
Verification of Component-Based Systems
via Predicate Abstraction and Simultaneous

Set Reduction

Wang Qiang(B) and Simon Bliudze

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
qiang.wang@epfl.ch

Abstract. This paper presents a novel safety property verification app-
roach for component-based systems modelled in BIP (Behaviour, Inter-
action and Priority), encompassing multiparty synchronisation with data
transfer and priority. Our contributions consist of: (1) an on-the-fly lazy
predicate abstraction technique for BIP; (2) a novel explicit state reduc-
tion technique, called simultaneous set reduction, that can be combined
with lazy predicate abstraction to prune the search space of abstract
reachability analysis; (3) a prototype tool implementing all the proposed
techniques. We also conduct thorough experimental evaluation, which
demonstrates the effectiveness of our proposed approach.

1 Introduction

BIP [2] is a component-based rigorous system design framework, that advocates
the methodology of correctness-by-construction. Rigorous system design can be
understood as a formal, accountable and coherent process for deriving trustwor-
thy implementations from high-level system models, which aims at guaranteeing
the essential properties of a design at the earliest possible design phase, and
then automatically generating correct implementations by a sequence of prop-
erty preserving model transformations progressively refining the models with
details specific to the target platforms [22].

BIP supports the rigorous design flow with the well-defined BIP modelling
language and an associated tool-set. To model complex systems, the BIP lan-
guage advocates the principle of separation of concerns (i.e. computation and
coordination), and provides a three-layered mechanism for this purpose, i.e.
Behaviour, Interaction, and Priority. Behaviour is characterised by a set of
atomic components, defined as automata extended with linear arithmetic. Inter-
action represents the multiparty synchronisation of atomic components, among
which data transfer may take place. Priority can be used to schedule the inter-
actions or resolve conflicts when several interactions are enabled simultaneously.

This work was carried out within the D-MILS project, which is partially funded
under the European Commission’s Seventh Framework Programme (FP7).

c© Springer International Publishing Switzerland 2016
P. Ganty and M. Loreti (Eds.): TGC 2015, LNCS 9533, pp. 147–162, 2016.
DOI: 10.1007/978-3-319-28766-9 10

148 W. Qiang and S. Bliudze

In the BIP framework, DFinder [4] is the dedicated tool for automatic invari-
ant generation and safety properties verification. DFinder computes an invari-
ant in a compositional manner: it first computes a component invariant for each
component over-approximating its behaviour and then computes the interac-
tion invariant characterising the coordination constraint of all components. The
invariant of the global system is then the conjunction of component invariants
and the interaction invariant. However, DFinder does not handle system models
with data transfer. This limitation hampers the practical application of DFinder
and of the BIP framework, since data transfer is necessary and common in the
design of real-life systems. Besides, it is not clear in DFinder how to refine
the abstraction automatically when the inferred invariant fails to justify the
property.

Some other works on automatic verification of BIP models exist, but they all
suffer from certain limitations. The VCS [14] tool translates a BIP model into
a symbolic transition system and then performs the bounded model checking.
It handles data transfer among components, but only deals with finite domain
variables. In [23], a timed BIP model is translated into Timed Automata and
then verified with Uppaal [3]. The translation handles data transfers, but it is
limited to BIP models with finite domain data variables. In [18], the authors
show an encoding of a BIP model into Horn Clauses, which are verified with
Eldarica [17], but they do not handle data transfers on interactions.

In [5], the authors instantiate the ESST (Explicit Scheduler Symbolic
Thread) framework [8] for BIP, where a dedicated BIP scheduler is developed to
orchestrate the abstract reachability analysis, and partial order reduction tech-
niques [11] are applied to further boost the analysis. Although being closely
related, our approach is tailored for BIP and leverages its operational semantics
to define the necessary minimal notion of abstract state, as opposed to that of
ESST, where additional component status information and primitive functions
have to be stored to account for the BIP scheduler.

Our approach is inspired by the idea of separation of computation and coor-
dination, advocated by BIP three-layered modelling mechanism. In brief, we pro-
pose to decompose the verification of component-based systems into two levels
by taking advantage of the structure features of such systems. Thus, we han-
dle the computation of components and the coordination among components
separately. On the computation level, we exploit the state-of-the-art counterex-
ample guided abstraction refinement technique (e.g. lazy abstraction [15,16]) to
analyse the behaviour of components; while on the coordination level, we deal
with the redundant interleavings by a novel explicit state reduction technique,
called simultaneous set reduction. The basic idea is that when two concurrent
actions are enabled at the same time, instead of taking into account all the
possible interleavings, we may consider executing them simultaneously. To this
end, we make the following contributions in this paper: (1) we propose an on-
the-fly lazy predicate abstraction technique for the verification of BIP models;
(2) we propose a novel explicit state reduction technique (i.e. simultaneous set
reduction) to reduce the search space when performing the abstract reachability

Verification of Component-Based Systems via Predicate Abstraction 149

analysis; (3) we have implemented the proposed techniques in our prototype
tool and conducted thorough experimental evaluation, which shows the proposed
techniques are promising for verifying generic BIP models.

