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Dedicated to Gert-Martin Greuel
on the occasion of his seventieth birthday



Preface

The present proceedings volume arose from a conference on “Singularities and
Computer Algebra,” which was held at the Pfalz-Akademie Lambrecht in June
2015 in honor of Gert-Martin Greuel’s 70th birthday . It was attended by roughly
50 participants from Germany, the Netherlands, Switzerland, France, the United
Kingdom, Spain, Hungary, Ukraine, Israel, Mexico, Vietnam, Russia and the United
States. Most of the participants listed below were influenced by Greuel’s work
on singularities and their computational aspects over the last 40 years. Among
them, there were colleagues and friends from the early years in Göttingen and
Bonn, but also Gert-Martin Greuel’s past and present diploma and Ph.D. students
at Kaiserslautern. In particular, each of the invited speakers listed below has
collaborated with Greuel in one way or another. These collaborations involved
a wide range of topics in singularity theory such as topological and algebraic
aspects, classification problems, deformation theory and resolution of singularities.
Accordingly, the articles in this volume present a diverse portrait of singularity
theory and its evolution over the past few decades.

Greuel’s contributions to mathematics touch on a broad range of topics in
singularity theory. His publications list includes more than 100 articles, the impor-
tance of which is demonstrated by more than 1000 citations on MathSciNet.
With Gerhard Pfister and Hans Schönemann, he developed the computer algebra
system SINGULAR, which has since become the computational tool of choice for
many singularity theorists. For many years Greuel organized the conference series
“Singularities” at the mathematical research institute in Oberwolfach, which was
a driving force for the further development of the area. In subsequent years his
commitment as director further strengthened the international role of Oberwolfach
as one of the most prominent and influential locations of its kind. In order to
share his fascination with mathematics with the general public, Greuel created the
touring mathematical exhibition IMAGINARY.1 In Fig. 1 we include a picture of the

1See www.imaginary.org.
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Fig. 1 The E8 singularity visualized using SURFER

E8 singularity that is part of the exhibition. The underlying visualization software
(“SURFER”) is addressed in the article by Stefan Klaus.

We would like to thank everyone who contributed to the success of the conference
and to the proceedings. Special thanks go to Petra Bäsell and Cornelia Rottner.

Kaiserslautern, Germany Wolfram Decker
Kaiserslautern, Germany Gerhard Pfister
Kaiserslautern, Germany Mathias Schulze
August 2016
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On Some Conjectures About Free and Nearly
Free Divisors

Enrique Artal Bartolo, Leire Gorrochategui, Ignacio Luengo,
and Alejandro Melle-Hernández

Abstract In this paper we provide infinite families of non-rational irreducible free
divisors or nearly free divisors in the complex projective plane. Moreover, their
corresponding local singularities can have an arbitrary number of branches. All
these examples contradict some of the conjectures proposed by Dimca and Sticlaru.
Our examples say nothing about the most remarkable conjecture by A. Dimca and
G. Sticlaru, which predicts that every rational cuspidal plane curve is either free or
nearly free.

Keywords Free divisors • Nearly free curves

Subject Classifications:14A05, 14R15

1 Introduction

The notion of free divisor was introduced by Saito [21] in the study of discriminants
of versal unfoldings of germs of isolated hypersurface singularities. Since then many
interesting and unexpected applications to singularity theory and algebraic geometry
have been appearing. In this paper, we are mainly focused on complex projective
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2 E. Artal Bartolo et al.

plane curves, and we adapt the corresponding notions and results to this setup. The
results contained in this paper have needed a lot of computations in order to get the
correct statements. All of them have been done using the computer algebra system
Singular [9] through Sagemath [24]. We thank Singular’s team for such a
great mathematical tool and especially to Gert-Martin, to whom we dedicate this
paper, for his dedication to Singular development.

Let S WD CŒx; y; z� be the polynomial ring endowed with the natural graduation
S D L1

mD0 Sm by homogeneous polynomials. Let f 2 Sd be a homogeneous
polynomial of degree d in the polynomial ring, let C � P

2 be defined by f D 0.
Assume that C is reduced. We denote by Jf the Jacobian ideal of f , which is
the homogeneous ideal in S spanned by fx; fy; fz. We denote by M.f / D S=Jf the
corresponding graded ring, called the Jacobian (or Milnor) algebra of f .

Let If be the saturation of the ideal Jf with respect to the maximal ideal .x; y; z/ in
S and let N.f / D If =Jf be the corresponding graded quotient. Recall that the curve
C W f D 0 is called a free divisor if N..f / D If=Jf D 0I see, e.g., [23].

Dimca and Sticlaru introduced in [13] the notion of nearly free divisor which is
a slight modification of the notion of free divisor. The curve C is called nearly free
divisor if N.f / ¤ 0 and dimC N.f /k � 1 for any k.

The main results in [12, 13] and many series of examples motivate the following
conjecture.

Conjecture 1.1 ([13])

(i) Any rational cuspidal curve C in the plane is either free or nearly free.
(ii) An irreducible plane curve C which is either free or nearly free is rational.

In [13], the authors provide some interesting results supporting the statement of
Conjecture 1.1(i); in particular, Conjecture 1.1(i) holds for rational cuspidal curves
of even degree [13, Theorem 4.1]. They need a topological assumption on the cusps
which is not fulfilled in general when the degree is odd; see [13, Theorem 4.1].

They proved also that this conjecture holds for a curve C with an abelian
fundamental group �1.P2 n C/ or for those curves whose degree is a prime power;
see [13, Corollary 4.2] and the discussion in [4].

Using the classification given in [15] of unicuspidal rational curve with a unique
Puiseux pair, Dimca and Sticlaru proved in [13, Corollary 4.5] that all of them are
either free divisor or nearly free divisor, except the curves of odd degree in one of
the cases of the classification.

As for Conjecture 1.1(ii), note that reducible nearly free curves may have
irreducible components which are not rational; see [13, Example 2.8]: a smooth
cubic with three tangents at aligned inflection points is nearly free (note that the
condition of alignment can be removed, at least in some examples computed using
Singular [9]). For free curves, examples can be found using [29, Theorem 2.7],
e.g., .x3 � y3/.y3 � z3/.x3 � z3/.ax3 C by3 C cz3/ for generic a; b; c 2 C such that
a C b C c D 0. The conjectures in [29] give some candidate examples of smaller
degree; it is possible to prove that .y2z�x3/.y2z�x3�z3/ D 0 is free (also computed
with Singular [9]). Dimca and Sticlaru also proposed the following conjecture.
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Conjecture 1.2 ([13])

(i) Any free irreducible plane curve C has only singularities with at most two
branches.

(ii) Any nearly free irreducible plane curve C has only singularities with at most
three branches.

In this paper we give some examples of irreducible free divisors and nearly
free divisors in the complex projective plane which are not rational curves giving
counterexamples to Conjecture 1.1(ii). Using these counterexamples we have found
some examples of irreducible free divisors whose two singular points have any odd
number of branches, giving counterexamples to Conjecture 1.2(i). Furthermore,
some irreducible nearly free divisors with just one singular point which has four
branches giving counterexamples to Conjecture 1.2(ii) are provided too.

Section 2 is devoted to collect well-known results in the theory of free divisors
and nearly free divisors mainly from their original papers of Dimca and Sticlaru
in [12, 13]. Also a characterization for being nearly free reduced plane curve from
Dimca in [10] is recalled. This characterization is similar to the characterization of
being free given by du Plessis and Wall in [20].

From Sect. 3.2, it can be deduced that for every odd integer k � 1, the irreducible
plane curve C5k of degree d D 5k defined by

C5k W f5k WD .ykzk � x2k/2yk � x5k D 0

satisfies:

1. Its geometric genus is g.C5k/ D .k�1/.k�2/
2

;
2. its singular set consists of two points and the number of branches of C5k at each

of them is exactly k,
3. C5k is a free divisor, see Theorem 3.9.

This is a counterexample to both the free divisor part of Conjectures 1.1(ii) and
1.2(i).

From Sect. 3.3 it can also be deduced that for any odd integer k � 1, the
irreducible plane curve C4k of degree d D 4k defined by

C4k W f4k WD .ykzk � x2k/2 � x3kyk D 0

satisfies:

1. Its geometric genus is g.C4k/ D .k�1/.k�2/
2

;
2. its singular set consists of two points and the number of branches of C4k at each

of them is exactly k,
3. C4k is a nearly free divisor, see Theorem 3.11.

This is a counterexample to both the nearly free divisor part of Conjecture 1.1(ii)
and Conjecture 1.2(ii) too.
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In the families studied above, the number of singular points of the curves is
exactly two. In Sect. 3.4, we are looking for curves giving a counterexample to the
nearly free divisor part of Conjecture 1.1(ii) with unbounded genus and number of
singularities. In particular, for every odd integer k � 1, the irreducible curve C2k of
degree d D 2k defined by

C2k W f2k WD x2k C y2k C z2k � 2.xkyk C xkzk C ykzk/ D 0

satisfies:

1. Its geometric genus is g.C2k/ D .k�1/.k�2/
2

;
2. its singular set Sing.C2k/ consists of exactly 3k singular points, each of them of

type Ak�1,
3. C2k is a nearly free divisor, see Theorem 3.12.

This is a counterexample to both the nearly free divisor part of Conjecture 1.1(ii)
and Conjecture 1.2(ii) too.

One of the main tools to find such examples is the use of Kummer covers. A
Kummer cover is a map �k W P2 ! P

2 given by

�k.Œx W y W z�/ WD Œxk W yk W zk�:

Since Kummer covers are finite Galois unramified covers of P2 n fxyz D 0g with
Gal.�k/ Š Z=kZ � Z=kZ, Kummer covers are a very useful, using them one can
construct complicated algebraic curves starting from simple ones. We meanly refer
to [3, §5] for a systematic study of Kummer covers.

In particular, these families of examples fC5kg (which are free divisors), fC4kg,
and fC2kg (which are nearly free divisors) are constructed as the pullback under the
Kummer cover �k of the corresponding rational cuspidal curves: the quintic C5
which is a free divisor, and the corresponding nearly free divisors defined by either,
the cuartic C4, or by the conic C2.

In the last section, Sect. 4, an irreducible curve C49 of degree 49 satisfying

1. its genus is g.C49/ D 0,
2. its singular set consists of just one singular point which has four branches,
3. C49 is a nearly free divisor.

These examples can be constructed as a general element of the unique pencil
associated to any rational unicuspidal plane curve; see [8].
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2 Free and Nearly Free Plane Curves After Dimca and
Sticlaru

Let S WD CŒx; y; z� be the polynomial ring endowed with the natural graduation S DL1
mD0 Sm by homogeneous polynomials. Let f 2 Sd be a homogeneous polynomial

of degree d in the polynomial ring. Let C be the plane curve in P
2 defined by f D

0 and assume that C is reduced. We have denoted by Jf the Jacobian ideal of f ,
which is the homogeneous ideal in S spanned by fx; fy; fz. Let M.f / D S=Jf be the
corresponding graded ring, called the Jacobian (or Milnor) algebra of f .

The minimal degree of a Jacobian relation for f is the integer mdr.f / defined to
be the smallest integer m � 0 such that there is a nontrivial relation

afx C bfy C cfz D 0; .a; b; c/ 2 S3m n .0; 0; 0/: (1)

When mdr.f / D 0, then C is a union of lines passing through one point, a situation
easy to analyze. We assume from now on that mdr.f / � 1.

2.1 Free Plane Curves

We have denoted by If the saturation of the ideal Jf with respect to the maximal
ideal .x; y; z/ in S. Let N.f / D If =Jf be the corresponding homogeneous quotient
ring.

Consider the graded S-submodule

AR.f / D f.a; b; c/ 2 S3 j afx C bfy C cfz D 0g � S3

of all relations involving the partial derivatives of f , and denote by AR.f /m its
homogeneous part of degree m.

Notation 2.1 We set the following: ar.f /k D dim AR.f /k, m.f /k D dimM.f /k, and
n.f /k D dimN.f /k for any integer k.

We use the definition of freeness given by Dimca in [10].

Definition 2.2 The curve C W f D 0 is a free divisor if the following equivalent
conditions hold.

1. N.f / D 0, i.e. the Jacobian ideal is saturated.
2. The minimal resolution of the Milnor algebra M.f / has the following form

0! S.�d1 � dC 1/˚ S.�d2 � dC 1/! S3.�dC 1/ .fx;fy;fz/����! S

for some positive integers d1; d2.
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3. The graded S-module AR.f / is free of rank 2, i.e. there is an isomorphism

AR.f / D S.�d1/˚ S.�d2/

for some positive integers d1; d2.

When C is a free divisor, the integers d1 � d2 are called the exponents of C. They
satisfy the relations

d1 C d2 D d � 1 and �.C/ D .d � 1/2 � d1d2; (2)

where �.C/ is the total Tjurina number of C; see, for instance, [11, 12]. Using
deformation results in [23], Sticlaru [25] defines a curve C � P

2 to be projectively
rigid if .If /d D .Jf /d. In particular, if C is free, then it is projectively rigid.

Remark 2.3 This notion of projectively rigid differs from the classical one; see, e.g.,
[16], where a curve is projectively rigid if its equisingular moduli space is discrete.
Note that four lines passing through a point define a free divisor, but its equisingular
moduli space is defined by the cross ratio.

2.2 Nearly Free Plane Curves

Dimca and Sticlaru introduced a more subtle notion for a divisor to be nearly free;
see [13].

Definition 2.4 ([13]) The curve C W f D 0 is a nearly free divisor if the following
equivalent conditions hold.

1. N.f / ¤ 0 and n.f /k � 1 for any k.
2. The Milnor algebra M.f / has a minimal resolution of the form

0! S.�d� d2/! S.�d� d1C 1/˚ S2.�d� d2C 1/! S3.�dC 1/ .f0;f1;f2/�����! S
(3)

for some integers 1 � d1 � d2, called the exponents of C.
3. There are three syzygies �1, �2, �3 of degrees d1, d2 D d3 D d � d1 which form

a minimal system of generators for the first-syzygy module AR.f /.

If C W f D 0 is nearly free, then the exponents d1 � d2 satisfy

d1 C d2 D d and �.C/ D .d � 1/2 � d1.d2 � 1/� 1I (4)

see [13]. For both a free and a nearly free curve C W f D 0, it is clear that
mdr.f / D d1.
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Remark 2.5 In [13] it is shown that to construct a resolution (3) for a given
polynomial f , the following conditions must be satisfied:

(i) the integer b WD d2 � dC 2,
(ii) three syzygies ri D .ai; bi; ci/ 2 S3di , i D 1; 2; 3, for .fx; fy; fz/, i.e.

aifx C bify C cifz D 0;

necessary to construct the morphism

3M

iD1
S.�di � .d � 1//! S3.�dC 1/; .u1; u2; u3/ 7! u1r1 C u2r2 C u3r3;

(iii) one relation R D .v1; v2; v3/ 2L3
iD1 S.�di�.d�1//bC2.d�1/ among r1; r2; r3,

i.e. v1r1 C v2r2 C v3r3 D 0, necessary to construct the morphism

S.�b� 2.d � 1//!
M

iD1;3
S.�di � .d � 1//

by the formula w 7! wR. Note that vi 2 Sb�diCd�1.

Corollary 2.6 ([13]) Let C W f D 0 be a nearly free curve of degree d with
exponents .d1; d2/. Then N.f /k ¤ 0 for dC d1� 3 � k � dC d2� 3 and N.f /k D 0
otherwise. The curve C is projectively rigid if and only if d1 � 4.

2.3 Characterization of Free and Nearly Free Reduced Plane
Curves

Just recently Dimca provides in [10] the following characterization of free and
nearly free reduced plane curve C of degree d. For a positive integer r, the following
integer is defined:

�.r/max WD .d � 1/.d � r � 1/C r2:

Theorem 2.7 ([10]) Let C � P
2 be a reduced curve of degree d defined by f D 0,

and let r WD mdr.f /.

(1) If r < d
2
, then �.C/ D �.r/max if and only if C W f D 0 is a free divisor.

(2) If r � d
2
, then �.C/ D �.r/max � 1 if and only if C is a nearly free divisor.

As it is recalled in [10], Theorem 2.7(1) is Corollary of [20, Theorem 3.2] by du
Plessis and Wall.
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3 High-Genus Curves Which Are Free or Nearly Free
Divisors

3.1 Transformations of Curves by Kummer Covers

A Kummer cover is a map �k W P2 ! P
2 given by �k.Œx W y W z�/ WD Œxk W yk W zk�.

Kummer covers are a very useful tool in order to construct complicated algebraic
curves starting from simple ones. Since Kummer covers are finite Galois unramified
covers of P2 n fxyz D 0g with Gal.�k/ Š Z=kZ � Z=kZ, topological properties of
the new curves can be obtained, for instance, Alexander polynomial, fundamental
group, characteristic varieties, and so on (see [1–3, 5, 6, 17, 18, 28] for papers using
these techniques).

Example 3.1 In [28], Uludağ constructs new examples of Zariski pairs using former
ones and Kummer covers. He also uses the same techniques to construct infinite
families of curves with finite non-abelian fundamental groups.

Example 3.2 In [5, 17], the Kummer covers allow to construct curves with many
cusps and extremal properties for their Alexander invariants. These ideas are pushed
further in [6] where the authors find Zariski triples of curves of degree 12 with
32 ordinary cusps (distinguished by their Alexander polynomial). Within the same
ideas, Niels Lindner [18] constructed an example of a cuspidal curve C0 of degree
12 with 30 cusps and Alexander polynomial t2 � t C 1. For this, he started with a
sextic C0 with six cusps, admitting a toric decomposition. He pulled back C0 under a
Kummer map �2 W P2 ! P

2 ramified above three inflectional tangents of C0. Since
the sextic is of torus type, then the same holds for the pullback. Lindner showed that
the Mordell-Weil lattice has rank 2 and that the Mordell-Weil group contains A2.2/.

A systematic study of Kummer covers of projective plane curves has been done
by J.I. Cogolludo, J. Ortigas, and the first named author in [3, §5]. Some of their
results are collected below.

Let C be a (reduced) projective curve of degree d of equation Fd.x; y; z/ D 0 and
let NCk be its transform by a Kummer cover �k, k � 1. Note that NCk is a projective
curve of degree dk of equation Fd.xk; yk; zk/ D 0.

Definition 3.3 ([3]) We define P 2 P
2 such that P WD Œx0 W y0 W z0�. We say

that P is a point of type .C�/2 (or simply of type 2) if x0y0z0 ¤ 0. If x0 D 0

but y0z0 ¤ 0, the point is said to be of type C
�
x (types C

�
y and C

�
z are defined

accordingly). Such points will also be referred to as type 1 points. The corresponding
line (either LX WD fX D 0g, LY WD fY D 0g, or LZ WD fZ D 0g) the type-1 point
lies on will be referred to as its axis. The remaining points Px WD Œ1 W 0 W 0�,
Py WD Œ0 W 1 W 0�, and Pz WD Œ0 W 0 W 1� will be called vertices (or type 0 points), and
their axes are the two lines (either LX , LY , or LZ) they lie on.

Remark 3.4 ([3]) Note that a point of type `, ` D 0; 1; 2 in P
2 has exactly k`

preimages under �k. It is also clear that the local types of NCk at any two points on
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the same fiber are analytically equivalent. The singularities of NCk are described in
the following proposition.

Proposition 3.5 ([3]) Let P 2 P
2 be a point of type ` and Q 2 ��1k .P/. The

following conditions hold:

(1) If ` D 2, then .C;P/ and . NCk;Q/ are analytically isomorphic.
(2) If ` D 1, then . NCk;Q/ is a singular point of type 1 if and only if m > 1, where

m WD .C � NL/P and NL is the axis of P.
(3) If ` D 0, then . NCk;Q/ is a singular point.

Remark 3.6 Using Proposition 3.5 (1), if Sing.C/ � fxyz D 0g, then Sing. NCk/ �
fxyz D 0g.
Example 3.7 ([3]) In some cases, we can be more explicit about the singularity
type of . NCk;Q/. If P is of type 1, .C;P/ is smooth, and m WD .C � NL/P, then . NCk;Q/
has the same topological type as uk0 � vm0 D 0. In particular, if m D 2, then . NCk;Q/
is of type Ak�1.

In order to better describe singular points of type 0 and of type 1 of NCk, we
will introduce the following notation. Let P 2 P

2 be a point of type ` D 0; 1 and
Q 2 ��1k .P/ a singular point of NCk. Denote by �P (resp. �Q) the Milnor number of
C at P (resp. NCk at Q). Since ` D 0; 1, then P and Q belong to either exactly one or
two axes. If P and Q belong to an axis NL, then mNLP WD .C � NL/P (analogous notation
for Q). More specific details about singular points of types 0 and 1 can be described
as follows.

Proposition 3.8 ([3]) Under the above conditions and notation, the following
conditions hold:

(1) For ` D 1, P belongs to a unique axis NL and

a. �Q D k�P C .mNLP � 1/.k � 1/,
b. and, if .C;P/ is locally irreducible and r WD gcd.k;mNLP/, then .C;Q/ has r

irreducible components which are analytically isomorphic to each other.

(2) For ` D 0, P belongs to exactly two axes NL1 and NL2
a. �Q D k2.�P � 1/C k.k � 1/.mNL1P Cm

NL2
P /C 1 (There is a typo in the printed

formula in [3]: k � k2 must be added).

b. and, if .C;P/ is locally irreducible and r WD gcd.k;m
NL1
P ;m

NL2
P /, then .C;Q/

has kr irreducible components which are analytically isomorphic to each
other.
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3.2 Irreducible Free Curves with Many Branches and High
Genus

Let us consider the quintic curve C5 (see Fig. 1), defined by f5 WD .yz�x2/2y�x5 D
0. It has two singular points, p1 D Œ0 W 1 W 0� of type A4 and p2 D Œ0 W 0 W 1�
of type E8. Therefore, it is a rational and cuspidal plane curve. This curve is free;
see [12, Theorem 4.6]. Let us consider the Kummer cover �k W P2 ! P

2 given
by �k.Œx W y W z�/ WD Œxk W yk W zk� and its Kummer transform C5k, defined by
f5k WD .ykzk � x2k/2yk � x5k D 0.

Theorem 3.9 For any k � 1, the curve C5k of degree d D 5k defined by

C5k W f5k WD .ykzk � x2k/2yk � x5k D 0; (5)

verifies the following properties:

(1) Sing.C5k/ D fp1; p2g. The number of branches of C5k at p2 is k, and at p1, it
equals k (if k is odd) or 2k (if k is even).

(2) C5k is a free divisor with exponents d1 D 2k, d2 D 3k � 1 and �.C5k/ D
19k2 � 8kC 1.

(3) C5k has two irreducible components of genus .k�2/2
4

if k is even and irreducible

of genus .k�1/.k�2/
2

otherwise.

Proof Part (1) is an easy consequence of [3, Lemma 5.3, Propositions 5.4, and 5.6].
The singularities Sing.C5/ D fp1; p2g are of type 0, in the sense of the Kummer
cover �k (see Definition 3.3), and C5 has no singularities outside the intersection
points of the axes. Moreover C5 intersects the line Lz transversally at a point of type
1; then by Proposition 3.5 (2) and by Remark 3.6, the singularities of C5k are exactly
the points p1 and p2.

Since p1 and p2 are of type 0, we deduce the structure of C5k at these points
using Proposition 3.8 (2) (b). At p1 one has .C5;Lz/p1 D 5; .C5;Lx/p1 D 2, and
rp1 D gcd.k; 2; 5/ D 1 for all k , and so that the number of branches of C5k at
p1 is equal to k. On the other hand, to study the number of branches at p2, we
compute the intersection numbers .C5;Lx/p2 D 2 and .C5;Ly/p2 D 4 and therefore

Fig. 1 Curve C5

Lx : x= 0

Lz : z= 0 Ly : y= 0

u3 = v5 u2 = v5

p2 p1

C5

(C5 ·Lz)Q = 4
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Table 1 Bases of syzygies Ideal First generator Second generator

J R1 � D1;y;1 R2 � D1;1;z
Jx R1 � D1;y;1 R2 � D1;x;xz
Jy R1 R2 � Dy;1;yz

Jz R1 � D1;yz;1 R2
Jxy R1 R2 � Dy;x;xyz

Jxz R1 � D1;yz;1 R2 � D1;x;x
Jyz R1 � D1;z;1 R2 � Dy;1;y

Jxyz R1 � D1;z;1 R2 � Dy;x;xy

rp2 D gcd.k; 2; 4/ D gcd.k; 2/. Ik k is odd, rp2 D 1 and the number of branches of
C5k at p2 is equal to k. Otherwise rp2 D 2 and the number of branches of C5k at p2
is equal to 2k.

In order to prove (2), we follow the ideas of [12, Theorem 4.6]. Let us study first
the syzygies of the free curve C5. Let us denote by Du;v;w, the diagonal matrix with
entries u; v;w, and define the vectors

R1 D
�
0; 2y; x2 � 3yz� ; R2 D

�
2.x2 � yz/; 2.5x2 � 4xyC 15yz/; 8x � 45z� :

Let us denote by J the Jacobian ideal J of f5. Let us denote by Jx the ideal generated
by .xf5x; f5y; f5z/. In the same way, we consider the ideals Jy, Jz, Jxy, Jxz, Jyz, Jxyz.
Table 1 shows bases for the syzygies of these ideals, computed with Singular [9].
Note that

f5kxDkxk�1f5x.xk; yk; zk/; f5ky D kyk�1f5y.xk; yk; zk/; f5kz D kzk�1f5z.xk; yk; zk/:

Let Sk WD CŒxk; yk; zk�. We have a decomposition

S D
M

.i;j;l/2f0;:::;k�1g
xiyjzlSk: (6)

By construction, f5kx 2 xk�1Sk, f5ky 2 yk�1Sk and f5kz 2 zk�1Sk. Hence, in order
to compute the syzygies .a; b; c/ among the partial derivatives of f5k, we need to
characterize the triples .a; b; c/ such that each entry belongs to a factor of the
decomposition (6).

Let us assume that a 2 xixyjx zjxSk, b 2 xiyyjy zjySk, and c 2 xizyjz zjzSk. We deduce
that

ix C k � 1 � iy � iz mod k H) i D iy D iz and ix D
(
iC 1 if i < k � 1
0 if i D k � 1:
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Analogous relations hold for the other indices. We distinguish four cases:

Case 1 i D j D l D k � 1.

In this case a.x; y; z/ D yk�1zk�1˛.xk; yk; zk/, b.x; y; z/ D xk�1zk�1ˇ.xk; yk; zk/,
and c.x; y; z/ D xk�1yk�1�.xk; yk; zk/. Hence, .˛; ˇ; �/ is a syzygy for the partial
derivatives of f5. We conclude that .a; b; c/ is a combination of

R1.x
k; yk; zk/ � D1;xk�1ykzk�1;xk�1yk�1 D xk�1yk�1R1.xk; yk; zk/ � D1;yzk�1;1

and

R2.x
k; yk; zk/ � Dyk�1zk�1;xk�1zk�1;xk�1yk�1zk D zk�1R2.xk; yk; zk/ � Dyk�1;xk�1;xk�1yk�1z:

Divided by common factors, we obtain syzygies of degree 2k and 3k � 1.

Case 2 i < k � 1, j D l D k � 1.

In this case a.x; y; z/ D xiC1yk�1zk�1˛.xk; yk; zk/, b.x; y; z/ D xizk�1ˇ.xk; yk; zk/,
and c.x; y; z/ D xiyk�1�.xk; yk; zk/. Hence, .˛; ˇ; �/ is a syzygy for the generators of
the ideal Jx. It is easily seen that we obtain combination of generators of the above
syzygies. The other cases are treated in the same way.

We conclude that C5k is free with d1 D mdr.f5k/ D 2k and d2 D d � 1 � d1 D
5k � 1 � 2k D 3k � 1. By Eq. (2) �.C5k/ D 19k2 � 8kC 1 for all k.

In order to prove (3), we study the branched cover Q�k W QC5k ! QC5 between the
normalizations of the curves. The monodromy of this map as an unramified cover
of P2 n fxyz D 0g is determined by an epimorphism

H1.P
2 n fxyz D 0gIZ/! Zk � Zk DW Gk

such that the meridians of the lines are sent to ax; ay; az, a system of generators of Gk

such that axCayCaz D 0. Since the singularities of C5 are locally irreducible, then
C5 and QC5 are homeomorphic, and the covering Q�k is determined by the monodromy
map

H1. QC5 n fxyz D 0gIZ/! Zk � Zk DW Gk

obtained by composing using the map defined by the inclusion. Hence, QC5 n fxyz D
0g is isomorphic to P

1 n fthree pointsg/. The image of a meridian corresponding to
a point P in the axes is given by

mLx
P ax C m

Ly
P ay C mLz

P az:

Hence, we obtain az (the smooth point), 3axC5ay (the E8-point), and 2axC4az (the
A4-point). In terms of the basis ay; az, they read as az; 2ay�3az;�2ayC2az, i.e., the
monodromy group is generated by 2ay; az. If k is even, the monodromy group is of
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index 2 in Gk, and hence, QC5k has two connected components. Otherwise, it is equal
to Gk when k is odd and QC5k is connected. These properties give us the statement
about the number of irreducible components.

The genus can be computed using the singularities of C5k or via Riemann-
Hurwitz’s formula. Note that the covering Q�k is of degree k2 with three ramification
points: at p2 and the smooth point in the axis where we find k preimages, while at p1
we find k preimages if k is odd and 2k preimages if it is even, because of (1). Hence,
for k odd, the Euler characteristic of the normalization is

�. QC5k/ D �k2 C 3k H) g. QC5k/ D .k � 1/.k � 2/
2

:

And for k even, where QC5k D QC15k [ QC25k, the Euler characteristic is

�. QC5k/ D �k2 C 4k H) g. QCi
5k/ D

2 � �. QC5k/
2

2
D .k � 2/2

4
: �

So, for odd k � 3, the curve C5k is an irreducible free curve of positive genus
whose singularities have k branches each. This is a counterexample to both the free
divisor part of Conjectures 1.1(ii) and 1.2(i).

Remark 3.10 Up to projective transformation, there are two quintic curves with two
singular points of type A4 and E8. One is C5 W .yz�x2/2y�x5 D 0, which is free; the
other one is defined by D5 W g D y3z2� x5 D 0 (the contact of the tangent line to the
A4-point distinguishes both curves). Moreover, the curve D5 is nearly free; it can be
computed that mdr.g/ D 1. Since both singular points are quasihomogeneous, 12 D
�.C5/ D �.C5/ D �.D5/ D �.D5/, and we may apply Theorem 2.7(2); the pair
(C5,D5) is a kind of counterexample to Terao’s conjecture [19, Conjecture 4.138]
for irreducible divisors (with constant Tjurina number); compare with [22].

3.3 Irreducible Nearly Free Curves with Many Branches and
High Genus

The quartic curve C4 defined by f4 WD .yz � x2/2 � x3y D 0 has two singular
points, p1 D Œ0 W 1 W 0� of type A2 and p2 D Œ0 W 0 W 1� of type A4. Therefore,
it is rational and cuspidal. We will consider the Kummer transform C4k, defined by
f4k WD .ykzk � x2k/2 � x3kyk D 0, of the curve C4:

Theorem 3.11 For any k � 1, the curve C4k of degree d D 4k defined by

C4k W f4k WD .ykzk � x2k/2 � x3kyk D 0;
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verifies the following properties

(1) Sing.C4k/ D fp1; p2g. The number of branches of C4k at each p2 is k, and at p1,
it equals k (if k is odd) or 2k (if k is even).

(2) C4k is a nearly free divisor with exponents d1 D d2 D d3 D 2k and �.C4k/ D
6k.2k � 1/.

(3) C4k has two irreducible components of genus .k�2/2
4

if k is even and it is

irreducible of genus .k�1/.k�2/
2

otherwise.

Proof Since Sing.C4/.D fp1; p2g/ are points of type 0, C4 meets fxyz D 0g at
three points p1; p2, and transversally at p3 which is of type 1, therefore Sing.C4k/ D
fp1; p2g. To prove Part (1), it is enough to find the number of branches of C4k at these
points using Proposition 3.8 (2) (b). At p1 one has .C4;Lz/p1 D 3; .C4;Lx/p1 D 2,
and rp1 D gcd.k; 2; 3/ D 1 for all k , and so that the number of branches of C4k at p1
is equal to k. In the same way, at p2, the intersection .C4;Lx/p2 D 2; .C4;Ly/p2 D 4,
and rp2 D gcd.k; 2; 4/ D gcd.k; 2/. If k is odd, rp2 D 1 and the number of branches
of C4k at p2 is equal to k. Otherwise rp2 D 2 and the number of branches of C4k at
p2 is equal to 2k.

The proof of Part (2) follows the same guidelines as Theorem 3.9. With the
notations of that proof, a generator system for the syzygies of J (Jacobian ideal
of f4) is given by

R1 WD .y.3x� 4z/; 3y.4x� 3y/; z.9y � 20x// ;
R2 WD

��x.xC 2z/; �4x2 C 3xyC 10yz; �z.3xC 10z/� ;
R3 WD

�
xy; �3y2; 2x2 C 3yz� :

(7)

These syzygies satisfy the relation xR1C3yR2C10zR3 D 0. Therefore, using Dimca
Sticlaru remark (see our Remark 2.5), C4 is a nearly free divisor with exponents
d1 D d2 D d3 D 2.

For the ideal Jz, we have a similar situation. For the other ideals, their syzygy
space is free of rank 2. Using these results it is not hard to prove that the syzygies
of f4k are generated by

Rk;1 WD
�
yk.3xk � 4zk/; 3xk�1y.4xk � 3yk/; xk�1z.9yk � 20xk/� ;

Rk;2 WD
��xyk�1.xk C 2zk/; �4x2k C 3xkyk C 10ykzk; �yk�1z.3xk C 10zk/� ;

Rk;3 WD
�
xykzk�1; �3ykC1zk�1; 2x2k C 3ykzk� :

The results follow as in the proof of Theorem 3.9.
These syzygies satisfy the relation xRk;1 C 3yRk;2 C 10zRk;3 D 0, and therefore,

using Dimca-Sticlaru Remark (see also our Remark 2.5), C4k is a nearly free divisor
with exponents d1 D d2 D d3 D 2k and by Eq. (4) �.C4k/ D 6k.2k � 1/.

The proof of Part (3) follows the same ideas as in Theorem 3.9 (3). �



On Some Conjectures About Free and Nearly Free Divisors 15

So, for odd k � 3, the curve C4k is an irreducible nearly free curve of positive
genus whose singularities have k branches each. This is a counterexample to both
the nearly free divisor part of Conjectures 1.1(ii) and 1.2(ii).

3.4 Positive Genus Nearly Free Curves with Many Singularities

Let us consider the conic C2 given by f2 D x2 C y2 C z2 � 2.xy C xz C yz/ D 0.
This conic is tangent to three axes, and it is very useful to produce interesting curves
using Kummer covers (Fig. 2).

Theorem 3.12 For any k � 1, the curve C2k of degree d D 2k defined by

C2k W f2k WD x2k C y2k C z2k � 2.xkyk C xkzk C ykzk/ D 0;

verifies the following properties:

(1) Sing.C2k/ are 3k singular points of type Ak�1.
(2) C2k is a nearly free divisor with exponents d1 D d2 D d3 D k and �.C2k/ D

3k.k � 1/.
(3) C2k is irreducible of genus .k�1/.k�2/

2
if k is odd and it has four irreducible

smooth components of degree k
2
if k is even.

Proof To prove (1) it is enough to take into account that C2 is nonsingular, and by
Remark 3.6 the singularities of C2k satisfy Sing.C2k/ � fxyz D 0g. Moreover C2
is tangent to the three axes at three points fp1; p2; p3g of type 1 with .C2;Lx/p1 D
.C2;Ly/p2 D .C2;Lz/p3 D 2 at these points. For i D 1; : : : ; 3; the points pi are of
type 1, and by Remark 3.4, all the k preimages under �k are analytically equivalent.
By Example 3.7, over each pi, one has k singular points of type Ak�1.

Fig. 2 Conic C2
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Let us study (2). A generator system for the syzygies of J (Jacobian ideal of f2)
is given by

R1 WD .y � z; y; �z/ ;
R2 WD .�x; z� x; z/ ;

R3 WD .x; �y; x � y/ :

(8)

These syzygies satisfy the relation xR1C yR2C zR3 D 0. The other ideals have free
2-rank syzygy modules. A simple computation gives the following syzygies for f2k:

Rk;1 WD
�
yk � zk; xk�1y; �xk�1z� ;

Rk;2 WD
��xyk�1; zk � xk; yk�1z

�
;

Rk;3 WD
�
xzk�1; �yzk�1; xk � yk

�
:

These syzygies satisfy the relation xRk;1 C yRk;2 C zRk;3 D 0 and therefore, C2k
is a nearly free divisor with exponents d1 D d2 D d3 D k and �.C2k/ D 3k.k � 1/.

To prove (3) we follow as in the proof of Theorem 3.9 (3); the main difference
is that �2 has no ramification over C2 and in fact C4 is the union of four lines in
general position; their preimages. If k D 2`, since �k D �` ı �2, each irreducible
component is a smooth Fermat curve. �

For odd k � 3, these curves have positive genus and give a counterexample to
the nearly free divisor part of Conjecture 1.1(ii) (with unbounded genus and number
of singularities). Furthermore, if k � 5, since d1 D 5 � 4 then by Corollary 2.6 C2k
is projectively rigid. Note that it is not the case for C6, where we find it is the dual
of a smooth cubic which is a nearly free divisor. A simple computation shows that
the dual of a generic smooth cubic is also a nearly free divisor.

4 Pencil Associated to Unicuspidal Rational Plane Curves

In this section we are going to show that it is possible to construct a rational nearly
free curve whose singular points has more than three branches, that is the condition
to have high genus is not needed.

Given a curve C � P
2, let � W eP2 ! P

2 be the minimal, (not the “embedded”
minimal) resolution of singularities of C. Let eC � eP2 be the strict transform of C,
and let Q	.C/ D eC �eC denote the self-intersection number ofeC oneP2.

A unicuspidal rational curve is a pair .C;P/ where C is a curve and P 2 C
satisfies C n fPg Š A

1. We call P the distinguished point of C. Given a unicuspidal
rational curve .C;P/, D. Daigle and the last named author proved the existence of
a unique pencil 
C on P

2 satisfying C 2 
C and Bs.
C/ D fPg where Bs.
C/

denotes the base locus of 
C on P
2, see [7, 8].



On Some Conjectures About Free and Nearly Free Divisors 17

Let �m WeP2m ! P
2 be the minimal resolution of the base points of the pencil. By

Bertini theorem, the singularities of the general member Cgen of 
C are contained
in Bs.
C/ D fPg.

For a unicuspidal rational curve C � P
2, we show (cf. [8, Theorem 4.1]) that the

general member of 
C is a rational curve if and only if Q	.C/ � 0. In this case

1. the general element Cgen of 
C satisfies that the weighted cluster of infinitely
near points of Cgen and C are equal (see [7, Proposition 2.7]).

2. 
C has either 1 or 2 dicriticals, and at least one of them has degree 1.

In view of these results, it is worth noting that all currently known unicuspidal
rational curves C � P

2 satisfy Q	.C/ � 0, see [8, Remark 4.3] for details.
Let C � P

2 be a unicuspidal rational curve of degree d and with distinguished
pointP. In [8, Proposition 1] it is proved that
C is in fact the set of effective divisors
D of P2 such that deg.D/ D d and iP.C;D/ � d2. Since iP.C;C/ D 1 > d2, then
the curve C 2 
C .

The main idea here is to take the general member Cgen of the pencil 
C for a
nonnegative curve, i.e., Q	.C/ � 0. Doing this one gets a rational curve Cgen whose
singularities is Sing.Cgen/ D fPg and the branches of Cgen at P equals to the sum of
the degrees of the dicriticals divisors.

The classification of unicuspidal rational plane curve with N�.P2 n C/ D 1 was
started by Tsunoda [27] and finished by Tono [26] (see also p. 125 in [14]).

Our next example starts with C49 with N�.P2 n C49/ D 1. Secondly we take the
pencil 
C49 , and finally its general member C49;gen has degree 49 and is rational
nearly free with just one singular point which has four branches.

The curve C49 is given by

f49 D ..f s1yC
sC1X

iD2
aif

sC1�i
1 xia�aC1/a � f asC11 /=xa�1 D 0;

where f1 D x4�1z C y4, a D 4, s D 3, a2 D : : : D as 2 C and asC1 2 C n f0g.
We can take for instance a2 D : : : D as D 0 2 C and asC1 D 1. In this case,
d D a2s C 1 D 49, and the multiplicity sequence of .C49;P/ of the singular point
P WD Œ0; 0; 1� is Œ36; 127; 46�. It is no-negative with Q	.C49/ D 1.

If we consider the rational curves C4 defined by f1 D 0 (resp. C13 defined by
f13 W .f1/3y C x13 D 0), then iP.C49;C4/ D 4 � 49 (resp. iP.C49;C13/ D 13 � 49).
Thus, the curve C13C

s.a�1/
4 belongs to the pencil 
C49 if s.a � 1/ D 9.

If we take the curve C49;gen defined by f49;gen WD f49 C 13f13f 94 D 0. This curve is
irreducible, rational, and Sing.C49;gen/ D fPg, and the number of branches of C49;gen
at P is 4.

It is a nearly free divisor, using the computations with Singular [9]. A minimal
resolution (3) for f49;gen is determined by three syzygies of degrees d1 D 24 and
d2 D d3 D 25. Therefore, mdr.f49;gen/ D 24. The computations yield a relation
between these syzygies of multidegree .2; 1; 1/. Then C49;gen is a rational nearly
free curve. Let us note that a direct computation using Singular [9] of the Tjurina
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number of the singular point of the curve fails, but the nearly free condition makes
the computation possible via Theorem 2.7(2): �.C49;gen/ D .49 � 1/.49 � 24 �
1/ C 242 � 1 D 1727 which is the result in Singular using characteristic p D
1666666649.
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A Classification Algorithm for Complex
Singularities of Corank and Modality up to Two

Janko Böhm, Magdaleen S. Marais, and Gerhard Pfister

Abstract In Arnold et al. (Singularities of Differential Maps, vol. I. Birkhäuser,
Boston, 1985), Arnold has obtained normal forms and has developed a classifier for,
in particular, all isolated hypersurface singularities over the complex numbers up to
modality 2. Building on a series of 105 theorems, this classifier determines the type
of the given singularity. However, for positive modality, this does not fix the right
equivalence class of the singularity, since the values of the moduli parameters are
not specified. In this paper, we present a simple classification algorithm for isolated
hypersurface singularities of corank � 2 and modality � 2. For a singularity given
by a polynomial over the rationals, the algorithm determines its right equivalence
class by specifying a polynomial representative in Arnold’s list of normal forms.
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1 Introduction

In his classical paper on singularities [1], Arnold has classified all isolated hyper-
surface singularities over the complex numbers with modality � 2. He has given
normal forms in the sense of polynomial families with moduli parameters such
that every stable equivalence class of function germs contains at least one, but only
finitely many, elements of these families. We refer to such elements as normal form
equations. Two germs are stably equivalent if they are right equivalent after the
direct addition of a nondegenerate quadratic form. Two function germs f ; g 2 m2 �
CŒŒx1; : : : ; xn��, where m D hx1; : : : ; xni, are right equivalent, written f 	 g, if there
is a C-algebra automorphism � of CŒŒx1; : : : ; xn�� such that �. f / D g. Using the
Splitting Lemma (see, e.g., [8, Theorem 2.47]), any germ with an isolated singularity
at the origin can be written, after choosing a suitable coordinate system, as the
sum of two functions on disjoint sets of variables. One function that is called the
nondegenerate part is a nondegenerate quadratic form, and the other part, called the
residual part, is in m3. The Splitting Lemma is implemented in SINGULAR [6, 7] as
part of the library classify.lib [10].

In [2], Arnold has made this classification explicit by describing an algorithmic
classifier, which is based on a series of 105 theorems. This approach determines the
type of the singularity in the sense of its normal form. However, the values of the
moduli parameters are not determined, that is, no normal form equation is given.
Arnold’s classifier is implemented in classify.lib.

Classification of complex singularities has a multitude of practical and theoretical
applications. The classification of real singularities in [3, 12–14] is based on deter-
mining the complex type of the singularity.

In this paper, we develop a determinator for complex singularities of modality
� 2 and corank � 2, which computes, for a given rational input polynomial, a
normal form equation in its equivalence class. For singularities with nondegenerate
Newton boundary, our determinator is based on a simple and uniform approach,
which does not require a case-by-case analysis (except for some trivial final steps
to read off the values of the moduli parameters according to Arnold’s choice of the
normal form). Two series of cases with degenerate Newton boundary are handled
with more specific methods. Here, we use results of Luengo and Pfister [11] to
compute a normal form. In this way, we obtain an approach which does not only
determine the moduli parameters but also allows for an elegant implementation. We
have implemented our algorithm in the SINGULAR-library classify2.lib [4].

It is important to note that two different normal form equations do not necessarily
represent two different right equivalence classes. In [14] the complete structure of
the equivalence classes for, in particular, complex singularities of modality 1 and
corank 2 is determined, in the sense that all equivalences between normal form
equations are described. All normal form equations in the right equivalence class of
a given unimodal corank 2 singularity can, hence, be determined by combining our
classifier with the results in [14]. There is not yet a similar complete description of
the structure of the equivalence classes of bimodal singularities.
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This paper is structured as follows: In Sect. 2, we give the fundamental definitions
and provide the prerequisites on singularities and their classification. In Sect. 3,
we develop a general algorithm for the classification of complex singularities of
modality � 2 and corank � 2. Essentially, the algorithm is structured into a
subalgorithm for elimination below the Newton polygon, and a subalgorithm for
elimination on and above the Newton polygon, which also determines the values of
the moduli parameters. The algorithm for the two series of germs of modality 2 with
degenerate Newton boundary is discussed in Sect. 4.

2 Definitions and Preliminary Results

In this section, we give some basic definitions and results, as well as some notation
that will be used throughout the paper.

Definition 1 Let K � CŒŒx1; : : : ; xn�� be a union of equivalence classes with respect
to the relation 	. A normal form for K is given by a smooth map

˚ W B �! CŒx1; : : : ; xn� � CŒŒx1; : : : ; xn��

of a finite-dimensional C-linear space B into the space of polynomials for which the
following three conditions hold:

(1) ˚.B/ intersects all equivalence classes of K,
(2) the inverse image in B of each equivalence class is finite,
(3) ˚�1.˚.B/ n K/ is contained in a proper hypersurface in B.

The elements of the image of ˚ are called normal form equations.

Remark 2 Arnold has chosen a normal form for each of the corank 2 singularities
of modality � 2. He has also associated a type to each normal form; see Table 1.
We denote the normal form corresponding to the type T by NF.T/. For b 2
par.NF.T// WD ˚�1.K/ with K as in Definition 1, we write NF.T/.b/ WD ˚.b/
for the corresponding normal form equation.

In the following, we give a short account on weighted jets, filtrations, and Newton
polygons. See [1] and [5] for more details.

Definition 3 Let w D .c1; : : : ; cn/ 2 N
n be a weight on the variables .x1; : : : ; xn/.

The w-weighted degree on Mon.x1; : : : ; xn/ is given by w - deg.
Qn

iD1 x
si
i / WDPn

iD1 cisi. If the weight of all variables is equal to 1, we refer to the weighted degree
of a monomial m as the standard degree of m and write deg.m/ for w - deg.m/. We
use the same notation for terms of polynomials.

We call a polynomial f 2 CŒx1; : : : ; xn� quasihomogeneous or weighted
homogeneous of degree d with respect to the weight w if w - deg.t/ D d for any
term t of f .
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Definition 4 Let w D .w1; : : : ;ws/ 2 .Nn/s be a finite family of weights on the
variables .x1; : : : ; xn/. For any monomial (or nonzero term) m 2 CŒx1; : : : ; xn�, we
define the piecewise weight with respect to w as

w - deg.m/ WD min
iD1;:::;s wi - deg.m/:

We set deg.0/ D 1. A polynomial f is called piecewise homogeneous of degree d
with respect to w if w - deg.t/ D d for any term t of f .

Definition 5 Let w be a (piecewise) weight on Mon.x1; : : : ; xn/.

1. Let f D P1
iD0 fi be the decomposition of f 2 CŒŒx1; : : : ; xn�� into weighted

homogeneous summands fi of w-degree i. The weighted j-jet of f with respect to
w is

w - jet. f ; j/ WD
jX

iD0
fi :

The sum of terms of f of lowest w-degree is the principal part of f with respect
to w.

2. A power series in CŒŒx1; : : : ; xn�� has filtration d 2 N with respect to w if all its
monomials are of w-weighted degree d or higher. The power series of filtration d
form a sub-vector space

Ew
d � CŒŒx1; : : : ; xn�� :

3. A power series f 2 CŒŒx1; : : : ; xn�� is weighted k-determined with respect to the
weight w if

f 	 w - jet. f ; k/C g for all g 2 Ew
kC1:

We define the weighted determinacy of f as the minimum number k such that f
is k-determined.

Definition 6 Let w 2 N
n be a single weight. A power series f 2 CŒŒx1; : : : ; xn�� is

called semi-quasihomogeneous with respect to w if its principal part with respect
to w is nondegenerate, that is, has finite Milnor number.1 The principal part is then
called the quasihomogeneous part of f .

Notation 7 1. If the weight of each variable is 1, we write Ed and jet. f ; j/ instead
of Ew

d and w - jet. f ; j/, respectively.

1We say that f is (semi-)quasihomogeneous if there exists a weight w such that f is
(semi-)quasihomogeneous with respect to w.
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2. If for a given type T, w - jet.NF.T/.b/; j/ is independent of b 2 par.NF.T//, we
denote it by w - jet.T; j/.

There are similar concepts of jets and filtrations for coordinate transformations:

Definition 8 Let � be a C-algebra automorphism of CŒŒx1; : : : ; xn�� and let w be a
weight on Mon.x1; : : : ; xn/.

1. For j > 0 we define w - jet.�; j/ WD �w
j as the automorphism given by

�w
j .xi/ WD w - jet.�.xi/;w - deg.xi/C j/ for all i D 1; : : : ; n :

If the weight of each variable is equal to 1, that is, w D .1; : : : ; 1/, we write �j
for �w

j .
2. � has filtration d if, for all  2 N,

.� � id/Ew
 � Ew

Cd :

Remark 9 Note that �0.xi/ D jet.�.xi/; 1/ for all i D 1; : : : ; n. Furthermore note
that �w

0 has filtration � 0, and that, for j > 0, �w
j has filtration j if �w

j�1 D id.

The following definition gives an infinitesimal analogue of the above definition:

Definition 10 A formal vector field v D P
i vi

@
@xi

has filtration d with respect to a
weight w, if the directional derivative of v raises the filtration by not less than d, that
is,

for all g 2 Ew
ı ; Lv.g/ WD

X

i

vi
@g

@xi
2 Ew

ıCd:

In a similar way as [13, Proposition 8], one can prove:

Proposition 11 Let f ; g 2 CŒŒx1; : : : ; xn�� be two power series with f 	 g. Let
w 2 N

n and suppose that the maximal weighted filtration of f with respect to w
is k. Furthermore, let � be a C-algebra automorphism of CŒŒx1; : : : ; xn�� such that
�. f / D g. If jet. f ; k/ factorizes as

w - jet. f ; k/ D f s11 � � � f stt
in CŒx1; : : : ; xn�, then w - jet.g; k/ factorizes as

w - jet.g; k/ D �w
0 . f1/

s1 � � ��w
0 . ft/

st :

Definition 12 Let f D P
i;j ai;jx

iyj 2 CŒŒx; y��, and let T be a corank 2 singularity
type. We call

supp. f / WD fxiyj j ai;j ¤ 0g
supp.T/ WD supp.NF.T/.b//
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where b 2 par.NF.T// is generic, the support of f and of T, respectively. Let

�C. f / WD
[

xiyj2supp. f /

..i; j/C R
2C/

�C.T/ WD
[

xiyj2supp.NF.T/.b//

..i; j/C R
2C/

where b D 0 if 0 2 par.NF.T// and b 2 par.NF.T// is generic, otherwise. Let
� . f / and � .T/ be the boundaries in R

2 of the convex hulls of �C. f / and �C.T/,
respectively. Then:

1. � . f / and � .T/ are called the Newton polygons of f and T, respectively.
2. The compact segments of � . f / or � .T/ are called faces. If � is a face, then

the set of monomials of f lying on � is denoted by supp. f ; �/ and the sum
of the terms lying on � by jet. f ; �/. Moreover, we write supp.�/ for the set
of monomials corresponding to the lattice points of �, and set supp.T; �/ WD
supp.T/ \ supp.�/. We use the same notation for a set of faces, considering the
monomials lying on the union of the faces.

3. Any face � induces a weight w.�/ on Mon.x; y/ in the following way: If � has
slope �wx

wy
, in lowest terms, and wx;wy > 0, we set w.�/ - deg.x/ D wx and

w.�/ - deg.y/ D wy.
4. If w1; : : : ;ws are the weights associated with the faces of � . f /, respectively
� .T/, ordered by increasing slope, there are unique minimal integers
1; : : : ; s � 1 such that the piecewise weight associated with .1w1; : : : ; sws/

by Definition 4 is constant on � . f /, respectively � .T/. We denote this piecewise
weight by w. f /, respectively w.T/, and the corresponding constant by d. f /,
respectively d.T/.

5. Let �i and �j be faces with weights w1 and w2, respectively, and let w be the
piecewise weight defined by w1 and w2. Let d be the w-degree of the monomials
on �1 and �2. Then span.�1;�2/ is the Newton polygon associated with the
sum of all monomials of w-degree d.

6. A monomial m lies strictly underneath, on, or above � . f /, if the w. f /-degree of
m is less than, equal to, or greater than d. f /, respectively. We use this notation
also with respect to � .T/, w.T/, and d.T/.

Notation 13 Given f 2 CŒŒx1; : : : ; xn�� and m 2 Mon.x1; : : : ; xn/, we write
coeff. f ;m/ for the coefficient of m in f .

Definition 14 The Jacobian ideal Jac. f / � CŒŒx1; : : : xn�� of f is generated by the
partial derivatives of f 2 CŒŒx1; : : : xn��. The local algebra of f is the residue class
ring of the Jacobian ideal of f .

Definition 15 Suppose f is a nondegenerate germ, e1; : : : ; e� are monomials
representing a basis of the local algebra of f , and e1; : : : ; es are the monomials in
this basis above or on � . f /. We then call e1; : : : ; es a system of the local algebra
of f .
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Lemma 16 (Arnold [1], Corollary 3.3) Let f be a semi-quasihomogeneous func-
tion with quasihomogeneous part f0, and let e1; : : : ; e� be monomials representing
a basis of the local algebra of f0. Then e1; : : : ; e� also represent a basis of the local
algebra of f .

Theorem 17 (Arnold [1], Theorem 7.2) Let f be a semi-quasihomogeneous
function with quasihomogeneous part f0 and let e1; : : : ; es be a system of the local
algebra of f . Then f is equivalent to a function of the form f0 CPs

kD1 ckek with
constants ck.

In [1], the following approach is used to extend the above results to a larger class
of singularities of corank 2:

Definition 18 A piecewise homogeneous function f0 of degree d satisfies Condi-
tion A, if for every function g of filtration d C ı > d in the ideal spanned by the
derivatives of f0, there is a decomposition

g D
X

i

@f0
@xi
vi C g0;

where the vector field v has filtration ı and g0 has filtration bigger than dC ı.
Note that quasihomogeneous functions satisfy Condition A.

Theorem 19 Suppose that the principal part f0 of the piecewise homogeneous
function f has finite Milnor number and satisfies Condition A. Let e1; : : : ; es be a
system of the local algebra of f0. Then f is equivalent to a function of the form
f0 CPk ckek with constants ck.

Following Arnold’s proof of Theorem 17, Theorem 19 can be proven by
iteratively applying the following lemma:

Lemma 20 Let f0 2 CŒŒx1; : : : ; xn�� be a piecewise homogeneous function of
weighted w-degree dw that satisfies Condition A, and let e1; : : : ; er be the monomials
of a given w-degree d0 > dw in a system of the local algebra of f0. Then, for every
series of the form f0 C f1, where the filtration of f1 is greater than dw, we have

f0 C f1 	 f0 C f 01;

where the terms in f 01 of degree less than d0 are the same as in f1, and the part of
degree d0 can be written as c1e1 C � � � C crer with ci 2 C.

Proof Let g.x/ denote the sum of the terms of degree d0 in f1. There exists a
decomposition of g of the form

g.x/ D
X

i

@f0
@xi
vi.x/C c1e1 C � � � C crer; vi 2 CŒŒx1; : : : ; xn��;
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since e1; : : : ; er represent a monomial vector space basis of the local algebra of f0 in
degree d0. Let d.xi/ be the w-degree of xi, and let v0i WD w - jet.vi; d.xi//. Then

g.x/ D
X

i

@f0
@xi
v0i.x/C c1e1 C � � � C crer � g0.x/;

where g0.x/ has filtration greater than d0. Applying the transformation defined by

xi 7! xi � v0i.x/

to f D f0 C f1, we transform f to

f0.x/C .f1.x/C .c1e1.x/C � � � C crer.x/� g.x//C R.x/;

where the filtration of R is greater than d0. ut
Remark 21 A system of the local algebra is in general not unique. For his lists
of normal forms of hypersurface singularities, Arnold has chosen in each case (in
particular) a specific system of the local algebra. In the rest of the paper, we call
these systems the Arnold systems.

Definition 22 (Kouchnirenko [9]) We say that f 2 CŒŒx; y�� has nondegenerate
Newton boundary if for every face� of � . f /, the saturation of jet. f ; �/ has finite
Milnor number.2

Remark 23

1. Note that if f has nondegenerate Newton boundary and finite Milnor number,
then the principal part of f with respect to w. f / has finite Milnor number.

2. Also note that for Arnold’s normal forms NF.T/ of corank and modality� 2, the
principal part with respect to w.T/ satisfies Condition A.

3. Suppose that f is a function of corank 2 with nondegenerate Newton boundary
such that, for one of Arnold’s normal forms NF.T/ of modality � 2, the support
of the principal part f0 of f with respect to w.T/ coincides with that of the
principal part of NF.T/. Then a system of the local algebra of f0 is also a system
of the local algebra of f .

Remark 24 It follows from Lemma 20 that all hypersurface singularities of corank
� 2 and modality � 2 with nondegenerate Newton boundary are finitely weighted
determined. Moreover, we explicitly obtain the weighted determinacy for each such
singularity.

2We say that the singularity defined by f has non-degenerate Newton boundary if there exists a
germ Qf 2 CŒŒx; y�� with f � Qf which has non-degenerate Newton boundary. We use the analogous
terminology also for semi-quasihomogeneous.
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3 A Classification Algorithm for Corank 2 Complex Simple,
Unimodal, and Bimodal Singularities

We now describe an algorithm to determine an Arnold normal form equation for a
given input polynomial f 2 m3, f 2 QŒx; y� of modality � 2. In this section, we
limit our discussion to functions with a normal form with nondegenerate Newton
boundary. In the case of normal forms with degenerate Newton boundary, our
algorithm will resort to special algorithms described in Sect. 4. Figures 1, 2, 3,
and 4 illustrate the modality 2 types with nondegenerate Newton boundary. The
figures show in the gray shaded area all monomials which can possibly occur in a
polynomial f of the given type T. The faces of the Newton polygon � .T/ are shown
in blue (and are extended with a thin line toward the coordinate axes). The dots with
a thick black circle indicate the moduli monomials in the Arnold system. Red dots
indicate monomials which are not in Jac. f /. Monomials occurring in any normal
form equation with nonzero coefficients are shown as blue dots.

The structure of our algorithm consists out of two basic steps; see Algorithm 1.
We first determine the complex type of f by removing all the monomials underneath
� .T/, in the semi-quasihomogeneous cases, and all the monomials underneath and
on � .T/ which are not in NF.T/, in the other cases (see Algorithm 2). After that, we
determine a normal form equation of f (using Algorithm 5 in the non-simple cases).
More generally, we will formulate the algorithm in a way that it is applicable to any
f 2 m2 and will recognize if f is of modality> 2, returning an error in this case.

Algorithm 1 Algorithm to classify singularities of modality � 2 and corank � 2
Input: A polynomial germ f 2 m2 over the rationals.
Output: NF.f / as well as the values of all moduli parameters occurring in a normal

form equations that is equivalent to f , if f is of modality � 2, corank � 2;
false otherwise.

1: Apply Algorithm 2 to f .
2: if T as returned by Algorithm 2 is a simple type then
3: return .NF.T/; .//

4: Apply Algorithm 5 to the output of Algorithm 2 and return the result.

We first discuss Algorithm 2. If f is of corank � 1, then f is of type Ak, where
k D �. f /. Suppose now that f is of corank 2. Determining T in the process, we
remove all monomials below � .T/ if � .T/ has only one face, and all monomials on
or below � .T/ which are not in NF.T/, if � .T/ has two faces. Let d be the maximal
filtration of f . If f is of typeX9, nothing has to be done. Note that f is of type X9 if and
only if the d-jet of f has four different roots over the complex numbers. If f is not of
type X9, then Algorithm 3 will transform f such that supp.T; d/ D supp.jet. f ; d//.
Using [13, Proposition 8], we find the corresponding linear transformation by
factorizing jet. f ; d/. At this stage we know that supp.jet. f ; d// � supp.T/. We
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Fig. 1 Infinite series of bimodal corank 2 singularities with nondegenerate Newton boundary
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Fig. 2 Exceptional bimodal corank 2 singularities of type E

store the monomials of the d-jet of f in S0 D supp.jet. f ; d//. The remainder of
Algorithm 2 will proceed in an iterative way, changing f and S0 in the process: In
each step of the iteration, we can have one of the following two possibilities for
� . f /:

1. First note that monomials of the form xn1y or xyn2 cannot be intersection points
of ( finite) faces of � .T/. In the case that any of the monomials m0 2 S0 which
is not of the form xn1y or xyn2 lies on two faces of � . f /, it is clear that � .T/
has at least two faces with corner point m0. The algorithm will then stay in this
case. Let �i and �j be the two different faces of � . f / on which m0 lies. The
corner point in all modality 1 and 2 cases with a Newton polygon with two faces
is either x2y2 or x2y3. It follows that if m0 ¤ x2yt, t D 2 or t D 3, then f is not of
modality� 2. Otherwise, using the shape of �0 WD span.�i; �j/ and the fact that
m0 D x2yt is a corner point of �0, all monomials in f on �0 of the form xyn or
xnyt�1 can be removed, replacing the corresponding terms of the given degree by
higher w. f /-degree terms using Algorithm 4. We proceed iteratively in this way.
After each iteration, f , �i, �j, and �0 are recalculated. In each iteration, there
will either be no terms of the considered form on �0, in which case the process
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Fig. 3 Exceptional bimodal corank 2 singularities of type Z
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Fig. 4 Exceptional bimodal corank 2 singularities of type W
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Algorithm 2 Determine the complex type of a corank � 2 singularity of modality
� 2 with non-degenerate Newton boundary

Input: A polynomial germ f 2 m2 over the rationals.
Output: If f is of modality � 2 and corank � 2, then the complex singularity type

T of f , and a polynomial g right equivalent to f such that the set of faces of
� .T/ equals the set of faces of � .w.T/ - jet.g; d.T//; false otherwise.

1: f WD residual part given by the Splitting Lemma applied to f , as implemented
in classify.lib.

2: if corank.f / � 1 then
3: return .f ;A�.f //

4: if corank.f / > 2 then
5: return false
6: if f 2 E5 then
7: return false (modality > 2)

8: f := output of Algorithm 3 applied to f 2 QŒx; y�
9: S0 WD supp.jet.f ; d//, where d WD maximal filtration of f with respect to the

standard grading.
10: while true do
11: Let �1; : : : ; �n be the faces of � .f / ordered by increasing slope.
12: if exist i ¤ j and n1; n2 > 1: m0 WD xn1yn2 2 supp.�i/ \ supp.�j/ � S0

then
13: if m0 ¤ x2y2 and m0 ¤ x2y3 then
14: return false (modality > 2)

15: �0 WD span.�i; �j/

16: f1 WD jet.f ; �0/
17: while exists a term of the form t D c � xn1�1yr or t D c � xryn2�1 in f1 do
18: f := output of Alg. 4 with input f , f1, t, and weights w.�i/;w.�j/

19: Let �1; : : : ; �n be the faces of � .f /.
20: �0 WD span.�i; �j/, with i; j such that m0 2 supp.�i/ \ supp.�j/

21: f1 WD jet.f ; �0/

22: if exists modal 1 or 2 type T with supp.T; �0/ D supp.f1/ then
23: return (f , T)
24: else
25: return false (modality > 2)

26: else
27: Let � be the face of � .f / of smallest slope such that S0 � supp.�/.
28: f1 WD jet.f ; �/
29: if �.f1/ D1 then
30: Let g1 be the factor of f1 with highest multiplicity.
31: if degx.g1/ D 1 then
32: Replace f by g1 7! x, y 7! y applied to f .
33: S0 WD supp.jet.f ; �//
34: else
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35: if supp.f ; �/ D supp..y2 � x3/2/ then
36: return (f , W]

1;�.f /�15)
37: else
38: return false (modality > 2)

39: else
40: if exists modal 1 or 2 type T with � .T/ D � .f1/ then
41: return (f , T)
42: else
43: return false (modality > 2)

Algorithm 3 Reverse linear jet

Input: A polynomial f 2 m3 � QŒx; y� with jet.f ; 4/ ¤ 0.
Output: g 2 m3 � KŒx; y�, where K is an algebraic extension field of Q, such that

g 	 f , and, in case f is of type T ¤ X9 of modality � 2, then supp.jet.g; d// D
supp.T; d/ where d is the maximal filtration of f w.r.t. the standard grading.

1: Factorize jet.f ; d/ D cg˛1g
ˇ
2g

�
3g
ı
4 over C, where 0 ¤ c 2 Q, g1, g2, g3 and g4 are

monic in x and pairwise coprime, and 4 � ˛ � ˇ � � � ı � 0.
2: if ˇ; �; ı D 0 then
3: if g1 ¤ c0y, c0 2 Q then
4: Replace f with g1 7! x, y 7! y applied to f .
5: else
6: Replace f with x 7! y, y 7! x applied to f .

7: if �; ı D 0 then
8: Replace f with g1 7! x and g2 7! y applied to f .

9: if ˛ D 2 and ˇ; � D 1 and ı D 0 then
10: if g1 ¤ c0y, c0 2 Q then
11: Replace f with g1 7! x, y 7! y applied to f .
12: else
13: Replace f with x 7! y, y 7! x applied to f .

14: Write f D a0x4 C a1x3yC a2x2y2 C R, a0; a1 2 Q, a2 2 Q
� and R 2 E5.

15: Replace f with y 7! y � a1
2a2

x, x 7! x applied to f .

16: return f

stops, or the number of equivalence classes in the local algebra of f represented
by powers of x or y underneath �0 strictly increases, except possibly in the last
two steps of the process (where monomials on the final Newton polygon may be
removed). Note that if xm1 and ym2 are largest powers of x and y underneath �0,
then 1; x; : : : ; xm1�1; y; : : : ; ym2�1 represent different equivalence classes. Since
�. f / is finite, the process must stop after finitely many iterations. No further
monomials on �0 can be removed without creating terms underneath �0. Hence,
in all cases in consideration, this algorithm will produce the Newton polygon of
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Algorithm 4 Remove term via partials

Input: f ; f0 2 KŒx; y� over a field K, with t a term of f , and weights u1; u2 2 Z
2.

Output: g 2 KŒx; y� such that f 	 g. If called with input as in Algorithms 2 or 5,
then f D gC tC terms of higher .u1; u2/ -degree than t.

1: mx WD the sum of the terms of @f0
@x of lowest u2-degree

2: mx;y WD the term of mx of lowest u1-degree
3: my WD the sum of the terms of @f0

@y of lowest u1-degree
4: my;x WD the term of my of lowest u2-degree
5: if mx;yjt then
6:

˛ W KŒx; y�! KŒx; y�

x 7! x � t=mx;y

y 7! y

7: return ˛.f /
8: if my;xjt then
9:

˛ W KŒx; y�! KŒx; y�

x 7! x

y 7! y � t=my;x

10: return ˛.f /
11: return f

the normal form. In fact, if supp. f ; �0/ does not coincide with supp.T; �0/ for
some type T of modality� 2, then the modality of f is bigger than 2. Otherwise,
f is a germ of the corresponding type T, and all monomials in f underneath or on
� .T/ not in NF.T/ are removed.

2. Suppose no monomials in S0, except monomials of the form xn1y or xyn2 , lie
on two faces of � . f /. Then f is not of type X9Ck or Yr;s, since these cases
will be recognized to have two faces in the first iteration of the above step.
All the monomials in S0 lie on only one face of � . f /. Let � be this face. If
f1 WD jet. f ; �/ is nondegenerate, then f is a semi-quasihomogeneous germ.
Since w - jet.�w

0 . f /; d. f // D �w
0 . f1/ for any automorphism � of filtration � 0

with respect to the weight w associated with �, span.�/ is an invariant of the
type of f . The corresponding type T can, hence, be identified. The case X9 will
already be recognized as a semi-quasihomogeneous function in the first iteration,
and f will be returned by the algorithm without any change. In all other cases,
the weight w associated with � will be such that w - deg.x/ > w - deg.y/. If f1 is
degenerate, then either f has monomials underneath � .T/ or � .T/ is degenerate.
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For all semi-quasihomogeneous cases of modality � 2, except X9, jet.T; d/ is
divisible by a power of x, and x has the highest multiplicity among all prime
factors. Any weighted jet of NF.T/ with respect to a face lying below � .T/ and
intersecting � .T/ in jet.T; d/ has the same property. Suppose � is such a face.
Then supp.T; �/ D fxnymg with n > m. Taking into account that the weighted
degree of x is greater than the weighted degree of y, it follows that f1 D gn1y

m

with degx.g1/ D 1. The right equivalence g1 7! x, y 7! y transforms f such that
supp. f ; �/ D supp.T; �/. If the normal form of f has a nondegenerate Newton
boundary, but is not semi-quasihomogeneous, we can proceed in the same way:
Suppose � lies underneath or on the face of biggest slope of � .T/. If g1 is the
factor of highest multiplicity of f1 with degx.g1/ D 1, then the right equivalence
g1 7! x, y 7! y transforms f such that supp. f ; �/ D supp.T; �/. We then update
S0 WD supp. f ; �/ and pass to the next iteration. If f1 does not have any x-linear
factor, then the normal form of f has a degenerate Newton boundary. In this case,
we resort to the algorithms described in Sect. 4. Since �. f / is finite, the same
argument as in (1) shows that the iteration terminates after finitely many steps.

We now discuss Algorithm 5, which determines the values of the moduli
parameters. Let w D w.T/ be the weight associated with � .T/. If � .T/ has only
one face �, then supp. f ; �/ is not necessarily equal to supp.T; �/. We achieve
equality by a weighted linear transformation. In the cases where � .T/ has two
faces, equality has already been achieved in Algorithm 2. Above � .T/, we then
use the method described in the proof of Lemma 20 to reduce f modulo Jac. f0/
where f0 D jet. f ; � .T//: We iteratively apply Algorithm 4 to each term, in the
two-face case only considering terms in Jac. f0/, proceeding weighted degree by
weighted degree in increasing order (and in each weighted degree according to
a total (ordinary) degree ordering). After handling a given weighted degree, if
Arnold’s system for type T contains a monomial m of this degree, we write the
sum of the remaining terms in the form

@f0
@x
v1 C @f0

@y
v2 C cm;

where v1; v2 2 CŒx; y� are weighted homogeneous, c 2 C, and as

@f0
@x
v1 C @f0

@y
v2;

otherwise. By Remark 23 this is always possible. Applying x 7! x�v1, y 7! y�v2,
results in replacing the sum of the remaining terms by a sum of terms which are
either in Arnold’s system in the w-degree under consideration or of higher w-degree.
Since f is weighted d0-determined, we stop the iteration when we reach degree d0C1,
where d0 is the w-degree of the highest w-degree monomial in Arnold’s system.
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Algorithm 5 Determine the moduli parameters of a normal form equation of a
corank 2 uni- or bimodal singularities

Input: f 2 m3 � KŒx; y�, a germ of modality 1 or 2 and corank 2 of type T over an
algebraic extension field K of Q, as returned by Algorithm 2. In particular, the
set of faces of � .T/ equals the set of faces of � .w.T/ - jet.f ; d.T//.

Output: The normal form of f , as well as the values of all moduli parameters
occurring in a normal form equations that is equivalent to f , specified as
elements of an algebraic extension field of K.

1: if T D W]
1;��15 for some � then

2: return result of Algorithm 6 applied to f

3: w WD w.T/ and d WD d.T/
4: if � .T/ has exactly one face � then
5: Apply a weighted homogeneous transformation to f such that supp.f ; �/ D

supp.T; �/.

6: d0 WD highest w-degree of a monomial in Arnold’s system of T
7: f0 WD w - jet.f ; d/
8: for j D dC 1; : : : ; d0 do
9: for all terms t of f of w-degree j, increasing w.r.t. a total degree ordering do

10: if � .T/ has exactly one face then
11: f WD result of Algorithm 4 with input f , f0, t and .1; 1/, .1; 1/
12: else
13: if t 2 Jac.f0/ then
14: f WD result of Algorithm 4 with input f , f0, t and w2, w1
15: if exists monomial m of w-degree j in Arnold’s system then
16: Write w - jet.f ; j/ � w - jet.f ; j � 1/ D @f0

@x v1 C @f0
@y v2 C cm with c 2 K,

v1; v2 2 KŒx; y� weighted homogeneous.
17: else
18: Write w - jet.f ; j/�w - jet.f ; j� 1/ D @f0

@x v1C @f0
@y v2 with v1; v2 2 KŒx; y�

weighted homogeneous.

19: Apply x 7! x � v1, y 7! y � v2 to f .

20: Delete all terms in f of w-degree> d0.
21: Apply transformation x 7! ax, y 7! by over an algebraic extension of K to

transform the non-parameter terms to the terms of NF.T/.
22: Read off the parameters ai.
23: return (NF.T/, .ai/)

Remark 25 In the semi-quasihomogeneous cases, line 11 in Algorithm 5 can be
omitted, since the reduction modulo Jac. f0/ is also handled by lines 15–18.

Remark 26 In Algorithm 5, Arnold’s system can be replaced by any other choice
of a system of the local algebra.
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Remark 27 The algebraic extension of Q introduced for representing the moduli
parameters can arise in two steps of the overall algorithm: Reversal of the linear
jet in Algorithm 3 and rescaling of the variables at the end of Algorithm 5. Note
that the transformation reversing the linear jet is obtained from the factorization
jet. f ; d/ D cg˛1g

ˇ
2g

�
3g
ı
4. Here, a field extension can only occur if ˛ D ˇ D 2 and

� D ı D 0.

4 A Classification Algorithm for Corank 2, Bimodal
Singularities with Degenerate Newton Boundary

In this section we give a classification algorithm for the singularities W]
1;��15, where

� is the Milnor number, in Arnold’s list. They have the property that in all coordinate
systems, the Newton boundary is degenerate, which is the reason that they have to
be treated separately. They are of multiplicity 4 and the 4-jet is a 4-th power of a
linear homogeneous polynomial. After a suitable automorphism of CŒŒx; y��, we may
assume that the corresponding polynomial is of the form

f D .x2 C y3/2 C
X

3iC2j�12Cd

wijx
iy j ; d � 1:

This automorphism was already constructed in the previous section. Singularities
of this type have been studied in [11]. It is proved that the Milnor number satisfies
�. f / � 15C d, and equality holds if and only if

X

3iC2jD12Cd

.�1/Œi=2�wij ¤ 0:

If the Milnor number �. f / D 15C d is even, then the germ of the curve defined by
f is irreducible with semi-group h4; 6; 12C di. In the odd case, the curve has two
branches. Let

f D .x2 C y3/2 C
X

3iC2j>12
wijx

iy j

and assume � WD �. f / <1. Let > be the weighted degree reverse lexicographical
ordering with respect to the weights .3; 2/ on CŒŒx; y�� with x > y.

In [11] it is proved that in case of � being even the leading ideal of the Jacobian

ideal, h @f
@x ;

@f
@y i is generated by x3; x2y2; xy

��2
2 . If � is odd, then the leading ideal is

generated by x3; x2y2; xy
��5
2 ; y

�C1
2 . We obtain a monomial basis of CŒŒx; y��=h @f

@x ;
@f
@y i

as fxiyig.i;j/2B with

B D ˚.i; j/ ˇˇ i � 2; j � 1�[
�

.i; j/

ˇ
ˇ
ˇ
ˇ i � 1; 2 � j � � � 4

2

�
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in case that � is even and

B D ˚.i; j/ ˇˇ i � 2; j � 1� [
�

.1; j/

ˇ
ˇ
ˇ
ˇ 2 � j � � � 7

2

�

[
�

.0; j/

ˇ
ˇ
ˇ
ˇ 2 � j � �� 1

2

�

;

in case that � is odd. Let

B1 WD f.1; � � 6
2

/; .1;
� � 4
2

/g

if � is even and

B1 WD f.0; � � 3
2

/; .0;
� � 1
2

/g

if � is odd.
In [11], the following theorem is proved.

Theorem 28 There exists an automorphism ' of CŒŒx; y�� such that

'. f / D .x2 C y3/2 C
X

.i;j/2B1
wijx

iy j:

Note 29 In particular, it follows that these singularities are bimodal.

Remark 30 The normal form given in this way for the case that the Milnor number

is odd differs from Arnold’s normal form. Instead of y
��3
2 and y

��1
2 , he used the

monomials x2y
��9
2 and x2y

��7
2 . From a computational point of view, our choice is

better. It is easy to convert our normal form to Arnold’s normal form. See Fig. 5, for
an illustration of the normal forms (using our choice of parameter monomials).

The construction of the automorphism in the theorem is done separately for each
weighted degree: Assume we have already

f D .x2 C y3/2 C
X

3iC2j�12Ca

wijx
iy j

for some a (with Milnor number � D 15C d/. If a < d, then we have

X

3iC2jD12Ca

.�1/Œi=2�wij D 0:

This implies that

X

3iC2jD12Ca

wijx
iy j D l � .x2 C y3/:
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Fig. 5 Infinite series of bimodal corank 2 singularities with degenerate Newton boundary

We obtain

f D
�

x2 C y3 C 1

2
l

�2
C

X

3iC2j>12Ca

Qwijx
iy j

for suitable Qwij 2 C. Now we can choose an automorphism ' of CŒŒx; y�� such that

'

�

x2 C y3 C 1

2
l

�

D x2 C y3 C terms of weighted degree � �

(note that we could even find an automorphism mapping x2 C y3 C 1
2
l to x2 C y3/.

We obtain

'. f / D .x2 C y3/2 C
X

3iC2j>12Ca

wijx
iy j

for suitable wij 2 C.
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If a D d, then we have

X

3iC2jD12Cd

.�1/Œi=2�wij ¤ 0:

Similarly as before, we can write

X

3iC2jD12Cd

wijx
iy j D wi0j0x

i0yj0 C l � .x2 C y3/

with

.i0; j0/ D
�
.0;

��3
2
/ if � is odd

.1;
��6
2
/ if � is even:

Since the Milnor number is 15 C d, we obtain wi0;j0 ¤ 0. Using a similar
automorphism as in the previous case, we may assume with a0 WD wi0;j0 (the first
modulus), that

f D .x2 C y3/2 C a0 � xi0yj0 C
X

3iC2j>12Cd

wijx
iy j :

Note that 12 C d D � � 3, and we have to compute the normal form of f up to
degree �� 1. Now we can write

X

3iC2jD13Cd

wijx
iy j D e � xi1yj1 C l � .x2 C y3/

with

.i1; j1/ D
�
.1;

��5
2
/ if � is odd

.0;
��2
2
/ if � is even:

Using an automorphism as before, we may assume that l D 0.
If e D 0, we are done with weighted degree � � 2.
If e ¤ 0, we define an automorphism ' of CŒŒx; y�� by the exponential of the

vector field

ı D c � .3y2 @
@x
� 2x @

@y
/
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with

c D .�1/��1 e

.� � 3/a0 :

Since by construction, '.x2 C y3/ D x2 C y3, we obtain

'. f / D .x2 C y3/2 C a0 � xi0yj0 C
X

3iC2j�14Cd

Qwijx
iy j

for suitable Qwij 2 C.

Remark 31 Note that for practical purposes, we have to compute ' only up to
weighted degree 5 and apply it to a0 � xi0yj0 C P

3iC2jD13Cd
wijxiy j since we know

that '..x2 C y3/2/ D .x2 C y3/2.

Now let

.i1; j1/ D
�
.0;

��1
2
/ if � is odd

.1;
��4
2
/ if � is even

and write

X

3iC2jD14Cd

Qwijx
iy j D a1 � xi1yj1 C l � .x2 C y3/:

Using an automorphism as in the first case, we may assume l D 0 and obtain as
normal form

.x2 C y3/2 C a0x
i0yj0 C a1 � xi1yj1 :

We summarize the approach in Algorithm 6.

Remark 32 The approach described in Algorithm 5 in case of a nondegenerate
Newton boundary can be adapted to also handle the cases W]

1;��15. However, this
strategy requires more iterations than Algorithm 6. To adapt Algorithm 5, we
remove lines 1 and 2, and in line 11, we call Algorithm 7 instead of Algorithm 4 if
f is of type W]

1;��15.
Note that in these cases, Algorithm 2 does not require a field extension; hence,

Algorithm 7 is called with input defined over Q. Note also that Algorithm 7 is
applicable with any choice of a system B of the local algebra.
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Algorithm 6 Algorithm to determine parameters for singularities of type W]
1;��15

Input: f D � � .˛x2Cˇy3/2C terms of weighted .3; 2/-degree> 12 2 KŒx; y� with
˛; ˇ; � 2 K and � WD �.f / <1.

Output: A normal form of f of the form

.x2 C y3/2 C a0 � xy ��6
2 C a1 � xy ��4

2 if � is even

.x2 C y3/2 C a0 � y ��3
2 C a1 � y ��1

2 if � is odd

with a0 ¤ 0, as well as the corresponding moduli parameters of a normal form
equation defined over an algebraic extension field of K.

1: Apply transformation x 7! ax, y 7! by over an algebraic extension field of K to
f to transform the weighted homogeneous part of f to .x2 C y3/2.

2: Let > be the local weighted degree reverse lexicographical ordering with
weights .3; 2/ and x > y.

3: Compute a standard basis G of h @f
@x ;

@f
@yi with respect to >.

4: Compute � the Milnor number of f , and set d WD � � 15.
5: a WD 13
6: while a < 12C d do
7: g WD weighted homogeneous part of f of degree a
8: Write g D l � .x2 C y3/.
9: Construct automorphism ' with '.x2 C y3 C 1

2
l/ D x2 C y3 up to degree

� � 1.
10: f WD '.f / ; a WD aC 1
11: g WD weighted homogeneous part of f of degree 12C d
12: if � is odd then
13: m0 WD y

��3
2 ; m1 WD xy

��5
2 ; m2 WD y

��1
2

14: else
15: m0 WD xy

��6
2 ; m1 WD y

��2
2 ; m2 WD xy

��4
2

16: Write g D a0 � m0 C l � .x2 C y3/.
17: Construct automorphism ' with '.x2C y3C 1

2
l/ D x2C y3 up to degree �� 1.

18: f WD '.f /
19: g WD weighted homogeneous part of ' of degree 13C d
20: Write g D e � m1 C l � .x2 C y3/.
21: Construct automorphism ' with '.x2C y3C 1

2
l/ D x2C y3 up to degree �� 1.

22: f WD '.f /
23: if e ¤ 0 then
24: c WD .�1/��1 e

.��3/a
25: Construct automorphism ' defined by the vector field c � .3y2 @

@x � 2x @@y / up
to degree 5.

26: f WD .x2 C y3/2 C '.f � .x2 C y3/2/
27: g WD the weighted homogeneous part of f of degree 14C d
28: Write g D a1 � m2 C l � .x2 C y3/.

29: return (NF.W]
1;��15), .a0; a1/ )
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Algorithm 7 Remove terms above the diagonal in cases with degenerate Newton
boundary

Input: f ; f0 2 QŒx; y�, t 2 QŒx; y� a term, and weights u1; u2 2 Z
2.

Output: h 2 QŒx; y� such that f 	 h.
1: w WD w.f / and j WD w - deg.t/
2: g WD output of Algorithm 4 with input f , f0, t and u1; u2
3: B WD Arnold’s system of QŒx; y�= Jac.f /
4: if t 2 Jac.f0/ or g ¤ f or (g D f and B contains an element of degree j) then
5: return g

6: m WD monomial in B of minimal w-degree
7: Factorize f0 D � � g20 over Q with � 2 Q and g0 2 QŒx; y� linear.
8: � WD automorphism defined by . @g0

@y
@
@x � @g0

@x
@
@y/ up to w -degree 5

9: s WD coeff.f ;m/ � m
10: t0 WD w - jet.�.s/ � s; j/
11: for all terms Qt of t0 in increasing order by standard degree do
12: t0 WD �f0C result of Algorithm 4 with input t0 C f0, f0, Qt and u1, u2
13: t0 WD w - jet.t0; j/
14: c WD �t=t0
15: �c WD automorphism defined by c � . @g0

@y
@
@x � @g0

@x
@
@y / up to w -degree 5.

16: h WD f0 C �c.f � f0/
17: for all terms Qt of h of w-degree j in increasing order by standard degree do
18: h WD result of Algorithm 4 with input h, f0, Qt and u1, u2
19: return h
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Abstract The goal of this paper is to present examples of families of homogeneous
ideals in the polynomial ring over a field that satisfy the following condition: every
product of ideals of the family has a linear free resolution. As we will see, this
condition is strongly correlated to good primary decompositions of the products
and good homological and arithmetical properties of the associated multi-Rees
algebras. The following families will be discussed in detail: polymatroidal ideals,
ideals generated by linear forms, and Borel-fixed ideals of maximal minors. The
main tools are Gröbner bases and Sagbi deformation.
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1 Introduction

The goal of this paper is to present examples of families of homogeneous ideals
in the polynomial ring R D KŒX1; : : : ;Xn� over a field K that satisfy the following
condition: every product of ideals of the family has a linear free resolution. As we
will see, this condition is strongly correlated to “good” primary decompositions of
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the products and “good” homological and arithmetical properties of the associated
multi-Rees algebras.

For the notions and basic theorems of commutative algebra that we will use in
the following, we refer the reader to the books of Bruns and Herzog [8] and Greuel
and Pfister [23]. However, at one point our terminology differs from [23]: where
[23] uses the attribute “lead” (monomial, ideal, etc.), we are accustomed to “initial”
and keep our convention in this note. Moreover, we draw some standard results from
our survey [6].

The extensive experimental work for this paper (and its predecessors) involved
several computer algebra systems: CoCoA [1], Macaulay 2 [22], Normaliz [11], and
Singular [19].

Let us first give a name to the condition on free resolutions in which we are
interested and as well recall the definition of ideal with linear powers from [10].

Definition 1.1

1. A homogeneous ideal I of R has linear powers if Ik has a linear resolution for
every k 2 N.

2. A (not necessarily finite) family of homogeneous ideals F has linear products if
for all I1; : : : ; Iw 2 F the product I1 � � � Iw has a linear resolution.

By resolution we mean a graded free resolution, and we call such a resolution
linear if the matrices in the resolution have linear entries, of course except the
matrix that contains the generators of the ideal. However, we assume that the ideal is
generated by elements of constant degree. This terminology will be applied similarly
to graded modules.

Note that in (2) we have not demanded that the ideals are distinct, so, in particular,
powers and products of powers of elements in F are required to have linear
resolutions.

Given an ideal I of R, we denote the associated Rees algebra by R.I/, and
similarly, for ideals I1; : : : ; Iw of R, we denote the associated multi-Rees algebra
by R.I1; : : : ; Iw/. If each ideal Ii is homogeneous and generated by elements of the
same degree, say di, then R.I1; : : : ; Iw/ can be given the structure of a standardZwC1-
graded algebra. In Sect. 3 we will explain this in more detail.

The two notions introduced above can be characterized homologically. In [32]
and [10], it is proved that an ideal I of R has linear powers if and only if reg0 R.I/ D
0. In Theorem 3.1 we extend this result by showing that a family of idealsF of R has
linear products if and only if for all I1; : : : ; Iw 2 F one has reg0 R.I1; : : : ; Iw/ D 0.
Here reg0 refers to the Castelnuovo–Mumford regularity computed according to the
Z-graded structure of the Rees algebra induced by inclusion of R in it; see Sects. 2
and 3 for the precise definitions and for the proof of this statement.

The prototype of a family of ideals with linear products is the following:

Example 1.2 A monomial ideal I of R is strongly stable if I W .Xi/ 
 I W .Xj/ for
all i; j, 1 � i < j � n. Strongly stable ideals are Borel fixed (i.e., fixed under the
K-algebra automorphisms of R induced by upper triangular linear transformations).
In characteristic 0, every Borel-fixed ideal is strongly stable. The regularity of a
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strongly stable ideal I is the largest degree of a minimal generator of I. Hence a
strongly stable ideal generated in a single degree has a linear resolution. Furthermore
it is easy to see that the product of strongly stable ideals is strongly stable. Summing
up, the family

F D fI W I is a strongly stable ideal generated in a single degreeg
has linear products.

The following example, discovered in the late 1990s by the second author in
collaboration with Emanuela De Negri, shows that the Rees algebra associated with
a strongly stable ideal need not be Koszul, normal, or Cohen–Macaulay.

Example 1.3 In the polynomial ring KŒX;Y;Z�, consider the smallest strongly
stable ideal I that contains the three monomials Y6, X2Y2Z2, X3Z3. The ideal I is
generated by

X6;X5Y;X4Y2;X3Y3;X2Y4;XY5;Y6;X5Z;X4YZ;X3Y2Z;X2Y3Z;X4Z2;

X3YZ2;X2Y2Z2;X3Z3:

It has a non-quadratic, non-normal, and non-Cohen–Macaulay Rees algebra. Indeed,
R.I/ is defined by 22 relations of degree .1; 1/, 72 relations of degree .0; 2/, and
exactly one relation of degree .0; 3/ corresponding to .X2Y2Z2/3 D .Y6/.X3Z3/2,
and its h-polynomial (the numerator of the Hilbert series) has negative coef-
ficients. Therefore, it is not Cohen–Macaulay, and by Hochster’s theorem [8,
Theorem 6.3.5], it cannot be normal.

On the other hand, for a principal strongly stable ideal, i.e., the smallest
strongly stable ideal containing a given monomial, the situation is much better. Say
u D Xa1

1 � � �Xan
n is a monomial of R and I.u/ is the smallest strongly stable ideal

containing u. Then

I.u/ D
nY

iD1
.X1; : : : ;Xi/

ai D
n\

iD1
.X1; : : : ;Xi/

bi ; bi D
iX

jD1
aj: (1)

Since the powers of an ideal generated by variables are primary and hence integrally
closed, the primary decomposition formula (1) implies right away that the ideal I.u/
is integrally closed. It is an easy consequence of (1) that for every pair of monomials
u1; u2, one has

I.u1/I.u2/ D I.u1u2/:

It follows that products of principal strongly stable ideals are integrally closed.
Hence the multi-Rees algebra R.I.u1/; : : : ; I.uw// associated with principal strongly
stable ideals I.u1/; : : : ; I.uw/ is normal, which implies that it is also Cohen–
Macaulay.
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Furthermore, De Negri [18] proved that the fiber ring of R.I.u1// is defined by a
Gröbner basis of quadrics, and very likely a similar statement is true for the multi-
fiber ring of the multi-Rees algebra R.I.u1/; : : : ; I.uw//.

Let us formalize the properties of the primary decomposition that we have
observed for principal strongly stable ideals:

Definition 1.4

1. An ideal I � R is of P-adically closed if

I D
\

P2SpecR

P.vP.I//

where vP denotes the P-adic valuation: vP.I/ D maxfk � 0 W P.k/ 
 Ig.
2. The family F of ideals has the multiplicative intersection property if for every

product J D I1 � � � Iw of ideals Ii 2 F , one has

J D
\

P2F\SpecR

P.vP.J//:

Note that a P-adically closed ideal is integrally closed. Therefore all products
considered in (2) are integrally closed. The multiplicative intersection property does
not necessarily imply that the prime ideals in F have primary powers, but this is
obviously the case if vP.Q/ D 1 whenever Q � P are prime ideals in the family.

Our goal is to present three families F of ideals that generalize the family of
principal strongly stable ideals in different directions and have some important
features in common:

1. F has linear products;
2. F has the multiplicative intersection property;
3. the multi-Rees algebras associated to ideals in the family have good homological

and arithmetical properties and defining equations (conjecturally) of low degrees.

These families are:

(a) polymatroidal ideals (Sect. 5);
(b) ideals of linear forms (Sect. 6);
(c) Borel-fixed ideals of maximal minors (Sect. 7).

Each family has specific properties that will be discussed in detail.

2 Partial Regularity

Let R be a Zr-graded ring. The degree of an element x of R is denoted by deg x, and if
we speak of the degree of an element, it is assumed that the element is homogeneous.
In the following it will be important to consider the partial Z-degrees defined by the
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Z
r-grading: by degi x we denote the ith coordinate of deg x and speak of degi as

the i-degree. The same terminology applies to Z
r-graded R-modules. One calls R a

standard Z
r-graded K-algebra if R0, its component of degree 0 2 Z

r , is the field K
and R is generated as a K-algebra by homogeneous elements whose degree is one
of the unit vectors in Z

r. The ideal generated by the elements of nonzero degree is
denoted mR or simply by m. It is a maximal ideal, and K is identified with R=mR as
an R-module.

If n D 1, then no index is used for degree or any magnitude derived from it.
Moreover, if it is convenient, we will label the coordinates of Zr by 0; : : : ; r � 1.

For any finitely generated graded module M over a standard Z
r-graded poly-

nomial ring R, we can define (partial) Castelnuovo–Mumford regularities regi.M/,
i D 1; : : : ; r. In the bigraded case, they have been introduced by Aramova et al. [2].
First we set

supi M D supfdegi x W x 2 Mg:

Next, let

tik.M/ D supi TorRk .K;M/:

Since the Tor-modules are finite dimensional vector spaces, tik.M/ <1 for all i and
k. Moreover, tik.M/ D �1 for all k > dimR by Hilbert’s syzygy theorem. Now we
can define

regRi .M/ D regi.M/ D sup
k
ftik.M/ � kg:

The Tor-modules have a graded structure since M has a minimal graded free
resolution

L W 0!
M

g2Zr

R.�g/ˇpg ! � � � !
M

g2Zr

R.�g/ˇ0g ! M ! 0; p D projdimM:

Then tik.M/ is the maximum ith coordinate of the shifts g for which ˇkg ¤ 0. The
ˇkg are called the kth graded Betti numbers of M.

As in the case of Z-gradings, one can compute partial regularities from local
cohomology.

Theorem 2.1 Let R be a standard Z
r-graded polynomial ring and M a finitely

graded R-module. Then

regi.M/ D sup
k
fsupi H

k
m.M/C kg

for all i.
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For the theorem to make sense, one needs at least that the local cohomology with
support in m has a natural Zr-graded structure, and this indeed the case as one can
see from its description by the Čech complex. In the Z-graded case, Theorem 2.1
is due to Eisenbud and Goto [21]. For the proof of Theorem 2.1, one can follow
[8, p. 169]. The crucial point is multigraded local duality. It can be derived from Z-
graded local cohomology since the Z-graded components of the modules involved
are direct sums of finitely many multigraded components. Therefore it makes
no difference whether one takes graded Hom.�;K/ in the category of Z-graded
modules or the category of Zr-graded modules.

We are interested in ideals with linear resolutions and for them Theorem 2.1 has
an obvious consequence:

Corollary 2.2 Let R be standard Z-graded polynomial ring over a field K and I an
ideal generated in degree d with a linear resolution. Then supHk

m.R=I/ � d� 1� k
for all k.

In fact, if I has a linear resolution, then regR=I D d � 1.
An extremely useful consequence of Theorem 2.1 is that it allows change of rings

in an easy way.

Lemma 2.3 Let R be a standard Z
r-graded polynomial ring over the field K and

let x be an element of degree ei for some i. Suppose that x is either a nonzerodivisor
on the Zr-graded finitely generated module M or annihilates M, and let S D R=.x/.
Then regRi .M/ D regSi .M=xM/.

Proof If x is a nonzerodivisor, then one can simply argue by free resolutions since
L ˝ S is a minimal graded free S-resolution of M=xM if L is such an R-resolition
of M. In the second case, in which of course M=xM D M, one uses Theorem 2.1
and the invariance of local cohomology under finite ring homomorphisms.

We need some auxiliary results. The behavior of regi along homogeneous short
exact sequences 0! U ! M ! N ! 0 is captured by the inequalities

regi.M/ � maxfregi.U/; regi.N/g;
regi.U/ � maxfregi.M/; regi.N/C 1g;
regi.N/ � maxfregi.U/� 1; regi.M/g:

that follow immediately from the long exact sequence of Tor-modules.
Another very helpful result is the following lemma by Conca and Herzog [14,

Proposition 1.2]:

Lemma 2.4 Let R be standard Z-graded and M be a finitely generated graded R-
module. Suppose x 2 R a homogeneous element of degree 1 such that 0 WM x has
finite length. Set a0 D supH0

m.M/. Then reg.M/ D maxfreg.M=xM/; a0g.
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3 The Multi-Rees Algebra

The natural object that allows us to study all products of the ideals I1; : : : ; Iw in a
ring R simultaneously is the multi-Rees algebra

R D R.I1; : : : ; Iw/DRŒI1T1; : : : ; IwTw�D
M

a2Zw
C

Ia11 � � � Iaww Ta1
1 � � �Taw

w � RŒT1; : : : ;Tw�

where T1; : : : ;Tw are indeterminates over R. As a shortcut we set

Ia D Ia11 � � � Iaww and Ta D Ta1
1 � � �Taw

w :

If R is a standard graded algebra over a field K, and each Ii is a graded ideal
generated in a single degree di, then R.I1; : : : ; Iw/ carries a natural standard Z

wC1-
grading. In fact let e0; : : : :ew denote the elements of the standard basis of ZwC1.
Then we identify deg x with .deg x/e0 for x 2 R and set degTi D �die0 C ei for
i D 1; : : : ;w. Evidently R is then generated over K by its elements whose degree is
one of e0; : : : ; ew.

We want to consider R as a residue class ring of a standard Z
wC1-graded

polynomial ring S over K. To this end we choose a system fi1; : : : ; fimi of degree di
generators of Ii for i D 1; : : : ;w and indeterminates Zi1; : : : ;Zimi . Then we set

S D RŒZij W i D 1; : : : ;w; j D 1; : : : ;mi�

and define ˚ W S ! R by the substitution

˚ jR D idR; ˚.Zij/ D fijTi:

We generalize a theorem of Römer [32], following the simple proof of Herzog
et al. [27], and complement it by its converse:

Theorem 3.1 Let R be a standard graded polynomial ring over the field
K. The family I1; : : : ; Iw of ideals in R has linear products if and only if
reg0.R.I1; : : : ; Iw// D 0.
Proof For a graded module M over S and h 2 Z

w, we set

M.�;h/ D
M

j2Z
M. j;h/

where . j; h/ 2 Z � Z
w D Z

wC1. Clearly M.�;h/ is an R-submodule of M. It is the
degree h homogeneous component of M under the Z

w-grading in which we ignore
the 0th partial degree of our ZwC1-grading.
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We apply the operator .�; h/ to the whole free resolution L of M D R and
obtain the exact sequence

L.�;h/ W 0!
M

g2Z
S .�g/ˇpg.�;h/ ! � � � !

M

g2Z
S .�g/ˇ0g.�;h/ ! R.�;h/ ! 0:

Since the R-modulesS .�g/.�;h/ are free over R, we obtain a graded (not necessarily
minimal) free resolution of S.�;h/ over R. The rest of the proof of this implication is
careful bookkeeping of shifts.

First, as an R-module,

R.�;h/ D IhTh Š Ih.d � h/; d � h D
X

dihi:

Moreover,S .�g/.�;h/ is a free module over R with basis elements in degree g0 since
the indeterminates Zij have degree 0 with respect to deg0.

Now suppose that reg0.R/ D 0. Then g0k � k for all k, and we see that

reg Ih.d � h/ D reg0.I
hTh/ D 0;

and so reg.Ih/ D d � h as desired.
The converse is proved by induction on dimR. For dimR D 0, there is nothing

to show. In preparing the induction step, we first note that there is no restriction in
assuming that the ground field K is infinite. Next we use that there are only finitely
many prime ideals in R that are associated to any of the products Ih (West [34,
Lemma 3.2]). Therefore we can find a linear form z 2 R1 that is not contained in
any associated prime ideal of any Ih different from mR. In other words, Ih W z has
finite length for all h.

