor of 2. I use the same choice in the VTI examples and solve the
preconditioned system AM�1 with a BI-CGSTAB algorithm [48].

I discretize the spatial derivatives with standard high-order finite differences with
only a few (3 to 4) points per wavelength and code up a matrix-free implementation.
This is an advantage of this iterative solver approach over the direct solver where
more dedicated compact stencils are developed to avoid large bandwidth and hence
fill-in during the LU decomposition [34, 51]. In the examples, I use a 8th-order
finite-difference scheme.

For the multi-grid solver, I follow the approach described in [38]. I approximately
solve Mu D v with one multigrid V-cycle. The smoother is one iteration of a Gauss-
Seidel algorithm and the prolongation operator a trilinear interpolation. With the
isotropic wave equation, I used the standard full-coarsening approach [12, 38]. I
also test a line relaxation in the depth direction and a semi-coarsening that splits
the coarsening in the horizontal plane and in the depth axis to evaluate whether this
improves the convergence in the anisotropic case. However, we should remember
that this approach requires the inversion of a tri-diagonal matrix because of the line
relaxation and the coarsening is performed in two steps. I implemented the VTI case
via a block matrix approach. At each discretization point of the grid, I lump the two
unknowns, ph and pv. The tri-diagonal matrix for the line relaxation becomes in fact
a 2-by-2 block tri-diagonal matrix.

To analyze the convergence of this iterative solver I generate the pressure
responses in a land and a marine environment for different frequencies. In both
examples, an explosive source is positioned 6m below the free surface. On the other
edges of the model absorbing boundary conditions are implemented. The models,
Fig. 4, are derived from the SEG/EAGE overthrust model [4]. They are 20 km wide
in both lateral direction and 4.5 km deep for the land example and 5 km deep for
the marine one. For the marine example, I have added a 500m water column. I
define a �-field based on the velocity field. In the simulation, I took ı D 0. For
the viscous model, a constant Q value in the earth is used of either 50 and 100. In
the marine case, the value of Q in the water layer is always very large (106) since
the water layer hardly attenuates the seismic frequencies. During the computations,
the grid sampling is adapted to frequency with 4 points per minimum wavelength
in the marine example and 3.2 in the land one. For the land case, the minimum
wavelength corresponds to a velocity of 2000m/s and for the marine one to a
velocity of 1500m/s.
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In Figs. 5 and 6, the ‘NMO’ pressure fields at 2 and 8Hz are displayed. In the
marine case, a wave is channeled in the water, this corresponds to the multiple
reflections between the free surface and the water bottom. These responses are
obtained with a 10�3 stopping criterion on the normalized norm of the residual.
The convergence history of the BI-CGSTAB algorithm is plotted in Fig. 7. For
the isotropic and anisotropic computations in the land case and for the isotropic
computations in the marine one a full-coarsening approach was used. However,
for the anisotropic computations in the marine case a line-relaxation and semi-
coarsening approach was used because it requires fewer iterations as discussed later.
As expected, the convergence of the BI-CGSTAB is not monotonic. This could
explain some of the oscillations in the number of iterations per frequency plots.
Other Krylov subspace solvers, such that GMRES and IDR, may give different
behaviors [9, 22, 42, 44].

To further analyze the convergence of the BI-CGSTAB, I model the responses for
different frequencies between 2 and 8Hz. The computational domain sizes are given
in Table 1 for the land example and in Table 2 for the marine example. The number
of unknowns is twice the number of grid points for the anisotropic computations
because at each grid point we have two pressures, pn and ph.
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Figure 8 shows the number of BI-CGSTAB iterations required for convergence
with a full-coarsening for the isotropic and anisotropic computations and with a
semi-coarsening and a line relaxation for the anisotropic computations. The number
of iterations more or less linearly increases with frequency when the computation
grid is adapted to keep the number of points per wavelength fixed. The anisotropy
or the change of coarsening do not change this behavior that was earlier reported
for the isotropic case [22, 38]. One notices that the multiplicative constant, C,
in the complexity analysis, that is the slope of the linear regression line, differs
from one simulation to another. Moreover the behavior of the convergence of the
iterative solver varies. Whereas in the land example, the use of a semi-coarsening
and line-relaxation approach increases the number of iterations, in the marine case
the number of iterations decreases. This result illustrates one of the challenges of
this iterative solver in practical geophysical applications. Given an earth model,
the number of required iterations to obtain the seismic responses is difficult to
predict; hence the computational cost of the approach is not easily predictable.
We should however mention that the shifted Laplace preconditioner gives a robust
solver even in a VTI medium. In the marine example, the anisotropic runs require
more iterations than the isotropic case. This is not the case in the land example.
This behavioral difference may be a consequence of the channeled wave (that is the
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presence of the so-called water-bottom multiples) in the marine example. Indeed, in
this example, there is a large earth model contrast at the water bottom. This means
that most of the energy reflects on the water bottom and stays in the water column.
The convergence rate of the Krylov subspace iterative solver decreases in this case.
Although the wave in the water is not a standing wave because of the absorbing
conditions on the lateral edges of the model, this behavior is somewhat similar. The
shifted Laplace preconditioner is generally less efficient with Dirichlet boundary
conditions (that are reflecting conditions) than with absorbing boundary conditions.
The frequency dependency of the behavior of these partially channel waves may
explain the non-monotonic increase of the number of BI-CGSTAB iterations versus
frequency.

Computationally, the semi-coarsening and line-relaxation approach is not benefi-
cial even in the marine example. Despite the reduction of the number of Bi-CGSTAB
iterations, the cost per grid point remains higher than with the full-coarsening
approach because of the significant increase of the computational cost per iteration,
as illustrated in Fig. 9.

The number of BI-CGSTAB iterations versus frequency for the viscous applica-
tions are plotted in Figs. 10 and 11. The case Q D 100 corresponds to a relatively
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Fig. 7 Convergence history of the BI-CGSTAB algorithm. For the isotropic and anisotropic
computations in the land case and for the isotropic computations in the marine case a full-
coarsening approach was used. For the anisotropic computations in the marine case, a line
relaxation and semi-coarsening approach was used. (a) Land case. (b) Marine case

Table 1 Number of grid points for the computations in the land case

Frequency (Hz) 2 3 4 5 6 7 8

Number of points in x or y 85 117 149 181 213 245 277

Number of points in z 25 33 40 47 55 62 69

Total number of points (in millions) 0:18 0:45 0:89 1:54 2:50 3:72 5:30

Table 2 Number of grid points for the computations in the marine case

Frequency (Hz) 2 3 4 5 6 7 8

Number of points in x or y 127 181 234 287 341 394 447

Number of points in z 38 51 65 79 92 106 119

Total number of points (in millions) 0:61 1:67 3:56 6:51 10:70 16:46 23:78

small attenuation and the case Q D 50 corresponds to a significant attenuation
in crustal applications (although locally Q could be smaller, for instance due to
gas accumulation). Again the two examples display different behaviors. In the land
examples, the number of iterations significantly decreases with decreasing Q values
as expected. In the marine example, because no viscous effects are modeled in
the water, the number of iterations decreases less between the acoustic and visco-
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Fig. 8 Comparison between the full-coarsening approach and the line-relaxation and semi-
coarsening approach. The diamonds correspond to the actual numbers and the lines correspond
to the best linear fits through the points of a given type of modeling versus frequencies. (a) Land
case. (b) Marine case

acoustic simulations. Again, the modeling of the waves in the water column seems
to govern the convergence rate of the BI-CGSTAB iterative solver. In Tables 3 and 4
I give the slope coefficient of the linear regression that fits the number of iterations
per frequency to quantify this observation.

These computational tests illustrate that the convergence of the BI-CGSTAB
iterative solver with a shifted Laplace preconditioner is more or less linear in
frequencywhen the number of points per wavelength is kept fixed under the viscous-
acoustic and visco-anisotropic (VTI) assumption. The convergence rate depends
not only on the type of equations but also on geology. The presence of channeled
waves or strong reverberations can decrease the convergence rate as illustrated by
the marine example.
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Fig. 9 Computation time per grid point comparison between the full-coarsening approach and the
line-relaxation and semi-coarsening approach. The computational time is just indicative because it
does depend on the system. (a) Land case. (b) Marine case

4 The Least-Square Seismic Imaging Problem

The goal of seismic imaging is to retrieve the earth medium properties, 
, the density
and c, the stiffness coefficients or the velocities. This problem can be formulated as
an inverse problem which consists of minimizing a least-square data misfit. Because
the source wavelet is often not perfectly known a match filter, ˛ D .˛.xs; t//, is
added to the Earth parameters. This leads to the following data misfit function:

J.
; c; ˛/ D 1
2

R
dxsdxrdt

� ˇ̌ˇ̌W.xs; xr; t/ �R dt0 ˛.xs; t � t0/dmod.xs; xr; t0/� dobs.xs; xr; t/
�ˇ̌ˇ̌2 (11)

with W a data weight matrix that selects certain events in the seismic traces. We
shall call e the data residuals:

e.xs; xr; t/ D
Z

dt0 ˛.xs; t � t0/dmod.xs; xr; t0/ � dobs.xs; xr; t/: (12)
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Fig. 10 Number of BI-CGSTAB iterations to compute the pressure responses for different
frequencies with the land case. The diamonds correspond to the actual numbers and the lines
correspond to the best linear fits through the points of a given type of modeling versus frequencies.
For the isotropic and anisotropic runs a full-coarsening approach is used. (a) Isotropic land case.
(b) Anisotropic land case

This formulation corresponds to the time-domain formulation. Regularization terms
could be added and different norms could be used. However, in this paper, I focus
only on the least-square misfit term.

An active seismic survey can contain thousands to hundred of thousands shots.
Therefore, the minimization of the misfit function, J, requires a very large number of
solutions of the elasto-dynamic equations.We may then ask ourselves what the most
efficient way is to solve the elastic-dynamic system. Thanks to Parceval’s equality,
the misfit function, Eq. (11), reads in the frequency domain:

J.
; c; ˛/ D 1
2

R
dxsdxrd!

� ˇ̌ˇ̌R d!0 W.xs; xr; ! � !0/
�
˛.xs; !0/dmod.xs; xr; !0/� dobs.xs; xr; !0/

�ˇ̌ˇ̌2
:
(13)

In discrete form, the equivalence between the time and frequency formulation is
obtained when the time and frequency discretizations satisfy the Shannon-Nyquist
theorem.
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Fig. 11 Number of BI-CGSTAB iterations to compute the pressure responses for different
frequencies with the marine case. The diamonds correspond to the actual numbers and the lines
correspond to the best linear fits through the points of a given type of modeling versus frequencies.
For the isotropic runs a full-coarsening approach is used and for the anisotropic runs a line-
relaxation and semi-coarsening approach. (a) Isotropic marine case. (b) Anisotropic marine case

Table 3 Slope coefficient of the best linear fits with the land example

Modeling type iso full viso100 full viso50 full ani full vani100 full vani50 full ani semi

Slope coefficient 9.46 5.14 4.05 9.09 5.04 3.62 14.39

In the modeling type denomination, iso stand for isotropic, ani for anisotropic, viso for visco-
isotropic, vani for visco-anisotropic, full for full-coarsening, semi for semi-coarsening, 100 for
Q=100 and 50 for Q=50

Table 4 Slope coefficient of the best linear fits with the marine example

Modeling type iso full viso100 full viso50 full ani semi vani100 semi vani50 semi ani full

Slope coefficient 28.64 25.33 24.15 46.25 36 39.72 83.38

In the modeling type denomination, iso stand for isotropic, ani for anisotropic, viso for visco-
isotropic, vani for visco-anisotropic, full for full-coarsening, semi for semi-coarsening, 100 for
Q=100 and 50 for Q=50
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The presence of a general time-dependent data weight function in Eq. (11) causes
a mixing of frequencies in Eq. (13). This considerably reduces the attractiveness
of the frequency formulation. The opposite would happen if we would consider
a frequency-dependent data weight per receiver. In this case, a time convolution
between the weights and the data residuals would be required in the time-domain
misfit function, Eq. (11). This convolution would reduce to a multiplication in the
frequency-domain formulation. However, there is a major difference. When solving
the time-domain wave equations, we automatically compute the response from time
0 to the maximum recording time and we can perform the convolution without extra
solutions of the wave equations. This explains why the estimation of the match filter
in the time-domain formulation does not significantly increase the computational
time, especially when the match filter length remains small with respect to the
seismic trace length. In the frequency domain, we solve each frequency separately
and the complexity analysis of the frequency-domain solvers shows that they can be
advantageous only if we can formulate the inverse problem per frequency too. This
implies that the data weights should be taken independently of time, except in the
particular case ofW.xs; xr; t/ D exp.�s.t� t0.xs; xr/// with s a real positive number
and t0 a time depending on the source and receiver positions. In this case we have:

W.xs; xr; t/e.xs; xr; t/ D 1p
2�

R
d! exp.�s.t � t0.xs; xr//e.xs; xr; t/ exp.{!t/

D 1p
2�

exp.t0.xs; xr//
R
d! e.xs; xr; t/ exp.{.! C {s/t/:

(14)

This corresponds to a Laplace-Fourier transform of the residuals [11, 43]. One
directly obtains the Laplace-Fourier transform response by replacing the real
frequency ! by a complex one, ! C {s, in the forward system (8). Using a complex
frequency adds an overall damping factor to the wave equations. The effect is similar
to the complex shift of the shifted Laplace preconditioner. Therefore, the iterative
solver should be quite efficient with large s values as illustrated in Table 5. With a
large s value, the choice ˇi D 0:5 is not optimal. For instance, with s D 10, we could
take ˇi D 0 and obtain a faster convergence (notably when we change the stopping

Table 5 Number of BI-CGSTAB iterations to compute the Laplace-Fourier response of the
marine example with the full-coarsening approach and ˇr D 1 and ˇi D 0:5

Frequency (Hz) 2 3 4 5 6 7 8

Isotropic with s=10 1 1 2 2 2 2 2

Isotropic with s=1 3 4 5 6 6 7 8

Isotropic wit s=0.1 16 22 31 39 43 50 61

Isotropic with s=0 45 74 86 178 141 204 207

Anisotropic with s = 10 1 1 2 2 2 2 2

Anisotropic with s=1 3 4 5 6 6 7 8

Anisotropic with s=0.1 23 34 55 61 73 96 104

Anisotropic with s=0 99 207 233 431 371 554 606
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Table 6 Number of grid points for the time-domain computations in the land case

Frequency (Hz) 2 3 4 5 6 7 8

Number of points in x or y 120 161 203 244 286 328 369

Number of points in z 41 50 60 69 79 88 98

Total number of points (in millions) 0:59 1:30 2:47 4:11 6:47 9:47 13:34

Table 7 Number of grid points for the time-domain computations in the marine case

Frequency (Hz) 2 3 4 5 6 7 8

Number of points in x or y 175 244 314 383 452 522 591

Number of points in z 57 75 92 110 128 145 163

Total number of points (in millions) 1:75 4:47 9:08 16:14 26:16 39:51 56:93

criteria to 10�6 to better modeling the large dynamic range of the Laplace-Fourier
solution). Indeed, with a large s value, the Laplace-Fourier wave equation behaves
like a diffusive equation that can be solved with a multi-grid solver similarly to the
diffusive electromagnetic equations [6, 30, 37].

