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Preface

In classical Operational Research, the decision maker’s preferences are modeled a

priori; that is, all the values are aggregated in a single objective function

(or criterion), aimed at determining the optimal solution to the problem. However,

it is currently recognized that these approaches are too reductive, being inadequate

to address many real-world problems. In these problems, multiple perspectives

should be taken into account to evaluate the merits of potential solutions; i.e., the

decision maker is generally interested not just in minimizing the cost but also in

maximizing the system reliability, minimizing the environmental impacts, etc.

Approaches that make an a priori aggregation of the multiple perspectives cannot

duly capture the conflicting nature of the objective functions, which make opera-

tional evaluation aspects of distinct nature and impair the exploitation of trade-offs

among them. Therefore, multiobjective optimization models, which include explic-

itly the multiple evaluation aspects as distinct objective functions, enable to ade-

quately capture the essential characteristics of real-world problems and improve

their perception by decision makers. The concept of nondominated solution is the

key concept in multiobjective optimization: that is, a feasible solution for which no

other feasible solution exists improving all objective function values simulta-

neously. In this setting, the multiobjective optimization problem is defined as the

choice, among the nondominated solution set, of a solution, or a reduced set of

solutions for further screening, which reveals to be an acceptable compromise

outcome as a result of the decision support process taking into account the decision

maker’s preferences. These preferences should not be understood as a preexisting

and stable entity in the operational framework of such process, but they are subject

to evolve as new information is gathered about the characteristics of nondominated

solutions in different regions of the search space, which is determined by the

mathematical model and the incorporation of additional elements derived from

the preferences expressed. The decision support process using multiobjective

optimization models is therefore based on interactive cycles of computation of

nondominated solutions, evaluation, and possible change of preferences in face of

new information. This information results from new solutions computed and their
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confrontation with information previously gathered, having in mind the “conver-

gence” (not based on any type of aggregation functions previously developed) to a

final solution that establishes an acceptable compromise between the competing

objective functions.

This book aims at providing an entrance door into linear and integer

multiobjective optimization, and it is primarily intended for undergraduate and

graduate students in engineering, management, economics, and applied mathemat-

ics. It starts (Chap. 1) by introducing the motivation and interest of explicitly

considering multiple objective functions in optimization models. Problem formu-

lation, definitions, and basic concepts are then presented in Chap. 2, followed by the

exposition of techniques to compute nondominated solutions and the role of

preference information in those scalarizing techniques (Chap. 3). Chapter 4 is

devoted to interactive methods, in which some methods representative of different

search strategies are presented. In Chap. 5, a guided tour of the iMOLPe—interac-
tive MOLP explorer software is presented, which was developed by the authors to

deal with multiobjective linear programming problems. Chapter 6 deals with

multiobjective integer and mixed-integer linear programming. It includes a litera-

ture review concerning the most relevant approaches, followed by the presentation

of an interactive reference point method developed by the authors.

This book focuses on multiobjective linear, integer, and mixed-integer program-

ming. These topics are adequate to get into multiobjective optimization, as they

enable to shed light on both the extension of the traditional single objective linear,

integer, and mixed-integer programming models (broad topics usually studied in

Operational Research courses) and the different paradigm that is at stake when

multiple objective functions are explicitly considered.

This is a textbook rooted on our experience of more than 25 years of research and

teaching of multiobjective optimization, and it results from our conviction of the

increasing importance of this topic in teaching Operational Research as a scientific

basis to support the process of making more informed and better decisions.

Coimbra, Portugal

October 2015

Carlos Henggeler Antunes

Maria Jo~ao Alves

Jo~ao Clı́maco
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Chapter 1

Introduction

Operational Research (OR) has developed as a scientific discipline during the

decade of 1950, having created since then the (false) expectative that it would

end up developing adequate methods and techniques for solving at least most

decision problems faced at different levels, in industry and service sectors. In the

beginning of the decade of 1970, the growing complexity of the economical and

social environment and the swift cadence of technological innovation, particularly

in the information and communication domains, made clear that the progress

depended even more on the adoption of innovative planning and management

procedures, narrowing the gap between the technological component and the

methodological component of the production system. In these circumstances, the

traditional quantitative methods of OR only were not able to suit themselves to the

resolution of many problems.

It was in this context that Geoffrion (1983) wrote an article entitled “Can

Management Science/Operations Research evolve fast enough?”. May be there is

not yet a definitive answer to this question. However, the accomplishments in

several fields of interdisciplinary nature allow us to face the future with optimism,

with new increasingly stimulating intellectual challenges arising. OR, understood

under the perspective of the science and art of decision support, makes an appeal for

the conjugated use of modern techniques of information systems, sophisticated

human-computer interfaces, quantitative methods and algorithms, new modeling

techniques, artificial intelligence techniques and certain disciplines usually

included in the so-called human and social sciences, namely cognitive psychology

and sociology of organizations.

In this context, the study of models with multiple, incommensurate and

conflicting axes of evaluation of the merits of potential courses of action is a

topic of utmost importance. In fact, real-world problems are intrinsically of

multiobjective nature, being single objective approaches reductive in most cases.

In this tutorial, we begin by making the bridge between single objective linear

programming (LP) models, for which the computation of the optimum is a “mere”

© Springer International Publishing Switzerland 2016
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technical issue, and models that explicitly consider multiple objectives, thus

questioning the optimality paradigm, which assumes a relation of comparability

between the alternatives and the transitivity of the comparisons. In the single

objective case, models translate just partially the aggregation of the decision

maker’s (DM’s) preferences, leaving for posterior analysis the most controversial

options leading to decision making. Multiobjective linear programming (MOLP)

appears as a natural extension of LP, allowing to make the counterpoint between the

normative nature of the single objective model and the symbiosis between quanti-

tative and qualitative aspects of the decision process.

When about three decades ago we were involved in a power generation expan-

sion planning problem using an LP model, we were confronted with the advantages

of considering explicitly multiple conflicting objective functions: the global cost, a

function associated with the reliability of the supply system and a function penal-

izing environmental impacts. The study of this problem led us not only to use

diverse MOLP approaches, but also to the development of a new interactive tool

called TRIMAP.

Optimization approaches, which were often developed by the stimulus of appli-

cations, had its roots in economic theory. For example, the simplex method

presented in 1947 by Dantzig for solving LP problems, emerged in the sequence

of works developed by well-known economists, such as Leontief, who developed

the input–output model, Koopmans, who proposed a transportation model, Von

Neumann andMorgenstern, creators of game theory. The relative simplicity and the

efficacy of the simplex method broadened out the perspectives of the application of

LP to actual problems in industry, services and public administration. During the

decade of 1950, this impulse was decisive for the development of the main

foundations of mathematical programming. Theoretical and methodological

advances of the mathematics of optimization, the development of computing

capability and the success of some applications led the heralds of the neoclassical

theory of organizations to overvalue the use of mathematical optimization models.

For the defenders of this theory, all models are based on an objective function, a

value function or a utility function, which should be optimized. The formulation of

the objective function is considered a minor problem; for example, Hitch (1953)

referred to the problem of the criterion (objective function) choice as the simplest

one in OR. The monetary unit appeared as the only measure of social benefit.

The difficulty of the DMs in participating in the formulation of the objective

function and the lack of aspects of social nature, not quantifiable in monetary units,

justified that already in the decade of 1950 several authors proposed the utilization

of other types of models. For Keen (1977), the complexity of the actual problems

arising in modern developed societies is essentially marked by multiple objectives,

and the DM is often confronted more with the need of arbitrating the conflict

between the objectives than the search for optimal solutions. Thus, a new branch

of mathematical programming emerged—multiobjective programming (MOP)

devoted to models in which multiple objective functions are explicitly considered.

It is opportune to refer that, under the common designation of multiple criteria

approaches, two distinct branches appear in the specialized literature:
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(a) methods for decision support with multiple attributes;

(b) methods for decision support with multiple objectives.

The first designation generally refers to the selection, ranking or categorization

methods dealing with a finite set of alternatives, which are explicitly known a priori.

The second designation is concerned with problems in which the alternatives are

implicitly defined by a set of constraints. This tutorial is devoted to these latter

problems, and within these to the particular cases of linear, integer and mixed

integer programming with multiple objective functions.

Similarly to the case of mathematical programming with a single objective

function, the roots of mathematical programming with multiple objectives dive in

the economic theory. Pareto, in 1906, defined a concept that revealed fundamental

for mathematical programming with multiple objectives, the concept of Pareto

optimal solution (also named efficient, nondominated or noninferior solution). A

solution is nondominated whenever there is no other feasible solution that simul-

taneously improves all the objective function values, i.e., improving an objective

entails deteriorating, at least, one of the other objective function values.

Von Neumann and Morgenstern (1947), in their classical book on game theory

and economic behavior, referred to the need of using more than one objective

function in the following terms: “The optimization problem in the context of a
market economy is not certainly a problem of optimization, but a disconcerting and
peculiar mixture of several conflicting problems of optimization . . .”. Koopmans

introduced the notion of efficient solution in the context of the analysis of linear

models of production in the monograph “Analysis of Production as Efficient
Combination of Activities” (1951), one of his main works for which he was

bestowed, jointly with Kantorovich, the Nobel Prize in Economics in 1975. Kuhn

and Tucker (1951) considered for the first time several objective functions in

mathematical programming models. They stated the conditions for noninferiority
in vector optimization problems.

Before the 1960s there was not a systematic research in this field, although some

publications can be traced. Geoffrion published two important articles about this

topic (Geoffrion 1967, 1968). Since then, thousands of papers on mathematical

programming with multiple objectives were published, of theoretical, algorithmic,

computational and application nature. More recently, not only several international

conferences and streams with major OR events devoted to this area have been held

and working groups were created, but also books were published offering over-

views of the state of the art.

Let us return to our energy planning problem and the options that we had to make

when, after developing a suitable multiobjective linear programming model, we

began studying it with the aim of supporting the DM. It was then necessary to find

the adequate methods of analysis to obtaining/learning the DM’s preferences

regarding the cost, environmental impact and reliability objective functions.

Traditionally, the MOP methods are classified into three categories, according to

the process used for aggregating the DM’s preferences, with the aim of selecting the

best compromise solution:

1 Introduction 3



– methods where an a priori aggregation of preferences is made;

– methods of progressive articulation of preferences (interactive methods);

– methods in which no articulation of preferences is made (generating methods).

In the methods of the first type, although several objectives are explicitly

modeled, the aggregation of preferences is made before any computation stage

and the problem is a priori transformed into a single objective problem, for example

through the construction of an utility function. The special characteristics of the

geometry of the feasible polyhedron associated with our case study made particu-

larly inadequate the application of methods in which decisions were taken a priori,

without the DM having the possibility of realizing the consequences of other

choices. We thought then that the most adequate approach would be the use of

methods in which there is no articulation of preferences, being this task carried out

a posteriori by the DM after the nondominated solution set has been fully

characterized.

These generating methods of all nondominated solutions correspond, in the case

of MOLP, to the extension of the simplex method for determining all the

nondominated vertices of the feasible polytope, having the possibility of determin-

ing also the nondominated edges and faces of higher dimension. The first generat-

ing algorithms dedicated to MOLP were developed in the beginning of the decade

of 1970, proposed by Evans and Steuer (1973) and Yu and Zeleny (1975). In our

study we opted for the Yu and Zeleny’s method and we published a first article on

this study in 1981 (Clı́maco and Almeida 1981). However, later on, when we

carried out experiments using a model with a higher number of variables and

constraints to obtain more realistic results, the issues associated with generating

methods started to emerge. Above certain dimensions, the computational effort

became impracticable. Even when it was possible to compute all the nondominated

vertices, we verified that this involved a very high computational effort that was not

compensated by the quality of the information offered to the DM. In fact, the DM

revealed incapable of making a substantiated choice when confronted with a vast

quantity of information, that is, with a very high number of nondominated solu-

tions, mainly because many of them just showed smooth variations in the objective

function values.

In many real world problems, the geometry of the feasible region leads to

sub-regions of nondominated solutions where the variations of the objective func-

tion values are very smooth and other sub-regions where steep variations occur.

Also, the DM often prefers nondominated solutions located on nondominated faces

rather than extreme points because, in general, those solutions display a more

balanced compromise between the competing objectives, which further compli-

cates the study from the computational point of view.

Our energy planning case study led us to conclude that only methods of

progressive articulation of preferences, in which interaction with the DM occurs,

would allow to overcome the difficulties associated with value/utility function

based methods and generating methods in order to offer useful information to the

DM. Interactive methods encompass two essential phases: computation of

4 1 Introduction



nondominated solution(s) and dialogue between the DM/analyst and the computa-

tional tool implementing the method. These phases are alternately repeated until a

stopping condition is reached. In general, due to the complexity of the methods, the

communication between the DM and the computer is mediated by an analyst with

expertise on methods and computational tools. The dialogue phase is regulated

through a communication protocol, and the information elicited from the DM

(in face of the solutions obtained in the previous computation phase) is used to

prepare the subsequent computation phase to obtain a new solution, expectedly

more in accordance with those expressed preferences. In MOP each computation

phase consists in the resolution of a surrogate single objective problem (in some

methods more than one problem is solved), so that the optimization of a scalarizing

function built using the information elicited from the DM leads to a nondominated

solution. A final compromise solution as the outcome of the decision support

process should belong to the nondominated solution set (considering the model is

sufficiently accurate to represent the main features of the real world problem).

As it was emphasized by Vanderpooten and Vincke (1989), it is essential that, on

one hand, the computational effort is not too high in the computation phase and, on

the other hand, the questions asked to the DM are simple and understandable. The

first requirement is indispensable to guarantee that the decision process is truly

interactive regarding the time expected for obtaining a new solution. The second

one impacts on the quality of the solutions that are successively proposed to the

DM, avoiding wrong indications in the dialogue phase. Therefore, in an interactive

decision support process a cycle of proposals and successive reactions proceeds

until a satisfactory compromise solution is identified.

The exploitation of interactivity in decision support processes based on

multiobjective models and methods should respond to the following key questions:

• Does it make sense to mention the search for the optimal solution of any utility

function that is assumed to exist, but for which an analytical representation is not

known (that is, the convergence of the interactive process to the optimum of the

implicit utility function)?

• What are the stopping conditions of the algorithm?

• What is the meaning of the final solution chosen?

The most well-known interactive methods in MOP are based on the local

information collected from the computation phase, in which one or several

scalarizing functions are optimized. This information is used to make questions to

the DM, which allows obtaining the necessary inputs to prepare a new computation

phase, in general in terms of parameters, such as weights, levels of aspiration,

minimum acceptable values for the objective functions. Vanderpooten (1989)

called the information obtained in this way preferential information, and the

parameters that allow obtaining it are called preference parameters. The compro-

mise between the complexity and the richness of the desirable information, and the

capability of the DM to answer the questions formulated, is a subtle problem that

transcends technical questions of mathematical programming, implying the con-

sideration of studies about rationality in decision processes.
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At this point it is relevant distinguishing two markedly antagonist attitudes in the

development of interactive methods (for details see Roy 1987). The first way, that

Roy calls “la voie du realisme: l’attitude descriptive”, interpreted in terms of MOP

can be described as: there is a DM’s utility function whose optimization would lead

to the optimal compromise solution in face of the multiple objectives. However,

this utility function is not explicitly known by the DM, being the interactive process

responsible for its discovery using dialogue protocols of algorithmic nature. The

best optimal solution selected does not depend, therefore, on the evolution of the

interactive process, being a primitive of the DM for the problem under study.

Hence, an interactive method allows discovering the DM’s utility function and

consequently the convergence to its optimum. As we shall see in Chap. 4, this

approach assumes that the DM is coherent with the answers to the questions that are

asked by the communication protocol of the method. In some methods these

questions embody a dichotomy; that is, each answer leads to a mutually exclusive

division of the search space, which implies that henceforth there are solutions that

are never again considered.

The application of this type of approaches to our case study revealed problematic

since the DM was successively confronted with difficult options, due to the

geometry of the nondominated region, either by corresponding to “jumps into the

dark”, when there were sharp variations of the objective function values, or being

difficult to make options in areas with very smooth variations. Moreover, these

approaches do not foster learning during the decision process, i.e., enabling the DM

to grasp the characteristics of the problem and unveil the trade-offs at stake, with

consequences on the creation of his/her system of preferences. Our experience

confirms the opinions of authors as French (1984) (“I believe that good decision aid
should help the decision maker explore not just the problem, but also himself. It
should bring to his attention possible conflicts and inconsistencies in his prefer-
ences so that he can think about their resolution”) and Lewandowski and

Wierzbicki (1988) (“A rational decision does not have to be based on all the
available information, nor does it have to be optimal. It should only take into
account the possible consequences of the decision and be intended not to be
detrimental to the values and interests of the decision maker.”). Learning during

the interactive analysis is stimulated through the trial and error process. For

example, passing twice by the same solution during the interactive process would

not be “allowed” under the point of view of the convergence to the optimum of an

utility function, while in learning-oriented approaches it is a natural fact, being even

possible that the DM does not react the same way when confronted again with an

already previously proposed solution.

