
Chapter 3

Surrogate Scalar Functions and Scalarizing

Techniques

The most common procedure to compute efficient/nondominated solutions in MOP

is using a scalarizing technique, which consists in transforming the original

multiobjective problem into a single objective problem that may be solved repeat-

edly with different parameters. The functions employed in scalarizing techniques

are called surrogate scalar functions or scalarizing functions. The optimal solution

to these functions should be a nondominated solution to the multiobjective problem.

These functions temporarily aggregate in a single dimension the p objective func-

tions of the original model and include parameters derived from the elicitation of

the DM’s preference information. Surrogate scalar functions should be able to

generate nondominated solutions only, obtain any nondominated solution and be

independent of dominated solutions. In addition, the computational effort involved

in the optimization of surrogate scalar functions should not be too demanding (e.g.,

increasing too much the dimension of the surrogate problem or resorting to

nonlinear scalarizing functions when all original objective functions are linear)

and the preference information parameters should have a simple interpretation (i.e.,

not imposing an excessive cognitive burden on the DM). Surrogate scalar functions

should not be understood as “true” analytical representations of the DM’s prefer-
ences but rather as an operational means to transitorily aggregate the multiple

objective functions and generate nondominated solutions to be proposed to the

DM, which expectedly are in accordance with his/her (evolving) preferences.

Three main scalarizing techniques are generally used to compute nondominated

solutions:

1. Selecting one of the p objective functions to be optimized considering the other

p-1 objectives as constraints by specifying the inferior (reservation) levels that

the DM is willing to accept. This scalarization is usually called e-constraint
technique.

2. Optimizing a weighted-sum of the p objective functions by assigning weighting

coefficients to them—weighted-sum technique.
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3. Minimizing a distance function to a reference point (e.g., the ideal solution), the

components of which are aspiration levels the DM would like to attain for each

objective function. If the reference point is not reachable the closest solution

according to a given metric is computed, usually the Manhattan metric (i.e.,

minimizing the sum of the differences in all objectives) or the Chebyshev metric

(i.e., minimizing the maximum difference in all objectives) possibly considering

weights, i.e., the differences are not equally valued for all objectives. However,

the reference point may also be a point representing attainable outcomes. In this

case, the surrogate scalar function is referred to as an achievement scalarizing
function, as it aims to reach or surpass the reference point. These approaches are

commonly referred to as reference point techniques.

The techniques will be presented for MOLP problems (cf. formulation (2.1) in

Chap. 2) and then extended to integer and nonlinear cases. The theorems underlying

the techniques for computing nondominated solutions are just sufficient conditions

for efficiency. When these conditions are also necessary, then the corresponding

technique guarantees the possibility to compute all nondominated solutions.

Although this section pays special attention to sufficient conditions, necessary con-

ditions shall not be forgotten since it is important to know the conditions in which all

the nondominated solutions can be obtained using a given scalarizing technique.

3.1 Optimizing One of the Objective Functions

and Transforming the Remaining p�1 into Constraints

Proposition 1

If x1 is the single optimal solution, for some i, to the problem

max f i xð Þ
s:t: x 2 X

f k xð Þ � ek k ¼ 1, . . . , i� 1, iþ 1, . . . p
ð3:1Þ

then x1 is an efficient solution to the multiobjective problem.

If, in Proposition 1, the condition of a single optimal solution had not been imposed,

weakly efficient solutions could be obtained. This issue could be overcome by

replacing the function fi(x) by f i xð Þ þ
X
k 6¼i

ρkf k xð Þ, with ρk> 0 small positive scalars.

The validity of this proposition assumes that the reduced feasible region is not

empty, which may occur whenever the lower bounds ek set on the p-1 objective

functions that are transformed into constraints are too stringent.

The truthfulness of Proposition 1 is easily shown. Suppose that x1 is not efficient.

Then, by definition of efficient solution, there is an x22X such that fk(x
2)� fk(x

1) for

all k (k¼ 1, . . ., p), and the inequality fk(x
2)> fk(x

1) holds for at least one k. In these
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circumstances, fk(x
2)� ek, for k¼ 1, . . ., i�1, i+ 1, . . ., p. Hence, fi(x

2)� fi(x
1) in

problem (3.1) which contradicts the hypothesis of x1 being the single optimal

solution. Thus, x1 must be efficient.

This computation procedure is illustrated in a bi-objective LP model (Fig. 3.1),

where f1(x) and f2(x) are maximized. The efficient frontier of the feasible region X is

composed by the solutions on edges [AB] and [BC]. Imposing the additional

constraint f1(x)� e1 and optimizing f2(x) then the efficient solution E is obtained.

Note that E is not a vertex of the feasible region to the original problem.

The condition established in Proposition 1 is not a necessary condition for

obtaining efficient solutions. In fact, efficient solutions can be obtained without

having a single optimum to the scalarizing problem (3.1). In this case, not all

solutions obtained are guaranteed to be efficient. If the optimum is not imposed

to be unique, then a necessary and sufficient condition for obtaining at least weakly

efficient solutions is achieved.

Figure 3.2 illustrates this issue: imposing f1(x)� e1 and optimizing f2(x) then the
edge [CF] is optimal but only point C is (strictly) efficient. Solutions on the edge

[CF], except C, are just weakly efficient solutions.

An additional interest of this scalarizing technique is that the dual variable

associated with the constraint corresponding to objective function fk(x) can be

interpreted as a local trade-off rate between objectives fi(x) and fk(x) at the optimal

solution of the scalar problem (3.1). The interpretation and use of this information
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should be done with care whenever this optimal solution is a degenerate one, since

it this case the trade-off rates are not unique (i.e., alternative optima to the dual

problem exist).

Although this scalarizing technique is simple to be understood by the DM,

capturing the attitude of giving more importance to an objective function and

accepting lower bounds on the other objective function values, the choice of the

objective function to be optimized may reveal to be difficult in several problems.

