This eighth chapter of Permutation Statistical Methods introduces a generalized
Minkowski distance function and establishes the foundation for a set of Multivariate
Randomized Block Permutation (MRBP) procedures for univariate and multivariate
randomized-block data. MRBP procedures were introduced by Mielke and Iyer in
1982 and constitute a class of permutation methods for one or more response mea-
surements among two or more treatments on the same or matched objects [299]. The
MRBP procedures presented here provide a synthesizing foundation for a variety of
statistical tests and measures that are further developed in Chaps. 9-11 for interval-,
ordinal-, and nominal-level response measurements, respectively.

8.1 Multivariate Block Permutation Procedures

Suppose that a number of observed fields are compared to corresponding fields gen-
erated by one or more numerical models. Let the observed phenomena and the one or
more numerical model predictions of these phenomena be termed “blocks,” i.e., the
first block might represent the observed phenomena and the remaining b — 1 blocks
represent additional blocks, such as numerical model predictions of the phenom-
ena for a total of b > 2 blocks. Also, let r > 1 denote the number of commensurate
response measurements from each phenomenon and let g > 2 denote the number of
phenomena, here called “treatments.”

The terms representing “blocks” and “treatments” vary among disciplines. Often-
times when g = 2 treatments and the same objects are represented in each treatment,
the design is called a “before-and-after” or “subject-is-own-control” design. When
g = 2 treatments and matched, but different, objects are represented in each treat-
ment, the design is often called a “matched pairs” design. When g > 2 treatments
and the same objects are represented in each treatment, the design is sometimes
called a “repeated measures” design, and in this case the treatments are often
labeled as “trials.” Finally, in psychology randomized-block designs are known
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422 8 Randomized Block Data

as “within-subjects” designs to distinguish them from completely randomized or
“between-subjects” designs.

Let x{i = (X155, X245, - .., Xrj) denote a transposed vector of r response measure-
ment scores associated with the ith treatment and jth block. Then the MRBP test
statistic is given by

§ = g(l;) Z Z A, xix) 8.1)

i=1 j<k

where Zj - denotes the sum over all j and k such that 1 <j <k < b and A(x,y)
is a symmetric distance-function value of two points X' = (x1,xz, ..., x,) and y =
(1,¥2, --., yr) in an r-dimensional Euclidean space. The generalized Minkowski
distance function considered here is given by

v/p

Ax,y) = (Z |xi - yi|p , (8.2)

i=1

where p > 1 and v > 0. Thus, p = v = 2 yields squared Euclidean distance, which
is not a metric, and p = 2 and v = 1 yields ordinary Euclidean distance, which is a
metric.!

The null hypothesis (Hp) states that the distribution of § assigns an equal proba-
bility to each of the

M = (g!)h

possible allocations of the r-dimensional response measurement scores to the g
treatment positions within each of the b blocks. Consequently, the collection of r
response measurement scores within each block yields g r-dimensional exchange-
able random variables under the null hypothesis. The probability value associated
with an observed value of §, say §,, is the probability under the null hypothesis
(Hp) of observing a value of § as extreme or more extreme than §,. Thus, an exact
probability value for §, may be expressed as

number of § values < §,

P(8 = 8o|Ho) = i

IRecall that a distance function is a metric if it satisfies three properties given by (1) A(x,y) > 0
and A(x,x) = 0, i.e., the distance is positive between two different points and is equal to zero
from any point to itself; (2) the distance is symmetric: A(x,y) = A(y, x), i.e., the distance between
points x and y is the same in either direction; and (3) the triangle inequality is satisfied: A(x,y) <
A(x, z) + A(z,y), i.e., the distance between any two points is the shortest distance along any path.
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When M is very large, an approximate probability value for § may be obtained from
a resampling procedure, where

number of § values < §,
L

P (8 < 50|H0) = ,
and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large value to ensure accuracy, e.g., L = 1,000,000. When M is very large
and P is exceedingly small, a resampling-approximation permutation procedure may
produce no § values equal to or less than §,, even with L = 1,000,000, yielding
an approximate resampling probability value of P = 0.00. In such cases, moment-
approximation permutation procedures based on fitting the first three exact moments
of the discrete permutation distribution to a Pearson type III distribution provide
approximate probability values, as detailed in Chap. 1, Sect. 1.2.2 [284,299].

As with MRPP, discussed in Chap. 2, a chance-corrected measure of agreement
among all b blocks for all g treatments constitutes a universal measure of effect size
for all randomized-block designs and is given by

E)?:l—i, (8.3)
s

where ps is the arithmetic average of the M § values calculated on all possible
arrangements of the observed response measurement scores given by

1
o =5:) i (8.4)

Because s is a constant under Hy, the permutation distributions of § and R are
equivalent, viz.,

P (8 < 80|Hy) = P (M > Ro|Ho) ,

where

No=1-— é
s

and §, and N, denote the observed values of § and N, respectively.

As with the chance-corrected within-group agreement measure presented in
Chap. 2, the values of % range from negative values to i = +1 when perfect agree-
ment is achieved, the expected value of N is zero under the null hypothesis, and
agreement or disagreement is implied by : > 0 and N < 0, respectively. While
probability values are highly dependent on sample size, this sample-size dependence
does not hold for the chance-corrected within-block agreement measure, ).



