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Abstract We introduce enumerative invariants of real del Pezzo surfaces that count
real rational curves belonging to a given divisor class, passing through a generic
conjugation-invariant configuration of points and satisfying preassigned tangency
conditions to given smooth arcs centered at the fixed points. The counted curves
are equipped with Welschinger-type signs. We prove that such a count does not
depend neither on the choice of the point-arc configuration nor on the variation of
the ambient real surface. These invariants can be regarded as a real counterpart of
(complex) descendant invariants.
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1 Introduction

Welschinger invariants of real rational symplectic manifolds [17–19, 21] serve as
genus zero open Gromov–Witten invariants. In dimension four and in the algebraic-
geometric setting, they are well defined for real del Pezzo surfaces (cf. [12]), and
they count real rational curves in a given divisor class passing through a generic
conjugation-invariant configuration of points and are equipped with weights ˙1. An
important outcome of Welschinger’s theory is that, whenever Welschinger invariant
does not vanish, there exists a real rational curve of a given divisor class matching
an appropriate number of arbitrary generic conjugation-invariant constraints.
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There are several extensions of the originalWelschinger invariants: modifications
for multicomponent real del Pezzo surfaces [9, 12], mixed and relative invariants
[10, 20] (R. Rasdeaconu and J Solomon, Relative open Gromov–Witten invariants,
unpublished), invariants of positive genus for multicomponent real del Pezzo
surfaces [15], and for P2kC1, k � 1 [4, 5]. The goal of this paper is to introduce
Welschinger-type invariants for real del Pezzo surfaces, which count real rational
curves passing through some fixed points and tangent to fixed smooth arcs centered
at the fixed points. They can be viewed as a real counterpart of certain descendant
invariants (cf. [6]).

The main result of this note is Theorem 1 in Sect. 2, which states the existence
of invariants independent of the choice of constraints and of the variation of the
surface. Our approach in general is similar to that in [12], and it consists in the study
of codimension one bifurcations of the set of curves subject to imposed constraints
when one varies either the constraints or the real and complex structure of the
surface. In Sect. 5, we show a few simple examples. The computational aspect and
quantitative properties of the invariants will be treated in a forthcoming paper.

2 Invariants

Let X be a real del Pezzo surface with a nonempty real point set RX and F � RX
a connected component. Pick a conjugation-invariant class ' 2 H2.X n FIZ=2/.
Denote by PicRC.X/ � Pic.X/ the subgroup of real effective divisor classes. Pick a
nonzero class D 2 PicR.X/, which is F-compatible in the sense of [11, Sect. 5.2].
Observe that any real rational (irreducible) curve C 2 jDj has a one-dimensional
real branch (see, e.g., [12, Sect. 1.2]), and hence we can define CC;C�, the images
of the components of P1 n RP

1 by the normalization map.
Given a smooth (complex) algebraic variety †, a point z 2 †, and a positive

integer s, the space of s-arcs in † at z is

Arcs.†; z/ D Hom.SpecCŒt�=.tsC1/; .†; z//=Aut.CŒt�=.tsC1// :

Denote by Arcsms .†; z/ � Arcs.†; z/ the (open) subset consisting of smooth s-arcs,
i.e., of those which are represented by an embedding .C; 0/ ! .†; z/.

Choose two collections of positive integers k D fki; 1 � i � rg and l D flj; 1 �
j � mg, where r;m � 0 and

rX

iD1

ki C 2

mX

jD1

lj D �DKX � 1 ; (1)
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and all k1; : : : ; kr are odd. Pick distinct points z1; : : : ; zr 2 F and real arcs ˛i 2
Arcsmki .X; zi/, 1 � i � r, and also distinct points w1; : : : ;wm 2 X n RX and arcs
ˇj 2 Arcsmlj .X;wj/. Denote z D .z1; : : : ; zr/, w D .w1;w1; : : : ;wm;wm/ and

A D .˛1; : : : ; ˛r/ 2
rY

iD1

Arcsmki .X; zi/ ; (2)

B D .ˇ1; ˇ1; : : : ; ˇm; ˇm/ 2
mY

jD1

�
Arcsmlj .X;wj/ � Arcsmlj .X;wj/

�
: (3)

In the moduli space M0;rC2m.X;D/ of stable maps of rational curves with r C 2m
marked points, we consider the subsetM0;rC2m.X;D; .k; l/; .z;w/; .A ;B// consist-
ing of the elements Œn W P1 ! X; p�, p D . p1; : : : ; pr; q1; : : : ; qm; q0

1; : : : ; q0
m/ � P

1,
such that

n� �[
A [

[
B

�
�

rX

iD1

kipi C
mX

jD1

lj.qj C q0
j/ :

Let M im;R
0;rC2m.X;D; .k; l/; .z;w/; .A ;B// � M0;rC2m.X;D; .k; l/; .z;w/; .A ;B//

be the set of elements Œn W P
1 ! X; p� such that n is a conjugation-invariant

immersion, the points p1; : : : ; pr 2 P
1 are real, and qj; q0

j 2 P
1 are complex

conjugate, j D 1; : : : ;m. For a generic choice of point sequences z and w,
and arc sequences A and B in the arc spaces indicated in (2) and (3), the set
M im;R

0;rC2m.X;D; .k; l/; .z;w/; .A ;B// is finite (cf. Proposition 1(1) below).

Given an element � D Œn W P1 ! X; p� 2 M im;R
0;rC2m.X;D; .k; l/; .z;w/; .A ;B//,

denote C D n.P1/ and define theWelschinger sign of � by (cf. [12, Formula (1)])

W'.�/ D .�1/CCı C�CCCı ' :

Notice that, if C is nodal, then CC ı C� has the same parity as the number of real
solitary nodes of C (i.e., nodes locally equivalent to x2 C y2 D 0).

Finally, put

W.X;D;F; '; .k; l/; .z;w/; .A ;B// D
X

�2M im;R
0;rC2m.X;D;.k;l/;.z;w/;.A ;B//

W'.�/ : (4)

Theorem 1

(1) Let X be a real del Pezzo surface with RX ¤ ;, F � RX a connected
component, ' 2 H2.X n F;Z=2/ a conjugation-invariant class, D 2 PicRC.X/

a nef and big, F-compatible divisor class, k D .k1; : : : ; kr/ a (possibly empty)
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sequence of positive odd integers such that

maxfk1; : : : ; krg � 3 ; (5)

and l D .l1; : : : ; lm/ a (possibly empty) sequence of positive integers
satisfying (1), z D .z1; : : : ; zr/ a sequence of distinct points of F,
w D .w1; : : : ;wm;w1; : : : ;wm/ a sequence of distinct points of X n RX,
and, at last, A , B are arc sequences as in (2), (3). Then the number
W.X;D;F; '; .k; l/; .z;w/; .A ;B// does not depend neither on the choice
of generic point configuration z, w nor on the choice of arc sequences A , B
subject to conditions indicated above.

(2) If tuples .X;D;F; '/ and .X0;D0;F0; ' 0/ are deformation equivalent so that X
and X0 are joined by a flat family of real smooth rational surfaces, then we have
(omitting .z;w/ and .A ;B/ in the notation)

W.X;D;F; '; .k; l// D W.X0;D0;F0; ' 0; .k; l// :

Remark 1

(1) If ki D lj D 1 for all 1 � i � r, 1 � j � m, then we obtain original Welschinger
invariants in their modified form [9], and hence the required statement follows
from [12, Proposition 4 and Theorem 6]. This, in particular, yields that we have
to consider the only case �DKX � 1 � 3.

(2) In general, one cannot impose even tangency conditions at real points z1; : : : ; zr .
Indeed, suppose that r � 1 and k1 D 2s is even. Suppose that �DKX � 1 � 2s
and pa.D/ D .D2 CDKX/=2C1 � s. In the linear system jDj, the curves, which
intersect the arc A1 at z1 with multiplicity � s and have at least s nodes, form a
subfamily of codimension 3s. On the other hand, the family of curves, having
singularity A2s at z1 and .s�1/ additional infinitely near to z1 points lying on the
arc ˛1, has codimension 3sC1, and it lies in the boundary of the former family.
Over the reals, this wall-crossing results in the change of the Welschinger sign
of the curve that undergoes the corresponding bifurcation. Indeed, take local
coordinates x; y such that z1 D .0; 0/ and ˛1 D fy D 0g, and consider the
family of curves

y D t2s; x D "t C t2 C t3; " 2 .R; 0/ :

For " D 0, the curve has singularity A2s at z1 and its next .s � 1/ infinitely near
to z1 points belong to ˛1. In turn, for " ¤ 0, the node, corresponding to the
values t D ˙p�", is solitary as " > 0 and non-solitary as " < 0, whereas the
remaining .s � 1/ nodes stay imaginary or solitary.

Conjecture 1 Theorem 1 is valid without restriction (5).

The proof of Theorem 1 in general follows the lines of [12], where we
verify the constancy of the introduced enumerative numbers in one-dimensional
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families of constraints and families of surfaces. The former verification requires a
classification of codimension one degenerations of the curves in count, while the
latter verification is based on a suitable analogue of the Abramovich–Bertram–
Vakil formula [1, 16]. Restriction (5) results from the lack of our understanding
of nonreduced degenerations of the counted curves.

3 Degeneration and Deformation of Curves on Complex
Rational Surfaces

3.1 Auxiliary Miscellanies

(1) Tropical limit. For the reader’s convenience, we shortly remind what is the
tropical limit in the sense of [14, Sect. 2.3], whichwill be used below. In the field
of complex Puiseux series Cfftgg, we consider the non-Archimedean valuation
val.