Also, in the operational framework of a particular method, setting the objective

function to be optimized throughout the solution computation process may render

the method less flexible and the results too dependent on the function selected.

Solving problem (3.1) enables to obtain all nondominated solutions, i.e., solu-

tions lying on edges or faces (of any dimension) and vertices of the feasible region

of the original multiobjective problem.

The preference information associated with this scalarizing technique consists

in:

– inter-objective information: the selection of the objective function to be

optimized;

– intra-objective information: establishing lower bounds on the other objective

functions that are transformed into constraints.

This scalarizing technique can also be used in multiobjective integer, mixed-

integer or nonlinear optimization, thus enabling to obtain any type of efficient/

nondominated solution to these problems.

Figure 3.3 illustrates examples of bi-objective (a) integer and (b) nonlinear

problems, in which f1(x) is optimized and f2(x) is considered as an additional

constraint. In (a) unsupported nondominated solution C is obtained, and in (b)
improper solution B is obtained.
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Fig. 3.3 Optimization of an objective function considering the other as an additional constraint in

the cases of (a) integer and (b) nonlinear bi-objective problems
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3.2 Optimizing aWeighted-Sum of the Objective Functions

The process of computation of efficient/nondominated solutions more utilized

consists in solving a scalar problem in which the objective function is a

weighted-sum of the p original objective functions with positive weights λk:

max zλ ¼
Xp
k¼1

λk f k xð Þ
s:t: x 2 X

ð3:2Þ

Proposition 2

If x1 2 X is a solution to the problem max
x2X

Xp
k¼1

λk f k xð Þ for λ ¼ λ1, � � �, λp
� �

, where

λk >0, k¼ 1, . . ., p, and
Xp
k¼1

λk ¼ 1, then x1 is an efficient solution to the

multiobjective problem.

The truthfulness of Proposition 2 can be shown as follows. Suppose that x1 is not

efficient. Then, there is an x2 2 X such that fk(x
2)� fk(x

1), k¼ 1, . . ., p, and the

inequality is strict for at least one k. But x1 was obtained by optimizing a weighted-

sum objective function with strictly positive weights; thenXp
k¼1

λk f k x2ð Þ >
Xp
k¼1

λk f k x1ð Þ, which contradicts the hypothesis that x1 maximizes

the weighted-sum objective function.

This computation procedure in MOLP is illustrated in Fig. 3.4. This figure also

shows two weighted-sum objective functions, considering very different weight

vectors (whose gradients are given by fλ0 and fλ00), can lead to the computation of the

same efficient solution (point A).
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The weight normalization used in Proposition 2,
Xp
k¼1

λk ¼ 1, can be replaced by

λi ¼1, for a given i, 1� i� p, and λk> 0 and bounded (for k¼ 1, . . ., p, and k 6¼ i).
Nothing is substantially changed since only the weighted-sum vector direction is

important. Both weight normalization procedures are illustrated in Fig. 3.5 for the

bi-objective case.

This scalarizing technique can also be applied to integer, mixed-integer and

nonlinear programming problems, but it does not allow to obtain unsupported

nondominated solutions. Figure 3.6 illustrates the case of integer programming.

Solutions B and D are alternative optimal solutions to the weighted-sum objective

function with the gradient fλ. A slight increase of the weight assigned to f1(x) leads
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to solution D only and a slight increase of the weight assigned to f2(x) leads to

solution B only; there is no weight vector allowing to reach nondominated

solution C, which is unsupported.

In the example of Fig. 3.7, the feasible region Z in the space of the objective

functions is convex.

Solutions A0 and B0 are nondominated and it is not possible to obtain

them by optimizing max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g, with both weights strictly posi-

tive. In this problem the solutions A0 and B0 are improper, since
∂f 2
∂f 1

(A0)¼ 0 and

∂f 2
∂f 1

(B0)¼�1, that is, the variation rate of f2(x) regarding f1(x) is zero and

infinite, respectively (the concept of proper/improper nondominated solution is

presented in Chap. 2).

In a (nonlinear) problem in which the feasible region is convex and the objective

functions are concave it is possible to compute all proper nondominated solutions

using strictly positive weights. If the problem has improper nondominated solutions

then these can also be obtained by optimizing a weighted-sum allowing weights

equal to zero.

Therefore, since all nondominated solutions in MOLP are proper and supported

this scalarizing technique can provide the basis for methods to find the entire set of

nondominated solutions (the so-called generating methods).

3.2.1 Indifference Regions on the Weight Space in MOLP

The graphical representation of the weight set that leads to the same basic feasible

solution (note that each vertex may correspond to more than one basic solution if

degeneracy occurs), is called indifference region and can be obtained through the

decomposition of the parametric (weight) space λ 2Λ¼ {λ2ℝp: λk> 0, k¼ 1, . . ., p,Xp

k¼1
λk ¼ 1

�
: The DM can be “indifferent” to all combinations of weights within

this region because they lead to the same efficient solution.

Z

f2

f1

A'

B'

A'

B'

Set of nondominated 

solutions 

Fig. 3.7 Nonlinear convex problem
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The indifference regions depend on the objective function coefficients and the

geometry of the feasible region. The analysis of the parametric (weight) space can

be used as a valuable tool to learn about the geometry of the efficient/nondominated

region in MOLP, since it gives the weight vectors leading to each efficient basic

solution.