These studies encouraged the development of an interactive environment

devoted to linear programming with three objective functions, named TRIMAP,

offering the capabilities for a holistic view of the nondominated solution set as the

basis for then proceeding to a more focused search (Clı́maco and Antunes 1987,

1989). TRIMAP is based on a selective and progressive learning of the

nondominated solution set. The goal is not to converge to the optimal solution of

any utility function, but rather to support the DM in the elimination of the subset of
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nondominated solutions that reveal not having practical interest. There are no

irrevocable decisions during the interactive process, allowing the DM to review

previous options. The consideration of three objective functions enables to use

graphical means that are particularly adequate for the dialogue with the

DM/analyst, simplifying the dialogue and increasing his/her information processing

capability. Using the Feyerabend’s terminology (1975), open communication is

privileged and this interactive environment reveals adequate not just for the anal-

ysis of the problem but also for evaluating the several solutions by contrast. This is

an important feature to overcome common problems in interactive procedures, such

as “anchoring” in the first proposed solutions.

The interactive decision support process should be understood as a learning and

constructive process in which the DM gathers information about the nondominated

solution set and progressively shapes his/her preferences so that a final compromise

solution may emerge.

MOP gained an increasing acceptance to provide decision support in real world

problems in which multiple, incommensurate and conflicting axes of evaluation of

the merits of the potential solutions should be explicitly considered. For instance,

Greco et al. (2005, 2016) offer reviews of applications in location, finance, energy

planning, telecommunication network planning and design, and sustainable

development.

The topics addressed in this book have been taught by the authors in courses of

Operational Research for undergraduate and graduate students in engineering,

management, economics and applied mathematics to introduce MOP models and

methods. It is our conviction that this is the adequate path for enhancing the

students’ understanding of the main issues at stake in multiobjective optimization,

before progressing to more technically demanding topics or meta-heuristic

approaches required by nonlinear characteristics or combinatorial nature of some

problems (Deb 2001; Coello et al. 2002).

In Chap. 2 the formulation and definitions in multiobjective linear programming,

integer programming, mixed integer programming and nonlinear programming are

presented. The definitions of efficient and nondominated solutions, weak and

proper efficient/nondominated solutions, supported and unsupported efficient/

nondominated solutions, are presented and illustrated.

Chapter 3 is devoted to the presentation of surrogate scalar functions and

scalarizing techniques, namely selecting one objective function to be optimized

considering the other objectives as constraints, optimizing a weighted sum of the

objective functions, and minimizing a distance function to a reference point using

different metrics. The role of preference information in scalarizing techniques is

also discussed. A special emphasis is placed on the multiobjective simplex tableau

and the decomposition of the parametric (weight) space into indifference regions.

Chapter 4 deals with interactive methods in MOLP. The interactive methods

STEM, Zionts and Wallenius’s method, TRIMAP, Interval Criterion Weights

(ICW) and Pareto Race are thoroughly described and illustrated using examples.

These interactive methods are representative of different solution computation

techniques, reduction of the scope of the search and interaction schemes. These

1 Introduction 7

http://dx.doi.org/10.1007/978-3-319-28746-1_2
http://dx.doi.org/10.1007/978-3-319-28746-1_3
http://dx.doi.org/10.1007/978-3-319-28746-1_4


methods were integrated in the TOMMIX method base developed in the early

1990s (Antunes et al. 1992), which enabled the information transfer among them.

Some of the TOMMIX features are now included in the interactive software

iMOLPe.

Chapter 5 presents the interactive MOLP explorer (iMOLPe) software, which is

a computational package to tackle MOLP problems developed by the authors and

accompanies this book. iMOLPe has been mainly designed for teaching and

decision support purposes in MOLP problems. The aim is to offer students an

intuitive environment as the entrance door to multiobjective optimization in which

the main theoretical and methodological concepts can be apprehended through

experimentation, thus enabling them to learn at their own pace.

Chapter 6 presents multiobjective integer (MOILP) and mixed-integer linear

programming (MOMILP) problems, which are more difficult to tackle even having

linear objective functions and constraints. The feasible set is no longer convex and

in many cases these problems cannot be handled by adaptations of MOLP methods

to deal with integer variables. Generating methods and scalarizing processes are

reviewed and interactive methods devoted to MOILP/MOMILP problems are

outlined. An interactive reference point method developed by the authors using

branch-and-bound to perform directional searches in MOMILP is presented and

illustrated using a computational implementation.

All chapters end with a comprehensive set of proposed exercises to extend the

training provided by the illustrative examples in the text.

The interactive MOLP explorer (iMOLPe) software, as well as the computa-

tional implementation to MOMILP problems, can be freely downloaded at: www.

inescc.pt/software.
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Chapter 2

Formulations and Definitions

2.1 Introduction

Multiobjective Programming (MOP) may be faced as the extension of classical single

objective programming to the cases in which more than one objective function is

explicitly considered in mathematical optimization models. However, if these func-

tions are conflicting, a paradigm change is at stake. The concept of optimal solution no

longer makes sense since, in general, there is no feasible solution that simultaneously

optimizes all objective functions. Single objective programming follows the optimality

paradigm, that is, there is a complete comparability between pairs of feasible alterna-

tives and transitivity applies. This is a mathematically well-formulated problem, since

we possess enough mathematical tools to solve the three fundamental questions of

analysis: existence, unicity and construction of the solution. When more than one

objective function is considered these properties are no longer valid.

Zeleny (1982) shows in a very expressive manner the essential differences

between single and multiple objective optimization models. Consider, following a

similar reasoning, a bag of oranges, where the objective is to select firstly the

biggest and then simultaneously the biggest and the sweetest orange. Although this

is not a MOP example, its analysis is very suggestive and the conclusions are valid

also in MOP. The selection of the biggest orange is akin to an optimization problem,

hence purely technical. It is all about measuring and ordering the oranges. The same

process arises in any optimization problem regarding feasible solutions. In the

second case, if the biggest orange is not the sweetest one then there is no optimal

solution to the problem. The selection of an orange forces a subjective compromise

between the two objectives, size and sweetness, and thus problem solving is not

limited to purely technical issues. However, there is a subset of oranges where the

compromise solution must belong, the nondominated solution set, consisting of the

oranges for which there is no other orange that is simultaneously bigger and

sweeter.
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Let us begin to present MOP models when all the p objective functions and

m constraints are linear ones and decision variables are continuous. The

multiobjective linear programming (MOLP) problem can be stated as:

max z1 ¼ f 1 xð Þ ¼ c1x ¼
Xn
j¼1

c1jxj

: : :

max zp ¼ f p xð Þ ¼ cpx ¼
Xn
j¼1

cpjxj

ð2:1Þ

s: t:
Xn
j¼1

aijxj ¼ bi i ¼ 1, . . . ,m

xj � 0 j ¼ 1, . . . , n

or

max z1 ¼ f 1 xð Þ ¼ c1x

. . .
max zp ¼ f p xð Þ ¼ cpx

9=
; }Max} z ¼ f xð Þ ¼ Cx

s: t: x 2 X ¼ x 2 ℝn : Ax ¼ b, x � 0f g:

C¼
c1
⋮
cp

2
4

3
5and c1, � � �, cp are row vectors, 1� n; ck corresponds to the coeffi-

cients of objective function k (k¼ 1, . . . p). A is the technological coefficients

matrix (m� n), and all constraints were converted into equalities, with the intro-

duction of auxiliary slack or surplus variables. b 2 ℝm is the right hand side vector

(in general, representing available resources for� constraints and requirements

for� constraints). It is assumed that the feasible region X is non-empty and a

maximum exists in the feasible region for all objective functions being maximized.

Without loss of generality, just to facilitate notation, we consider the maximization

of each function1 fk(x), k¼ 1,. . ., p.
While in the optimization of a single objective function the feasible region in the

decision space x 2 X is mapped onto ℝ, in the multiobjective case the decision

space is mapped onto a p-dimensional space Z¼ {z¼ f(x) 2 ℝp: x 2 X}, which is

called objective function space or criterion space. In this space each potential

solution x 2 X is represented by a vector z¼ (z1, z2,. . ., zp)¼ f(x)¼ ( f1(x),
f2(x),. . ., fp(x)), the components of which are the values of each objective function

for solution x of the feasible region (Fig. 2.1).

1 Nothing would change, in substance, when considering minimization problems or cases where

some objective functions should be maximized and others minimized. In this case the original

problem is transformed into another problem where all objective functions are maximized

(or minimized), by multiplying the minimizing objective functions by �1 (or the opposite).
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Since, in general, the objective functions are conflicting, there is no feasible

solution x2X that simultaneously optimizes all objective functions. Therefore, from

an operational perspective, the “Max” operation in (2.1) represents the computation

of compromise solutions for which it is not possible to improve an objective

function value without accepting to worsen, at least, the value of another objective

function. These privileged solutions are called efficient, nondominated, noninferior
or Pareto optimal solutions, and they are of interest to be the possible outcome of a

decision process based on the vector optimization model.

2.2 Fundamental Concepts

In order to introduce the major fundamental concepts in a MOLP setting, let us

consider a simple production planning problem with a single objective function. A

small workshop manufactures two different products, I and II. The production of

these products requires the use of three different types of machines—A, B and

C. Each unit of product I requires 1 h processing in machine A, 2 h in machine B,

and 2 h in machine C. Each unit of product II requires 1 h processing in machine A,

1 h in machine B, and 5 h in machine C. The workshop has a weekly maximum

usage of 50 h of machine A, 80 h of machine B, and 220 h of machine C. The profit

associated with of 1 unit of each product is 25 monetary units (m.u.) for product I

and 20 m.u. for product II. It is assumed that all the production is sold.

Determining the optimal weekly production mix to maximize profit would

amount to developing the following LP model (Problem 1), in which the decision

variables x1 and x2 represent the number of units of product I and II, respectively, to

be manufactured weekly. The constraints (of type �) refer to the availability of

each type of machine and the objective function operationalizes the measure of

performance of the system (to maximize the profit).

x'

x1

xn

xj

zk=fk(x)

z1=f1(x)

zp=fp(x)

z'= (f1(x'),....,fk(x'),...,fp(x'))

Fig. 2.1 The decision space and the objective function space

2.2 Fundamental Concepts 11



Problem 1

max z ¼ f xð Þ ¼ 25x1 þ 20x2 m:u:ð Þ
s:t: x1 þ x2 � 50 � h=week in machines of type A : 1ð Þ

2x1 þ x2 � 80 � h=week in machines of type B : 2ð Þ
2x1 þ 5x2 � 220 � h=week in machines of type C : 3ð Þ
x1, x2 � 0

The problem can be solved graphically (Fig. 2.2). The shadowed area displays

the region of combinations (x1, x2) that satisfy all the constraints, i.e., the feasible

region X. For a specific value of z, z¼ 25 x1 + 20 x2 represents a level line of the

objective function, which is normal to the gradient of the objective function (the

vector (25, 20)). Since the objective function is increasing in the direction of its

gradient, the optimal solution is found at the corner point (vertex) of the feasible

region given by the intersection of x1 + x2¼ 50 and 2x1 + x2¼ 80, i.e., where both

constraints (1) and (2) are satisfied as equality, which means that the corresponding

resources are fully consumed. Thus, the optimal solution is x�1 ¼ 30, x�2 ¼ 20 offer-

ing a profit of z*¼ 25� 30 + 20� 20¼ 1150.

Let us suppose that, in addition to profit, products I and II lead to other benefits

(to be maximized) or losses (to be minimized) that cannot be aggregated in the profit

objective function because they cannot be monetarily measured, e.g., maximizing

40

(2)

80

(1)

50

50

44

(3)(30,20)

z=0

z=1150

x1

x2

optimal solution
X

f

Fig. 2.2 Graphical

representation of the LP

Problem 1
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the conservation state of the machines or minimizing the environmental impact

of the wastes generated by the production process. For instance, a new objective

function is considered measuring the reliability of the production system, which

depends on the quantities manufactured of products I and II: max z2¼ x1 + 8x2. This
bi-objective problem is formulated in Problem 2.

Problem 2

max z1 ¼ f 1 xð Þ ¼ 25x1 þ 20x2 profitð Þ
max z2 ¼ f 2 xð Þ ¼ x1 þ 8x2 reliability of the production systemð Þ
s:t: x1 þ x2 � 50

2x1 þ x2 � 80

2x1 þ 5x2 � 220

x1, x2 � 0

As can be seen in Fig. 2.3, there is no feasible solution that simultaneously

optimizes the two objective functions of Problem 2. Objective function f1(x) is
optimized in solution x¼ (30, 20), point P, where z1¼ 1150 and z2¼ 190; objective

function f2(x) is optimized in solution x¼ (0, 44), point R, where z1¼ 880 and

z2¼ 352. The vertex solution identified in Fig. 2.3 by Q, x¼ (10, 40), where

z1¼ 1050 and z2¼ 330, is an intermediate solution between P and R. Q is better

than R in f1(x) (and worse in f2(x)) and Q is better than P in f2(x) (and worse in f1(x)).
Solutions P, Q and R are called efficient, because there is no other feasible

solution that performs equal or better for both objective functions, and strictly better

for at least one of those objective functions. The same happens with any solution on

the edges [PQ] and [QR].

40

44

x2

x2

(30,20)
P

(0,44)R

Q(10,40)

X

f2

f1

Fig. 2.3 Graphical representation of the bi-objective LP Problem 2 in the decision variable space
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Figure 2.4 shows, for vertex solutions P and R, as well as point U on the edge

[PQ], the cones associated with the objective function gradients, which can be

designated by dominance cones, where better solutions for both objective functions
would be located. Besides points P, R and U, there is no intersection of these cones

with the feasible region. Hence, all solutions belonging to [PQ][[QR] (including
the vertices) are called efficient, because they are not dominated by any other

feasible solution. Note that this does not happen with any other solution in the

feasible region not belonging to the frontier [PQ][[QR].
Figure 2.5 illustrates the regions of solutions that dominate two particular

solutions, V and T. These solutions are not efficient because there are other feasible
solutions that improve simultaneously both objective functions. The solutions that

dominate V and T lay on the intersection of the respective dominance cones

emanating from V and T with the feasible region.

Definition of efficient solution2

A solution x1 2 X is called efficient if and only if there is no other solution x 2 X
such that fk(x)� fk(x

1) for all k (k¼ 1, . . ., p), the inequality being strict for at least

one k ( fk(x)> fk(x
1)). XE denotes the set of all efficient solutions.

While in single objective LP the points in the decision space have an image in ℝ
mapped by the objective function, in the multiobjective case the images are in ℝp;

40

44

x1

x2

P

R
Q

X

U

Fig. 2.4 Identification of

efficient solutions to the

bi-objective LP Problem
2 using dominance cones

2 The mathematical definition of efficient solution can be done in several ways. For example, Yu

(1974) presents it in terms of extreme point cones; Lin (1976) uses the notion of directional

convexity and Payne et al. (1975) use a perturbation function similar to the one introduced by

Geoffrion (1971) in another context.
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that is, each solution x has a point z¼ ( f1(x), . . ., fp(x)) as representation in the

objective function space.

In Problem 2 the objective function space is two-dimensional and, hence, it is

easy to visualize it graphically. In order to represent the feasible region of the

problem in the objective function space Z, the images of the vertices in X are

determined (which correspond to vertices in Z ):

x

)

z¼ f(x)

O

V

P

Q

R

(0,0)

(40,0)

(30,20)

(10,40)

(0,44)

O0

V0

P0

Q0

R0

(0,0)

(1000,40)

(1150,190)

(1050,330)

(880,352)

The considerations above about efficient solutions can be transposed into the

objective function space (Fig. 2.6).

In general, while the designation of efficient solution is referred to points in the

decision variable space, the designation of nondominated solution is used for points
in the objective function space. When used in a generic way in this text, the

designations of efficient and nondominated solution are used interchangeably.

Definition of nondominated solution

A point in the objective function space z¼ ( f1(x), f2(x), . . ., fp(x)) 2 Z is called

nondominated if and only if x is efficient. ZE¼ {z¼ f(x) 2 Z: x 2 XE}.

In addition to the concept of (strictly) efficient (nondominated) solution, there is
a “relaxed” concept of weakly efficient solution (weakly nondominated solution),
i.e., a feasible solution is said weakly efficient/nondominated if and only if there is

no other feasible solution that strictly improves the value of all objective functions.

x2

V

X

x1

T

x1

X

x2

Fig. 2.5 Examples of non-efficient solutions to the bi-objective Problem 2
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Definition of weakly efficient/nondominated solution

A solution x1 2 X is called weakly efficient if and only if there is no other solution

x 2 X such that fk(x)> fk(x
1) for all k (k¼ 1, . . ., p). XWE denotes the set of weakly

efficient solutions.

A point in the objective function space z¼ ( f1(x), f2(x), . . ., fp(x)) 2 Z is called

weakly nondominated if and only if x 2 XWE, that is ZWE¼ {z¼ f(x)2 Z: x 2 XFE}.

Note that, by definition, the set of weakly efficient solutions includes the strictly

efficient solutions. However, for practical reasons, when weakly efficient solutions

are mentioned in this text, the strictly efficient solutions are not being considered.

