
2Completely Randomized Data

This second chapter of Permutation Statistical Methods introduces a generalized
distance function that provides the foundation for a set of multi-response permu-
tation procedures specifically designed for univariate and multivariate completely
randomized data. Multi-Response Permutation Procedures (MRPP) were introduced
by Mielke, Berry, and Johnson in 1976 and constitute a class of permutation meth-
ods for one or more response measurements on each object that were initially
developed to distinguish possible differences among two or more groups of objects
[300].1 The multi-response permutation procedures presented here are based on a
generalized Minkowski distance function and provide a synthesizing foundation for
a variety of statistical tests and measures for completely randomized data that are
further developed in Chaps. 3–7.

2.1 Minkowski Distance Function

Hermann Minkowski (1864–1909), German mathematician and creator of the
geometry of numbers, utilized geometrical methods to solve problems in num-
ber theory, mathematical physics, and the theory of relativity. Minkowski was a
close friend of David Hilbert while teaching at Königsberg University and taught
Albert Einstein while employed at Eidgenössische Polytechnikum in Zürich (now,
ETH Zürich). In 1891 Minkowski introduced a measure of metric distance between

1The 1976 paper by Mielke, Berry, and Johnson was the first published account of MRPP [300].
Previously, Mielke utilized MRPP in a study sponsored by the National Communicable Disease
Center that involved comparisons of proportional contributions of five plague organism protein
bands based on electrophoresis measurements obtained from samples of organisms associated with
distinct geographical regions.
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30 2 Completely Randomized Data

two points in Crelle’s Journal [310].2 The Minkowski metric distance of order p
between two points in an r-dimensional Euclidean space, x0 D .x1; x2; : : : ; xr/ and
y0 D .y1; y2; : : : ; yr/ 2 R

r, is given by

d.x; y/ D
 

rX
iD1

ˇ̌
xi � yi

ˇ̌p!1=p

;

where p � 1.
The Minkowski distance function is typically used with p D 1; 2, or 1. When

p D 1, the distance is a first-order Minkowski metric, often called a city-block,
Manhattan [231], rectilinear [54], or taxicab [222] metric, the latter named for the
distance between two points that a car or taxicab would drive in a city laid out in
square blocks. When p D 2, the distance is a second-order Minkowski metric and is
the ordinary Euclidean distance between points, a generalization of the Pythagorean
theorem to more than two coordinates. When p D 1, the Minkowski metric is
known as the Tchebycheff (Chebyshev), von Neumann, or, in the two-dimensional
case, the chess-board Minkowski distance [167].

Conventional statistical tests and measures, such as t tests, F tests, and ordinary
least-squares (OLS) regression and correlation, are based on squared Euclidean dis-
tances between response measurement scores, which are not metric. The Minkowski
distance function, however, is limited to metric distances and, under its standard def-
inition, cannot accommodate most conventional statistical tests. Therefore, consider
a generalized Minkowski distance function given by

�.x; y/ D
 

rX
iD1

ˇ̌
xi � yi

ˇ̌p!v=p

; (2.1)

where p � 1 and v > 0 [297, p. 5]. When r � 2, p D 2, and v D 1, �.x; y/ is
rotationally invariant in an r � 2 dimensional space. When v D p D 1, �.x; y/ is
a city-block metric, which is not rotationally invariant. When v D 1 and p D 2,
�.x; y/ is an ordinary Euclidean distance metric. And when v D p D 2, �.x; y/ is a
squared Euclidean distance, which is not a metric distance function since the trian-
gle inequality is not satisfied.3

2The Journal für die Reine und Angewandte Mathematik was founded by August Leopold Crelle
in 1826. It continues today, although it is more popularly known as Crelle’s Journal.
3A distance function is a metric if it satisfies three properties given by (1) �.x; y/ � 0 and
�.x; x/ D 0, i.e., the distance is positive between two different points and is equal to zero from
any point to itself; (2) the distance is symmetric: �.x; y/ D �.y; x/, i.e., the distance between
points x and y is the same in either direction; and (3) the triangle inequality is satisfied: �.x; y/ �
�.x; z/ C �.z; y/, i.e., the distance between any two points is the shortest distance along any path.
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2.2 Multi-response Permutation Procedures

Multi-Response Permutation Procedures (MRPP) were originally designed to sta-
tistically determine possible differences among one or more response measure-
ment scores among two or more groups of objects or subjects [300]. Let � D
f!1; : : : ; !Ng denote a finite sample of N objects that represents a target population,
let x0

i D .x1i; : : : ; xri/ be a transposed vector of r commensurate response measure-
ment scores for object !i, i D 1; : : : ; N, and let S1; : : : ; Sg designate an exhaustive
partitioning of the N objects into g disjoint treatment groups.4 The MRPP test
statistic is a weighted mean given by

ı D
gX

iD1

Ci�i ; (2.2)

where Ci > 0 is a positive weight for treatment group Si, i D 1; : : : ; g,Pg
iD1 Ci D 1,

�i D
 

ni

2

!�1X
j<k

�.j; k/ ‰i.!j/ ‰i.!k/ (2.3)

is the average distance-function value for all distinct pairs of objects in treatment
group Si, i D 1; : : : ; g, ni � 2 is the number of a priori objects classified into treat-
ment group Si, i D 1; : : : ; g,

N D
gX

iD1

ni;

P
j<k is the sum over all j and k such that 1 � j < k � N, and ‰.�/ is an indicator

function given by

‰i.!j/ D
8<
:

1 if !j 2 Si ,

0 otherwise .

The choice of the treatment-group weights, C1; : : : ; Cg, and the generalized
Minkowski distance function given in Eq. (2.1) on p. 30 specify the structure of

4Multi-response permutation procedures also provide for a group of unclassified response mea-
surement scores such as might result from a survey with question choices that include “none of the
above” or “not applicable.” See, for example, a 1983 article on lead concentrations in inner-city
soils by Mielke, Anderson, Berry, Mielke, Chaney, and Leech [302] and a discussion by Mielke
and Berry in 2007 [297, pp. 35–40].
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MRPP. The original choice of Ci given by Mielke, Berry, and Johnson in 1976 was

Ci D ni.ni � 1/
gX

jD1

nj.nj � 1/

for i D 1; : : : ; g [300]. However, a variety of other treatment-group weights can be
considered; for example,

Ci D ni

N
; Ci D ni � 1

N � g
; or Ci D 1

g

for i D 1; : : : ; g. The efficient choice of Ci D ni=N, i D 1; : : : ; g, forces the popu-
lation variance, �2

x , to be proportional to N�2 and eliminates all terms of order 1=N
in the variance of ı [297, pp. 26, 30].

The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to the g treatment groups,
S1; : : : ; Sg. Under H0 the N multi-response measurements are exchangeable multi-
variate random variables.5 The probability value associated with an observed value
of ı, ıo, is the probability under the null hypothesis (H0) of observing a value of ı

as extreme or more extreme than ıo. Thus, an exact probability value for ıo may be
expressed as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

When M is very large, an approximate probability value for ı may be obtained
from a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

5A sufficient condition for a permutation statistical test is the exchangeability of the random vari-
ables. Sequences that are independent and identically distributed (i.i.d.) are always exchangeable,
but so is sampling without replacement from a finite population. However, while i.i.d. implies
exchangeability, exchangeability does not imply i.i.d. [150, 168, 217].
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and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large number to ensure accuracy.