Let us start by exemplifying the computation of indifference regions for a

problem with two objective functions:

max z1 ¼ f 1 xð Þ ¼ 5x1 þ 3x2
max z2 ¼ f 2 xð Þ ¼ 2x1 þ 8x2

s. t.

x1 þ 4x2 � 100

3x1 þ 2x2 � 150

5x1 þ 3x2 � 200

x1, x2 � 0

9>>=
>>; feasible region Xð Þ

In Fig. 3.8, [AC] represents the set of efficient solutions and [A0C0] represents the
corresponding set of nondominated solutions. The slope of [A0C0] is�20. The slope

of the level lines of the weighted-sum objective functions, λ1 f 1 xð Þ þ λ2 f 2 xð Þ, in
the objective function space, is given by �λ1

λ2
. We consider the weights are

normalized:
X2
k¼1

λ k ¼ 1, i.e., λ2¼ 1–λ1. Then, the indifference regions associated
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Fig. 3.8 Efficient/nondominated basic solutions and indifference regions
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with vertex A and vertex C, i.e., the sets of weights for which solving the

problem max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g leads to A and C, respectively, are obtained

with λ1 2 0 ,
20

21

��
and λ2 2 1

21
, 1

��
for vertex A, and λ1 2 20

21
, 1

��
and

λ2 2 0 ,
1

21

��
for vertex C.

For the weight values λ1 ¼ 20

21
and λ2 ¼ 1

21
, points A and C are obtained

simultaneously, since max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g leads to edge [AC] as alternative

optima.

The determination of the indifference regions in the parametric (weight) diagram

for this bi-objective problem was carried out just using the information derived

from the geometry of the problem. However, the computation of indifference

regions can be done using the multiobjective simplex tableau (i.e., with one reduced

cost row for each objective function). In particular, the study of problems with

three-objective functions allows a meaningful graphical representation of indiffer-

ence regions using the information available in the simplex tableau corresponding

to a basic (vertex) solution as a result of optimizing a weighted-sum scalarizing

function max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þ þ λ3 f 3 xð Þf g with a given weight vector.

The simplex tableau associated with an efficient basic solution offers the infor-

mation needed to compute the locus of the weights λk (k¼ 1, . . ., p) for which the

solution to the weighted-sum problem

max
Xp
k¼1

λk f k xð Þ
s:t: x 2 X

with λ2Λ¼ {λ2ℝp: λk> 0, k ¼1,. . .,p,
Xp

k¼1
λk ¼ 1

�
leads to the same efficient

basic solution.

For a single objective LP a basic feasible solution to

max z ¼ cx

s: t: x 2 X ¼ x 2 ℝn : Ax ¼ b, x � 0f g

is optimal if and only if uA�c� 0, where the elements of the vector (uA�c) are

called reduced costs (in general, the last row of the simplex tableau). u¼ cBB
�1 is a

row vector (of dimension m), whose elements are the dual variables, B is the basis

matrix corresponding to the current tableau (a sub-matrix m�m of A, with rank m)
and cB is a sub-vector of c, with dimension 1�m, corresponding to the basic

variables.
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In MOLP the multiobjective simplex tableau includes a reduced cost row

associated with each objective function:

A b

�C 0

With respect to basis B this tableau can be transformed as:

xN xB

B�1N I B�1 b

CBB
�1N�CN 0 CBB

�1b

where B and N, CB and CN are the sub-matrices of A and C corresponding to the

basic (xB) and nonbasic (xN) variables, respectively. W¼CBB
�1N�CN is the

reduced cost matrix associated with basis B.

In MOLP the set of weights λ for which the basic solution associated with the

multiobjective simplex tableau is optimal to the weighted-sum problem is then

given by {λW� 0, λ2Λ}.
Definition of efficient basis

B is an efficient basis if and only if it is an optimal basis to the weighted-sum

problem (3.2) for some weight vector λ2Λ, that is, B is an efficient basis if and only

if the system{λW� 0, λ2Λ} is consistent.

Definition of efficient nonbasic variable

The nonbasic variable xj is efficient with respect to basis B if and only if λ2Λ exists

such that

λW � 0

λW:j ¼ 0

whereW.j is the column vector ofW corresponding to xj (that is, the reduced cost of
the weighted-sum function associated with xj can be zero).

The definition of efficient nonbasic variable means that, for a given efficient basis,

if xj is an efficient nonbasic variable then any feasible pivot operation associated with
xj as entering variable leads to an adjacent efficient basis (i.e., obtained from the

previous basis through the pivot operation). If the pivot operation leading from one

basis B1 to an adjacent basis B2 is non-degenerate then the vertices of the feasible

region associated with those bases are different and the edge that connects them is

composed by efficient solutions. As the bases (vertices) are connected, then it is

possible to develop a multiobjective simplex method as an extension of the (single

objective) simplex method (Steuer 1986), using sub-problems to test the efficiency of

nonbasic variables. This multiobjective simplex method is aimed at computing all

efficient bases (vertices). Using this information it is also able to characterize

efficient edges and efficient faces (of different dimensions).
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The element wkj of the reduced cost matrix W represents the rate of change of

objective function fk(x) due to a unit change of the nonbasic variable xj that
becomes basic. Each column of W associated with an efficient nonbasic variable

represents the rate of change of the objective functions along the corresponding

efficient edge emanating from the current vertex.

From the multiobjective simplex tableau corresponding to an efficient basic

solution to the MOLP problem, the set of corresponding weights is defined by

{λW� 0, λ2Λ} thus defining the indifference region. A common frontier to two

indifference regions means that the corresponding efficient basic solutions are

connected by an efficient edge, which is associated with an efficient nonbasic

variable becoming a basic variable. If a point λ2Λ belongs to several indifference

regions, this means that these regions are associated with efficient solutions located

on the same efficient face (this face is only weakly efficient if that point is located

on the frontier of the parametric diagram, i.e., some weight λκ¼ 0, k¼ 1, . . ., p).
The decomposition of the parametric (weight) diagram into indifference regions,

i.e., the graphical representation of the set of weights λ leading to the same efficient

basic solution is especially interesting in problems with three objective functions.