Set S D R=.z/. It is again a standard graded polynomial ring (after a change of
coordinates). Furthermore let Ji D IiS D .Ii C z/=.z/. Then .Ih C .z//=.z/ D Jh.
Next we want to compute regS.S=Jh/ D regR.S=Jh/. The hypotheses of Lemma 2.4
are satisfied for M D R=Ih. Since M=zM D S=Jh, we obtain

d � h � 1 D regR.R=Ih/ D max.regR.S=Jh; supH0
m.R=I

h///:

Unless we are in the trivial case Jh D 0, we have regS.S=Jh/ D regR.S=Jh/ �
d � h � 1 anyway. Thus regS.S=Jh/ D d � h � 1, and therefore S=Jh has a linear
resolution over S. This allows us to apply the induction hypothesis to the family
J1; : : : ; Jw, which appears in the exact sequence

0! W ! R =zR ! S.J1; : : : ; Jw/! 0:

In fact, by induction we conclude that reg0.S.J1; : : : ; Jw// D 0 over its representing
polynomial ring, namely, S =.z/. But because of Lemma 2.3, we can measure reg0
over S as well. Moreover, reg0R =zR D reg0R.
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It view of the behavior of reg0 along short exact sequences, it remains to show
that reg0W D 0. As an R-module, W splits into its Z

w-graded components Wh D
W 0hTh where

W 0h D .Ih \ .z//=zIh D z.Ih W z/=zIh:

We claim that W 0h is concentrated in degree d � h and therefore annihilated by mR.
Since it is a subquotient of Ih, it cannot have nonzero elements in degree < d � h.
On the other hand, the description W 0h D z.Ih W z/=zIh shows that the degree of
the elements in W is bounded above by 1 C sup.Ih W z/=Ih. By the choice of z,
this module is contained in H0

mR
.R=Ih/ whose degrees are bounded by d � h � 1

because of Corollary 2.2. Multiplication by Th moves W 0h into degree 0 with respect
to deg0 in R.

Recombining the Wh to W, we see that W is generated as an S -module by
elements of 0-degree 0. Moreover, it is annihilated by mRS , and therefore a module
over the polynomial ring S 0 D S =mRS on which the 0-degree of S vanishes.
Hence the 0-regularity of an S 0-module M is the maximum of deg0 x where x varies
over a minimal system of generators of M. But, as observed above, W is generated
in 0-degree 0.

Remark 3.2

(a) The first part of the proof actually shows that reg.Ih/ � d � h C reg0.R/ for
every h, as stated by Römer [32, Theorem 5.3] for a single ideal. It seems to
be unknown whether there always exists at least one exponent h for which
reg.Ih/ D d � h C reg0.R/. By virtue of Theorem 3.1, this is the case if
reg0.R/ � 1.

(b) One can show that the Betti number of the ideals Jh over S (notation as in the
proof) are determined by those of the ideal Ih over R. In the case of the powers
of a single ideal, this has been proved in [10, Lemma 2.4].

(c) An object naturally associated with the multi-Rees algebra is the multi-fiber ring

F.I1; : : : ; Iw/ D R.I1; : : : ; Iw/=mRR.I1; : : : ; Iw/:

If each of the ideals Ii is generated in a single degree, then F.I1; : : : ; Iw/ can be
identified with the K-subalgebra of R.I1; : : : ; Iw/ that is generated by the elements
of degrees e1; : : : ; ew. As such, it is a retract of R.I1; : : : ; Iw/, and since the ideals of
interest in this paper are generated in a single degree, we will always consider the
multi-fiber ring as a retract of the multi-Rees algebra in the following.

An ideal I � R that is generated by the elements f1; : : : ; fm of constant degree is
said to be of fiber type if the defining ideal of the Rees algebra R.I/ is generated
by polynomials that are either (1) linear in the indeterminates representing the
generators fiT of the Rees algebra (and therefore are relations of the symmetric
algebra) (2) belong to the defining ideal of F.I/. One can immediately generalize
this notion and speak of a family I1; : : : ; Iw of multi-fiber type. In the situation of
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the theorem, it follows that J1; : : : ; Jw is of multi-fiber type if I1; : : : ; Iw has this
property.

More generally than in Theorem 3.1, one can consider arbitrary standard Z
r-

graded K-algebras. For them Blum [3] has proved an interesting result. Note that
a standard Z

r-graded K-algebra is a standard Z-graded K-algebra in a natural
way, namely, with respect to the total degree, the sum of the partial degrees degi,
i D 1; : : : ; r. Therefore it makes sense to discuss properties of a standard Z-graded
algebra in the standard Z

r-graded case.

Theorem 3.3 Suppose the standard Zr-graded algebra R is a Koszul ring. Further-
more let a; b 2 Z

nC and consider the module

M.a;b/ D
1M

kD0
RkaCb

over the “diagonal” subalgebra

R.a/ D
1M

kD0
Rka:

Then R.a/ is a standard graded K-algebra with .R.a//k D Rka, and M.a;b/ has a (not
necessarily finite) linear resolution over it.

Blum states this theorem only in the bigraded case, but remarks himself that it
can easily be generalized to the multigraded case. Let us sketch a slightly simplified
version of his proof for the general case. Let m be the ideal generated by all elements
of total degree 1. The “degree selection functor” that takes the direct sum of the Zr-
graded components whose degrees belong to a subset of Zr is exact. There is nothing
to prove for M.a;b/ if b D 0. If b ¤ 0, then the degree selection functor for the subset
fka C b W k � 0g cuts out an exact complex of R.a/-modules from the resolution
of m, which, by hypothesis on R, is linear over R. The modules occurring in it are
not necessarily free over R.a/, but they are under control, and an involved induction
allows one to bound the shifts in their resolutions. These bounds in their turn imply
that M.a;b/ has a linear resolution over R.a/.

We highlight the following special case of Theorem 3.3:

Theorem 3.4 Let R D KŒX1; : : : ;Xn� and I1; : : : ; Iw ideals of R such that
R.I1; : : : ; Iw/ is Koszul. Then the family I1; : : : ; Iw has linear products.

Proof Note that R is the diagonal subalgebra for a D e0 of R.I1; : : : ; Iw/ and one
obtains IhTh as a module over it for b D .0; h/.
Remark 3.5

(a) In [10, Example 2.6] we give an example of a monomial ideal I with linear
powers that is not of fiber type and whose Rees algebra is not Koszul. But
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even linear powers and fiber type together do not imply that the Rees algebra is
Koszul: see [10, Example 2.7].

(b) For the “if” part of Theorem 3.1 and for Theorem 3.3, one can replace the
polynomial base ring R by a Koszul ring. This generalization allows relative
versions in the following sense: if R.I; J/ is Koszul, then R.I/ is Koszul because
retracts of Koszul rings are Koszul; since R.I; J/ D .R.I//.J/, one obtains that
JR.I/ has a linear resolution over R.I/.

4 Initial Ideals and Initial Algebras

We start again from a standard graded polynomial ring R D KŒX1; : : : ;Xn�. It is a
familiar technique to compare an ideal J to its initial ideal in<.J/ for a monomial
order < on R. The initial ideal is generated by monomials and therefore amenable
to combinatorial methods. Homological properties like being Cohen–Macaulay or
Gorenstein or enumerative data like the Hilbert series (if I is homogeneous) can
be transferred from R= in<.J/ to R=J, and for others, like regularity, the value of
R= in<.J/ bounds that of R=J.

Let us formulate a criterion that will allow us to apply Theorem 3.1 or even
Theorem 3.3 in order to conclude that a family of ideals has linear products. We use
the presentation of the multi-Rees algebra R D R.I1; : : : ; Iw/ as a residue class ring
of a polynomial ring S that has been introduced above Theorem 3.1.

Theorem 4.1 Let I D Ker˚ be defining ideal ofR as a residue class ring of the
polynomial ringS , and let  be a monomial order onS . Let G be the minimal set
of generators of the monomial ideal in	.I /.

1. If every element of G is at most linear in the indeterminates X1; : : : ;Xn of R, then
reg0.R/ D 0, and I1; : : : ; Iw has linear products.

2. If G consists of quadratic monomials, then reg0.R/ D 0,R is a Koszul algebra,
and I1; : : : ; Iw has linear products.

Proof For the first statement(already observed in [27]), it is enough to show that
reg0.S = in	.I // D 0. Then we obtain reg0.R/ D 0 as well and can apply
Theorem 3.1. In order to estimate the maximal shifts in a minimal free resolution
of S = in	.I /, it is sufficient to estimate them in an arbitrary free resolution, and
such is given by the Taylor resolution. All its matrices have entries that are at most
linear in the variables X1; : : : ;Xn of R.

If G consists of quadratic monomials, then S = in	.I / is Koszul by a theorem
of Fröberg, and Koszulness of S = in	.I / implies the Koszulness of R D S =I .
In its turn this implies that I1; : : : ; Iw has linear powers by Theorem 3.4, and then
we obtain reg0.R/ D 0 by Theorem 3.1.

However, we can circumvent Theorem 3.4. Namely, if G consists of quadratic
monomials, then it is impossible that any of them is of degree � 2 in X1; : : : ;Xn. In
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this multigraded situation, this would imply that I contains a nonzero element of
R, and this is evidently impossible.

In the previous theorem, we have replaced the defining ideal of the multi-Rees
algebra by a monomial object, namely, its initial ideal. It is often useful to replace the
multi-Rees algebra by a monomial algebra. In the following < denotes a monomial
order on R. We are interested in the products Ih D Ih11 � � � Ihww . There is an obvious
inclusion, namely,

in.I1/h1 � � � in.Iw/hw � in.Ih/; (2)

and it is an immediate question whether one has equality for all h. Let us introduce
the notation in.I/h for the left-hand side of the inclusion.

To bring the multi-Rees algebra R D R.I1; : : : ; Iw/ into the play, we extend the
monomial order from R to RŒT1; : : : ;Tw� in an arbitrary way. There are two natural
initial objects, namely, the initial subalgebra in.R/ on the one side and the multi-
Rees algebra

R in D R.in.I1/; : : : ; in.Iw//

on the other. Since R is multigraded in the variables T1; : : : ;Tw, in.R/ does not
depend on the extension of < to RŒT1; : : : ;Tw�, and we have

R in � in.R/: (3)

Equality in (2) for all h is equivalent to equality in (3). It is a special case of
the question whether polynomials f1; : : : ; fm form a Sagbi basis of the algebra
A D KŒ f1; : : : ; fm� they generate. By definition, this means that the initial monomials
in. f1/; : : : ; in. fm/ generate the initial algebra in.A/. Similarly to the Buchberger
criterion for ordinary Gröbner bases, there is a lifting criterion for syzygies. In this
case, the syzygies are polynomial equations.

We choose a polynomial ring S D KŒZ1; : : : ;Zn�. Then the substitution

˚.Zi/ D fi; i D 1; : : : ;m:

makes A a residue class ring of S. Simultaneously we can consider the substitution

�.Zi/ D in. fi/; i D 1; : : : ;m:

Roughly speaking, one has in.A/ D KŒin. f1/; : : : ; in. fm/� if and only if every
element of Ker� can be lifted to an element of Ker˚ . More precisely:
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Theorem 4.2 With the notation introduced, let B be a set of binomials in S that
generate Ker� . Then the following are equivalent:

1. in.KŒf1; : : : ; fm�/ D KŒin.F1/; : : : ; in. fm/�;
2. For every b 2 B there exist monomials �1; : : : ; �q 2 S and coefficients
1; : : : q 2 K, q � 0, such that

b �
qX

iD1
i�i 2 Ker˚ (4)

and in.˚.�i// � in.˚.b// for i D 1; : : : ; q.
Moreover, in this case, the elements in (4) generate Ker˚ .

The criterion was established by Robbiano and Sweedler [31] in a somewhat
individual terminology; in the form above, one finds it in Conca et al. [15,
Proposition 1.1]. For the reader who would expect the relation< in (2): if b D 	1�	2
with monomials 	1, 	2, then in.˚.b// < in.˚.	1// D in.˚.	2//, unless ˚.b/ D 0.
The last statement of Theorem 4.2 is [15, Corollary 2.1].

A priori, there is no “natural” monomial order on S. But suppose we have a
monomial order on S. Then we can use as the tiebreaker in lifting the monomial
order on R to S:

� � 	 ” �.�/ < �.	/ or �.�/ D �.	/; �  	:

Theorem 4.3 Suppose that the generating set B of Theorem 4.2(2) is a Gröbner
basis of Ker� with respect to . Then the elements in (4) are a Gröbner basis of
Ker˚ with respect to � .

See Sturmfels [33, Corollary 11.6] or [15, Corollary 2.2].

5 Polymatroidal Ideals

A monomial ideal I of R D KŒX1; : : : ;Xn� is polymatroidal if it is generated in
a single degree, say d, and for all pairs u D Q

h X
ah
h ; v D

Q
h X

bh
h of monomials

of degree d in I and for every i such that ai > bi there exists j with aj < bj and
Xj.u=Xi/ 2 I. A square-free polymatroidal ideal is said to be matroidal because the
underlying combinatorial object is a matroid. Conca and Herzog [14] and Herzog
and Hibi [25] proved:

Theorem 5.1 Every polymatroidal ideal has a linear resolution, and the product of
polymatroidal ideals is polymatroidal.
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Hence we may say that the family

F D fI W I is polymatroidalg

has linear products.
Those polymatroidal ideals that are obtained as products of ideals of variables

are called transversal. For example, .X1;X2/.X1;X3/ is a transversal polymatroidal
ideal and .X1X2;X1X3;X2X3/ is polymatroidal, but not transversal.

In [26] Herzog and Vladoiu proved the following theorem on primary decompo-
sition:

Theorem 5.2 The family of polymatroidal ideals has the multiplicative intersection
property: given a polymatroidal ideal I, one has

I D
\

P

PvP.I/

where the intersection is extended over all the monomial prime ideals P (i.e., ideals
generated by variables).

They also proved that vP.I/ can be characterized as the “local” regularity of I
and P, that is, the regularity of the ideal obtained from I by substituting 1 for the
variables not in P. Of course one gets an irredundant primary decomposition by
restricting the intersection to the ideals P 2 Ass.R=I/. The problem of describing
the associated primes of a polymatroidal ideal in combinatorial terms is discussed
by Herzog et al. in [29] where they proved:

Theorem 5.3 Every polymatroidal ideal I satisfies

Ass.R=Ik/ � Ass.R=IkC1/ for all k > 0:

Furthermore the equality

Ass.R=I/ D Ass.R=Ik/ for all k > 0

holds, provided I is transversal.

The latter equality is not true for general polymatroidal ideals. Examples of
polymatroidal ideals I such that Ass.R=I/ ¤ Ass.R=I2/ are given by some
polymatroidal ideals of Veronese type. For example, for I D .X1X2;X1X3;X2X3/,
one has .X1;X2;X3/ 2 Ass.R=I2/ n Ass.R=I/.

From the primary decomposition formula of Theorem 5.2, it follows that a
polymatroidal ideal is integrally closed. Since products of polymatroidal ideals
are polymatroidal, it follows then that the multi-Rees algebra R.I1; : : : ; Iw/ of
polymatroidal ideals I1; : : : ; Iw is normal and hence Cohen–Macaulay by virtue
of Hochster’s theorem [8, Theorem 6.3.5]. The same is true for the fiber ring
F.I1; : : : ; Iw/ because it is an algebra retract of R.I1; : : : ; Iw/. Therefore:
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Theorem 5.4 Let I1; : : : ; Iw be polymatroidal ideals. Then both R.I1; : : : ; Iw/ and
F.I1; : : : ; Iw/ are Cohen–Macaulay and normal.

White’s conjecture, in its original form, predicts that the fiber ring, called the base
ring of the matroid in this context, associated to a single matroidal ideal, is defined
by quadrics, more precisely by quadrics arising from exchange relations. White’s
conjecture has been extended to (the fiber rings of) polymatroidal ideals by Herzog
and Hibi in [24] who“did not escape from the temptation” to ask also if such a ring is
Koszul and defined by a Gröbner basis of quadrics. These conjectures are still open.
The major progress toward a solution has been obtained by Lasoń and Michałek [30]
who proved White’s conjecture “up to saturation” for matroids. Further questions
and potential generalizations of White’s conjecture refer to the Rees algebra R.I/ of
a matroidal (or polymatroidal) ideal I: is it defined by (a Gröbner basis) quadrics?
Is it Koszul?

Note however that the fiber ring of the multi-Rees algebra associated to polyma-
troidal ideals need not be defined by quadrics. For example:

Example 5.5 For I1 D .X1;X2/, I2 D .X1;X3/, and I3 D .X2;X3/, the fiber ring of
R.I1; I2; I3/ is

KŒT1X1;T1X2;T2X1;T2X3;T3X2;T3X3�

and it is defined by a single cubic equation, namely,

.T1X1/.T2X3/.T3X2/ D .T1X2/.T2X1/.T3X3/:

Nevertheless for a polymatroidal ideal I Herzog, Hibi, and Vladoiu proved in
[28] that the Rees algebra R.I/ is of fiber type, and it might be true that multi-Rees
algebras R.I1; : : : ; Iw/ associated to polymatroidal ideals I1; : : : ; Iw are of multi-fiber
type.

6 Products of Ideals of Linear Forms

Let P1; : : : ;Pw be ideals of R D KŒX1; : : : ;Xn� generated by linear forms. Each Pi

is clearly a prime ideal with primary powers. One of the main results of Conca and
Herzog [14] is the following:

Theorem 6.1 The product P1 � � �Pw has a linear resolution.

Hence may say that the family

F D fP W P is generated by linear forms and P ¤ 0g

has linear products. The theorem is proved by induction on the number of variables.
The inductive step is based on an estimate of the 0th local cohomology of
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the corresponding quotient ring or, equivalently, on the saturation degree of the
corresponding ideal. The latter is controlled by means of the following primary
decomposition computed in [14]:

Theorem 6.2 The family of ideals generated by linear forms has the multiplicative
intersection property. In other words, for every P1; : : : ;Pw 2 F and I D Qw

iD1 Pi,
one has

I D
\

P2F
PvP.I/:

Clearly one can restrict the intersection to the primes of the form

PA D
X

i2A
Pi

for a nonempty subset A of f1; : : : ;wg. Setting

P D fP W P D PA for some non-empty subset A of f1; : : : ;wgg;

one gets

I D
\

P2P
PvP.I/:

This primary decomposition need not be irredundant. So an important question is
whether a given P 2 P is associated to R=I. Inspired by results in [29], we have a
partial answer:

Lemma 6.3 With the notation above, let P 2P and let V D fi W Pi � Pg.
1. Let GP be the graph with vertices V and edges fi; jg such that Pi \ Pj contains a

nonzero linear form. If GP is connected, then P 2 Ass.R=I/.
2. Assume that P can be written as P0 C P00 with P0;P00 2 F such that P0 \ P00

contains no linear form and for every i 2 V one has either Pi � P0 or Pi � P00.
Then P … Ass.R=I/.

Proof (1) By localizing at P, we may right away assume that P D Pw
iD1 Pi D

.X1; : : : ;Xn/ and V D f1; : : : ;wg. Since the graph GP is connected, we can
take a spanning tree T, and for each edge fi; jg in T, we may take a linear form
Lij 2 Pi\Pj. The productF DQ.i;j/2T Lij has degree w�1 and, by construction,
PiF � I for all i. Hence P � I W F. Since F … I by degree reasons, it follows
that P D I W F.

(2) Again we may assume P D Pw
iD1 Pi D .X1; : : : ;Xn/ and we may further

assume that P0 D .X1; : : : ;Xm/ and P00 D .XmC1; : : : ;Xn/. We may also assume
that Pi � P0 for i D 1; : : : ; c and Pi � P00 for i D cC 1; : : : ;w for some m and
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c such that 1 � m < n and 1 � c < w. Set J D P1 � � �Pc and H D PcC1 � � �Pw.
Then I D JH D J\H because J and H are ideals in distinct variables. We may
conclude that any associated prime of I is either contained in P0 or in P00, and
hence P cannot be associated to I.

When each of the Pi is generated by indeterminates, then I is a transversal
polymatroid, and for a given P 2 P , either (1) or (2) is satisfied. Hence we have,
as a corollary, the following results of Herzog et al. [29]. We state it in a slightly
different form.

Corollary 6.4 Let I D P1 � � �Pw with Pi 2 F generated by variables (i.e., I is a
transversal polymatroidal ideal). Then P 2P is associated to R=I if and only if the
graph GP is connected.

But in general, for I D P1 � � �Pw, a prime P 2 P can be associated to I even
when GP is not connected:

Example 6.5 Let R D KŒX1; : : : ;X4� and let P1;P2;P3 be ideals generated by two
general linear forms each and I D P1P2P3. Then P D P1CP2CP3 D .X1; : : : ;X4/
is associated to R=I and GP is not connected (it has no edges). That P is associated
to R=I can be proved by taking a nonzero quadric q in the intersection P1 \P2 \ P3
and checking that, by construction, qP � I.

The general question of whether a prime ideal P 2 P is associated to R=I can
be reduced by localization to the following:

Question 6.6 Let P1; : : : ;Pw 2 F and I D P1 � � �Pw. Under which (possibly
combinatorial) conditions on P1; : : : ;Pw is

Pw
iD1 Pi associated to R=I?

Another interesting (and very much related) question is the description of the
relationship between the associated primes of I and those of its powers. We have:

Lemma 6.7 Let I and J be ideals that are products of elements in F . Then

Ass.R=I/[ Ass.R=J/ � Ass.R=IJ/:

In particular, Ass.R=Ih/ � Ass.R=IhC1/ for all h > 0.

Proof Let P1; : : : ;Pw;Q1; : : : ;Qv 2 F such that I D P1 � � �Pw and J D Q1 � � �Qv .
Let P 2 Ass.R=I/. We know that P D P

i2A Pi for a subset A of f1; : : : ;wg.
Localizing at P we may restrict our attention to the factors Pi � P and Qj � P.
Hence we assume that P D Pw

iD1 Pi D .X1; : : : ;Xn/. Let f be a homogeneous
element such that P D I W . f /. Since I has a linear resolution, it coincides with
its saturation from degree w on. Hence f has degree w � 1. Then P D .IJ/ W . fJ/
because fJ 6� IJ by degree reasons.



64 W. Bruns and A. Conca

The main question here is the following:

Question 6.8 Let P1; : : : ;Pw 2 F and I D P1 � � �Pw. Is it true that Ass.R=I/ D
Ass.R=Ik/ for every k > 0?

We conclude the section with the following:

Theorem 6.9 Let P1; : : : ;Pw 2 F . The multi-Rees algebra R.P1; : : : ;Pw/ and its
multi-fiber ring F.P1; : : : ;Pw/ are normal and Cohen–Macaulay. Furthermore they
are defined by Gröbner bases of elements of degrees bounded above by

Pw
iD0 ei 2

Z
wC1.

Proof The multiplicative intersection property implies that a product of elements in
F is integrally closed, and this entails the normality of R.P1; : : : ;Pw/. The multi-
fiber ring is normal as well because it is an algebra retract of the Rees algebra.
By construction, R.P1; : : : ;Pw/ can be identified with F.P0;P1; : : : ;Pw/ where
P0 D .X1; : : : ;Xn/. Hence it is enough to prove the Cohen–Macaulay property
of the multi-fiber ring F D F.P1; : : : ;Pw/. Note that F is a subring of the Segre
product R � S of R with S D KŒT1; : : : ;Tw�. The defining ideal of R � S, i.e., the
ideal of 2-minors of a generic m � w matrix, has a square-free generic initial ideal
with respect to the Z

w-graded structure, as proved in [13]. So it is a Cartwright–
Sturmfels ideal, a notion defined in Conca et al. [17] that was inspired by result
of Cartwright and Sturmfels [12] and Conca et al. [16]. In [17] it is proved that
eliminating variables from a Cartwright–Sturmfels ideal one gets a Cartwright–
Sturmfels ideal. So F itself is defined by a Cartwright–Sturmfels ideal. Such an
ideal has a multiplicity-free multidegree. Hence we may use Brion’s theorem [4]
asserting that a multigraded prime ideal with multiplicity-free multidegree defines
a Cohen–Macaulay ring. Finally the statement about the degrees of Gröbner basis
elements is a general fact about Cartwright–Sturmfels ideals.

As we have seen already in Example 5.5, we cannot expect R.P1; : : : ;Pw/ and
F.P1; : : : ;Pw/ to be defined by quadrics. But the strategy developed in [13] together
with Theorem 6.9 implies:

Theorem 6.10 Let P1; : : : ;Pw 2 F and I D P1 � � �Pw. Then the fiber ring F.I/ is
Koszul.

Remark 6.11 The result on linear products of ideals generated by linear forms
has been generalized by Derksen and Sidman [20]. Roughly speaking, they show
that the regularity of an ideal that is constructed from ideals of linear forms by D
successive basic operations like products, intersections, and sums is bounded by D.
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7 Product of Borel-Fixed Ideals of Maximal Minors

Let K be a field. Let X D .Xij/ be the matrix of size n � n whose entries are the
indeterminates of the polynomial ring R D KŒxij W 1 � i; j � n�. Let t and a be
positive integers with that tC a � nC 1 and set

Xt.a/ D .Xij W 1 � i � t; a � j � n/;

and define the northeast ideal It.a/ associated to the pair .t; a/ to be the ideal
generated by the t-minors, i.e., t� t-subdeterminants, of the matrix Xt.a/. Note that,
by construction, Xt.a/ has size t � .nC 1 � t/ and t � .nC 1 � t/. Hence It.a/ is
the ideal of maximal minors of Xt.a/. There is a natural action of GLn.K/�GLn.K/
on R. Let Bn.K/ denote the subgroup of lower triangular matrices in GLn.K/ and by
B0n.K/ the subgroup of upper triangular matrices. Note that the ideals It.a/ are fixed
by the action of the Borel group Bm.K/ � B0n.K/. Hence they are Borel-fixed ideals
of maximal minors.

Let < be the lexicographic term order on R associated to the total order

X11 > X12 > � � � > X1n > X21 > � � � > Xnn:

Then the initial monomial of a t�t subdeterminant of X is the product of its diagonal
elements. Therefore< is a diagonal monomial order. The statements below remain
true if one replaces < with another diagonal monomial order.

Set

Jt.a/ D .X1b1 � � �Xtbt W a � b1 < � � � < bt � n/:

It is the ideal generated by the initial monomials of the t � t minors in It.a/.
The ideal of maximal minors of a matrix of variables, such as Xt.a/, is a prime

ideal with primary powers. Furthermore

in<.It.a// D Jt.a/:

The main result of Bruns and Conca [7] is the following:

Theorem 7.1 The families

F D fIt.a/ W t > 0; a > 0; tC a � nC 1g



66 W. Bruns and A. Conca

and

F 0 D fJt.a/ W t > 0; a > 0; tC a � nC 1g

have linear products.
Furthermore, given .t1; a1/; : : : ; .tw; aw/, set Ij D Itj.aj/ and Jj D Jtj.aj/. Then

in<.R.I1; : : : ; Iw// D R.J1; : : : ; Jw/;

and both multi-Rees algebras R.I1; : : : ; Iw/ and R.J1; : : : ; Jw/ as well as their multi-
fiber rings F.I1; : : : ; Iw/ and F.J1; : : : ; Jw/ are Cohen–Macaulay and normal and
defined by Gröbner bases of quadrics.

The proof of the theorem is based on the general strategy described in Sect. 4 and
on the following decomposition formulas proved in [7]:

Theorem 7.2 For every S D f.t1; a1/; : : : ; .tw; aw/g set IS D Qw
iD1 Iti.ai/ and JS DQw

iD1 Jti.ai/. Then

IS D
\

u;b

Iu.b/
eub.S/

and

JS D
\

u;b

Ju.b/
eub.S/

where

eub.S/ D jfi W b � ai and u � tigj:

The theorem allows one to define a certain normal form for elements in IS. The
passage to the normal form uses quadratic rewriting rules that represent Gröbner
basis elements of the multi-Rees algebra.

The exponent eub.S/ can be characterized as well by the equalities

eub.S/ D maxfj W I � Iu.b/
jg D maxfj W J � Ju.b/

jg:

The theorem shows that the family F of NE-ideals of maximal minors has the
multiplicative intersection property since the representation of I as an intersection
is a primary decomposition: each ideal Iu.b/ is prime with primary powers. The
representation of J is not a primary decomposition. To get a primary decomposition
for J, one uses the fact that Ju.b/ is radical with decomposition

Ju.b/ D
\

F2Fu;b

PF
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where Fu;b denotes the set of facets of the simplicial complex associated to Ju.b/,
and PF the prime ideal associated to F. Moreover,

Ju.b/
k D

\

F2Fu;b

Pk
F

as proved in [5, Proposition 7.2]. Therefore, while the family F 0 does not have the
multiplicative intersection property, its members are nevertheless P-adically closed.

The primary decomposition of IS given in Theorem 7.2 can be refined as follows:

Proposition 7.3 Given S D f.t1; a1/; : : : ; .tw; aw/g, let Y be the set of the elements
.t; a/ 2 N

2C n S such that there exists .u; b/ 2 N
2C for which .t; b/; .u; a/ 2 S and

t < u, a < b. Then we have the following primary decomposition:

IS D
\

.v;c/2S[Y
Iv.c/

evc.S/:

Furthermore this decomposition is irredundant, provided all the points .u; b/ above
can be taken so that uC b � nC 1.

Note that for a given S, the primary decomposition in Proposition 7.3 is
irredundant if n is sufficiently large. Therefore we obtain:

Corollary 7.4 Given S D f.t1; a1/; : : : ; .tw; aw/g assume that n is sufficiently large.
Then

Ass.R=IS/ D Ass.R=IkS/

for all k > 0.

In some cases the equality stated in Corollary 7.4 holds true also for small values
of n.

Remark 7.5

(a) There exist well-known families of ideals that have the multiplicative intersec-
tion property, but lack linear products. In characteristic 0 this holds for the ideals
It.X/, t D 0; : : : ;m, that are generated by all t-minors of the full matrix X if
m > 2. See Bruns and Vetter [9, Theorem 10.9].

(b) In [10] the authors and Varbaro proved that the ideal of maximal minors of
a matrix of linear forms has linear powers under certain conditions that are
significantly weaker than “full” genericity. The techniques applied in [10] are
quite different from those on which the results of this note rely.
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Minors and Categorical Resolutions

Igor Burban, Yuriy Drozd, and Volodymyr Gavran

Abstract We define minors of non-commutative schemes and study their proper-
ties. It is then applied to the study of a special class of non-commutative schemes,
called quasi-hereditary, and to a construction of categorical resolutions for singular
curves (maybe, non-commutative). In the rational case, this categorical resolution is
realized by a finite dimensional quasi-hereditary algebra.

Keywords Bilocalization • Categorical resolution • Derived categories •
Minors • Non-commutative schemes • Quasi-hereditary schemes

1 Introduction

When one compares the category of representations of the Kronecker quiver

(“matrix pencils”) and the category of coherent sheaves over the projective
line P

1, one sees an astonishing resemblance. Indeed, the Auslander–Reiten quiver
(describing the subcategory of indecomposable objects) of the first category looks
like
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while that of the second is

both with relations xy D yx. The tubular family here means a set of disjoint
subcategories T (tubes) parametrized by the points of the projective line and such
that every T is equivalent to the category of indecomposable finite dimensional
modules over the algebra of formal power series kŒŒt��. Except the products of
arrows, there are only morphisms “from the left to the right,” also similar in both
cases. Note that if we move the preinjective component of the first quiver to the very

left and join it with the preprojective component by the arrows , we obtain the
second quiver.

This resemblance has now a rather simple explanation. Namely, the vector bundle
G D OP1 .�1/˚OP1 is a so-called tilting object of the category CohP1. It means
that Exti

P1
.G;G/ D 0 for all i > 0 and, for every nonzero morphism f W F ! F 0 of

coherent sheaves, HomP1.G; f / ¤ 0 (equivalently, G generates the derived category
D.CohP1/). Then it is known that the derived functor RHomP1 .G; _ / establishes
an equivalence of the derived categories D.CohP1/ and D.A-mod/, where A D
End.G/op. In our case, A is just the path algebra of the Kronecker quiver. Moreover,
since both categories A-mod and CohP1 are hereditary (i.e., of global dimension 1),
every indecomposable object of the derived category is just a shift of a module.

Actually, Beilinson [3] proved that the category CohPn has a tilting sheaf G DL0
iD�n OPn.i/, hence is equivalent to the category of representations of the finite

dimensional algebra A D End.G/op, which can be explicitly described. Afterwards
analogues of these results were proved for a wide class of projective varieties. In
particular, Hille and Perling [21] constructed a tilting vector bundle for any smooth
rational surface.

Later on Greuel and the second author [18] noticed that there is a resemblance
between the categories of vector bundles over a class of singular curves and the
categories of representations of some finite dimensional algebras. In particular, it is
so for a nodal cubic C and the algebra A with the quiver

and relations da D cb D 0. Certainly, this correspondence could not be a corollary
of an equivalence of derived categories, since the algebra A is of global dimension
2, while OC is of infinite global dimension. An explanation of this phenomenon
was given by the first two authors [7]. For this purpose they considered a sheaf of
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non-commutative algebras A (called Auslander sheaf ), which was already of global
dimension 2, and constructed a tilting sheaf over A such that its endomorphism
algebra was just the algebra mentioned in [18]. The category of coherent sheaves
over the initial curve turned to be a Serre quotient of the category of coherent
sheaves over A by a semi-simple subcategory; hence, their indecomposable objects
were almost the same.

This paper is devoted to a generalization of the results of Burban and Drozd
[7] to all singular curves. Namely, we construct for every curve X a sheaf of OX-
algebras R, such that R is of finite global dimension and there is a functor F W
CohR ! CohX, which defines CohX as a bilocalization (i.e., both localization
and colocalization) of CohR. The same is certainly true for their derived categories.
Moreover, R has rather special properties analogous to those of quasi-hereditary
algebras from [12, 14]. We call R the König’s resolution of the curve X, since the
idea of its construction goes back to the König’s paper [23]. If X is rational, R has
a tilting complex T which establishes an equivalence between the derived category
of CohR and that of a finite dimensional quasi-hereditary algebra. Altogether, this
construction can be considered as a categorical resolution of the categoryD.CohX/
in the sense of [24]. If the curveX is Gorenstein, this categorical resolution is weakly
crepant in the sense of [24]. We also show that this construction can also be applied
to non-commutative curves.

The main tool in our considerations is the notion of minors of non-commutative
schemes studied in Sect. 3. For the affine case (i.e., for rings), it was introduced in
[15]. A minor B of a sheaf of algebras A is the endomorphism sheaf of a locally
projective sheaf of A-modules. Then the category QcohB is a bilocalization of
QcohA and the same is true for their derived categories. We establish the main
features of these bilocalizations and specialize them to the most important case
arising as endomorphism construction (Example 3.14). The general properties of
localizations and colocalizations used here are gathered in Sect. 2. In Sect. 4 we
apply this technique to a special class of non-commutative schemes called quasi-
hereditary. This notion generalizes that of quasi-hereditary algebras and has a lot of
similar features. In particular, a quasi-hereditary non-commutative scheme is always
of finite global dimension, and its derived category has good semi-orthogonal
decompositions (see Corollary 4.23). In Sect. 5 we study some general properties of
non-commutative curves and their minors, especially related with Cohen–Macaulay
(or, the same, torsion-free) modules. In Sect. 6 we construct the König’s resolution
and prove that it is quasi-hereditary. We also show that in the commutative case, the
functors of direct and inverse image arising from the normalization of the curve are
actually compositions of the functors arising from the König’s resolution. Finally, in
Sect. 7 we construct a tilting complex for the König’s resolution of a rational singular
curve (maybe, non-commutative). It gives a categorical resolution of D.QcohX/ by
a quasi-hereditary finite dimensional algebra. We also consider, as an example, the
case when all singularities of a curve are of ADE types in the sense of Arnold [2].

Most results of Sects. 1–5 are contained in [8]. Sections 6 and 7 generalize the
results of [9] to the non-commutative situation.
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2 Bilocalizations

We recall here some general facts concerning localizations and bilocalizations of
abelian and triangular categories. Their proofs are gathered in [8, Sect. 2].

Theorem 2.1 Let F W A ! B be an exact functor between abelian categories,
F� W B ! A be its right (left) adjoint such that the natural morphism FF� ! 1B

(respectively, 1B ! FF�) is an isomorphism. Let C D kerF.

1. C is a thick subcategory in A and F D NF…C , where …C W A ! A =C is the
natural functor to the Serre quotient and NF W A =C ! B is an equivalence. The
quasi-inverse functor to NF is…CF�.

2. F� is a full embedding and its essential image ImF� coincides with the right
(respectively, left) orthogonal subcategory to C , i.e., the full subcategory

C? D ˚A 2 ObA j HomA .C;A/ D Ext1A .C;A/ D 0 for all C 2 C
�

(respectively,

?C D ˚A 2 ObA j HomA .A;C/ D Ext1A .A;C/ D 0 for all C 2 C
�
/:

3. C D ?.C?/ (respectively, C D .?C /?).
4. The embedding functor I W C ! A has a right (respectively, left) adjoint.

In this case they say that F is a localizing functor, C is a localizing subcategory,
and B ' A =C is a localization of the category A (respectively,F is a colocalizing
functor, C is a colocalizing subcategory, and B ' A =C is a colocalization of the
category A ).

Theorem 2.2 Let F W A ! B be an exact functor between triangulated
categories, F� W B ! A be its right (left) adjoint such that the natural morphism
FF� ! 1B (respectively, 1B ! FF�) is an isomorphism. Let C D kerF.

1. C is a thick subcategory in A and F D NF…C , where …C W A ! A =C is the
natural functor to the Verdier quotient and NF W A =C ! B is an equivalence.
The quasi-inverse functor to NF is…CF�.

2. F� is a full embedding and its essential image ImF� coincides with the right
(respectively, left) orthogonal subcategory to C , i.e., the full subcategory

C? D fA 2 ObA j HomA .C;A/ D 0 for all C 2 C g

(respectively,

?C D fA 2 ObA j HomA .A;C/ D 0 for all C 2 C g/:
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3. C D ?.C?/ (respectively, C D .?C /?).
4. The embedding functor I W C ! A has a right (respectively, left) adjoint, which

induces an equivalenceA = ImF� �! C .1

In this case they say that F is a localizing functor, C is a localizing subcategory,
and B ' A =C is a localization of the category A (respectively,F is a colocalizing
functor, C is a colocalizing subcategory, and B ' A =C is a colocalization of the
category A ).

Theorem 2.3 Suppose that an exact functor F W A ! B between abelian (or
triangulated) categories has both left adjoint F� and right adjoint FŠ. Then F is a
localizing functor if and only if it is a colocalizing functor.

In this case we say that F is a bilocalizing functor, its kernel C D kerF is a
bilocalizing subcategory, and B is a bilocalization of the category A .

If F W A ! B is an exact functor between abelian categories, we denote by DF
the functor between the derived categories DA ! DB which acts on complexes
componentwise. It is both right and left derived functor of F.

Theorem 2.4 Let F W A ! B be a localizing (colocalizing) functor between
abelian categories, C D kerF. Suppose that right (left) adjoint F� of F has
right (respectively, left) derived functor. Then DF is also a localizing (respectively,
colocalizing) functor, RF� is its right adjoint (respectively, LF� is its left adjoint),

kerDF D DCA D fF� 2 DA j Hn.F�/ 2 C for all n g

and DB ' DA =DCA .

Remark 2.5 If A is a Grothendieck category, a right derived functor always exists,
so Theorem 2.4 can always be applied. We do not know any natural “categorical”
conditions for the existence of a left adjoint, though it is the case in the situation that
we consider nearby.

We recall that a semi-orthogonal decomposition hT1;T2; : : : ;Tm i of a triangu-
lated category A is a sequence of subcategories .T1;T2; : : : ;Tm/ such that

1. HomA .A;BŒm�/ D 0 if A 2 Ti; B 2 Tj and i > j.
2. For every A 2 A , there is a sequence of morphisms

0 D Tm
fm�! Tm�1

fm�1��! : : : T2
f2�! T1

f1�! T0 D A

such that cone. fi/ 2 Ti .1 � i � m/ [25].

1In the case of abelian categories the functor A = ImF� ! C induced by the right (respectively,
left) adjoint of I need not be an equivalence.



76 I. Burban et al.

In particular, if m D 2, it means that there is an exact triangle T2 ! A! T1, where
T1 2 T1; T2 2 T2.

Corollary 2.6 Let F W A ! B be a localizing (colocalizing) functor between
triangulated categories, F� be its right (respectively, left) adjoint. There is a
semi-orthogonal decomposition .ImF�; kerF/ (respectively, .kerF; ImF�/) of the
categoryA .

3 Minors

In this paper a non-commutative scheme is a pair .X;A/, whereX is a scheme (called
the commutative background of the non-commutative scheme) and A is a sheaf of
OX-algebras, which is quasi-coherent as a sheaf of OX-modules. Sometimes we say
“non-commutative scheme A” not mentioning its commutative background X. We
denote by Xcl the set of closed points of X. If A D OX , we sometimes say that it
is a usual scheme. We denote by A-Mod (respectively, by A-mod) the category of
quasi-coherent (respectively, coherent) sheaves of A-modules. We call objects of
this category just A-modules (respectively, coherent A-modules).

A non-commutative scheme .X;A/ is said to be affine (separated, quasi-
compact) if so is its commutative background X. It is said to be reduced if A has
no nilpotent ideals. If X is noetherian and A is a coherent OX-module, we say that
this non-commutative scheme is noetherian. We say that .X;A/ is quasi-projective
if there is an ample OX-module L. Note that then X is indeed a quasi-projective
scheme over the ring R D L1

nD0 �.X;L˝n/. In this paper we always suppose that
the considered non-commutative schemes are separated and quasi-compact. In
this case A-Mod is a Grothendieck category. In particular, every quasi-coherent
A-module has an injective envelope. We denote by A-Inj the full subcategory of
A-Mod formed by injective modules.

A morphism of non-commutative schemes f W .Y;B/! .X;A/ is a pair . fX; f #/,
where fX W Y ! X is a morphism of schemes and f # is a morphism of f�1X OX-
algebras f�1X A ! B. In what follows we usually write f instead of fX . Such
morphism defines the functor of inverse image f � W A-Mod ! B-Mod which
maps an A-module M to the B-module B˝f�1Af�1M. As the map fX is separated
and quasi-compact, the functor of direct image f� W B-Mod ! A-Mod is also
well-defined (cf. [20, § 0.1 and § 1.9.2]). Moreover, f � maps coherent modules to
coherent ones. Note that f � and f� do not coincide with . fX/� and . fX/�. It is
guaranteed only if B D f �X A, for instance, if Y is an open subset of X and B D AjY .

We call a non-commutative scheme .X;A/ central if center.A/ D OX . Actually,
we can only consider central non-commutative schemes as the following evident
results show.

Proposition 3.7 Let C D center.A/, QX D spec C, 	X W QX ! X be the corresponding
affine morphism, and QA D 	�1X .A/. Then 	X extends to a morphism 	 W . QX; QA/ !
.X;A/ and 	� induces equivalences QA-Mod! A-Mod and QA-mod! A-mod.
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We denote by lpA the full subcategory of A-mod consisting of locally projective
modules, i.e., such coherent modules P that all localizations Px are projective Ax-
modules. We say that A has enough locally projective modules if for every coherent
A-module M, there is an epimorphism P !M, where P is locally projective. It
is the case, for instance, if the non-commutative scheme is quasi-projective.

We denote by DA the derived category D.A-Mod/, with subscripts C;� ;b
denoting its full subcategories consisting, respectively, of left-, right-, and two-sided
bounded complexes. We also denote by PerfA the full subcategory of small objects
fromDA, i.e., such complexesF� that HomDA.F�;

F
i G�

i / '
F

i HomDA.F�;G�

i /

for any coproduct
F

i G�

i . As X is separated and quasi-compact, small objects in
DA are just perfect complexes, i.e., complexes F� such that for every x 2 X the
complexFx is isomorphic to a finite complex of locally projective coherent modules.
Moreover, PerfA generates DA, i.e., for every complex G�, there is a nonzero
morphism from a perfect complex to G�. It is well-known in affine and commutative
cases and the proof in general case is quite analogous [8, Theorem 3.14].

Definition 3.8 Let P be a locally projective A-module, B D .EndA P/op. We
call the non-commutative scheme .X;B/ a minor of the non-commutative scheme
.X;A/.

This notion is just a globalization of the corresponding notion from [15].
We consider P as right B-module and denote P_ D HomA.P ;A/; it is a right

A-module. It is known that for every P 2 lpA, the natural map P ! P__ is an
isomorphism and EndA P_ ' EndA P ' P_˝AP . The following functors play
the crucial role in this paper:

F D HomA.P ; _ / ' P_˝A_ W A-Mod! B-Mod;

F� D P˝B_ W B-Mod! A-Mod; (1)

FŠ D HomB.P_; _ / W B-Mod! A-Mod:

The functor F is exact and both .F�;F/ and .F;FŠ/ are adjoint pairs of functors. If
the non-commutative scheme .X;A/ is noetherian, so is also .X;B/ and the functors
F;F�;FŠ map coherent sheaves to coherent. Note that if I is an injective B-module,
then FŠ.I/ is an injective A-module. We denote by P-Inj the image FŠ.B-Inj/. We
also denote by �P the natural map P˝BP_ ! A such that �. p˝f / D f . p/ and
IP D Im�P . If P D Ae, where e is an idempotent, then P_ ' eA, .EndA P/op '
eAe and IP D AeA.

The following result plays a crucial role in this paper:

Theorem 3.9

1. F is a bilocalizing functor and its kernel C D kerF consists of the modules M
such IPM D 0, so can be identified with A=IP -Mod.
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2. ImF� D ?C consists of all A-modules M such that for every x 2 X there is an
exact sequence P1 ! P0 ! M ! 0, where P0 and P1 are multiples (maybe
infinite) of Px. We denote this subcategory by P-Mod.

3. ImFŠ D C? consists of all A-modules M such that there is an exact sequence
0 ! M ! I0 ! I1, where I0 and I1 belong to P-Inj. We denote this
subcategory by P Inj-Mod.

Proof The results of the preceding section show that it is enough to prove the
following statements:

Proposition 3.10

1. The natural morphism � W 1B-Mod ! FF� is an isomorphism.
2. ImF� D P-Mod.
3. ImFŠ D P Inj-Mod.
4. kerF D fM j IPM D 0 g.
Proof Evidently, all claims are local, so we can suppose that X D specR for a com-
mutative ring R; A D A� is the sheafification of an R-algebra A, P D P�, where P
is a finitely generated projective A-module; and B D B�, where B D EndA P. Then
we can replace A-Mod; B-Mod, and P-Mod, respectively, by A-Mod; B-Mod, and
P-Mod, where P-Mod is the full subcategory of A-Mod consisting of all modules
M such that there is an exact sequence P1 ! P0 ! M! 0, where P0 and P1 are
multiples of P.

Certainly, �.B/ is an isomorphism. Hence �.F/ is an isomorphism for every free
B-moduleF. For everyB-moduleM, there is an exact sequence F1 ! F1 ! M! 0

with free modules F0;F1. It induces a commutative diagram with exact rows

As �.F1/ and �.F2/ are isomorphisms, so is �.M/. It proves (1).
Moreover, we have an exact sequence F�.F1/! F�.F0/! F�.M/! 0, where

F�.Fi/ are multiples of F�.B/ D P, so F�.M/ 2 P-Mod. On the contrary, let we
have an exact sequence P1 ! P0 ! N ! 0, where Pi are multiples of P. Consider
the natural morphism  W F�F ! 1A-Mod. Obviously,  .P/ is an isomorphism, so
 .Pi/ are also isomorphisms. Again we obtain a commutative diagram with exact
rows
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It implies that  .N/ is an isomorphism, hence N 2 ImF�. It proves (2). The proof
of (3) is quite analogous.

To prove (4), note that IPP D P [10, Proposition VII.3.1], where IP D Im�P. Let
M … kerF and f W P ! M be a nonzero homomorphism. Then IPM 
 Im f ¤ 0.
On the contrary, if IPM ¤ 0, there is an element z 2 M, elements pi 2 P,
and homomorphisms fi W P ! A such that

P
i fi. pi/z ¤ 0. Denote by g the

homomorphism A ! M mapping 1 to z and set gi D gfi. Then at least one of
gi is nonzero, so M … kerF. ut

As the functor F is exact, it induces a functor DF W DA ! DB acting on
complexes componentwise. It is both left and right derived of F. There are also left
derived functor LF� and right derived functor RFŠ, both DB ! DA [29, Sect. 6].
Moreover, it follows from [29] that both .LF�;DF/ and .DF;RFŠ/ are adjoint pairs
(see [8] for details). Obviously, DF maps D�A to D�B, where � 2 fC;�; b g; LF�
maps D�B to D�A and RFŠ maps DCB to DCA.

Theorem 3.11

1. DF is a bilocalizing functor and kerDF ' DA=IPA, where DA=IPA is the full
subcategory of DA consisting of complexes with cohomologies annihilated by
IP (i.e., belonging to .A=IP/-Mod).

2. LF� maps PerfB to PerfA.
3. Im LF� D ?DA=IPA coincides with the full subcategoryDP! ofDA consisting

of complexes quasi-isomorphic to K-flat complexes F� such that for every
component F i and every point x 2 X, the localization F i

x is a direct limit of
modules from addPx. The same is true if we replace D by D�.

4. ImRFŠ D DA=IPA? coincides with the full subcategory DP Inj of DA
consisting of complexes quasi-isomorphic to K-injective complexes I� such that
every component I i belongs to FŠ.B-Inj/. The same is true if we replace D
by DC.

Note that the condition (4) can be verified locally at every point x 2 X.
We recall that a complex F� is said to be K-flat (K-injective) if for every

acyclic complex of right (respectively, left) A-modules C�, the complex F�˝AC�

(respectively, HomA.C�;F�) is also acyclic [29].

Proof (1) follows from the results of the previous section.
As P is coherent and locally projective, the functor DF preserves arbitrary

coproducts. Therefore its left adjoint LF� maps small objects to small ones, which
gives (2).

(3) It follows from [1] that for every complex M� of B-modules, there is a quasi-
isomorphic K-flat complex F� with flat components. Then LF�.M�/ D F�.F�/.
By Bourbaki [5, Chap. X, § 1, Theorem 1], every localization F i

x is a direct limit
lim�!n

Li
n, where all Li

n are finitely generated and projective, hence belong to addBx.

As F� preserves direct limits and F�.B/ ' P , F�.Fi/ ' lim�!n
F�.Li

n/ and F�.Li
n/

belongs to addPx. Therefore, F�.M�/ 2 DP!.
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On the contrary, let N � 2 DP!. We can suppose that this complex is K-flat
and every localization N i

x is a direct limit lim�!n
P i
n, where P i

n 2 addPx. Then the
complex F.N �/ is also K-flat, so .LF�/.F.N �// ' F�F.N �/. As the natural map
F�F.P/ ! P is an isomorphism, the same is true for F�F.P i

n/ ! P i
n, hence also

for F�F.N i
x/! N i

x. Therefore, the map .LF�/.DF/.N �/! N � is an isomorphism
and N 2 ImLF�.

The proof of (4) is quite analogous. ut
Corollary 3.12 There are semi-orthogonal decompositions .kerDF; ImLF�/ and
.ImRFŠ; kerDF/ of the categoryDA.

Note that the subcategories ImLF� and ImRFŠ are equivalent (both are equiva-
lent to DB) but usually do not coincide.

The following special case is rather important:

Theorem 3.13 Suppose that the ideal I D IP is flat as right A-module. Set Q D
A=I. Then kerDF D DQA ' DQ.

Proof Let F� ! G� be a quasi-isomorphism. As I is flat, then I˝AF� !
I˝AG� is also a quasi-isomorphism. Therefore, F�˝AQ ! G�˝AQ is also a
quasi-isomorphism. In particular, if G� consists of Q-modules, we get a quasi-
isomorphism F�˝AQ ! G�. It implies that we can identify DQ with the full
triangulated subcategory of DA. Obviously DQ � DQA. Moreover, I2 D I.
Let F� 2 DQA. We can suppose that F� is K-flat. Its tensor product with the
exact sequence 0 ! I ! A ! Q ! 0 gives an exact sequence of complexes
0! I˝AF� ! F� ! Q˝AF� ! 0. As I is flat, H�.I˝AF�/ ' I˝AH�.F�/.
Since I˝AQ ' I=I2 D 0, also I˝AM D 0 for every Q-module M. Therefore
H�.I˝AF�/ D 0, i.e., I˝AF� is acyclic, whence F� is quasi-isomorphic to
Q˝AF , which belongs to DQ. ut
Example 3.14 (Endomorphism Construction) Let F be a coherent A-module and
AF D .EndA.A˚F//op. We identify AF with the algebra of matrices

AF D
�
A F
F 0 E

�

;

where F 0 D HomA.F ;A/ and E D .EndA F/op. Then P D PF D
� A
F 0

�
is a

locally projective AF -module and A ' .EndAF P/op. Hence A is a minor of AF ,
thus A-Mod and DA are bilocalizations, respectively, of AF -Mod and DAF . The
corresponding functors are

FF D HomAF .PF ; _ /;

F�F D PF˝A_ ;

FŠF D HomA.P_F ; _ /
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and their derived functors. Note that P_ ' �
A F

� ' A˚F as A-AF -bimodule
and IP is the ideal of matrices

IP D
�
A F
F 0 I 0F

�

where I 0F is the image of the map �0 W F 0˝AF ! E such that �0. f 0˝f /.v/ D
f 0.v/f for all f ; v 2 F ; f 0 2 F 0. Therefore, kerFF ' .E=I 0F /-Mod and kerDFF D
DE=I0

FAF .

This construction is especially convenient when A is strongly Gorenstein in the
sense of the following definition:

Definition 3.15 A noetherian non-commutative scheme .X;A/ is said to be
strongly Gorenstein if X is equidimensional, A is a Cohen–Macaulay OX-module,
and inj:dimA A D dimX.

Such non-commutative schemes possess almost all usual properties of Cohen–
Macaulay rings and (“usual”) schemes, and their proofs are quite analogous to those
from [6] (see [8, Sect. 5] for details). We need here theCohen–Macaulay duality. For
a noetherian non-commutative scheme .X;A/ denote by CMA the full subcategory
of A-mod consisting of maximal Cohen–Macaulay A-modules, i.e., such coherent
A-modules M that each localization Mx is a maximal Cohen–Macaulay OX;x-
module. Let � W A-mod! Aop-mod be the functor mapping M to HomA.M;A/.
If A is strongly Gorenstein, so is also Aop, and � defines an exact duality between
CMA and CMAop. It means that, for every M 2 CMA, ExtiA.M;A/ D 0 for
i > 0 and the natural map M ! M�� is an isomorphism. It also implies that
the natural map M˝AL ! HomA.M;L/ is an isomorphism for every locally
projective A-module L.

Theorem 3.16 In the situation of Example 3.14, let A be strongly Gorenstein and
has enough locally projective modules and F 2 CMA. Then the restrictions of the
functors LF�F and RFŠF onto PerfA coincide. Thus these restrictions are both left
and right adjoint to DFF .

Proof Note first that under the given conditions F�F .L/ ' FŠF .L/ for every locally
projective A-module L. As A has enough locally projective modules, any complex
fromPerfA is quasi-isomorphic to a finite complexL� such that all Li are from lpA.
Then LF�F .L�/ D F�F .L�/. On the other hand, RkFŠF .Li/ D ExtkA.PF ;Li/ D 0 for
k ¤ 0. Therefore, RFŠF .L�/ D FŠF .L�/ ' F�F .L�/. ut

4 Quasi-Hereditary Schemes

In this section we generalize the notions of quasi-hereditary algebras and orders
[12, 22] to non-commutative schemes. It is closely related with minors and
bilocalizations. We start from the following facts. Let .X;A/ be a non-commutative
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scheme, M be an A-module. We call sup
˚
i j ExtiA.M; _ / ¤ 0 � the local pro-

jective dimension of the A-module M and denote it by lp:dimA M. If the
non-commutative scheme .X;A/ is noetherian and the module M is coherent, then
lp:dimA M D sup

˚
pr:dimAx

Mx j x 2 X
�
:

Lemma 4.17 (Cf. [8, Lemma 4.9]) Let .X;A/ be a non-commutative scheme, P
be a coherent locally projective A-module, B D .EndA P/op, and NA D A=IP .
Suppose that P is flat as right B-module,

lp:dimA IP D d;

gl:dimB D n;

gl:dim NA D m:

Then gl:dimA � max fmC dC 2; n g.
Proof Let NA D A=IP . Then lp:dimA NA D d C 1. The spectral sequence
ExtpNA.M; ExtqA. NA; _ // ) ExtpCq

A .M; _ / implies that pr:dimA M � m C d C 1
for every NA-module M. Consider the functors F D HomA.P ; _ / and F� D P˝B_ .
As the morphism FF�F ! F arising from the adjunction is an isomorphism, the
kernel and the cokernel of the natural map ˛ W F�FM !M are annihilated by F,
so are actually NA-modules. It implies that ExtiA.M;N / ' ExtiA.F

�FM;N / if i >
mC dC 2, so pr:dimA M � max fmC dC 2; pr:dimA F�FM g. As both functors
F and F� are exact, ExtiA.F

�_ ; _ / ' ExtiB._ ;F_ /, so pr:dimA F�FM � n. ut
This result motivates the following definitions:

Definition 4.18 (Cf. [8, Definition 4.9])

1. Let .X;A/ and .X;B/ be two non-commutative schemes. A relating chain
between A and B is a sequence .A1;P1;A2;P2; : : : ; Pr;ArC1/, where A1 D A;
ArC1 D B; everyPi (1 � i � r) is a coherent locally projectiveAi-module which
is also flat as right Bi-module, where Bi D .EndAi Pi/

op; and AiC1 D Ai=IPi for
1 � i � r.

2. The relating chain is said to be flat if, for every 1 � i � r, IPi is flat as right
Ai-module. Note that it is the case if the natural map �i W Pi˝BiP_i ! Ai is a
monomorphism.

3. The relating chain is said to be heredity if, for every 1 � i � r, IPi is locally
projective as left Ai-module. In this case �i is a monomorphism (it can be proved
as in [14, Statement 7]), so this chain is flat.

4. If the relating chain is heredity and all non-commutative schemes Bi are
hereditary, i.e., gl:dimBi � 1, we say that the non-commutative scheme A is
quasi-hereditary of level r. (Thus quasi-hereditary of level 0 means hereditary.)

The following result is obvious:

Proposition 4.19 If .A1;P1;A2;P2; : : : ;Pr;ArC1/ is a relating chain between A
and B, then .Aop

1 ;P_1 ;A
op
2 ;P_2 ; : : : ;P_r ;A

op
rC1/ is a relating chain betweenAop and

Bop with the same endomorphism algebras Bi.
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Note that if A is noetherian, so are all Ai and Bi. As for noetherian non-
commutative schemes all flat coherent modules are locally projective, we obtain
the following corollary:

Corollary 4.20 If a noetherian non-commutative scheme .X;A/ is quasi-
hereditary, so is also .X;Aop/.

We fix a relating chain .A1;P1, A2;P2,: : : ;Pr;ArC1/ between A and B and keep
the notations of Definition 4.18(1). Lemma 4.17 immediately implies an estimate for
global dimensions.

Corollary 4.21 Let gl:dimBi � n and lp:dimAi
IPi � d for all 1 � i � r. Then

gl:dimA � r.dC2/Cmax f gl:dimB; n � d � 2 g. If this relating chain is heredity,
then gl:dimA � gl:dimBC 2r.

Using Corollary 3.12, Theorem 3.13, and induction, we obtain the following
result:

Corollary 4.22 If this relating chain is flat, there are semi-orthogonal decompo-
sitions .T ;Tr; : : : ;T1/ and .T 01 ;T 02 ; : : : ;T 0r ;T / of DA such that Ti ' T 0i '
DBi .1 � i � r/ and T ' DB.

Note that, as a rule, Ti ¤ T 0i .

Corollary 4.23 If a non-commutative scheme A is quasi-hereditary of level r, then
gl:dimA � 2rC1, and there are semi-orthogonal decompositions .T ;Tr; : : : ;T1/

and .T 01 ;T 02 ; : : : ;T 0r ;T / ofDA such thatTi ' T 0i .1 � i � r/ and all categories
Ti, as well as T , are equivalent to derived categories of some hereditary non-
commutative schemes.

The following result is evident:

Proposition 4.24 If there is a heredity relating chain between A and B such that
all Bi are hereditary and B is quasi-hereditary, then A is quasi-hereditary too.

Corollary 4.25 Consider the endomorphism construction of Example 3.14 (with
the same notations). Suppose thatF is flat as right E-module,F 0 is locally projective
as left E-module and the natural map �F W F˝EF 0 ! A is a monomorphism. If
both E and NA D A= Im�F are quasi-hereditary, so is AF .

Proof Let QP D � FE
�
. Then I QP is the ideal of matrices

�
F˝EF 0 F

F 0 E

�

:

Its first row is F˝E
�
F 0 E

�
and its first column is

�F
E
�˝EF 0. Under the prescribed

conditions, the first one is flat as right AF -module and the second one is locally
projective as left AF -module. Therefore .AF ; QP; NA/ is a heredity relating chain
relating between A and NA, so we can apply Proposition 4.24. ut
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One can show that the definition of quasi-hereditary non-commutative schemes is
indeed a generalization of the well-known definition for semiprimary rings [12, 14].

Theorem 4.26 Let .X;A/ be affine: X D specR, A D A�, and the ring A
be semiprimary. This non-commutative scheme is quasi-hereditary in the sense of
Definition 4.18(4) if and only if the ring A is quasi-hereditary in the sense of [12].

Proof Recall that a semiprimary ring A is called quasi-hereditary if there is a chain
of ideals 0 D I0 � I1 � I2 � � � � � Ir � IrC1 D A such that the following
conditions hold for NIi D Ii=Ii�1 as for an ideal in Ai D A=Ii�1:

1. NI2i D NIi. (As Ai is semiprimary, it means that NIi D AieiAi for some idempotent ei.)
2. NIi.radAi/NIi D 0. (It means that rad.eiAiei/ D 0.)
3. NIi is projective as Ai-module. (Under condition (2) it is equivalent to the claim

that the map Aiei˝eiAiei eiAi ! NIi is bijective, see [14, Statement 7].)

In other words, it means that .A D A1;P1;A2;P2; : : : ;Ar;Pr;ArC1/, where Pi D
Aiei and ArC1 D A=Ir, is a heredity relating chain between A with semisimple
endomorphism rings Bi and semisimple ring ArC1. Thus A is a quasi-hereditary
affine non-commutative scheme. On the contrary, let A be quasi-hereditary as an
affine non-commutative scheme. To show that B is a quasi-hereditary ring, we can
use induction and the following result.

Recall that a ring A is said to be triangular if it has a set of idempotents
f e1; e2; : : : ; em g such that

Pm
iD1 ei D 1, eiAej D 0 if i > j and Ai D eiAei are

prime rings, i.e., IJ ¤ 0 for any two nonzero ideals of Ai. If A is semiprimary,
then Ai are simple artinian rings. For instance, every semiprimary hereditary ring is
triangular [16].

Lemma 4.27 Let A be a semiprimary ring, I D AeA be an idempotent ideal such
that I is projective asA-module,A=I is quasi-hereditary , andE D eAe is triangular.
Then A is quasi-hereditary. In particular, any triangular semiprimary ring is quasi-
hereditary.

Proof According to [13], it is enough to find a heredity chain of ideals 0 D I0 �
I1 � I2 � � � � � Im D E in E such that each factor Iie=Ii�1e is projective as
Ei D E=Ii�1-module. Since E is triangular, it can be considered as an algebra of
triangular matrices:

E D

0

B
B
B
B
B
@

E11 E12 E13 : : : E1m
0 E22 E23 : : : E2m
0 0 E33 : : : E3m

: : : : : : : : :

0 0 0 : : : Emm

1

C
C
C
C
C
A

;

where all rings Eii are simple artinian. Let ej .1 � j � m/ be the standard diagonal
idempotents in this matrix ring, "i D Pi

jD1 ej and Ii D E"iE. Then Ii is the ideal
of matrices such that their first m � i rows are zero. Therefore, E=Ii�1 is the matrix
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ring obtained from E by crossing out the first i � 1 rows and columns. Evidently,
0 D I0 � I1 � I2 � � � � � Im D E is a heredity chain of ideals in E. One easily sees
that ej.IiM/ D 0 for any Ei-module M and any j > i. Then there is an epimorphism
kEiei ! IiM for some k. As the module Eiei is semisimple, this epimorphism splits,
so IiM is projective. In particular, Iie=Ii�1e is projective, so A is quasi-hereditary.

ut
Just in the same way, one can show that if X D specR, where R is a discrete

valuation ring and A D A�, where A is a semiprime R-order, then the non-
commutative scheme .X;A/ is quasi-hereditary if and only if A is a quasi-hereditary
R-order in the sense of [22].

5 Non-commutative Curves

We call a curve a noetherian excellent reduced scheme such that all its irreducible
components are of dimension 1. We call a non-commutative curve a reduced non-
commutative scheme .X;A/ such that X is a curve and A is a torsion-free finitely
generated OX-module. We can suppose, without loss of generality, that the OX-
module A is sincere. In this section .X;A/ always denotes a non-commutative
curve and we suppose that A is a sincere OX-module. We denote by Xreg and Xsng,
respectively, the subsets of regular and singular points of X. As X is excellent and
reduced, the set Xsng is finite.

If .X;A/ is a non-commutative curve, the category CMA consists of coherent
A-modules which are torsion-free as OX-modules. These modules can be defined
locally. Namely, let K D KX be the sheaf of rational functions on X. Set KM D
K˝OXM. Then KA is a sheaf of semisimple K-algebras and A is an OX-order in
KA, i.e., an OX-subalgebra in KA which is coherent as OX-module and generates
KA as K-module. If V is a coherent KA-module and M � V is its coherent A-
submodule which generates V as K-module, we say that M is an A-lattice in V .
Then M 2 CMA and conversely, every M 2 CMA is a lattice in KM. If M is
a lattice in V , then Mx is a lattice in Vx and M is completely defined by the set
of lattices fMx j x 2 Xcl g. The following result is an immediate consequence of its
affine variant, which can be proved like in [4, Chap. 7, § 4, Théorème 3]:

Proposition 5.28

1. If M and N are lattices in V , thenMx D Nx for almost all x 2 Xcl.
2. Let M be a lattice in V , S � Xcl be a finite set, and for every x 2 S, let N.x/ be

anAx-lattice in Vx. Then there is a latticeN in V such thatNx D N.x/ for every
x 2 S andNx DMx for every x … S.

Using this proposition, one can prove the following properties of non-
commutative curves (see [8] for details):
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Proposition 5.29 Let .X;A/ be a non-commutative curve.

1. A has enough locally projective modules.
2. There is a canonical A-module, i.e., such module !A from CMA that

inj:dimA !A D 1 and EndA !A ' Aop (hence !A is indeed an A-bimodule).
Moreover, also inj:dimAop !A D 1 and !A is isomorphic (as A-bimodule) to an
ideal of A.

3. The functor � W M 7! HomA.M; !A/ defines an exact duality between CMA
and CMAop. It means that, for every M 2 CMA, the natural mapM!M��
is an isomorphism and ExtiA.M; !A/ D 0 if i > 0.
Actually, one can choose for !A the module HomOX .A; !X/, and we always

do so. Then M� is identified with HomOX .M; !X/. Note also that A is strongly
Gorenstein if and only if A is itself a canonical A-module.

Let B be a minor of the non-commutative curve A, i.e., B D EndA P for some
coherent locally projective A-module P , and let F;F�;FŠ denote the corresponding
functors (see formulae (1) on page 77).

Obviously F and FŠ map torsion-free modules to torsion-free. It is not true for F�,
so we modify it, setting F�.M/ D .F�.M//��. We also set P 0 D .P_/�. Then
inj:dimA P 0 D 1 and Ext1A.M;P 0/ D 0 for every M 2 CMA; such A-lattices
are called locally injective A-lattices. In affine case they are indeed injective in the
exact category CMA. After this modification, we have results about the categories
of torsion-free modules quite analogous to Theorem 3.9.

Theorem 5.30

1. The functors FŠ and F define an equivalence of CMB and CM0 P , where CM0 P
is the full subcategory of CMA consisting of all modulesM such that for every
point x 2 X there is an exact sequence 0 !Mx ! Q ! N ! 0, where Q is a
multiple of the Ax-module P 0x and N 2 CMAx.

2. The restriction of the functor F� onto CMB is left adjoint to the restriction of
F onto CMA. Moreover, if M 2 CMB, the natural map FF�.M/ !M is an
isomorphism, and the functors F� and F define an equivalence of the categories
CMB and CMP , where CMP is the full subcategory of CMA consisting of all
modulesM such that for every point x 2 X there is an epimorphism nPx !M.

Proof

1. This statement is local, so we can suppose that X D specR, where R is an
excellent local reduced ring of Krull dimension 1, A D A� for some R-
order A, i.e., an R-algebra A without nilpotent ideals which is finitely generated
and Cohen–Macaulay as an R-module, P D P� for some finitely generated
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projective A-module P. Moreover, we can suppose that P is sincere as A-module.
Then B D B�, where B D EndA P. If M 2 CMB, there is an exact sequence
mB! nB! M� ! 0, which gives an exact sequence:

0! M ! nB� ! mB�: (2)

We denote by  the natural morphism 1A-Mod ! FŠF. One easily sees that F.P0/ '
B� and FŠ.B�/ ' P0, so  .P0/ is an isomorphism. The exact sequence (2) gives an
exact sequence 0! FŠ.M/! nP0 ! mP0, which shows that FŠ.M/ 2 CM0 P.

Let now M 2 CM0 P. An exact sequence 0 ! M ! nP0 ! N ! 0, where
N 2 CMA, gives an exact sequence 0 ! F.M/ ! F.nP0/ ! F.N/ ! 0. For any
A-module N,  .N/ is the homomorphism:

h W N ! HomB.P
_;HomA.P;N// ' HomA.P˝BP

_;N/

such that h.u/.˛˝�/ D �.˛/u. Tensoring with KA, we obtain the map KN !
HomKA.KP˝KBKP_;KN/. As KA is semi-simple andKP is sincere, the natural map
KP˝KBKP_ ! A is surjective; therefore, K .N/ is injective. If N is torsion-free,
hence embeds into KN, it implies that  .N/ is injective. So we have a commutative
diagram

Since  .nP0/ is an isomorphism and  .N/ is a monomorphism,  .M/ is an
isomorphism. As the natural map FFŠ ! 1B-Mod is an isomorphism, it proves the
statement (1).

2. If M 2 CMB and N 2 CMA, then also FN 2 CMB, so

HomA.F�M;N / ' HomA.F�M;N / ' HomA.M;FN /;

which proves the first claim. Consider now the functors

Fop D HomA.P_; _/ W QcohAop ! QcohBop;

.Fop/Š D HomB.P ; _/ W QcohBop ! QcohAop:

As we have just proved, they establish an equivalence between the categories
CMBop and CM0 P_, where CM0 P_ consists of all right A-modules N such that
for every point x 2 X there is an exact sequence 0 ! Nx ! Q ! N0 ! 0, where
Q is a multiple of P�x and N0 2 CMAx. Equivalently, there is an epimorphism
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Q� ! N �x , i.e., N � 2 CMP . On the other hand,

.Fop/ŠM� D HomB.P ;HomOX .M; !X// '
' HomOX.P˝BM; !X/ D .P˝BM/� D .F�M/�:

Therefore, the statement (2) follows by duality. ut

6 König’s Resolution

A non-commutative curve .X;A0/, where A � A0 � KA, is called an over-ring
of the non-commutative curve .X;A/. If A has no proper over-rings, it is called
normal. Since X is excellent and A is reduced, the set of over-rings of A satisfies
the maximality condition, i.e., there are no infinite ascending chains of over-rings. (It
follows, for instance, from [27, Chap. 5] or from [17].) In particular, there is always a
normal over-ring of A. In non-commutative case, such a normal over-ring is usually
not unique, though all of them are locally conjugate inside KA [27, Theorem 18.7],
and every normal non-commutative curve is hereditary [27, Theorem 18.1]. Thus
every non-commutative curve has a hereditary over-ring, and usually a lot of them.
Actually, there is one “special” hereditary over-ring which plays an important role
in this section.

Let .X;A/ be a non-commutative curve. Consider the ideal J D JA defined by
its localizations as follows:

Jx D
(
Ax if Ax is hereditary;

radAx otherwise:

Let A] D EndAop J (the endomorphism algebra of J as of right A-module).
Note that A] can (and will) be identified with the over-ring of A such that its x-
localization coincides with f 2 KAx j Jx � Jx g for each x 2 Xcl. It is known
[27, Theorem 39.14] that A] D A if and only if A is hereditary. So there is a chain
of over-rings of A:

A D A1 � A2 � A3 � � � � � An � AnC1 D QA;

where AiC1 D A]
i for 1 � i � n and QA is hereditary. We call n the level of A.

For instance, a usual (commutative) curve over an algebraically closed field is of
level 1 if and only if all its singular points are simple nodes or cusps. (The derived
categories of such curves were investigated in [7].)

Consider the endomorphism algebra R D RA D .EndA
LnC1

iD1 Ai/
op. We call

it the König’s resolution of the non-commutative curve A, since it is analogous to
that considered in [23] (though does not coincide with it even in case if orders over
discrete valuation rings) and has analogous properties.
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We identify RA with the ring of matrices:

R D

0

B
B
B
B
B
@

A11 A12 : : : A1n A1;nC1
A21 A22 : : : A2n A2;nC1

: : : : : : : : : : : : : : : :

An1 An2 : : : Ann An;nC1
AnC1;1 AnC1;2 : : : AnC1;n AnC1;nC1

1

C
C
C
C
C
A

;

where Aij D HomA.Ai;Aj/. Note that Aij D Aj if i � j and AiC1;i D JAi . We
denote by ej the standard diagonal idempotents in R and set P D Re1, QP D RenC1.
Then .EndR P/op ' A, so A is a minor of R and the categories A-Mod and DA
are bilocalization, respectively, of R-Mod and DR. The corresponding functors are
F D HomR.P ; _ / and its left derived functor LF. In the same way, QA ' .EndR QP/op

is a minor of R, so the categories QA-Mod and D QA are bilocalization, respectively,
of R-Mod and DR. The corresponding functors are QF D HomR. QP; _ / and its left
derived functor L QF. Thus we have a diagram of bilocalizations

(3)

Since QA is an over-ring of A, there is a morphism 	 W .X; QA/ ! .X;A/.
According to Proposition 3.7, we can replace here .X; QA/ by . QX; QA/ where QX D
spec.center. QA//. In case of “usual” schemes, when A D OX , QX is the normalization
of X and 	 is the normalization map. The morphism 	 induces the functor of direct
image 	� W QA-Mod ! A-Mod and its left and right adjoints 	� and 	Š, which are
functors A-Mod ! QA-Mod. It so happens that these functors, maybe up to twist,
are compositions of the functors from the diagram (3).

Theorem 6.31

1. F QF� ' 	� and QFFŠ ' 	Š.
2. QFF� ' C˝ QA	�_ and F QFŠ ' 	�.C 0˝ QA_ /, where C D HomA. QA;A/ D AnC1;1 is

the conductor of QA in A and C 0 D Hom QA.C; QA/ is its dual QA-module.

Proof We verify the equalities (1). Indeed, since e1 QP D QA as A- QA-bimodule,

F QF�.M/ D HomR.P ; QP˝ QAM/ ' e1 QP˝ QAM 'M

considered as A-module, which is just 	�.M/. Also

QFFŠ.N / D HomR. QP;HomA.P_;N // ' enC1HomA.P_;N /

' HomA.P_enC1;N / ' HomA. QA;N / D 	Š.N /:

The equalities (2) are proved analogously (see also [9]). ut
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Theorem 6.32 Let "k D PnC1
jDk ej, Ik D R"kR, Qk D R=IkC1, and Pk D Qkek.

Then .R; QP ;Qn;Pn;Qn�1;Pn�1; : : : ;P2;Q1/ is a heredity relating chain between
R and Q1 ' A=JA. Moreover, .EndQk Pi/

op ' Ak=JAk is a semi-simple algebra,
soR is a quasi-hereditary non-commutative scheme of level n and gl:dimR � 2n.
Proof A straightforward calculation shows that Ik is the ideal of matrices:

Ik D

0

B
B
B
B
B
B
B
B
B
@

Ak1 Ak2 : : : Ak;k�1 Ak AkC1 : : : AnC1
Ak1 Ak2 : : : Ak;k�1 Ak AkC1 : : : AnC1

: : : : : : : : : : : : : : : : : : : : : : : : :

Ak1 Ak2 : : : Ak;k�1 Ak AkC1 : : : AnC1
AkC1;1 AkC1;2 : : : AkC1;k�1 AkC1;k AkC1 : : : AnC1

: : : : : : : : : : : : : : : : : : : : : : : : :

AnC1;1 AnC1;2 : : : AnC1;k�1 AnC1;k AnC1;kC1 : : : AnC1

1

C
C
C
C
C
C
C
C
C
A

Hence, Qk is the algebra of k � k matrices .aij/, where aij 2 Aij=AkC1;j.
In particular, aik 2 Ak=AiC1;k D Ak=JAk and this algebra is semi-simple.
Therefore, .EndQk Pk/

op ' ekQkek D Akk=AkC1;k is semi-simple. Obviously,
IPk D QkekQk D IkC1=Ik, hence Qk�1 ' Qk=IPk , so we have indeed a
relating chain. Moreover, Ik is obviously projective as right R-module, hence
Ik=IkC1 is projective as right Qk-module and this relating chain is heredity. As
QA D .EndR QP/op is hereditary and all .EndQk Pk/

op are semi-simple, R is quasi-
hereditary and gl:dimR � 2n. ut

Thus the functorDF W DR! DA defines a categorical resolution of the derived
category DA in the sense of [24]. If A is strongly Gorenstein, Theorem 3.13 shows
that this resolution is even weakly crepant, i.e., the restrictions of its left and right
adjoint functors coincide on perfect complexes (small objects in DA/.

We denote by NAk the semi-simple algebra Ak=JAk .

Corollary 6.33 The derived category DR has two semi-orthogonal decomposi-
tions: DR D hT1;T2; : : : ;Tn;T i and DR D hT 0;T 0n ; : : : ;T 02 ;T 01 i, where
T ' T 0 ' D QA and Tk ' T 0k ' D NAk.

Remark 6.34 Note that usually T ¤ T 0 as well as Tk ¤ T 0k for k > 1, though
T1 D T 01 D D.R=I2/ naturally embedded into DR.

7 Tilting on Rational Curves

We say that a non-commutative curve .X;A/ is rational if X is a rational projective
curve over an algebraically closed field k and A is central. Since the Brauer group
of the field of rational functions k.t/ is trivial [26], then KA ' Mat.m;K/ for some
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m. In this case the structure of hereditary non-commutative curves is well-known
(see, for instance, [11] or [8]). Namely, if such a curve is connected, then X D P

1,
and up to Morita equivalence, this curve is given by a function r W Xcl ! N such that
r.x/ D 1 for almost all points. A representative H.r/ of the Morita class defined by
this function can be defined as follows. Choose m 2 N such that m � r.x/ for all x 2
Xcl and choose partitionsm DPr.x/

kD1mxk for every x. Set Omxk DPk
lD1mxl. Let Hx be

the subalgebra in Mat.m;OX;x/ consisting of all matrices .aij/ such that aij.x/ D 0

if i � Omxk and j > Omxk for some k. Then H.r/ is the subsheaf of Mat.m;OX/ such
that its x-stalk equals Hx.

It is also known that H.r/ has a tilting module, i.e., a coherent H.r/-module T
such that pr:dimT < 1, ExtqH.r/.T ; T / D 0 for all q > 0 and T generates the
derived category DH.r/. Namely, let H D H.r/, L D Om

X considered as H-module
and S D f x 2 Xcl j r.x/ > 1 g. If S D f x1; x2; : : : ; xs g with s > 1, we suppose that
x1 D .1 W 0/; x2 D .0 W 1/ and xi D .1 W i/ for 1 < i � s, where  2 kn f 0; 1 g,
and set ri D r.xi/. If #.S/ D 1, we set s D 2; r1 D r.x1/; r2 D 1. If S D ;, then
H D Mat.m;OX/ is Morita equivalent to OX , so L˚L.1/ is a tilting sheaf for H. In
this case we also set s D 2; r1 D r2 D 1. Consider the submodule L.x; k/ � L such
that L.x; k/y D Ly for y ¤ x and L.x; k/x consists of all vectors .ai/1�i�k such that

ai.x/ D 0 for i � Omk and set T D L˚L.1/˚�Lr.x/>1

Lr.x/�1
kD1 L.x; k/

�
.

Theorem 7.35 (See [8]2)

1. T is a tilting module forH.
2. .EndH T /op ' R.r;�/, where R.r;�/ is the canonical algebra defined by the

sequences r D .r1; r2; : : : ; rs/ and � D .3; : : : ; s/, i.e., the algebra given by
the quiver

with relations ˛j D ˛1 C j˛2 for 3 � j � s, where ˛j D ˛rjj : : : ˛2j˛1j [28,
Sect. 3.7].

Note that if s D 2, it is just the quiver algebra of the quiver QAr1;r2 ; if, moreover,
r1 D r2 D 1, it is the Kronecker algebra. Note also that any canonical algebra is
triangular, hence quasi-hereditary.

2It also follows from [19], since H.r/ is Morita equivalent to the weighted projective line C.r; S/.
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Obviously, if a rational hereditary non-commutative scheme .X;H/ is not
connected, it splits into a direct product of connected hereditary non-commutative
schemes. Therefore it has a tilting module T such that .EndH/op is a direct product
of canonical algebras.

Let now .X;A/ be a rational non-commutative curve,R be its König’s resolution.
We use the notations of the preceding section. The hereditary non-commutative
curve QA has a tilting module T such that .End QA T /op D R is a direct product
of canonical algebras. Then QT D QF.T / generates Im QF and ExtqH.r/.T ; T / D 0

for all q > 0. As h ker QF; Im QF i is a semi-orthogonal decomposition of DR,
also pr:dim QT < 1. As Q generates DQ, which can be identified with ker QF,
Q˚ QT generates DR. Note that dim suppQ D 0; therefore, ExtqR.Q;M/ D
H0.X; ExtqR.Q;M// for every quasi-coherent module M. A locally projective

resolution of Q is 0 ! QI ��! R ! Q ! 0. Thus pr:dimR Q D 1. Moreover,
Ext1R.Q;N / D 0 for any Q-module N , because QI2 D QI and QIN D 0, thus
HomR. QI;N / D 0. Obviously, HomR.Q; T / D 0. It implies the following result:

Theorem 7.36 T C D QŒ�1�˚ QT is a tilting complex for R, i.e., it belongs to
PerfR, generates DR and HomDR.T C; T CŒk�/ D 0 if k ¤ 0. Therefore DR '
DE, where E D .EndDR T C/op.

Note that E can be considered as the algebra of triangular matrices:

E D
�
Q T
0 R

�

; (4)

where R D .End QA T /op is a direct product of canonical algebras and T D
Ext1R.Q; QT / ' HomR. QI; QT /=��HomR.R; QT /. Note that QI ' LnC1

iD1 QFAnC1;i,
whence T 'LnC1

iD1 Hom QA.AnC1;i; T /.

Corollary 7.37 For every rational non-commutative curve .X;A/, there is a finite
dimensional quasi-hereditary algebra E and a bilocalizing functor DE! DA.

Proof In the triangular presentation (4) of the algebra E, let e D �
0 0
0 1

�
. Then I D

EeE D �
0 T
0 R

�
is projective as E-module and eEe ' R is triangular. Hence E is

quasi-hereditary by Lemma 4.27.

Thus every rational non-commutative curve has a categorical resolution by a
finite dimensional quasi-hereditary algebra. If the curve is strongly Gorenstein, this
resolution is weakly crepant. In particular, it is the case for “usual” (commutative)
rational curves. Note that Q D QxQx, where x runs through all points such that Ax

is not hereditary (in the commutative case through singular points of X).

Example 7.38 (See [9, Sect. 8]) We consider the input Qx for simple singularities
of (usual) plain curves in the sense of [2]. We present it as a quiver with relations.
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1. If x is of type Am; m > 2, then

where n D 	mC1
2



. Note that for m � 2, the algebra Qx is semisimple.

2. If x is of type Dm; m � 4, then

where n D 	m
2



.

3. If x is of type E6, Qx is the same as for D4, and if x is of type E7 or E8, Qx is the
same as for D6.

4. Finally, we consider a “global” example, where X has two irreducible rational
components X1;X2 and three singular points x1 2 X1 of type E6, x2 2 X1 \ X2 of
type D7, and x3 2 X2 of type A5. Then the algebra E has the quiver

It consists of “local parts” (formed by the vertices 1i; 2i; 3i) and “Kronecker
parts” (formed by the vertices 0j;�1j) arising from the components of QX.
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One can also explicitly describe the relations for the arrows �ij between these
parts (they depend on the positions of the preimages of singular points on the
components of QX).
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Abstract We define notions of higher-order spectra of a complex quasi-projective
manifold with an action of a finite group G and with a G-equivariant automorphism
of finite order, some of their refinements and give Macdonald-type equations for
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1 Introduction

For a “good” topological space X, say, a union of cells in a finite CW-complex or
a quasi-projective complex analytic variety, the Euler characteristic �.X/, defined
as the alternating sum of the dimensions of the cohomology groups with compact
support, is an additive invariant. In [17], I.G. Macdonald derived a formula for
the Poincaré polynomial of a symmetric product. For the Euler characteristic, this
formula gives the following. Let SnX D Xn=Sn be the nth symmetric power of the
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space X. Then one has [17]

1C
1X

nD1
�.SnX/tn D .1 � t/��.X/ :

We can interpret this formula as a formula for an invariant (here the Euler
characteristic) expressing the generating series of the values of the invariant for the
symmetric powers of a space as a series not depending on the space (here simply
.1� t/�1) with an exponent which is equal to the value of the invariant for the space
itself. We call such an equation a Macdonald-type equation. In [12], formulae of
this type were considered for some generalizations of the Euler characteristic (with
values in certain rings). If the ring of values is not a number ring (Z, Q, R or C),
to formulate these equations, one needs to use so-called power structures over the
rings [10] which can be defined through (pre-)-ring structures on them.

Here we consider other generalizations of these formulas. We consider another
additive invariant which is finer than the Euler characteristic: the (Hodge) spectrum.
The (Hodge) spectrum was first defined in [20, 21] for a germ of a holomorphic
function on .Cn; 0/ with an isolated critical point at the origin. It can also be
defined for a pair .V; '/, where V is a complex quasi-projective variety and ' is an
automorphism of V of finite order: [5]. (The spectrum of a germ of a holomorphic
function is essentially the spectrum of its motivic Milnor fibre defined in [5].)

Traditionally the spectrum is defined as a finite collection of rational numbers
with integer multiplicities (possibly negative ones) and therefore as an element
of the group ring ZŒQ� of the group Q of rational numbers. Let KZ

0 .VarC/ be the
Grothendieck group of pairs .V; '/, where V is a quasi-projective variety and ' is an
automorphism of V of finite order (with the addition defined by the disjoint union).
The group KZ

0 .VarC/ is a ring with the multiplication defined by the Cartesian
product of varieties and with the automorphism defined by the diagonal action. The
Euler characteristic can be interpreted as a ring homomorphism from KZ

0 .VarC/ to
the ring of integers Z. The spectrum can be regarded as a sort of generalized Euler
characteristic. (The spectrum of a pair .V; '/ determines the Euler characteristic of
V in a natural way.) Namely, it can be viewed as a group homomorphism from
KZ

0 .VarC/ to the group ring ZŒQ�, but it is not a ring homomorphism. Rational
numbers (i.e., elements of the group Q) are in one-to-one correspondence with the
elements of the group .Q=Z/ � Z: r  ! .frg; Œr�/, where frg is the fractional
part of the rational number r and Œr� is its integer part. In this way, the group rings
ZŒQ� and ZŒ.Q=Z/ � Z� can be identified as abelian groups. (The isomorphism is
not a ring homomorphism!) This permits to consider the spectrum as an element of
the group ring ZŒ.Q=Z/ � Z�. Moreover, the corresponding map from KZ

0 .VarC/ to
ZŒ.Q=Z/ � Z� is a ring homomorphism.

The group ring ZŒA � of an abelian group A has a natural -structure. We use
this fact to show that the spectrum of a pair .V; '/ as an element of ZŒ.Q=Z/ � Z�

also satisfies a Macdonald-type equation.
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For a quasi-projective variety with an action of a finite group, one has the
orbifold Euler characteristic defined in [7, 8] (see also [1, 14]) and the higher-
order Euler characteristics defined in [1, 3]. These notions can be extended to some
generalizations of the Euler characteristic.

For a complex quasi-projective manifold V with an action of a finite group G and
with a G-equivariant automorphism ' of finite order, one can define the notion of an
orbifold spectrum as an element of the group ringZŒQ�: [9]. This spectrum takes into
account not only the logarithms of the eigenvalues of the action of the transformation
' on the cohomology groups but also the so-called ages of elements of G at their
fixed points (both being rational numbers). Algebraic manipulations with these two
summands are different. The first ones behave as elements of Q=Z, whereas the
second ones as elements of Q. This explains why the existence of a Macdonald-
type equation for this spectrum is not clear. However, if one considers the “usual”
Hodge spectrum as an element of the group ring ZŒ.Q=Z/ � Z� and applies the
orbifold approach to the summand Z (thus, substituting it by Q), one gets a version
of the orbifold spectrum with values in the group ring ZŒ.Q=Z/ � Q� permitting
a Macdonald-type equation. This version of the orbifold spectrum determines the
one from [9] in a natural way. Moreover, taking into account the weight filtration
as well, one can consider a refinement of this notion with values in the group ring
ZŒ.Q=Z/ � Q � Q�. The last notion is equivalent to the notion of the equivariant
orbifold Hodge–Deligne polynomial.

Applying the traditional method to define higher-order Euler characteristics
through the orbifold one to the described notions, we define higher-order spectra of
a triple .V;G; '/ with a quasi-projective G-manifold V , some of their refinements,
and give Macdonald-type equations for them.

2 �-Structure on the Group Ring of an Abelian Group

Let A be an abelian group (with the sum as the group operation) and let ZŒA � be
the group ring of A . The elements of ZŒA � are finite sums of the form

P

a2A
kafag

with ka 2 Z. (We use the curly brackets in order to avoid ambiguity when A is a
subgroup of the group R of real numbers: Z or Q.) The ring operations on ZŒA �

are defined by
P

k0afag C
P

k00a fag D
P
.k0a C k00a /fag, .

P
k0afag/.

P
k00a fag/ DP

a;b2A
.k0a � k00b /faC bg.

Let R be a commutative ring with a unit. A -ring structure on R (sometimes
called a pre--ring structure; see, e.g., [16]) is an “additive-to-multiplicative”
homomorphism W R! 1CT �RŒŒT�� (a 7! a.T/) such that a.T/ D 1CaTC : : :.
This means that aCb.T/ D a.T/ � b.T/ for a; b 2 R.

The notion of a -ring structure is closely related to the notion of a power
structure defined in [10]. Sometimes a power structure has its own good description
which permits to use it, e.g., for obtaining formulae for generating series of some
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invariants. A power structure over a ringR is a map .1CT �RŒŒT��/�R ! 1CT �RŒŒT��,
.A.T/;m/ 7! .A.T//m (A.t/ D 1 C a1T C a2T2 C : : :, ai 2 R, m 2 R) possessing
all the basic properties of the exponential function: see [10]. A -structure on a ring
defines a power structure over it. On the other hand, there are, in general, many
-structures on a ring corresponding to one power structure over it.

The group ring ZŒA � of an abelian group A can be considered as a -ring. The
-ring structure on ZŒA � is natural and must be well known. However, we have
not found its description in the literature. Therefore, we give here a definition of a
-structure on the ring ZŒA �. (A similar construction was discussed in [11] for the
ring of formal “power” series over a semigroup with certain finiteness properties.)

The group ring ZŒA � can be regarded as the Grothendieck ring of the group
semiring SŒA � of maps of finite sets to the group A . Elements of SŒA � are the
equivalence classes of the pairs .X;  / consisting of a finite set X and a map
 W X ! A . (Two pairs .X1;  1/ and .X2;  2/ are equivalent if there exists a
bijective map � W X1 ! X2 such that  2 ı � D  1.) The group ring ZŒA � is
the Grothendieck ring of the semiring SŒA �. Elements of the ring ZŒA � are the
equivalence classes of maps of finite virtual sets (i.e., formal differences of sets) to
A . For a pair .X;  / representing an element a of the semiring SŒA �, let its nth
symmetric power Sn.X;  / be the pair .SnX;  .n// consisting of the nth symmetric
power SnX D Xn=Sn of the set X and of the map  .n/ W SnX ! A defined by

 .n/.x1; : : : ; xn/ D
nP

iD1
 .xi/. One can easily see that the series

a.T/ D 1C ŒS1.X;  /�T C ŒS2.X;  /�T2 C ŒS3.X;  /�T3 C : : :

defines a -structure on the ring ZŒA � (or rather a -structure on the semiring SŒA �

extendable to a -structure on ZŒA � in a natural way).
The power structure over the ring ZŒA � corresponding to this -structure can be

described in the following way. Let A.T/ D 1 C a1T C a2T2 C : : :, where ai D
Œ.Xi;  i/�, m D Œ.M;  /� with finite sets Xi and M (thus, ai and m being actually
elements of the semiring SŒA �). Then

.A.T//m D 1C
1X

nD1

0

@
X

fnigWP iniDn

" 

..M
P

i ni n�/ �
Y

i

Xni
i / =

Y

i

Sni ;  fnig

!#1

A�Tn ;

where � is the big diagonal in M
P

i ni (consisting of .
P

ni/-tuples of points of M
with at least two coinciding ones), the group

Q
i Sni acts on .M

P
i ni n �/ �Qi X

ni
i

by permuting simultaneously the factors in M
P

i ni D Q
i M

ni and in
Q

i X
ni
i , and the

map  fnig W ..M
P

i ni n�/ �Qi X
ni
i /=

Q
i Sni ! A is defined by

 fnig.fyjig; fxjig/ D
X

i

.i �  .yji/C  i.x
j
i// ;
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where yji and xji, j D 1; : : : ; ni, are the jth components of the point in Mni and in Xni
i

respectively (cf. [10, Eq. (1)]); a similar construction for the Grothendieck ring of
quasi-projective varieties with maps to an abelian manifold was introduced in [18].

The ring RŒz1; : : : ; zn� of polynomials in z1; : : : ; zn with the coefficients from
a -ring R carries a natural -structure: see, e.g., [16]. The same holds for the
ring RŒz1=m1 ; : : : ; z1=mn � of fractional power polynomials in z1; : : : ; zn. In terms of the
corresponding power structure, one can write

.1 � T/�
P

k akz
k D

Y

k

ak .z
kT/ ;

where z D .z1; : : : ; zn/, k D .k1; : : : ; kn/, zk D zk11 � : : : � zknn .
The ring R.G/ of representations of a group G is regarded as a -ring with the

-structure defined by

Œ!�.T/ D 1C Œ!�t C ŒS2!�T2 C ŒS3!�T3 C : : : ;

where ! is a representation of G and Sn! is its nth symmetric power.

3 The Spectrum and the Equivariant Hodge–Deligne
Polynomial

Let V be a complex quasi-projective variety with an automorphism ' of finite order.
For a rational ˛, 0 � ˛ < 1, let Hk

˛.V/ be the subspace of Hk.V/ D Hk
c.VIC/ (the

cohomology group with compact support) consisting of the eigenvectors of '� with
the eigenvalue eŒ˛� WD exp .2�˛i/. The subspace Hk

˛.V/ carries a natural complex
mixed Hodge structure.

Definition 1 (See, e.g., [5]) The (Hodge) spectrum hsp.V; '/ of the pair .V; '/ is
defined by

hsp.V; '/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q � fpC ˛g 2 ZŒQ� :

The spectrum hsp.V; '/ can be identified either with the fractional power
polynomial (Poincaré polynomial)

p.V;'/.t/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q � tpC˛ 2 ZŒt1=m�
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or with the equivariant Poincaré polynomial

e.V;'/.t/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q!eŒ˛� � tp 2 Rf .Z/Œt� ;

where Rf .Z/ is the ring of finite order representations of the cyclic group Z and
!eŒ˛� is the one-dimensional representation of Z with the character equal to eŒ˛�
at 1. Both rings ZŒt1=m� and Rf .Z/Œt� carry natural -structures and thus power
structures. However, the natural power structure over ZŒt1=m� is not compatible with
the multiplication of spaces: the map

p� W KZ

0 .VarC/! ZŒt1=m�

is not a ring homomorphism. Therefore, a natural Macdonald-type equation for the
spectrum is formulated in terms of the equivariant Poincaré polynomial e.V;'/.t/.
Moreover, a stronger statement can be formulated in terms of the equivariant
Hodge–Deligne polynomial of the pair .V; '/.

Definition 2 ([6], see also [19]) The equivariant Hodge–Deligne polynomial of the
pair .V; '/ is

e.V;'/.u; v/ D
X

k;p;q;˛

.�1/k dim.Hk
˛.V//

p;q!eŒ˛� � upvq 2 Rf .Z/Œu; v� ;

One has e.V;'/.t/ D e.V;'/.t; 1/.
Let SnV be the nth symmetric power of the variety V . The transformation ' W

V ! V defines a transformation '.n/ W SnV ! SnV in a natural way.

Theorem 1 One has

1C e.V;'/.u; v/TC e.S2V;'.2//.u; v/T
2C e.S3V;'.3//.u; v/T

3C : : : D .1�T/�e.V ;'/.u;v/ ;
(1)

where the RHS of (1) is understood in terms of the power structure over the ring
Rf .Z/Œu; v�.

The proof is essentially contained in [4] where J. Cheah proved an analogue
of (1) for the usual (non-equivariant) Hodge–Deligne polynomial. Theorem 1 can
be deduced from the arguments of Cheah [4] by taking care of different eigenspaces.

Theorem 1 means that the natural map e� from KZ

0 .VarC/ to Rf .Z/Œu; v� is a -
ring homomorphism.

Corollary 1 One has

1C e.V;'/.t/T C e.S2V;'.2//.t/T
2 C e.S3V;'.3//.t/T

3 C : : : D .1 � T/�e.V ;'/.t/ ; (2)

where the RHS of (2) is understood in terms of the power structure over the ring
Rf .Z/Œt�.
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4 The Orbifold Spectrum and the Equivariant Orbifold
Hodge–Deligne Polynomial

Let X be a topological G-space and G a finite group. Let G� be the set of conjugacy
classes of elements of G. For an element g 2 G, let Xhgi D fx 2 X W gx D xg be the
fixed point set of g, and let CG.g/ D fh 2 G W h�1gh D gg � G be the centralizer of
g. The group CG.g/ acts on the fixed point set Xhgi. The orbifold Euler characteristic
�orb.X;G/ can be defined by

�orb.X;G/ D
X

Œg�2G
�

�.Xhgi=CG.g// :

Refinements of this notion taking into account the mixed Hodge structure on the
cohomology groups use the so-called ages of elements of the group as shifts of the
corresponding graded components of the mixed Hodge structure (see, e.g., [2, 22]).

Let V be a complex quasi-projective manifold of dimension d with an action of
a finite group G and with a G-equivariant automorphism ' of finite order. One can
say that the notion of the orbifold spectrum of the triple .V;G; '/ is inspired by the
notion of the orbifold Hodge–Deligne polynomial: [2].

Let G�, Vhgi and CG.g/ be defined as above. The group CG.g/ acts on the fixed
point set Vhgi. Let O' be the transformation of the quotient Vhgi=CG.g/ induced by
'. For a point x 2 Vhgi, the age of g (or fermion shift number) is defined in the
following way [15, Sect. 2.1], [23, Eq. (3.17)]. The element g acts on the tangent
space TxV as a complex linear operator of finite order. It can be represented by a
diagonal matrix with the diagonal entries eŒˇ1�, . . . , eŒˇd�, where 0 � ˇi < 1 for
i D 1; : : : ; d and eŒr� WD exp .2�ir/ for a real number r. The age of the element g

at the point x is defined by agex.g/ D
dP

iD1
ˇi 2 Q�0. For a rational number ˇ � 0,

let Vhgiˇ be the subspace of the fixed point set Vhgi consisting of the points x with

agex.g/ D ˇ. (The subspace Vhgiˇ of Vhgi is a union of connected components of the
latter one.)

Definition 3 (cf. [9]) The orbifold spectrum of the triple .V;G; '/ is

hsporb.V;G; '/ D
X

Œg�2G
�

X

ˇ2Q
�0

hsp.Vhgiˇ =CG.g/; O'/ � fˇg 2 ZŒQ� :

As above the spectrum hsporb.V;G; '/ can be identified with the orbifold
Poincaré polynomial

porb
.V;G;'/.t/ D

X

Œg�2G
�

X

ˇ2Q
�0

p
.V

hgi

ˇ =CG.g/; O'/.t/ � t
ˇ 2 ZŒt1=m� :
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It can be regarded as a reduction of the equivariant orbifold Poincaré polynomial

eorb
.V;G;'/.t/ D

X

Œg�2G
�

X

ˇ2Q
�0

e
.V

hgi

ˇ =CG.g/; O'/.t/ � t
ˇ 2 Rf .Z/Œt

1=m�

or of the equivariant orbifold Hodge–Deligne polynomial

eorb
.V;'/.u; v/ D

X

k;p;q;˛;Œg�;ˇ

.�1/k dim.Hk
˛.V
hgi
ˇ =CG.g///

p;q!eŒ˛� � upvq.uv/ˇ

(an element of Rf .Z/Œu; v�Œ.uv/1=m�).
As it was explained above, the presence of (rational) summands of different

nature—elements of the quotient Q=Z and elements of Q itself—leads to the
situation when the existence of a Macdonald-type equation for the orbifold spectrum
(and for the orbifold Poincaré polynomial) is doubtful. On the other hand, there exist
Macdonald-type equations for the equivariant orbifold Poincaré polynomial and for
the equivariant orbifold Hodge–Deligne polynomial (see Sect. 5). This inspires the
definition of the corresponding version of the orbifold spectrum.