424 8 Randomized Block Data

8.1.1 Randomized-Block Designs and Alignment

For certain response patterns involving randomized-block designs, the observed test
statistic &,, as defined in Eq. (8.1) on p. 422, is unable to detect treatment differences
[299, pp. 1434-1435]. Such situations occur when the magnitude of the block dif-
ferences exceeds the magnitude of the treatment differences. For a simple example,
consider the univariate response measurement scores listed in Fig. 8.1 with b = 2
blocks and g = 3 treatments. If p = 2 and v = 1 in Eq. (8.2) on p. 422, then §, = 4
and the random variable § is also equal to 4 for all permutations of values within
blocks; thus, the probability of §, = 4 is 1. It is therefore impossible to detect treat-
ment differences.

This problem is rectified by aligning the response measurement scores within
each block, a technique initially described by Hodges and Lehmann in 1962 [178].
Alignment is accomplished for the example data in Fig. 8.1 by replacing x;; with
Xij —x}*, where x;‘ is the median of (xj, ..., xg) forj=1, ..., b.2 The observed
statistic &, is then computed on the aligned data. The median values for Blocks 1
and 2 in Fig. 8.1 are 2 and 6, respectively. If the median value is subtracted from the
values in each block, the aligned data are theny;;; =1 -2 =—-1,yjp =2-2 =
0,and y;;3=3—2=+1forBlock l,and yj51 =5—6=—1,y;10 =6—6 =0,
and yj23 = 7— 6 = 41 for Block 2. The median-aligned data are given in Fig. 8.2.

After alignment §, = 0 while the random variable § assumes the values 0.00,
0.67, and 1.33 with respective probability values of 0.1667, 0.3333, and 0.5000,
under the null hypothesis (the probability of §, is 1/6 after alignment). Note that
if v =2 and r = 1, the inferential results based on the random variable § remain
unaffected by the alignment.

Fig. 8.1 Example of

unaligned data with g = 3
treatments, b = 2 blocks, and Block 1 2 3
r = 1 response measurement

Treatment

1 1 2 3
5 6 7
Fig. 8.2 Example of aligned Treatment

data with g = 3 treatments,
b = 2blocks, and r = 1 Block 1 2 3
response measurement

1 -1 0 +1
2 -1 0 +1

’In their 1982 article introducing MRBP, Mielke and Iyer initially suggested using the arithmetic
mean instead of the median [299, p. 1435].
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8.1.2 Example Univariate MRBP Analysis with v =2

To illustrate an MRBP analysis with univariate response measurement scores and
v = 2, consider a test of difference between g = 2 treatments, where a single
response measurement has been obtained from each of b = 4 subjects, such as
in a matched-pairs experimental design. For this example, there is » = 1 response
measurement for each subject and g = 2 treatments for each of b = 4 blocks. The
numbers of blocks, treatments, and response measurements are deliberately kept
small to simplify the example analysis. The treatments and univariate response mea-
surement scores are listed in Fig. 8.3.

Thus, following Eq.(8.2) on p.422 for the univariate response measurement
scores listed in Fig.8.3 with g =2, r =1, b =4, p = 2, and v = 2, the general-
ized Minkowski distance function yields

A(1,2) = [\(255 —171) — (294 — 202)\2]2/2 - 64.00,
,2/2

A(1,3) = [(255-171)-(259—247)\ ] = 5,184.00 ,
,2/2

A(l,4) = [\(255— 171) — (263 — 182)] ] - 900,
,2/2

AQ,3) = [\(294 202) — (259 — 247)\] = 6,400.00 ,
,2/2

AQ,4) = [\(294 202) — (263 — 182)] ] = 121.00,

and

AG,4) = [\(259 —247) — (263 — 182)\2]2/2 = 4,761.00 .

When r = 1 and g = 2, Eq. (8.1) on p. 422 reduces to

-1

Jj<k

Fig. 8.3 Example univariate
data with g = 2 treatments,

b = 4 blocks, and r = 1 Block 1 2
response measurement

Treatment

1 255 171
2 294 202
3 259 247
4 263 182
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Then,

-1
5= (g) [A(I,Z) + A(1,3) + A(1,4) + A(2,3) + A2,4) + A(3,4)]

and the observed value of the MRBP test statistic with v = 2 is

-1
4
8o = (2) (64.00 + 5,184.00 4 9.00 + 6,400.00 4 121.00 + 4,761.00)

= é (16,539.00) = 2,756.50 .

Let §; denote the MRBP test statistic for a matched-pairs ¢ test with b blocks,
g = 2 treatments, and v = 2, and let §, denote the MRPP test statistic for a two-
sample ¢ test with g = 2 treatments, v = 2, n; = np, C; = (n; — 1)/(N — g), and
C, = (n; — 1)/ (N — g), where n; and n, denote the number of objects in treatments
1 and 2, respectively, and N = n; + n,. Then the relationship between §; and 8, is
given by

b1 =2(8-rvaE) . (8.6)

where &, i = 1,2, are the average distance-function values for treatments 1 and
2, respectively, and ry, is the Pearson product-moment correlation coefficient cal-
culated on the response measurement scores in treatments 1 and 2. See Chap. 2,
Sect.2.2 for detailed descriptions of &, i = 1,2, and §. For the interval-level
response measurement scores listed in Fig. 8.3, the sample variances for treat-
ments 1 and 2 are 57 = 316.9167 and 53 = 1,125.6667, & = 257 = 2(316.9167) =
633.8333, & = 2s§ =2(1,125.6667) = 2,251.3333, r; = 4+0.0539, C; = (n; —
D/N=-g=@-1D/B—1,G=m—-1)/(N-g)=(4-1)/(8—-2),and