2 BIP Framework

In this section we introduce the syntax and semantics of a subset of the BIP
language, which encompasses the multiparty synchronisation and data transfer.

2.1 BIP Modelling Language

We use symbol Var to denote a finite set of variables with both finite and infinite
domains. A guard (or predicate) is a boolean expression over Var . An operation
is either an assignment or a sequence of assignments of the form x := exp, where
x ∈ Var and exp is an expression in linear arithmetic over Var . We denote
by Guard and Op the set of guards and operations over Var respectively, and
Op includes a special operation skip, which has no effect on variables in Var .
Symbols can be indexed to refer to a specific component.

Definition 1 (Atomic Component). An atomic component is a tuple Bi =
(Var i,Loci,Port i, Transi, l0i), where:

1. Var i is a finite set of variables;
2. Loci is a finite set of control locations;
3. Port i is a finite set of ports, which are labels on the transitions;
4. Transi ⊆ Loci × Guard i × Port i × Opi × Loci is a set of transitions with

guards and operations over Var i.
5. l0i ∈ Loci is the initial control location.

S1 S2

S3

S4 S5

S6

S1 S2

S3

S4 S5

S6

error1

error2

A

B
restart2

insert2

x:=1 y:=z
respond2

error2
[x!=y]

request2
z:=x

y:=0
z:=0

valid2

invalid2

x:=0
y:=0

restart1

insert1

x:=1 y:=z
respond1

error1
[x!=y]

request1
z:=x

y:=0
z:=0

valid1

invalid1

x:=0
y:=0

Fig. 1. An example BIP model

The values of atomic component variables
can be transfered to other components
upon interaction (see Definition 2 below).
However, they cannot be modified by the
receiving components.

Transitions are labelled by ports,
which form the interface of atomic compo-
nents, and are used for defining the inter-
actions. A port is enabled iff the transition
labelled by this port is enabled.

Given a set of atomic components
{Bi}n

i=1, we denote Port =
⋃n

i=1 Port i

the set of all the ports and Var =⋃n
i=1 Var i the set of all the variables

belonging to the components {Bi}n
i=1.

Notice that we assume that all Port i

150 W. Qiang and S. Bliudze

and all Var i, for i = 1, ..., n, are pairwise disjoint. Thus, in particular, the scope
of a variable can be considered to be the component, to which it belongs. The
model in Fig. 1 has six variables: x, y and z in each of the two components A
and B.

Composition of a set of atomic components is then specified by a set of
interactions.

Definition 2 (Interaction). An interaction γ is a tuple (g, u, op), where u ⊆
Port such that |u ∩ Port i| ≤ 1, ∀i ∈ [1, n], and g ∈ Guard, op ∈ Op.

Intuitively, an interaction γ specifies a guarded synchronisation among the par-
ticipating components: the synchronisation and the corresponding operation (i.e.
data transfer) op can take place only when the guard g is satisfied, and all the
ports in u are enabled. When an interaction is taken, the transitions labelled by
these ports are taken synchronously, i.e. the execution of all the operations asso-
ciated to the interaction and the involved transitions constitutes a single atomic
operation. When several interactions are enabled at the same time, priority can
be used to schedule the ones to be executed.

Definition 3 (Priority Model). Given a set of interactions Γ , a priority
model π is a strict partial order on Γ . For γ, γ′ ∈ Γ , we write γ < γ′ if and only
if (γ, γ′) ∈ π, which means that interaction γ′ has a higher priority than γ.

Given a set of atomic components {Bi}n
i=1, a set of interactions Γ = {γi}m

i=1, and
a priority model π, we denote by Γπ(B1, ..., Bn) the system model constructed
by composing atomic components with Γ and π.

Example 1. To give an intuitive understanding of the BIP modelling language,
we show a simple BIP model with two components A and B in Fig. 1. Each com-
ponent has three integer variables and may enter a deadlock state S5 by taking
transition error1 or error2 when the guard x �= y is true. There is one binary
interaction γ = (true, {error1, error2}, skip) synchronising the two transitions
labelled by ports error1 and error2, and all the other transitions form singleton
interactions (e.g. (true, {invalid1}, x := 0; y := 0)). No data transfer or priority
is defined in this model.

2.2 Operational Semantics of BIP

To define the operational semantics of BIP, we first introduce the notion of
configuration.

Definition 4 (Configuration of a BIP Model). Given a BIP model
Γπ(B1, ..., Bn), a configuration is a tuple c �

(
(l1,x1), ..., (ln,xn)

)
, where each li

is a control location of component Bi, and xi is a valuation of variables in Var i

of Bi.

An interaction γ = (g, u, op) is enabled in a configuration c =(
(l1,x1), ..., (ln,xn)

)
, if the following two conditions are satisfied: (1) the guard g

is satisfied by (xi)n
i=1; and (2) for each component Bi such that u∩Port i = {pi},

there is a transition (li, gi, pi, opi, l
′
i) ∈ Transi starting from li and labelled by

pi, such that guard gi is satisfied by xi.