Definition 4 The orbifold pair spectrum hsporb
2 .V;G; '/ of .V;G; '/ is

X

Œg�2G
�

X

ˇ2Q
�0

X

k;p;q;˛

.�1/k dim.Hk
˛.V
hgi
ˇ =CG.g/; O'//p;qf.˛; pC ˇ/g 2 ZŒ.Q=Z/ �Q� :

The word pair is used, in particular, to distinguish this notion from the one
defined in [9]. Moreover, taking into account the weight filtration as well, one gets
a certain refinement of this notion.

Definition 5 The orbifold triple spectrum hsporb
3 .V;G; '/ of .V;G; '/ is

X

Œg�2G
�

X

ˇ2Q
�0

X

k;p;q;˛

.�1/k dim.Hk
˛.V
hgi
ˇ =CG.g/; O'//p;qf.˛; pC ˇ; qC ˇ/g

(an element of ZŒ.Q=Z/ �Q �Q�).

5 Higher-Order Spectrum and Equivariant Hodge–Deligne
Polynomial

The notions of the higher-order spectrum of a triple .V;G; '/ and of the higher-
order equivariant Hodge–Deligne polynomial of it are inspired by the notions
of the higher-order Euler characteristic [1, 3] and of the corresponding higher-
order generalized Euler characteristic [12]. For a topological G-space X, the Euler
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characteristic � of order k can be defined by

�.k/.X;G/ D
X

Œg�2G
�

�.k�1/.Xhgi;CG.g// ;

where �.0/.X;G/ WD �.X=G/ (see the notations in Sect. 4). One can see that
�.1/.X;G/ WD �orb.X;G/. As for the orbifold Euler characteristic (i.e., for the Euler
characteristic of order 1), refinements of these notions taking into account the mixed
Hodge structure should use the age shift.

Let .V;G; '/, Vhgiˇ and O' be as in Sect. 4 and let k � 1.

Definition 6 The spectrum of order k of the triple .V;G; '/ is

hsp.k/.V;G; '/ D
X

Œg�2G
�

X

ˇ2Q
�0

hsp.k�1/.Vhgiˇ ;CG.g/; '/ � fˇg 2 ZŒQ� ;

where hsp.0/.V;G; '/ WD hsp.V=G; O'/.
The orbifold spectrum is the spectrum of order 1.
Like above the spectrum of order k can be described by the corresponding order

k Poincaré polynomial:

p.k/.V;G;'/.t/ D
X

Œg�2G
�

X

ˇ2Q
�0

p.k�1/
.V

hgi

ˇ ;CG.g/;'/
.t/ � tˇ 2 ZŒt1=m� ;

where p.1/� .t/ WD porb� .t/.
It can be regarded as a reduction of the equivariant order k Poincaré polynomial

e.k/.V;G;'/.t/ D
X

Œg�2G
�

X

ˇ2Q
�0

e.k�1/
.V

hgi

ˇ ;CG.g/;'/
.t/ � tˇ 2 Rf .Z/Œt

1=m�

or of the equivariant order k Hodge–Deligne polynomial

e.k/.V;G;'/.u; v/ D
X

Œg�2G
�

X

ˇ2Q
�0

e.k�1/
.V

hgi

ˇ ;CG.g/;'/
.u; v/.uv/ˇ 2 Rf .Z/Œu; v�Œ.uv/

1=m� :

The following definition is an analogue of the definition of the orbifold pair and
triple spectra in Sect. 4.

Definition 7 The pair spectrum of order k of .V;G; '/ is

hsp.k/2 .V;G; '/ D
X

Œg�2G
�

X

ˇ2Q
�0

hsp.k�1/2 .Vhgiˇ ;CG.g/; '/f.0; ˇ/g 2 ZŒ.Q=Z/ �Q� :
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The triple spectrum of order k of .V;G; '/ is

hsp.k/3 .V;G; '/

D
X

Œg�2G
�

X

ˇ2Q
�0

hsp.k�1/3 .Vhgiˇ ;CG.g/; '/f.0; ˇ; ˇ/g 2 ZŒ.Q=Z/ �Q �Q� :

The following statement is a Macdonald-type equation for the equivariant order
k Hodge–Deligne polynomial. For n � 1, the Cartesian power Vn of the manifold
V is endowed with the natural action of the wreath product Gn D G o Sn D Gn Ì
Sn generated by the componentwise action of the Cartesian power Gn and by the
natural action of the symmetric group Sn (permuting the factors). Also one has the
automorphism '.n/ of Vn induced by '. The triple .Vn;Gn; '

.n// should be regarded
as an analogue of the symmetric power of the triple .V;G; '/.

Example 1 Let f .z1; : : : ; zn/ be a quasi-homogeneous function with the quasi-
weights q1, . . . , qn (and with the quasi-degree 1), and let G � GL.n;C/ be a finite
group of its symmetries (f .gz/ D f .z/ for g 2 G). The Milnor fiber Mf D ff D 1g
of f is an .n � 1/-dimensional complex manifold with an action of a group G and
with a natural finite-order automorphism ' (the monodromy transformation or the
exponential grading operator):

'.z1; : : : ; zn/ D .eŒq1�z1; : : : ; eŒqn�zn/ :

For s � 1, let Cns D .Cn/s be the affine space with the coordinates z.j/i , 1 �
i � n, 1 � j � s. The system of equations f .z.j/1 ; : : : ; z

.j/
n / D 0, j D 1; : : : ; s,

defines a complete intersection in C
ns. Its Milnor fiber M D ff .z.j/1 ; : : : ; z.j/n / D

1; for j D 1; : : : ; sg is the sth Cartesian power of the Milnor fiber Mf of f and has a
natural action of the wreath product Gs. The spectrum of a complete intersection
singularity is defined by a choice of a monodromy transformation. A natural
monodromy transformation on M is the sth Cartesian power '.s/ of the monodromy
transformation '. Thus, the triple .M;Gs; '

.s// can be regarded as an analogue of
the sth symmetric power of the triple .Mf ;G; '/.

Theorem 2 Let V be a (smooth) quasi-projective G-manifold of dimension d with
a G-equivariant automorphism ' of finite order. One has

1 C
1X

nD1
e.k/
.Vn;Gn;'.n//

.u; v/ � Tn

D
0

@
Y

r1;:::;rk�1

�
1 � .uv/.r1r2


rk/d=2 � Tr1r2


rk�r2r23 


rk�1k

1

A

�e.k/.V ;G;'/.u;v/

; (3)

where the RHS of (3) is understood in terms of the power structure over the ring
Rf .Z/Œu; v�Œ.uv/1=m�.
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Proof In [13], there were defined equivariant generalized higher-order Euler char-
acteristics of a complex quasi-projective manifold with commuting actions of two
finite groups GO and GB as elements of the extension KGB

0 .VarC/ŒL1=m� of the
Grothendieck ring KGB

0 .VarC/ of complex quasi-projective GB-varieties (L is the
class of the complex affine line with the trivial action), and there were given
Macdonald-type equations for them: [13, Theorem 2]. One can see that these
definitions and the Macdonald-type equations can be applied when instead of an
action of a finite group GB, one has a finite order action of the cyclic group Z.
The equivariant order k Hodge–Deligne polynomial is the image of the equivariant
generalized Euler characteristic of order k under the map KZ

0 .VarC/ŒL1=m� !
Rf .Z/Œu; v�Œ.uv/1=m�. Since this map is a -ring homomorphism (Theorem 1), the
Macdonald-type equation for the equivariant generalized Euler characteristic of
order k implies (3).

Corollary 2 In the situation described above, one has

1C
1X

nD1
hsp.k/	 .V

n;Gn; '
.n// � Tn

D
0

@
Y

r1;:::;rk�1

�
1 � a.	/r1;:::;rkT

r1r2


rk�r2r23 


rk�1k

1

A

�hsp
.k/
	 .V;G;'/

;

where 	 D 2; 3,

a.2/r1;:::;rk D f.0; .r1r2 � � � rk/d=2/g;
a.3/r1;:::;rk D f.0; .r1r2 � � � rk/d=2; .r1r2 � � � rk/d=2/g;

and the RHS is understood in terms of the power structures over the group rings
ZŒ.Q=Z/ �Q� for 	 D 2 and ZŒ.Q=Z/ �Q �Q� for 	 D 3.
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�-Constant Monodromy Groups and Torelli
Results for Marked Singularities,
for the Unimodal and Some Bimodal
Singularities

Falko Gauss and Claus Hertling

Abstract This paper is a sequel to Hertling (Ann Inst Fourier (Grenoble)
61(7):2643–2680, 2011). There a notion of marking of isolated hypersurface
singularities was defined, and a moduli space Mmar

� for marked singularities in one
�-homotopy class of isolated hypersurface singularities was established. One can
consider it as a global�-constant stratum or as a Teichmüller space for singularities.
It comes together with a �-constant monodromy group Gmar � GZ. Here GZ is
the group of automorphisms of a Milnor lattice which respect the Seifert form. It
was conjectured that Mmar

� is connected. This is equivalent to Gmar D GZ. Also
Torelli-type conjectures were formulated. All conjectures were proved for the
simple singularities and 22 of the exceptional unimodal and bimodal singularities.
In this paper, the conjectures are proved for the remaining unimodal singularities
and the remaining exceptional bimodal singularities.

Keywords �-Constant monodromy group • Hyperbolic singularities • Marked
singularity • Moduli space • Simple elliptic singularities • Torelli-type problem

1 Introduction

This paper is a sequel to [12]. That paper studied local objects, namely, holomorphic
functions germs f W .CnC1; 0/ ! .C; 0/ with an isolated singularity at 0 (short:
singularity), from a global perspective.

There a notion of marking of a singularity was defined. One has to fix one
singularity f0, which serves as reference singularity. Then a marked singularity is
a pair . f ;˙�/ where f is in the �-homotopy class of f0 and � W .Ml. f /;L/ !
.Ml. f0/;L/ is an isomorphism. Here Ml. f / is the Milnor lattice of f , and L is the
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Seifert form on it (the definitions are recalled in Sect. 2). The group GZ. f0/ WD
Aut.Ml. f0/;L/ will be important, too.

A moduli space Mmar
� of right equivalence classes of marked singularities in

one �-homotopy class was established. One can consider it as a global �-constant
stratum or as a Teichmüller space for singularities. The group GZ. f0/ acts properly
discontinuously on it, and the quotient is the moduli space M� of right equivalence
classes of unmarked singularities from [11, Chap. 13]. The �-constant monodromy
group Gmar. f0/ � GZ. f0/ is the subgroup of automorphisms which map the
topological component .Mmar

� . f0//0 which contains Œ f0; id� to itself. It can also be
constructed as the group of all automorphisms which can be realized modulo ˙ id
as transversal monodromies of �-constant families.

Conjecture 1.1 ([12, Conjecture 3.2 (a)]) Mmar
� is connected. Equivalently:

GmarDGZ.

Roughly this conjecture says that all abstract automorphisms come from geome-
try, from coordinate changes, and �-constant families.

Also Torelli-type conjectures are formulated in [12]. Any singularity f comes
equipped with its Brieskorn lattice H000 . f /, and any marked singularity . f ;˙�/
comes equipped with a marked Brieskorn lattice BL. f ;˙�/. The Gauß-Manin
connection for singularities and the Brieskorn lattices had been introduced in 1970
by Brieskorn and had been studied since then. The second author has a long-going
project on Torelli-type conjectures around them.

In [9] a classifying space DBL. f0/ for marked Brieskorn lattices was constructed.
It is especially a complex manifold, and GZ. f0/ acts properly discontinuously on it.
The quotient DBL=GZ is a space of isomorphism classes of Brieskorn lattices. There
is a natural holomorphic period map

BL W Mmar
� . f0/! DBL. f0/:

It is an immersion [11, Theorem 12.8] (this refines a weaker result in [21]). And it
is GZ-equivariant.

Conjecture 1.2

(a) [12, Conjecture 5.3] BL is an embedding.
(b) [12, Conjecture 5.4], [11, Conjecture 12.7], [6, Kap. 2 (d)]) LBL W M� D

Mmar
� =GZ ! DBL=GZ is an embedding.

Part (b) says that the right equivalence class of f is determined by the isomor-
phism class of H000 .f /. Part (a) would imply part (b). Both are global Torelli-type
conjectures. Part (b) was proved in [6] for all simple and unimodal singularities
and almost all bimodal singularities, all except three subseries of the eight bimodal
series. Therefore, for the proof of part (a), in these cases it remains mainly to control
GZ well. But that is surprisingly difficult.

In [12] the Conjectures 1.1 and 1.2 were proved for all simple and those 22
of the 28 exceptional unimodal and bimodal singularities, where all eigenvalues



�-Constant Monodromy Groups for Some Singularities 111

of the monodromy have multiplicity one. In this paper, they will be proved for
the remaining unimodal and exceptional bimodal singularities, that means, for the
simple elliptic and the hyperbolic singularities and for those 6 of the 28 exceptional
unimodal and bimodal singularities which had not been treated in [12].

A priori, logically Conjecture 1.1 comes before Conjecture 1.2. But the results in
[6] are more concrete and give already some information about the action of GZ on
DBL andMmar

� . Anyway, the main remaining work is a good control of the groupsGZ.
That presents some unexpected difficulties. For example, we need two surprising
generalizations of the number theoretic fact ZŒe2� i=a� \ S1 D f˙e2� ik=a j k 2 Zg for
a 2 N: one is Lemma 2.5, and the other is related to U16; see Remark 4.3.

The groups GZ.f0/ will be calculated in Sects. 3 and 4. Section 2 collects well-
known background material on the topology of singularities. But it contains also
an algebraic Lemma 2.5 about automorphisms of monodromy modules. Section 5
collects notions and results from [12] on marked singularities, the moduli spaces
Mmar
� .f0/, the groups Gmar. f0/, and the Torelli-type conjectures. Sections 6 and 7

give the proofs of the Conjectures 1.1 and 1.2 in the cases considered. Section 8 is
motivated by the paper [17] of Milanov and Shen and complements their results on
(transversal) monodromy groups for certain families of simple elliptic singularities.
The three principal congruence subgroups � .3/; � .4/, and � .6/, which turn up in
[17] for certain families are shown to turn up also in the biggest possible families.

2 Review on the Topology of Isolated Hypersurface
Singularities

First, we recall some classical facts and fix some notations. An isolated hypersurface
singularity (short: singularity) is a holomorphic function germ f W .CnC1; 0/ !
.C; 0/ with an isolated singularity at 0. Its Milnor number

� WD dimOCnC1;0=.
@f

@xi
/

is finite. For the following notions and facts, compare [2, 4] and (for the notion of an
unfolding) [1]. A good representative of f has to be defined with some care [2, 4, 18].
It is f W Y ! T with Y � C

nC1 a suitable small neighborhood of 0 and T � C a
small disk around 0. Then f W Y 0 ! T 0 with Y 0 D Y � f�1.0/ and T 0 D T � f0g is a
locally trivial C1-fibration, the Milnor fibration. Each fiber has the homotopy type
of a bouquet of �n-spheres [18].

Therefore, the (reduced for n D 0) middle homology groups areH.red/
n .f�1.�/;Z/

Š Z
� for � 2 T 0. Each comes equipped with an intersection form I, which is a datum

of one fiber, a monodromy Mh and a Seifert form L, which come from the Milnor
fibration; see [2, I.2.3] for their definitions (for the Seifert form, there are several
conventions in the literature; we follow [2]). Mh is a quasiunipotent automorphism, I
and L are bilinear forms with values in Z, I is .�1/n-symmetric, and L is unimodular.
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L determines Mh and I because of the formulas [2, I.2.3]

L.Mha; b/ D .�1/nC1L.b; a/; (1)

I.a; b/ D �L.a; b/C .�1/nC1L.b; a/: (2)

The Milnor lattices Hn. f�1.�/;Z/ for all Milnor fibrations f W Y 0 ! T 0 and then
all � 2 R>0 \ T 0 are canonically isomorphic, and the isomorphisms respect Mh, I,
and L. This follows from Lemma 2.2 in [15]. These lattices are identified and called
Milnor lattice Ml. f /. The group GZ is

GZ D GZ. f / WD Aut.Ml. f /;L/ D Aut.Ml. f /;Mh; I;L/; (3)

the second equality is true because L determines Mh and I. We will use the notation
Ml. f /C WD Ml.f / ˝Z C, and analogously for other rings R with Z � R � C, and
the notations

Ml. f / WD ker..Mh �  id/� W Ml. f /C ! Ml. f /C/ � Ml. f /C;

Ml. f /1;Z WD Ml. f /1 \Ml. f / � Ml. f /;

Ml. f /¤1 WD
M

¤1
Ml. f / � Ml. f /C;

Ml. f /¤1;Z WD Ml. f /¤1 \Ml. f / � Ml. f /:

The formulas (1) and (2) show I.a; b/ D L..Mh � id/a; b/. Therefore, the
eigenspace with eigenvalue 1 of Mh is the radical Rad.I/ � Ml. f / of I. By (2)
L is .�1/nC1-symmetric on the radical of I.

In the case of a curve singularity (n D 1) with r branches, f D Qr
jD1 fj, the

radical of I is a Z-lattice of rank r � 1, and it is generated by the classes lj 2 Ml.f /
which are obtained by pushing the (correctly oriented) cycles @Y \ f�1j .0/ from the
boundary of the fiber f�1.0/ to the boundary of the fiber f�1.�/. Then

l1 C : : :C lr D 0; (4)

L.li; lj/ D intersection number of . fi; fj/ for i ¤ j;

so L.li; lj/ > 0 for i ¤ j; (5)

l1; : : : ;blj; : : : ; lr is a Z-basis of Rad.I/ for any j: (6)

Kaenders proved the following result using Selling reduction. It will be useful for
the calculation of Aut.Rad.I/;L/, because it implies that any automorphism of
.Rad.I/;L/ maps the set fl1; : : : ; lrg to itself or to minus itself.

Theorem 2.1 ([13]) In the case of a curve singularity as above, the set fl1; : : : ; lrg
is up to a common sign uniquely determined by the properties (4)–(6). So it is up
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to a common sign determined by the pair .Rad.I/;L/. Furthermore, L is negative
definite on Rad.I/.

Example 2.2 In the following three examples l D .l1; : : : ; lr/, and L.lt; l/ D
.L.li; lj//. Then .L.li; lj//1�i;j�r�1 is the matrix of L on Rad.I/ with respect to the
Z-basis l1; : : : ; lr�1. The examples (ii) and (iii) will be useful in Sect. 4, and the
example (i) is an alternative to a calculation in the proof of Theorem 8.4 in [12].

(i) D2m W f D x2m�1 C xy2 D x.xm�1 � iy/.xm�1 C iy/;

L.lt; l/ D
0

@
�2 1 1

1 �m m � 1
1 m � 1 �m

1

A ; .L.li; lj//1�i;j�2 D
��2 1

1 �m
�

:

Obviously jAut.Rad.I/;L/j D 12 in the case m D 2, and jAut.Rad.I/;L/j D
4 in the cases m � 3.

(ii) Z12 W f D x3yC xy4 D xy.x2 C y3/;

L.lt; l/ D
0

@
�4 1 3

1 �3 2

3 2 �5

1

A ; .L.li; lj//1�i;j�2 D
��4 1

1 �3
�

:

Obviously Aut.Rad.I/;L/ D f˙ idg.
(iii) Z18 W f D x3yC xy6 D xy.x2 C y5/;

L.lt; l/ D
0

@
�6 1 5

1 �3 2

5 2 �7

1

A ; .L.li; lj//1�i;j�2 D
��6 1

1 �3
�

:

Obviously Aut.Rad.I/;L/ D f˙ idg.
Finally, in Sect. 3, distinguished bases will be used. Again, good references for

them are [2] and [4]. We sketch their construction and properties.
One can choose a universal unfolding of f , a good representative F of it with base

space M � C
�, and a generic parameter t 2 M. Then Ft W Yt ! T with T � C the

same disk as above and Yt � C
nC1 is a morsification of f . It has �A1-singularities,

and their critical values u1; : : : ; u� 2 T are pairwise different. Their numbering is
also a choice. Now choose a value � 2 T \ R>0 � fu1; : : : ; u�g and a distinguished
system of paths. That is, a system of � paths �j, j D 1; : : : ; �, from uj to � which do
not intersect except at � and which arrive at � in clockwise order. Finally, shift from
the A1 singularity above each value uj the (up to sign unique) vanishing cycle along
�j to the Milnor fiber Ml. f / D Hn. f�1.�/;Z/, and call the image ıj.

The tuple .ı1; : : : ; ı�/ forms a Z-basis of Ml. f /. All such bases are called
distinguished bases. They form one orbit of an action of a semidirect product
Br�Ëf˙1g�. Here Br� is the braid group with � strings; see [2] or [4] for its action.
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The sign change group f˙1g� acts simply by changing the signs of the entries of
the tuples .ı1; : : : ; ı�/. The members of the distinguished bases are called vanishing
cycles.

The Stokes matrix S of a distinguished basis is defined as the upper triangular
matrix in M.� � �;Z/ with 1s on the diagonal and with

Sij WD .�1/n.nC1/=2 � I.ıi; ıj/ for all i; j with i < j:

The Coxeter-Dynkin diagram of a distinguished basis encodes S in a geometric way.
It has � vertices which are numbered from 1 to �. Between two vertices i and j with
i < j, one draws

no edge if Sij D 0,
jSijj edges if Sij < 0,
Sij dotted edges if Sij > 0.

Coxeter-Dynkin diagrams of many singularities were calculated by A’Campo,
Ebeling, Gabrielov, and Gusein-Zade. Some of them can be found in [3, 5] and [4].

Example 2.3 The hyperbolic singularities of type Tpqr with 1
p C 1

q C 1
r < 1 and the

simple elliptic singularities of types eE6 D T333;eE7 D T442, and eE8 D T632 have
distinguished bases with the Coxeter-Dynkin diagrams in Fig. 1 [5].

The Picard-Lefschetz transformation on Ml. f / of a vanishing cycle ı is

sı.b/ WD b � .�1/n.nC1/=2 � I.ı; b/ � ı: (7)

The monodromy Mh is

Mh D sı1 ı : : : ı sı� (8)

Fig. 1 A Coxeter-Dynkin diagram of the singularities of type Tpqr



�-Constant Monodromy Groups for Some Singularities 115

for any distinguished basis ı D .ı1; : : : ; ı�/. The matrices of the monodromy,
Seifert form, and intersection form with respect to a distinguished basis ı are given
by the following formulas:

Mh.ı/ D ı � .�1/nC1 � S�1St; (9)

I.ıt; ı/ D .�1/n.nC1/=2 � .SC .�1/nSt/; (10)

L.ıt; ı/ D .�1/.nC1/.nC2/=2 � St: (11)

Remark 2.4 The Stokes matrix S of a distinguished basis is related to the matrix
V in [4, Korollar 5.3 (i)] by the formula V D L.ıt; ı/ D .�1/.nC1/.nC2/=2 � St.
Thus, V is lower triangular, not upper triangular, contrary to the claim in [4,
Korollar 5.3 (i)]. The matrix of Var�1 for a distinguished basis ı and its dual basis
ı� is .�1/.nC1/.nC2/=2S, namely,

Var�1.ı/ D ı� � .�1/.nC1/.nC2/=2 � S:

But then the matrix for the Seifert form L with L.a; b/ D .Var�1.a//.b/ is

L.ıt; ı/ D Var�1.ıt/.ı/ D .�1/.nC1/.nC2/=2St:

In [2, I.2.5], this problem does not arise because there the matrix of a bilinear form
with respect to a basis is the transpose of the usual matrix [2, p. 45]. This is applied
to the matrices of I and L.

A result of Thom and Sebastiani compares the Milnor lattices and monodromies
of the singularities f D f .x0; : : : ; xn/; g D g.y0; : : : ; ym/, and fCg D f .x0; : : : ; xn/C
g.xnC1; : : : ; xnCmC1/. There are extensions by Deligne for the Seifert form and by
Gabrielov for distinguished bases. All results can be found in [2, I.2.7]. They are
restated here. There is a canonical isomorphism

˚ W Ml. f C g/
Š�! Ml. f /˝Ml.g/; (12)

with Mh. f C g/ Š Mh. f /˝Mh.g/ (13)

and L. f C g/ Š .�1/.nC1/.mC1/ � L. f /˝ L.g/: (14)

If ı D .ı1; : : : ; ı�. f // and � D .�1; : : : ; ��.g// are distinguished bases of f and g
with Stokes matrices S. f / and S.g/, then

˚�1.ı1˝�1; : : : ; ı1˝��.g/; ı2˝�1; : : : ; ı2˝��.g/; : : : ; ı�. f /˝�1; : : : ; ı�. f /˝��.g//

is a distinguished basis of Ml. f C g/, that means, one takes the vanishing cycles
˚�1.ıi ˝ �j/ in the lexicographic order. Then by (11) and (14), the matrix

S. f C g/ D S. f /˝ S.g/ (15)
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(where the tensor product is defined so that it fits to the lexicographic order) is the
Stokes matrix of this distinguished basis.

In the special case g D x2nC1, the function germ f C g D f .x0; : : : ; xn/ C
x2nC1 2 OCnC2;0 is called stabilization or suspension of f . As there are only two
isomorphisms Ml.x2nC1/ ! Z, and they differ by a sign, there are two equally
canonical isomorphisms Ml.f / ! Ml.f C x2nC1/, and they differ just by a sign.
Therefore, automorphisms and bilinear forms on Ml. f / can be identified with
automorphisms and bilinear forms on Ml. f C x2nC1/. In this sense,

L. f C x2nC1/ D .�1/n � L. f / and Mh. f C x2nC1/ D �Mh. f / (16)

[2, I.2.7], and GZ. f C x2nC1/ D GZ. f /. The Stokes matrix S does not change under
stabilization.

The following algebraic lemma from [12] will be very useful in Sects. 3 and 4.
It can be seen as a generalization of the number theoretic fact ZŒe2� i=a� \ S1 D
f˙e2� ik=a j k 2 Zg.
Lemma 2.5 ([12, Lemma 8.2]) Let H be a free Z-module of finite rank �, and
HC WD H ˝Z C. Let Mh W H ! H be an automorphism of finite order, called
monodromy, with three properties:

(i) Each eigenvalue has multiplicity 1.
Denote H WD ker.Mh �  � id W HC ! HC/:

(ii) Denote Ord WD ford j eigenvalue of Mhg � Z�1 . There exist four
sequences .mi/iD1;:::;jOrd j, . j.i//iD2;:::;jOrd j, .pi/iD2;:::;jOrd j, .ki/iD2;:::;jOrd j of
numbers in Z�1 and two numbers i1; i2 2 Z�1 with i1 � i2 � jOrd j and with
the properties:

Ord D fm1; : : : ;mjOrd jg,
pi is a prime number, pi D 2 for i1 C 1 � i � i2, pi � 3 else,
j.i/ D i � 1 for i1 C 1 � i � i2, j.i/ < i else,

mi D mj.i/=p
ki
i :

(iii) A cyclic generator a1 2 H exists, that means,

H D
��1M

iD0
Z �Mi

h.a1/:

Finally, let I be an Mh-invariant nondegenerate bilinear form (not necessarily .˙1/-
symmetric) on

L
¤˙1H with values in C. Then

Aut.H;Mh; I/ D f˙Mk
h j k 2 Zg:
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3 The Group GZ for the Simple Elliptic and the Hyperbolic
Singularities

The simple elliptic and the hyperbolic singularities are 1-parameter families of
singularities, which had been classified by Arnold [1]. For each triple .p; q; r/ 2 N

3�2
with p � q � r and � WD 1

p C 1
q C 1

r � 1, one has one family, denoted Tpqr. The
hyperbolic singularities are those with � < 1, the simple elliptic are those with
� D 1. For the three families of simple elliptic singularities, also other symbols are
used, T333 D eE6; T442 D eE7; T632 D eE8. The singularities of types Tpqr with r D 2
exist as curve singularities, all others as surface singularities. Normal forms will be
discussed in Sect. 6. Here for each family, the group GZ D Aut.Ml.f /;L/ will be
analyzed. The result in Theorem 3.1 is completely explicit in the case � < 1 and
partly explicit in the case � D 1. The whole section is devoted to its proof. Besides

� WD 1

p
C 1

q
C 1

r
; also � WD lcm.p; q; r/ 2 N

will be used. A singularity of type Tpqr has Milnor number � D pC qC r � 1, and
its monodromy has the characteristic polynomial

tp � 1
t � 1 �

tq � 1
t � 1 �

tr � 1
t � 1 � .t � 1/

2:

Theorem 3.1 Consider a surface singularity f of type Tpqr (with � � 1) with Milnor
lattice Ml. f /, monodromy Mh, intersection form I, and Seifert form L:

(a) Then dimMl. f /1 D 2; rank Rad.I/ D 1 if � < 1 and D 2 if � D 1. Choose a
Z-basis b1; b2 of Ml. f /1;Z with b1 2 Rad.I/ and L.b1; b2/ � 0. Then

L.b1; b2/ D �� and Mhb2 D b2 C �.� � 1/ � b1: (17)

(b) The restriction map GZ ! Aut.Ml.f /1;Z;L/ is surjective. Denote by T 2
Aut.Ml. f /1;Z/ the automorphismwith T.b1/ D b1 and T.b2/ D b2Cb1. Denote
b WD .b1; b2/:

Aut.Ml. f /1;Z;L/ D fb 7! b � A jA 2 SL.2;Z/g (18)

Š SL.2;Z/ if � D 1;
Aut.Ml. f /1;Z;L/ D f˙Tk j k 2 Zg if � < 1: (19)

(c) The group GZ for � < 1 and the subgroup fg 2 GZ j g.b1/ D ˙b1g � GZ for
� D 1 will be described explicitly, except for the part U2; see below. There is a
monodromy invariant decomposition

Ml. f /¤1 D Ml.1/
C
˚Ml.2/

C
˚Ml.3/

C
(20)
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such that the characteristic polynomial of MhjMl. j/ is

tp � 1
t � 1 ;

tq � 1
t � 1 ;

tr � 1
t � 1 for j D 1; 2; 3 (21)

and such that the following holds:

GZ for � < 1
fg 2 GZ j g.b1/ D ˙b1g for � D 1

�

D .U1 Ì U2/ � f˙ idg; (22)

where U1 is the infinite subgroup of GZ

U1 D fTı � .MhjMl
.1/
C

/˛ � .MhjMl
.2/
C

/ˇ � .MhjMl
.3/
C

/� j (23)

.ı; ˛; ˇ; �/ 2 Z � Zp � Zq � Zr with
˛

p
C ˇ

q
C �

r
� ı

�
mod 1g

and where U2 is a finite subgroup of GZ with

U2

8
<

:

D fidg if p > q > r;
Š S2 if p D q > r or p > q D r;
Š S3 if p D q D r:

(24)

which consists of certain automorphisms which act trivially on Ml. f /1 and
which permute those of the subspaces Ml. j/

C
which have equal dimension.

Proof Choose a distinguished basis ı D .ı1; : : : ; ı�/ with the Coxeter-Dynkin
diagram in Example 2.3. Then the monodromy matrix MM with Mh.ı/ D ı � MM

can be calculated either with (8) or with (9). It had been calculated in [6] with (8),
and it is (here all not specified entries are 0)

MM D

0

B
B
@

M1 M8

M2 M9

M3 M10

M5 M6 M7 M4

1

C
C
A (25)

with the following blocks,

M1 D

0

B
B
B
B
@

0 �1
1
: : : �1
: : : 0 �1
1 �1

1

C
C
C
C
A
2 M..p � 1/ � .p � 1/;Z/;

M2 2 M..q � 1/ � .q � 1/;Z/ and
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M3 2 M..r � 1/ � .r � 1/;Z/ are defined analogously;

M4 D
�
3 2

�2 �1
�

;

and M5;M6;M7;M8;M9;M10 are of suitable sizes with all entries except the
following being 0,

.M5/11 D .M6/11 D .M7/11 D �1; .M5/21 D .M6/21 D .M7/21 D 1;

.M8/11 D .M8/12 D .M9/11 D .M9/12 D .M10/11 D .M10/12 D 1:

Define

Qb1 WD ı��1 � ı�; (26)

Qb2 WD � �
 

p�1X

iD1

p � i

p
ıi C

q�1X

iD1

q � i

q
ıp�1Ci C

r�1X

iD1

r � i

r
ıpCq�2Ci C ı��1

!

: (27)

Then one calculates

Mh.Qb1/ D Qb1; Mh.Qb2/ D Qb2 C �.� � 1/ � Qb1; (28)

and with (11), which is here L.ıt; ı/ D St,

�
L.Qb1; Qb1/ L.Qb1; Qb2/
L.Qb2; Qb1/ L.Qb2; Qb2/

�

D
 
0 ��
�

�2

2
.� � 1/

!

: (29)

By (28), Qb1; Qb2 is a Q-basis of Ml. f /1;Q and Mh is on Ml. f /1 semisimple if � D 1,
and it has a 2 � 2 Jordan block if � < 1 (of course, this is well known). From the
coefficients, one sees that Qb1; Qb2 is a Z-basis of Ml.f /1;Z. Here it is important that the
coefficients of Qb2 have greatest common divisor 1. As Eq. (17) hold for Qb1; Qb2, they
hold for any basis b1; b2 as in (a).

(b) If � D 1, then (29) shows that L is on Ml.f /1;Z up to the factor � the standard
symplectic form. Therefore, (18) holds. If � < 1, then (29) shows (19).

The restriction map GZ ! Aut.Ml.f /1;Z/ contains T. This follows from (22)
(whose proof below does not use this fact), because obviously .ı; ˛; ˇ; �/ as
in (23) with ı D 1 exist.

This shows (b) in the case � < 1. In the case � D 1, we did not calculate
lifts to GZ of other elements of Aut.Ml.f /1;Z;L/. In this case, the surjectivity
of GZ ! Aut.Ml.f /1;Z;L/ follows in two ways: It follows from [14, III.2.6],
and it follows from calculations in [6], which are discussed in the proof of
Theorem 6.1.
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(c) We will prove (c) for the special choice Qb1; Qb2. Then (c) holds for any b1; b2 as in
(a) because by the surjectivity of the map GZ ! Aut.Ml.f /1;Z;L/, an element
g 2 GZ with g.Qb1/ D b1; g.Qb2/ D b2 exists. Define

MlŒ1�
Z
WD ZQb1 ˚

p�1M

iD1
Zıi; MlŒ1�

C
WD MlŒ1�

Z
˝Z C; (30)

Ml.1/
C
WD MlŒ1�

C
\Ml. f /¤1; (31)

and analogously MlŒ2�
Z
;MlŒ2�

C
;Ml.2/

C
and MlŒ3�

Z
;MlŒ3�

C
;Ml.3/

C
.

A look at the matrix MM shows the following:

Mh W ı1 C Qb1 7! ı2 7! : : : 7! ıp�1 7! �.ı1 C : : :C ıp�1/ 7! ı1 C Qb1: (32)

Therefore, MlŒ1�
Z

is a cyclic Mh-module with characteristic polynomial tp � 1, and

MlŒ1�
C
D CQb1 ˚ Ml.1/

C
, and Mh on Ml.1/

C
has the characteristic polynomial .tp � 1/

=.t � 1/.
Lemma 2.5 applies and shows

Aut.MlŒ1�
Z
;L/ D f˙.MhjMl

Œ1�
Z

/˛ j ˛ 2 f0; 1; : : : ; p � 1gg: (33)

Finally, Mh; I and L are well defined on the quotient lattice MlŒ1�
Z
=Z � Qb1,

and .MlŒ1�
Z
=Z � Qb1;�I/ is a root lattice of type Ap�1. The last statement follows

immediately from the part of the Coxeter-Dynkin diagram which corresponds to
ı1; : : : ; ıp�1.

MlŒ2�
Z

and MlŒ3�
Z

have the same properties as MlŒ1�
Z

, with q respectively r instead
of p.

Now

Ml. f /¤1 D Ml.1/
C
˚Ml.2/

C
˚Ml.3/

C

is clear. The Z-lattice

MlŒ1�
Z
CMlŒ2�

Z
CMlŒ3�

Z
D ZQb1 ˚

��2M

iD1
Zıi D .CQb1 ˚Ml. f /¤1/\Ml. f /

is a primitive sublattice of Ml.f / of rank��1. Any g 2 GZ with g.Qb1/ D ˙Qb1 maps
it to itself, because it maps CQb1 and Ml. f /¤1 and Ml. f / to themselves. g maps also
the quotient lattice

.MlŒ1�
Z
CMlŒ2�

Z
CMlŒ3�

Z
/=ZQb1 D MlŒ1�

Z
=ZQb1 ˚MlŒ2�

Z
=ZQb1 ˚MlŒ3�

Z
=ZQb1
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to itself. But this is together with �I an orthogonal sum of lattices of types
Ap�1; Aq�1, and Ar�1. Therefore, g can only permute the summands, and only those
summands of equal rank.

If p D q, a special element �12 2 GZ is given by

�12.ıi/ D ıp�1Ci; �12.ıp�1Ci/ D ıi for 1 � i � p � 1;
�12.ıj/ D ıj for pC q � 2 � j � �:

�12 2 GZ follows immediately from the symmetry of the Coxeter-Dynkin diagram.
Similarly �23 2 GZ is defined if q D r. In any case, these elements generate a
subgroup U2 � GZ with the properties in (c).

Therefore, starting with an arbitrary element Qg 2 GZ if � < 1 respectively Qg 2
fg 2 GZ j g.Qb1/ D ˙Qb1g if � D 1, one can compose it with ˙ id and an element
of U2, and one obtains an element g 2 GZ with g.Qb1/ D Qb1 and g.MlŒj�

Z
/ D MlŒj�

Z

for j D 1; 2; 3. Then, gj
Ml
Œ1�
Z

D .MhjMl
Œ1�
Z

/˛ for a unique ˛ 2 f0; 1; : : : ; p � 1g and

similarly with ˇ 2 f0; 1; : : : ; q � 1g and � 2 f0; 1; : : : ; r � 1g for MlŒ2�
Z

and MlŒ3�
Z

.
Also g.Qb2/ D Qb2 C ı Qb1 for some ı 2 Z. One calculates, observing (32),

Mh

 
p�1X

iD1

p � i

p
ıi

!

D
 

p�1X

iD1

p � i

p
ıi

!

� .ı1 C Qb1/C 1

p
Qb1; (34)

M˛
h

 
p�1X

iD1

p � i

p
ıi

!

D
 

p�1X

iD1

p � i

p
ıi

!

�
 

Qb1 C
X̨

iD1
ıi

!

C ˛

p
Qb1: (35)

The definition (27) of Qb2 shows

� ı��1 D � 1
�
Qb2 C

p�1X

iD1

p � i

p
ıi C

q�1X

iD1

q � i

q
ıp�1Ci C

r�1X

iD1

r � i

r
ıpCq�2Ci; (36)

(35) gives

g.�ı��1/ D �ı��1 C
��ı
�
C ˛

p
C ˇ

q
C �

r

�

� Qb1 (37)

�
 

Qb1 C
X̨

iD1
ıi

!

�
0

@Qb1 C
p�1CˇX

iDp

ıi

1

A �
0

@Qb1 C
pCq�2C�X

iDpCq�1
ıi

1

A :

Therefore,

˛

p
C ˇ

q
C �

r
� ı

�
mod 1 (38)

and g D Tı � .MhjMl
.1/
C

/˛ � .MhjMl
.2/
C

/ˇ � .MhjMl
.3/
C

/� :
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Thus, g 2 U1, so GZ � .U1 Ì U2/ � f˙ idg.
Vice versa, we have to show U1 � GZ. Fix a g 2 U1. It respects the

decomposition

Ml. f /C D Ml. f /1 ˚Ml.1/
C
˚Ml.2/

C
˚Ml.3/

C
:

This is a left and right orthogonal decomposition with respect to the Seifert form
L. The restriction of g to each of the four blocks respects L there, so g 2
Aut.Ml. f /C;L/. It restricts on MlŒ1�

C
to M˛

h , so it maps the lattice MlŒ1�
Z

to itself, and

analogously the lattices MlŒ2�
Z

and MlŒ3�
Z

, thus also the sum MlŒ1�
Z
CMlŒ2�

Z
CMlŒ3�

Z
. This

sum is a primitive sublattice of Ml. f / of rank � � 1 with

Ml. f / D
�
MlŒ1�

Z
CMlŒ2�

Z
CMlŒ3�

Z

�
˚ Zı��1:

The calculation above of g.�ı��1/ shows g.ı��1/ 2 Ml.f / and g.ı��1/ � ı��1
modulo the sublattice. Therefore, g 2 GZ. �

4 The Group GZ for 6 of the 28 Exceptional Unimodal
and Bimodal Singularities

The 14 1-parameter families of exceptional unimodal singularities and the 14 2-
parameter families of exceptional bimodal singularities had been classified by
Arnold. Normal forms can be found in [1]. In [12, Theorem 8.3] the group GZ was
calculated for 22 of the 28 families, namely, for those families where all eigenvalues
of the monodromy have multiplicity 1. In these cases, it turned out that GZ is simply
f˙Mk

h j k 2 Zg. The proof used Lemma 2.5 and that the Milnor lattice is in these
cases a cyclic monodromy module.

In this section, GZ will be determined for the remaining 6 of the 28 families.
These are the families Z12;Q12;U12;Z18;Q16;U16. In these cases, some eigenvalues
have multiplicity 2. This is similar to the case of the singularity D2m, which had also
been treated in [12, Theorem 8.4]. Also the proof will be similar. It will again use
Lemma 2.5 and combine that with an additional analysis of the action of GZ on the
sum of the eigenspaces with dimensionD 2; see Lemma 4.2 below.

This lemma presents a surprise; it points at a funny generalization of the number
theoretic fact ZŒe2� i=n� \ S1 D f˙e2� ik=n j k 2 Zg. Also, the lemma uses at the end
a calculation of Gmar � GZ, which will only come in Sect. 7. The whole Sect. 4 is
devoted to the proof of the following theorem.

Theorem 4.1 In the case of the six families of exceptional unimodal and bimodal
singularities Z12;Q12;U12;Z18;Q16, and U16, the group GZ is GZ D f˙Mk

h j k 2
Zg � U with

Z12 Q12 U12 Z18 Q16 U16
U Š fidg S2 S3 fidg S2 S3

(39)
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(This is independent of the number of variables, i.e., it does not change under
stabilization.)

Proof Here we consider all six families as surface singularities. Their characteristic
polynomials pch have all the property pch D p1 � p2 with p2jp1 and p1 having only
simple roots. They are as follows. Here˚m is the cyclotomic polynomial of primitive
mth unit roots:

Z12 Q12 U12 Z18 Q16 U16
pch ˚22˚2

2 ˚15˚
2
3 ˚12˚6˚

2
4˚

2
2 ˚34˚

2
2 ˚21˚

2
3 ˚15˚

2
5

p1 ˚22˚2 ˚15˚3 ˚12˚6˚4˚2 ˚34˚2 ˚21˚3 ˚15˚5

p2 ˚2 ˚3 ˚4˚2 ˚2 ˚3 ˚5

(40)

Orlik [19] had conjectured that the Milnor lattice of any quasihomogeneous
singularity is a sum of cyclic monodromy modules and that the characteristic
polynomials of Mh on the cyclic pieces are p1; : : : ; pr where pch D p1 � : : : � pr and
prjpr�1j : : : jp1 and p1 has simple roots (r and p1; : : : ; pr are uniquely determined by
this). In the case of curve singularities, Michel and Weber [16] have a proof of this
conjecture. In [6, 3.1] the conjecture was proved (using Coxeter-Dynkin diagrams)
for all those quasihomogeneous surface singularities of modality � 2 which are
not stabilizations of curve singularities. So especially, the conjecture is true for the
families of singularities Z12;Q12;U12;Z18;Q16;U16. There are a1; a2 2 Ml.f / with

Ml. f / D
 deg p1�1M

iD0
Z �Mi

h.a1/

!

˚
 deg p2�1M

iD0
Z �Mi

h.a2/

!

DW B1 ˚ B2: (41)

Denote

B3 WD ker .p2.Mh/ W Ml. f /C ! Ml. f /C/ \Ml. f /: (42)

It is a primitive sublattice of Ml. f / of rank 2 deg p2. Also,

.B1/C D ker..p1=p2/.Mh//˚ .B1 \ B3/C; B2 � B3; (43)

and B1 \ B3 and B2 are both Mh-invariant primitive sublattices of B3 of rank degp2.
Together they generate B3.

Any g 2 GZ with gjB3 D ˙.MhjB3/k for some k 2 Z restricts because of (43) to
an automorphism of B1. Lemma 2.5 applies and shows gjB1 D ˙.MhjB1 /l for some
l 2 Z. Now gjB3 D ˙.MhjB3/k enforces k � l mod lcm.m j˚mjp2/ and g D ˙Ml

h.
Therefore,

fg 2 GZ j gjB3 D ˙.MhjB3/k for some kg D f˙Mk
h j k 2 Zg: (44)
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Lemma 4.2 (c) determines Aut.B3;L/,

Aut.B3;L/ D f˙.MhjB3/k j k 2 Zg �U with U as in (39): (45)

Lemma 4.2 (d) shows that the map GZ ! Aut.B3;L/ is surjective. Together
with (44), this gives (39). �
Lemma 4.2

(a) Let VZ be a Z-lattice of rank 2 with a Z-basis b D .b1; b2/ and a symmetric
pairing LZ given by

LZ.b
t; b/ D

�
2 �1
�1 m

�

for some m 2 N�2:

Define � WD e2� i=l for some l 2 f3; 4; 5g, where we exclude the cases .m �
3; l D 5/. Define VC WD VZ ˝Z C, VZŒ�� WD VZ ˝Z ZŒ�� � VC, and extend LZ
sesquilinearly (=linear�semilinear) to VC. Then

fr 2 VZŒ�� j LC.r; r/ D 2g (46)

D f˙�k j k 2 Zg � fr 2 VZ j LZ.r; r/ D 2g:

In the case, m � 3

fr 2 VZŒ�� j LC.r; r/ D m; r … ZŒ��b1g (47)

D f˙�k j k 2 Zg � fr 2 VZ j LZ.r; r/ D m; r … Zb1g:

(b) In the situation of (a)

Aut.VZŒ��;LC/ D f˙�k j k 2 Zg � Aut.VZ;LZ/ (48)

.˙ id lives on both sides, therefore not �/

Aut.VZ;LZ/ Š f˙
�
1 0

0 1

�

;˙
��1 1
0 1

�

g

Š f˙ idg � S2 in the cases m � 3; (49)

Aut.VZ;LZ/ Š Aut.root lattice of type A2/

Š f˙ idg � S3 in the case m D 2: (50)

(c) In the situation of the proof of Theorem 4.1,

Aut.B3;L/ D f˙.MhjB3/k j k 2 Zg � U with U as in (39): (51)
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(d) In the situation of the proof of Theorem 4.1, the map GZ ! Aut.B3;L/ is
surjective.

Proof

(a) An element r D r1b1 C r2b2 with r1; r2 2 ZŒ�� satisfies

LC.r; r/ D 2jr1j2 � .r1r2 C r1r2/C mjr2j2
D jr1j2 C jr1 � r2j2 C .m � 1/jr2j2: (52)

First consider the cases l 2 f3; 4g. Then ZŒ�� \ R D Z. Then the three absolute
values in (52) are nonnegative integers. Their sum is 2 if and only if

jr1j D 1; r2 D 0 in the cases m � 3; (53)

.jr1j; jr2j/ 2 f.1; 0/; .0; 1/; .1; 1/g
and in the last case r1 D r2

�

in the case m D 2: (54)

In the case m � 3 and in the case of an r … ZŒ��b1, the sum of the three absolute
values in (53) is m if and only if

.r1 D 0; jr2j D 1/ or .r1 D r2; jr1j D 1/: (55)

Together with ZŒ�� \ S1 D f˙�k j k 2 Zg, this shows part (a) in the cases
l 2 f3; 4g.

It rests to consider the case .m; l/ D .2; 5/. In that case, write

r1 D r10 C r11� C r12�
2 C r13�

3; r2 D r20 C r21� C r22�
2 C r23�

3

with rij 2 Z. Then,

LC.r; r/ D 2jr1j2 C 2jr2j2 � .r1r2 C r1r2/

D 2
2

4
3X

jD0
r21j C .� C �4/

3X

jD1
r1jr1;j�1 C .�2 C �3/

X

j�k�2
r1jr1k

3

5

C 2
2

4
3X

jD0
r22j C .� C �4/

3X

jD1
r2jr2;j�1 C .�2 C �3/

X

j�k�2
r2jr2k

3

5

�
2

42

3X

jD0
r1jr2j C .� C �4/

3X

jD1
.r1jr2;j�1 C r1;j�1r2j/
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C .�2 C �3/
X

j�k�2
.r1jr2k C r1kr2j/

3

5

D A1 C A2 �
p
5

2
with A1;A2 2 Z:

It is not so easy to find, but easy to check that A1 is equal to

1

4

3X

jD0

	
r21j C r22j C .r1j � r2j/

2



(56)

C 1

4

X

j<k

	
.r1j � r1k � r2j C r2k/

2 C .r1j � r1k/
2 C .r2j � r2k/

2


:

Now it is an easy exercise to find the 8-tuples .r10; : : : ; r23/ 2 Z
8 for which (56)

takes the value 2. They are (here ej D .ıij/iD1;:::;8 for j D 1; : : : ; 8 is the standard
basis of Z8)

˙ e1; : : : ;˙e8;˙.e1 C e5/;˙.e2 C e6/;˙.e3 C e7/;˙.e4 C e8/; (57)

˙.1; 1; 1; 1; 0; 0; 0; 0/;˙.0; 0; 0; 0; 1; 1; 1; 1/;˙.1; 1; 1; 1; 1; 1; 1; 1/:

Observe 1C � C �2 C �3 D ��4 and

fr 2 VZ j LZ.r; r/ D 2g D f˙b1;˙b2;˙.b1 C b2/g:

The coefficients .r10; : : : ; r23/ in (57) give precisely the elements r D r1b1Cr2b2
on the right-hand side of (46). This shows part (a) for .m; l/ D .2; 5/.

(b) Any element g of Aut.VZŒ��;LC/will map the sets in (46) and (47) to themselves.
The basis elements b1 and b2 are mapped to two elements in these sets with
LC.g.b1//; g.b2// D LZ.b1; b2/ D �1. Therefore, g is up to a factor in
f˙�k j k 2 Zg, an element of Aut.VZ;LZ/. This shows (48).

In the case m � 3

fr 2 VZ j LZ.r; r/ D 2g D f˙b1g
and fr 2 VZ j LZ.r; r/ D mg D f˙b2;˙.b1 C b2/g:

This shows (49). The case m D 2 is the case of the root lattice of type A2.
Equation (50) is well known and easy to see.

(c) In the cases Z12 and Z18 as curve singularities, the Examples 2.2 (ii) and (iii)
showed Aut.Rad.I/;L/ D f˙ idg. Here Rad.I/ D ker.Mcurve case

h � id/. Under
stabilization Rad.I/ becomes B3, and L changes just the sign; see (16). Thus,
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Aut.B3;L/ D f˙ idg. Because of MhjB3 D � id and U WD fidg in the cases Z12
and Z18, this shows (c) in these cases.

Now consider the cases Q12;Q16;U12, and U16. Here part (b) will be used,
but that has to be prepared.

The normal forms of the quasihomogeneous surface singularities, given in
Sect. 7, show that they are sums of singularities in different variables of types
Al and D2m with .l; 2m/ as follows:

Q12 Q16 U12 U16
.l; 2m/ .2; 6/ .2; 8/ .3; 4/ .4; 4/

A2 ˝ D6 A2 ˝D8 A3 ˝ D4 A4 ˝ D4

(58)

Here the singularity Al is in one variable and has the characteristic polynomial
pAl
ch D .tlC1 � 1/=.t � 1/, and the singularity D2m is a curve singularity and

has the characteristic polynomial pD2mch D .t2m�1 � 1/˚1. The Thom-Sebastiani
results which were cited in Sect. 2 apply

.Ml. f /;L/ Š .Ml.Al/;LAl/˝ .Ml.D2m/;LD2m/; (59)

Mh Š MAl
h ˝MD2m

h ;

and show

p2 D pAl
ch;

.B3;L/ Š .Ml.Al/;LAl/˝ .Ml.D2m/1;Z;LD2m/; (60)

MhjB3 Š MAl
h ˝ id :

The pair .Ml.D2m/1;Z;LD2m/ was considered in Example 2.2 (i). There is a Z-
basis b D .b1; b2/ of Ml.D2m/1;Z with

LD2m.b
t; b/ D

��2 1

1 �m
�

: (61)

The pairings L and LAl˝LD2m will be extended sesquilinearly from the Z-lattices
to the C-vector spaces.

The Z-lattice Ml.Al/ is a cyclic monodromy module. Choose a generator
e of it. Therefore, Ml.Al/ ˝ Ml.D2m/1;Z is a sum of two cyclic monodromy
modules, and generators are e ˝ b1 and e ˝ b2. For any automorphism g of
.Ml.Al/˝Ml.D2m/1;Z;M

Al
h ˝ id/, there are unique polynomials g1; g2; g3; g4 2

ZŒt� of degree � deg p2 � 1 such that

�
g.v ˝ b1/
g.v ˝ b2/

�

D
�
g1.M

Al
h /.v/˝ b1 C g3.M

Al
h /.v/˝ b2

g2.M
Al
h /.v/˝ b1 C g4.M

Al
h /.v/˝ b2

�

(62)

for any v 2 Ml.Al/.
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Now choose any eigenvalue � of MAl
h . Then ZŒ�� is a principal ideal domain.

The space ker.MAl
h �� id/\Ml.Al/ZŒ�� is a free ZŒ��-module of rank 1. Choose a

generating vector v. This choice gives an isomorphism from this space to ZŒ��.
The spaces

ker.Mh � � id/ \Ml. f /ZŒ�� Š .ker.MAl
h � � id/ \Ml.Al/ZŒ��/˝Ml.D2m/1;ZŒ��

are free ZŒ��-modules of rank 2. The space on the right-hand side has the ZŒ��-
basis .v ˝ b1; v ˝ b2/ DW v ˝ b. Now (62) becomes

g.v ˝ b/ D v ˝ b �
�
g1.�/ g2.�/
g3.�/ g4.�/

�

: (63)

The pairing satisfies

.LAl ˝ LD2m/.v ˝ b/ D LAl.v; v/ �
��2 1

1 �m
�

; (64)

where LAl.v; v/ 2 ZŒ�� \ R>0. This space with this pairing is up to a scalar
isomorphic to a pair .VZŒ��;LC/ considered in the parts (a) and (b). Therefore,
by part (b), its group of automorphisms is isomorphic to f˙�k j k 2 Zg �
Aut.VZ;LZ/.

Thus, any element of Aut.B3;L/ restricts on ker.Mh�� id/\Ml.f /ZŒ�� to such
an automorphism. In the cases Q12;Q16 and U16, the polynomial p2 D ˚3;˚3,
respectively, ˚5 is irreducible, so all its zeros � are conjugate. Therefore, then

Aut.B3;L/ Š f˙.MhjB3/k j k 2 Zg � Aut.VZ;LZg
Š f˙.MhjB3/k j k 2 Zg � U;

which proves (c) in these cases.
In the case, U12 the characteristic polynomial pA3ch D p2 D ˚4˚2 is reducible.

Consider an automorphism g of

.Ml.Al/˝Ml.D2m/1;Z;LAl ˝ LD2m/:

It is determined by the polynomials g1; g2; g3; g4 2 ZŒt� in (62). For � D i and
for � D �1, it gives an automorphism of ZŒ��v ˝ b1 ˚ ZŒ��v ˝ b2 which is

given by a matrix

�
g1.�/ g2.�/
g3.�/ g4.�/

�

which is by part (b) in

f˙�k j k 2 Zg �
�

˙
�
1 0

0 1

�

;˙
�
0 �1
1 �1

�

;˙
��1 1
�1 0

�

; (65)

˙
�
0 1

1 0

�

;˙
��1 0
�1 1

�

;˙
�
1 �1
0 �1

��

:
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By multiplying g with a suitable automorphism, we can suppose that the matrix
for � D i is the identity matrix. Then

�
g1 g2
g3 g4

�

D
�
1C .t2 C 1/Qg1 .t2 C 1/Qg2
.t2 C 1/Qg3 1C .t2 C 1/Qg4

�

;

for some Qg1; Qg2; Qg3; Qg4 2 ZŒt�, so

�
g1.�1/ g2.�1/
g3.�1/ g4.�1/

�

D
�
1C 2Qg1.�1/ 2Qg2.�1/
2Qg3.�1/ 1C 2Qg4.�1/

�

:

The only two possibilities are˙
�
1 0

0 1

�

. In the case of a minus sign, gı..MAl
h /

2˝
idD2m/ D � id, and in the case of a plus sign, g D id. This finishes the proof of
(c) in the case U12.

(d) In Sect. 7 a subgroup Gmar of GZ will be calculated, and it will be shown that
Gmar D f˙Mk

h j k 2 Zg � U. This shows GZ � f˙Mk
h j k 2 Zg � U and that the

map GZ ! Aut.B3;L/ is surjective. �
Remark 4.3 The number theoretic fact ZŒe2� i=a� \ S1 D f˙e2� ik=a j k 2 Zg can be
interpreted as saying that in the case of the A1-lattice VZ D Z with Z-basis b1 D 1

and standard bilinear form LZ with LZ.b1; b1/ D 1 and Hermitian extension LC to
C, the analogue of (46) holds. Now (46) for m D 2 can be seen as a generalization
from the case A1 to the case A2. Above it is proved only in the cases l D 3; 4; 5.

5 Review on �-Constant Monodromy Groups Gmar, Marked
Singularities, Their Moduli Spaces Mmar

� , and Torelli Type
Conjectures

This paper is a sequel to [12]. That paper studied holomorphic functions germs
f W .CnC1; 0/ ! .C; 0/ with an isolated singularity at 0 from a global perspective.
Here we review most of the notions and results from [12].

It defined the notions of marked singularity and strongly marked singularity. The
marking uses the Milnor lattice Ml.f / Š Z

� and the Seifert form L on it, which are
explained in Sect. 2.

Definition 5.1 Fix one reference singularity f0.

(a) Then a strong marking for any singularity f in the �-homotopy class of f0
(i.e., there is a 1-parameter family of singularities with constant Milnor number
connecting f and f0) is an isomorphism � W .Ml. f /;L/! .Ml. f0/;L/.

(b) The pair . f ; �/ is a strongly marked singularity. Two strongly marked singu-
larities . f1; �1/ and . f2; �2/ are right equivalent (notation: 	R) if a coordinate
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change ' W .CnC1; 0/! .CnC1; 0/ with

f1 D f2 ı ' and �1 D �2 ı 'hom
exists, where 'hom W .Ml. f1/;L/! .Ml. f2/;L/ is the induced isomorphism.

(c) The notion of a marked singularity is slightly weaker. If f and � are as above,
then the pair (f ;˙�/ is a marked singularity (writing ˙�, the set f�;��g is
meant, neither � nor �� is preferred).

(d) Two marked singularities . f1; �1/ and . f2; �2/ are right equivalent (notation:
	R) if a coordinate change ' with

f1 D f2 ı ' and �1 D ˙�2 ı 'hom
exists.

Remark 5.2

(i) The notion of a marked singularity behaves better than the notion of a strongly
marked singularity, because it is not known whether all �-homotopy families
of singularities satisfy one of the following two properties:

Assumption (5.1): Any singularity in the �-homotopy (66)

class of f0 has multiplicity � 3:
Assumption (5.2): Any singularity in the �-homotopy (67)

class of f0 has multiplicity 2:

We expect that always one of two assumptions holds. For curve singularities
and singularities right equivalent to semiquasihomogeneous singularities, this
is true, but in general it is not known. In a �-homotopy family where neither of
the two assumptions holds, strong marking behaves badly; see (ii).

(ii) If mult. f / D 2, then . f ; �/ 	R . f ;��/, which is easy to see. If mult.f / � 3,
then . f ; �/ 6	R . f ;��/, whose proof in [12] is quite intricate. These properties
imply that the moduli space for strongly marked singularities discussed below
is not Hausdorff in the case of a �-homotopy class which satisfies neither one
of the assumptions (66) or (67).

In [11] for the�-homotopy class of any singularity f0, a moduli space M�.f0/was
constructed. As a set, it is simply the set of right equivalence classes of singularities
in the �-homotopy class of f0. But in [11], it is constructed as an analytic geometric
quotient, and it is shown that it is locally isomorphic to the �-constant stratum
of a singularity modulo the action of a finite group. The �-constant stratum of a
singularity is the germ .S�; 0/ � .M; 0/ within the germ of the base space of a
universal unfolding F of f , such that for a suitable representative

S� D ft 2 M jFt has only one singularity x0 and Ft.x0/ D 0g: (68)
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It comes equipped with a canonical complex structure, and M� inherits a canonical
structure; see Chaps. 12 and 13 in [11].

In [12] analogous results for marked singularities were proved. A better property
is that Mmar

� is locally isomorphic to a �-constant stratum without dividing out a
finite group action. Therefore, one can consider it as a global �-constant stratum
or as a Teichmüller space for singularities. The following theorem collects results
from [12, Theorem 4.3].

Theorem 5.3 Fix one reference singularity f0. Define the sets

Msmar
� . f0/ WD fstrongly marked . f ; �/ j (69)

f in the �-homotopy class of f0g= 	R;

Mmar
� . f0/ WD fmarked . f ;˙�/ j (70)

f in the �-homotopy class of f0g= 	R :

(a) Mmar
� . f0/ carries a natural canonical complex structure. It can be constructed

with the underlying reduced complex structure as an analytic geometric
quotient (see [12, Theorem 4.3] for details).

(b) The germ .Mmar
� . f0/; Œ. f ;˙�/�/ with its canonical complex structure is isomor-

phic to the �-constant stratum of f with its canonical complex structure (see
[11, Chap. 12] for the definition of that).

(c) For any  2 GZ. f0/ DW GZ, the map

 mar W Mmar
� ! Mmar

� ; Œ. f ;˙�/�! Œ. f ;˙ ı �/�

is an automorphism of Mmar
� . The action

GZ �Mmar
� ! Mmar

� ; . ; Œ. f ;˙�/� 7!  mar.Œ. f ;˙�/�/

is a group action from the left.
(d) The action of GZ on Mmar

� is properly discontinuous. The quotient Mmar
� =GZ is

the moduli space M� for right equivalence classes in the �-homotopy class of
f0, with its canonical complex structure. Especially, Œ. f1;˙�1/� and Œ. f2;˙�2/�
are in one GZ-orbit if and only if f1 and f2 are right equivalent.

(e) If assumption (66) or (67) holds, then (a) to (d) are also true for Msmar
� and

 smar with  smar.Œ.f ; �/�/ WD Œ.f ;  ı�/�. If neither (66) nor (67) holds, then the
natural topology on Msmar

� is not Hausdorff.

We stick to the situation in Theorem 5.3 and define two subgroups of GZ. f0/.
The definitions in [12, Definition 3.1] are different; they use �-constant families.
The following definitions are a part of Theorem 4.4 in [12].
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Definition 5.4 Let .Mmar
� /0 be the topological component of Mmar

� (with its reduced
complex structure) which contains Œ.f0;˙ id/�. Then

Gmar. f0/ WD f 2 GZ j maps .Mmar
� /0 to itselfg � GZ. f0/: (71)

If assumption (66) or (67) holds, .Msmar
� /0 and Gsmar. f0/ � GZ. f0/ are defined

analogously.

The following theorem is also proved in [12].

Theorem 5.5

(a) In the situation above, the map

GZ=G
mar. f0/! ftopological components of Mmar

� g
 � Gmar. f0/ 7! the component mar..M

mar
� /0/

is a bijection.
(b) If assumption (66) or (67) holds, then (a) is also true for Msmar

� and Gsmar. f0/.
(c) � id 2 GZ acts trivially on Mmar

� . f0/. Suppose additionally that assumption (66)
holds for f0. Then f˙ idg acts freely on Msmar

� . f0/, and the quotient map

Msmar
� . f0/

=f˙ idg�! Mmar
� . f0/; Œ. f ; �/� 7! Œ. f ;˙�/�

is a double covering.

The first main conjecture in [12] is part (a) of the following conjecture (the
second main conjecture in [12] is Conjecture 5.11 (a) below).

Conjecture 5.6

(a) Fix a singularity f0. Then Mmar
� is connected. Equivalently (in view of Theo-

rem 5.5 (a)): Gmar. f0/ D GZ:

(b) If the �-homotopy class of f0 satisfies assumption (66), then � id … Gsmar. f0/.

If (a) holds, then (b) is equivalent to Msmar
� .f0/ having two components. If (a)

and (b) hold, there should be a natural invariant which distinguishes the index 2
subgroup Gsmar � Gmar D GZ. Anyway, part (a) is the more important conjecture.
Using the other definition of Gmar in [12], it says that up to˙ id, any element of GZ

can be realized as transversal monodromy of a �-constant family with parameter
space S1.

The whole Conjecture 5.6 had been proved in [12] for the simple singularities
and those 22 of the 28 exceptional unimodal and bimodal singularities, where
all eigenvalues of the monodromy have only multiplicity one [12, Theorems 8.3
and 8.4]. In this paper, it will be proved for the remaining unimodal and exceptional
bimodal singularities.
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In order to understand the stabilizers StabGZ
.Œ.f ; �/�/ and StabGZ

.Œ. f ;˙�/�/ of
points Œ. f ; �/� 2 Msmar

� . f0/ and Œ. f ;˙�/� 2 Mmar
� . f0/, we have to look at the

symmetries of a single singularity. These had been discussed in [11, Chap. 13.2].
The discussion had been taken up again in [12].

Definition 5.7 Let f0 D f0.x0; : : : ; xn/ be a reference singularity and let f be any
singularity in the �-homotopy class of f0. If � is a marking, then GZ. f / D ��1 ı
GZ ı �.

We define

R WD f' W .CnC1; 0/! .CnC1; 0/ biholomorphicg; (72)

R f WD f' 2 R j f ı ' D f g; (73)

Rf WD j1R
f =. j1R

f /0; (74)

Gsmar
R . f / WD f'hom j ' 2 R f g � GZ. f /; (75)

Gmar
R . f / WD f˙ j 2 Gsmar

R . f /g: (76)

Again, the definition of Gsmar
R is different from the definition in [12, Defini-

tion 3.1]. The characterization in (75) is [12, Theorem 3.3. (e)]. Rf is the finite
group of components of the group j1R f of 1-jets of coordinate changes which leave
f invariant. The following theorem collects results from several theorems in [12].

Theorem 5.8 Consider the data in Definition 5.7.

(a) If mult. f / � 3, then j1R f D Rf .
(b) The homomorphism ./hom W R f ! GZ. f / factors through Rf . Its image is

.Rf /hom D Gsmar
R . f / � GZ. f /.

(c) The homomorphism ./hom W Rf ! Gsmar
R . f / is an isomorphism.

(d)

� id … Gsmar
R . f / ” mult f � 3: (77)

Equivalently: Gmar
R . f / D Gsmar

R . f / if mult f D 2, and Gmar
R . f / D Gsmar

R . f / �
f˙ idg if mult f � 3.

(e) Gmar
R . f / D Gmar

R . f C x2nC1/.
( f) Mh 2 Gsmar. f /. If f is quasihomogeneous, then Mh 2 Gsmar

R . f /.
(g) For any Œ. f ; �/� 2 Msmar

�

StabGZ
.Œ. f ; �/�/ D � ı Gsmar

R . f / ı ��1; (78)

StabGZ
.Œ. f ;˙�/�/ D � ı Gmar

R . f / ı ��1: (79)

((78) does not require assumption (66) or (67)). As GZ acts properly discontin-
uously on Mmar

� . f0/, Gsmar
R . f / and Gmar

R . f / are finite. (But this follows already
from the finiteness of Rf and (b).)



134 F. Gauss and C. Hertling

In the case of a quasihomogeneous singularity, the group Rf has a canonical lift
to R f . It will be useful for the calculation of Rf .

Theorem 5.9 ([11, Theorem 13.11]) Let f 2 CŒx0; : : : ; xn� be a quasihomo-
geneous polynomial with an isolated singularity at 0 and weights w0; : : : ;wn 2
Q \ .0; 1

2
� and weighted degree 1. Suppose that w0 � : : : � wn�1 < 1

2
(then

f 2 m3 if and only if wn <
1
2
/. Let Gw be the algebraic group of quasihomogeneous

coordinate changes, that means, those which respect CŒx0; : : : ; xn� and the grading
by the weights w0; : : : ;wn on it. Then

Rf Š StabGw. f /: (80)

Finally we need and we want to study period maps and Torelli-type problems for
singularities.

This story should start with the definition of the Gauß-Manin connection and the
Brieskorn lattice for an isolated hypersurface singularity. This had been developed
in many papers of the second author and also much earlier by Brieskorn, K. Saito,
G.-M. Greuel, F. Pham, A. Varchenko, M. Saito, and others.

As we will build here on calculations done in [6] and therefore never have to
touch Brieskorn lattices explicitly, we take here a formal point of view and refer to
[6, 7, 9, 11] and [12] for the definitions of the following objects.

Any singularity f comes equipped with a Brieskorn lattice H000 . f /. It is much
richer than, but still comparable to, a Hodge structure of a closed Kähler manifold.

After fixing a reference singularity f0, a marked singularity . f ;˙�/ comes
equipped with a marked Brieskorn lattice BL. f ;˙�/. A classifying space DBL. f0/
for marked Brieskorn lattices was constructed in [9]. It is especially a complex
manifold, and GZ acts properly discontinuously on it.

Theorem 5.10 Fix one reference singularity f0.

(a) There is a natural holomorphic period map

BL W Mmar
� . f0/! DBL. f0/: (81)

It is GZ-equivariant.
(b) [11, Theorem 12.8] It is an immersion; here the reduced complex structure

on Mmar
� . f0/ is considered. (The second author has also a proof that it is an

immersion where the canonical complex structure on Mmar
� . f0/ is considered,

but the proof is not written.)

The second main conjecture in [12] is part (a) of the following conjecture. Part
(a) and part (b) are global Torelli-type conjectures.

Conjecture 5.11 Fix one reference singularity f0.

(a) The period map BL W Mmar
� ! DBL is injective.

(b) The period map LBL W M� D Mmar
� =GZ ! DBL=GZ is injective.

(c) For any singularity f in the �-homotopy class of f0 and any marking �,
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StabGZ
.Œ. f ;˙�/�/ D StabGZ

.BL.Œ. f ;˙�/�// (82)

(only � and the finiteness of both groups are clear).

The second author has a long-going project on Torelli-type conjectures. Already
in [6], part (b) was conjectured and proved for all simple and unimodal singularities
and almost all bimodal singularities (all except 3 subseries of the 8 bimodal series).
This was possible without the general construction of M� and DBL, which came
later in [11] and [9]. In the concrete cases considered in [6], it is easy to identify a
posteriori the spaces M� and DBL. We will make use of that in the Sects. 6 and 7.
Part (c) was conjectured in [11]. See [8] and [10] for other Torelli-type results.

The following lemma from [12] clarifies the logic between the parts (a), (b), and
(c) of Conjecture 5.11.

Lemma 5.12 In Conjecture 5.11, (a) ” (b) and (c).

Part (a) of Conjecture 5.11 was proved in [12] for the simple and those 22 of
the 28 exceptional unimodal and bimodal singularities, where all eigenvalues of
the monodromy have multiplicity one. Here it will be proved for the remaining
unimodal and the remaining exceptional bimodal singularities.

As part (b) of Conjecture 5.11 was already proved in all these cases in [6], the
main work in [12, Sect. 8] and here is the control of the group GZ. This is carried
out here in Sects. 3 and 4, and it is surprisingly difficult.

6 Gmar,Mmar
� and a Strong Torelli Result for the Simple

Elliptic and the Hyperbolic Singularities

The 1-parameter families of the hyperbolic singularities of type Tpqr (p; q; r 2 N�2,
p � q � r, � WD 1

p C 1
q C 1

r < 1) have as surface singularities the normal forms [1]

xp C yq C zr C t � xyz; t 2 X WD C
�: (83)

The 1-parameter families of the simple elliptic singularities T333 D eE6;T442 D
eE7;T632 D eE8 have as surface singularities different normal forms [20]. The normal
form xp C yq C zr C t � xyz does in the case of T442 not contain representatives of all
right equivalence classes; the class with j-invariant j D 1 is missing [20, 1.11, Bem.
(ii)]. Therefore, we work in the following also with the Legendre normal forms:

T333 W y.y � x/.y � x/� xz2; t 2 X WD C � f0; 1g;
T442 W yx.y � x/.y � x/C z2; t 2 X WD C � f0; 1g; (84)

T632 W y.y � x2/.y � x2/C z2; t 2 X WD C � f0; 1g:

They contain representatives of all right equivalence classes. Let Xuniv denote the
universal covering of X, so Xuniv D C if � < 1 and Xuniv D H if � D 1.
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Theorem 6.1

(a) For the simple elliptic singularities and the hyperbolic singularities in any
number of variables, the space Mmar

� of right equivalence classes of marked
singularities is Mmar

� Š Xuniv , so it is connected, and thus Gmar D GZ. The
period map BL W Mmar

� ! DBL is an isomorphism, so the strong global Torelli
Conjecture 5.11 (a) is true.

(b) Now consider the singularities of type Tpqr as curve singularities if r D 2 and
as surface singularities if r � 3. Then

GZ D Gmar D Gsmar � f˙ idg; equivalently: � id … Gsmar: (85)

The subgroup of Gsmar, which acts trivially on Mmar
� , is the kernel of the

surjective map

Gsmar ! Aut.Ml. f0/1;Z;L/=f˙ idg: (86)

It is equal to � ı .R f /hom ı ��1 for a generic Œ. f ; �/� 2 Mmar
� . Its size is 54, 16,

and 6 for T333, T442, and T632.

Proof

(a) The proof uses two Torelli-type results from [6].

We choose a marked reference singularity Œ. f0;˙ id/� in Xuniv; then all elements
of Xuniv become marked singularities, because Xuniv is simply connected. Then the
period map Xuniv ! DBL is well defined. The first Torelli-type result from [6] is that
this map is an isomorphism.

Therefore, the marked Brieskorn lattices of the marked singularities in Xuniv are
all different. Therefore, the marked singularities in Xuniv are all not right equivalent.
This gives an embedding Xuniv ,! Mmar

� . f0/0.
On the other hand, we have the period map BL W Mmar

� . f0/0 ! DBL, which
is an immersion. As it restricts to the isomorphism Xuniv ! DBL, finally Xuniv D
Mmar
� . f0/0.
For part (a) it rests to show that Gmar D GZ. Then Mmar

� is connected and Mmar
� D

Xuniv, and BL W Mmar
� ! DBL is an isomorphism.

We have to look closer at DBL and the action of GZ on it. In the case � < 1,

DBL Š fV � Ml. f0/1 j dimV D 1;V ¤ ker.Mh � id/g: (87)

In the case � D 1,

DBL Š one component of fV � Ml. f0/1 j dimV D 1;V ¤ Vg: (88)

In both cases, the group Aut.Ml. f0/1;Z;L/=f˙ idg acts faithfully on DBL.
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In both cases, the second Torelli-type result from [6] which we need is that the
period map

Xuniv= 	R! DBL=Aut.Ml. f0/1;Z;L/ (89)

is an isomorphism. Here 	R denotes right equivalence for unmarked singularities.
Because of Xuniv D Mmar

� . f0/0,

Xuniv= 	RD Mmar
� . f0/

0=Gmar: (90)

The isomorphism (89) and the isomorphism Mmar
� . f0/0 D Xuniv ! DBL show that

the map

Gmar ! Aut.Ml. f0/1;Z;L/ (91)

is surjective. This completes the proof of part (b) of Theorem 3.1.
It also shows that for proving Gmar D GZ, it is sufficient to show that the kernels

of the maps to Aut.Ml. f0/1;Z;L/=f˙ idg coincide. The kernel of the map GZ !
Aut.Ml. f0/1;Z;L/=f˙ idg was determined in Theorem 3.1. In fact, this is the only
part of Theorem 3.1 which we need here. It consists of those elements of .U1ÌU2/�
f˙ idg in (22) for which ı D 0, so it is isomorphic to the group

�

f.˛; ˇ; �/ 2 Zp � Zq � Zr j ˛
p
C ˇ

q
C �

r
� 0 mod 1g Ì U2

�

� f˙ idg

DW .U0
1 Ì U2/ � f˙ idg: (92)

The kernel of the map Gmar ! Aut.Ml. f0/1;Z;L/=f˙ idg is the subgroup of Gmar

which acts trivially on Mmar
� . f0/0. It is the isotropy group in Gmar of a generic point

Œ. f ;˙�/� 2 Mmar
� . f0/0. So by Theorem 5.8 (g), it is the group

� ı Gmar
R . f / ı ��1 D � ı f˙'hom j ' 2 R f g ı ��1: (93)

As f is generic, we can and will use now the normal form f D xpCyqCzrCt �xyz,
also in the case � D 1. The following coordinate changes generate a finite subgroup
S � R f

'˛;ˇ;� W .x; y; z/ 7! .e2� i˛=px; e2� iˇ=qy; e2� i�=rz/ (94)

with
˛

p
C ˇ

q
C �

r
� 0 mod 1;

'1;2 W .x; y; z/ 7! .y; x; z/ if p D q;

'2;3 W .x; y; z/ 7! .x; z; y/ if q D r;

'minus W .x; y; z/ 7! .x; y;�z � txy/ if r D 2:
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'minus has order 2 and commutes with the other coordinate changes (q D r D 2 is
impossible because of � � 1). The group S is isomorphic (as an abstract group) to
U0
1 ÌU2 if r � 3 and to .U0

1 ÌU2/�f˙ idg if r D 2. The map to 1-jets of coordinate
changes is injective,

S
Š�! j1S � j1R

f � j1R: (95)

Now we have to treat the cases r � 3 and r D 2 separately.

The case r � 3: Then j1R f is finite and isomorphic to Rf ; the map

./hom W Rf ! GZ. f / D ��1 ı GZ ı �

is injective, and the image Gsmar
R . f / does not contain � id (Theorem 5.8).

Therefore, then S Š .S/hom � GZ. f / and � id … .S/hom. Thus, the group
.S/hom � f˙ idg is isomorphic to .U0

1 Ì U2/ � f˙ idg. Now it is clear that the
group in (93) is at least as big as the group in (92). But it cannot be bigger. So
they are of equal size. This implies Gmar D GZ.

The case r D 2: We claim that the map S ! .S/hom is injective. If this is true,
then .S/hom Š .U0

1 Ì U2/ � f˙ idg, and this is of equal size as the group in (92).
Then again the group in (93) is at least as big as the group in (92), but it cannot
be bigger. So they are of equal size. This implies Gmar D GZ.

It rests to prove the claim. For this we consider the curve singularity

g WD xp C yq � 1
4
tx2y2: (96)

Then,

gC z2 D f ı  with  .x; y; z/ D .x; y; z � 1
2
txy/;

RgCz2 D  �1 ıR f ı  ; (97)

 �1 ı '˛;ˇ;� ı  D '˛;ˇ;� ;
 �1 ı '1;2 ı  D '1;2; if p D q;

 �1 ı 'minus ı  D ..x; y; z/ 7! .x; y;�z//:

(q D r D 2 is impossible because of � � 1). The subgroup

Scurve WD f'˛;ˇ;� ı .'minus/�� j .˛; ˇ; �/ 2 U0
1g Ì U2 (98)

has index 2 in S, its conjugate �1ıScurveı restricts to Rg, and it maps injectively
to j1Rg Š Rg. By Theorem 5.8 (c), the map Scurve ! .Scurve/hom is injective, and
� id is not in the image. But .'minus/hom D � id. This proves the claim.
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(b) By Theorem 5.5 (c), the projection Msmar
� ! Mmar

� is a twofold covering, and
� id exchanges the two sheets of the covering. Because of Mmar

� D C if � < 1

and Mmar
� D H if � D 1, Msmar

� has two components. Therefore, � id … Gsmar

and GZ D Gmar D Gsmar � f˙ idg.
The statements right before and after (86) were already proved and used in the

proof of part (a).
The group � ı .R f /hom ı ��1 for a generic Œ. f ; �/� 2 Mmar

� has size 54, 16, and 6
for T333;T442, and T632, because it is isomorphic to an index 2 subgroup of the group
in (92), and that group has 108, 32, and 12 elements in the cases T333;T442, and T632
�

7 Gmar,Mmar
� , and a Strong Torelli Result for 6 of the 28

Exceptional Unimodal and Bimodal Singularities

Normal forms for the 1-parameter families of the exceptional unimodal and bimodal
singularities of types Z12;Q12;U12;Z18;Q16, and U16 in the minimal number
of variables are as follows [1]. Here Z12 and Z18 are curve singularities, and
Q12;U12;Q16, and U16 are surface singularities. The singularity for the parameter
t D 0 is quasihomogeneous; the others are semiquasihomogeneous. The space of
the parameter t D t1 or t D .t1; t2/ is X D C

mod. f0/. The weights w D .wx;wy/,
respectively, w D .wx;wy;wz/ are normalized such that degw f0 D 1.

Normal form mod. f0/ Weights
Z12 W ft D x3yC xy4 C tx2y3 1 . 3

11
; 2
11
/

Q12 W ft D x3 C y5 C yz2 C txy4 1 . 1
3
; 1
5
; 2
5
/

U12 W ft D x3 C y3 C z4 C txyz2 1 . 1
3
; 1
3
; 1
4
/

Z18 W ft D x3yC xy6 C .t1 C t2y/y9 2 . 5
17
; 2
17
/

Q16 W ft D x3 C y7 C yz2 C .t1 C t2y/xy5 2 . 1
3
; 1
7
; 3
7
/

U16 W ft D x3 C xz2 C y5 C .t1 C t2y/x2y2 2 . 1
3
; 1
5
; 1
3
/

(99)

The normal form of the quasihomogeneous singularity of type Q12, Q16, U12,
and U16 is a sum of an Al-singularity in one variable and a D2m singularity in two
variables with .l; 2m/ as in table (100)=(58).

Q12 Q16 U12 U16
.l; 2m/ .2; 6/ .2; 8/ .3; 4/ .4; 4/

A2 ˝ D6 A2 ˝D8 A3 ˝ D4 A4 ˝ D4

(100)

The rest of this section is devoted to the proof of the following theorem.
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Theorem 7.1

(a) For the six families of exceptional unimodal and bimodal singularities of types
Z12;Q12;U12;Z18;Q16, and U16 in any number of variables, the space Mmar

� of

right equivalence classes of marked singularities is Mmar
� Š X D C

mod. f0/, so
it is connected, and thus Gmar D GZ. The period map BL W Mmar

� ! DBL is an
isomorphism, so the strong global Torelli Conjecture 5.11 (a) is true.

(b) Now consider the singularities of type Z12 and Z18 as curve singularities and
the singularities of types Q12;U12;Q16, and U16 as surface singularities. Then
their multiplicities are � 3. Then

GZ D Gmar D Gsmar � f˙ idg; equivalently: � id … Gsmar: (101)

Proof

(a) The proof is similar to the proof of Theorem 6.1, but simpler. We need only the
first of the two Torelli-type results from [6], which were used in the proof of
Theorem 6.1.

We choose as marked reference singularity the quasihomogeneous singularity
with trivial marking Œ. f0;˙ id/� in X. Then all elements of X become marked
singularities, because X is simply connected. Then the period map X ! DBL is
well defined. A Torelli-type result from [6] says that this map is an isomorphism. It
is in fact easy, because the singularities here are semiquasihomogeneous and only f0
is quasihomogeneous. That makes the calculations easy.

Therefore, the marked Brieskorn lattices of the marked singularities X are all
different. Therefore, the marked singularities in X are all not right equivalent. This
gives an embedding X ,! Mmar

� . f0/0.
On the other hand, we have the period map BL W Mmar

� . f0/0 ! DBL, which is an
immersion. As it restricts to the isomorphism X ! DBL, finally X D Mmar

� . f0/0.
For part (a), it rests to show that Gmar D GZ. ThenMmar

� is connected and Mmar
� D

X, and BL W Mmar
� ! DBL is an isomorphism.

The weights of the deformation parameter(s) t1 (and t2) equip the parameter space
X D Mmar

� with a good C
�-action. It commutes with the action of GZ. This gives the

first equality in

Gmar D StabGZ
.Œ. f0;˙ id/�/ D Gmar

R . f0/: (102)

The second equality is part of Theorem 5.8 (g).
On the other hand, by Theorem 5.8 (d), Gsmar

R . f0/ � f˙ idg D Gmar
R . f0/. But

because f0 is a quasihomogeneous singularity of degree � 3, the group Gsmar
R . f0/

can be calculated easily via StabGw. f0/; see Theorem 5.8 (c) and Theorem 5.9:

StabGw. f0/
Š�! Gsmar

R . f0/. Therefore, it is sufficient to show that StabGw. f0/ has
half as many elements as the group GZ. We postpone its proof. If it holds, then

GZ D Gmar D Gmar
R . f0/ D Gsmar

R . f0/ � f˙ idg (103)
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follows, and part (a) of the theorem is proved. For part (b), the same argument as
in the proof of Theorem 6.1 (b) works: Msmar

� is a twofold covering of Mmar
� , and

the two sheets are exchanged by the action of � id. As X D C
mod. f0/, Msmar

� has two
components, and � id … Msmar

� .
In Theorem 4.1 it was shown that GZ is GZ D f˙Mk

h j k 2 Zg � U with U as in
table (39)=(104):

Z12 Q12 U12 Z18 Q16 U16
U Š fidg S2 S3 fidg S2 S3

(104)

Now we compare StabGw. f0/. It is sufficient to find enough elements so that the
resulting group has half as many elements as GZ.

The cases Z12 and Z18: Then

'1 W .x; y/ 7! .e2� iwxx; e2� iwyy/ satisfies .'1/hom D Mh: (105)

This is already sufficient. Here Gsmar D Gsmar
R D fMk

h j k 2 Zg:
The cases Q12;Q16;U12;U16: Here it is convenient to make use of the decompo-

sition of the singularity f0 into a sum of an Al singularity g0 in one variable and a
D2m singularity h0 in two variables. In all four cases, the weight system w0 of the
Al singularity and the weight system w00 of the D2m singularity have denominators
lC 1 and 2m � 1 with gcd.lC 1; 2m � 1/ D 1. Therefore,

StabGw. f0/ D StabGw0

.g0/ � StabGw00

.h0/ (106)

Š ZlC1 �
�
Z2m�1 � S2 if m � 3
Z3 � S3 if m D 2:

In all four cases, this group has half as many elements as GZ. �

8 More on GZ for the Simple Elliptic Singularities

This section is motivated by the paper [17] of Milanov and Shen. They consider the
1-parameter families

xp C yq C zr C t � xyz; t 2 ˙ � C (107)

of the simple elliptic singularities Tpqr with .p; q; r/ 2 f.3; 3; 3/; .4; 4; 2/; .6; 3; 2/g
which had also been used above in Sect. 6. Here ˙ � C is the complement of the
finite set of parameters where the function in (107) has a non-isolated singularity.
Remark that now � WD lcm.p; q; r/ D p.
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In [17] the groups of the transversal monodromies of these three families are
studied, more precisely, the natural representations

� W �1.˙/ ! GZ; (108)

�1 W �1.˙/ ! Aut.Ml. f /1;Z;L/;

�¤1 W �1.˙/ ! Aut.Ml. f /¤1;Z;L/;

�¤1 W �1.˙/ ! Aut.Ml. f /¤1;Z;L/=hMhi:

By explicit computations, they show

ker.�1/ � ker.�¤1/: (109)

They ask about a conceptual explanation of (109) and whether this might be true
for other normal forms, i.e., other natural 1-parameter families of the simple elliptic
singularities. Because of (109), there is an induced representation

�W W Im.�1/! Aut.Ml. f /¤1;L/=hMhi: (110)

Then ker.�W/ � Im.�1/ � Aut.Ml. f /1;Z;L/. One main result of [17] is the
following.

Theorem 8.1 In all three cases, under an isomorphism Aut.Ml. f /1;Z;L/ Š
SL.2;Z/ as in (18), the subgroup ker.�W/ is isomorphic to the principal congruence
subgroup � .p/.

Here � .N/ WD fA 2 SL.2;Z/ jA � 12 mod Ng (not A � ˙12 mod N) is the
principal congruence subgroup of level N of SL.2;Z/.

In the following, we give results which complement (109) and Theorem 8.1.
We consider not a special 1-parameter family, but the biggest possible family of
quasihomogeneous simple elliptic singularities. Define .wx;wy;wz/ WD . 1p ;

1
q ;

1
r /,

define for any monomial its weighted degree degw.x
˛yˇz� / WD ˛wx C ˇwy C �wz,

and define

CŒx; y; z�1 WD hx˛yˇz� j degw.x
˛yˇz� / D 1iC; (111)

R WD ff 2 CŒx; y; z�1 j f has an isolated singularity at 0g:

R is the complement of a hypersurface in the vector space CŒx; y; z�1. The transversal
monodromies of the family of singularities parametrized by R give the natural
representation � ; the other representations are induced,

� W �1.R/! GZ; (112)

�1 W �1.R/! Aut.Ml. f /1;Z;L/;
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�¤1 W �1.R/! Aut.Ml. f /¤1;Z;L/;

�¤1 W �1.R/! Aut.Ml. f /¤1;Z;L/=hMhi:

By the definition of Gsmar in [12, Definition 3.1], Gsmar D Im.�/. Theorem 6.1 tells
that the monodromy group Im.�/ is as large as possible (up to˙ id in the case T333).

Theorem 8.2 Im.�/ D GZ in the cases T442 and T632, and GZ D Im.�/ � f˙ idg
in the case T333 (here it is important that the surface singularities are considered).

The explicit information on GZ in Theorem 3.1 allows the following conclusion.

Corollary 8.3 The analogue ker.�1/ � ker.�¤1/ of (109) does not hold in the
cases T333 and T442. It holds in the case T632, and there the analogue of (109) holds
for any �-constant family.

Proof By Theorem 3.1 (c),

fg 2 GZ j gjMl. f /1 D idg
D fid jMl. f /1 � .MhjMl

.1/
C

/˛ � .MhjMl
.2/
C

/ˇ � .MhjMl
.3/
C

/� j

.˛; ˇ; �/ 2 Zp � Zq � Zr with
˛

p
C ˇ

q
C �

r
� 0 mod 1g � U2:

In the cases T442 and T632, this is isomorphic to ker.�1/= ker.�/, and in the case
T333 ker.�1/= ker.�/ is isomorphic to this group or a subgroup of this group of index
2. In the cases T442 and T333, already the factor U2 in this group is an obstruction to
the analogue of (109).

In the case T632, U2 is trivial and

fg 2 GZ j gjMl. f /1 D idg D fM˛
h j ˛ 2 Zg (113)

(because above ˛ determines ˇ and � uniquely in the case .p; q; r/ D .6; 3; 2/).
Therefore, the analogue of (109) holds in the case T632 for the family parametrized
by R and for any subfamily. �

Equation (109) is used in [17] in order to define �W and the group ker.�W/. But
because MhjMl. f /1 D id, it is obvious that the group ker.�W/ coincides with

fgjMl. f /1;Z j g 2 Im.�/; gjMl. f /
¤1;Z
D idg � Aut.Ml. f /1;Z;L/: (114)

And the analogue of this group can be defined for any �-constant family, whether or
not it satisfies the analogue of (109). Our main result in this section is Theorem 8.4.
Our proof uses Theorem 3.1. A different proof of Theorem 8.4 was given by
Kluitmann in [14, III 2.4 Satz, p. 66]. Theorem 8.4 shows that the group � .p/ turns
up naturally within the maximal possible �-constant family, which is parametrized
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by R, and it shows the part ker.�W/ � � .p/ of the equality ker.�W/ D � .p/ in
Theorem 8.1.

Theorem 8.4 In all three cases, under an isomorphism Aut.Ml. f /1;Z;L/ Š
SL.2;Z/ as in (18), the subgroup

fgjMl. f /1;Z j g 2 GZ; gjMl. f /
¤1;Z
D idg � Aut.Ml. f /1;Z;L/

is isomorphic to the principal congruence subgroup � .p/.

Proof We use the notations and objects in the proof of Theorem 3.1. Ml.1/
C

was
defined in (31). Define

Ml.1/
Z
WD Ml.1/

C
\Ml. f /; (115)

and analogously Ml.2/
Z

and Ml.3/
Z

. Then

Ml.1/
Z
D .Mh � id/.MlŒ1�

Z
/:

Because of (32), this image is generated as a Z-lattice by

ı2 � .ı1 C Qb1/; ı3 � ı2; : : : ; ıp�1 � ıp�2;�.ı1 C : : :C ıp�1/� ıp�1; (116)

respectively, by

ı1 C .p � 1/ı2; ı3 � ı2; : : : ; ıp�1 � ıp�2; pı2 � ı��1 C ı�: (117)

Ml.2/
Z

and Ml.3/
Z

(if r � 3) are generated by the analogous elements. If r D 2, then

Ml.3/
Z
D Z � .2ı��2 � ı��1 C ı�/: (118)

In any case, the sum Ml.1/
Z
˚ Ml.2/

Z
˚ Ml.3/

Z
is a sublattice of finite index of the

primitive sublattice Ml. f /¤1;Z in Ml. f /. Observe that qjp and rjp in all three cases.
The lattice Ml. f /¤1;Z is generated by

ı1 C .p � 1/ı2; ı3 � ı2; : : : ; ıp�1 � ıp�2; pı2 � ı��1 C ı�; (119)

ıp C .q � 1/ıpC1; ıpC2 � ıpC1; : : : ; ıpCq�2 � ıpCq�3;
p

q
ı2 � ıpC1;

ıpCq�1 C .r � 1/ıpCq; ıpCqC1 � ıpCq; : : : ; ı��2 � ı��3; p
r
ı2 � ıpCq;

if r � 3. If r D 2, then the third line has to be replaced by

p

r
ı2 � ı��2:
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In any case, one sees

Ml. f / D Ml. f /¤1;Z ˚ Z � ı2 ˚ Z � ı�: (120)

One also calculates

Qb1 D ı��1 � ı� D �1 C pı2 (121)

with �1 WD �.pı2 � ı��1 C ı�/ 2 Ml. f /¤1;Z;
Qb2 D �2 C pı�; (122)

with �2 WD
p�1X

iD1
.p � i/ıi C

q�1X

iD1

p

q
.q � i/ıp�1Ci

C
r�1X

iD1

p

r
.r � i/ıpCq�2Ci C pı��1 � pı� 2 Ml. f /¤1;Z:

One sees also

Ml. f / \ .Q � �1 CQ � �2/ D Z � �1 ˚ Z � �2: (123)

For any matrix

�
a b
c d

�

2 SL.2;Z/, define the automorphism f W Ml. f /Q ! Ml. f /Q

by

f .Qb1/ WD aQb1 C cQb2; f .Qb2/ WD bQb1 C d Qb2; f jMl. f /
¤1;Z
WD id : (124)

It respects L because the decomposition Ml. f /Q D Ml. f /1;Q ˚ Ml. f /¤1;Q is left
and right orthogonal with respect to L. It is an automorphism of Ml. f / if and only
if f .ı2/ and f .ı�/ are in Ml. f /. One calculates

f .ı2/ D aı2 C cı� C 1

p
.a � 1/�1 C 1

p
c�2;

f .ı�/ D bı2 C dı� C 1

p
b�1 C 1

p
.d � 1/�2:

In view of (123), this shows

f 2 GZ ”
�
a b
c d

�

� 12 mod p
def.”

�
a b
c d

�

2 � .p/: �
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Divisor Class Groups of Affine Complete
Intersections

Helmut A. Hamm

Abstract Geometrically interesting examples of factorial rings are provided by the
coordinate rings of certain affine complete intersections. Here one has to show that
the Weil divisor class group vanishes. Using Hodge theory or Deligne-Beilinson
cohomology one can prove that it is sufficient to show the vanishing of certain
singular homology groups. Examples from singularity theory are given.

Keywords Deligne-Beilinson cohomology • Divisor class group • Factorial
domain • Hodge theory

MSC classification numbers: 13F15, 14C22, 14M05, 14C30, 14F43

1 Introduction

Let X be a normal complex (sc. irreducible) algebraic variety. Then we can look at
the group of Weil divisor classes Cl.X/ on X. In the smooth case it coincides with
the group of Cartier divisor classes on X, i.e. the Picard group Pic.X/. In general,
Cl.X/ ' Cl.X n †/ ' Pic.X n †/, where † is the singular locus of X (use [13, II
Prop. 6.5(b), p. 133]).

The case where X is affine is particularly interesting because the coordinate ring
O.X/ is factorial if and only if Cl.X/ is trivial, see [13, II Prop. 6.2, p. 131].

There is a modification of this notion: an integral domain R is called almost
factorial if for each x 2 R n R� [ f0g there is an n > 0 such that xn can be written as
a product of primary elements.

Note that an element is called primary if its principal ideal is primary.
Then O.X/ is almost factorial if and only if Cl.X/ is a torsion group. See [27,

Satz 1, p. 3].
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For concrete results it is reasonable to restrict to the case of affine complete
intersections: this allows to use general vanishing results and explicit calculations.

We will show how to use topological results from singularity theory, and we will
extend the tools using results about the Picard group resp. the Picard group for line
bundles with connection as well as Deligne-Beilinson cohomology.

Remember that the divisor class group has been considered very early in
singularity theory by Brieskorn [4, 5] but he looked at the divisor class group of
the local analytic ring.

Now let us discuss the tools:
Suppose that X is smooth. First we look at the case where X is projective or, more

generally, complete. Because of GAGA we may switch between the algebraic and
analytic category and use the exponential sequence

! H1.XanIZ/! H1.X;OX/! Pic.X/! H2.XanIZ/! H2.X;OX/!

where Xan is the corresponding complex manifold. Here Hodge theory is helpful:
e.g. if we know that the first Betti number b1.X/ WD b1.Xan/ is 0, the first two terms
vanish, so Pic0.X/ D 0.

Recall the definition of Deligne cohomology (also in the case where X is not
complete), cf. [9, 1.1, p. 45]:

Let Z.p/ WD .2�i/pZ and let Z.p/D be the complex

Z.p/Xan ! �0
Xan ! : : :! �

p�1
Xan ! 0! : : :

Then Hk
D.X

anIZ.p// WD H
k.XanIZ.p/D/.

Note that Pic.X/ ' H2
D.X

anIZ.1//, because of the exponential sequence.
Let Picc.X/ resp. Picci.X/ be the group of isomorphism classes on X with

connection resp. integrable connection.
It is known that H2

D.X
anIZ.2// D Picc.X/, H2

D.X
anIZ.p// D Picci.X/ for p > 2.

See [11, p. 156].
In our case, even H2

D.X
anIZ.p// D Picci.X/ for p � 2, because every connection

on the complete variety X is integrable, see [20, Lemma 3.5].
This yields an exact sequence

H0.X; �1
X/! Picci.X/! Pic.X/! H1.X; �1

X/

see [20, Theorem 2.1], and PicciX ' H1.XanIC�/, see, e.g., [20, Prop. 2.12].
Now let us pass to the case where X is smooth but not complete:
Use a good smooth compactification NX (i.e. NX � X is smooth and D WD NX nX is a

divisor with normal crossings). Similarly as above, we can use (generalized) Hodge
theory (cf. [7]), Deligne-Beilinson cohomology or comparison with Piccir.X/, where
Piccir refers to regular integrable connections.

More precisely: we have an exact sequence

H0. NX; �1NX.logD//! Piccir.X/! Pic.X/! H1. NX; �1NX.logD// (1)
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cf. [20, Theorem 3.13, Lemma 3.14], and the Deligne-Beilinson cohomology is
defined as follows (cf. [9, p. 57]): Hk

DB.X;Z.p// WD H
k. NXan;Z.p/DB/, where

Z.p/DB WD cone.Rjan� Z.p/Xan ! �
�p�1
NXan .logD//Œ�1�.

Here j W X ! NX is the inclusion.
Then

Pic.X/ D ker.H2
DB.X;Z.1//! H3. NXan;XanIZ//; (2)

see [17, Theorem 2.4].

2 Main Results

Theorem 2.1 Let X be a smooth complex algebraic variety.

(a) b1.X/ D 0 ) Pic0.X/ D 0, i.e. Pic.X/ ' NS.X/, hence Pic.X/ is finitely
generated.

(b) b1.X/ D b2.X/ D 0) Pic.X/
'! H2.XanIZ/ which is a finite group.

(c) If H1.XanIZ/ D 0 we have that Pic.X/ is free abelian of finite rank.
(d) H1.XanIZ/ D 0; b2.X/ D 0) Pic.X/ D 0.

Here NS.X/ WD Pic.X/=Pic0.X/ is the Néron-Severi group.

Proof

(a) We have different possibilities to prove this:

(i) Let NX be a good compactification of X, D WD NX n X. According to [20,
Theorem 3.10] we have an exact sequence

Piccir.X/! Pic.X/
c1! H2.XanIC/ (3)

Suppose that ŒL� 2 Pic0.X/. By the sequence above it has an inverse image
of the form ŒL;r� in Piccir.X/. But Piccir.X/ ' Picci.Xan/ ' H1.XanIC�/,
cf. [6, II Théor. 5.9, p. 97], [20, Prop. 2.12].

Look at the exact sequence

H1.XanIC/! H1.XanIC�/! H2.XanIZ/

Since ŒL� 2 Pic0.X/, ŒL;r� has an inverse image in H1.XanIC/ but this
group vanishes since b1.X/ D 0.

So ŒL;r� D 0, hence ŒL� D 0.
(ii) Or: apply [19, Prop. 2.2, p. 74].