The frequency-domain responses can also be computed by Fourier transform
of the time responses. In the context of seismic imaging, we can either model
the responses with a sinusoidal source wavelet or we can use a large frequency
band source wavelet [32]. The latter provides in fact all the frequencies up to a
maximum frequency which could be advantageous in seismic imaging. To compare
the efficiency of the iterative solver with the time-domain formulation I simulate
the time-domain responses with a flat spectrum source with a high frequency cut
taper. The size of the taper is 30% of the nominal frequency value. This for instance
means that at 2 Hz the maximum frequency supported by the grid is 2.6Hz and
at 8Hz, 10.4Hz. With this choice, the discretization grid for the time-domain
simulations, Tables 6 and 7, are larger than the one for the frequency-domain ones,
Tables 1 and 2. I also choose a maximum recording time of 12 s. Different tapers
and maximum recording times would change the computational time of the time-
domain approach. Here, I have tried to choose realistic values without optimizing
them. This should give an indication of how the computational costs of the time and
frequency domain formulations compare.

Figures 12 and 13 display the computation times versus frequency of the
different simulations on one core. These computation times are just indicative
because they depend on the computer architecture, the load of the machine and
the code optimization. Accounting for the viscous effects in the time domain
formulation increases the computation time since the number of operations per
time step increases due to the additional memory variable equations. Moreover the
stability condition decreases with decreasing Q values, hence the number of time
steps increases. This explains why the computation time increases with decreasing
Q values. The situation is reverse with the frequency-domain formulation since
accounting for the viscous effects decreases the number of BI-CGSTAB iterations.
With the land example, Fig. 12, the frequency-domain viscous simulations become
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Fig. 12 Computation time versus frequency to simulate the seismic responses of the land example
with the time and frequency domain formulations. In the viscous simulation the quality factor is
equal to 100 for the isotropic case. For the time-domain visco-isotropic simulations, I used one or
three memory variables and for the time-domain visco-anisotropic simulations, I used one memory
variable. (a) Isotropic land example. (b) Anisotropic land example

significantly faster than the time-domain ones while it was not the case for the pure
isotropic simulations.With the marine example, Fig. 13, the situation is different. On
one hand, the computational times of frequency-domain visco-isotropic simulations
are similar to the ones of the time-domain simulations with onememory variable and
shorter than the one of the time-domain simulations with three memory variables.
On another hand, the frequency-domain visco-anisotropic simulations remain more
expensive than the time-domain ones. The presence of the non-viscous water layer
and the multiple reflections at the water bottom reduce the efficiency of the iterative
solver as already discussed. The ratio of the frequency-domain computation time
divided by the time-domain computation time for different simulation types are
plotted in Fig. 14. For most of the cases, the ratio is between 0.5 and 2 meaning
that the multiplicative constant, C, of the complexity analysis of the two approaches
is roughly similar. However with the marine case, the anisotropic simulation is about
one order of magnitude more expensive with the frequency-domain iterative solver
than with the time-domain approach. In this case, the multiplication constant, C,
of the complexity analysis is almost 10 times higher. With the iterative solver, the
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Fig. 13 Computation time versus frequency to simulate the seismic responses of the land example
with the time and frequency domain formulations. In the viscous simulation the quality factor is
equal to 50 for the isotropic case. For the time-domain visco-isotropic simulations, I used one or
three memory variables and for the time-domain visco-anisotropic simulations, I used one memory
variable. (a) Isotropic marine example. (b) Anisotropic marine example

multiplicative constant of the complexity analysis significantly depends on the earth
model. When we consider the Laplace-Fourier approach with s values between 0.1
and 10, the iterative solver is significantly faster than the time-domain approach
when s is large, Fig. 15.

From a simulation point of view, these results illustrate that the frequency-
domain iterative solver could be an alternative to the time-domain approach only
when a few frequency responses are required that is with waveform tomography
[38, 41, 49], especially when viscous effects are modeled. Nonetheless, the number
of frequencies required to properly carry out a multi-parameter inversion remains
a question, which can challenge the use of the iterative solver, except when a
Laplace-Fourier approach is chosen [43]. With migration and non-linear impedance
waveform inversion, the time-domain approach remains the preferred option in 3D
since the full band frequency is required to obtain a high resolution image from the
reflected waves.

Although the simulation governs most of the complexity aspect of an imaging
problem, other aspects, related to the minimization of the misfit function J, Eq. (11)
or (13), may influence our choice of modeling algorithms. One of them is the



182 R.-É. Plessix

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Frequency (Hz)

R
at

io
(a)

(b)

Isotropic
Anisotropic
Visco−isotropic with Q=100
Visco−anisotropic with Q=100

2 3 4 5 6 7 8
0

2

4

6

8

10

12

Frequency (Hz)

R
at

io

Isotropic
Anisotropic
Visco−isotropic with Q=50
Visco−anisotropic with Q=50

Fig. 14 Ratio of the frequency-domain computation times with the time-domain computation time
for different simulations. (a) Land example. (b) Marine example

memory requirement. Because of the numerical cost of solving the wave equations,
the minimization of J is carried out with a local optimization technique. The gradient
is efficiently obtained through the adjoint state technique [14, 36].

In the time-domain formulation, we first solve the adjoint equations with the
initial conditions v.xs; xr; t�2/ D v.xs; xr; t�1/ D 0:

v.xs; tn/ D BT
1 v.xs; tn�1/C BT

2 v.xs; tn�2/ �
X
xr

ST.xs; xr/.xs; xr; tN�n/; (15)

with v the adjoint state variables, T D tN the maximum time, and .xs; xr; tn/ D
@J

@dmod.xs;xr ;tn/
and T the transpose operator. I have written an equation with initial

boundary conditions because I have reversed the time of the adjoint source . The
gradient of the misfit function with the time-domain formulation reads:

@J

@mk
D �

X
xs

NX
nD0

vT.xs; tn/

�
@B1
@mk

u.xs; tn�1/C @B2
@mk

u.xs; tn�2/
�
; (16)
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Fig. 15 Ratio of the frequency-domain computation times with the time-domain computation
time for different values of the s parameter in the Laplace-Fourier transform. (a) Isotropic marine
example. (b) Anisotropic marine example

with mk one of the model parameters describing 
 or c.
To compute the adjoint state variables, v.xs; tn/, all the state variables, u.xs; tn/,

have to be computed for the time of the adjoint source has been reversed. This leads
to an implementation challenge for the time-domain formulation because in 3D one
cannot store all the state variables in core memory. In practice, the states are either
saved on disk or a check-pointing approach is implemented that requires additional
computation [5, 26]. With the non-viscous simulation, the states can be recomputed
backwards after having saved the values of the state variables on the boundaries
during the forward modeling [16]. A crude estimation of the computation time of
the gradient in the time-domain formulation is then about three times the one of the
forward system, since solving of adjoint/backward equations is about as expensive
as solving the state/forward equations.

In the frequency domain, the adjoint equations read:

A�.!/v.xs; !/ D
X
xr

ST.xs; xr/.xs; xr; !/; (17)
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with v the adjoint state variables (I again abuse the notation and reuse the same
symbols), .xs; xr; !/ D @J

@dmod.xs;xr ;!/
and � the complex conjugate.

The gradient of the misfit function with the frequency-domain formulation reads:

@J

@mk
D �

X
xs

X
!

v�.xs; !/
@A.!/

@mk
u.xs; !/: (18)

The frequencies can be processed sequentially with frequency independent data
weights. The state variables, u.xs; !/, can be stored in memory. Solving the system
with A� is roughly equivalent to solving the system with A. A crude estimation of
the computation time of the gradient in the frequency domain formulation is twice
the one of the forward system.

The factor 2/3 in favor of the frequency-domain modeling does not significantly
change the conclusions on the choice of the modeling domain. Nonetheless it
increases the attractiveness of the frequency domain approach when viscous effects
are considered. The memory requirementmay even be more in favor of a frequency-
domain formulation when one uses truncated Newton optimization [20, 29].

5 Conclusions

A Krylov subspace iterative solver with a complex shifted Laplace preconditioner
gives a robust frequency domain solution of the vertical transverse isotropic visco-
acoustic wave equations. Based on two numerical examples, I have shown that in
the context of waveform tomography, this iterative solver could be an alternative
to standard time-domain schemes, notably when viscous effects are taken into
account or when using data weights that exponentially damp the seismic traces
with time allowing us to apply a Laplace-Fourier transform of the data residuals.
The convergence rate of the iterative solver however suffers in presence of wave
guides although in the examples it stays proportional to frequency. This means
that the number of iterations to reach converge does depend on the geological
structures. Though the number of the iterations increases more or less linearly
with frequency independently of the earth model, the multiplicative constant in
the complexity analysis significantly depends on the structural features of the earth
model. The time-domain approach hence remains the most flexible and predictable
approach. It can serve for both waveform tomography and non-linear impedance
waveform inversion because a complete frequency band response is computed at
once. Nevertheless, when considering the memory requirements, together with the
development on the preconditioner to limit the influence of the near-zero eigenval-
ues, the iterative solver could potentially supersede the time-domain approach if
the frequency dependency of the number of iterations is reduced and the solver
is efficient with anisotropic wave equations. This still needs to be proven with
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real multi-parameter waveform inversions when one needs to simultaneously invert
several, let us say five to ten, frequencies at a time to obtain a reliable earth model.
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Optimized Schwarz Domain Decomposition
Methods for Scalar and Vector Helmholtz
Equations

X. Antoine and C. Geuzaine

Abstract In this chapter we review Schwarz domain decomposition methods for
scalar and vector Helmholtz equations, with a focus on the choice of the associated
transmission conditions between the subdomains. The methods are analyzed in
both acoustic and electromagnetic settings, and generic weak formulations directly
amenable to finite element discretization are presented. An open source solver along
with ready-to-use examples is freely available online for further testing.

1 Introduction

Solving high-frequency time-harmonic wave problems is a very challenging prob-
lem, encountered in many physical applications, from acoustic noise propagation to
seismology and geophysical exploration to electromagnetic radiation. Among the
various approaches for numerical simulation, the Finite Element Method (FEM)
with an Absorbing Boundary Condition (ABC) or a Perfectly Matched Layer (PML)
is well suited for tackling complex geometrical configurations and heterogeneous
media. The brute-force application of the FEM in the high-frequency regime
however requires the solution of extremely large, complex-valued and possibly
indefinite linear systems [39]. Direct sparse solvers do not scale well for such large-
size problems, and Krylov subspace iterative solvers exhibit slow convergence or
diverge, while efficiently preconditioning proves difficult [24]. Domain decomposi-
tion methods provide an alternative, iterating between subproblems of smaller sizes,
amenable to sparse direct solvers [49].
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In [36], Lions introduced a converging Schwarz domain decomposition method
without overlap for the Laplace equation by using Fourier-Robin boundary con-
ditions on the interfaces instead of the standard Dirichlet or Neumann continuity
conditions. For scalar or vector Helmholtz equations, these methods need to be
adapted to lead to converging iterative algorithms. The first developments in
this direction were introduced by Després [13, 14], who used simple impedance
boundary conditions on the interfaces. A great variety of more general impedance
conditions has been proposed since these early works, leading to so-called optimized
Schwarz domain decomposition methods for time-harmonic wave problems [1, 9–
11, 14–16, 19, 20, 25, 27, 43–45]. These methods can be used with or without
overlap between the subdomains, and their convergence rate strongly depends on the
transmission condition. Optimal convergence is obtained by using as transmission
condition on each interface the non-local Dirichlet-to-Neumann (DtN) map [42]
related to the complementary of the subdomain of interest [40, 41]. For acoustic
waves, this DtN map links the normal derivative and the trace of the acoustic
pressure on the interface. For electromagnetic waves, it links the magnetic and the
electric surface currents (and is referred to in this case as the Magnetic-to-Electric,
or MtE, map) [19]. However, using the DtN leads to a very expensive numerical
procedure in practice, as this operator is non-local. Practical algorithms are thus
based on local approximations of these operators, both for the acoustic case [9–
11, 13, 27] and the electromagnetic one [1, 14–16, 20, 21, 43–45]. Recently, PMLs
have also been used for this same purpose [23, 47, 51, 52].

In this chapter we provide a concise review of the most common transmission
operators for optimized Schwarz methods applied to time-harmonic acoustic and
electromagnetic wave problems, with the corresponding mathematical background.
We analyze the behavior of these transmission operators on a model problem and
derive generic weak formulations in view of their implementation in finite element
codes. All the formulations are readily available for testing on several acoustic and
electromagnetic cases using the open source GetDDM environment (http://onelab.
info/wiki/GetDDM) [33, 48], based on the finite element solver GetDP (http://getdp.
info) [17, 18, 28] and the mesh generator Gmsh (http://gmsh.info) [31, 32].

2 Scalar Helmholtz Equation: Acoustic Waves

Let�� be an open subset ofRd.d D 1; 2; 3/with boundary� WD @��. The exterior
domain of propagation is the complementary connected set defined by �C D R

d n
��. When considering a time-harmonic incident wave uinc, the obstacle�� creates
a complex-valued scattered field u which is solution of the following problem

8<
:
.�C k2/u D 0 in �C;

u D �uinc on �;
u outgoing,

(1)

http://onelab.info/wiki/GetDDM
http://onelab.info/wiki/GetDDM
http://getdp.info
http://getdp.info
http://gmsh.info
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fixing the time dependence under the form e�i!t. The Laplacian operator is � DPd
iD1 @2xi and the real-valued strictly positive wavenumber is given by k D !=c

(where c D c.x/ is the local speed of sound in the propagation medium). We denote
by a � b the inner product between two complex-valued vectors a and b in C3. We
designate by z the complex conjugate of z 2 C and the associated norm is jjajj WDp
a � a. In this chapter, we fix a Dirichlet boundary condition on � corresponding

to the sound-soft obstacle case. Nevertheless, any other condition can be studied
like e.g. for a Neumann, Fourier or even for a penetrable obstacle. The outgoing
condition at infinity, better known as Sommerfeld radiation condition ({ being the
square root of �1), is added

lim
kxk!1

kxk d�1
2

�
ru � x

kxk � {ku
�

D 0:

This allows to prove that the solution to (1) is unique. In addition, this translates the
property that the scattered field u is directed from�� to infinity.