Verification of Component-Based Systems via Predicate Abstraction 151

Definition 5 (Operational Semantics of BIP). Given a BIP model
Γπ(B1, ..., Bn), there is a transition from c =

(
(l1,x1), ..., (ln,xn)

)
to c′ =(

(l′1,x
′
1), ..., (l

′
n,x′

n)
)

if there is an interaction γ = (g, u, op), such that

1. γ is enabled in c ;
2. for each component Bi such that u ∩ Port i = {pi}, there is a transition

(li, gi, pi, opi, l
′
i) ∈ Transi and x′

i = opi

(
op(xi)

)
;

3. for each component Bj such that u ∩ Portj = ∅, we have (l′j ,x
′
j) = (lj ,xj) ;

4. there does not exist an interaction γ′, such that γ′ is enabled in c and γ′ > γ .

Whenever there is a transition from configuration c to c′, we use the notation
c

γ−→ c′ to indicate that this transition is triggered by the interaction γ. Nota-
tion op(x) denotes the application of operation op to the expression x. When
op is an assignment of form x := exp, its semantics can be given by substitu-
tion x[exp/x] denoting the valuation of variables, where the valuation of x is
substituted by exp.

We say that configuration c0 = ((l1,x1), . . . , (ln,xn)) is an initial configu-
ration if li = l0i , for all 1 ≤ i ≤ n. A trace is then a sequence of transitions
c0

γ1−→ c1
γ2−→ · · · γk−→ ck. A configuration c is reachable if and only if there exists

a trace that starts from the initial configuration and ends in c.
To encode a safety property, we identify a set of error locations (which are

also deadlock locations, e.g. location S5 in Fig. 1), such that a BIP model is safe
if and only if no error locations are reachable. Notice that every safety property
verification problem can be encoded into a reachability problem with additional
transitions, interactions and error locations in the BIP model.

3 On-the-fly Lazy Predicate Abstraction of BIP

In this section, we present our key verification algorithm for BIP which is based
on lazy abstraction [15,16] and features an on-the-fly exploration of the abstract
reachable states.

3.1 Verification Algorithm

The main function of our verification algorithm is shown in Algorithm1. The
algorithm takes a BIP model with the encoding of safety property as input, and
explores its reachable state space by constructing an abstract reachability tree
(ART). The verification procedure is sound and complete: the lazy abstraction
approach consists in verifying the most abstract model sufficient to establish
a definite result (safe or unsafe). Abstraction is refined every time a spurious
counterexample is found.

Our algorithm constructs the ART by expanding the ART nodes progres-
sively, starting from the initial one. Whenever an error node is encountered,
it generates a counterexample (line 8) and checks if the counterexample is real
(line 9). If the counterexample is real, the algorithm stops and reports the model

152 W. Qiang and S. Bliudze

is unsafe and a counterexample is found (line 10). Otherwise, the algorithm will
refine the abstraction and restart the exploration (line 12). An ART node is
expanded when it cannot be covered by another one and all its children will be
pushed into the worklist (lines 16 and 17). When a node is covered, the algorithm
stops the expansion from this node by marking it as covered (line 14).

Algorithm 1. Main function
Input: a BIP model B = Γπ(B1, ..., Bn) with encoding of safety property
Output: Either B is safe, or B is unsafe with a counterexample cex
1: create an ART node node0 from the initial state
2: create an ART art with node0 being the root
3: create a worklist wl of ART nodes
4: push node0 into wl
5: while wl �= ∅ do
6: node ← pop(wl)
7: if node is an error node then
8: cex ← CounterExample(node)
9: if cex is real then

10: return B is unsafe with a real counterexample cex
11: else
12: Refine(art, cex)
13: else if node is covered then
14: mark node as covered
15: else
16: Expand(node)
17: push all children of node into wl
18: return B is safe

Definition 6 (ART Node). Given a BIP model B = Γπ(B1, ..., Bn), an ART
node is a tuple

(
(l1, φ1), ..., (ln, φn), φ

)
, where (li, φi) is the local region consisting

of the control location li and the abstract data region φi of component Bi, and φ
is the global data region.

A data region is a formula that over-approximates the concrete valuations of
variables. We maintain a global data region φ to keep track of all the variables
that are used in data transfer. An ART node is an error node if at least one of
the control location li is an error location and the data regions are consistent,
i.e. φ ∧ ∧n

i=1 φi is satisfiable.

Definition 7 (Node Covering). An ART node
(
(l1, φ1), ..., (ln, φn), φ

)
is cov-

ered by another node
(
(l′1, φ

′
1), ..., (l

′
n, φ′

n), φ′) if li = l′i and the implication
φi ⇒ φ′

i is valid for all i ∈ [1, n], and φ ⇒ φ′ is valid.

We say that an ART is safe when all the nodes are either fully expanded or
covered, and there are no error nodes.