Number of Resamplings Necessary

Exact permutation tests are restricted to relatively small samples, given the large
number of possible permutations. On the other hand, resampling permutation tests
are not limited by the size of the samples. Resampling permutation tests also have
been shown to provide good approximations to exact probability values as a function
of the number of resamplings considered. An early concern regarding the system-
atic use of resampling permutation tests was the speed of the computers used for
calculating the probability values. Given modern high-speed computers, the ques-
tion of computational speed is moot when probability values are not too small. The
remaining question is: how many resamplings are required for a specified accuracy?

The number of resamplings suggested in books and articles on permutation meth-
ods is varied and likely dated due to previous limitations of computer speed and
memory. Some authors have proposed as few as 100 resamplings to as many as
5,000; for example, see discussions by Dwass in 1957 [100]; Hope in 1968 [180];
Edwards in 1985 [110]; Jockel in 1986 [193]; Keller-McNulty and Higgins in 1987
[199]; Bailer in 1989 [16]; Kim, Nelson, and Startz in 1991 [216]; Manly in 1991
[258, pp. 32–35]; McQueen in 1992 [274]; Rickerts and Berry in 1994 [347];
Kennedy in 1995 [212]; Maxim in 1999 [265, p. 356]; Lunneborg in 2000 [256,
pp. 210–213]; Good in 2001 [149, p. 47]; Higgins in 2004 [176]; and Edgington
and Onghena in 2007 [109, pp. 40–41]. On the other hand, examples provided by
Howell as recently as 2007 utilized as many as 10,000 resamplings [184, pp. 642–
646]. Resampling computing packages such as Resampling Stats [14] and StatXact
[15] typically use 10,000 resamplings as the default value.

The accuracy of a resampling probability value depends on both the probability
value (P) and the number of resamplings (L). Confidence limits on the probability
value can be obtained from the binomial distribution when L is large. The 1 � ˛

confidence limits of the binomial distribution are given by

OP ˙ Z˛=2

r
P.1 � P/

L
; (2.4)

where P is the probability value in question and OP denotes the estimated value of P.
Define

xi D
8<
:

1 if OP � OPo ,

0 otherwise ,
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for i D 1; : : : ; L, where OPo denotes the observed value of OP. Then OP, the expected
value of OP, the variance of OP, and the skewness of OP are given by

OP D 1

L

LX
iD1

xi ;

EŒ OP� D P ;

�2
OP D P.1 � P/

L
;

and

� OP D 1 � 2Pp
LP.1 � P/

;

respectively [195, p. 916]. If L is small and P is close to either 0 or 1, the skewness
term � OP becomes large and Eq. (2.4) may not be appropriate. For example, if L D
100 and P D 0:01,

� OP D 1 � 2Pp
LP.1 � P/

D 1 � 2.0:01/p
100.0:01/.1 � 0:01/

D 0:9849 :

Table 2.1 lists a selected number of probability values (P D 0:50, 0.25, 0.10,
0.05, and 0.01), a variety of resamplings (L D 100, 1000, 10,000, 1,000,000, and
100,000,000), computed skewness values, errors on the 95 % confidence limits
determined from Eq. (2.4), and the simulated lower and upper errors on the 95 %
confidence limits based on L resamplings and determined from the smallest value
for which the cumulative binomial distribution is equal to or less than 0.025 and
equal to or greater than 0.975, respectively. In general, as can be seen from Table 2.1,
two additional orders of magnitude are required to increase accuracy by just one
decimal place.

To illustrate the number of resamplings required to yield a predetermined num-
ber of decimal places of accuracy, given a known probability value, consider the
interval-level data listed in Fig. 2.1.

The data listed in Fig. 2.1 are adapted from Berry, Mielke, and Mielke [38]
and represent soil lead (Pb) quantities from two school districts in metropolitan
New Orleans. Elevated Pb levels have been linked to a number of physiological,
neurological, and endocrine effects in children, including difficulties in learning,
perception, social behavior, and fine motor skills. The n1 D 20 soil lead samples col-
lected in District 1 yielded a mean value of Nx1 D 203:9350 mg/kg and the n2 D 20

soil lead samples collected in District 2 yielded a mean value of Nx2 D 1;661:7800

mg/kg. There are

M D .n1 C n2/Š

n1Š n2Š
D .20 C 20/Š

20Š 20Š
D 137;846;528;820
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Table 2.1 Five probability (P) values, four levels of resampling (L), skewness (�
OP), and asymp-

totic and simulated errors on 95 % confidence limits; table adapted from Johnston, Berry, and
Mielke [195, p. 917]

Error on 95 % confidence limits
P L �

OP Asymptotic Lower Upper

0.50 100 0.00 0.10 0.10 0.10

10;000 0.00 0.010 0.010 0.010

1;000;000 0.00 0.0010 0.0010 0.0010

100;000;000 0.00 0.00010 0.00010 0.00010

0.25 100 0.11547 0.09 0.08 0.09

10;000 0.01155 0.009 0.009 0.009

1;000;000 0.00115 0.0009 0.0008 0.0008

100;000;000 0.00012 0.00009 0.00008 0.00008

0.10 100 0.26667 0.06 0.05 0.06

10;000 0.02667 0.006 0.006 0.006

1;000;000 0.00267 0.0006 0.0006 0.0006

100;000;000 0.00027 0.00006 0.00006 0.00006

0.05 100 0.41295 0.04 0.04 0.05

10;000 0.04129 0.004 0.004 0.004

1;000;000 0.00413 0.0004 0.0004 0.0004

100;000;000 0.00041 0.00004 0.00004 0.00004

0.01 100 0.98494 0.02 0.01 0.02

10;000 0.09849 0.002 0.002 0.002

1;000;000 0.00985 0.0002 0.0002 0.0002

100;000;000 0.00098 0.00002 0.00002 0.00002

possible permutations of the soil lead data listed in Fig. 2.1 to be considered. Under
the null hypothesis of no difference between the two group means in the popula-
tion, a Fisher–Pitman permutation F test [38] yields an exact two-sided probability
value of

P
�
F � FojH0

� D number of F values � Fo

M

D 2;056;423;782

137;846;528;820
D 0:0149182123

for the soil lead data listed in Fig. 2.1. Figure 2.2 summarizes the results for eight
different resamplings of the data listed in Fig. 2.1 and the associated two-sided
resampling probability values with ˛ D 0:05. Each of the probability values was
generated using a common seed and the same pseudorandom number generator
[197]. The last row of Fig. 2.2 contains the exact probability value based on all
M D 137;846;528;820 possible permutations of the soil lead data listed in Fig. 2.1.
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Fig. 2.1 Ordered soil Pb
data in mg/kg from two
school attendance districts in
metropolitan New Orleans

n District 1 District 2

1 16.0 4.7
2 34.3 10.8
3 34.6 35.7
4 57.6 53.1
5 63.1 75.6
6 88.2 105.5
7 94.2 200.4
8 111.8 212.8
9 112.1 212.9

10 139.0 215.2
11 165.6 257.6
12 176.7 347.4
13 216.2 461.9
14 221.1 566.0
15 276.7 984.0
16 362.8 1,040.0
17 373.4 1,306.0
18 387.1 1,908.0
19 442.2 3,559.0
20 706.0 21,679.0

Fig. 2.2 Comparison of
eight resampled probability
values with the exact
probability value given in the
last row, based on the soil
lead data listed in Fig. 2.1

Resampling (L)

100 0.06

1,000

10,000

0.020

0.0110

100,000 0.01556

1,000,000 0.014946

10,000,000 0.0149302

100,000,000

1,000,000,000

0.01488510

0.014917218

Exact P value 0.0149182123

Probability (P)