(iii) We use Deligne-Beilinson cohomology.
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We have an exact sequence

H1. NX;O NX/! H2
DB.X;Z.1//! H2.XanIZ/ (4)

By Hodge theory we have that the left group vanishes because b1.X/ D 0: The
spectral sequence for the Hodge filtration on H�.XanIC/ degenerates at E1, see
[7, Cor. 3.2.13], and Gr0FH

1.XanIC/ D H1. NX; �0NX.logD// D H1. NX;O NX/. The
rest follows from the fact that

Pic0.X/ D ker.H2
DB.X;Z.1//! H2.XanIZ//

recall that Pic.X/ D ker.H2
DB.XIZ.1//! H3. NXan;XanIZ//, see (2).

(b) Again we have different possibilities to prove this:

(i) Look at the exact sequence

H1.XanIC/! H1.XanIC�/! H2.XanIZ/! H2.XanIC/

The first and last group are 0, so Piccir.X/ ' H1.XanIC�/ ' H2.XanIZ/.
By the exact sequence (3) above we get that Piccir.X/! Pic.X/ is sur-

jective. But furthermore we have bijectivity: the composition Piccir.X/!
Pic.X/! H2.XanIZ/ is an isomorphism, as we have seen.

The isomorphism Piccir.X/ ' Pic.X/ can also be obtained from the
exact sequence

H0. NX; �1NX.logD//! Piccir.X/! Pic.X/! H1. NX; �1NX.logD//

quoted in (1) because the spectral sequence for the Hodge filtration for X
degenerates at E1.

(ii) Or: by (a) Pic.X/ ' NS.X/. Since b2.X/ D 0 we have NS.X/ '
Tor.NS.X//, and Tor.NS.X// ' Tor.H2.XanIZ// by Hamm and Lê [19,
Cor. 3.2, p. 80]. Finally, Tor.H2.XanIZ// ' H2.XanIZ/.

(iii) Finally we have the exact sequence

H1. NX;O NX/! H2
DB.X;Z.1//! H2.XanIZ/! H2. NX;O NX/

whose left part was quoted in (4) above.

Since b1.X/ D b2.X/ D 0 the left and right group vanish, because the spectral
sequence for the Hodge filtration for X degenerates at E1.

So H2
DB.X;Z.1// ' H2.XanIZ/. Finally Pic.X/ D H2

DB.X;Z.1// because
the mapping H2

DB.X;Z.1// ! H3. NXan;XanIZ/ is the zero map: the last group
is free abelian by Hamm [17, Lemma 1.5] and the mapping factors through the
finite group H2.XanIZ/.

(c) If H1.XanIZ/ D 0, we have b1.X/ D 0 and 0 D Tor.H1.XanIZ// '
Tor.H2.XanIZ//, so NS.X/ � H2.XanIZ/ is torsion free. Now conclude by (a).
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(d) follows from (b) and (c).

Let us give an application:
Let f1; : : : ; fk 2 CŒz1; : : : ; znCk� be polynomials which are weighted homoge-

neous of degree d1; : : : ; dk with respect to weights w1; : : : ;wnCk > 0; n � 2. We
assume that the algebraic variety X WD ff1 D : : : D fk�1 D 0g is a complete
intersection with isolated singularity and that fkjX has an isolated singularity at 0,
too. More precisely, assume that if X WD ff1 D : : : D fk�1 D 0g we have that X n f0g
is smooth of dimension nC 1 and that X \ ffk D 0g n f0g is smooth of dimension n.
Put Xt WD X \ f�1k .ftg/.
Theorem 2.2 O.Xt/ is factorial if n � 3; t 2 C

� or n � 4; t D 0.
Proof We apply Theorem 2.1(d).

First assume that t ¤ 0; n � 3. Then Xan
t has the homotopy type of the Milnor

fibre of fkjX, so of a bouquet of n-spheres. See [14, Satz 1.7]. This implies that Xan
t

is simply connected and b2.Xt/ D 0.
Now assume that t D 0 and n � 4. Then Xan

0 n f0g has the homotopy type of the
link of X0 at 0 which is .n � 2/-connected, see [14, Kor. 1.3]. Hence Xan

0 n f0g is
simply connected, b2.X0 n f0g/ D 0. So Cl.X0/ D Cl.X0 n f0g/ D 0.

In the following two paragraphs we will derive results about Xt; t ¤ 0, resp. X0
under milder hypotheses.

Now let us drop the smoothness assumption.

Lemma 2.3 Let X be a normal complex algebraic variety, † the singular locus of
X (which is of codimension� 2).

Suppose that b1.X n†/ D 0 and H2.XanIZ/ D 0. Then Pic.X/ D 0.
Proof By Theorem 2.1(a) we have that Pic0.X n†/ D 0.

Suppose that L is invertible on X. Then c1.L/ D 0, hence ŒLjX n†� 2 Pic0.X n
†/ D 0.

So LjX n † is trivial. By normality, j�OXn† ' OX , see [21, Theorem 2.15, p.
124]. Hence H1

†.OX/ D 0, so H1
†.L/ D 0, too, which implies L ' j�j�L, and

j�j�L ' j�OXn† ' OX . Hence L is trivial, too.

3 Smooth Affine Complete Intersections

Here we look at different classes of such varieties.

(a) Let f1; : : : ; fk 2 CŒz1; : : : ; znCk� be polynomials which are weighted homoge-
neous of degree d1; : : : ; dk with respect to weights w1; : : : ;wnCk; n � 2. We
assume that the algebraic variety X WD ff1 D : : : D fk�1 D 0g is a complete
intersection with isolated singularity and that fkjX has an isolated singularity at
0, too. Put Xt WD X\ f�1k .ftg/; t ¤ 0: it is a smooth affine complete intersection.
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Theorem 3.4 Suppose t 2 C
�.

(a) (see Theorem 2.2)O.Xt/ is factorial if n � 3.
(b) Pic.Xt/ is free abelian of finite rank if n D 2.
Proof Xan

t has the homotopy type of the Milnor fibre of fkjX, so of a bouquet of
n-spheres. So Xan

t is simply connected for n � 2.

(a) For n � 3 we have b2.Xt/ D 0, too. Now apply Theorem 2.1(d). See
Theorem 2.2.

(b) This follows from Theorem 2.1(c).

(b) Now we study a different case: Let NX be any smooth projective complete
intersection of dimension n such that the part at infinity is a smooth divisor
D. Then X WD NX n D is a smooth affine complete intersection. We have an
analogue of Theorem 3.4:

Lemma 3.5

(a) If n � 3, then O.X/ is factorial.
(b) n D 2) Pic.X/ is free abelian of finite rank.

Proof Similar as in the case of Theorem 3.4. Instead of arguing with the Milnor
fibre we use a theorem of Zariski-Lefschetz type in order to show that Xan is .n�1/-
connected, see [18, Theorem 1.1.1].

Now let us study the case n D 2 more closely. Let �. NX/ be the Picard
number of NX, i.e. the rank of the Néron-Severi group of NX, and let pa. NX/ WDP

i<n.�1/i dim Hn�i. NX;O NX/ be the arithmetic genus of NX, see [13, III Exc. 5.3, p.
230]. Since NX is a complete intersection of dimension n, Hj. NX;O NX/ D 0; 0 < j < n,
so pa. NX/ D dim Hn. NX;O NX/, see [13, III Exc. 5.5, p. 231].

Theorem 3.6 Assume n D 2.
(a) Pic.X/ ' Z

�. NX/�1.
(b) If pa. NX/ D 0, Pic.X/ ' Z

�. NX/�3.

Proof

(a) We have an exact sequence

0! Z! Pic. NX/! Pic.X/! 0

cf. [13, II Prop. 6.5, p. 133]: note that the first mapping is indeed injective,
because using O NX.1/ one sees that Pic. NX/ ! Pic.X/ is not injective. Further-
more, NXan is simply connected, hence Pic. NX/ D NS. NX/, similarly for Pic.X/, cf.
Theorem 2.1(a). By Lemma 3.5(b) we have that NS. NX/ ' NS.X/˚ Z. The rest
is clear.

(b) The exponential sequence for NX yields that Pic. NX/ ' H2. NXanIZ/, so �. NX/ D
rk H2. NXanIZ/.
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(c) Finally we look at the case where X is an f1; : : : ; n C kg-full affine non-
degenerate complete intersection of dimension n in the sense of [23, p. 137].

This means that X D ff1 D : : : D fk D 0g � C
nCk, where f1; : : : ; fk are

polynomials, and that the following holds for every subset J of f1; : : : ; nC kg:
Let j WD #J and consider f Jl WD fljfz 2 C

nCk j z	 D 0 for 	 62 Jg as a function on
C

j. Then f J1 D : : : D f Jk D 0g \ .C�/j is a non-degenerate complete intersection
which is full, i.e. dim�.f Jl / D j for all j. Here �.f Jl / is the Newton polyhedron
of f Jl , i.e. the convex hull of its support.

Part (a) of the following theorem has been proved in the hypersurface case by
Dolgachev [8, Cor. 1.2] by completely different methods:

Theorem 3.7 Suppose that X satisfies the condition introduced just before.

(a) If n � 3, then O.X/ is factorial.
(b) n D 2) Pic.X/ is free abelian of finite rank.

Proof As Lemma 3.5, using the Lefschetz theorem proved by Oka [23, Main
Theorem (1.1)].

Now we give examples with n D 2:

Examples 3.8 In Examples 3.8.1 and 3.8.2 we use the formula of [13, I Exc. 7.2(c),
p. 54] for the calculation of the arithmetic genus.

3.8.1 X WD fz 2 C
3 j z21C z22C z23 D 1g: then pa. NX/ D 0, Xan has the homotopy type

of the corresponding Milnor fibre, so �. NX;D/ D �.X/ D 2. Furthermore,�.D/ D 2,
so �. NX/ D 4. Hence Pic.X/ ' Z, by Theorem 3.6(b).

3.8.2 X WD fz 2 C
3 j z31 C z32 C z33 D 1g: then pa. NX/ D 0, Xan has the homotopy

type of the corresponding Milnor fibre, so �. NX;D/ D 9, �.D/ D 0, �. NX/ D 9,
Pic.X/ ' Z

6.

3.8.3 p prime � 5, X WD fz 2 C
3 j z1zp�12 C z2z

p�1
3 C z3z

p�1
1 D 1g. By Shioda [25,

Theorem 4.1] we have �. NX/ D 1, so O.X/ is factorial by Theorem 3.6(a).

3.8.4 X WD fz 2 C
3 j z41 C z42 C z43 D 1g: then �. NX/ D 20, see [24, Sect. 1,

Example 17], hence Pic.X/ ' Z
19.

4 Weil Divisor Class Groups of Singular Affine Complete
Intersections

(a) Let X be an affine weighted homogeneous complete intersection of dimension
n � 2 with an isolated singularity. Then X is normal. Let K be the link of X at
0, it is a deformation retract of Xan n f0g.
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Theorem 4.9

(a) n � 4 implies that Cl.X/ D 0, i.e. O.X/ is factorial.
(b) n D 3 implies that Cl.X/ ' NS.X n f0g/, so Cl.X/ is free abelian of rank
� b2.K/.

In particular, O.X/ is factorial if n D 3 and b2.K/ D 0, i.e. K is a 5-
dimensional rational homology sphere.

(c) n D 2; b1.K/ D 0 implies that Cl.X/ ' H1.KIZ/.
In particular, O.X/ is factorial (resp. almost factorial) if K is an integral

(resp. rational) homology sphere.

Proof

(a) This follows from Theorem 2.1(d) because K is .n� 2/-connected, so Cl.X/ D
Cl.X n f0g/ D 0.

(b) This follows similarly from Theorem 2.1(a) and (c).
(c) Apply Theorem 2.1(b). Note that b2.K/ D 0 by Poincaré duality.

The Hodge numbers of X n f0g can be calculated by Hamm [16], so the Betti
numbers of K, too. This enables to check whether K is a rational homology sphere.

In particular, let us look at a special case studied by the author in his thesis, cf.
[15], generalizing a result of Brieskorn about hypersurfaces, see [4, Satz 1, p. 6]:

Let a1; : : : ; anCk be positive integers. Choose ˛ik 2 C; i D 1; : : : ; k; j D
1; : : : ; n C k such that all k � k subdeterminants of .˛ij/ do not vanish. Let X WD
fz 2 C

nCk j ˛i1za11 C : : : C ˛i;nCkz
anCk
nCk D 0; i D 1; : : : ; kg. Then X is a weighted

homogeneous complete intersection of dimension n with an isolated singularity.
Let us associate a graph with vertices 1; : : : ; nCk where i; j are joined by an edge

if and only if ai; aj are not coprime. For any component C of the graph look at the
condition

(A) : Either C consists of a single vertex, or C consists of an odd number of vertices
such that for all vertices i ¤ j in C, the greatest common divisor of ai; aj is 2.

Theorem 4.10 Let X be chosen in this way.

(a) For n � 4 the ring O.X/ is factorial.
(b) If n D 3 and there are k components with condition .B/ the ring O.X/ is

factorial.
(c) If n D 2 and there are k (resp. k C 1) components with condition .B/ the ring

O.X/ is almost factorial (resp. factorial).

Proof According to [15] we have that K is a rational (resp. integral) homology
sphere if there are at least k (resp. k C 1) components with condition .B/. The rest
follows from Theorem 4.9.

In particular: if a1; : : : ; anC1 are mutually coprime, n � 2, the ring
CŒz1; : : : ; znC1�=.za11 C : : :C z

anC1

nC1 / is factorial. Cf. [3, p. 99] if n D 2.



Divisor Class Groups of Affine Complete Intersections 155

(b) Now let us look at a different case:

Let X be a complete intersection of dimension n in Pm, H the hyperplane fz0 D 0g
in Pm. Suppose that the singular locus of NX is contained in X WD NX n H and that H
intersects NX transversally.

Let † be the singular locus of X and Kx the link of X at x, x 2 †. Note that †
must be 0-dimensional.

Theorem 4.11

(a) If n � 4, we have that Cl.X/ D 0.
(b) Suppose n D 3:

(i) Cl.X/ is free abelian of finite rank.
(ii) If all Kx; x 2 †, are rational homology spheres: Cl.X/ D 0.

(c) Suppose n D 2 :
(i) If all Kx are integral homology spheres Cl.X/ is free abelian of finite rank.
(ii) If b2.X/ D 0 and all Kx are rational homology spheres: Cl.X/ is finite.
(iii) If b2.X/ D 0 and all Kx are integral homology spheres: Cl.X/ D 0.

Proof By a Lefschetz theorem, see [18, Theor. 1.1.1], we have that QHj.XanIZ/ D 0,
j � n � 1, Hn.XanIZ/ free abelian.

Now look at the exact sequence

: : :! Hj.XanIZ/! Hj.Xan n†anIZ/! HjC1.Xan;Xan n†anIZ/! : : :

where HjC1.Xan;Xan n†anIZ/ ' ˚Hj.KxIZ/.
Note that Kx is .n � 2/-connected, in particular, Hn�1.KxIZ/ is free abelian of

finite rank.
Now the statements about Cl.X/ ' Pic.X n†/ follow from Theorem 2.1.

(c) Now let X be as in (a) but restrict to the case that X � C
m is homogeneous.

Then the closure NX in the projective space Pm is smooth, as well as the divisor
V � Pm�1 at infinity. In fact, X is the cone over V .

On the other hand, we may start with a smooth complex projective subvariety V
of Pm�1 of dimension n � 1. We suppose that V is projectively normal, i.e. that the
cone X over V is normal (cf. [13, II Exc. 5.14, p. 126]).

According to [13, II Exc. 6.3, p. 146f.], we have an exact sequence

0! Z! Cl.V/! Cl.X/! 0

Lemma 4.12 Let V be a complete intersection of dimension 2.

(a) Cl.X/ ' Z
��1, where � is the Picard number of V.

(b) Assume that the arithmetic genus of V vanishes. Then Cl.X/ ' Z
��3 where �

is the Euler characteristic of V.
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Proof

(a) By Theorem 4.9(b) we have that Cl.X/ is free abelian of finite rank. The rest is
clear.

(b) H2.V;OV/ D 0, because the arithmetic genus vanishes. So Pic.V/ '
H2.VanIZ/ ' Z

��2.

Now we conclude as before.

The reader will notice a similarity between Theorem 3.6 and Lemma 4.12, it is
not difficult to make it more precise!

Remark 4.13 By Theorem 2.1(b), O.X/ is almost factorial as soon as the link K of
X at 0 is a rational homology sphere and n � 2.

However this can turn out to be very restrictive:

Lemma 4.14 K is a rational homology sphere if and only if V has the same Betti
numbers as the corresponding projective space.

Proof Look at the Gysin sequence associated with the sphere bundle K ! V .

In particular we get:

Lemma 4.15 Suppose that n is odd. Then K cannot be a rational homology sphere
except for V ' Pn�1.

Proof Use [22] Remark.

(d) From now on let V be a smooth curve.

Lemma 4.16 Cl.X/ is finitely generated if and only if g.V/ D 0.
Proof

(i) Suppose g.V/ D 0. Then Cl.V/ D Z, hence Cl.X/ is cyclic, so finitely
generated.

(ii) Suppose g.V/ > 0. Then Pic0.V/ is a non-trivial torus, hence not finitely
generated. So Pic.V/ D Cl.V/ and Cl.X/ cannot be finitely generated, too.

Therefore let us look at the case g.V/ D 0:

Lemma 4.17 Let g.V/ D 0 and let d be the degree of V. Then we have that Cl.X/ '
Z=dZ.

So O.X/ is almost factorial but only for d D 1 factorial.
Proof Note that the homomorphism Z! Cl.V/ above can be identified with Z!
Z: 1 7! d.

Use [13, IV Expl. 3.3.2, p. 309].

Examples 4.18 Let us start with a surface which is not weighted homogeneous:

4.18.1 X WD fz 2 C
4 j f .z/ D 0g, where f .z/ WD z41C z42C z43C z44� z31� z22� z23� z24.

Then X n f0g is smooth: If z ¤ 0 is a critical point of f we have that f .z/ is real
and negative.
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So Theorem 4.11(b)(ii) can be applied because K0 is an integral homology
sphere, hence Cl.X/ D 0.

Note that f is semiquasihomogeneous, so K0 is homeomorphic to the correspond-
ing link for � z31 � z22 � z23 � z24 instead of f , cf. [1, Theorem 9.5], so we can apply
Theorem 4.10(b).

In the following examples, X is the cone over a smooth projective complete
intersection V defined by the same equation(s).

4.18.2 X WD fz 2 C
3 j z21 C z22 C z23 D 0g. Then Cl.X/ ' Z=2Z, see Lemma 4.17.

So O.X/ is almost factorial but not factorial.
We can also apply [13, II Expl. 6.5.2, p. 133].

4.18.3 X WD fz 2 C
3 j z31 C z32 C z33 D 0g. By Hartshorne [13, I Exc. 7.2(b), p. 54],

we have that V has genus 1. By Lemma 4.16, Cl.X/ is not finitely generated.

4.18.4

(a) X WD fz 2 C
4 j z21C z22C z23C z24 D 0g. The Euler characteristic of V ' P1 � P1

is 4, the arithmetic genus is 0, so Pic.V/ ' Z
2.

Or by Hartshorne [13, II Expl. 6.6.1, p. 135].
So Cl.X/ ' Z: use Lemma 4.12(b).

(b) X WD fz 2 C
4 j z31 C z32 C z33 C z34 D 0g. By Hartshorne [13, V Rem. 4.7.1,

p. 401, and V Exc. 3.1, p. 394], the arithmetic genus of V vanishes; in fact,
V is a del Pezzo surface of degree 3. The Euler characteristic of V is 9. By
Lemma 4.12(b), Pic.X/ ' Z

6. Note that, by Hartshorne [13, II Expl. 6.6.4, p.
136], Pic.V/ ' Z

7: V is P2 blown up in 6 points; use [13, II Exc. 8.5, p. 188].
(c) X WD fz 2 C

4 j z41 C z42 C z43 C z44 D 0g (Fermat quartic). Here the arithmetic
genus of V is 1. V is a singular K3 surface, hence �.V/ D 20, see [24, Sect. 11,
Example 17], so Cl.V/ ' Z

19, by Lemma 4.12(a).
(d) p D general homogeneous polynomial of degree d � 4, X WD fz 2 C

4 j p.z/ D
0g. By the Noether-Lefschetz theorem (see [12, p. 31]), �.V/ D 1, so O.X/ is
factorial.

4.18.5 X WD fz 2 C
5 j z21 C z22 C z23 C z24 C z25 D z21 C 2z22 � z23 � 2z24 D 0g. Then V

is a del Pezzo surface of degree 4, see [13, V Exc. 4.13, p. 408f.], so pa.V/ D 0. On
the other hand, V has Euler characteristic 8. So Cl.X/ ' Z

5 by Lemma 4.12(b).
Or use [13, III Exc. 8.5, p. 188]: X is obtained blowing up 5 points of P2.

5 Picard Group in the Singular Case

(a) Let X be a normal complex algebraic variety. Let † be the singular locus of X
and j W X n†! X the inclusion.

Note that there may be now a difference between Weil and Cartier divisors.
We will compare the divisor class groups of X and X n†.
Note that Cl.X/ ' Cl.X n†/. So we concentrate upon the Picard group.
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First we have Pic.X/ � Pic.X n †/ because Pic.X/ � Cl.X/ and Cl.X/ D
Cl.X n†/.
Lemma 5.19 Pic.X/ D fŒL� 2 Pic.X n†/ j j�L is locally free g.
Proof “�” is trivial.

“�”: Suppose that L0 is invertible on X, L D L0jX n†. Then L0 ' j�L because
X is normal, cf. proof of Lemma 2.3.

Let us try to replace the condition in Lemma 5.19 by a more transparent one if
possible.

Let L be an invertible sheaf on X n †, x 2 †an. Let c1;x.L/ WD lim U
c1.LanjU n

†an/, where U runs through the set of all open neighbourhoods of x in Xan.
Note that c1;x.L/ D 0 if L admits an invertible extension L0 to X: choose U small

enough, then c1..L0/anjU/ D 0, hence c1.LanjU n†an/ D 0.
Recall that prof†anOXan � 2 because X is normal. For the definition of depth

(profondeur) with respect to a subspace, see [2, II §3, p. 63].

Lemma 5.20 Suppose that prof†anOXan � 3. Then Pic.X/ D fŒL� 2 Pic.X n
†/ j c1;x.L/ D 0 for all x 2 †ang.
Proof “�”: see above.

“�”: By assumption, Hk
†an.OXan/ D 0; k � 2, so for a suitable neighbourhood U

of x in Xan: H1.U n†an;OXan/ D 0.
Therefore the right arrow in the following exact sequence is injective:

H1.U n†an;OXan/! H1.U n†an;O�Xan/! H2.U n†anIZ/

Let L be invertible on X n†, c1;x.L/ D 0 for all x 2 †an.
The class of LanjU n†an in H1.U n†an;O�Xan/ is 0, because it is mapped to 0 by

assumption and the right arrow is injective.
Therefore LanjU n†an ' OUn†an , so jan� Lan is locally free.
The same holds for j�L:
According to [13, II Exc. 5.15, p. 126], there is a coherent extension L0 of L to X.

By Siu [26, Theorem A and B, p. 348], we have that Hk
†L0 is coherent, .Hk

†L0/an '
Hk
†anL0an; k D 0; 1. Now look at the exact sequence

0! H0
†L0 ! L0 ! j�L! H1

†L0 ! 0

First, j�L is coherent.
Applying : : :an resp. taking the analytic analogue we see by comparison that

.j�L/an ' jan� Lan. This implies that j�L is locally free, so we have a locally free
extension of L. Now apply Lemma 5.19.

(b) Now let us look at the situation of Sect. 4(b):
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Let X be a complete intersection of dimension n in Pm, H the hyperplane fz0 D 0g
in Pm. Suppose that the singular locus of X is contained in XnH and that H intersects
X transversally.

Let† be the (0-dimensional) singular locus of X and Kx the link of X at x, x 2 †.

Theorem 5.21

(a) Suppose n D 3: Then Pic.X/ D 0.
(b) Suppose n D 2, b2.X/ D 0 and all Kx are rational homology spheres: Then

Pic.X/ D 0.
Proof Apply Lemma 2.3.

(c) In the homogeneous case we have the following result:

Theorem 5.22 Let X be the affine cone at 0 over a smooth projectively normal
variety V. Then Pic.X/ D 0.
Proof Let p W QX ! X be the blow-up of X at the origin. Then p1 WD pj. QX n V0/ !
X nf0g is an isomorphism, where V0 WD p�1.f0g/. We have a projection � W QX ! V .
Then �0 WD �jV0 W V0 ! V is an isomorphism. Furthermore, � induces an
isomorphism Pic.V/ ' Pic. QX/, because QX is a line bundle over V , see [10,
Theorem 3.3, p. 64].

Assume now that we have an element of Pic.X/ which is represented by an
invertible sheaf L. Then there is a neighbourhood U of 0 in X such that LjU is
trivial, hence LjU n f0g is trivial. A trivialization of p�1 .LjU n f0g/, considered as a
rational function on QX n V0, leads to a corresponding divisor on QX n V0. Its closure
does not meet V0, so it leads to an invertible extension L0 of p�1 .L/ to QX such that
L0jV0 is trivial. Now we have a commutative diagram

Pic.V/
'# &'

Pic. QX/ ! Pic.V0/

hence Pic. QX/ ' Pic.V0/. So L0 is trivial, and L0j QX n V0 D p�1 .LjX n f0g/, too. So
LjX n f0g is trivial. Hence L is trivial, too, see proof of Lemma 2.3, i.e. Pic.X/ D 0.

Corollary 5.23 Suppose that V is a smooth projectively normal curve of genus
> 0. Then Pic.X/ D 0, Cl.X/ is not finitely generated, so Pic.X/ ¤ fŒL� 2
Cl.X/ j c1;0.L/ D 0g.
Proof Apply Lemma 4.16, too.

Example 5.24 X WD fz 2 C
3 j z31 C z32 C z33 D 0g (Example 4.18(3)) satisfies the

hypothesis of Corollary 5.23.

Therefore the hypothesis prof†anOXan � 3 in Lemma 5.20 cannot be dropped!
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Möbius Strips, Knots, Pentagons, Polyhedra,
and the SURFER Software

Stephan Klaus

Abstract The SURFER software for the visualization of real algebraic surfaces
was developed from professional research software. It was adapted to the IMAGI-
NARY exhibition of Oberwolfach under the direction of Gert-Martin Greuel in the
Year of Mathematics in Germany 2008. As it is freely available and very easy to use
also for nonexperts, it became one of the most successful public tools to visualize
mathematical objects. Based on many discussions with Gert-Martin Greuel, the
author used this software to give algebraic constructions and visualizations of some
low-dimensional objects in geometry and topology. This has led to new connections
and specific constructions for objects such as knots, moduli spaces of pentagons,
and polyhedra.

Keywords Algebraic variable elimination • Cinquefoil knot • Dodecahedron •
Icosahedron • Möbius strip • Octahedron • Pentagon moduli space • Pyrite •
Real algebraic surface • Rhombic dodecahedron • Spherical harmonics • Torus
knot • Trefoil knot
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1 The Year of Mathematics in Germany 2008
and the SURFER

In the Year of Mathematics in Germany 2008, Gert-Martin Greuel as former
director of Oberwolfach created the international mathematical touring exhibition
IMAGINARY (see www.imaginary.org). It was very successful from the beginning
and has developed into one of the most successful international exhibitions in math-
ematics. One of the highlights of this exhibition is the SURFER software [3] which
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allows real-time visualizations of real algebraic surfaces by choosing a polynomial
in three variables. This is a program of the Mathematisches Forschungsinstitut
Oberwolfach in collaboration with the Martin Luther University Halle-Wittenberg
arising from professional research software in algebraic geometry. The program
is very easy to use also for nonmathematicians. In fact, many competitions for a
general audience have taken place with thousands of interesting contributions from
pupils, for example.

2 Impossible Möbius Strips

A classical object of topology is the Möbius strip, and in a conversation with Gert-
Martin in 2008, we discussed the problem to find a suitable polynomial for the
SURFER. My first reaction as a topologist was that it cannot be represented as the
level set of a regular value of a smooth real function p W R3 ! R. The reason is
that by a basic lemma of differential topology, such a level set has to be a smooth
surface in R

3 without boundary and with trivial normal bundle. Nevertheless, in
2008, I constructed polynomials in [12] of degrees 6, 8, and 10 giving a Möbius
strip with 1, 2, and 3 twists, respectively, as can be seen in the following pictures:

p1 D ..a � b/.x.x2 C y2 � z2 C 1/� 2yz/� .2aC 2bC ab/.x2 C y2//2

�.x2 C y2/..aC b/.x2 C y2 C z2 C 1/C 2.a� b/.yz� x//2

p2 D ..b2x2 C a2y2/.x2 C y2/C b2.�xC yz/2 C a2.yC xz/2 � a2b2.x2 C y2//2

�4.x2 C y2/.b2x.�xC yz/� a2y.yC xz//2
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p3 D .x2 C y2/..aC b/.x2 C y2/.x2 C y2 C z2 C 1/
C2.a� b/.z.3x2y � y3/ � .x3 � 3xy2// � 2ab.x2 C y2//2

�.2.aC b/.x2 C y2/2 C .a� b/.2z.3x2y � y3/C .x3 � 3xy2/.z2 � x2 � y2 � 1///2

The reader can easily check with the SURFER software that the given polynomi-
als produce the pictures. The solution of this seeming contradiction to the mentioned
basic result in differential topology is that the level sets of these polynomials give
only fake Möbius strips. In fact, the idea of the construction is to take a very thin
ellipse with center .1; 0/ in a plane with coordinates t and z. Then let the ellipse
rotate in the plane around its center, and, at the same time, let the plane rotate around
the z-axis. Hence, the coordinates x and y appear as x D t cos.�/ and y D t sin.�/,
whereas the ellipse is rotating around its center with an angle  D k

2
� where

k D 1; 2; 3. Variable elimination of t, �, and  yields the above polynomials, where
a and b denote the two radii of the ellipse. Hence, a D 0:5 and b D 0:01 give
pictures as above, but it is also possible to deform a torus from a D b D 0:5 into
a fake Möbius strip by putting these formulas into the SURFER. The construction
works also for higher Möbius strips and yields a polynomial of degree 4C 2k for k
twists. Details on the computation can be found in [6, 12].

3 Relation to Knot Theory

In 2009, José-Francisco Rodrigues asked me in Oberwolfach if a construction of
the “thickened” trefoil knot T2;3 as a real algebraic surface in R

3 would also be
possible. In fact, the idea of a doubly rotating algebraic object gives also a solution
to this problem: one has just to replace the ellipse by two small circles.
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Here, the computation was more complex as the object (two circles) is given by
an equation of degree 4 in contrast to the case of an ellipse. Then algebraic variable
elimination (which is tedious but can be done by hand) gives a polynomial for T2;3
of degree 14:

p D .�8.x2 C y2/2.x2 C y2 C 1C z2 C a2 � b2/

C4a2Œ2.x2 C y2/2 � .x3 � 3xy2/.x2 C y2 C 1/�
C8a2.3x2y � y3/zC 4a2.x3 � 3xy2/z2/2

C.x2 C y2/.2.x2 C y2/.x2 C y2 C 1C z2 C a2 � b2/2

C8.x2 C y2/2C 4a2Œ2.x3 � 3xy2/� .x2 C y2/.x2 C y2 C 1/�
�8a2.3x2y � y3/z � 4.x2 C y2/a2z2/2

I gave talks on this construction in Braga and Lisbon, and the result was published
in [8]; see also [7]. I would like to thank José-Francisco for the invitation to Portugal
and the possibility to introduce the SURFER program to a group of gifted pupils.

It is a natural question how one can construct such polynomials for other knots. In
the paper [9], I gave two explicit methods—at least in principle—to construct such
polynomials. The first method is to convert a piecewise linear knot into a singular
variety formed by a product of quadratic polynomials and then to smooth out the
singularities. The second method is to consider finite Fourier sums approximating
a knot (a knot can be considered as a periodic function R ! R

3) and then to use
algebraic variable elimination for the equations defining the tubular neighborhood
of the knot. Moreover, these methods give upper bounds for the minimal degree of a
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polynomial representing a given knot type and other invariants of the knot such as its
minimal stick number and its Fourier degree defined by Kauffman [5] and Trautwein
[18]. All this is explained in the mentioned paper. I gave a talk on these topics at
the 5th World Conference on 21st Century Mathematics (which was coorganized by
Gert-Martin) at Abdus Salam School of Mathematical Sciences in Lahore, Pakistan,
in February 2011.

I should also emphasize that the two methods generally work only “in principle”:
Already for such a basic example as the figure eight knot, the computation of a
concrete polynomial p.x; y; z/ by the Fourier method stops at the elimination of the
fourth variable from two polynomials in four variables of degrees 14 and 20. This
task still seems to be out of reach using standard algebra software such as Singular.

4 Torus Knots

The idea of the “double rotation construction” which was used for the Möbius strips
and for the trefoil knot can also be used for other torus knots because of their
symmetry.

Already the next nontrivial torus knot, the cinquefoil knot T2;5 presents a hard
example of explicit computation. During the Lahore conference in 2011, I showed
Gert-Martin the construction which I could carry out by hand up to a variable
elimination problem for two polynomials of four variables similar to the case of the
figure eight knot. In this case, however, the Singular software could do the remaining
part of the job, and the output from Gert-Martin’s laptop was a polynomial of degree
18 with about 500 terms:
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It appeared to us like a miracle that one can copy this huge formula from Singular
into the SURFER window and immediately gets the visualization of the cinquefoil
knot T2;5:

Note that the explicit formula of the polynomial is available in my personal
SURFER gallery at the IMAGINARY web site, such that the reader can check the
result.

During a research visit with Sofia Lambropoulou in Athens 2012, I could finally
solve by hand the elimination problem for all torus knots Tp;q [10]. Thus, there is
an explicit (but long) general formula for the representing polynomial of Tp;q which
has a degree of 4p C 2q. This result was possible because of the large symmetry
of torus knots and by an explicit combinatorial variable transformation using higher
dimensional pyramidal numbers. Here, I would like to thank Sofia for her hospitality
and for the possibility to carry out this research on algebraic torus knots.

Moreover, the method of Fourier approximations also applies to braids and has
led to new invariants and research problems; see the extended abstract [11] of
my talk in the Oberwolfach Workshop “Algebraic Structures in Low-Dimensional
Topology” in May 2014 and the paper [13].

5 Pentagons

In 2013, I learned in Oberwolfach from Sadayoshi Kojima that the configuration
space of equilateral pentagons is a closed surface of genus four. See the article
of Kapovich and Millson [4] as a reference. By fixing two consecutive points of
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a pentagon to the points 0 and 1 in the complex plane, this configuration space
can be described by four complex variables z1; z2; z3, and z4 such that all jzij D 1

(equilateral condition) and 1C z1C z2C z3C z4 D 0 (closure to a pentagon). Thus,
there are eight real variables and six real polynomial conditions.

As a result of our discussion, we found a new visualization of the configuration
space using the well-known rational parametrization

r W R! S1; r.t/ WD 1 � t2

1C t2
C i

2t

1C t2

applied to z1; z2, and z3. Note that r misses the point �1 of S1 which corresponds
to the boundary˙1 of the real line R. Then, variable elimination of z4 and a short
computation with j1C z1 C z2 C z3j D 1 yields the following polynomial of order
12 which can be easily visualized using the SURFER:

p.x; y; z/ D 4.2x2y2z2 C x2y2 C x2z2 C y2z2 � 1/2

C4.x.y2 C 1/.z2 C 1/C .x2 C 1/y.z2 C 1/C .x2 C 1/.y2 C 1/z/2

�..x2 C 1/.y2 C 1/.z2 C 1//2

Because of the threefold rational parametrization of the three torus .S1/3, the
ambient space R

3 in the picture above should be considered as the open cube I3

together with a pair-wise identification of the three antipodal pairs of faces. Thus,
the six open handles in the picture compactify to three closed handles which together
with the hole in the center form a closed surface of genus four.
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At this point, I would also like to thank Dirk Siersma who, after the Pfalz-
Akademie conference, gave me further advice concerning the more general case of
configuration spaces of pentagons which are not equilateral. This is work in progress
where the first (equilateral) part can be found in [14].

6 Polyhedra: From Atomic Nuclei to Crystals

In 2013, David Rouvel, at this time a graduate student of theoretical physics in
Strasbourg, asked me which sums of spherical harmonics Ym

l .�; �/ define shapes of
icosahedral symmetry. This problem was relevant for his mathematical description
of certain atomic nuclei. As spherical harmonics can be expressed by harmonic
polynomials, the problem can be transformed to the classical question of invariants
of the icosahedral group A5 acting by rotations on the polynomial ring RŒx; y; z�. Of
course, the answer

RŒx; y; z�A5 D RŒp2; p6; p10�

with basic invariants

p2 D x2 C y2 C z2

p6 D .x2 �ˆ2y2/.y2 �ˆ2z2/.z2 �ˆ2x2/
p10 D .x4 C y4 C z4 � 2x2y2 � 2x2z2 � 2y2z2/.x2 �ˆ4y2/.y2 �ˆ4z2/.z2 �ˆ4x2/

and ˆ WD 1
2
.
p
5C 1/ D 1:618 : : : denoting the golden ratio, is a well-known result

of invariant theory [1] and gives (in principle) also the answer to David’s question.
But David was additionally interested in the visualization of the corresponding sums
of spherical harmonics. Thus, I recommended to him the SURFER software, and the
reader can find a lot of SURFER pictures of deformed atomic nuclei in his thesis
[17] in 2014.

I was still interested in the problem of a simple and explicit geometric construc-
tion of the dodecahedron and of the icosahedron as a real algebraic surface. During
the ICM 2014 at Seoul, I asked Gert-Martin about this problem, and in the night after
our conversation, I could find a short and explicit polynomial of degree 2n with two
parameters a and b. The larger is n, the better is the quality of approximation, and
the parameters a and b allow an interpolation between a cube, a dodecahedron, an
octahedron, and a rhombic dodecahedron:

p D .axC byC z/2n C .xC ayC bz/2n C .bxC yC az/2nC
.�axC byC z/2n C .x � ayC bz/2n C .bxC y � az/2n � 1:
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The idea of the construction is simple: It is well known that the icosahedron is
spanned by the 12 vertices

.˙1;˙�; 0/; .0;˙1;˙�/; .˙�; 0;˙1/

of three golden rectangles parallel to the coordinates, where � WD 1
2
.
p
5 � 1/ D

0:618 : : : denotes the small golden ratio. Now, a pair of antipodal vertex coordinates
˙.a; b; c/ gives a pair of normal planes by .ax C by C cz/2 � 1 D 0 and forming
the sum of squares results in a convex approximation of the dual of an icosahedron,
i.e., of a dodecahedron. (Here I took the free parameter a instead of � and b instead
of 0 in order to have more freedom to make experiments!)

After I showed Gert-Martin the formula, Bianca Violet from the IMAGINARY
team and I produced a paper [15] and a short movie [16], both with the title
“Katzengold.” Katzengold (cat’s gold) is the German nickname for the mineral
pyrite (iron sulfide, FeS2, with English nick name “fool’s gold”). Pyrite exists in
many crystal forms: cubical, octahedral, as an (irregular) dodecahedron, and as a
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rhombic dodecahedron! Here are some pictures from Egbert Brieskorn’s mineral
collection which is now displayed at the Museum of Minerals and Mathematics in
Oberwolfach.

I would also like to mention the paper [2] of Gert-Martin on “Crystals and
Mathematics.” Both the “Katzengold” paper and movie were presented by Bianca
at the Bridges Conference on Mathematics and Art in Baltimore 2015.

Finally, I should mention that also the icosahedron can be constructed in a similar
way, as the vertex coordinates of the dodecahedron are given by sums of the triangle
vertex coordinates for each of the 20 triangles of the icosahedron. Then, take the
vertex coordinates ˙.a; b; c/ of the dodecahedron to form again a sum of terms
.axC byC cz/2n. A short computation with a instead of � gives

p D ..2C a/xC y/2n C ..2C a/yC z/2n C ..2C a/zC x/2n

C..2C a/x � y/2n C ..2C a/y� z/2n C ..2C a/z� x/2n

C.1C a/2n.xC yC z/2n C .1C a/2n.�xC yC z/2n

C.1C a/2n.x � yC z/2n C .1C a/2n.xC y � z/2n � 1
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With Bianca Violet, we plan to construct further polyhedra by this method, such
as the Archimedean and Catalan solids.

Acknowledgements I was introduced to the SURFER software by Gert-Martin Greuel in 2008,
and I got interested immediately because of possible visualizations of two-dimensional topological
objects. I would like to thank Gert-Martin cordially for all his advice and help with algebraic
geometry and numerous discussions on mathematics. I learned from him the importance of raising
public awareness for its beauty. This written version of my talk at the Pfalz-Akademie conference
2015 in honor of Gert-Martin Greuel gives a report on the surfaces and visualizations which I
studied since 2008, emphasizing his influence to my work.
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1 Introduction

1.1 Main Goal

In this paper, we prove an additivity property of the three-dimensional (normalized)
Seiberg–Witten invariant with respect to taking the abelian cover, valid for surgery
3-manifolds. Namely, assume that M is obtained as a negative rational surgery
along connected sum of algebraic knots in the three-sphere S3. Let † be its
universal abelian cover. Theorem 10 states that the sum over all spinc structures
of the Seiberg–Witten invariants of M (after normalization) equals to the canonical
Seiberg–Witten invariant of †.

1.2 Motivation

Both covers of manifolds, and manifolds of form S3�p=q.K/, are extensively studied.
The stability of certain properties and invariants with respect to the coverings is a
key classical strategy in topology; it is even more motivated by the recent proof
of Thurston’s virtually fibered conjecture [1, 32]. Manifolds of form S3�p=q.K/ can
be particularly interesting due to theorem of Lickorish and Wallace [13, 31] stating
that every closed oriented 3-manifold can be expressed as surgery on a link in S3.
Based on this result, one can ask which manifolds have surgery representations
with some restrictions. For example, using Heegaard Floer homology, [11] provides
necessary conditions on manifolds having surgery representation along a knot. In
this context, Theorem 10 can be viewed also as a criterion for a manifold having
surgery representation of form S3�p=q.K/ with K a connected sum of algebraic knots.

In fact, Seiberg–Witten (SW) invariants and Heegaard Floer homologies are
closely related. The SW invariants were originally introduced by Witten in [33], but
they also arise as Euler characteristics of Heegaard Floer homologies (cf. [29, 30]).
In this article, we will involve another cohomology theory with similar property.
Since S3�p=q.K/ is representable by a negative definite plumbing graph, via [22]
we can view the SW invariants as Euler characteristics of lattice cohomologies
introduced in [21]. The big advantage of the lattice cohomology over the classical
definition of Heegaard Floer homology is that it is computable algorithmically from
the plumbing graph in an elementary way. In the last section of applications and
examples, the above ‘covering additivity property’ will be combined with results
involving lattice cohomology.

Another strong motivation to study the above property is provided by the theory
of complex normal surface singularities: the geometric genus of the analytic germ is
conjecturally connected with the SW invariant of the link of the germ (see [23–26]).
Since the geometric genus satisfies the ‘covering additivity property (cf. Sect. 2.1)’,
it is natural to ask for the validity of similar property at purely topological level.
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Furthermore, from the point of view of singularity theory, the motivation for
the surgery manifolds S3�p=q.K/ is also strong: the link of the so-called superiso-
lated singularities (introduced in [14]) is of this form. These singularities are
key test examples for several properties and provide counterexamples for several
conjectures. They embed the theory of projective plane curves to the theory of
surface singularities. For their brief introduction, see Example 16; for a detailed
presentation, see [14, 15].

All these connections with the analytic theory will be used deeply in several
points of the proof. For consequences of the main result regarding analytic
invariants, see the last sections.

1.3 Notations

We recall some facts about negative definite plumbed 3- and 4-manifolds, their spinc

structures and Seiberg–Witten invariants. For more, see [24, 26].
Let M be a 3-manifold which is a rational homology sphere (QHS3). Assume

that it has a negative definite plumbing representation with a decorated connected
graph G with vertex set V . In particular, M is the boundary of a plumbed 4-manifold
P, which is obtained by plumbing disc bundles over oriented surfaces Ev ' S2,
v 2 V (according to G), and which has a negative definite intersection form. A
vertex v 2 V D V.G/ is decorated by the self-intersection ev 2 Z of Ev in P. One
can think of ev also as the Euler number of the disc bundle over Ev Š S2 used in the
plumbing construction. Since M is a QHS3, the graph G is a tree. We set #V.G/ for
the number of vertices of G.

Below all the (co)homologies are considered with Z-coefficients.
Denote by L D LG D ZhEviv2V , the free abelian group generated by basis

elements fEvgv , indexed by V . It can be identified withH2.P/, where fEvgv represent
the zero sections of the disc bundles used in the plumbing construction. It carries
the negative definite intersection form .:; :/ D .:; :/G (of P; readable from G too).
This form naturally extends to L ˝ Q. Denoting by L0 D L0G D HomZ.L;Z/, the
dual lattice, one gets a natural embedding L ! L0 by l 7! .�; l/. Furthermore, we
can regard L0 as a subgroup of L ˝ Q, therefore .�; �/ extends to L0 as well. We
introduce the anti-dual basis elements E�v in L0 defined by .Ev0 ;E�v / being �1 if
v D v0 and 0 otherwise. Notice that L0 Š H2.P/ Š H2.P;M/. The short exact
sequence 0 ! H2.P/ ! H2.P;M/ ! H1.M/ ! 0 identifies L0=L with H1.M/,
which will be denoted by H. We denote the class of l0 2 L0 by Œl0� 2 H, and we call
l0 2 L0 a representative of Œl0�.

Assume that the intersection form in the basis fEvgv has matrix I; then we define
det.G/ WD det.�I/. It also equals the order of H. (Since I is negative definite,
det.G/ > 0.)

For any negative definite plumbing graph G, which is a tree, and for any two
vertices u; v, the following holds (see [7, Sect. 10] in the integral homology case
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and [24] in general):

8
<

:

� det.G/ � .E�u ;E�v / equals the product of the determinants of the
connected components of that graph, which is obtained from G by
deleting the shortest path connecting u and v and the adjacent edges.

(1)

For any h 2 H, we denote by rh D P
v2V cvEv ‘the smallest effective

representative’ of its class in L0, determined by the property 0 � cv < 1 for all v.
Finally, we define the canonical characteristic element in L0. It is the unique

element kG 2 L0 such that .kG;Ev/ D �.Ev;Ev/ � 2 for every v 2 V . (In fact, P
carries the structure of a smooth complex surface—in the case of singularities, P is
a resolution (cf. Sect. 2)— and kG is the first Chern class of its complex cotangent
bundle.)

The Seiberg–Witten invariants of M associate a rational number to each spinc

structure of M. There is a ‘canonical’ spinc structure �can 2 Spinc.M/, the restriction
of that spinc structure of P, which has first Chern class kG 2 H2.P/. As we assumed
M to be a QHS3, Spinc.M/ is finite. It is an H torsor: for h 2 H, we denote this
action by � 7! h � � .

We denote by sw� .M/ 2 Q the Seiberg–Witten invariant of M corresponding
to the spinc structure � . This is the classical monopole counting Seiberg–Witten
invariant of M corrected by the Kreck–Stolz invariant to make it dependent only
on the manifold M. Nevertheless, we will adopt the approach from [24], and we
regard sw� .M/ as the sum of the sign-refined Reidemeister–Turaev torsion and
the Casson–Walker invariant. By Némethi and Nicolaescu [24], it can be computed
from the plumbing graph G, and in this note, this combinatorial approach (and its
consequences and related formulae from succeeding articles) will be used.

Next, we consider the following normalization term: for each h 2 H, we set

ih.M/ WD .kG C 2rh; kG C 2rh/C #V
8

: (2)

It does not depend on the particular plumbing representation of the manifold M (or
P); hence, it is an invariant of the manifoldM. Then, the normalized Seiberg–Witten
invariant is defined as follows: for any h 2 H, we set

sh.M/ D swh��can.M/ � ih.M/: (3)

Sometimes we will also use the notations sh.G/ D sh.M/ or swh.G/ D
swh��can.M/.

In fact, sh.M/ 2 Z. This can be seen through the identity (23), where sh.M/
appears as the Euler characteristic of the lattice cohomology. We also refer to
Sect. 4.1 for the fact that sh.M/ and ih.M/ are indeed independent of the plumbing
representation of the manifold.

Let † be the universal abelian cover (UAC) of the manifold M: it is associated
with the abelianization �1.M/ ! H1.M/. Usually the UAC of a rational homology
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sphere is not a rational homology sphere. However, in this note, we will consider
only those situations when this happens.

Definition 1 Assume that† is a rational homology sphere and both M and† admit
uniquely defined ‘canonical’ spinc structures (e.g. they are plumbed 3-manifolds
associated with negative definite graph; see above). We say that for the manifold
M, the ‘covering additivity property’ of the invariant s holds with respect to the
universal abelian cover (shortly, ‘CAP of s holds’) if

s0.†/ D
X

h2H1.M/
sh.M/:

(The index 0 in the left-hand side is the unit element in H1.†/.)

Our main result is the following:

Theorem 2 Let M D S3�p=q.K/ be a manifold obtained by a negative rational Dehn
surgery of S3 along a connected sum of algebraic knots K D K1# : : : #K	 (p; q > 0,
gcd.p; q/ D 1). Assume that †, the UAC of M, is a QHS3. Then CAP of s holds.

Though the statement is topological, in the proof we use several analytic steps
based on the theory of singularities. These steps not only emphasize the role of the
algebraic knots and of the negative definite plumbing construction, but they also
provide the possibility to use certain deep results valid for singularities (which are
transported into the proof).

We emphasize that the above covering additivity property is not true for general
negative definite plumbed 3-manifolds (hence, for general 3-manifolds either) (cf.
Example 18). In particular, we cannot expect a proof of the main theorem by a
general topological machinery unless some restrictions are made.

1.4 Further Notations

It is convenient to extend the definitions (2) and (3) for any representative l0 2 L0:

il0.G/ WD .kG C 2l0; kG C 2l0/G C #V.G/
8

and sl0.M/ D swŒl0 �.G/� il0.G/:

By a computation, for two representatives Œl01� D Œl02� D h 2 H, one has

sl02 .G/� sl01 .G/ D �.l02/� �.l01/; (4)

where

�.l0/ WD �.l0; l0 C kG/=2: (5)
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In particular,

sl0.G/ D sŒl0 �.G/C �.l0/ � �.rŒl0 �/: (6)

Note that for l 2 L one has �.l/ D �.l; l C kG/=2 2 Z. In fact, By Riemann–Roch
theorem,�.l/ is the topological description of the analytic Euler characteristic �.Ol/

of the structure sheaf Ol of any non-zero effective cycle l 2 L.

2 Preliminaries

2.1 Connection with Singularity Theory

Theorem 2 is motivated by a geometric genus formula valid for normal surface
singularities. Next, we present two pieces of this connection, namely, the definition
and covering properties of the equivariant geometric genera of normal surface sin-
gularities and the Seiberg–Witten invariant conjecture of Némethi and Nicolaescu
[24]. For details, we refer to [20, 22–24, 26].

Let .X; 0/ be a complex normal surface singularity germ with link M. Let � W
QX ! X be a good resolution with negative definite dual resolution graph G, which
can be regarded also as a plumbing graph for the 4-manifold QX and its boundary
M. (Hence, the Ev’s in this context are the irreducible exceptional curves.) The
geometric genus of the singularity is defined as pg.X/ D dimCH1. QX;OQX/, where OQX
is the structure sheaf of QX. Although pg.X/ is defined via QX, it does not depend on the
particular choice of the resolution. In [24], the following conjecture was formulated
for certain (analytic types of) singularities, as a topological characterization of
pg.X/:

pg.X/ D s0.M/: (7)

We say that the Seiberg–Witten invariant conjecture (SWIC) holds for .X; 0/ if (7)
is valid.

It is natural to ask whether there is any similar connection involving the other
Seiberg–Witten invariants? The answer is given in [20, 23]. Let .Y; 0/ be the
universal abelian cover of the singularity .X; 0/ (that is, its link † is the regular
UAC of M, .Y; 0/ is normal, and .Y; 0/ ! .X; 0/ is analytic). The covering action
of H D H1.M/ on Y extends to an action on the resolution QY of Y. Hence, H acts on
H1. QY;OQY/ as well, and it provides an eigenspace decomposition˚�2 OH H1. QY;OQY /� ,
indexed by the characters � 2 OH WD Hom.H;C�/ of H. Set

pg.X/h D dimCH
1. QY;OQY/�h ;
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where �h 2 OH is the character given by h00 7! e2� i.l
0;l00/, Œl0� D h, Œl00� D h00. The

numbers pg.X/h are called the equivariant geometric genera of .X; 0/. Note that
pg.X/0 D pg.X/.

We say that the equivariant Seiberg–Witten invariant conjecture (EqSWIC) holds
for .X; 0/ if the next identity (8) is satisfied for every h 2 H:

pg.X/h D sh.M/: (8)

The EqSWIC holds for several families of singularities: rational, minimally
elliptic, weighted homogeneous, or splice quotient singularities [20, 23, 25].

Observe that by the definition, pg.Y/ D P
h2H pg.X/h. Hence, the next claim is

obvious.

Claim 3 If for a singularity .X; 0/ with QHS3 link the EqSWIC holds, and for its
(analytic) universal abelian cover .Y; 0/ with QHS3 link the SWIC holds too, then
for the link M of .X; 0/ the (purely topological) covering additivity property of s
also holds.

Example 4 As we already mentioned above, by Némethi [20] and Némethi and
Nicolaescu [25], the assumptions of Claim 3 are satisfied, e.g. by cyclic quotient
and weighted homogeneous singularities; hence the CAP of s holds, e.g. for all lens
spaces and Seifert rational homology sphere 3-manifolds.

Theorem 2 of the present note proves CAP for surgery manifolds. Furthermore,
Example 18 shows that CAP does not hold for arbitrary plumbed 3-manifolds.

The invariants fsh.G/gh for many 3-manifolds (graphs) are computed. The next
statement basically follows from Example 4 combined with the fact that the UAC
of a lens space is S3 (i.e. the UAC of a cyclic quotient is .C2; 0/ with pg.C2/ D 0;
hence sh.G/ D pg.X/h D 0).

Proposition 5 ([20, 21, 23]) If G is a (not necessarily minimal) graph of S3 or of
a lens space, then sh.G/ D 0 for every h 2 H.

2.2 The Structure of the Plumbing Graph G of S3
�p=q.K/

In this section, we describe the plumbing graph of S3�p=q.K/ and we also fix some
additional notations.

For j D 1; : : : ; 	, let Kj � S3 be the embedded knot of an irreducible plane
curve singularity f fj.x; y/ D 0g � .C2; 0/, where fj is a local holomorphic germ
.C2; 0/ ! .C; 0/, which is locally irreducible. Let Gj be the minimal embedded
resolution graph of f fj.x; y/ D 0g � .C2; 0/, which is a plumbing graph (of S3)
with several additional decorations. It has an arrowhead supported on a vertex uj,
which represents Kj (or, in a different language, it represents the strict transform
S.fj/ of f fj D 0g intersecting the exceptional .�1/-curve Euj ). Furthermore, Gj has
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a set of multiplicity decorations, the vanishing orders fmvgv of the pullback of fj
along the irreducible exceptional divisors and S.fj/. We collect them in the total
transform div.fj/ D S.fj/ CPv2V.Gj/

mvEv D S.fj/ C .fj/ of fj, characterized by
.div.fj/;Ev/Gj D 0 for any v, and .fj/ is its part supported on [v2V.Gj/Ev . (For more
on the graphs of plane curve singularities, see [6, 7].)

Define K WD K1#K2# : : : #K	 .
Next, we write the surgery coefficient in Hirzebruch–Jung continued fraction

p=q D k0 �
1

k1 �
1

k2 �
1

� � � � 1

ks

DW Œk0; k1; : : : ; ks�; (9)

where ki 2 Z, k0 � 1, k1; : : : ; ks � 2.
Then M D S3�p=q.K/ can be represented by a negative definite plumbing graph

G, which is constructed as follows, cf. [20, 27]. G consists of 	 blocks, isomorphic
to G1; : : : ;G	 (with their Euler decorations but without the multiplicity decorations
and arrowheads); a chain G0 of length s consisting of vertices u1; : : : ; us D u0 with
decorations eu1 D �k1; : : : ; eus D �ks, respectively; and one ‘central vertex’ u.
Moreover, we add 	 C 1 new edges: u and the vertex uj from each block Gj is
connected by an edge, and u and the first vertex u1 with decoration�k1 of the chain
G0 is connected by an edge. The vertex u gets decoration eu D �k0 �P	

jD1muj .
Note that if q D 1, then G0 is empty. In this case, we have s D 0 and u D u0.
We use the notation Ev, v 2 V.G/, for the basis of the lattice LG associated with

G. We simply write .:; :/ for the intersection form .:; :/G, and E�v for the anti-dual
elements in G; that is, .Ev0 ;E�v / D �ıv;v0 with the Kronecker-delta notation.

Similarly, we write .:; :/j D .:; :/Gj for the intersection form of Gj (j D 0; : : : ; 	).

For any v 2 V.Gj/, we set E�;jv 2 L0.Gj/ for the anti-dual of Ev in the graph Gj; that
is, .Ev0 ;E�;jv /j D �ıv;v0 , v0 2 V.Gj/.

We denote the canonical class of G by kG and the canonical class of Gj by kGj .
By a general fact from the theory of surgeries, H1.M/ D Zp. In fact, ŒE�u0

� is a
generator of this group. For the convenience of the reader, we provide a proof of
these two statements (which will stay as a model for the corresponding statements
valid for the UAC).

Lemma 6 H D fŒhE�u0

�gh, where h 2 f0; 1; : : : ; p � 1g.
Proof Consider the following element D of LG. If on each Gj it is .fj/, we
put multiplicity 1 on u, multiplicity k0 on u1 and in general the numerator of
Œk0; : : : ; ki�1� on ui, 1 � i � s. Furthermore, put an arrowhead on us with multiplicity
p. If this arrowhead represents a cut S supported by Eus (that is, a disc in P D P.G/,
which intersects Eus transversally), then pSCD, as an element of H2.P; @P;Z/, has
the property that . pS C D;Ev/ D 0 for all v 2 V.G/. This shows that, in fact,
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E�u0

D D=p. Note also that the Eu-coefficient of D=p is 1=p; hence the class of E�u0

(or of D=p) in H D L0.G/=L.G/ has order p.
Hence, if we show that H itself has order p, then we are done. For this, we verify

that det.G/ D p. In determinant computations of decorated trees G, the following
formula is useful; see e.g. [5, 4.0.1(d)].

�
Let e be an edge of G with end vertices a and b: Then
det.G/ D det.G n e/ � det.G n fa; b; and their adjacent edgesg/: (10)

We proceed by induction over 	. In order to run the induction properly, we introduce
slightly more general graphs. Let G`.x/ be the graph constructed similarly as G
above, but now we glue only G0 and G1; : : : ;G`, where 1 � ` � 	, and we put for
the Euler decoration eu of the central vertex u the general integer eu WD �k0 � x for
some x 2 Z. For example, G D G	.

P	
jD1muj/.

Note that det.Gj/ D 1 (since the graph represents S3), and det.Gj n uj/ D muj .
Indeed, using (1), muj D �..fj/;E�uj/Gj D �.E�uj ;E�uj/Gj D det.Gj n uj/.

Additionally, let us define also G0.x/, the string with s C 1 vertices with
decorations �k0 � x;�k1; : : : ;�ks. Note that from definitions det.G0.0// D p D
k0q � r, and by (10) (used for the first edge) det.G0.x// D .xC k0/q � r D pC xq.

Now, let us compute det.G`.x//. If ` D 1, and if we take for e in (10) the edge
.u1; u/, then det.G1.x// D det.G1/ � det.G0.x// � det.G1 n u1/ � det.G0.x/ n u/ D
pC xq� mu1q. Hence, for x D mu1 , we get p.

If ` D 2, and if we take e D .u; u2/, then det.G2.x// D det.G1.x// � mu2q D
pC xq � mu1q � mu2q, which equals p for x D mu1 C mu2 . For arbitrary `, we run
induction. ut

2.3 The Structure of Plumbing Graph � of the UAC † of
M D S3

�p=q.K/

We construct a plumbing graph � as follows. � consists of 	 blocks �1; : : : ; �	
with distinguished vertices w1; : : : ;w	 (which will be described later), a chain �0
of length q � 1 consisting of vertices w1; : : : ;wq�1 D w0, all with decoration �2,
and a ‘central vertex’ w and some additional edges. These edges are: each vertex wj

connected by an edge to w, and w1 is also connected by an edge to w. If q D 1, then
�0 is empty and w D w0.
�j is a plumbing graph of the link of the suspension hypersurface singularity

fgj D 0g, where gj.x; y; zj/ D fj.x; y/Czpj (for its shape, see [16]). The vertexwj of �j

is that vertex which supports the arrowhead (representing the strict transform S.zj/ of
fzj D 0g), if we regard �j as the embedded resolution graph of fzj D 0g � fgj D 0g
(that is, it supports the strict transform of fzj D 0g).

The self-intersection of w is determined as follows.
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Let Fv, v 2 V.�/ denote the basis elements of the lattice L.�/ associated with
� . We regard �j as a subgraph of �; hence fFvgv2V.�j/ are regarded as generators of
L.�j/.

We write div.zj/ D S.zj/ CP
v2V.�j/ nvFv for the total transform of fzj D 0g

in the embedded resolution of fzj D 0g � fgj D 0g with resolution graph �j.
This means that div.zj/ topologically is characterized by .div.zj/;Fv/�j D 0 for any
v 2 V.�j/; the strict transform S.zj/ can be represented as an arrowhead on wj.

Then we define the decoration of the central vertex w in � by ew D �1 �P	
jD1 nwj .

Lemma 7 � is a (possible) plumbing graph of the UAC †.

Proof This follows basically from the topological interpretation of the cyclic cov-
ering algorithms from [16, 17]. Although we will not review the whole algorithm,
we will explain how it applies (in particular, some familiarity of the reader with this
algorithm is needed), and we also determine the main blocks of � provided by the
algorithm.

Consider the element D of LG constructed in the proof of Lemma 6. Its
multiplicities can be completed with an arrowhead with multiplicity p supported
on us. Equivalently, we can put a cut S on Eus , and then pSC D 2 H2.P; @P;Z/ has
the property that . pS C D;Ev/ D 0 for all v 2 V.G/ (cf. the proof of Lemma 6).
This means that pS C D is a topological analogue of the divisor of a function. The
algorithm which provides the (topological) cyclic Zp-covering of the plumbed 4-
manifold P with branch locus pSC D is identical with the algorithm from [16, 17]
(which provides branched cyclic covers associated with an analytic function with,
say, divisor pSC D in QX).

The point is that S has multiplicity p; hence the Zp-covering will have no
branching along it. This can be proved as follows (we prefer again an analytic
language, but the interested reader might rewrite it in a purely topological language).
Let U be a local neighbourhood of the intersection point S\Eus , let .�1; �2/ be local
analytic coordinates in U such that f�1 D 0g D S \ U, f�2 D 0g D U \ Eus .
Then pSC D in U is the divisor of �p1�

m
2 for some integer m with .p;m/ D 1. Then

the cyclic Zp covering above U is the normalization of f�p1�m2 D �pg. This is smooth
with coordinates .�1; �/, and the normalization map is �1 D �1; �2 D �p; � D �1�m,
which projects to U as �1 D �1 and �2 D �p. Hence, above the generic point of S,
there are p points.

In particular, the branch locus is supported in[vEv , that is, we get an unbranched
covering of M. Note also that the Eu-coefficient of D=p is 1=p; hence the class of
D=p (which in fact equals E�u0

) has order p in H, and it generates H (see also the
proof of Lemma 6). This implies that this algorithm provides exactly the UAC of M.

Since the algorithm is ‘local’, and the multiplicity of u is 1, it follows that over the
subgraphsGj, it is identical with that one which provides the graph of the suspension
singularity fjCzpj . Moreover, over u, we will have exactly one vertex in the covering,
namely, w, and this will get multiplicity 1 (see again [16, 17]).
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Next, we verify its behaviour over the graph G0. This graph is the graph of
a cyclic quotient singularity of type .q; r/, where q=r D Œk1; : : : ; ks�. This is the
normalization of xyq�r D zq. (For details regarding cyclic quotient singularities, see
[2].)

Using this coordinate choice, the strict transform of y is exactly qS; the strict
transform of x is a disc S0 in Eu (a disc neighbourhood of Eu \ Eu1 in Eu) with
multiplicity q; and finally, the strict transform of z is S0 C .q � r/S. In particular,
the cyclic covering we consider over G0 is exactly the cyclic Zp-covering of the
normalization of xyq�r D zq along the divisor of zyk0�1 (here for the S-multiplicity,
use q � rC .k0 � 1/q D k0q � r D p). This is a new cyclic quotient singularity, the
normalization of f.x; y; z;w/ W xyq�r D zq; zyk0�1 D wpg.

The q-power of the second equation combined with the first one gives xyp D wpq;
hence t WD wq=y is in the integral closure with x D tp. Hence, after eliminating x, the
new equations are ty D wq; tpyq�r D zq and zyk0�1 D wp. A computation shows that
the integral closure of this ring is given merely by ty D wq. (For this, use zyk0�1 D
wp D wk0q�r D w.k0�1/qwq�r D tk0�1yk0�1wq�r , that is, yk0�1.z � tk0�1wq�r/ D 0.)

This is an Aq�1 singularity, whose minimal resolution graph is �0.
Finally, notice that the above algorithm provides a system of multiplicities, which

can be identified with a homologically trivial divisor; hence, similarly as in [16, 17],
we get (via intersection with Fw) from the multiplicities the last ‘missing Euler
number’ ew, too. ut

The intersection form of � will be denoted by h:; :i D .:; :/� . Similarly, h:; :ij D
.:; :/�j will denote the intersection form of �j. The canonical class of � is k� ; the
canonical class of �j is k�j . For any v 2 V.�/, F�v will denote the anti-dual of the

corresponding divisor Fv in � . Similarly, for a vertex v 2 V.�j/, F
�;j
v is the anti-dual

of Fv in �j. Set J D H1.†/ and let Jj be the first homology group of the 3-manifolds
determined by �j.

Lemma 8

J Š J1 � � � � � J	:

Proof Let �j 2 OJj be a character of �j, j � 1. In [26, Sect. 6.3], it is proved that �j
takes value 1 on F�;jwj

(recall that the vertex wj of �j is connected with the central
vertex w). Hence, for j 6D i, j; i � 1, there is no edge .vj; vi/ of � , such that vj is in
the support of �j and vi is in the support of �i. This means that each �j 2 OJj can be
extended to a character of J, by setting �j.F�v / D 1 whenever v 62 V.�j/; in this way
providing a monomorphism OJj ,! OJ. Moreover, the same property also guarantees
that in fact one has a simultaneous embedding

Q
j�1 OJj ,! OJ. Therefore, if we prove

that
Q

j�1 det.�j/ D det.�/, then the above embedding becomes an isomorphism;
hence the statement follows.

For the determinant identity, we use similar method as in the proof of Lemma 6.
Let �`.x/ be the graph obtained by connecting (the distinguished vertices of) �0 and
�1; : : : ; �` to w, where 1 � ` � 	, and we put for the Euler decoration ew the integer
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ew WD �1 � x. Furthermore, let �0.x/ be the string with q vertices and decorations
�1 � x;�2;�2; : : :. Hence det.�0.x// D 1C xq.

We write dj for det.�j/ D jJjj, and note that det.�j n wj/ D djnwj (use (1)).
Now, we are ready to compute det.�`.x//. If ` D 1, and in (10) we take e D

.w1;w/, then det.�1.x// D d1.1C xq/�d1nwjq, which equals d1 whenever x D nu1 .
If ` D 2 and e D .u; u2/, one has det.�2.x// D det.�1.x//d2 � d2nw2d1q D

d1d2.1 C xq � nw1q � nw2q/, which equals d1d2 whenever x D mu1 C mu2 . For
arbitrary `, run induction. ut
Lemma 9

.a/ � p � .E�u ;E�u / D q and � p � .E�u0

;E�u / D 1I
.b/ q � .E�;juj ;E

�;j
v /j D p � .E�u ;E�v / for any v 2 V.Gj/; j � 1I

.c/ � hF�w;F�wi D q and � hF�w0

;F�wi D 1I
.d/ q � hF�;jwj

;F�;jv ij D hF�w;F�v i for any v 2 V.�j/; j � 1:

(11)

Proof Identity (1) applied for G and the pair of vertices u; u (and u; u0) gives .a/,
since det.G/ D p, det.Gj/ D 1 for j � 1 and det.G0/ D q. (b) follows similarly. (c)
and (d) follows from this property combined with Lemma 8. ut

3 Proof of Theorem 2

3.1 Proof of the Main Result

Now we are ready to prove Theorem 2. To adjust it to its proof, we recall it in a
more explicit form, in the language of plumbing graphs.

Theorem 10 Let K be a connected sum of algebraic knots, p; q coprime positive
integers. Assume that both S3�p=q.K/ (having plumbing graph G) and its universal
abelian cover † (with plumbing graph �) are rational homology spheres. Then the
following additivity holds:

sw0.�/� hk�; k� i C #V.�/
8„ ƒ‚ …

s0.�/

D
p�1X

hD0

�

swh.G/ � .kG C 2rh; kG C 2rh/C #V.G/
8

�

„ ƒ‚ …
sh.G/

:

On the left-hand side, the index 0 of sw0.�/ is the unit element of J D H1.†/,
and on the right-hand side, we identified elements of H Š Zp with elements of
f0; 1; : : : ; p � 1g, 0 being the unit element and 1 being the generator ŒE�u0

�, i.e. rh D
rŒhE�

u0

�.
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In fact, the condition whether† is a QHS3 or not is readable already from p and
the plane curve singularity invariants describing the knots Ki; cf. [26, Sect. 6.2(c)].

Proof Notice that deleting from G the ‘central vertex’ u (and all its adjacent
edges), one gets G0;G1; : : : ;G	 as connected components of the remaining graph.
Also, deleting from � the ‘central vertex’ w (and all its adjacent edges), one gets
�0; �1; : : : ; �	 as connected components of the remaining graph. (�0 and G0 are
present only if q > 1).

We use the notations Rj, respectively, QRj, for the ‘restriction’ homomorphisms
L0G ! L0Gj

, respectively, L0� ! L0�j , dual to the natural inclusions LGj ! LG,

respectively, L�j ! L� . They are characterized by Rj.E�v / D E�;jv , if v 2 V.Gj/

and 0 otherwise, respectively, QRj.F�v / D F�;jv , if v 2 V.�j/ and 0 otherwise. For
example, Rj.kG/ D kGj and QRj.k�/ D k�j (cf. [5, Definition 3.6.1 (2)]).

We can apply the surgery formula of [5, Theorem 1.0.1] (note the sign difference
due to the different sign convention about sw) and get the following two formulae.
The new symbols Hpol

u;h.1/ and Fpol
w;0.1/ are values at t D 1 of certain polynomials as

in [5, Sect. 3.5]; their definitions will be recalled later in (14) and (15).

sh.G/ D Hpol
u;h.1/C sR0.rh/.G0/C

	X

jD1
sRj.rh/.Gj/; (12)

s0.�/ D Fpol
w;0.1/C s0.�0/C

	X

jD1
s0.�j/: (13)

In (12), for j � 1, ŒRj.rh/� D 0 2 L0Gj
=LGj , as the latter one is the trivial group

H1.S3/. Hence, by (6), sRj.rh/.Gj/ D s0.Gj/C �j.Rj.rh//, where �j.x/ WD � 12 .x; xC
kGj/j.

Furthermore, by Proposition 5, s0.�0/ D 0, and s0.Gj/ D 0 for j � 1 (as Gj

is a plumbing graph for S3). Therefore, the desired equality s0.�/ D Pp�1
hD0 sh.G/

reduces to the proof of the following three lemmas. ut
Lemma 11

p�1X

hD0
Hpol

u;h.1/ D Fpol
w;0.1/:

Lemma 12

p�1X

hD0
�j.Rj.rh// D s0.�j/ .for any j � 1/:
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Lemma 13

p�1X

hD0
sR0.rh/.G0/ D 0:

In the next paragraphs, we recall the definition of Hpol
u;h and Fpol

w;0 (following [5,
Sect. 3.5]) adapted to the present case and notations, and then we provide the proofs
of the lemmas.

First, given a rational function R.t/ of t, one defines its polynomial part Rpol.t/
as the unique polynomial in t such that R.t/�Rpol.t/ is either 0 or it can be written
as a quotient of two polynomials of t such that the numerator has degree strictly less
than the denominator.

Now Fpol
w;0 and Hpol

u;h are polynomial parts of rational functions defined as follows.

Hu;h.t/ D 1

p
�
X

%2 OH
%�1.h/

Y

v2V.G/
.1 � %.ŒE�v �/t�p
.E

�

u ;E
�

v //ıv�2; (14)

where ıv denotes the degree (number of adjacent edges) of a vertex v 2 V.G/.

Fw;0.t/ D 1

jJj �
X

%2OJ

Y

v2V.�/
.1 � %.ŒF�v �/t�jJjhF

�

w ;F
�

v i/Qıv�2; (15)

where Qıv denotes the degree of a vertex v 2 V.�/.

Proof of Lemma 11 By Fourier summation

Hu.t/ WD
p�1X

hD0
Hu;h.t/ D

Y

v2V.G/
.1 � t�p
.E�

u ;E
�

v //ıv�2: (16)

As taking polynomial parts of rational functions is additive, Lemma 11 follows if
we prove

Hu.t
jJj/ D Fw;0.t/: (17)

Let �j D �S3 .Kj/ be the Alexander polynomial of the knot Kj (defined as in [26,
Sect. 2.6, (8)], or [7]). Then, since E�;juj

D .fj/ 2 LGj ,

�j.t/

1 � t
D

Y

v2V.Gj/

.1 � t�.E
�;j
uj ;E

�;j
v /j/ıv�2:
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Comparing (16) with the above formula for the Alexander polynomials and using
the identities (a), (b) of Lemma 9, we get that

Hu.t/ D
Q	

jD1 �j.tq/

.1� t/.1 � tq/
: (18)

Recall that Jj D L0�j=L�j is the first homology group of the manifold determined

by �j and that F�;jwj
D .zj/ 2 L�j . Let �j;�j be the Alexander polynomial of the knot

Kj;�j in the manifold of �j determined by zj D 0 (see [26, Sect. 2.6, (8)]). That is,

�j;�j .t/

1 � t
D 1

jJjj �
X

%j2bJj

Y

v2V.�j/
.1 � %j.ŒF�;jv �/t�hF

�;j
wj ;F

�;j
v ij/Qıv�2:

Recall that J D J1 � � � � � J	 . Consequently, any character % 2 OJ can be written as a
	-tuple of characters, % D .%1; : : : ; %	/ with %j 2 OJj D Hom.Jj;C�/. Furthermore,
for any v 2 V.�j/, %.ŒF�v �/ D %j.ŒF

�;j
v �/ and %.ŒF�v �/ D 1 if v D w or v 2 �0 as in

that case F�v represents the trivial element in L0�=L� (see also the proof of Lemma 8).
Comparing (15) with the above formula for the Alexander polynomials and using

the identities (c), (d) of Lemma 9, we get that setting s D tjJj,

Fw;0.t/ D
Q	

jD1 �j;�j .s
q/

.1 � s/.1 � sq/
: (19)

By [26, Prop. 6.6]�j D �j;�j , so via (18) and (19), we obtain (17). ut
Proof of Lemma 12 For any element l0 D P

v2V.G/ cvEv 2 L0G, let bl0c WDP
v2V.G/bcvcEv , respectively, fl0g WD l0 � bl0c, denote the coordinatewise integer,

respectively, fractional part of l0 in the basis fEvgv. We use this notation for other
graphs as well.

Using the description of E�u0

in the proof of Lemma 7, we have

hE�u0

D
X

j�1
h � .fj/=pC hEu=pC D0 .0 � h < p/; (20)

where D0 is supported on G0. Since rh D fhE�u0

g, we obtain

rh D hE�u0

�
X

j�1
bh � .fj/=pc � bD0c:

Since Rj.E�u0

/ D 0, Rj.Ev/ D Ev for v 2 V.�j/, and Rj.Ev/ D 0 for v 62 .V.�j/[u/,
we get

Rj.rh/ D �bh � .fj/=pc: (21)
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As �j is the plumbing graph of a suspension hypersurface singularity fgj.x; y; zj/ D
fj.x; y/ C zpj D 0g and, as it is proved in [26], for such suspension singularities the
SWIC holds (see Sect. 2.1), we have s0.�j/ D pg.fgj D 0g/. Hence, the statement
of the lemma is equivalent with the following geometric genus formula valid for
suspension singularities:

pg.fgj D 0g/ D
p�1X

hD0
�j
��bh � .fj/=pc

�
:

This formula has major importance even independently of the present application.
We separate the statement in the following Claim.

Claim 14 Let f .x; y/ 2 Cfx; yg be the equation of an irreducible plane curve
singularity. Let Gf be the dual resolution graph of a good embedded resolution of f ,
from which we delete the arrowhead (strict transform) of f and all the multiplicities.
Let .f / be the part of the divisor of f supported on the exceptional curves. Then for
any positive integer p the geometric genus of the suspension singularity fg.x; y; z/ D
f .x; y/C zp D 0g is

pg.fg D 0g/ D
p�1X

hD0
�.�bh � .f /=pc/:

Remark 15 A combinatorial formula (involving Dedekind sums) for the signature
of (the Milnor fibre of) suspension singularities was presented in [16]. Recall that
Durfee and Laufer type formulae imply that the geometric genus and the signature
determine each other modulo the link (see e.g. [18, Theorem 6.5] and the references
therein). In particular, the mentioned signature formulae provide expressions for the
geometric genus as well. Nevertheless, the above formula is of different type.

Proof Let � W Z ! .C2; 0/ be the embedded resolution of f . Consider the Zp

branched covering c W .fg D 0g; 0/ ! .C2; 0/, the restriction of .x; y; z/ 7! .x; y/.
Let c� W W ! Z be the pullback of c via � and let Oc� W OW ! Z be the composition
of the normalization n W OW ! W with c� . Then OW ! W ! fg D 0g is a partial
resolution of fg D 0g: although it might have some cyclic quotient singularities,
since these are rational, one has pg.fg D 0g/ D h1.O OW/. On the other hand, we
claim that

.Oc�/�.O OW/ D ˚p�1
hD0OZ.bh � .f /=pc/: (22)

This follows basically from [12, Sect. 9.8]. For the convenience of the reader, we
sketch the proof.

We describe the sheaves .c�/�.OW/ and .Oc�/�.O OW/ in the neighbourhood U
of a generic point of the exceptional set E of �. Consider such a point with local
coordinates .u; v/, fu D 0g D E \ U, .f / in U is given by um D 0. Consider the
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covering, a local neighbourhood of type f.u; v; z/ W zp D umg in W. Then OW;0

as Cfu; vg-module is ˚p�1
hD0zh � Cfu; vg. For simplicity, we assume gcd.m; p/ D 1.

The Zp-action is induced by the monodromy on the regular part, namely, by the
permutation of the z-pages, induced over the loop u.s/ D fe2� isg0�s�1. This is the
multiplication by � WD e2� im=p. Hence, zhCfu; vg is the �h-eigensheaf of .c�/�.OW/.

If we globalize zCfu; vg, we get a line bundle on Z, say L. Then the local
representative of Lp is zpCfu; vg D umCfu; vg D Cfu; vg.�.f //. Hence Lp is
trivialized by f ı �. Since Pic.Z/ D 0, L itself is a trivial line bundle on Z.

Next, we consider the normalization OW. Above U, it is .C2; 0/ with local
coordinates .t; v/, and the normalization is z D tm, u D tp. In particular,
.Oc�/�.O OW;0/ D ˚p�1

hD0th �Cfu; vg, where F .h/ WD th �Cfu; vg is the e2� ih=p-eigensheaf.
Set the integer m0 with 0 � m0 < p and mm0 D 1C kp for certain k 2 Z. Then one

has the following eigensheaf inclusions: thCfu; vg � zf
hm0

p gp � Cfu; vg D Lf
hm0

p gpjU .

Hence, for some effective cycle D, we must have thCfu; vg D Lf
hm0

p gp.D/jU. This,

by taking m-power reads as zhCfu; vg D zf
hm0

p gpmCfu; vg.mD/. This means that if
fhm0=pg D mh=p and mmh D khpC h for certain integers mh and kh, 0 � mh < p,

then the local equation of mD is zf
hm0

p gpm�h D zkhp. Hence D locally is given by
tkhp D ukh . Since kh D bmmh=pc, the global reading of this fact is D D bmh � .f /=pc.
Hence

.Oc�/�.O OW/ D ˚p�1
hD0L

f hm0

p gp.bmh � .f /=pc/:

Since L is a trivial bundle, and h 7! mh is a permutation of f0; : : : ; p � 1g, (22)
follows.

Next, from (22) we obtain pg.fg D 0g/ DPh h
1.OZ.bh � .f /=pc//.

Set D0 WD bh � .f /=pc. Then from the cohomological exact sequence of the
exact sequence of sheaves 0 ! OZ ! OZ.D0/ ! OD0.D0/ ! 0, and from
h1.OZ/ D pg..C2; 0// D 0, we get h1.OZ.D0// D h1.OD0.D0//. Since by Grauert–
Riemenschneider vanishing h0.OD0.D0// D 0, we have

h1.OZ.D
0// D ��.OD0.D0// D �.D0;D0/C .D0;D0 C K/=2 D �.�D0/:

This ends the proof of the Claim. ut
Moreover, the proof of Lemma 12 is also completed. ut
Proof of Lemma 13 We observe two facts. First, from the proof of Lemma 7, we
obtain that R0.rh/ only depends on the value p=q (and not on the blocks Gj, j � 1).
(Equivalently, from (20), we have that D0 is the unique rational cycle on G0 such
that, when completed with an arrowhead supported on u0 D us with multiplicity one
and with an arrowhead supported on u1 with multiplicity h=p, it has the property
that intersected by any Euj the result is zero.) It has the same expression even if we
replace all the graph Gj by the empty graph.
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Second, from Eqs. (13) and (12) and the discussion after it, we get that under
the validity of Lemmas 11 and 12 (what we already proved for any situation), the
main Theorem 10 (property CAP) is equivalent with Lemma 13. Putting these facts
together, we get that the validity of 13 is equivalent with the validity of CAP in the
case when Gj D ; for all j � 1. But CAP for G0 [ fug is true by Claim 3 and
Example 4.

(Of course, there is also a direct argument by a combinatorial computation of the
involved invariants on the string G0.) ut

4 The Invariant sh and Lattice Cohomology

4.1 Lattice Cohomology

The normalized SW invariant sh.G/ can also be expressed as the Euler characteristic
of the lattice cohomology. The advantage of this approach is that it provides an
alternative, completely elementary way to define s, as the definition of the lattice
cohomology is purely combinatorial from the plumbing graph G. This description
is rather different than the one used in [24–26] or the one used in the above proofs.

Another advantage is that for integral surgeries, there are several computa-
tions/formulae for the lattice cohomology in the literature, which provide additional
information on the main theorem or on the different surgery pieces used in its proof.

4.2 Short Introduction into Lattice Cohomology

We briefly recall the definition and some facts about the lattice cohomology
associated with a QHS3 3-manifold with negative definite plumbing graph G. For
more, see [21, 27].

Usually one starts with a lattice Z
s with fixed base elements fEigi. This

automatically provides a cubical decomposition of Rs D Z
s ˝ R: the 0-cubes are

the lattice points l 2 Z
s, the 1-cubes are the ‘segments’ with endpoints l and lC Ei,

and more generally, a q-cube � D .l; I/ is determined by a lattice point l 2 Z
s and a

subset I � f1; : : : ; sg with #I D q, and it has vertices at the lattice points lCPj2J Ej

for different J � I.
One also takes a weight function w W Zs ! Z bounded below, and for each

cube � D .l; I/, one defines w.�/ WD maxfw.v/; v vertex of �g. Then, for each
integer n � min.w/, one considers the simplicial complex Sn of Rs, the union of
all the cubes � (of any dimension) with w.�/ � n. Then the lattice cohomology
associated with w is fHq.Zs;w/gq�0, defined by

H
q.Zs;w/ WD ˚n�min.w/H

q.Sn;Z/:
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Each H
q is graded (by n), and it is a ZŒU�-module, where the U-action consists of

the restriction maps induced by the inclusions Sn ,! SnC1. Similarly, one defines
the reduced cohomology associated with w by

H
q
red.Z

s;w/ WD ˚n�min.w/ QHq.Sn;Z/:

In all our cases, Hq
red.Z

s;w/ has finite Z-rank. The normalized Euler characteristic
of H�.Zs;w/ is euH� WD �min.w/ CPq�0 .�1/q rankZH

q
red. Formally, we also

set euH0 WD �min.w/C rankZ H0
red.

Given a negative definite plumbing graph G of a QHS3 3-manifold M and a
representative l0 2 L0 of an element Œl0� D h 2 H, one works with the lattice
L D LG D ZhEviv2V.G/ and weight function L 3 l 7! � 1

2
.l; l C kG C 2l0/.

The cohomology theory corresponding to this weight function is denoted by
H
�.GI kG C 2l0/. If for h 2 H we choose the minimal representative rh 2 L0, then

the cohomology theory H
�.GI kG C 2rh/ is in fact an invariant of the pair .M; h/

(i.e. it does not depend on the plumbing representation) and thus can be denoted by
H
�
h .M/. It is proved in [22] that for any l0 2 L0 and h D Œl0� 2 H

sl0.G/ D eu H
�.GI kG C 2l0/ and sh.M/ D eu H

�
h .M/: (23)

4.3 Lattice Cohomology of Integral Surgeries

The lattice cohomology of integral surgeries (q D 1) was treated in [3, 19, 20, 27].
We use the notation p=q D d 2 Z. Clearly u D u0.

Let �j.t/ be the Alexander polynomial of the algebraic knot Kj normalized such
that �j.t/ 2 ZŒt� and �j.1/ D 1. Let ıj be the Seifert genus of Kj � S3 (or the delta
invariant of the corresponding plane curve singularity), and write ı WDP	

jD1 ıj. Set
also �.t/ DQ	

jD1 �j.t/ and write it in the form

�.t/ D 1C ı.t � 1/C .t � 1/2Q.t/ with Q.t/ D
2ı�2X

iD0
qit

i:

Note that Q.1/ D �00.1/=2.

Example 16 The case of integral surgeries is especially important in singularity
theory, since the links of superisolated singularities (see [14, 15]) are of this
type. They appear as follows. Let f 2 CŒx; y; z� be an irreducible homogeneous
polynomial of degree d such that its zero set in CP

2 is a rational cuspidal curve;
i.e. C D ff D 0g is homeomorphic to S2 and all the singularities of C are
locally irreducible. Let their number be 	. Assume that there is no singular point
on the projective line given by z D 0. Then the equation f .x; y; z/ C zdC1 D 0 in
.C3; 0/ determines an isolated complex surface singularity with link homeomorphic
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to S3�d.K/, where K is the connected sum of algebraic knots given by the local
topological types of the singularities on C. In this case, by genus formula, .d �
1/.d � 2/ D 2ı, a relation which connects K with d.

However, we can take the surgery (and plumbed) manifold M D S3�d.K/ for any
K and with arbitrary d > 0, even without the ‘analytic compatibility’ .d�1/.d�2/ D
2ı (imposed in the case of superisolated singularities).

4.4 Invariants of Integral Surgeries

Next, we recall some results on lattice cohomology of M D S3�d.K/, which will
be combined with the above proved CAP. They will also be very useful in fast
computations of examples in the next section. We emphasize that in the next general
discussion, the identity .d � 1/.d � 2/ D 2ı will not be assumed.

Write sh WD hE�u , then rh D fhE�u g D fshg, and set also ch WD �.rh/� �.sh/.
From [27, Theorem 7.1.1] (see also [3, Theorem 3.1.3]), we know that

ssh.G/ D eu H
� �S3�d.K/I kG C 2sh

� D
X

n�h.mod d/
0�n�2ı�2

qn:

By the surgery formula [5, Theorem 1.0.1], one has

ssh.G/ D Hpol
u;h.1/C

	X

jD1
sRj.sh/.Gj/:

Since Rj.sh/ D 0 and s0.Gj/ D 0 (cf. Proposition 5), we get ssh.G/ D Hpol
u;h.1/;

hence

Hpol
u .1/ D

p�1X

hD0
ssh.G/ D

2ı�2X

nD0
qn D Q.1/:

This is related with the invariants sh.G/ as follows. From (23) and (4)

d�1X

hD0
sh.G/ D

d�1X

hD0
ssh.G/C

d�1X

hD0
.�.rh/� �.sh// D Q.1/C

d�1X

hD0
ch:

Furthermore, the identity pg.fgj D 0g/ D P
h �j.�bh � .fj/=dc/ from Claim 14 has

also the following addendum:

	X

jD1
�j.�bh � .fj/=dc/ D �.rh/ � �.sh/ D ch:
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Indeed, by (20),

sh D hE�u D hEu=dC
X

j

h � .fj/=dI

hence rh D hEu=d CP
jfh.fj/=dg, and sh � rh D P

jbh.fj/=dc. This shows that
.sh; sh � rh/ D .hE�u ; sh � rh/ D 0. Therefore

P
j �j.�bh � .fj/=dc/ D �.rh � sh/ D

�.rh/ � �.sh/.

5 Examples and Applications

Example 17 Consider the plumbing graph of a superisolated singularity corre-
sponding to a curve of degree d D 8 with three singular points whose knots
K1;K2;K3 are the torus knots of type .6; 7/; .2; 9/; .2; 5/, respectively. Such a curve
exists; see [10, Theorem 3.5].
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One computes that

Hu.t/ D .1�t/ � 1 � t42

.1 � t6/.1 � t7/
� 1 � t10

.1 � t2/.1 � t5/
� 1 � t18

.1 � t2/.1 � t9/
D �1.t/�2.t/�3.t/

.1 � t/2

and Hpol
u .1/ D 293. Correspondingly,

P7
hD0 ssh.G/ D Q.1/ D 293. One also

computes that
P7

hD0 ch D 34. Therefore,
P7

hD0 sh.G/ D 293C 34 D 327.
After computing the graph � of the UAC, we have J D Z7 � Z9 � Z5 (setting

s D t7
9
5 and after summation †� over �1 2 Z7, �2 2 Z9, �3 2 Z5, where Zl D
fe 2�iml gm2Z are cyclic groups), and the rational function Fw;0.t/ equals

1 � s

7 � 9 � 5 �
X

�

.1 � s21/2

.1 � s7/.1 � �21s3/.1 � ��2
1 s3/

.1 � s9/

.1 � �52s/.1 � ��5
2 s/

.1 � s5/

.1 � �3s/.1 � ��1
3 s/

D

D �1;�.s/�2;� .s/�3;� .s/

.1 � s/2
:

Then Fw;0.t/ D Hu.s/ holds indeed with s D t7
9
5. Correspondingly,

s0.�/ D Fpol
w;0.1/C

3X

jD1
pg.fgj D 0g/ D 293C 34 D 327:

Example 18 We wish to emphasize that the covering additivity property of s is
not true in general, not even when restricting ourselves to integral surgeries along
algebraic knots in integral homology spheres (instead of S3). This is shown by the
next example (motivated by [26, Remark 6.8.(2)]; the arrowhead of that graph is
replaced by the �8 vertex below).

If we replace the .�8/-vertex of G by an arrowhead (representing a knot K), we
get an integral homology sphere S3; the corresponding knot has mu1 D 6; hence
M.G/ D S3�2.K/, and G has determinant 2. One computes that s0.G/ C s1.G/ D
15 C 14 D 29, while s0.�/ D 21. In fact, when trying to copy the proof of
Theorem 10, one finds that neither the polynomial identity 11 holds (this is why
the example was present in [26, Remark 6.8.(2)]) nor is �nw of suspension type
(satisfying the SWIC).
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Remark 19 On the other hand, there are facts suggesting that the CAP of s can hold
in more general settings. Indeed, as we indicated in Claim 3, if for a givenM one can
find a surface singularity with link M such that the EqSWIC holds for the singularity
.X; 0/ and the SWIC holds for its UAC, then the additivity of s holds automatically.
(Eq)SWIC was verified for many analytic structures, whose links are not of surgery
type. On the other hand, the family of superisolated singularities is the main source
of counterexamples for SWIC (and this was one of the motivations to test CAP for
them).

Independently of any analytic argument, one can also find purely topological
examples for which CAP still works (and in which cases not only that we cannot
verify the presence of EqSWIC/SWIC, but we cannot even identify any specific
analytic structure on the topological type or on certain special subgraphs). Here is
one (for which the assumptions of Theorem 10 do not hold either).

One verifies that det.G/ D 2, and s0.G/C s1.G/ D 147C 132 D 279 D s0.�/.
This raises the interesting question that what are the precise limits of the CAP.

Remark 20 The lattice cohomology plays an intermediate role connecting the
analytic invariants of a normal surface singularity X with the topology of its link
M D M.G/. For example, one proves using [21, Proposition 6.2.2, Example 6.2.3,
Theorem 7.1.3, 7.2.4] that for any h one has

pg.X/h � eu H
0.M.G/I kG C 2rh/:

Furthermore, for surgery manifolds M.G/ D S3�d.K/, one has the vanishing
H

q.M.G/; kGC2rh/ D 0 for q � 	 [27]. In particular, for superisolated singularities
corresponding to unicuspidal rational plane curves (	 D 1), one has

pg.X/h � eu H
�.M.G/I kG C 2rh/ D sh.M/: (24)

Therefore, for M D S3�d.K/ with 	 D 1, if the SWIC holds for the UAC .Y; 0/, that
is, if pg.Y/ D s0.†/, then this identity, the CAP and (24), implies pg.X/h D sh.M/
for any h, that is, the EqSWIC for .X; 0/.

This is important for the following reason: for superisolated singularities, we do
not know (even at conjectural level) any candidate (either topological or analytic!)
for their equivariant geometric genera. It is not hard to verify that pg.X/ D d.d �
1/.d � 2/=6 (see, e.g. [15, Sect. 2.3]), but no formulae exist for pg.X/h, and no
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(topological or analytic) prediction exists for pg.Y/ either. For further results on
the geometric genus and the lattice cohomologies of superisolated singularities, see
[8, 9, 28].

Example 21 Set 	 D 1, d D 4, and let K1 be the .3; 4/ torus knot. This can be
realized by the superisolated singularity zx3 C y4 C z5 D 0. In this case, M D
S3�4.K1/.

One verifies that
P3

hD0 sh.M/ D 9 D s0.†/ correspondingly to Theorem 10.
On the other hand, the UAC .Y; 0/ of the singularity is the Brieskorn singularity

x3 C y4 C z16 D 0, whose geometric genus is pg.Y/ D 9, too. Hence, by the above
remark, pg.X/h D sh.M/ for any h.

Remark 22 (Continuation of 20) It is interesting that we have two sets of invariants,
an analytic package . fpg.X/hgh; pg.Y/ / and a topological one . fsh.M/gh; s0.†/ /,
and both of them satisfy the additivity property. Nevertheless, in some cases, they
do not agree. For example, if pg.Y/ < s0.†/, then by (24) necessarily at least one
of the inequalities in (24) is strict. In particular, for both topological and analytical
package, the additivity property is stable, it is never damaged, but the equality of the
two packages in certain cases fails.

Example 23 Set again 	 D 1 and d D 4, but this time let K1 be the .2; 7/ torus
knot. As usual M D S3�4.K1/. By a computation

P3
hD0 sh.M/ D 10 D s0.†/.

A suitable superisolated singularity is given by .zy�x2/2�xy3Cz5 D 0. By [15]
(the end of Sect. 4.5.), the universal abelian cover Y satisfies the strict inequality
pg.Y/ < 10. Therefore, pg.X/h < sh.M/ for at least one h (in fact, not for h=0, see
the main result of [4] and [28]).
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Abstract An algorithmic proof of General Neron Desingularization is given here
for one-dimensional local domains, and it is implemented in SINGULAR. Also a
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Keywords Regular morphisms • Smooth morphisms • Smoothing ring mor-
phisms

2010 Mathematics Subject Classification: Primary 13B40, Secondary 14B25,
13H05,13J15.

1 Introduction

A ring morphism u W A ! A0 has regular fibers if for all prime ideals P 2 SpecA
the ring A0=PA0 is a regular ring, i.e., its localizations are regular local rings. It has
geometrically regular fibers if for all prime ideals P 2 SpecA and all finite field
extensions K of the fraction field of A=P the ring K˝A=P A0=PA0 is regular. If for all
P 2 SpecA the fraction field of A=P has characteristic 0, then the regular fibers of
u are geometrically regular fibers. A flat morphism u of Noetherian rings is regular
if its fibers are geometrically regular. If u is regular of finite type, then u is called
smooth. If u is regular of finite type then u is called smooth. A localization of a
smooth algebra is called essentially smooth.
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In Artin approximation theory [2], an important result is the following theorem
generalizing the Neron Desingularization [2, 7].

Theorem 1 (General Neron Desingularization, Popescu [8–10], André [1],
Swan [13], Spivakovski [12]) Let u W A ! A0 be a regular morphism of
Noetherian rings and B an A-algebra of finite type. Then any A-morphism
v W B ! A0 factors through a smooth A-algebra C, that is, v is a composite
A-morphism B! C! A0.

The purpose of this paper is to give an algorithmic proof of the above theorem
when A;A0 are one-dimensional local domains and A � Q. This proof is somehow
presented by the second author in a lecture given within the special semester
on Artin Approximation of the Chaire Jean Morlet at CIRM, Luminy, Spring
2015 (see http://hlombardi.free.fr/Popescu-Luminy2015.pdf). The algorithm was
implemented by the authors in the Computer Algebra system SINGULAR [3]
and will be as soon as possible found in a development version as the library
GND.lib at

https://github.com/Singular/Source.

We may take the same General Neron Desingularization for v; v0 W B ! A0
if they are closed enough as Examples 4 and 10 show. The last section computes
the General Neron Desingularization in several examples. We should point that the
General Neron Desingularization is not uniquely associated to B, and it is better to
speak above about a General Neron Desingularization.

When A0 is the completion of a Cohen–Macaulay local ring A of dimension one,
we show that we may have a linear Artin function as it happens in the Greenberg’s
case (see [5]). More precisely, the Artin function is given by c ! 2eC c, where e
depends from the polynomial system of equations defining B (see Theorem 20).

2 The Theorem

Let u W A ! A0 be a flat morphism of Noetherian local domains of dimension one.
Suppose that A � Q and the maximal ideal m of A generate the maximal ideal of
A0. Then u is a regular morphism. Moreover, we suppose that there exist canonical
inclusions k D A=m! A, k0 D A0=mA0 ! A0 such that u.k/ � k0.

Let B D AŒY�=I, Y D .Y1; : : : ;Yn/. If f D . f1; : : : ; fr/, r � n is a system
of polynomials from I, then we can define the ideal �f generated by all r � r-

minors of the Jacobian matrix

�
@fi
@Yj

�

. After Elkik [4] let HB=A be the radical of the

ideal
P

f

�
. f / W I��f B, where the sum is taken over all systems of polynomials f

from I with r � n. Then BP, P 2 SpecB is essentially smooth over A if and only
if P 6� HB=A by the Jacobian criterion for smoothness. Thus HB=A measures the
nonsmooth locus of B over A.

http://hlombardi.free.fr/Popescu-Luminy2015.pdf
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Definition 2 B is the standard smooth over A if there exists f in I as above such
that 1 2 �. f / W I��f B.

The aim of this paper is to give an easy algorithmic proof of the following theorem.

Theorem 3 Any A-morphism v W B ! A0 factors through a standard smooth A-
algebra B0.

If A is essentially of finite type over Q, then the ideal HB=A can be computed
in SINGULAR by following its definition, but it is easier to describe only the idealP

f

�
. f / W I��f B defined above. This is the case considered in our algorithmic part,

let us say A Š .kŒx�=F/.x/ for some variables x D .x1; : : : xm/, and the completion
of A0 is k0�x�=. f /. When v is defined by polynomials y from k0Œx�, then our problem
is easy. Let L be the field obtained by adjoining to k all coefficients of y. Then
R D .LŒx�=. f //.x/ is a subring of A0 containing Im v which is essentially smooth over
A. Then we may take B0 as a standard smooth A-algebra such that R is a localization
of B0. Consequently, we suppose usually that y 62 k0Œx�.

3 Reduction to the Case When HB=A \ A 6D 0

We may suppose that v.HB=A/ 6D 0. Indeed, if v.HB=A/ D 0, then v induces an A-
morphism v0 W B0 D B=HB=A! A0, and we may replace .B; v/ by .B0; v0/. Applying
this trick several times, we reduce to the case v.HB=A/ 6D 0. However, the fraction
field of Im v is essentially smooth over A by separability, that is, HIm v=AA0 6D 0, and
in the worst case, our trick will change B by Im v after several steps.

Choose P0 2 ��f .. f / W I/
� n I for some system of polynomials f D . f1; : : : ; fr/

from I and d0 2 �v.P0/A0� \ A, d0 6D 0. Moreover, we may choose P0 to be from

M
�
. f / W I� where M is a r � r-minor of

�
@f

@Y

�

. Then d0 D v.P0/z 2 �v.HB=A/
�\ A

for some z 2 A0. Set B1 D BŒZ�=. frC1/, where frC1 D �d0C P0Z, and let v1 W B1 !
A0 be the map of B-algebras given by Z ! z. It follows that d0 2 �.f ; frC1/ W .I; frC1/

�

and d0 2 �f , d0 2 �frC1
. Then d D d02 � P modulo .I; frC1/ for P D P02Z2 2 HB1=A.