8

4-1 4-1

5= C&= g5 (633.8333) + o—(2.2513333) = 1.442.5833.
=1

Then, following Eq. (8.6),

8 = 2(52—r12\/§1_§2)

-2 [1,442.5833 — 0.0539\/(633.8333)(2,251.3333)]

= 2,756.50 .
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The
M=) =) =16

possible, equally-likely arrangements of the observed univariate response measure-
ment scores described in Fig. 8.3 on p. 425 are listed in Table 8.1 and are ordered by
the § values from lowest to highest.

The observed MRBP test statistic, §, = 2,756.50, obtained from the original
arrangement of the N = 8 univariate response measurement scores in Treatments
1 and 2,

{255,294,259,263} {171,202,247, 182},

(Order 1 in Table 8.1) is unusual since 14 of the 16 § values exceed the observed
value of §, = 2,756.50 and only two values of § are equal to or less than the
observed value.

If all arrangements of the N = 8 observed univariate response measurement
scores listed in Fig. 8.3 occur with equal chance, the exact probability value of
8o = 2,756.50 computed on the M = 16 possible arrangements of the observed
response measurement scores with b = 4 blocks preserved for each arrangement
is

number of § values < §, 2

P <0H = ——=12 .
(8 < 8|Ho) I T 0.1250

Table 8.1 Permutations of the observed univariate response measurement scores listed in Fig. 8.3

with values for § based on v = 2 ordered from lowest to highest

Order Treatment 1 Treatment 2 ]
1 {255, 294, 259, 263} {171, 202, 247, 182} 2,756.50
2 {171, 202, 247, 182} {255, 294, 259, 263} 2,756.50
3 {255, 294, 247, 263} {171, 202, 259, 182} 4,812.50
4 {171, 202, 259, 182} {255,294, 247, 263} 4,812.50
5 {171, 202, 247, 263} {255, 294, 259, 182} 12,908.50
6 {255, 294, 259, 182} {171, 202, 247, 263} 12,908.50
7 {171, 294, 259, 263} {255,202, 247, 182} 13,116.50
8 {255, 202, 247, 182} {171, 294, 259, 263} 13,116.50
9 {255, 202, 259, 263} {171,294, 247, 182} 13,612.50
10 {171, 294, 247, 182} {255, 202, 259, 263} 13,612.50
11 {171, 202, 259, 263} {255, 294, 247, 182} 13,668.50
12 {255, 294, 247, 182} {171, 202, 259, 263} 13,668.50
13 {171, 294, 247, 263} {255, 202, 259, 182} 13,828.50
14 {255, 202, 259, 182} {171,294, 247, 263} 13,828.50
15 {255, 202, 247, 263} {171, 294, 259, 182} 14,196.50
16 {171, 294, 259, 182} {255, 202, 247, 263} 14,196.50
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For comparison, a conventional matched-pairs ¢ test calculated on the b = 4 pairs
of response measurement scores listed in Fig. 8.3 yields an observed test statistic
of t, = 4+3.6229. Assuming independence and normality, ¢ is approximately dis-
tributed as Student’s ¢ under the null hypothesis with b —1 = 4 — 1 = 3 degrees
of freedom. Under the null hypothesis, the observed value of 7, = +3.6229 yields
an approximate two-sided probability value of P = 0.0362. Note the large differ-
ence between the conventional approximate probability value of P = 0.0362 and the
exact permutation probability value of P = 0.1250. Such discrepancies are common
when the number of blocks is small, as in this case with b = 4.

The total of the M = 16 § values listed in Table 8.1 is 177,800. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M = 16 § values listed in Table 8.1
is

M
1 1
= — 6 = — (177,800) = 11,112.50 .
s M; 16( )

Following Eq.(8.3) on p.423, the observed chance-corrected measure of effect
size is
8 2,756.50

Ro=1——2=1-—""""=40.7519,
s 11,112.50

indicating approximately 75 % within-block agreement above that expected by
chance.?

8.1.3 Example Univariate MRBP Analysis withv = 1

Because permutation statistical tests are data-dependent, distribution-free, and non-
parametric, they require no distributional assumptions and make no estimates of
population parameters. Consequently, it is not necessary to set v = 2, squaring the
response-measurement differences between objects. As with MRPP in Chap.2, a
distance function based on v = 1, employing ordinary Euclidean distance between
response measurement scores, is an attractive alternative to v = 2 as it is a metric,
satisfies the triangle inequality, is robust to extreme values, provides an easy-
to-understand Euclidean distance between objects, and ensures that the data and
analysis spaces are congruent.

3The astute reader will have noted that the values of the generalized chance-corrected measure of
agreement, R, are, in general, markedly greater in Chap. 8 than in Chaps. 2-7. Because Chaps. 8—
11 analyze randomized-block data, there is less variability to be explained due to the matching of
objects or subjects and, therefore, more agreement (less disagreement) between treatments than
with the completely randomized designs analyzed in Chaps. 2-7.
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To illustrate the computation of the MRBP test statistic with v = 1, consider
the same finite sample of response measurement scores obtained from the b = 4
subjects listed in Fig. 8.3. For these data, there is » = 1 response measurement for
each subject and g = 2 treatments for each of b = 4 blocks.