Given the results of the resampling probability analyses listed in Fig. 2.2, L D
1;000;000 is recommended whenever three decimal places of accuracy are required.
There are four reasons for promoting L D 1;000;000 resamplings: accuracy, practi-
cality, error, and consistency. First, inspection of Fig. 2.2 indicates that with an exact
probability value of P D 0:0149182123 and ˛ D 0:05, L D 1;000;000 resamplings
is the minimum number of resamplings necessary to ensure three decimal places
of accuracy. Second, given the speed of modern computers and the efficiency of
resampling algorithms, such as the Mersenne Twister, L D 1;000;000 resamplings
can be used on a routine basis. Third, there is the potential for additional type I
error, the magnitude of which is of concern when the number of resamplings (L)
is very small. Fourth, some researchers object to the use of resampling statistics
because different pseudorandom number generators and different seeds can produce
widely varying results. This is certainly true when L is very small. For example,
in Fig. 2.2, L D 100 yields a probability value of P D 0:06. Varying the seed with



2.2 Multi-response Permutation Procedures 37

L D 100 and the same pseudorandom number generator produced observed prob-
ability values ranging from P D 0:01 to P D 0:11. However, with L D 1;000;000,
varying the seed produced no differences in the third decimal place.

When the number of possible arrangements (M) is very large and the exact prob-
ability value (P) is exceedingly small, a resampling permutation procedure may
produce no ı values equal to or less than ıo, even with L D 1;000;000, yielding
an approximate resampling probability value of P D 0:00. In such cases, moment-
approximation permutation procedures based on fitting the first three exact moments
of the discrete permutation distribution to a Pearson type III distribution provide
approximate probability values, as detailed in Chap. 1, Sect. 1.2.2; see also refer-
ences [284] and [300].

An Index of Agreement

It is oftentimes desirable to have an index of the amount of agreement among
response measurement scores within g treatment groups. A useful measure for this
purpose is a chance-corrected within-group coefficient of agreement given by

< D 1 � ı

�ı

; (2.5)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores, given by

�ı D 1

M

MX
iD1

ıi : (2.6)

< is a chance-corrected measure of agreement since EŒ<jH0� D 0.6 Because �ı is
a constant under H0, the permutation distributions of ı and < are equivalent, viz.,

P
�
ı � ıojH0

� D P .< � <ojH0/ ;

where

<o D 1 � ıo

�ı

and ıo and <o denote the observed values of ı and <, respectively. Possible values
of < range from slightly negative values to a maximum of < D C1 for the extreme

6As will be shown in Chap. 3, < may also be interpreted as a chance-corrected measure of effect
size.
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case when all response measurements on objects within each of the g classified
treatment groups are identical, i.e., ı D 0.

The generalized Minkowski distance function, �.x; y/, as defined in Eq. (2.1)
on p. 30, determines the analysis space of the MRPP test statistic, ı. The data
space in question for almost all statistical analyses is an ordinary Euclidean dis-
tance space. If the distance function of the MRPP test statistic is based on p D 2

and v D 1, then the data and analysis spaces are congruent, so that the resulting
statistical analyses represent the data in question. Unfortunately, commonly used
statistical analyses based on the arithmetic mean, such as Student’s two-sample t
test and Fisher’s one-way analysis of variance, are based on p D v D 2, yielding a
non-metric squared-distance analysis space that is not congruent with the data space.
The difference between the data and analysis spaces associated with the most pop-
ular statistical analyses is a reason that problems occur with what should be routine
analyses. Examples illustrating this problem are given elsewhere; see, for example,
references [41, pp. 404–410] and [297, pp. 50–53]. Any statistical analysis is ques-
tionable when the data and analysis spaces are not congruent.

2.2.1 Chance-Corrected Agreement Measures

Chance-corrected measures yield values that are interpreted as a proportion above
that expected by chance alone. Chance-corrected agreement measures provide clear
and meaningful interpretations of the amount of, or lack of, agreement present in
the data. In general, chance-corrected measures of agreement, such as <, are equal
to C1 when perfect agreement among the response measurement scores occurs, 0
when agreement is equal to that expected under independence, and negative when
agreement among the response measurement scores is less than that expected by
chance. For example, define a chance-corrected measure such that

Ai D 100

�
Oi � Ei

N � Ei

�
;

where Oi and Ei denote the Observed (earned) and Expected (chance) score from
purely guessing, respectively, on a multiple-choice examination with N questions
for the ith student in a class of m students [175, p. 912].

Thus, on a 50-question multiple-choice examination with five choices per ques-
tion, chance would indicate that a student could answer 50 � 0:20 D 10 questions
correctly simply by guessing. If a student answered only eight questions correctly,
then a chance-corrected measure of agreement would yield a grade of

A D 100

�
8 � 10

50 � 10

�
D 100

��2

40

�
D �5 ;

since the score was less than expected by chance, i.e., only eight of 50 questions
were answered correctly. The lowest grade would occur when a student answered
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all 50 questions incorrectly, yielding a score of

A D 100

�
0 � 10

50 � 10

�
D 100

��10

40

�
D �25 :

Note that while a student with the highest possible score of 50 correct answers would
score

A D 100

�
50 � 10

50 � 10

�
D 100

�
40

40

�
D 100 ;

the lowest possible score is �25, not �100. Thus, the distributions of chance-
corrected measures are usually asymmetric.

Since the mean value of < under H0 is 0, homogeneity of within-classified-
group response measurements is associated with < > 0, and heterogeneity of
within-classified-group response measurements is associated with < � 0 [28]. The
distribution of < is usually asymmetric and the upper and lower bounds depend on
both the nature of the data and the structure of ı. The degree of homogeneity or
heterogeneity depends on the discrete permutation distribution of <. If large values
of n1; : : : ; ng and N are involved, a very small value of P.ı � ıojH0/ may be asso-
ciated with a small positive observed value of <, say <o. Conversely, with small
values of n1; : : : ; ng and N, a large value of <o may be associated with a relatively
large value of P.ı � ıojH0/.

2.2.2 Example UnivariateMRPP Analysis with v D 2

Although multi-response permutation procedures were originally designed for
analyzing multivariate response measurement scores, they can also be used for
analyzing univariate data. Consider a comparison between two mutually exclusive
groups of objects, S1 and S2, where a single response measurement, x, has been
obtained from each object. For this example, there is r = 1 response measurement
score for each object, g D 2 disjoint groups, and a total of N D 6 objects with
n1 D 2 and n2 D 4 in treatment groups S1 and S2, respectively. Suppose that the
n1 D 2 observed response measurement scores for treatment group S1 are f5; 4g and
the n2 D 4 response measurement scores for treatment group S2 are f2; 3; 7; 9g.
The treatment-group sizes and the response measurement scores are deliberately
kept small to simplify the example analysis. The treatment-group sizes and the uni-
variate response measurement scores are listed in Fig. 2.3.