Verification of Component-Based Systems via Predicate Abstraction 153

Node Expansion. The node expansion procedure is shown in Algorithm2. The
procedure first computes the set of enabled interactions on this node (function
EnabledInteraction in line 2). We say that an interaction γ = (u, g, op) is enabled
on an ART node

(
(l1, φ1), ..., (ln, φn), φ

)
if for each component Bi such that

u ∩ Port i = {pi}, there is a transition (li, gi, pi, opi, l
′
i) ∈ Transi starting from li

and labelled by pi. Notice that the interaction enabledness on an ART node is
different from the one on a BIP configuration. We do not check the satisfiability of
the guards on the ART node, since we are doing lazy abstraction: if an interaction
is disabled on the ART node, the successor node will be inconsistent.

For each enabled interaction γ, the procedure creates a new successor ART
node with dummy elements, which will be updated accordingly (line 4). To
update the abstract data region of Bi, that participates in γ (line 7), the proce-
dure calls ExtractTransition(Trans i, li, pi) in line 8 to extract the participating
transition starting from li and labelled by port pi from the set of transitions
Transi, and then builds a sequential composition (denoted by symbol •) of the
guard and operation of this transition (line 11). The new abstract data region
φ′

i is then obtained by applying the abstract strongest post-condition SP
πl′

i

ˆopi
(φi)

to the previous data region φi (line 12). Our algorithm maintains precisions for
both control location (e.g. l′i) and global region, denoted by πl′i and π respec-
tively. A precision is a set of predicates, over which the predicate abstraction is
performed. We refer to [16] for more details. For other components, which do
not participate in this interaction, their local regions and control locations will
stay the same (line 15 and 16).

To update the global region, we need to consider all the participating tran-
sitions, since they may also modify component variables. For this purpose, the
procedure creates two temporary variables g′ and op′ (line 5). Variable g′ is
the conjunction of interaction guard and all the participating transition guards
(line 9), and op′ is the sequential composition of the data transfer and all the
participating transitions (line 10). Notice that, since the operations associated
to the transitions modify only variables local to the respective components, the
order of composition is irrelevant. The new global region φ is then updated by
applying the abstract strongest post-condition SPπ

ôp(φ) to the previous global
region φ (line 18), where ôp is the guarded operation composed of g′ and op′. If
all abstract strongest post-condition computations succeed, the new ART node
is inserted as the child of node and the edge is labelled by interaction γ (function
AddChild in line 21). Otherwise, this new successor node does not represent any
concrete reachable configurations, thus will be ignored.

Counterexample Analysis and Abstraction Refinement. If an error node
is encountered during the exploration of abstract state space, we check if this
error is reachable or not in the concrete state space in two steps. First, our
algorithm constructs a counterexample by backtracking the ART from the error
node to the root (function CounterExample in Algorithm1). In BIP, we denote
a counterexample cex by a sequence of interactions, labelling the path from the
root to the error node. Then, our algorithm builds a sequential execution trcex

154 W. Qiang and S. Bliudze

Algorithm 2. Node expansion procedure
1: procedure EXPAND(node = ((l1, φ1), ..., (ln, φn), φ))
2: interactions ← EnabledInteraction(node)
3: for γ = (g, u, op) ∈ interactions do
4: node ′ ← ((l′′1 , φ′

1), ..., (l
′′
n, φ′

n), φ′)
5: g′ ← g; op′ ← op
6: for Bi ∈ B = Γπ(B1, ..., Bn) do
7: if Port i ∩ u = {pi} then
8: (li, gi, pi, opi, l

′
i) ← ExtractTransition(Transi, li, pi)

9: g′ ← g′ ∧ gi

10: op′ ← op′ • opi

11: ˆopi ← gi • opi

12: φ′
i = SP

πl′
i

ˆopi
(φi); l′′i = l′i

13: if φ′
i is false then

14: goto 3
15: else if Port i ∩ u = ∅ then
16: l′′i = li; φ′

i = φi

17: ôp ← g′ • op′

18: φ′ = SP π
ôp(φ)

19: if φ′ is false then
20: goto 3
21: AddChild(γ, node ′)

of the counterexample cex , such that the counterexample cex is real if and only
if SPtrcex

(true) is satisfiable.
Formally, given a counterexample cex = γ1γ2 . . . γk, where for each i ∈ [1, k],

interaction γi = (ui, gi, opi), ui = {pi
1, . . . , p

i
t}, our algorithm constructs a

sequence trγi
of transitions gi •opi •opi

j1
• ...•opi

jt
, where the sequence of indices

j1, . . . , jt is an arbitrary permutation of {1, . . . , t}, and opi
j1

is the operation of
transition labelled by port pi

j1
. Then the sequential execution of counterexample

cex is the sequential composition of all trγi
, i.e. trcex = trγ1 • ... • trγk

.
If the analysis reveals that the encountered error location is unreachable in

the concrete state space, the precisions of the abstract analysis must be refined
to eliminate the spurious counterexample by adding new predicates (function
Refine in Algorithm 1). Our algorithm discovers new predicates from the inter-
polants of trace formula of trcex . If a predicate involves only variables that are
not used in the data transfer, it is added to the precisions associated to the
corresponding control locations. A predicate involving variables that are used in
the data transfer is added to the global precision.

Once the precisions are refined, our algorithm will remove the sub-tree that
contains the spurious counterexample, and then restart the expansion using the
refined precisions. We refer to [15] for more details and the correctness of this
abstraction refinement approach.