P
a cat

a/ D �minfa W ca ¤ 0g. Given a polynomial (or a power series)
F.x; y/ D P

.i;j/2� cijxiyj over Cfftgg with Newton polygon �, its tropical limit
consists of the following data:

• A convex piecewise linear function NF W � ! R, whose graph is the lower
part of the polytope Convf.i; j; �val.cij// W .i; j/ 2 �g, the subdivision SF
of � into linearity domains of NF , and the tropical curve TF, the closure of
val.F D 0/;

• Limit polynomials (power series) Fı
ini.x; y/ D P

.i;j/2ı c
0
ijx

iy j, defined for any

face ı of the subdivision SF, where cij D tNF.i;j/.c0
ijCO.t>0// for all .i; j/ 2 �.

(2) Rational curves with Newton triangles.

Lemma 1

(1) For any integer k � 1, there are exactly k polynomials F.x; y/ D P
i;j cijx

iyj

with Newton triangle T D Convf.0; 0/; .0; 2/; .k; 1/g, whose coefficients
c00; c01; c02; c11 are given generic nonzero constants and which define plane
rational curves. Furthermore, in the space of polynomials with Newton triangle
T, the family of polynomials defining rational curves intersects transversally
with the linear subspace given by assigning generic nonzero constant values
to the coefficients c00; c01; c02; c11. If the coefficients c00; c01; c02; c11 are real,
then,

• For an odd k, there is an odd number of real polynomials F defining rational
curves, and each of these curves has an even number of real solitary nodes,

• For an even k, there exists an even number (possibly zero) of polynomials F
defining rational curves, and half of these curves have an odd number of real
solitary nodes while the other half an even number of real solitary nodes.
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(2) For any integer k � 1, there are exactly k polynomials F.x; y/ D P
i;j cijx

iyj

with Newton triangle T D Convf.0; 0/; .0; 2/; .k; 1/g, whose coefficients
c00; c02; c11 are given generic nonzero constants and the coefficient ck�1;1

vanishes and which define plane rational curves. Furthermore, in the space of
polynomials with Newton triangle T and vanishing coefficient ck�1;1, the family
of polynomials defining rational curves intersects transversally with the linear
subspace given by assigning generic nonzero constant values to the coefficients
c00; c02; c11. If the coefficients c00; c02; c11 are real, then,

• For an odd k, there is a unique real polynomial F defining a rational curve,
and this curve either has k�1 real solitary nodes or has no real nodes at all,

• For an even k, either there are no real polynomials defining rational curves
or there are two real polynomials, one defining a rational curve with k �
1 real solitary nodes and the other defining a rational curve without real
solitary nodes.

Proof Both statements can easily be derived from [14, Lemma 3.9]. �

(3) Deformations of singular curve germs. Our key tool in the estimation of
dimension of families of curves will be [8, Theorem 2] (see also [7, Lemma
II.2.18]). For the reader’s convenience, we remind it here. Let C be a reduced
curve on a smooth surface†, and z 2 C. By mt.C; z/, we denote the intersection
multiplicity at z of C with a generic smooth curve on † passing through z, by
ı.C; z/ the ı-invariant, and by br.C; z/ the number of irreducible components of
.C; z/.

Lemma 2 Let Ct, t 2 .C; 0/ be a flat family of reduced curves on a smooth surface
†, and zt 2 Ct, t 2 .C; 0/ a section such that the family of germs .Ct; zt/, t 2 .C; 0/,
is equisingular. Denote by U a neighborhood of z0 in † and by .C � C0/U the total
intersection number of curves C;C0 in U. The following lower bounds hold:

(i) .C0 � Ct/U � mt.C0; z0/ � br.C0; z0/ C 2ı.C0; z0/ for t 2 .C; 0/;
(ii) If L is a smooth curve passing through z0 D zt, t 2 .C; 0/, and .Ct � L/z0 D

const, then

.C0 � Ct/U � .C0 � L/z0 C mt.C0; z0/ � br.C0; z0/ C 2ı.C0; z0/

for t 2 .C; 0/.
(iii) If L is a smooth curve containing the family zt, t 2 .C; 0/, and .Ct �L/zt D const,

then

.C0 � Ct/U � .C0 � L/z0 � br.C0; z0/ C 2ı.C0; z0/

for t 2 .C; 0/.

Let x; y 2 .C; 0/ be local coordinates in a neighborhood of a point z in a smooth
projective surface †. Let L D fy D 0g, and .C; z/ � .†; z/ a reduced, irreducible
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curve germ such that .C � L/z D s � 1. Denote by mz � O†;z the maximal ideal and
introduce the ideal IL;s

†;z D fg 2 mz W ordg
ˇ̌
L;z

� sg. The semiuniversal deformation
base of the germ .C; z/ in the space of germs .C0; z/ subject to condition .C0 �L/z � s
can be identified with the germ at zero of the space

BC;z.L; s/ WD IL;s
†;z

ı˝
f ;

@f

@x
� mz;

@f

@y
� IL;s

†;z

˛
;

where f 2 O†;z locally defined the germ .C; z/ (cf. [7, Corollary II.1.17]).

Lemma 3

(1) The stratum Beg
C;z.L; s/ � BC;z.L; s/ parameterizing equigeneric deformations of

.C; z/ is smooth of codimension ı.C; z/, and its tangent space is

T0B
eg
C;z.L; s/ D IL;s

C;z

ı˝
f ;

@f

@x
� mz;

@f

@y
� IL;s

†;z

˛
; (6)

where

IL;s
C;z D fg 2 O†;z W ordg

ˇ̌
C;z

� s C 2ı.C; z/g :

(2) If †, .C; z/, and L are real, and s is odd, then a generic member of Beg
C;z.L; s/

is smooth at z and has only imaginary and real solitary nodes; the number of
solitary nodes is ı.C; z/ mod 2.

Proof

(1) In [10, Lemma 2.4], we proved a similar statement for the case s D 2 and
.C; z/ of type A2k, k � 1, and we worked with equations. Here, we settle the
general case, and we work with parameterizations. First, observe that a general
member of Beg

C;z.L; s/ has ı.C; z/ nodes as its singularities and is smooth at z.
Thus, codimIL;s

†;z
Beg
C;z.L; s/ D ı.C; z/, the tangent space to Beg

C;z.L; s/ at its generic

point C0, is formed by the elements g 2 O†;z, which vanish at the nodes
of C0 and whose restriction to .L; z/ has order s. Clearly, the limits of these
tangent spaces as C0 ! .C; z/ contain the space IL;s

C;z

ıh f ; @f
@xmz;

@f
@y I

L;s
†;zi. On the

other hand, dim IL;s
†;z=I

L;s
C;z D ı.C; z/ (see, e.g., [13, Lemma 6]). Let us show

the smoothness of Beg
C;z.L; s/. Notice that the germ .C; z/ admits a uniquely

defined parameterization x D ts, y D '.t/, t 2 .C; 0/, where '.0/ D 0,
and each element C0 2 Beg

C;z.L; s/ admits a unique parameterization x D ts,
y D '.t/ C Pm

iD1 ait
i, where m D dimBeg

C;z.L; s/, a1; : : : ; am 2 .C; 0/. Choose
m distinct generic values t1; : : : ; tm 2 .C; 0/ n f0g and take the germs of the
lines Li D f.tsi ; y/ W y 2 .C; '.ti/g, i D 1; : : : ;m. It follows that the stratum
Beg
C;z.L; s/ is diffeomorphic to

Qm
iD1 Li, hence the smoothness and (6).

(2) The second statement follows from the observation that the equation ts1 D ts2 has
no real solutions t1 ¤ t2. �
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Let C.1/;C.2/ � † be two distinct immersed rational curves, z 2 C.1/ \ C.2/ a
smooth point of both C.1/ and C.2/, and Wz � † a sufficiently small neighborhood
of z. Denote by V � jC.1/ C C.2/j the germ at C.1/ [ C.2/ of the family of curves,
whose total ı-invariant in † n U coincides with that of C.1/ [ C.2/.