For this example analysis, let v D 2, p D 2, r D 1,

C1 D n1

N
D 2

6
; and C2 D n2

N
D 4

6
;
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Fig. 2.3 Example data with
g D 2, r D 1, n1 D 2,
n2 D 4, and
N D n1 C n2 D 6

Group Object Value

S1 1 5
2 4

S2 3 2
4 3
5 7
6 9

w
w

w
w
w
w

so that the S1 and S2 treatment groups are weighted proportional to their group sizes
of n1 D 2 and n2 D 4, respectively. For univariate response measurement scores
with r D 1, Eq. (2.1) on p. 30 reduces to

�.j; k/ D
�ˇ̌

xj � xk

ˇ̌p�v=p
: (2.7)

Thus, for treatment group S1 with n1 D 2 objects, p D 2, and v D 2, the generalized
Minkowski distance function yields

�.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 �2=2 D 1:00 ;

and for treatment group S2 with n D 4 objects, the generalized Minkowski distance
function yields

�.3; 4/ D
�ˇ̌

2 � 3
ˇ̌2 �2=2 D 1:00 ;

�.3; 5/ D
�ˇ̌

2 � 7
ˇ̌2 �2=2 D 25:00 ;

�.3; 6/ D
�ˇ̌

2 � 9
ˇ̌2 �2=2 D 49:00 ;

�.4; 5/ D
�ˇ̌

3 � 7
ˇ̌2 �2=2 D 16:00 ;

�.4; 6/ D
�ˇ̌

3 � 9
ˇ̌2 �2=2 D 36:00 ;

and

�.5; 6/ D
�ˇ̌

7 � 9
ˇ̌2 �2=2 D 4:00 :
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Then following Eq. (2.3) on p. 31, the average distance-function values for all
distinct pairs of objects in treatment groups Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
�.1; 2/

i
D
 

2

2

!�1

.1:00/ D 1:00

and

�2 D
 

n2

2

!�1h
�.3; 4/ C �.3; 5/ C �.3; 6/ C �.4; 5/ C �.4; 6/ C �.5; 6/

i

D
 

4

2

!�1

.1:00 C 25:00 C 49:00 C 16:00 C 36:00 C 4:00/ D 21:8333 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 2 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

2

6

�
.1:00/ C

�
4

6

�
.21:8333/ D 14:8889 :

Smaller values of ıo indicate a concentration of response measurement scores
within the g treatment groups, whereas larger values of ıo indicate a lack of concen-
tration between response measurement scores among the g treatment groups [301].
The N D 6 objects can be partitioned into g D 2 treatment groups, S1 and S2, respec-
tively, with n1 D 2 and n2 D 4 response measurement scores preserved in

M D NŠ

n1Š n2Š
D 6Š

2Š 4Š
D 15

possible, equally-likely ways. The M D 15 possible arrangements of the observed
data in Fig. 2.3, along with the corresponding �1, �2, and ı values, are listed in
Table 2.2 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 14:8889, obtained from the realized arrangement,

f5; 4g f2; 3; 7; 9g ;

(Order 9 in Table 2.2) is not unusual since five of the remaining ı values (ı11 to ı15)
exceed the observed value of ıo D 14:8889 and 10 values of ı (ı1 to ı10) are equal to
or less than the observed value. If all arrangements of the N D 6 observed response
measurement scores listed in Fig. 2.3 occur with equal chance, the exact probabil-
ity value of ıo D 14:8889 computed on the M D 15 possible arrangements of the
observed data with n1 D 2 and n2 D 4 response measurement scores preserved for
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Table 2.2 Permutations of
the observed data in Fig. 2.3
for treatment groups S1 and
S2 with values for �1, �2, and
ı based on v D 2, ordered by
values of ı from lowest to
highest

Order S1 S2 �1 �2 ı

1 {7, 9} {2, 5, 3, 4} 4:0000 3:3333 3:5556

2 {2, 3} {5, 4, 7, 9} 1:0000 9:8333 6:8889

3 {2, 4} {5, 3, 7, 9} 4:0000 13:3333 10:2222

4 {5, 9} {2, 3, 4, 7} 16:0000 9:3333 11:5556

5 {3, 4} {2, 5, 7, 9} 1:0000 17:8333 12:2222

6 {2, 5} {3, 4, 7, 9} 9:0000 15:1667 13:1111

7 {5, 3} {2, 4, 7, 9} 4:0000 19:3333 14:2222

8 {5, 7} {2, 3, 4, 9} 4:0000 19:3333 14:2222

9 {5, 4} {2, 3, 7, 9} 1:0000 21:8333 14:8889

10 {4, 9} {2, 5, 3, 7} 25:0000 9:8333 14:8889

11 {4, 7} {2, 5, 3, 9} 9:0000 19:1667 15:7778

12 {3, 7} {2, 5, 4, 9} 16:0000 17:3333 16:8889

13 {2, 7} {5, 3, 4, 9} 25:0000 13:8333 17:5556

14 {3, 9} {2, 5, 4, 7} 36:0000 8:6667 17:7778

15 {2, 9} {5, 3, 4, 7} 49:0000 5:8333 20:2222

each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 10

15
D 0:6667 :

For comparison, a conventional Student two-sample pooled t test calculated on
the N D 6 response measurement scores listed in Fig. 2.3 yields an observed value
of to D �0:3004. Assuming independence, normality, and homogeneity of variance,
t is approximately distributed as Student’s t under the null hypothesis with N � 2 D
6 � 2 D 4 degrees of freedom. Under the null hypothesis, the observed value of
to D �0:3004 yields an approximate two-sided probability value of P D 0:7789.

Following Eq. (2.6) on p. 37, the exact average value of the M D 15 ı values
listed in Table 2.2 is �ı D 13:60. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 14:8889

13:60
D �0:0948 ;

indicating that within-group agreement is well below that expected by chance.

2.2.3 Example UnivariateMRPP Analysis with v D 1

Permutation statistical tests and measures are data-dependent, distribution-free, and
non-parametric; consequently, they require no distributional assumptions and make
no estimates of population parameters. Thus, it is not necessary to set v D 2 and to
square the response-measurement differences between objects. While conventional
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tests and measures that assume normality must estimate the mean and variance, �x

and �2
x , of the normal distribution, both of which are based on squared deviations

from the mean, permutation tests and measures do not assume normality and are
not restricted to v D 2, which is not a metric distance function. A distance function
based on v D 1 is an attractive alternative to v D 2 as it is a metric distance function,
satisfies the triangle inequality, is robust to extreme values, provides an easy-to-
understand ordinary Euclidean distance between objects, and ensures that the data
and analysis spaces are congruent [284–287,289,295]. In addition, choosing v D 1

over v D 2 can make a substantial difference in the results of an MRPP analysis;
see, for example, a discussion by Mielke and Berry in 2007 [297, pp. 45–50].

To illustrate the computation of ı with v D 1, consider the same finite sample of
N D 6 objects listed in Fig. 2.3 on p. 40 and let S1 and S2 denote an exhaustive par-
titioning of the N D 6 objects into g D 2 disjoint treatment groups. As previously,
let S1 consist of n1 D 2 objects, each with a single response measurement, and let
S2 consist of n2 D 4 objects, each with a single response measurement.