For the reduction replace B by B1 and the Jacobian matrix J D .@f=@Y/ will be now

the new J given by

�
J 0

� P0
�

: Note that now d 2 HB=A \ A.

Example 4 Let a1; a2 2 C be two elements algebraically independent over Q and �

a root of the polynomial T2CTC1 in C. Then k0 D Q.a1; a2/Œa3�

.a23 C a3 C 1/ Š Q.�; a1; a2/.

Let A D
�
QŒx1; x2�

.x31 � x22/

�

.x1;x2/

and B D AŒY1;Y2;Y3�

.Y31 � Y32 /
, A0 D k0�x1; x2�

.x31 � x22/
and the map v
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defined as

This is an easy example. Indeed, let v00 W B00 D AŒa3; a1x2; v.Y3/� !
A0 be the inclusion. We have Im v � B00 Š AŒT;Y1;Y3�

.T2 C T C 1/ , and B002a3C1 Š
�

AŒT;Y1;Y3�

.T2 C T C 1/
�

2TC1
is a smooth A-algebra, which could be taken as a General

Neron Desingularization of B. Applying our algorithm we will get more complicated
General Neron Desingularizations but useful for an illustration of our construction.

Then Im v, the new B will be
B

Ker v
, where the kernel is generated by the

following polynomial:

ker[1]=Y1^2+Y1*Y2+Y2^2

Next we choose f D Y21CY1Y2CY22 and we have M D 2Y2CY1 and 1 2 �. f / W I�
and hence P0 D Y1 C 2Y2. Therefore v.P0/ D .2a1a3 C a1/ � x2 and d0 D x2,

z D 1

2a1a3 C a1
. Therefore d D d02 D x22.

To be able to construct Q


1

2a1a3 C a1

�

Œx� in SINGULAR, we will add a new

variable a, and we will factorize with the corresponding polynomial 2a1a3 � a C
a1 � a � 1. We will see this a as a new parameter from k0 � A0. Then we replace

B by B1 D BŒY4�

.�d0 C P0Y4/
and extend v to a map v1 W B1 ! A0 given by Y4 ! a.

Replacing B by B1, we may assume that d 2 HB=A \ A.

Example 5 Note that we could use B instead Im v. In this case we choose f D
Y31�Y32 and takeM D 3Y22 and 1 2 �. f / W I�. Therefore we obtainP0 D 3Y22 , d0 D x22,
and d D x42, and the next computations are harder as we will see in Examples 17
and 25.

Remark 6 We would like to work above with A00 D C�x1; x2�

.x31 � x22/
instead A0, v being

given by v.Y2/ D a1�x2. But this is hard since we cannot work in SINGULAR with
an infinite set of parameters. We have two choices. If the definition of v involves
only a finite set of parameters, then we proceed as in Example 4 using some A0 �
Im v: Otherwise, we will see later that in the computation of the General Neron
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Desingularization, we may use only a finite number of the coefficients of the formal
power series defining y D v.Y/, and so this computation works in SINGULAR.

Remark 7 As we may see, our algorithm could go also when A0 is not a domain,
but there exist P 2 M.. f / W I/ as above and a regular element d 2 m with d �
P modulo I. If A is Cohen–Macaulay, we may reduce to the case when there exists a
regular element d 2 HB=A\A. However, it is hard usually to reduce to the case when
d � P modulo I for some P 2 M.. f / W I/. Sometimes this is possible as shown in
the following example.

Example 8 Let a1; a2 2 C be two elements algebraically independent over Q. Con-

sider A D
�

QŒx1; x2; x3�

.x32 � x23; x
3
1 � x23/

�

.x1;x2;x3/

and B D AŒY1;Y2;Y3�

.Y31 � Y32 /
, K0 D Q.a1; a2/Œa3�

.a23 � a1a2/
,

A0 D K0�x1; x2; x3�
.x32 � x23; x

3
1 � x23/

and the map v defined as

Then Im v, the new B, will be
B

Ker v
, where the kernel is generated by six

polynomials:

ker[1]=x2*Y1-x1*Y2
ker[2]=Y1^3-Y2^3
ker[3]=x1*Y1^2-x2*Y2^2
ker[4]=x1^2*Y1-x2^2*Y2
ker[5]=x1*x2^2*Y2-x3^2*Y1
ker[6]=x1^2*x2*Y2^2-x3^2*Y1^2

Next we choose f D x2Y1 � x1Y2 and we have M D �x1. We may take N D �x23 2�
. f / W I� and P0 D x1x23. Note that x1�x2 is a zero divisor in A, but d0 D P0 is regular

in A. In this example we may take d D d0 D P0 D P.

Remark 9 Replacing B by Im v can be a hard goal if let us say A0 is a factor
of the power series ring over C in some variables x and y is defined by formal
power series whose coefficients form an infinite field extension L of Q. If y are
polynomials in x as in Examples 4 and 8, then it is trivial to find a General Neron
Desingularization of B as we explained already in the last sentences of Sect. 1. For
instance, in Example 8, B0 could be a localization of K0˝QA. Thus Examples 4 and 8
have no real importance, they being useful only for an illustration of our algorithm.
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This is the reason that in the next examples, the field L obtained by adjoining to k of
all coefficients of y will be an infinite-type field extension of k and y 62 k0Œx�.

However, this will complicate the algorithm because we are not able to tell to
the computer who is y and so how to get d0. We may choose an element a 2 m
and find a minimal c 2 N such that ac 2 .v.M// C .a2c/ (this is possible because
dimA D 1). Set d0 D ac. It follows that d0 2 .v.M//C .d02/ � .v.M//C .d04/ � : : :
and so d0 2 .v.M//, that is, d0 D v.M/z for some z 2 A0. Certainly, we cannot find
precisely z, but later it is enough to know just a kind of truncation of it modulo d06.

Example 10 Let ai 2 C, i 2 N, i 6D 3 be elements algebraically independent over

Q and a3 a root of the polynomial T2C T C 1 in C. Let A D
�
QŒx1; x2�

.x31 � x22/

�

.x1;x2/

and

B D AŒY1;Y2;Y3�

.Y21 C Y1Y2 C Y22 /
, A0 D C�x1; x2�

.x31 � x22/
and the map v defined as

As in Example 4, we may take d0 D x2, d D d02 and a. Our algorithm goes exactly
as in Examples 4, 16, and 24 providing the same General Neron Desingularization.
This time we cannot find an easy General Neron Desingularization as in the first
part of Example 4.

Example 11 Let A D QŒx1; x2�.x1;x2/
.x21 � x32/

, A0 D C�x1; x2�

.x21 � x32/
. Then the inclusion A � A0 is

regular. Let �i D
1X

jD0
˛ijx

j
2 C x1

1X

jD0
ˇijx

j
2 2 C�x1; x2� for i D 3; 4 with ˛i0 D 1 and

y1 D �33
�24

, y2 D �24
�3

, y3 D x2�3, y4 D x2�4. Let f1 D Y23 � x22Y1Y2, f2 D Y24 � x2Y2Y3

be polynomials in AŒY�, Y D .Y1; : : : ;Y4/ and set B D AŒY�=. f /, f D . f1; f2/.
If R is a domain and u 2 R is such that Y2 � u 2 RŒY� has no solutions in

Q.R/, then it is easy to see that RŒY�=.Y2 � u/ is a domain too. In our case we
get that R D AŒY1;Y2;Y3�=. f1/ and B D RŒY4�=. f2/ are domains too. Then the
map v W B ! A0 given by Y ! y D .y1; : : : ; y4/ is injective if we suppose that
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�3; �4 are algebraically independent over A. This follows since B is a domain and
dimB D tr degQ.A/Q.B/ D tr degQ.A/Q.Im v/ D 2 D dim Im v. Moreover we will
assume that the fields Li D Q

�
.˛ij; ˇij/j

�
, i D 3; 4 have infinite transcendental degree

over Q. The Jacobian matrix

�
@f

@Y

�

has a 2 � 2-minor M D det

�
@fi
@Yj

�

1�i�2
3�j�4

D

4Y3Y4 62 . f /. Note that v.M/ D x22y5, where y5 D 1=.4�3�4/. Then we may take
B1 D BŒY5�=. f3/, f3 D �x22 CMY5 and v1 given by Y5 ! y5. Clearly, P D M2Y25 2
HB1=A and 0 ¤ d D x42 D v1.P/ 2 A.

4 Proof of the Case When HB=A \ A 6D 0

Thus we may suppose that there exists f D . f1; : : : ; fr/, r � n a system of
polynomials from I, a r�r-minor M of the Jacobian matrix .@fi=@Yj/, and N 2 .. f / W
I/ such that 0 6D d � MN modulo I. We may assume that M D det..@fi=@Yj/i;j2Œr�/.
Set NA D A=.d3/, NA0 D A0=d3A0, Nu D NA˝A u, NB D B=d3B, and Nv D NA˝A v. Clearly,
Nu is a regular morphism of Artinian local rings.

Remark 12 The whole proof could work with NA D A=d2u for any u 2 m. We prefer
to take u D d as is done in [9] and [11], but we could choose u 6D d, u 2 m nm2 for
easy computations.

By [6, 19,7.1.5] for every field extension L=k, there exists a flat complete
Noetherian local NA-algebra QA, unique up to an isomorphism, such that m QA is the
maximal ideal of QA and QA=m QA Š L. It follows that QA is Artinian. On the other hand,
we may consider the localization AL of L˝k NA in m.L˝k NA/ which is Artinian and
so complete. By uniqueness we see that AL Š QA. Set k0 D A0=mA0. It follows that
NA0 Š Ak0 . Note that AL is essentially smooth over A by base change, and NA0 is a
filtered union of sub- NA-algebras AL with L=k finite type field subextensions of k0=k.

Choose L=k a finite-type field extension such that AL contains the residue class
Ny 2 NA0n induced by y. In fact Ny is a vector of polynomials in the generators of m
with the coefficients c	 in k0, and we may take L D k..c	/	/. Then Nv factors through
AL. Assume that kŒ.c	/	� Š kŒ.U	/	�=NJ for some new variables U and a prime ideal
NJ � kŒU�. We have HL=k 6D 0 because L=k is separable. Then we may assume that
there exist ! D .!1; : : : ; !p/ in NJ such that � D det.@!i=@U	/i;	2Œp� 6D 0 and a
nonzero polynomial � 2 ..!/ W NJ/ n NJ. Thus L is a fraction ring of the smooth k-
algebra .kŒU�=.!//�� . Note that !; �; and� can be considered in A because k � A
and c	 2 A0 because k0 � A0.

Then Nv factors through a smooth NA-algebra C Š . NAŒU�=.!//��� for some
polynomial � which is not in m. NAŒU�=.!//�� .
Lemma 13 There exists a smooth A-algebra D such that Nv factors through ND D
NA˝A D.
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Proof By our assumptions u.k/ � k0. Set D D .AŒU�=.!//��� and w W D ! A0 be
the map given by U	 ! c	 . We have C Š NA ˝A D. Certainly, Nv factors through
Nw D NA˝A w, but in general v does not factor through w. ut
Remark 14 If A0 D OA, then NA Š NA0 and we may take D D A.

Remark 15 Suppose that k � A but L 6� A0 and so k0 6� A0. Then D D
.AŒU;Z�=.! � d3Z//��� , and Z D .Z	/ is a smooth A-algebra and ND Š CŒZ�. Since
Nv factors through a map C ! NA0 given let us say by U !  C d3A0 for some 
in A0, we see that !./ � 0 modulo d3, that is, !./ D d3z for some z in A0. Let
w W D ! A0 be the A-morphism given by .U;Z/ ! .; z/. Certainly, Nv factors
through Nw D NA˝A w, but in general v does not factor through w. If also k 6� A, then
the construction of D goes as above but using a lifting of !; �; and� from kŒU� to
AŒU�. In both cases we may use D as it follows.

Example 16 We reconsider Example 4. We already know that d D x22. The
algorithm gives us the following output:

This is C:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 a x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=3*a1*a+2*a3+1
_[2]=a3^2+a3+1
_[3]=x1^3-x2^2
_[4]=x2^6
This is D:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 a x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=3*a1*a+2*a3+1
_[2]=a3^2+a3+1
_[3]=x1^3-x2^2

Indeed,

C D
NAŒa1; a3; a�

�
3a1aC 2a3 C 1; a23 C a3 C 1; x62

�

and

D D AŒa1; a3; a�
�
3a1aC 2a3 C 1; a23 C a3 C 1

� :
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Note that the 3a1aC 2a3 C 1 comes from the standard basis computation of the
ideal

�
2a1a3aC a1a � 1; a23 C a3 C 1

�
, and in D we have a3, a1, 2a3C 1 invertible.

Example 17 Now we reconsider Example 5. We know that d D x42. The algorithm
gives us the following output:

This is C:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 a x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=a3^2+a3+1
_[2]=x1^3-x2^2
_[3]=a1^2*a-a3
_[4]=x2^12

This is D:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 a x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=a3^2+a3+1
_[2]=x1^3-x2^2
_[3]=a1^2*a-a3

Indeed,

C D
NAŒa1; a3; a�

�
a23 C a3 C 1; a21a � a3; x122

�

and

D D AŒa1; a3; a�
�
a23 C a3 C 1; a21a � a3

� :

Note that a3 and a1 are invertible in D.

Example 18 In the case of Example 8, we obtain the following output:

This is C:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 x1 x2 x3
// block 2 : ordering C
// quotient ring from ideal
_[1]=x2^3-x3^2
_[2]=x1^3-x3^2
_[3]=x3^8
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This is D:
// characteristic : 0
// number of vars : 5
// block 1 : ordering dp
// : names a1 a3 x1 x2 x3
// block 2 : ordering C
// quotient ring from ideal
_[1]=x2^3-x3^2
_[2]=x1^3-x3^2

Indeed this is the case since we have d D x1x23 and hence

C D NAŒa1; a3��
x83
�

and

D D AŒa1; a3�:

Example 19 In Example 11 we consider a1anda2 algebraically independent over Q
and set � 03 D 1Ca1x2 and � 04 D 1Ca2x22. Suppose that � 0i � �i modulo x122 . We have

y3 D x2�3, y4 D x2�4, y1 D �33
�24

, y2 D �24
�3

, and y5 D 1

.4�3�4/
. Choose y0i, i 2 Œ5�

polynomials with degrees � 11 in x2 and linear in x1 such that y0i � yi mod.x21; x
12
2 /.

We get y01 � y1 D �33 =�
2
4 � � 033=� 0

2
4 mod.x21; x

12
2 / and similarly for y0i, i > 1.

Here we use the fact that ��24 D
eX

jD1
.1 � �24 /j for some e >> 0 because 1 � �24 is

nilpotent in the ring NAŒa1; a2; a3; a4�. Thus the coefficients of y0i, i 2 Œ5� belong to the
field L obtained by adjoining to Q the coefficients of � 03; � 04. Note that in this case,
L D Q .QŒa1; : : : ; a4�/. Then we obtain the following output:

This is C:
// characteristic : 0
// number of vars : 4
// block 1 : ordering dp
// : names a1 a2 x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=x2^3-x1^2
_[2]=x1^8
This is D:
// characteristic : 0
// number of vars : 4
// block 1 : ordering dp
// : names a1 a2 x1 x2
// block 2 : ordering C
// quotient ring from ideal
_[1]=x2^3-x1^2
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Thus C D
NAŒa1; : : : ; a4�

.x122 /
Š NAŒa1; : : : ; a4� which is smooth over NA. Then D is a

localization of AŒa1; : : : ; a4�, where � 03, � 04 must be invertible.

Back to our proof, note that the composite map NB ! C ! ND is given by Y !
y0 C d3D for some y0 2 Dn. Thus I.y0/ � 0 modulo d3D. Since Nv factors through
Nw, we see that Nw.y0 C d3D/ D Ny. Set Qy D w.y0/. We get y � Qy 2 d3A0n, let us say
y � Qy D d2" for " 2 dA0n.

We have d � P D NM modulo I and so P.y0/ � d modulo d3 in D because
I.y0/ � 0 modulo d3D. Thus P.y0/ D ds for a certain s 2 D with s � 1 modulo
d. Let H be the n � n-matrix obtained adding down to .@f=@Y/ as a border block
.0jIdn�r/. Let G0 be the adjoint matrix of H and G D NG0. We have

GH D HG D NMIdn D PIdn

and so

dsIdn D P.y0/Idn D G.y0/H.y0/:

Then t WD H.y0/" 2 dA0n satisfies

G.y0/t D P.y0/" D ds"

and so

s.y � Qy/ D dw.G.y0//t:

Let

h D s.Y � y0/� dG.y0/T; (1)

where T D .T1; : : : ;Tn/ are new variables. The kernel of the map ' W DŒY;T�! A0
given by Y ! y, T ! t contains h. Since

s.Y � y0/ � dG.y0/T modulo h

and

f .Y/ � f .y0/ �
X

j

@f

@Yj
.y0/.Yj � y0j/
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modulo higher-order terms in Yj � y0j, by Taylor’s formula, we see that for p D
maxi deg fi, we have

spf .Y/ � spf .y0/ �
X

j

sp�1d
@f

@Yj
.y0/Gj.y

0/Tj C d2Q D sp�1dP.y0/T C d2Q (2)

modulo h where Q 2 T2DŒT�r . This is because .@f=@Y/G D .PIdrj0/. We have
f .y0/ D d2b for some b 2 dDr. Then

gi D spbi C spTi C Qi; i 2 Œr� (3)

is in the kernel of ' because d2'.g/ D d2g.t/ 2 .h.y; t/; f .y// D .0/. Set E D
DŒY;T�=.I; g; h/, and let  W E ! A0 be the map induced by '. Clearly, v factors

through  because v is the composed map B! B˝A D Š DŒY�=I ! E
 �! A0.

Note that the r � r-minor s0 of .@g=@T/ given by the first r-variables, T
is from srp C .T/ � 1 C .d;T/DŒY;T� because Q 2 .T/2. Then U D
.DŒY;T�=.h; g//ss0 is smooth over D. We claim that I � .h; g/DŒY;T�ss0s00 for
some other s00 2 1 C .d;T/DŒY;T�. Indeed, we have PI � .h; g/DŒY;T�s and so
P.y0 C s�1dG.y0/T/I � .h; g/DŒY;T�s. Since P.y0 C s�1dG.y0/T/ 2 P.y0/C d.T/,
we get P.y0 C s�1dG.y0/T/ D ds00 for some s00 2 1C .d;T/DŒY;T�. It follows that
s00I � .h; g/DŒY;T�ss0 because d is regular in U, the map D ! U being flat, and
so I � .h; g/DŒY;T�ss0s00 . Thus Ess0s00 Š Us00 is a B-algebra which is also standard
smooth over D and A.

As w.s/ � 1 modulo d and w.s0/;w.s00/ � 1 modulo .d; t/, d; t 2 mA0, we
see that w.s/;w.s0/;w.s00/ are invertible because A0 is local and  (thus v) factors
through the standard smooth A-algebra Ess0s00 .

5 A Theorem of Greenberg’s Type

Let .A;m/ be a Cohen–Macaulay local ring (e.g., a reduced ring) of dimension one,
A0 D OA the completion of A, B D AŒY�=I, Y D .Y1; : : : ;Yn/ an A-algebra of finite
type, and c; e 2 N. Suppose that there exist f D . f1; : : : ; fr/ in I, a r � r-minor M of
the Jacobian matrix .@f=@Y/, N 2 .. f / W I/, and an A-morphism v W B! A=m2eCc

such that .v.MN// � me=m2eCc.

Theorem 20 Then there exists an A-morphism v0 W B ! OA such that v0 �
v modulo mc, that is, v0.Y C I/ � v.Y C I/ modulomc.

Proof We note that the proof of Theorem 3 can work somehow in this case. Let
y0 2 An be an element inducing v.Y C I/. Then me � ..MN/.y0// C m2eCc �
..MN/.y0//Cm3eC2c � : : : by hypothesis. It follows that me � ..MN/.y0//. Since A
is Cohen–Macaulay, we see that me contains a regular element of A and so .MN/.y0/
must be regular too.



A Method to Compute the General Neron Desingularization in the Frame. . . 211

Set d D .MN/.y0/. Next we follow the proof of Theorem 3 with D D A, s D 1,
P D MN, and H, G such that

dIdn D P.y0/Idn D G.y0/H.y0/:

Let

h D Y � y0 � dG.y0/T;

where T D .T1; : : : ;Tn/ are new variables. We have

f .Y/ � f .y0/ � dP.y0/T C d2Q

modulo h where Q 2 T2AŒT�r . But f .y0/ 2 m2eCcAr � d2mcAr and we get f .y0/ D
d2b for some b 2 mcAr. Set gi D bi C Ti C Qi, i 2 Œr� and E D AŒY;T�=.I; h; g/.
We have an A-morphism ˇ W E ! A=mc given by .Y;T/ ! .y0; 0/ because I.y0/ �
0 modulo m2eCc, h.y0; 0/ D 0 and g.0/ D b 2 mcAr.

As in the proof of Theorem 3, we have Es0s00 Š Us00 , where U D
.AŒY;T�=.g; h//s0 . This isomorphism follows because d is regular in A and so
in U. Consequently, Es0s00 is smooth over A. Note that ˇ extends to a map
ˇ0 W Es0s00 ! A=mc. By the implicit function theorem, ˇ0 can be lifted to a map
w W Es0s00 ! OA which coincides with ˇ0 modulo mc. It follows that the composite

map v0, B! Es0s00
w�! OA works. ut

Corollary 21 In the assumptions of the above theorem, suppose that .A;m/ is
excellent Henselian, then there exists an A-morphism v00 W B ! A such that
v00 � v modulomc, that is, v00.Y C I/ � v.Y C I/ modulo mc.

Proof An excellent Henselian local ring .A;m/ has the Artin approximation
property by [9], that is, the solutions in A of a system of polynomial equations
f over A are dense in the set of the solutions of f in OA. By Theorem 20 we get
an A-morphism v0 W B ! OA such that v0 � v modulo mc. Then there exists
an A-morphism v00 W B ! A such that v00 � v0 � v modulo mc by the Artin
approximation property. ut
Theorem 22 Let .A;m/ be a Cohen–Macaulay local ring of dimension one, B D
AŒY�=I, Y D .Y1; : : : ;Yn/ an A-algebra of finite type, e 2 N, and f D . f1; : : : ; fr/ a
system of polynomials from I. Suppose that A is excellent Henselian and there exist
a r � r-minor M of the Jacobian matrix .@f=@Y/, N 2 .. f / W I/ and y0 2 An such
that I.y0/ � 0 modulo me and ..NM/.y0// � me. Then the following statements are
equivalent:

(1) there exists y00 2 An such that I.y00/ � 0 modulo m3e and y00 � y0 modulo me,
(2) there exists y 2 An such that I.y/ D 0 and y � y0 modulo me.

For the proof apply the above corollary and Theorem 20.
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6 Computation of the General Neron Desingularization
in Examples 4, 5, 8, and 11

Example 23 We would like to compute Example 4 in SINGULAR using GND.lib.
We quickly recall the example.

Let a1; a2 2 C be two elements algebraically independent over Q and � a root

of the polynomial T2 C T C 1 in C. Then k0 D Q.a1; a2/Œa3�

.a23 C a3 C 1/ Š Q.�; a1; a2/.

Let A D
�
QŒx1; x2�

.x31 � x22/

�

.x1;x2/

and B D AŒY1;Y2;Y3�

.Y31 � Y32 /
, A0 D k0�x1; x2�

.x31 � x22/
and the map v

defined as

For this we do the following:

LIB "GND.lib"; //load the library
ring All = 0,(a1,a2,a3,x1,x2,Y1,Y2,Y3),dp; //define the ring
int nra = 3; //number of a’s
int nrx = 2; //number of x’s
int nry = 3; //number of Y’s
ideal xid = x1^3-x2^2; //define the ideal from A
ideal yid = Y1^3-Y2^3; //define the ideal from B
ideal aid = a3^2+a3+1; //define the ideal from k’
poly y;
int i;
for(i=0;i<=30;i++)
{

y = y + a1*x1^i/factorial(i);
}
for(i=31;i<=50;i++)
{

y = y + a2*x2*x1^i/factorial(i);
}
ideal f = a1*x2,a1*a3*x2,y; //define the map v
desingularization(All, nra,nrx,nry,xid,yid,aid,f,"debug");

Example 24 We continue on the idea of Examples 4 and 16. The bordered matrix
H defined above is equal to

H D

0

B
B
@

2Y1 C Y2 Y1 C 2Y2 0 0

0 0 1 0

1 0 0 0

Y4 2Y4 0 Y1 C 2Y2

1

C
C
A
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and hence G D N � G0 is equal to

G D Y24 �

0

B
B
@

0 0 Y21 C 4Y1Y2 C 4Y22 0

Y1 C 2Y2 0 �2Y21 � 5Y1Y2 � 2Y22 0

0 Y21 C 4Y1Y2 C 4Y22 0 0

�2Y4 0 3Y1Y4 Y1 C 2Y2

1

C
C
A

and s D 1. This is obvious in our case since y0 D y and always d D P.y/ because
I.y/ D 0 and d � P modulo I. Using the definition of h in Eq. (1), we get that

h1 D Y1 �
�
x42
� � T3 � .a1x2/;

h2 D Y2 � x32
2a1a3 C a1

� T1 C a3x42 C 2x42
2a3 C 1 � T3 � .a1a3x2/;

h3 D Y3 �
�
x42
� � T2 �

�
1

6Š
a1x

6
1 C

1

5Š
a1x

5
1 C

1

4Š
a1x

4
1 C

1

3Š
a1x

3
1 C

1

2
a1x

2
1C

a1x1 C a1/ ;

h4 D Y4 C 2x22
.2a1a3 C a1/

3
� T1 � 3x32

a21 .2a3 C 1/3
� T3 � x32

2a1a3 C a1
� T4 C 1

2a1a3 C a1
:

From Eq. (2) we get that

Q1 D x22
.2a1a3 C a1/

2
� T21 �

3x32
a1 .2a3 C 1/2

� T1T3 C 3a23x
4
2 C 3a3x42 C 3x42
.2a3 C 1/2

� T23 ;

Q2 D � 4x2

.2a1a3 C a1/
4
� T21 C

12x22
a31 .2a3 C 1/4

� T1T3 � 9x32
a21 .2a3 C 1/4

� T23C
2x22

.2a1a3 C a1/
2
� T1T4 � 3x32

a1 .2a3 C 1/2
� T3T4

and therefore following the definition of g in Eq. (3), we have

g1 D Q1 C T1 C .a21a23 C a21a3 C a21/;
g2 D Q2 C T2:

We print now the algorithm’s debug output using the line codes from Example 23.

This is the bordered matrix H:
2*Y1+Y2,Y1+2*Y2,0,0,
0, 0, 1,0,
1, 0, 0,0,
Z, 2*Z, 0,Y1+2*Y2
This is G:
0, 0, G[1,3], 0,
Y1*Y4^2+2*Y2*Y4^2,0, G[2,3], 0,
0, G[3,2],0, 0,
-2*Y4^3, 0, 3*Y1*Y4^3,Y1*Y4^2+2*Y2*Y4^2

G[1,3]=Y1^2*Y4^2+4*Y1*Y2*Y4^2+4*Y2^2*Y4^2



214 A. Popescu and D. Popescu

G[2,3]=-2*Y1^2*Y4^2-5*Y1*Y2*Y4^2-2*Y2^2*Y4^2
G[3,2]=Y1^2*Y4^2+4*Y1*Y2*Y4^2+4*Y2^2*Y4^2

s = 1
h =
_[1]=Y1+(-x2^4)*T3+(-a1*x2)
_[2]=Y2+(-x2^3)/(2*a1*a3+a1)*T1+(a3*x2^4+2*x2^4)/(2*a3+1)*T3+
(-a1*a3*x2)
_[3]=Y3+(-x2^4)*T2+(-a1*x1^6-6*a1*x1^5-30*a1*x1^4-120*a1*x1^3
-360*a1*x1^2-720*a1*x1-720*a1)/720
_[4]=Y4+(2*x2^2)/(8*a1^3*a3^3+12*a1^3*a3^2+6*a1^3*a3+a1^3)*T1+
(-3*x2^3)/(8*a1^2*a3^3+12*a1^2*a3^2+6*a1^2*a3+a1^2)*T3+
(-x2^3)/(2*a1*a3+a1)*T4-1/(2*a1*a3+a1)

m = 2
QT =
_[1]=(x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1^2+
(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T1*T3+
(3*a3^2*x2^4+3*a3*x2^4+3*x2^4)/(4*a3^2+4*a3+1)*T3^2

_[2]=(-4*x2)/(16*a1^4*a3^4+32*a1^4*a3^3+24*a1^4*a3^2+8*a1^4*a3+a1^4)

*T1^2+(12*x2^2)/(16*a1^3*a3^4+32*a1^3*a3^3+24*a1^3*a3^2+8*a1^3*a3
+a1^3)*T1*T3+(-9*x2^3)/(16*a1^2*a3^4+32*a1^2*a3^3+24*a1^2*a3^2
+8*a1^2*a3+a1^2)*T3^2+(2*x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1*T4
+(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T3*T4

f =
f[1]=Y1^2+Y1*Y2+Y2^2
f[2]=Y1*Y4+2*Y2*Y4+(-x2^2)

g =
_[1]=(x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1^2+(-3*x2^3)/(4*a1*a3^2+
4*a1*a3+a1)*T1*T3+(3*a3^2*x2^4+3*a3*x2^4+3*x2^4)/(4*a3^2+4*a3+1)*T3^2

+T1+(a1^2*a3^2+a1^2*a3+a1^2)
_[2]=(-4*x2)/(16*a1^4*a3^4+32*a1^4*a3^3+24*a1^4*a3^2+8*a1^4*a3+a1^4)

*T1^2+(12*x2^2)/(16*a1^3*a3^4+32*a1^3*a3^3+24*a1^3*a3^2+8*a1^3*
a3+a1^3)*T1*T3+(-9*x2^3)/(16*a1^2*a3^4+32*a1^2*a3^3+24*a1^2*a3^2
+8*a1^2*a3+a1^2)*T3^2+(2*x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1*T4
+(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T3*T4+T2

Thus the General Neron Desingularization is a localization of DŒY;T�=.h; g/ Š
DŒT�=.g/.

Example 25 In the case of Examples 5 and 17, we obtain that the bordered matrix

H D

0

B
B
@

3Y21 �3Y22 0 0

0 0 1 0

1 0 0 0

0 �6Y2Y4 0 �3Y22

1

C
C
A
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and hence G D N � G0 is equal to

G D Y24 �

0

B
B
@

0 0 9Y42 0

�3Y22 0 �3Y21Y22 0

0 9Y42 0 0

6Y2Y4 0 �18Y21Y2Y4 �3Y22

1

C
C
A

and s D 1. Using the definition of h in Eq. (1), we get that

h1 D Y1 �
�
x82
� � T3 C .�a1x2/ ;

h2 D Y2 C x62
3a21a

2
3

� T1 � x82
a23
� T3 � .a1a3x2/ ;

h3 D Y3 �
�
x82
� � T2 �

�
1

12Š
a1x

12
1 C

1

11Š
a1x

11
1 C

1

10Š
a1x

10
1 C

1

9Š
a1x

9
1 C

1

8Š
a1x

8
1

C 1
7Š
a1x

7
1 C

1

6Š
a1x

6
1 C

1

5Š
a1x

5
1 C

1

4Š
a1x

4
1 C

1

3Š
a1x

3
1 C

1

2
a1x

2
1 C a1x1 C a1

�

;

h4 D Y4 C 2x52
9a51a

5
3

� T1 � 2x72
3a31a

5
3

� T3 C x62
3a21a

2
3

� T4 C 1

3a21a
2
3

:

From Eq. (2) we get that

Q1 D x102
27a61a

6
3

� T31 �
x122
3a41a

6
3

� T21T3 C
x142
a21a

6
3

� T1T23 C
a63x

16
2 � x162
a63

� T33�
x52

3a31a
3
3

� T21 C
2x72
a1a33

� T1T3 C 3a1a33x
9
2 � 3a1x92
a33

� T23 ;

Q2 D 2ax92
27a91a

9
3

� T31 �
2x112

3a175a93
� T21T3 C

2x132
a51a

9
3

� T1T23 �
2x152
a31a

9
3

� T33C
x102
9a61a

6
3

� T21T4 �
2x122
3a41a

6
3

� T1T3T4 C x142
a21a

6
3

� T23T4 �
x42

3a61a
6
3

� T21C
2x62
a41a

6
3

� T1T3 � 3x82
a21a

6
3

� T23 �
2x52
3a31a

3
3

� T1T4 C 2x72
a1a33

� T3T4

and therefore following the definition of g in Eq. (3), we have

g1 D Q1 C T1;
g2 D Q2 C T2

To obtain this with SINGULAR, we use the same code lines as in Example 23, but
we change the last one with

desingularization(All, nra,nrx,nry,xid,yid,aid,f,"injective","debug");

Doing this, the algorithm will not compute the kernel because of the injective
argument.
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Example 26 We do now the same computations for Examples 8 and 18. The
bordered matrix H defined above is equal to

H D

0

B
B
@

x2 �x1 0 0

0 0 1 0

1 0 0 0

0 0 0 �x1x23

1

C
C
A

and hence G D N � G0 is equal to

G D Y24 �

0

B
B
@

0 0 x21x
4
3 0

�x1x43 0 x1x2x43 0

0 x21x
4
3 0 0

0 0 0 �x1x23

1

C
C
A

and s D 1. Using the definition of h in Eq. (1), we get that

h1 D Y1 C
�
x31x

6
3

� � T3 � .a3x1/;
h2 D Y2 �

�
x21x

6
3

� � T1 C
�
x21x2x

6
3

� � T3 � .a3x2/;
h3 D Y3 C

�
x31x

6
3

� � T2 �
�
1

7Š
a1x

7
3 C

1

6Š
a1x

6
3 C

1

5Š
a1x

5
3

C 1
4Š
a1x

4
3 C

1

3Š
a1x

3
3 C

1

2Š
a1x

2
3 C a1x3 C a1

�

;

h4 D Y4 C
�
x21x

4
3

� � T4 C 1:

From Eq. (2) we get that

Q1 D 0;

Q2 D 0

and therefore following the definition of g in Eq. (3), we have

g1 D T1
g2 D T2:

To compute this with the library, we do the following:

ring All = 0,(a1,a2,a3,x1,x2,x3,Y1,Y2,Y3),dp;
int nra = 3;
int nrx = 3;
int nry = 3;
ideal xid = x2^3-x3^2,x1^3-x3^2;
ideal yid = Y1^3-Y2^3;
ideal aid = a3^2-a1*a2;
poly y;
int i;
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for(i=0;i<=30;i++)
{

y = y + a1*x3^i/factorial(i);
}
for(i=31;i<=50;i++)
{

y = y + a2*x3^i/factorial(i);
}
ideal f = a3*x1,a3*x2,y;
desingularization(All, nra,nrx,nry,xid,yid,aid,f,"debug");

The algorithm’s output is as expected:

This is the nice bordered matrix H:
(x2),(-x1),0,0,
0, 0, 1,0,
1, 0, 0,0,
0, 0, 0,(-x1*x3^2)
This is G:
0, 0, (x1^2*x3^4)*Y4^2, 0,
(-x1*x3^4)*Y4^2,0, (x1*x2*x3^4)*Y4^2,0,
0, (x1^2*x3^4)*Y4^2,0, 0,
0, 0, 0, (-x1*x3^2)*Y4^2

s = 1

h =
h[1]=Y1+(x1^3*x3^6)*T3+(-a3*x1)
h[2]=Y2+(-x1^2*x3^6)*T1+(x1^2*x2*x3^6)*T3+(-a3*x2)
h[3]=Y3+(x1^3*x3^6)*T2+(-a1*x3^7-7*a1*x3^6-42*a1*x3^5-210*a1*x3^4

-840*a1*x3^3-2520*a1*x3^2-5040*a1*x3-5040*a1)/5040
h[4]=Y4+(-x1^2*x3^4)*T4+1

m = 1

QT =
QT[1]=0
QT[2]=0
f =
f[1]=(x2)*Y1+(-x1)*Y2
f[2]=(x1*x3^2)*Y4+(-x1*x3^2)

g
_[1]=T1
_[2]=T2

Thus the General Neron Desingularization is a localization of DŒY;T3;T4�=.h/ Š
DŒT3;T4�.

Example 27 We do now the same computations for Example 19. In this example,
the computations are much more complicated. The output is unfortunately too big
but we will try to describe the result.
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The bordered matrix H defined above is equal to

H D

0

B
B
B
B
B
@

0 x2 � Y3 x2 � Y2 �2 � Y4 0

x21 � Y2 x21 � Y1 �2 � Y3 0 0

0 1 0 0 0

1 0 0 0 0

0 0 4Y4Y5 4Y3Y5 4Y3Y4

1

C
C
C
C
C
A

and hence G D N � G0 is equal to

G D Y25 �

0

B
B
B
B
B
@

0 0 0 16Y23Y
2
4 0

0 0 16Y23Y
2
4 0 0

0 �8Y3Y24 8x21 � Y1Y3Y24 8x21 � Y2Y3Y24 0

�8Y23Y4 �4x2 � Y2Y3Y4 GŒ4; 3� 4x21x2 � Y22Y3Y4 0

8Y23Y5 x2 � Y2Y3Y5 C 2Y24Y5 GŒ5; 3� GŒ5; 4� 4Y3Y4

1

C
C
C
C
C
A

;

where

GŒ4; 3� D 4x21x2 � Y1Y2Y3Y4 C 2x2 � Y33Y4;
GŒ5; 3� D �4x21x2 � Y1Y2Y3Y5 � 2x2 � Y33Y5 � 2x21 � Y1Y24Y5 and

GŒ5; 4� D �4x21x2 � Y22Y3Y5 � 2x21 � Y2Y24Y5
and

s D a81a
2
2x
12
2 � 2a51a42x132 C a21a

6
2x
14
2 � 2a61a32x122 C 2a31a52x132 � a41a

4
2x
12
2 C 2a1a62x132 C

2a81a2x
10
2 � 4a51a32x112 C 4a21a52x122 � 4a61a22x102 C 4a31a42x112 C a62x

12
2 C 2a1a52x112 C

a81x
8
2 � 2a51a22x92 C 3a21a42x102 � 2a61a2x82 C 2a31a32x92 C a41a

2
2x
8
2 � 2a41a2x62C

2a1a32x
7
2 C 2a21a22x62 C 2a32x62 � 2a41x42 C 2a1a22x52 C 2a21a2x42 C 1

Using the definition of h in Eq. (1), we get that

0

B
B
B
B
B
@

h1
h2
h3
h4
h5

1

C
C
C
C
C
A

D s �

0

B
B
B
B
B
@

Y1 � y01
Y2 � y02
Y3 � y03
Y4 � y04
Y5 � y05

1

C
C
C
C
C
A

� x42G.y
0/ �

0

B
B
B
B
B
@

T1
T2
T3
T4
T5

1

C
C
C
C
C
A

;
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where

y01 D �18a21a52x122 C 5a31a42x112 C 7a62x122 � 18a1a52x112 C 15a21a42x102 � 4a31a32x92�
6a52x

10
2 C 15a1a42x92 � 12a21a32x82 C 3a31a22x72 C 5a42x82 � 12a1a32x72 C 9a21a22x62�

2a31a2x
5
2 � 4a32x62 C 9a1a22x52 � 6a21a2x42 C a31x

3
2 C 3a22x42 � 6a1a2x32 C 3a21x22�

2a2x22 C 3a1x2 C 1
y02 D a121 x

12
2 C 2a101 a2x122 � a111 x

11
2 C a81a

2
2x
12
2 � 2a91a2x112 C a101 x

10
2 � a71a

2
2x
11
2 C

2a81a2x
10
2 � a91x

9
2 C a61a

2
2x
10
2 � 2a71a2x92 C a81x

8
2 � a51a

2
2x
9
2 C 2a61a2x82 � a71x

7
2C

a41a
2
2x
8
2 � 2a51a2x72 C a61x

6
2 � a31a

2
2x
7
2 C 2a41a2x62 � a51x

5
2 C a21a

2
2x
6
2 � 2a31a2x52C

a41x
4
2 � a1a22x

5
2 C 2a21a2x42 � a31x

3
2 C a22x

4
2 � 2a1a2x32 C a21x

2
2 C 2a2x22 � a1x2C

1

y03 D a1x22 C x2
y04 D a2x32 C x2

y05 D
a22
4
x42 �

a31 C a1a2
4

x32 C
a21 � a2
4

x22 �
a1
4
x2 C 1

4
:

However, the output is too big to be printed. Following the idea in the above
examples, we compute Q and g. This is even bigger than h, so we print the
numerators and denominators of the coefficients just till degree 10 in the xi’s.
However in some cases even the terms till degree 10 will be too many to write
down, and hence we will print just the first terms and “: : :” .

As a small remark,Q3 contains also terms in degree 3 in the Ti but the numerators
of the coefficients have power greater than 10, and therefore they do not appear in
our shortcutting.

Q1 D 3a21x
2
1x
8
2�2a1x21x72C4a2x21x82Cx21x

6
2

4a1a
2
2x
5
2C8a1a2x32C4a1x2C4a22x42C8a2x22C4

� T1T4 � x62

4a22x
4
2C8a2x22C4

� T21

C�a
4
1x
10
2 Ca31x

9
2�2a21a2x102 �a21x82C2a1a2x92Ca1x

7
2�a22x102 �2a2x82�x62

4a1a
2
2x
5
2C8a1a2x32C4a1x2C4a22x42C8a2x22C4

� T1T2

C �5a41x102 C4a31x92�12a21a2x102 �3a21x82C8a1a2x92C2a1x72�6a22x102 �4a2x82�x62
16a21a

2
2x
6
2C32a21a2x42C16a21x22C32a1a22x52C64a1a2x32C32a1x2C16a22x42C32a2x22C16

� T22

C a21x
2
1x
8
2C2a21x102 C2a1x21x72C4a1x92Cx21x

6
2C2x82

4a1a
2
2x
5
2C8a1a2x32C4a1x2C4a22x42C8a2x22C4

� T1T3

C a1x
2
1x
7
2�2a1x92C2a2x21x82�4a2x102 Cx21x

6
2�2x82

8a21a
2
2x
6
2C16a21a2x42C8a21x22C16a1a22x52C32a1a2x32C16a1x2C8a22x42C16a2x22C8

� T2T3

C �x41x62C4x21x82�4x102
16a21a

2
2x
6
2C32a21a2x42C16a21x22C32a1a22x52C64a1a2x32C32a1x2C16a22x42C32a2x22C16

� T23

C 6a21x
2
1x
8
2�3a1x21x72C6a2x21x82Cx21x

6
2

8a21a
2
2x
6
2C16a21a2x42C8a21x22C16a1a22x52C32a1a2x32C16a1x2C8a22x42C16a2x22C8

� T2T4
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C �x41x62C2x21x82
8a21a

2
2x
6
2C16a21a2x42C8a21x22C16a1a22x52C32a1a2x32C16a1x2C8a22x42C16a2x22C8

� T3T4

C �x41x62
16a21a

2
2x
6
2C32a21a2x42C16a21x22C32a1a22x52C64a1a2x32C32a1x2C16a22x42C32a2x22C16

� T24

Q2 D �x62
4a21x

2
2C8a1x2C4

� T22C
3a21x

2
1x
8
2C3a1x21x72�2a2x21x82Cx21x

6
2

2a21x
2
2C4a1x2C2

� T2T3C �x41x62
4a21x

2
2C8a1x2C4

� T23

C a21x
2
1x
8
2�a1x21x72C2a2x21x82Cx21x62
2a21x

2
2C4a1x2C2

� T2T4C �x41x62C2x21x82
2a21x

2
2C4a1x2C2

� T3T4C �x41x62
4a21x

2
2C8a1x2C4

� T24

Q3 D 2a31x
9
2�4a21a2x102 �2a21x82C2a1a2x92C2a1x72�2a2x82�2x62

4a1a
3
2x
7
2C12a1a22x52C12a1a2x32C4a1x2C4a32x62C12a22x42C12a2x22C4

� T1T2

C 7a31x
9
2�28a21a2x102 �7a21x82C21a1a2x92C7a1x72�21a22x102 �21a2x82�7x62

:::C48a21x22C48a1a32x72C144a1a22x52C144a1a2x32C48a1x2C16a32x62C48a22x42C48a2x22C16
� T22

C 2a21x
2
1x
8
2C2a21x102 C4a1x21x72C4a1x92�2a2x21x82�2a2x102 C2x21x62C2x82

4a1a32x
7
2C12a1a22x52C12a1a2x32C4a1x2C4a32x62C12a22x42C12a2x22C4

� T1T3

C 7a21x
2
1x
8
2C4a21x102 C14a1x21x72C8a1x92C7a2x21x82C4a2x102 C7x21x62C4x82

:::C24a21x22C24a1a32x72C72a1a22x52C72a1a2x32C24a1x2C8a32x62C24a22x42C24a2x22C8
� T2T3

C �7x41x62�8x21x82�4x102
:::C48a21x22C48a1a32x72C144a1a22x52C144a1a2x32C48a1x2C16a32x62C48a22x42C48a2x22C16

� T23

C 6a21x
2
1x
8
2�4a1x21x72C6a2x21x82C2x21x62

4a1a
3
2x
7
2C12a1a22x52C12a1a2x32C4a1x2C4a32x62C12a22x42C12a2x22C4

� T1T4

C 21a21x
2
1x
8
2�14a1x21x72C35a2x21x82C7x21x62

:::C24a21x22C24a1a32x72C72a1a22x52C72a1a2x32C24a1x2C8a32x62C24a22x42C24a2x22C8
� T2T4

C �7x41x62�4x21x82
:::C24a21x22C24a1a32x72C72a1a22x52C72a1a2x32C24a1x2C8a32x62C24a22x42C24a2x22C8

� T3T4

C �7x41x62
:::C48a21x22C48a1a32x72C144a1a22x52C144a1a2x32C48a1x2C16a32x62C48a22x42C48a2x22C16

� T24

C a41x
10
2 �a21a2x102 �a22x102 Ca2x

8
2�x62

4a32x
6
2C12a22x42C12a2x22C4

� T21 C
�x62

2a22x
4
2C4a2x22C2

� T1T5

C �3a22x102 �6a2x82�3x62
4a21a

2
2x
6
2C8a21a2x42C4a21x22C8a1a22x52C16a1a2x32C8a1x2C4a22x42C8a2x22C4

� T2T5

C 9a21x
2
1x
8
2C6a21x102 C9a1x21x72C6a1x92C3x21x62C2x82

4a21a
2
2x
6
2C8a21a2x42C4a21x22C8a1a22x52C16a1a2x32C8a1x2C4a22x42C8a2x22C4

� T3T5

C 3a21x
2
1x
8
2�3a1x21x72C12a2x21x82C3x21x62

4a21a
2
2x
6
2C8a21a2x42C4a21x22C8a1a22x52C16a1a2x32C8a1x2C4a22x42C8a2x22C4

� T4T5
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The denominators of the coefficients from Q are invertible in D because they
follow from � 03 and � 04 which are invertible in D. Thus Q 2 DŒT1; : : : ;T5�. Having
Qi we obtain gi:

g1 D Q1C
�
:::�6a41x42C30a31a32x92C45a21a42x102 C6a21a22x62C6a21a2x42C6a1a32x72C6a1a22x52C6a32x62C1

� �T1
g2 D Q2C

�
:::�6a41x42C30a31a32x92C45a21a42x102 C6a21a22x62C6a21a2x42C6a1a32x72C6a1a22x52C6a32x62C1

� �T2
C �

:::C6a61x42�30a51a32x92�45a41a42x102 �6a41a22x62�6a41a2x42�6a31a32x72�6a31a22x52�6a21a32x62�a21
�

g3 D Q3C
�
:::�6a41x42C30a31a32x92C45a21a42x102 C6a21a22x62C6a21a2x42C6a1a32x72C6a1a22x52C6a32x62C1

� �T3
C �

:::C24a21a52x102 C18a21a42x82Ca21a
2
2x
4
2Ca21a2x

2
2C12a1a52x92Ca1a32x

5
2Ca1a22x

3
2C6a62x102 Ca32x

4
2

�
:

The General Neron Desingularization is a localization of DŒY;T�=.h; g/. For this
example we will need a function

invp(poly p, int bound,string param,string variab)

which computes the inverse of p till order bound in Q.param/Œvariab�.
The input for this example is the following:

ring All = 0,(a1,a2,x1,x2,Y1,Y2,Y3,Y4),dp;
int nra = 2;
int nrx = 2;
int nry = 4;
ideal xid = x1^2-x2^3;
ideal yid = Y3^2-x1^2*Y1*Y2,Y4^2-x2*Y2*Y3;
ideal aid = 0;
poly y1,y2,y3,y4;
y3 = 1+a1*x2;
y4 = 1+a2*x2^2;
string as,xs;
if(nra != 0)
{

as = string(var(1));
for( int i=2;i<=nra;i++)
{

as = as+","+string(var(i));
}

}
if(nrx!=0)
{

xs = string(var(nra+1));
for(int i=nra+2;i<=nra+nrx;i++)
{

xs = xs+","+string(var(i));
}

}
y1 = y3^3*invp(y4^2,12,as,xs);
y2 = y4^2*invp(y3,12,as,xs);
y3 = x2*y3;
y4 = x2*y4;
ideal f = y1,y2,y3,y4;
desingularization(All, nra,nrx,nry,xid,yid,aid,f,"injective","debug");
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Remark 28 Our algorithm works mainly for local domains of dimension one. If A0
is not a domain but a Cohen–Macaulay ring of dimension one, then we can build
an algorithm in the idea of the proof of Theorem 20. In this case it is necessary to
change B by an Elkik’s trick [4] (see [8, Lemma 3.4], [13, Proposition 4.6], [11,
Corollary 5.10]). The algorithm and as well Theorem 20 might be also build when
A0 is not Cohen–Macaulay substituting in the proofs d by a certain power dr such
that .0 WA dr/ D .0 WA drC1/. Such algorithm could be too complicated to work
really.

On the other hand, if we restrict our present algorithm to the case when A0 is the
completion of A then we might get a faster algorithm using the idea of the proof of
Theorem 20. This algorithm could be useful in the arc frame.
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Coherence of Direct Images of the De Rham
Complex

Kyoji Saito

Dedicated to the memory of Egbert Brieskorn
(7.7.1937–19.7.2013)

Abstract We show the coherence of the direct images of the De Rham complex
relative to a flat holomorphic map with suitable boundary conditions. For this
purpose, a notion of bi-dg-algebra called the Koszul-De Rham algebra is developed.

Keywords Coherence of direct image sheaf • Critical sets • De Rham complex •
Koszul complex

1 Introduction

In the present paper, we prove the following theorem.

Main Theorem Let ˆ W Z ! S be a flat holomorphic map between complex
manifolds.1 Assume that there exists an open subset Z0 � Z with smooth boundary
satisfying (1) Z0 contains the critical set Cˆ of ˆ, (2) the closure NZ0 in Z is proper
over S, and (3) Z0 is a weak deformation retract of Z along the fibers of ˆ, and (4)
@Z0 is transversal to all fibers ˆ�1.t/. Then, the direct images Rkˆ�.��Z=S; dZ=S/
of the relative De Rham complex ��Z=SWD ��

Z=ˆ
�.�1

S/ ^ ���1
Z on Z over S are OS-

coherent modules.

The main Theorem is well known for a proper and/or projective morphism ˆ,
since (1) the 0E1-term Rqˆ�.�p

Z=S/ of the spectral sequence defining the direct
image, the so-called Hodge to De Rham spectral sequence (1), is already OS-
coherent due to the proper mapping theorem of Grauert and/or Grothendieck, and

1We assume that a manifold is connected, paracompact, Hausdorff and, hence, metrizable.
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(2) the differentials on the spectral sequence (induced from the relative De Rham
differential dZ=S) are OS-homomorphisms so that the limit of the spectral sequence
is also OS-coherent (see [11, 12]).

Therefore, our main interest is the study of the case when ˆ is a non-proper
morphism between open manifolds. We give a direct and down to the earth proof
of the Main Theorem by introducing the notion of a Koszul-De Rham algebra,
which seems to detect information of the singularities of the morphism ˆ and to
be of interest by itself (see Step 3). In such a non-proper mapping setting, we also
remark that the result has a close connection to a general theorem for coherent DZ-
modules which are non-characteristic on the boundary by Houzel–Schapira [10],
and its generalization to elliptic systems by Schapira–Schneiders (Theorem 4.2 in
[18]), since the relative de-Rham system is an elliptic system.

If the range S of ˆ is one-dimensional, i.e. ˆ is a function, and Z is a suitably
small neighborhood of an isolated critical point of ˆ, then the main Theorem
was shown by Brieskorn [1] and then by Greuel [8] (see Hamm [9] for what
happens if non-isolated singularities are admitted). Namely, in the case of an
isolated critical point, ˆ is locally analytically equivalent to a polynomial map,
and one proves the coherence by extending ˆ to a projective morphism and then
applying Grothendieck’s coherence theorem for projective morphisms. The result
was generalized by the author in [15, 16] to the complete intersection case for
higher dimensional base space S, where he did not use the above-mentioned algebro-
geometric method in [1] but used a complex analytic method developed by Forster
and Knorr [5] who gave a new proof of the Grauert proper mapping theorem
[6]. Recently, jointly with Changzheng Li and Si Li, the author studied in [14]
morphisms ˆ which may no longer be defined locally in a neighborhood of an
isolated critical point but may have multiple critical points as in the Main Theorem.
Then,ˆmay no longer be equivalent to a polynomial map and the algebraic method
in [1] seems to be no longer applicable. However the analytic method in [15] can be
generalized for this new setting, as will be presented in the present paper, where we
study the De Rham cohomology group by the LCech cohomology group with respect
to an atlas (9) of relative charts due to Forster and Knorr.

In the present new setting, the morphismˆ may also no longer necessarily have
only isolated critical points but may have higher dimensional critical sets in the
fibers of ˆ. For such semi-global settings, the vanishing cycles in the nearby fibers
of ˆ are no longer purely middle dimensional but mixed dimensional, and the De
Rham cohomology groups are no longer pure but mixed dimensional. Then, we
need to solve some topological problems. We also need to find a suitable Stein open
covering of the fibration ˆ in order to apply the Forster–Knorr result to the LCech
complex. This is achieved in the present paper by showing an existence of some
enhanced structure on the atlas of relative charts Z (Lemma 27).

The proof of the Main Theorem is divided into the following four steps.

Step 1. We describe two (including Hodge to De Rham) spectral sequences,
describing the direct images Rˆ�.��Z=S; dZ=S/ and see that the restriction from
Z to Z0 induces an isomorphism: Rˆ�.��Z=S; dZ=S/ ' Rˆ�.��Z0=S; dZ0=S/.
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Step 2. For any point t 2 S, we find a Stein open neighborhood S� � S such
that Z0 \ˆ�1.S�/ is covered by atlases of relative charts in the sense of Forster–
Knorr, which satisfy an additional condition, called complete intersection, and
which form a family of atlases parametrized by the radius r (9r� � r � 1) of
polydiscs.

Step 3. We introduce the Koszul-De Rham algebra K�;?D.r/�S�=S�;f on each relative
chart D.r/�S�, as a sheaf of double dg-algebras over the dg-algebra��D.r/�S�=S�

of the relative De Rham complex, which gives an OD.r/�S� -free “resolution” of
the relative De Rham complex .��Z=S; dZ=S/ up to the critical set Cˆ, where the

“gap,” i.e. the cohomology groups of K�;?D.r/�S�=S�;f w.r.t. ?, is given by a sequence,

indexed by s 2 Z�0, of complexes .H�;sˆ ; dDR/ of coherentOZ-modules supported
in Cˆ.

Step 4. The LCech cohomology groups of the De Rham complex .��Z=S; dZ=S/
and the lifted LCech cohomology groups of the Koszul-De Rham algebra appear
periodically in the first and the second terms of a long exact sequence of
cohomology groups, where the second terms are coherent near t 2 S due to
Forster–Knorr’s result [5]. The third terms of the sequence, described by the
complexes H�;sˆ in Step 3, are also coherent on S, since Cˆ is proper over S.
This shows that the first terms, i.e. the direct images of the De Rham complex,
are also coherent near t 2 S.

Since the coherence is a local property on S, this completes the proof.

Remark 1

(i) A flat map ˆ is an open map and defines a family of constant

n WD dimC Z � dimC S

dimensional fibers. So, if n D 0, the map ˆ is proper finite and hence the Main
Theorem is trivial. Therefore, in the present paper, we shall assume n > 0.

(ii) We introduce in the present note some tools which seem to be unknown in the
literature:

a) The atlases of some special intersection nature (Lemmas 8 and 9) in Step 2,
b) The sequence of chain complexes .H�;sˆ ; dDR/ (s 2 Z>0) of coherent OZ-

modules supported in the critical set Cˆ of ˆ in Step 3.

Both are essential for our purpose to give an analytic proof of the Main
Theorem.

Notation We use cohomologies of three kinds: 1. De Rham complex, 2. derived
functor of direct image ˆ�, and 3. Koszul complex. According to them, when it is
possible, we distinguish their indices by the following choices: 1. “�” or “p” for
p 2 Z�0, 2. “�” or “q” for q 2 Z�0, and 3. “?” or “s” for s 2 Z�0, respectively.
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2 Step 1: Hodge to De Rham Spectral Sequence

Throughout the present paper, we keep the setting and notation of the Main
Theorem. Recall that the direct image is given by the hypercohomology
R
?ˆ�.��Z=S; dZ=S/ and is described by the limit of the following two spectral

sequences:

0Ep;q
2 WD Hp.Rqˆ�.��Z=S/; dZ=S/

00Eq;p
2 WD Rqˆ�.Hp.��Z=S; dZ=S//:

(1)

The E1-term 0Ep;q
1 D Rqˆ�.�p

Z=S/ of the first spectral sequence is sometimes called
Hodge to De Rham (or, Frölicher) spectral sequence for the De Rham cohomology
relative to ˆ.

Let us consider the second spectral sequence 00Eq;p
2 (1), which we shall denote also

by 00Eq;p
2 .Z=S/ when we stress its dependence on the space Z=S. We first remark that

Supp.Hp.��Z=S; dZ=S// � Cˆ for p > 0 (here we recall that Cˆ is the critical set of
ˆ so that ˆ jCˆ is a proper morphism), since the Poincaré complex .��Z=S; dZ=S/
relative to ˆ is exact outside the critical set of ˆ. On the other hand, we have
H0.��Z=S; dZ=S/ ' ˆ�1OS (since n > 0). That is, H0.��Z=S; dZ=S/ is constant along
fibers of ˆ. Therefore, we observe (cf. [19]):

Fact 2 Let Z0 be an open subset of Z satisfying 1. CF � Z0 and 2. Z0 is a
deformation retract of Z along fibers ofˆ. Then, the inclusion map Z0 ! Z induces
bijection 00Eq;p

2 .Z=S/ ' 00Eq;p
2 .Z

0=S/ and, hence, of the hypercohomology groups
R

kˆ�.��Z=S;dZ=S/ ' R
kˆ�.��Z0=S;dZ0=S/ as OS-module.

2In [2] (Theorem 4.1), some algebra similar to the (but differently graded) Koszul-De Rham algebra
in the present paper was introduced in order to calculate the Hochshild and cyclic homology of
a complete intersection affine variety (similar to the complete intersection variety U in a Stein
manifold W in the present paper). It should be of interest to find a relation of the present work with
the Hochshild and cyclic homology. However, since the description in [2] misses the parameter
space S in the present paper, the relation seems not promptly apparent.
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3 Step 2: Atlas of Complete Intersection Relative Charts

We construct an atlas consisting of charts relative to the map ˆ (called relative
charts by Forster–Knorr [5]), which satisfy an additional condition called a complete
intersection (Lemma 8). The atlas shall be used in Step 4 to calculate the limit of the
spectral sequence 0Ep;q

1 by a generalization of LCech cohomology. The construction
of the atlas asks the existence of a certain covering of the manifold Z of quite
general nature (Lemma 9). Since the proof of the existence of such a covering is
rather of technical nature and is independent of the other part of the paper, hurrying
readers are suggested to skip the present section and to go to Sect. 4 after looking at
definitions and results, and to come back to the proofs if necessary.

Definition 3 ([5]) A relative chart for a flat family ˆ is a closed embedding

j W U �! D.r/ � SU (2)

where U is an open subset of Z (which may be empty), SU is an open subset of S
with ˆ.U/ � SU, and D.r/ is a polycylinder of the radius r3 in some Cm (m 2 Z�0)
such that the diagram

U
j��! D.r/ � SU

ˆ jU& .prSU
SU

(3)

commutes. We sometimes call the embedding j a relative chart, for simplicity.

Definition 4 A relative chart is called a complete intersection if the j-image of U
is a complete intersection subvariety in D.r/ � SU . That is, there exists a sequence
f1; � � � ; fl of holomorphic functions on D.r/ � SU, where l is the codimension of U
in D.r/ � SU :

l WD mC dimC S � dimC Z D m � n

such that j induces a natural isomorphism j� W OD.r/�SU=. f1; � � � ; fl/ ' OU .

Lemma 5 Let jk W Uk ! Dk.r/ � Sk (k 2 K) be a finite system of relative charts.
Then the fiber product

jK W UK ! DK.r/ � SK (4)

of the morphisms jk (k 2 K) over SK WD \k2KSk, where we set DK.r/ WDQ
k2K Dk.r/, is a relative chart.

3A polycylinder of radius r is by definition a domain of the form f.z1; 
 
 
 ; zm/ 2 C
m j jzi � aij <

r .i D 1; 
 
 
 ;m/g where .a1; 
 
 
 ; am/ 2 C
m is called the center of the polycylinder.
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Proof The morphism jK is obviously a local embedding. We need to show that its
image is closed. Suppose there is a sequence zi 2 UK (i D 1; 2; 
 
 
 ) such that the
sequence jK.zi/ converges to a point in DK.r/ � SK . Then the projection sequence
jk.zi/ also converges in Dk � Sk, implying that the sequence zi converges in Uk for
all k 2 K. Then lim

i
fxig belongs to \k2KUk DW UK (cf. [5, Corollary 3.2]). ut

Definition 6 We shall call jK (4) the intersection of relative charts jk (k 2 K).

Remark 7 Let dimDk D mk and lk D mk � n for k 2 K. Then, jK.UK/ has
codimension equal to lK WD P

k2K mk � n D P
k2K lk C .#K � 1/n. Even if all

jk (k 2 K) are complete intersections, their intersection jK may not necessarily be a
complete intersection. Therefore, the following lemma is non-trivial.

Lemma 8 Letˆ W Z ! S be any flat holomorphic map. Then there exists a function
r W Z ! R>0 and a relative chart jz W Uz.r/ ! Dz.r/ � Sz for all z 2 Z and
0 < r < r.z/ such that 1) jz.z/ is independent of r and 2) p1 ı jz W Uz.r/ ! Dz.r/
is a bijection, mapping z to the center of the polycylinder of radius r. Furthermore,
any finite intersection of these relative charts is complete intersection.

Proof We first provide the following lemma of a quite general nature.

Lemma 9 Any complex manifold M of dimension N admits an atlas (D a collection
of open charts covering M) such that, for any point of M, the union of charts
containing the point is holomorphically embeddable into an open set in CN.4

Proof By the assumption on manifolds (see Footnote 1), M is metrizable, and let d
be a metric on M. For p 2 M and r 2 R�0, let B. p; r/ WD fq 2 M j d. p; q/ < rg be
the ball neighborhood of a point p of radius r. We define a function on p 2 M by

R. p/ WD supfr 2 R�0 j B. p; r/ is holomorphically embeddable5 in a domain
in C

Ng. Actually, R is a positive valued continuous function on M except if it takes
constant value1. For any fixed real number b with 0 < b < 1=3, we show that the
atlas f.B. p;R. p/b/; 'pgp2M, where 'p is a holomorphic embedding of B. p;R. p/b/
into C

N , has the desired property.6 Proof: Suppose p 2 M belongs to the chart
B.q;R.q/b/ centered at q 2 M. That means d. p; q/ < R.q/b and then B. p;R.q/.1�
b// � B.q;R.q/.1 � b C b0// where b0 WD d. p; q/=R.q/ < b so that 1 � b C
b0 < 1. Hence, the ball B.q;R.q/.1 � b C b0// is embeddable in C

N , and so is
B. p;R.q/.1 � b//. This implies R. p/ � R.q/.1 � b/. On the other hand, for any
small " > 0, B.q;R. p/� d. p; q/� "/ � B. p;R. p/� "/ is embeddable in C

N , one
gets R.q/ � lim"#0.R. p/�d. p; q/�"/ D R. p/�d. p; q/ and, hence, .1Cb/R.q/ >
.1Cb0/R.q/ D R.q/Cd. p; q/ � R. p/. Note that the chart B.q;R.q/b/ is contained

4A parallel statement obtained by replacing the terminologies: complex manifold, holomorphically
and C

N by C1-manifold, differentiably and R
N , respectively, holds by the same proof.

5Here, embeddings are not necessarily isometric.
6For our later application, we may assume furthermore that 'p is extendable to a holomorphic
embedding of the ball B. p;R. p/.1 � .1 � 3b/=.1 C b// into C

N since 3b < 1 and 1 � .1 �
3b/=.1C b// < 1.
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in the ball B. p;R.q/2b/ of radius R.q/2b D R.q/.1� b/� R.q/.1� 3b/. Recalling
1 � 3b > 0 and inequalities R.q/.1� b/ � R. p/; R.q/ > R. p/=.1C b/, the radius
is less than R. p/1 � R. p/.1 � 3b/=.1C b// D R. p/.1� .1 � 3b/=.1C b// which
is a constant (< R. p/) independent of the point q. That is, all charts containing p
are covered by the same ball B. p;R. p/.1� .1� 3b/=.1C b//which is embeddable
in C

N . ut
We return to the proof of Lemma 8. Let f.B.z;R.z/b/; 'zgz2Z be the atlas of Z

described in Lemma 9 (with the additional assumption of Footnote 5). For any point
z 2 Z, let Sz be a local coordinate neighborhood of ˆ.z/ in S.

Then, one finds easily a positive real number r.z/ such that for any real r with
0 < r < r.z/, the polycylinder D.r/ of radius r centered at 'z.z/ is contained in the
domain 'z.B.z;R.z/b// � C

N and ˆ.'�1z .D.r/// � Sz. Then,

jz W Uz.r/ WD '�1z .D.r// �! D.r/ � Sz
z0 7�! .'z.z0/; ˆ.z0//

gives a family (parametrized by r) of relative chart centered at z. The codimension l
of the image jz.Uz.r// in D.r/ � Sz is equal to m � n D N � n D dimC S. Actually,
the image is determined by a system of equations:

fti �ˆi ı '�1z D 0gdimC S
iD1 ;

where .t1; � � � ; tdimC S/ is a local coordinate system of Sz and ˆi is the ith coordinate
component of the morphismˆ. Thus jz is complete intersection.

Let us show that, for any finite set K D f.z; rz/ of z 2 Z and 0 < rz < r.z/
such that UK WD \.z;rz/2KUz.rz/ (and, hence, SK WD \.z;rz/2KSz) is non-empty, the
intersection relative chart jK W UK ! DK.r/ � SK is complete intersection.

Recall that jK is given by the fiber product morphism:

jK W z0 2 UK 7�! ..'z.z
0//.z;rz/2K ; ˆ.z0// 2

Y

.z;rz/2K
Dz.rz/ � SK ;

where the codimension of jK.UK/ is equal to lK D #K � dimC SC .#K � 1/n.
In case of UK 6D ;, the existence of a point z

0
2 UK implies the inclusion:

[
.z;rz/2K

Uz.rz/ � [
.z;rz/2K

B.z;R.z/b/ � B.z
0
;R.z

0
/.1 � "//

for " WD .1� 3b/=.1C b/ (Lemma 8). Let z1; � � � ; zN be the coordinates of CN where
the ball B.z

0
;R.z

0
/.1 � "// is embedded by extending the domain of 'z0 . We also

denote by '�1z (z 2 K) the composition map: DK � SK ! Dz! Uz � Z.
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Then, the image jK.UK/ is determined by the following two types of equations:

1) System equations for identifying polycylinders Dz.rz/ (z 2 K) with each other.
That is, for each fixed j with 1 � j � N, all zj ı '�1z (z 2 K) are equal to each
other. There are .#K � 1/N D .#K � 1/.nC dimC S/ number of equations:

z j ı '�1z0
D z j ı '�1z1

D � � � D z j ı '�1zk�
1 � j � N :

2) System equations for the graph of ˆ on each polycylinder Dz.rz/ (z 2 K). That
is, for each fixed i with 1 � i � dimC S, ti D ˆi ı '�1z for all z 2 K. There
are #K � dimC S number of equations. However, after the identifications in 1),
we do not need all equations but only for one point z 2 K: ti D ˆi ı '�1z
(1 � i � dimC S), that is, the number of necessary equation is equal to dimC S.

Thus the total number of necessary equations is .#K � 1/.nC dimC S/C dimC S D
#K 
 dimC SK C .#K � 1/n D dimC.DK � SK/� dimC UK , showing that the image jK.UK/

is a complete intersection subvariety of DK � SK . It is also clear that the Jacobian of
this system of defining equations has constant maximal rank.7

This completes the proof of Lemma 8. ut
Recall the domain Z0 � Z in the Main Theorem in Sect. 1. We assume that @Z0 in

Z is smooth and transversal to all fibers ˆ�1.t/ for all t 2 S.

Fact 10 For any point t of S, there exist a Stein open neighborhood S�, a finite
number of relative charts over S�

jk W Uk �! Dk.1/ � S�; 0 � k � k� (5)

and a real number 0 < r� < 1 with the properties: for all r with r� � r � 1, set

Uk.r/ WD j�1k .Dk.r/ � S�/ and Z0.r/ WD [k�

kD0Uk.r/: (6)

Then, we have the following.

1. One has the inclusions: ZS� WD ˆ�1.S�/ � Z0.r/ � Z0S�

WD ˆ�1.S�/\ Z0.
2. Z0.r/ is retractable to Z0S�

along fibers of ˆ.
3. For any K � f0; � � � ; k�g, the relative chart jK is a complete intersection.

Corollary For r with r� � r � 1, we have OS� -isomorphisms

R
kˆ�.��ZS�

=S�

;dZS�
=S� / ' R

kˆ�.��Z.r/=S�

;dZ.r/=S�/: (7)

Proof For each point z 2 NZ0 \ ˆ�1.t/, we consider a relative chart jz W Uz.r/ !
Dz.r/ � Sz of Lemma 8. We consider two cases.

7To be precise, one need to show that any point in DK � SK satisfying the relations (1) and (2) is in
the image of jK . But this can be shown by a routine work so that we omit it.
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Case 1. z 2 Z0: Choose any real r such that 0 < r < r.z/ and Uz.r/ � Z0.
Case 2. z 2 @Z0: Choose any real r such that 0 < r < r.z/ and Uz.r0/ (as a

manifold with corners) is transversal to ˆ�1.t/ for all real r0 with 0 < r0 � r.

Since NZ0 \ ˆ�1.t/ is compact, we can find a finite number of relative charts
Qjk W QUk ! Dk.rk/� QSk (0 � k � k�) centered at points z

0
; � � � ; zk�

on NZ0 \ˆ�1.t/ so

that the union [k�

kD0 QUk contains the compact closure NZ0 \ˆ�1.t/. Then, we can find
a Stein open neighborhood S� of t such that (1) its compact closure NS� is contained
in \k�

kD0Sk, (2) NZ0 \ ˆ�1. NS�/ is contained in [k�

kD0 QUk.r/, and (3) all fibers ˆ�1.t0/
for t0 2 NS� and Uk.r0/ (0 < r0 � rk) for the chart jk whose central point zk is on the
boundary @Z0. By a suitable rescaling of the coordinate system of charts, we may
assume that all radii rk (0 � k � k�) are equal to 1. Then, due to the compactness
of NS�, there exists a real number r� with 0 < r� < 1 such that NZ0 \ ˆ�1. NS�/ is
contained in [k�

kD0 QUk.r0/ for all r0 with r� � r0 � 1. Then, we introduce the relative
chart (5) by setting Uk WD Uk \ j�1k .Dk.1/� S�/ and define Z0.r/ as in (6). Then, (1)
is trivial by definition, (2) is a routine work, for instance due to Thom [19], and (3) is
true since the system of relative charts fQjkgk�

kD0 has already this property (Lemma 8).
To see (7), we recall the argument done in Fact 2. ut

Let us briefly describe how these relative charts shall be used in the sequel.
For any Stein open subset S0 � S� and any real number r with r� � r � 1, we

first consider the atlas (a collection of charts)

U.r; S0/ WD f.Uk.r; S
0/ WD j�1k .Dk.r/ � S0/; 'k/gk�

kD0 (8)

of Z0.r; S0/ WD [k�

kD0Uk.r; S0/. Actually, this is a Stein open covering, since
the intersection UK.r; S0/ WD \k2KUk.r; S0/ for any subset K � f0; � � � ; k�g is
isomorphic to a closed submanifold of DK.r/�S0 and, hence, is Stein. Therefore, the
0E1-term of the Hodge to De Rham spectral sequence Hq.Z0.r; S0/;�p

Z=S0

/ is given

by the LCech complex . LC�.U.r; S0/;�p
Z=S0

/; Lı/ with respect to the atlas U.r; S0/.
The atlas U.r; S0/ is lifted to an atlas of relative charts:

U.r; S0/ WD fjkjUk.r;S0/ W Uk.r; S
0/! Dk.r/ � S0gk�

kD0: (9)

In Sect. 4, we construct double dg-algebras K�;?DK .1/�S0=S0;f on DK.1/ � S0 (depending
on a choice of bases f of the defining ideal of UK.r; S0/ in DK.r/ � S0) and a natural
epimorphism � W K�;?DK .1/�S0=S0 ;f ! ��UK .r;S0/, where the kernel of � is described

by the complex .H�;sˆ /s>0 of coherent sheaves, whose support is contained in the
critical set Cˆ (we use here the complete intersection property of the relative charts).
Then, in Sect. 5 we construct a “lifting” LC�.eU.r; S0/;K�;?D.r/�S0=S0 ;f/ of the LCech
complex (here, we need once again to “lift” the atlas U.r; S0/ to a based lifting atlas
eU.r; S0/ (see Lemma 27)), whose cohomology groups induce a coherent module
in a neighborhood of t 2 S� due to the Forster–Knorr Lemma (see Lemma 30).
Since K�;?DK .1/�S0=S0 ;f, �

�
UK .r;S0/

and .H�;sˆ /s>0 form an exact triangle, we obtain also
the coherence of the direct image of ��UK .r;S0/

.
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4 Step 3: Koszul-De Rham Algebras

We introduce the key concept of the present paper, called the Koszul-De Rham
algebra, which is a double complex of locally free sheaves over a relative chart
and gives a free resolution of the relative De Rham complex��U=S up to Cˆ.

More precisely, we slightly generalize the relative chart (3) j W U !
D.r/ � SU to (10) j W U ! W,8 and the Koszul-De Rham-algebra, denoted by
.K�;?W=S;f; dDR; @K/,

9 is a sheaf on W of bi-graded ��W=S-algebras equipped with (1)
the double-complex structure: De Rham operator dDR and Koszul operator @K and
(2) a natural epimorphism: .K�;?W=S;f; dDR; @K/ ! .��U=S; dU=S/. If the chart (10) is
a complete intersection as in Step 2, then the morphism gives a bounded OW -free
resolution of ��U=S up to some “error terms” .H�;sˆ /s>0.

We first slightly generalize the concept of the relative chart (2), (3).

Definition 11 A based relative chart .j; f/ is a pair of a holomorphic closed
embedding j W U ! W of a complex variety U into a Stein variety W with a
commutative diagram over a Stein variety S:

U
j��! W

ˆU& .̂ W

S

(10)

and a finite generator system f D ff1; � � � ; flg � �.W;OW/ of the defining ideal IU
of the image subvariety j.U/ in W (i.e. IU WD ker.j�j�jOW / D

P
i OWfi).10

In this setting, for p 2 Z�0, there is a natural epimorphism � D j�j�j�p
W=S

�
p
W=S

��! j�.�p
U=S/ .' �p

U=S/ ! 0; (11)

between the Kähler differentials, whose kernel, depending only on IU , is given by

l
†
iD1fi ��

p
W=S C

l
†
iD1dfi ^�

p�1
W=S:

8The generalization is done mainly for notational simplification replacing D.r/ � SU by W. In
application in Sect. 5, we shall use relative charts only in the form (3).
9The notation might have better been K�;?

j;f than K�;?
W=S;f.

10For a notational simplicity, we shall sometimes confuse the sheaf �p
U=S on U with its j-direct

image j
�

.�
p
U=S/ on W. For instance, we shall write �p

W=S=†
l
iD1.fi 
�p

W=SC dfi ^�p�1

W=S/ ' �
p
U=S.
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We want to construct OW -free resolution of this ideal generated by fi (1 � i � l)
and by dfi (1 � i � l). We answer this problem, up to the critical set Cˆ, by
introducing the Koszul-De Rham-algebra .KW=S;f; dDR; @K/.11

Definition The Koszul-De Rham-algebra associated with the based relative
chart (10) is a sheaf of bi-dg-algebras KW=S;f over the dg-algebra ��W=S on W
equipped with two (co-)boundary operators @K; dDR and with bi-degrees, described
below.

Consider a sheaf on W of graded commutative algebras over the dg algebra��W=S

KW=S;f WD ��W=Sh�1; � � � ; �liŒ�1; � � � ; �l� = I (12)

generated by indeterminates �1; � � � ; �l; �1; � � � ; �l, where �i’s (resp. �i’s) are consid-
ered as graded commutative odd (resp. even) variables in the following sense.

1. �i’s and even degree differential forms on W are commuting with all variables,
2. �i’s and odd degree differentials forms on W are anti-commuting with each other,

and I is the both sided ideal generated by

�i�j C �j�i D 0 and �i! C !�i D 0 for 1 � i; j � l and ! 2 �1
W :

(13)

We equip the algebra KW=S;f with the following three structures.

1. the Koszul structure: We define Koszul boundary operator @K on KW=S;f as the
��W=S-endomorphism of the algebra defined by the relations

@K�i D fi; @K�i D �dfi and @K1 D 0:

They automatically satisfy the relation: @2K D 0.

Proof The endomorphism @K is well defined on the free algebra generated by �i’s
and �i’s. Then, one checks that the endomorphism preserves the ideal I generated
by relations (13) (since @K.�i�j C �j�i/ D fi�j � �ifj C fj�i � �jfi D 0 and @K.�i! C
!�i/ D fi! � !fi D 0), and, hence, induces the action @K on the quotient KW=S;f.
The relation @2K D 0 follows immediately from the facts @2K�i D @Kfi D 0 and
@2K�i D �@Kdfi D 0. ut
2. De Rham structure: We regard KW=S;f as De Rham complex of the Grassmann

algebra OWh�1; � � � ; �li where �i’s satisfy the first half of the Grassmann rela-
tions (13). Then the De Rham differential operator, denoted by dDR, acting on
KW=S;f is given as an extension of the classical De Rham operator dW=S on ��W=S

11Usually, Koszul resolution is defined for even elements fi’s, but here we construct a resolution
for odd elements dfi’s together. The interpretation to regard it as the Koszul resolution for the odd
elements dfi’s and to introduce the variables �i was pointed out by M. Kapranov, to whom the
author is grateful.
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by setting

dDR D dW=S CPl
jD1 �j@�j ;

where @�j is the derivation of the Grassmann algebra with respect to the variable
�j. One, first, defines this operator as an endomorphism of the free algebra
before dividing by the ideal I. Then one checks directly that the endomorphism
preserves the ideal I (since dDR.�i�j C �j�i/ D �i�j � �i�j C �j�i � �j�i D 0 and
dDR.�i! C !�i/ D �i! � !�i D 0) so that it induces the required one acting on
KW=S;f . The second term of dDR switches odd variables �i to even variables �i. We
see easily the property .dDR/2 D 0 follows from

dDR.�j/ D �j; dDR.�j/ D 0 and d2DR.OS/ D 0:

De Rham differential and Koszul differentials are anti-commuting with each other

@KdDR C dDR@K D 0

(since .@KdDR C dDR@K/�i D @K�i C dDRfi D �dfi C dfi D 0 and .@KdDR C
dDR@K/�i D 0C dW=S.dfi/ D 0) so that the pair .dDR; @K/ forms a double complex
structure on KW=S;f.12

3. Bi-degree decomposition: We give an OW -direct sum decomposition

KW=S;f WD K�;?W=S;f WD ˚p2Z ˚s2Z Kp;s
W=S;f

such that

(1) Kp;0
W=S;f D �p

W=S . p 2 Z/ and Kp;s
W=S;f D 0 for either p < 0 or s < 0.

(2) @K W Kp;s
W=S ! Kp;s�1

W=S and dDR W Kp;s
W=S ! KpC1;s

W=S (p; s 2 Z).

In order to achieve this, we introduce De Rham degree and Koszul degree on KW=S;f.
Namely, for a monomial of the form !„E where ! 2 �p

W=S (p 2 Z�0) and„, E are
monomials in �1; � � � ; �l and �1; � � � ; �l, respectively, we define degree maps

degDR.!„E/ WD the total degree as a differential form D pC deg.E/
degK.!„E/ WD the total degree of the monomial„E D deg.„/C deg.E/ ;

where one should note that �j’s are Grasmann variables and deg.„/s are bounded
by l, but �i’s are even variables and deg.E/s are un-bounded. If some monomials
have the same degree with respect to degDR and/or degK, then we also call the sum
of them homogeneous of the same degree with respect to degDR and/or degK.

12That this construction of De Rham structure is the universal construction of dg-structure on
KW=S;f extending that on ��

W=S was pointed out by A. Voronov, to whom the author is grateful.
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The degree maps are additive with respect to the product in ��W=Sh�1; � � � ; �li
Œ�1; � � � ; �l�. Since the ideal I is generated by bi-homogeneous elements (13), the
bi-degrees degDR and degK are induced on the quotient algebra KW=S;f (12). So, we
set

Kp;s
W=S;f WD f! 2 KW=S;f j ! is bi-homogeneous with .degDR; degK/ D . p; s/g:

for p; s 2 Z, where Kp;s
W=S;f D 0 if either p or s is negative. Each graded piece Kp;s

W=S;f
is an OW -coherent module (since it is isomorphic to a direct sum of some ��W=S).

This completes the definition of Koszul-De Rham algebra. For short, we
sometimes call the combination of these 3 structures the bi-dg-algebra structure. In
the following sections (A)–(E), we describe some basic properties and applications
of Koszul-De Rham algebras.

(A) Functoriality.

The functoriality of Koszul-De Rham algebra, formulated in the following Lemma,
shall play a key role in Step 4 when we construct the lifted LCech coboundary operator
Lı (see (34)).

Lemma 12 A morphism w W .j0 W U0 ! W 0; f0/ ! .j W U ! W; f/ between two
based charts over the same base space S is a pair .w; h/ of 1) a holomorphic map
w W W 0 ! W over S, whose restriction u WD wjU0 induces a holomorphic map
U0 ! U so that we have the commutative diagram:

U0 ��j0��! W 0
& .
u S w
# % - #
U �� j��! W ;

and a matrix fhki gkD1;


 ;l
0

iD1;


 ;l with coefficients in �.W 0;OW0/ such that w�. fi/ D
Pl0

kD1 hki f 0k . Then, the correspondence

w˘.�i/ WD
X

k

hki �
0
k and w˘.�i/ WD

X

k

hki �
0
k C

X

k

dhki �
0
k: (14)

induces a bi-dg-algebra morphism

w˘ W w�KW=S;f �! KW0=S;f0 (15)

over the dg-algebra morphism w� W w���W=S ! ��W0=S. The morphism is functorial
in the sense that for a composition w1 ı w2 of morphisms, we have

.w1 ı w2/
˘ D w2̆ ı w1̆
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Proof The correspondence (12) induces a morphism between free algebras before
dividing by the ideal I, which preserves the parities of the variables and matches
with the degree counting by degDR and degK. We have the correspondences

�i�j C �j�i 7!
X

k;k

hki h
l
j

�
� 0k� 0l C � 0l � 0k

�

and

�i! C !�i 7!
X

k

hki
�
� 0kw�.!/C w�.!/� 0k

�

so that the defining ideal I is preserved and the bi-graded algebra homomorphism
w˘ (15) is well defined.

The commutativity of w˘ with @K:

w˘@K.�i/ D w˘. fi/ DPk h
k
i f
0
k D

P
k h

k
i @K�

0
k D @K.

P
k h

k
i �
0
k/ D @Kw˘.�i/;

w˘@K.�i/ D w˘.dfi/ DPk d.h
k
i f
0
k/

DP
k.h

k
i df
0
k C dhki f

0
k/ D

P
k @K

P
k.h

k
i �
0
k C dhki �

0
k/ D @Kw˘.�i/:

The commutativity of w˘ with dDR:

w˘dDR.�i/Dw˘.�i/ DPk w
k
i �
0
kC
P

k dw
k
i �
0
k D dDR.

P
k w

k
i �
0
k/ D dDR.w˘.�i//;

w˘dDR.�i/ D 0; dDRw˘.�i/ D dDR.
P

k.w
k
i �
0
kCdwk

i �
0
k/ D

P
k.dw

k
i �
0
k�dwk

i �
0
k/ D 0:

The functoriality of w˘: consider a composition .w; h/ D .w1; h1/ ı .w2; h2/ of two
morphisms, where w1 W W2 ! W1 and w2 W W3 ! W2 and w�1 . fi;1/ D

P
k h

k
i;1fk;2,

w�2 . fk;2/ D
P

l h
l
k;2fl;3. So, w D w1 ı w2 and hli D

P
k w
�
2 .h

k
i;1/h

l
k;2. Then, obviously,

w˘.�i;1/ DP
l

�
.
P

k w
�
2 .h

k
i;1/h

l
k;2/�l;3

� DPk w
�
2 .h

k
i;1�k;2/ D w2̆ .w1̆ .�i;1//:

w˘.�i;1/ DP
l

��P
k w
�
2 .h

k
i;1/h

l
k;2

�
�l;2 C d

�P
k w
�
2 .h

k
i;1/h

l
k;2

�
�l;2

�

DP
l

P
k w
�
2 .h

k
i;1/
�
hlk;2�l;2 C dhlk;2�l;2

�CPk d.w
�
2 .h

k
i;1//h

l
k;2/�l;2

��

D w2̆ .
P

k h
k
i;1�k;2 C

P
k dh

k
i;1�k;2/ D w2̆ .w1̆ .�i;1//:

ut
(B) Comparison � with the De Rham complex .��U=S;dU=S/.

We compare the dg-algebras .��U=S; dU=S/ and .K�;?W=S;f; dDR; @K/. We summarize
and reformulate well-known facts in terms of degK, @K and dDR as follows.
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Lemma 13 The morphism � (11) satisfies the following properties.

1. The morphism � induces an exact sequence:

K�;1W=S;f

@K�! K�;0W=S;f

��! ��U=S �! 0: (16)

2. The morphism � commutes with De Rham differentials:

K�;0W=S;f

��! ��U=S
dDR # # dU=S
K�C1;0W=S;f

��! ��C1U=S

(17)

3. If there is a morphism w W .j0; f0/! .j; f/ between two based relative charts, then
the morphism � gives natural transformation between the functors w˘ and u�.

w�K�;0W=S;f

��! u���U=S
w˘ # # u�

K�;0W0=S;f0
� 0

�! ��U0=S

(18)

Proof We have only to check the following facts.

1) The complex .K�;0W=S;f; dDR/ coincides with the De Rham complex .��W=S; dW=S/.
2) The image @K.K�;1W=S;f/ in K�;0W=S;f of the degK D 1 part of the algebra is equal

to the ideal generated by f1; � � � ; fl and df1; � � � ; dfl in .��W=S; dW=S/ so that as
OU-module, they are isomorphic.

3) The relative De Rham differential dU=S on U coincides with the one induced
from the relative De Rham differential dW=S on W.

4) The morphism w˘ on the degK D 0 part of Koszul-De Rham algebra coincides

with the pull-back morphism w� of differential forms. ut
The first and second properties of Lemma 13 means that the morphism � induces

a quasi equivalence of the Koszul-De Rham double complex with the De Rham
complex, and the third property 3. means the naturality of � , which shall be used,
in the next section, when we compare the LCech-triple complex with coefficients in
K�;?W=S;f with the LCech-double complex with coefficients in ��U=S.

(C) Boundedness of the Koszul-De Rham algebra.

We discuss a certain boundedness of the Koszul-De Rham complexes, which is
crucially used in the study of triple complex in the next Sect. 5.
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Since there are no relations mixing � and �, by definition, the bi-degree . p; s/
term of the Koszul-De Rham algebra has the following direct sum decomposition.

Kp;s
W=S;f D

minfp;sg
åD0

˚
„ is a monomial in
�i’s of deg.„/Ds�a:

˚
E is a monomial in
�i’s of deg.E/Da:

�
p�a
W=S „ E : (19)

Lemma 14 The set f. p; s/ 2 Z
2 j Kp;s

W=S;f 6D 0g is contained in the strip

f. p; s/ 2 Z
2 j �l � p � s � dimC Wg (20)

Proof Suppose that there exists a nontrivial element Kp;s
W=S;f 3 !„E 6D 0. Then,

p� s D deg.!/� deg.„/ (recall the definition of bi-degrees), where 0 � deg.!/ �
dimC W and 0 � deg.„/ � l. This gives the bound in the formula. ut
Remark 15 Lemma implies that the total Koszul-De Rham complex KQ�W=S;f is
bounded. However each term ˚

p�sDQ�
Kp;s

W=S;f of the total complex is an infinite sum,

since �i’s are even variables and the multiplication of any high power of them is
non-vanishing and increases simultaneously the degrees p and s. Nevertheless, such
simple repetition of same terms (in stable area) seems harmless as we shall see, in
the next Step 4, that by taking a lifting of LCech cohomology groups with coefficients
in Koszul-De Rham algebras, they can be truncated in (40).

(D) @K-cohomology group of Koszul-De Rham algebra.

For each fixed p 2 Z�0, we study the cohomology of the bounded complex:

0! Kp;pCl
W=S;f

@K�! � � � @K�! Kp;3
W=S;f

@K�! Kp;2
W=S;f

@K�! Kp;1
W=S;f

@K�! Kp;0
W=S;f ! 0: (21)

Let us first fix a notation: for p; s 2 Z, set

Hp;s
W=S;f WD Ker

�
@K W Kp;s

W=S;f ! Kp;s�1
W=S;f

� ı
@K
�
Kp;sC1

W=S;f

�
; (22)

and call it Koszul-cohomology, or @K-cohomology.
We first recall some functorial properties of them.

Lemma 16

i) The De Rham operator dDR on the Koszul-De Rham algebra induces

dDR W Hp;s
W=S;f �! HpC1;s

W=S;f

such that d2DR D 0, which we shall call the De Rham operator on @K-
cohomology.
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ii) Let w D .w; h/ W .j0; f0/ ! .j; f/ be a morphism between based relative charts,
and set u WD wj0U W U0 ! U. Then, the morphism w˘ (15) induces a morphism

u˘ W Hp;s
W=S;f �! Hp;s

W0=S0 ;f0

which commutes with the De Rham operators on @K-cohomologies, and has the
functorial property: .u1 ı u2/˘ D u2̆ ı u1̆ .

Proof All these facts are immediate consequences of the fact that K�;?W=S;f is a double
complex with respect to @K and dDR shown in Sect. 4, and the fact that w˘ is a bi-
dg-algebra homomorphism from K�;?W=S;f to K�;?W0=S;f0 (Lemma 12). ut

Note that the @K-cohomology groups are OW -coherent modules, since the
modules Kp;s

W=S;f are OW -coherent and the @K are OW -homomorphisms (19). We
analyze the @K-cohomologies in that context. The first basic fact is that they are
defined on U.

Lemma 17 The @K-cohomologyHp;s
W=S;f (p; s 2 Z) is an OU-coherent module.

Proof Recall that the defining ideal of U is given by IU D P
i OWfi. Therefore, to

be an OU-module, we have only to show that fiHp;s
W=S;f D 0. Let ! 2 Kp;s

W=S;f be a
representative of an element Œ!� 2 Hp;s

W=S;f such that @K! D 0. Then we calculate
that @K.�i!/ D @K.�i/! C �i@K! D fi!. That is, the class Œfi!� 2 Hp;s

W=S;f is equal
to zero. ut
We know already by (16) that the zero-th @K-cohomology is naturally given by

Hp;0
W=S;f ' �

p
U=S (23)

which is compatible with the De Rham operator action.
In order to analyze the support of Hp;s

W=S;f more carefully, recall the direct sum
expression of the Koszul-De Rham algebra (19). We observe that the Koszul
boundary operator @K splits into a sum @ C Q@, where each @ and Q@ is defined as
��W=S-linear endomorphisms such that

@�i D fi ; @�i D 0 ; @1 D 0 and Q@�i D dfi ; Q@�i D 0 ; Q@1 D 0 :

We see immediately the relations @; Q@ W Kp;s
W=S;f ! Kp;s�1

W=S;f for all p; s 2 Z and

@2 D Q@2 D @Q@C Q@@ D 0. That is, for each fixed p 2 Z, the subcomplex .Kp;?
W=S;f; @K/

can be regarded as the total complex of a double complex .Kp;?
W=S;f; @;

Q@/.
More precisely, let us denote by �a

W=S�
b�c the space spanned by those elements

of the form !„E with ! 2 �a
W=S, and „ and E are monomials of �j’s and �j’s of

degree deg.„/ D b and deg.E/ D c, respectively. Then, we have @ W �a
W=S�

b�c !
�a

W=S�
b�1�c and Q@ W �a

W=S�
b�c ! �aC1

W=S�
b�c�1. So, by putting Kp;fb;cg

W=S;f WD �p�c
W=S�

b�c

for p; b; c 2 Z, we get double complex .Kp;f?;Q?g
W=S;f ; @;

Q@/ (where Kp;fb;cg
W=S;f 6D 0 only when
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0 � b � l and 0 � c � p), and we have the identification of the total complex with
the original Koszul complex:

.˚bCcD?Kp;fb;cg
W=S;f ; @C Q@/ D .Kp;?

W=S;f; @K/ (24)

for each fixed p 2 Z. Explicitly, the double complex is given in the following table.

Table 1 Double complex .Kp;f?;Q?g

W=S;f ; @;
Q@/

�
p
W=S

Q@ �
p�1
W=S�

1
Q@ � � � Q@ �1

W=S�
p�1 Q@ OW�

p  0

" @ " @ " @ " @
�

p
W=S�

1
Q@ �

p�1
W=S�

1�1
Q@ � � � Q@ �1

W=S�
1�p�1

Q@ OW�
1�p 0

" @ " @ " @ " @
� � � � � � � � � � � � � � �
" @ " @ " @ " @

�
p
W=S�

l�1 Q@ �
p�1
W=S�

l�1�1
Q@ � � � Q@ �1

W=S�
l�1�p�1

Q@ OW�
l�1�p 0

" @ " @ " @ " @
�

p
W=S�

l
Q@ �

p�1
W=S�

l�1
Q@ � � � Q@ �1

W=S�
l�p�1

Q@ OW�
l�p 0

" " " "
0 0 0 0

Definition 18 A based relative chart .j; f/ is called a complete intersection if its
underlying relative chart (10) satisfies the following (1)–(3).

1) The varieties U, W, and S are smooth.
2) The map ˆW W W ! S is a submersion, i.e. there are no critical points.
3) The U is a complete intersection subvariety of W and f1; � � � ; fl is a minimal

system of equations for U, i.e. f1; � � � ; fl form a regular sequence on W.

From now on through the end of the present paper, we study only based relative
charts which is complete intersection. For such relative chart, we say that the
morphism ˆU W U ! S is critical at a point in U if ˆU is not submersive at the
point. That is, the variety of critical set is given by

CˆU WD fx 2 U j the rank of the Jacobian of ˆU at x is less than dimC Sg; (25)

whose defining ideal ICˆU in OU is the one generated by the minors of size dimC S
of the Jacobian matrix ofˆU . We now prove some basic properties of Hp;s

W=S;f which
we shall use in the next section seriously.
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Lemma 19 Suppose that a based relative chart (10) is a complete intersection.
Then, we have

(1) the OU-module Hp;s
W=S;f for s; p 2 Z together with the action of De Rham

operator dDR is independent of the choice of basis f but depends only on the
morphism ˆU,

(2) the support of the moduleHp;s
W=S;f for s > 0 is contained in the critical set CˆU .

Proof Before we start to prove this Lemma, we visit the double complex Kp;fb;cg
W=S;f

given in Table 1 under the complete intersection assumption.
By Definition (1) and (2) of complete intersection, ��W=S is an OW -locally free

modules of finite rank. The ith vertical direction (w.r.t. the coboundary operator @)
of the diagram for i D 0; 1; � � � ; p is the classical Koszul complex on the locally free
module �p�i

W=S for the regular sequence f1; � � � ; fl (recall that �i’s are odd variables),
which is exact except at the zeroth stage, and the cokernel module at the zeroth
stage is an OU locally free module isomorphic to �p�i

W=S�
i=. f1; � � � ; fl/�p�i

W=S�
i D

�p�i^ �1
W=S�

i
�˝OWOU . Between the modules, Q@ induces a cochain complex structure,

denoted again by Q@. In view of (24), this chain complex

�� p�?^ �1
W=S

�
�? ˝OW OU; Q@

�
(**)

is quasi-isomorphic to the Koszul complex .Kp;?
W=s;f; @K/. Therefore, we show that

the cohomology groups of (**) does not depend on the choice of the bases f.
We provide, now, the following elementary but quite useful reduction lemma.

Lemma 20 Let f1 be the first element of the basis f D ff1; � � � ; flg. Suppose df1 is a
part of OW-free basis of the module�1

W=S. Consider the hypersurface W
0 WD ff1 D

0g � W and set f0 D ff2; � � � ; flg. Then, we have
(1) .j0 W U ! W 0; f0/ is also a complete intersection based relative chart,
(2) the inclusion map � W W 0 � W together with the correspondence �1 7! 0

induces a morphism between the based relative charts and a quasi-isomorphism
of chain complexes of OU-modules:

�� p�?^ �1
W=S

�
�? ˝OW OU ; Q@

�! �� p�?^ �1
W0=S

�
�0? ˝OW0

OU; Q@
�
:

(3) The OU-isomorphism: Hp;s
W=S;f ' Hp;s

W0=S;f0 (p; s 2 Z) obtained from this quasi-
isomorphism coincides with .�jU/˘ (recall Lemma 16 ii). In particular, the
isomorphism commutes with the De Rham operator action.

Proof (1) The fact that df1 is a part of OW -free basis �1
W=S implies that W 0 is a

smooth variety and that the restrictionˆ0U WD ˆUjW0 is still submersive.

(2) On the space W, the two chain complexes of sheaves
�� p�?^ �1

W0=S

�
�0? ˝OW0

OU ; Q@
�

and
�� p�?^ �1

W=S=OWdf1
�
�0?˝OW OU; Q@

�
are naturally isomorphic, since
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OU ' OW=. f1; � � � ; fl/ ' OW0=. f2; � � � ; fl/. Therefore, in order to show (2), it
is sufficient to show the following general linear algebraic facts (cf. [4, 17]).

Proposition Let M be a free module of finite rank over a noetherian commutative
unitary ring R. Let ^�M be the Grassmann algebra of M over R. For given elements
!1; � � � ; !k of M, consider the polynomial ring ^�MŒ�� of k variables �1; � � � ; �k
equipped with a Koszul differential Q@ defined by setting Q@.�i/ D !i on it.

(a) Let a be the ideal in R generated by the coefficients of !1 ^ � � � ^ !k. Then, i-th
cohomology group of .^�MŒ��; Q@/ vanishes for i < depth.a/.

(b) If!1 is a part of some R-free basis system of M, then the natural chain morphism
.^�MŒ��; Q@/ ! .^�M=R!1Œ�0�; Q@0/ (where �0 is the indeterminates �2; � � � ; �k
such that Q@0.�i/ D !i (i D 2; � � � ; k) and �1 is mapped to 0) is quasi-isomorphic.

(3) First, we note that there is a slight abuse of notation. Namely, we have needed
to fix the coefficient matrix h of the transformation ��. f1/ D 0 and ��. fi/ D fi
for i D 2; � � � ; l in order that .�; h/˘ W Kp;s

W=S;f ! Kp;s
W0=S;f0 is defined (recall

Lemma 12). Once .�; h/˘ is defined in this manner, then we have .�; h/˘.�1/ D
.�; h/˘.�1/ D 0 and .�; h/˘.�i/ D �i, .�; h/˘.�i/ D �i for i D 2; � � � ; l.
Then, we observe that .�; h/˘ is compatible with the double complex Kp;b;c

W=S;f

decomposition, inducing morphism .�; h/˘;double W Kp;b;c
W=S;f ! Kp;b;c

W0=S;f0 for all
p; b; c 2 Z. Then, the chain map in (2) obviously coincides with the one induced
from .�; h/˘;double.

ut
Let us come back to the proof of Lemma 19.

Proof of Lemma 19 (1) Suppose that there are two complete intersection based
charts .j1 W U1 ! W1; f1/ and .j2 W U2 ! W2; f2/ over the same base set S
and points z1 2 U1 and z2 2 U2 such that there is a local bi-holomorphic map
.U1; z1/ ' .U2; z2/ which commutes with the mapsˆU1 and ˆU2 in neighborhoods
of z1 and z2. Then we show that there is a natural OU1;z1-OU2;z2-isomorphism of the
stalks:

Hp;s
W1=S;f1 ;z1

' Hp;s
W2=S;f2 ;z2

which is equivariant with the De-Rham actions. By shrinking the relative charts ji

(i D 1; 2) suitably, we may assume U1 ' U2, and, furthermore, that Wi is a Stein
domain of Ui � C

li such that i) the embedding ji is realized by the isomorphism
Ui ' Ui � 0 � Wi � Ui � C

li and ii) the composition of the embedding of Wi

in Ui � C
li with the projection to the j-th component of C

li is equal to the j-th
component, say f ij , of fi (i D 1; 2) (however, the compositions of the embedding
Wi ! Ui �C

li with the projection to Ui and with ˆUi may not necessarily coincide
with the morphism ˆWi W Wi ! S).