To numerically compute the solution to problem (1) by using e.g. the finite
element method, �C has to be truncated. This can be realized for example by
introducing a Perfectly Matched Layer (PML) [7, 12] or a fictitious boundary �1
with an Absorbing Boundary Condition (ABC) [6, 22] (see e.g. [4] for a review).
If we consider an ABC on a fictitious boundary, we have to compute a field Ou
approximating u on the finite domain � with boundary �1S

� . After merging
the notations Ou and u for simplicity, the problem to be solved is

8<
:
.�C k2/u D 0 in �;

u D �uinc on �;
@nu C Bu D 0 on �1;

(2)

where the unit normal vector n is directed outside � (and thus inside �� on �).
The simplest local ABC, i.e., the Sommerfeld radiation condition at finite distance
(zeroth-order condition), is obtained by setting

Bu D �{ku: (3)

The extension to more accurate ABCs or PMLs is standard [34].

2.1 Domain Decomposition and Transmission Operators

Let us consider now that � is decomposed into Ndom disjoint subdomains �i (the
substructures) without overlap. For every i D 0; : : : ;Ndom�1, we set �i D �

T
@�i,

�1
i D �1T

@�i, and, for j D 0; : : : ;Ndom�1; j ¤ i, we introduce the transmission
boundary †ij D †ji D @�i

T
@�j. To simplify, let D WD f0; : : : ;Ndom � 1g be the
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set of indices of the subdomains, and for i 2 D, let Di WD fj 2 D such that j ¤
i and †ij ¤ ;g be the set of indices of the subdomains sharing at least a point with
�i (such a domain is said to be connected to �i). Finally, for all i 2 D, the unit
normal ni is directed into the exterior of �i and thus inside the obstacle �� (if
�i ¤ ;).

Then the additive Schwarz domain decomposition method follows the steps at
iteration n C 1

1. For all i 2 D, compute unC1
i solution to the boundary-value problem

8̂
<̂
ˆ̂:

.�C k2/unC1
i D 0 in �i;

unC1
i D �uinc on �i;

@ni u
nC1
i C BunC1

i D 0 on �1
i ;

@ni u
nC1
i C SunC1

i D gnij on †ij; 8j 2 Di:

(4)

2. For all i 2 D and j 2 Di, update the interface unknowns with respect to the
relation

gnC1
ji D �@ni unC1

i C SunC1
i D �gnij C 2SunC1

i ; on †ij: (5)

The operator S is a transmission operator that will be described later. A more
compact writing of the .n C 1/th iteration is

1. For all i 2 D, compute the volume solution unC1
i of problem (4), which is written

here as unC1
i D Vi.u

inc; gn/, where gn D .gnji/i2D;j2Di is the vector that collects all
the contributions related to the interface unknowns.

2. For all i 2 D and j 2 Di, update the surface fields gnC1
ji following relation (5).

This is written as gnC1
ji D Tji.g

n
ij; u

nC1
i / in what follows.

In the boundary-value problem (4), only the case of Dirichlet sources is
considered; however, any kinds such as volume sources could be handled similarly
in the algorithm. These sources are called physical sources in contrast with the
artificial sources gnij related to the transmission boundaries.

The algorithm described by (4) and (5) can be understood as a Jacobi iteration
for a linear operator equation. For every n 2 N, the field unC1

i can be decomposed
by linearity as unC1

i D vnC1
i C QunC1

i , with

vnC1
i D Vi.u

inc; 0/ and QunC1
i D Vi.0; g

n/: (6)

The function vnC1
i does not depend on the iteration n and can be written as vi WD

vni ; 8n 2 N;8i 2 D. Therefore, Eq. (5) can be written

gnC1
ji D Tji.g

n
ij; u

nC1
i / D Tji.g

n
ij; QunC1

i /C 2Svi; on †ij: (7)
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Let us define the vector b D .bji/i2D;j2Di , with bji D 2.Svi/j†ij , and A W gn 7! Agn

as the operator such that

8i 2 D

(
QunC1
i D Vi.0; g

n/;

.Agn/ji D Tji.g
n
ij; QunC1

i /; 8j 2 Di:
(8)

One iteration of the domain decomposition method writes

gnC1 D Agn C b: (9)

This can be interpreted as an iteration of the Jacobi method for solving the system

.I � A/g D b; (10)

where the identity operator is I. An interesting consequence of (10) is that any
iterative linear solver can be used for solving the equation. For example, Krylov
subspace methods can be applied such as GMRES [46]. When a Krylov subspace
solver is used, the resulting method is called a substructured preconditioner [26].

An important remark is that the iteration unknowns in (9), (10) are the surface
quantities g and not the volume unknowns u. To get the volume quantities from
the surface unknowns, ui D Vi.uinc; g/ needs to be solved on every subdomain �i.
Algorithm 1 summarizes the Schwarz method with Krylov solver.

The convergence rate of the iterative solver is strongly related to the choice
of the transmission operator S [10]. The so-called Dirichlet-to-Neumann (DtN)
map for the complement of each subdomain [40, 41] appears as being optimal.
Unfortunately, this operator is nonlocal and consequently costly to use in an iterative
solver. An alternative approach consists in using local approximations based on
polynomial or rational approximations of the total symbol of the surface DtN
operator in the free-space, or a volume representation through PMLs. We detail

Algorithm 1: Schwarz algorithm with Krylov solver
1. Compute the right-hand side b

� 8i 2 D; vi D Vi.uinc; 0/;
8i 2 D;8j 2 Di; bji D Tji.0; vi/:

2. Solve the following system .I � A/g D b iteratively by using a Krylov subspace solver,
where the operator A is given by (8).

3. At convergence, compute the solution: 8i 2 D; ui D Vi.uinc; g/.
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below four specific examples which are also implemented in GetDDM for a generic
transmission boundary†

• Evanescent Modes Damping Algorithm [9, 11]:

SIBC.�/u D .�{k C �/u;

where � is a real-valued constant. This zeroth-order polynomial approximation
is a generalization of the well-known Després condition [14], which corresponds
to � D 0. We will denote this family of impedance transmission conditions as
IBC(�) in what follows.

• Optimized second-order transmission condition [27]:

SGIBC.a; b/u D au C b�†u; (11)

where �† designates the Laplace-Beltrami operator on †, and a and b are two
complex-valued numbers computed by solving a min-max optimization problem
involving the rate of convergence (spectral radius) of the iteration operator. At
the symbol level, this condition yields a second-order polynomial approximation
of the DtN symbol. In the following, this family of generalized impedance
transmission conditions is denoted by GIBC(a, b). A zeroth-order optimized
condition can be built similarly.

• Padé-localized square-root transmission condition [10]:

SGIBC.Np; ˛; "/u D �{kC0u � {k

NpX
`D1

A`div†

�
1

k2"
r†

��
I C B`div†

�
1

k2"
r†

��
�1

u;

(12)
setting

k" D k C i": (13)

The complex-valued coefficients C0, A` and B` are

C0 D e{˛=2RNp .e
�{˛ � 1/ ; A` D e�

{˛
2 a`

.1C b`.e�{˛ � 1//2 ; B` D e�{˛b`
1C b`.e�{˛ � 1/ :

(14)

The parameter ˛ is a rotation angle in the complex plane (usually taken as �=4)
and RNp are the standard real-valued Padé approximations of order Np of

p
1C z

RNp.z/ D 1C
NpX
`D1

a`z

1C b`z
;
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with

a` D 2

2Np C 1
sin2

�
`�

2Np C 1

�
and b` D cos2

�
`�

2Np C 1

�
: (15)

This transmission condition is a complex-valued rational approximation [37] of
the nonlocal pseudodifferential operator

SGIBC(sq,"/u D �{k
s
1C div†

�
1

k2"
r†

�
u:

Fixing " D 0 leads to the principal symbol of the exact DtN operator for
the half-space. The introduction of the parameter " regularizes this operator to
model glancing rays at the surface of a curved interface. An optimal choice
of " is explained below in Sect. 2.2. In what follows, we denote this family of
generalized impedance transmission conditions as GIBC(Np, ˛, ") and GIBC(sq,
"), respectively.

• PML transmission condition [23, 47, 51, 52]: The operator SPML.�/ is con-
structed by appending a layer�PML to the transmission interface, in which a PML
transformation with absorption profile � is applied. For example, in cartesian
coordinates, the singular profile

�.xPML/ D 1

k.xPML � ı/
can be used, where ı corresponds to the thickness of the PML layer and xPML is
the local coordinate inside the PML [8, 38].

All these methods are referred to as optimized Schwarz domain decomposition
methods. Note that GIBC(Np, ˛, ") and PML(�) have in common that they introduce
additional surface/volume unknowns, whereas the other two transmission conditions
do not. Also, the first three transmission conditions can be formulated explicitly
through sparse surface equations (see e.g. the weak formulations (20)–(25) below),
while a sparse formulation of the PML transmission condition requires a volume
representation (see e.g. (26)–(27)), a surface representation being dense [50].

2.2 Convergence Analysis on a Model Problem

To study the impact of the various transmission conditions on the convergence
of DDM, we analyze the model problem depicted in Fig. 1 which couples two
subdomains: a disk-shaped bounded subdomain�1 of radius R0 and an unbounded
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Fig. 1 Model problem with
two subdomains and a
circular interface

n1

Ω0

R0

Σ

Ω1

n0

domain�0 D R2 n�1:

�0 WD fx 2 R
2; jxj > R0g; �1 WD fx 2 R

2; jxj < R0g; (16)

with @�0 D @�1 D †. We analyze the spectral properties of the iteration
operator A obtained from the domain decomposition algorithm coupling these
two subdomains. Understanding the coupling of a curved bounded and unbounded
subdomains allows us to clarify the main properties that one could not be ana-
lyzed by considering two bounded (e.g. a square domain divided in two) or two
unbounded (e.g. two half-planes) subdomains. The considered model problem
essentially contains the main features arising when solving exterior scattering
problems in homogeneousmedia. It is thus not directly applicable to the PML-based
transmission conditions, which introduce a fictitious heterogeneous medium, even
for a radial profile.

For this problem, the iteration operator A can be expanded as A DPC1
mD�1 Ame{m� . We report in Fig. 2 the modal spectral radius 
.Am/ with respect

to the Fourier mode m for the transmitting boundary conditions IBC(0), IBC(k=2),
GIBC(a; b) and GIBC(sq, 0). We fix k D 6� , R0 D 1 and the maximal number
of modes is set to mmax D Œ10kR0� (where Œ10kR0� denotes the integer part of
10kR0). Clearly, IBC(0) leads to a spectral radius equal to 1 for the evanescent
modes, which is improved by IBC(k=2)—for which the radius of convergence is
always strictly less than one. Using GIBC(a; b) further improves over IBC(k=2),
particularly for large spatial modes m. We recall here that the GIBC(a; b) method
is based on optimizing the coefficients a and b in relation (11) according to a min-
max problem posed in the Fourier space [10, 27]. For the square-root transmission
condition with " D 0 (GIBC(sq,0)), we clearly observe an optimal convergence
rate in the evanescent part of the spectrum. We also see a significant improvement
over the IBC(0), IBC(�) and GIBC(a; b) algorithms on the propagating modes.
The damping parameter " can be optimized to further improve the spectrum of
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Fig. 2 Spectral radius of the modal iteration operator Am vs. the Fourier mode m

the iteration operator corresponding to the modes in the transition zone. The
optimization problem can be formulated as a min-max problem: find "opt > 0 such
that it minimizes the spectral radius 
.Am/ of the iteration operator (associated with
GIBC(sq,"/) for the mode m 2 Z where it is maximal. Mathematically, this leads to
solving the problem


sq;"opt D min
"2RC

�
max
m2Z j
.Am/j

�
; (17)

resulting in the estimate "opt D 0:4k1=3H2=3 [10] of the optimal value of the damping
parameter, where H is the mean curvature on †. We see in Fig. 2 that the spectral
radius of the iteration operator is indeed locally minimized for "opt.

Fast convergence of the GMRES solver is known to be strongly linked to the
existence of eigenvalues clustering of the operator to solve, i.e. .I � A/ in our case.
We report in Fig. 3 (left) the spectrum of the iteration operator for IBC(0), IBC(k=2),
GIBC(a; b) and GIBC(sq,"opt) (again for kR0 D 6� and mmax D Œ10kR0�). For
all transmission operators, the spectrum lies in the right half-plane, which makes
the GMRES converging. Nevertheless, many eigenvalues spread out in the complex
plane for IBC(0). A slightly better clustering occurs for IBC(k=2) and GIBC(a; b),
while there is an excellent clustering of the eigenvalues for GIBC(sq; "opt). Most
particularly, only a few eigenvalues associated with the propagating modes do
not cluster but are very close to .1; 0/. In addition, the eigenvalues linked to the
evanescent modes seem to cluster at .1; 0/. The eigenvalues clustering for the
evanescent modes can be shown in numerical experiments to lead to a quasi-optimal
GMRES convergence rate that is independent of the density of discretization points
per wavelength n� [10].
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operators. Right: Eigenvalues distribution in the complex plane for the exact and Padé-localized
square-root transmission operator of order 4

As said before, the square-root operator (2.1) is a first-order nonlocal pseudod-
ifferential operator. Therefore, it is impractical in a finite element setting since it
would lead to consider full complex-valued matrices at the transmission interfaces.
Fortunately, a localization process of this operator can be efficiently realized and
based on partial differential (local) operators to have a sparse matrix representation.
In [3, 35, 37], this is done by using a rotating branch-cut approximation of the
square-root and next applying complex Padé approximants of order Np, leading
to the transmission operator (12). We report in Fig. 3 (right) the spectrum of
the modal iteration operators GIBC(sq; "opt) and GIBC(4; �=4; "opt). As already
noticed, there is an almost perfect clustering of the eigenvalues for GIBC(sq; "opt).
As expected, the larger Np, the better the approximation of the spectrum of the
square-root. Moreover, Np allows to adjust the spectrum accuracy for large modes
m (evanescent modes which numerically correspond to mesh refinement in a finite
element context). Numerical simulations show that in practice relatively small
values of Np (Np D 2; 4; 8) give optimal convergence results.