Following Eq.(8.2) on p.422 for the data listed in Fig.8.3 with g =2, r =1,
b =4,p = 1,and v = 1, the generalized Minkowski distance function yields

A(1,2) =
A(1,3) =
AL, 4) =

A2,3) =

(255 — 171) — (294 — 202)']
(255 — 171) — (259 — 247) ']

(255 — 171) — (263 — 182)[*]

1/2

= 8.00,
1/2

= 72.00,
1/2

= 3.00,
1/2

= 80.00,

(294 — 202) — (259 — 247)[*]

12
AQ,4) = [;(294_202)_ (263 — 182)| ] =11.00,

and

,1/2
AG,4) = [\(259— 247) — (263 — 182)] ] = 69.00 .

Then, following Eq. (8.5) on p. 425,

-1

and the observed value of the MRBP test statistic with v = 1 is

-1
4
8o = (2) (8.00 + 72.00 + 3.00 + 80.00 + 11.00 + 69.00)

The

1
= (243.00) = 40.50 .
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Table 8.2 Permutations of the observed univariate response measurement scores listed in Fig. 8.3
with values for § based on v = 1 ordered from lowest to highest

Order Treatment 1 Treatment 2 1]
1 {255, 294, 259, 263} {171, 202, 247, 182} 40.50
2 {171, 202, 247, 182} {255, 294, 259, 263} 40.50
3 {255, 294, 247, 263} {171, 202, 259, 182} 52.50
4 {171, 202, 259, 182} {255,294, 247, 263} 52.50
5 {171, 202, 247, 263} {255,294, 259, 182} 98.50
6 {255, 294, 259, 182} {171, 202, 247, 263} 98.50
7 {171, 294, 259, 263} {255, 202, 247, 182} 99.50
8 {255, 202, 247, 182} {171, 294, 259, 263} 99.50
9 {255, 202, 259, 263} {171,294, 247, 182} 99.50
10 {171, 294, 247, 182} {255, 202, 259, 263} 99.50
11 {171, 202, 259, 263} {255,294, 247, 182} 102.50
12 {255, 294, 247, 182} {171, 202, 259, 263} 102.50
13 {171, 294, 247, 263} {255, 202, 259, 182} 103.50
14 {255, 202, 259, 182} {171,294, 247, 263} 103.50
15 {255, 202, 247, 263} {171, 294, 259, 182} 103.50
16 {171, 294, 259, 182} {255,202, 247, 263} 103.50

possible, equally-likely arrangements of the observed response measurement scores
described in Fig. 8.3 are listed in Table 8.2 and are ordered by the § values from
lowest to highest.

The observed MRBP test statistic, §, = 40.50, obtained from the original
arrangement of the N = 8 univariate response measurement scores in Treatments
1 and 2,

{255,294,259,263} {171,202,247, 182},

(Order 1 in Table 8.2) is unusual since 14 of the 16 § values exceed the observed
value of , = 40.50 and only two values of § are equal to or less than the observed
value.

If all arrangements of the N = 8 observed univariate response measurement
scores listed in Fig. 8.3 occur with equal chance, the exact probability value of §, =
40.50 computed on the M = 16 possible arrangements of the observed response
measurement scores with b = 4 blocks preserved for each arrangement is

number of § values < §, 2
= — =0.1250.
M 16

P(8 = 80|H0) =

The fact that both v = 2 and v = 1 yield the same probability value of P = 0.1250
is simply an artifact of the small data set given in Fig. 8.3 and is not, in general, to be
expected. No comparison is made with Student’s matched-pairs ¢ test as Student’s ¢
test is undefined for v = 1.
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The total of the M = 16 § values listed in Table 8.2 is 1,400. Thus, follow-
ing Eq. (8.4) on p.423, the exact average value of the M = 16 § values listed in
Table 8.2 is

M
1 1
= — Y8 = — (1,400) = 87.50 .
s i§=1j5 o (1.400) = 87.50

Following Eq.(8.3) on p.423, the observed chance-corrected measure of effect
size is
8 40.50

No=1—-—=1-——— = 40.5371,
s 8750

indicating approximately 54 % within-block agreement above that expected by
chance.

8.1.4 Example Bivariate MRBP Analysis with v = 2

In this example, bivariate response measurement scores are used for simplicity to
demonstrate a multivariate MRBP analysis. Consider a test of difference between
g = 2 treatments, where bivariate response measurement scores have been obtained
from each of b = 4 subjects, such as in a matched-pairs experimental design. For
this example, there are » = 2 response measurement scores for each subject and
g = 2 treatments for each of b = 4 blocks. The number of blocks, treatments, and
response measurement scores are deliberately kept small to simplify the example
analysis. The treatments and response measurement scores are listed in Fig. 8.4.