Given the univariate data listed in Fig. 2.3, let r D 1, p D 2,

C1 D n1

N
D 2

6
; and C2 D n2

N
D 4

6
;

but in this case set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance instead of squared Euclidean distance between objects. Following Eq. (2.7)
on p. 40 for treatment group S1 with n1 D 2 objects, p D 2, and v D 1, the general-
ized Minkowski distance function yields

�.1; 2/ D
�ˇ̌

.5 � 4
ˇ̌2 �1=2 D 1:00 ;

and for treatment group S2 with n D 4 objects, the generalized Minkowski distance
function yields

�.3; 4/ D
�ˇ̌

2 � 3
ˇ̌2 �1=2 D 1:00 ;

�.3; 5/ D
�ˇ̌

2 � 7
ˇ̌2 �1=2 D 5:00 ;

�.3; 6/ D
�ˇ̌

2 � 9
ˇ̌2 �1=2 D 7:00 ;

�.4; 5/ D
�ˇ̌

3 � 7
ˇ̌2 �1=2 D 4:00 ;

�.4; 6/ D
�ˇ̌

3 � 9
ˇ̌2 �1=2 D 6:00 ;
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and

�.5; 6/ D
�ˇ̌

7 � 9
ˇ̌2 �1=2 D 2:00 :

Then following Eq. (2.3) on p. 31, the average distance-function values for all dis-
tinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
�.1; 2/

i
D
 

2

2

!�1

.1:00/ D 1:00

and

�2 D
 

n2

2

!�1h
�.3; 4/ C �.3; 5/ C �.3; 6/ C �.4; 5/ C �.4; 6/ C �.5; 6/

i

D
 

4

2

!�1

.1:00 C 5:00 C 7:00 C 4:00 C 6:00 C 2:00/ D 4:1667 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

2

6

�
.1:00/ C

�
4

6

�
.4:1667/ D 3:1111 :

As in the previous MRPP example with v D 2, the N D 6 objects can be par-
titioned into g D 2 treatment groups, S1 and S2, with n1 D 2 and n2 D 4 response
measurement scores preserved for each arrangement of the observed data in

M D NŠ

n1Š n2Š
D 6Š

2Š 4Š
D 15

possible, equally-likely ways. The M D 15 possible arrangements of the observed
data in Fig. 2.3, along with the corresponding �1, �2, and ı values, are listed in
Table 2.3 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 3:1111, obtained from the realized arrangement,

f5; 4g f2; 3; 7; 9g ;

(Order 5 in Table 2.3) is not unusual since eight of the remaining ı values (ı8 to ı15)
exceed the observed value of ıo D 3:1111 and seven values of ı (ı1 to ı7) are
equal to or less than the observed value. If all arrangements of the N D 6 observed
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Table 2.3 Permutations of
the observed data in Fig. 2.3
for treatment groups S1 and
S2 with values for �1, �2, and
ı based on v D 1, ordered by
values of ı from lowest to
highest

Order S1 S2 �1 �2 ı

1 {7, 9} {2, 5, 3, 4} 2:0000 1:6667 1:7778

2 {2, 3} {5, 4, 7, 9} 1:0000 2:8333 2:2222

3 {2, 4} {5, 3, 7, 9} 2:0000 3:3333 2:8889

4 {3, 4} {2, 5, 7, 9} 1:0000 3:8333 2:8889

5 {5, 4} {2, 3, 7, 9} 1:0000 4:1667 3:1111

6 {5, 7} {2, 3, 4, 9} 2:0000 3:6667 3:1111

7 {5, 9} {2, 3, 4, 7} 4:0000 2:6667 3:1111

8 {2, 5} {3, 4, 7, 9} 3:0000 3:5000 3:3333

9 {5, 3} {2, 4, 7, 9} 2:0000 4:0000 3:3333

10 {4, 7} {2, 5, 3, 9} 3:0000 3:8333 3:5556

11 {4, 9} {2, 5, 3, 7} 5:0000 2:8333 3:5556

12 {2, 7} {5, 3, 4, 9} 5:0000 3:1667 3:7778

13 {3, 7} {2, 5, 4, 9} 4:0000 3:6667 3:7778

14 {2, 9} {5, 3, 4, 7} 7:0000 2:1667 3:7778

15 {3, 9} {2, 5, 4, 7} 6:0000 2:6667 3:7778

response measurement scores listed in Fig. 2.3 occur with equal chance, the exact
probability value of ıo D 3:1111 computed on the M D 15 possible arrangements of
the observed data with n1 D 2 and n2 D 4 response measurement scores preserved
for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 7

15
D 0:4667 :

For comparison, for the univariate data listed in Fig. 2.3 the exact probability value
based on v D 2, M D 15, and Ci D ni=N for i D 1; 2 in the previous example is
P D 0:6667. No comparison is made with the conventional Student two-sample t
test as Student’s t test is undefined for v D 1.

Following Eq. (2.6) on p. 37, the exact average value of the M D 15 ı values
listed in Table 2.3 is �ı D 3:20. Thus, the observed chance-corrected coefficient of
agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 14:8889

3:20
D C0:0278 ;

indicating very little within-group agreement above that expected by chance.

2.2.4 Example Bivariate MRPP Analysis with v D 2

In this second example, bivariate response measurement scores are used for simplic-
ity to demonstrate a multivariate MRPP analysis. To illustrate the computation of
MRPP with bivariate response measurement scores for each object, consider a finite
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Fig. 2.4 Example data with
g D 2, r D 2, n1 D 4,
n2 D 3, and
N D n1 C n2 D 7

Values

Group Object x1 x2

S1 1 5 1
S1 2 4 6
S1 3 5 2
S1 4 6 3

S2 5 2 3
S2 6 3 4
S2 7 2 4

w
w
w
w

w
w
w

sample of N D 7 objects and let S1 and S2 denote an exhaustive partitioning of the N
objects into g D 2 disjoint treatment groups. Further, let S1 consist of n1 D 4 objects
with r D 2 commensurate response measurement scores (x1i and x2i) on each object
for i D 1; : : : ; 4, with x 0

1 D .5; 1/, x 0
2 D .4; 6/, x 0

3 D .5; 2/, and x 0
4 D .6; 3/, and

let S2 consist of n2 D 3 objects with r D 2 commensurate response measurement
scores (x1i and x2i) on each object for i D 1; 2; 3 with x 0

5 D .2; 3/, x 0
6 D .3; 4/,

and x 0
7 D .2; 4/. The treatment group sizes and the response measurement scores

are deliberately kept small to simplify the example analysis. The bivariate response
measurement scores for the N D 7 objects are listed in Fig. 2.4.

For this example analysis, let v D 2, p D 2, r D 2,

C1 D n1

N
D 4

7
; and C2 D n2

N
D 3

7
;

so that the S1 and S2 treatment groups are weighted proportional to their group sizes
of n1 D 4 and n2 D 3, respectively. Following Eq. (2.1) on p. 30 for treatment group
S1 with n1 D 4 objects, p D 2, and v D 2, the generalized Minkowski distance func-
tion yields

�.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 C ˇ̌

1 � 6
ˇ̌2 �2=2 D 26:00 ;

�.1; 3/ D
�ˇ̌

5 � 5
ˇ̌2 C ˇ̌

1 � 2
ˇ̌2 �2=2 D 1:00 ;

�.1; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

1 � 3
ˇ̌2 �2=2 D 5:00 ;

�.2; 3/ D
�ˇ̌

4 � 5
ˇ̌2 C ˇ̌

6 � 2
ˇ̌2 �2=2 D 17:00 ;

�.2; 4/ D
�ˇ̌

4 � 6
ˇ̌2 C ˇ̌

6 � 3
ˇ̌2 �2=2 D 13:00 ;
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and

�.3; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

2 � 3
ˇ̌2 �2=2 D 2:00 ;

and for treatment group S2 with n2 D 3 objects, the generalized Minkowski distance
function yields

�.5; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �2=2 D 2:00 ;

�.5; 7/ D
�ˇ̌

2 � 2
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �2=2 D 1:00 ;

and

�.6; 7/ D
�ˇ̌

3 � 2
ˇ̌2 C ˇ̌

4 � 4
ˇ̌2 �2=2 D 1:00 :