2.3 Weak Formulations

For the finite element approximation, we consider some variational formulations.
Two kinds of PDEs are involved when using optimized Schwarz methods: firstly,
a volume system (in the present case, the scalar Helmholtz equation) given by Vi,
and, secondly, a surface system on the transmission interfaces, fixed by Tji. The
variational formulations are first provided for a general transmission operator S. To
simplify the presentation, we consider the situation where no contribution comes
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from @†ij through an integration by parts. However, in some cases (e.g. when
†ij
T
�1 ¤ ;), a special attention must be directed towards the inclusion of these

terms into the variational formulations.
Without loss of generality, we only detail the case of a particular subdomain�i,

for i 2 D, without incident wave contribution (i.e. homogeneous Dirichlet boundary
condition). We consider the general setting where PML layers�PML

i D [j2Di�
PML
ij

are potentially appended to the artificial interfaces†ij, and define��
i WD �i[�PML

i .
In what follows, the space H1.��

i / WD fQui 2 L2.��
i / such that r Qui 2 .L2.��

i //
3g

is the classical Sobolev space and H1
0.�

�
i / is the space of functions Qui 2 H1.��

i /

such that Quij�i D 0, which slightly differs from its usual definition (the Dirichlet
condition is here set only on part of @��

i ). Then,

• the volume PDE QunC1
i D Vi.0; gn/ has the following weak formulation

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

Find QunC1
i in H1

0.�
�
i / such that, for every Qu0

i 2 H1
0.�

�
i / WZ

�i

r QunC1
i � r Qu0

i d�i �
Z
�i

k2 QunC1
i Qu0

i d�i C
Z
�1

i

B QunC1
i Qu0

i d�
1
i

C
X
j2Di

Z
†ij

S QunC1
i Qu0

i d†ij D
X
j2Di

Z
†ij

gnij Qu0
i d†ij;

(18)

• and the surface PDE gnC1
ji D Tji.gnij; QunC1

i / has the following one:

8̂<
:̂
Find gnC1

ji in H1.†ij/ such that, for every g0
ji 2 H1.†ij/ WZ

†ij

gnC1
ji g0

ji d†ij D �
Z
†ij

gnijg
0
ji d†ij C 2

Z
†ij

S QunC1
i g0

ji d†ij:
(19)

Depending on the choice of the transmission operator S, the quantitiesR
†ij

S QunC1
i Qu0

i d†ij and
R
†ij

S QunC1
i g0

ji d†ij write as follows:

• IBC(�):

Z
†ij

S QunC1
i Qu0

i d†ij WD
Z
†ij

.�{k C �/QunC1
i Qu0

i d†ijI (20)

Z
†ij

S QunC1
i g0

ji d†ij WD
Z
†ij

.�{k C �/QunC1
i g0

ji d†ij: (21)

• GIBC(a, b):

Z
†ij

S QunC1
i Qu0

i d†ij WD
Z
†ij

aQunC1
i Qu0

i d†ij �
Z
†ij

br QunC1
i � r Qu0

i d†ijI (22)

Z
†ij

S QunC1
i g0

ji d†ij WD
Z
†ij

aQunC1
i g0

ji d†ij �
Z
†ij

br QunC1
i � rg0

ji d†ij: (23)
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• GIBC(Np, ˛, "):

Z
†ij

S QunC1
i Qu0

i d†ij WD �{kC0
Z
†ij

QunC1
i Qu0

i d†ij C {k

NpX
`D1

A`

Z
†ij

1

k2"
r†ij'` � r†ij Qu0

i d†ij;

(24)

where, for every ` D 1; : : : ;Np, the function '` is obtained through the
resolution of

8<
:
Find '` in H1.†ij/ such that, for every ' 0̀ 2 H1.†ij/ W
�
Z
†ij

QunC1
i ' 0̀ d†ij � B`

Z
†ij

1

k2"
r†ij'` � r†ij'

0̀ d†ij C
Z
†ij

'` � ' 0̀ d†ij D 0I

Z
†ij

S QunC1
i g0

ji d†ij WD �{kC0
Z
†ij

QunC1
i g0

ji d†ij�{k
NpX
`D1

A`
B`

Z
†ij

.QunC1
i �'`/g0

ji d†ij:

(25)

• PML(�):

Z
†ij

S QunC1
i Qu0

i d†ij WD
Z
�PML

ij

Dr QunC1
i � r Qu0

i d�
PML
ij �

Z
�PML

ij

k2E QunC1
i Qu0

i d�
PML
ij I
(26)Z

†ij

S QunC1
i g0

ji d†ij WD
Z
�PML

ij

Dr QunC1
i � rg0

ji d�
PML
ij �

Z
�PML

ij

k2E QunC1
i g0

ji d�
PML
ij ;

(27)

where D D diag. 1
�x
; �x; �x/ and E D �x, with �x.xPML/ D 1 C {

!
�x.xPML/, that

is, we consider a 1D PML with an absorption function that grows only in the
direction normal to the interface. In (27) the domain of definition of the test
functions g0

ji on †ij is extended to the neighboring PML layer �PML
ij , effectively

resulting at the discrete level in the integration of the functions associated with
the nodes of the interface in the layer of volume elements connected to the
interface.

3 Vector Helmholtz Equation: Electromagnetic Waves

We now consider the case of an incident electromagnetic wave Einc illuminating a
perfectly conducting obstacle�� with boundary� , in a three dimensional medium.
The scattered electric field E is solution to the following exterior electromagnetic
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scattering problem:

8̂̂
<
ˆ̂:

curl curl E � k2E D 0; in �C;
�T.E/ D ��T.E/; on �;

lim
kxk!1

kxk
�

x
kxk � curl E C {kE

�
D 0;

(28)

where k WD 2�=� is again the wavenumber and � the wavelength, n is the outward
unit normal to�C (thus, inward to the obstacle) and �T is the tangential component
trace operator

�T W v 7�! n � .v � n/:

The curl operator is defined by curl a WD r � a, for a complex-valued vector
field a 2 C

3, and the notation a � b designates the cross product between two
complex-valued vectors a and b. The last equation of system (28) is the so-called
Silver-Müller radiation condition at infinity, which provides the uniqueness of the
solution to the scattering boundary-value problem (28).

As in the acoustic case, solving (28) numerically with a volume discretization
method requires the truncation of the exterior propagation domain with a PML or
with an ABC on a fictitious boundary�1 surrounding��. For an ABC the problem
to be solved is then defined on the bounded domain�, with boundaries � and �1:

8<
:

curl curl E � k2E D 0; in �;
�T.E/ D ��T.E/; on �;

� t.curl E/C B.�T.E// D 0; on �1;
(29)

with � t the tangential trace operator:

� t W v 7�! n � v:

As above, the unit normal n is outwardly directed to� and, to simplify, the solution
of the above problem is still designated by E. The operator B is an approximation
of the Magnetic-to-Electric (MtE) operator. The well-known Silver-Müller ABC at
finite distance is obtained with B D {k, similar to (3) for acoustics modulo the
sign (due to the trace operator definitions). The extension to more accurate ABCs or
PMLs is standard.

3.1 Domain Decomposition and Transmission Operators

The optimized Schwarz domain decomposition without overlap for the Maxwell
problem (29) can be set up in exactly the same way as for the scalar Helmholtz
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equation. The domain � is decomposed as described in Sect. 2.1, and the same
notations are used. The iterative Jacobi algorithm for the computation of the electric
fields .EnC1

i /i2D at iteration n C 1 involves, first, the solution of the Ndom following
problems

8̂
<̂
ˆ̂:

curl curl EnC1
i � k2 EnC1

i D 0; in �i;

�Ti .E
nC1
i / D ��Ti .Einc/; on �i;

� ti .curl E
nC1
i /C B.�Ti .EnC1

i // D 0; on �1
i ;

� ti .curl E
nC1
i /C S.�Ti .EnC1

i // D gnij; on †ij;8j 2 Di;

(30)

and then forming the quantities gnC1
ji through

gnC1
ji D � ti .curl E

nC1
i /CS.�Ti .EnC1

i // D �gnij C 2S.�Ti .EnC1
i //; on†ij; (31)

where, for i 2 D, Ei D Ej�i , S is a transmission operator through the interfaces
†ij and � ti and �Ti are the local tangential trace and tangential component trace
operators:

� ti W vi 7�! ni � vij@�i and �Ti W vi 7�! ni � .vij@�i � ni/;

with ni the outward-pointing unit normal to �i.
Following the same procedure as in Sect. 2.1, we introduce the two families of

operators .Vi/i2D and .Tji/i2D;j2Di as:

1. EnC1
i D Vi.Einc; gn/ ” EnC1

i is solution of problem (30), where gn D
.gnji/i2D;j2Di collects all the unknowns at iteration n;

2. gnC1
ji D Tji.gnij;E

nC1
i / ” gnC1

ji is solution of problem (31).

By linearity, we decompose the field EnC1
i as EnC1

i D FnC1
i CeEnC1

i , where

FnC1
i D Vi.Einc; 0/ and eEnC1

i D Vi.0; gn/: (32)

The quantity FnC1
i is independent of the iteration number n and can hence be written

as Fi WD Fn
i ; 8n 2 N;8i 2 D. The whole algorithm can then be recast into a linear

system:

.I � A/ g D b; (33)

that can be solved by a Krylov subspace solver.
As in the scalar case, for a vector gn, the quantity Agn is given by, for i 2 D

and j 2 Di, .Agn/ji D Tji

�
gnij;eEnC1

i

�
. The information about the incident wave

is contained in the right-hand side: bji D Tji .0;Fi/. The domain decomposition
algorithm for the Maxwell system is then exactly the same as the one described in
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Algorithm 1 for the scalar Helmholtz equation, by formally replacing vi; uinc; g and
ui by Fi;Einc; g and Ei, respectively.

Similarly to the acoustic case, optimal convergence of the domain decomposition
algorithm would be achieved by using the (nonlocal) MtE operator as transmission
condition. Local approximations based on polynomial or rational approximations
of the total symbol of the surface free-space MtE have been proposed, as well as
volume representations through Perfectly Matched Layers. We detail four of those
approximations below, for a generic transmission boundary†:

• Zeroth-order transmission condition [14]:

SIBC(0).�
T.E// D {k�T.E/: (34)

• Optimized second-order transmission condition [45]:

SGIBC.a; b/.�
T.E// D {k

�
I C a

k2
r†div†

��1 �
I � b

k2
curl†curl†

�
.�T.E//;

(35)

where the curl operator is the dual operator of curl and where a and b are chosen
so that an optimal convergence rate is obtained for the (TE) and (TM) modes;
see [45] for the expression of a and b in the half-plane case. An optimized
transmission condition using a single second-order operator was proposed in [1]:

SGIBC.a/.�
T.E// D {ka

�
I � 1

k2
curl†curl†

�
.�T.E//: (36)

• Padé-localized square-root transmission condition [19, 21]:

SGIBC.Np; ˛; "/.�
T .E//D {k

0
@C0 C

NpX
`D1

A`X .I CB`X/
�1

1
A

�1 �
I � curl†

1

k2"
curl†

�
.�T.E//;

(37)

with X WD r†
1
k2"
div† � curl† 1

k2"
curl†, and where k", C0, A` and B` are

defined by (13) and (14). This transmission condition corresponds to a rational
approximation of the nonlocal operator

SGIBC(sq;"/.�
T.E// D {k .I C X/�1=2

�
I � curl†

1

k2"
curl†

�
.�T.E//;

which for " D 0 is the principal symbol of the exact MtE operator for the half-
space. As in the scalar Helmholtz case, the parameter " is introduced to regularize
this operator for grazing rays on curved interfaces, and the rational approximation
generalizes the polynomial approximations underlying (34), (36) and (35).
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• PML transmission condition [51, 52]: The operator SPML.�/ is constructed
by appending a layer �PML to the transmission interface, into which a PML
transformation with absorption profile � is applied in the same way as for the
acoustic case.

3.2 Convergence Analysis on a Model Problem

In order to study the convergence rate and spectral properties of the DDM algorithm
we consider a similar setting as for the scalar case, but in three dimensions: the
whole domain � D R3 is separated in two curved subdomains �1 and �2 by a
spherical boundary of radius R0

�0 WD fx 2 R
3; jxj > R0g; �1 WD fx 2 R

3; jxj < R0g; (38)

with @�0 D @�1 WD †. Again, in this homogeneous medium setting we only
consider the transmission operators that lead to a sparse surface representation.
Using the same strategy as in Sect. 2.2, we fix R0 D 1 and k D 6� , and consider a
maximal number of modes mmax D Œ10kR�. We report on Fig. 4 the modal spectral
radius 
.Am/ for the transmission conditions IBC(0), GIBC(a), GIBC(a; b) and
GIBC(sq; "). For GIBC(a) and GIBC(a; b), the optimal parameters a and b are
numerically computed by solving the min-max problem

min
.a;b/2C2

max
m�1 
.Am/ (39)

with the Matlab function fminsearch. Analytical solutions of (39) for the half-
space case are provided in [1] for GIBC(a) and in [45] for GIBC(a; b). Contrary

Fig. 4 Spectral radius of the
modal iteration operator Am

vs. the Fourier mode m
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to the scalar Helmholtz case and to the half-space case [16], where IBC(0) leads
to a convergence factor that is exactly 1 for the evanescent modes, in this model
problem IBC(0) leads to 
.Am/ < 1 in the whole spectrum, although 
.Am/ is very
close to 1 for the evanescent modes, which results in a globally slowly converging
DDM. For GIBC(a), we see that 
.Am/ < 1, for all m, which is improved further
for GIBC(a; b). GIBC(sq; 0) leads to a better convergence rate still, which can
furthermore be optimized in the transition zone by using GIBC(sq; ") (with the
value parameter " D 0:4k1=3R�2=3). Finally, a numerical study using the exact series
solution shows that GIBC(a) can lead to a spectral radius larger than one if the
parameter a is chosen as in the half-plane case, which highlights the need for careful
geometry-dependent optimization of the parameters.

The history of the GMRES residual with respect to the number of iterations
#iter is displayed on Fig. 5 (left) for the various transmission conditions. As we can
observe, there is a hierarchy in the convergence curves that is directly connected
to the increasing order of the GIBCs, the best convergence being obtained for
GIBC(sq; "). Note that when using GIBC(a; b) with the optimal parameters for
the half-plane, the number of iterations is about the same as for GIBC(a). Also,
numerical tests show that using the Jacobi method instead of GMRES can lead
to a convergence failure for IBC(0), GIBC(a) and GIBC(a; b). The eigenvalues
distribution of the operator .I � A/ is displayed on Fig. 5 (right). As in the scalar
Helmholtz case, the improvement in the clustering of the eigenvalues around .1; 0/
is again observedwhen improving the approximation of theMtE. Finally, it is shown
in [21] that the localization of GIBC(sq; ") using Padé approximants behaves very
similarly to the scalar Helmholtz case.
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Fig. 5 Left: Residual history of GMRES vs. #iter for the various transmission conditions. Right:
Eigenvalues distribution of the operator .I � A/ for the different transmission conditions
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3.3 Weak Formulations

Without loss of generality, only the case of a particular subdomain �i, for i 2 D,
with no incident wave (homogeneous Dirichlet boundary condition) is detailed.
We consider the same general setting as in the scalar Helmholtz case, i.e., where
the PML layers �PML

i D [j2Di�
PML
ij are potentially appended to the artificial

interfaces †ij, and define ��
i WD �i [ �PML

i . The space of complex-valued
curl-conforming vector fields on ��

i is denoted by H.curl; ��
i / WD fW 2

.L2.��
i //

3 such that curl.W/ 2 .L2.��
i //

3g. The functional space H0.curl; ��
i / is

the space of functions Wi in H.curl; ��
i / such that �Ti .Wi/ D 0 on �i D 0 (the

boundary condition is only imposed on a part @��
i ).