Following Eq. (8.2) on p.422 for the Treatment 1 response measurement scores
listed in Fig. 8.4 with b = 4 blocks, r = 2 response measurements, p =2, and v =2,
the generalized Minkowski distance function yields

A(1,2) = [[73-59F + |64 - 57\2]2/2 = 245.00,

2 2 2/2
A3 =[[73-46[ + |64 =35 " = 1.570.00,
Fig. 8.4 Example bivariate Treatment
response measurement scores
with g = 2 treatments, b = 4 Block 1 2
blocks, and » = 2 response
measurements (73, 64) (23, 47)

(59,57) (21, 43)
(46,35) (19, 31)
(23, 11) (16, 28)

AW =
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AQL4) = [[73-23] + |64 - 11\2]2/2 = 5,309.00 ,
A@2,3) = [|59— 46> + |57 - 35\2]2/2 = 653.00,

AQ2,4) = [|59— 23|2 + |57 - 11|2]2/2 = 3,412.00,
and

2 2 2/2
AG.4) = [[46- 23] + 35— 11| " = 1.105.00,

and for the Treatment 2 response measurement scores listed in Fig. 8.4, the general-
ized Minkowski distance function yields

AL = [p3-21f + |47 43|2]2/2 = 2000,

A(1,3) = [|23 —19” + |47 - 31|2]2/2 =272.00,

A4 = [[23 - 16] + [47 - 28|2]2/2 — 410.00,

A@.3) =[21 - 19 + \43—31|2]2/2 — 148.00 ,
S22

AQ.4) = [[21- 16 + |43 - 28] " = 250,00,

and

A(3.4) = [|19— 16> + |31 - 28|2]2/2 = 18.00.

Then, following Eq. (8.1) on p. 422,

-1
§ = [;;(;’ﬂ [A(l,Z) +A(1L3) + -+ AR 4 + A(3,4)]

and the observed value of the MRBP test statistic with v = 2 is

-1
4
8o = |:2 (2):| (245.00 + 1,570.00 4 - -- + 250.00 + 18.00)

1
=5 (13,412.00) = 1,117.6667 .
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In permutation analyses of randomized-block designs it is not always necessary
to enumerate all

M= ()’

possible, equally-likely arrangements of the observed data. It is obvious from a close
inspection of Tables 8.1 and 8.2 that half of the arrangements are redundant, yield-
ing duplicate § values. Considerable savings in computing time can be achieved by
eliminating the redundancy and computing only the

M=(g)"" =) " =8

non-redundant arrangements of the observed data.*

The M = 8 non-redundant, equally-likely arrangements of the observed response
measurement scores described in Fig. 8.4 are listed in Table 8.3 and are ordered by
the § values from lowest to highest.

The observed MRBP test statistic, 6, = 1,117.6667, obtained from the original
arrangement of the N = § bivariate response measurement scores in Treatments 1
and 2,

{(73,64)(59,57)(46,35)(23,11)}  {(23,47)(21,43)(19,31)(16,28)} .

(Order 1 in Table 8.3) is unusual since seven of the eight § values exceed the
observed &, value of 1,117.6667 and only one § value is equal to or less than the
observed value.

If all non-redundant arrangements of the N = 8 observed bivariate response mea-
surement scores listed in Fig. 8.4 occur with equal chance, the exact probability
value of 6, = 1,117.6667 computed on the M = 8§ arrangements of the observed

Table 8.3 Permutations of the observed bivariate data listed in Fig. 8.4 with values for § based on
v = 2 ordered from lowest to highest

Order Treatment 1 Treatment 2 ]

1 {(73,64)(59, 57)(46,35)(23, 11)} {(23,47)(21,43)(19, 31)(16, 28)} 1,117.6667
2 {(73,64)(59, 57)(46, 35)(16,28)} {(23,47)(21,43)(19,31)(23, 11)} 1,152.6667
3 {(73,64)(59, 57)(19, 31)(16, 28)} {(23,47)(21, 43)(46,35)(23, 11)} 1,549.1667
4 {(73,64)(59, 57)(19,31)(23, 11)} {(23,47)(21, 43)(46, 35)(16, 28)} 1,554.5000
5 {(73,64)(21, 43)(46,35)(23, 11)} {(23,47)(59, 57)(19, 31)(16, 28)} 1,659.0000
6 {(73,64)(21,43)(46, 35)(16,28)} {(23,47)(59,57)(19,31)(23, 11)} 1,684.6667
7 {(73,64)(21,43)(19,31)(16,28)} {(23,47)(59, 57)(46,35)(23, 11)} 1,720.5000
8 {(73,64)(21,43)(19,31)(23, 11)} {(23,47)(59, 57)(46, 35)(16, 28)} 1,735.1667

4This was a simplification used as far back as 1933 by Eden and Yates in their randomized-block
analysis of Yeoman II wheat shoots [103].
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response measurement scores with b = 4 blocks preserved for each arrangement is

number of § values < §, 1
P(8 < 8,|Ho) = = - =0.1250.
M 8

The total of the M = 8 § values listed in Table 8.3 is 12,173.3333. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M = 8 § values listed in Table 8.3
is

1
8i = 3 (12,173.3333) = 1,521.6667 .

<=
iM=

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size
is
8o 1,117.6667

Moo= 1— 2 =1 2220 _ 10655,
' 13 1,521.6667

indicating approximately 27 % within-block agreement above that expected by
chance.

8.1.5 Example Bivariate MRBP Analysis with v = 1

As explained in previous examples, there is no need to square differences when
employing permutation tests. To illustrate the computation of MRBP with bivariate
response measurement scores and v = 1, employing ordinary Euclidean distance
instead of squared Euclidean distance between response measurement scores, con-
sider the same finite sample of b = 4 subjects listed in Fig. 8.4.