Figure 2.7 illustrates the concepts of weakly nondominated and strictly

nondominated solutions with two objective functions to maximize: solutions on

the edges [AB[ and [ED[ are just weakly nondominated, i.e., except the points B

and D, while solutions on the edges [BC] and [CD] are (strictly) nondominated.

No weakly nondominated solutions exist in Problem 2 (Fig. 2.6). In order to

illustrate this case, consider the temporary change of the second objective function

f1

V’ (1000,40)

P’ (1150,190)

R’ (880,352)

Q’ (1050,330)

Z

O’ (0,0)

f2Fig. 2.6 Feasible region of

Problem 2 in the objective

function space

Z

f2

f1

A B

C

D

E

F

G

H

I

Fig. 2.7 Illustration of

strictly and weakly

nondominated solutions
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to f2(x)¼ 2 x1 + 5 x2. The set of (strictly) efficient solutions is now reduced to the

segment [PQ] in Fig. 2.8. All solutions on [RQ[ (note that Q is excluded) are weakly

efficient because they are dominated by Q, which has equal f2(x) value and a better
f1(x) value. Thus, there is no solution that simultaneously improves both objective

functions regarding any solution on [RQ[.

Note that in problems with two objective functions weakly efficient/

nondominated solutions can only occur when there are alternative optimal solutions

of some objective function. In problems with p� 3 weakly efficient/nondominated

solutions may also appear in other circumstances.

Therefore, in a multiobjective problem there is the need to select a compromise

solution from the nondominated solution set, which entails a certain trade-off

between the competing objective functions. A further illustration of the compro-

mise involved when multiple objectives are at stake is made below, with three

objective functions and two decision variables.

Problem 3

A family needs to define a diet of minimum cost which satisfies certain require-

ments of nutrients using basic foods I and II. The family wants to determine the

intake of I and II in order to consume at least 200 units (u.) of vitamin A, 66 u. of

vitamin B and 60 u. of vitamin C. Each 100 g of food I gives 5 u. of vitamin A,

3 u. of vitamin B and 1 u. of vitamin C, and costs 72 monetary units (m.u); each

100 g of food II gives 4 u. of vitamin A, 1 u. of vitamin B and 4 u. of vitamin C, and

costs 35 m.u. Representing by x1 and x2 the consumption, in 100 g, of each food I

and II, respectively, the problem formulation is:

min z ¼ 72x1 þ 35x2 m:uð Þ
s:t: 5x1 þ 4x2 � 200 � requirement of vitamin A : 1ð Þ

3x1 þ x2 � 66 � requirement of vitamin B : 2ð Þ
x1 þ 4x2 � 60 � requirement of vitamin C : 3ð Þ
x1, x2 � 0

(10,40)

40

44

(30,20)
P

(0,44)R

Q

f1

X

f2

x1

x2

f1

V’

P’

R’ (880,220) Q’ (1050,220)

(1000,80)

(1150,160)

Z

f2

Fig. 2.8 Weakly efficient/nondominated solutions (Problem 2 with f2(x)¼ 2 x1 + 5 x2)
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The (unbounded) feasible region is displayed in Fig. 2.9. The optimal solution is

x�1 ¼ 9.143, x�2 ¼ 38.571, i.e., the minimum cost diet establishes an intake of 914.3 g

of food I and 3857.1 g of food II, amounting to z*¼ 2008.281 m.u.

Problem 4

Let us suppose that the problem now is maximizing the intake of the three

vitamins, A, B and C, subject to the cost of the diet not exceeding the minimum

cost obtained in the previous formulation (2008.281 m.u.). The formulation of this

problem is:

max z1 ¼ f 1 xð Þ ¼ 5x1 þ 4x2 vitamin Að Þ
max z2 ¼ f 2 xð Þ ¼ 3x1 þ x2 vitamin Bð Þ
max z3 ¼ f 3 xð Þ ¼ x1 þ 4x2 vitamin Cð Þ
s: t: 72x1 þ 35x2 � 2008:281

x1, x2 � 0

The feasible region, in the decision space, and the gradients of the objective

functions of this problem are depicted in Fig. 2.10.

All solutions on [PQ] are efficient to this problem (Fig. 2.10). Solution P, x¼
(27.893, 0), z¼ (139.465, 83.679, 27.893), provides a level of vitamin B above the

previously required (with the maximum of vitamin B, f2(x)), but lower levels of
vitamins A and C. Solution Q, x¼ (0, 57.379), z¼ (229.516, 57.379, 229.516),

offers high levels for vitamins A and C (the maxima of f1(x) and f3(x)), although
decreasing vitamin B below the minimum previously required. Any other solution

Fig. 2.9 Graphical

representation of Problem 3
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on the edge that links P to Q is an intermediate compromise solution, including the

optimal solution to Problem 3, which is x¼ (9.143, 38.571), z¼ (200, 66, 163.427).

The feasible region of Problem 4 in the objective function space is depicted in

Fig. 2.11. All solutions on [P’Q’] are nondominated to this problem, i.e., they are

the images of [PQ].

The consideration of integer (or just binary) variables in MOLP models as well

as the existence of non-linearities in the objective functions and/or constraints

x2

27.893

57.379

P

Q

X

x1

f1

f2

f3

Fig. 2.10 Feasible region

to Problem 4 in the decision

space

P’

Q’

Z f1

f2

f3

Fig. 2.11 Feasible region

to Problem 4 in the

objective function space
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require some additional concepts. New types of efficient/nondominated solutions

arise in these problems: proper, improper, supported and unsupported solutions.

The definition of proper efficient solution embodies a more restrictive notion of

efficient solution in order to exclude efficient solutions that display unbounded

compromises between the objective functions, i.e., to exclude solutions in which

the relation improvement/deterioration between the objective function values can

be made arbitrarily large (Geoffrion 1968).

Definition of proper efficient solution

A solution x0 2 X is properly efficient if it is efficient and a finite M> 0 exists such

that for each x 2 X and for each objective function fk(x), k¼ 1, . . ., p with fk(x)>

fk(x
0), the relation f k xð Þ�f k x0ð Þ

f j x
0ð Þ�f j xð Þ � M is verified for some j for which fj(x)< fj(x

0). XPE

represents the set of proper efficient solutions.

In MOLP models XPE�XE. Also in integer LP and mixed integer LP all efficient

solutions are proper efficient. However, in nonlinear multiobjective models

improper efficient solutions may exist.

Figure 2.12 illustrates the concept of improper efficient solution in the objective

function space for two nonlinear bi-objective problems with both functions to be

maximized. In Fig. 2.12a the efficient solutions lie on the arcs AB and CD,

excluding point D which is just weakly efficient. Solutions A, B and C are improper

efficient solutions. In Fig. 2.12b, the entire frontier from A to C is efficient, passing

through point B which is an improper efficient solution.

Another important issue is the distinction between supported and unsupported

efficient solutions.

Definition of unsupported efficient/nondominated solution

A nondominated solution z0 2 ZE is unsupported if it is dominated by a (infeasible)

convex combination of solutions belonging to ZE. An unsupported nondominated

solution z0 ¼ f(x0) is the image of an unsupported efficient solution x0. The other

efficient solutions are supported.

f2

A

f1

B

C

D

(a)

f1

B

A

C
f2

(b)

Fig. 2.12 Improper efficient solutions in nonlinear problems ((b) in Steuer 1986)
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In MOLP models all nondominated solutions are supported. However, in prob-

lems for which Z is non-convex, unsupported nondominated solutions may exist.

The cases of multiobjective integer and mixed integer LP as well as multiobjective

nonlinear models are illustrated below.

Figure 2.13 illustrates the existence of unsupported nondominated solutions in

a multiobjective integer problem, with both functions to be maximized. Points A,

B and D are supported nondominated solutions, while C is an unsupported non-

dominated solution because it is dominated by some (infeasible) convex combina-

tions of B and D, i.e., all convex combinations defined by the intersection of the

dominance cone emanating from C with the segment connecting B and D. That is, C

lies inside the convex hull defined by the supported solutions.

Figure 2.14 shows the nondominated frontier of a mixed-integer LP problem

with two objective functions to be maximized. Solution D and all solutions on the

f1

f2

A

B

C
D

Fig. 2.13 Supported and

unsupported nondominated

solutions in integer

programming

z2 = z2

A

BC

f2

f1

D

BC

Fig. 2.14 Unsupported

nondominated solutions in a

bi-objective mixed-integer

problem
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segment [AB] are supported nondominated solutions. Solutions on the segment

]CD[ are unsupported nondominated solutions because they are nondominated

although they are dominated by (infeasible) convex combinations of B and

D. Solution C is weakly nondominated because there is no other solution strictly

better than C in both objective functions, but it is dominated by solution B which

has the same value of f2(x) and a better value of f1(x).
Figure 2.15 displays the feasible region in the objective space for a bi-objective

nonlinear problem, in which the nondominated frontier is displayed in thick solid

line (solutions from B to D). The solutions on the segment [AB[, i.e., excluding B,

are weakly nondominated solutions. The solutions from B (excluding B) to C

(excluding C) are unsupported nondominated solutions. Solution B and the solu-

tions on the arc CD are supported nondominated solutions.

The ideal solution and the pay-off table are often used in MOP as auxiliary

devices to identify the range of variation of the objective function values over the

nondominated region and help to develop auxiliary problems to compute

nondominated solutions.

Ideal Solution

The ideal solution (or utopia point) z* ¼ z*1; z
*
2; . . . ; z

*
p

� �
is defined as the solution

that would simultaneously optimize all objective functions. That is, the components

of the ideal solution are the individual optimal values to each objective function in

the feasible region. In general, the ideal solution does not belong to the feasible

region (otherwise the problem would be trivial because all objective functions

would have their optimum at the ideal solution), although each component z�k ,
k¼ 1, . . ., p, is individually reachable.

The ideal solution is often used as the (unreachable) reference point in

scalarizing functions aimed at determining compromise nondominated solutions

by minimizing a distance function to the ideal solution. In Fig. 2.16 the ideal

solution to Problem 2 is displayed.

A

B

C

D

f1

f2
Fig. 2.15 Unsupported

nondominated solutions in a

bi-objective nonlinear

problem
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Note that although the ideal solution z* can be always defined in the objective

function space, this is not always possible in the decision space: that is, x*, even

infeasible, may not exist such that z*¼ f(x*).

Pay-off Table

The pay-off table provides the objective function values resulting from individually

optimizing each objective function. This table allows having a global overview

of the range of variation of the objective function values over the nondominated

region.

f1(x) f2(x) . . . fk(x) . . . fp(x)

z1 z11 ¼ z*1 z12 . . . z1k . . . z1p
z
2

z21 z22 ¼ z*2 . . . z2k . . . z2p
. . . . . . . . . . . . . . . . . . . . .

zk zk1 zk2 . . . zkk ¼ z*k . . . zkp
. . . . . . . . . . . . . . . . . . . . .

zp zp1 zp2 . . . zpk . . . zpp ¼ z*p

zik is the value of objective function fk(x) in the solution i. The solution i is
denoted by zi, i¼ 1, . . ., p, and optimizes objective function fi(x) in the feasible

region X. The optimal value of each objective function fk(x), z
k
k ¼ z*k , can be found

in the main diagonal of the table, therefore allowing to easily identify the ideal

solution.

The nadir point gives the minimum (worst) objective function values over the set

of all nondominated solutions. The ideal solution and the nadir point define the

range of variation of each objective function over the nondominated region. Except

for the case of two objective functions, the pay-off table does not offer, in general,

the nadir point. The pay-off table displays the objective function values for the

solutions that individually optimize each objective function; in general, the mini-

mum of each objective function over the nondominated solution set is not attained

in one of these solutions. Some approaches approximate the nadir point using the

information in the pay-off table by representing the true nadir by a “convenient”

f1

z*= (1150, 352)

Z

O’ (0,0)

f2

P'=(1150,190)

R'=(880,352)

Fig. 2.16 Ideal solution to

Problem 2
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one directly obtained from the pay-off table: selecting in each column the worst

value of the corresponding objective function, that is nk ¼ mini¼1, ..., p z
i
k, k¼ 1,. . .,p.

This value nk is an approximation to the minimum of the objective function fk(x) in
the nondominated region. In general, for p> 2, there are nondominated solutions

with worst values than the nk obtained from the pay-off table. The identification of

the true nadir point is computationally very demanding for p> 2. An exact method

for this purpose in MOLP problems is described in Alves and Costa (2009).

Figure 2.17 represents the ideal solution I0 and the nadir point N0 for an example

with two objective functions. Note that, for p¼ 2, the nadir point obtained from the

pay-off table always identifies the minimum of each objective function in the

nondominated region, provided that all the solutions forming the pay-off table are

nondominated and not just weakly nondominated.

Finally, note that the pay-off table for problems with p>2 may not be uniquely

defined if there are alternative nondominated solutions that optimize any objective

function. In this case, the approximation of the nadir point provided by the pay-off
table is not unique although the ideal solution is always unique.

2.3 Proposed Exercises

1. Consider the problem:

max f xð Þ ¼ f 1 x1; x2ð Þ ¼ 5x1 � 2x2, f 2 x1; x2ð Þ ¼ �x1 þ 4x2½ 	
s: t:

� x1 þ x2 � 3 x1 þ x2 � 8

x1 � 6 x2 � 4

x1 � 0, x2 � 0

f1

f2
A'

F'

E'

•

•

•

N' D'

C'

B'
•
I'

Fig. 2.17 Ideal solution (I0)
and nadir point (N0)

24 2 Formulations and Definitions



(a) Represent graphically the feasible region in the decision variable space and

in the objective function space, identifying the set of efficient solutions and

the set of nondominated solutions.

(b) Identify the ideal solution

2. Consider the problem:

max f 1 x1; x2ð Þ ¼ �x1 þ 3x2
max f 2 x1; x2ð Þ ¼ 3x1 þ 3x2
max f 3 x1; x2ð Þ ¼ x1 þ 2x2
s: t: x2 � 4

x1 þ 2 x2 � 10

2x1 þ x2 � 10

x1 � 0, x2 � 0

(a) Represent graphically the feasible region and the gradients of the objective

functions in the decision space.

(b) Compute the ideal solution.

3. Consider the problem with two objective functions:

min f 1 xð Þ ¼ x1
max f 2 xð Þ ¼ x2
s: t: x 2 X

A(9,6)

B(11,5)

C(12,4)

D(13,2)

E(10,1)

F(5,0)

G(1,1)

H(2,3)

I(4,5)

J(7,6)

x1

x2

X

(a) Identify the set of efficient/nondominated solutions and the ideal

solution.

(b) Identify the set of (just) weakly efficient/nondominated solutions.

(c) What will be the set of efficient solutions if the problem is:

max f 1 xð Þ ¼ x1
min f 2 xð Þ ¼ x1
s: t: x 2 X
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4.

x1

A (3,2)

B (3,11)

C (6,15)
D (12,16) E (16,16)

F (21,13.5)

G (16, 9)

H (9, 4)

x2

X

Consider the linear programming problem with two objective functions:

min f 1 xð Þ ¼ 6x1 � 5x2
max f 2 xð Þ ¼ 4x1 þ 5x2
s: t: x 2 X

(a) Sketch the feasible region in the objective function space, identifying the

(strictly and weakly) nondominated region and the ideal solution.

(b) Identify graphically all feasible solutions that are dominated by point E.

(c) Identify graphically all feasible solutions that dominate point G.

(d) Identify the efficient/nondominated regions considering that

(i) x1 is integer

(ii) both variables are integer.
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Chapter 3

Surrogate Scalar Functions and Scalarizing

Techniques

The most common procedure to compute efficient/nondominated solutions in MOP

is using a scalarizing technique, which consists in transforming the original

multiobjective problem into a single objective problem that may be solved repeat-

edly with different parameters. The functions employed in scalarizing techniques

are called surrogate scalar functions or scalarizing functions. The optimal solution

to these functions should be a nondominated solution to the multiobjective problem.

These functions temporarily aggregate in a single dimension the p objective func-

tions of the original model and include parameters derived from the elicitation of

the DM’s preference information. Surrogate scalar functions should be able to

generate nondominated solutions only, obtain any nondominated solution and be

independent of dominated solutions. In addition, the computational effort involved

in the optimization of surrogate scalar functions should not be too demanding (e.g.,

increasing too much the dimension of the surrogate problem or resorting to

nonlinear scalarizing functions when all original objective functions are linear)

and the preference information parameters should have a simple interpretation (i.e.,

not imposing an excessive cognitive burden on the DM). Surrogate scalar functions

should not be understood as “true” analytical representations of the DM’s prefer-
ences but rather as an operational means to transitorily aggregate the multiple

objective functions and generate nondominated solutions to be proposed to the

DM, which expectedly are in accordance with his/her (evolving) preferences.

Three main scalarizing techniques are generally used to compute nondominated

solutions:

1. Selecting one of the p objective functions to be optimized considering the other

p-1 objectives as constraints by specifying the inferior (reservation) levels that

the DM is willing to accept. This scalarization is usually called e-constraint
technique.