Lemma 4

(1) The germ V is smooth of dimension

c D .C.1/ � C.2//z � C.1/K† � C.2/K† � 2 ;

and its tangent space isomorphically projects onto the space O†;z=Iz, where

Iz D ff 2 O†;z W ordf
ˇ̌
.C.i/;z/

� .C.1/ � C.2//z � C.i/K† � 1; i D 1; 2g :

(2) Let f1; : : : ; fc; fcC1; : : : be a basis of the tangent space to jC.1/ C C.2/j at C.1/ [
C.2/ such that f1; : : : ; fc project to a basis of O†;z=Iz, and fj 2 Iz, j > c, satisfy

ordfcC1

ˇ̌
.C.1/;z/

D .C.1/ � C.2//z � C.1/K† � 1 ;

ordfj
ˇ̌
.C.1/;z/ � .C.1/ � C.2//z � C.1/K†; j > c C 1 ;

and let

cX

iD1

tifi C
X

j>c

aj.t/fj; t D .t1; : : : ; tc/ 2 .C c; 0/ ;

be a parameterization of V, where C.1/ [C.2/ corresponds to the origin, and aj,
j > c are analytic functions vanishing at zero. Then

@acC1

@ti
.0/ ¤ 0 for all 1 � i � c with ordfi

ˇ̌
.C.1/;z/

� .C.1/ �C.2//z�C.1/K† �2 :

(7)

Proof Let �.i/ W P1 ! C.i/ ,! † be the normalization, pi D .�.i//�.z/, i D 1; 2.
Note that by Riemann–Roch

hk.P1;N �.i/

P1 .�.�C.i/K† � 1/pi// D 0; k D 0; 1; i D 1; 2 ;

where N denotes the normal bundle of the corresponding map, and observe that
the codimension of Iz in O†;z equals c. The first statement of lemma follows.
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For the second statement, we note that a generic irreducible element C 2 V
satisfies

.C � C.1//Wz � C.1/C.2/ C .C.1//2 � .C.1/C.2/ � .C.1/ � C.2//z/

�..C.1//2 C C.1/K† C 2/ D .C.1/ � C.2//z � C.1/K† � 2 : (8)

Next, we choose i 2 f1; : : : ; cg as in (7) and take C 2 V given by the parameter
values ti D t, tj D ts with some s > 1 for all j 2 f1; : : : ; cg n fig. Then, if acC1 D
O.tm/ with m > 1, one encounters at least .C.1/ � C.2//z � C.1/K† � 1 intersection
points of C and C.1/ inWz. Thus, (7) follows. �

(4) Geometry of arc spaces. Let† be a smooth projective surface. Given an integer
s � 0, denote by Arcs.†/ the vector bundle of s-arcs over † and by Arcsms .†/

the bundle of smooth s-arcs over † (particularly, Arc0.†/ D Arcsm0 .†/ D †).
For any smooth curve C � †, we have a natural map arcs W C ! Arcsms .†/,
sending a point z 2 C to the s-arc at z defined by the germ .C; z/. The
following statement immediately follows from basic properties of ordinary
analytic differential equations:

Lemma 5 Let s � 1, U a neighborhood of a point z 2 †, and � a smooth section
of the natural projection prs W Arcsms .U/ ! Arcsms�1.U/. Then there exists a smooth
analytic curve ƒ passing through z, defined in a neighborhood V � U of z, and
such that arcs.ƒ/ � �.Arcsms�1.V//.

Now, let † be a smooth rational surface, n W P
1 ! † an immersion, C D

n.P1/ 2 jDj, where �DK† D k > 0. Pick a point p 2 P
1 such that z D n. p/ is

a smooth point of C. Denote by U � Arck�1.†/ the natural image of the germ of
M0;1.†;D/ at Œn W P1 ! †; p�. Choose coordinates x; y in a neighborhood of z so
that z D .0; 0/, C D fy C xk D 0g, and introduce two one-parameter subfamilies
ƒ0 D .z0

t; ˛0
t/t2.C;0/ and ƒ00 D .z00

t ; ˛00
t /t2.C;0/ of Arck�1.†/:

z0
t D .t; 0/; ˛0

t D fy D .x � t/lg; z00
t D .0; 0/; ˛00

t D fy D txk�1g; t 2 .C; 0/ ;

where l > k.

Lemma 6 The germ U is smooth of codimension one in Arck�1.†/, and it
transversally intersects both ƒ0 and ƒ00.

Proof It follows from Riemann–Roch and from Lemma 2(iii) that V admits the
following parameterization:

..x0; y0/; fyDy0 C a1.x � x0/ C : : : C ak�2.x � x0/k�2C'.x0; y0; a/.x � x0/
k�1g/ ;

x0; y0; a1; : : : ; ak�2 2 .C; 0/; a D .a1; : : : ; ak�2/; '.0/ D 0;
@'

@x0

.0/ ¤ 0 :
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Thus, V is a smooth hypersurface. The required intersection transversality results
from a routine computation. �

3.2 Families of Curves and Arcs on Arbitrary del Pezzo
Surfaces

Let † be a smooth del Pezzo surface of degree 1, and D 2 Pic.†/ be an effective
divisor such that �DK† � 1 > 0. Fix positive integers n � �DK† � 1 and

s � �DK† � 1. Denote by V†n � †n the complement of the diagonals and by

Arcs. V†n/ the total space of the restriction to V†n of the bundle .Arcs.†//n ! †n. In

this section, we stratify the space Arcs. V†n/ with respect to the intersection of arcs
with rational curves in jDj, and we describe all strata of codimension zero and one.

Introduce the following spaces of curves: given .z;A / 2 Arcs. V†n/, z D
.z1; : : : ; zn/,A D .˛1; : : : ; ˛n/, and a sequence s D .s1; : : : ; sn/ 2 Z

n
>0 summing up

to jsj � s, put

M0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2 M0;n.†;D/ W
n. pi/ D zi; n�.˛i/ � sipi; i D 1; : : : ; ng ;

M br
0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2 M0;n.†;D; s; z;A / W

n is birational onto its imageg ;

M im
0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2 M br

0;n.†;D; s; z;A / W
n is an immersiong ;

M
sing;1
0;n .†;D; s; z;A / D fŒn W P1 ! †; p� 2 M br

0;n.†;D; s; z;A / W
n is singular in P1 n p and smooth at pg ;

M
sing;2
0;n .†;D; s; z;A / D fŒn W P1 ! †; p� 2 M br

0;n.†;D; s; z;A / W
n is singular at some point pi 2 pg :

We shall consider the following strata in Arcsms . V†n/:

(i) The subset Uim.D/ � Arcsms . V†n/ is defined by the following conditions:
For any sequence s D .s1; : : : ; sn/ 2 Z

n
>0 summing up to jsj � s and

for any element .z;A / 2 Uim.D/, where z D .z1; : : : ; zn/ 2 V†n, A D
.˛1; : : : ; ˛n/, ˛i 2 Arcs.†; zi/, the family M0;n.†;D; s; z;A / is empty if
jsj � �DK† and is finite if jsj D �DK† � 1. Furthermore, in the latter
case, all elements Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A / are represented by
immersions n W P1 ! † such that n�.˛i/ D sipi, 1 � i � n.
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(ii) The subset UimC .D/ � Arcsms . V†n/ is defined by the following condition:
For any element .z;A / 2 UimC .D/, there exists s 2 Z

n
>0 with jsj � �DK† such

thatM im
0;n.†;D; s; z;A / ¤ ;.

(iii) The subset Using
1 .D/ � Arcsms . V†n/ is defined by the following condition:

For any element .z;A / 2 UimC .D/, there exists s 2 Z
n
>0 with jsj D �DK† � 1

such thatM sing;1
0;n .†;D; s; z;A / ¤ ;.

(iv) The subset Using
2 .D/ � Arcsms . V†n/ is defined by the following condition:

For any element .z;A / 2 Using
2 .D/, there exists s 2 Z

n
>0 with jsj D �DK† � 1

such thatM sing;2
0;n .†;D; s; z;A / ¤ ;.

(v) The subset Umt.D/ � Arcsms . V†n/ is defined by the following condition:
For any element .z;A / 2 Umt.D/, there exists s 2 Z

n
>0 with jsj D �DK† � 1

and Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A / such that n is a multiple cover of
its image.

Proposition 1

(1) The set Uim.D/ is Zariski open and dense in Arcsms . V†n/.

(2) If U � UimC .D/ is a component of codimension one in Arcsms . V†n/, then, for a
generic element .z;A / 2 U and any sequence s 2 Z

n
>0 with jsj D �DK†,

the set M im
0;n.†;D; s; z;A / is either empty or finite, and all of its elements Œn W

P
1 ! †; p� are presented by immersions and satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(3) If U � Using
1 .D/ is a component of codimension one in Arcsms . V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK† � 1,

the set M sing;1
0;n .†;D; s; z;A / is either empty or finite, whose all elements Œn W

P
1 ! †; p� satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(4) If U � Using
2 .D/ is a component of codimension one in Arcsms . V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK† � 1,

the set M sing;2
0;n .†;D; s; z;A / is either empty or finite, whose all elements Œn W

P
1 ! †; p� satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(5) If U � Umt.D/ is a component of codimension one in Arcsms . V†n/, then, for a
generic element .z;A / 2 U and any sequence s 2 Z

n
>0 with jsj D �DK† � 1,

the following holds: Each element Œn W P
1 ! †; p� 2 M0;n.†;D; s; z;A /

satisfying C0 D n.P1/ 2 jD0j, where D D kD0, k � 2, admits a factorization

n W P1 ��! P
1 ��! C0 ,! †

with � a k-multiple ramified covering, � the normalization, p0 D �. p/, for which
one has

Œ� W P1 ! †; p0� 2 M0;n.†;D0; s0; z;A / ;

where js0j D �D0K†, and all branches �
ˇ̌
P1;p0

i
are smooth.
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Proof

(1) A general element of Œn W P
1 ! †; p� 2 M0;n.†;D/ is represented by an

immersion sending p to n distinct points of † (cf. [12, Lemma 9(1ii)]). Let

.z;A / 2 Arcsms . V†n/, and a sequence s D .s1; : : : ; sn/ 2 Z
n
>0 satisfy jsj D

�DK†�1. The fiber of the map arcs W M0;n.†;D/ ! Qn
iD1 Arc

sm
si�1.†/, sending

an element Œn W P1 ! †; p� to the collection of arcs defined by the branches
njP1;pi , is either empty or finite. Indeed, otherwise, by Lemma 2(ii), we would
get a contradiction:

D2 � .D2 C DK† C 2/ C jsj D D2 C 1 > D2 :

On the other hand,

dimM0;n.†;D/ D dim
nY

iD1

Arcsmsi�1.†/ D �DK† � 1 C n ;

and hence the map arcs is dominant. It follows, that, for a generic element

.z;A / 2 Arcsms . V†n/ and any sequence s 2 Z
n�0 such that jsj � s, one has:

M im
0;n.†;D; s; z;A / is empty if js � �DK† and M im

0;n.†;D; s; z;A / is finite
nonempty if jsj D �DK† � 1. The same argument proves Claims (2) and (3)
together with the fact that UimC .D/ and Using

1 .D/ have positive codimension in

Arcsms . V†n/.
Next, we will show that the setsUsing

2 .D/ andUmt.D/ have positive codimen-

sion in Arcsms . V†n/, thereby completing the proof of Claim (1), and will prove
Claims (4) and (5).