The proof is achieved by introducing an auxiliarily third based relative chart
.j;W/. Namely, set U WD U1 ' U2 and let z 2 U be the point corresponding to
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zi 2 Ui. Then, W WD W1 �U W2 may naturally be considered as a Stein domain
in U � C

l1Cl2 such that Wi D .U � C
li/ \ W (i D 1; 2). Since W is Stein and

the maps ˆW1 W W1 ! S and ˆW2 W W2 ! S coincide with ˆU on the intersection
W1\W2 D U, we can find a holomorphic mapˆW W W ! S (up to some ambiguity)
which coincides with ˆWi on each Wi (e.g. p�W1

ˆW1 C p�W2
ˆW2 � p�UˆU). We shall

denote again by f 1j (resp. f 2j ) the j-th (resp. l1C j-th) component of the coordinate of
C

l1Cl2 .Then, f WD f1 [ f2 forms a basis of the defining ideal IU of U ' U � 0 in W.
Thus, we obtain a complete intersection based relative chart .j W U ! W; f/.

Let us show the existence of natural OU;z-isomorphisms:

Hp;s
Wi=S;fi ;zi

' Hp;s
W=S;f;z (***)

commuting with De-Rham action for i D 1; 2. We show only the i D 1 case
(the other case follows similarly). For the end, we explicitly analyze the chain
complex (**) (see Proof of Lemma 19 in p. 240) in a neighborhood of each point
z 2 U. Let z D .z0; � � � ; zn/ be a local coordinate system of U at z so that .z; f/
form a coordinate system of W at z. Let t D .t1; � � � ; tdim S/ be a local coordinate
system of S at the image of z, so that the morphism ˆW W W ! S is expressed by
the coordinates as t D ˆW.z; f1; f2/ so thatˆW1 D ˆW.z; f1; 0/,ˆW2 D ˆW.z; 0; f2/
and ˆU D ˆW.z; 0/.

The fact that the restriction ˆW jW1 D ˆW1 is submersive over S implies that
already a dimC S-minor of the part of Jacobi matrix ofˆW.z; f1; f2/ corresponding to
the derivations by the coordinates z j (j D 0; � � � ; n) and f 11 ; � � � ; f 1l1 is invertible (in a

neighborhood of z). Then, in the quotient module �1
W=S D �1

W=
PdimC S

iD1 OWdˆW;i,

the differentials df 21 ; � � � ; df 2l2 of the remaining coordinates f 21 ; � � � ; f 2l2 form part of
an OW -free basis in a neighborhood of z. Then, again shrinking the charts Wi (i D
1; 2/ and W suitably, we can apply Lemma 20 repeatedly, and we obtain the OU-
isomorphism (***).

To show the independence of De Rham operator from a choice of basis f, we
cannot use the complex (**) (there does not seem to exist a morphism dDR W
(**)p ! (**)pC1 which induces the De Rham operator:Hp;s

W=S;f ! HpC1;s
W=S;f . However,

Lemma 20 (3) together with the naturality of �˘ [Lemma 16 ii)] implies the
compatibility of the De Rham operation with the isomorphism (***), and, hence,
the independence from a choice of basis f of the De Rham operator on H�;sW=S;f.

Proof of Lemma 19 (2) It is sufficient to show that the stalk of Hp;s
W=S;f at a point, say

z, of U, where ˆU is submersive, vanishes for s > 0. The assumption on the point
z means that the Jacobi matrix of ˆU with respect to the derivations by z0; � � � ; zn
has a non-vanishing minor at the point z 2 U. So, in a neighborhood of z in W,
the corresponding minor of the Jacobi matrix of ˆW does not vanish. This means
that df1; � � � ; dfl form a part of OW -free basis of �1

W=S. Then applying Lemma 20
inductively for a small neighborhood, we reduce to the relative chart of the form
j W U ! U, and we conclude that Hp;s

W=S;f;z is quasi-isomorphic to a single module

�
p
U=S;z at z. That is, Hp;0

W=S;f;z ' �p
U=S;z and Hp;s

W=S;f;z D 0 for s > 0.
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This completes the proof of Lemma 19. ut
Notation As a consequence of Lemma 19, under the assumption that the relative
chart .j; f/ is a complete intersection, the module Hp;s

W=S;f, as an OU-module on U
with De Rham differential operator, depends only on the morphism ˆU W U ! S
but not on f. Therefore, we shall denote the module also by Hp;s

ˆU
(see Lemma 22).

Remark 21

1. The support of the modules Hp;s
W=S;f for s > 0 is contained in the critical set CˆU

(i.e., locally, we have Im
CˆU

Hp;s
W=S;f D 0 for some positive integer m), does not

imply that the module may not be an OCˆU
-module.

2. In view of [17], Hp;s
W=S;f D 0 for s < depth.IˆU /. But we do not use this fact in

the present paper.

(E) The complex .H�;sˆ ;dDR/ on Z.

As an important consequence of (A)–(D), we introduce complexes .H�;sˆ ; dDR/ of
OZ-coherent sheaves for s 2 Z.

Lemma 22 Let ˆ W Z ! S be a flat holomorphic map between complex manifolds
and let Cˆ be its critical set loci as given in the Main Theorem. For s 2 Z, there
exists a chain complex .H�;sˆ ; dDR/ of OZ-coherent modules such that, for any based
relative chart .j W U ! W; f/, there is a natural isomorphism:

.H�;sˆ ; dDR/jU ' .H�;sW=S;f; dDR/:

In particular, this implies

i) For s < 0,H�;sˆ D 0.
ii) For s D 0, there is a natural isomorphism:

.H�;0ˆ ; dDR/ ' .��Z=S; dDR/:

iii) For s > 0 and p 2 Z, we have

Supp.Hp;s
ˆ / � Cˆ:

Proof Let .j W U ! W; f/ be any based relative chart, which is a complete
intersection. Applying the construction of (22), on the open subset U of Z, we obtain
a sequence for s 2 Z of complexes .H�;sW=S;f; dDR/ of OZ-coherent modules equipped
with the De Rham operator action. Let .j0 W U0 ! W 0; f0/ be another complete
intersection based relative chart, which introduces the complexes .H�;sW0=S;f0 ; dDR/ on
the open set U0. Then Lemma 19 together with (***) says that, on the intersection
U \ U0, they patch each other naturally so that we obtain the complexes of sheaves
on U[U0. Obviously, Z is covered by charts which extends to complete intersection
relative charts, there exists a global sheaf Hp;s

ˆ on Z together with the action of a De
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Rham operator as stated. The statement i) follows from the definition (22) and the
fact Kp;s

W=S;f D 0 for s < 0, ii) follows from (23), and iii) follows from Lemma 19
(2). ut
Remark 23 As we see, the chain complexes .H�;sˆ ; dDR/ themselves are independent
of the choices of relative charts. However, for its construction, we have used the
relative charts. Can they be constructed without using the relative charts (or, without
using Koszul-De Rham algebras)? (See the following Remark 24).

Remark 24 It is also possible to consider a quotient algebra KW=S of the Koszul-De
Rham algebra KW=S;f as follows. Namely, suppose the defining ideal IU of U in W
has the following finite presentation.

˚ Ol1
W �! ˚ Ol0

W �! IU �! 0: (26)

Explicitly, let f1; � � � ; fl0 2 �.W;OW/ be a system generators of IU (i.e., the image of
the basis of˚Ol0

W ) and let .g1j ; � � � ; gl0j / 2 �.W;Ol0
W/ (j D 1; � � � ; l1) be a generating

system of relations g1j f1 C � � � C gl0j fl0 D 0 (i.e., the image of the basis of ˚ Ol1
W ).

Then, we define

KW=S WD ��W=Sh�1; � � � ; �l0iŒ�1; � � � ; �l0 �=I (27)

where I is the both sided ideal generated by the relations (13) and

g1j �1 C � � � C gl0j �l0 .j D 1; � � � ; l1/
g1j �1 C � � � C gl0j �l0 C dg1j �1 C � � � C dgl0j �l0 .j D 1; � � � ; l1/:

(28)

Then, as the notation indicates, the algebra (27) does not depend on a choice of
the presentation (26) of the ideal IU. Furthermore, it is not hard to show that all the
three structures Koszul differential @K , De Rham differential dDR and the bi-degree
structure Kp;s

W=S;f are preserved on the quotient algebra Kp;s
W=S, and that a parallel

statement of the functoriality Lemmas 12 and 13 hold, too. Then, for each fixed
p 2 Z, we may also consider the cohomology of the @K. The following question has
quite likely a positive answer.

Question Are the cohomology groups of .Kp;?
W=S; @K/ naturally isomorphic to those

of .Kp;?
W=S; @K/ (i.e., to the groups .H�;sˆ ; dDR/ (s 2 Zge0))?

Remark 25 In the present paper, we use the complexes H�;sˆ (s 2 Z�0) only as a
supporting actor for the proof of the coherence of the relative De Rham cohomology
group of ˆ (see Case 3 of Sect. 5 (D)). But, for their definition, the condition that
ˆjCˆ is a proper map is unnecessary. Therefore, we may expect a wider use of the
complexes in future.
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5 Step 4: Lifting of LCech Cohomology Groups

In this section, we give a final step of a proof of the Main Theorem: the coherence
of the direct image Rˆ�.��Z=S; dZ=S/ in a neighborhood of any point t 2 S for a flat
map ˆ W Z ! S with a suitable boundary conditions.

We recall that at Fact 10 of Step 2, we showed that, for any point t 2 S, there
exists a Stein open neighborhood S� � S of t and a finite system of relative charts
U WD fjk W Uk ! Dk.1/ � S�gk�

kD0 and a real number 0 < r� < 1 such that the
following holds:

1. the intersection relative chart jK for K � f0; � � � ; k�g is complete intersection,
2. for any Stein open subset S0 � S� and r� � 8r � 1, consider the atlas U.r; S0/ WD
fUk.r; S0/ WD j�1k .Dk.r/� S0/gk�

kD0 (8) and the manifold Z.r; S0/ WD [k�

kD0Uk.r; S0/
covered by them. Then the direct image Rˆ.��Z.r;S0/=S0

/ are isomorphic to each
other for r in r� � r � 1.

The plan of the proof is the following.

(A) We express the Hodge to De Rham spectral sequence over any Stein open
subset S0 � S� in terms of LCech cohomology groups with coefficients in ��Z=S
with respect to the atlas U.r; S0/ (8).

(B) We “lift” the LCech complex to the lifted atlas U.r; S0/ (9) of relative charts. To
be exact, in order to lift the coefficient to Koszul-De Rham algebra K�;?W=S;f, we

need to enhance the atlas to a based lifted atlas QU.r; S0/. The existence of such
enhancement shown in Lemma 27 is a quite non-trivial step in the proof.

(C) We compare the LCech complex of ��Z=S with that of K�;?W=S;f by the morphism
� (16) and obtain a short exact sequence where the third term is described again
by a LCech complex with respect to the atlas U.r; S0/ and coefficient in the sheaf
H�;� whose support is contained in the critical set Cˆ.

(D) In the long exact sequence of cohomology groups of the above three LCech
complexes, two terms (namely, the first and the third) are independent of
the radius r. So the cohomology groups of the third, i.e. of K�;?W=S;f, are also
independent of r.

(E) We apply the Forster–Knorr Lemma (see [5] and also Lemma 30 of the present
paper) to the LCech cohomology groups of K�;?W=S;f and see that they give coherent
direct image sheaves on a neighborhood Sm of t 2 S. On the other hand,
the third term (the cohomology of H�;�) is already coherent on Sm since Cˆ
is proper over S. Thus, the remaining term in the long exact sequence of the
cohomologies, that is, the direct images of the relative De Rham complex are
also coherent on Sm.

We start the proof now.
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(A) LCech complex

We consider the LCech chain complex of the relative De Rham complex�p
Z.r;S0/=S0

with respect to a Stein covering U.r; S0/ WD fUk.r; S0/gk�

kD0 (8) of Z.r; S0/ over any
Stein open subset S0 � S�. As usual, the qth cochain module (q 2 Z) is given by

LCq
.U.r; S0/;�p

Z.r;S0/=S0

/ WD ˚
K�f0;


 ;k�g

#KDqC1
�.UK.r; S0/;�p

Z0.r;S0/=S0

/:
(29)

(where the summation index K runs also over the cases when UK.r; S0/ D ;). The
LCech coboundary operator is the alternating sum

Lı WD
X

K�K0

˙.�K0

K /
� W LCq

.U.r; S0/;�p
Z.r;S0/=S0

/! LCqC1
.U.r; S0/;�p

Z.r;S0/=S0

/ (30)

of pull-back morphisms associated with the inclusion map �K
0

K W UK0 ! UK , where
K and K0 � f0; � � � ; k�g are indices satisfying #K D qC1, #K0 D qC2 and K � K0.

(B) Based lifting atlas

Recall the lifting atlas U.r; S0/ WD fjkjUk.r;S0/ W Uk.r; S0/ ! Dk.r/ � S0gk�

kD0 (9)
of the atlas U.r; S0/ (8), where each jk is a pair .'k; ˆ/ of maps such that 'k is a
local isomorphism of a neighborhood B.zk;R.z// of zk 2 Z to a domain in C

N . We
attach one more structure, i.e. base (recall Definition 11), to the atlas U.r; S0/ as in
the following definition.

Definition 26 A based lifting atlas of U.r; S0/ is a triplet

eU.r; S0/ WD .U.r; S0/; fK ;…K0

K /

such that

1) U.r; S0/ D fjk j 0 � k � k�g is the relative atlas already given in (9),
2) fK is a minimal generator system of the ideal IUK .r;S�/ for K � f0; 1; � � � ; k�g.

That is, .jK ; fK/ is a based relative chart in the sense of Definition 11.
3) …K0

K is a based morphism: .jK0 ; fK0/ ! .jK ; fK/ (in the sense of Lemma 12) for
K;K0 � f0; 1; � � � ; k�g with K � K0 such that

…K00

K D …K0

K ı…K00

K0

for any K;K0;K00 � f0; 1; � � � ; k�g with K � K0 � K00.

We remark that any based relative chart in a based lifting atlas is automatically
a complete intersection in the sense of Definition 18. The following existence of
based lifting atlases is one crucial step towards the proof of the Main Theorem.

Lemma 27 For the atlas U.r; S0/, there exists a based liftingeU.r; S0/.
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Proof We construct the based lifting explicitly in the following 1)–3).

1) Recall the notation of the proof of Lemma 8. For any subset K � f0; 1; � � � ; k�g,
we have jK W z0 2 UK 7! ..'zi.z

0//k�

iD0; ˆ.z0// 2
Qk�

iD0Dzi.rzi/ � SK .
2) As was suggested already by 1) and 2) in the proof of Lemma 8 (page 228), we

choose fK as follows.

1. If UK D ;, then we set fK D f 1 g.
2. If UK 6D ;, then fK is the union of two parts fK;I and fK;II where

fK;I D
˚
z j ı '�1k � z j ı '�1k0

�N
jD1;k;k02K & fK;II D

˚
ti �ˆi ı '�1k0

�dimC S

iD1 ;

where k0 Dthe least element of K which is larger than k, and k0 D minfKg.
3) Let K;K0 � f0; 1; � � � ; k�g such that K � K0. We construct a morphism …K0

K D
.�K0

K ; h
K0

K / W .jK0 ; fK0/ ! .jK ; fK/. As a map �K0

K from the relative chart jK0 to
jK , we consider the pair consisting of natural projection: �K0

K W DK0.r/ � S0 !
DK.r/ � S0 and the natural (induced) inclusion: UK0 ! UK .

Let us choose and fix a morphism hK
0

K between two basis fK and fK0 .
In case UK0 D ;, fK0 D f1g and we set h1K D fK .
In case UK0 6D ;, then, according to the two groups of basis of fK and fK0 in

the above (1), we decompose the matrix hK
0

K into 4 blocks

 
hK

0 ;I
K;I ; h

K0 ;II
K;I

hK
0 ;I

K;II ; h
K0 ;II
K;II

!

, and fix the

morphism blockwise in the following steps 1, 2, and 3

1. There is a unique way to express any element of fK;I as a sum of elements of fK0;I ,
then hK

0;I
K;I is its coefficients matrix. Thus we get: fK;I D hK

0;I
K;I fK0;I .

2. We put hK
0;II

K;I D 0.

3. We express fK;II D hK
0;I

K;IIfK0;I C hK
0;II

K;II fK0;II , where hK
0;II

K;II is the identity matrix of

size dimC S. In order to fix the part hK
0;I

K;II , we prepare some functions.

For each i with 1 � i � dimC S, we express, locally in a Stein coordinate
neighborhood, ˆi (the ith component of the map ˆ) as a function ˆi.z/ of N
variables z D .z1; � � � ; zN/. Consider a copy ˆi.z0/ of the function for a coordinate
system z0 D .z01; � � � ; z0N/. Then, on the product domain of the coordinate
neighborhood, we can find functions Fij.z; z0/ (j D 1; � � � ;N) such that

ˆi.z
0/ �ˆi.z/ D

NX

jD1
Fij.z

0; z/.z0j � z j/; (31)

since the product domain is Stein where the ideal defining the diagonal is globally
generated by z0 j � z j (j D 1; � � � ;N). Then, again taking a copy ˆi.z00/ on the triple
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product domain and summing up two copies of above formula, we obtain a formula

NX

jD1
Fij.z

00; z/.z00 j � z j/ D
NX

jD1
Fij.z

0; z/.z0 j � z j/C
NX

jD1
Fij.z

00; z/.z00 j � z0 j/: (32)

We return to the construction of the matrix hK
0;I

K;II . That is, we need to express the
difference: .ti � ˆi ı '�1k0

/ � .ti � ˆi ı '�1k0

0
/ D ˆi ı '�1k0

0
� ˆi ı '�1k0

as a linear

combination of z j ı '�1
k0

0
� z j ı '�1k0

. The formula (31) gives an answer:

ˆi ı '�1k0

0
�ˆi ı '�1k0 D

NX

jD1
Fij.'

�1
k0

0
; '�1k0 /.z

j ı '�1k0

0
� z j ı '�1k0 /;

and we obtain the definition: hK
0;I

K;II D fFij.'
�1
k0

0
; '�1k0

/giD1;


 ;dimC S; jD1;


 ;N .

Finally, we need to show that the above defined matrix satisfies the functoriality
hK

00

K D hK
0

K hK
00

K0

. We can prove this again by decomposing the matrix into 4 blocks,

where the cases of the blocks
�
I
I

�

,

�
II
I

�

and
�
II
II

�

are trivial. The case of block
�

I
II

�

follows from the addition formula (32).

This completes the proof of an existence of based lifting of the atlas U.r; S0/. ut
Remark 28 The above construction does not give a canonical lifting, but depends on
the choices of the decomposition (31) which is based on rather an abstract existence
theorem (cf. [7]). We don’t know the meaning of this freedom to the De Rham
cohomology group we are studying. As we see in sequel, for the proof of coherence,
any choice of the lifting does work. See also Remark 23.

From now on, we consider the base lifted atlas eU.r; S0/ for all r� � r � 1 and
Stein open subset S0 � S�, depending on a choice of functions Fij in (31). Since we,
later on, want to compare them for different r and S0, we first fix the functionsFij and
hence a based lifting .fK ;…K0

K / on the largest atlas U.1; S�/, then we consider the
induced based lifting to any atlas U.r; S0/. We lift the LCech (co)chain complex (29)
to the following triple chain complex. Namely, for p; q; s 2 Z�0, we define the
cochain module

LCq
.eU.r; S0/;Kp;s

ˆ / WD ˚
K�f0;


 ;k�g

#KDqC1
�.DK.r/ � S0;Kp;s

DK .r/�S0=S0 ;fK
/:13 (33)

13In the notation of LHS, we replaced the subscript like DK.r/� S=S indicating where the module
is defined by ˆ, since we may regard Kp;s

ˆ to be a sheaf satisfying the functoriality (Lemma 12)
defined on all relative charts, depending on the choice of a based lifting in Lemma 27.



250 K. Saito

The actions of (co-)boundary operators dDR and @K on the coefficient K�;?ˆ preserve
the chart, so that they induce a double complex structure . LCq

.eU.r; S0/;K�;?ˆ /;

dDR; dK/. We now lift the LCech coboundary operator on (29) to the lifted mod-
ule (33).

For p; q; s 2 Z, we introduce an �.S0;OS/-homomorphism

Lı WD
X

K�K0

˙.…K0

K /
˘ W LCq

.eU.r; S0/;Kp;s
ˆ / �! LC

qC1
.eU.r; S0/;Kp;s

ˆ /; (34)

where .…K0

K /
˘ is the pull-back morphism (15) in Lemma 12 associated with the

morphism …K0

K D .�K0

K ; h
K0

K / given in 3) of the proof of Lemma 27, and the sign
and the running index K and K0 are the same as those for the LCech coboundary
operator (30). We shall call this morphism the lifted LCech coboundary operator.
The lifted LCech coboundary operator satisfies the relations:

Lı2 D 0; LıdDR C dDR Lı D 0; and Lı@K C @K Lı D 0:

Proof To show that Lı2 D 0 is the same calculation as the standard LCech coboundary
case. Other relations follow from the fact that the pull-back homomorphism .�K0

K /
˘

commutes with dDR and @K (Lemma 12). ut
(C) Comparison of the triple LCech-complex of K�;?ˆ with the double LCech-

complex of ��̂

We compare the triple complex (33) with the double complex (29). More
exactly, for our restricted purpose (to calculate the second page of the Hodge to
De Rham spectral sequence), we fix the index p for the chain complex for De
Rham differential operator. That is, we compare only the remaining double complex
of the two coboundary operators . Lı; @K/ with the LCech (co)chain complex of the
coboundary operator Lı. The comparison is achieved by the morphism � (recall
Sect. 4 (B)).

� � � @K�! LC q
.eU.r; S0/;Kp;1

ˆ /
@K�! LC q

.eU.r; S0/;Kp;0
ˆ /

��! LC q
.U ; �p

Z.r;S0/=S0

/! 0:

The commutativity of � with the lifted and un-lifted LCech coboundary operator is,
termwise, equivalent to the commutativity �UK

UK0

ı � D � 0 ı .�K0

K /
˘ (18).

Let us consider the total complex of (33) with respect to Lı and @K by putting
Q� WD � � ? and Q@ WD Lı C @K :

.Tot Q� LC:.eU.r; S0/;Kp;:
ˆ /;
Q@/ (35)
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where

Tot Q� LC:.eU.r; S0/;Kp;:
ˆ / WD ˚

��?DQ�
LC�.eU.r; S0/;Kp;?

ˆ /: (36)

In view of (16), for each fixed p 2 Z, the chain morphism

.Tot Q� LC:.eU.r; S0/;Kp;:
ˆ /;
Q@/ ��! . LC�.U ; �p

Z.r;S0/=S0

/; Lı/ (37)

is an epimorphism in the category of cochain complexes. So, using the kernel of it,
we obtain a short exact sequence:

0! .Tot Q� LC:.eU.r; S0/;Kp;:
ˆ;ker.�//;

Q@/ ��! .Tot Q� LC:.eU.r; S0/;Kp;:
ˆ /;
Q@/

��! . LC�.U ; �p
Z.r;S0/=S0

/; Lı/ ! 0;
(38)

where the kernel (the first term) is again the total complex of a lifted LCech chain
complex of the atlas eU.r; S0/ with coefficients in a complex Kp;s

ˆ;ker.�/ (for fixed p),

which is the sub-complex of Kp;s
ˆ obtainded by replacing the first term Kp;0

ˆ by the
term @K.Kp;1

ˆ / D ker.� W Kp;0
ˆ ! �

p
ˆ/, and � is the map induced from the natural

inclusion Kp;s
ˆ;ker.�/ � Kp;s

ˆ .
Due to the commutativity of � with the De Rham differential operator (17), the

chain maps (37) commute with De Rham operator action between the modules for
the indices p and pC 1. That is, by taking the direct sum over the index p 2 Z, we
may regard � as an epimorphism from the double complex of .Q@; dDR/ to the double
complex of . Lı; dZ=S/. Then, similarly, by taking the direct sum of the sequences (38)
over the index p 2 Z, we obtain a short exact sequence of double complexes.

Before calculating cohomology long exact sequence of the short exact sequence,
in the following Lemma we show some finiteness and boundedness of the total
complex (35) (considered as a double complex of the indices Q� and p), which makes
big contrast with the case of Lemma 19. Namely, in case of the total complex of
@K and dDR, we did not get such finiteness and boundedness (see Remark 15). This
finiteness, which holds for the total complex of @K and Lı, is one of the most subtle
but the key point where Koszul-De Rham algebra works mysteriously.

Lemma 29 The complex (35) is finite and bounded in the following two senses.

i) The RHS of (36) for fixed p and Q� is a finite direct sum of the form

k��1˚
qD�1

LCq
.eU.r; S0/;Kp;q�Q�

ˆ / D ˚
K�f0;


 ;k�g

�.DK.r/ � S0;Kp;#K�Q��1
DK .r/�S0=S0 ;fK

/:

ii) The set f. p; Q�/ 2 Z
2 j Tot Q� LC:.eU.r; S0/;Kp;:

ˆ / 6D 0g is contained in a strip

� .k� C 1/.N � 1/C n � 1 � Q� C p � .k� C 1/.N C 1/� 1: (39)
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Proof

i) The summation index K � f0; � � � ; k�g (33) runs over a finite set so that � D
#K � 1 is bounded. Then the condition that � � ? D Q� is fixed means that the
range of ? is bounded.

ii) Recall Tot Q� LC:.eU.r; S0/;Kp;:
ˆ / WD ˚

��?DQ�
˚

#KD�C1
�.DK.r/ � S0;Kp;?

DK .r/�S0=S0

/. If

there is a non-vanishing term in RHS for some �, ?, and K, then due to (20),
one has �lK � p � ? � dimC DK.r/. Then, adding � D ? C Q� in both hand
sides, we have �lK C � � Q� C p � dimC DK.r/ C �. Since � D #K � 1
and lK D #K � dimC S C .#K � 1/n, dimC DK.r/ D #K � N (recall Sect. 3) and
dimC Z D N D m D nC dimC S, we get

�#K.N � 1/C n � 1 � Q� C p � #K.N C 1/� 1

Since the index K runs over all subsets of f0; 1; : : : ; k�g, we obtain the formula.
ut

According to i) and ii) of Lemma 29, we have two important consequences: (1)
the cohomology groups is described by a finite chain complex where each chain
module is a finite direct sum of the spaces of holomorphic functions on some relative
charts (this description is necessary to apply the Forster–Knorr Lemma), and (2) for
each fixed p, the complex is bounded. This observation leads us to introduce the
following truncation of the double complexes.

TRp;Q� WD
(
Tot Q� LC:.eU.r; S0/;Kp;:

ˆ / if 0 � p � dimC Z

0 otherwise

TRp;Q�
ker.�/ WD

(
Tot Q� LC:.eU.r; S0/;Kp;:

ˆ;ker.�// if 0 � p � dimC Z

0 otherwise

(40)

For the truncated double complexes, we have

i) The complexes TRp;Q� and TRp;Q�
ker.�/ are bounded for the both indices p and Q�, and

also from above and below.
ii) The following is an exact sequence of bounded double complexes:

0! .TRp;Q�
ker.�/; dDR;

Q@/ ��! .TRp;Q�; dDR; Q@/�

�! . LC�.U ; �p
Z.r;S0/=S0

/; dZ=W ; Lı/ ! 0; (41)

which is the goal of our construction. From now on, we start to analyze the
sequence.

(D) Long exact sequence of images on S.

We consider now the long exact sequence of the cohomology group associated
with the short exact sequence obtained from (41) by taking the total complex
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for each of the three double complexes. Recalling the construction of the atlases
U.r; S0/ (8) and U.r; S0/ (9), we note that each term of the sequence depends on the
choice of a set S0 and a real number r with r� � r � 1. By fixing r and running S0
over all Stein open subset of S�, we obtain a sheaf on S� (depending on r).

In the following, we analyze the module (sheaf or its sections over S0) of the
cohomology groups with the three coefficients cases separately.

Case 1. . LC�.U ; �p
Z.r;S0/=S0

/; dZ=W ; Lı/.
The module is exactly the module of relative De Rham hyper-cohomology group

Rˆ�.��ZS�
=S�

;dZS�
=S� / (7) of the morphism ˆ W Z.r/ ! S�. It is shown that the

module is independent of the choice of r with r� � r � 1.

Case 2. .TRp;Q�; dDR; Q@/.
Due to the finiteness Lemma 29 i) and the boundedness of the double complex,

the cohomology group is expressed as a cohomology group of a finite complex,
where each chain module is a finite direct sum of a module of the form �.D.r/ �
S0;OD.r/�S0/ for some polydisc D.r/ of radius r.

Proof Recall the direct sum decomposition (19). Noting that W=S is given by
DK.r/ � S0=S0 and we obtain �p

W=S D ˚i1<


<ipODK .r/�S0dzi1 ^ � � � ^ dzip for a
coordinate system z of the polydisc DK.r/. ut
Case 3. .TRp;Q�

ker.�/; dDR;
Q@/.

We approach the cohomology group of this case by the use of the spectral
sequence of the double complex w.r.t. dDR and Q@. Let us first calculate the
cohomology group of the double complex with respect to the coboundary operator Q@
(in order to avoid a confusion, let us call the spectral sequence EI). Thus, each entry
of the first page of the spectral sequence EI is again the total cohomology group of
the total complex .Tot Q� LC:.eU.r; S0/;K�;:ˆ;ker.�//;

Q@ D Lı C @K/. Again we approach the

group from the spectral sequence of the double complex w.r.t. Lı and @K .
Let us first consider the spectral sequence obtained by considering the cohomol-

ogy group with respect to the coboundary operator @K first, for the reason below (let
us call this spectral sequence EII).

Recall Lemma 22 that it was shown that there exists a sequence of complexes
H�;sˆ (s 2 Z) of coherent OZ–modules such that (1) the restriction of the s-th
complex to UW induces a natural isomorphism to the s-th cohomology group of the
Koszul-De Rham double complex .K�;?W=S; dDR; @K/ with respect to the coboundary
operator @K , and (2) the support of the module for s > 0 is contained in the critical
set Cˆ. Thus, the .q; s/-entries of EII is given by direct images LCq

.eU.r; S0/;H�;sˆ / of
coherent sheaves H�;sˆ (the fact that the pair dDR and Lı forms a double complex
structure on ˚p;q LCq

.U.r; S0/;Hp;s
ˆ / is verified by a routine). In view of the fact

that Cˆ � Z0 is proper over the base space S, this, in particular, implies that (1)
the entry is independent of r, and (2) the sheaf obtained by running S0 over all
Stein open subset of S� is an OS� -coherent module. Then, these two properties
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should be inherited by the limit of the spectral sequence EII and the associated total
cohomology group.

Coming back to the spectral sequence EI , we see that all the entries of the first
page of EI have the above properties (1) and (2). Thus the cohomology group of
the total complex of the double complex .TRp;Q�

ker.�/; dDR;
Q@/ should have the property.

Then in view of the long exact sequence, we started, two terms Case 1 and 3 of them
(as a triangle) are independent of r. Thus, we conclude that the third term Case 2
satisfies:

The total complex of the double complex .TRp;Q�; dDR; Q@/ is quasi-isomorphic to
each other for r and r0 with r� � r; r0 � 1.

(E) Application of the Forster–Knorr Lemma.

We are now able to apply the following key Lemma due to Forster and Knorr
[5, 13] (the formulation here of the result is taken from their unpublished note which
is slightly modified from the published one, however can be deduced).

Lemma 30 (Forster–Knorr) Let m be a given integer, S a smooth complex
manifold, 0 a point in S. Suppose that .C�.r/; d/ is a complex of OS-modules
bounded from the left such that

i) for any Stein open subset S0 � S and q 2 Z, we have an isomorphism

Cq.r/.S0/ '
Y

finite

�.D.r/ � S0;OD.r/�S0/

together with the Fréchet topology. Here, D.r/ is a polycylinder of radius r 2
R>0 whose dimension varies depending on each factor.

ii) d W Cq.r/ ! CqC1.r/ is an OS-homomorphism, which is continuous with
respect to the Fréchet topology.

iii) There exist r1 and r2 such that, for any r; r1 � r � r0 � r2 > 0, the restriction
C�.r/! C�.r0/ is a quasi-isomorphism.

Then, there exists a small neighborhood Sm of 0 in S (depending on m 2 Z) such
that, for q � m, Hq.C�.r//

ˇ
ˇ
Sm

is anOSm -coherent module.

We apply Lemma 30 to the total complex of complex .TRp;Q�; dDR; Q@/.
Let us check that the complex satisfies the assumptions in the Forster–Knorr

Lemma by putting S D S� (and run S0 over all Stein open subset of S� in order to
make OS� -module structure), 0 to be t 2 S� and r1 D 1; r2 D r�.

i) The condition i) is satisfied due to the description in (D), Case .TRp;Q�; dDR; Q@/.
ii) The condition ii) is verified as follows. The coboundary operator here is a

mixture of @K ; Lı, and dDR, all of them are obviously OS-homomorphisms. That
they are continuous w.r.t. the Fréchet topology can be seen as follows.

It is well known that the holomorphic function ring (Stein algebra) �.DK.r/ �
S0;ODK .1/�S�/ carries naturally a Fréchet topology [3, 7, p. 266] with respect

to the compact open convergence. Then, the operators Lı and @K are ODK .1/�S� -



Coherence of Direct Images of the De Rham Complex 255

homomorphisms and induce continuous morphisms on the modules. The operator
dDR is no longer an ODK .1/�S� -homomorphism but is only an OS� -homomorphism.
Nevertheless, it is also well known that differentiation operators on a Stein algebra
are also continuous w.r.t. the Fréchet topology.

iii) The quasi-isomorphisms between the complexes for r and r0 with r� � r; r0 � 1
were shown in the last step of (D).

Finally, choosing m D �1, we obtain the coherence of the direct image sheaf of
the total complex of .TRp;Q�; dDR; Q@/ in a neighborhood of t 2 S�. Then, we return
to the long exact sequence studied in (D). Two terms Case 2 and 3 of them (as a
triangle) are OS-coherent near at t 2 S. Therefore, the third term Case 3, the direct
image of the double complex, that is, the hyper-cohomology group Rˆ�.��Z=S; dZ=S/
is also OS-coherent in a neighborhood of t 2 S.

This completes the proof of the Main Theorem given in Sect. 1. ut
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Remarks on the Topology of Real and Complex
Analytic Map-Germs

José Seade

Dedicated to Gert-Martin Greuel in his 70th Birthday
Anniversary

Abstract We study the topology of analytic map-germs Xn f! Kp, n > p, near
an isolated singularity, where K is either R or C and X is (accordingly) real or
complex analytic. We do it in a way, now classical, that springs from work by Gert-
Martin Greuel and Lê Dũng Tráng and somehow goes back to Lefschetz, namely
by comparing the topology of the fibres of f with that of the functions one gets by
dropping one of the components of the map-germ f .

Keywords Index • Lê-Greuel formula • Milnor fibre and number • Stratified
vector fields

1 Introduction

A basic problem is studying the behaviour and topology of the local non-critical
levels (in some appropriate sense) of a real analytic map-germ Xn ! R

p, n > p,
near a critical point.

When we focus on complex analytic map-germs .Xn; 0/
f! .C; 0/ with singular

point at 0 with respect to some Whitney stratification, we have the Milnor-Lê
fibration theorem: Assume the germ X is embedded in some affine space C

m

equipped with the usual Hermitian metric. If "� ı > 0 is sufficiently small and we
set N."; ı/ D f�1.@Dı/\ B", then:

f W N."; ı/ �! @Dı Š S
1;
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is a locally trivial fibration. The variety N."; ı/ is usually called a Milnor tube for
f and a typical fibre f�1.t/ \ B" is known as the Milnor fibre Ff . Of course it is
important to know more about the topology of the fibre Ff ; this is a classical subject
with a vast literature.

In particular (see [21, 26]), if .CmCp; 0/
f! .Cp; 0/ is an isolated complete

intersection singularity germ (an ICIS for short), one has a local fibration à la
Milnor, and a well-defined Milnor number: The rank of the middle homology of the
Milnor fibre. Since in the hypersurface case, where p D 1, this important invariant
coincides with the intersection number

�. f / D dimC

OmC1;0
�
@f
@z1
; � � � ; @f

@zmC1

� ;

it was natural to search for an algebraic expression for it in the case of ICIS: that is
the celebrated Lê-Greuel formula for the Milnor number, proved independently by
Lê [24] and Greuel [20]. This expresses the Milnor number of an ICIS determined by
certain functions in terms of the Milnor number of the ICIS we get by dropping one
of the defining functions, together with a certain contribution from that coordinate
function (see Remark 6.1 below).

The Lê-Greuel formula was extended in [5] to holomorphic map-germs

.XnCk; 0/
f! .Ck; 0/ with X singular (cf. [12]), and in [9] to the real analytic

setting with X smooth (cf. [11]). The articles [29, 30] are also along the same spirit
we consider here. Both papers [5] and [9] are somehow reminiscents of [2, 3] and
make a heavy use of the theory of indices of vector fields on singular varieties.
A key point in [5] was extending the notion of the GSV-index (see [4, 18]) to
the case of stratified vector fields on hypersurfaces in varieties with non-isolated
singularities. In this article we describe the main ideas in [9] and [5] in a parallel
way, thus highlighting the differences between the real and the complex case.

The paper is arranged as follows. Section 2 discusses the existence of Milnor
type fibrations for real and complex singularities. In Sect. 3 we look at the radial
and GSV indices of vector fields on singular varieties. These are the two types
of indices that are most relevant for the sequel. Section 4 explains the main ideas
in the generalization in [5] of the Lê-Greuel formula to holomorphic map-germs

.XnCk; 0/
f! .Ck; 0/ with X singular. The analogous considerations are done in

Sect. 5 for the real case, following [9]. In Sect. 6 we give some concluding remarks
and possible lines of further research.

2 Milnor-Lê Fibrations

We look first at the complex case. Throughout this work, singular spaces are
embedded in an affine space and one considers the balls in that affine space.
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2.1 Milnor-Lê Fibrations for Complex Singularities

The basic references are [5, 6, 21, 25, 28]. Let X be a complex analytic singular
variety of dimension nC k in an open set containing the origin 0 in some complex
space C

m. Let f W .X; 0/ ! .Ck; 0/ be holomorphic and assume it is generically a
submersion with respect to some complex analytic Whitney stratification fS˛g of X.
We assume further that the zero set V WD V. f / has dimension more than 0 and f has
the Thom af -property with respect to the above stratification.

We recall (see, for instance, [19]) that a point x 2 X is a critical point of f , in
the stratified sense, if the restriction of f to the corresponding stratum has a critical
point at x. These are the points such that Jack. f /.x/ D 0, where Jack. f / denotes the
ideal generated by the determinants of all the k minors of the Jacobian matrix of the
restriction of f to the corresponding stratum.

We denote by Crit. f / the critical locus of f , which is the union of all its critical
points. The points in its complement are the regular points of f , and we denote by
�f WD f .Crit. f // the discriminant of f . This is an analytic subset of Ck.

Given " > ı > 0 sufficiently small, we denote by N."; ı/ the tube

N."; ı/ WD ŒB."/ \ X� \ f�1.Dı/;

where B."/ is the ball of radius " around 0 in C
m and Dı is the ball in C

k of radius
ı around 0.

The theorem below, taken from [5], extends to this setting the Milnor-Lê fibration
theorem which corresponds to the case k D 1. We recall that by Hironaka’s theorem
in [22], holomorphic map-germs into C always have an isolated critical value and
therefore the discriminant�f consists of a single point.

Theorem 2.1 Let f W .XnCk; 0/! .Ck; 0/ be as above, and g W .XnCk; 0/! .C; 0/

with an isolated critical point at 0 in the stratified sense, both in X and also in
V D f�1.0/. Then for every " � "0 > 0 sufficiently small, there exists ı > 0 small
enough with respect to "0 such that:

1. One has a locally trivial fibration:

f W N."; ı/ n f�1.�f / �! Dı n�f :

2. Each fibre Ft D f�1.t/ \ B", t 2 Dı n�f inherits a Whitney stratification from
that in X, by intersecting Ft with the strata of X.

3. The critical points of g in each fibre Ft are all contained in the interior of the
ball B"0

The proof is straightforward and we refer to [5] for details. We remark that the
condition that f has the Thom property can be relaxed, demanding only that for each
" > 0 sufficiently small, there exists ı > 0 such that for all t 2 Dı n �f the fibre
f�1.t/ meets transversally the sphere @B" (cf. Proposition 2.2 below).
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The proof of this theorem relies on the fact that in the complex case, every
Whitney stratification is Whitney strong. This allows using Verdier’s theory of
rugose vector fields, which play a key role in this discussion. In the real case things
are more complicated and we must impose restrictions in order to be able to use
Verdier’s work. Yet, everything works fine in the real case if we restrict ourselves to
the case where the source and the target are both smooth.

2.2 Milnor-Lê Fibrations for Real Singularities

The basic references for this section are [7, 9, 28, 32] (see also [8, 10, 11]). Here
we follow [9]. We now let U be an open neighbourhood of 0 2 R

n and f W .U; 0/!
.Rp; 0/, n > p � 2, be a real analytic map-germ with a critical point at 0. Let B"
be a closed ball in U centred at 0 of sufficiently small radius " > 0. We see B" as
a stratified set where the strata are the interior B" and the boundary S" D @B" of
B". Consider the restriction f j

B"
which to simplify notation we still denote just by f .

Denote by Cf .B"/ the set of critical points of f in B" and denote by Cf .S"/ the set
of critical points in S" of the restriction f jS" . Let Cf D Cf .B"/ [ Cf .S"/ be the set of
critical points of f in B" and denote by �"

f D f .Cf / the discriminant of f . We have
the following proposition (see [31, IV.4]):

Proposition 2.2 The restriction

f WEf ."/ D B" \ f�1.Rp n�"
f /! f .B"/ n�"

f

is a locally trivial fibre bundle.

The proof is, again, straightforward and we refer to [9] for details. Now let D p
ı be

an open ball in R
p centred at 0 of radius 0 < ı � ". Let ONf ."; ı/ D B" \ f�1.D p

ı n
�"

f / and Nf ."; ı/ D B" \ f�1.@D p
ı n �"

f / be the restrictions of the fibre bundle of

Proposition 2.2 to D
p
ı n�"

f and @D p
ı n�"

f , respectively. We call ONf ."; ı/ a solid Milnor
tube and Nf ."; ı/ a Milnor tube for f . Proposition 2.2 obviously implies:

Corollary 2.3 Let f W .Rn; 0/! .Rp; 0/ be as before. Then the restrictions

f W ONf ."; ı/! D
p
ı n�"

f ;

and

f WNf ."; ı/! @D
p
ı n�"

f ;

are locally trivial fibrations.
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We call the fibrations in Corollary 2.3 the Milnor-Lê type fibrations. Of course
one also has these two fibrations in the complex case.

Remark 2.4 It can happen that the discriminant of f splits a neighbourhood of the
origin in R

p into several connected components. In that case one has a topological
(actually differentiable) type for the Milnor fibre on each such component, which
can change from one sector to another.

Now we impose a further condition on f which ensures that the Milnor-Lê type
fibration does not depend on ".

As before, consider a real analytic map-germ f W .U; 0/ ! .Rp; 0/, n > p � 2

with a critical point at 0 and V. f / D f�1.0/ has dimension greater than 2. Let
fS˛g˛2A be a Whitney stratification of U with V. f / union of strata, and let fR�g�2G
be a Whitney stratification of f .U/ such that both stratifications give a stratification
of f , i.e., for every ˛ 2 A there exists � 2 G such that f induces a submersion from
S˛ to R� . We further assume that f satisfies the Thom af -property with respect to
such stratification of f : Let S˛ and Sˇ be strata such that S˛ � NSˇ, let x 2 S˛ and let
fxig be a sequence of points in Sˇ converging to x. Set f ˛x D f j�1S˛ . f .x//, the fibre of

f jS˛ which contains x and f ˇxi D f j�1Sˇ . f .xi// the fibre of f jSˇ which contains xi. Let T

be the limit of the sequence of tangent spaces Txi f
ˇ
xi . Then Tx f ˛x � T.

Proposition 2.5 Consider f W .U; 0/! .Rp; 0/, n > p � 2 with a critical point at 0
and V. f / D f�1.0/ has dimension greater than 2. Suppose there is a stratification
of f which satisfies the Thom af -property. Then there exists "0 > 0 such that for
every 0 < " < "0 and every 0 < ı � " there is no contribution to the discriminant
�"

f coming from the boundary sphere, that is, Cf .S" \ f�1.D p
ı // D ;. Therefore, the

two Milnor-Lê type fibrations do not depend on ".

All the previous discussion extends easily to map-germs where the source is itself
singular provided we restrict to cases where the maps in question satisfy Strict Thom
.wf / condition (see [6, 35]).

3 Indices of Vector Fields on Singular Varieties

In this section we discuss indices of vector fields on singular varieties. We focus on
the GSV and the radial (or Schwartz) indices, which are the most relevant indices for
this work. We refer to the literature, and particularly to [4] for a complete account.
The radial index springs from [23, 33], while the GSV index is defined in [18].



262 J. Seade

3.1 The Radial Index

The radial index of a vector field was introduced by H. King and D. Trotmann in
the early 1990s in [23] under a different name. This was also studied by W. Ebeling
and S. Gusein-Zade in several articles (e.g. [13]), as well as by Aguilar, Seade and
Verjovsky in [1]. The presentation we make here basically comes from [4] where this
is called the Schwartz index. For this index we do not use the complex structure, so
if we have a complex analytic germ, we think of it as being real analytic.

Let V be a real analytic space with a (possibly non-isolated) singularity at a point
xo in an open set U is some R

m. We equip U with a Whitney stratification adapted
to V , i.e., X is a union of strata. A stratified vector field on X means a section v of
the tangent bundle TUjV restricted to V , such that for each x 2 V the vector v.x/ is
tangent to the corresponding stratum. We further assume that all vector fields in this
article are continuous.

Let v be a stratified vector field on V with an isolated singularity at xo. We want
to define its radial index at xo. Since the question is local we may assume that there
are no more singularities of v in U.

If the vector field v is transversal to every small sphere in R
m centred at xo, then

we say that v is radial. We denote such a vector field by vrad and we define its radial
index to be 1. Otherwise, if v is not radial, consider two balls B", B"0 centred at xo,
with " > "0 > 0 small enough so that their boundaries are transverse to all strata.
Inside the smaller B"0 we consider a stratified radial vector field vrad with centre xo
and pointing outwards the ball. On the boundary @B" of the larger one, we consider
the vector field v.

Let us consider the cylinderV";"0 D .B"nIntB"0/\V . On the boundariesV\S"0 D
V\@B"0 and V\S" D V\@B" of V";"0 one has a vector field w defined by vrad and v,
respectively. One can always extend w to the interior of V";"0 by the classical radial
extension process of M. H. Schwartz (see, for instance, [4, Chapter 2, Section 3]), so
that we get a stratified vector field on V";"0 with isolated singularities in the interior.
At each singular point of the extension, the index in the stratum coincides with the
index in the ambient space:

IndPH.w; pjIVˇ/ D IndPH.w; pjIRm/;

where Vˇ is the stratum containing pj.

Definition 3.1 The difference of v and vrad is defined as:

d.v; vrad/ D
X

ˇ

X

j

IndPH.w; pjIVˇ/;

where the sum on the right runs over the Poincaré Hopf indices at the singular points
of the restriction of w to each stratum Vˇ in V";"0 .
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One has that this integer does not depend on the choice of w provided this
extension is done by radial extension (see [4, p. 38] or [14, p. 441]). Notice also
that d.vrad; vrad/ D 0.

Definition 3.2 The radial or Schwartz index of v at xo 2 V is defined as:

indSch.v; xiIX/ D 1C d.v; vrad/ I

Now let X be an arbitrary real analytic space in R
m with arbitrary singularities

and equipped with a Whitney stratification; let v be a continuous stratified vector
field on X with isolated singularities x1; � � � ; xs. Then define

Definition 3.3 The total radial (or Schwartz) index of v in X is the sum of the local
indices indSch.v; xiIX/.

Notice that if some singular point xi of v is at a smooth point of X, then its radial
index is the usual Poincaré-Hopf index.

Definition 3.4 Let Br be a closed ball in R
m such that each stratum in X meets

transversally the boundary sphere Sr D @Br . Then we say that the intersection Xr WD
X \ Br is a singular variety with boundary @Xr WD X \ Sr .

The following theorem, which is used in the sequel, extends one of the funda-
mental properties of the Schwartz Index for compact complex varieties. The proof
is exactly as that of Theorem 2.1.1 in [4] and we leave the details to the reader.

Theorem 3.5 Let Xr be a compact, real analytic variety with boundary in R
m,

which is equipped with a Whitney stratification adapted to X. Let v be a continuous,
stratified vector field defined on a neighbourhood of the boundary @Xr in C

m, with
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no singularities. Then:

1. Radial extension of v yields a stratified vector field on Xr with isolated singular-
ities x1; � � � ; xs, and its total Schwartz index in Xr is independent of the choice of
the extension.

2. If v is transversal to the boundary @Xr everywhere, then:

�.V/ D
sX

iD1
IndSch.v; xiIV/ ;

where �.V/ is the Euler-Poincaré characteristic.

3.2 The GSV Index

We now consider the GSV-index of vector fields, introduced in 1987 in [34], which
coincides with the local Poincaré-Hopf index when the space is smooth. Unlike the
radial index, now the complex structure does play an important role because this
index is closely related to the Milnor number. Since this is a well-defined integer
for holomorphic map-germs, the GSV index is a well-defined integer. Yet, for real
analytic map-germs, the Milnor number is defined only modulo 2, a problem that
we address in the last section of this article.

We now focus on the complex case. For the sequel we actually need an extension
of this index as explained below, but we discuss first the classical setting (see [18,
34]).
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We consider a hypersurface (or a complete intersection) germ .V; 0/ defined by
a holomorphic function f W .CnC1; 0/ ! .C; 0/ with an isolated critical point at
0. Then, given a vector field v on V with isolated singularity at 0, one can always
extend it to a vector field w on the Milnor fibre F D Ff of f , with no singularities
near the boundary. The total number of these singularities in F, counted with their
local Poincaré-Hopf indices, is independent of the extension, and this number is, by
definition, the GSV-index of v at 0. That is:

IndGSV.v; 0IV/ WD IndPH.wIF/;

where the term on the right is the total index.
In other words we may think of this index as follows. We envisage the singular

variety V as being a limit of the complex manifolds Vt D f�1.t/, t ¤ 0, as t ! 0.
We may as well envision the vector field v on V as being a limit of a family of vector
fields vt on the Vt, each vt having isolated singularities, which degenerate into 0 as
the vt converge to v. Then the GSV index of v equals the sum of the Poincaré-Hopf
indices of each vt at the singularities that converge to 0.

The original definition of the GSV index is as the degree of a certain map from
the link into a Stiefel manifold, generalizing the classical definition of the local
Poincaré-Hopf index. The map in question is determined by the vector field and the
gradients of the functions that define the ICIS germ.

The GSV index has the following basic properties, the first of these being the one
just discussed; the second property is an immediate consequence of this (see [2] for
details).

Theorem 3.6

(1) The GSV index of v at 0 equals the Poincaré-Hopf index of v in the Milnor fibre:

IndGSV.v; 0/ D IndPH.v;F/ :

(2) If v is everywhere transverse to the link, then

IndGSV.v; 0/ D 1C .�1/n� ;

where n is the complex dimension of V and � is the Milnor number of 0.
(3) One has:

� D .�1/n�IndGSV.v; 0/ � IndSch.v; 0/
�
;

independently of the choice of v.

The definition of the GSV index extends immediately to vector fields on complex
ICIS, and it was extended in [4, Chapter 3] to the more general setting where V can
have non-isolated singularities, but the ambient space still is non-singular. In the
sequel we need a further extension of this index to the case when the ambient space
is itself singular. More precisely, we want to consider isolated complete intersection
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germs .X; 0/
f! .Ck; 0/ , where X has non-isolated singularities. In this setting the

Milnor fibre of f is itself singular, so we cannot define the GSV index of a vector
field on the special fibre as being the Poincaré-Hopf index of an extension of it to
the Milnor fibre. We follow [5].

Let X, f and g be as above, i.e., .X; 0/ is a complex analytic variety of dimension
n C k in C

m with a singular point at the origin 0; f W .X; 0/ ! .Ck; 0/ is
a holomorphic function which is generically a submersion with respect to some
Whitney stratification fS˛g of X, and such that its zero set V WD V. f / has dimension
more than 0. We assume that f has the Thom af -property with respect to this
stratification. Finally, g W .X; 0/ ! .C; 0/ is a holomorphic map with an isolated
critical point at 0 in the stratified sense, both in X and also in V .

Let us describe now the construction in [3] of a stratified vector field on V ,
denoted by rV.g/. Let us denote by rQg.x/ the gradient vector field of Qg W U ! C

at a point x in the neighbourhood U of 0 in C
m with QgjX D g, defined by

rQg.x/ WD
 
@Qg
@x1

; : : : ;
@Qg
@xm

!

;

where the bar denotes complex conjugation. Consider V with Whitney stratification
obtained by intersecting this variety with the strata of X, denoted by fV˛g, and
denote by V˛.x/ the stratum containing x. Since g W .X; 0/! .C; 0/ has an isolated
singularity at 0, the projection of rQg.x/ on TxV˛.x/ , denoted by O�˛.x/, is not zero.
Gluing together the vector fields O�˛, obtain a stratified vector field on V , denoted by
rV.g/. This vector field is homotopic to rQgjV (the justification for this can be seen
in [3, Section 2]). Now consider g restricted to Milnor fibre Ff with the Whitney
stratification obtained by intersecting this variety with the strata of X. Just in the
same way, obtain a stratified vector field on Ff using, for each x 2 Ff , the projection
ofrQg.x/ on the tangent space to each stratum of Ff containing x, denoted byrFf .g/.
This vector field is homotopic to rQgjFf .

Now we define (compare with Definition 3.4.1 of [4]):

Definition 3.7 The GSV-index of g on V relative to the function f is, by definition,
the total Schwartz index of the conjugate gradient vector field rFf .g/ on the Milnor
fibre Ff :

IndGSV.g; 0I f / WD IndSch.rFf .g/IFf / :

It is clear that the same definition adapts easily to define the corresponding index
for 1-forms, in the vein of [14, 15]. In fact in that case the definition is actually
simpler because one does not need to extend vector fields from the singular variety
to the Milnor fibre, but we only need to consider the restriction of the 1-form dg to
the boundary of Ff .
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4 The Lê-Greuel Formula in the Complex Case

This section is based on [5]. We consider again a complex analytic space X of
pure dimension n C k. Let f W .X; 0/ ! .Ck; 0/ be a holomorphic function
which is generically a submersion with respect to some complex analytic Whitney
stratification fS˛g of X for which the zero set V WD V. f / is a union of strata. We
assume further that V has dimension more than 0 and f has the Thom af -property
with respect to the above stratification.

Let g W X ! C be holomorphic with an isolated critical point in X (and hence also
in V), with respect to this stratification. As before, we assume V. f / has dimension
� 2.

We know from Sect. 2 that f has a Milnor-Lê fibration; we denote by Ff the
corresponding fibre. Notice that the fact that g has an isolated critical point in V
implies that . f ; g/ is also generically a submersion and it has the Thom property
with respect to the stratification fS˛g. Also, the variety V. f ; g/ has dimension at
least 1. So, by the same arguments as in Sect. 2, the map . f ; g/ has a Milnor-Lê
fibration. We denote by Ff ;g the corresponding Milnor fibre. We have:

Theorem 4.1 (The Lê-Greuel Formula) One has:

�.Ff / D �.Ff ;g/C IndGSV.g; 0I f / :

The first step for proving this theorem is choosing appropriate representatives of
the Milnor fibres Ff and Ff ;g. For this we consider first a Milnor sphere S" for X and
V. f / at 0, and the Milnor-Lê fibration of f given by Theorem 2.1.

Since g has an isolated critical point in V WD V. f /, by Lê [25] there exists ı0 > 0
such that if we let D2ı0

be the disc in C of radius ı0 about 0 and set

NV."; ı
0/ D g�1.D2ı0

/ \ V. f /\ B";

then

g W NV."; ı
0/ n V.g/ �! D

2
ı0

n f0g;

is a locally trivial fibre bundle, where V.g/ WD g�1.0/. Choose a typical fibre
g�1.so/ \ V. f / of this fibration, so so ¤ 0 with jsoj � ı0.

Now consider "0 > 0 small enough, so that the ball B"0 in C
m does not meet the

fibre g�1.so/. We use Theorem 2.1 again to choose a Milnor fibre Ff WD f�1.to/ \
B" for f , such that the restriction of g to Ff has no critical points away from B"0 .
Then the hypersurface g�1.so/ meets Ff transversally and therefore the intersection
Ff ;g WD Ff\g�1.so/ serves as a model for the Milnor fibre of the Milnor-Lê fibration
of . f ; g/.
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From now on we set Ff ;g WD Ff \ g�1.so/ with Ff D f�1.to/\ B", and we equip
Ff and Ff ;g with the Whitney stratifications obtained by intersecting these varieties
with the strata of X. We have:

Lemma 4.2 (Main Lemma) There exists a continuous stratified vector field v on
Ff with the following properties:

1. Restricted to a neighbourhood of its boundary @Ff , it is transversal to the
boundary, pointing outwards.

2. It is tangent to the hypersurface Ff ;g.
3. Within the ball B"0 , v is the vector field rV.g/.
4. Away from B"0 , v has only isolated singularities, all contained in Ff ;g, and at each

of these singular points, the vector field is transversally radial to the stratum
containing the singular point of v (that is, v is transversal to the boundary of
every tubular neighbourhood of the stratum).

Notice that property 4 implies that the Schwartz index of v at each singularity in
Ff ;g equals the local Poincaré-Hopf index of the restriction of v to the stratum.

Theorem 4.1 follows easily from this Lemma. In fact, the first property implies
that the total Schwartz index of v in Ff is �.Ff /, by Theorem 3.5. Similarly,
properties 1 and 2, together with Theorem 3.5, imply that the total Schwartz index
of v in Ff ;g is �.Ff ;g/. Thus, again by Theorem 3.5, together with property 4, we get
that the difference �.Ff /��.Ff ;g/ equals the sum of the Schwartz indices of v away
from Ff ;g, and this is the GSV-index of rV.g/ by property 3, since v has no other
singularities away from Ff ;g but those in B"0 , where v coincides with rV.g/.

Lemma 4.2 and its proof are very much inspired by Brasselet et al. [2, 3], where
the authors prove similar statements to get Lefschetz type theorems for the local
Euler obstruction. This lemma is in fact an immediate consequence of the three
lemmas below. We refer to [5] for the proofs of these lemmas, which are inspired
by Schwartz [33].

Lemma 4.3 Let �0 > 0 be small enough with respect to ı0, so that the disc
D�0.so/ � C centred at so is contained in the interior of Dı0 and g�1.D�0.so//
does not intersect B"0 . Then, there exists a stratified vector field wr on Ff satisfying
(Fig. 1):

1. Its restriction to g�1.Dı0/ \ S" is tangent (stratified) to all the fibres g�1.s/, and
it is transversal to S", pointing outwards.

2. It is tangent to the fibre g�1.so/, where it has only isolated singularities, and at
each singularity, wr is transversally radial in g�1.so/, to the stratum that contains
that zero of wr

3. It is tangent to each fibre g�1.s/, for s 2 D�0.so/.

Lemma 4.4 There exists a stratified vector field u defined on Ff \ g�1.Dı0/ minus
the interior of the ball B"0 , satisfying the following (Fig. 2):

1. u is tangent to S";
2. its zero set is g�1.so/, and u is transversally radial to g�1.so/ in Ff ;
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Fig. 1 The vector field wr
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Fig. 2 The vector field u

3. u is transversal to Ff \ g�1.@Dı0/, pointing outwards;
4. restricted to Ff \ @B"00 it coincides with the gradient vector field rgjFf .

Lemma 4.5 Let w be a stratified vector field on Ff \g�1.@Dı0/, which is transverse
to both Ff\S" and Ff\g�1.@Dı0/, pointing outwards. Then there exists an extension
of w to a stratified vector field on Ff ng�1.Dı0/, which is transverse to @Ff D Ff \S"
and pointing outwards.

Lemma 4.5 then follows from this and the fact that f has the Thom property.
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We remark that if in this statement we replace Ff by V. f /, then the lemma is a
special case of Theorem 2.3 in [2].

5 The Lê-Greuel Formula in the Real Analytic Case

This section is based on [9]. Consider now a real analytic map .Rn; 0/
f�! .Rp; 0/,

n > p � 2, with arbitrary critical locus. Let B" be the closed ball in R
n centred

at 0 of radius ", D p
ı be the open ball in R

p centred at 0 of radius ı and �"
f be the

discriminant of f . We already know that f has an associated locally trivial fibration
of the Milnor-Lê type

f W ONf ."; ı/ D B" \ f�1.D p
ı n�"

f /! D
p
ı n�"

f :

As noted before, in this general setting the topology of the Milnor fibre is not always
unique: the discriminant of f may split a neighbourhood of the origin in R

p into
several connected components, and one has a topological (actually differentiable)
model for the Milnor fibre on each such component (cf. [27]).

We further require that the map f satisfies the Thom af -property with respect to
some Whitney stratification fS˛g such that its zero-set V. f / has dimension� 2 and

it is union of strata. We also consider another real analytic map germ .Rn; 0/
g!

.Rk; 0/ with an isolated critical point in R
n with respect to the stratification fS˛g. By

the previous discussion, the map-germ . f ; g/ also has an associated locally trivial
fibration of the Milnor-Lê type.

We have the following Lê-Greuel formula from [9]:

Theorem 5.1 Let Ff be a Milnor fibre of f (any Milnor fibre, regardless of the
discriminant of f ). Then one has:

�.Ff / D �.Ff ;g/C IndPH rQgjFf\B"0 ;

where QgWRn ! R is given by Qg.x/ D kg.x/� t0k2 with t0 2 R
k such that Ff ;g D

gj�1Ff
.t0/ and B"0 is a small ball in Rn centred at the origin.

The term IndPH rQgjFf\B"0 on the right, which by definition is the total Poincaré-
Hopf index in Ff of the vector field rQgjFf , can be expressed also in the following
equivalent ways:

1. As the Euler class of the tangent bundle of Ff relative to the vector fieldrQgjFf\B"0
on its boundary;

2. As a sum of polar multiplicities relative to Qg on Ff \ B"0 .

The proof is in the same vein as that in the complex case, and we refer to [9] for
details. The idea is constructing appropriate vector fields, and for that we use the
auxiliary function Qg.
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As noted in [9, Remark 3.8], when k D 1 we may replace Qg by the original map
g and get a similar result. We notice too that a Lê-Greuel formula for real analytic
ICIS germs was recently obtained in [11].

Consider again real analytic complete intersection germs with an isolated critical
point in the ambient space f D . f1; � � � ; fk/, and . f ; g/ and a Milnor-Lê fibration

. f ; g/WN."; ı/ n V. f ; g/ �! Dı n f0g;

which determines a locally trivial fibre bundle

�WSn�1" n V. f ; g/ �! S
p :

As noticed in [7, 32], one has that the projection map � can always be taken as
. f ;g/
k. f ;g/k in a neighbourhood of the link L. f ;g/ WD V. f ; g/\Sn�1" . Following [7] we say

that the map germ . f ; g/ is d-regular if the projection map � can be taken as . f ;g/
k. f ;g/k

everywhere. In this case we notice that there is a relation between the topology of
f and that of . f ; g/, which is deeper than the one given by Theorem 5.1. To state
this result, it is convenient to write g as fkC1, then we have the following immediate
application of Corollaries 5.4 and 5.5 in [7]:

Theorem 5.2 Let f D . f1; � � � ; fpC1/W .Rn; 0/ ! .RpC1; 0/ be a complete inter-
section germ with an isolated critical point at 0 and which is d-regular. Let
V D f�1.0/ and for each i D 1; � � � ; p C 1 let Vi be the singular variety Vi D
. f1; � � � ;bf i; � � � ; fpC1/�1.0/, wherebf i means that we are removing this component
and looking at the corresponding map germ into R

p. Then the topology of Vi n V
is independent of the choice of i and its link, which is a smooth manifold, is
diffeomorphic to the disjoint union of two copies of the interior of the Milnor fibre
of f .

This motivates the following question: Is the topology of Vi independent of i
as in the complex case? (see [6, Thm. 1 (i)]). In this case the link of Vi would be
diffeomorphic to the double of the Milnor fibre of f . This has recently been answered
positively by A. Menegon Neto and should be published soon.

6 Concluding Remarks

Remark 6.1 If f1; � � � ; fk and g are holomorphic map-germs .CnCk; 0/ ! .C; 0/

such that f D . f1; � � � ; fk/ and . f ; g/ define isolated complete intersection germs,
then the classical Lê-Greuel formula can be expressed as:

�.Ff / D �.Ff ;g/C dimC

OnCk;0

. f ; JackC1. f ; g//
; (1)
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where JackC1. f ; g/ denotes the ideal generated by the determinants of all .k C 1/
minors of the corresponding Jacobian matrix. To deduce that formula from Theo-
rem 4.1 we notice that by classical intersection theory, the invariant IndGSV.g; 0; f /
in (4.1) can be expressed as

dimC

Om;0

. f � t; JackC1. f ; g//
;

where f D t defines the Milnor fibre Ff . In this setting the fibres of f are a flat family,
so one can specialize this invariant to the fibre over 0, thus arriving to the formula
above. Of course it would be interesting to find a similar algebraic interpretation of
the invariant IndGSV.g; 0; f / in a more general setting (cf. [5, Section 6]).

Remark 6.2 In [12, Theorem 5.2], N. Dutertre and N. G. Grulha prove a Lê-Greuel
formula which holds in the same general setting we envisage in this article. They
express the difference �.Ff / � �.Ff ;g/ appearing in Theorem 4.1 as a sum:

�.Ff / � �.Ff ;g/ D
X

.�1/d˛
X

�ij
�
1 � �.lkC.S˛;X//

�
;

where the first sum on the right runs over the strata S˛ in the Milnor fibre of f ,
the number d˛ being the dimension of the stratum; the �ij are certain multiplicities
that can be described as the number of critical points, in each stratum of the Milnor
fibre Ff , of a Morsification of g, and �.lkC.S˛;X// is the Euler characteristic of the
complex link of the corresponding stratum. It would be interesting to find a direct
path to pass from that formula to Theorem 4.1 above.

Remark 6.3 If f1; � � � ; fk and g1; : : : ; gr are holomorphic map germs .CnCkCr; 0/!
.C; 0/ such that f D . f1; � � � ; fk/, g D .g1; � � � ; gr/and . f ; g/ define isolated
complete intersection germs, then the classical Lê-Greuel formula tells us an
inductive way to determine the Milnor number of . f ; g/ from that of f plus
contributions of the gi’s obtained by dropping one by one the gi. On the other
hand, I believe that the techniques of [9] explained in Sect. 5 can be easily adapted
to express the Milnor number of . f ; g/ in terms of that of f plus a contribution
of an auxiliary function QgWCnCkCr ! R given by Qg.x/ D kg.x/� t0k2 for some
appropriate t0 2 C

r.

Remark 6.4 As pointed out in Remark 6.1, the classical formulation of the Lê-
Greuel theorem can be stated as:

�.Ff / D �.Ff ;g/C dimC

OnCk;0

. f ; JackC1. f ; g//
(2)

Since the fibres of f give rise to a flat family, the invariant IndGSV.g; 0; f /, which
essentially is the Poincaré-Hopf index of a holomorphic vector field on the Milnor
fibre, specializes to the fibre over the critical point and one gets the algebraic
expression above. It is natural to ask what happens in the real analytic setting for
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ICIS in R
m since one also has in this case a flat family. This is somehow equivalent

to asking for an algebraic expression for the Poincaré-Hopf index of a real analytic
vector field on the Milnor fibre, and that is in itself a very interesting field of
research, with a large literature that goes back to work by Arnold, Eisenbud-Levine,
Khimshiashvili, Gómez-Mont and others. In fact, a positive answer to the question
above was given in [9, Section 5] for real analytic ICIS defined by two equations.
This was based on [16, 17], where the authors give algebraic expressions for the
index of analytic vector fields on real analytic hypersurfaces. An extension of the
results in [16, 17] for vector fields on real analytic ICIS would provide an algebraic
formulation for the corresponding invariant in the Lê-Greuel forumla. And perhaps
this viewpoint can be used for extending to ICIS the interesting results in [16, 17],
at least for gradient vector fields.
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Abstract We introduce enumerative invariants of real del Pezzo surfaces that count
real rational curves belonging to a given divisor class, passing through a generic
conjugation-invariant configuration of points and satisfying preassigned tangency
conditions to given smooth arcs centered at the fixed points. The counted curves
are equipped with Welschinger-type signs. We prove that such a count does not
depend neither on the choice of the point-arc configuration nor on the variation of
the ambient real surface. These invariants can be regarded as a real counterpart of
(complex) descendant invariants.

Keywords del Pezzo surfaces • Descendant invariants • Real enumerative geom-
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1 Introduction

Welschinger invariants of real rational symplectic manifolds [17–19, 21] serve as
genus zero open Gromov–Witten invariants. In dimension four and in the algebraic-
geometric setting, they are well defined for real del Pezzo surfaces (cf. [12]), and
they count real rational curves in a given divisor class passing through a generic
conjugation-invariant configuration of points and are equipped with weights˙1. An
important outcome of Welschinger’s theory is that, whenever Welschinger invariant
does not vanish, there exists a real rational curve of a given divisor class matching
an appropriate number of arbitrary generic conjugation-invariant constraints.
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There are several extensions of the original Welschinger invariants: modifications
for multicomponent real del Pezzo surfaces [9, 12], mixed and relative invariants
[10, 20] (R. Rasdeaconu and J Solomon, Relative open Gromov–Witten invariants,
unpublished), invariants of positive genus for multicomponent real del Pezzo
surfaces [15], and for P2kC1, k � 1 [4, 5]. The goal of this paper is to introduce
Welschinger-type invariants for real del Pezzo surfaces, which count real rational
curves passing through some fixed points and tangent to fixed smooth arcs centered
at the fixed points. They can be viewed as a real counterpart of certain descendant
invariants (cf. [6]).

The main result of this note is Theorem 1 in Sect. 2, which states the existence
of invariants independent of the choice of constraints and of the variation of the
surface. Our approach in general is similar to that in [12], and it consists in the study
of codimension one bifurcations of the set of curves subject to imposed constraints
when one varies either the constraints or the real and complex structure of the
surface. In Sect. 5, we show a few simple examples. The computational aspect and
quantitative properties of the invariants will be treated in a forthcoming paper.

2 Invariants

Let X be a real del Pezzo surface with a nonempty real point set RX and F � RX
a connected component. Pick a conjugation-invariant class ' 2 H2.X n FIZ=2/.
Denote by PicRC.X/ � Pic.X/ the subgroup of real effective divisor classes. Pick a
nonzero class D 2 PicR.X/, which is F-compatible in the sense of [11, Sect. 5.2].
Observe that any real rational (irreducible) curve C 2 jDj has a one-dimensional
real branch (see, e.g., [12, Sect. 1.2]), and hence we can define CC;C�, the images
of the components of P1 n RP1 by the normalization map.

Given a smooth (complex) algebraic variety †, a point z 2 †, and a positive
integer s, the space of s-arcs in † at z is

Arcs.†; z/ D Hom.SpecCŒt�=.tsC1/; .†; z//=Aut.CŒt�=.tsC1// :

Denote by Arcsm
s .†; z/ � Arcs.†; z/ the (open) subset consisting of smooth s-arcs,

i.e., of those which are represented by an embedding .C; 0/! .†; z/.
Choose two collections of positive integers k D fki; 1 � i � rg and l D flj; 1 �

j � mg, where r;m � 0 and

rX

iD1
ki C 2

mX

jD1
lj D �DKX � 1 ; (1)
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and all k1; : : : ; kr are odd. Pick distinct points z1; : : : ; zr 2 F and real arcs ˛i 2
Arcsm

ki .X; zi/, 1 � i � r, and also distinct points w1; : : : ;wm 2 X n RX and arcs
ˇj 2 Arcsm

lj .X;wj/. Denote z D .z1; : : : ; zr/, w D .w1;w1; : : : ;wm;wm/ and

A D .˛1; : : : ; ˛r/ 2
rY

iD1
Arcsm

ki .X; zi/ ; (2)

B D .ˇ1; ˇ1; : : : ; ˇm; ˇm/ 2
mY

jD1

�
Arcsm

lj .X;wj/ � Arcsm
lj .X;wj/

�
: (3)

In the moduli space M0;rC2m.X;D/ of stable maps of rational curves with r C 2m
marked points, we consider the subset M0;rC2m.X;D; .k; l/; .z;w/; .A ;B// consist-
ing of the elements Œn W P1 ! X; p�, p D . p1; : : : ; pr; q1; : : : ; qm; q01; : : : ; q0m/ � P

1,
such that

n�
�[

A [
[

B
�
�

rX

iD1
kipi C

mX

jD1
lj.qj C q0j/ :

Let M im;R
0;rC2m.X;D; .k; l/; .z;w/; .A ;B// � M0;rC2m.X;D; .k; l/; .z;w/; .A ;B//

be the set of elements Œn W P1 ! X; p� such that n is a conjugation-invariant
immersion, the points p1; : : : ; pr 2 P

1 are real, and qj; q0j 2 P
1 are complex

conjugate, j D 1; : : : ;m. For a generic choice of point sequences z and w,
and arc sequences A and B in the arc spaces indicated in (2) and (3), the set
M im;R

0;rC2m.X;D; .k; l/; .z;w/; .A ;B// is finite (cf. Proposition 1(1) below).

Given an element � D Œn W P1 ! X; p� 2 M im;R
0;rC2m.X;D; .k; l/; .z;w/; .A ;B//,

denote C D n.P1/ and define the Welschinger sign of � by (cf. [12, Formula (1)])

W'.�/ D .�1/CC

ı C
�

CC
C

ı ' :

Notice that, if C is nodal, then CC ı C� has the same parity as the number of real
solitary nodes of C (i.e., nodes locally equivalent to x2 C y2 D 0).

Finally, put

W.X;D;F; '; .k; l/; .z;w/; .A ;B// D
X

�2M im;R
0;rC2m.X;D;.k;l/;.z;w/;.A ;B//

W'.�/ : (4)

Theorem 1

(1) Let X be a real del Pezzo surface with RX ¤ ;, F � RX a connected
component, ' 2 H2.X n F;Z=2/ a conjugation-invariant class, D 2 PicRC.X/
a nef and big, F-compatible divisor class, k D .k1; : : : ; kr/ a (possibly empty)
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sequence of positive odd integers such that

maxfk1; : : : ; krg � 3 ; (5)

and l D .l1; : : : ; lm/ a (possibly empty) sequence of positive integers
satisfying (1), z D .z1; : : : ; zr/ a sequence of distinct points of F,
w D .w1; : : : ;wm;w1; : : : ;wm/ a sequence of distinct points of X n RX,
and, at last, A , B are arc sequences as in (2), (3). Then the number
W.X;D;F; '; .k; l/; .z;w/; .A ;B// does not depend neither on the choice
of generic point configuration z, w nor on the choice of arc sequences A , B
subject to conditions indicated above.

(2) If tuples .X;D;F; '/ and .X0;D0;F0; ' 0/ are deformation equivalent so that X
and X0 are joined by a flat family of real smooth rational surfaces, then we have
(omitting .z;w/ and .A ;B/ in the notation)

W.X;D;F; '; .k; l// D W.X0;D0;F0; ' 0; .k; l// :

Remark 1

(1) If ki D lj D 1 for all 1 � i � r, 1 � j � m, then we obtain original Welschinger
invariants in their modified form [9], and hence the required statement follows
from [12, Proposition 4 and Theorem 6]. This, in particular, yields that we have
to consider the only case �DKX � 1 � 3.

(2) In general, one cannot impose even tangency conditions at real points z1; : : : ; zr .
Indeed, suppose that r � 1 and k1 D 2s is even. Suppose that �DKX � 1 � 2s
and pa.D/ D .D2CDKX/=2C1 � s. In the linear system jDj, the curves, which
intersect the arc A1 at z1 with multiplicity � s and have at least s nodes, form a
subfamily of codimension 3s. On the other hand, the family of curves, having
singularity A2s at z1 and .s�1/ additional infinitely near to z1 points lying on the
arc ˛1, has codimension 3sC1, and it lies in the boundary of the former family.
Over the reals, this wall-crossing results in the change of the Welschinger sign
of the curve that undergoes the corresponding bifurcation. Indeed, take local
coordinates x; y such that z1 D .0; 0/ and ˛1 D fy D 0g, and consider the
family of curves

y D t2s; x D "tC t2 C t3; " 2 .R; 0/ :

For " D 0, the curve has singularity A2s at z1 and its next .s � 1/ infinitely near
to z1 points belong to ˛1. In turn, for " ¤ 0, the node, corresponding to the
values t D ˙p�", is solitary as " > 0 and non-solitary as " < 0, whereas the
remaining .s� 1/ nodes stay imaginary or solitary.

Conjecture 1 Theorem 1 is valid without restriction (5).

The proof of Theorem 1 in general follows the lines of [12], where we
verify the constancy of the introduced enumerative numbers in one-dimensional
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families of constraints and families of surfaces. The former verification requires a
classification of codimension one degenerations of the curves in count, while the
latter verification is based on a suitable analogue of the Abramovich–Bertram–
Vakil formula [1, 16]. Restriction (5) results from the lack of our understanding
of nonreduced degenerations of the counted curves.

3 Degeneration and Deformation of Curves on Complex
Rational Surfaces

3.1 Auxiliary Miscellanies

(1) Tropical limit. For the reader’s convenience, we shortly remind what is the
tropical limit in the sense of [14, Sect. 2.3], which will be used below. In the field
of complex Puiseux series Cfftgg, we consider the non-Archimedean valuation
val.

P
a cat

a/ D �minfa W ca ¤ 0g. Given a polynomial (or a power series)
F.x; y/ DP.i;j/2� cijxiyj over Cfftgg with Newton polygon�, its tropical limit
consists of the following data:

• A convex piecewise linear function NF W � ! R, whose graph is the lower
part of the polytope Convf.i; j;�val.cij// W .i; j/ 2 �g, the subdivision SF
of � into linearity domains of NF , and the tropical curve TF, the closure of
val.F D 0/;

• Limit polynomials (power series) Fıini.x; y/ D
P

.i;j/2ı c0ijxiy j, defined for any

face ı of the subdivision SF, where cij D tNF.i;j/.c0ijCO.t>0// for all .i; j/ 2 �.

(2) Rational curves with Newton triangles.

Lemma 1

(1) For any integer k � 1, there are exactly k polynomials F.x; y/ D P
i;j cijx

iyj

with Newton triangle T D Convf.0; 0/; .0; 2/; .k; 1/g, whose coefficients
c00; c01; c02; c11 are given generic nonzero constants and which define plane
rational curves. Furthermore, in the space of polynomials with Newton triangle
T, the family of polynomials defining rational curves intersects transversally
with the linear subspace given by assigning generic nonzero constant values
to the coefficients c00; c01; c02; c11. If the coefficients c00; c01; c02; c11 are real,
then,

• For an odd k, there is an odd number of real polynomials F defining rational
curves, and each of these curves has an even number of real solitary nodes,

• For an even k, there exists an even number (possibly zero) of polynomials F
defining rational curves, and half of these curves have an odd number of real
solitary nodes while the other half an even number of real solitary nodes.
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(2) For any integer k � 1, there are exactly k polynomials F.x; y/ D P
i;j cijx

iyj

with Newton triangle T D Convf.0; 0/; .0; 2/; .k; 1/g, whose coefficients
c00; c02; c11 are given generic nonzero constants and the coefficient ck�1;1
vanishes and which define plane rational curves. Furthermore, in the space of
polynomials with Newton triangle T and vanishing coefficient ck�1;1, the family
of polynomials defining rational curves intersects transversally with the linear
subspace given by assigning generic nonzero constant values to the coefficients
c00; c02; c11. If the coefficients c00; c02; c11 are real, then,

• For an odd k, there is a unique real polynomial F defining a rational curve,
and this curve either has k�1 real solitary nodes or has no real nodes at all,

• For an even k, either there are no real polynomials defining rational curves
or there are two real polynomials, one defining a rational curve with k �
1 real solitary nodes and the other defining a rational curve without real
solitary nodes.

Proof Both statements can easily be derived from [14, Lemma 3.9]. �

(3) Deformations of singular curve germs. Our key tool in the estimation of
dimension of families of curves will be [8, Theorem 2] (see also [7, Lemma
II.2.18]). For the reader’s convenience, we remind it here. Let C be a reduced
curve on a smooth surface†, and z 2 C. By mt.C; z/, we denote the intersection
multiplicity at z of C with a generic smooth curve on † passing through z, by
ı.C; z/ the ı-invariant, and by br.C; z/ the number of irreducible components of
.C; z/.

Lemma 2 Let Ct, t 2 .C; 0/ be a flat family of reduced curves on a smooth surface
†, and zt 2 Ct, t 2 .C; 0/ a section such that the family of germs .Ct; zt/, t 2 .C; 0/,
is equisingular. Denote by U a neighborhood of z0 in † and by .C � C0/U the total
intersection number of curves C;C0 in U. The following lower bounds hold:

(i) .C0 � Ct/U � mt.C0; z0/� br.C0; z0/C 2ı.C0; z0/ for t 2 .C; 0/;
(ii) If L is a smooth curve passing through z0 D zt, t 2 .C; 0/, and .Ct � L/z0 D

const, then

.C0 � Ct/U � .C0 � L/z0 Cmt.C0; z0/� br.C0; z0/C 2ı.C0; z0/

for t 2 .C; 0/.
(iii) If L is a smooth curve containing the family zt, t 2 .C; 0/, and .Ct �L/zt D const,

then

.C0 � Ct/U � .C0 � L/z0 � br.C0; z0/C 2ı.C0; z0/

for t 2 .C; 0/.
Let x; y 2 .C; 0/ be local coordinates in a neighborhood of a point z in a smooth

projective surface †. Let L D fy D 0g, and .C; z/ � .†; z/ a reduced, irreducible
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curve germ such that .C � L/z D s � 1. Denote by mz � O†;z the maximal ideal and
introduce the ideal IL;s†;z D fg 2 mz W ordg

ˇ
ˇ
L;z
� sg. The semiuniversal deformation

base of the germ .C; z/ in the space of germs .C0; z/ subject to condition .C0 �L/z � s
can be identified with the germ at zero of the space

BC;z.L; s/ WD IL;s†;z
ı˝

f ;
@f

@x
�mz;

@f

@y
� IL;s†;z

˛
;

where f 2 O†;z locally defined the germ .C; z/ (cf. [7, Corollary II.1.17]).

Lemma 3

(1) The stratum Beg
C;z.L; s/ � BC;z.L; s/ parameterizing equigeneric deformations of

.C; z/ is smooth of codimension ı.C; z/, and its tangent space is

T0B
eg
C;z.L; s/ D IL;sC;z

ı˝
f ;
@f

@x
�mz;

@f

@y
� IL;s†;z

˛
; (6)

where

IL;sC;z D fg 2 O†;z W ordg
ˇ
ˇ
C;z
� sC 2ı.C; z/g :

(2) If †, .C; z/, and L are real, and s is odd, then a generic member of Beg
C;z.L; s/

is smooth at z and has only imaginary and real solitary nodes; the number of
solitary nodes is ı.C; z/ mod 2.

Proof

(1) In [10, Lemma 2.4], we proved a similar statement for the case s D 2 and
.C; z/ of type A2k, k � 1, and we worked with equations. Here, we settle the
general case, and we work with parameterizations. First, observe that a general
member of Beg

C;z.L; s/ has ı.C; z/ nodes as its singularities and is smooth at z.
Thus, codimIL;s†;z

Beg
C;z.L; s/ D ı.C; z/, the tangent space to Beg

C;z.L; s/ at its generic

point C0, is formed by the elements g 2 O†;z, which vanish at the nodes
of C0 and whose restriction to .L; z/ has order s. Clearly, the limits of these
tangent spaces as C0 ! .C; z/ contain the space IL;sC;z

ıh f ; @f
@xmz;

@f
@y I

L;s
†;zi. On the

other hand, dim IL;s†;z=I
L;s
C;z D ı.C; z/ (see, e.g., [13, Lemma 6]). Let us show

the smoothness of Beg
C;z.L; s/. Notice that the germ .C; z/ admits a uniquely

defined parameterization x D ts, y D '.t/, t 2 .C; 0/, where '.0/ D 0,
and each element C0 2 Beg

C;z.L; s/ admits a unique parameterization x D ts,
y D '.t/ CPm

iD1 aiti, where m D dimBeg
C;z.L; s/, a1; : : : ; am 2 .C; 0/. Choose

m distinct generic values t1; : : : ; tm 2 .C; 0/ n f0g and take the germs of the
lines Li D f.tsi ; y/ W y 2 .C; '.ti/g, i D 1; : : : ;m. It follows that the stratum
Beg
C;z.L; s/ is diffeomorphic to

Qm
iD1 Li, hence the smoothness and (6).

(2) The second statement follows from the observation that the equation ts1 D ts2 has
no real solutions t1 ¤ t2. �
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Let C.1/;C.2/ � † be two distinct immersed rational curves, z 2 C.1/ \ C.2/ a
smooth point of both C.1/ and C.2/, and Wz � † a sufficiently small neighborhood
of z. Denote by V � jC.1/ C C.2/j the germ at C.1/ [ C.2/ of the family of curves,
whose total ı-invariant in † n U coincides with that of C.1/ [ C.2/.

Lemma 4

(1) The germ V is smooth of dimension

c D .C.1/ � C.2//z � C.1/K† � C.2/K† � 2 ;

and its tangent space isomorphically projects onto the space O†;z=Iz, where

Iz D ff 2 O†;z W ordf
ˇ
ˇ
.C.i/;z/

� .C.1/ � C.2//z � C.i/K† � 1; i D 1; 2g :

(2) Let f1; : : : ; fc; fcC1; : : : be a basis of the tangent space to jC.1/ C C.2/j at C.1/ [
C.2/ such that f1; : : : ; fc project to a basis of O†;z=Iz, and fj 2 Iz, j > c, satisfy

ordfcC1
ˇ
ˇ
.C.1/;z/

D .C.1/ � C.2//z � C.1/K† � 1 ;
ordfj

ˇ
ˇ
.C.1/;z/ � .C.1/ � C.2//z � C.1/K†; j > cC 1 ;

and let

cX

iD1
tifi C

X

j>c

aj.t/fj; t D .t1; : : : ; tc/ 2 .C c; 0/ ;

be a parameterization of V, where C.1/[C.2/ corresponds to the origin, and aj,
j > c are analytic functions vanishing at zero. Then

@acC1
@ti

.0/ ¤ 0 for all 1 � i � c with ordfi
ˇ
ˇ
.C.1/;z/

� .C.1/ �C.2//z�C.1/K†�2 :
(7)

Proof Let 	.i/ W P1 ! C.i/ ,! † be the normalization, pi D .	.i//�.z/, i D 1; 2.
Note that by Riemann–Roch

hk.P1;N 	.i/

P1
.�.�C.i/K† � 1/pi// D 0; k D 0; 1; i D 1; 2 ;

where N denotes the normal bundle of the corresponding map, and observe that
the codimension of Iz in O†;z equals c. The first statement of lemma follows.
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For the second statement, we note that a generic irreducible element C 2 V
satisfies

.C � C.1//Wz � C.1/C.2/ C .C.1//2 � .C.1/C.2/ � .C.1/ � C.2//z/
�..C.1//2 C C.1/K† C 2/ D .C.1/ � C.2//z � C.1/K† � 2 : (8)

Next, we choose i 2 f1; : : : ; cg as in (7) and take C 2 V given by the parameter
values ti D t, tj D ts with some s > 1 for all j 2 f1; : : : ; cg n fig. Then, if acC1 D
O.tm/ with m > 1, one encounters at least .C.1/ � C.2//z � C.1/K† � 1 intersection
points of C and C.1/ in Wz. Thus, (7) follows. �

(4) Geometry of arc spaces. Let† be a smooth projective surface. Given an integer
s � 0, denote by Arcs.†/ the vector bundle of s-arcs over † and by Arcsm

s .†/

the bundle of smooth s-arcs over † (particularly, Arc0.†/ D Arcsm
0 .†/ D †).

For any smooth curve C � †, we have a natural map arcs W C ! Arcsm
s .†/,

sending a point z 2 C to the s-arc at z defined by the germ .C; z/. The
following statement immediately follows from basic properties of ordinary
analytic differential equations:

Lemma 5 Let s � 1, U a neighborhood of a point z 2 †, and � a smooth section
of the natural projection prs W Arcsm

s .U/ ! Arcsm
s�1.U/. Then there exists a smooth

analytic curve ƒ passing through z, defined in a neighborhood V � U of z, and
such that arcs.ƒ/ � �.Arcsm

s�1.V//.

Now, let † be a smooth rational surface, n W P1 ! † an immersion, C D
n.P1/ 2 jDj, where �DK† D k > 0. Pick a point p 2 P

1 such that z D n. p/ is
a smooth point of C. Denote by U � Arck�1.†/ the natural image of the germ of
M0;1.†;D/ at Œn W P1 ! †; p�. Choose coordinates x; y in a neighborhood of z so
that z D .0; 0/, C D fy C xk D 0g, and introduce two one-parameter subfamilies
ƒ0 D .z0t; ˛0t/t2.C;0/ and ƒ00 D .z00t ; ˛00t /t2.C;0/ of Arck�1.†/:

z0t D .t; 0/; ˛0t D fy D .x � t/lg; z00t D .0; 0/; ˛00t D fy D txk�1g; t 2 .C; 0/ ;

where l > k.

Lemma 6 The germ U is smooth of codimension one in Arck�1.†/, and it
transversally intersects both ƒ0 andƒ00.

Proof It follows from Riemann–Roch and from Lemma 2(iii) that V admits the
following parameterization:

..x0; y0/; fyDy0 C a1.x � x0/C : : :C ak�2.x � x0/
k�2C'.x0; y0; a/.x � x0/

k�1g/ ;

x0; y0; a1; : : : ; ak�2 2 .C; 0/; a D .a1; : : : ; ak�2/; '.0/ D 0; @'

@x0
.0/ ¤ 0 :
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Thus, V is a smooth hypersurface. The required intersection transversality results
from a routine computation. �

3.2 Families of Curves and Arcs on Arbitrary del Pezzo
Surfaces

Let † be a smooth del Pezzo surface of degree 1, and D 2 Pic.†/ be an effective
divisor such that �DK† � 1 > 0. Fix positive integers n � �DK† � 1 and

s� �DK† � 1. Denote by V†n � †n the complement of the diagonals and by

Arcs. V†n/ the total space of the restriction to V†n of the bundle .Arcs.†//n ! †n. In

this section, we stratify the space Arcs. V†n/ with respect to the intersection of arcs
with rational curves in jDj, and we describe all strata of codimension zero and one.

Introduce the following spaces of curves: given .z;A / 2 Arcs. V†n/, z D
.z1; : : : ; zn/, A D .˛1; : : : ; ˛n/, and a sequence s D .s1; : : : ; sn/ 2 Z

n
>0 summing up

to jsj � s, put

M0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2M0;n.†;D/ W
n. pi/ D zi; n�.˛i/ � sipi; i D 1; : : : ; ng ;

M br
0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2M0;n.†;D; s; z;A / W

n is birational onto its imageg ;
M im

0;n.†;D; s; z;A / D fŒn W P1 ! †; p� 2M br
0;n.†;D; s; z;A / W

n is an immersiong ;
M

sing;1
0;n .†;D; s; z;A / D fŒn W P1 ! †; p� 2M br

0;n.†;D; s; z;A / W
n is singular in P

1 n p and smooth at pg ;
M

sing;2
0;n .†;D; s; z;A / D fŒn W P1 ! †; p� 2M br

0;n.†;D; s; z;A / W
n is singular at some point pi 2 pg :

We shall consider the following strata in Arcsm
s .
V†n/:

(i) The subset Uim.D/ � Arcsm
s .
V†n/ is defined by the following conditions:

For any sequence s D .s1; : : : ; sn/ 2 Z
n
>0 summing up to jsj � s and

for any element .z;A / 2 Uim.D/, where z D .z1; : : : ; zn/ 2 V†n, A D
.˛1; : : : ; ˛n/, ˛i 2 Arcs.†; zi/, the family M0;n.†;D; s; z;A / is empty if
jsj � �DK† and is finite if jsj D �DK† � 1. Furthermore, in the latter
case, all elements Œn W P1 ! †; p� 2M0;n.†;D; s; z;A / are represented by
immersions n W P1 ! † such that n�.˛i/ D sipi, 1 � i � n.
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(ii) The subset UimC .D/ � Arcsm
s .
V†n/ is defined by the following condition:

For any element .z;A / 2 UimC .D/, there exists s 2 Z
n
>0 with jsj � �DK† such

that M im
0;n.†;D; s; z;A / ¤ ;.

(iii) The subset Using
1 .D/ � Arcsm

s .
V†n/ is defined by the following condition:

For any element .z;A / 2 UimC .D/, there exists s 2 Z
n
>0 with jsj D �DK† � 1

such that M sing;1
0;n .†;D; s; z;A / ¤ ;.

(iv) The subset Using
2 .D/ � Arcsm

s .
V†n/ is defined by the following condition:

For any element .z;A / 2 Using
2 .D/, there exists s 2 Z

n
>0 with jsj D �DK† � 1

such that M sing;2
0;n .†;D; s; z;A / ¤ ;.

(v) The subset Umt.D/ � Arcsm
s .
V†n/ is defined by the following condition:

For any element .z;A / 2 Umt.D/, there exists s 2 Z
n
>0 with jsj D �DK† � 1

and Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A / such that n is a multiple cover of
its image.

Proposition 1

(1) The set Uim.D/ is Zariski open and dense in Arcsm
s .
V†n/.

(2) If U � UimC .D/ is a component of codimension one in Arcsm
s .
V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK†,

the set M im
0;n.†;D; s; z;A / is either empty or finite, and all of its elements Œn W

P
1 ! †; p� are presented by immersions and satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(3) If U � Using
1 .D/ is a component of codimension one in Arcsm

s .
V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK† � 1,

the set M sing;1
0;n .†;D; s; z;A / is either empty or finite, whose all elements Œn W

P
1 ! †; p� satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(4) If U � Using
2 .D/ is a component of codimension one in Arcsm

s .
V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK† � 1,

the set M sing;2
0;n .†;D; s; z;A / is either empty or finite, whose all elements Œn W

P
1 ! †; p� satisfy n�.zi/ D sipi, i D 1; : : : ; n.

(5) If U � Umt.D/ is a component of codimension one in Arcsm
s .
V†n/, then, for a

generic element .z;A / 2 U and any sequence s 2 Z
n
>0 with jsj D �DK† � 1,

the following holds: Each element Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A /

satisfying C0 D n.P1/ 2 jD0j, where D D kD0, k � 2, admits a factorization

n W P1 ��! P
1 	�! C0 ,! †

with � a k-multiple ramified covering, 	 the normalization, p0 D �. p/, for which
one has

Œ	 W P1 ! †; p0� 2M0;n.†;D
0; s0; z;A / ;

where js0j D �D0K†, and all branches 	
ˇ
ˇ
P1;p0

i
are smooth.
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Proof

(1) A general element of Œn W P1 ! †; p� 2 M0;n.†;D/ is represented by an
immersion sending p to n distinct points of † (cf. [12, Lemma 9(1ii)]). Let

.z;A / 2 Arcsm
s .
V†n/, and a sequence s D .s1; : : : ; sn/ 2 Z

n
>0 satisfy jsj D

�DK†�1. The fiber of the map arcs WM0;n.†;D/!Qn
iD1 Arcsm

si�1.†/, sending
an element Œn W P1 ! †; p� to the collection of arcs defined by the branches
njP1;pi , is either empty or finite. Indeed, otherwise, by Lemma 2(ii), we would
get a contradiction:

D2 � .D2 CDK† C 2/C jsj D D2 C 1 > D2 :

On the other hand,

dimM0;n.†;D/ D dim
nY

iD1
Arcsm

si�1.†/ D �DK† � 1C n ;

and hence the map arcs is dominant. It follows, that, for a generic element

.z;A / 2 Arcsm
s .
V†n/ and any sequence s 2 Z

n�0 such that jsj � s, one has:
M im

0;n.†;D; s; z;A / is empty if js � �DK† and M im
0;n.†;D; s; z;A / is finite

nonempty if jsj D �DK† � 1. The same argument proves Claims (2) and (3)
together with the fact that UimC .D/ and Using

1 .D/ have positive codimension in

Arcsm
s .
V†n/.

Next, we will show that the sets Using
2 .D/ and Umt.D/ have positive codimen-

sion in Arcsm
s .
V†n/, thereby completing the proof of Claim (1), and will prove

Claims (4) and (5).
(2) To proceed further, we introduce additional notations. Let

f W .C; 0/! .C; z/ ,! .†; z/ be the normalization of a reduced, irreducible
curve germ .C; z/, and let m0;m1; : : : be the multiplicities of .C; z/ and of its
subsequent strict transforms under blowups. We call this (infinite) sequence the
multiplicity sequence of f W .C; 0/! † and denote it m. f /. Note that, if z0 D z
and the infinitely near points z1; : : : ; zj, 0 � j � s, of .C; z/ belong to an arc
from Arcsm

s .†; z/, then m0 D : : : D mj�1 (see, for instance, [2, Chap. III]). Such
sequencesm0; : : : ;mj will be called smooth sequences. Given smooth sequences
mi D .m0i; : : : ;mj.i/;i/ such that jmij WD P

l mli � s, i D 1; : : : ; n, denote by
M0;n.†;D; fmigniD1/ the family of elements Œn W P1 ! †; p� 2 M0;n.†;D/
such that n is birational onto its image and m.njP1;pi/ contains mi for every
i D 1; : : : ; n. Put

Arcsm
s .
V†n;D; fmigniD1/ D f.z;A / 2 Arcsm

s .
V†n/ W there exists

Œn W P1 ! †; p� 2M0;n.†;D; fmigniD1/
such that n. p/ D z and n�.˛i/ � jmijpi; iD1; : : : ; ng
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(3) We now prove Claim (4) together with the fact that Using
2 .D/ has positive

codimension in Arcsm
s .
V†n/.

Let .z;A / be a generic element of a top-dimensional component U �
Using
2 .D/, a sequence s 2 Z

n
>0 satisfy jsj D �DK† � 1, and Œn W P1 !

†; p� 2M br
0;n.†;D; s; z;A / have singular branches among njP1;pi , i D 1; : : : ; n.

Let mi D .m0i; : : : ;mj.i/;0/ be a smooth multiplicity sequence of the branch
njP1;pi such that jmij � si. Denote by V the germ at Œn W P1 ! †; p� of a
top-dimensional component of M0;n.†;D; fmigniD1/. Without loss of generality,
we can suppose that M br

0;n.†;D; s; z;A / � M0;n.†;D; fmigniD1/ and U �
Arcsm

s .
V†n;D; fmigniD1/.

Note that Œn W P
1 ! †; p� is isolated in M br

0;n.†;D; s; z;A /. Indeed,
otherwise Lemma 2(ii) would yield a contradiction:

D2� .D2CDK†C2/C
nX

iD1
.m0i�1Cjmij/� .D2CDK†C2/Cjsj DD2C1 > D2 :

Next, we can suppose that m0i � 2 as 1 � i � r for some 1 � r � n and that
m0i D 1 for r < i � n.

Consider the case when jmij D si for all i D 1; : : : ; n. We claim that then

dimV �
nX

iD1
j.i/C nC r � 1 : (9)

If so, we would get

dimU �
nX

iD1
.s� j.i//C n� rC dimV � n.sC 2/� 1 D dim Arcsm

s .
V†n/� 1 ;

and the equality would yield .n0/�.z;A / D Pn
iD1 si D �DK† � 1 for each

element Œn0 W P1 ! †; p0� 2M sing;2
0;n .†;D; s; z;A / with generic .z;A / 2 U, as

required in Claim (3). To prove (9), we show that the assumption

dimV �
nX

iD1
j.i/C nC r (10)

leads to contradiction. Namely, we impose
Pn

iD1 j.i/ C n C r � 1 conditions,
defining a positive-dimensional subfamily of V containing Œn W P1 ! †; p�,
and apply Lemma 2. It is enough to consider the following situations:

(a) 1 � r < n;
(b) 1 < r D n, j.1/ > 0;
(c) 1 D r D n, j.1/ > 0, m01 > mj.1/;1;



288 E. Shustin

(d) r D n, j.1/ D : : : D j.n/ D 0;
(e) 1 D r D n, j.1/ > 0, m01 D : : : D mj.1/;1.

