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1 Introduction

For a “good” topological space X, say, a union of cells in a finite CW-complex or
a quasi-projective complex analytic variety, the Euler characteristic �.X/, defined
as the alternating sum of the dimensions of the cohomology groups with compact
support, is an additive invariant. In [17], I.G. Macdonald derived a formula for
the Poincaré polynomial of a symmetric product. For the Euler characteristic, this
formula gives the following. Let SnX D Xn=Sn be the nth symmetric power of the
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space X. Then one has [17]

1C
1X

nD1
�.SnX/tn D .1 � t/��.X/ :

We can interpret this formula as a formula for an invariant (here the Euler
characteristic) expressing the generating series of the values of the invariant for the
symmetric powers of a space as a series not depending on the space (here simply
.1� t/�1) with an exponent which is equal to the value of the invariant for the space
itself. We call such an equation a Macdonald-type equation. In [12], formulae of
this type were considered for some generalizations of the Euler characteristic (with
values in certain rings). If the ring of values is not a number ring (Z, Q, R or C),
to formulate these equations, one needs to use so-called power structures over the
rings [10] which can be defined through (pre-)�-ring structures on them.

Here we consider other generalizations of these formulas. We consider another
additive invariant which is finer than the Euler characteristic: the (Hodge) spectrum.
The (Hodge) spectrum was first defined in [20, 21] for a germ of a holomorphic
function on .Cn; 0/ with an isolated critical point at the origin. It can also be
defined for a pair .V; '/, where V is a complex quasi-projective variety and ' is an
automorphism of V of finite order: [5]. (The spectrum of a germ of a holomorphic
function is essentially the spectrum of its motivic Milnor fibre defined in [5].)

Traditionally the spectrum is defined as a finite collection of rational numbers
with integer multiplicities (possibly negative ones) and therefore as an element
of the group ring ZŒQ� of the group Q of rational numbers. Let KZ

0 .VarC/ be the
Grothendieck group of pairs .V; '/, where V is a quasi-projective variety and ' is an
automorphism of V of finite order (with the addition defined by the disjoint union).
The group KZ

0 .VarC/ is a ring with the multiplication defined by the Cartesian
product of varieties and with the automorphism defined by the diagonal action. The
Euler characteristic can be interpreted as a ring homomorphism from KZ

0 .VarC/ to
the ring of integers Z. The spectrum can be regarded as a sort of generalized Euler
characteristic. (The spectrum of a pair .V; '/ determines the Euler characteristic of
V in a natural way.) Namely, it can be viewed as a group homomorphism from
KZ

0 .VarC/ to the group ring ZŒQ�, but it is not a ring homomorphism. Rational
numbers (i.e., elements of the group Q) are in one-to-one correspondence with the
elements of the group .Q=Z/ � Z: r  ! .frg; Œr�/, where frg is the fractional
part of the rational number r and Œr� is its integer part. In this way, the group rings
ZŒQ� and ZŒ.Q=Z/ � Z� can be identified as abelian groups. (The isomorphism is
not a ring homomorphism!) This permits to consider the spectrum as an element of
the group ring ZŒ.Q=Z/ � Z�. Moreover, the corresponding map from KZ

0 .VarC/ to
ZŒ.Q=Z/ � Z� is a ring homomorphism.

The group ring ZŒA � of an abelian group A has a natural �-structure. We use
this fact to show that the spectrum of a pair .V; '/ as an element of ZŒ.Q=Z/ � Z�

also satisfies a Macdonald-type equation.
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For a quasi-projective variety with an action of a finite group, one has the
orbifold Euler characteristic defined in [7, 8] (see also [1, 14]) and the higher-
order Euler characteristics defined in [1, 3]. These notions can be extended to some
generalizations of the Euler characteristic.

For a complex quasi-projective manifold V with an action of a finite group G and
with a G-equivariant automorphism ' of finite order, one can define the notion of an
orbifold spectrum as an element of the group ringZŒQ�: [9]. This spectrum takes into
account not only the logarithms of the eigenvalues of the action of the transformation
' on the cohomology groups but also the so-called ages of elements of G at their
fixed points (both being rational numbers). Algebraic manipulations with these two
summands are different. The first ones behave as elements of Q=Z, whereas the
second ones as elements of Q. This explains why the existence of a Macdonald-
type equation for this spectrum is not clear. However, if one considers the “usual”
Hodge spectrum as an element of the group ring ZŒ.Q=Z/ � Z� and applies the
orbifold approach to the summand Z (thus, substituting it by Q), one gets a version
of the orbifold spectrum with values in the group ring ZŒ.Q=Z/ � Q� permitting
a Macdonald-type equation. This version of the orbifold spectrum determines the
one from [9] in a natural way. Moreover, taking into account the weight filtration
as well, one can consider a refinement of this notion with values in the group ring
ZŒ.Q=Z/ � Q � Q�. The last notion is equivalent to the notion of the equivariant
orbifold Hodge–Deligne polynomial.