(2) To proceed further, we introduce additional notations. Let
f W .C; 0/ ! .C; z/ ,! .†; z/ be the normalization of a reduced, irreducible
curve germ .C; z/, and let m0;m1; : : : be the multiplicities of .C; z/ and of its
subsequent strict transforms under blowups. We call this (infinite) sequence the
multiplicity sequence of f W .C; 0/ ! † and denote it m. f /. Note that, if z0 D z
and the infinitely near points z1; : : : ; zj, 0 � j � s, of .C; z/ belong to an arc
fromArcsms .†; z/, thenm0 D : : : D mj�1 (see, for instance, [2, Chap. III]). Such
sequencesm0; : : : ;mj will be called smooth sequences. Given smooth sequences
mi D .m0i; : : : ;mj.i/;i/ such that jmij WD P

l mli � s, i D 1; : : : ; n, denote by
M0;n.†;D; fmigniD1/ the family of elements Œn W P

1 ! †; p� 2 M0;n.†;D/

such that n is birational onto its image and m.njP1;pi/ contains mi for every
i D 1; : : : ; n. Put

Arcsms . V†n;D; fmigniD1/ D f.z;A / 2 Arcsms . V†n/ W there exists

Œn W P1 ! †; p� 2 M0;n.†;D; fmigniD1/

such that n. p/ D z and n�.˛i/ � jmijpi; iD1; : : : ; ng
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(3) We now prove Claim (4) together with the fact that Using
2 .D/ has positive

codimension in Arcsms . V†n/.
Let .z;A / be a generic element of a top-dimensional component U �

Using
2 .D/, a sequence s 2 Z

n
>0 satisfy jsj D �DK† � 1, and Œn W P

1 !
†; p� 2 M br

0;n.†;D; s; z;A / have singular branches among njP1;pi , i D 1; : : : ; n.
Let mi D .m0i; : : : ;mj.i/;0/ be a smooth multiplicity sequence of the branch
njP1;pi such that jmij � si. Denote by V the germ at Œn W P

1 ! †; p� of a
top-dimensional component ofM0;n.†;D; fmigniD1/. Without loss of generality,
we can suppose that M br

0;n.†;D; s; z;A / � M0;n.†;D; fmigniD1/ and U �
Arcsms . V†n;D; fmigniD1/.

Note that Œn W P
1 ! †; p� is isolated in M br

0;n.†;D; s; z;A /. Indeed,
otherwise Lemma 2(ii) would yield a contradiction:

D2 � .D2CDK†C2/C
nX

iD1

.m0i�1Cjmij/ � .D2CDK†C2/Cjsj DD2C1 > D2 :

Next, we can suppose that m0i � 2 as 1 � i � r for some 1 � r � n and that
m0i D 1 for r < i � n.

Consider the case when jmij D si for all i D 1; : : : ; n. We claim that then

dimV �
nX

iD1

j.i/ C n C r � 1 : (9)

If so, we would get

dimU �
nX

iD1

.s� j.i// C n� r C dimV � n.sC 2/ � 1 D dimArcsms . V†n/ � 1 ;

and the equality would yield .n0/�.z;A / D Pn
iD1 si D �DK† � 1 for each

element Œn0 W P1 ! †; p0� 2 M sing;2
0;n .†;D; s; z;A / with generic .z;A / 2 U, as

required in Claim (3). To prove (9), we show that the assumption

dimV �
nX

iD1

j.i/ C n C r (10)

leads to contradiction. Namely, we impose
Pn

iD1 j.i/ C n C r � 1 conditions,
defining a positive-dimensional subfamily of V containing Œn W P

1 ! †; p�,
and apply Lemma 2. It is enough to consider the following situations:

(a) 1 � r < n;
(b) 1 < r D n, j.1/ > 0;
(c) 1 D r D n, j.1/ > 0, m01 > mj.1/;1;
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(d) r D n, j.1/ D : : : D j.n/ D 0;
(e) 1 D r D n, j.1/ > 0, m01 D : : : D mj.1/;1.

In case (a), we fix the position of zi and of the next j.i/ infinitely near points
for i D 1; : : : ; r, and the position of additional

Pn
iDrC1 j.i/ C n � r � 1 smooth

points on C D n.P1/, obtaining a positive-dimensional subfamily of U and a
contradiction by Lemma 2:

D2 � .D2 C DK† C 2/ C
rX

iD1

.m0i � 1 C jmij/ C
nX

iDrC1

j.i/ C n � r � 1

D D2 C
rX

iD1

.m0i � 1/ > D2 :

In case (b), we fix the position of z and of additional infinitely near points:
j.1/ � 1 points for z1, and j.i/ points for all 2 � i � n. These conditions
define a positive-dimensional subfamily of U, which implies a contradiction by
Lemma 2:

D2 � .D2 C DK† C 2/ C
rX

iD2

.m0i � 1 C jmij/ C .m01 � 1/ C jm1j � mj.1/;1

� D2 C
nX

iD2

.m0i � 1/ > D2 :

In case (c), the same construction similarly leads to a contradiction:

D2 � .D2CDK†C2/C.m01�1/C
X

0�k<j.1/

mk1 � .D2CDK†C2/Cjm1j D D2C1 > D2 :

In case (d), we fix the position of zi, 1 < i � n and of one more smooth point
of C D n.P1/. Thus, Lemma 2, applied to the obtained positive-dimensional
family, yields a contradiction:

D2 � .D2 CDK† C2/C
nX

iD1

.m0i�1/C
X

1<i�n

m0iC1 D D2 C
X

1<i�n

.m0i�1/C1 > D2 :

In case (e), relation (10) reads dimV � j.1/ C 2 D dimArcj.1/.†/. As noticed
above, the map arcj.1/ W V ! Arcj.1/.†/ is finite. Hence, dimV D j.1/ C 2,
and (due to the general choice of � D Œn W P1 ! †; p� 2 V ) the germ .V ; �/

diffeomorphically maps onto the germ of Arcj.1/.†/ at �.�/. Observe that the
fragment .m01; : : : ;mj.1/;1;mj.1/C1;1/ of the multiplicity sequence of njP1;p is
a smooth sequence. That means, the map of .V ; �/ to Arcj.1/C1.†/ defines
a section � W .Arcj.1/.†/; �.�// ! Arcj.1/C1.†/, satisfying the hypotheses
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of Lemma 5. So, we take the curve ƒ, defined in Lemma 5, and apply
Lemma 2(iii):

D2 � .D2 C DK† C 2/ C .m01 C : : : C mj.1/;1 C mj.1/C1;1/ � 1

� .D2 C DK† C 2/ C jm1j D D2 C 1 > D2 ;

which completes the proof of (9).
Consider the case when

Pn
iD1 jmij > �DK† �1 and show that then dimU �

dimArcsms . V†n/�2. The preceding consideration reduces the problem to the case

r D n and
nX

iD1

jmij � mj.n/;n < �DK† � 1 <

nX

iD1

jmij ;

in which we need to prove that

dimV �
nX

iD1

j.i/ C 2n � 2 : (11)

We assume that

dimV �
nX

iD1

j.i/ C 2n � 1 (12)

and derive a contradiction in the same manner as for (10). We shall separately
treat several possibilities:

(a) j.n/ D 0;
(b) j.n/ > 0.

In case (a), we fix the position of zi and of the additional j.i/ infinitely near
points for all i D 1; : : : ; n � 1, thereby cutting off V a positive-dimensional
subfamily, and hence by Lemma 2 we get a contradiction:

D2 � .D2 C DK† C 2/ C
n�1X

iD1

.m0i � 1 C jmij/ C m0n � 1

� .D2 C DK† C 2/ C
nX

iD1

jmij � 1 � D2 C 1 > D2 :

In case (b), we again fix the position of zi and of the additional j.i/ infinitely
near points for all i D 1; : : : ; n � 1, thereby cutting off V a subfamily V 0 of
dimension � j.n/ C 1. Consider the map arcj.n/�1 W V 0 ! Arcj.n/�1.†/ and
note that dimArcj.n/�1.†/ D j.n/ C 1 � dimV 0. If dim�.V 0/ � j.n/, fixing
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the position of zn and of j.n/ � 1 additional infinitely near points, we obtain a
positive-dimensional subfamily of V 0 and hence a contradiction by Lemma 2:

D2 � .D2 C DK† C 2/ C
n�1X

iD1

.m0i � 1 C jmij/ C .m0n � 1/ C jmnj � mj.n/;n

� .D2 C DK† C 2/ C
nX

iD1

jmij � 1 � D2 C 1 > D2 :

If dim�.V 0/ D j.n/C1, the preceding argument yields that dimV 0 D j.n/ C 1,
and we can suppose that the germ of V 0 at the initially chosen ele-
ment � D Œn W P1 ! †; p� 2 V is diffeomorphically mapped onto the
germ of Arcj.n/�1.†/ at arcj.n/�1.�/. Thus, we obtain a section � W
.Arcj.n/�1.†/; �.�// ! Arcj.n/.†/ defined by the map .V 0; �/ ! Arcj.n/.†/.
It satisfies the hypotheses of Lemma 5, which allows one to construct a smooth
curve ƒ as in Lemma 5 and apply Lemma 2(iii):

D2 � .D2 C DK† C 2/ C
n�1X

iD1

.m0i � 1 C jmij/ C jmnj � 1 � D2 C 1 > D2 ;

a contradiction.
The proof of Claim (4) is completed.