Note that due to the normalization condition λ1 + λ2 + . . .+ λp¼ 1, Λ can be

represented in a diagram of dimension p�1. For the three objective case, the weight

diagram Λ¼ {λ2ℝ3: λk> 0, k¼ 1, 2, 3, and
X3
k¼1

λk ¼ 1
�
can be displayed using the

equilateral triangle in Fig. 3.9a. Since
X3
k¼1

λk ¼ 1 the diagram corresponding to the

equilateral triangle, defined by the points λ¼ (1, 0, 0), λ¼ (0, 1, 0) and λ¼ (0, 0, 1),

can be projected, for example, onto the plane (0, λ1, λ2), without loss of information

(Fig. 3.9b).
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Fig. 3.9 Parametric (weight) diagram
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Example 1

max C x ¼
3 1 2 1

1 �1 2 4

�1 5 1 2

2
4

3
5

x1
x2
x3
x4

2
664

3
775

s. t.

X�
2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 � 0, x2 � 0, x3 � 0, x4 � 0

8<
:

Let us compute the indifference region associated with the efficient basic

solution that optimizes the weighted-sum problem with equal weights:

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

:

max
x2X

1

3
3x1þx2þ2x3þx4ð Þ þ 1

3
x1�x2þ2x3þ4x4ð Þ þ 1

3
�x1þ5x2þx3þ2x4ð Þ

	 


max
x2X

x1þ5

3
x2þ5

3
x3þ7

3
x4

	 


To build the multiobjective simplex tableau a reduced cost row for each objec-

tive function is added.

The problemmax
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

is solved and the reduced cost

rows corresponding to the objective functions of the original problem are updated in

each pivot operation. s1 and s2 denote the slack variables associated with the

constraints.

zλj � cλj denotes the reduced cost row of the weighted-sum objective function

while zkj � ckj denotes the reduced cost row of each objective function fk(x). Note

that zλj � c λj is the weighted-sum of zkj � ckj (k¼ 1, 2, 3), i.e.,

zλj � c λj ¼
X3
k¼1

λk z kj � ckj

� �
for all nonbasic variables xj.
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The initial tableau is:

x1 x2 x3 x4 s1 s2

s1 2 1 4 3 1 0 60

s2 3 4 1 2 0 1 60

Reduced cost row of

the weighted�sum

objective function

zλj � cλj �1 �5
3

�5
3

�7
3

0 0 0

Reduced cost matrix z1�c1 �3 �1 �2 �1 0 0 0

z2�c2 �1 1 �2 �4 0 0 0

z3�c3 1 �5 �1 �2 0 0 0

The optimal tableau associated with the basic solution that solves

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

is

x1 x2 x3 x4 s1 s2

x4 1
2

0 3
2

1 2
5

� 1
10

18

x2 1
2

1 �1
2

0 �1
5

3
10

6

zλj � cλj 1 0 1 0 3
5

4
15

52

z1�c1 �2 0 �1 0 1
5

�1
5

24

z2�c2 1
2

0 9
2

0 9
5

7
10

66

z3�c3 9
2

0 �1
2

0 �1
5

13
10

66

The set of weights (λ1, λ2, λ3)> 0, with λ3¼ 1� λ1� λ2, for which this basic

solution is optimal to the weighted-sum scalar problem and therefore efficient to the

MOLP problem is given by

�2λ1 þ 1

2
λ2 þ 9

2
1� λ1 � λ2ð Þ � 0 að Þ

�λ1 þ 9

2
λ2 � 1

2
1� λ1 � λ2ð Þ � 0 bð Þ

1

5
λ1 þ 9

5
λ2 � 1

5
1� λ1 � λ2ð Þ � 0 cð Þ

1

5
λ1 � 7

10
λ2 þ 13

10
1� λ1 � λ2ð Þ � 0 dð Þ

8>>>>>>>>>><
>>>>>>>>>>:

Each of these constraints in (λ1, λ2, λ3) is associated with a nonbasic

variable w. r. t. the present basis. This set of constraints can be written as a function

of (λ1, λ2):
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13

2
λ1 þ 4λ2 � 9

2
að Þ

�1

2
λ1 þ 5λ2 � 1

2
bð Þ

2

5
λ1 þ 2λ2 � 1

5
cð Þ

11

10
λ1 þ 2λ2 � 13

10
dð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

Constraints (a), (b) and (d) delimit the indifference region D (Fig. 3.10). There-

fore, the corresponding nonbasic variables x1, x3 and s2 are efficient. Any weight

vector λ2Λ satisfying these constraints leads to a weighted-sum problem

max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þ þ λ3 f 3 xð Þf g whose optimal solution is the same efficient

basis, i.e., the one determined by optimizing the problem

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

. Constraint (c) is redundant, i.e., it does not

contribute to define the indifference region associated with the efficient solution

(x4, x2)¼ (18, 6), (z1, z2, z3)¼ (24, 66, 66). Therefore, the corresponding nonbasic

variable s1 is not efficient.

Constraints (a), (b) and (d) correspond to edges of the efficient region emanating

from the current vertex, solution D. “Crossing” these constraints leads to efficient

vertices adjacent to D. For instance, making x1 a basic variable leads to an adjacent
efficient basic solution (vertex) whose indifference region is contiguous to D and

delimited by constraint
13

2
λ1 þ 4λ2 � 9

2
(opposite to (a) above). Therefore, x1, as

well as x3 and s2 (but not s1), are efficient nonbasic variables because, when

becoming basic variables, each one leads to an adjacent efficient vertex solution

(with the corresponding indifference region) through an efficient edge, i.e., an edge

1

1

(d)

(a)

(b)

D

λ1

λ2Fig. 3.10 Indifference

region associated with

efficient basic solution D
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composed of efficient solutions only. Note that there may exist an edge connecting

two efficient vertex solutions that is not composed of efficient solutions.

Efficient nonbasic variables can be identified in the multiobjective simplex

tableau. In problems with two or three objective functions, efficient nonbasic

variables can also be recognized from the display of indifference regions in the

parametric (weight) diagram.

3.3 Minimizing a Distance/Achievement Function

to a Reference Point

The minimization of the distance, according to a certain metric, of the feasible

region to a reference point defined in the objective function space can be used to

compute nondominated solutions.