Applying the traditional method to define higher-order Euler characteristics
through the orbifold one to the described notions, we define higher-order spectra of
a triple .V;G; '/ with a quasi-projective G-manifold V , some of their refinements,
and give Macdonald-type equations for them.

2 �-Structure on the Group Ring of an Abelian Group

Let A be an abelian group (with the sum as the group operation) and let ZŒA � be
the group ring of A . The elements of ZŒA � are finite sums of the form

P
a2A

kafag
with ka 2 Z. (We use the curly brackets in order to avoid ambiguity when A is a
subgroup of the group R of real numbers: Z or Q.) The ring operations on ZŒA �

are defined by
P

k0
afag C

P
k00

a fag D
P
.k0

a C k00
a /fag, .

P
k0

afag/.
P

k00
a fag/ DP

a;b2A
.k0

a � k00
b /faC bg.

Let R be a commutative ring with a unit. A �-ring structure on R (sometimes
called a pre-�-ring structure; see, e.g., [16]) is an “additive-to-multiplicative”
homomorphism� W R! 1CT �RŒŒT�� (a 7! �a.T/) such that �a.T/ D 1CaTC : : :.
This means that �aCb.T/ D �a.T/ � �b.T/ for a; b 2 R.

The notion of a �-ring structure is closely related to the notion of a power
structure defined in [10]. Sometimes a power structure has its own good description
which permits to use it, e.g., for obtaining formulae for generating series of some
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invariants. A power structure over a ringR is a map .1CT �RŒŒT��/�R ! 1CT �RŒŒT��,
.A.T/;m/ 7! .A.T//m (A.t/ D 1 C a1T C a2T2 C : : :, ai 2 R, m 2 R) possessing
all the basic properties of the exponential function: see [10]. A �-structure on a ring
defines a power structure over it. On the other hand, there are, in general, many
�-structures on a ring corresponding to one power structure over it.

The group ring ZŒA � of an abelian group A can be considered as a �-ring. The
�-ring structure on ZŒA � is natural and must be well known. However, we have
not found its description in the literature. Therefore, we give here a definition of a
�-structure on the ring ZŒA �. (A similar construction was discussed in [11] for the
ring of formal “power” series over a semigroup with certain finiteness properties.)

The group ring ZŒA � can be regarded as the Grothendieck ring of the group
semiring SŒA � of maps of finite sets to the group A . Elements of SŒA � are the
equivalence classes of the pairs .X;  / consisting of a finite set X and a map
 W X ! A . (Two pairs .X1;  1/ and .X2;  2/ are equivalent if there exists a
bijective map � W X1 ! X2 such that  2 ı � D  1.) The group ring ZŒA � is
the Grothendieck ring of the semiring SŒA �. Elements of the ring ZŒA � are the
equivalence classes of maps of finite virtual sets (i.e., formal differences of sets) to
A . For a pair .X;  / representing an element a of the semiring SŒA �, let its nth
symmetric power Sn.X;  / be the pair .SnX;  .n// consisting of the nth symmetric
power SnX D Xn=Sn of the set X and of the map  .n/ W SnX ! A defined by

 .n/.x1; : : : ; xn/ D
nP

iD1
 .xi/. One can easily see that the series

�a.T/ D 1C ŒS1.X;  /�T C ŒS2.X;  /�T2 C ŒS3.X;  /�T3 C : : :

defines a �-structure on the ring ZŒA � (or rather a �-structure on the semiring SŒA �

extendable to a �-structure on ZŒA � in a natural way).
The power structure over the ring ZŒA � corresponding to this �-structure can be

described in the following way. Let A.T/ D 1 C a1T C a2T2 C : : :, where ai D
Œ.Xi;  i/�, m D Œ.M;  /� with finite sets Xi and M (thus, ai and m being actually
elements of the semiring SŒA �). Then