(4) It remains to consider the set Umt.D/. Let .z;A / 2 Umt.D/, s 2 Z
n
>0 satisfy

jsj D �DK† � 1, and Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A / be such that n
is a k-multiple (ramified) covering of its image C D n.P1/, k � 2. We have
C 2 jD0j, where kD0 D D, and ��.˛i/ � s0

ip
0
i, ��. p0

i/ � lipi, where lis0
i � si for

all i D 1; : : : ; n. Since li � k for all i D 1; : : : ; n, it follows that

nX

iD1

s0
i � jsj

k
D �DK† � 1

k
D �D0K† � 1

k
> �D0K† � 1 :

This yields that Umt.D/ has positive codimension in Arcsms . V†n/, and, further-
more, if not all branches �

ˇ̌
P1;p0

i
, i D 1; : : : ; n, are smooth, the codimension of

Umt.D/ in Arcsms . V†n/ is at least 2. The proof of Claim (4) and thereby of Claim
(1) is completed. �
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3.3 Families of Curves and Arcs on Generic del Pezzo Surfaces

Let † be a smooth del Pezzo surface of degree 1 satisfying the following condition:
(GDP) There are only finitely many effective divisor classes D 2 Pic.†/

satisfying �DK† D 1, and for any such divisor D, the linear system jDj contains
only finitely many rational curves, all these rational curves are immersed, and any
two curves C1 ¤ C2 among them intersect in C1C2 distinct points.

By Itenberg et al. [12, Lemmas 9 and 10], these del Pezzo surfaces form an open
dense subset in the space of del Pezzo surfaces of degree 1.

Let us fix an effective divisor D 2 Pic.†/ such that �DK† � 1 � 3.

Proposition 2 In the notation of Sect. 3.2, let .z0;A0/ be a generic element of a

component U of Umt.D/ having codimension one in Arcsms . V†n/, a sequence s 2 Z
n
>0

satisfy jsj D �DK† �1, and Œn0 W P1 ! †; p0� 2 M0;n.†;D; s; z0;A0/ be such that
n0 covers its image with multiplicity k � 2 so that n0.P

1/ 2 jD0j, where D D kD0,
and n0 D � ı � with � W P1 ! C0 the normalization, � W P1 ! P

1 a k-fold ramified

covering. Assume that .zt;At/ 2 Arcsms . V†n/, t 2 .C; 0/, is the germ at .z0;A0/ of a
generic one-dimensional family such that .zt;At/ 62 Umt.D/ as t ¤ 0, and assume
that there exists a family Œnt W P

1 ! †; pt� 2 M0;n.†;D; s; zt;At/ extending the
element Œn0 W P

1 ! †; p0�. Then n D 3, k D 2, �D0K† D 3, s D .2; 2; 1/,
and Œ� W P

1 ! C0 ,! †; p0
0� 2 M0;3.†;D0; s0; z0;A0/, where p0 D �. p0/ and

s0 D .1; 1; 1/. Furthermore, the family Œnt W P1 ! †; pt�, t 2 .C; 0/, is smooth and
isomorphically projects onto the family .zt;At/, t 2 .C; 0/.

Proof Note, first, that by the assumption (GDP) and Proposition 1(2, 5), the map
n0 W P1 ! † is an immersion, and (in the notation of Proposition 1(5))

��.˛i/ D s0
ip

0
i; i D 1; : : : ; n;

nX

iD1

s0
i D �D0K† : (13)

Furthermore, if C0 D n0.P
1/ 2 jD0j, where D D kD0, then .D0/2 > 0, since the

assumption �DK† � 4 yields D2 � 2 by the adjunction formula. Hence, in the
deformation nt W P1 ! †, t 2 .C:0/, in a neighborhood of each singular point z of
C0, there appear singular points of Ct D nt.P1/, t ¤ 0, with total ı-invariant at least
k2ı.C0; z/, which implies

k2

�
.D0/2 C D0K†

2
C 1

�
� k2.D0/2 C kD0K†

2
C 1 ; (14)

and hence

� D0K† � 2k C 2

k
or, equivalently, � D0K† � 3 : (15)
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Let ��. p0
i/ � lipi, i D 1; : : : ; n. We can suppose that k � l1 � : : : � ln. Then

X

iD1

lis
0
i � �kD0K† � 1 H)

nX

iD1

.li � 1/s0
i � �.k � 1/D0K† � 1 : (16)

If l1 � k � 1, then (13) and (16) yield

�.k � 2/D0 � �.k � 1/D0K† � 1 H) �D0K† � 1 ;

forbidden by (15), and hence

l1 D k : (17)

By Riemann–Hurwitz,
P

i>1.li � 1/ � k � 1, and then it follows from (16) that

.k � 1/.�D0K† � .n � 1// C .k � 1/ � �.k � 1/D0K† � 1 ; (18)

or, equivalently

.n � 2/.k � 1/ � 1 ; (19)

which in view of Riemann–Hurwitz and (17)–(19) leaves the following options:

• either n D 1,
• or n D 2, s D .k.�D0K† � 1/; .k � 1//,
• or n D 2, s D .ks0

1; ks0
2/, s

0
1 C s0

2 D �D0K†,
• or n D 3, s D .2.�D0K† � 2/; 2; 1/.

Let us show that s0
1 > 1 is not possible. Indeed, otherwise, in suitable local

coordinates x; y in a neighborhood of z1 in †, we would have z1 D .0; 0/,
C0 D fy D 0g, n0 W .P1; p1/ ! .†; z1/ acts by 	 2 .C; 0/ ' .P1; p1/ 7! .	 k; 	/,
and we also may assume that the family of arcs ˛1;t is centered at z1 and given by
y D P

i�s01
ai.t/xi with ai.0/ ¤ 0, i � s0

1. Then nt W .P1; p1;t/ ! .†; z1/ can be

expressed via 	 2 .C; 0/ ' .P1; p1;t/ 7! .	 k C tf .t; 	/; tg.t; 	//, which contradicts
the requirement n�

t .˛1;t/ � .ks0
1 � 1/p1;t equivalently written as

t � g.t; 	/ 	
X

i�s01

ai.t/.	
k C tf .t; 	//i mod .	 k C tf .t; 	//ks

0
1�1 ;

since the term as01 .0/	 ks01 does not cancel out here in view of k � 2.
Thus, in view of (15), we are left with n D 3, k D 2, s0 D .1; 1; 1/, and s D

.2; 2; 1/. Without loss of generality, for .zt;At/, t 2 .C; 0/, we can choose the family
consisting of two fixed points z1;0; z2;0 and fixed arcs ˛1;0; ˛2;0 (transversal to C0) and
of a point z3;	 moving along the germ ƒ of a smooth curve transversally intersecting
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C0 at z3;0 (	 being a regular parameter on ƒ). We then claim that the evaluation

Œnt W P1 ! †; pt� 7! nt. p3:t/ D z3;	.t/

is one-to-one, completing the proof of Proposition 2. So, we establish the formulated
claim arguing on the contrary: If some point z3;	 , 	 ¤ 0, has two preimages, then
the curves C1 D nt1 .P

1/, C2 D nt2 .P
1/ intersect with total multiplicity � 5 at

z1;0; z2:0; z3;	 and intersect with multiplicity � ı.C0; z/ in a neighborhood of each
point z 2 Sing.C0/, which altogether leads to a contradiction:

C1C2 � 5 C 4..D0/2 CD0K† C 2/ D 5 CD2 � 4 D D2 C 1 : �

The compactification M 0;n.†;D; s; z;A / of the space M0;n.†;D; s; z;A / is
obtained by adding the elements Œn W bC ! †; p�, where

• bC is a tree formed by k � 2 componentsbC.1/; : : : ; bC.k/ isomorphic to P
1;

• the points of p are distinct but allowed to be at the nodes of eC;
• Œn W bC. j/ ! †; bC. j/ \ p� 2 M0;jC. j/\pj.†;D. j/; s. j/; z;A /, where we suppose that

the integer vector s. j/ 2 Z
n�0 has coordinates s

. j/
i > 0 or s. j/

i D 0 according as pi
belongs to bC. j/ or not, j D 1; : : : ; k;

•
Pk

jD1 D
. j/ D D, where D. j/ ¤ 0, j D 1; : : : ; k, and

Pk
jD1 s

. j/ D s.

One can view this compactification as the image of the closure ofM0;n.†;D; s; z;A /

in the moduli space of stable maps M 0;n.†;D/ under the morphism, which
contracts the components of the source curve that are mapped to points. Notice
that in our compactification, the source curves bC may be not nodal, and the marked
points may appear at intersection points of components of a (reducible) source
curve.