The ideal solution z* is often used as reference point. The rationale is that it

offers the best value for each evaluation dimension reachable in the feasible region,

since its components result from optimizing individually each objective function. If

the reference point represents an attainable outcome, the scalarizing function is

called an achievement scalarizing function, as it aims to reach or surpass the

reference point.

3.3.1 A Brief Review of Metrics

A metric is a distance function that assigns a scalar z1 � z2
  2ℝ to each pair of

points z1, z2 2ℝn (where n is the dimension of the space).

For the Lq metric the distance between two points in ℝn is given by:

z1 � z2
 

q
¼

Xn
i¼1

z1i � z2i
�� ��q" #1=q

q 2 1; 2; . . .f g

z1 � z2
 

1 ¼ max
i¼1, ..., n

z1i � z2i
�� ��

The loci of the points at the same distance from z* (isodistance contour),

according to the metrics L1, L2 and L1 are displayed in Fig. 3.11.

In Fig. 3.12 a, b and c, points A, B and C minimize the distance of region Z to z*,

using the metrics L1, L2 and L1, respectively.

The metrics L1, L2 and L1 are especially important. L1 is the sum of all

components of z1 � z2
�� ��, i.e., the city block distance in a “rectangular city” as

Manhattan. L2 is the Euclidean distance. L1 is the Chebyshev distance in which
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only the worst case is considered, i.e., the largest difference component in

z1 � z2
�� ��.

A weighted family of Lλq metrics can also be defined, where the vector λ � 0 is

used to assign a different scale (or “importance”) factor to the multiple components:

z1 � z2
 λ

q
¼

Xn
i¼1

λi z1i � z2i
�� ��� �q" #1=q

q 2 1; 2; . . .f g

z1 � z2
 λ

1
¼ max

i¼1, ..., n
λi z1i � z2i
�� ��

The loci of points at the same distance of z*, according to the weighted Lλ1, L
λ
2,

and Lλ
1 metrics are illustrated in Fig. 3.13, representing the isodistance contour for

each metric with λ1< λ2.
The external isodistance contour Lλ,ρ1 presented in Fig. 3.14 regards to

z1 � z2
 λ

1
+

X2
i¼1

ρi z1i � z2i
�� ��, with a small positive ρi, which can be seen as a

combination of Lλ
1 and Lλ1 metrics. This is generally called the augmented weighted

Chebyshev metric, Lλ,ρ1 .

Although Lλq, for q 2 1; 2; . . .f g, can be used to determine nondominated solu-

tions by solving scalar problems involving the minimization of a distance to

a reference point, we will formally present only the case using the Chebyshev

metric (Lλ
1). This metric is important since it captures the attitude of minimizing the

largest difference, i.e., the worst deviation, to the value that is desired in all

evaluation dimensions. In general, the Lλ,ρ1 metric is used to guarantee that the

solutions obtained are nondominated and not just weakly nondominated.

z*

L1

L2

L∞

f2

f1

Fig. 3.11 Loci of

equidistant points from z*

for L1, L2 and L1 metrics
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f 2

f1

z*

z1*

z2*

Z
A•

L1

(a)

f2

f1

z*

z1*

z2*

Z
B

90°

L2

(b)

f2

f1

z*

z1*

z2*

Z C

45°

•

L∞

(c)

Fig. 3.12 Nondominated

solutions that minimize the

distance to the ideal solution

according to L1, L2 and L1
metrics. (a) Point A

minimizes the distance to z*

according to the L1 metric.

(b) Point B minimizes the

distance to z* according to

the L2 metric. (c) Point C

minimizes the distance to z*

according to the L1 metric
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Proposition 3

If x12X is a solution to the problem (3.3)

min
x2X

max
k¼1, ..., p

λk z*k � f k xð Þ� � �
Xp
k¼1

ρk f k xð Þ
( )

, for someλ � 0 ð3:3Þ

where the ρk are small positive scalars, then x1 is an efficient solution to the

multiobjective problem.

This surrogate problem entails determining the feasible solution that minimizes

the distance based on an augmented weighted Chebyshev metric to the ideal

solution.

The truthfulness of Proposition 3 can be shown as follows. Let us suppose that x1

is not an efficient solution and is optimal to problem (3.3), with

max
k¼1, ..., p

λk z*k � f k xð Þ� � ¼ v1. Therefore, there is a solution x2 such that

f k x2ð Þ � f k x1ð Þ, k¼ 1,. . ., p, and the inequality is strict for at least one k. In

these circumstances, λk z*k � f k x2ð Þ� � � v1, k¼ 1, . . ., p, and

z*

L1

L2

L∞

λ
λ

λ

f1

f2Fig. 3.13 Loci of points

equidistant from z*, for Lλ1,

Lλ2 and L λ
1 metrics

z*

λ
∞L

ρλ
∞

,L

f1

f2Fig. 3.14 Loci of points

equidistant from z*, for L λ
1

and Lλ,ρ1
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Xp
k¼1

ρk f k x2ð Þ >
Xp
k¼1

ρk f k x1ð Þ. Hence, x1 would not be optimal to (3.3), which

contradicts the hypothesis. Therefore, x1 has to be efficient.

Proposition 3 also establishes a necessary condition for efficiency in MOLP, for

sufficiently small ρk. Therefore, this scalarizing technique enables to obtain the

entire set of efficient/nondominated solutions to a MOLP problem.

The computation process is illustrated in Fig. 3.15. Point D is the solution that

minimizes the distance to z*according to Lλ,ρ1 (3.3) or Lλ
1 ((3.3) without the termXp

k¼1

ρk f k
�
xÞ), considering a particular weight vector λ, where λ1< λ2. Note

that
dv
dh

¼ λ1
λ2
.

The term
Xp
k¼1

ρk f k
�
x
�
is used to avoid solutions that are only weakly efficient

when the scalarizing problem (3.3) has alternative optimal solutions (Fig. 3.16).

Considering λ1¼ 0, all solutions on the horizontal line passing through z* are

equidistant from z* according to Lλ
1. The consideration of Lλ,ρ1 enables to obtain

the strictly nondominated solution A.