• The volume PDEeEnC1
i D Vi.0; gn/ has the following weak formulation:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

FindeEnC1
i 2 H0.curl; �i/ such that, for everyeE0

i 2 H0.curl; �i/ WZ
�i

curleEnC1
i � curleE0

i d�i �
Z
�i

k2eEnC1
i �eE0

i d�i �
Z
�1

i

B.�Ti .eEnC1
i // �eE0

i d�
1

i

�
X
j2Di

Z
†ij

S.�Ti .eEnC1
i // �eE0

i d†ij D �
X
j2Di

Z
†ij

gnij �eE0

i d†ij:

(40)

• The surface PDE gnC1
ji D Tji.gnij;eEnC1

i / has the following one:

8<
:
Find gnC1

ji in H.curl; †ij/ such that, for every g0
ji 2 H.curl; †ij/ WZ

†ij

gnC1
ji � g0

ji d†ij D �
Z
†ij

gnij � g0
ji d†ij C 2

Z
†ij

S.�Ti .eEnC1
i // � g0

ji d†ij:

On the transmission boundaries, we have:

• IBC(0):

Z
†ij

S.�Ti .eEnC1
i // �eE0

i d†ij WD
Z
†ij

{k.�Ti .eEnC1
i // �eE0

i d†ijI (41)

Z
†ij

S.�Ti .eEnC1
i // � g0

ji d†ij WD
Z
†ij

{k.�Ti .eEnC1
i // � g0

ji d†ij: (42)

• GIBC(a, b):

Z
†ij

S.�Ti .eEnC1
i // �eE0

i d†ij WD
Z
†ij

{kr �eE0
i d†ij; (43)
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where the function r 2 H.curl; †ij/ is obtained through the solution of

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

Find r in H.curl; †ij/ and 
 in H1.†ij/ such that 8 r0 2 H.curl; †ij/

and 8
0 2 H1.†ij/ W
�
Z
†ij

a

k2
r†ij
 � r0 d†ij �

Z
†ij

r � r0 d†ij C
Z
†ij

�Ti .
eEnC1

i / � r0 d†ij

�
Z
†ij

b

k2
curl†ij .�

T
i .
eEnC1

i // curl†ijr
0 d†ij D 0;Z

†ij



0 d†ij C
Z
†ij

r � r†ij

0 d†ij D 0I

(44)Z
†ij

S.�Ti .eEnC1
i // � g0

ji d†ij WD
Z
†ij

{kr � g0
ji d†ij: (45)

• GIBC(Np, ˛, "):

Z
†ij

S.�Ti .eEnC1
i // �eE0

i d†ij WD
Z
†ij

{kr �eE0
i d†ij; (46)

where the function r 2 H.curl; †ij/ is obtained through the solution of

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

Find r in H.curl; †ij/; and for ` D 1; : : : ;Np;'` in H.curl; †ij/ and 
` in H1.†ij/

such that 8r0 2 H.curl; †ij/;8'0

` 2 H.curl; †ij/ and 8
0

` 2 H1.†ij/ WZ
†ij

C0r 	 r0 d†ij �
Z
†ij

�Ti .eEnC1
i / 	 r0 d†ij C

Z
†ij

1

k2"
curl†ij .�

T
i .eEnC1

i // curl†ijr
0 d†ij

C
NpX
`D1

A`

"Z
†ij

r†ij
` 	 r0 d†ij �
Z
†ij

1

k2"
curl†ij'` curl†ijr

0 d†ij

#
D 0;

Z
†ij

'` 	 '0

` d†ij C B`

"Z
†ij

r†ij
` 	 '0

` d†ij �
Z
†ij

1

k2�
curl†ij'` curl†ij'

0

` d†ij

#

�
Z
†ij

r 	 '0

` d†ij D 0; ` D 1; : : : ;Np;Z
†ij


`

0

` d†ij C
Z
†ij

1

k2"
'` 	 r†ij


0

` d†ij D 0; ` D 1; : : : ;NpI
(47)

Z
†ij

S.�Ti .eEnC1
i // � g0

ji d†ij WD
Z
†ij

{kr � g0
ji d†ij: (48)

• PML(�):

Z
†ij

S.�Ti .eEnC1
i // �eE0

i d†ij WD
Z
�PML

ij

D�1 curleEnC1
i � curleE0

i d�
PML
ij

�
Z
�PML

ij

D k2eEnC1
i �eE0

i d�
PML
ij I

(49)
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Z
†ij

S.�Ti .eEnC1
i // � g0

ji d†ij WD
Z
�PML

ij

D�1 curleEnC1
i � curl g0

ji d�
PML
ij

�
Z
�PML

ij

D k2eEnC1
i � g0

ji d�
PML
ij ;

(50)

where the tensor D is defined as for the acoustic case and the test functions g0
ji

are again extended to the volume of the PML layers.

4 Numerical Implementation

The domain decomposition methods analyzed above are all readily available
for testing using finite element methods in the open source GetDDM software
environment [33, 48], available online on the web site of the ONELAB projet [29,
30]: http://onelab.info/wiki/GetDDM. GetDDM is based on the open source finite
element solver GetDP (http://getdp.info) [17, 18, 28] and the open source mesh
generator Gmsh (http://gmsh.info) [31, 32]. Various 2D and 3D test-cases are
provided online (see Fig. 6) for both acoustic and electromagnetic wave problems,
as well as detailed instructions on how to build the software for parallel computer
architectures. Pre-compiled, serial versions of the software for Windows, MacOS
and Linux are also available for development and testing.

Fig. 6 Sample models available online at http://onelab.info/wiki/GetDDM. (a)–(d) Acoustic or
electromagnetic (c and d only) scattering by cylindrical or spherical obstacles, with concentric or
radial subdomains [10, 21]. (e) and (f) Guided acoustic or electromagnetic waves in rectangular
waveguides [51]. (g) Guided acoustic or electromagnetic waves in the COBRA benchmark defined
by the JINA98 workgroup [52]. (h) Acoustic waves in the underground Marmousi model [47]

http://onelab.info/wiki/GetDDM
http://getdp.info
http://gmsh.info
http://onelab.info/wiki/GetDDM
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While GetDDM is written in C++, all the problem-specific data (geometry
description, finite element formulation with appropriate transmission condition,
domain decomposition algorithm) are directly written in input ASCII text files,
using the code’s built-in language. This general implementation allows to solve
a wide variety of problems with the same software, without recompilation, and
hides all the complexities of the finite element implementation from the end-user
(in particular the MPI-based parallelization). Moreover, the software is designed
to work both on small- and medium-scale problems (on a workstation, a laptop, a
tablet or even a mobile phone) and on large-scale problems on high-performance
computing clusters, without changing the input files.

One of the main features of the environment is the closeness between the input
data files and the symbolic mathematical expressions of the problems. In particular,
the weak formulations presented in Sects. 2.3 and 3.3 are directly transcribed
symbolically in the input files. For example, the relevant terms of the finite element
formulation for the Maxwell problem using IBC(0) as transmission condition are
directly written as follows in the input file:

Galerkin { [ Dof{Curl E~{i}}, {Curl E~{i}} ];
In Omega~{i}; Integration I; Jacobian V; }

Galerkin { [ -k[]^2 * Dof{E~{i}}, {E~{i}} ];
In Omega~{i}; Integration I; Jacobian V; }

Galerkin { [ -I[] * k[] * N[] /\ (Dof{E~{i}} /\ N[]), {E~{i}}];
In GammaInf~{i}; Integration I; Jacobian S; }

Galerkin { [ g~{i}[], {E~{i}} ];
In Sigma~{i}; Integration I; Jacobian S; }

Galerkin { [ -I[] * k[] * N[] /\ (Dof{E~{i}} /\ N[]), {E~{i}}];
In Sigma~{i}; Integration I; Jacobian S; }

where Dof{E~{i}} corresponds to the discrete unknown in the ith subdomain
Omega~{i} and [.,.] denotes the inner product. Other transmission
conditions are implemented in a similar way, as is the update relation. The
parallel implementation of the iterative algorithm uses the built-in function
IterativeLinearSolver, which takes as argument the operations that
implement the matrix-vector product required by Krylov subspace solvers, and is
based on PETSc [5] and MUMPS [2] for the parallel (MPI-based) implementation
of the linear algebra routines.

For illustration purposes, Fig. 7 presents some other cases that have been
solved using GetDDM. Published references are provided, which contain further
information about the specific test cases, mathematical models and numerical
results.
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Fig. 7 Sample models solved with GetDDM. Top: acoustic waves around a submarine (image
reproduced from [10]). Bottom: electromagnetic waves around a Falcon aircraft (images repro-
duced from [21])
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Computationally Efficient Boundary Element
Methods for High-Frequency Helmholtz
Problems in Unbounded Domains

Timo Betcke, Elwin van ’t Wout, and Pierre Gélat

Abstract This chapter presents the application of the boundary element method
to high-frequencyHelmholtz problems in unbounded domains. Based on a standard
combined integral equation approach for sound-hard scattering problems we discuss
the discretization, preconditioning and fast evaluation of the involved operators. As
engineering problem, the propagation of high-intensity focused ultrasound fields
into the human rib cage will be considered. Throughout this chapter we present
code snippets using the open-source Python boundary element software BEM++ to
demonstrate the implementation.

1 Introduction

The boundary element method (BEM) is an efficient and competitive tool to
solve large-scale high-frequency Helmholtz problems in bounded or unbounded
domains. Recent developments in fast matrix compression and preconditioning for
boundary integral operators have pushed the computational limit of high-frequency
boundary element computations such that problems in three dimensions with over a
hundred wavelengths across the domain can be solved on a single workstation [47].
Furthermore, the availability of high-level software libraries allows for a convenient
implementation of different boundary integral formulations [41]. This combination
makes it possible to solve large-scale problems of engineering interest effectively
with the BEM.
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This chapter will deal with exterior scattering of sound waves. In this case, a
bounded domain ˝� � R3 is immersed in a homogeneous unbounded region
˝C :D R3 n ˝� and excited by a harmonic wave with a fixed wavenumber k.
Notice that the object has to be bounded but not necessarily connected. The main
objective is the computation of the total wave field utot obtained from the scattering
of an incident wave field uinc at the object. For rigid objects, we have a sound-hard
condition at the boundary� , which is assumed to be Lipschitz continuous with unit
normal direction On outward pointing. This scattering problem is modeled by the
Helmholtz system

��utot � k2utot D 0 in˝C; (1a)

@utot

@ On D 0 on �; (1b)

lim
jxj!1

jxj
�
@usca

@jxj � ikusca
�

D 0 (1c)

where the last equation is the Sommerfeld radiation condition at infinity. Here,
usca denotes the scattered field, such that utot D uinc C usca. The scatterer object is
assumed to be impenetrable, hence utot D 0 in˝�.

Helmholtz problems are often solved with computational methods such as finite-
difference, finite-element and spectral techniques. As opposed to these volume-
based algorithms, we will use the surface-based BEM [39, 40, 43]. The basic idea
behind the BEM is to reformulate the Helmholtz system into a boundary integral
formulation and solve the scattering problem on the surface itself. In this chapter we
will review the design of boundary integral equations with an emphasis on large-
scale scattering problems at high frequencies. For this case, it is necessary to use
modern matrix compression and preconditioning techniques. We will apply these
state-of-the-art techniques to a challenging problem arising from medical high-
intensity focused ultrasound simulations [25]. In [47] we have published an earlier
version of some of the techniques presented in this chapter. There, more details
about the engineering application can be found. Here, we give a more detailed
analysis of the boundary integral formulations, include other formulations as well
and explain the compression technique. Furthermore, this chapter uses a newer
version of BEM++ which allows us to perform experiments on a larger scale.

The explicit use of the acoustic Green’s function gives the BEM some major
advantages compared to standard computational methods. First of all, the Sommer-
feld radiation condition (1c) is exactly satisfied by boundary integral representa-
tions. There is thus no need for absorbing boundary conditions to artificially truncate
the exterior region, as is required for volume-based discretization techniques [28].
This makes the BEM a natural choice for solving scattering problems in unbounded
domains. Another positive effect from the Green’s function is that well-chosen
discretizations are essentially free of pollution and dispersion, even for low order
discretizations using piecewise constant basis functions [29]. Furthermore, since the
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model equations live on the boundary only, surface meshes are being used. These
are often easier to generate for complex geometries compared to volume meshes.

On the other hand, the BEM is not free of problems. For instance, it is crucial
to carefully choose the correct type of boundary integral equation formulation. In
particular for high-frequency problems it is necessary to choose a formulation that
does not suffer from breakdown at certain resonant frequencies [1, 2]. This will be
the topic of Sect. 2.

In the case of large-scale simulations, the discrete system of equations is typically
being solved with iterative linear solvers, which are asymptotically more efficient
than direct solvers [3]. Furthermore, these methods mainly rely on matrix-vector
multiplications, which are relatively easy to parallelize and for which acceleration
algorithms are available. However, the required number of iterations can easily
become prohibitively large for high-frequency problems, especially for the classical
boundary integral formulations. In Sect. 3 we therefore review various operator
preconditioning techniques for high-frequency applications and numerically assess
their performance in Sect. 5.2.

A naive discretization of the boundary integral operators would lead to dense
matrix problems and a complexity ofO

�
N2
�
for the assembly and the matrix-vector

product, where N is the number of elements. For a fixed number of surface elements
per wavelength, i.e., N � k2, the complexity will therefore scale as O

�
k4
�
. This

is only feasible for small-scale problems. For large-scale applications it is vital to
use acceleration schemes that reduce the computation time and memory footprint
to realistic measures for present-day computer architectures. The most prominent
of such methods are Fast Multiple Methods (FMM) [16, 17, 23] and hierarchical
matrix techniques (H -matrices and their H 2 and HSS variants) [6, 8, 32, 34, 48].
They achieve a complexity of O .N/ or O .N log.N// for the matrix-vector multi-
plication, depending on the frequency regime and the specific implementation. In
Sect. 4 we will discuss the behavior of classical H -matrix techniques for exterior
scattering problems in more detail. While their complexity with respect to a growing
wavenumber k is asymptotically not as good as high-frequency FMM, they are
kernel-independent, relatively easy to implement and offer good performance for
a wide range of application relevant frequencies.

The numerical implementation of a high-frequency BEM is challenging, mainly
because of the necessity of specialized acceleration techniques and quadrature
rules for singular integral operators. In Sect. 5 we will introduce the open-source
software library BEM++ [41] which has been used to perform all computational
experiments in this chapter. This library was originally developed at University
College London and provides a comprehensive Python toolbox to setup and solve
Laplace, Helmholtz and Maxwell problems via the BEM. Matrix compression is
integrated and various preconditioners are available for the efficient solution of
large-scale problems. Fast computations are achieved because the core discretization
and compression routines are written in C++. All these routines are accessible via
a high-level Python interface, which provides a user-friendly programming envi-
ronment. We will present code examples to demonstrate how, with only a limited
amount of high-level instructions, an entire BEM simulation can be performed with
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BEM++. Tutorials in the form of IPython notebooks can be downloaded from the
website of the BEM++ project (www.bempp.org).