Verification of Component-Based Systems via Predicate Abstraction 155

3.2 Correctness Proof

To prove the correctness of Algorithm 1, we need to relate the construction of
ART with BIP operational semantics. We first show that the node expansion
procedure creates successor nodes that cover (or over-approximate) the corre-
sponding reachable configurations.

Let B = Γπ(B1, ..., Bn) be a BIP model, and c =
(
(l1,x1), ..., (ln,xn)

)
be

a configuration of B. Let node =
(
(l′1, φ1), ..., (l′n, φn), φ

)
be an ART node. We

say that configuration c satisfies ART node node (or node covers c), denoted by
c |= node, if and only if, for all i ∈ [1, n], we have li = l′i and xi |= φi, and
(xi)n

i=1 |= φ.

Lemma 1. Let node be an ART node for a BIP model B = Γπ(B1, ..., Bn) and
node ′ be its successor. Let c be a configuration such that c |= node. If node ′

is obtained by performing interaction γ, then for any configuration c′ such that
c

γ−→ c′, we have c′ |= node ′.

Proof. Suppose c =
(
(l1,x1), ..., (ln,xn)

)
, and node =

(
(l1, φ1), ..., (ln, φn), φ

)
,

where xi |= φi, for each i ∈ [1, n], and (xi)n
i=1 |= φ, since c |= node. Suppose

the successor configuration following γ = (g, u, op) is c′ =
(
(l′1,x

′
1), ..., (l

′
n,x′

n)
)
,

and the successor node is node ′ =
(
(l′′1 , φ′

1), ..., (l
′′
n, φ′

n), φ′). To prove c′ |= n′, we
have to show that l′i = l′′i and x′

i |= φ′
i, for all i ∈ [1, n], and (x′

i)
n
i=1 |= φ′.

Consider a component Bi, such that u ∩ Port i = {pi}, and let the corre-
sponding transition in Transi be (li, gi, pi, opi, l

′
i). Then we have xi |= gi and

x′
i = opi(op(xi)). According to Algorithm 2, we have l′′i = l′i and φ′

i = SP ˆopi
(φi),

where ˆopi denotes gi • opi. Based on the semantics of strongest post-condition,
the fact that xi |= φi and φi ∧ gi is satisfiable, we have x′

i |= φ′
i. Following a

similar argument, we can prove (x′
i)

n
i=1 |= φ′.

For each component Bi such that u∩Port i = ∅, since it does not participate
the interaction, its state is unchanged. Thus, the satisfaction relation trivially
holds.

Theorem 1 (Correctness of On-the-fly Lazy Predicate Abstraction of
BIP). Given a BIP model B, and for every terminating execution of Algorithm1,
we have the following properties:

1. if Algorithm1 returns a real counterexample path cex , then there is a concrete
execution c

cex−−→ c′ from an initial configuration c and an error configuration c′

in B;
2. if Algorithm1 returns a safe ART, then for every reachable configuration c of
B, there is an ART node that covers this configuration.

Proof. (Sketch) In the safe case, the conclusion follows from Lemma 9 and an
induction proof on the execution path to the reachable configuration c. In the
unsafe case, the conclusion holds because the counterexample analysis boils down
to a symbolic simulation. �

156 W. Qiang and S. Bliudze

4 Simultaneous Set Reduction for BIP

In this section, we present a novel reduction technique, which can be combined
with on-the-fly lazy predicate abstraction to reduce the search space of reach-
ability analysis. The idea is based on the observation that in component-based
systems, when two concurrent interactions are enabled at the same time (e.g.
interactions {insert1} and {insert2} in Fig. 1), we may consider executing them
simultaneously instead of taking into account all the possible interleavings in the
reachability analysis. First of all, we have to formalise the constraints imposed
on the set of interactions, which can be executed simultaneously, in order to
make sure no error location is missed during the reachability analysis.

4.1 Simultaneous Set Constraints

Two interactions can be executed simultaneously only when they are indepen-
dent.

Definition 8 (Independent Interactions). Two interactions γ1 and γ2 are
independent if for every configuration c, the following conditions hold:

1. if γ1 is enabled in c, then γ2 is enabled in c iff γ2 is enabled in c′, where
c

γ1−→ c′.
2. if γ1 and γ2 are both enabled in c, then c′

1 = c′
2, where c

γ1;γ2−−−→ c′
1, and

c
γ2;γ1−−−→ c′

2.

Since independence relation is a global property, in the sequel we will instead
use the valid dependence relation.

Definition 9 (Valid Dependency Relation). A valid dependence relation D
over a set of interactions Γ is a symmetric, reflexive relation such that for every
(γ1, γ2) /∈ D, the interactions γ1 and γ2 are independent interactions.

In BIP context, we can compute a valid dependency relation statically from the
specifications: two interactions are dependent if they share one common com-
ponent. It is worthy to notice that our independency and dependency relations
also work for abstract analysis.