.A.T//m D 1C
1X

nD1

0

@
X

fnigWP iniDn

" 
..M

P
i ni n�/ �

Y

i

Xni
i / =

Y

i

Sni ;  fnig

!#1

A�Tn ;

where � is the big diagonal in M
P

i ni (consisting of .
P

ni/-tuples of points of M
with at least two coinciding ones), the group

Q
i Sni acts on .M

P
i ni n �/ �Qi Xni

i

by permuting simultaneously the factors in M
P

i ni D Q
i Mni and in

Q
i Xni

i , and the
map  fnig W ..M

P
i ni n�/ �Qi Xni

i /=
Q

i Sni ! A is defined by

 fnig.fyj
ig; fxj

ig/ D
X

i

.i �  .yj
i/C  i.x

j
i// ;



Higher-Order Spectra 101

where yj
i and xj

i, j D 1; : : : ; ni, are the jth components of the point in Mni and in Xni
i

respectively (cf. [10, Eq. (1)]); a similar construction for the Grothendieck ring of
quasi-projective varieties with maps to an abelian manifold was introduced in [18].

The ring RŒz1; : : : ; zn� of polynomials in z1; : : : ; zn with the coefficients from
a �-ring R carries a natural �-structure: see, e.g., [16]. The same holds for the
ring RŒz1=m

1 ; : : : ; z1=m
n � of fractional power polynomials in z1; : : : ; zn. In terms of the

corresponding power structure, one can write

.1 � T/�
P

k akzk D
Y

k

�ak .z
kT/ ;

where z D .z1; : : : ; zn/, k D .k1; : : : ; kn/, zk D zk1
1 � : : : � zkn

n .
The ring R.G/ of representations of a group G is regarded as a �-ring with the

�-structure defined by

�Œ!�.T/ D 1C Œ!�t C ŒS2!�T2 C ŒS3!�T3 C : : : ;

where ! is a representation of G and Sn! is its nth symmetric power.

3 The Spectrum and the Equivariant Hodge–Deligne
Polynomial

Let V be a complex quasi-projective variety with an automorphism ' of finite order.
For a rational ˛, 0 � ˛ < 1, let Hk

˛.V/ be the subspace of Hk.V/ D Hk
c.VIC/ (the

cohomology group with compact support) consisting of the eigenvectors of '� with
the eigenvalue eŒ˛� WD exp .2�˛i/. The subspace Hk

˛.V/ carries a natural complex
mixed Hodge structure.

Definition 1 (See, e.g., [5]) The (Hodge) spectrum hsp.V; '/ of the pair .V; '/ is
defined by

hsp.V; '/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q � fpC ˛g 2 ZŒQ� :

The spectrum hsp.V; '/ can be identified either with the fractional power
polynomial (Poincaré polynomial)

p.V;'/.t/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q � tpC˛ 2 ZŒt1=m�
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or with the equivariant Poincaré polynomial

e.V;'/.t/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q!eŒ˛� � tp 2 Rf .Z/Œt� ;

where Rf .Z/ is the ring of finite order representations of the cyclic group Z and
!eŒ˛� is the one-dimensional representation of Z with the character equal to eŒ˛�
at 1. Both rings ZŒt1=m� and Rf .Z/Œt� carry natural �-structures and thus power
structures. However, the natural power structure over ZŒt1=m� is not compatible with
the multiplication of spaces: the map

p� W KZ

0 .VarC/! ZŒt1=m�

is not a ring homomorphism. Therefore, a natural Macdonald-type equation for the
spectrum is formulated in terms of the equivariant Poincaré polynomial e.V;'/.t/.
Moreover, a stronger statement can be formulated in terms of the equivariant
Hodge–Deligne polynomial of the pair .V; '/.

Definition 2 ([6], see also [19]) The equivariant Hodge–Deligne polynomial of the
pair .V; '/ is

e.V;'/.u; v/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q!eŒ˛� � upvq 2 Rf .Z/Œu; v� ;

One has e.V;'/.t/ D e.V;'/.t; 1/.
Let SnV be the nth symmetric power of the variety V . The transformation ' W

V ! V defines a transformation '.n/ W SnV ! SnV in a natural way.

Theorem 1 One has

1C e.V;'/.u; v/TC e.S2V;'.2//.u; v/T
2C e.S3V;'.3//.u; v/T

3C : : : D .1�T/�e.V ;'/.u;v/ ;

(1)

where the RHS of (1) is understood in terms of the power structure over the ring
Rf .Z/Œu; v�.