Finally, in Sect. 6 we present the application of the fast BEM to a realistic prob-
lem arising from medical treatment planning in high-frequency focused ultrasound.
The described problem will lead to a system with around half a million unknowns
and simulates over one hundred wavelengths across the computational domain.
This has been solved with BEM++ on a single workstation, thus confirming the
capabilities of the efficient BEM presented in this chapter.

2 Boundary Integral Formulations of High-Frequency
Scattering

In this section we review the standard combined field equations for boundary inte-
gral formulations of high-frequency scattering. Details and proofs of the statements
given here can be found in standard textbooks such as [39, 40, 43]. A recent
overview article of novel mathematical developments for high-frequency scattering
formulations based on hybrid numerical-asymptotic methods is also given in [15].
While these hybrid numerical-asymptotic methods have the potential to solve
scattering problems on certain geometries with an almost wavenumber independent
convergence, they are not yet suitable for larger industrial applications with realistic
meshes.

2.1 Surface Representation of the Scattering Model

The reformulation of the exterior model into a surface model necessitates operators
that map between the volume ˝� [ ˝C and the boundary � . The map from the
volume to the boundary is provided by the trace operators, which are denoted
by � . More specifically, the Dirichlet trace operators ��

0 and �C
0 are defined as the

limit values of a field towards the interface from the interior and exterior domain,
respectively, and the Neumann trace operators ��

1 and �C
1 are the corresponding

normal derivatives. On the other hand, the potential operatorsmap from the surface
to the volume. They are defined as

.V  /.x/ :D
Z
�

G.x; y/ .y/ d� .y/ for x 2 ˝� [˝C; (2)

.K �/.x/ :D
Z
�

@n.y/G.x; y/�.y/ d�.y/ for x 2 ˝� [˝C (3)

and are called the single-layer and double-layer potential operators, respectively.
Here, and � denote surface potentials that live on the boundary only. The function

www.bempp.org
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G.x; y/ is the acoustic Green’s function defined by

G.x; y/ :D eikjx�yj

4�jx � yj for x ¤ y (4)

and @n.y/G.x; y/ is its normal derivative along On with respect to y.
Using the single-layer and double-layer potential operator one can derive a

representation formula for any radiating solution u of the Helmholtz equation as

u.x/ D .V  /.x/ � .K �/.x/ for x 2 ˝� [˝C (5)

with

 D ��
1 u � �C

1 u; (6a)

� D ��
0 u � �C

0 u (6b)

being the jumps of the solution across the interface.
Taking the trace or normal derivative of both sides of the equality in Eq. (5) will

result in an equation that is fully defined on the boundary. This necessitates the
analysis of the traces and normal derivatives of potential operators. One can show
that the following boundary operators are well defined almost everywhere if � is
piecewise smooth:

.V /.x/ :D
Z
�

G.x; y/ .y/ d� .y/ for x 2 �; (7)

.K�/.x/ :D
Z
�

@n.y/G.x; y/�.y/ d�.y/ for x 2 �; (8)

.T /.x/ :D
Z
�

@n.x/G.x; y/ .y/ d� .y/ for x 2 �; (9)

.D�/.x/ :D �@n.x/
Z
�

@n.y/G.x; y/�.y/ d�.y/ for x 2 �: (10)

Moreover, for piecewise smooth � the following jump relations are defined almost
everywhere:

V D ��
0 .V  / D �C

0 .V  /; (11)

K� D ��
0 .K �/C 1

2
� D �C

0 .K �/� 1

2
�; (12)

T D ��
1 .V  / � 1

2
 D �C

1 .V  /C 1

2
 ; (13)

D� D ���
1 .K �/ D ��C

1 .K �/: (14)

For the precise definition in the general Lipschitz case see e.g. [43, Chap. 6].
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The operators V , K, T, and D are called the single-layer, double-layer, adjoint
double-layer and hypersingular boundary integral operator, respectively, and satisfy
the mapping properties

V W H � 1
2 .� / ! H

1
2 .� /; K W H 1

2 .� / ! H
1
2 .� /;

T W H � 1
2 .� / ! H � 1

2 .� /; D W H 1
2 .� / ! H � 1

2 .� /

for fractional Sobolev spaces H
1
2 .� / and H � 1

2 .� /. In addition, the identity
boundary operator is denoted by I. Boundary integral equations can now readily be
derived by taking traces of representation formulas. The simplest forms are based
on the normal derivative of the single-layer or double-layer potential operator only.
Drawback of these operators is their nontrivial nullspace at resonant frequencies. An
effective approach to mitigate the breakdown at resonances is to consider combined
field integral equations that are uniquely solvable for all real wavenumbers.

2.2 The Burton-Miller Combined Boundary Integral Equation

A classical combined field integral equation for the scattering problem (1) is the
Burton-Miler formulation [13]. This formulation is free of spurious resonances and
the unique solution has a direct interpretation as the trace of the exterior total field
on the boundary � . We start with the direct representation (5) of the scattered field,
i.e., usca D V  �K � where the surface potentials  and � are given by the jumps
of the scattered field across the boundary and can be simplified as

 D ��
1 u

sca � �C
1 usca D ��

1 .u
tot � uinc/C �C

1 uinc D 0;

� D ��
0 u

sca � �C
0 usca D ��

0 .u
tot � uinc/� �C

0 .u
tot � uinc/ D ��C

0 utot

because the total field is zero in the interior and the incident wave field smooth
across the boundary. This reduces the representation formula to

usca D K .'/; ' D �C
0 utot: (15)

Taking the exterior Neumann trace �C
1 of this representation formula yields

� �C
1 uinc D �D' (16)

where the boundary condition and jump relation (14) have been used. The interior
Dirichlet trace ��

0 of the representation formula results in

� �C
0 uinc D K' � 1

2
' (17)
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where the zero interior field, jump relation (12) and smoothness of the incident wave
field have been used.

Both boundary integral equations (16) and (17) solve the scattering problem
for the same surface potential. Any linear combination will therefore solve the
scattering problem as well. That is, for a coupling parameter � 2 C, the Burton-
Miller formulation

A�' D uinc C �@nu
inc (18)

with

A� :D
�
1
2
I � K

�
' C �D'

solves the scattering problem with the representation formula (15). The Burton-
Miller formulation is uniquely solvable for =.�/ ¤ 0 and � D i=k is a good choice
of coupling parameter [36].

2.3 Regularizing the Burton-Miller Formulation

We notice that the Burton-Miller formulation (18) is not without problems. The
operator

�
1
2
I � K

�
is minus the interior trace of the double layer potential operator

K and maps from H
1
2 .� / into H

1
2 .� /, whereas the hypersingular operator

D maps from H
1
2 .� / into H � 1

2 .� /. A solution to this mismatch in mapping
characteristics is to consider regularized combined field operators [12]. For a
regularization operator

R W H � 1
2 .� / ! H

1
2 .� /;

the regularized Burton-Miller formulation reads

�
1
2
I � K

�
' C RD' D uinc C R@nu

inc; (19)

where now the operator AR WD �
1
2
I � K

� C RD is well defined on H
1
2 .� /. The

design of sophisticated regularization techniques forms the basis of the efficient
preconditioning strategies discussed in Sect. 3.

2.4 Indirect Formulations

An alternative approach to obtaining a combined field integral equation for the
scattering problem (1) is to use an indirect representation of the scattered field as
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the linear combination

usca D �iV � C K .R�/ (20)

where regularization with R has been applied. Taking the exterior Neumann
trace �C

1 on both sides and using @nuinc D �@nusca on boundary � results in

� @nu
inc D i

�
1
2
I � T

�
� � D.R�/: (21)

Traditionally, Eq. (21) without the regularization is called the Brakhage-Werner
formulation [9]. In [11] it is suggested to use  D 1 for high-frequency scattering
problems.

2.5 Boundary Element Methods

For the discretization of boundary integral operators typically either collocation or
Galerkin methods are used. While collocation methods are easier to implement, the
Galerkin method has advantages with respect to coupling with finite element meth-
ods, symmetry of the resulting operators, and assembly on non-smooth domains.
Here, we focus on Galerkin methods for the Burton-Miller formulation (18).

Let �h be a triangulation of � with n nodes Oxj, j D 1; : : : ; n. Let �j be a

continuous piecewise linear function defined on �h such that �j.Oxi/ D
�
1; i D j
0; i ¤ j

.

Let us denote by Vh :D
nPn

jD1 vj�j; vj 2 C

o
the space spanned by the nodal basis

functions �j. Define the standard real dual pairing

h'; #i :D
Z
�

'.y/ � #.y/ d� .y/: (22)

The Galerkin discretization of the Burton-Miller formulation is now given as the
discrete matrix problem

A�v D b

with
�
A�
�
ij

D hA��j; �ii and bi D huinc; �ii C h�@nuinc; �ii.
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The matrix A� is given as A� D 1
2
I �K C�D, where the individual matrix entries

are computed as

�
I
�
ij

D
Z
�

�i.x/�j.x/ d� .x/;

�
K
�
ij

D
Z
�

�i.x/
Z
�

@n.y/G.x; y/�j.y/ d� .y/ d� .x/;

�
D
�
ij

D �
Z
�

�i.x/@n.x/

Z
�

@n.y/@n.y/G.x; y/�.y/ d�.y/ d� .x/

D
Z
�

Z
�

G.x; y/
�
curl� �i.x/ � curl� �j.y/

�
d� .y/ d� .x/

� k2
Z
�

Z
�

G.x; y/�i.x/�j.y/ .On.x/ � On.y// d� .y/ d� .x/:

For the hypersingular operator D the last formula follows from integration by parts

and leads to a weakly singular integral. We also note that D
T D D and K

T D T ,
where T is the discretization of the adjoint double-layer boundary operator.

Evaluating these integrals requires singularity-adapted quadrature rules. A gen-
eral fully numerical quadrature scheme based on regularizing coordinate transfor-
mations is described in [40]. However, this scheme can still lead to large errors in
situations such as sharp edges, two parallel triangles that are close to each other,
and almost degenerate triangles. Alternative quadrature schemes that can deal with
some of these issues are described for example in [37].

If instead of a scalar � we use a regularizing operator R, then the operator AR

is well defined on H
1
2 .� / and we can formulate a variational problem to find � 2

H
1
2 .� / such that

hAR�; #i D huinc; #i C hR@nuinc; #i; 8# 2 H � 1
2 .� /;

where we now interpret the dual pairing h�; �i as a dual pairing on H
1
2 .� / �

H � 1
2 .� /. The corresponding discrete left-hand-side matrix is then given as

AR WD 1

2
I � K C R I

�1
D;

where ŒR�ij D hR�j; �ii. To analyze the Galerkin variational formulation, tech-
niques as discussed in [12] can now be used.

The discretization above uses the same space Vh of continuous piecewise linear
nodal basis functions to discretize H

1
2 .� / and H � 1

2 .� /. However, we use the
space H � 1

2 .� / to represent Neumann data. Hence, this approximation is only
suitable if the boundary � is sufficiently smooth to support continuous Neumann
data. For more general Lipschitz domains we can expect discontinuities and a



224 T. Betcke et al.

more natural basis of H � 1
2 .� / is a space of discontinuous piecewise constant

functions. A stable dual pairing between continuous nodal basis functions and a
space of piecewise constant discontinuous functions can be achieved by defining
the discontinuous functions on the dual grid [33].

3 Operator Preconditioners for High-Frequency Problems

The classical Burton-Miller formulation suffers from poor convergence for high-
frequency problems on general domains. The main reason is that the hypersingular
operator D acts like an unbounded differential operator fromH

1
2 .� / toH � 1

2 .� /.
As explained in Sect. 2.3, including a regularization operator fixes the mismatch
in function spaces. Being an operator preconditioner, this regularization should be
carefully chosen such that it improves the conditioning of the discrete system [33,
35, 42]. In practice, the regularization is ideally designed such that the resulting
boundary integral operator is a compact perturbation of the identity operator.

In this section we will focus on two types of regularization, based on a
high-frequency approximation of the Neumann-to-Dirichlet (NtD) map and the
single-layer boundary operator. These operator preconditioners do not depend on
the discretization method and can readily be combined with acceleration schemes
such asH -matrix compression.

3.1 OSRC Preconditioning

The On-Surface Radiation Condition (OSRC) preconditioner is based on the idea of
finding a local surface approximation of the NtD map [4, 5, 20]. For # 2 H � 1

2 .� /

we define the exterior Neumann-to-Dirichlet map NC
ex W H � 1

2 .� / ! H
1
2 .� / as

NC
ex.#/ :D �C

0 u# , where u# is the solution of the exterior Helmholtz problem

��u# � k2u# D 0 in˝C;

@u#
@ On D # on �;

lim
jxj!1

jxj
�
@u#
@jxj � iku#

�
D 0:

Using the NtD map it follows from the exterior Calderón projector [43, Sect. 7.5]
that

�
1

2
I � T � DNC

ex

�
# D # (23)
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for # 2 H � 1
2 .� /. Assume that an approximationeNC

ex of the NtD map is given.
Then, after discretization, we obtain

�
1

2
I � T � D I

�1
eNC
ex

�
v 
 Iv:

Notice that since T
T D K and D

T D D the transpose of the left-hand-side operator

equals the regularized Burton-Miller operator with R
T D �eNC

ex . This shows that a
good approximation to the NtD map results in an excellent preconditioner.

Unfortunately, the NtD map is a non-local pseudo-differential operator whose
computation itself involves the solution of an exterior Helmholtz problem which
makes its direct use as preconditioner impractical. However, there are efficient
approximations that can be used. We have already encountered the most basic
approximation, namely NC

ex 
 1
ik giving the classical Burton-Miller operator with

� D i=k. Alternatively, a more accurate approximation of the NtD map can be
derived as

Nosrc D 1

ik

�
1C ��

k2�

��1=2
(24)

where �� denotes the surface Laplace-Beltrami operator [4, 5]. The occurrence of
singularities is prevented with the use of a damped wavenumber k� D k.1 C i�/.
Based on a spectral analysis on a sphere, a good choice of damping is � D
0:4.kR/�2=3 with R the radius of the object [20]. Localization of this operator is
achieved with a Padé approximation of size n and a nonzero branch cut, typically
4 and �=3, respectively. The application of the OSRC operator is now reduced
to solving a set of .n C 1/ surface Helmholtz equations with complex-valued
wavenumber. The solution procedure of these local operators can efficiently be
performed with sparse LU-factorization.