2. Optimizing a weighted-sum of the p objective functions by assigning weighting

coefficients to them—weighted-sum technique.
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3. Minimizing a distance function to a reference point (e.g., the ideal solution), the

components of which are aspiration levels the DM would like to attain for each

objective function. If the reference point is not reachable the closest solution

according to a given metric is computed, usually the Manhattan metric (i.e.,

minimizing the sum of the differences in all objectives) or the Chebyshev metric

(i.e., minimizing the maximum difference in all objectives) possibly considering

weights, i.e., the differences are not equally valued for all objectives. However,

the reference point may also be a point representing attainable outcomes. In this

case, the surrogate scalar function is referred to as an achievement scalarizing
function, as it aims to reach or surpass the reference point. These approaches are

commonly referred to as reference point techniques.

The techniques will be presented for MOLP problems (cf. formulation (2.1) in

Chap. 2) and then extended to integer and nonlinear cases. The theorems underlying

the techniques for computing nondominated solutions are just sufficient conditions

for efficiency. When these conditions are also necessary, then the corresponding

technique guarantees the possibility to compute all nondominated solutions.

Although this section pays special attention to sufficient conditions, necessary con-

ditions shall not be forgotten since it is important to know the conditions in which all

the nondominated solutions can be obtained using a given scalarizing technique.

3.1 Optimizing One of the Objective Functions

and Transforming the Remaining p�1 into Constraints

Proposition 1

If x1 is the single optimal solution, for some i, to the problem

max f i xð Þ
s:t: x 2 X

f k xð Þ � ek k ¼ 1, . . . , i� 1, iþ 1, . . . p
ð3:1Þ

then x1 is an efficient solution to the multiobjective problem.

If, in Proposition 1, the condition of a single optimal solution had not been imposed,

weakly efficient solutions could be obtained. This issue could be overcome by

replacing the function fi(x) by f i xð Þ þ
X
k 6¼i

ρkf k xð Þ, with ρk> 0 small positive scalars.

The validity of this proposition assumes that the reduced feasible region is not

empty, which may occur whenever the lower bounds ek set on the p-1 objective

functions that are transformed into constraints are too stringent.

The truthfulness of Proposition 1 is easily shown. Suppose that x1 is not efficient.

Then, by definition of efficient solution, there is an x22X such that fk(x
2)� fk(x

1) for

all k (k¼ 1, . . ., p), and the inequality fk(x
2)> fk(x

1) holds for at least one k. In these
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circumstances, fk(x
2)� ek, for k¼ 1, . . ., i�1, i+ 1, . . ., p. Hence, fi(x

2)� fi(x
1) in

problem (3.1) which contradicts the hypothesis of x1 being the single optimal

solution. Thus, x1 must be efficient.

This computation procedure is illustrated in a bi-objective LP model (Fig. 3.1),

where f1(x) and f2(x) are maximized. The efficient frontier of the feasible region X is

composed by the solutions on edges [AB] and [BC]. Imposing the additional

constraint f1(x)� e1 and optimizing f2(x) then the efficient solution E is obtained.

Note that E is not a vertex of the feasible region to the original problem.

The condition established in Proposition 1 is not a necessary condition for

obtaining efficient solutions. In fact, efficient solutions can be obtained without

having a single optimum to the scalarizing problem (3.1). In this case, not all

solutions obtained are guaranteed to be efficient. If the optimum is not imposed

to be unique, then a necessary and sufficient condition for obtaining at least weakly

efficient solutions is achieved.

Figure 3.2 illustrates this issue: imposing f1(x)� e1 and optimizing f2(x) then the
edge [CF] is optimal but only point C is (strictly) efficient. Solutions on the edge

[CF], except C, are just weakly efficient solutions.

An additional interest of this scalarizing technique is that the dual variable

associated with the constraint corresponding to objective function fk(x) can be

interpreted as a local trade-off rate between objectives fi(x) and fk(x) at the optimal

solution of the scalar problem (3.1). The interpretation and use of this information

x1

x2

•

°
D

A

•
B

• C

EX

f1(x) ≥ e1

f1

f2

•

Fig. 3.1 Computing an

efficient solution by

optimizing one of the

objective functions and

transforming the remaining

p�1 into constraints

x1

x2

•

D

A

•B

•C
F°

X

°

f1(x) ≥ e1

f1

f2

Fig. 3.2 Computation of

weakly efficient solutions
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should be done with care whenever this optimal solution is a degenerate one, since

it this case the trade-off rates are not unique (i.e., alternative optima to the dual

problem exist).

Although this scalarizing technique is simple to be understood by the DM,

capturing the attitude of giving more importance to an objective function and

accepting lower bounds on the other objective function values, the choice of the

objective function to be optimized may reveal to be difficult in several problems.

Also, in the operational framework of a particular method, setting the objective

function to be optimized throughout the solution computation process may render

the method less flexible and the results too dependent on the function selected.

Solving problem (3.1) enables to obtain all nondominated solutions, i.e., solu-

tions lying on edges or faces (of any dimension) and vertices of the feasible region

of the original multiobjective problem.

The preference information associated with this scalarizing technique consists

in:

– inter-objective information: the selection of the objective function to be

optimized;

– intra-objective information: establishing lower bounds on the other objective

functions that are transformed into constraints.

This scalarizing technique can also be used in multiobjective integer, mixed-

integer or nonlinear optimization, thus enabling to obtain any type of efficient/

nondominated solution to these problems.

Figure 3.3 illustrates examples of bi-objective (a) integer and (b) nonlinear

problems, in which f1(x) is optimized and f2(x) is considered as an additional

constraint. In (a) unsupported nondominated solution C is obtained, and in (b)
improper solution B is obtained.

f1

f2

A

B

C
D

f1

f2(x)≥e2

f2

A

f1

B

C

f2(x)≥e2

f1

(a) (b)

Fig. 3.3 Optimization of an objective function considering the other as an additional constraint in

the cases of (a) integer and (b) nonlinear bi-objective problems
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3.2 Optimizing aWeighted-Sum of the Objective Functions

The process of computation of efficient/nondominated solutions more utilized

consists in solving a scalar problem in which the objective function is a

weighted-sum of the p original objective functions with positive weights λk:

max zλ ¼
Xp
k¼1

λk f k xð Þ
s:t: x 2 X

ð3:2Þ

Proposition 2

If x1 2 X is a solution to the problem max
x2X

Xp
k¼1

λk f k xð Þ for λ ¼ λ1, � � �, λp
� �

, where

λk >0, k¼ 1, . . ., p, and
Xp
k¼1

λk ¼ 1, then x1 is an efficient solution to the

multiobjective problem.

The truthfulness of Proposition 2 can be shown as follows. Suppose that x1 is not

efficient. Then, there is an x2 2 X such that fk(x
2)� fk(x

1), k¼ 1, . . ., p, and the

inequality is strict for at least one k. But x1 was obtained by optimizing a weighted-

sum objective function with strictly positive weights; thenXp
k¼1

λk f k x2ð Þ >
Xp
k¼1

λk f k x1ð Þ, which contradicts the hypothesis that x1 maximizes

the weighted-sum objective function.

This computation procedure in MOLP is illustrated in Fig. 3.4. This figure also

shows two weighted-sum objective functions, considering very different weight

vectors (whose gradients are given by fλ0 and fλ00), can lead to the computation of the

same efficient solution (point A).

A

D

B C x1

f1

x2

f2

X
fλ'

fλ"

Fig. 3.4 Optimizing

weighted-sums of the

objective functions
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The weight normalization used in Proposition 2,
Xp
k¼1

λk ¼ 1, can be replaced by

λi ¼1, for a given i, 1� i� p, and λk> 0 and bounded (for k¼ 1, . . ., p, and k 6¼ i).
Nothing is substantially changed since only the weighted-sum vector direction is

important. Both weight normalization procedures are illustrated in Fig. 3.5 for the

bi-objective case.

This scalarizing technique can also be applied to integer, mixed-integer and

nonlinear programming problems, but it does not allow to obtain unsupported

nondominated solutions. Figure 3.6 illustrates the case of integer programming.

Solutions B and D are alternative optimal solutions to the weighted-sum objective

function with the gradient fλ. A slight increase of the weight assigned to f1(x) leads

λ 1

λ2

1

0 1

...

…

...

...

λ2

1

0 λ1

… … . .  .
. .  .

∑
=

=λ
2

1

1
k

k
boundedand0

1

1

2

>λ
=λ

Fig. 3.5 Weight normalization

f1

f2

A

B

C
D

fλ

fλ

Fig. 3.6 Optimization of a weighted-sum of the objective functions in integer programming
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to solution D only and a slight increase of the weight assigned to f2(x) leads to

solution B only; there is no weight vector allowing to reach nondominated

solution C, which is unsupported.

In the example of Fig. 3.7, the feasible region Z in the space of the objective

functions is convex.

Solutions A0 and B0 are nondominated and it is not possible to obtain

them by optimizing max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g, with both weights strictly posi-

tive. In this problem the solutions A0 and B0 are improper, since
∂f 2
∂f 1

(A0)¼ 0 and

∂f 2
∂f 1

(B0)¼�1, that is, the variation rate of f2(x) regarding f1(x) is zero and

infinite, respectively (the concept of proper/improper nondominated solution is

presented in Chap. 2).

In a (nonlinear) problem in which the feasible region is convex and the objective

functions are concave it is possible to compute all proper nondominated solutions

using strictly positive weights. If the problem has improper nondominated solutions

then these can also be obtained by optimizing a weighted-sum allowing weights

equal to zero.

Therefore, since all nondominated solutions in MOLP are proper and supported

this scalarizing technique can provide the basis for methods to find the entire set of

nondominated solutions (the so-called generating methods).

3.2.1 Indifference Regions on the Weight Space in MOLP

The graphical representation of the weight set that leads to the same basic feasible

solution (note that each vertex may correspond to more than one basic solution if

degeneracy occurs), is called indifference region and can be obtained through the

decomposition of the parametric (weight) space λ 2Λ¼ {λ2ℝp: λk> 0, k¼ 1, . . ., p,Xp

k¼1
λk ¼ 1

�
: The DM can be “indifferent” to all combinations of weights within

this region because they lead to the same efficient solution.

Z

f2

f1

A'

B'

A'

B'

Set of nondominated 

solutions 

Fig. 3.7 Nonlinear convex problem
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The indifference regions depend on the objective function coefficients and the

geometry of the feasible region. The analysis of the parametric (weight) space can

be used as a valuable tool to learn about the geometry of the efficient/nondominated

region in MOLP, since it gives the weight vectors leading to each efficient basic

solution.

Let us start by exemplifying the computation of indifference regions for a

problem with two objective functions:

max z1 ¼ f 1 xð Þ ¼ 5x1 þ 3x2
max z2 ¼ f 2 xð Þ ¼ 2x1 þ 8x2

s. t.

x1 þ 4x2 � 100

3x1 þ 2x2 � 150

5x1 þ 3x2 � 200

x1, x2 � 0

9>>=
>>; feasible region Xð Þ

In Fig. 3.8, [AC] represents the set of efficient solutions and [A0C0] represents the
corresponding set of nondominated solutions. The slope of [A0C0] is�20. The slope

of the level lines of the weighted-sum objective functions, λ1 f 1 xð Þ þ λ2 f 2 xð Þ, in
the objective function space, is given by �λ1

λ2
. We consider the weights are

normalized:
X2
k¼1

λ k ¼ 1, i.e., λ2¼ 1–λ1. Then, the indifference regions associated

A

D

B C x1

f1

x2

f2

X

Z

200 245 250

80
100

200
A'

C'

D'

B'

f1

f2

Fig. 3.8 Efficient/nondominated basic solutions and indifference regions
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with vertex A and vertex C, i.e., the sets of weights for which solving the

problem max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g leads to A and C, respectively, are obtained

with λ1 2 0 ,
20

21

��
and λ2 2 1

21
, 1

��
for vertex A, and λ1 2 20

21
, 1

��
and

λ2 2 0 ,
1

21

��
for vertex C.

For the weight values λ1 ¼ 20

21
and λ2 ¼ 1

21
, points A and C are obtained

simultaneously, since max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þf g leads to edge [AC] as alternative

optima.

The determination of the indifference regions in the parametric (weight) diagram

for this bi-objective problem was carried out just using the information derived

from the geometry of the problem. However, the computation of indifference

regions can be done using the multiobjective simplex tableau (i.e., with one reduced

cost row for each objective function). In particular, the study of problems with

three-objective functions allows a meaningful graphical representation of indiffer-

ence regions using the information available in the simplex tableau corresponding

to a basic (vertex) solution as a result of optimizing a weighted-sum scalarizing

function max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þ þ λ3 f 3 xð Þf g with a given weight vector.

The simplex tableau associated with an efficient basic solution offers the infor-

mation needed to compute the locus of the weights λk (k¼ 1, . . ., p) for which the

solution to the weighted-sum problem

max
Xp
k¼1

λk f k xð Þ
s:t: x 2 X

with λ2Λ¼ {λ2ℝp: λk> 0, k ¼1,. . .,p,
Xp

k¼1
λk ¼ 1

�
leads to the same efficient

basic solution.

For a single objective LP a basic feasible solution to

max z ¼ cx

s: t: x 2 X ¼ x 2 ℝn : Ax ¼ b, x � 0f g

is optimal if and only if uA�c� 0, where the elements of the vector (uA�c) are

called reduced costs (in general, the last row of the simplex tableau). u¼ cBB
�1 is a

row vector (of dimension m), whose elements are the dual variables, B is the basis

matrix corresponding to the current tableau (a sub-matrix m�m of A, with rank m)
and cB is a sub-vector of c, with dimension 1�m, corresponding to the basic

variables.
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In MOLP the multiobjective simplex tableau includes a reduced cost row

associated with each objective function:

A b

�C 0

With respect to basis B this tableau can be transformed as:

xN xB

B�1N I B�1 b

CBB
�1N�CN 0 CBB

�1b

where B and N, CB and CN are the sub-matrices of A and C corresponding to the

basic (xB) and nonbasic (xN) variables, respectively. W¼CBB
�1N�CN is the

reduced cost matrix associated with basis B.

In MOLP the set of weights λ for which the basic solution associated with the

multiobjective simplex tableau is optimal to the weighted-sum problem is then

given by {λW� 0, λ2Λ}.
Definition of efficient basis

B is an efficient basis if and only if it is an optimal basis to the weighted-sum

problem (3.2) for some weight vector λ2Λ, that is, B is an efficient basis if and only

if the system{λW� 0, λ2Λ} is consistent.

Definition of efficient nonbasic variable

The nonbasic variable xj is efficient with respect to basis B if and only if λ2Λ exists

such that

λW � 0

λW:j ¼ 0

whereW.j is the column vector ofW corresponding to xj (that is, the reduced cost of
the weighted-sum function associated with xj can be zero).

The definition of efficient nonbasic variable means that, for a given efficient basis,

if xj is an efficient nonbasic variable then any feasible pivot operation associated with
xj as entering variable leads to an adjacent efficient basis (i.e., obtained from the

previous basis through the pivot operation). If the pivot operation leading from one

basis B1 to an adjacent basis B2 is non-degenerate then the vertices of the feasible

region associated with those bases are different and the edge that connects them is

composed by efficient solutions. As the bases (vertices) are connected, then it is

possible to develop a multiobjective simplex method as an extension of the (single

objective) simplex method (Steuer 1986), using sub-problems to test the efficiency of

nonbasic variables. This multiobjective simplex method is aimed at computing all

efficient bases (vertices). Using this information it is also able to characterize

efficient edges and efficient faces (of different dimensions).
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The element wkj of the reduced cost matrix W represents the rate of change of

objective function fk(x) due to a unit change of the nonbasic variable xj that
becomes basic. Each column of W associated with an efficient nonbasic variable

represents the rate of change of the objective functions along the corresponding

efficient edge emanating from the current vertex.

From the multiobjective simplex tableau corresponding to an efficient basic

solution to the MOLP problem, the set of corresponding weights is defined by

{λW� 0, λ2Λ} thus defining the indifference region. A common frontier to two

indifference regions means that the corresponding efficient basic solutions are

connected by an efficient edge, which is associated with an efficient nonbasic

variable becoming a basic variable. If a point λ2Λ belongs to several indifference

regions, this means that these regions are associated with efficient solutions located

on the same efficient face (this face is only weakly efficient if that point is located

on the frontier of the parametric diagram, i.e., some weight λκ¼ 0, k¼ 1, . . ., p).
The decomposition of the parametric (weight) diagram into indifference regions,

i.e., the graphical representation of the set of weights λ leading to the same efficient

basic solution is especially interesting in problems with three objective functions.

Note that due to the normalization condition λ1 + λ2 + . . .+ λp¼ 1, Λ can be

represented in a diagram of dimension p�1. For the three objective case, the weight

diagram Λ¼ {λ2ℝ3: λk> 0, k¼ 1, 2, 3, and
X3
k¼1

λk ¼ 1
�
can be displayed using the

equilateral triangle in Fig. 3.9a. Since
X3
k¼1

λk ¼ 1 the diagram corresponding to the

equilateral triangle, defined by the points λ¼ (1, 0, 0), λ¼ (0, 1, 0) and λ¼ (0, 0, 1),

can be projected, for example, onto the plane (0, λ1, λ2), without loss of information

(Fig. 3.9b).