Problem (3.3) is equivalent to the programming problem (3.4):

f2

f1

z*

z1*

z2*

Z D

dv
dh

λ
∞L

ρλ
∞
,L

Fig. 3.15 Minimizing the

augmented weighted

Chebyshev distance

Z

z*

f1

f2

Contour of a weighted

Chebyshev metric

Contour of an augmented

weighted Chebyshev metric

A

Fig. 3.16 Illustration of the

weighted Chebyshev metric

and the augmented

weighted Chebyshev metric
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min v�
Xp
k¼1

ρk f k
�
x
�( )

s.t.

λk z*k � f xð Þ� � � v k ¼ 1, . . . , p
x 2 X
v � 0

ð3:4Þ

Other reference points can be used. The components of the reference point

represent the values that the DM would like to attain for each objective function.

For this purpose the ideal solution z* is interesting because its components are the

best values that can be reached for each objective function in the feasible region.

Figure 3.17 displays the computation of nondominated solutions by minimizing

an augmented weighted Chebyshev distance to the unattainable reference point q.

In the example of Fig. 3.17, minimizing a (non-augmented) Chebyshev distance

would enable to compute all solutions on segment [AB]; however, these solutions

are just weakly nondominated except solution B, which is strictly nondominated.

If the reference point is in the interior of the feasible region, i.e., it is dominated,

it is no longer possible to consider a Chebyshev metric, but this technique for

computing nondominated solutions is still valid considering the auxiliary variable

v unrestricted in sign in problem (3.4). In these circumstances, this is an achieve-
ment scalarizing program. Figure 3.18 shows the projection of a reference point

q located in the interior of the feasible region onto the nondominated frontier. z1 is

the nondominated solution that is obtained through the resolution of problem (3.4),

with q replacing z* and considering variable v unrestricted in sign. In the case

illustrated in Fig. 3.18, λ1< λ2.
This technique for computing nondominated solutions is valid for more general

cases than MOLP.

f 2

f1

q

Z

ρ
∞
,λL

BA

Fig. 3.17 Minimizing an

augmented weighted

Chebyshev distance to a

reference point
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Figure 3.19 illustrates a nonlinear problem: the point that minimizes the distance

to the reference point q, using the augmented weighted Chebyshev metric, is a

nondominated solution (point X0). Changing the weights, all nondominated solu-

tions can be computed, i.e., solutions on the arcs B0A0, except B0 (which is weakly

nondominated) and C0D0. Note that q> z* is necessary to guarantee that D0 and A0

are obtained.

Figure 3.20 illustrates the integer programming case. Using the (augmented)

weighted Chebyshev metric it is possible to reach all nondominated solutions

including unsupported solution C. Note that C was unreachable by optimizing

weighted sums of the objective functions (Fig. 3.6).

A'

B'

C'

D'

f2

Z

•

•

• • q
•

X'

f1

Fig. 3.19 Finding

nondominated solutions in a

nonlinear problem using the

augmented weighted

Chebyshev metric

f2

f1

q

Z

z1

Fig. 3.18 Projection of a

dominated reference point

located in the interior of the

feasible region onto the

nondominated frontier
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3.4 Classification of Methods to Compute Nondominated

Solutions

Different classifications of MOP methods have been proposed according to several

parameters, such as the degree of intervention of the DM, the type of modeling of

the DM’s preferences, the number of decision makers, the inputs required and the

outputs generated, etc. (Cohon 1978; Hwang and Masud 1979; Chankong and

Haimes 1983; Steuer 1986).

The classification based on the degree of intervention of the DM establishes, in

general, the following categories:

(a) A priori articulation of the DM’s preferences. Once the method is chosen (and

possibly some parameters are fixed), the preference aggregation is established.

(b) Progressive articulation of the DM’s preferences. This occurs in interactive

methods, which comprise a sequence of computation phases (of nondominated

solutions) and dialogue phases. The DM’s input in the dialogue phase in face

of one solution (or a set of solutions in some cases) generated in the compu-

tation phase is used to prepare the next computation phase with the aim to

obtain another nondominated solution more in accordance with his/her

expressed preferences. The characteristics of the dialogue and computation

phases, as well as the stopping conditions of the interactive process, depend on

the method. Chap. 4 is entirely devoted to interactive methods.

(c) A posteriori articulation of the DM’s preferences. This deals with methods for

characterizing the entire set of nondominated solutions, and the aggregation of

the DM’s preferences is made in face of the nondominated solutions obtained.

The classification based on the modeling of the DM’s preferences generally

considers the establishment of a global utility function, priorities between the

objective functions, aspiration levels or targets for the objective functions, pairwise

comparisons (either of solutions or objective functions) or marginal rates of

substitution.

q

f1

f2

A

B

C
D

Fig. 3.20 The augmented

Chebyshev metric in integer

programming
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The classification based on the number of decision makers encompasses the

situations where a single or several DM are at stake.

The classification based on the type of inputs required and outputs generated

consider the type and reliability of data, the participation of the DM in the modeling

phase, either the search for the best compromise nondominated solution or a

satisfactory solution, selecting, ranking or clustering the solutions.

Other classifications of MOP methods are used according to the fields of

application (e.g., systems engineering, project evaluation, etc.).

3.5 Methods Based on the Optimization of an Utility

Function

In this type of approach, an utility function U[ f1(x), f2(x), . . ., fp(x)] is built. If

(concave) function U satisfies certain properties, the optimum of U[f(x)] belongs to

the set of nondominated solutions (Steuer 1986). In Fig. 3.21 an illustrative

example is presented.

The curves U[ f1(x), f2(x), . . ., fp(x)]¼ κi, with κi constant, are called indifference
curves, and the point belonging to the nondominated solution set which is tangent to

one indifference curve is called compromise point (Fig. 3.21).