However, independency is not enough. For instance, in the example BIP
model in Fig. 1, suppose we want to expand the node

(
(S3, φA), (S4, φB), φ

)
,

where component A is in control location S3 and component B is in control
location S4. The set of enabled interactions is {{request1}, {restart2}}. Notice
that interaction {error1, error2} is disabled since port error1 is disabled. The
two interactions {request1} and {restart2} are independent, however, if we exe-
cute them simultaneously we will miss the following (fragment) counterexam-
ple from this node: {request1}, {respond1}, {error1, error2}. This observation
tells us to take into account the future executions when firing interactions
simultaneously.

Verification of Component-Based Systems via Predicate Abstraction 157

Definition 10 (Simultaneous Set). A set of interactions SSet on configura-
tion c is called a simultaneous set if the following two constraints are satisfied:

1. all the interactions in SSet are independent;
2. for each α ∈ SSet, let c

α−→ c1
β1−→ ...

βn−−→ cn+1 be a finite execution fragment
starting with α, then for each α′ ∈ SSet, such that α′ �= α, all βi are independent
of α′.

Intuitively, the second constraint means that whatever one does from the simul-
taneous set should still be independent from the others in the set. We remark
that simultaneous set is different from the ample set [10] in that members in
ample set are interdependent, and interleavings should be taken into account.

We use notation AG to represent the full reachable state space, and AR to rep-

resent reduced reachable state space. A transition in AR is denoted by c
SSet(c)−−−−−→

c′, where SSet(c) is a simultaneous set on c. A trace in AR is then labelled by

a sequence of simultaneous sets, e.g. c0
SSet(c0)−−−−−→ c1

SSet(c1)−−−−−→ . . .
SSet(ck−1)−−−−−−−→ ck.

Similarly, we say that a configuration c is reachable in AR if and only if there
exists a trace that starts from the initial configuration and ends up with c. How-
ever, a trace in AR is not a trace of AG, but a representation of several equivalent
traces.

Definition 11 (Semantics of Simultaneous Set). Given a configuration c,

a transition c
SSet(c)−−−−−→ c′ in AR denotes a set of transition sequences {c

γ1−→ ...
γk−→

c′|∀i ∈ [1, k], γi ∈ SSet(c) and |SSet(c)| = k} in AG.

Each transition sequence c
γ1−→ ...

γk−→ c′ is a representation of c
SSet(c)−−−−−→ c′.

Inductively, we can also define the representation of a trace in AR. Based on
the definition of simultaneous set, it is easy to see that each representation of a
trace in AR is a trace in AG.

The correctness of simultaneous set reduction for deadlock state reachability
analysis is stated in the following theorem.

Theorem 2 (Correctness of Simultaneous Set Reduction). Let e be an
error configuration. If there is a trace ρg leading to e in AG, then there is also
a trace ρr leading to e in AR.

Proof. Assume ρg = c0
γ0−→ · · · γn−2−−−→ cn−1, where cn−1 = e. The proof proceeds

by using complete induction on the number of configurations in ρg. For the base
case |ρg| = 1, the result trivially holds since the initial configuration is also the
error one. Assume the theorem holds for all the cases |ρg| <= n, where n >= 1,
then we prove it also holds for |ρg| = n + 1.

Assume ρg = c0
γ0−→ c1

γ1−→ · · · γn−2−−−→ cn−1
γn−1−−−→ cn, where cn = e, and the

simultaneous set on configuration c0 that contains interaction γ0 is SSet(c0). If
SSet(c0) is a singleton set, then ρr is ρg. If SSet(c0) = {βi|i ∈ [1, k]} ∪ {γ0},
according to the definition of simultaneous set, βi is independent of γj , for all
i ∈ [1, k], and j ∈ [1, n − 1], then βi should be enabled on configuration cn,

158 W. Qiang and S. Bliudze

which contradicts with the fact that cn is a deadlock state. Thus, all βi should
be executed, i.e. for each βi there must exist a γj such that βi = γj . Then by
permuting independent interactions, we obtain an equivalent trace ρ′

g = c0
γ0−→

c1
β1−→ · · · βk−→ γk+1−−−→ · · · γn−1−−−→ cn. The sequence of interactions

γ0−→ β1−→ · · · βk−→ is
a representation of the simultaneous set SSet(c0), while based on the induction
hypothesis the rest is a representation of some trace in AR. They all together
prove our theorem. �

4.2 Combining Simultaneous Set Reduction with Lazy
Predicate Abstraction

To combine the simultaneous set reduction with lazy predicate abstraction of
BIP, we modify the node expansion procedure in Algorithm2 by replacing the
function EnabledInteraction in line 2 with Algorithm3, such that instead of
creating a new successor node for each possible interaction (line 3), we create a
new successor node for each simultaneous set. Notice that since a simultaneous
set is a set of interactions, the successor computation (the loop in line 3) should
also be slightly adjusted.

Algorithm 3 computes the set of simultaneous sets on an ART node. It uses
two additional functions EnabledInteraction and DisabledInteraction. Function
DisabledInteraction computes the set of disabled interactions on an ART node,
which is simply the complement of the set of enabled interactions.