 1

 1

 1

λ2

λ3

λ1

(a)

1

1

λ2

λ1

(b)

Fig. 3.9 Parametric (weight) diagram
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Example 1

max C x ¼
3 1 2 1

1 �1 2 4

�1 5 1 2

2
4

3
5

x1
x2
x3
x4

2
664

3
775

s. t.

X�
2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 � 0, x2 � 0, x3 � 0, x4 � 0

8<
:

Let us compute the indifference region associated with the efficient basic

solution that optimizes the weighted-sum problem with equal weights:

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

:

max
x2X

1

3
3x1þx2þ2x3þx4ð Þ þ 1

3
x1�x2þ2x3þ4x4ð Þ þ 1

3
�x1þ5x2þx3þ2x4ð Þ

	 


max
x2X

x1þ5

3
x2þ5

3
x3þ7

3
x4

	 


To build the multiobjective simplex tableau a reduced cost row for each objec-

tive function is added.

The problemmax
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

is solved and the reduced cost

rows corresponding to the objective functions of the original problem are updated in

each pivot operation. s1 and s2 denote the slack variables associated with the

constraints.

zλj � cλj denotes the reduced cost row of the weighted-sum objective function

while zkj � ckj denotes the reduced cost row of each objective function fk(x). Note

that zλj � c λj is the weighted-sum of zkj � ckj (k¼ 1, 2, 3), i.e.,

zλj � c λj ¼
X3
k¼1

λk z kj � ckj

� �
for all nonbasic variables xj.
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The initial tableau is:

x1 x2 x3 x4 s1 s2

s1 2 1 4 3 1 0 60

s2 3 4 1 2 0 1 60

Reduced cost row of

the weighted�sum

objective function

zλj � cλj �1 �5
3

�5
3

�7
3

0 0 0

Reduced cost matrix z1�c1 �3 �1 �2 �1 0 0 0

z2�c2 �1 1 �2 �4 0 0 0

z3�c3 1 �5 �1 �2 0 0 0

The optimal tableau associated with the basic solution that solves

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

is

x1 x2 x3 x4 s1 s2

x4 1
2

0 3
2

1 2
5

� 1
10

18

x2 1
2

1 �1
2

0 �1
5

3
10

6

zλj � cλj 1 0 1 0 3
5

4
15

52

z1�c1 �2 0 �1 0 1
5

�1
5

24

z2�c2 1
2

0 9
2

0 9
5

7
10

66

z3�c3 9
2

0 �1
2

0 �1
5

13
10

66

The set of weights (λ1, λ2, λ3)> 0, with λ3¼ 1� λ1� λ2, for which this basic

solution is optimal to the weighted-sum scalar problem and therefore efficient to the

MOLP problem is given by

�2λ1 þ 1

2
λ2 þ 9

2
1� λ1 � λ2ð Þ � 0 að Þ

�λ1 þ 9

2
λ2 � 1

2
1� λ1 � λ2ð Þ � 0 bð Þ

1

5
λ1 þ 9

5
λ2 � 1

5
1� λ1 � λ2ð Þ � 0 cð Þ

1

5
λ1 � 7

10
λ2 þ 13

10
1� λ1 � λ2ð Þ � 0 dð Þ

8>>>>>>>>>><
>>>>>>>>>>:

Each of these constraints in (λ1, λ2, λ3) is associated with a nonbasic

variable w. r. t. the present basis. This set of constraints can be written as a function

of (λ1, λ2):
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13

2
λ1 þ 4λ2 � 9

2
að Þ

�1

2
λ1 þ 5λ2 � 1

2
bð Þ

2

5
λ1 þ 2λ2 � 1

5
cð Þ

11

10
λ1 þ 2λ2 � 13

10
dð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

Constraints (a), (b) and (d) delimit the indifference region D (Fig. 3.10). There-

fore, the corresponding nonbasic variables x1, x3 and s2 are efficient. Any weight

vector λ2Λ satisfying these constraints leads to a weighted-sum problem

max
x2X

λ1 f 1 xð Þ þ λ2 f 2 xð Þ þ λ3 f 3 xð Þf g whose optimal solution is the same efficient

basis, i.e., the one determined by optimizing the problem

max
x2X

1

3
f 1 xð Þ þ 1

3
f 2 xð Þ þ 1

3
f 3 xð Þ

	 

. Constraint (c) is redundant, i.e., it does not

contribute to define the indifference region associated with the efficient solution

(x4, x2)¼ (18, 6), (z1, z2, z3)¼ (24, 66, 66). Therefore, the corresponding nonbasic

variable s1 is not efficient.

Constraints (a), (b) and (d) correspond to edges of the efficient region emanating

from the current vertex, solution D. “Crossing” these constraints leads to efficient

vertices adjacent to D. For instance, making x1 a basic variable leads to an adjacent
efficient basic solution (vertex) whose indifference region is contiguous to D and

delimited by constraint
13

2
λ1 þ 4λ2 � 9

2
(opposite to (a) above). Therefore, x1, as

well as x3 and s2 (but not s1), are efficient nonbasic variables because, when

becoming basic variables, each one leads to an adjacent efficient vertex solution

(with the corresponding indifference region) through an efficient edge, i.e., an edge

1

1

(d)

(a)

(b)

D

λ1

λ2Fig. 3.10 Indifference

region associated with

efficient basic solution D
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composed of efficient solutions only. Note that there may exist an edge connecting

two efficient vertex solutions that is not composed of efficient solutions.

Efficient nonbasic variables can be identified in the multiobjective simplex

tableau. In problems with two or three objective functions, efficient nonbasic

variables can also be recognized from the display of indifference regions in the

parametric (weight) diagram.

3.3 Minimizing a Distance/Achievement Function

to a Reference Point

The minimization of the distance, according to a certain metric, of the feasible

region to a reference point defined in the objective function space can be used to

compute nondominated solutions.

The ideal solution z* is often used as reference point. The rationale is that it

offers the best value for each evaluation dimension reachable in the feasible region,

since its components result from optimizing individually each objective function. If

the reference point represents an attainable outcome, the scalarizing function is

called an achievement scalarizing function, as it aims to reach or surpass the

reference point.

3.3.1 A Brief Review of Metrics

A metric is a distance function that assigns a scalar z1 � z2


 

 2ℝ to each pair of

points z1, z2 2ℝn (where n is the dimension of the space).

For the Lq metric the distance between two points in ℝn is given by:

z1 � z2


 



q
¼

Xn
i¼1

z1i � z2i
�� ��q" #1=q

q 2 1; 2; . . .f g

z1 � z2


 



1 ¼ max
i¼1, ..., n

z1i � z2i
�� ��

The loci of the points at the same distance from z* (isodistance contour),

according to the metrics L1, L2 and L1 are displayed in Fig. 3.11.

In Fig. 3.12 a, b and c, points A, B and C minimize the distance of region Z to z*,

using the metrics L1, L2 and L1, respectively.

The metrics L1, L2 and L1 are especially important. L1 is the sum of all

components of z1 � z2
�� ��, i.e., the city block distance in a “rectangular city” as

Manhattan. L2 is the Euclidean distance. L1 is the Chebyshev distance in which
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only the worst case is considered, i.e., the largest difference component in

z1 � z2
�� ��.

A weighted family of Lλq metrics can also be defined, where the vector λ � 0 is

used to assign a different scale (or “importance”) factor to the multiple components:

z1 � z2


 

λ

q
¼

Xn
i¼1

λi z1i � z2i
�� ��� �q" #1=q

q 2 1; 2; . . .f g

z1 � z2


 

λ

1
¼ max

i¼1, ..., n
λi z1i � z2i
�� ��

The loci of points at the same distance of z*, according to the weighted Lλ1, L
λ
2,

and Lλ
1 metrics are illustrated in Fig. 3.13, representing the isodistance contour for

each metric with λ1< λ2.
The external isodistance contour Lλ,ρ1 presented in Fig. 3.14 regards to

z1 � z2


 

λ

1
+

X2
i¼1

ρi z1i � z2i
�� ��, with a small positive ρi, which can be seen as a

combination of Lλ
1 and Lλ1 metrics. This is generally called the augmented weighted

Chebyshev metric, Lλ,ρ1 .

Although Lλq, for q 2 1; 2; . . .f g, can be used to determine nondominated solu-

tions by solving scalar problems involving the minimization of a distance to

a reference point, we will formally present only the case using the Chebyshev

metric (Lλ
1). This metric is important since it captures the attitude of minimizing the

largest difference, i.e., the worst deviation, to the value that is desired in all

evaluation dimensions. In general, the Lλ,ρ1 metric is used to guarantee that the

solutions obtained are nondominated and not just weakly nondominated.

z*

L1

L2

L∞

f2

f1

Fig. 3.11 Loci of

equidistant points from z*

for L1, L2 and L1 metrics
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f 2

f1

z*

z1*

z2*

Z
A•

L1

(a)

f2

f1

z*

z1*

z2*

Z
B

90°

L2

(b)

f2

f1

z*

z1*

z2*

Z C

45°

•

L∞

(c)

Fig. 3.12 Nondominated

solutions that minimize the

distance to the ideal solution

according to L1, L2 and L1
metrics. (a) Point A

minimizes the distance to z*

according to the L1 metric.

(b) Point B minimizes the

distance to z* according to

the L2 metric. (c) Point C

minimizes the distance to z*

according to the L1 metric
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Proposition 3

If x12X is a solution to the problem (3.3)

min
x2X

max
k¼1, ..., p

λk z*k � f k xð Þ� � �
Xp
k¼1

ρk f k xð Þ
( )

, for someλ � 0 ð3:3Þ

where the ρk are small positive scalars, then x1 is an efficient solution to the

multiobjective problem.

This surrogate problem entails determining the feasible solution that minimizes

the distance based on an augmented weighted Chebyshev metric to the ideal

solution.

The truthfulness of Proposition 3 can be shown as follows. Let us suppose that x1

is not an efficient solution and is optimal to problem (3.3), with

max
k¼1, ..., p

λk z*k � f k xð Þ� � ¼ v1. Therefore, there is a solution x2 such that

f k x2ð Þ � f k x1ð Þ, k¼ 1,. . ., p, and the inequality is strict for at least one k. In

these circumstances, λk z*k � f k x2ð Þ� � � v1, k¼ 1, . . ., p, and

z*

L1

L2

L∞

λ
λ

λ

f1

f2Fig. 3.13 Loci of points

equidistant from z*, for Lλ1,

Lλ2 and L λ
1 metrics

z*

λ
∞L

ρλ
∞

,L

f1

f2Fig. 3.14 Loci of points

equidistant from z*, for L λ
1

and Lλ,ρ1
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Xp
k¼1

ρk f k x2ð Þ >
Xp
k¼1

ρk f k x1ð Þ. Hence, x1 would not be optimal to (3.3), which

contradicts the hypothesis. Therefore, x1 has to be efficient.

Proposition 3 also establishes a necessary condition for efficiency in MOLP, for

sufficiently small ρk. Therefore, this scalarizing technique enables to obtain the

entire set of efficient/nondominated solutions to a MOLP problem.

The computation process is illustrated in Fig. 3.15. Point D is the solution that

minimizes the distance to z*according to Lλ,ρ1 (3.3) or Lλ
1 ((3.3) without the termXp

k¼1

ρk f k
�
xÞ), considering a particular weight vector λ, where λ1< λ2. Note

that
dv
dh

¼ λ1
λ2
.

The term
Xp
k¼1

ρk f k
�
x
�
is used to avoid solutions that are only weakly efficient

when the scalarizing problem (3.3) has alternative optimal solutions (Fig. 3.16).

Considering λ1¼ 0, all solutions on the horizontal line passing through z* are

equidistant from z* according to Lλ
1. The consideration of Lλ,ρ1 enables to obtain

the strictly nondominated solution A.

Problem (3.3) is equivalent to the programming problem (3.4):

f2

f1

z*

z1*

z2*

Z D

dv
dh

λ
∞L

ρλ
∞
,L

Fig. 3.15 Minimizing the

augmented weighted

Chebyshev distance

Z

z*

f1

f2

Contour of a weighted

Chebyshev metric

Contour of an augmented

weighted Chebyshev metric

A

Fig. 3.16 Illustration of the

weighted Chebyshev metric

and the augmented

weighted Chebyshev metric
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min v�
Xp
k¼1

ρk f k
�
x
�( )

s.t.

λk z*k � f xð Þ� � � v k ¼ 1, . . . , p
x 2 X
v � 0

ð3:4Þ

Other reference points can be used. The components of the reference point

represent the values that the DM would like to attain for each objective function.

For this purpose the ideal solution z* is interesting because its components are the

best values that can be reached for each objective function in the feasible region.

Figure 3.17 displays the computation of nondominated solutions by minimizing

an augmented weighted Chebyshev distance to the unattainable reference point q.

In the example of Fig. 3.17, minimizing a (non-augmented) Chebyshev distance

would enable to compute all solutions on segment [AB]; however, these solutions

are just weakly nondominated except solution B, which is strictly nondominated.

If the reference point is in the interior of the feasible region, i.e., it is dominated,

it is no longer possible to consider a Chebyshev metric, but this technique for

computing nondominated solutions is still valid considering the auxiliary variable

v unrestricted in sign in problem (3.4). In these circumstances, this is an achieve-
ment scalarizing program. Figure 3.18 shows the projection of a reference point

q located in the interior of the feasible region onto the nondominated frontier. z1 is

the nondominated solution that is obtained through the resolution of problem (3.4),

with q replacing z* and considering variable v unrestricted in sign. In the case

illustrated in Fig. 3.18, λ1< λ2.
This technique for computing nondominated solutions is valid for more general

cases than MOLP.

f 2

f1

q

Z

ρ
∞
,λL

BA

Fig. 3.17 Minimizing an

augmented weighted

Chebyshev distance to a

reference point
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Figure 3.19 illustrates a nonlinear problem: the point that minimizes the distance

to the reference point q, using the augmented weighted Chebyshev metric, is a

nondominated solution (point X0). Changing the weights, all nondominated solu-

tions can be computed, i.e., solutions on the arcs B0A0, except B0 (which is weakly

nondominated) and C0D0. Note that q> z* is necessary to guarantee that D0 and A0

are obtained.

Figure 3.20 illustrates the integer programming case. Using the (augmented)

weighted Chebyshev metric it is possible to reach all nondominated solutions

including unsupported solution C. Note that C was unreachable by optimizing

weighted sums of the objective functions (Fig. 3.6).

A'

B'

C'

D'

f2

Z

•

•

• • q
•

X'

f1

Fig. 3.19 Finding

nondominated solutions in a

nonlinear problem using the

augmented weighted

Chebyshev metric

f2

f1

q

Z

z1

Fig. 3.18 Projection of a

dominated reference point

located in the interior of the

feasible region onto the

nondominated frontier
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3.4 Classification of Methods to Compute Nondominated

Solutions

Different classifications of MOP methods have been proposed according to several

parameters, such as the degree of intervention of the DM, the type of modeling of

the DM’s preferences, the number of decision makers, the inputs required and the

outputs generated, etc. (Cohon 1978; Hwang and Masud 1979; Chankong and

Haimes 1983; Steuer 1986).

The classification based on the degree of intervention of the DM establishes, in

general, the following categories:

(a) A priori articulation of the DM’s preferences. Once the method is chosen (and

possibly some parameters are fixed), the preference aggregation is established.

(b) Progressive articulation of the DM’s preferences. This occurs in interactive

methods, which comprise a sequence of computation phases (of nondominated

solutions) and dialogue phases. The DM’s input in the dialogue phase in face

of one solution (or a set of solutions in some cases) generated in the compu-

tation phase is used to prepare the next computation phase with the aim to

obtain another nondominated solution more in accordance with his/her

expressed preferences. The characteristics of the dialogue and computation

phases, as well as the stopping conditions of the interactive process, depend on

the method. Chap. 4 is entirely devoted to interactive methods.

(c) A posteriori articulation of the DM’s preferences. This deals with methods for

characterizing the entire set of nondominated solutions, and the aggregation of

the DM’s preferences is made in face of the nondominated solutions obtained.

The classification based on the modeling of the DM’s preferences generally

considers the establishment of a global utility function, priorities between the

objective functions, aspiration levels or targets for the objective functions, pairwise

comparisons (either of solutions or objective functions) or marginal rates of

substitution.

q

f1

f2

A

B

C
D

Fig. 3.20 The augmented

Chebyshev metric in integer

programming
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The classification based on the number of decision makers encompasses the

situations where a single or several DM are at stake.

The classification based on the type of inputs required and outputs generated

consider the type and reliability of data, the participation of the DM in the modeling

phase, either the search for the best compromise nondominated solution or a

satisfactory solution, selecting, ranking or clustering the solutions.

Other classifications of MOP methods are used according to the fields of

application (e.g., systems engineering, project evaluation, etc.).