Then following Eq. (2.3) on p. 31, the average distance-function values for all
distinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
�.1; 2/ C �.1; 3/ C �.1; 4/ C �.2; 3/ C �.2; 4/ C �.3; 4/

i

D
 

4

2

!�1

.26:00 C 1:00 C 5:00 C 17:00 C 13:00 C 2:00/ D 10:6667

and

�2 D
 

n2

2

!�1h
�.5; 6/ C �.5; 7/ C �.6; 7/

i

D
 

3

2

!�1

.2:00 C 1:00 C 1:00/ D 1:3333 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 2 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

4

7

�
.10:6667/ C

�
3

7

�
.1:3333/ D 6:6667 :

The N D 7 objects can be partitioned into g D 2 treatment groups, S1 and
S2, with n1 D 4 and n2 D 3 response measurement scores preserved for each
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arrangement of the observed data in

M D NŠ

n1Š n2Š
D 7Š

4Š 3Š
D 35

possible, equally-likely ways. The M D 35 possible arrangements of the observed
bivariate data in Fig. 2.4, along with the corresponding �1, �2, and ı values, are listed
in Table 2.4 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 6:6667, obtained from the realized arrangement,

f.5; 1/.4; 6/.5; 2/.6; 3/g f.2; 3/.3; 4/.2; 4/g ;

(Order 3 in Table 2.4) is unusual since 32 of the remaining ı values (ı4 to ı35)
exceed the observed value of ıo D 6:6667 and only two values of ı are less
than the observed value: ı1 D 4:0000 and ı2 D 6:4762. If all arrangements of the
N D 7 observed bivariate response measurement scores listed in Fig. 2.4 occur with
equal chance, the exact probability value of ıo D 6:6667 computed on the M D 35

possible arrangements of the observed data with n1 D 4 and n2 D 3 response mea-
surement scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 3

35
D 0:0857 :

A conventional Hotelling two-sample T2 test is given by

T2 D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/ ; (2.8)

where Ny1 and Ny2 denote vectors of mean differences between treatment groups S1

and S2, n1 and n2 are the number of interval-level multivariate response measure-
ment scores in treatment groups S1 and S2, and S is a pooled variance–covariance
matrix.

For the example data listed in Fig. 2.4, Ny11 D 5:00, s2
11 D 0:6167, Ny12 D

3:00, s2
12 D 4:6667, cov.1; 2/1 D �1:00, Ny21 D 2:3333, s2

21 D 0:3333, Ny22 D
3:6667, s2

22 D 0:3333, and cov.1; 2/2 D C0:1667. Then, Ny1 D Ny11 � Ny21 D 5:00 �
2:3333 D C2:6667 and Ny2 D Ny12 � Ny22 D 3:00 � 3:6667 D �0:6667.

The variance–covariance matrices for treatment groups S1 and S2 in Fig. 2.4 are

O†1 D
"

0:6667 �1:0000

�1:0000 4:6667

#
and O†2 D

"
0:3333 C0:1667

C0:1667 0:3333

#
;
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Table 2.4 Permutations of the observed data set in Fig. 2.4 for treatment groups S1 and S2 with
values for �1, �2, and ı based on v D 2, ordered by values of ı from lowest to highest

Order S1 S2 �1 �2 ı

1 {(4, 6) (2, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (6, 3)} 5:0000 2:6667 4:0000

2 {(5, 1) (5, 2) (6, 3) (2, 3)} {(4, 6) (3, 4) (2, 4)} 7:8333 4:6667 6:4762

3 {(5, 1) (4, 6) (5, 2) (6, 3)} {(2, 3) (3, 4) (2, 4)} 10:6667 1:3333 6:6667

4 {(5, 1) (5, 2) (6, 3) (3, 4)} {(4, 6) (2, 3) (2, 4)} 6:5000 7:3333 6:8571

5 {(5, 1) (5, 2) (6, 3) (2, 4)} {(4, 6) (2, 3) (3, 4)} 9:3333 6:6667 8:1905

6 {(4, 6) (6, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (2, 3)} 9:0000 8:0000 8:5714

7 {(5, 1) (2, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (6, 3)} 8:0000 10:6667 9:1429

8 {(5, 1) (5, 2) (2, 3) (2, 4)} {(4, 6) (6, 3) (3, 4)} 9:3333 9:3333 9:3333

9 {(5, 2) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (6, 3)} 5:8333 14:6667 9:6190

10 {(4, 6) (6, 3) (2, 3) (2, 4)} {(5, 1) (5, 2) (3, 4)} 11:3333 7:3333 9:6190

11 {(4, 6) (5, 2) (6, 3) (3, 5)} {(5, 1) (2, 3) (2, 4)} 9:1667 10:6667 9:8095

12 {(4, 6) (5, 2) (3, 4) (2, 4)} {(5, 1) (6, 3) (2, 3)} 8:6667 11:3333 9:8095

13 {(5, 1) (5, 2) (2, 3) (3, 4)} {(4, 6) (6, 3) (2, 4)} 7:8333 12:6667 9:9048

14 {(4, 6) (5, 2) (2, 3) (2, 4)} {(5, 1) (6, 3) (3, 4)} 10:3333 9:3333 9:9048

15 {(4, 6) (6, 3) (2, 3) (3, 4)} {(5, 1) (5, 2) (2, 4)} 9:8333 10:6667 10:1905

16 {(5, 1) (4, 6) (6, 3) (3, 4)} {(5, 2) (2, 3) (2, 4)} 12:0000 8:0000 10:2857

17 {(5, 1) (4, 6) (2, 3) (2, 4)} {(5, 2) (6, 3) (3, 4)} 13:1667 6:6667 10:3810

18 {(4, 6) (5, 2) (6, 3) (2, 4)} {(5, 1) (2, 3) (3, 4)} 11:6667 9:3333 10:6667

19 {(6, 3) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (5, 2)} 7:8333 14:6667 10:7619

20 {(5, 1) (4, 6) (3, 4) (2, 4)} {(5, 2) (6, 3) (2, 3)} 11:8333 9:3333 10:7619

21 {(5, 1) (6, 3) (2, 3) (2, 4)} {(4, 6) (5, 2) (3, 4)} 11:6667 10:0000 10:9524

22 {(4, 6) (5, 2) (2, 3) (3, 4)} {(5, 1) (6, 3) (2, 4)} 9:1667 13:3333 10:9524

23 {(5, 1) (6, 3) (2, 3) (3, 4)} {(4, 6) (5, 2) (2, 4)} 9:8333 12:6667 11:0476

24 {(5, 1) (5, 2) (3, 4) (2, 4)} {(2, 6) (6, 3) (2, 3)} 9:0000 14:0000 11:1429

25 {(5, 1) (4, 6) (6, 3) (2, 4)} {(5, 2) (2, 3) (3, 4)} 14:5000 6:6667 11:1429

26 {(4, 6) (5, 2) (6, 3) (2, 3)} {(5, 1) (3, 4) (2, 4)} 11:8333 10:6667 11:3333

27 {(5, 1) (4, 6) (6, 3) (2, 3)} {(5, 2) (3, 4) (2, 4)} 14:3333 7:3333 11:3333

28 {(5, 1) (4, 6) (2, 3) (3, 4)} {(5, 2) (6, 3) (2, 4)} 12:0000 10:6667 11:4286

29 {(5, 1) (4, 6) (5, 2) (3, 4)} {(6, 3) (2, 3) (2, 4)} 11:6667 11:3333 11:5238

30 {(5, 1) (4, 6) (5, 2) (2, 3)} {(6, 3) (3, 4) (2, 4)} 13:3333 9:3333 11:6190

31 {(5, 1) (6, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (2, 3)} 10:6667 13:3333 11:8095