The proof is essentially contained in [4] where J. Cheah proved an analogue
of (1) for the usual (non-equivariant) Hodge–Deligne polynomial. Theorem 1 can
be deduced from the arguments of Cheah [4] by taking care of different eigenspaces.

Theorem 1 means that the natural map e� from KZ

0 .VarC/ to Rf .Z/Œu; v� is a �-
ring homomorphism.

Corollary 1 One has

1C e.V;'/.t/T C e.S2V;'.2//.t/T
2 C e.S3V;'.3//.t/T

3 C : : : D .1 � T/�e.V ;'/.t/ ; (2)

where the RHS of (2) is understood in terms of the power structure over the ring
Rf .Z/Œt�.
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4 The Orbifold Spectrum and the Equivariant Orbifold
Hodge–Deligne Polynomial

Let X be a topological G-space and G a finite group. Let G� be the set of conjugacy
classes of elements of G. For an element g 2 G, let Xhgi D fx 2 X W gx D xg be the
fixed point set of g, and let CG.g/ D fh 2 G W h�1gh D gg � G be the centralizer of
g. The group CG.g/ acts on the fixed point set Xhgi. The orbifold Euler characteristic
�orb.X;G/ can be defined by

�orb.X;G/ D
X

Œg�2G�

�.Xhgi=CG.g// :

Refinements of this notion taking into account the mixed Hodge structure on the
cohomology groups use the so-called ages of elements of the group as shifts of the
corresponding graded components of the mixed Hodge structure (see, e.g., [2, 22]).

Let V be a complex quasi-projective manifold of dimension d with an action of
a finite group G and with a G-equivariant automorphism ' of finite order. One can
say that the notion of the orbifold spectrum of the triple .V;G; '/ is inspired by the
notion of the orbifold Hodge–Deligne polynomial: [2].

Let G�, Vhgi and CG.g/ be defined as above. The group CG.g/ acts on the fixed
point set Vhgi. Let O' be the transformation of the quotient Vhgi=CG.g/ induced by
'. For a point x 2 Vhgi, the age of g (or fermion shift number) is defined in the
following way [15, Sect. 2.1], [23, Eq. (3.17)]. The element g acts on the tangent
space TxV as a complex linear operator of finite order. It can be represented by a
diagonal matrix with the diagonal entries eŒˇ1�, . . . , eŒˇd�, where 0 � ˇi < 1 for
i D 1; : : : ; d and eŒr� WD exp .2�ir/ for a real number r. The age of the element g

at the point x is defined by agex.g/ D
dP

iD1
ˇi 2 Q�0. For a rational number ˇ � 0,

let Vhgi
ˇ be the subspace of the fixed point set Vhgi consisting of the points x with

agex.g/ D ˇ. (The subspace Vhgi
ˇ of Vhgi is a union of connected components of the

latter one.)

Definition 3 (cf. [9]) The orbifold spectrum of the triple .V;G; '/ is

hsporb.V;G; '/ D
X

Œg�2G�

X

ˇ2Q�0

hsp.Vhgi
ˇ =CG.g/; O'/ � fˇg 2 ZŒQ� :

As above the spectrum hsporb.V;G; '/ can be identified with the orbifold
Poincaré polynomial

porb
.V;G;'/.t/ D

X

Œg�2G�

X

ˇ2Q�0

p
.V

hgi

ˇ =CG.g/; O'/.t/ � t
ˇ 2 ZŒt1=m� :
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It can be regarded as a reduction of the equivariant orbifold Poincaré polynomial

eorb.V;G;'/.t/ D
X

Œg�2G�

X

ˇ2Q�0

e
.V

hgi

ˇ =CG.g/; O'/.t/ � t
ˇ 2 Rf .Z/Œt

1=m�

or of the equivariant orbifold Hodge–Deligne polynomial

eorb.V;'/.u; v/ D
X

k;p;q;˛;Œg�;ˇ

.�1/k dim.Hk
˛.V

hgi
ˇ =CG.g///

p;q!eŒ˛� � upvq.uv/ˇ

(an element of Rf .Z/Œu; v�Œ.uv/1=m�).
As it was explained above, the presence of (rational) summands of different

nature—elements of the quotient Q=Z and elements of Q itself—leads to the
situation when the existence of aMacdonald-type equation for the orbifold spectrum
(and for the orbifold Poincaré polynomial) is doubtful. On the other hand, there exist
Macdonald-type equations for the equivariant orbifold Poincaré polynomial and for
the equivariant orbifold Hodge–Deligne polynomial (see Sect. 5). This inspires the
definition of the corresponding version of the orbifold spectrum.