3.5 Methods Based on the Optimization of an Utility

Function

In this type of approach, an utility function U[ f1(x), f2(x), . . ., fp(x)] is built. If

(concave) function U satisfies certain properties, the optimum of U[f(x)] belongs to

the set of nondominated solutions (Steuer 1986). In Fig. 3.21 an illustrative

example is presented.

The curves U[ f1(x), f2(x), . . ., fp(x)]¼ κi, with κi constant, are called indifference
curves, and the point belonging to the nondominated solution set which is tangent to

one indifference curve is called compromise point (Fig. 3.21).

The utility functions may have the following structure:

U f 1 xð Þ, f 2 xð Þ, . . . , f p xð Þ� � ¼ U1 f 1 xð Þ½ � þ . . . þ Up f p xð Þ� �
The weighted-sum of the objective functions may be faced as a particular case of

this utility function structure. The “relative importance” of the objective functions

may be taken into account through the assignment of a weight vector. If the problem

under study is linear and U[f(x)] is linear then the problem to be solved is also a

single objective LP problem.

Z

f1

f2
U[f1(x),f2(x)]=κ2

U[f1(x),f2(x)]=κ1

Fig. 3.21 Example of the

use of utility functions
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3.6 The Lexicographic Method

In this method the objective functions are ranked according to the DM’s preferences
and then they are sequentially optimized. In each step, an objective function fk(x) is
optimized and an equality constraint is added to the next optimization problems

taken into account the optimal value obtained ( f k xð Þ ¼ z*k ). In some cases the

constraint is not an equality, i.e., deviations w. r. t. the obtained optima are allowed.

Note that by adopting the first option, if the optimum of the first ranked objective

function is unique, then the procedure stops. This method may be considered an a

priori method just requiring ordinal information.

3.7 Goal Programming

Goal programming may be viewed as the “bridge” between single objective and

MOP, namely concerning reference point approaches. The aim is to minimize a

function of the deviations regarding targets (O1, . . .,Op) established by the DM for

the objective functions. A possible formulation consists in the minimization of a

weighted sum of the deviations, with non-negative weights αk and βk:

min
Xp
k¼1

�
αk d

�
k þ βk d

þ
k

�

s. t.

f k xð Þ þ d�k � dþk ¼ Ok k ¼ 1, . . . , p
x 2 X
d�k � 0, dþk � 0 k ¼ 1, . . . , p

where d�k and dþk are negative and positive deviations regarding goal k, respectively.
The targets established by the DM may lead to a dominated solution to the

problem under study if the DM is not sufficiently ambitious in specifying his/her

goals. In this case, the goal programming model leads to a satisfactory solution, but

it may not belong to the nondominated solution set. For further details about

different versions of goal programming see, for example, Steuer (1986) or

Romero (1991).

3.8 The Multiobjective Simplex Method for MOLP

The algorithms based on the extension of the simplex method for computing the set

of efficient vertices (basic solutions) in MOLP can be structured as follows:
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(a) Computation of an efficient vertex. For instance, this can be done by optimiz-

ing a weighted-sum of the objective functions as explained above.

(b) Computation of the remaining efficient vertices by

1. computing the adjacent efficient bases (Zeleny 1974; Yu and Zeleny 1975;

Steuer 1986);

2. computing the adjacent efficient vertices (Evans and Steuer 1973; Steuer

1986).

3. using a parametric technique.

In (b1) and (b2) a theorem presented, for instance, in Yu and Zeleny (1975) is

used, which establishes the proof that the set of efficient basic solutions is

connected1. This means that the entire set of efficient bases (or vertices) can be

obtained, by exhaustively examining the adjacent bases of the set of efficient bases

that are progressively obtained starting from the initial one, computed in (b).

Steuer (1986) and Zeleny (1974) use an efficiency test to verify whether each

basis (or each vertex) under analysis is efficient or not.

Zeleny (1974) establishes several propositions aimed at exploring the maximum

information contained in the multiobjective simplex tableau. This is an extension of

the simplex method considering one additional row for each objective function and

avoiding, whenever possible, unnecessary pivoting operations and the application

of the efficiency test.

3.9 Proposed Exercises

1. Consider proposed exercise 1, Chap. 2.

(a) Formulate the problem to determine the solution that minimizes the dis-

tance to the ideal solution, according to the L1 metric. Obtain graphically

and analytically (using an LP solver) the solution to this problem.

(b) Obtain graphically the solution that minimizes the distance to the ideal

solution according to the L1 metric. Identify the efficient nonbasic variables

for this solution

2. Consider proposed exercise 2, Chap. 2.

(a) Find the indifference regions in the parametric (weight) diagram

corresponding to the efficient basic solutions that optimize each objective

function individually.

(b) For each solution determined in (a), identify the efficient nonbasic variables

1 Let S ¼ xi : i ¼ 1, . . . , sf g be the set of efficient basic solutions of X. This set is connected if it

contains only one element or if, for any two points xj, xk 2 S, there is a sequence

xi1 ; . . . ; x‘; . . . ; xir
� �

in S, such that x‘ and x‘þ1, ‘ ¼ i1, . . . , ir�1, are adjacent and

xj ¼ xi1 , xk ¼ xir .
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3. Consider proposed exercise 3, Chap. 2.

(a) Formulate the problem to determine the efficient solution that minimizes

the distance to the ideal solution, according to the L1 metric. Solve this

problem graphically.

(b) Represent qualitatively the parametric (weight) diagram decomposition,

considering all the indifference regions.

(c) Determine graphically the nondominated solution obtained by the e-con-
straint technique when f1(x) is optimized and f2(x)� 3.

4. Consider the MOLP model with three objective functions:

max f 1 xð Þ ¼ 2x1 þ x2 þ 3x3 þ x4

max f 2 xð Þ ¼ 2x1 þ 4x2 þ x3 � x4

max f 3 xð Þ ¼ x1 þ 2x2 � x3 þ 5x4

s: t: x1 þ 2x2 þ 3x3 þ 4x4 � 40

4x1 þ 4x2 þ 2x3 þ x4 � 40

x1 � 0 , x2 � 0 , x3 � 0 , x4 � 0

(a) Find the indifference region corresponding to the efficient solution that

optimizes objective function f2(x).
(b) What are the efficient nonbasic variables for that solution? Support your

analysis on the weight space.

(c) Consider the following auxiliary problem:

min v

s: t: x 2 X original feasible regionð Þ
vþ 2x1 þ 4x2 þ x3 � x4 � 35

vþ 2x1 þ x2 þ 3x3 þ x4 � 5

vþ x1 þ 2x2 � x3 þ 5x4 � 15

v � 0

Is the solution to this auxiliary problem a (strictly) nondominated solution to

the multiobjective problem? If not, what changes should be made in the formu-

lation of this auxiliary problem in order to guarantee obtaining a (strictly)

nondominated solution?
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5. Discuss the following statements, stating whether they are true or false, and

presenting a counter example if they are false. Use graphical examples if that

facilitates the analysis.

(a) It is always possible to define x* (in the decision space), such that z*¼ f(x*),

where f(x)¼ [ f1(x), f2(x),. . ., fp(x)].
(b) In a MOLP problem, the solution obtained by minimizing the distance to

a reference point according to the L1 metric is always a vertex of the

original feasible region.

(c) In a MOLP problem, the solution obtained by minimizing the distance to a

reference point according to the L1 metric is always a vertex of the original

feasible region.

(d) When an additional constraint is introduced into a MOLP problem, it is

possible to obtain nondominated solutions to the modified problem that are

dominated in the original problem.

(e) In a MOLP problem with p objective functions it is possible that the whole

feasible region is efficient.

(f) The solutions located on an edge that connects two nondominated vertices

are also nondominated.

(g) Consider a MOLP problem with three objective functions, where three

nondominated basic solutions are known. The optimization of a scalarizing

function whose gradient is normal to the plane that includes these three

solutions always guarantees obtaining a nondominated solution.

(h) Consider the MOLP problem:

max f 1 xð Þ ¼ c1x

max f 2 xð Þ ¼ c2x

max f 3 xð Þ ¼ c3x

s: t: x 2 X� Ax ¼ b, x � 0f g;

where x (n� 1), ck (1� n), A (m� n) and b (m� 1)

(h.1) Is it possible to obtain a nondominated solution that maximizes f3(x)
with λ3¼ 0, by solving the weighted-sum problem

max λ1c1xþ λ2c2xþ λ3c3x
s: t: x 2 X

with (λ1, λ2, λ3) 2Λ� {λk� 0, k¼ 1, 2, 3, and λ1 + λ2 + λ3¼ 1}?

If this assertion is true, then represent one possible parametric

(weight) diagram decomposition in this condition.
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(h.2) In what conditions is it possible to guarantee that the optimal solution

to

max λ1c1xþ λ2c2xþ λ3c3x
s: t: x 2 X

is a nondominated solution to the three objective original problem?

6. Consider the following MOLP problem:

max f 1 xð Þ ¼ 1:5 x1 þ x2
max f 2 xð Þ ¼ x2 þ 2x3
max f 3 xð Þ ¼ x1 þ x2 þ x3
s:t: x1 þ x2 þ x3 � 8

x1 þ 2x3 � 2

x1 � 0, x2 � 0, x3 � 0

(a) Compute the nondominated solution that maximizes a weighted-sum of the

objective functions assigning equal weight to all objectives.

(b) Represent the corresponding indifference region in the parametric (weight)

diagram.

(c) Compute a nondominated solution which is adjacent to the one computed in

(a) improving objective function f1(x).
(d) Specify the values of the objective functions of a nondominated nonbasic

solution, whose value for f1(x) is an intermediate value between the ones of

the solutions obtained in (a) and in (c).

7. Consider the following MOLP problem:

max f 1 xð Þ ¼ x2
max f 2 xð Þ ¼ x1 þ 3x2
max f 3 xð Þ ¼ 2x1 � x2
s:t: 3x1 þ x2 � 30

x1 þ x2 � 20

x1 � 8

x1 � 0, x2 � 0

The decomposition of the parametric (weight) diagram associated with the

efficient vertices of the problem is displayed in the triangle.
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What conclusions about the problem can be drawn from this decomposition?

8. Consider the following MOLP problem:

max f 1 xð Þ ¼ 3x1 þ x2
max f 2 xð Þ ¼ x1 þ 2x2
max f 3 xð Þ ¼ �x1 þ 2x2
s:t: � x1 þ x2 � 2

x1 þ x2 � 7

0:5x1 þ x2 � 5

x1, x2 � 0

(a) Represent graphically the set of efficient solutions.

(b) Suppose one wants to find the nondominated solution that minimizes the

distance to the ideal solution by using a weighted Chebyshev metric.

Formulate this problem, knowing that the ideal solution is z*¼ (21, 10,

6) and considering the following (non-normalized) weights: λ1¼ 1, λ2¼ 2,

λ3¼ 1.

(c) Consider the following reference point in the objective space, q¼ (14, 8, 0),

belonging to the interior of the feasible region. Solution (xa, za), with xa

¼ (4.2, 2.8) and za¼ (15.4, 9.8, 1.4), is optimal to the following problem:

min v
s: t: λ1 14� 3x1 � x2ð Þ � v

λ2 8� x1 � 2x2ð Þ � v
λ3 0þ x1 � 2x2ð Þ � v
x 2 X X is the feasible region defined aboveð Þ
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withλ ¼ 1, 1, 1ð Þ:

Identify how the variation trends of the objective function values evolve,

regarding za, when the previous problem is solved, but considering

λ¼ (2, 1, 1).

9. Ten vertex nondominated solutions to a three objective LP with fk(x), k¼ 1,2,3,

were calculated using the weighted-sum scalarization, for which the corres-

ponding indifference regions on the weight space are displayed.
λ2

λ1λ3

10

2

4

6 5
8

7 9 11

1

3

(a) Characterize all nondominated edges and faces using the vertices.

(b) Are there nondominated solutions that are alternative optima of any objec-

tive function?

(c) What are the nondominated vertices that can still be obtained with the

weight constraints λ3� λ2� λ1?
(d) What are the vertices of this three objective problem that are dominated in

all 3 bi-objective problems that can be formed (i.e., f1(x) and f2(x), f1(x) and
f3(x), f2(x) and f3(x))?

(e) Sketch the decomposition of the weight space for the problem with the

objective functions f2(x) and f3(x). How do you classify solution 10 in this

problem?
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Chapter 4

Interactive Methods in Multiobjective Linear

Programming

4.1 Introduction

In multiobjective programming problems, the methods dedicated to the generation

of the whole set of nondominated solutions are in most cases inadequate from a

practical point of view. In general, in real world models, the computational burden

required for computing the entire set of nondominated solutions is too high.

Moreover, proposing hundreds or thousands of solutions to a decision maker

(DM) is not useful for the exploitation of results in practice, even limiting the

computation to a subset of the nondominated solutions, for instance vertices of the

feasible region in MOLP problems.

The use of utility function methods also does not seem the most adequate

approach. In this case, although the model includes more than one objective

function, their aggregation is made a priori, without further intervention of the

DM after the definition of the utility function.

In our opinion, interactive methods enabling the progressive articulation of the

DM’s preferences are, in general, the most appropriate for decision support based

on MOP models. Interactivity implies a succession of computation and dialogue

phases. After each computation phase, one (or several) nondominated solution(s) is

(are) proposed to the DM. He/she reacts providing the necessary information to start

a new computation phase or deciding to stop the procedure, namely considering that

sufficient information has been gathered to support the choice of a compromise

solution.

The procedure for articulating the computation and dialogue phases allows

classifying the interactive methods into two broad categories. The first encom-

passes interactive methods that constitute an evolution of the utility function

methods, that is, methods where it is assumed that a DM’s implicit utility function

exists but he/she is not able to make it explicit. In this case, the role of the

interactive protocol is essentially to discover the optimum (or an approximation
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of it) of the implicit utility function, through a dialogue scheme. In opposition to

this vision, free search methods do not have the purpose of converging to the

optimum of any utility function, even an implicit one. Instead, the interactive

protocol has an essential purpose, i.e. building progressively the DM’s preferences
in the nondominated solution set and not following a completely structured

approach (Vincke 1992). Using the Feyerabend’s (1975) terminology, a guided
exchange underlying the first attitude is replaced by an open exchange, which is

typified in the following way: “An open exchange is guided by a pragmatic
philosophy. The tradition adopted by the parties is unspecified in the beginning
and develops as the exchange proceeds. The participants get immersed into each
other’s ways of thinking, feeling, perceiving to such an extent their ideas, percep-
tion, world views may be entirely changed”. These ideas are associated with group

decision procedures; however, in our opinion, they are also well suited to interac-

tive methods for multiobjective decision support based on a learning paradigm. In

fact, in this type of approaches there is no place for mathematical convergence; the

procedure stops when one or several satisfactory nondominated solution(s) is(are)

obtained. In many cases, it is even excessive to call them methods, being essentially

interactive computational environments, particularly adapted to the inclusion in

decision support systems dedicated to a progressive and selective search for

nondominated solutions in MOLP models.

In the illustrative study of the iMOLPe software package in Chap. 5, these issues

are highlighted by offering several methods or procedures, since there is no method

(or procedure) that performs best in all circumstances. Although iMOLPe can be

used with different underlying strategies, it is our conviction that the search should

be initiated by computing a set of, as much as possible, well distributed

nondominated vertices. For this purpose, the optimization of weighted-sums of

the objective functions seems adequate. In a second phase, the scope of the search

can be delimited through the introduction of additional constraints on objective

function values, according to the DM’s indications in face of the information

gathered. New solutions can then be computed in a reduced search region by

combining, for instance, the optimization of weighted-sums of the objective func-

tions with the minimization of a Chebyshev distance to a reference point.

A possible classification of interactive methods is based on the strategy for

narrowing the scope of the search, the scalarizing problem used to (temporarily)

aggregate the objective functions, and the flexibility offered to the DM’s interven-
tion to input his/her preference information (which in turn determines the reduction

of the scope of the search). According to the progressive reduction of the search

space, the following techniques may be distinguished: reduction of the feasible

region, reduction of the weight space, reduction of the criterion cone (the cone

spanned by the objective function gradients) and directional search. The three main

scalarizing techniques used to compute nondominated solutions are the ones

presented in Chap. 3: optimizing one of the objective functions and transforming

the remaining into constraints, optimizing a weighted-sum of the objective func-

tions, minimizing a distance/achievement function to a reference point. Regarding

the flexibility offered to the DM to express his/her preferences, the interactive
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approaches may be classified according to their more or less rigid structure, i.e. the

DM may intervene to require a certain operation at any point in the process or

he/she needs to follow a predetermined sequence of steps.

In this chapter, five multiobjective interactive methods for MOLP problems,

which are representative of different strategies of search, are described and illus-

trated using several examples. These methods are discussed having in mind the two

broad categories previously mentioned, the procedures for the computation of

nondominated solutions and strategies for reducing the scope of the search.

4.2 STEM Method

4.2.1 General Description

The Step Method (STEM) developed by Benayoun et al. (1971) is an interactive

method that progressively reduces the feasible region.