In case (a), we fix the position of zi and of the next j.i/ infinitely near points
for i D 1; : : : ; r, and the position of additional

Pn
iDrC1 j.i/C n � r � 1 smooth

points on C D n.P1/, obtaining a positive-dimensional subfamily of U and a
contradiction by Lemma 2:

D2 � .D2 CDK† C 2/C
rX

iD1
.m0i � 1C jmij/C

nX

iDrC1
j.i/C n � r � 1

D D2 C
rX

iD1
.m0i � 1/ > D2 :

In case (b), we fix the position of z and of additional infinitely near points:
j.1/ � 1 points for z1, and j.i/ points for all 2 � i � n. These conditions
define a positive-dimensional subfamily of U, which implies a contradiction by
Lemma 2:

D2 � .D2 C DK† C 2/C
rX

iD2
.m0i � 1C jmij/C .m01 � 1/C jm1j � mj.1/;1

� D2 C
nX

iD2
.m0i � 1/ > D2 :

In case (c), the same construction similarly leads to a contradiction:

D2 � .D2CDK†C2/C.m01�1/C
X

0�k<j.1/

mk1 � .D2CDK†C2/Cjm1j D D2C1 > D2 :

In case (d), we fix the position of zi, 1 < i � n and of one more smooth point
of C D n.P1/. Thus, Lemma 2, applied to the obtained positive-dimensional
family, yields a contradiction:

D2 � .D2CDK†C2/C
nX

iD1
.m0i�1/C

X

1<i�n
m0iC1 D D2C

X

1<i�n
.m0i�1/C1 > D2 :

In case (e), relation (10) reads dimV � j.1/C 2 D dim Arcj.1/.†/. As noticed
above, the map arcj.1/ W V ! Arcj.1/.†/ is finite. Hence, dimV D j.1/ C 2,
and (due to the general choice of � D Œn W P1 ! †; p� 2 V ) the germ .V ; �/
diffeomorphically maps onto the germ of Arcj.1/.†/ at �.�/. Observe that the
fragment .m01; : : : ;mj.1/;1;mj.1/C1;1/ of the multiplicity sequence of njP1;p is
a smooth sequence. That means, the map of .V ; �/ to Arcj.1/C1.†/ defines
a section � W .Arcj.1/.†/; �.�// ! Arcj.1/C1.†/, satisfying the hypotheses
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of Lemma 5. So, we take the curve ƒ, defined in Lemma 5, and apply
Lemma 2(iii):

D2 � .D2 C DK† C 2/C .m01 C : : :C mj.1/;1 C mj.1/C1;1/� 1
� .D2 C DK† C 2/C jm1j D D2 C 1 > D2 ;

which completes the proof of (9).
Consider the case when

Pn
iD1 jmij > �DK†�1 and show that then dimU �

dim Arcsm
s .
V†n/�2. The preceding consideration reduces the problem to the case

r D n and
nX

iD1
jmij �mj.n/;n < �DK† � 1 <

nX

iD1
jmij ;

in which we need to prove that

dimV �
nX

iD1
j.i/C 2n � 2 : (11)

We assume that

dimV �
nX

iD1
j.i/C 2n � 1 (12)

and derive a contradiction in the same manner as for (10). We shall separately
treat several possibilities:

(a) j.n/ D 0;
(b) j.n/ > 0.

In case (a), we fix the position of zi and of the additional j.i/ infinitely near
points for all i D 1; : : : ; n � 1, thereby cutting off V a positive-dimensional
subfamily, and hence by Lemma 2 we get a contradiction:

D2 � .D2 C DK† C 2/C
n�1X

iD1
.m0i � 1C jmij/Cm0n � 1

� .D2 C DK† C 2/C
nX

iD1
jmij � 1 � D2 C 1 > D2 :

In case (b), we again fix the position of zi and of the additional j.i/ infinitely
near points for all i D 1; : : : ; n � 1, thereby cutting off V a subfamily V 0 of
dimension � j.n/ C 1. Consider the map arcj.n/�1 W V 0 ! Arcj.n/�1.†/ and
note that dim Arcj.n/�1.†/ D j.n/ C 1 � dimV 0. If dim�.V 0/ � j.n/, fixing
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the position of zn and of j.n/ � 1 additional infinitely near points, we obtain a
positive-dimensional subfamily of V 0 and hence a contradiction by Lemma 2:

D2 � .D2 C DK† C 2/C
n�1X

iD1
.m0i � 1C jmij/C .m0n � 1/C jmnj � mj.n/;n

� .D2 C DK† C 2/C
nX

iD1
jmij � 1 � D2 C 1 > D2 :

If dim�.V 0/ D j.n/C1, the preceding argument yields that dimV 0 D j.n/C 1,
and we can suppose that the germ of V 0 at the initially chosen ele-
ment � D Œn W P1 ! †; p� 2 V is diffeomorphically mapped onto the
germ of Arcj.n/�1.†/ at arcj.n/�1.�/. Thus, we obtain a section � W
.Arcj.n/�1.†/; �.�// ! Arcj.n/.†/ defined by the map .V 0; �/ ! Arcj.n/.†/.
It satisfies the hypotheses of Lemma 5, which allows one to construct a smooth
curveƒ as in Lemma 5 and apply Lemma 2(iii):

D2 � .D2 C DK† C 2/C
n�1X

iD1
.m0i � 1C jmij/C jmnj � 1 � D2 C 1 > D2 ;

a contradiction.
The proof of Claim (4) is completed.

(4) It remains to consider the set Umt.D/. Let .z;A / 2 Umt.D/, s 2 Z
n
>0 satisfy

jsj D �DK† � 1, and Œn W P1 ! †; p� 2 M0;n.†;D; s; z;A / be such that n
is a k-multiple (ramified) covering of its image C D n.P1/, k � 2. We have
C 2 jD0j, where kD0 D D, and 	�.˛i/ � s0ip0i, ��. p0i/ � lipi, where lis0i � si for
all i D 1; : : : ; n. Since li � k for all i D 1; : : : ; n, it follows that

nX

iD1
s0i �
jsj
k
D �DK† � 1

k
D �D0K† � 1

k
> �D0K† � 1 :

This yields that Umt.D/ has positive codimension in Arcsm
s .
V†n/, and, further-

more, if not all branches 	
ˇ
ˇ
P1;p0

i
, i D 1; : : : ; n, are smooth, the codimension of

Umt.D/ in Arcsm
s .
V†n/ is at least 2. The proof of Claim (4) and thereby of Claim

(1) is completed. �
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3.3 Families of Curves and Arcs on Generic del Pezzo Surfaces

Let† be a smooth del Pezzo surface of degree 1 satisfying the following condition:
(GDP) There are only finitely many effective divisor classes D 2 Pic.†/

satisfying �DK† D 1, and for any such divisor D, the linear system jDj contains
only finitely many rational curves, all these rational curves are immersed, and any
two curves C1 ¤ C2 among them intersect in C1C2 distinct points.

By Itenberg et al. [12, Lemmas 9 and 10], these del Pezzo surfaces form an open
dense subset in the space of del Pezzo surfaces of degree 1.

Let us fix an effective divisor D 2 Pic.†/ such that �DK† � 1 � 3.

Proposition 2 In the notation of Sect. 3.2, let .z0;A0/ be a generic element of a

component U of Umt.D/ having codimension one in Arcsm
s .
V†n/, a sequence s 2 Z

n
>0

satisfy jsj D �DK†�1, and Œn0 W P1 ! †; p0� 2M0;n.†;D; s; z0;A0/ be such that
n0 covers its image with multiplicity k � 2 so that n0.P1/ 2 jD0j, where D D kD0,
and n0 D 	 ı � with 	 W P1 ! C0 the normalization, � W P1 ! P

1 a k-fold ramified

covering. Assume that .zt;At/ 2 Arcsm
s .
V†n/, t 2 .C; 0/, is the germ at .z0;A0/ of a

generic one-dimensional family such that .zt;At/ 62 Umt.D/ as t ¤ 0, and assume
that there exists a family Œnt W P1 ! †; pt� 2 M0;n.†;D; s; zt;At/ extending the
element Œn0 W P1 ! †; p0�. Then n D 3, k D 2, �D0K† D 3, s D .2; 2; 1/,
and Œ	 W P1 ! C0 ,! †; p00� 2 M0;3.†;D0; s0; z0;A0/, where p0 D �. p0/ and
s0 D .1; 1; 1/. Furthermore, the family Œnt W P1 ! †; pt�, t 2 .C; 0/, is smooth and
isomorphically projects onto the family .zt;At/, t 2 .C; 0/.
Proof Note, first, that by the assumption (GDP) and Proposition 1(2, 5), the map
n0 W P1 ! † is an immersion, and (in the notation of Proposition 1(5))

	�.˛i/ D s0ip0i; i D 1; : : : ; n;
nX

iD1
s0i D �D0K† : (13)

Furthermore, if C0 D n0.P1/ 2 jD0j, where D D kD0, then .D0/2 > 0, since the
assumption �DK† � 4 yields D2 � 2 by the adjunction formula. Hence, in the
deformation nt W P1 ! †, t 2 .C:0/, in a neighborhood of each singular point z of
C0, there appear singular points of Ct D nt.P1/, t ¤ 0, with total ı-invariant at least
k2ı.C0; z/, which implies

k2
�
.D0/2 C D0K†

2
C 1

�

� k2.D0/2 C kD0K†
2

C 1 ; (14)

and hence

� D0K† � 2kC 2
k

or, equivalently, � D0K† � 3 : (15)
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Let ��. p0i/ � lipi, i D 1; : : : ; n. We can suppose that k � l1 � : : : � ln. Then

X

iD1
lis
0
i � �kD0K† � 1 H)

nX

iD1
.li � 1/s0i � �.k � 1/D0K† � 1 : (16)

If l1 � k � 1, then (13) and (16) yield

�.k � 2/D0 � �.k � 1/D0K† � 1 H) �D0K† � 1 ;

forbidden by (15), and hence

l1 D k : (17)

By Riemann–Hurwitz,
P

i>1.li � 1/ � k � 1, and then it follows from (16) that

.k � 1/.�D0K† � .n � 1//C .k � 1/ � �.k � 1/D0K† � 1 ; (18)

or, equivalently

.n � 2/.k � 1/ � 1 ; (19)

which in view of Riemann–Hurwitz and (17)–(19) leaves the following options:

• either n D 1,
• or n D 2, s D .k.�D0K† � 1/; .k � 1//,
• or n D 2, s D .ks01; ks02/, s01 C s02 D �D0K†,
• or n D 3, s D .2.�D0K† � 2/; 2; 1/.
Let us show that s01 > 1 is not possible. Indeed, otherwise, in suitable local
coordinates x; y in a neighborhood of z1 in †, we would have z1 D .0; 0/,
C0 D fy D 0g, n0 W .P1; p1/ ! .†; z1/ acts by � 2 .C; 0/ ' .P1; p1/ 7! .� k; �/,
and we also may assume that the family of arcs ˛1;t is centered at z1 and given by
y D P

i�s01 ai.t/x
i with ai.0/ ¤ 0, i � s01. Then nt W .P1; p1;t/ ! .†; z1/ can be

expressed via � 2 .C; 0/ ' .P1; p1;t/ 7! .� k C tf .t; �/; tg.t; �//, which contradicts
the requirement n�t .˛1;t/ � .ks01 � 1/p1;t equivalently written as

t � g.t; �/ �
X

i�s01
ai.t/.�

k C tf .t; �//i mod .� k C tf .t; �//ks
0

1�1 ;

since the term as01 .0/�
ks01 does not cancel out here in view of k � 2.

Thus, in view of (15), we are left with n D 3, k D 2, s0 D .1; 1; 1/, and s D
.2; 2; 1/. Without loss of generality, for .zt;At/, t 2 .C; 0/, we can choose the family
consisting of two fixed points z1;0; z2;0 and fixed arcs ˛1;0; ˛2;0 (transversal to C0) and
of a point z3;� moving along the germƒ of a smooth curve transversally intersecting



On Welschinger Invariants of Descendant Type 293

C0 at z3;0 (� being a regular parameter on ƒ). We then claim that the evaluation

Œnt W P1 ! †; pt� 7! nt. p3:t/ D z3;�.t/

is one-to-one, completing the proof of Proposition 2. So, we establish the formulated
claim arguing on the contrary: If some point z3;� , � ¤ 0, has two preimages, then
the curves C1 D nt1 .P

1/, C2 D nt2 .P
1/ intersect with total multiplicity � 5 at

z1;0; z2:0; z3;� and intersect with multiplicity � ı.C0; z/ in a neighborhood of each
point z 2 Sing.C0/, which altogether leads to a contradiction:

C1C2 � 5C 4..D0/2CD0K†C 2/ D 5CD2 � 4 D D2C 1 : �

The compactification M 0;n.†;D; s; z;A / of the space M0;n.†;D; s; z;A / is
obtained by adding the elements Œn W bC! †; p�, where

• bC is a tree formed by k � 2 componentsbC.1/; : : : ;bC.k/ isomorphic to P
1;

• the points of p are distinct but allowed to be at the nodes ofeC;
• Œn W bC. j/ ! †;bC. j/ \ p� 2M0;jC. j/\pj.†;D. j/; s. j/; z;A /, where we suppose that

the integer vector s. j/ 2 Z
n�0 has coordinates s. j/i > 0 or s. j/i D 0 according as pi

belongs to bC. j/ or not, j D 1; : : : ; k;
•
Pk

jD1D. j/ D D, where D. j/ ¤ 0, j D 1; : : : ; k, and
Pk

jD1 s. j/ D s.

One can view this compactification as the image of the closure ofM0;n.†;D; s; z;A /

in the moduli space of stable maps M 0;n.†;D/ under the morphism, which
contracts the components of the source curve that are mapped to points. Notice
that in our compactification, the source curvesbC may be not nodal, and the marked
points may appear at intersection points of components of a (reducible) source
curve.

Introduce the set Ured.D/ � Arcsm
s .
V†n/ defined by the following condition: For

any element .z;A / 2 Ured.D/, there exists s 2 Z
n
>0 with jsj � �DK† � 1 such that

M 0;n.†;D; s; z;A / nM0;n.†;D; s; z;A / ¤ ;.

Proposition 3 The set Ured.D/ has positive codimension in Arcsm
s .
V†n/. Let .z;A /

be a generic element of a component of Ured.D/ having codimension one in

Arcsm
s .
V†n/, and let .zt;At/ 2 Arcsm

s .
V†n/, t 2 .C; 0/, be a generic family which

transversally intersects Ured.D/ at .z0;A0/ D .z;A /.

(1) Given any vector s 2 Z
n
>0 such that jsj D �DK† � 1, the set

M 0;n.†;D; s; z;A / nM0;n.†;D; s; z;A / is either empty or finite. Moreover,
let

Œn W bC! †; p� 2M 0;n.†;D; s; z;A / nM0;n.†;D; s; z;A /
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extend to a family

Œn� W bC� ! †; p� � 2M 0;n.†;D; s; z'.�/;A'.�//; � 2 .C; 0/ ; (20)

for some morphism ' W .C; 0/! .C; 0/. Then Œn W bC! †; p� is as follows:

(1i) either bC D C.1/ [ C.2/, where C.1/ ' C.2/ ' P
1, n.C.1// ¤ n.C.2//,

and

• the map n W bC. j/ ! † is an immersion and z \ Sing.C. j// D ; for
j D 1; 2,

• jp\bC.1/ \bC.2/j � 1,
• Œn W bC. j/ ! †; p \ bC. j/� 2 M

0;jp\bC. j/j.†;D
.1/; s. j/; z;A /, j D 1; 2,

where D.1/ C D.2/ D D, s.1/ C s.2/ D s, js.1/j D �D.1/K†, js.2/j D
�D.2/K† � 1, and, moreover, .njC. j//�.A / DPn

iD1 s
. j/
i pi for j D 1; 2;

(1ii) or n D 1, z D z1 2 †, A D ˛1 2 Arcsm
s .†; z/, p D p1 2 bC, D D kD0,

where k � 2 and �D0K† � 3, and the following holds
• bC consists of few components having p1 as a common point, and each

of them is mapped onto the same immersed rational curve C 2 jD0j;
• z1 is a smooth point of C, and .C � ˛1/ D �D0K†.

(1iii) or D D kD0CD00, where k � 2, �D0K† � 2, D00 ¤ 0,eC D eC0[ : : :[eC00,
where

• bC0 ' P
1, n W bC00 ! CX00 ,! † is an immersion, where C00 2 jD00j,

• the components of bC0 have a common point p1 and are disjoint from
p2; : : : ; pn, and each of them is mapped onto the same immersed
rational curve C0 2 jD0j,

• z1 is a smooth point of C0, and .C0 � ˛1/ D �D0K†.
(2) In case (1i),

• if p\bC.1/ \bC.2/ D ;, there is a unique family of type (20), and it is smooth,
parameterized by � D t;

• if bC.1/ \bC.2/ D fp1g, then there are precisely � D minfs.1/1 ; s.2/1 g families of
type (20), and for each of them t D ��=d, where d D gcd.s.1/1 ; s

.2/
1 /.

Proof If Œn W bC ! †; p� 2M 0;n.†;D; s; z;A / with a generic .z;A / 2 Arcsm
s .
V†n/

and bC consisting of m � 1 components, then by Propositions 1 and 2 one obtains

m D 1 and n immersion. Hence, Ured.D/ has positive codimension in Arcsm
s .
V†n/.

Suppose that .z;A / satisfies the hypotheses of proposition. Then the finiteness of
M 0;n.†;D; s; z;A / nM0;n.†;D; s; z;A / and the asserted structure of its elements
follows from Propositions 1 and 2, provided we show that

(a) There are no two componentsbC0;bC00 of bC such that n.bC0/ ¤ n.bC00/, n�.bC0/ 2
jD0j, n�.bC00/ 2 jD00j, and deg.njbC0

/�A � �D0K†, deg.njbC00

/�A � �D00K†,
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(b) In cases (1ii) and (1iii), we have inequalities �D0K† � 3 and �D0K† � 2,
respectively.

The proof of Claim (a) can easily be reduced to the case when njbC0

and njbC00

are
immersions, and deg.njbC0

/�˛1 D �D0K† D deg.njbC00

/�˛1 D �D00K†. However,
in such a case, the dimension and generality assumptions yield that there exists
the germ at C00 of the family of rational curves C00t 2 jD00j, t 2 .C; 0/, such that
.C00t � C0/yt � �D00K† for some family of points yt 2 .C0; z1/, t 2 .C; 0/, which
together with Lemma 2(iii) implies a contradiction:

.D00/2 � ..D00/2 C D00K† C 2/C .�D00K† � 1/ D .D00/2 C 1 :

Claim (b) in the case (1ii) follows from inequalities (14) and (15). In case (1iii), we
perform similar estimations. If the curvesC0 and C00 intersect at z1, then .C0 �C00/z1 D
minf�D0K†;�D00K† � 1g, and we obtain

.kD0 CD00/2 C .kD0 C D00/K†
2

C 1 � k2
�
.D0/2 C D0K†

2
C 1

�

Ck.D0D00 � .C0 � C00/z1/C
.D00/2 C D00K†

2
C 1

”
(
.k � 1/.�D0K†/C 2.�D00K† � 1/ � 2k; if � D0K† � �D00K† � 1;
.kC 1/.�D0K†/ � 2k; if � D0K† � �D00K† � 1

H) �D0K† � 2 :

If the curves C0 and C00 do not meet at z1, then we obtain

.kD0 CD00/2 C .kD0 C D00/K†
2

C 1 � k2
�
.D0/2 C D0K†

2
C 1

�

Ck.D0D00 � 1/C .D00/2 C D00K†
2

C 1 ” �D0K† � 2 :

Let us prove statement (2) of Proposition 3. If p \ bC.1/ \ bC.2/ D ;, then the
(immersed) curves C.1/ D n.bC.1// and C.2/ D n.bC.2// intersect transversally and
outside z, and the pointbz D bC.1/\bC.2/ is mapped to a node of C.1/[C.2/nz. Then the
uniqueness of the family Œnt W bCt ! †; pt�, t 2 .C; 0/, and its smoothness follows
from the standard properties of the deformation smoothing out a node (see, e.g.,
[12, Lemma 11(ii)]). Suppose now that the pointbC.1/ \bC.2/ belongs to p. We prove
statement (2) under condition n D 1, leaving the case n > 1 to the reader as a routine
generalization with a bit more complicated notations. Denote � WD s.1/1 D �D.1/K†,

� WD s.2/1 D �D.2/K† � 1. We have three possibilities:
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• Suppose that � < �. In suitable coordinates x; y in a neighborhood of z1 D .0; 0/,
we have

˛1 � y � x� mod ms
z1 ; C.1/ D fyC x� C h.o.t. D 0g; C.2/ D fy D 0g ;

where  ¤ 0 is generic. Without loss of generality, we can define the family of
arcs .zt;At/t2.C;0/ by zt D .t; 0/, At D fy � .x� t/� mod ms

ztg (cf. Lemma 6).
The ideal Iz1 from Lemma 6 can be expressed as hy2; yx��1; x�C�i. Furthermore,
by Lemma 6, for any family (20), the curves C� D n.bC� / 2 jDj are given, in a
neighborhood of z1, by

y2.1C O.x; y; c//C yx�.1C O.x; c//C �.c/yx��1

C
��2X

iD0
ci1.�/yx

i C
�C��1X

iD0
c0i.�/x

i C O.x�C�; c/ D 0 ; (21)

where c denotes the collection of variables fci1; 0 � i � � � 2; ci0; 0 � i �
� C � � 1g, the functions cij.�/ vanish at zero for all i; j in the summation range,
and �.0/ D 0. Changing coordinates x D x0 C t, where t D '.�/, we obtain the
family of curves

y2.1CO.x0; y; t; c//C y.x0/�.1C O.x0; t; c//C � 0y.x0/��1

C
��2X

iD0
c0i1y.x0/i C

�C��1X

iD0
c00i.x0/i C t � O..x0/�C�; t; c/ D 0 ; (22)

where

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

c0i1 D
P

0�u���2�i
�iCu

i

�
tuciCu;1 C

�
��1
i

�
t��1�i�

Ct��i
��
�

i

�C O.t/
�
C O.t��i; c/; i D 0; : : : ; � � 2;

c0i1 D
P

u�0
�iCu

i

�
tuciCu;0; i D 0; : : : ; � C � � 1;

� 0 D � C t.� C O.t; c//:

(23)

Next, we change coordinates y D y0 C .x0/� and impose the condition
.C� � .z'.�/;A'.�/// � � C �, which amounts in the following relations on the
variables c0 D fc0i1; 0 � i � � � 2; c0i0; 0 � i � � C � � 1g:
(

c0i0 D 0; i D 0; : : : ; �� 1; c0i0 C c0i��;1 D 0; i D l; : : : ; �C � � 2;
c0�C��1 C � 0 D 0:

(24)
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Fig. 1 Tropical limits: (a) the case � < �, (b) refinement, (c) the case � D �, (d) the case � > �

The new equation for the considered family of curves is then

F.x; y/ D .y0/2.1CO.x0; y0; t; c//C y0.x0/�.1C O.x0; t; c//

C.x0/�C�.aCO.x0; t; c//C y0
�P��2

iD0 c0i1.x0/i C � 0.x0/��1
�
D 0:

(25)

with some constant a ¤ 0. Consider the tropical limit of the family (25) (see
[14, Sect. 2.3] or Sect. 3.1). The corresponding subdivision of � must be as
shown in Fig. 1a. Indeed, first, c001 ¤ 0, since otherwise the curves C� would be
singular at zt contrary to the general choice of .zt;At/. Second, no interior point
of the segment Œ.0; 1/; .�; 1/� is a vertex of the subdivision, since otherwise the
curves C� would have a positive genus: The tropicalization of C� would then be a
tropical curve with a cycle which lifts to a handle ofC� (cf. [14, Sects. 2.2 and 2.3,
Lemma 2.1]). By a similar reason, the limit polynomial Fıini=y

0 D P�
iD0 c0i1.x0/i,

where ı is the segment Œ.0; 1/; .�; 1/�, must be the �-th power of a binomial.
The latter conclusion and relations (22) and (23) yield that NF.i; 1/ D � � i for
i D 0; : : : ; � and

c0i1 D t��i.c0i1 C c00i1.t//; i D 0; : : : ; � � 2; c0�C��1;0 D t.c0�C��1;0 C c00�C��1;0/ ;

where c0i1, i D 0; : : : ; � � 2, and c0�C��1;0 are uniquely determined by the given
data, the functions c00i1, 0 � i � � �2, vanish at zero, and c00�C��1;0 is a function of
t and c00i1, 0 � i � � � 2, that is determined by the given data and vanishes at zero
too. To meet the condition of rationality of C� and to find the functions c00i1.t/, 0 �
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i � � � 2, we perform the refinement procedure as described in [14, Sect. 3.5]. It
consists in further coordinate change and tropicalization, in which one encounters
a subdivision containing the triangle Convf.0; 0/; .0; 2/; .�; 1/g (see Fig. 1b). The
corresponding convex piecewise linear function N0 is linear along that triangle
and takes values N0.0; 2/ D N0.�; 1/ D 0, N0.0; 0/ D � � �. By Shustin [14,
Lemma 3.9 and Theorem 5], there are � distinct solutions fc00i1.t/; 0 � i � � � 2g
of the rationality relation. More precisely, the initial coefficient .c00i1/0 is nonzero
only for 0 � i � ��2, i � � mod 2. The common denominator of the values of
N0 at these point is �=d, where d D gcd.�; �/, and hence c00i1 are analytic functions
of td=� . It follows thereby that t D ��=d.

• Suppose that � D � (see Fig. 1c). In this situation, the argument of the preceding
case � < � applies in a similar way and, after the coordinate change x D x0 C t,
y D y0 C .x0/� , leads to Eq. (25), whose Newton polygon is subdivided with
a fragment Convf.0; 1/; .0; 2/; .2�; 0/g on which the function NF is linear with
values NF.0; 2/ D NF.2�; 0/ D 0, NF.0; 1/ D �. By Lemma 1, we get � solutions
fc0i1.t/; i D 0; : : : ; � � 2g, which are analytic functions of t. Then, in particular,
t D � .

• Suppose that � > �. In suitable coordinates x; y in a neighborhood of z1 D .0; 0/,
we have

˛1 � y mod ms
z1 ; C.1/ D fyC x� CO.x�C1/ D 0g; C.2/ D fyC x� D 0g ;

where  ¤ 0. Without loss of generality, we can define the family of arcs
.zt;At/t2.C;0/ by zt D .0; 0/, At D fy � tx��1 mod ms

z1g (cf. Lemma 6). The
ideal Iz1 from Lemma 6 can be expressed as hy2; yx� ; x�C��1i. Thus, by Lemma 6,
for any family (20), the curves C� D n.bC� / 2 jDj are given in a neighborhood of
z1 by

y2.1C O.x; y; c//C yx�.1C O.x; c//C x�C�.1C O.x; c//

C�.c/x�C��1 C
��1X

iD0
ci1.�/yx

i C
�C��2X

iD0
c0i.�/x

i D 0 ; (26)

where c now denotes the collection of variables fci1; 0 � i � ��1; ci0; 0 � i �
� C � � 2g, the functions cij.�/ vanish at zero for all i; j in the summation range,
and �.0/ D 0. Inverting t D '.�/, changing coordinates y D y0 C tx��1, and
applying the condition .C� �A'.�// � kC l, we obtain an equation of the curves
C� in the form

F.x; y0/ D .y0/2.1C O.t; x; y0; c0//C y0x�.1C O.t; x; c0//

Cx�C�.1C O.t; x; c0//C
��1X

iD0
ci1.t/y

0xi D 0 ; (27)



On Welschinger Invariants of Descendant Type 299

where c0 D fci1; 0 � i � � � 1g, and the following relations must hold:

8
ˆ̂
<

ˆ̂
:

ci0 D 0; i D 0; : : : ; � � 2;
ci0 C tci��C1;1 D 0; i D � � 1; : : : ; �C � � 2;
� C t.1CO.t; c0// D 0 :

(28)

By Lemma 4(2), @�
@c��1;1

.0/ ¤ 0. The rationality of the curves C� yields that the

subdivision SF of the Newton polygon of F.x; y0/ given by (27) must contain
two triangles Convf.0; 1/; .�; 1/; .0; 2/g and Convf.0; 1/; .�; 1/; .� C �; 0/g (see
Fig. 1d), and, furthermore, Fıini=y

0 must be the �-th power of a binomial, where
ı D Œ.0; 1/; .�; 1/� (cf. the argument in the treatment of the case � < � above).
These two conclusions and Eq. (28) uniquely determine the initial coefficients c0i1
as well as the values NF.i; 1/ D �� i for all i D 0; : : : ; �� 1, and leave the final
task to find the functions c00i1.t/, i D 0; : : : ; � � 2, which appear in the expansion
ci1.t/ D t��i.c0i1 C c00i1.t//, i D 0; : : : ; � � 2 (notice here that the last equation
in (28) allows one to express c00��1;1 via c00i1, i D 0; : : : ; � � 2). To this extent, we
again use the argument of the case � < �, performing the refinement procedure
along the edge ı D Œ.0; 1/; .�; 1/� (see [14, Sect. 3.5]) and apply the rationality
requirement to draw the conclusion: There are exactly � families (20), and, for
each of them, t D ��=d, where d D gcdf�; �g.

Statement (2) of proposition is proven. �

3.4 Families of Curves and Arcs on Uninodal del Pezzo
Surfaces

A smooth rational surface † is called a uninodal del Pezzo surface if there exists
a smooth rational curve E � † such that E2 D �2 and �CK† > 0 for each
irreducible curve C � † different from E. Observe that EK† D 0. Denote by
PicC.†;E/ � Pic.†/ the semigroup generated by irreducible curves different from
E. Assume that † is of degree 1 and fix D 2 PicC.†;E/ such that �DK† � 1 � 3.
Fix positive integers n � �DK† � 1 and s� �DK† � 1.

Accepting notations of Sect. 3.2, we introduce the set Uim.D;E/ � Arcsm
s .
V†n/

is defined by the following conditions. For any sequence s D .s1; : : : ; sn/ 2 Z
n
>0

summing up to jsj � s and for any element .z;A / 2 Uim.D;E/, where z D
.z1; : : : ; zn/ 2 V†n, z \ E D ;, A D .˛1; : : : ; ˛n/, ˛i 2 Arcs.†; zi/, the family
M im

0;n.†;D; s; z;A / is empty if jsj � �DK† and is finite if jsj D �DK† � 1.
Furthermore, in the latter case, all elements Œn W P1 ! †; p� 2M0;n.†;D; s; z;A /

are represented by immersions n W P1 ! † such that n�.˛i/ D sipi, 1 � i � n, and
n�.E/ consists of DE distinct points.
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Proposition 4 The set Uim.D;E/ is Zariski open and dense in Arcsm
s .
V†n/.

Proof The statement that Uim.D/ is Zariski open and dense in Arcsm
s .
V†n/ can be

proved in the same way as Proposition 1(1). We will show that Uim.D;E/ is dense
in Uim.D/, since the openness of Uim.D;E/ is evident. For, it is enough to show
that any immersion n W P1 ! † such that n�.P1/ D D can be deformed into an
immersion with an image transversally crossing E at DE distinct points.

Suppose, first, that a generic element Œn W P1 ! †� 2M0;0.†;D/ is such that the
divisor n�.E/ � P

1 contains an m-multiple point, m � 2. Since dimM0;0.†;D/ D
�DK† � 1 � 3, we fix the images of �DK† � 2 points pi, i D 1; : : : ;�DK† �
2, obtaining a one-dimensional subfamily of M0;0.†;D/, for which one derives a
contradiction by Lemma 2(iii):

D2 � .D2 CDK† C 2/C .�DK† � 2/C .m � 1/ D D2 C m � 1 > D2 :

Hence, for a generic Œn W P1 ! †� 2 M0;0.†;D/, the divisor n�.E/ consists of
DE distinct points. Suppose that m � 2 of them are mapped to the same point in E.
Fixing the position of that point on E, we define a subfamily V � M0;0.†;D/ of
dimension

dimV � dimM0;0.†;D/� 1 D �DK† � 2 � 2 :

As above, we fix the images of �DK† � 3 additional point of P1 and end up with a
contradiction due to Lemma 2(ii):

D2 � .D2 C DK† C 2/C .�DK† � 3/C m D D2 C m � 1 > D2

�

Let X ! .C; 0/ be a smooth flat family of smooth rational surfaces such that
X0 D † is a nodal del Pezzo surface with the .�2/-curve E and Xt, t ¤ 0, are
del Pezzo surfaces. We can naturally identify Pic.Xt/ ' Pic.†/, t 2 .C; 0/. Fix a
divisor D 2 PicC.†;E/ such that �DK†�1 � 3. Given n � 1 and s� �DK†�1,
fix a vector s 2 Z

n
>0 such that jsj D �DK† � 1. Denote by Arcsm

s .X/ ! X !
.C; 0/ the bundle with fibres Arcsm

s .Xt/, t 2 .C; 0/. Pick n disjoint smooth sections
z1; : : : ; zn W .C; 0/! X covered by n sections ˛1; : : : ; ˛n W .C; 0/! Arcsm

s .X/ such
that .z.0/;A .0// 2 Uim.†;E/, and .z.t/;A .t// 2 Uim.Xt/, t ¤ 0.

Proposition 5 Each element Œ	 W bC ! †; p� 2 M0;n.†;D; s; z.0/;A .0// such
that

• either bC ' P
1, or bC D bC0 [bE1 [ : : : [bEk for some k � 1, where bC0 ' bE1 '

: : : ' bEk ' P
1,bEi\bEj D ; for all i ¤ j, and #.bC0\bEi/ D 1 for all i D 1; : : : ; k;

• p � bC0 and Œ	 W bC0 ! †; p� 2 M im
0;n.†;D � kE; s; z.0/;A .0//, and each of the

bEi is isomorphically taken onto E;
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extends to a smooth family Œ	t W bCt ! Xt; z.t/� 2 M0;n.Xt;D; s; z.t/;A .t//, t 2
.C; 0/, where bCt ' P

1 and 	t is an immersion for all t ¤ 0, and, furthermore, each
element of M0;n.Xt;D; s; z.t/;A .t//, t 2 .C; 0/ n f0g is included into some of the
above families.

Proof The statement follows from [16, Theorem 4.2] and from Proposition 4, which
applies to all divisors D � kE, since �.D � kE/K† D �DK† for any k. �

4 Proof of Theorem 1

By blowing up additional real points if necessary, we reduce the problem to
consideration of del Pezzo surfaces X of degree 1.

(1) To prove the first statement of Theorem 1, it is enough to consider only
del Pezzo surfaces satisfying property (GDP) introduced in Sect. 3.3 (cf. [12,
Lemma 17]) and real divisors satisfying �DKX � 1 � 3 (cf. Remark 1(1)).
So, let a real del Pezzo surface X satisfy property (GDP) and have a nonempty
real part. Let F � RX be a connected component. Denote by Pr;m.X;F/ the
set of sequences .z;w/ of n D r C 2m distinct points in † such that z is a
sequence of r points belonging to the component F � RX, and w is a sequence
of m pairs of complex conjugate points. Fix an integer s � �DKX and denote
by RArcsm

s .X;F; r;m/ � Arcsm
s .
VXn/ the space of sequences of arcs .A ;B/

centered at .z;w/ 2 Pt;m.X;F/ such that A D .˛1; : : : ; ˛r/ is a sequence of
real arcs ˛i 2 Arcs.X; zi/, zi 2 z, i D 1; : : : ; r, and B D .ˇ1; ˇ1; : : : ; ˇm; ˇm/

is a sequence of m pairs of complex conjugate arcs, where ˇi 2 Arcs.X;wi/,
ˇi 2 Arcs.X;wi/, i D 1; : : : ;m, and w D .w1;w1; : : : ;wm;wm/.

We join two elements of RArcs.X;F; r;m/ \ Uim.D/ by a smooth real
analytic path … D f.zt;wt/; .At;Bt/gt2Œ0;1� in RArcs.X;F; r;m/ and show that
along this path, the function W.t/ WD W.X;D;F; '; .k; l/; .zt;wt/; .At;Bt//,
t 2 Œ0; 1�, remains constant. By Propositions 1 and 3, we need only to verify the
required constancy when the path … crosses sets UimC .D/, U

sing
1 .D/, Using

2 .D/,
Umt.D/, and Ured.D/ at generic elements of their components of codimension 1
in Arcsm

s .
VXn/. Let t� 2 .0; 1/ correspond to the intersection of … with some of

these walls.
If is clear that crossing of the wall UsmC .D/\RArcs.X;F; r;m/ does not affect

W.X;D;F; '; .k; l/; .zt;wt/; .At;B/t/.
The constancy of W.t/ in a crossing of the wall Using

1 .D/\RArcs.X;F; r;m/
follows from Proposition 1(3) and [12, Lemmas 13(2), 14 and 15]. The
transversality hypothesis in [12, Lemma 15] can be proved precisely as [12,
Lemma 13(1)].

The constancy of W.t/ in a crossing of the wall Using
2 .D/\RArcs.X;F; r;m/

follows from Proposition 1(4) and Lemma 3.
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The constancy of W.t/ in a crossing of the wall Umt.D/ \RArcs.X;F; r;m/
follows from Propositions 1(5) and 2. Indeed, by Proposition 2 exactly one real
element of the set M0;n.X;D; .k; l/; .zt;wt/; .At;Bt// undergoes a bifurcation.
Furthermore, the ramification points of the degenerate map n W P1 ! X are
complex conjugate. Hence, the real part of a close curve doubly covers the real
part of C D n.P1/, which means that the number of solitary nodes is always
even.

At last, the constancy of W.t/ in a crossing of the wall Ured.D/ \
RArcs.X;F; r;m/ we derive from Proposition 3. Notice that the points p1 2 bC
and z1 2 X must be real, and hence the cases (1ii) and (1iii) are not relevant,
since we have the lower bound �kD0KX � 2k � 4 contrary to (5). In the case
(1i), we use Proposition 3(2):

• if p \ bC.1/ \ bC.2/ D ;, then the germ of the real part of the family (20)
is isomorphically mapped onto the germ .R; t�/ so that the central curve
deforms by smoothing out a node both for t > t� and t < t�, and hence W.t/
remains unchanged;

• if p \bC.1/ \ C.2/ D fp1g, then p1 2 P
1 and z1 2 X must be real, and hence

� C � must be odd, in particular, d D gcdf�; �g is odd too, where � D s.1/1 ,

� D s.2/1 ; if � D minf�; �g is odd, then the real part of each real family (20) is
homeomorphically mapped onto the germ .R; t�/, and, in the deformation of
the central curve both for t > t� and t < t�, one obtains in a neighborhood of
z1 an even number of real solitary nodes, which follows from Lemma 1(2);
if � is even, then either the real part of a real family (20) is empty or the
real part of a real family (20) doubly covers one of the halves of the germ
.R; t�/, so that in one component of .R; t�/ n ft�g, one has no real curves
in the family (20), and in the other component of .R; t�/ n ft�g, one has a
couple or real curves, one having an odd number � � 1 real solitary nodes,
and the other having no real solitary nodes [see Lemma 1(2)], and hence
W.t/ remains constant in such a bifurcation.

(2) By Itenberg et al. [12, Proposition 1], in a generic one-dimensional family of
smooth rational surfaces of degree 1 all but finitely many of them are del Pezzo
and the exceptional one are uninodal. Hence, to prove the second statement of
Theorem 1 it is enough to establish the constancy of

W.t/ D W.Xt;D;Ft; '; .k; l/; .z.t/;w.t//; .A .t/;B.t///

in germs of real families X ! .C; 0/ as in Proposition 5, where the parameter
is restricted to .R; 0/ � .C; 0/. It follows from Proposition 5 that the number of
the real curves in count does not change, and real solitary nodes are not involved
in the bifurcation. Hence, W.t/ remains constant.
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5 Examples

We illustrate Theorem 1 by a few elementary examples. Consider the case of plane
cubics, for which new invariants can easily be computed via integration with respect
to the Euler characteristic in the style of [3, Proposition 4.7.3].

Let r1C 3r3C 2.m1C 2m2C 3m3C 4m4/ D 8, where r1; r3;m1;m2;m3;m4 � 0.
Define integer vectors k D .r1 � 1; r3 � 3/, l D .m1 � 1;m2 � 2;m3 � 3;m4 � 4/.
Denote by L the class of line in Pic.P2/. Then

W.P2; 3L; .k; l// D r1 � r3 :

As compared with the case of usual Welschinger invariants, in the real pencil of
plane cubics meeting the intersection conditions with a given collection of arcs, in
addition to real rational cubics with a node outside the arc centers, one encounters
rational cubics with a node at the center of an arc of order 3. Notice that this real
node is not solitary since one of its local branches must be quadratically tangent to
the given arc. We also remark that, in a similar computation for a collection of arcs
containing a real arc of order 2, one also encounters rational cubics with a node at
the center of such an arc, but this node can be solitary or non-solitary depending
on the given collection of arcs, and hence the count or real rational cubics will also
depend on the choice of a collection of arcs.

Of course, the same argument provides formulas for invariants of any real del
Pezzo surface and D D �K, or, more generally, for each effective divisor with
pa.D/ D 1.

We plan to address the computational aspects in detail in a forthcoming paper.
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Abstract In case of one-dimensional singular locus, we use deformations in order
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1 Introduction and Results

We study the topology of Milnor fibres F of function germs on C
nC1 with a one-

dimensional singular set. Well known is that F is a .n� 2/ connected n-dimensional
CW complex. What can be said about Hn�1.F/ and Hn.F/? In this paper we use
deformations in order to get information about these groups. It turns out that the
constraints on F yield only small numbers bn�1.F/, for which we give upper bounds
which are in general sharper than the known ones from [9]. We pay special attention
to classes of singularities where Hn�1.F/ D 0, where the homology is concentrated
in the middle dimension.

The admissible deformations of the function have a singular locus † consisting
of a finite set R of isolated points and finitely many curve branches. Each branch
†i of † has a generic transversal type (of transversal Milnor fibre Ft
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number denoted by �t
i ) and also contains a finite set Qi of points with non-generic

transversal type, which we call special points. In the neighbourhood of each such
special point q 2 †i with Milnor fibre denoted by Aq, there are two monodromies
which act on Ft

i : the Milnor monodromy of the local Milnor fibration of Ft
i and the

vertical monodromy of the local system defined on the germ of †i n fqg at q.
In our topological study, we work with homology over Z (and therefore we

systematically omit Z from the notation of the homology groups). We provide a
detailed expression for Hn�1.F/ through a topological model of F from which we
derive some results that we roughly outline here:

(a) If for every component †i there exist one vertical monodromy As, which has
no eigenvalues 1, then bn�1.F/ D 0. More generally, bn�1.F/ is bounded by
the sum, taken over the components, of the minimum (over that component) of
dim ker.As � I/ (Theorem 4.4).

(b) Assume that for each irreducible component†i, there is a special singularity at
q such that Hn�1.Aq/ D 0. Then Hn�1.F/ D 0.

More generally, let Q0 WD fq1; : : : ; qmg � Q be a subset of special points
such that each branch†i contains at least one of its points. Then (Theorem 4.6b)

bn�1.F/ � dimHn�1.Aq1 /C � � � C dimHn�1.Aqm/:

Note that the choice of a good subset of special points may yield the sharpest bound.
In [12] we have studied the vanishing homology of projective hypersurfaces with

a one-dimensional singular set. Similar type of methods work in the local case.
We keep the notations close to those in [12] and refer to it for the proof of certain
results. In the proof of the main theorems, we use the Mayer–Vietoris theorem to
study local and (semi)global contributions separately. We construct a CW complex
model of two bundles of transversal Milnor fibres (in Sects. 3.5 and 3.6) and their
inclusion map (Sect. 4). Moreover we use the full strength of the results on local
one-dimensional singularities [6, 8–10], cf also [4, 5, 14, 17].

We discuss known results such as De Jong’s [1] and also compute several new
examples in Sect. 5.

2 Local Theory of One-Dimensional Singular Locus

We work with local data of function germs with one-dimensional singular locus and
recall some facts from [9, 10] and [11, 12].

Let f W .CnC1; 0/ ! .C; 0/ be a holomorphic function germ with singular locus
† of dimension 1, and let † D S

i2I †i be its decomposition into irreducible curve
components. Let E WD B"\f�1.Dı/ be the Milnor neighbourhood and F be the local
Milnor fibre of f , for small enough " and ı. The only non-trivial reduced homology
groups are Hn.F/ D Z

�n , which is free, and Hn�1.F/ which can have torsion.
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There is a well-defined local system on†i n f0g having as fibre the homology of
the transversal Milnor fibre QHn�1.Ft

i /, whereFt
i is the Milnor fibre of the restriction

of f to a transversal hyperplane section at some x 2 †i n f0g. This restriction has
an isolated singularity whose equisingularity class is independent of the point x
and of the transversal section, in particular QH�.Ft

i / is concentrated in dimension
n � 1. It is on this group that acts the local system monodromy (also called vertical
monodromy):

Ai W QHn�1.Ft
i /! QHn�1.Ft

i /:

After [9], one considers a tubular neighbourhood N WD Fm
iDNi of the link of †

and decomposes the boundary @F WD F\@B" of the Milnor fibre as @F D @1F[@2F,

where @2F WD @F \N . Then @2F D
mG

iD1
@2Fi, where @2Fi WD @2F \Ni.

Each boundary component @2Fi is fibred over the link of †i with fibre Ft
i . Let

then Et
i denote the transversal Milnor neighbourhood containing the transversal

fibre Ft
i , and let @2Ei denote the total space of its fibration above the link of †i.

Therefore,Et
i is contractible and @2Ei retracts to the link of†i. The pair .@2Ei; @2Fi/

is related to Ai�I via the following exact relative Wang sequence ([12], Lemma 3.1)
(n � 2):

0! HnC1.@2Ei; @2Fi/! Hn.E
t
i ;F

t
i /

Ai�I! Hn.E
t
i ;F

t
i /! Hn�1.@2Ei; @2Fi/! 0:

(1)

3 Deformation and Vanishing Homology

3.1 Admissible Deformations

Consider a one-parameter family fs W .CnC1; 0/ ! .C; 0/ where f0 D Of W
.CnC1; 0/ ! .C; 0/ is a given germ with singular locus O† of dimension 1, with
Milnor data . OE; OF/ and similar notations for all the other objects defined in Sect. 2.
We use the notation with “hat” since we reserve the notation without “hat” for the
deformation fs.

We fix a ball B WD B" � C
nC1 centred at 0 and a disc � WD �ı � C at

0 such that for small enough radii " and ı, the restriction to the punctured disc
Ofj W B \ .Of /�1.��/! �� is the Milnor fibration of Of .

We say that the deformation fs is admissible if it has good behaviour at the
boundary, i.e. if for small enough s, the family fsj W @B \ f�1s .�/ ! � is stratified
topologically trivial. Such a situation occurs, e.g. in the case of an “equi-transversal
deformation” considered in [2].
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We choose a value of s which satisfies the above conditions and write from now
on f WD fs. It then follows that the pair .E;F/ WD .B \ f�1.�/; f�1.b//, where
b 2 @�, is topologically equivalent to the Milnor data . OE; OF/ of Of . Note that for f , we
consider the semi-local singular fibration inside B and not just its Milnor fibration
at the origin.

Let† � B be the one-dimensional singular part of the singular set Sing . f / � B.
The circle boundaries @B \ O† of O† can be identified with the circle boundaries
@B\† of †. Also the corresponding vertical monodromies are the same. Note that
O† and † can have a different number of irreducible components.

3.2 Notations

We use notations similar to [12] (cf also Fig. 1).
A point q on † is called special if the transversal Milnor fibration is not a trivial

local system in the neighbourhood of q.

Fig. 1 Admissible deformation
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Qi WD the set of special points on†i; Q WD [i2IQi,
R WD the set of isolated singular points; R D R0 [ R1, where R0 is the set of
critical points on f�1.0/ and R1 the set of critical points outside f�1.0/,
Bq;Br = small enough disjoint Milnor balls within E at the points q 2 Q; r 2 R
resp.
BQ WDFq Bq and BR WDFr Br, and similar notation for BR0 and BR1 ,
†�i WD †i n int.BQ/; †� D [i2I†�i (closed sets),
Ui WD small enough tubular neighbourhood of †�i ; U D [iUi,
�† W U ! †� is the projection of the tubular neighbourhood.
T D ff .r/jr 2 Rg[ff .†/g is the set of critical values of f and we assume without
loss of generality that f .†/ D 0.

Let f�tgt2T be a system of nonintersecting small discs�t around each t 2 T. For
any t 2 T, choose t0 2 @�t. If t D f .r/ then we denote by t0.r/ the point t0 2 �f .r/.
For t D 0 we use the notations t0 and t00, respectively.

Let Er D Br \ f�1.�f .r// and Fr D Br \ f�1.t0.r// be the Milnor data of the
isolated singularity of f at r 2 R. We use next the additivity of vanishing homology
with respect to the different critical values and the connected components of Sing f .
By homotopy retraction and by excision, we have

H�.E;F/ ' ˚t2TH�.. f�1.�t/; f
�1.t0// D (2)

D ˚r2R0H�.Er;Fr/˚ H�.E0;F0/˚˚r2R1H�.Er;Fr/; (3)

where .E0;F0/ D . f�1.�0/ \ .U [ BQ/; f�1.t00/ \ .U [ BQ/. We introduce the
following shorter notations:

.Xq;Aq/ WD . f�1.�0/\ Bq; f
�1.t00/\ Bq/

X D
G

Q

Xq ; A D
G

Q

Aq

Y D U \ f�1.�0/ ; B WD f�1.t00/ \ Y

Z WD X \ Y ; C WD A\ B

In these new notations, we have

H�.E;F/ ' H�.X [ Y;A [ B/˚˚r2RH�.Er;Fr/: (4)

Note that each direct summand H�.Er;Fr/ is concentrated in dimension nC 1 since
it identifies to the Milnor lattice Z

�r of the isolated singularities germs of f � f .r/
at r, where �r denotes its Milnor number. We deal from now on with the term
H�.X [ Y;A [ B/ from the direct sum of (4).
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We consider the relative Mayer–Vietoris long exact sequence:

� � � ! H�.Z; C/! H�.X ;A/˚ H�.Y;B/! H�.X [ Y;A [ B/ @s! � � � (5)

of the pair .X [ Y;A [ B/, and we compute each term of it in the following. The
description follows closely [12] where we have treated deformations of projective
hypersurfaces.

3.3 Homology of .X ;A/

Since X is a disjoint union, one has the direct sum decomposition H�.X ;A/ '
˚q2QH�.Xq;Aq/. The pairs .Xq;Aq/ are local Milnor data of the hypersurface
germs . f�1.t0/; q/ with one-dimensional singular locus, and therefore the relative
homology H�.Xq;Aq/ is concentrated in dimensions n and nC 1, cf Sect. 2.

3.4 Homology of .Z;C/

The pair .Z; C/ is a disjoint union of pairs localized at points q 2 Q. For such points
we have one contribution for each locally irreducible branch of the germ .†; q/. Let
Sq be the index set of all these branches at q 2 Q. By abuse of notation, we write
s 2 Sq for the corresponding small loops around q in †i. For some q 2 †i1 \ †i2 ,
the set of indices Sq runs over all the local irreducible components of the curve germ
.†; q/. Nevertheless, when we are counting the local irreducible branches at some
point q 2 Qi on a specified component †i, then the set Sq will tacitly mean only
those local branches of †i at q. We get the following decomposition:

H�.Z; C/ ' ˚q2Q ˚s2Sq H�.Zs; Cs/: (6)

More precisely, one such local pair .Zs; Cs/ is the bundle over the corresponding
component of the link of the curve germ † at q having as fibre the local transversal
Milnor data .Et

s ;F
t
s /, with transversal Milnor numbers denoted by �t

s . These data
depend only on the branch †i containing s, and therefore if s � †i we sometimes
write .Et

i ;F
t
i / and �t

i . In the notations of Sect. 2, we have @2Aq DFs2Sq Cs.
The relative homology groups in the above direct sum decomposition (6) depend

on the local system monodromy As via the Wang sequence (1) which takes here the
following shape:

0! HnC1.Zs; Cs/! Hn.E
t
s ;F

t
s /

As�I! Hn.E
t
s ;F

t
s /! Hn.Zs; Cs/! 0: (7)
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From this we obtain:

Lemma 3.1 At q 2 Q, for each s 2 Sq one has Hk.Zs; Cs/ D 0, k 6D n; nC 1 and

HnC1.Zs; Cs/ Š ker .As � I/; Hn.Zs; Cs/ Š coker .As � I/:

�

We therefore conclude that H�.Z; C/ is concentrated in dimensions n and nC 1
only.

3.5 The CW Complex Structure of .Z;C/

The pair .Zs; Cs/ has the following structure of a relative CW complex, up to
homotopy type. Each bundle over some circle link can be obtained from a trivial
bundle over an interval by identifying the fibres above the end points via the
geometric monodromy As. In order to obtain Zs from Cs, one can start by first
attaching n-cells c1; : : : ; c�t

s
to the fibre Ft

s in order to kill the �t
s generators of

Hn�1.Ft
s / at the identified ends and next by attaching .nC1/-cells e1; : : : ; e�t

s
to the

preceding n-skeleton. The attaching of some .nC 1/-cell goes as follows: consider
some n-cell a of the n-skeleton and take the cylinder I � a as an .nC 1/-cell. Fix an
orientation of the circle link, attach the base f0g � a over a, then follow the circle
bundle in the fixed orientation by the monodromy As and attach the end f1g�a over
As.a/. At the level of the cell complex, the boundary map of this attaching identifies

to As � I W Z�t
s ! Z

�t
s .

3.6 The CW Complex Structure of .Y;B/

The curve †i has as boundary components the intersection @B \ †i with the small
Milnor balls B. These are all topological circles, and we denote them by u 2 Ui,
U WD tiUi, and call them outside loops. Note that over any such loop u 2 Ui, we

have a local system monodromy Au W Z�t
i ! Z

�t
i . In fact this monodromy did not

change in the admissible deformation from Of to f .
We choose the following sets of loops in †i (where we identify the loops with

their index sets):

Gi WD the 2gi loops (called genus loops in the following) which are generators of
�1 of the normalization Q†i of†i, where gi denotes the genus of this normalization
(which is a Riemann surface with boundary),
Si WD the loops s 2 Sq around the branches of †i at the special points q 2 Qi,
Ui D the outside loops,
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(E1   , F1       )

(Ê2   , F2       )

u

u

u2

Γ1

Γ2

Σ1

Σ2 Σ

z2

y2y1

z1

outside
loops

genus
loops

Fig. 2 Critical set and the cell models for .Z; C/ and .Y ;B/

and define Wi D Gi
F

Si
F

Ui and W DFWi.
We introduce one more puncture yi on †i and next redefine†�i WD † n int.BQ [

Byi/. Moreover we use notations .Xy;Ay/ and .Zy; Cy/. By enlarging “the hole”
defined by the puncture yi, we retract †�i to a configuration of loops connected by
nonintersecting paths to some point zi, denoted by �i (see Fig. 2). The number of
loops is #Wi D 2gi C �i C �i, where �i WD #Ui and �i WD P

q2Qi
#Sq. Note that

�i > 0 since there must be at least one outside loop.
Each pair .Yi;Bi/ is then homotopy equivalent (by retraction) to the pair

.��1† .�i/;B \ ��1† .�i//. We endow the latter with the structure of a relative CW
complex as we did with .Z; C/ at Sect. 3.5, namely, for each loop the similar CW
complex structure as we have defined above for some pair .Zs; Cs/. The difference
is that the pairs .Zs; Cs/ are disjoint, whereas in †�i the loops meet at a single point
zi. We take as reference the transversal fibre Ft

i D B \ ��1† .zi/ above this point,
namely, we attach the n-cells (thimbles) only once to this single fibre in order to kill
the �t

i generators of Hn�1.Ft
i /. The .nC1/-cells of .Yi;Bi/ correspond to the fibre

bundles over the loops in the bouquet model of †�i . Over each loop, one attaches a
number of �t

i .nC 1/-cells to the fixed n-skeleton described before, more precisely
one .nC 1/-cell over one n-cell generator of the n-skeleton. We extend for w 2 W
the notation .Zg; Cg/ to genus loops and .Zu; Cu/ to outside loops, although they are
not contained in .Z; C/ but in .Y;B/.

The attaching map of the .nC 1/-cells corresponding to the bundle over a genus

loop, or over an outside loop, can be identified with Ag � I W Z�t
i ! Z

�t
i , or with

Au� I W Z�t
i ! Z

�t
i , respectively. We have seen that the monodromy Au over some

outside loop indexed by u 2 Ui is necessarily one of the vertical monodromies of
the original function Of .
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From this CW complex structure, we get the following precise description in
terms of the monodromies of the transversal local system, the proof of which is
similar to that of Siersma and Tibăr [12, Lemma 4.4]:

Lemma 3.2

(a) Hk.Y;B/ D ˚i2IHk.Yi;Bi/ and this isD 0 for k ¤ n; nC 1:
(b) Hn.Yi;Bi/ ' Z

�t
i =hIm.Aw � I/ j w 2 Wii,

(c) �.Yi;Bi/ D .�1/n�1.2gi C �i C �i � 1/�t
i .

�

If we apply � to (4) and (5) and take into account that �.Z; C/ D 0, we get
�.E;F/ D �.X ;A/C�.Y;B/CPr �.Er;Fr/. From this one may derive the Euler
characteristic of the Milnor fibre F (already computed in [2]):

Proposition 3.3

�.F/ D 1C
X

q2Q
.�.Aq/ � 1/C .�1/n

X

i2I
.2gi C �i C �i � 2/�t

i C .�1/n
X

r2R
�r:

�

Proposition 3.4 The relative Mayer–Vietoris sequence (5) is trivial except of the
following 6-terms sequence:

0! HnC1.Z; C/! HnC1.X ;A/˚ HnC1.Y;B/! HnC1.X [ Y;A [ B/!
! Hn.Z; C/

j! Hn.X ;A/˚Hn.Y;B/! Hn.X [ Y;A [ B/! 0:
(8)

�
Proof Lemma 3.1, Sect. 3.3 and Lemma 3.2 show that the terms H�.X ;A/,
H�.Y;B/ and H�.Z; C/ of the Mayer–Vietoris sequence (5) are concentrated in
dimensions n and n C 1 only. Following (4) and since QH�.F/ is concentrated in
levels n � 1 and n, we obtain that HnC2.X [ Y;A [ B/ D 0.

The first three terms of (8) are free. By the decomposition (4), in order to find the
homology of F, we thus need to compute Hk.X [Y;A[B/ for k D n; nC 1, since
the others are zero.

In the remainder of this paper, we collect information about Hn.X [ Y;A [ B/.
The knowledge of its dimension is then enough for determining Hn.F/, by only
using the Euler characteristic formula (Proposition 3.3).
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4 The Homology Group Hn�1.F/

We concentrate on the term Hn.X [ Y;A [ B/ ' QHn�1.F/. We need the relative
version of the “variation ladder”, an exact sequence found in [9, Theorem 5.2,
pp. 456–457]. This sequence has an important overlap with our relative Mayer–
Vietoris sequence (8).

Proposition 4.1 ([12, Proposition 5.2]) For any point q 2 Q, the sequence

0! HnC1.Aq; @2Aq/! ˚s2Sq HnC1.Zs; Cs/! HnC1.Xq;Aq/!
! Hn.Aq; @2Aq/! ˚s2Sq Hn.Zs; Cs/ ! Hn.Xq;Aq/ ! 0

is exact for n � 2. �

4.1 The Image of j

We focus on the map j D j1 ˚ j2 which occurs in the 6-term exact sequence (8),
more precisely on the following exact sequence:

Hn.Z; C/
j! Hn.X ;A/˚Hn.Y;B/! QHn�1.F/! 0: (9)

since we have the isomorphism:

QHn�1.F/ ' coker j: (10)

Therefore, full information about j makes it possible to compute Hn�1.F/. But
although j is of geometric nature, this information is not always easy to obtain.
Below we treat its two components separately. After that we will make two
statements (Theorems 4.4 and 4.6) of a more general type.

4.1.1 The First Component j1 W Hn.Z;C/ ! Hn.X ;A/

Note that, as shown above, we have the following direct sum decompositions of the
source and the target:

Hn.Z; C/ D ˚q2Q ˚s2Sq Hn.Zs; Cs/˚˚i2IHn.Zyi ; Cyi/;
Hn.X ;A/ D ˚q2QHn.Xq;Aq/˚˚i2IHn.Xyi ;Ayi /:

As shown in Proposition 4.1, at the special points q 2 Q, we have surjections
˚s2Sq Hn.Zs; Cs/ ! Hn.Xq;Aq/, and moreover Hn.Zy; Cy/ ! Hn.Xy;Ay/ is
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an isomorphism. We conclude that the map j1 is surjective and that there is no
contribution of the points yi to coker j.

4.1.2 The Second Component j2 W Hn.Z;C/ ! Hn.Y;B/

Both sides are described with a relative CW complex as explained in Sect. 3.6. At the
level of n-cells, there are �t

s n-cell generators of Hn.Zs; Cs/ for each s 2 Sq and any
q 2 Q. Each of these generators is mapped bijectively to the single cluster of n-cell
generators attached to the reference fibre Ft

i (which is the fibre above the common
point zi of the loops). The restriction j2j W Hn.Zs; Cs/ ! Hn.Yi;Bi/ is a projection
for any loop s in †i and q 2 Qi, or if instead of s we have yi, since we add extra

relations to Z
�t

=hAs� Ii in order to get Z�
t
i =hIm.Aw � I/ j w 2 Wii D Hn.Yi;Bi/.

We summarize the above surjections as follows:

Lemma 4.2 (Strong Surjectivity)

(a) Both j1 and j2 are surjective.
(b) The restriction j2j W Hn.Zs; Cs/ ! Hn.Yi;Ai/ is surjective for any s 2 Sq such

that q 2 Q \†i.
(c) The restriction j1j ˚s2Sq Hn.Zs; Cs/! Hn.Xq;Aq/ is surjective, for any q 2 Q.

�

Corollary 4.3

(a) If the restriction j2j ker j1 is surjective, then j is surjective.
(b) If for each i 2 I, there exist qi 2 Q\†i and some s 2 Sqi such that Hn.Zs; Cs/ �

ker j1, then j is surjective.

�

Proof

(a) More generally, let j1 W M ! M1 and j2 W M ! M2 be morphisms ofZ-modules
such that j1 is surjective, and consider the direct sum of them j WD j1 ˚ j2. We
assume that the restriction j2j ker j1 is surjective onto M2 and want to prove that
j is surjective.

Let then .a; b/ 2 M1 ˚M2. There exists x 2 M such that j1.x/ D a, by the
surjectivity of j1. Let b0 WD j2.x/. By our surjectivity assumption, there exists
y 2 ker j1 such that j2.y/ D b � b0. Then j.xC y/ D aC b, which proves the
surjectivity of j.

(b) follows immediately from Lemma 4.2(b) and from the above (a). ut
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4.2 Effect of Local System Monodromies on Hn.F/

Recall that w 2 Wi stands for some loop s, or g, or u in †�i .

Theorem 4.4

(a) If there is w 2 Wi such that det.Aw � I/ 6D 0, then dimHn.Yi;Bi/ D 0.
If such w 2 Wi exists for any i 2 I, then bn�1.F/ D 0.

(b) If there is w 2 Wi such that det.Aw � I/ D ˙1, then Hn.Yi;Bi/ D 0.
If such w 2 Wi exists for any i 2 I, then Hn�1.F/ D 0.

(c) The following upper bound holds:

bn�1.F/ �
X

i2I
min
w2Wi

dim coker.Aw � I/ �
X

i2I
�t
i :

Proof By Lemma 3.2(b), we have Hn.Yi;Bi/ ' Z
�t
i =hIm.Aw � I/ j w 2 Wii;

thus, the first parts of (a) and (b) follow. For the second part of (a), we have that
dimHn.Y;B/ D 0; hence, corank j D corank j1 D 0. For the second part of (b), we
have that Hn.Y;B/ D 0, and the surjectivity of the map j of (9) is equivalent to the
fact that j1 is surjective.

To prove (c), we consider homology groups with coefficients in Q. Since j1
is surjective, the image of j contains all the generators of Hn.X ;AIQ/. Hence
dim coker j � dimHn.Y;B/. ut
Remark 4.5 Notice the effect of the strongest bound in the above theorem. On each
†i one could take an optimal loop, e.g. one with det.Aw � I/ D ˙1. Since in
the deformed case there may be less branches †i, and more special points and
hence more vertical monodromies, these bounds may become much stronger than
those in [9].

4.3 Effect of the Local Fibres Aq

Theorem 4.6 Let n � 2.
(a) Assume that for each irreducible one-dimensional component†i of †, there is

a special singularity q 2 Qi such that the .n�1/th homology group of its Milnor
fibre is trivial, i.e. Hn�1.Aq/ D 0. Then Hn�1.F/ D 0.
If in the above assumption we replace Hn�1.Aq/ D 0 by bn�1.Aq/ D 0, then
we get bn�1.F/ D 0.
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(b) Let Q0 WD fq1; : : : ; qmg � Q be some (minimal) subset of special points such
that each branch†i contains at least one of its points. Then

bn�1.F/ � dimHn.Xq1 ;Aq1 /C � � � C dimHn.Xqm ;Aqm/:

Proof

(a) We use (9) in order to estimate the dimension of the image of j D j1˚j2. If there
is a q 2 Q such that Hn.Xq;Aq/ D 0, then ker j1 contains ˚s2SqHn.Zs; Cs/.
Since Q0 meets all components†i, statement (a) follows from Corollary 4.3(b).
The second claim of (a) follows by considering homology over Q.

(b) We work again with homology over Q. We consider the projection on a direct
summand � W Hn.X ;A/ ! ˚q62Q0Hn.Xq;Aq/ and the composed map J1 WD
� ı j1. Then the restriction j2j ker J1 is surjective, which by Corollary 4.3(a),
means that J1 ı j2 is surjective. Then the result follows from the obvious
inequality dim.ImJ1 ı j2/ � dim Im j by counting dimensions. ut

Remark 4.7 Also here we have the effect of the strongest bound. This works the best
if one chooses an optimal or minimal Q0. In the irreducible case, Hn�1.Aq/ D 0 for
at least one q 2 Q implies the triviality Hn�1.F/ D 0.

Corollary 4.8 (Bouquet Theorem) If n � 3 and
(a) If for any i 2 I, there is w 2 Wi such that det.Aw � I/ D ˙1 or
(b) If for any i 2 I, there is a special singularity q 2 Qi such that Hn�1.Aq/ D 0 ,

then

F
ht' Sn _ � � � _ Sn:

Proof From Theorems 4.4(b) and 4.6(a), respectively, it follows that Hn�1.F/ D 0.
Since F is a simply connected n-dimensional CW complex, the statement follows
from Milnor’s argument [3, Theorem 6.5] and Whitehead’s theorem. ut

5 Examples

5.1 Singularities with Transversal Type A1

The case when† is a smooth line was considered in [6] and later generalized to† a
one-dimensional complete intersection (icis) [7]. It uses an admissible deformation
with only D1-points. The main statement is:

(a) F
ht' Sn�1 if #D1 D 0,

(b) F
ht' Sn _ � � � _ Sn else.
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Fig. 3 Several singularites (produced with Surfer software). (a) Steiner Surface. (b) Singularity
F1A3. (c) Singularity F2A3

Since D1-points have Hn�1.Aq/ D 0, our Theorem 4.6 provides a proof of this
statement on the level of homology. If † is not an icis, more complicated situations
may occur. The next known examples show how our results apply (see [7] for
details):

1. f D xyz, called T1;1;1. Here † is the union of three coordinate axis, F Š
S1 � S1; thus, b1.F/ D 2, b2.F/ D 1 and Au D I for all u.

2. f D x2y2 C y2z2 C x2z2 has F Š S2 _ � � � _ S2. The admissible deformation
fs D f Csxyz has the same† as f D xyz, but now with three D1-points on each
component of † and one T1;1;1-point in the origin. Our Theorem 4.6 yields
H1.F/ D 0. A real picture of fs D 0 contains the Steiner surface, for s 6D 0

small enough (Fig. 3a). That H2.F/ D Z
15 follows from �.F/ D 16 computed

via Proposition 3.3.

5.2 Transversal Type A2;A3;D4;E6;E7;E8, De Jong’s List

In [1] there is a detailed description of singularities with singular set a smooth line
and transversal type A2;A3;D4;E6;E7;E8. De Jong’s list illustrates and confirms our
statements at the level of homology.

We will treat below in more detail the case f W C3 ! C with transversal type A3
(to which one may add squares to become f W CnC1 ! C). Any singularity of this
type can be deformed into

F1A3: f D xz2 C y2z I F ht' S1 (Fig. 3b)

F2A3: f D xy4 C z2 I F ht' S2 (Fig. 3c)

De Jong’s observation is that for any line singularity of transversal type A3, we
have:

(a) F
ht' Sn�1 _ Sn � � � _ Sn if #F2A3 D 0,

(b) F
ht' Sn _ � � � _ Sn else.
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In homology, (b) follows directly from our Theorem 4.6. The homology version
of (a) takes more efforts. We demonstrate this in the following example only.
First we mention that for F1A3 the vertical monodromy A is equal to the Milnor
monodromy h. This follows from the fact that f D xz2 C y2z is homogeneous of
degree d D 3 and Steenbrink’s remark [13] that Ahd D I and that h4 D I. The
matrix of h is:

0

@
1 1 1

�1 0 0

0 �1 0

1

A

It follows: ker.h � I/ D Z, Im.h � I/ D Z
2, and coker.h � I/ D Z:

Next consider as example the deformation f WD fs D .xk � s/z2 C yz2 C y2z for
some fixed small enough s 6D 0, which has transversal type A3. This deformation
has #F1A3 D k and #F2A3 D 0 and moreover one isolated critical point of type Ak.
Note that

Hn.Y;B/ D Z
3=hh� I; � � � ; h � I;Au � Ii D Z

3=hh� Ii D Z

since for the outside loop u, we have Au D As1 ı � � � ıAsk D hk (all As are equal to h)
and therefore Au�I D .h�1/.hk�1C� � �ChCI/. We compare now the fundamental
sequence for j in case F1A3 and f , respectively (we distinguish the Milnor fibres by
a subscript):

j D j1 ˚ j2 W Z! Z˚ Z! Hn�1.FF1A3/ D Z! 0 (11)

j D j1 ˚ j2 W Zk ! Z
k ˚ Z! Hn�1.Ff /! 0 (12)

The map j2 for f can now be identified with: j2.�1; � � � ; �k/ D �1 C � � � �k.
We conclude H1.Ff / D Z. Then H2.Ff / D Z

3k�1 follows from �.Ff / D 3k � 1
computed via Proposition 3.3.

We illustrate this example with Fig. 4a,b.

5.3 More General Types

We show next that the above method is not restricted to the De Jong’s classes.
Consider f D z2xm � zmC2 C zymC1. It has the properties F ' S1; † is smooth;
transversal type is A2mC1; A D hm, where h is the Milnor monodromy of A2mC1.

Note that dim ker.A � I/ � 1, and D 1 in many cases, e.g. m D 2; 3; 4; 5. This
function f appears as “building block” in the following deformation:

gs D z2.x2 � s/m � zmC2 C zymC1:
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Fig. 4 Deformation fs D .xk � s/z2 C yz2 C y2z (produced with Surfer software). (a) Original
surface. (b) Deformed surface

This deformation contains two special points of the type f (and no others, except
isolated singularities). If one applies the same procedure as above, one gets
(in theD 1 cases) b1.G/ D 1 where G is the Milnor fibre of g0. Details are left
to the reader.

Remark 5.1 The fact that the first Betti number of the Milnor fibre is nonzero can
also be deduced from Van Straten’s [15, Theorem 4.4.12]: Let f W .C3; 0/! .C; 0/

be a germ of a function without multiple factors, and let F be the Milnor fibre of f .
Then

b1.F/ � #{irreducible components of f D 0g � 1:

5.4 Deformation with Triple Points

Let fs D xyz.xCyCz� s/. This defines a deformation of a central arrangement with
four hyperplanes. We get†i D P

1 (six copies). There are four triple points T1;1;1
and one A1-point. The maps j1;q W Z3 ! Z

2 can be described by j1;q.a; b; c/ D
.aC c; bC c/. The map j2 restricts to an isomorphism Z! Z on each component.
We have all information of the resulting map j W Z12 ! Z

14 up to the signs of
the isomorphisms. From this we get H1.FIZ2/ D Z

3
2. One may compare with the

dissertation [16], where Williams showed in particular that H1.FIZ/ D Z
3.
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5.5 The Class of Singularities with bn D 0

Most of the singularities above have bn�1 D 0 or small bn�1. One of the natural
questions is what happens if bn D 0. Examples are products of an isolated
singularity with a smooth line (such as A1) and some of the functions mentioned
above (e.g. F1A3). Very few is known about this class; let us show here the following
“non-splitting property” w.r.t. isolated singularities:

Proposition 5.2 If Of has the property that bn. OF/ D 0, then any admissible
deformation has no isolated critical points.

Proof From (4) we get HnC1.E;F/ D 0. It follows that HnC1.X [ Y;A [ B/ D 0

and˚r2RHnC1.Er;Fr/ D 0, and therefore the set R is empty. ut
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Some Remarks on Hyperresolutions

J.H.M. Steenbrink

Abstract We give an example of a cubical variety which does not admit a weak
resolution in the sense of Guillén et al. (Hyperrésolutions Cubiques et Descente
Cohomologique. Springer Lecture Notes in Mathematics, vol 1335. Springer,
Berlin, 1988). We introduce the notion of a very weak resolution of a cubical variety,
and we show that it always exists in characteristic zero. This suffices for the proof
of the existence of cubical hyperresolutions.

Keywords Cubical hyperresolution

MSC classification: 14E15

1 Introduction

The theory of cubical hyperresolutions is due to V. Navarro Aznar and co-authors;
see [3]. This construction was motivated by Deligne’s theory of mixed Hodge
structures. In [1] and [2], Deligne constructs a functor from the category of reduced
C-schemes of finite type to the category of mixed Hodge structures, whose value for
a smooth projective complex variety is the Hodge structure on its cohomology ring.
To this end, Deligne constructs simplicial resolutions for reduced C-schemes. These
simplicial resolutions inherently have an infinite number of irreducible components.
In [3] these simplicial resolutions are replaced by cubical hyperresolutions, in
which only a finite number of irreducible components occur. The dimensions of
these components are under control. This leads to vanishing theorems for singular
varieties analogous to those of Kodaire and Akizuki-Nakano.

In the fall of 2014, the author gave lectures on mixed Hodge theory at the
Mathematical Sciences Center of Tsinghua University in Beijing. Among other
topics I treated the construction of cubical hyperresolutions. In the inductive
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procedure for their construction, the notion of a weak resolution of a cubical variety
is needed. When dealing with these, I discovered a counterexample to [3, Theorem
I.2.6], which states that a weak resolution of a cubical variety always exists. In the
definition of a weak resolution, there is a condition on the dimension of the preimage
of the discriminant. We describe this condition and give an example where a weak
resolution with this property does not exist.

2 Resolutions of Cubical Varieties

For any n 2 N let Œn� D f0; : : : ; ng. The category �Cn is the category whose objects
are the subsets I � Œn� and with Hom.I; J/ D ; unless I � J, in which case it
consists of one element, the inclusion map I ,! J. Let k be a field, and let Vark be
the category of reduced k-schemes of finite type. The fibre product in this category
is the reduction of the scheme-theoretic fibre product.

Definition 1 An n-cubical variety over k is a contravariant functor

X� W �Cn�1 ! Vark:

Definition 2 A morphism f W X� ! S� of n-cubical varieties is called proper if for
all I � Œn � 1� the morphism fI is proper.

Definition 3 The discriminant of a proper morphism f W X� ! S� of n-cubical
varieties is the smallest closed n-cubical subvariety D� of S� such that f induces
isomorphisms XI n f�1.DI/! SI n DI for all I � Œn � 1�.
Definition 4 (See [3, Déf. I,2,5], [5, Definition 5.21], [4, Definition 10.73]) Let S�
be an n-cubical variety, f W X� ! S� a proper morphism, and D� the discriminant
of f . We say that f is a weak resolution of S if all XI are smooth and dim f�1I .DI/ <

dim SI for all I � Œn � 1�. If in addition dimDI < dim SI for all I, then f is called a
resolution.

Example 1 We consider the 1-cubical variety Sf0g ! S; with Sf0g D
Spec.kŒx; y�=.xy// and S; D Spec.k/. Let X� ! S� be any (weak) resolution
in the sense of Definition 4, and let D� be its discriminant. Because Sf0g is not
smooth, Df0g ¤ ;; hence, D; ¤ ;. So D; D S;. Also Xf0g ¤ ; so X; ¤ ; and
hence f�1; .D;/ has dimension � 0. So dim f�1; .D;/ D dim S;, which contradicts
the definition of a weak resolution. So S� has no weak resolution in the sense of
Definition 4.

Of course, a natural candidate for something like a resolution in this example is
the 1-cubical variety X� where Xf0g is the normalisation of Sf0g and X; consists of
one or two copies of S;.

The idea of a resolution is that a variety X is replaced by a smooth variety QX of
the same dimension such that the difference between X and QX is a combination of
varieties of lower dimension. Inspired by this idea, we introduce the concept of a
very weak resolution. Moreover we show the following two facts:
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1. For every n-cubical variety S�, there exists a very weak resolution f W X� ! S�;
2. Very weak resolutions are useful in the proof of the existence of cubical

hyperresolutions.

Recall that the dimension of a cubical variety X� is defined as the maximum of
the dimensions of all XI [3, Déf. I.2.9].

Definition 5 Let S� be an n-cubical variety, f W X� ! S� a proper morphism, and
D the discriminant of f . We say that f is a very weak resolution of S if all XI are
smooth, dimDI < dim S and dim f�1I .DI/ < dim S for all I � Œn � 1�.
Theorem 1 Let S� be an n-cubical variety. Then there exists a very weak resolution
f W X� ! S� of S�.

Proof The proof of [3, Theorem I.2.6] should be slightly adapted to the new
definition. Referring to the text in the proof of [5, Theorem 5.25]), the word
“resolution” has to be replaced by “very weak resolution”. Moreover the statement
dim f�1I .DI/ < dim SI has to be replaced by the following argument.

Let s D dim S. Then the construction procedure guarantees that dimXI � s for
all I. We show that dimDI < s. If not, there exists a maximal I for which DI has
dimension s. Then DI D �.fI/. Let XI;˛ be a connected component of XI such that
dimXI;˛ D s. Let DI;˛ be the union of the discriminant of XI;˛ ! SI;˛ and the
components SI;ˇ for ˇ ¤ ˛. Then XI;˛ n f�1I .DI;˛/! SI;˛ nDI;˛ is an isomorphism;
hence, DI � DI;˛ and DI does not contain SI;˛ . However, if dimDI D s then it must
contain an irreducible component SI;˛ of dimension s. This is a contradiction.

The same reasoning shows that a connected component of dimension s of XI is
not mapped inside DI . Hence f�1I .DI/ does not contain any irreducible component
of XI of dimension s, so it must be of dimension< s. We conclude that f W X� ! S�
is a very weak resolution in the sense of Definition 5. ut

3 Cohomological Descent

For any complex variety Y, we let C�Y denote the Godement resolution of the
constant sheaf ZX . Let X� be an n-cubical complex variety. For I � Œn � 1� let
#I W XI ! X; denote the morphism corresponding to the inclusion ; ,! I. We let
C.X�/ denote the associated single complex of the double complex

0! C�X
;

!
M

]ID1
.#I/�C�XI

!
M

]ID2
.#I/�C�XI

! : : :

(see [5, Sect. 5.1.3] for more details).

Definition 6 A cubical variety X� is of cohomological descent of the sheaf complex
C.X�/ is acyclic.



326 J.H.M. Steenbrink

Example 2 Let f W X� ! Y� be a proper morphism of k-cubical varieties with
discriminant D�. These data determine a k C 2-cubical variety Z� as follows. For
I � Œk � 1� we let

ZI D YI ; ZI[fkg D XI; ZI[fkC1g D DI ZI[fk;kC1g D f�1I .DI/

with the obvious maps. Then Z� is called the discriminant square of f . By [5,
Lemma 5.20], this cubical variety Z� is of cohomological descent.

Example 3 Let g W X� ! Y� be a proper morphism of k-cubical varieties. It defines
a kC 1-cubical variety W by

WI D YI; WI[fkg D XI

for each I � Œk � 1�. Then W� is of cohomological descent if and only if the natural
morphism of complexes

f ] W C.Y�/! f�C.X�/

is a quasi-isomorphism. This is a consequence of [5, Lemma 5.27].

4 Cubical Hyperresolutions

We now consider the proof of the existence of cubical hyperresolutions in [3,
Sect. 1]. We formulate a small variation on it.

Theorem 2 Let X be an algebraic variety of dimension n. Then there exists an
.nC 1/-cubical variety X� with the following properties:
1. X; D X and XI is smooth for I ¤ ;;
2. all morphisms dIJ W XJ ! XI are proper;
3. X� is of cohomological descent;
4. if m 2 I � Œn� then dimXI � n � m.

Proof Considering the proof of [5, Theorem 5.26], one observes that everything
works when one replaces “resolution” by “very weak resolution”. This proof also
already contains the desired dimension estimate. ut
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Deforming Nonnormal Isolated Surface
Singularities and Constructing Threefolds
with P

1 as Exceptional Set

Jan Stevens

To Gert-Martin Greuel on the occasion of his 70th birthday.

Abstract Normally one assumes isolated surface singularities to be normal. The
purpose of this paper is to show that it can be useful to look at nonnormal sin-
gularities. By deforming them interesting normal singularities can be constructed,
such as isolated, non-Cohen-Macaulay threefold singularities. They arise by a small
contraction of a smooth rational curve, whose normal bundle has a sufficiently
positive subbundle. We study such singularities from their nonnormal general
hyperplane section.

Keywords Nonnormal singularities • Simultaneous normalisation • Small modi-
fications

2010 Mathematics Subject Classification: 32S05, 32S25, 14B07, 32S30

1 Introduction

Suppose we are interested in a germ .X; 0/ � .CN ; 0/ of a complex space, which has
some salient features. Then we would like to describe the singularity X as explicit
as possible. This can be done by giving generators of the local ring OX , or by giving
equations for X � C

N . But in general it is too difficult to do this directly. Instead we
first replace the singularity by a simpler one. To recover the original one is then a
deformation problem. In a number of situations, the simplification process leads to
nonnormal singularities.

We formulate the most important simplification process as general principle.
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The Hyperplane Section Principle The (general) hyperplane section of a singu-
larity has a local ring with the same structure as the original singularity, but one
embedding dimension lower, and which is much easier to describe.

A nonnormal surface singularity occurs as general hyperplane of a normal three-
dimensional isolated singularity, if this singularity is not Cohen-Macaulay. Such
singularities can occur as a result of small contractions. In higher dimensions a
resolution (with normal crossings exceptional divisor) is in general not the correct
tool for understanding the singularity. But it may happen that a small resolution
exists, meaning (in dimension three) that the exceptional set is only a curve. The
simplest case is that the curve is a smooth rational curve. Nevertheless, such a
singularity can be quite complicated, as it need not be Cohen-Macaulay. This
happens if the normal bundle of the curve is O.a/ ˚ O.b/ with a > 1. One has
always that 2aC b < 0 [3, 20], and Ando has given examples of the extremal case
.a; b/ D .n;�2n � 1/ by exhibiting transition functions. We study the contraction
of such a curve using the hyperplane section principle.

The first example of a manifold containing an exceptional P1 with normal bundle
with positive subbundle, namely,O.1/˚O.�3/, was given by Laufer [16]. Pinkham
gave a construction as total space of a 1-parameter smoothing of a partial resolution
of a rational double point [21]. We consider smoothings of partial resolutions of
non-rational singularities. In this case the total space does blow down, but not to
a smoothing of the original singularity. Instead, the special fibre is a nonnormal
surface singularity. We retrieve Ando’s examples using the canonical model of the
hypersurface singularity z2 D f2nC1.x; y/. We also give new examples.

Using SINGULAR [11] it is possible to give explicit equations for some cases.
We do not compute deformations of the canonical model but deformations of the
nonnormal surface singularity X. We study in detail the simplest case, where X
differs not too much from its normalisationeX, meaning that ı.X/ D dimOeX=OX D
1. We take the equation of eX of the form z2 D f .x; y/. It turns out that it is in fact
possible to give general formulas.

A 1-parameter deformation of a resolution of a normal surface singularity blows
down to a deformation of the singularity if and only if the geometric genus
is constant. Otherwise the special fibre is nonnormal. Given a two-dimensional
hypersurface singularity, the general singularity with the same resolution graph
is not Gorenstein, and not quasi-homogeneous in the case that hypersurface is
quasi-homogenous. Again, deforming a nonnormal quasi-homogeneous surface
singularity gives a method to find equations for surface singularities with a given
star-shaped graph. We give an example using the same general formulas as for small
contractions (Example 17).

The structure of this paper is as follows. In the first section, we discuss invariants
for nonnormal surface singularities. In the next section, we compute deformations
for a nonnormal model of a surface singularity of multiplicity two. In Sect. 3 we
recall in detail the relation between deformations of a (partial) resolution and of
the singularity itself. The final section treats P1 as exceptional curve, with explicit
formulas based on the previous calculations.
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2 Invariants of Nonnormal Singularities

2.1 Normalisation

Definition 1 A reduced ring R is normal if it is integrally closed in its total ring
of fractions. For an arbitrary reduced ring R, its normalisation R is the integral
closure of R in its total ring of fractions. A singularity .X; 0/ (i.e. the germ of a
complex space) is normal if its local ring O.X;0/ is normal. The normalisation of a
reduced germ .X; 0/ is a multigerm .X; 0/ with semi-local ring O.X;0/ D O .X;0/. The

normalisation map is 	W .X; 0/! .X; 0/, or in terms of rings 	�WO.X;0/ ! O.X;0/.

We have the following function-theoretic characterisation of normality; see, e.g.
[10, p. 143]. Let ˙ be the singular locus of a reduced complex space X and set
U D X n˙ , with jWU ! X the inclusion map. Then X is normal at p 2 X if and only
if for arbitrary small neighbourhoods V 3 p every bounded holomorphic function
on U \ V has a holomorpic extension to X \ V . If codim˙ � 2, then OX D j�OU .

2.2 Cohen-Macaulay Singularities

For a two-dimensional isolated singularity, normal is equivalent to Cohen-Macaulay,
but in higher dimensions, this is no longer true. A local ring is Cohen-Macaulay
if there is a regular sequence of length equal to the dimension of the ring. A d-
dimensional germ .X; 0/ is Cohen-Macaulay, if its local ring is Cohen-Macaulay.
An equivalent condition is that there exists a finite projection �W .X; 0/ ! .Cd; 0/

with fibres of constant multiplicity (i.e. the map � is flat); see, e.g. [10, Kap. III § 1].
From both descriptions it follows directly that a singularity is Cohen-Macaulay if
and only if its general hyperplane section is so. In particular, a general hyperplane
section of a normal but not Cohen-Macaulay isolated threefold singularity is not
normal.

A cohomological characterisation, in terms of local cohomology, of isolated
Cohen-Macaulay singularities is that Hq

f0g.X;OX/ D 0 for q < d. Normality implies
only the vanishing for q < 2. The local cohomology can be computed from a
resolutioneX ! X, as Hq.eX;OQX/ Š HqC1

f0g .X;OX/ for 1 � q � n � 2 [12, Prop. 4.2].

If eX is a good resolution of an isolated singularity with exceptional divisor E,
then the map Hi.OQX/ ! Hi.OE/ is surjective for all i [24, Lemma 2.14]. This
implies that a threefold singularity is not Cohen-Macaulay as soon as the exceptional
divisor of a good resolution has an irregular surface F as component (meaning that
q D h1.OF/ > 0). The easiest example of such a singularity is the cone over an
irregular surface.

Example 2 The equations of the known families of smooth irregular surfaces in P
4

are discussed in [5, Sect. 4]. They admit a large symmetry group, the Heisenberg
group. The lowest degree case is that of elliptic quintic scrolls. Their homogeneous
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coordinate ring has a minimal free resolution of type

0 � OS  � O.�3/5 L � O.�4/5 x � O.�5/ � 0 ;

where L is a matrix
0

B
B
B
B
B
@

0 �s1x4 �s2x3 s2x2 s1x1
s1x2 0 �s1x0 �s2x4 s2x3
s2x4 s1x3 0 �s1x1 �s2x0
�s2x1 s2x0 s1x4 0 �s1x2
�s1x3 �s2x2 s2x1 s1x0 0

1

C
C
C
C
C
A

and x is the vector .x0; x1; x2; x3; x4/t. The constants .s1 W s2/ are homogeneous
coordinates on the modular curve X.5/ Š P

1. The i-th column of the matrix
V4 L

is divisible by xi, and the equations of the scroll are the five resulting cubics, which
can be obtained from the following one by cyclic permutation of the indices:

s41x0x2x3 � s31s2.x1x
2
2 C x23x4/ � s21s

2
2x
3
0 C s1s

3
2.x

2
1x3 C x2x

2
4/C s42x0x1x4 :

A general hyperplane section is a quintic elliptic curve in P
3, which is not projec-

tively normal. In fact, the linear system of hyperplane sections is not complete, and
therefore the curve is not a (linear) normal curve.

2.3 The ı-Invariant

Let .X; 0/ � .CN ; 0/ be an isolated singularity. One measures how far the singularity
is from being normal with the ı-invariant:

ı.X; 0/ D dim.OX;	�1.0/=OX;0/ :

For plane curves this is the familiar ı-invariant, which is also called the number of
virtual double points. In higher dimensions it is not the correct double point number.
One has to consider the double point locus of the composed map 'WX ! X ! C

N

(see [13] for the general theory of double point schemes). The expected dimension
of the double point locus is 2 dimX�N. As X has an isolated singularity, necessarily
N � 2 dimX, and the best results are in case of equality.

Consider a map 'WX ! Y with X a complete intersection and Y smooth of
dimension twice the dimension of X. As measure of degeneracy of the map ', Artin
and Nagata [4] introduced (following Mumford) half the size of source double point
locus:

�.'/ D 1
2

dim Ker
�
OX�YX �! OX

�
:
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This dimension is stable under deformations of ', and by deforming to an immersion
with only nodes, one sees that �.'/ is an integer, as in that case X �Y X splits into
the diagonal and a finite set with free Z=2-action.

For plane curve singularities, it follows by deforming to a curve with only nodes
that ı.X/ D �.'/, cf. [27, 3.4]. As the image of ' is given by one equation, the
images of a family of maps form a flat family and OXS

='�OYS is flat over the base
S. In higher dimensions the images of a family of maps need not form a flat family
and ı.X/ may be larger than�.'/.

Example 3 (cf. [4, (5.8)]) Map three copies of .C2; 0/ generically to .C4; 0/, say
by .x; y; z;w/ D .s1; t1; 0; 0/ D .0; 0; s2; t2/ D .s3; t3; s3; t3/. The image of this
map ' lies on the quadric xw D yz, and there are four more cubic equations. The
singularity is rigid; one computes that T1 D 0. The ı-invariant is equal to 4. On
the other hand, the double point number �.'/ is 3, and the general deformation of
the map is obtained by moving the third plane. The ideal of the image is then the
intersection of the ideals .z;w/, .x; y/ and .x � z � a; y � w � b/. There are eight
cubic equations, obtained by multiplying the generators of the three ideals in all
possible ways. Specialising to a D b D 0, one obtains the product of the ideals
.z;w/, .x; y/ and .x � z; y � w/. This ideal has an embedded component. The same
ideal is obtained if one does not consider the image with its reduced structure, but
with its Fitting ideal structure, as in [27, §1]; indeed, that construction commutes
with base change.

2.4 Simultaneous Normalisation

Definition 4 Let f WX ! S be a flat map between complex spaces, such that all
fibres are reduced. A simultaneous normalisation of f is a finite map 	WX ! X
such that all fibres of the composed map f ı 	 are normal and that for each s 2
S the induced map on the fibre 	sWX s D .f ı 	/�1.s/ ! Xs D f�1.s/ is the
normalisation.

Criteria for the existence of a simultaneous normalisation are given by Chiang-
Hsieh and Lipman [6]; see also [11, II.2.6]. For a family f WX ! S of curves
over a normal base S, the normalisation of X is a simultaneous normalisation if
and only if ı.Xs/ (defined as the sum over the ı-invariants of the singular points)
is constant, a result originally due to Teissier and Raynaud. In case S is smooth
one-dimensional, the ı-constant criterion holds also in higher dimensions, if the
nonnormal locus of X is finite over the base S; in the algebraic case, this follows
from [6, Corollary 3.3.1]. The proof of Greuel et al. [11, Theorem II.2.24] extends
to this case: the fact that the fibres are curves is only used twice, firstly is get that
OX has depth (at least) two, which follows by Serre’s criterion from normality, and
secondly in appealing to Proposition 2.55, which is only formulated and proved for
families of curves, but here one can use [6, Corollary 5.4.3].
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2.5 The Geometric Genus

The geometric genus of a normal surface singularities was introduced by Wagreich
[28], using a resolution �W .eX;E/ ! .X; 0/, as pg D dimH1.eX;OeX/. In terms
of cycles on the resolution, one has H1.eX;OeX/ D lim � H1.Z;OZ/, where Z

runs over all effective divisors with support on the exceptional set. This means
that pg is the maximal value of h1.OZ/; see [22, 4.8]. Wagreich also defined the
arithmetic genus of the singularity as the maximal value of pa.Z/, where pa.Z/ D
1 � h0.OZ/ C h1.OZ/. This is a topological invariant. One computes pa.Z/ by
the adjunction formula: pa.Z/ D 1 C 1

2
Z.Z C K/. The geometric genus has an

interpretation independent of a resolution, as dim.H0.U;˝2
U/=L

2.U;˝2
U//, where

L2.U;˝2
U/ is the subspace of square-integrable 2-forms on U D eX nE D X n0 [15].

For a not necessarily normal isolated singularity .X; 0/ the geometric genus is
a combination of the ı-invariant and invariants from the resolution. This makes
sense, as the resolution factors over the normalisation. In any dimension we define,
following Karras [12]:

Definition 5 Let .X; 0/ be an isolated singularity of pure dimension n with
resolution .eX;E/. The geometric genus is

pg.X; 0/ D �ı.X; 0/C
n�1X

qD1
.�1/q�1 dimHq.eX;OeX/ :

The dimension of Hq.eX;OeX/ does not depend on the chosen resolution and is
therefore an invariant of the singularity; one way to see this is using an intrinsic
characterisation: one has Hq.eX;OeX/ Š HqC1

f0g .X;OX/ for 1 � q � n � 2, and

Hn�1.eX;OeX/ Š H0.U;˝n
U/=L

2.U;˝n
U/ [12, Prop. 4.2]. We remark that ı.X; 0/ D

dimH1
f0g.X;OX/. For isolated Cohen-Macaulay singularities, all terms except the

last one vanish, so pg D .�1/n dimHn�1.eX;OeX/, which is the direct generalisation
of Wagreich’s formula.

By the results of Elkik [9], the geometric genus is semicontinuous under
deformation. More precisely, let �WeX ! X be a resolution of a pure dimensional
space and let the complex M�X be the third vertex of the triangle constructed on the
natural map iWOX ! R���OeX:

M�X
C1. -
OX �! R���OeX

Then M�1X D KerOX ! OXred , M0
X D OX=OX , Mi

X D Ri��OeX for 0 < i < n D
dimX and all other Mi

X are zero. If X has isolated singularities, define the partial
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Euler–Poincaré characteristics:

 i.X/ D
n�iX

jD0
.�1/j dimMn�j�i�1

X ; 0 � i � n :

Proposition 6 ([9, Théorème 1]) For an equidimensional flat morphism f WX ! S
with X smooth outside a closed set, finite over the base, the functions s 7!  i.Xs/

are upper semicontinuous.

This result has the following corollaries, which are relevant for us.

Corollary 7 ([19, p. 255]) If a nonnormal reduced isolated surface singularity X
is smoothable, then ı.X/ � pg.eX/.

Corollary 8 ([14, (14.2)]) Let f WX ! T be a morphism from a normal threefold
to the germ of a smooth curve. If X0 D f�1.0/ has only isolated singularities and
the normalisation X0 has only rational singularities, then X0 D X0.

For a 1-parameter deformation of an isolated nonnormal surface singularity
with rational normalisation, semicontinuity of  0 D �ı and  1 D ı implies
that ı is constant. Therefore there is a simultaneous normalisation. The same
is not necessarily true for infinitesimal deformations. In the next section, we
give an example, where there exist obstructed deformations without simultaneous
normalisation.

3 Computations

In this section we describe equations and deformations for surface singularities with
ı D 1, whose normalisation is a double point, so given by an equation of the form
z2 D f .x; y/, with f 2 m2.

We recall the set-up for deformations of singularities (for details see [25]). One
starts from a system of generators .g1; : : : ; gk/ of the ideal of the singularity X.
We also need generators of the module of relations, which we write as matrix .rij/,
i D 1; : : : ; k, j D 1; : : : ; l. So we have l relations

P
girij D 0. We perturb the

generators to Gi.x; t/ with Gi.x; 0/ D gi.x/. These describe a (flat) deformation
of X if it is possible to lift the relations: there should exist a matrix R.x; t/ with
R.x; 0/ D r.x/ such that

P
GiRij D 0 for all j. One can take this as definition of

flatness. In particular, for an infinitesimal deformation Gi.x; "/ D gi.x/ C "g0i.x/
(with "2 D 0), one needs the existence of a matrix r0.x/ such that

P
.giC "g0i/.rij C

"r0ij/ D "
P
.g0irij C gir0ij/ D 0 or equivalently that

P
g0irij lies in the ideal generated

by the gi. Deformations, induced by coordinate transformations, are considered to be
trivial. To find the versal deformation, one takes representatives for all possible non-
trivial infinitesimal deformations and tries to lift to higher order. The obstructions
to do this define the base space of the versal deformation.
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We consider a subring O of O D Cfx; y; zg=.z2 � f .x; y// with ı D dimO=O D
1. We need a system of generators for the defining ideal. This and the possible
deformations depend on the subring in question. We write O D CC LCm2, where
L is a two-dimensional subspace of m=m2, which can be given as kernel of a linear
form lWm=m2 ! C, l D axC byC cz.

First suppose that c ¤ 0; we may assume that c D 1. Generators of O are then

�1 D x � az �1 D y � bz �2 D z2

�2 D z.x � az/ �2 D z.y � bz/ �3 D z3
(1)

This system of generators is not minimal, as we not yet have taken the relation z2 D
f .x; y/ into account. Because f 2 m2, it can be written in terms of the generators;
for example, x2 D �21 C 2az�1C a2z2 D �21 C 2a�2C a2�2, and x3 D �31 C 3a�1�2 C
3a2�2�1 C a3�3. The relations z2 D f .x; y/ and z3 D zf .x; y/ lead to equations

�2 D '2.�1; �2; �1; �2; �2; �3/ ;
�3 D '3.�1; �2; �1; �2; �2; �3/ :

Therefore the variables �2 and �3 can be eliminated and the embedding dimension
of O is four. Coordinates are �1, �2, �1 and �2, and equations for the corresponding
singularity X are

�1�2 D �2�1
�22 D �21'2.�1; �2; �1; �2/

�2�2 D �1�1'2.�1; �2; �1; �2/
�22 D �21'2.�1; �2; �1; �2/

(2)

where '2.�1; �2; �1; �2/ is obtained from '2.�1; �2; �1; �2; �2; �3/ by eliminating �2
and �3.

Proposition 9 The nonnormal singularity with Eq. (2) has only deformations with
simultaneous normalisation.

Proof We write down the four relations between the generators:

.�2�2 � �1�1'2/�1 � .�22 � �21'2/�1 � .�1�2 � �2�1/�2 D 0
.�22 � �21'2/�1 � .�2�2 � �1�1'2/�1 � .�1�2 � �2�1/�2 D 0

.�2�2 � �1�1'2/�2 � .�22 � �21'2/�2 � .�1�2 � �2�1/�1'2 D 0
.�22 � �21'2/�2 � .�2�2 � �1�1'2/�2 � .�1�2 � �2�1/�1'2 D 0

All perturbations of the equations lie in the maximal ideal. By using coordinate
transformations, we can assume that the first equation �1�2 � �2�1 is not perturbed
at all. We perturb the other equations as �22 � �21'2 � "�� , �2�2 � �1�1'2 � "�� and
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�22 � �21'2 � "��. We get four equations holding in O , which can be written as

rk

�
�2 �1 "�� "��
�2 �1 "�� "��

�

� 1 :

The first minor is the equation �1�2��2�1, and the last minor vanishes identically, as
we are considering infinitesimal deformations. Thus the perturbations can be written
as "�� D �21 "11 C �1�2"12 (without �22 -term, as �22 D �21'2), "�� D �1�1"11 C �1�2"12
and "�� D �21"11C�1�2"12 with "11 and "12 the same functions of the variables in all
three perturbations. We can arrange that "11 only depends on �1 and �1, and not on �2
and �2, by collecting terms in "12. The coordinate transformation �2 7! �2C 1

2
�1"12,

�2 7! �2 C 1
2
�1"12 gets rid of the terms with "12. The resulting equations

�1�2 D �2�1
�22 D �21 .'2 C "11/

�2�2 D �1.'2 C "11/
�22 D �21.'2 C "11/

define not only an infinitesimal deformation but also a genuine deformation. We
conclude that the base space of the versal deformation is smooth (even though T2 is
not zero).

The simultaneous normalisation is given by z2 D f C "11.x � az; y � bz/. ut
To obtain interesting other deformations, we have to assume that c D 0. Then

the subspace L of m=m2 is given as kernel of a linear form l D axC by. Assuming
a D 1 we find z and y � bx as generators of degree 1. As we have not yet specified
the form of f .x; y/, we can apply a coordinate transformation to achieve that b D 0.
So we take the linear form l D x. Generators of the ring O are now z, y, w D zx,
v D yx, x2 D x2 and x3 D x3. If none of these monomials occur in f .x; y/, then the
embedding dimension is 6.