Introduce the set Ured.D/ � Arcsms . V†n/ defined by the following condition: For
any element .z;A / 2 Ured.D/, there exists s 2 Z

n
>0 with jsj � �DK† � 1 such that

M 0;n.†;D; s; z;A / n M0;n.†;D; s; z;A / ¤ ;.
Proposition 3 The set Ured.D/ has positive codimension in Arcsms . V†n/. Let .z;A /

be a generic element of a component of Ured.D/ having codimension one in

Arcsms . V†n/, and let .zt;At/ 2 Arcsms . V†n/, t 2 .C; 0/, be a generic family which
transversally intersects Ured.D/ at .z0;A0/ D .z;A /.

(1) Given any vector s 2 Z
n
>0 such that jsj D �DK† � 1, the set

M 0;n.†;D; s; z;A / n M0;n.†;D; s; z;A / is either empty or finite. Moreover,
let

Œn W bC ! †; p� 2 M 0;n.†;D; s; z;A / n M0;n.†;D; s; z;A /
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extend to a family

Œn	 W bC	 ! †; p	 � 2 M 0;n.†;D; s; z'.	/;A'.	//; 	 2 .C; 0/ ; (20)

for some morphism ' W .C; 0/ ! .C; 0/. Then Œn W bC ! †; p� is as follows:

(1i) either bC D C.1/ [ C.2/, where C.1/ ' C.2/ ' P
1, n.C.1// ¤ n.C.2//,

and

• the map n W bC. j/ ! † is an immersion and z \ Sing.C. j// D ; for
j D 1; 2,

• jp \ bC.1/ \ bC.2/j � 1,
• Œn W bC. j/ ! †; p \ bC. j/� 2 M

0;jp\bC. j/j.†;D.1/; s. j/; z;A /, j D 1; 2,

where D.1/ C D.2/ D D, s.1/ C s.2/ D s, js.1/j D �D.1/K†, js.2/j D
�D.2/K† � 1, and, moreover, .njC. j//�.A / D Pn

iD1 s
. j/
i pi for j D 1; 2;

(1ii) or n D 1, z D z1 2 †, A D ˛1 2 Arcsms .†; z/, p D p1 2 bC, D D kD0,
where k � 2 and �D0K† � 3, and the following holds

• bC consists of few components having p1 as a common point, and each
of them is mapped onto the same immersed rational curve C 2 jD0j;

• z1 is a smooth point of C, and .C � ˛1/ D �D0K†.

(1iii) or D D kD0 CD00, where k � 2, �D0K† � 2, D00 ¤ 0,eC D eC0 [ : : :[eC00,
where

• bC0 ' P
1, n W bC00 ! CX00 ,! † is an immersion, where C00 2 jD00j,

• the components of bC0 have a common point p1 and are disjoint from
p2; : : : ; pn, and each of them is mapped onto the same immersed
rational curve C0 2 jD0j,

• z1 is a smooth point of C0, and .C0 � ˛1/ D �D0K†.

(2) In case (1i),

• if p\ bC.1/ \ bC.2/ D ;, there is a unique family of type (20), and it is smooth,
parameterized by 	 D t;

• if bC.1/ \ bC.2/ D fp1g, then there are precisely 
 D minfs.1/
1 ; s.2/

1 g families of
type (20), and for each of them t D 	
=d, where d D gcd.s.1/

1 ; s.2/
1 /.

Proof If Œn W bC ! †; p� 2 M 0;n.†;D; s; z;A / with a generic .z;A / 2 Arcsms . V†n/

and bC consisting of m � 1 components, then by Propositions 1 and 2 one obtains

m D 1 and n immersion. Hence, Ured.D/ has positive codimension in Arcsms . V†n/.
Suppose that .z;A / satisfies the hypotheses of proposition. Then the finiteness of
M 0;n.†;D; s; z;A / nM0;n.†;D; s; z;A / and the asserted structure of its elements
follows from Propositions 1 and 2, provided we show that

(a) There are no two components bC0; bC00 of bC such that n.bC0/ ¤ n.bC00/, n�.bC0/ 2
jD0j, n�.bC00/ 2 jD00j, and deg.njbC0/

�A � �D0K†, deg.njbC00/
�A � �D00K†,
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(b) In cases (1ii) and (1iii), we have inequalities �D0K† � 3 and �D0K† � 2,
respectively.

The proof of Claim (a) can easily be reduced to the case when njbC0 and njbC00 are
immersions, and deg.njbC0/

�˛1 D �D0K† D deg.njbC00/
�˛1 D �D00K†. However,

in such a case, the dimension and generality assumptions yield that there exists
the germ at C00 of the family of rational curves C00

t 2 jD00j, t 2 .C; 0/, such that
.C00

t � C0/yt � �D00K† for some family of points yt 2 .C0; z1/, t 2 .C; 0/, which
together with Lemma 2(iii) implies a contradiction:

.D00/2 � ..D00/2 C D00K† C 2/ C .�D00K† � 1/ D .D00/2 C 1 :

Claim (b) in the case (1ii) follows from inequalities (14) and (15). In case (1iii), we
perform similar estimations. If the curvesC0 andC00 intersect at z1, then .C0 �C00/z1 D
minf�D0K†; �D00K† � 1g, and we obtain

.kD0 C D00/2 C .kD0 C D00/K†

2
C 1 � k2

�
.D0/2 C D0K†

2
C 1

�

Ck.D0D00 � .C0 � C00/z1/ C .D00/2 C D00K†

2
C 1

”
(

.k � 1/.�D0K†/ C 2.�D00K† � 1/ � 2k; if � D0K† � �D00K† � 1;

.k C 1/.�D0K†/ � 2k; if � D0K† � �D00K† � 1

H) �D0K† � 2 :

If the curves C0 and C00 do not meet at z1, then we obtain

.kD0 C D00/2 C .kD0 C D00/K†

2
C 1 � k2

�
.D0/2 C D0K†

2
C 1

�

Ck.D0D00 � 1/ C .D00/2 C D00K†

2
C 1 ” �D0K† � 2 :

Let us prove statement (2) of Proposition 3. If p \ bC.1/ \ bC.2/ D ;, then the
(immersed) curves C.1/ D n.bC.1// and C.2/ D n.bC.2// intersect transversally and
outside z, and the pointbz D bC.1/\bC.2/ is mapped to a node ofC.1/[C.2/nz. Then the
uniqueness of the family Œnt W bCt ! †; pt�, t 2 .C; 0/, and its smoothness follows
from the standard properties of the deformation smoothing out a node (see, e.g.,
[12, Lemma 11(ii)]). Suppose now that the pointbC.1/ \ bC.2/ belongs to p. We prove
statement (2) under condition n D 1, leaving the case n > 1 to the reader as a routine
generalization with a bit more complicated notations. Denote � WD s.1/

1 D �D.1/K†,

� WD s.2/
1 D �D.2/K† � 1. We have three possibilities:
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• Suppose that � < �. In suitable coordinates x; y in a neighborhood of z1 D .0; 0/,
we have

˛1 	 y � �x� mod ms
z1 ; C.1/ D fy C x� C h.o.t. D 0g; C.2/ D fy D 0g ;

where � ¤ 0 is generic. Without loss of generality, we can define the family of
arcs .zt;At/t2.C;0/ by zt D .t; 0/, At D fy 	 �.x � t/� mod ms

ztg (cf. Lemma 6).
The ideal Iz1 from Lemma 6 can be expressed as hy2; yx��1; x�C�i. Furthermore,
by Lemma 6, for any family (20), the curves C	 D n.bC	 / 2 jDj are given, in a
neighborhood of z1, by

y2.1 C O.x; y; c// C yx�.1 C O.x; c// C �.c/yx��1

C
��2X

iD0

ci1.	/yxi C
�C��1X

iD0

c0i.	/xi C O.x�C�; c/ D 0 ; (21)

where c denotes the collection of variables fci1; 0 � i � � � 2; ci0; 0 � i �
� C � � 1g, the functions cij.	/ vanish at zero for all i; j in the summation range,
and �.0/ D 0. Changing coordinates x D x0 C t, where t D '.	/, we obtain the
family of curves

y2.1 C O.x0; y; t; c// C y.x0/�.1 C O.x0; t; c// C � 0y.x0/��1

C
��2X

iD0

c0
i1y.x

0/i C
�C��1X

iD0

c0
0i.x

0/i C t � O..x0/�C�; t; c/ D 0 ; (22)

where

8
ˆ̂̂
<̂

ˆ̂̂
:̂

c0
i1 D P

0�u���2�i

�iCu
i

�
tuciCu;1 C �

��1
i

�
t��1�i�

Ct��i
��

�

i

� C O.t/
�

C O.t��i; c/; i D 0; : : : ; � � 2;

c0
i1 D P

u�0

�iCu
i

�
tuciCu;0; i D 0; : : : ; � C � � 1;

� 0 D � C t.� C O.t; c//:

(23)

Next, we change coordinates y D y0 C �.x0/� and impose the condition
.C	 � .z'.	/;A'.	/// � � C �, which amounts in the following relations on the
variables c0 D fc0

i1; 0 � i � � � 2; c0
i0; 0 � i � � C � � 1g:

(
c0
i0 D 0; i D 0; : : : ; � � 1; c0

i0 C �c0
i��;1 D 0; i D l; : : : ; � C � � 2;

c0
�C��1 C �� 0 D 0:

(24)
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Fig. 1 Tropical limits: (a) the case � < �, (b) refinement, (c) the case � D �, (d) the case � > �

The new equation for the considered family of curves is then

F.x; y/ D .y0/2.1 C O.x0; y0; t; c// C y0.x0/�.1 C O.x0; t; c//

C.x0/�C�.a C O.x0; t; c// C y0
�P��2

iD0 c
0
i1.x0/i C � 0.x0/��1

�
D 0:

(25)

with some constant a ¤ 0. Consider the tropical limit of the family (25) (see
[14, Sect. 2.3] or Sect. 3.1). The corresponding subdivision of � must be as
shown in Fig. 1a. Indeed, first, c0

01 ¤ 0, since otherwise the curves C	 would be
singular at zt contrary to the general choice of .zt;At/. Second, no interior point
of the segment Œ.0; 1/; .�; 1/� is a vertex of the subdivision, since otherwise the
curves C	 would have a positive genus: The tropicalization of C	 would then be a
tropical curvewith a cycle which lifts to a handle ofC	 (cf. [14, Sects. 2.2 and 2.3,
Lemma 2.1]). By a similar reason, the limit polynomial Fı

ini=y
0 D P�

iD0 c
0
i1.x

0/i,
where ı is the segment Œ.0; 1/; .�; 1/�, must be the �-th power of a binomial.
The latter conclusion and relations (22) and (23) yield that NF.i; 1/ D � � i for
i D 0; : : : ; � and

c0
i1 D t��i.c0

i1 C c00
i1.t//; i D 0; : : : ; � � 2; c0

�C��1;0 D t.c0
�C��1;0 C c00

�C��1;0/ ;

where c0
i1, i D 0; : : : ; � � 2, and c0

�C��1;0 are uniquely determined by the given
data, the functions c00

i1, 0 � i � � � 2, vanish at zero, and c00
�C��1;0 is a function of

t and c00
i1, 0 � i � � � 2, that is determined by the given data and vanishes at zero

too. To meet the condition of rationality of C	 and to find the functions c00
i1.t/, 0 �
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i � � � 2, we perform the refinement procedure as described in [14, Sect. 3.5]. It
consists in further coordinate change and tropicalization, in which one encounters
a subdivision containing the triangle Convf.0; 0/; .0; 2/; .�; 1/g (see Fig. 1b). The
corresponding convex piecewise linear function N0 is linear along that triangle
and takes values N0.0; 2/ D N0.�; 1/ D 0, N0.0; 0/ D � � �. By Shustin [14,
Lemma 3.9 and Theorem 5], there are � distinct solutions fc00

i1.t/; 0 � i � � � 2g
of the rationality relation. More precisely, the initial coefficient .c00

i1/
0 is nonzero

only for 0 � i � � � 2, i 	 � mod 2. The common denominator of the values of
N0 at these point is �=d, where d D gcd.�; �/, and hence c00

i1 are analytic functions
of td=� . It follows thereby that t D 	�=d.

• Suppose that � D � (see Fig. 1c). In this situation, the argument of the preceding
case � < � applies in a similar way and, after the coordinate change x D x0 C t,
y D y0 C �.x0/� , leads to Eq. (25), whose Newton polygon is subdivided with
a fragment Convf.0; 1/; .0; 2/; .2�; 0/g on which the function NF is linear with
values NF.0; 2/ D NF.2�; 0/ D 0, NF.0; 1/ D �. By Lemma 1, we get � solutions
fc0

i1.t/; i D 0; : : : ; � � 2g, which are analytic functions of t. Then, in particular,
t D 	 .

• Suppose that � > �. In suitable coordinates x; y in a neighborhood of z1 D .0; 0/,
we have

˛1 	 y mod ms
z1 ; C.1/ D fy C �x� C O.x�C1/ D 0g; C.2/ D fy C x� D 0g ;

where � ¤ 0. Without loss of generality, we can define the family of arcs
.zt;At/t2.C;0/ by zt D .0; 0/, At D fy 	 tx��1 mod ms

z1g (cf. Lemma 6). The
ideal Iz1 from Lemma 6 can be expressed as hy2; yx� ; x�C��1i. Thus, by Lemma 6,
for any family (20), the curves C	 D n.bC	 / 2 jDj are given in a neighborhood of
z1 by

y2.1 C O.x; y; c// C yx�.1 C O.x; c// C �x�C�.1 C O.x; c//

C�.c/x�C��1 C
��1X

iD0

ci1.	/yxi C
�C��2X

iD0

c0i.	/xi D 0 ; (26)

where c now denotes the collection of variables fci1; 0 � i � � � 1; ci0; 0 � i �
� C � � 2g, the functions cij.	/ vanish at zero for all i; j in the summation range,
and �.0/ D 0. Inverting t D '.	/, changing coordinates y D y0 C tx��1, and
applying the condition .C	 � A'.	// � k C l, we obtain an equation of the curves
C	 in the form

F.x; y0/ D .y0/2.1 C O.t; x; y0; c0// C y0x�.1 C O.t; x; c0//

C�x�C�.1 C O.t; x; c0// C
��1X

iD0

ci1.t/y
0xi D 0 ; (27)
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where c0 D fci1; 0 � i � � � 1g, and the following relations must hold:

8
ˆ̂<

ˆ̂:

ci0 D 0; i D 0; : : : ; � � 2;

ci0 C tci��C1;1 D 0; i D � � 1; : : : ; � C � � 2;

� C t.1 C O.t; c0// D 0 :

(28)

By Lemma 4(2), @�
@c��1;1

.0/ ¤ 0. The rationality of the curves C	 yields that the

subdivision SF of the Newton polygon of F.x; y0/ given by (27) must contain
two triangles Convf.0; 1/; .�; 1/; .0; 2/g and Convf.0; 1/; .�; 1/; .� C �; 0/g (see
Fig. 1d), and, furthermore, Fı

ini=y
0 must be the �-th power of a binomial, where

ı D Œ.0; 1/; .�; 1/� (cf. the argument in the treatment of the case � < � above).
These two conclusions and Eq. (28) uniquely determine the initial coefficients c0

i1
as well as the values NF.i; 1/ D � � i for all i D 0; : : : ; � � 1, and leave the final
task to find the functions c00

i1.t/, i D 0; : : : ; � � 2, which appear in the expansion
ci1.t/ D t��i.c0

i1 C c00
i1.t//, i D 0; : : : ; � � 2 (notice here that the last equation

in (28) allows one to express c00
��1;1 via c00

i1, i D 0; : : : ; � � 2). To this extent, we
again use the argument of the case � < �, performing the refinement procedure
along the edge ı D Œ.0; 1/; .�; 1/� (see [14, Sect. 3.5]) and apply the rationality
requirement to draw the conclusion: There are exactly � families (20), and, for
each of them, t D 	�=d, where d D gcdf�; �g.

Statement (2) of proposition is proven. �

3.4 Families of Curves and Arcs on Uninodal del Pezzo
Surfaces

A smooth rational surface † is called a uninodal del Pezzo surface if there exists
a smooth rational curve E � † such that E2 D �2 and �CK† > 0 for each
irreducible curve C � † different from E. Observe that EK† D 0. Denote by
PicC.†;E/ � Pic.†/ the semigroup generated by irreducible curves different from
E. Assume that † is of degree 1 and fix D 2 PicC.†;E/ such that �DK† � 1 � 3.
Fix positive integers n � �DK† � 1 and s � �DK† � 1.

Accepting notations of Sect. 3.2, we introduce the set Uim.D;E/ � Arcsms . V†n/

is defined by the following conditions. For any sequence s D .s1; : : : ; sn/ 2 Z
n
>0

summing up to jsj � s and for any element .z;A / 2 Uim.D;E/, where z D
.z1; : : : ; zn/ 2 V†n, z \ E D ;, A D .˛1; : : : ; ˛n/, ˛i 2 Arcs.†; zi/, the family
M im

0;n.†;D; s; z;A / is empty if jsj � �DK† and is finite if jsj D �DK† � 1.
Furthermore, in the latter case, all elements Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A /

are represented by immersions n W P1 ! † such that n�.˛i/ D sipi, 1 � i � n, and
n�.E/ consists of DE distinct points.
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Proposition 4 The set Uim.D;E/ is Zariski open and dense in Arcsms . V†n/.

Proof The statement that Uim.D/ is Zariski open and dense in Arcsms . V†n/ can be
proved in the same way as Proposition 1(1). We will show that Uim.D;E/ is dense
in Uim.D/, since the openness of Uim.D;E/ is evident. For, it is enough to show
that any immersion n W P1 ! † such that n�.P1/ D D can be deformed into an
immersion with an image transversally crossing E at DE distinct points.

Suppose, first, that a generic element Œn W P1 ! †� 2 M0;0.†;D/ is such that the
divisor n�.E/ � P

1 contains an m-multiple point, m � 2. Since dimM0;0.†;D/ D
�DK† � 1 � 3, we fix the images of �DK† � 2 points pi, i D 1; : : : ; �DK† �
2, obtaining a one-dimensional subfamily of M0;0.†;D/, for which one derives a
contradiction by Lemma 2(iii):

D2 � .D2 C DK† C 2/ C .�DK† � 2/ C .m � 1/ D D2 C m � 1 > D2 :

Hence, for a generic Œn W P
1 ! †� 2 M0;0.†;D/, the divisor n�.E/ consists of

DE distinct points. Suppose that m � 2 of them are mapped to the same point in E.
Fixing the position of that point on E, we define a subfamily V � M0;0.†;D/ of
dimension

dimV � dimM0;0.†;D/ � 1 D �DK† � 2 � 2 :

As above, we fix the images of �DK† � 3 additional point of P1 and end up with a
contradiction due to Lemma 2(ii):

D2 � .D2 C DK† C 2/ C .�DK† � 3/ C m D D2 C m � 1 > D2

�

Let X ! .C; 0/ be a smooth flat family of smooth rational surfaces such that
X0 D † is a nodal del Pezzo surface with the .�2/-curve E and Xt, t ¤ 0, are
del Pezzo surfaces. We can naturally identify Pic.Xt/ ' Pic.†/, t 2 .C; 0/. Fix a
divisorD 2 PicC.†;E/ such that �DK† �1 � 3. Given n � 1 and s � �DK† �1,
fix a vector s 2 Z

n
>0 such that jsj D �DK† � 1. Denote by Arcsms .X/ ! X !