In each computation phase a compromise solution is computed by minimizing a

weighted Chebyshev distance to the ideal solution. If the objective function values

are considered satisfactory, the procedure stops; otherwise, the DM should specify

the amount that he/she is willing to sacrifice (relax) in the objective function whose

value he/she considers satisfactory, in order to improve the objectives whose values

are not yet acceptable. The feasible region is then progressively reduced, through

limitations on the objective function values based on the relaxation amounts

specified by the DM, and the procedure proceeds.

4.2.2 STEM Algorithm

Step 1

The objective functions are individually optimized to build the pay-off table.
Set h ¼1 (iteration counter).

Step 2

Compute the weights βk, using the values of the pay-off table. These weights are

used in the computation phase. Their purpose is to take into account the orders of

magnitude and the range of the objective function values in the computation of the

nondominated solution that minimizes a weighted Chebyshev distance to the ideal

solution.
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βk¼

z*k�nk
z*k

Xn
j¼1

ckj
� �2" #�1

2

if z*k > 0

nk � z*k
nk

Xn
j¼1

ckj
� �2" #�1

2

if z*k � 0

8>>>>>>><
>>>>>>>:

k ¼ 1, . . . , p

Að Þ Bð Þ

ð4:1Þ

where nk is the lowest value of the k column of the pay-off table. Note that nk is an
approximation to the minimum (worst value) of the objective function fk(x) in the

feasible region. The term A in (4.1) privileges objective functions with higher

relative variations in the nondominated region. The term B is a normalization factor

concerning the objective function gradients, using the L2 norm.

Step 3

The set R includes the indices of the objective functions relaxed until the current

iteration. In the first iteration R¼∅ and X(1) � X, where X designates the feasible

region.

The weights used in the weighted metric L1, for the current iteration (h), are:

α hð Þ
k ¼

0 if k 2 R

βkXp
i¼1

βi

if k=2R

8>>>><
>>>>:

Note that the weights αðhÞk corresponding to the objective functions relaxed until

iteration h are set to zero.

The weights αðhÞk are normalized by making
Xp
i¼1

α hð Þ
i ¼ 1:

α hð Þ
k  

α hð Þ
kXp

i¼1
α hð Þ
i

k ¼ 1, . . . , p

Step 4

In the computation phase, the linear problem that minimizes the weighted

Chebyshev distance to the ideal solution is solved:
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min v
s:t: v � α hð Þ

k z*k � ckx
� �

, 1 � k � p

x 2 X hð Þ

v � 0

In the dialogue phase, the solution z hð Þ ¼ f x hð Þ� � ¼ ckx
hð Þ, resulting from the

resolution of the problem in iteration h, is presented to the DM. x(h) is the point of

the reduced feasible region X(h) corresponding to the point z(h) closer to z*,

according to the weighted Chebyshev metric.

Step 5

If the DM considers this solution satisfactory or h¼ p, the procedure stops with

(x(h), z(h)) as the final solution.

Otherwise, the DM is asked to indicate which objective function fi(x) (R R[
{i}) he/she is willing to sacrifice, and the maximum amount Δi to be relaxed, in

order to try to improve the functions whose values he/she did not yet consider

satisfactory.

Set h h +1.

Step 6

Based on the information gathered in the dialogue phase, the new computation

phase is prepared by building the new reduced feasible region through the imposi-

tion of constraints on the objective function values. The reduced feasible region will

then incorporate the constraints:

f i xð Þ¼cix�z hð Þ
i �Δi corresponding to the objective function relaxed in iteration hð Þ

f k xð Þ¼ckx�z hð Þ
k , k 6¼i

Return to step 3.

The working mechanism of the STEM method is displayed in the block diagram

in Fig. 4.1.

4.2.3 Final Comments

Although in the version originally presented by the authors of the method each

objective function can only be relaxed once and in a given iteration just one

objective function can be relaxed, nothing prevents the elimination of these limi-

tations to make the method more flexible. Nevertheless, changing the original

version in that way the algorithm loses one of the essential characteristics claimed

by the authors, which is converging to a final solution in a maximum number of

p iterations. This characteristic was relevant by the time this method was devel-

oped, not only due to the computational limitations but also because the idea that
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interactive methods should converge to a certain optimal solution was prevailing.

As it was seen in the introduction of this chapter, methods with these characteristics

can be integrated in a flexible and learning oriented manner during the decision

support process. By allowing more than one objective function to be relaxed in each

iteration and to review the relaxed amount of the objective functions in subsequent

iterations, a learning oriented procedure is built, which stops when the DM

START

The

DM is willing

to relax an objective

function trying to

improve

other objective

function(s)    

STOP
No

Yes

Specify the objective function and the amount to be relaxed  

h←h+1

Update X (h) and

αk
(h), k=1, ..., p  

X (1)–Original feasible region 

h=1 
Compute αk

(1), k=1, ..., p    

Find the nondominated solution for iteration h  

z(h), considering X (h) and αk
(h), k =1, ..., p     

h = p ? 

No

Yes

Fig. 4.1 STEM block diagram
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considers having obtained a satisfactory solution. In this way the imposition of

irrevocable decisions is avoided and, in particular, the obligation of establishing in

a rigid manner (without the possibility of re-evaluation) the amounts being relaxed

can be made smoother.

This method is very easy to implement with a standard linear programming code,

and the search is not limited to the nondominated vertices of the feasible region

(due to the procedure used for computing nondominated solutions). Note that, in the

version herein presented, it is possible to obtain weakly nondominated solutions

because the non-augmented weighted Chebyshev metric is used in Step 4. This

issue, which is illustrated in Fig. 4.7, can be overcome using the augmented

weighted Chebyshev metric (cf. Chap. 3).

4.2.4 Illustrative Example of the STEM Method

Consider the following problem, with two objective functions being maximized:

max z1 ¼ f 1 xð Þ ¼ 3x1 þ x2
max z2 ¼ f 2 xð Þ ¼ x1 þ 4x2
s:t: �x1 þ x2 � 2

x1 þ x2 � 7

x1 þ 2x2 � 10

x1, x2 � 0

Since this problem has two decision variables and two objective functions, the

decision variable space (Fig. 4.2) and the objective function space (Fig. 4.3) can be

easily visualized.

The STEM method starts by individually optimizing each objective function in

the original feasible region of the multiobjective problem.With this information the

pay-off table is built. In this problem it is possible to see graphically that A (A0) is
the solution that optimizes f1(x) and C (C0) optimizes f2(x). Thus, the pay-off
table is:

The ideal solution is z* ¼ z*1, z*2
� � ¼ 21, 18ð Þ.

The weights βk are:

z1 z2
A0 21 7

C0 10 18
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β1 ¼
21� 10

21

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 12

p
 !

¼ 0:1656

β2 ¼
18� 7

18

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 42

p
 !

¼ 0:1482

First Iteration

Let h be the iteration counter. Set h¼ 1.

The feasible region of the first iteration X(1) is the initial feasible region X.

x1

x2

(0,0)

E

X
D

(0,2)

(2,4)

(4,3)

(7,0)

C

B

A

f2

f1

Fig. 4.2 Decision space

f1

f2

(0,0)

E’

ZD’ (2,8)

(10,18)

(15,16)

(21,7)

C’

B’

A’

z* 

(21,18)

Fig. 4.3 Objective function space
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R¼Ø (set of the indices of the functions relaxed so far).

The weights αk are:

α 1ð Þ
1 ¼

β1
β1 þ β2

¼ 0:528

α 1ð Þ
2 ¼

β2
β1 þ β2

¼ 0:472

In order to find the solution that minimizes the weighted Chebyshev distance to

the ideal solution, the following scalarizing problem is solved:

min v
s:t: 0:528 21� 3x1 þ x2ð Þð Þ � v

0:472 18� x1 þ 4x2ð Þð Þ � v
�x1 þ x2 � 2

x1 þ x2 � 7

x1 þ 2x2 � 10

x1 � 0

x2 � 0

9>>>>=
>>>>;
original feasible region X

v � 0

This problem is equivalent to:

min v
s:t: 1:584x1 þ 0:528x2 þ v � 11:088

0:472x1 þ 1:888x2 þ v � 8:5
x 2 X
v � 0

The solution to this problem is x 1ð Þ ¼ 4:9, 2:1ð Þ, z 1ð Þ ¼ 16:8, 13:3ð Þ— see

Fig. 4.4.

Suppose that the DM considers the value of f1(x) satisfactory in this solution and
that he/she admits to worsen it by an amount not higher than 2.8, in order to try to

improve the value of f2(x).
Then, R¼ {1} and the amount being relaxed is Δ1¼ 2.8.

The feasible region of the next iteration, X(2), is defined adding to the

original constraints the following constraints: f 1 xð Þ � z
1ð Þ
1 � Δ1 and f 2 xð Þ � z

1ð Þ
2 ,

corresponding to f 1 xð Þ � 16:8� 2:8 and f 2 xð Þ � 13:3, respectively.
Then, X(2) is defined by:
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�x1 þ x2 � 2

x1 þ x2 � 7

x1 þ 2x2 � 10

3x1 þ x2 � 14

x1 þ 4x2 � 13:3
x1, x2 � 0

Figure 4.5 shows the reduced feasible region in the decision space.

Second Iteration

h ¼ 2;

α 2ð Þ
1 ¼ 0 because 1 2 R, that is, f 1 xð Þ has already been relaxedð Þ

α 2ð Þ
2 ¼ 1

Solve the following problem:

min v
s:t: 18� x1 þ 4x2ð Þ � v

x 2 X 2ð Þ

v � 0

The solution to this problem is x 2ð Þ ¼ 3:6, 3:2ð Þ (see Fig. 4.5), with z 2ð Þ ¼
14, 16:4ð Þ (see Fig. 4.6).

f1

f2

(0,0)
E’

Z=Z
D’ (2,8)

(10,18)

(15,16)

(21,7)

C’

B’

A’

z* 

(21,18)

z(1)

δ

γ

0.528γ = 0.472δ

(1)

Fig. 4.4 z(1) is the nondominated solution obtained in the initial iteration
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The procedure ends with (x(2), z(2)) as the final solution, since this problem has

two objective functions only and h¼ 2.

Suppose that the problem was slightly changed, with the second objective

function being z2 ¼ f 2 xð Þ ¼ x1 þ 2x2. Note that, in this case, alternative optimal

solutions to f2(x) are located on the edge CB (Fig. 4.7) and all solutions on this edge

are just weakly efficient, except B that is strictly efficient.

•

x1

x2

X

f2

f1

•

f (x) ≥14
1

f 2(x) ≥13.3

A(7,0)

B(4,3)

C(2,4)

D(0,2)

E(0,0)

x(2)

x(1)

X
(2)

Fig. 4.5 Reduced feasible region in the decision space after the first iteration
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f1(x) ≥14

f2(x) ≥13.3

Fig. 4.6 Reduced feasible region in the objective function space
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In the STEM method, this change would lead, after the first iteration, to the

situation presented in Fig. 4.7. As there are alternative optima to f2(x) in X, in the

second iteration it is possible to obtain x(2) that is just a weakly efficient solution.

This can be avoided, i.e. a strictly efficient solution can be enforced by “perturbing”

the Chebyshev scalarizing function as described in Chap. 3, so that the efficient

solution B is obtained.

4.3 Zionts and Wallenius Method

4.3.1 Introduction

The Zionts and Wallenius (1976, 1983) method progressively reduces the weight

space, according to the DM’s preferences in each interaction. These preferences are
expressed by answers regarding pairwise comparisons between solutions and judg-

ments about the marginal rates of variation of the objective functions associated

with the edges emanating from the current (basic) solution and leading to adjacent

nondominated (basic) solutions. In each computation phase a weighted-sum of the

objective functions is optimized.

The method introduces constraints on the weight space derived from the answers

given by the DM, thus progressively reducing the feasible domain for selecting a

new weight vector. The procedure stops when the weight space is reduced to a

sufficiently small region, so that it is possible to identify a final solution, or when

the information of preferences expressed by the DM indicates that the current

solution is the most interesting one. Then, it is assumed that the process converges
to the optimum of the DM’s implicit utility function or, more precisely, to the

nondominated vertex that leads to the highest value of that function. It is assumed

that the DM’s answers, in the dialogue phases, are coherent with that implicit utility

function, although in the case of inconsistency being detected (for instance,

B(4,3)

C(2,4)

D(0,2)

x1

x2

X

f2

f1x(1)
•

•x
(2)

X(2)

A(7,0)E(0,0)

Fig. 4.7 Weakly efficient

solutions
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revealed by the reduced weight space becoming empty) there is the possibility of

eliminating the oldest constraints until the weight space is non-empty again, thus

allowing to proceed the search.

4.3.2 Zionts and Wallenius Algorithm

The algorithm proposed in Zionts and Wallenius (1976,1983) is presented below. A

detailed study of this algorithm can be found in Steuer (1986).

Step 1

A weight vectorλ 1ð Þ 2 Λ ¼ λ 2 ℝp : λk > 0,
Xp
k¼1

λk ¼ 1

( )
(original weight space)

is chosen, and the following linear programming problem is solved:

max λ 1ð ÞCx
s:t: x 2 X

An efficient basic solution x(1) is obtained and the corresponding image in the

objective function space is the nondominated vector z 1ð Þ ¼ C x 1ð Þ.
Although any initial weight vector,λ 1ð Þ 2 Λ can be chosen, in general, the central

point of Λ : λ 1ð Þ ¼ 1
p ,

1
p , . . . ,

1
p

� �
is adopted.

Set h¼ 1 (iteration counter).

Step 2

The set of efficient nonbasic variables is split into two sub-sets, A and B:

– A designates the set of efficient nonbasic variables, which becoming basic lead to

efficient vertices attainable by optimizing weighted-sum functions with λ 2 Λ hð Þ.
In the first iteration Λ 1ð Þ ¼ Λ.

– B designates the set of efficient nonbasic variables that are not in A.

In order to find vertices adjacent to the current solution x
(h), it is necessary to

know the nonbasic variables that are efficient (making basic an efficient nonbasic

variable leads to an adjacent efficient vertex and the edge that connects the two

vertices also consists of efficient solutions). Zionts and Wallenius (1980) proposed

a routine for classifying nonbasic variables as to whether they are efficient or not.

This routine allows to determine the efficient nonbasic variables with respect to the

basis associated with the current solution x(h), as well as to build the sets A and B.
Let the set I¼A.

Step 3

The efficient basic solutions xadj adjacent to x(h) are computed by making basic each

efficient nonbasic variable belonging to I. This process is implemented through a

pivot operation in the multiobjective simplex tableau.
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The vectors of the objective function values zadj that are not sufficiently distinct

from z(h) are temporarily not considered. Two points in the objective function

space, zadj and z(h), are considered sufficiently distinct if there is a minimal

difference of 10 % between them in at least one of the objective function values

(this procedure avoids to compare very similar solutions concerning the objective

function values). This threshold can change according to the context of the problem.

Here, we have adopted the percentage of 10 % proposed by Steuer (1986).

For each point zadj, sufficiently distinct from z(h), the DM is asked to make

pairwise comparisons and express his/her preferences according to:

1. Yes — if the DM prefers the solution zadj adjacent to z(h).

2. No — if the DM prefers z(h) to zadj.

3. Does not know — if the DM is not able to express a preference.

The pairwise comparisons can be made for all the zadj sufficiently distinct from z(h),

or just until obtaining an affirmative answer (that is, until a zadj that the DMprefers to

z(h) is identified).

If the DM prefers a particular adjacent solution za instead of the current solution

z(h), then za is selected and the algorithm goes to step 7. Note that more than one

solution za may exist.

If there is no solution za, i.e. the DM prefers z(h), then the algorithm goes to

step 4.

Step 4

The algorithm reaches this step because there is no adjacent solution (sufficiently

distinct from the current one) that is preferred by the DM. At this stage, the DM has

the possibility of evaluating the interest of the marginal rates of variation of the

objective functions (trade-offs) along the nondominated edges leading to the

adjacent vertices not sufficiently distinct from the current one.

Regarding the set I, the vectors representing the marginal rates of variation of the

objective functions along the efficient edges are generated for all efficient nonbasic

variables the DM was not asked about in step 3 (i.e., the ones leading to adjacent

efficient solutions not sufficiently distinct as defined above). Note that the marginal

rates of variation through non-efficient edges are not investigated, although they

may lead to efficient vertices (see de Samblanckx et al. 1982).

Each vector of marginal rates of variation of the objective functions (w ¼W:j,

where xj is an efficient nonbasic variable1) is evaluated by the DM expressing

his/her preferences as follows:

1. Yes — if the DM accepts the marginal rate of variation.

2. No — if the DM does not accept the marginal rate of variation.

3. Does not know — if the DM is not able to express a preference.

1 In the multiobjective simplex tableau, the column of W corresponding to a nonbasic variable

indicates the objective function variations per unit of that nonbasic variable when it becomes basic.

It should be noted that, as introduced in Chap. 3, the positive values of the reduced cost matrix

W correspond to worsening the corresponding objective function values.
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If the DM accepts the marginal rate of variation associated with an unbounded

edge, the method stops with an unbounded solution.