The formulas

x2 D x2 y D y z D z

x3 D x3 v D xy w D xz
(3)

define an injective map 	WC3 ! C
6. Let Y be the image, which is an isolated three-

dimensional singularity. As it is not even normal, its nine equations cannot directly
be given in determinantal format, but this is possible by allowing some redundancy.
Consider the maximal minors of the 2 � 6 matrix

�
z y x2 w v x3
w v x3 zx2 yx2 x22

�

: (4)

There are three equations occurring twice, like vw � zyx2, while the last three are
obtained by multiplying the first three by x2. Therefore we get nine generators of
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the ideal. The determinantal format gives relations between the generators, and a
computation with SINGULAR [8] shows that there are no other relations. A further
computation gives dimT1Y D 1. The 1-parameter deformation is given by the
maximal minors of

�
z y x2 w v x3
w v x3 z.x2 C s/ y.x2 C s/ x2.x2 C s/

�

: (5)

It comes from deforming the map 	 to

x2 D x2 � s y D y z D z

x3 D x.x2 � s/ v D xy w D xz
(6)

The singularity of the general fibre is isomorphic to the one-point union of two
3-spaces in 6-space.

Now we restrict the map 	 to a hypersurface fz2 D f .x; y/g � C
3, with z2 � f 2

	�m6. We assume that f 2 .y2; yx2; x4/. We get two additional equations by writing
z2 � f and x.z2 � f / in the coordinates on C

6. We write

z2 D y˛ C x2ˇ ;

zw D v˛ C x3ˇ :
(7)

The second equation is obtained from the first by rolling factors using the matrix (4),
i.e. replacing in each monomial one occurrence of an entry of the upper row by the
entry of the lower row in the same column. One can roll once more, to give an
expression for w2, but as we have the equation w2 D x2z2, the resulting equation is
just the z2-equation multiplied by x2.

The singularity has a large component with simultaneous normalisation. For this
just perturb z2 � f with elements of 	�m6. That means that we can write the two
additional equations, using rolling factors. This works also for the deformation
of 	.C3/ given by Eq. (5) and the map (6). But there is also another deformation
direction.

Proposition 10 The singularity X with normalisation of the form z2 D f .x; y/,
where f 2 .y2; yx2; x4/, and local ring with generators (3) has an infinitesimal
deformation, not tangent to the component with simultaneous normalisation.

Proof The existence is suggested by a SINGULAR [8] computation in examples. The
result can be checked by hand.

We first give the relations between the equations. We write gi for the equations
of Y, coming from the matrix (4), and hk for the two additional equations (7). A
relation has the form

P
girij C hkskj D 0. We can pull it back to C

3 with the map 	.
It then reduces to .z2� f /.s1jCxs2j/ D 0. Therefore we find six relations, generating
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all relations with non-zero skj. They are found by reading the matrix product

0

B
B
B
B
B
B
B
@

w �z
v �y
x3 �x2
zx2 �w
yx2 �v
x22 �x3

1

C
C
C
C
C
C
C
A

�
z y x2
w v x3

�
0

@
z
�˛
�ˇ

1

A

in two different ways: the product of the last two matrices is a column vector
containing the two equations h1, h2, while the product of the first two is a 6 � 3
matrix, with antisymmetric upper half containing the minors of the middle matrix
[the first half of the matrix (4)] and symmetric lower half, containing the remaining
six generators. The other relations, with skj D 0, are the determinantal relations
between the equations gi of the three-dimensional singularity Y.

To find a solution to
P

g0irij C h0kskj D 0 2 OX , it suffices to compute on the
normalisation. We start with the determinantal relations for the gi. As the second
row of the matrix is just the first one multiplied with x 2 OX , it suffices to consider
only those relations obtained by doubling the first row. Consider the relation

0 D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

z y x2
z y x2
w v x3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D .yx3 � vx2/z � .zx3 � wx2/yC .zv � yw/x2 :

The perturbation of the three equations involved, obtained from z � z�˛ � y�ˇ � x2 D
0 2 OX , cannot be extended to the other equations. It is possible to extend after
multiplication with x 2 OX . Let ˛ 2 OX be the element with ˛ D x˛ 2 OX and
likewise ˇ D xˇ. Then zw D y˛ C x2ˇ. We do not perturb the equations h1 and h2
nor the equation x23 � x32. We solve for the perturbations of the remaining equations
and check that all equations

P
g0irij D 0 2 OX described above are satisfied. The

result is the following infinitesimal deformation (written as column vector):

Gt D gt C "g0t D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

zv � yw
zx3 � wx2
yx3 � vx2
w2 � x2z2

wv � x2zy
v2 � x2y2

wx3 � zx22
vx3 � yx22
x23 � x32

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

C "

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

ˇ

�˛
�w
2z˛

2y˛C x2ˇ
2zy
x2˛
zx2
0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

ut
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For the extension to higher order, one needs further divisibility properties of ˛
and ˇ. Indeed, if pg.X/ D 0, then by Corollaries 7 and 8, the deformation of the
proposition has to be obstructed.

Example 11 Let the normalisation be a rational double point. Specifically, we take
X of type A3, given by z2 D y2Cx4. For the nonnormal singularity X, the dimension
of T1 is equal to 8. There is a seven-dimensional component with simultaneous
normalisation: six parameters are seen in the equation z2�y2�x22Ca1zCa2yCa3x2C
a4wC a5v C a6x3, and s is a parameter for the deformation (6) of the map 	WC3 !
C
6. Finally let t be the coordinate for infinitesimal deformation of Proposition 10.

A computation of the versal deformation with SINGULAR [8, 18] shows that the
equations for the base space are st D a1t D a2t D a3t D a4t2 D a5t2 D a6t2 D
t3 D 0.

For X given by z2 D f .x; y/ with f 2 mk, the structure of the versal deformation
stabilises for large k. Computations in examples with SINGULAR [8] suggest that
T2 always has dimension 16 (this is also true for the singularity of Example 11) and
that there are in general 11 equations for the base space. There is one component
of codimension 1 with simultaneous normalisation and two other components: a
singularity z2 D f .x; y/ with f 2 mk, k � 6 can be deformed intoeE7 oreE8.

We compute the component related to eE7. This can be done by determining the
versal deformation in negative degrees of the singularity z2 D �ay4 C bx5, where a
and b are parameters, using [18]. After a coordinate transformation, the equations of
the base space do not depend on the parameters. We find the component. For other
singularities we have just to substitute suitable functions of space and deformation
variables for the parameters in the formulas we find.

The result is rather complicated, so we do not give all equations, but use

G3 D x3y � x2v C tw

to eliminate the variable w. Four of the original equations do not involve w. They
are

G6 D v.v C a1t
2/ � x2y

2 � 2tzy � bt2x3 C a2t
2y2 C a0t

2.x2 C a2t
2/ � a3bt

4y ;

G8 D x3v � x22y � tzx2 � 2a4t2y.y2 C a0t
2/

C ba4t
4.v C a1t

2/� .a3v C a2x2/t
2y � a2t

3z � a3bt
4.x2 C a2t

2/ ;

G9 D x23 � x2.x2 C a2t
2/2 � a3t

2.x2 C a2t
2/.v C a1t

2/

C a4t
2.v C a1t

2/2 � 4a4t2x2y2 � a23t
4y2 ;

H1 D z2 C a4.y
2 C a0t

2/2 � bx3x2

C .a3v C a2x2/.y
2 C a0t

2/C a1x2v C a0x
2
2 C a3bt

3z� a4b
2t4x2 :



Deforming Nonnormal Singularities 341

The ideal with w eliminated has three more generators, which we give the name of
the original generators leading to them:

G1 D x3.y
2 C a0t

2/� x2yv C zt.v C a1t
2/

� bt2x2.x2 C a2t
2/C a3t

2y.y2 C a0t
2/C a1t

2x2y ;

G2 D x3x2y � x2v.x2 C a2t
2/C tzx3 � a4t

2.v C a1t
2/.y2 C a0t

2/

C 2a4bt4x2yC a3a2t
4.y2 C a0t

2/ � a3t
3zyC a3a0t

4x2 ;

H2 D x2z.v C a1t
2/ � x3yzC a4t.v C a1t

2/y.y2 C a0t
2/

C a3tx2y
3 C a2tx2vyC ta1x

2
2yC ta0x3x2

� btx22.x2 C a2t
2/C a3t

2zy2 � 2a4bt3x2y2 � a3a2t
3y.y2 C a0t

2/ :

To obtain the full ideal, one has to add the equation used to eliminate w and saturate
with respect to the variable t.

Example 12 We use our equations to write down the deformation in the case that
z2� f is a surface singularity of typeeE7. We start from z2 D y4�	x2y2Cx4. There is
a second modulus, coming from changing the generator y to yCx. By a coordinate
transformation, we can keep y as generator and take

z2 D y4 � �xy3 � 	x2y2 C x4 (8)

as normalisation. Fixing these moduli the component is one-dimensional. We
describe its total space. Its equations are obtained by putting b D a1 D 0,
a0 D a4 D �1, a3 D � and a2 D 	 in the formulas above. The equation H1
becomes

H1 D z2 � .y2 � t2/2 � x22 C .�v C 	x2/.y2 � t2/ :

It is reducible if y2 D t2. If y2 ¤ t2, the equation G1 shows that x3 also can be
eliminated. There is one more equation not involving x3:

G6 D v2 � x2.y
2 C t2/� 2tzyC 	t2.y2 � t2/ :

The local ring of the total space is a section ring ˚H0.V; nL/ for some ample
line bundle on a projective surface V . The dimension of H0.V;L/ is two. We look at
the normalisation of a general hyperplane section t D y. We assume that 2 ¤ 1;
Equation G6 shows that v=y is in the normalisation. We set it equal to .1 � 2/x.

If 2C 1 ¤ 0, we can eliminate x2 and find (after dividing by .1�2/2) that that
the normalisation is given by

.zC 2t2 � 	y2/2 D .2 C 1/2.y4 � �xy3 � 	x2y2 C x4/ ;
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which for all  (with 2 C 1 ¤ 0) is isomorphic to (8). The sections with 2 D 1

are reducible. One sees that V is a ruled surface over the elliptic curve with Eq. (8),
with two sections of self-intersection zero, E1 and E�1, and L is given by the linear
system jE1 C f j, where f is a fibre. The general element of the linear system is a
section of the ruled surface with self-intersection 2.

Remark 13 Each nonnormal singularity X � C
N is the image of its normalisation

X, giving rise to a map X ! C
N . Not every deformation of this map gives rise to a

flat deformation of X. To give an example for X as above with normalisation z2 D
f .x; y/, we observe that we can deform the map by using the same mapC3 ! C

6 and
perturbing the equation arbitrarily, say z2 D f .x; y/C u. For flatness of the images,
one needs to perturb both equations z2 D y˛ C x2ˇ, zw D v˛ C x3ˇ with elements
in the local ring of the nonnormal singularity, where the second is obtained from the
first by multiplying with x (on the normalisation). The perturbation z2 D f .x; y/C u
is not of this type.

4 Deformations of a Resolution

A deformation of a resolution of a normal surface singularity blows down to a
deformation of the singularity if and only if h1.OeX/ is constant [23, 29]. If not, the
total space of a 1-parameter deformation still blows down to a three-dimensional
singularity, but the special fibre is no longer normal.

Let more generally �0W .Y;E/ ! .X; 0/ be the contraction of an exceptional set
E to a point, with .Y;E/ not necessarily smooth, of dimension n. In principle Y is
a germ along E, but we work always with a strictly pseudo-convex representative,
which we denote with the same symbol Y. Then OX D .�0/�OY . In particular,
X is normal if Y is normal. Consider now a deformation Qf WY ! S of Y over a
reduced base space .S; 0/. One can assume that Qf has a 1-convex representative. All
the exceptional sets in all fibres can be contracted: let �WY ! X be the Remmert
reduction, so OX D ��OY with Qf D f ı � . Then f WX ! S is a deformation of
X0 WD f�1.0/. The question is whether f also is a deformation of X, i.e. whether
X Š X0. The answer is the following [23, Satz 3], cf. [29] for the algebraic case.

Theorem 14 Let Y
��! X

f�! S be the Remmert reduction of the deformation
Qf WY ! S of Y, over a reduced base space .S; 0/. Then the special fibre X0 of
f WX ! S is the Remmert reduction of Y D Y0 if and only if the restriction
map H0.Y;OY / ! H0.Y;OY/ is surjective. This is the case if dimH1.Ys;OYs/

is constant on .S; 0/.

The converse of the last clause holds if dimH2.Ys;OYs/ is constant [23, Satz 5].
This is automatically satisfied in the case of interest to us, when Y ! X is a
modification of a normal surface singularity. The result then says that a deformation
of the modification blows down to a deformation of the singularity if and only if pg
is constant.
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In the proof one reduces to the case of a 1-parameter deformation. Let us consider
what happens in that case, so we have a diagram

Y
���! X

& .
T

Let t be the coordinate on T and consider multiplication with t on OY and OX . We
get the commutative diagram

0! H0.OY /

t�! H0.OY / �! H0.OY/ �! H1.OY /


t�! H1.OY /?
?
yŠ

?
?
yŠ

?
?
y

0! OX

t�! OX �! OX0 �! 0

It shows that OX0 is equal to H0.OY/ D OX if and only if the restriction map
H0.OY /! H0.OY / is surjective. If dimH1.Yt;OYt / is constant, then H1.Y ;OY /

is a free OY -module, on which multiplication with t is injective, so the restriction
map H0.OY /! H0.OY/ is surjective.

To study the converse, and what happens if dimH1.Yt;OYt / is not constant, we
restrict to the case that H2.OY / D 0.

Proposition 15 LetY
��!X

f�! T be the Remmert reduction of the 1-parameter
deformation Qf WY ! T of the space Y, with H2.OY / D 0. Then

dimH1.Y0;OY0 / D dimH1.Yt;OYt /� dim
�
.�0/�OY=OX0

�
;

where t ¤ 0.
Proof The upper line in the commutative diagram extends as

0! H0.OY /

t�! H0.OY / �! H0.OY / �!

�! H1.OY /

t�! H1.OY / �! H1.OY/ :

The generic rank of the OT -module H1.OY / is equal to dimH1.Yt;OYt / but also
equal to dim Coker.�t/� dim Ker.�t/. This proves the formula. ut

In particular, if Y is a resolution of the normal surface singularity X, then the
formula of the proposition says that pg.Xt/ D pg.X/ � ı D pg.X0/. Here we use
essentially that we have a 1-parameter deformation: over a higher dimensional base
space, ı will be larger than pg.X/� pg.Xt/, as for a 1-parameter curve in the base,
pg.X/ � pg.Xt/ gives how many functions fail to extend, but it will depend on the
curve which ones do not extend.

Remark 16 If we have a smoothing, or more generally if pg.Xt/ D 0, then H1.OY /

is t-torsion and isomorphic to H1.OY/.
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The above proposition gives a way to construct normal surface singularities with
the same resolution graph as a given hypersurface singularity but with lower pg. If
the drop in pg is equal to ı, we start from a nonnormal model of the hypersurface
singularity with ı-invariant ı and compute deformations without simultaneous
resolution. If the singularity is quasi-homogeneous, deformations of positive weight
will have constant topological type of the resolution.

Example 17 Consider the hypersurface singularity z2 D x7 C y7 with resolution
graph:

This is a singularity with pg D 3, but its arithmetic genus is equal to two. The
general, non-Gorenstein singularity with the same graph has indeed pg D 2. We
can use the computations of the previous section. We get a weighted homogeneous
deformation by putting b D x2, a0 D a1 D a2 D a3 D 0 and a4 D �y3. The
equation G3 D x3y � x2v C tw shows that the w-deformation has positive weight
�.8 � 9/ D 1.

We give the equations for the fibre at t D 1. Then the equation H2 lies in the ideal
of the other ones, and we obtain the following six equations:

G6 D v2 � x2y
2 � 2zy � x2x3 ;

G8 D x3v � x22y � zx2 C 2y6 � x2y
3v ;

G9 D x23 � x32 � v2y3 C 4x2y5 ;
H1 D z2 � y7 � x22x3 C y3x32 :

G1 D x3y
2 � x2yv C zv � x32 ;

G2 D x3x2y � x22v C zx3 C vy5 � 2x22y4 :

One checks that this ideal indeed defines a singularity with the above resolution
graph by resolving it; one possible method is to blow up a canonical ideal.

5 P
1 as Exceptional Set

In understanding normal surface singularities, the resolution is a very important
tool. For threefold singularities this is not the case for several reasons. First of all,
there is no unique minimal resolution. The combinatorics of a good resolution (i.e.
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the exceptional divisor has normal crossings) seems prohibitive in general. But now
there is a new phenomenon that there may exist resolutions in which the exceptional
set is not a divisor but an analytic set of lower dimension. This is called a small
resolution. It means that in a certain sense the singularity is not too singular. For
threefold singularities, we are talking about resolutions with as exceptional set a
curve.

If the exceptional curveC is rational, then its normal bundle splits as O.a/˚O.b/
with a � b. Rather surprisingly, the number a can be positive. Laufer gave in [16] an
example of a curve C � eX with normal bundle O.1/˚O.�3/, which even contracts
to a hypersurface singularity X.

Generalising earlier results of Ando (see [2]) and Nakayama[20], that con-
tractability limits the value of .a; b/ to 2aC b < 0, Ando proved [3]:

Theorem 18 Let C be a smooth exceptional curve in an m-dimensional manifold
eX, and let M be a subbundle of the normal bundle NC=eX of maximal degree a and
put b D degNC=eX � a. Then 2aC b < 0 and aC b < 0. Moreover, if C is rational,
then aC b � 1 �m.

Ando [1, 3] has also existence results. In particular, in dimension 3 he exhibits
examples with the maximal normal bundleO.n/˚O.�2n�1/, by giving, in the style
of Laufer, transition functions between two copies of C3. The resulting singularity
is not Cohen-Macaulay for n > 1. Consider more generally a rational curve with
normal bundle ot type .a; b/ with a > 1. To see that H2

f0g.X;OX/ Š H1.eX;OeX/ ¤ 0,

let J be the ideal sheaf of C ineX and look at the exact sequences:

0 �!J �! OeX �! OC �! 0 ;

0 �!J 2 �!J �!J =J 2 �! 0 :

We have a surjection H0.OeX/ � H0.OC/ D C. As C is rational, H1.OC/ D 0

and therefore H1.eX;OeX/ Š H1.eX;J /. Because C is a curve, H2.eX;J 2/ D 0 and
we get a surjection H1.eX;J / � H1.C;J =J 2/. As J =J 2 is the dual of the
normal bundle, we have that h1.C;J =J 2/ D a� 1 and therefore h1.OeX/ � a� 1.

Pinkham gave a construction for C with normal bundleO.1/˚O.�3/ [21], using
smoothings of partial resolutions of rational double points. The easiest example,
starting from a D4-singularity, is described in detail in [26].

Here we generalise Pinkham’s construction to exceptional curves with other
normal bundles. Let H be a normal surface singularity (in the end H will be a general
hyperplane section of a threefold singularity), and let bH be a partial resolution of
H with irreducible exceptional locus C, such that the only singularities of bH are
hypersurface singularities.

The deformation space of bH is smooth. Indeed, the sheaf T 1

bH
is concentrated in

the singular points, and T 2

bH
D 0, as there are only hypersurface singularities. The

local-to-global spectral sequence for T�
bH

gives that T2
bH
D 0, so all deformations are
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unobstructed, and moreover we get the exact sequence:

0 �! H1.T 1

bH
/ �! T1

bH
�!

M

p

T1
bH;p
�! 0 :

Therefore all singular points p 2 bH can be smoothed independently.
We take eX to be a 1-parameter smoothing of bH with smooth total space (this

is possible, as all singularities are hypersurfaces). Moreover, we can arrange that
the general fibre does not contain exceptional curves. Then the contraction �WeX !
X with the curve C as exceptional locus gives an isolated threefold singularity. In
general its hyperplane section H is a nonnormal surface singularity, with ı.H/ D
pg.H/, by Proposition 15.

Example 19 Let H be a singularity, whose resolution has a central rational curve of
self-intersection �n � 1, intersected by 2nC 1 .�2/-curves. A quasi-homogeneous
singularity with this resolution is the hypersurface singularity Y2nC1 with equation
z2 D f2nC1.x; y/, where f2nC1 is a square-free binary form. The partial resolution
bH to be considered is obtained by blowing down the .�2/-curves, intersecting the
central curve. For n > 1, this is the canonical model, while for n D 1, we have D4.
The next theorem shows that the construction yields a three-dimensional manifold
eX with an exceptional rational curve, whose normal bundle is O.n/˚O.�2n � 1/.

Rational double points are absolutely isolated, i.e. they can be resolved by
blowing up points. Each sequence of blowing ups gives a partial resolution. We
define the resolution depth of an exceptional component Ei as the minimal number
of blow ups required to obtain a partial resolution on which the curve Ei appears.
This is the desingularisation depth of Lê and Tosun [17], shifted by one. It is easily
computed from the resolution graph. The fact that C is smooth restricts the possible
curves Ei in a rational double point configuration, which intersect C, to those with
multiplicity one in the fundamental cycle of the configuration.

Theorem 20 Let eX be a 1-parameter smoothing with smooth total space of a
partial resolution bH of a normal surface singularityeH with exceptional set a smooth
rational curve C and k rational double points as singularities. Let �c be the self-
intersection of the curve C on the minimal resolution eH of H. Suppose that C
intersects a curve of resolution depth bj in the jth rational double point configuration
oneH. Put b D b1C� � �Cbk. Then the normal bundle of the exceptional curve C � bH
ineX is O.b � c/˚ O.�b/.
Proof Let � WeY ! eX be an embedded resolution of bH. Denote by eH the strict
transform of bH and byeC the strict transform of the curve C (which is isomorphic to
C). As we are only interested in a neighbourhood of eC, it actually suffices to blow
up the threefold eX in points lying on C until the strict transform of bH is smooth
along the strict transform of C. The number of blow ups needed is b.

Let Pj 2 C be the jth singular point of bH; identifying eC with C, it is also the
intersection point on eH of eC and the jth rational double point configuration. The
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normal bundle NeC=eY is isomorphic to NC=eX ˝ OC.�D/, where we write D for the
divisor

P
bjPj.

On eY we have the exact sequence:

0 �! NeC=eH �! NeC=eY �! NeH=eY jeC �! 0 :

Correspondingly there is an exact sequence oneX:

0 �! N0 �! NC=eX �! N00 �! 0 ; (9)

with N0 Š NeC=eH ˝ OC.D/ a bundle, which outside the singular points coincides

with the normal bundle NC=eH ; note that C is not a Cartier divisor in eH at the singular
points.

As eC is a rational curve, NeC=eH Š OeC.�c/. To compute NeH=eY jeC, we note that the

total transform of bH is of the form eH CP
fiFi, with Fi the exceptional divisors

and that it is the divisor t D 0 with trivial normal bundle. The only divisors, which
intersect eC, are the ones coming from the last blow up in the points Pj and occur
with multiplicity 2bj. Therefore NeH=eY jeC Š OeC.�

P
2fjFj/ D OeC.�2b/. It follows

that the exact sequence (9) has the form

0 �! O.b � c/ �! NC=eX �! O.�b/ �! 0:

As H0.NC=eX/ D H0.O.b � c//, the sequence splits. ut
Example 21 As noted by Ando [3], there exist exceptional rational curves with
normal bundle .1;�4/, which contract to Cohen-Macaulay singularities and others
which do not. We obtain this normal bundle starting from a RDP resolution with a
central rational curve of self-intersection �3 (on the minimal resolution) with four
Ai singularities on it. Consider the following two resolution graphs:
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The graph on the left is a rational quadruple point graph, while a normal singularity
with the second graph is minimally elliptic and equisingular to z3 D x4 C y4. The
exceptional .1;�4/-curve comes from a nonnormal model with ı D 1.

Example 22 (Example 19 Continued) Ando’s examples [1, 3] of the extremal case
.n;�2n�1/ are of type in the example. With adapted variable names, his exceptional
P
1 is covered by two charts having coordinates .x; �; �x/ and .�; y; �y/ with transition

functions:

x D �2nC1yC �y2 C �2n�y3

� D ��1
�x D �y��n

So x is a global function, as is �y C �y
3 D �2nx � �x2. Other functions are

more complicated. A general hyperplane section is obtained by setting a linear
combination of these two functions to zero. In the first chart, we get �x

2 D x.aC�2n/
and in the second �y

2 C .1=a C �2n/.�y C �y3/ D 0. This is indeed the canonical
model of a singularity of type z2 D f2nC1.x; y/.

Remark 23 For n D 2, we have the singularity z2 D f5, which is minimally
elliptic, and therefore every singularity with the same resolution graph is a double
point. For n > 2, this is no longer true. For n D 3, we gave in Example 17
equations for a singularity with the same resolution graph as z2 D f7, which is
not Gorenstein. As we constructed it as deformation of a nonnormal model, with
ı D 1, of a hypersurface singularity, a nonnormal ı D 2 model of this singularity is
a deformation of a ı D 3 model of the hypersurface.

Before giving other new examples with normal bundle .n;�2n � 1/, we recall
Kollár’s length invariant [7, Lecture 16]:

Definition 24 The length l of the small contraction � W .eX;C/ ! .X; p/ with
irreducible exceptional curve C is

l D lgOeX=�
�mX;p :

The length is equal to the multiplicity of the maximal ideal cycle of H at the strict
transform of the exceptional curve C.

Example 25 Consider the graph:
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An example of a normal surface singularity with this graph is

z2 D y.y4n�2 C x6n�3/ :

These singularities can be thought of as generalisations of E7, just as those of
the type z2 D f2nC1.x; y/ are generalisations of D4. A smooth total space of a 1-
parameter smoothing of the canonical model has as exceptional set a rational curve
with normal bundle .n;�2n� 1/. The invariant l has the value 4.

For n D 2, the singularity has pg D 5.

From our computations in Sect. 3 we can draw the following conclusion.

Proposition 26 The singularity obtained by contracting a rational curve with
normal bundle .2;�5/ has embedding dimension at least 7.

Explicit equations for the case that the normalisation H is given by z2 D y5 C x5

can be obtained from the equations Gi, Hj of Sect. 3 by putting b D 1, a4 D a4 � y,
a3 D a3 C b4y, a2 D a2 C b3y, a1 D a1 C b2yC c2y2 and a0 D a0.

The equation

H1 D z2� .y� a4/.y
2C a0t

2/2 � x3x2C ..a3C b4y/vC .a2C b3y/x2/.y
2C a0t

2/

C .a1 C b2yC c3y
2/x2v C a0x

2
2 C .a3 C b4y/t

3zC .y � a4/t
4x2 :

shows that restricted to t D 0 one has the simultaneous normalisation:

z2�y5�x5

Ca4y4Ca3xy3Ca2x2y2Ca1x3yCa0x4Cb4xy4Cb3x2y3Cb2x3y2Cc3x3y3:

To compute the simultaneous canonical model, we first eliminate w and x3,
assuming t ¤ 0. To simplify the formulas, we suppress the bi and c3. We write
the resulting equations in determinantal form:

0

@
v.y2 C a0t2/ � x2yt2 � zt3 � a3t6 v2 � .y � a4/t6

�.y2 C a0t2/2 C x2t4 �v.y2 C a0t2/� x2yt2 � zt3

2y.y2 C a0t2/� vt2 � a1t4 2vyC x2t2 C a2t4

1

A : (10)

We apply a Tjurina modification followed by normalisation. On the first chart Uy,
we have the hypersurface

�y
2 � y�5 � yC a0�

4 C a1�
3 C a2�

2 C a3� C a4 � 1
4
t2�6

and the map to the singularity H is given by quite complicated formulas:

x2 D y2�2 � 2yt.�y � t�3/C�t3�.�y � 1
2
t�3/� a0t2�2 � a1t2� � a2t2

v D .y2 C a0t
2/� � yt2�2 C t3.�y � 1

2
t�3/
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z D y2.�y � 5
2
t�3/C yt2�.3�y � 5

2
t�3/C t4�2.�y � 1

2
t�3/

� a0t
2.�y � 3

2
t�3/C 2ya0t�2 C ya1t� C a1t3�2 C ya2tC a2t3�

The expressions for w and x3 are even longer; they can be computed from the
equations used to eliminate these variables.

In the second chart Ux, we have the hypersurface

�x
2 � x � x�5 C a0 C a1�C a2�

2 C a3�
3 C a4�

4 � 1
4
t2�8

and the transition functions y D x� C t�x C 1
2
t2�4, � D ��1 and �y D �x�

�2 C
1
2
t��3 C 1

2
t�2.

We see that for ai D 0 the family of curves given in Uy by y D �y� 1
2
t�3 D 0 and

in Ux by x D �xC 1
2
t�4 D 0 is exceptional. Then the determinant (10) describes for

t ¤ 0 a singularity isomorphic to the cone over the rational normal curve of degree
three. The general 1-parameter smoothing of the canonical model is obtained by
taking the ai as functions of t. We can take a0 D t and ai D 0 for i > 0. Then in the
second chart � D t.1� 1

4
t�8/ can be eliminated, as � D x.1C�5/� �y2, so .x; �; �y/

are coordinates. We can write the equation in the first chart as �y
2 C �4.t � 1

4
t�2 �

y�/ D y, so .�y; �; � D t � 1
4
t�2 � y�/ are coordinates. The transition functions are

power series.
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On a Theorem of Greuel and Steenbrink

Duco van Straten

To Gert-Martin Greuel on the occasion of his 70th birthday.

Abstract A famous theorem of Greuel and Steenbrink states that the first Betti
number of the Milnor fibre of a smoothing of a normal surface singularity vanishes.
In this paper we prove a general theorem on the first Betti number of a smoothing
that implies an analogous result for weakly normal singularities.

Keywords Singularities • Topology of smoothings • Weakly normal spaces
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1 Introduction

By a singularity we usually mean a germ .X; p/ � .CN ; p/ of a complex space, but
in order to study its topology, it is customary to pick an appropriate contractible
Stein representative X of the germ in question. By a deformation of the singularity
.X; p/ over .S; 0/, we understand a pullback diagram of the form

X ,�! X?
?
y

?
?
yf

f0g ,�! S

where the map f W X �! S is flat and all spaces are appropriate representatives of
the corresponding germs. We say the deformation is a smoothing if the general fibre
Xt D f�1.t/, t 2 S, is smooth, in which case we say that Xt is the Milnor fibre of
the smoothing under consideration. In the classical case of isolated hypersurface
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singularities, Milnor [4] has shown that this fibre has the homotopy type of a
bouquet of spheres of dimension equal to the complex dimension of .X; 0/. It is of
considerable interest to find topological properties of Milnor fibres in more general
situations.

In the paper [3] of Greuel and Steenbrink, one finds an overview of some of the
basic results and in particular a proof of the following result that was conjectured
by Wahl in [10].

Theorem 1 Let X
f�! S be a smoothing of an isolated normal singularity

X WD f�1.0/ and let Xt WD f�1.t/; t ¤ 0;

denote its Milnor fibre. Then:

b1.Xt/ WD dimC H1.Xt;C/ D 0 :

Note that for a normal surface singularity, the fundamental group �1.Xt/ or even
H1.Xt/ of the Milnor fibre need not to be trivial.

When one looks for a similar simple statement for non-isolated singularities, one
soon runs into difficult problems. In [11] Zariski described two types of 6-cuspidal
sextics in P

2, for which the complements have different fundamental groups. By
taking the cone over such a curve, we get a surface inC3, whose Milnor fibre appears
as the cyclic sixfold cover of the complement of this curve. Its first Betti number
depends on the position of the cusps: when they are on a conic, then b1.Xt/ D 2,
when they are not, then b1.Xt/ D 0, [2]. This shows that the first Betti number b1 is
a subtle invariant.

In this paper we will show the following general theorem.

Theorem 2 Let X
f�! S be a smoothing of a reduced and equidimensional germ

.X; p/. Let Xt D f�1.t/andt ¤ 0, its Milnor fibre. Let XŒ0� D triD1Xi, where the Xi

are the irreducible components of X. Let � W H0.XŒ0�/ �! Cl.X ; p/ be the map that
associated with a divisor supported on X its class in the local class group. Then one
has:

1. b1.Xt/ � rank.ker �/ � 1.
2. When X is weakly normal, then one has equality:

b1.Xt/ D rank.ker �/ � 1:

In this case the action of the monodromy in H1.Xt/ is trivial.

We spell out two useful corollaries of this general result:

Corollary 1 If .X; p/ is a hypersurface singularity with r irreducible components,
then b1.Xt/ � r � 1, with equality in the case that .X; p/ is weakly normal.
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Corollary 2 Let X
f�! S be a smoothing of a reduced, equidimensional and

weakly normal space germ X D f�1.0/ and let Xt WD f�1.t/ and t ¤ 0 denote
its Milnor fibre. Then

b1.Xt/ � r � 1:

where r denotes the number of irreducible components of X. For a hypersurface
equality holds.

Recall that a complex space germ X is called weakly normal, if every function
that is continuous and holomorphic outside the singular set of X is in fact
holomorphic on all of X. The union of coordinate axis in C

n is the unique weakly
normal curve singularity with multiplicity n and a weakly normal surface has such
a curve singularity as generic transversal type. If in addition X is Cohen-Macaulay,
then also the converse holds. In particular, the cone over a plane curve � � P

2 is
weakly normal precisely when � has only ordinary double points. In this case the
first Betti number is independent of the exact position of the double points: one has
b1.Xt/ D r � 1, where r denotes the number of irreducible components of � .

Our proof of Theorem 2 is given in the following sections and runs along the
lines of the paper [3].

2 Embedded Resolution

Let X be a fixed contractible Stein representative of a reduced and equidimensional
germ .X; p/. We consider a smoothing over a smooth curve germ S:

X ,�! X?
?
y

?
?
yf

f0g ,�! S

The following fact is well-known:

Lemma 1 The total space of the smoothing X of a reduced and equidimensional
germ is normal.

Proof As we are dealing with a smoothing over a smooth curve germ, the singular
locus Sing.X / of X is a subset of the singular locus˙ WD Sing.X/ of X, so this set
is of codimension� 2 in X . Furthermore, as X is reduced, we have depth˙.X/ � 1,
so that from the flatness of the family we obtain depth˙.X / � 2; hence, X is
normal. Þ

To study the Milnor fibre Xt WD f�1.t/; t ¤ 0 of a smoothing, we will make
use of an embedded resolution of X in X . By Hironaka’s theorem there exists an
appropriate sequence of blow-ups that produces a space Y together with a proper
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map:

� W Y �!X

which has the following properties:

• Y is smooth.
• Y WD . f ı �/�1.0/ is a normal crossing divisor.
• � W Y n ��1.˙/ �! X n˙ is an isomorphism.

By the semi-stable reduction theorem, we may and will assume, after first perform-
ing an appropriate finite base change on S, that the divisor Y in addition is reduced.

The divisor Y can be decomposed into two parts:

(a) eX, the strict transform of X.
(b) F D [iFi, a noncompact divisor, mapping properly onto˙ .

The component of F can be grouped further according to the stratum of˙ they map
to, but in this paper will not need to do so.

2.1 Leray Sequence

Via the map � , the fibre Yt WD . f ı �/�1.t/ � Y is isomorphic to the Milnor
fibre Xt:

� W Yt '�! Xt:

In a semi-stable family, the divisor Y is reduced, so that the space Yt “passes
along every component of Y just once”. More precisely, one can find a contraction
map

c W Yt �! Y

of the Milnor fibre Yt onto the special fibre Y, which is an isomorphism on the
preimage of the subset of regular points of Y; see, for example, [1]. One can try to
compute the cohomology of Yt using the Leray spectral sequence for the map c. It
is easy to verify from the local model of the maps f and c that

c�.ZYt / D ZY ;

R1c�.ZYt / D ZYŒ0� =ZY :

Here Y Œ0� WD tiYi denotes the disjoint union of the irreducible components of Y,
which naturally maps to Y. Via this map we consider the constant sheaf ZYŒ0� as a
sheaf on Y. Indeed, the fibre of c over a point in Y is homotopy equivalent to a real
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torus of dimension equal k� 1, where k is the number of irreducible components of
Y passing through the point. From this description one obtains

.Z '/H0.Y/
'�! H0.Yt/

and the beginning of an exact sequence of cohomology groups (always with Z-
coefficients, unless stated otherwise):

Leray sequence:

0 �! H1.Y/ �! H1.Yt/ �! H0.ZYŒ0� =ZY/ �! H2.Y/ �! � � � (1)

Note that we also have a short exact sequence

0 �! ZY �! ZYŒ0� �! ZYŒ0� =ZY �! 0

of sheaves on Y. From the associated long exact sequence of cohomology groups,
we obtain the beginning of an exact sequence:

0 �! H0.Y/ �! H0.Y Œ0�/ �! H0.ZYŒ0� =ZY/ �! H1.Y/ �! � � � (2)

2.2 Two Further Sequences and a Diagram

There are two further exact sequences in which H1.Yt/ appears:
Milnor-Wang sequence (see [4, p. 67]):

0 �! H0.Yt/ �! H1.B/ �! H1.Yt/
h��Id�! H1.Yt/ �! � � � (3)

Here B WD X n X, the total space of the Milnor fibration over S n f0g and h�
denotes the cohomological monodromy transformation.

The cohomology sequence of the pair: Y n Y ,! Y reads

� � � �! H1.Y/ �! H1.Y n Y/ �! H2.Y ;Y n Y/ �! H2.Y/ �! � � �

We use the isomorphism

Y n Y '�!X n X D B:

Furthermore, from the homoptopy equivalence Y ' Y and the Lefschetz isomor-
phism, we obtain

H1.Y ;Y n Y/ D 0; H2.Y ;Y n Y/ ' H0.Y Œ0�/;
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so the sequence of the pair is seen to reduce to the exact sequence:

0 �! H1.Y/ �! H1.B/
˛�! H0.Y Œ0�/

ˇ�! H2.Y/ �! � � � (4)

We will describe the map ˇ in detail in Sect. 4.
These four sequences fit into a single commutative diagram:

0 0?
?
y

?
?
y

H0.Yt/ ' H0.Y/?
?
y

?
?
y

0 �! H1.Y/ �! H1.B/
˛�! H0.Y Œ0�/

ˇ�! H2.Y/ �! � � �?
?
y D

?
?
y

?
?
y

?
?
y D

0 �! H1.Y/ �! H1.Yt/ �! H0.ZYŒ0� =ZY/ �! H2.Y/ �! � � �?
?
yh� � Id

?
?
y

H1.Yt/ H1.Y/

Lemma 2 In the above situation, we have:

1. rank H1.B/ D rankH1.Y/C rank .kerˇ/.
2. rank H1.Yt/ � rankH1.B/� 1.
3. If H1.Y/ D 0, then the monodromy acts trivially on H1.Yt/.
4. If H1.Y/ D 0, then rankH1.Yt/ D rankH1.B/� 1.
Proof First recall that we have rankH0.Y/ D 1 D rankH0.Yt/. From the first exact
row of the diagram, coming sequence (4), we read off the first statement. The first
column of the diagram, coming from sequence (3), gives the second statement. If
H1.Y/ is assumed to be zero, the diagram simplifies, and a diagram chase learns that
the map H1.B/ �! H1.Yt/ is surjective, so that h� � Id is the zero map on H1.Yt/,
which is the third statement. The last statement then follows by looking again at the
first column of the diagram. Þ

We now study the parts H1.Y/ and kerˇ separately.

3 The Group H1.Y/

If X is a plane curve singularity, then it is easy to determine rankH1.Y/. The result is

rankH1.Y/ D 2gC b ;
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where g is the sum of the genera of the compact components of Y and b is the
number of cycles in the dual graph of Y. These numbers g and b are in fact invariants
of the limit mixed Hodge structure on H1.Xt/; one has b D dimW

0 Gr1FH
1.Xt/ and

g D dimGrW1 Gr
1
FH

1.Xt/; see [7]. By taking X � C, we obtain in a trivial way
examples of irreducible surfaces with arbitrary high Betti number. Only in the case
that X is an ordinary double point, one has H1.Y/ D 0. It turns out that in general it
is exactly the weak normality of X that forces H1.Y/ to vanish.

Proposition 1 Let X
f�! S be a flat deformation of a weakly normal space X D

f�1.p/. Let Y ��!X be a map such that

1. Y n ��1.˙/ '�!X n˙ , ˙ WD Sing.X/ is an isomorphism.
2. ��OY ' OX .

Then one has

R1��OY D 0 :

Proof The argument is basically the same as in [3]. First look at the exact sequence

0 �! OY
t
�! OY �! OY �! 0:

Here t is a local parameter on S and t� is the map obtained from multiplication by t.
The space Y is defined by the equation t D 0; it is the fibre over 0 2 S. When we
take the direct image of this sequence under � , we obtain a diagram

0 �! OX
t
�! OX �! OX �! 0?

?
y

?
?
y

?
?
y

0 �! ��OY
t
�! ��OY �! ��OY �! R1��OY

t
�! R1��OY � � �

By assumption, the natural map OX �! ��OY is an isomorphism. From this it
follows that the sequence

0 �! OX �! ��OY �! R1��OY
t
�! R1��OY �! � � �

is also exact. We claim that we also have an isomorphism

OX ' ��OY :

Note that it follows from condition .2/ that the fibres of � are connected. Consider a
section g 2 ��OY , or, what amounts to the same, a function on Y. As the �-fibres are
compact and connected, this function is constant along the �-fibres. Hence g can be
considered as a continuous function on X, which is holomorphic on Y n ��1.˙/ D
X n˙ . Because we assumed X to be weakly normal, it follows that g is holomorphic
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on X: g 2 OX . So the map OX ,! ��OY is indeed an isomorphism. Because the
map � is an isomorphism outside ˙ , the coherent sheaf R1��OY has as support a
set contained in ˙ . But the last exact sequence now tells us that t� acts injective on
R1��OY . As t vanishes on ˙ � X, we conclude that R1��OY D 0. Þ

For any weakly normal surface singularity .X; p/, one can construct an improve-
ment � W Y �! X, which is an isomorphism over X n fpg and which has only
certain basic weakly normal singularities, called partition singularities. Such an
improvement plays a role analogous to that of the resolution for normal singularities.
Weakly rational singularities are defined by the vanishing of R1��OY . For more
details we refer to [9]. Proposition 1 implies the following statement:

Let C be a weakly normal curve singularity and X the total space of a flat
deformation X �! S of C. Then X is weakly rational.

This follows from the above proposition by applying it to X D C, X D X, and
Y D Y. Note that for Proposition 1, we did not assume Y to be smooth.

We return to the general situation of a smoothing of a reduced equidimensional
space X.

Proposition 2 With the same notations as before, we have for the smoothing of a
reduced, equidimensional space X the following implication:

X weakly normal H) H1.Y/ D 0 :

Proof The embedded resolution map Y �! X clearly satisfies the condition (1)

of Proposition 1. It follows from Lemma 1 that X is normal; hence, OX
'�!

i�OX n˙ . Because Y n ��1.˙/ �! X n ˙ is an isomorphism, it follows that
��OY D OX . Hence also the second condition of Proposition 1 is fulfilled, so we
can conclude that R1��OY D 0; in other words we get

H1.OY / D 0:

From the exponential sequence on Y

0 �! ZY �! OY �! O�Y �! 0 ;

the similar sequence for X and the fact the OX ' ��OY it follows that

H1.Y ;ZY / D 0

As Y contracts onto Y, we have H1.Y;Z/ D 0. Þ
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4 The Kernel of ˇ

In the big diagram, there was a map ˇ:

H0.Y Œ0�;Z/
ˇ�! H2.Y ;Z/.D H2.Y;Z//

This map works as follows: Elements of the first group can be considered as divisorsP
niYi supported on Y. Each such divisor determines a line bundle O.

P
i niYi/.

Then one has

ˇ.
X

niYi/ D c1.O.
X

niYi//:

So the map ˇ factorises over the map  which associates to a divisor its line
bundle. From the exponential sequence on Y , we obtain the following diagram:

H0.Y Œ0�/ D H0.Y Œ0�/?
?
y 

?
?
yˇ

� � � �! H1.OY / �! H1.O�Y / �! H2.Y ;Z/ �! � � �

One immediately obtains

Lemma 3 rank .kerˇ/ � rank .ker /. If H1.OY / D 0, then ker D kerˇ. Þ
Definition Let .X ; p/ be a germ of a normal analytic space. The local class group
is defined as

Cl.X; p/ WD We.X; p/=Ca.X; p/ :

Here We.X; p/ is the free abelian group spanned by the (germs of) Weil divisors on
X and Ca.X; p/ the subgroup spanned by the (germs of) Cartier divisors.

Lemma 4 With the notations of Sect. 2, there is a diagram with exact rows and
columns:

0 0?
?
y

?
?
y

ker 
'�! ker �?

?
y

?
?
y

0 �! H0.FŒ0�/ �! H0.Y Œ0�/ �! H0.XŒ0�/ �! 0?
?
y D

?
?
y 

?
?
y�

0 �! H0.FŒ0�/ �! H1.O�Y / �! Cl.X ; p/ �! 0
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Here FŒ0� WD Y Œ0� n eX is the disjoint union of the divisors F of Sect. 1 and
XŒ0� D triD1Xi, where the Xi are the irreducible components of X. The maps are
the canonical ones.

Proof The surjection H1.O�Y / (=R1��OY ) to the local class group works as
follows: by pulling back a Weil divisor on X , we obtain a Cartier divisor on Y (and
hence a line bundle) that maps back to the original Weil divisor on X , as the map
� is a modification in codimension� 2 (cf. [5]). The main point is to show that the
kernel of the map H1.O�Y / �! Cl.X ; p/ is precisely H0.FŒ0�/, or what amounts to
the same, that ker D ker � . Let A DP niYi be in the kernel of . We may assume
that ni � 0. Hence there is a function g 2 H0.OY / with .g/ D A. By the normality
of X , we have OX D ��OY , so g can be considered as a holomorphic function on
X , having as divisor on X just the image of that part of A that does not involve the
divisors of FŒ0�. This gives the map ker �! ker � . This map is injective, because if
the divisor of g (on X ) would be zero, g would be a unit; hence, A D 0. Surjectivity
of ker �! ker � can be shown as follows: A D P

i niXi is an element in ker � if
it is the divisor on X of some function g 2 OX . The divisor of g ı � is a Cartier
divisor on Y supported on Y, so it produces an element of ker mapping to A. Þ

The use of Lemma 4 is that it allows us to get rid of ker , that depends on the
global object Y over which we have not much control, and replace it with the map:

� W H0.XŒ0�/ �! Cl.X ; p/

that maps each irreducible component of Xi to its class of the corresponding Weil
divisor on X .

There is one further issue: in Sect. 2 we first performed a base change to arrive
at a semi-stable family. The following lemma shows that kernel of the map � is
essentially independent of base change.

Lemma 5 Consider a normal space X and a reduced principal divisor X � X .
Let XŒ0� D triD1Xi, where the Xi are the irreducible components of X. Let fX be
obtained from X by taking a d-fold cyclic covering ramified along X.

Let � W H0.XŒ0�/ �! Cl.X ; p/ and e� W H0.XŒ0�/ �! Cl.fX ; p/ be the maps
discussed above. Then

rank.ker �/ D rank.kere� /:

Proof Let � W fX �! X be the cyclic d-fold covering map. We consider the
irreducible componentsXi as divisors both on X and on fX If A DPi niXi 2 ker � ,
then A D .g/ for some g 2 OX . On the covering space fX , the function g ı � now
has d � A as divisor. Conversely, if B D P

i miXi 2 kere� , then B D .h/ for some
h 2 OeX . Then the norm N.h/ 2 OX has d � B as divisor. Þ
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5 Proof of Theorem 2

In the introduction we formulated the following theorem.

Theorem 2 Let X
f�! S be a smoothing of a reduced equidimensional germ

.X; p/. Let Xt D f�1.t/; t ¤ 0 be its Milnor fibre. Let XŒ0� D tXi be where the
Xi are the irreducible components of X. Let � W H0.XŒ0�/ �! Cl.X ; p/ be the map
that associated with a divisor supported on X its class in the local class group. Then
one has:

1. b1.Xt/ � rank.ker �/ � 1 .
2. When X is weakly normal, then one has equality:

b1.Xt/ D rank.ker �/ � 1:

In this case the action of the monodromy is trivial.

Proof From Lemma 2, (1) and (2), we get

rankH1.Yt/ � rankH1.B/� 1 D rankH1.Y/C rank .kerˇ/� 1 � rank .kerˇ/� 1

Furthermore, from Lemma 3, we have

rank .kerˇ/ � rank .ker /:

From Lemmas 4 and 5, the number on the right-hand side is the same as

rank.ker �/;

so that we get

rankH1.Yt/ � rank.ker �/ � 1

which is the first statement of the theorem. For equality it is necessary that H1.Y/ D
0, and by Lemma 3, the equality rank .kerˇ/ D rank .ker / is implied by the
vanishing of H1.OY /. If we are considering a smoothing of a weakly normal space,
this follows from Propositions 2 and 1, respectively. The triviality of the monodromy
is Lemma 2, (3). Þ

In particular, when X is a hypersurface or, more generally, if Cl.X ; p/ is finite,
then rank.ker �/ is equal to the number r of irreducible components of X, so
b1.Xt/ � r � 1, with equality in the weakly normal case.

Remark For a hypersurface germ X in C
3 with a complete intersection as singular

locus and transversal type A1, it is known that the first Betti number is zero or one;
see [6, 8]. So the number of irreducible components of X is one or two. To put it in
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another way, the singular locus of a weakly normal hypersurface in C
3 which has

more than three components is never a complete intersection.

Question J. Stevens has shown that all degenerate cusps are smoothable. What is
the first Betti number for these smoothings? Is the first Betti number an invariant of
X? Maybe not, but I do not have computed any non-trivial example. This seems to
be an interesting topic for further investigations.

Acknowledgements The basis of the above text is part of my PhD thesis [9], but the results were
never properly published. For this version only minor cosmetic changes have been made. I thank
D. Siersma for asking me about the result and the idea of writing it up as a contribution to the
volume on occasion of Gert-Martins 70th birthday.
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A Kirwan Blowup and Trees of Vector Bundles

G. Trautmann

Abstract In the paper (Markushevich et al., Cent Eur J Math 10:1331–1355, 2012)
a conceptual description of compactifications of moduli spaces of stable vector
bundles on surfaces has been given, whose boundaries consist of vector bundles
on trees of surfaces. In this article a typical basic case for the projective plane is
described explicitly including the construction of a relevant Kirwan blowup.
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1 Introduction

To some extent, the replacement of limit sheaves in a compactification of a space
of vector bundles by vector bundles on trees of surfaces is very natural, being in
analogy to bubbling phenomena in geometric analysis and Yang-Mills theory in the
work of Taubes, Uhlenbeck, and Feehan. There the degeneration of connections and
fields is described by a process where data are preserved by shifting them partially
to a system of attached 4-spheres. In the analogous situation of algebraic moduli
spaces of vector bundles, the attached 4-spheres can be replaced by projective planes
P2 hanged in at exceptional lines after blowing up points in a given surface. Then
a limit sheaf can be transformed eventually to a vector bundle on the new reducible
surface or on repeatedly constructed trees of surfaces. In [5] the trees of surfaces
and vector bundles have been defined so that these objects can be the points of a
compactification of the moduli spaces of rank 2 vector bundles on a given algebraic
surface and are minimal for that purpose. The original basic example of such a
compactification is the moduli space M.2I 0; 2/ of stable rank 2 vector bundles with
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Chern classes c1 D 0; c2 D 2 on P2 which has partially been treated in [5]. In
this paper an explicit construction of the Kirwan blow up of a relevant parameter
space is given together with the construction of a universal family. In Sect. 2 we
recall shortly the definitions and the main theorem of [5] and in Sect. 3 the typical
limit trees are explicitly constructed. Notation: All varieties in this article shall be
defined over an algebraically closed field k of characteristic zero. P.V/ denotes the
projective space of lines in the k-vector space V , whereas Pn D P.knC1/: The points
of P.V/ are written as [v].

2 Trees of Surfaces and Bundles

2.1 Trees

A tree T in this article is a finite graph, oriented by a partial order � and
satisfying:

• There is a unique minimal vertex ˛ 2 T, the root of T.
• For any a 2 T; a ¤ ˛, there is a unique maximal vertex b < a, the predecessor

of a, denoted by a�.
• By aC WD fb 2 T j b� D ag, we denote the set of direct successors of a 2 T. We

let Ttop denote the vertices of T without successor.

A tree of surfaces over a given smooth projective surface S, modeled by a tree T,
is a union

ST D S˛ [
[

a

Sa

where

• S˛ is a blowup of S in finitely many points.
• For a 2 Ttop, Sa is a projective plane Pa D P2.
• If ˛ 6D a 62 Ttop, Sa is a blown-up projective plane Pa D P2 in finitely many

simple points not on a line la � Pa.
• If a 6D ˛, Sa \ Sa� D la and la is an exceptional line in Sa� .

Such trees can be constructed by consecutive blowups of simple points, hanging
in a P2.k/ in each exceptional line of the previous surface and then blowing up
points in the new P2, the whole starting with the given surface S.

By the construction of ST , all or a part of its components can be contracted. In
particular, there is the morphism

ST
��! S
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which contracts all the components except S˛ to the points of the blown-up finite set
of S˛.
Note that:

1. There are no intersections of the components other than the lines la.
2. If T D f˛g is trivial, then ST D S:
3. After contracting the lines la topologically (when defined over C), one obtains

bubbles of attached 4-spheres.

2.2 Treelike Vector Bundles

A weighted tree is a pair .T; c/ of a tree T with a map c which assigns to each vertex
a 2 T an integer na � 0, called the weight or charge of the vertex, subject to

#aC � 2 if na D 0 and a ¤ ˛:

The total weight or total charge of a weighted tree is the sum †a2T na D n of all
the weights. We denote by Tn the set of all trees which admit a weighting of total
charge n. It is obviously finite.

In the following we consider only pairs .ST ;ET/, called Tn-bundles or simply
tree bundles, where T 2 Tn, ST is a tree of surfaces, and ET is a rank 2 vector
bundle on ST , such that c1.ET jSa/ D 0, c2.ET jSa/ D na for all weights na and
such that the bundles Ea D ET jSa are “admissible,” replacing a lacking stability
condition; see [5].

In case ST D S, this includes that the bundle E on S belongs to Mb
S;h.2I 0; n/,

the quasi-projective Gieseker-Maruyama moduli scheme of �-stable rank 2 vector
bundles on S with respect to a polarization h and of Chern classes c1 D 0; c2 D n.
The bundles in the special case of this article will all be admissible.

In particular, an indecomposable bundleEa on Pa D P2 will be admissible if c1 D
0; c2 D 1. Such a bundle is not semistable on Pa. It is represented in homogeneous
coordinates by exact sequences:

0! OPa.�2/
.z20;z1;z2/�����! OPa ˚ 2OPa.�1/! Ea ! 0:

We call the so defined tree bundles also Tn-bundles. There is a natural notion of
isomorphism for the pairs .ST ;ET/: They consist of isomorphisms of the surfaces
with the base surface fixed and of isomorphisms of the lifted bundles.
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2.3 Families of Tree Bundles

A Tn-family of tree bundles is a triple .E=X=Y/; where X is flat family of Tn-
surfaces Xy; y 2 Y; and E is a rank 2 vector bundle on X such that each Ey D EjXy

is a Tn-bundle.
One can then consider the moduli stack Mn defined by

Mn.Y/ WD set of families .E=X=Y/

such that any bundle Ey D EjXy is a 1-parameter limit of bundles in Mb
S;h.2I 0; n/.

Let

Mn.Y/ DMn.Y/= 	 :

be the associated functor. The following theorem is stated in [5].

Theorem There is a separated algebraic space Mn.S/ of finite type over k
corepresenting the functorMn.

However the following questions are still open:

• Is Mn.S/ complete?
• When is Mn.S/ a (projective) scheme?
• Is Mn.P2/ a projective compactification of MP2 .2I 0; n/?
• Classification of limit tree bundles for MP2 .2I 0; n/ for n � 3?
• What about higher rank bundles on P2?
• Limit treelike bundles for instanton bundles on P3?

3 Limit Trees for Mb.0; 2/

Let M.2I 0; 2/ be the moduli space of semistable sheaves on P2 with Chern classes
c1 D 0; c2 D 2 and rank 2 and let Mb.0; 2/ be its open part of (stable) bundles. It is
well known that M.2I 0; 2/ is isomorphic to the P5 of conics in the dual plane, the
isomorphism being given by ŒF � $ C.F/; where ŒF � is the isomorphism class of
F and C.F/ is the conic of jumping lines of ŒF � in the dual plane.

It is also well known that any sheaf F from M.2I 0; 2/ has two Beilinson
resolutions on P D P2 D P.V/:

0! 2�2
P.2/

A�! 2�1
P.1/! F ! 0 (1)

0! 2OP.�2/ B�! 4OP.�1/! F ! 0;
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where the matrices A (of vectors in V) and B (of vectors in V�) are related by the
exact sequence

0! k2
A�! k2 ˝ V

B�! k4 ! 0:

The conic C.F/ in the dual plane has the equation det.A/.
F is locally free if and only if C.F/ is smooth or if and only if F is stable. If

C.F/ decomposes into a pair of lines, then A is equivalent to a matrix of the form�
x 0
z y

�
; and then F is an extension

0! IŒx� ! F ! IŒy� ! 0;

whose extension class is represented by the entry z.

Notice here that the sheaf is still locally free at the point [y] if the extension class
is non-zero, i.e. z 62 Span.x; y/: In any case F is S-equivalent to the direct sum
IŒx� ˚ IŒy� .

3.1 Type 1 Degeneration

In the following let e0; e1; e2 be basis of V and denote by x0; x1; x2 its dual basis.
For the first example, consider the 1-parameter deformation

� e0 tae1
tbe2 e0

�
with second

Beilinson resolution

0! 2OC � OP.�2/ B.t/�! 4OC � OP.�1/! F! 0;

B.t/ D � x1 x2 tax0 0
0 tbx0 x1 x2

�

with parameters a; b, where C D A
1.k/. For t D 0, the sheaf F0 is singular at

p D Œe0�, F0 D Ip ˚ Ip: The blowing-up � W Z ! C � P at .0; p/ is the subvariety
of C � P � P2 given by the equations

tx0u1 � x1u0 D 0; tx0u2 � x2u0 D 0; x1u2 � x2u1 D 0;

where the u	 are the coordinates of the third factor P2: We consider the following
divisors on Z:

• QP, the proper transform of f0g � P, isomorphic to the blowup of P at p
• D, the exceptional divisor of �
• H, the lift of C � h, where h is a general line in P
• F, the divisor defined by OZ.F/ D pr�3OP2 .1/

as shown in the figure.
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Then D 	 H�F, and we let x	 resp. u	 denote the sections of OX.H/ resp. OZ.F/
lifting the above coordinates. Using the equations of Z, we see that the canonical
section s of OZ.D/ is a divisor of the sections x	 , such that tx0 D su0, x1 D su1,
x2 D su2, and gives rise to the diagram

with BZ D
�
u1 u2 au0 0
0 bu0 u1 u2

�
: Thus BZ represents a locally free sheaf F on Z, but

its first Chern class has been modified by blowing up and removing the torsion. To
correct this, consider the twisted bundle E WD F.D/. Then Ej QP ' 2OQP; and the
restriction EjD belongs to Mb

D.2I 0; 2/, D ' P2: Moreover, Z is flat over C, and E
is a flat family of vector bundles over C with the limit tree bundle EjZ0 on the fiber
Z0 D QP [D over 0 2 C: This can be symbolized by
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the numbers indicating the second Chern classes of the bundles on the compo-
nents. The isomorphism class of this limit depends on the chosen parameters a; b
which determine a normal direction to the Veronese surface in P5. This leads to
blowing it up and to the Kirwan blowup of the parameter space; see Sect. 4.

3.2 Type 2 Degeneration

Let now a family on C � P be given by
� e0 �te1�te1 e2

�
; defining a deformation of the

sheaf of
� e0 0
0 e2

�
: Similarly to the previous case, the deforming sheaf F is the cokernel

of the matrix

B.t/ D
�
x2 x1 tx0 0
0 tx2 x1 x0

�

Blowing up C � P in the two singular points .0; p0/ and .0; p2/, p	 D Œe	�, leads
to the figure:

The blown-up variety Z has the standard embedding into .C �P/�P2 � P2 with
divisors:

• H, the pullback of the divisor C � h in C � P
• QP, the blowup of f0g � P in the two points
• D0, D2, the two exceptional divisors
• F0, F2, whose invertible sheaves are the pullbacks of OP2.1/ from the third and

fourth factor

Letting x	; u	; v	 and s0; s2 denote the basic sections of the sheaves of
H;F0;F2;D0;D2, we have the equations (as homomorphisms between invertible
sheaves) tx0 D s0u0; x1 D s0u1; x2 D s0u2; and x0 D s2v0; x1 D
s2v1; tx2 D s2v2:

By that we have the matrix decomposition

�
x2 x1 tx0 0
0 tx2 x1 x0

��
s0 0
0 s2

�

D
�
u2 u1 u0 0
0 v2 v1 v0

�

:
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Using this, the torsion of ��F can be removed as in the diagram of the previous
section. Then F D ��F=torsion has the resolution

0! OZ.�H � F0/˚OZ.�H � F2/
BZ�! 4OZ.�H/! F! 0;

where BZ is the right-hand matrix. The tree components of F are FjDi D
TDi.�1/;Fj QP D OQP.�l0/ ˚ OQP.�l2/; where l0; l2 are the exceptional lines on QP:
However, there is no way by twist or elementary transformation to make the first
Chern classes c1 vanish.

But starting with
�

e0 �t2e1
�t2e1 e2

�
; we get by the same procedure a sheaf F on Z

whose resolution matrix is

BZ D
�
u2 u1 tu0 0
0 tv2 v1 v0

�

:

This resolution implies that F is reflexive and singular in exactly two points q0 D
fu1 D u2 D t D 0g and q2 D fv1 D v0 D t D 0g and that its restrictions to the
components of Z0 D QP [D0 [ D2 are

Fj QP D OQP.�l0/˚OQP.�l2/ and FjDi D ODi ˚ Iqi;Di.1/:

Hence there is an elementary transform on Z:

0! F0 ! F! OD0 ˚OD2 ! 0:

The resolution of F0 can be computed as follows. There is a decomposition tu0 D
s0 Qu0 because tu0 vanishes on the divisor D0. Similarly we have tv2 D s2 Qv2; u1 D
s2 Nu1; v1 D s0 Nv1 and from this the matrix decomposition

�
u2 Nu1 Qu0 0
0 Qv2 Nv1 v0

��
1
s2

s0
1

�

D
�
u2 u1 tu0 0
0 tv2 v1 v0

�

It follows by diagram chasing that the left-hand matrix gives the resolution

0! E1 ! E0 ! F0 ! 0;

where E1 D OZ.�H � F0/˚OZ.�H � F2/ and
E0 D OZ.�H/˚OZ.�H � S2/˚OZ.�H � S0/˚OZ.�H/.

This resolution shows that F0 is locally free on Z. In order to determine its
restrictions to the components, one should use the identities, u20 D x0 Qu0, v22 D x2 Qv2,
which follow from the previous identities. Using these, one can determine the
restrictions of the twisted bundle E WD F0.D0 C D2/ W

Ej QP D 2OQP and EjDi is a bundle on Di Š P2 with Chern classes c1 D 0; c2 D 1
(see the description of bundles with these Chern classes in Sect. 2.2).
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Since the elementary transform and the twisting do not affect the bundle on the
part of Z over C n f0g, the sheaf is a limit tree bundle on the fiber Z0 D QP[D0[D2:

3.3 Type 3 Degeneration

Let QP5 be the blowup of P.S2V/ D P5 of the Veronese surface in P5; let †2 �QP5 be the exceptional divisor and †1 � QP5 the proper transform of the divisor of
degenerate conics; see also Proposition 5.

By the above, type 1 limit tree bundles belong to †2 n †1 and type 2 limit tree
bundles belong to †1 n †2: There is a third type of limit tree bundle belonging to
†2 \†1 with symbolic tree.

Examples can be obtained as limits of families of type
�

e0 �t3e1
�t3e1 e0Cte2

�
and two

consecutive blowups. In this case the family F on C � P is given as the cokernel in

0! 2OC � OP.�2/ B.t/�! 4OC � OP.�1/! F! 0;

B.t/ D
�

x2 x1 t3x0 0

0 t2x2 x1 tx0�x2
�
:

This sheaf F is singular in .0; p/, p D Œe0�. Let then

� W Z ! C � P

be the blowup as in Sect. 3.1, described as subvariety of Z � C�P�P2 with divisors
QP; H; D; F; D 	 H�F. Let s be the standard section of OZ.D/ for the exceptional
divisor, and let x	 and y	 be the basic sections of OZ.H/ and OZ.F/, respectively,
with equations tx0 D sy0; x1 D sy1; x2 D sy2: It follows as in 3.1 that the sheaf
F D ��F=torsion has the resolution

0! 2OZ.�H � F/
BZ�! 4OZ.�H/! F! 0;

BZ D
�

y2 y1 t2y0 0

0 t2y2 y1 y0�y2
�
:
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This sheaf and its syzygy are of the same type as in Sect. 3.2. It is reflexive and
singular exactly in the points p0; p2 2 D X QP, p0 D ft D y1 D y2 D 0g and
p2 D ft D y1 D y0 � y2 D 0g: Again one can verify that the sheaf F0 WD F.D/ has
the restrictions

F0j QP D 2OQP and F0jD D Ip0;D ˚ Ip2;D:

on the components of Z0 D QP [D:
In order to construct a locally free limit tree bundle, we blow up Z in the two

points p0; p2 to get

� W W ! Z

with exceptional divisors S0 and S2, the proper transform QD of D, the lifted divisors
QP and F, and the two divisors F0 and F2 coming from the embedding.

As in Sect. 3.2, one concludes that the sheaf F00 D ��F0=torsion is reflexive and
the cokernel of a matrix

BZ D
�
u2 u1 tu0 0
0 tv2 v1 v0

�

and such that F00 restricts as

F00j QP D 2OQP; F00j QD D O QD.�l0/˚O QD.�l2/; F00jSi D OSi ˚ Iq0;Si.1/;

where qi 2 Si X QD:
Finally, as in Sect. 3.2, there is an elementary transform

0! E0 ! F00 ! OS0 ˚OS0

such that E0 is locally free on W and such that E WD E0.S0 C S2/ has the desired
restrictions

Ej QP D 2OQP; Ej QD D 2O QD
and such that EjSi do have the Chern classes c1 D 0; c2 D 1: So E is a limit tree
bundle on the tree of surfaces W0 D QP [ QD [ S0 [ S2:

4 Kirwan Blowup I

The 2 � 2-matrices with entries in V in (1) parametrize the sheaves in M.2I 0; 2/
and at the same time the conics of their jumping lines in the dual plane P.V�/
by their determinants in S2V: Since the isomorphisms of the left-hand term in (1)
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are not essential, only the subspaces ŒA� spanned by the rows of A matter, so that
the Grassmannian G2.k2 ˝ V/ is a parameter space of M.2I 0; 2/: The Plücker
embedding

p W G2.k2 ˝ V/ � P.^2.k2 ˝ V// D P.^2k2 ˝ SV ˚ S2k2 ˝^2V/

can be expressed in terms of the entries, using the standard basis of k2, by

Œ

�
x x0
y y0

�

�
p7! Œxy0 � x0yI x ^ y; x ^ y0 C x0 ^ y; x0 ^ y0�:

One should note here that there is the relation

�
x x0
y y0

�

^
�
x ^ y x ^ y0 C x0 ^ y x0 ^ y0 0

0 x ^ y x ^ y0 C x0 ^ y x0 ^ y0
�

D 0: (2)

There is an action of SL2.k/ on both sides of the Plücker embedding, induced by the
natural action on k2 and written as

ŒA�g D ŒAg� and ŒqI ˆ�g D ŒqI ˆS2g�;

explicitly with

Ag D
�
x x0
y y0

��
˛ ˇ

� ı

�

and ˆS2g D .�; !; �/
0

@
˛2 2˛ˇ ˇ2

2˛� ˛ı C ˇ� 2ˇı
�2 2�ı ı2

1

A ;

such that the Plücker embedding is equivariant. An element [A] in the Grassmannian
is semistable if and only if det.A/ ¤ 0; and it is stable if and only if det.A/ is
the equation of a nondegenerate quadric in the dual plane P.V�/. Moreover, the
morphism ŒA�! Œdet.A/� ,

G2.k
2 ˝ V/ss �! PS2V Š P5 Š NM.2I 0; 2; 0/

is a good GIT quotient; see [7].
For the construction of a compactification of Mb.0; 2/ by tree bundles, we need

to replace the Grassmannian by a parameter space with only stable points in order
to avoid unnatural identifications in the boundary. This is done by the method of
Kirwan [4] in two consecutive blowups.
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4.1 The First Blowup

In the following we use the abbreviations X D G2.k2 ˝ V/ and G D SL2.k/. The
group G has the fixed points Œ

�
x 0
0 x

�
�: According to [4], let then ZG denote the subset

ZG D fŒA� 2 Xj the affine fiber of p.A/ fixed by Gg:

It follows that

ZG D fŒ
�
x 0
0 x

�
�g Š P.V/;

that it is a closed and smooth subvariety of X and that ZG D GZG: The vanishing of
the components of ˆ characterizes the points of ZG and these components define its
ideal sheaf IG. Let then

QX WD BlZG.X/

be the blowup of X along ZG. In this situation

QX � X � P.S2k2 ˝^2V/

is the closure of the graph of the mapˆ W XXZG ! P.S2k2˝^2V/, see [1], [2], [3]
for classical descriptions of blowups. This blowup can geometrically be described
as follows.

Lemma 1

(a) QX is the subvariety of X�P.S2k2˝^2V/ of points .ŒA�; Œ�; !; ��/ satisfying
(i) .x ^ y; x ^ y0 C x0 ^ y; x0 ^ y0/ 2 k.�; !; �/

(ii) A ^
�
� ! � 0
0 � ! �

�
D 0

(b) The exceptional divisor EG in QX is the subvariety of pairs .ŒA�; Œx ^ u; x ^
w; x ^ v�/ with A D � x 00 x

�
:

(c) QX is smooth and the projection QX ! X is G-equivariant.

Sketch of Proof Because QX is the closure of graph, (i) follows immediately and also
(ii) by formula (2). Let conversely Y � X � P.S2k2 ˝ ^2V/ be defined by (i) and
(ii). Then QX � Y and QX X EG D Y X EG: One shows now that the fiber Yp for
a point p 2 ZG coincides with the fiber QXp D EG;p: Such a point has as its first
component A D �

x 0
0 x

�
; and (ii) implies that its second component is of the form

Œx ^ u; x ^ w; x ^ v�: Consider then the 1-parameter family A.t/ D �
x �tv
tu xCtw

�
: For

t ¤ 0, ŒA.t/� 2 X X ZG; and its lift to QX has the limit QA with components ŒA� and
Œx^ u; x^w; x^ v�: This proves (a) and also (b) as a corollary. For (c) smoothness
follows from that of X and ZG, and the equivariance directly from (a).
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It follows from (b) that EG is the P5-bundle

where Q is the tautological quotient bundle of P(V).

Stability in QX: By definition of QX, there is the Plücker embedding:

QX � P..^2k2 ˝ SV ˚ S2k2 ˝^2V/˝ .S2k2 ˝^2V//

and by this the action on QX is induced by the obvious linear action of G on the
ambient projective space.

Proposition 2 Let QA D .ŒA�; Œ�; !; ��/ be a point of QX: Then:
(i) QA is semistable if and only if both of det.A/ D xy0 � x0y and !2 � 4�� are

non-zero.
(ii) If QA 62 EG, then QA is stable if and only if �. QA/ D ŒA� is stable.

(iii) If QA 2 EG, then QA is stable if and only if !2 � 4�� is not a square in S2.V=k:x/
For the proof, notice first that the quadratic forms det.A/ D xy0�x0y and !2�4��

of the components of QA are invariant under this action. Then the statements can be
canonically verified by either looking for the points in the affine cone or by using
the Mumford criterion for the action of 1-parameter subgroups. For the latter, the
weights can be computed via the tensor products in the Plücker space.

Some elementary calculations with the explicit description of the group action
show:

Lemma 3 Let QA D .ŒA�; Œ�; !; ��/ be a point of QX: Then:
(i) !2�4�� D 0 if and only if there is a g 2 G such that Œ�; !; ��S2g D Œ� 0; 0; 0�:

(ii) !2 � 4�� is square if and only if there is a g 2 G such that Œ�; !; ��S2g D
Œ� 0; !0; �0� with � 0 D 0 or �0 D 0:

(iii) !2 � 4�� is a product if and only if there is a g 2 G such that Œ�; !; ��S2g D
Œ� 0; 0; �0�:

Let now Hss
0 � Hss

1 � Xss be the subvarieties of points ŒA� for which det.A/ is
a square, respectively, a product in S2V . These are the inverse images in Xss of the
double lines, respectively, pairs of lines in the space P.S2V/ of conics in P.V�/: Let
H0 � H1 be their closures in X. By definition ZG � Hss

0 : Since the matrices ŒA� 2 Hss
0

are of type Œ
�
x 0
z x

�
�g; g 2 G; one finds that Hss

0 X ZG consists of all non-closed orbits
whose closures meet ZG; the orbits of the latter being its points. Then

P.V/ Š ZG D Hss
0 ==G � Xss==G Š P.S2V/
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is the Veronese embedding. Moreover, all the points Hss
0 X ZG become unstable in

QX; see Lemma 4.
Let QH0 � QH1 be the proper transforms of H0 � H1 in QX: Then the following

holds.

Lemma 4

(a) QH0 \ QXss D ; and EG \ QH0 D EG X Ess
G :

(b) QH1 \ QXs D ; and EG \ QH1 D EG X Es
G:

Sketch of Proof A point in Hss
0 X ZG is equivalent to a point Œ

�
x 0
z x

�
� and this has the

second component Œx ^ z; 0; 0� in QX: By Remark 3 it is not semistable. Then also
!2 � 4�� D 0 for the limit points. To show that EG X Ess

G � QH0, we may assume
that a point p in EG X Ess

G has the components Œ
�
x 0
0 x

�
�; Œx ^ z; 0; 0�: As in the proof

of Lemma 1, the family defined by Œ
�
x 0
tz x

�
� shows that p 2 QH0: This proves (a). The

proof of (b) is analogous.
By the characterization of semistable points, the equivariant morphism � W QX !

X maps (semi-)stable points to (semi-)stable and gives rise to a morphism QXss==G!
Xss==G Š P.S2V/, which is an isomorphism over the complement of the Veronese
surface ZG=G: Because †2 WD Ess

G==G becomes the inverse image of ZG=G and is a
Cartier divisor, we obtain the

Proposition 5 BP.S2V/ WD QXss==G is the blowup of P.S2V/ along the Veronese
surface.

4.2 Related Geometry of Conics

For any point QA in QX, the quadratic form !2 � 4�� can be seen as an element of
S2V� because of ^2V Š V�: One can then easily verify that for any nondegenerate

A D
�

x x0

y y0

�
(for which Œx ^ y; x ^ y0 C x0 ^ y; x0 ^ y0/� D Œ�; !; ��/), the

quadradic form !2 � 4�� is the equation of the dual conic in P.V/ of the conic
fdet.A/ D 0g � P.V�/ (of jumping lines of the corresponding vector bundle).
Because QXss is defined by det.A/ ¤ 0 and !2�4�� ¤ 0, we can define the universal
family of conics

Q � QXss � P.V/

as the subvariety of pairs . QA; Œv�/ with .!2�4��/.v/ D 0: If QA 2 Ess
G , i.e. A D � x 00 x

�
,

then .�; !; �/ D .x ^ u; x ^ w; x ^ v/ and the fiber QQA is a pair of lines through
[x] in P.V/ or a double line.

Secondly, the related quadratic form w2 � 4uv 2 S2V=k:x without the factor x
defines two points or a double point on the double line fx2 D 0g in P.V�/:

Recalling that the space of complete conics in the plane P.V�/ consists of conics,
for which the double lines are enriched by two points or a double point, one finds



Trees of Vector Bundles 379

that QXss parametrizes this space and that the quotientBP.S2V/ WD QXss==G is the space
of complete conics in P.V�/:Moreover, because the forms det.A/ and !2� 4�� are

invariant, the conic bundle Q descents to a conic bundle embedded in BP.S2V/�P.V/
and describes the duality for complete conics.

5 Kirwan Blowup II

It is easy to see that there are no semistable points in QX with a two-dimensional
stabilizer by checking the types of points. But there are two-dimensional such
stabilizers. For the Kirwan blowup, it is enough to consider only connected reductive
ones. Again by checking the different types of points, one finds that the only such
stabilizers are R D f� ˛ 0

0 ˛�1

�g Š k� and its conjugates. According to [4] we
consider for the center of the blowup of QX the subvariety ZR of points QA in QX
which are fixed by R, and such in addition, R acts trivially on the affine fiber of
QA in ^2.k2 ˝ V/˝ .S2k2 ˝^2V/: A direct computation shows that

ZR is the set of points .Œ
�
x 0
0 y

�
�; Œ0; !; 0�/ in QX:

Then GZR � QXss X QXs and is of dimension 6.
By definition GZR � QHss

1 , and GZR is the subset of points in QHss
1 with closed

orbits. The good quotientGZR==G D QHss
1 ==G is then the proper transform inBP.S2V/

of the divisor†1 of products in P.S2V/:

Lemma 6

(1) The closure GZR is the subvariety of points .ŒA�; Œ�; !; ��/ in QX for which
�; !; � are pairwise linearly dependent in ^2V:

(2) GZR \ QXss D GZR:
(3) GZR is smooth.
(4) GZR and EG intersect transversily in dimension 5.

Proof Let Y be the closed subvariety of QX defined by the condition in (1). Then
GZR � Y: When y 2 Y \ QXss, then y D .ŒA�; Œa�; b�; c��/ with b2 � 4ac ¤ 0,
and there is a group element g and some  so that .a; b; c/ D .0; 1; 0/S2g, because
y is supposed to be semistable. Then yg�1 D .ŒB�; Œ0; �; 0�/ and thus an element
of ZR: Now Y \ QXss D GZR: If y is unstable, there is a group element g so that
.a; b; c/ D .1; 0; 0/S2g: Then yg�1 D .ŒB�; Œ�; 0; 0�/ and such points are limits of
points in GZR: such matrices B can only be of type Œ

�
x 0
y 0

�
� or of type Œ

�
x 0
y x

�
�: In

the first case, Œ
�
x 0
y ty

�
� is family, whose members are G-equivalent to points in ZR for

t ¤ 0: In the second case, the members of the family Œ
�

x t2y
y x

�
� for t ¤ 0 are G-

equivalent to Œ
�

xCty 0
0 x�ty

�
� belonging also to ZR: This proves Y � GZR and thus (1)
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and (2). The lengthy but elementary proof of (3) and (4) by use of local coordinates
for the Grassmannian and its blowup is omitted here. �

Remark The set GZR X GZR consists entirely of the orbits of the unstable points
.Œ
�
x 0
y 0

�
�; Œx ^ y; 0; 0�/ and .Œ

�
x 0
y x

�
�; Œ�; 0; 0�/:

Lemma 7 EG X Ess
G � EG \ GZR � EG \ QH1 D EG X Es

G
and these sets are of dimensions 4, 5, and 6, respectively.

Proof When a point p 2 EG is unstable, it is in the orbit of a point q D
.Œ
�
x 0
0 x

�
�; Œ�; 0; 0�/ and then p 2 GZR: Such points have a two-dimensional stabilizer

Gq, and then EG XEss
G is parametrized by P.Q/�G=Gq; where Q is the tautological

quotient bundle on P.V/: Hence EG X Ess
G is four-dimensional. The points in

EG\GZR are of type .Œ
�
x 0
0 x

�
�; Œa�; b�; c�; �/ with � D x^u and u 2 V=k:x. Therefore

there is a surjective morphismP.Q/�P2! EG\GZR which is generically injective.
Hence dim.EG\GZR/ D 5: Finally EG\ QH1 is an intersection of hypersurfaces and
so of dimension 6. �

The condition in Lemma 6 for points in GZR is equivalent to the vanishing of
�^!; �^�; !^�:Moreover, the homomorphism .�; !; �/ 7! .�^!; �^�; !^�/
describes the canonical wedge map

Hom..S2k2/�;^2V/! Hom.^2.S2k2/�;^2 ^2 V/;

and this is G-equivariant, explicitly described by

.�; !; �/

0

@
˛2 2˛ˇ ˇ2

˛� ˛ı C ˇ� ˇı
�2 2�ı ı2

1

A 7! .� ^ !; � ^ �; ! ^ �/
0

@
˛2 ˛ˇ ˇ2

2˛� ˛ı C ˇ� 2ˇı
�2 �ı ı2

1

A :

(3)
So the map

QX X GZR
ˆ�! P.^2.S2k2/˝^2 ^2 V/ Š P.k3 ˝ V/;

given by p ! Œ� ^ !; � ^ �; ! ^ �� is well-defined and G-equivariant and the
components of this map generate the ideal sheaf of GZR

5.1 The Second Blowup

Can now be defined as the blowup of QX along GZR:

Y WD BlGZR.
QX/ ��! QX
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It is simultaneously the closure of the graph of ˆ: By the smoothness of the
ingredients, Y is smooth. Moreover, Y � QX � P.k3 ˝ V/ is acted on by G and
the projection Y ! QX is G-equivariant according to formula (3). We let ER denote
the exceptional divisor.

Remark The condition for GZR says that the second components of its points are
of type Œa�; b�; c�� D .a; b; c/˝ � in P.S2k2 ˝ ^2V/: This means that GZR is the
pullback of the Segre variety S D P.S2k2/ � P.^2V/ in P.S2k2 ˝ ^2V/: It follows
that also the blowup BlGZR.

QX/ is the pullback of the blowup of P.S2k2˝^2V/ along
the Segre variety S:

5.2 Stability in Y

By definition Y is embedded in QX � P.^2.S2k2/˝^2 ^2 V/: Combined with Segre
embeddings, we have

Y � P..^2k2 ˝ S2V ˚ S2k2 ˝^2V/˝ .S2k2 ˝^2V/˝ .^2.S2k2/˝^2 ^2 V//:

Then using the Mumford criterion, see [8] and [6], and considering the weights of
1-parameter subgroups, one can derive:

(i) Points in Y over points in GZR are stable.
(ii) Points in Y over stable points in QX are stable.

(iii) Points in Y over unstable points in QX are unstable.
(iv) Properly semistable points in QXss X GZR become unstable in Y.
(v) Every semistable point in Y is stable.

Remark One can as well show that the stabilizer of any semistable point in Y is
finite.

The G-equivariant morphism � induces a surjective G-equivariant morphism
Ys �! QXss and thus a surjective morphism of the good quotients

� W Ys=G �! QXss==G DBP.S2V/

with surjective restriction

Q†1 WD Es
R=G �! GZR==G D †1;

whereas

Ys=G X Q†1 �! QXss==GX†1
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must be an isomorphism because � is an isomorphism outside ER: Moreover,

because Ys ��! QXss is a blowup, also the induced morphism � is a blowup along
the divisor†1: Hence the

Proposition 8 � W Ys=G �! QXss==G DBP.S2V/ is an isomorphism.
Remark While the second Kirwan blowup has no effect on the quotient, it describes
BP.S2V/ as a geometric quotient, so that non-isomorphic S-equivalent limit sheaves
w.r.t. the parameter space Ys are excluded. This is needed for the construction
of families which include admissible tree bundles because S-equivalence for tree
bundles is not defined.

6 Families Including Tree Bundles

In this section the construction of families of sheaves, including all admissible tree
bundles for the tree compactification of Mb.0; 2/, will be sketched in two steps. In
step one we construct such a family over the base space QXss.

Firstly we recall the presentation of the semi-universal family for the Gieseker-
Maruyama space M.2I 0; 2/. Let 0! U ! k2 ˝OX ! Q! 0 be the tautological
sequence on the Grassmannian X D G2.k2 ˝ V/: As in formula (1), there are two
such equivalent presentations. The second is the exact sequence over Xss � P:

0! k2 ˝OX � OP.�2/ �! Q � OP.�1/! F ! 0: (4)

Recall from Lemma 3 that Hss
1 � Xss is the hypersurface of points ŒA� for which

det.A/ decomposes, i.e. the inverse image of†1, and that Hss
0 � Hss

1 is the subvariety
where det.A/ is a square. Let now S1 � Xss �P be the subvariety of points .ŒA�; Œv�/
for which v divides det.A/ and S0 � S1 where det.A/ D v2: Then S1 is seven-
dimensional and 2:1 over Hss

1 X Hss
0 :

It follows that F is locally free on Xss � P X S1 whose restriction to fibers over
Xss X H1 is the vector bundles in Mb.0; 2/; whereas the sheaves over points in H1
become the semistable sheaves in the boundary of Mb.0; 2/:

Notice however that the sheaf F restricted to fpg � P may be singular only in one
of the points of S1 over p; see the Notice before Sect. 3.1.

6.1 First Step

Let now QXss � P
˛�! Xss � P be the map � D ˛ � id, where ˛ is the blowup map

of Sect. 4, and consider the lifted family F D ��F : Then F is locally free over the
inverse image of Xss X Ess

G [ QHss
1 .
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Analogously to S0 and S1, let then QS0 be the set of points .p; Œv�/ 2 QXss � P over
Ess
G where det.A/ D v2, and let similarly QS1 � QXss � P be the set of points over QHss

1

where v is a factor of det.A/. Then F is locally free outside QS0 [ QS1; QS0 is mapped
1:1 to Ess

G ; and the map QS1 X QS0 ! QHss
1 X Ess

G is 2:1.

Consider now the blowup Z
�0�! QXss�P along QS0 and let D denote the exceptional

divisor. Let

F WD ��0 F=torsion

be the torsion-free pullback on Z: Now the situation of the families F and F

restricted to the open subset QXssX QHss
1 of the base is the higher-dimensional analog to

that of the families over the curve C in Sect. 3.1, with 0 2 C replaced by the divisor
Ess
G � QXss X QHss

1 :

Moreover, one can compare the two situations by considering a curve C � QXss

transversal to Ess
G in a point p 62 QHss

1 : Then the blowup ZC of C � P in the point
.p; q/ 2 QS0 can be identified with the restriction of Z to C. Moreover, by flatness,
the sheaves FC and FC on ZC from Sect. 3.1 can be identified with the restrictions
of F and F to ZjC: Because FC is locally free on ZC , it follows that F is locally
free in a neighborhood of the fiber Zp of Z over p. Finally, because the fiber Zp is
the union of the blowup of P at q and the restriction Dp of exceptional divisor D, the
sheaf F jZp is a tree bundle on Zp. In order to obtain the correct Chern classes, we
have to replace F by its twist F.D/ as in Sect. 3.1, which is also compatible with
the restriction. It has been shown:

Proposition 9 With the notation above, the family F is a family of tree bundles
over the restricted base variety QXss X QHss

1 :

If p 2 QXss X QHss
1 [ Ess

G ; then F jZp; Zp D P; is a bundle in Mb.0; 2/.
If p 2 Ess

G X QHss
1 ; then F jZp; where Zp D QP [ Dp; Dp Š P2; is a tree bundle with

F j QP Š 2OQP andF jDp 2 Mb
Dp
.0; 2/:

For the fibers over points in QHss
1 , we have:

Lemma 10 Let OS1 be the proper transform of QS1 in Z: Then OS1! QHss
1 is 2:1.

Remark For a point p 2 Ess
G \ QHss

1 , the two points of OS1 over p will be contained in
the fiber Dp Š P2 of the exceptional divisor D: By the previous, F is locally free
on Z X OS1:
Proof The method of proof is again by restriction to transversal curves: Let q 2
QS0\ QS1 � QXss�P and p 2 Ess

G \ QHss
1 its image. Then p has the components Œ x 00 x � and

Œa�; b�; c�� with b2 � 4ac ¤ 0 and � D x ^ y for some y 2 V . Then

p.t/ WD .Œ x 0
0 xCty �; Œa�; b�; c��/

is a 1-parameter family in GZR � QHss
1 defining a normal direction to Ess

G at p. Let C
denote the image of p.t/ for small t: For t ¤ 0 the points [x] and [x+ty] define then
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sections of QS1jC X f0g; which fill this subset. Because q is the only point in QS0 over
p, q 2 QS1jC, the closure of QS1jC X f0g: Let now SC WD QS1jC � C � P and consider
the blowups

Blq.C � P/ � BlQS0 . QXss/ D Z

as the proper transform. Then the restriction OS1jC of the proper transform OS1 can be
identified with the proper transform of SC in Blq.C � P/: This situation corresponds
to the figure in Sect. 3.1 with the two sections [x] and [x+ty] added. Then the proper
transforms of these linear sections do not meet on the exceptional divisor Dp: Hence
also OS1 \ Dp consists of two different points. �

6.2 Second Step

By the above, F is locally free on Z X OS1, and one could try to construct the tree
bundles over QHss

1 by directly blowing up Z along OS1 and modifying the lifted sheaf.
However, over points p 2 QHss

1 XGZR, the sheaf F jZp has only one singular point and
is not stable; see the remark at the beginning of this Sect. 6. Secondly, QHss

1 X GZR
consists only of non-closed orbits. On the other hand, the orbits in GZR are closed,
and for p 2 GZR, the two points of OS1 are the singular points of F jZp:

Now this insufficiency can be eliminated by using the second Kirwan blowup
Y ! QX and pulling the pair .Z;F/ back to Ys. After this the points of QHss

1 X GZR
become unstable and can be neglected, and OS1jGZR is the reasonable locus to be
blown up. Therefore, let

be the pullback of Z and let FY be the lift of F to ZY : The situation of the pair
.ZY ;FY/ is now the relative version of the situation in Sect. 3.2 before using a
double cover.

6.2.1 Properties of .ZY;FY/:

Let Es
R denote the exceptional divisor of Ys over GZR; (see Sect. 5), let EG;Y denote

the proper transform of EG; and let DY be the pullback of D in Z. Then FY is
singular exactly along the pullback S1;Y of OS1; and S1;Y is 2:1 over Es

R everywhere
by Lemma 10. For points p in Es

R X EG;Y , the two points of S1;Y over p will be in the
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fiber ZY;p Š P; but for points p in Es
R \ EG;Y , the two points of S1;Y over p will be in

the fiber DY;p of DY .

Remark The variety ZY may also be obtained as the blowup of the variety S0;Y �
Ys � P over EG;Y ; defined as QS0 over EG:

In order to construct a family of tree bundles in this new relative situation, ZY has
to be blown up along S1;Y as in the case Sect. 3.2. Then the torsion-free pullback of
FY would give a family of tree bundles parametrized along Es

R. But as in Sect. 3.2,
these tree bundles would not be admissible as defined in Sect. 2.2. In analogy to
Sect. 3.2, one would have to use a double cover of Ys which is branched exactly
over Es

R in order to construct admissible tree bundles. However, such a double cover
may not exist globally. But one could consider such local covers U ! Ys over affine
open parts. Then we have Cartesian diagrams

where � is the blowup of ZU along the subvariety SU D g�S1;Y : This is the subvariety
where FU WD g�FY is not locally free. By the previous, it is 2:1 over the branch
locus B WD f �Es

R � U: Consider then the sheaf

E WD ��FU=torsion:

One can show as in the curve case that E is flat over U:
Now one can argue as in 6.1 using curves C which are transversal to B W There is

an elementary transform E 0 of E on WU with transformation support over B which
is locally free on WU . Then E 0 is a family of tree bundles, whose fibers over points
in UXB are the same as for points in YsXEs

R or in QXssXGZR: After twisting with the
exceptional divisor in WU, we may finally assume that E 0 is a family of admissible
tree bundles with prescribed Chern classes. Hence the

Proposition 11 For any 2:1 cover U
f�! Ys of an affine open subset of Ys;branched

exactly along Es
R, the following holds:

(i) For points p in UX f � QEG[B, the bundle E 0p is a member of Mb
WU;p

.0; 2/; where
WU;p Š P2.

(ii) For points p in f � QEG X B, the bundle E 0p is of the type described in Sect. 3.1.
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(iii) For points p in B X f � QEG, the bundle E 0p is of the type described in Sect. 3.2.

(iv) For points p in B \ f � QEG, the bundle E 0p is of the type described in Sect. 3.3.

The families of tree bundles so constructed may not descend to a global family

over the Kirwan blowup QM2 Š BP.S2V/ of M.2I 0; 2/ Š P.S2V/ because the
automorphism groups of the tree bundles include automorphisms of the supporting
surfaces; see Sect. 2.2. However, delicately, their isomorphism classes are deter-
mined precisely by the points of QM2:

Proposition 12 The set of points of QM2 is the set isomorphism classes of the tree

bundles constructed above. In particular, let as above †2 �BP.S2V/ be the blowup
of the Veronese surface in P.S2V/ and †1 � BP.S2V/ the proper transform of the
subvariety of decomposable conics. Then:

(i) QM2 X †1 [ †2 D Mb.0; 2/ is the set the isomorphism classes of the (stable)
bundles in M.2I 0; 2/:

(ii) The set †2 X †1 is the set of isomorphism classes of limit tree bundles of type
1 described in Sect. 3.1.

iii) The set †1 X †2 is the set of isomorphism classes of limit tree bundles of type
2 described in Sect. 3.2.

(iv) The set †1 \†2 is the set of isomorphism classes of limit tree bundles of type
3 described in Sect. 3.3.

Proof There is nothing to proof for (i). For the proof of (ii), recall that †2 X †1
is the geometric quotient of the open part Es

G � QXs of the exceptional divisor EG

whose points are of type

p D .Œ� x 00 x

�
�; Œ�; !; ��/;

where !2 � 4�� decomposes into two different factors and �; !; � 2 x ^ V: By 3
we may assume that ! D 0: The two factors �; � determine two lines in P=P(V)
through Œx�; see Sect. 4.2. Now the fiber Zp is a union QP.x/ [ Dp, where QP.x/ is
the blowup of P at Œx� and Dp Š P2: Then the two lines in P determine two points
q1; q2 on the exceptional line `p D QP.x/ \ Dp: Let now F on Z be the sheaf
constructed in 6.1. By Proposition 9 F jZp has the restrictions F j QP.x/ Š 2OQP.x/ and
F jDp 2 Mb

Dp
.0; 2/: So F jD corresponds to its smooth conic of jumping lines in the

dual plane D�p or to the dual conic �p � Dp of the latter. �

Claim The conic �p meets the line `p in the two points q1; q2:

In addition, there is the following elementary.

Lemma 13 Let ` be the line through two points a1; a2 2 P2 and let Aut`.P2/ be
the subgroup of the group of automorphisms of P2 which fixes the points of `. Then
Aut`.P2/ acts transitively on the set of nondegenerate conics through a1; a2.

If the claim is verified, the lemma implies that the isomorphism class of F jDp

and then also of F jZp only depends on the two points q1; q2, which are determined
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by the point p: Then the isomorphism class of F jZp also depends only on the image
Œp� of p in the quotient QM2, which proves (ii).

In order to prove the claim, we use again 1-parameter degenerations with limit
point p which are transversal to Es

G.
For that we may assume that

p D .Œ� e0 0
0 e0

�
�; Œe0 ^ e1; 0; e0 ^ e2�/;

where e0; e1; e2 form a basis of V and that the first component of the 1-parameter
family is given by

A.t/ D � e0 0
0 e0

�C t
�

x x0

y y0

�
:

with t in a neighborhood C of 0 2 A
1.k/: This is a smooth curve in Xss, and its lift

to QXss is transversal to Es
G and has second component

Œe0 ^ yC t�; e0 ^ .y0 � x/C t!; �e0 ^ x0 C t��;

where .�; !; �/ D .x ^ y; x ^ y0 C x0 ^ y; x0 ^ y0/: Because p is supposed to be
the limit at t D 0, we may assume, up to a scalar factor, that the components of the
vectors satisfy

y1 D 1; y2 D 0; y01 D x1; y
0
2 D x2; x

0
1 D 0; x02 D �1

In addition we replace the basis e1 ^ e2; �e0 ^ e2; e0 ^ e1 of ^2V by the basis
z0; z1; z2 of V�, dual to the basis e0; e1; e2 of V . Then the second component of p.t/
reads

Œz2 � tx2z0 C t� 0; tz0 C t!0;�z1 C x1z0 C t�0�;

where � 0; !0; �0 2 Span.z1; z2/.
Let now ZC be the restriction of Z to C. Then ZC can be considered the blowup of

C�P at .0; Œe0�/ as a proper transform, and F jDp can be computed as in 3.1, as well
as its conic �p � Dp. As F jZC is the torsion-free pullback of the sheaf on C � P
defined by A.t/, its family of conics becomes the proper transform of the family

Q D f.tz0 C t!0/2 � 4.z2 � tx2z0 C t� 0/.�z1 C tx1z0 C t�0/ D 0g;

whose fibers for t ¤ 0 are the conics of F jftg � P, c.f. Sect. 4.2. This proper
transform is obtained by substituting the forms tz0; z1; z2 by u0; u1; u2, which are the
coordinate forms of Dp Š P2; see 3.1. So the proper transform QQ of Q is defined by
the equation

.u0 C t!0/2 � 4.u2 � x2u0 C t� 0/.�z1 C x1u0 C t�0/;
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where now � 0; !0; �0 2 Span.u1; u2/. For t D 0, the conic �p of F jDp has the
equation u20 � 4.u2 � x2u0/.�u1 C x1u0/. Because the line `p and QP.Œe0�/ are given
by u0 D 0, �p meets `p in the two points q1; q2 with equation u1u2: This proves the
claim and thus (ii) of Proposition 12.

For the proof of (iii), let a point in †1 X †2 be the image of a point p 2 Es
R �

Ys: We may assume that its image Np 2 GZR under the second blowup has the
components

� x1 0
0 x2

�
; Œ0; x1 ^ x2; 0�:

Under an auxiliary blowupWU as in 6.2.1, the fiber WU;p is isomorphic to QP.x1; x2/[
D1 [ D2; where QP.x1; x2/ is the blowup of P at x1; x2, Di Š P2, containing the
exceptional lines `i of QP.x1; x2/: Moreover, WU;p is determined by the data of the
point p or its image in †1 X†2 up to isomorphism. By Proposition 11, (iii), the tree
bundle E 0p D E 0jWU;p is trivial on QP.x1; x2/ and restricts to bundles E 0i on Di with
Chern classes c1 D 0; c2 D 2: By the following Lemma 14 the isomorphism class
of each E 0i corresponds uniquely to a point qi 2 Di X `i. Since the group Aut`i.Di/

acts transitively on DiX `i (see Lemma 13), these isomorphism classes are uniquely
determined by WU;p and finally determined by the point Œp� 2 †1 X†2, because the
automorphisms of WU;p must be identities on QP.x1; x2/:
Lemma 14 Let ` � P2 D P be a line. Then the moduli space M`.0; 1/ of
isomorphism classes of rank 2 vector bundles on P2 which are trivial on ` with
Chern classes c1 D 0; c2 D 1 can be identified with the set P2 X `:
Proof of the Lemma Let ` have the equation z0 and let a D Œa0; a1; a2� 2 P2X`: Let

B D
�
z0 z1 z2 0
a0 a1 a2 z0

�

;

and define E.a/ as cokernel in the sequence

0! OP.�2/˚OP.�1/ B�! 3OP.�1/˚OP ! E.a/! 0:

Then the class of E.a/ belongs to M`.0; 1/: Conversely, given any E in M`.0; 1/, it is
well known that E is an elementary transform of the twisted tangent bundle TP.�2/
with exact extension sequence

0! TP.�2/! E ! O` ! 0:

From that we get a resolution matrix B of E as above. In that, .a0; a1; a2/ represents
the extension class and Œa0; a1; a2� the isomorphism class of E .

This completes the proof of (iii). The proof of (iv) is analogous to that of (iii). In
this case a point p 2 B \ f � QEG or p 2 Es

R \ QEG over a point in in †1 \ †2 can be
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supposed to have as components

Œ
�
x 0
0 x

�
�; Œa�; b�; c��; Œu;w; v�

with � 2 x^V and b2�ac ¤ 0: Then WU;p as a fiber of the blowup is isomorphic to
QP.Œx�/[ QD0.p1; p2/[D1[D2;where QD0.p1; p2/ is the blowup at two points of a plane
D0 which contains the exceptional line `0 of QP.Œx�/ and where Di are again planes
containing the two exceptional lines `i of QD0.p1; p2/: Then WU;p depends only on
the geometry and the point p up to isomorphism. Now the tree bundle E 0 on WU of
Proposition 11 is trivial on QP.Œx�/ and QD0.p1; p2/, whereas E 0jDi has Chern classes
c1 D 0; c2 D 1: It follows again from 14 that the isomorphism classes of E 0jDi are
unique, and then that E 0jWU;p is uniquely determined because the automorphisms of
WU;p must be identities on the components QP.Œx�/ and QD0.p1; p2/. This proves (iv)
of the Proposition 12. �

6.3 The Stack

By the above construction of families of tree bundles, a global family of such
bundles could not be obtained. Instead, we have families of tree bundles on local
2:1 covers of the parameter space Ys. These are forming an obvious moduli stack
over the category of such open covers. It is plausible to claim that this is a Deligne-

Mumford stack which is corepresented by Ys=G ŠBP.S2V/:
In [5] global families of limit tree bundles of stable rank 2 vector bundles on

surfaces have been constructed by other abstract procedures, which led to algebraic
spaces as moduli spaces. The question of their relation to the above stack being open
at present.
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