Following Eq. (8.2) on p.422 for the Treatment 1 response measurement scores
listed in Fig. 8.4 with g = 2 treatments, b = 4 blocks, r = 2 response measure-
ments, p = 2, and v = 1, the generalized Minkowski distance function yields

A1,2) = [[73 =59 + |64 — 57|2]1/2 — 15.6525 ,

A(1,3) = [[73—46[" + |64 - 35|2]1/2 =39.6232 ,
A(L4) = [[73- 23 + |64 — 11|2]1/2 — 72.8629,
AQ.3) = [[59- 46" + |57 - 35|2]1/2 = 25.5539,
AQ.4) =[[59-23] + |57 11|2]l/2 — 58.4123
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and

AG.4) = [[46 - 23] + 35— 11|2]1/2 = 332415,

and for the Treatment 2 response measurement scores listed in Fig. 8.4, the general-
ized Minkowski distance function yields

,71/2

A(1,2) = [\23—21|2+\47—43| 4.4721 ,

|2 1/2

A(1,3) = [[23 - 19 + |47 - 31|~ = 16.4924,

|2 1/2

A@,3) = |[21- 19 + [43 =31 = 12.1655,

,71/2

AR, 4) = =15.8114,

]
[ |
ACL4) = [3-16[ + |47 —28|2]l/2 = 20.2485 ,
[ |
[[21 - 16" + |43 - 28]

and

A(3,4) = [\19— 16° + [31 — 28|2]1/2 = 4.2426.

Then, following Eq. (8.1) on p. 422,
-1
b
=g, ]| [A0.2+A03)++22.4+26.4)
and the observed value of the MRBP test statistic with v = 1 is
A -1
8o = [2(2)] (15.6525 +39.6232 + --- + 15.8114 + 4.2426)
1
=35 (318.7788) = 26.5649 .

The
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Table 8.4 Permutations of the observed bivariate data listed in Fig. 8.4 with values for § based on
v = 1 ordered from lowest to highest

Order Treatment 1 Treatment 2 1]

1 {(73,64)(59, 57)(46,35)(23, 11)} {(23,47)(21, 43)(19,31)(16, 28) } 26.5649
2 {(73,64)(59, 57)(46, 35)(16,28)} {(23,47)(21,43)(19,31)(23, 11)} 29.3755
3 {(73,64)(59,57)(19,31)(23, 11)} {(23,47)(21, 43)(46,35)(16, 28)} 33.4871
4 {(73,64)(59,57)(19, 31)(16,28)} {(23,47)(21,43)(46,35)(23, 11)} 34.0114
5 {(73,64)(21,43)(19, 31)(16,28)} {(23,47)(59, 57)(46,35)(23, 11)} 36.2929
6 {(73,64)(21, 43)(46,35)(23, 11)} {(23,47)(59, 57)(19, 31)(16, 28)} 36.5032
7 {(73,64)(21,43)(19,31)(23, 11)} {(23,47)(59, 57)(46, 35)(16, 28)} 37.3859
8 {(73,64)(21, 43)(46, 35)(16,28)} {(23,47)(59, 57)(19,31)(23, 11)} 37.6965

non-redundant, equally-likely arrangements of the observed response measurement
scores described in Fig. 8.4 are listed in Table 8.4 and are ordered by the § values
from lowest to highest.

The observed MRBP test statistic, §, = 26.5649, obtained from the original
arrangement of the N = § bivariate response measurement scores in Treatments 1
and 2,

{(73,64)(59,57)(46,35)(23,11)}  {(23,47)(21,43)(19,31)(16,28)} .

(Order 1 in Table 8.4) is unusual since seven of the eight § values exceed the
observed value of 6, = 26.5649 and only one § value is equal to or less than the
observed value.

If all non-redundant arrangements of the N = 8 observed bivariate response
measurement scores listed in Fig. 8.4 occur with equal chance, the exact probabil-
ity value of §, = 26.5649 computed on the M = 8 arrangements of the observed
response measurement scores with b = 4 blocks preserved for each arrangement is

number of § values < §, 1
= - =0.1250.
M 8

P(8 = 8,|Ho) =

The total of the M = 8 § values listed in Table 8.4 is 271.3176. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M = 8 § values listed in Table 8.4
is

M
1 1
=— > & = -(271.3176) = 33.9147 .
ws M; o ( )

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size
is

o 26.564
gy =1 o 265649

L 33.9147

= +0.2167,
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indicating approximately 22 % within-block agreement above that expected by
chance.

8.2 MRBP and Pearson’s Product-Moment Correlation

It is not readily apparent that the MRBP test statistic, given by

] g

i=1 j<k

and the ordinary Pearson product-moment correlation coefficient are closely related
when v = 2. Let R denote the Pearson product-moment correlation coefficient
between two interval-level variables, (x11, ..., Xg1) and (x12, ..., Xg2), given by

_cov(xy,x2)

S152

where the covariance of variables x; and x; is given by
1 &
COV(xl,xz) = ng Z(x,-l —)_cl)(x,-z - )_62) s
i=1

and the means and standard deviations are given by

g
X = éZxU and s = ;Z(.xl‘j_ij)z ,
i=1

respectively, forj = 1, 2.
Ifv =2,b =2, and r = 1, then the functional relationships between R and § are
given by

= —/~'L8_8

d 8= ps—2RS:S, ,
258, Hs 152

where

gS S Z(xll —X1)(x2 —X2)

ps = ST+ S5+ (&1 —%)?,

8

—-Z%smdf 12@,m2 (8.7)

i=1
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for j = 1,2.° Thus, R and § are equivalent under the null hypothesis because i,
X2, S1, and S, are invariant relative to the M possible permutations of the response
measurement scores.