The OSRC-preconditioned Burton-Miller formulation

�
1
2
I � K

�
' � NosrcD' D uinc � Nosrc@nu

inc (25)

is uniquely solvable in H
1
2 .� / on a smooth surface, for any wavenumber and

nonzero damping factor [20]. Moreover, the boundary integral operator reduces to

�
1
2
I � K

�
' � NosrcD' D

�
1

2
C k�
2k

�
I C C (26)

for a compact operatorC if � is sufficiently smooth. This is a second kind Fredholm
integral equation and has a clustering of eigenvalues, resulting in fast convergence
of linear solvers.
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3.2 Regularization by Single-Layer Boundary Operators

Another strategy to achieve regularization of the hypersingular operator is to
consider the single-layer potential. With Calderón identities [43, Corollary 6.19],
one can show that

DV D 1
4
I � T2;

VD D 1
4
I � K2:

Hence, if � is sufficiently smooth, then the product of the single-layer and the
hypersingular boundary operator is a compact perturbation of a scaled identity.
However, the single-layer operator alone is not a good choice of a regularizer due to
the existence of resonances. A solution was proposed in [11], where the single-layer
boundary operator V� with wavenumber � D ik=2 was investigated as regularizer
for the Brakhage-Werner formulation (21). Specifically,

i
�
1
2
I � T

�
' � DV�' D �@nuinc; (27)

for a coupling parameter  D 1. Similarly, this regularization can also be applied
to the Burton-Miller formulation (19). For sufficiently smooth � this formulation is
again a perturbation of a scaled identity because V�D D .V C C/D, where C is a
compact operator [12, Lemma 2.1] and V is the single-layer operator for the original
wavenumber k. The imaginary-wavenumber single-layer operator can be evaluated
relatively cheap as it allows a very efficient low-rank representation.

4 Fast H -Matrix Assembly

Hierarchical (H -)matrix compression based on adaptive cross approximation
(ACA) is a widely used technique to assemble boundary integral operators in a com-
pressed format. It has a complexity ofO.N logN/ for compression and evaluation of
matrix-vector products, where N denotes the number of global degrees of freedom.
This approach is relatively easy to implement, easily parallelizable, and builds a
direct algebraic representation of the compressed operator that allows very fast
matrix-vector products, compared to FMM.Main disadvantages are the longer setup
time and often significantly higher memory consumption than FMM. However,
particularly for low-frequency or non-oscillatory problems the performance is often
excellent. Moreover, even though standard H -matrix compression does not scale
well asymptotically as k ! 1, its practical performance even for higher-frequency
problems is often very good as we will see in this and the following sections.
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{1, 2, . . . , N }

{ N

2
+ 1, . . . , N }

. . . . . . . . . . . .

{1, . . . , N

2
}

Fig. 1 Division of degrees of freedom into a cluster tree

4.1 The Fundamentals ofH -Matrix Compression

In this section we give a brief overview of the main ideas ofH -matrix compression.
More details can be found in [7, 32]. The H -matrix compression is based on a
geometric subdivision of the set of degrees of freedom (dofs) I in the boundary
element mesh into a cluster tree T.I/. On each level the dofs are subdivided into two
geometrically separated sets, as depicted in Fig. 1. The leafs of the cluster tree are
reached when the number of dofs in each subdivision is below a specified tolerance.
Given a set of dofs I for the test functions and a set of dofs J for the basis functions in
the BEM discretization a block cluster tree T.I�J/ is now constructed as follows.

1. The root of the block cluster tree is the product index set b0 D 	 � � with 	 D I
and � D J.

2. Given a node b0 D 	 0 � � 0 of the block cluster tree, where 	 0 and � 0 are nodes of
the corresponding cluster trees T.I/ and T.J/:

• Stop the recursion if the current node satisfies an admissibility condition or if
one of the cluster tree nodes � 0 and 	 0 is a leaf node.

• If the recursion is not stopped, define the sons of the block cluster tree node b0
as the set f	 0

1 � � 0
1; 	

0
1 � � 0

2; 	
0
2 � � 0

1; 	
0
2 � � 0

2g for the sons 	 0
i and �

0
j , i; j D 1; 2

of the cluster tree nodes 	 0 and � 0.

The admissibility condition is satisfied if the geometric bounding boxes X and
Y associated with the cluster nodes 	 0 and � 0 satisfy a separability condition. A
frequently used condition is given as

minfdiam.X/; diam.Y/g � ˛ dist.X;Y/:

Here, diam denotes the diameter of a bounding box and dist the distance of two
bounding boxes. The parameter ˛ controls how strongly separated X and Y must be
so that the admissibility condition is satisfied. By default, BEM++ uses a weaker
condition given as

dist(X, Y) > 0:
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This works sufficiently well in practice and usually leads to a fewer number of
blocks on the block cluster tree.

Once the generation of the block cluster tree has been completed, a compressed
representation of the BEMmatrix A can be assembled as follows. Let b0 D 	 0 �� 0 2
L .T.I � J//, the set of all leaf blocks of the block cluster tree T.I � J/.

• If b0 is not admissible, then evaluate all entries of A	 0�� 0 , the restriction of A onto
the index set 	 0 � � 0, directly and store the corresponding dense representation.

• If b0 is admissible, then store a low rank representation A	 0�� 0 
 Ub0 �VH
b0 , where

Ub0 is of dimension j	 0j � t and Vb0 is of dimension j� 0j � t where t denotes the
local rank.

To obtain a low-rank representation, a frequently used algorithm is Adaptive Cross
Approximation (ACA). It is a heuristic algorithm that often works remarkably well
and allows an approximate error control to determine the local rank t adaptively
given a global error bound. However, most importantly, ACA only needs to compute
a small fraction of the elements of the original matrix so that even very large BEM
discretizations can be assembled on standard workstation systems.

Finally, often the above described compression procedure is intermixed with a
recompression scheme in which after the compression of individual son blocks of a
block cluster tree node b0 a compression of b0 itself is attempted using information
from the sons. If this needs less memory than the original son representations, then
the low-rank compression of b0 itself is used instead and the sons deleted.

4.2 TheH -Matrix Compression at High Frequencies

The above described compression scheme is very efficient for low or non-oscillatory
problems. However, for high-frequency problems the minimum rank required in
each admissible block grows with the wavenumber. Let us consider the block
cluster leaf node b0 D 	 0 � � 0 and the corresponding bounding boxes X and Y.
Given the Green’s functionG.x; y/, the efficiency of the above describedH -matrix
compression depends on the number t� , such that

������G.x; y/�
t�X
jD1

gj.x/hj.y/

������
X�Y

< �

for given �. The number t� is the minimum number of terms needed for a low-rank
representation of the Green’s function with accuracy �. In [22] it is shown that

k2�ı . t� . k2Cı; 8ı > 0: (28)

The overall computational cost of compression and evaluation is linear with respect
to the rank estimate t in the admissible blocks, that is, the complexity scales like
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Table 1 The performance of the H -matrix compression of the single-layer boundary operator V
on the unit sphere with varying wavenumber

k N Memory (Mb) Compression (%) Time (s) Growth rate ˇ

1 114 0.19 94:6 8:3E � 2 –

5 2136 39.6 56:9 0.53 1.83

10 7832 255 27:3 2.29 1.43

20 30;404 1:62E3 11:5 16.6 1.36

30 68;078 4:75E3 6:71 36.6 1.34

40 120;500 1:03E4 4:63 72.4 1.35

50 188;146 1:84E4 3:41 1:3E2 1.30

60 270;276 2:99E4 2:68 2:05E2 1.33

70 367;276 4:44E4 2:16 3:22E2 1.30

80 480;024 6:37E4 1:81 4:67E2 1.34

O .tN logN/. However, the rank t is dependent on N in high-frequency scattering.
We typically choose a fixed number of dofs per wavelength, that is N � k2. Together
with (28) it therefore follows that t � N giving an overall asymptotic complexity of
O
�
N2 logN

�
forH -matrix compression. This would makeH -matrices unfeasible

for large-scale problems in the limit k ! 1.
Fortunately, in practice the behavior seems much better for realistic wavenum-

bers. In Table 1 we show performance results for the compression of the standard
single-layer boundary operator V with piecewise constant basis functions on the unit
sphere for varying wavenumbers. We discretize the sphere with around 10 elements
per wavelength, that is, h D 2�=.10k/. For the ACAwe choose an error tolerance of
10�5, which is sufficient for a wide range of applications. The timing results were
done on a 20 cores, two processor Intel Xeon E5-2670 workstation with 2.5GHz
and 192GB RAM. The compression rate measures how much memory the H -
matrix requires compared to a densematrix of the same size. Recompressionwas not
enabled. Also, BEM++ currently ignores the symmetry of the single-layer boundary
operator, which could give another factor two saving. For the highest wavenumber
k D 80 with 480 thousand elements the assembly time is roughly 7.8min and the
memory consumption is 62GB.

It is interesting to measure the growth rate of the memory in dependence on N.
We assume a memory growth of O.Nˇ/ for some ˇ > 0. The last column in Table 1
shows estimates for ˇ by comparing the memory growth from one wavenumber to
the next. The effective exponent is around 1:3, which is significantly better than
the asymptotic worst-case consideration given above and makes it possible to apply
H -matrices to many realistic high-frequency problems.
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4.3 Modern Developments

The standardH -matrix approximations are popular for many applications because
of their ease of implementation and relatively good performance. However, recent
FMM developments can significantly outperform classical H -matrix techniques.
While FMM uses hierarchical basis information to propagate information from the
sources to the targets this is not the case forH -matrices. A remedy for this is given
byH 2-matrices [8]. These are algebraically equivalent to FMM and refine theH -
matrix format by exploiting hierarchical information within the cluster bases. This
reduces the complexity of compression andmatrix-vector product for low-frequency
problems to O.N/ instead of O.N logN/. A novel development specifically for
high-frequency problems are wideband H -matrix techniques. They exploit that
within a cone of opening angle � � 1

k the source and target clusters admit low-
rank representations even for large wavenumber [23]. The difficulty is that these
novel wideband H -matrix approaches need to deal with a very large number
of small block clusters. The implementation in [6] uses a mixture of H -matrix
approximations for the near-field andH 2-matrix approximations for the far-field to
efficiently deal with this large number of block clusters.

5 High-Frequency Boundary Element Simulations
with BEM++

Boundary integral formulations can conveniently be implemented with the open-
source library BEM++ [41]. As will be shown in this section, only high-level
instructions are necessary to perform a BEM simulation. Apart from the code
snippets in this section, an IPython notebook of the OSRC-preconditioned Burton-
Miller formulation can be downloaded from the BEM++website (www.bempp.org).

5.1 Creating and Solving an OSRC-Preconditioned
Burton-Miller Formulation

In the following we will describe the implementation and solution of the OSRC-
preconditionedBurton-Miller formulation for the scattering of a plane wave incident
field

uinc.x; y; z/ D eikx

which travels in the x-direction.

www.bempp.org
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The BEM++ framework can be used as a Python library, imported with the usual
command.

import bempp.api

The first step for the implementation of a boundary element simulation is to specify
the model data such as incident wave field and scatterer object. In this example we
specify the incident field by defining a corresponding Python function. Other ways
of specifying boundary data are also possible.

A Python function that specifies an incident field takes as input arguments the
location x, normal direction n, and optionally the region domain_index of
the object. The following two functions specify the incident field and its normal
derivative. The NumPy array result stores the value of the function in each
dimension.

k = 4.5
def dirichlet_fun(x, n, domain_index, result):

result[0] = np.exp(1j*k * x[0])
def neumann_fun(x, n, domain_index, result):

result[0] = 1j*k * n[0] * np.exp(1j*k * x[0])

Several canonical objects can readily be created with BEM++, such as a sphere,
cube and ellipsoid. Optionally, the mesh size h can be passed, e.g. to guarantee an
oversampling of ten elements per wavelength. The import of arbitrary triangular
surface meshes in Gmsh format [27] is also possible. Alternatively, the node and
connectivity information of a mesh can be specified. In the following we define the
mesh of an ellipsoid with radius 3 in the x-direction and 1 in the other directions.

h = 2*np.pi / (10 * k)
grid = bempp.api.shapes.ellipsoid(3, 1, 1, h=h)

As finite element space, the BEM++ library provides continuous and discontinuous
polynomial function spaces up to high-order and also function spaces defined on the
barycentric mesh. Here, we only need the standard P1-elements.

space = bempp.api.function_space(grid, ’P’, 1)

The native BEM++ object GridFunction provides functionality to store bound-
ary data of the wave fields and also projections of the excitation field onto the
boundary element space.

dirichlet_data = \
bempp.api.GridFunction(space, fun=dirichlet_fun)

neumann_data = \
bempp.api.GridFunction(space, fun=neumann_fun)

The creation of the boundary integral operators requires the specification of the
mapping properties on the boundary element spaces, i.e., the domain, range and
dual-to-range (test) space. For Galerkin discretization only the domain and the
test space are required. The range space allows the implementation of an operator
algebra that automatically creates the correct mass matrix transformations. This will
be needed in the following. The OSRC-approximated NtD operator only requires
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one space object associated with a space of continuous functions to discretize the
underlying Laplace-Beltrami operator, where it is always assumed that the domain,
range and dual to range space are identical.

id = bempp.api.operators.boundary.sparse.\
identity(space, space, space)

from bempp.api.operators.boundary.helmholtz import *
dlp = double_layer(space, space, space, k)
hyp = hypersingular(space, space, space, k)
ntd = osrc_ntd(space, k)

The created boundary integral operators are abstract objects, for which basic linear
algebra operations such as addition and multiplication are available. The BEM++
library will take care of the correct mapping properties and uses mass-matrix
transformations where necessary. Combined field boundary integral formulations
can thus conveniently be created with the following high-level instructions.

bm_osrc_model = 0.5 * id - dlp - ntd * hyp
bm_osrc_data = dirichlet_data - ntd * neumann_data

Here, we have shown the creation of the OSRC-preconditioned Burton-Miller
formulation (25). Other formulations can be implemented similarly.

So far, we have defined the boundary integral formulation with abstract objects.
The actual discretization of the operators is not being performed until necessary
or explicitly called. Instead of calling the weak formulation, we opt to compute
the strong formulation which is the weak formulation with additional mass matrix
preconditioning. By default, the matrix assembly is performed with H -matrix
compression enabled. The right-hand-side vector is given by the coefficients of the
excitation data.

bm_osrc_matrix = bm_osrc_model.strong_form()
bm_osrc_rhs = bm_osrc_data.coefficients

The obtained matrix and right-hand-side vector can be interpreted by the SciPy
library. This allows for solving the discrete system with its GMRES implementation.

from scipy.sparse.linalg import gmres
bm_osrc_sol,info = gmres(bm_osrc_matrix, bm_osrc_rhs)

The surface potential can readily be visualized with e.g. Gmsh but BEM++ also
provides functionality to compute the scattered field outside the boundary. For this,
an array of locations points have to be created on which the exterior field will be
computed.

bm_osrc_pot = bempp.api.GridFunction(space, \
coefficients=bm_osrc_sol)

from bempp.api.operators.potential.helmholtz import *
dlp_nearfield = double_layer(space, points, k)
bm_osrc_scattered = dlp_nearfield * bm_osrc_pot

The resulting field can then be exported for further processing or directly plotted
using a Python plotting library.
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5.2 Numerical Results

In this section we present some numerical results on canonical test shapes which
demonstrate the performance of the formulations discussed in the previous sections.
An application problem with realistic data from medical engineering will be
presented in Sect. 6.