32 {(5, 2) (6, 3) (2, 3) (2, 4)} {(5, 1) (4, 6) (3, 4)} 9:8333 14:6667 11:9048

33 {(5, 1) (4, 6) (5, 2) (2, 4)} {(6, 3) (2, 3) (3, 4)} 13:8333 9:3333 11:9048

34 {(5, 2) (6, 3) (2, 3) (3, 4)} {(5, 1) (4, 6) (2, 4)} 8:0000 17:3333 12:0000

35 {(5, 2) (6, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (2, 3)} 8:5000 17:3333 12:2857
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respectively, and the pooled variance–covariance matrix and its inverse are

S D
"

0:5333 �0:5333

�0:5333 2:9333

#
and S�1 D

"C2:9167 C0:4167

C0:4167 C0:4167

#
;

respectively.7

Following Eq. (2.8), the observed value of Hotelling’s T2 is

T2
o D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/

D .4/.3/

7

�C2:6667 �0:6667
	 "C2:2917 C0:4167

C0:4167 C0:4167

#"C2:6667

�0:6667

#

D .1:7143/.15:00/ D 25:7143

and the observed F-ratio for Hotelling’s T2 is

Fo D N � r � 1

r.N � r/
T2

o D 7 � 2 � 1

2.7 � 2/
.25:7145/ D 10:2858 :

Assuming independence, normality, and homogeneity of variance, F is approxi-
mately distributed as Snedecor’s F under the null hypothesis with 	1 D r D 2 and
	2 D N � r � 1 D 7 � 2 � 1 D 4 degrees of freedom. Under the null hypothesis,
the observed value of Fo D 10:2858 yields an approximate probability value of
P D 0:0265. While there is a considerable difference between the exact probabil-
ity value of P D 0:0857 and the approximate probability value of P D 0:0265, it
is not surprising, as Hotelling’s T2 test was not designed for samples as small as
n1 D 4 and n2 D 3.

Following Eq. (2.6) on p. 37, the exact average value of the M D 35 ı values
listed in Table 2.4 is �ı D 10:0952. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 6:6667

10:0952
D C0:3396 ;

indicating approximately 34 % within-group agreement above that expected by
chance.

7Each element of the S matrix is constructed from two corresponding elements in the O† matrices,
weighted by the degrees of freedom, i.e., n � 1. For example, the first element of the S matrix is
0:5333 D Œ.4 � 1/.0:6667/ C .3 � 1/.0:3333/�=.4 C 3 � 2/.
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Fig. 2.5 Example data with
g D 2, r D 2, n1 D 4,
n2 D 3, and
N D n1 C n2 D 7

Values

Group Object x1 x2

S1 1 5 1
S1 2 4 6
S1 3 5 2
S1 4 6 3

S2 5 2 3
S2 6 3 4
S2 7 2 4

w
w
w
w

w
w
w

2.2.5 Example Bivariate MRPP Analysis with v D 1

As mentioned in the univariate example on p. 43, the choice of v can make a sub-
stantial difference in the results of an MRPP analysis. To illustrate the computation
of MRPP with bivariate data and v D 1, consider the same finite sample of N D 7

objects listed in Fig. 2.4 on p. 46 and let S1 and S2 denote an exhaustive partitioning
of the N objects into g D 2 disjoint treatment groups. As previously, let S1 consist
of n1 D 4 objects with r D 2 commensurate response measurement scores (x1i and
x2i) on each object for i D 1; : : : ; 4, with x 0

1 D .5; 1/, x 0
2 D .4; 6/, x 0

3 D .5; 2/, and
x 0

4 D .6; 3/, and let S2 consist of n2 D 3 objects with r D 2 commensurate response
measurement scores (x1i and x2i) on each object for i D 1; 2; 3 with x 0

5 D .2; 3/,
x 0

6 D .3; 4/, and x 0
7 D .2; 4/.

The bivariate response measurement scores for the N D 7 objects are listed in
Fig. 2.4 on p. 46 and are replicated in Fig. 2.5 for convenience.

For this example analysis, let r D 2, C1 D n1=N D 4=7, C2 D n2=N D 3=7, and
p D 2, but in this case set v D 1 instead of v D 2, employing ordinary Euclidean
distance between objects. Following Eq. (2.1) on p. 30 for treatment group S1 with
n1 D 4 objects, p D 2, and v D 1, the generalized Minkowski distance function
yields

�.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 C ˇ̌

1 � 6
ˇ̌2 �1=2 D 5:0990 ;

�.1; 3/ D
�ˇ̌

5 � 5
ˇ̌2 C ˇ̌

1 � 2
ˇ̌2 �1=2 D 1:0000 ;

�.1; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

1 � 3
ˇ̌2 �1=2 D 2:2361 ;

�.2; 3/ D
�ˇ̌

4 � 5
ˇ̌2 C ˇ̌

6 � 2
ˇ̌2 �1=2 D 4:1231 ;

�.2; 4/ D
�ˇ̌

4 � 6
ˇ̌2 C ˇ̌

6 � 3
ˇ̌2 �1=2 D 3:6056 ;
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and

�.3; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

2 � 3
ˇ̌2 �1=2 D 1:4142 ;

and for treatment group S2 with n2 D 3 objects, the generalized Minkowski distance
function yields

�.5; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �1=2 D 1:4142 ;

�.5; 7/ D
�ˇ̌

2 � 2
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �1=2 D 1:0000 ;

and

�.6; 7/ D
�ˇ̌

3 � 2
ˇ̌2 C ˇ̌

4 � 4
ˇ̌2 �1=2 D 1:0000 :

Then, following Eq. (2.3) on p. 31, the average distance-function values for all dis-
tinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
�.1; 2/ C �.1; 3/ C �.1; 4/ C �.2; 3/ C �.2; 4/ C �.3; 4/

i

D
 

4

2

!�1

.5:0990 C 1:0000 C 2:2361 C 4:1231 C 3:6056 C 1:4142/

D 2:9130

and

�2 D
 

n2

2

!�1h
�.5; 6/ C �.5; 7/ C �.6; 7/

i

D
 

3

2

!�1

.1:4142 C 1:0000 C 1:0000/ D 1:1381 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 1 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

4

7

�
.2:9130/ C

�
3

7

�
.1:1381/ D 2:1523 :



2.3 Coda 53

The N D 7 objects listed in Fig. 2.5 can be partitioned into g D 2 treatment
groups, S1 and S2, with n1 D 4 and n2 D 3 response measurement scores preserved
for each arrangement of the observed data in

M D NŠ

n1Š n2Š
D 7Š

4Š 3Š
D 35

possible, equally-likely ways. The M D 35 possible arrangements of the observed
data in Fig. 2.5, along with the corresponding �1, �2, and ı values, are listed in
Table 2.5 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 2:1523, obtained from the realized arrangement,

f.5; 1/.4; 6/.5; 2/.6; 3/g f.2; 3/.3; 4/.2; 4/g ;

(Order 2 in Table 2.5) is unusual since 33 of the remaining ı values (ı3 to ı35) exceed
the observed value of ıo D 2:1523 and only one value is less than the observed
value: ı1 D 1:8152. If all arrangements of the N D 7 observed bivariate response
measurement scores listed in Fig. 2.5 occur with equal chance, the exact probabil-
ity value of ıo D 2:1523 computed on the M D 35 possible arrangements of the
observed data with n1 D 4 and n2 D 3 response measurement scores preserved for
each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2

35
D 0:0571 :

For comparison, for the bivariate response measurement scores listed in Fig. 2.5
the exact probability value based on v D 2 and Ci D ni=N for i D 1; 2 in the first
example is P D 0:0857. No comparison is made with the conventional Hotelling T2

test as Hotelling’s T2 is undefined for v D 1.
Following Eq. (2.6) on p. 37, the exact average value of the M D 35 ı values

listed in Table 2.5 is �ı D 2:9475. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 2:1523

2:9475
D C0:2698 ;

indicating approximately 27 % within-group agreement above that expected by
chance.