The utility functions may have the following structure:

U f 1 xð Þ, f 2 xð Þ, . . . , f p xð Þ� � ¼ U1 f 1 xð Þ½ � þ . . . þ Up f p xð Þ� �
The weighted-sum of the objective functions may be faced as a particular case of

this utility function structure. The “relative importance” of the objective functions

may be taken into account through the assignment of a weight vector. If the problem

under study is linear and U[f(x)] is linear then the problem to be solved is also a

single objective LP problem.

Z

f1

f2
U[f1(x),f2(x)]=κ2

U[f1(x),f2(x)]=κ1

Fig. 3.21 Example of the

use of utility functions
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3.6 The Lexicographic Method

In this method the objective functions are ranked according to the DM’s preferences
and then they are sequentially optimized. In each step, an objective function fk(x) is
optimized and an equality constraint is added to the next optimization problems

taken into account the optimal value obtained ( f k xð Þ ¼ z*k ). In some cases the

constraint is not an equality, i.e., deviations w. r. t. the obtained optima are allowed.

Note that by adopting the first option, if the optimum of the first ranked objective

function is unique, then the procedure stops. This method may be considered an a

priori method just requiring ordinal information.

3.7 Goal Programming

Goal programming may be viewed as the “bridge” between single objective and

MOP, namely concerning reference point approaches. The aim is to minimize a

function of the deviations regarding targets (O1, . . .,Op) established by the DM for

the objective functions. A possible formulation consists in the minimization of a

weighted sum of the deviations, with non-negative weights αk and βk:

min
Xp
k¼1

�
αk d

�
k þ βk d

þ
k

�

s. t.

f k xð Þ þ d�k � dþk ¼ Ok k ¼ 1, . . . , p
x 2 X
d�k � 0, dþk � 0 k ¼ 1, . . . , p

where d�k and dþk are negative and positive deviations regarding goal k, respectively.
The targets established by the DM may lead to a dominated solution to the

problem under study if the DM is not sufficiently ambitious in specifying his/her

goals. In this case, the goal programming model leads to a satisfactory solution, but

it may not belong to the nondominated solution set. For further details about

different versions of goal programming see, for example, Steuer (1986) or

Romero (1991).

3.8 The Multiobjective Simplex Method for MOLP

The algorithms based on the extension of the simplex method for computing the set

of efficient vertices (basic solutions) in MOLP can be structured as follows:
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(a) Computation of an efficient vertex. For instance, this can be done by optimiz-

ing a weighted-sum of the objective functions as explained above.

(b) Computation of the remaining efficient vertices by

1. computing the adjacent efficient bases (Zeleny 1974; Yu and Zeleny 1975;

Steuer 1986);

2. computing the adjacent efficient vertices (Evans and Steuer 1973; Steuer

1986).

3. using a parametric technique.

In (b1) and (b2) a theorem presented, for instance, in Yu and Zeleny (1975) is

used, which establishes the proof that the set of efficient basic solutions is

connected1. This means that the entire set of efficient bases (or vertices) can be

obtained, by exhaustively examining the adjacent bases of the set of efficient bases

that are progressively obtained starting from the initial one, computed in (b).

Steuer (1986) and Zeleny (1974) use an efficiency test to verify whether each

basis (or each vertex) under analysis is efficient or not.

Zeleny (1974) establishes several propositions aimed at exploring the maximum

information contained in the multiobjective simplex tableau. This is an extension of

the simplex method considering one additional row for each objective function and

avoiding, whenever possible, unnecessary pivoting operations and the application

of the efficiency test.

3.9 Proposed Exercises

1. Consider proposed exercise 1, Chap. 2.

(a) Formulate the problem to determine the solution that minimizes the dis-

tance to the ideal solution, according to the L1 metric. Obtain graphically

and analytically (using an LP solver) the solution to this problem.

(b) Obtain graphically the solution that minimizes the distance to the ideal

solution according to the L1 metric. Identify the efficient nonbasic variables

for this solution

2. Consider proposed exercise 2, Chap. 2.

(a) Find the indifference regions in the parametric (weight) diagram

corresponding to the efficient basic solutions that optimize each objective

function individually.

(b) For each solution determined in (a), identify the efficient nonbasic variables

1 Let S ¼ xi : i ¼ 1, . . . , sf g be the set of efficient basic solutions of X. This set is connected if it

contains only one element or if, for any two points xj, xk 2 S, there is a sequence

xi1 ; . . . ; x‘; . . . ; xir
� �

in S, such that x‘ and x‘þ1, ‘ ¼ i1, . . . , ir�1, are adjacent and

xj ¼ xi1 , xk ¼ xir .
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3. Consider proposed exercise 3, Chap. 2.

(a) Formulate the problem to determine the efficient solution that minimizes

the distance to the ideal solution, according to the L1 metric. Solve this

problem graphically.

(b) Represent qualitatively the parametric (weight) diagram decomposition,

considering all the indifference regions.

(c) Determine graphically the nondominated solution obtained by the e-con-
straint technique when f1(x) is optimized and f2(x)� 3.

4. Consider the MOLP model with three objective functions:

max f 1 xð Þ ¼ 2x1 þ x2 þ 3x3 þ x4

max f 2 xð Þ ¼ 2x1 þ 4x2 þ x3 � x4

max f 3 xð Þ ¼ x1 þ 2x2 � x3 þ 5x4

s: t: x1 þ 2x2 þ 3x3 þ 4x4 � 40

4x1 þ 4x2 þ 2x3 þ x4 � 40

x1 � 0 , x2 � 0 , x3 � 0 , x4 � 0

(a) Find the indifference region corresponding to the efficient solution that

optimizes objective function f2(x).
(b) What are the efficient nonbasic variables for that solution? Support your

analysis on the weight space.