5.2.1 Stability in the Presence of Resonances

A prime advantage of the combined field integral equations over simpler for-
mulations is stability at resonance frequencies. For example, the double-layer
formulation (17) has a nontrivial nullspace at resonance frequencies, which are
explicitly known for special geometries such as a cube. To this end, let us consider
a unit-sized cube near the two resonances of k D �

p
1C 1C 32 D 10:42 and

k D �
p
1C 22 C 32 D 11:75. The mesh is created with an oversampling of ten

elements per wavelength.

grid = bempp.api.shapes.cube(h=2*np.pi/(10*k))

The incident wave field is given by a plane wave field traveling in the positive x-
direction and P1-elements are used for discretization. As a linear solver, the GMRES
method available from the SciPy library has been used with a tolerance of 1.0E�5.

As can be seen in Fig. 2, the number of iterations used by the GMRES solver
clearly depends on the choice of boundary integral formulation. The number of
iterations for the Burton-Miller formulation and its preconditioned variant are con-
stant for this small frequency range. The peaks at the resonance frequencies indicate
the breakdown of the double-layer formulation. While at these low frequencies
the convergence is still reasonable, this becomes problematic for high frequencies
where the modal density increases.

Fig. 2 The GMRES convergence for different model formulations near two resonance frequencies
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Fig. 3 The magnitude of the
surface potential on the
re-entrant cube for
wavenumber k D 37

5.2.2 Performance with Frequency at a Re-entrant Cube

Although the combined field formulations are stable with respect to resonances,
their convergence will deteriorate when increasing the frequency. The use of
regularization is expected to improve the convergence, as explained in Sect. 2.3.
Here, we will test this on a re-entrant cube of unit dimension, meshed with an
oversampling of ten elements per wavelength.

grid=bempp.api.shapes.reentrant_cube(h=2*np.pi/(10*k))

The solution of the Burton-Miller formulation for k D 37 has been depicted in
Fig. 3. For this wavenumber, the size of the object measures ten wavelengths across
and 28,068 degrees of freedom are present.

The performance with respect to frequency of four different formulations
will be assessed with this test case: the Burton-Miller formulation (18), its
OSRC-preconditioned variant (25), the Brakhage-Werner formulation (21), and
its complex-wavenumber single-layer regularized variant (27). For the standard
Brakhage-Werner formulation we chooseR D 1=k as a resemblance to the Burton-
Miller formulation. As linear solver, the GMRES algorithm without restart is being
used. Both the number of iterations and the wall-clock time of the linear solver are
depicted in Fig. 4.

The experiment clearly shows that the use of regularization does have a big
impact on the performance of the linear solver. The OSRC preconditioner and
complex single-layer regularization both reduce the number of iterations consider-



Efficient BEM for High-Frequency Helmholtz Systems 235

Fig. 4 The GMRES convergence for different model formulations on a re-entrant cube

ably compared with the classical Burton-Miller and Brakhage-Werner formulations.
The reduction of number of iterations with the preconditioning strategies was not
achieved at the price of much computational overhead. More precisely, compared
to the classical formulations, the preconditioning results in an average overhead
of 1.6 and 1.8% per iteration for OSRC and complex single-layer regularization,
respectively. However, both require additional initial setup time. For the OSRC this
is the computation of sparse LU decompositions of the surface Helmholtz problems
and for the complex-single layer regularization it is the H -matrix assembly of
the compressed single-layer operator. For the presented examples, both are small
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compared to the assembly times of the other operators involved in the Burton-Miller
and Brakhage-Werner formulations.

6 HIFU Treatment

This section describes the application of the fast BEM techniques to a challenging
problem of importance in medical engineering. To reduce the health risks of open
surgery, clinicians are increasingly inclined to use modern non-invasive techniques,
such as High-Intensity Focused Ultrasound (HIFU) treatment. Computational meth-
ods have the potential to improve the patient-specific treatment planning. Here, we
will consider the case of transcostal HIFU, where the presence of the ribs has a
significant influence on the sound propagation. Since the computational model is
based on an exterior scattering problem, the BEM is perfectly suited as numerical
solution technique.

6.1 Application to a Realistic High-Frequency Problem
in HIFU Treatment

Surgery is the most effective local therapy for treating solid malignancies [18].
However, surgery to remove tumors in specific organs, such as the liver, still presents
considerable challenges [14], with prognoses for the patients remaining poor [46].
The significant negative side effects associated with surgical interventions have led
to an ongoing quest for safer, more efficient and better tolerated alternatives. In
recent years, there has been a notable shift away from open surgery towards less
invasive procedures, such as laparoscopic and robotic surgery, and also energy-
based methods for in situ tumor destruction. The latter include embolization,
radiofrequency, microwave and laser ablation, cryoablation and HIFU [18]. HIFU
is a medical procedure which uses high-amplitude ultrasound to heat and ablate
a localized region of tissue. Typically, the ultrasound is generated by a focused
transducer located outside the human body. As the ultrasound propagates through
tissue and at high acoustic intensities, absorption of the energy can induce local
tissue necrosis targeted within a well-defined volume without damaging the over-
lying tissue [44]. Currently, HIFU is the only non-ionizing intervention capable
of completely non-invasive ablation. The clinical acceptance of HIFU has grown
in recent years, leading to its FDA approval for treating uterine fibroids, prostate
cancer and for the palliative treatment of bone metastases.

Whilst the feasibility of HIFU for the treatment of cancer of the liver has been
demonstrated [19], there remain a number of significant challenges which currently
hinder its more widespread clinical application. The liver is located in the upper-
right portion of the abdominal cavity under the diaphragm and to the right of the
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stomach. When administering a HIFU treatment in view of destroying tumors of
the liver, the ultrasonic transducer is positioned outside the body and typically
coupled to the abdomen via a region of water. Rib bone, which both absorbs and
reflects ultrasound strongly, may therefore narrow the acoustic window between
the transducer and the tumor. Hence, a common side effect of focusing ultrasound
in regions located behind the rib cage is the overheating of bone and surrounding
tissue, which can lead to skin burns at the ribs [38]. Furthermore, the presence of
ribs can lead to aberrations at the focal region due to effects of diffraction [25].

One of the minimal technical specifications of a HIFU system for the treatment
of liver tumors should be to transmit energy either in between, below, or through
the ribs without damaging the ribs or causing a skin burn [45]. A means of
addressing this requirement is via a patient-specific treatment planning protocol
based on numerical simulations carried out using the patient’s anatomical data.
Such a protocol could provide a standardized framework by which HIFU may be
optimized to treat tumors of the liver without adverse effects. The role of numerical
models also extends to pre-clinical experiments on soft tissue and bone mimicking
phantoms. As there remain substantial metrological challenges when carrying out
such physical experiments, validated numerical models play a key role in planning
this work and interpreting its outcome.

6.2 Methodology

As the ultrasonic waves propagate from the surface of the transducer to the focal
region, they will encounterwater and soft tissue, including skin and fat, and rib bone,
before finally reaching the liver. Different soft tissue types tend to bear acoustic
properties similar to those of water. The speed of propagation of longitudinal waves
in these media is generally comparable, and is approximately 1500m s�1 [21]. The
same is true of the density [21], which is around 1000 kgm�3. Ribs however act
as strong scatterers, owing to their higher acoustic impedance relative to that of
soft tissue. A first step towards treating the problem of scattering of a HIFU field
by the rib cage is therefore to consider the ribs as being immersed in an infinite
homogeneousmediumwith acoustic properties representative of those of soft tissue.
The modeling of the scattering of the field of a HIFU array by human ribs can then
be considered as an exterior scattering problem. This can be efficiently treated using
the BEM [26]. The optimal transducer excitation frequency for HIFU of the liver
has been established to be around 1–1.5MHz. At frequencies below 1MHz, the
cavitation threshold in tissue decreases, thus creating the risk of unwanted cavitation
at pre-focal regions. At frequencies above 1.5MHz, since attenuation in soft tissue
is roughly proportional to frequency, the resulting focal intensities may be too
low to achieve tissue necrosis, particularly in the case of deep-seated tumors. For
transcostal HIFU, this implies that the wavelengths in soft tissue will be around
1.0–1.5mm. The computational domain being approximately 20 cm�20 cm�20 cm
reinforces the notion that it is advantageous to employ a computational method
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which does not rely on a volumetric mesh, which strengthens the case for using
the BEM.

The advent of multi-element array transducers driven by multi-channel electron-
ics offers significant advantages over concave single-element piezoelectric devices.
Multi-element transducers have the ability to compensate for tissue and bone
heterogeneities and to steer the beam electronically by adjusting the time delays
in each channel to produce constructive interference at the required location, thus
minimizing the requirement for mechanical repositioning of the transducer during
treatment. A pseudo-random arrangement of the circular planar elements on the
surface of the transducer is often opted for. This has been shown to minimize the
formation of side lobes when design constraints place a limit on the amount of
elements that can be used and on the spacing between these elements [24]. Figure 5
depicts a mesh of four ribs, together with a spherical section transducer array,
with 256 pseudo-randomly distributed elements. The array is positioned so that its
geometric focus is located at an intercostal space, approximately 3 cm deep into the
rib cage.

In order to address the scattering problem, a suitable description of the incident
acoustic field and its normal derivative on the surface of the ribs must be arrived at.
In the case of multi-element transducers, the incident acoustic pressure field is com-
monly modeled as a superposition of plane circular piston sources [24]. The spatial
component of the acoustic field of such a circular source may be represented by the
Rayleigh integral, which can be solved using numerical quadrature techniques [47].

Fig. 5 Position of ribs
relative to a HIFU array for
an intercostal treatment,
approximately 3 cm deep into
the rib cage
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6.3 Computational Results

In Sect. 6.2, it was proposed that, in first instance, a physical model for HIFU
treatment planning of the liver could be formulated as an exterior scattering
problem. The BEM is ideally suited to tackle such problems. The strict requirement
of frequencies in the MHz range necessitates the use of fast solution techniques,
such as operator preconditioning and matrix compression. Here, we will use
the OSRC-preconditioned Burton-Miller formulation with H -matrix compression
since this has experimentally proved to be the most effective technique.

The scattering object is given by a human rib cage model [25], consisting of
the four ribs closest to the liver. The ribs are rigid and immersed in an infinite
domain where the speed of sound is 1500m s�1, as is typical for water and soft
tissue. The ultrasound excitation is generated by a multi-element transducer array of
256 piston sources. The field generated by each element is modeled with a numerical
quadrature rule, resulting in a total of 38,144 point sources. The frequency of the
ultrasound field is 1MHz, which corresponds to a wave length of 1.5mm. The
diameter of the ribcage model is 20.3 cm, which makes it 135 times larger than
the wave length.

The surface mesh at the ribs consists of triangles with a maximum width of
0.18mm, thus representing each wavelength with at least 8 elements. The boundary
element space of continuous piecewise linear elements contains 479,124 degrees of
freedom. The experiment has been performed on a high-specification workstation of
eight quad-cores with a clock rate of 2.8GHz each. The shared memory is 264GB.

Standard values for the parameters in the OSRC-preconditioner have been used,
namely a size of 4 and a branch cut of �=3 for the Padé approximation. The GMRES
solver of SciPy has been used with a default termination criterion of 10�5 and
finished the solution in 19 iterations and 6:59min only.

The assembly of the dense matrices has been performed with H -matrix
compression with an �-value of 10�5, a maximum rank of 1000 and a maximum
block size of 100,000. The assembly of the boundary operators took 5 h and 16min.
Where the storage of dense matrices would have needed in excess of 7 TB memory,
the compressed matrices required 194GB only. The compression rates are 2.08 and
3.31% for the single-layer and hypersingular boundary operator, respectively.

The total field exterior to the rib cage was computed on a vertical plane and is
visualized in Fig. 6. The reflected waves are clearly visible, along with a shadow
region behind the ribs. The influence of the scattering on the focal region is not
significant in this configuration: the energy is still bundled in the desired region.
The realistic wave field for this challenging object confirms the capability of our
modern BEM implementation to simulate acoustic scattering at high frequencies.
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Fig. 6 The computational results of the HIFU model. At the surface the magnitude of the surface
potential ' D utotj� and on the exterior plane with x D 0 the magnitude of the total wave field
uinc C K ' D utot have been visualized

7 Discussion

In this chapter we have demonstrated efficient BEM formulations for exterior acous-
tic problems, their fast implementation using the open-source BEM++ library, and
performance results when applied to a realistic high-frequency problem. Modern
preconditioning strategies for the Burton-Miller formulation based on OSRC or
complex wavenumber single-layer boundary operators are highly effective and lead
to a small number of GMRES iterations for each right-hand side. Even though
the applicability of the BEM to large-scale simulations has been confirmed in this
chapter, there is still a need for faster computations. A goal is to incorporate the
BEM in an optimization routine for the configuration of HIFU transducer arrays.
This necessitates the solution of the BEM formulation for multiple right-hand-side
vectors. When such an implementation could be achieved effectively, this would
bring the BEM a step closer to actual application in a clinical environment.

Significant speed improvements are still possible with respect to the discretiza-
tion of the boundary operators. While the H -matrix based discretization described
in this chapter performs well for many Helmholtz problems, a direct improvement is
possible by moving towards H 2-matrix techniques. They allow for a considerable
memory reduction [8], but similar to H -matrices, they are not asymptotically
optimal at high frequencies.
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For problems with only few right-hand sides, high-frequencyFMMmethods [16,
30] are very efficient. Yet, they are less suited for problems with many right-hand
sides due to their often slower matrix-vector product. Wideband hierarchical matrix
techniques such as the one presented in [6] combine fast algebraic matrix-vector
products with asymptotic optimal complexity as k ! 1.

A potential improvement to the limitations at high-frequencies may be the
development of fast approximate direct solvers. While there has been considerable
progress for low-frequency problems (see e.g. [10]), the development of fast
approximate direct solvers that scale well as k ! 1 remains elusive. The
most promising approach may be based on butterfly compression techniques. A
butterfly recompression scheme for an approximateH -matrix LU decomposition is
described in [31]. The results in this paper are impressive but still require an initial
compression using standardH -matrices.

While there is a wealth of software available for finite element discretizations
there are still few open-source packages for boundary element problems. The
BEM++ library is continuously being developed and aims to integrate modern
technologies as they become relevant for practical applications. We have given
a demonstration of BEM++ in this chapter. Many more example applications
including Maxwell problems are described at the website www.bempp.org.
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