Because R and § are equivalent under the null hypothesis, the permutation distri-
butions of R and § are also equivalent when v = 2, viz.,

number of § values < §,

P(R > ROIHO) = P(8 =< 80|H0) = M s

where M = g! and R, and §, denote the observed values of R and §, respectively.
Finally, the functional relationships between R and )i are given by

N 2RSS
= Hs and N = 122 .
28515, 122

8.2.1 Example MRBP Correlation Analysis

To illustrate the relationship between § and Pearson’s R, consider the univariate
response measurement scores listed in Fig. 8.5 with g = 7 objects, b = 2 blocks,
r = 1 response measurement, and v = 2, employing squared Euclidean distance
between response measurement scores to correspond to the Pearson product-
moment correlation coefficient. For the univariate response measurement scores
listed in Fig. 8.5, x; = 2.00, x, = 5.00, s; = 1.00, s, = 2.00,

1
COV(X],.XQ) = ﬁ(900) =1.50 s

Fig. 8.5 Example data with

g = 7 objects, b = 2 blocks, Object x1 2

and r = 1 response 1 3 8

measurement 2 3 6
3 3 5
4 2 6
5 1 5
6 1 3
7 1 2

SNote that the summation for sz in Eq. (8.7) is divided by g and not by g — 1, as degrees of freedom
are irrelevant to permutation methods.
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and the observed Pearson product-moment correlation coefficient is

cov(xixa) 1.50

RO = =
5182 (1.00)(2.00)

= +0.75.

Equivalently, for the response measurement scores listed in Fig.8.5, S| =
0.9258, S, = 1.8516, §, = 10.7143, us = 13.2857, and

s —8, _ 13.2857—10.7143

R — - = +0.75.
°T 088 T (2(09258)(1.8516)

Since there are only M = 7! = 5,040 possible, equally-likely arrangements of
the observed response measurement scores listed in Fig.8.5, an exact solution
is feasible. If all arrangements of the N = 14 observed response measurement
scores listed in Fig. 8.5 occur with equal chance, the exact probability value of
8o = 10.7143 (or R, = +0.75) computed on the M = 5,040 possible arrangements
of the observed response measurement scores with b = 2 blocks preserved for each
arrangement is

number of § values < §, _ 216

P(5§50|H0): M ~ 5040

= 0.0429.

For comparison, a conventional test of significance for R is given by

(s—2)R*7"
t=|=>2—F—
]

and the observed value of 7 for R, = +0.75 is

_ [(7 —2)(40.75)

1/2
1_(+0'75)2} = +2.5355.

Assuming independence and normality, ¢ is approximately distributed as Student’s
t under the null hypothesis with g —2 = 7 — 2 = 5 degrees of freedom. Under the
null hypothesis, the observed value of 7, = 42.5355 yields an approximate two-
sided probability value of P = 0.0522.

Also, for the N = 7 univariate response measurement scores listed in Fig. 8.5,
the exact expected value of the M = 5,040 § values is s = 13.2857 and following
Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size is

8 10.7143
Ro=1—-=2=1-— = 40.1935,
s 13.2857

indicating approximately 19 % within-block agreement above that expected by
chance.
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Finally, the relationships between the observed values of R, and 3, are

_ Mops _ (+0.1935)(13.2857)

_ = = 40.75
°= 25,5~ 2(09258)(1.8516) T

and

2R.S1S;  2(40.75)(0.9258)(1.8516
R, = 152 _ 2(+0.75)( It ) — 10,1935 .
1L 13.2857

Analysis withv = 1

Although the Pearson product-moment correlation coefficient is not defined for v =
1, it is still possible to analyze the data with § and )i based on ordinary Euclidean
distances between response measurement scores. For the univariate response mea-
surement scores listed in Fig. 8.5 with g =7, b =2, r = 1, and v = 1, employing
ordinary Euclidean distance between response measurement scores, the observed
value of the MRBP test statistic is §, = 3.00, the exact expected value of the
M = 5,040 § values is us = 3.1224, and the observed chance-corrected measure
of effect size is

8 3.00
Ro=1——==1

——— = +40.0392,
Hs 3.1224 +

indicating approximately chance within-block agreement. If all arrangements of the
N = 14 observed response measurement scores listed in Fig. 8.5 occur with equal
chance, the exact probability value of §, = 3.00 computed on the M = 5,040 possi-
ble arrangements of the observed response measurement scores with b = 2 blocks
preserved for each arrangement is

ber of § values < § 216
P(S < 8,|Hy) = number of § values < §, _ — 0.0429 .
M 5,040
which is the same as the probability value obtained with v = 2.
8.2.2 Permutations of g Response Measurements
If (x11, ..., xg1) is one of the g! permutations of the observed response mea-

surement scores and v = 2, then ps = 25,5, and the Pearson product-moment
correlation coefficient, R, is equivalent to the chance-corrected within-block mea-
sure of effect size, N, i.e., R = N, where