Algorithm 3. Simultaneous set computation
Input: an ART node node = ((l1, φ1), ..., (ln, φn), φ)
Output: a set of simultaneous sets SSets
1: enabled interactions ← EnabledInteraction(node)
2: disabled interactions ← DisabledInteraction(node)
3: create a worklist of interaction sets wl
4: push enabled interactions into wl
5: while wl �= ∅ do
6: current set ← pop(wl)
7: if exists γ1, γ2 ∈ current set , s.t. γ1, γ2 are dependent then
8: copy1 ← current set − {γ1}
9: copy2 ← current set − {γ2}

10: push copy1, copy2 into wl
11: else if exists γ1, γ2 ∈ current set , γ3 ∈ disabled interactions,

s.t. γ3, γ1 are dependent, and γ3, γ2 are dependent then
12: copy1 ← current set − {γ1}
13: copy2 ← current set − {γ2}
14: push copy1, copy2 into wl
15: else
16: if SSets does not contain current set then
17: push current set into SSets

Verification of Component-Based Systems via Predicate Abstraction 159

The basic idea is that starting from the set of enabled interactions, the algo-
rithm progressively refines this set by splitting it into two sets. If two interactions
from the set are dependent (line 7), or they are independent of each other, but
dependent with a disabled interaction (line 11), then this set is split into two,
each of which is obtained by removing one of the interactions (lines 8, 9 and
12, 13). Otherwise, if all interactions are independent of each other and with the
disabled interactions, then the set is a simultaneous set and is added into the
result set SSets.

Assume that, given two interactions γ1 and γ2, it takes O(1) time for the
dependence check with precomputed dependence relation on lines 7 and 11.
The while loop (line 5) executes at most |enabled interactions| times, where
|enabled interactions | denotes the number of enabled interactions on the input
ART node, since in each loop execution at most two interactions will be split
and one simultaneous set will be added into the worklist wl . In the worst case,
|enabled interactions |2 ∗ |disabled interactions | checks need to be performs to
find the two interactions to be split. Thus, the worst case time complexity of
Algorithm 3 is O(|enabled interactions |3 ∗ |disabled interactions |).

The correctness of Algorithm 3 is straightforward, according to the simulta-
neous set constraints in Definition 10.

Theorem 3 (Correctness of Lazy Predicate Abstraction with Simulta-
neous Set Reduction). Given a BIP model, and for every terminating execu-
tion of the combination of Algorithms 1 and 3, the two properties of Theorem 10
still hold.

Proof (Sketch). Algorithm 3 computes the set of simultaneous sets on an ART
node. A simultaneous set on an ART node is a simultaneous set on the configu-
rations that are covered by this ART node. Therefore, the theorem follows from
Theorem 15.

5 Related Work

Although there are plenty of works on safety property verification in literature,
we review the most related ones in two aspects. With respect to combining
abstraction techniques with explicit state reduction techniques, the works most
related to ours are [8,9,24]. In [8,9] the authors propose two ESST-based veri-
fication techniques for multi-threaded programs with a preemptive and stateful
scheduler (e.g. SystemC [20] and FairThreads [7]). The work in [24] combines
classical lazy abstraction and partial order reduction [11] for the verification
of generic multi-threaded programs with pointers. The difference between these
works and ours is that they combine the abstraction techniques with classical
partial order reduction techniques, (e.g. persistent set approach [11] and ample
set approach [10]) in which one reduces the interleavings of concurrent tran-
sitions by exploring only a representative subset of all enabled transitions. In
our approach, we leverage the BIP operational semantics to tackle this issue by
executing concurrent interactions simultaneously.

160 W. Qiang and S. Bliudze

With respect to the compositional verification, the most related ones
are [6,13,21]. In [6] the authors presents an assume-guarantee abstraction refine-
ment technique for compositional verification of component-based systems. How-
ever, the target system model is finite state and without data transfer. In [13]
the authors propose a compositional verification technique for multi-threaded
programs based on abstract interpretation framework. This algorithm relies on
solving recursion-free Horn clauses to refine the abstraction. Later the work
in [21] combines this method with a reduction technique based on Lipton’s the-
ory of reduction [19]. The programming model is quite different from ours. They
handle shared variable concurrent programs, whereas BIP does not provide com-
munication through shared variables, but only multiparty synchronisation and
data transfer.

6 Experimental Evaluation

We implemented the proposed techniques in our prototype tool BIPChecker,
based on the symbolic model checker nuXmv and the SMT solver MathSAT. In
the experimental evaluation, we took a set of benchmarks from the literature,
including the untimed temperature and railway control system [18], the ATM
transaction model [4], the leader election algorithm [1], and the Quorum consen-
sus algorithm [12]. We modelled them in the BIP framework and verified differ-
ent safe and unsafe invariant properties. All these benchmarks (1) are scalable
in terms of the number of components; (2) are infinite-state, using potentially
unbounded integer variables and (3) feature data transfer on interactions.