.C; 0/ the bundle with fibres Arcsms .Xt/, t 2 .C; 0/. Pick n disjoint smooth sections
z1; : : : ; zn W .C; 0/ ! X covered by n sections ˛1; : : : ; ˛n W .C; 0/ ! Arcsms .X/ such
that .z.0/;A .0// 2 Uim.†;E/, and .z.t/;A .t// 2 Uim.Xt/, t ¤ 0.

Proposition 5 Each element Œ� W bC ! †; p� 2 M0;n.†;D; s; z.0/;A .0// such
that

• either bC ' P
1, or bC D bC0 [ bE1 [ : : : [ bEk for some k � 1, where bC0 ' bE1 '

: : : ' bEk ' P
1,bEi \bEj D ; for all i ¤ j, and #.bC0 \bEi/ D 1 for all i D 1; : : : ; k;

• p � bC0 and Œ� W bC0 ! †; p� 2 M im
0;n.†;D � kE; s; z.0/;A .0//, and each of the

bEi is isomorphically taken onto E;
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extends to a smooth family Œ�t W bCt ! Xt; z.t/� 2 M0;n.Xt;D; s; z.t/;A .t//, t 2
.C; 0/, where bCt ' P

1 and �t is an immersion for all t ¤ 0, and, furthermore, each
element of M0;n.Xt;D; s; z.t/;A .t//, t 2 .C; 0/ n f0g is included into some of the
above families.

Proof The statement follows from [16, Theorem 4.2] and from Proposition 4, which
applies to all divisors D � kE, since �.D � kE/K† D �DK† for any k. �

4 Proof of Theorem 1

By blowing up additional real points if necessary, we reduce the problem to
consideration of del Pezzo surfaces X of degree 1.

(1) To prove the first statement of Theorem 1, it is enough to consider only
del Pezzo surfaces satisfying property (GDP) introduced in Sect. 3.3 (cf. [12,
Lemma 17]) and real divisors satisfying �DKX � 1 � 3 (cf. Remark 1(1)).
So, let a real del Pezzo surface X satisfy property (GDP) and have a nonempty
real part. Let F � RX be a connected component. Denote by Pr;m.X;F/ the
set of sequences .z;w/ of n D r C 2m distinct points in † such that z is a
sequence of r points belonging to the component F � RX, and w is a sequence
of m pairs of complex conjugate points. Fix an integer s � �DKX and denote
by RArcsms .X;F; r;m/ � Arcsms . VXn/ the space of sequences of arcs .A ;B/

centered at .z;w/ 2 Pt;m.X;F/ such that A D .˛1; : : : ; ˛r/ is a sequence of
real arcs ˛i 2 Arcs.X; zi/, zi 2 z, i D 1; : : : ; r, and B D .ˇ1; ˇ1; : : : ; ˇm; ˇm/

is a sequence of m pairs of complex conjugate arcs, where ˇi 2 Arcs.X;wi/,
ˇi 2 Arcs.X;wi/, i D 1; : : : ;m, and w D .w1;w1; : : : ;wm;wm/.

We join two elements of RArcs.X;F; r;m/ \ Uim.D/ by a smooth real
analytic path … D f.zt;wt/; .At;Bt/gt2Œ0;1� in RArcs.X;F; r;m/ and show that
along this path, the function W.t/ WD W.X;D;F; '; .k; l/; .zt;wt/; .At;Bt//,
t 2 Œ0; 1�, remains constant. By Propositions 1 and 3, we need only to verify the
required constancy when the path … crosses sets UimC .D/, Using

1 .D/, Using
2 .D/,

Umt.D/, and Ured.D/ at generic elements of their components of codimension 1

in Arcsms . VXn/. Let t� 2 .0; 1/ correspond to the intersection of … with some of
these walls.

If is clear that crossing of the wallUsmC .D/\RArcs.X;F; r;m/ does not affect
W.X;D;F; '; .k; l/; .zt;wt/; .At;B/t/.

The constancy ofW.t/ in a crossing of the wall Using
1 .D/\RArcs.X;F; r;m/

follows from Proposition 1(3) and [12, Lemmas 13(2), 14 and 15]. The
transversality hypothesis in [12, Lemma 15] can be proved precisely as [12,
Lemma 13(1)].

The constancy ofW.t/ in a crossing of the wall Using
2 .D/\RArcs.X;F; r;m/

follows from Proposition 1(4) and Lemma 3.
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The constancy ofW.t/ in a crossing of the wall Umt.D/ \ RArcs.X;F; r;m/

follows from Propositions 1(5) and 2. Indeed, by Proposition 2 exactly one real
element of the set M0;n.X;D; .k; l/; .zt;wt/; .At;Bt// undergoes a bifurcation.
Furthermore, the ramification points of the degenerate map n W P

1 ! X are
complex conjugate. Hence, the real part of a close curve doubly covers the real
part of C D n.P1/, which means that the number of solitary nodes is always
even.

At last, the constancy of W.t/ in a crossing of the wall Ured.D/ \
RArcs.X;F; r;m/ we derive from Proposition 3. Notice that the points p1 2 bC
and z1 2 X must be real, and hence the cases (1ii) and (1iii) are not relevant,
since we have the lower bound �kD0KX � 2k � 4 contrary to (5). In the case
(1i), we use Proposition 3(2):

• if p \ bC.1/ \ bC.2/ D ;, then the germ of the real part of the family (20)
is isomorphically mapped onto the germ .R; t�/ so that the central curve
deforms by smoothing out a node both for t > t� and t < t�, and henceW.t/
remains unchanged;

• if p \ bC.1/ \ C.2/ D fp1g, then p1 2 P
1 and z1 2 X must be real, and hence

� C � must be odd, in particular, d D gcdf�; �g is odd too, where � D s.1/
1 ,

� D s.2/
1 ; if 
 D minf�; �g is odd, then the real part of each real family (20) is

homeomorphicallymapped onto the germ .R; t�/, and, in the deformation of
the central curve both for t > t� and t < t�, one obtains in a neighborhood of
z1 an even number of real solitary nodes, which follows from Lemma 1(2);
if 
 is even, then either the real part of a real family (20) is empty or the
real part of a real family (20) doubly covers one of the halves of the germ
.R; t�/, so that in one component of .R; t�/ n ft�g, one has no real curves
in the family (20), and in the other component of .R; t�/ n ft�g, one has a
couple or real curves, one having an odd number 
 � 1 real solitary nodes,
and the other having no real solitary nodes [see Lemma 1(2)], and hence
W.t/ remains constant in such a bifurcation.

(2) By Itenberg et al. [12, Proposition 1], in a generic one-dimensional family of
smooth rational surfaces of degree 1 all but finitely many of them are del Pezzo
and the exceptional one are uninodal. Hence, to prove the second statement of
Theorem 1 it is enough to establish the constancy of

W.t/ D W.Xt;D;Ft; '; .k; l/; .z.t/;w.t//; .A .t/;B.t///

in germs of real families X ! .C; 0/ as in Proposition 5, where the parameter
is restricted to .R; 0/ � .C; 0/. It follows from Proposition 5 that the number of
the real curves in count does not change, and real solitary nodes are not involved
in the bifurcation. Hence,W.t/ remains constant.
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5 Examples

We illustrate Theorem 1 by a few elementary examples. Consider the case of plane
cubics, for which new invariants can easily be computed via integration with respect
to the Euler characteristic in the style of [3, Proposition 4.7.3].

Let r1 C 3r3 C 2.m1 C 2m2 C 3m3 C 4m4/ D 8, where r1; r3;m1;m2;m3;m4 � 0.
Define integer vectors k D .r1 � 1; r3 � 3/, l D .m1 � 1;m2 � 2;m3 � 3;m4 � 4/.
Denote by L the class of line in Pic.P2/. Then

W.P2; 3L; .k; l// D r1 � r3 :

As compared with the case of usual Welschinger invariants, in the real pencil of
plane cubics meeting the intersection conditions with a given collection of arcs, in
addition to real rational cubics with a node outside the arc centers, one encounters
rational cubics with a node at the center of an arc of order 3. Notice that this real
node is not solitary since one of its local branches must be quadratically tangent to
the given arc. We also remark that, in a similar computation for a collection of arcs
containing a real arc of order 2, one also encounters rational cubics with a node at
the center of such an arc, but this node can be solitary or non-solitary depending
on the given collection of arcs, and hence the count or real rational cubics will also
depend on the choice of a collection of arcs.

Of course, the same argument provides formulas for invariants of any real del
Pezzo surface and D D �K, or, more generally, for each effective divisor with
pa.D/ D 1.

We plan to address the computational aspects in detail in a forthcoming paper.
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