Definition 4 The orbifold pair spectrum hsporb2 .V;G; '/ of .V;G; '/ is

X

Œg�2G�

X

ˇ2Q�0

X

k;p;q;˛

.�1/k dim.Hk
˛.V

hgi
ˇ =CG.g/; O'//p;qf.˛; pC ˇ/g 2 ZŒ.Q=Z/ �Q� :

The word pair is used, in particular, to distinguish this notion from the one
defined in [9]. Moreover, taking into account the weight filtration as well, one gets
a certain refinement of this notion.

Definition 5 The orbifold triple spectrum hsporb3 .V;G; '/ of .V;G; '/ is

X

Œg�2G�

X

ˇ2Q�0

X

k;p;q;˛

.�1/k dim.Hk
˛.V

hgi
ˇ =CG.g/; O'//p;qf.˛; pC ˇ; qC ˇ/g

(an element of ZŒ.Q=Z/ �Q �Q�).

5 Higher-Order Spectrum and Equivariant Hodge–Deligne
Polynomial

The notions of the higher-order spectrum of a triple .V;G; '/ and of the higher-
order equivariant Hodge–Deligne polynomial of it are inspired by the notions
of the higher-order Euler characteristic [1, 3] and of the corresponding higher-
order generalized Euler characteristic [12]. For a topological G-space X, the Euler
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characteristic � of order k can be defined by

�.k/.X;G/ D
X

Œg�2G�

�.k�1/.Xhgi;CG.g// ;

where �.0/.X;G/ WD �.X=G/ (see the notations in Sect. 4). One can see that
�.1/.X;G/ WD �orb.X;G/. As for the orbifold Euler characteristic (i.e., for the Euler
characteristic of order 1), refinements of these notions taking into account the mixed
Hodge structure should use the age shift.

Let .V;G; '/, Vhgi
ˇ and O' be as in Sect. 4 and let k � 1.

Definition 6 The spectrum of order k of the triple .V;G; '/ is

hsp.k/.V;G; '/ D
X

Œg�2G�

X

ˇ2Q�0

hsp.k�1/.Vhgi
ˇ ;CG.g/; '/ � fˇg 2 ZŒQ� ;

where hsp.0/.V;G; '/ WD hsp.V=G; O'/.
The orbifold spectrum is the spectrum of order 1.
Like above the spectrum of order k can be described by the corresponding order

k Poincaré polynomial:

p.k/.V;G;'/.t/ D
X

Œg�2G�

X

ˇ2Q�0

p.k�1/
.V

hgi

ˇ ;CG.g/;'/
.t/ � tˇ 2 ZŒt1=m� ;

where p.1/� .t/ WD porb� .t/.
It can be regarded as a reduction of the equivariant order k Poincaré polynomial

e.k/.V;G;'/.t/ D
X

Œg�2G�

X

ˇ2Q�0

e.k�1/
.V

hgi

ˇ ;CG.g/;'/
.t/ � tˇ 2 Rf .Z/Œt

1=m�

or of the equivariant order k Hodge–Deligne polynomial

e.k/.V;G;'/.u; v/ D
X

Œg�2G�

X

ˇ2Q�0

e.k�1/
.V

hgi

ˇ ;CG.g/;'/
.u; v/.uv/ˇ 2 Rf .Z/Œu; v�Œ.uv/

1=m� :

The following definition is an analogue of the definition of the orbifold pair and
triple spectra in Sect. 4.

Definition 7 The pair spectrum of order k of .V;G; '/ is

hsp.k/2 .V;G; '/ D
X

Œg�2G�

X

ˇ2Q�0

hsp.k�1/
2 .Vhgi

ˇ ;CG.g/; '/f.0; ˇ/g 2 ZŒ.Q=Z/ �Q� :
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The triple spectrum of order k of .V;G; '/ is

hsp.k/3 .V;G; '/

D
X

Œg�2G�

X

ˇ2Q�0

hsp.k�1/
3 .Vhgi

ˇ ;CG.g/; '/f.0; ˇ; ˇ/g 2 ZŒ.Q=Z/ �Q �Q� :

The following statement is a Macdonald-type equation for the equivariant order
k Hodge–Deligne polynomial. For n � 1, the Cartesian power Vn of the manifold
V is endowed with the natural action of the wreath product Gn D G o Sn D Gn Ì
Sn generated by the componentwise action of the Cartesian power Gn and by the
natural action of the symmetric group Sn (permuting the factors). Also one has the
automorphism '.n/ of Vn induced by '. The triple .Vn;Gn; '

.n// should be regarded
as an analogue of the symmetric power of the triple .V;G; '/.