(c) Consider the following auxiliary problem:

min v

s: t: x 2 X original feasible regionð Þ
vþ 2x1 þ 4x2 þ x3 � x4 � 35

vþ 2x1 þ x2 þ 3x3 þ x4 � 5

vþ x1 þ 2x2 � x3 þ 5x4 � 15

v � 0

Is the solution to this auxiliary problem a (strictly) nondominated solution to

the multiobjective problem? If not, what changes should be made in the formu-

lation of this auxiliary problem in order to guarantee obtaining a (strictly)

nondominated solution?
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5. Discuss the following statements, stating whether they are true or false, and

presenting a counter example if they are false. Use graphical examples if that

facilitates the analysis.

(a) It is always possible to define x* (in the decision space), such that z*¼ f(x*),

where f(x)¼ [ f1(x), f2(x),. . ., fp(x)].
(b) In a MOLP problem, the solution obtained by minimizing the distance to

a reference point according to the L1 metric is always a vertex of the

original feasible region.

(c) In a MOLP problem, the solution obtained by minimizing the distance to a

reference point according to the L1 metric is always a vertex of the original

feasible region.

(d) When an additional constraint is introduced into a MOLP problem, it is

possible to obtain nondominated solutions to the modified problem that are

dominated in the original problem.

(e) In a MOLP problem with p objective functions it is possible that the whole

feasible region is efficient.

(f) The solutions located on an edge that connects two nondominated vertices

are also nondominated.

(g) Consider a MOLP problem with three objective functions, where three

nondominated basic solutions are known. The optimization of a scalarizing

function whose gradient is normal to the plane that includes these three

solutions always guarantees obtaining a nondominated solution.

(h) Consider the MOLP problem:

max f 1 xð Þ ¼ c1x

max f 2 xð Þ ¼ c2x

max f 3 xð Þ ¼ c3x

s: t: x 2 X� Ax ¼ b, x � 0f g;

where x (n� 1), ck (1� n), A (m� n) and b (m� 1)

(h.1) Is it possible to obtain a nondominated solution that maximizes f3(x)
with λ3¼ 0, by solving the weighted-sum problem

max λ1c1xþ λ2c2xþ λ3c3x
s: t: x 2 X

with (λ1, λ2, λ3) 2Λ� {λk� 0, k¼ 1, 2, 3, and λ1 + λ2 + λ3¼ 1}?

If this assertion is true, then represent one possible parametric

(weight) diagram decomposition in this condition.
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(h.2) In what conditions is it possible to guarantee that the optimal solution

to

max λ1c1xþ λ2c2xþ λ3c3x
s: t: x 2 X

is a nondominated solution to the three objective original problem?

6. Consider the following MOLP problem:

max f 1 xð Þ ¼ 1:5 x1 þ x2
max f 2 xð Þ ¼ x2 þ 2x3
max f 3 xð Þ ¼ x1 þ x2 þ x3
s:t: x1 þ x2 þ x3 � 8

x1 þ 2x3 � 2

x1 � 0, x2 � 0, x3 � 0

(a) Compute the nondominated solution that maximizes a weighted-sum of the

objective functions assigning equal weight to all objectives.

(b) Represent the corresponding indifference region in the parametric (weight)

diagram.

(c) Compute a nondominated solution which is adjacent to the one computed in

(a) improving objective function f1(x).
(d) Specify the values of the objective functions of a nondominated nonbasic

solution, whose value for f1(x) is an intermediate value between the ones of

the solutions obtained in (a) and in (c).

7. Consider the following MOLP problem:

max f 1 xð Þ ¼ x2
max f 2 xð Þ ¼ x1 þ 3x2
max f 3 xð Þ ¼ 2x1 � x2
s:t: 3x1 þ x2 � 30

x1 þ x2 � 20

x1 � 8

x1 � 0, x2 � 0

The decomposition of the parametric (weight) diagram associated with the

efficient vertices of the problem is displayed in the triangle.
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What conclusions about the problem can be drawn from this decomposition?

8. Consider the following MOLP problem:

max f 1 xð Þ ¼ 3x1 þ x2
max f 2 xð Þ ¼ x1 þ 2x2
max f 3 xð Þ ¼ �x1 þ 2x2
s:t: � x1 þ x2 � 2

x1 þ x2 � 7

0:5x1 þ x2 � 5

x1, x2 � 0

(a) Represent graphically the set of efficient solutions.

(b) Suppose one wants to find the nondominated solution that minimizes the

distance to the ideal solution by using a weighted Chebyshev metric.

Formulate this problem, knowing that the ideal solution is z*¼ (21, 10,

6) and considering the following (non-normalized) weights: λ1¼ 1, λ2¼ 2,

λ3¼ 1.

(c) Consider the following reference point in the objective space, q¼ (14, 8, 0),

belonging to the interior of the feasible region. Solution (xa, za), with xa

¼ (4.2, 2.8) and za¼ (15.4, 9.8, 1.4), is optimal to the following problem:

min v
s: t: λ1 14� 3x1 � x2ð Þ � v

λ2 8� x1 � 2x2ð Þ � v
λ3 0þ x1 � 2x2ð Þ � v
x 2 X X is the feasible region defined aboveð Þ
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withλ ¼ 1, 1, 1ð Þ:

Identify how the variation trends of the objective function values evolve,

regarding za, when the previous problem is solved, but considering

λ¼ (2, 1, 1).

9. Ten vertex nondominated solutions to a three objective LP with fk(x), k¼ 1,2,3,

were calculated using the weighted-sum scalarization, for which the corres-

ponding indifference regions on the weight space are displayed.
λ2

λ1λ3

10

2

4

6 5
8

7 9 11

1

3

(a) Characterize all nondominated edges and faces using the vertices.

(b) Are there nondominated solutions that are alternative optima of any objec-

tive function?

(c) What are the nondominated vertices that can still be obtained with the

weight constraints λ3� λ2� λ1?
(d) What are the vertices of this three objective problem that are dominated in

all 3 bi-objective problems that can be formed (i.e., f1(x) and f2(x), f1(x) and
f3(x), f2(x) and f3(x))?

(e) Sketch the decomposition of the weight space for the problem with the

objective functions f2(x) and f3(x). How do you classify solution 10 in this

problem?
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