Fig. 2. Cumulative plot of time for
solving all benchmarks

All the experiments have been per-
formed on a 64-bit Linux PC with a
2.8 GHz Intel i7-2640M CPU, with a mem-
ory limit of 4 Gb and a time limit of 300 s
per benchmark. We refer to our website1

for all the benchmarks and the tool.
We run two configurations of BIP-

Checker: OLA and OLA+SSR, where OLA
stands for on-the-fly lazy abstraction, and
SSR stands for the simultaneous set reduc-
tion. We do not compare the performance
of our tool with DFinder [4] and VCS [14],
since they do not handle data transfer and infinite-state models respectively.
The comparison of OLA and OLA+SSR on the full set of benchmarks is shown
in Figs. 2 and 3.

In Fig. 2, we plot the cumulative time (x-axis) to solve an increasing number
of benchmarks (y-axis), and in Fig. 3, we show the scatter plot of time for solving

1 http://risd.epfl.ch/bipchecker.

http://risd.epfl.ch/bipchecker

Verification of Component-Based Systems via Predicate Abstraction 161

Fig. 3. Scatter plot of time for solving
each benchmark

each benchmark.2 The plots show that
simultaneous set reduction can improve the
performance in general when it is combined
with the on-the-fly lazy abstraction. In par-
ticular, from Fig. 3 we find that for safe
models, OLA is comparable to OLA+SSR,
while for unsafe models, OLA+SSR is
always more efficient than OLA. In other
words, OLA+SSR is more efficient to find
counterexamples. This phenomenon can be
explained because with simultaneous set
reduction, some independent interactions
are executed simultaneously, thus reduc-
ing the length of execution steps and being
faster to detect counterexamples.

7 Conclusion

In this paper we proposed a generic approach to safety property verification of
BIP models, which combines on-the-fly lazy abstraction and simultaneous set
reduction technique. We also implemented our techniques in the BIPChecker
tool. The experimental evaluation demonstrates the efficiency of the proposed
approach. As future work we will investigate more efficient reduction techniques
for component-based systems, that can boost the abstract reachability analysis,
such as property guided reduction.

Acknowledgements. We want to thank Alessandro Cimatti, Marco Roveri and Ser-
gio Mover for the instructive guidance during our collaboration that enabled this work
and for their help with the nuXmv model checker and the MathSAT SMT solver, and
all the anonymous reviewers for their careful reading of the paper.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H.,
Sifakis, J.: Rigorous component-based system design using the BIP framework.
Softw. IEEE 28, 41–48 (2011)

3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST (2006)

4. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: a tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

2 Red diagonal guides provide a reference for comparison, each indicating shift of one
order of magnitude.

162 W. Qiang and S. Bliudze

5. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.:
Formal verification of infinite-state BIP models. In: Finkbeiner, B., et al. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24953-7 25

6. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

7. Boussinot, F.: FairThreads: mixing cooperative and preemptive threads in C.
Concur. Comput. Pract. Exp. 18, 445–469 (2006)

8. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking with explicit
scheduler and symbolic threads. Log. Methods Comput. Sci. 8, 1–42 (2012)

9. Cimatti, A., Narasamdya, I., Roveri, M.: Verification of parametric system designs.
In: FMCAD (2012)

10. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

11. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Lecture Notes in Computer Science,
vol. 1032. Springer, Heidelberg (1996)

12. Guerraoui, R., Kuncak, V., Losa, G.: Speculative linearizability. In: PLDI (2012)
13. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for

verifying multi-threaded programs. In: POPL (2011)
14. He, F., Yin, L., Wang, B.-Y., Zhang, L., Mu, G., Meng, W.: VCS: a verifier for

component-based systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 478–481. Springer, Heidelberg (2013)

15. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: ACM SIGPLAN Notices. ACM (2004)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

17. Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: FM (2012)

18. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed
systems. In: HCVS (2014)

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs.
Commun. ACM 18, 717–721 (1975)

20. IEEE 1666: SystemC language Reference Manual (2005)
21. Popeea, C., Rybalchenko, A., Wilhelm, A.: Reduction for compositional verification

of multi-threaded programs. In: FMCAD (2014)
22. Sifakis, J.: Rigorous system design. In: Foundations and Trends in Electronic

Design Automation (2013)
23. Su, C., Zhou, M., Yin, L., Wan, H., Gu, M.: Modeling and verification of

component-based systems with data passing using BIP. In: ICECCS (2013)
24. Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with

Impact. In: FMCAD (2013)

http://dx.doi.org/10.1007/978-3-319-24953-7_25
http://dx.doi.org/10.1007/978-3-319-24953-7_25

	Verification of Component-Based Systems via Predicate Abstraction and Simultaneous Set Reduction
	1 Introduction
	2 BIP Framework
	2.1 BIP Modelling Language
	2.2 Operational Semantics of BIP

	3 On-the-fly Lazy Predicate Abstraction of BIP
	3.1 Verification Algorithm
	3.2 Correctness Proof

	4 Simultaneous Set Reduction for BIP
	4.1 Simultaneous Set Constraints
	4.2 Combining Simultaneous Set Reduction with Lazy Predicate Abstraction

	5 Related Work
	6 Experimental Evaluation
	7 Conclusion
	References