2.3 Coda

Chapter 2 provided the foundation for Multi-Response Permutation Procedures
(MRPP), with special emphasis on the generalized Minkowski distance function,
�.x; y/, as defined in Eq. (2.1) on p. 30; ı, the weighted mean of the specified
distance function values for all distinct pairs of objects in treatment group Si for
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Table 2.5 Permutations of the observed data set in Fig. 2.5 for treatment groups S1 and S2 with
values for �1, �2, and ı based on v D 1, ordered by values of ı from lowest to highest

Order S1 S2 �1 �2 ı

1 {(4, 6) (2, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (6, 3)} 2:0140 1:5501 1:8152

2 {(5, 1) (4, 6) (5, 2) (6, 3)} {(2, 3) (3, 4) (2, 4)} 2:9130 1:1381 2:1523

3 {(5, 1) (5, 2) (6, 3) (2, 3)} {(4, 6) (3, 4) (2, 4)} 2:5697 2:0215 2:3347

4 {(5, 1) (5, 2) (6, 3) (3, 4)} {(4, 6) (2, 3) (2, 4)} 2:3744 2:4780 2:4188

5 {(5, 1) (5, 2) (6, 3) (2, 4)} {(4, 6) (2, 3) (3, 4)} 2:7703 2:4186 2:6196

6 {(5, 1) (2, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (6, 3)} 2:4780 3:0476 2:7221

7 {(4, 6) (6, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (2, 3)} 2:8259 2:5893 2:7245

8 {(5, 2) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (6, 3)} 2:1684 3:6469 2:8020

9 {(6, 3) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (5, 2)} 2:4499 3:4074 2:8603

10 {(5, 1) (5, 2) (2, 3) (2, 4)} {(4, 6) (6, 3) (3, 4)} 2:7693 3:0013 2:8687

11 {(4, 6) (6, 3) (2, 3) (2, 4)} {(5, 1) (5, 2) (3, 4)} 3:1938 2:4780 2:8870

12 {(4, 6) (5, 2) (6, 5) (3, 4)} {(5, 1) (2, 3) (2, 4)} 2:8949 2:9494 2:9183

13 {(4, 6) (6, 3) (2, 3) (3, 4)} {(5, 1) (5, 2) (2, 4)} 3:0039 2:9494 2:9806

14 {(4, 6) (5, 2) (3, 4) (2, 4)} {(5, 1) (6, 3) (2, 3)} 2:7703 3:2805 2:9890

15 {(5, 1) (5, 2) (2, 3) (3, 4)} {(4, 6) (6, 3) (2, 4)} 2:6027 3:5190 2:9954

16 {(5, 1) (4, 6) (2, 3) (2, 4)} {(5, 2) (6, 3) (3, 4)} 3:3969 2:4683 2:9989

17 {(5, 1) (4, 6) (6, 3) (3, 4)} {(5, 2) (2, 3) (2, 4)} 3:3241 2:5893 3:0092

18 {(4, 6) (5, 2) (2, 3) (2, 4)} {(5, 1) (6, 3) (3, 4)} 3:0542 3:0013 3:0315

19 {(5, 1) (4, 6) (3, 4) (2, 4)} {(5, 2) (6, 3) (2, 3)} 3:1686 2:8588 3:0359

20 {(5, 1) (4, 6) (5, 2) (3, 4)} {(6, 3) (2, 3) (2, 4)} 3:1487 3:0410 3:1026

21 {(4, 6) (5, 2) (6, 3) (2, 4)} {(5, 1) (2, 3) (3, 4)} 3:2833 2:8751 3:1084

22 {(5, 1) (6, 3) (2, 3) (2, 4)} {(4, 6) (5, 2) (3, 4)} 3:2012 3:0625 3:1418

23 {(5, 1) (4, 6) (5, 2) (2, 3)} {(6, 3) (3, 4) (2, 4)} 3:4326 2:7618 3:1451

24 {(5, 1) (5, 2) (3, 4) (2, 4)} {(2, 6) (6, 3) (2, 3)} 2:7137 3:7370 3:1523

25 {(4, 6) (5, 2) (6, 3) (2, 3)} {(5, 1) (3, 4) (2, 4)} 3:3184 2:9494 3:1603

26 {(5, 1) (4, 6) (6, 3) (2, 4)} {(5, 2) (2, 3) (3, 4)} 3:6891 2:4683 3:1659

27 {(4, 6) (5, 2) (2, 3) (3, 4)} {(5, 1) (6, 3) (2, 4)} 2:8949 3:5339 3:1688

28 {(5, 1) (4, 6) (2, 3) (3, 4)} {(5, 2) (6, 3) (2, 4)} 3:2610 3:0476 3:1695

29 {(5, 1) (4, 6) (6, 3) (2, 3)} {(5, 2) (3, 4) (2, 4)} 3:6920 2:4780 3:1717

30 {(5, 2) (6, 3) (2, 3) (2, 4)} {(5, 1) (4, 6) (3, 4)} 2:8842 3:6469 3:2111

31 {(5, 1) (4, 6) (5, 2) (2, 4)} {(6, 3) (2, 3) (3, 4)} 3:4831 2:8588 3:2156

32 {(5, 1) (6, 3) (2, 3) (3, 4)} {(4, 6) (5, 2) (2, 4)} 3:0039 3:5190 3:2247

33 {(5, 2) (6, 3) (2, 3) (3, 4)} {(5, 1) (4, 6) (2, 4)} 2:6636 4:0567 3:2606

34 {(5, 2) (6, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (2, 3)} 2:6889 4:1034 3:2951

35 {(5, 1) (6, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (2, 3)} 3:0616 3:6303 3:3053

i D 1; : : : ; g, as defined in Eq. (2.2) on p. 31; and <, the chance-corrected within-
group coefficient of agreement, as defined in Eq. (2.4) on p. 33. Chapters 3 and 4
provide applications of MRPP for completely randomized data at the interval level
of measurement, Chaps. 5 and 6 provide applications of MRPP for completely ran-
domized data at the ordinal (ranked) level of measurement, and Chap. 7 provides
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applications of MRPP for completely randomized data at the nominal (categorical)
level of measurement.

Chapter 3
Chapter 3 establishes the relationship between the MRPP test statistics, ı and <,
and selected conventional tests and measures designed for the analysis of com-
pletely randomized data at the interval level of measurement. Considered in Chap. 3
are Student’s two-sample t test with interval-level univariate response measurement
scores, Hotelling’s two-sample T2 test with interval-level multivariate response
measurement scores, one-way fixed-effects analysis of variance (ANOVA) with
interval-level univariate response measurement scores, and one-way multivariate
analysis of variance (MANOVA) with interval-level multivariate response measure-
ment scores.
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