Example 1 Let f .z1; : : : ; zn/ be a quasi-homogeneous function with the quasi-
weights q1, . . . , qn (and with the quasi-degree 1), and let G � GL.n;C/ be a finite
group of its symmetries (f .gz/ D f .z/ for g 2 G). The Milnor fiber Mf D ff D 1g
of f is an .n � 1/-dimensional complex manifold with an action of a group G and
with a natural finite-order automorphism ' (the monodromy transformation or the
exponential grading operator):

'.z1; : : : ; zn/ D .eŒq1�z1; : : : ; eŒqn�zn/ :

For s � 1, let Cns D .Cn/s be the affine space with the coordinates z.j/i , 1 �
i � n, 1 � j � s. The system of equations f .z.j/1 ; : : : ; z

.j/
n / D 0, j D 1; : : : ; s,

defines a complete intersection in C
ns. Its Milnor fiber M D ff .z.j/1 ; : : : ; z.j/n / D

1; for j D 1; : : : ; sg is the sth Cartesian power of the Milnor fiber Mf of f and has a
natural action of the wreath product Gs. The spectrum of a complete intersection
singularity is defined by a choice of a monodromy transformation. A natural
monodromy transformation on M is the sth Cartesian power '.s/ of the monodromy
transformation '. Thus, the triple .M;Gs; '

.s// can be regarded as an analogue of
the sth symmetric power of the triple .Mf ;G; '/.

Theorem 2 Let V be a (smooth) quasi-projective G-manifold of dimension d with
a G-equivariant automorphism ' of finite order. One has

1 C
1X

nD1
e.k/
.Vn;Gn;'.n//

.u; v/ � Tn

D
0

@
Y

r1;:::;rk�1

�
1 � .uv/.r1r2���rk/d=2 � Tr1r2���rk

�r2r23 ���rk�1
k

1

A
�e

.k/

.V ;G;'/.u;v/

; (3)

where the RHS of (3) is understood in terms of the power structure over the ring
Rf .Z/Œu; v�Œ.uv/1=m�.
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Proof In [13], there were defined equivariant generalized higher-order Euler char-
acteristics of a complex quasi-projective manifold with commuting actions of two
finite groups GO and GB as elements of the extension KGB

0 .VarC/ŒL
1=m� of the

Grothendieck ring KGB
0 .VarC/ of complex quasi-projective GB-varieties (L is the

class of the complex affine line with the trivial action), and there were given
Macdonald-type equations for them: [13, Theorem 2]. One can see that these
definitions and the Macdonald-type equations can be applied when instead of an
action of a finite group GB, one has a finite order action of the cyclic group Z.
The equivariant order k Hodge–Deligne polynomial is the image of the equivariant
generalized Euler characteristic of order k under the map KZ

0 .VarC/ŒL
1=m� !

Rf .Z/Œu; v�Œ.uv/1=m�. Since this map is a �-ring homomorphism (Theorem 1), the
Macdonald-type equation for the equivariant generalized Euler characteristic of
order k implies (3).

Corollary 2 In the situation described above, one has

1C
1X

nD1
hsp.k/� .V

n;Gn; '
.n// � Tn

D
0

@
Y

r1;:::;rk�1

�
1 � a.�/r1;:::;rk

Tr1r2���rk
�r2r23 ���rk�1

k

1

A
�hsp

.k/
� .V;G;'/

;

where � D 2; 3,

a.2/r1;:::;rk
D f.0; .r1r2 � � � rk/d=2/g;

a.3/r1;:::;rk
D f.0; .r1r2 � � � rk/d=2; .r1r2 � � � rk/d=2/g;

and the RHS is understood in terms of the power structures over the group rings
ZŒ.Q=Z/ �Q� for � D 2 and ZŒ.Q=Z/ �Q �Q� for � D 3.
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