, )
coveLx) oS
5182 ns

R =
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Fig. 8.6 Example data set

with g = 10 objects, b = 2 Object ¥ x2
blocks, and » = 1 response 1 21 32
measurement 2 27 21
3 32 27

4 35 35

5 43 64

6 47 43

7 50 50

8 58 47

9 64 69

10 69 58

[297, pp. 132-133]. To illustrate the equivalence of Pearson’s R and i when
(x12, ..., Xg) is a permutation of (xiy, ..., Xg), consider the small data set listed
in Fig. 8.6 with g = 10 objects, r = 1 response measurement, and b = 2 blocks. For
these data the 10 response measurement scores listed under x; in Fig. 8.6 constitute
a permutation of the 10 response measurement scores listed under x;.

For the response measurement scores listed in Fig. 8.6, x| = X, = 44.60, s =
52 = 16.0083,

1
cov(xy, x2) = ﬁ(1’853‘4000) = 205.9333,

and the observed Pearson product-moment correlation coefficient is

_ cov(xy,x) 205.9333
° s (16.0083)(16.0083)

= +0.8036 .

Equivalently, for the response measurement scores listed in Fig. 8.6, the observed
value of the MRBP test statistic with v = 2 is §, = 90.60, the exact expected value
of the M § values is s = 461.2800 and, following Eq. (8.3) on p. 423, the observed
chance-corrected measure of effect size is

8 90.60
Ro=1—-—"=1

- = 40.8036,
1L 461.2800

indicating approximately 80 % within-block agreement above that expected by
chance.

Since there are M = 10! = 3,628,800 possible, equally-likely arrangements of
the observed response measurement scores listed in Fig. 8.6, calculation of an
exact probability value is prohibitive and an approximate resampling probability
value is more practical. For the univariate response measurement scores listed in
Fig. 8.6, the approximate resampling probability value of §, = 90.60 computed
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on L = 1,000,000 random arrangements of the observed response measurement
scores i

number of § values < 6, 3217

P(3 = 8olHo) = L ~ 1,000,000

= 0.0032.

While an exact solution may not be practical, it is not unrealistic, given current
computer capabilities. For the response measurement scores listed in Fig. 8.6, the
exact probability value of §, = 90.60 computed on the M = 3,628,800 possible
arrangements of the observed response measurement scores is

number of § values < §, 11,780

P 8 < SOH = =
(8 = 8o|Ho) M 3,628,800

= 0.0032.

Analysis withv =1

Although the Pearson product-moment correlation coefficient is not defined for
v =1, it is still possible to analyze the response measurement scores listed in
Fig.8.6 with § and % based on ordinary Euclidean distances between response
measurement scores. For the response measurement scores listed in Fig. 8.6 with
g=10,b=2,r =1, and v = 1, the observed value of § with v = 1is §, = 7.40,
the exact expected value of the M = 3,628,800 § values is s = 17.40 and the
observed chance-corrected measure of effect size is

8 7.40
Ro=1——=1

- = 40.5747,
1L 1740 ©

indicating approximately 57 % within-block agreement above that expected by
chance. If all M possible arrangements of the N = 20 observed response measure-
ment scores listed in Fig. 8.6 occur with equal chance, the approximate resampling
probability value of §, = 7.40 computed on the L = 1,000,000 random arrange-
ments of the observed response measurement scores with b = 2 blocks preserved
for each arrangement is

number of § values < 6, _ 5,192

PG5 = 8olHo) = L ~ 1,000,000

= 0.0052 .

For comparison, the exact probability value of §, = 7.40 computed on the M =
3,628,800 possible arrangements of the observed response measurement scores is

number of § values < 6, _ 18,669

P(5 = 8olHo) = M ~ 3.,628.800

= 0.0051 .

Finally, it should be noted thatif g = 2,r = 1,v = 2, xy; = —xy; = xj, and |x;| >
Oforj =1, ..., b, then the test based on § is equivalent to the permutation version
of either the matched-pairs or one-sample ¢ test. When v = 1, ) possesses certain
advantages over R; viz., it is a measure of chance-corrected agreement rather than
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a measure of linearity, and second, i is much more robust than R since it is based
on ordinary Euclidean distances rather than squared Euclidean distances.

8.3 Coda

Chapter 8 provided the foundation for Multivariate Randomized Block Permutation
(MRBP) procedures, with special emphasis on the generalized Minkowski distance
function, A(x,y), as defined in Eq.(8.2) on p.422; §, the weighted mean of the
specified distance-function values as defined in Eq.(8.1) on p.422; and R, the
chance-corrected within-block coefficient of agreement, as defined in Eq. (8.3) on
p-423. Chapters 9, 10, and 11 provide applications of MRBP to randomized-block
data at the interval, ordinal, and nominal levels of measurement, respectively.

Chapter9

Chapter 9 establishes the relationships between the MRBP test statistics, § and
9N, and selected conventional tests and measures designed for the analysis of
randomized-block data at the interval level of measurement. Considered in Chap. 9
are Student’s ¢ test for matched pairs, Hotelling’s multivariate 72 test for matched
pairs, randomized-block analysis of variance, randomized-block multivariate anal-
ysis of variance, and Pearson’s product-moment correlation coefficient.
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