If the DM accepts at least one of the marginal rates of variation corresponding to

a bounded edge, then the algorithm goes to step 7; otherwise, it proceeds to step 5.

Step 5

The algorithm reaches this step because there is no adjacent solution (sufficiently

distinct from the current one) preferred by the DM in comparison with the current

one, and because the marginal rates of variation along the efficient edges leading to

adjacent efficient vertices (not sufficiently distinct from the current one) are not

considered interesting.

Then, the DM has the opportunity of identifying the edges which he/she con-

siders to be interesting to go through, although the extreme points (vertices) of these

edges have not been preferred to the current solution according to the answers given

in the pairwise comparisons in step 3. That is, regarding the set I, the DM is asked to

specify if he/she accepts any marginal rate of variation associated with the efficient

edges leading to efficient vertices (which were not preferred in step 3) adjacent to

the current solution.

Each vector of marginal rates of variation in these conditions is evaluated by the

DM, expressing his/her preferences as follows:

1. Yes — if the DM accepts the marginal rate of variation.

2. No — if the DM does not accept the marginal rate of variation.

3. Does not know — if the DM is not able to express a preference.

If the DM accepts at least one of these marginal rates of variation, the algorithm

proceeds to step 7; otherwise, it goes to step 6.

Step 6

The algorithm reaches this step because there exists neither an adjacent solution

preferred to the current one, nor interesting marginal rates of variation of the

objective functions along the edges emanating from the current solution.

If I¼A, this means that all nonbasic variables have been examined, leading to all

the efficient solutions achievable in the current weight space, Λ(h).

Then, the algorithm makes I¼B, in order to examine the other sub-set of

efficient nonbasic variables, and returns to step 3. In this way, all efficient nonbasic

variables, corresponding to all efficient edges emanating from x(h), are examined

even if they lead to efficient vertices impossible to reach in Λ(h) (that is, not coherent

with the DM’s previous answers).
If I¼B, it means that all the adjacent vertices generated from the current

solution (by making basic an efficient nonbasic variable) and all the marginal

rates of variation along the efficient edges having origin in the current solution

have already been examined. If the answers regarding these questions are “no” or

“does not know”, the final solution is x(h) and its image in the objective function

space is z(h). In this case the algorithm stops.
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Step 7

The algorithm reaches this step because there is at least a positive answer in the

pairwise comparisons (in step 3) or in the evaluation of the marginal rates of

variation (in steps 4 or 5).

Constraints are introduced in the weight space, based on the DM’s answers

regarding the pairwise comparisons (in step 3) and the evaluation of marginal rates

of variation (in steps 4 or 5).

Each pairwise comparison, between zadj and z(h) made by the DM in step

3, generates a constraint on the weight space (except for the answers “does not

know”, which do not generate constraints), as follows:

λ zadj � z hð Þ� � � ε for each affirmative answer

that is, the DM prefers zadj to z hð Þ� �
,

λ zadj � z hð Þ� � � �ε for each negative answer

that is, the DM prefers z hð Þ to zadj
� �

;

where ε is a very small positive value. These inequalities are used instead of strict

inequalities with a zero right hand side due to numerical reasons.

Each evaluation of the marginal rates of variation (steps 4 and 5) leads to a

constraint on the weight space, as follows:

λw � ε for each negative answer

that is, the DM does not accept the marginal rate of variationð Þ,
λw � �ε for each affirmative answer

that is, the DM accepts the marginal rate of variationð Þ:

The reduced weight space Λ hþ1ð Þ is built from Λ(h), by adding the constraints

herein generated.

Step 8

A point λ hþ1ð Þ 2 Λ hþ1ð Þ is determined. When Λ hþ1ð Þ ¼ ∅ it is not possible to

determine λ hþ1ð Þ (it may happen that due to the changes in the DM’s preferences

inconsistent answers lead to Λ hþ1ð Þ ¼ ∅). In this case we should start by eliminat-

ing, from the set of binding constraints delimiting the reduced weight space, the

oldest ones until Λ hþ1ð Þ is non-empty.

In order to determine a “central” point λ hþ1ð Þ 2 Λ hþ1ð Þ a linear programming

problem is solved, such thatλ hþ1ð Þ is the point that maximizes the smallest deviation

(slack) to the frontier defined by the constraints delimiting the reduced weight space

Λ hþ1ð Þ (see example below).
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Step 9

A weighted-sum linear programming problem is solved using λ hþ1ð Þ:

max λ hþ1ð ÞCx
s:t: x 2 X

A new efficient solution x(b) is obtained, with image z(b) in the objective function

space.

Step 10

In the present situation, the DM is asked to express his/her preferences between the

new nondominated solution z(b) (obtained in step 9) and z(a) (preferred to z(h), in the

pairwise comparisons performed in step 3) if this exists. Note that, if there is more

than one z
(a) selected in step 3, it is then necessary to choose the preferred z

(a)

among them.

If z(a) exists and the DM is able to choose between z(a) and z(b), the

constraint corresponding to this preference is added to the weight space

λ z bð Þ � z að Þ� � � ε or λ z bð Þ � z að Þ� � � �ε� �
, and the preferred solution is

designated by z
(h+1). Go to step 11.

Otherwise, that is, if the DM is not able to express a preference between z(a) and

z(b), then make z(h+1)¼ z(b). Go to step 11.

If z(a) does not exist, i.e. no solution was preferred to z(h), in the pairwise

comparisons in step 3, two situations can occur:

(i) z(b) is preferred to z(h). The constraint corresponding to this preference

λ z bð Þ � z hð Þ� � � ε is added to the weight space and z(b) is the new current

solution, that is: z hþ1ð Þ ¼ z bð Þ. Go to step 11.

(ii) z(h) is the preferred solution. In this case, the method ends with the current

solution x(h) (whose image in the objective function space is z(h)) as the final

solution. Note that better solutions (according with the DM’s implicit utility

function) might exist on an efficient facet, since the method only computes the

feasible region vertex solutions due to the type of scalarizing function used.

Step 11

In the case x(a) and z(a) exist, these are eliminated and the reduced weight space

Λ hþ1ð Þ includes the new constraints that have been introduced in step 10.

Set h h+ 1, returning to step 2: a new iteration is made, restarting from the

new current solution considering the reduced weight space.

The possibility of incoherence among the constraints in the weight space

corresponding to the answers of the DM and the fact that the method, in these

circumstances, eliminates the older constraints (avoiding that the reduced weight

space becomes empty), led Ramesh et al. (1989) to propose a modification to the

Zionts and Wallenius method. This modification aims to avoid loosing information
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about the DM’s preferences expressed in the answers throughout the interactive

process.

Figure 4.8 shows a simplified block diagram of the Zionts and Wallenius

method.

−Include new constraints in 

the weight space 

corresponding to the 

pairwise comparisons that 

lead to the new solution  

−Replace the old solution by 

the new solution. 

Solve the scalarizing problem for 

determining the initial solution 

Build an initial weighted-sum of 

the objective functions 

− Find the efficient nonbasic variables 

− Check whether there are efficient 

basic solutions preferred to the current 

solution or there are acceptable trade-
offs along the efficient edges 

emanating from the current solution

NO 

YES 

STOP 

− Build a new weighted-sum function and find the 

corresponding optimal solution.  

− Compare this solution with the one preferred until 

this phase of the procedure. 

The 

current 

solution with which 

this iteration started 

is the preferred one? 

Build the constraints in the weight 

space from the previous answers 

START 

Fig. 4.8 Block diagram of the Zionts and Wallenius method
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4.3.3 Final Comments

This method is based on the existence of a DM’s implicit utility function. The

interactive procedure consists in the indirect search of its optimum (or an approx-

imation of it) since the utility function is not explicitly known, through a dialogue

protocol with the DM. Since the computation procedure only allows obtaining

efficient basic solutions, the approximation found is restrained to this type of

solutions. From the cognitive point of view, the questions based on pairwise

comparison of solutions and trade-offs (marginal rates of variation of the objective

functions) evaluation are not easy for the DM, even admitting that the procedure is

facilitated by an analyst dealing with technical issues. In particular, concerning the

trade-offs due to the unit activation of an efficient nonbasic variable, the DM is

asked to accept or reject a small displacement along an edge without knowing its

length, and hence the efficient vertex in its extremity.

The number of linear programs being solved is, in general, very high, making the

method quite heavy from the computational point of view.

Finally, it is highlighted the fact that each answer of the DM (except when he/she

avoids intervention by saying that he/she “does not know”) corresponds to intro-

duce a dichotomic constraint in the weight space. A wrong answer leads to

excluding the entire region of the weight space that should be explored in subse-

quent phases of the method. This limitation is of concern, since the number of

questions of this type is very high. In these circumstances, although it is possible to

correct certain type of mistakes, the method requires the coherence of the DM’s
answers with his/her implicit utility function.

4.3.4 Illustrative Example of the Zionts and Wallenius
Method

Consider the following MOLP problem with three objective functions to be

maximized:

max z1 ¼ f 1 xð Þ ¼ 3x1 þ x2 þ 2x3 þ x4
max z2 ¼ f 2 xð Þ ¼ x1 � x2 þ 2x3 þ 4x4
max z3 ¼ f 3 xð Þ ¼ �x1 þ 5x2 þ x3 þ 2x4
s:t:

2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

x1, x2, x3, x4 � 0

First iteration

Step 1. Let h be the iteration counter: h¼ 1.
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The first efficient basic solution is computed through the optimization of a

weighted-sum of the objective functions. By default, the central weight vector of

the weight space is considered: λ 1ð Þ ¼ 0:333, 0:333, 0:333ð Þ. The problem to be

solved is:

max 0:333 3x1 þ x2 þ 2x3 þ x4ð Þ Pλ1ð Þ
þ0:333 x1 � x2 þ 2x3 þ 4x4ð Þ
þ0:333 �x1 þ 5x2 þ x3 þ 2x4ð Þ

s:t: 2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

x1, x2, x3, x4 � 0

The solution x 1ð Þ ¼ 0, 11:67, 0, 6:67ð Þ is optimal to Pλ1ð Þ and it is efficient to the
multiobjective problem, having as image z 1ð Þ ¼ 18:33, 15:00, 71:67ð Þ in the objec-

tive function space. Note that x(1) is not the only solution which optimizes Pλ1ð Þ, as
it can be seen in the corresponding simplex tableau.

The optimal simplex tableau of Pλ1ð Þ regarding x
(1) (where x5, x6 and x7 are the

slack variables associated with the constraints) is:

The indifference region of solution 1 (Fig. 4.9) in the weight space is defined by:

λ 2 Λ : �2:333λ1 � 2:5λ2 þ 4:833λ3 � 0
�1:333λ1 þ 1:5λ2 � 0:167λ3 � 0

0:167λ1 � λ2 þ 1:333λ3 � 0

0:167λ1 þ 1:5λ2 � 0:167λ3 � 0

with Λ¼ {λ2ℝ3: λk >0, k¼ 1,2,3,
X3
k¼1

λk ¼ 1} .

The solution (x(1), z(1)) is presented to the DM.

Step 2. The reduced cost matrix regarding the nonbasic variables x1, x3, x6 and x7
associated with solution (x(1), z(1)) is:

c 1 1.667 1.667 2.333 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x5 1.667 0 1.667 0 1 0.167 �0.833 28.333

1.667 x2 0.833 1 �0.167 0 0 0.333 �0.167 11.667

2.333 x4 �0.167 0 0.833 1 0 �0.167 0.333 6.667

z1j � c1j �2.333 0 �1.333 0 0 0.167 0.167 18.333

z2j � c2j �2.5 0 1.5 0 0 �1 1.5 15

z3j � c3j 4.833 0 �0.167 0 0 1.333 �0.167 71.667

z λj � c λj 0 0 0 0 0 0.167 0.5
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W ¼
�2:333 �1:333 0:167 0:167
�2:5 1:5 �1 1:5
4:833 �0:167 1:333 �0:167

2
4

3
5

The set of efficient nonbasic variables is divided into two sub-sets:

A—efficient nonbasic variables that generate nondominated solutions reachable

using weight vectors belonging to Λ(1);

B — efficient nonbasic variables not belonging to A.

Since Λ 1ð Þ ¼ Λ (because no weight constraint has been introduced yet), all the

efficient nonbasic variables belong to A and B¼Ø.
In order to determine the efficient nonbasic variables, the Zionts-Wallenius

routine (Steuer 1986, chap. 9) is applied to matrix W.

After the application of this routine, it is concluded that, among x1, x3, x6 and x7,
only x1, x3, x6 are efficient (corresponding to the first, second and third columns of

W). In this case, the fact that x7 is not efficient can be directly observed in matrix

W. Comparing the column of x3 with the column of x7, it is verified that only the

first component is different (–1.333 for x3 and 0.167 for x7), meaning that making x3
and x7 basic variables has the same impact on f2(x) and f3(x). However, there is an
increase of 1.333 in f1(x) for each unit of increase in x3, while if x7 becomes a basic

variable there is a decrease of 0.167 for each unit it increases.

A ¼ x1; x3; x6f g

Set I¼A.

Step 3. All the efficient solutions adjacent to (x(1), z(1)) corresponding to the set I
are generated.

Fig. 4.9 Indifference

region of solution 1
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• x1 becomes a basic variable and zadj1 ¼ (51, 50, 4) is obtained. This solution is

presented to the DM, who will indicate his/her preference between zadj1 and the

current solution z(1).

Suppose that the DM, reflecting an insecure attitude, hesitation or even

ignorance regarding the question asked, says he/she does not know which of

the two solutions he/she prefers.

• x6 becomes basic and zadj2 ¼ (12.5, 50, 25) is obtained.

Suppose that, in this case, the answer of the DM is no, that is, the DM prefers

solution z(1).

• x3 becomes basic and the solution zadj3 ¼ (29, 3, 73) is obtained.

Suppose that, in this case, the answer of the DM is yes, that is, he/she prefers

solution zadj3.

Since the DM preferred one of the adjacent solutions, the algorithm goes to step

7 and za ¼ (29, 3, 73) is candidate to be a final choice.

Step 7. Constraints are introduced on the weight space, based on the DM’s
answers to pairwise comparisons in step 3.

The first answer is he/she does not know, that is, the DM is not able to express

his/her preference between z(1) and zadj1; therefore, no constraint is introduced on

the weight space.

The second answer is no, that is, the DM does not prefer zadj2 to z(1); therefore, it

leads to the introduction of the constraint:

λ z 1ð Þ � zadj2
� �

� ε, λ1 λ2 λ3½ �
18:33
15

71:67

2
4

3
5� 12:5

50

25

2
4

3
5

0
@

1
A � ε;

where ε has a small positive value.

The third answer is yes, that is, the DM prefers zadj3 to z(1); therefore, it leads to

the constraint:

λ zadj3 � z 1ð Þ
� �

� ε, λ1 λ2 λ3½ �
29

3

73

2
4

3
5� 18:33

15

71:67

2
4

3
5

0
@

1
A � ε:

Figure 4.10 shows the constraints introduced on the weight space.

The reduced weight space Λ(2) is formed fromΛ 1ð Þ ¼ Λ by adding the constraints

just introduced in this iteration.

Step 8. A “central” point λ 2ð Þ 2 Λ 2ð Þ is determined in the reduced weight space.

For this purpose, the following auxiliary problem that maximizes the smallest

deviation to the frontier that defines Λ(2) is solved. A previous normalization of

the constraint coefficients may be necessary to obtain a central point in the reduced

weight space when these coefficients are in very different orders of magnitude (this

is not required in this case).

78 4 Interactive Methods in Multiobjective Linear Programming



max
s:t:

θ

λ1 þ λ2 þ λ3 ¼ 1

λ1 � θ � ε
λ2 � θ � ε

λ3 � θ � ε
5:83λ1 � 35λ2 þ 46:67λ3 � θ � ε
10:67λ1 � 12λ2 þ 1:33λ3 � θ � ε

θ � 0

where ε is a very small positive scalar.

The solution to this problem is λ 2ð Þ ¼ 0:354, 0:323, 0:323ð Þ, with θ ¼ 0:323.

Step 9. By using λ(2), the following linear (weighted sum) programming problem

is solved:

max 0:354 3x1 þ x2 þ 2x3 þ x4ð Þ Pλ2ð Þ
þ0:323 x1 � x2 þ 2x3 þ 4x4ð Þ
þ0:323 �x1 þ 5x2 þ x3 þ 2x4ð Þ

s:t: 2x1 þ x2 þ 4x3 þ 3x4 � 60
3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

x1, x2, x3, x4 � 0

The solution obtained is x bð Þ ¼ 14:5, 0, 2:5, 7ð Þ, with z bð Þ ¼ 55:5, 47:5, 2ð Þ.
Step 10. The solution (x(b), z(b)) is presented to the DM who compares it with

x að Þ; z að Þ� � ¼ xadj3; zadj3
� �

, and expresses his/her preference. Suppose that the DM

prefers (x(b), z(b)).

z(1) is preferred

to zadj2 zadj3 is preferred

to z(1)

Fig. 4.10 Constraints

introduced on the weight

space in step 7 of the first

iteration
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A new constraint is then introduced on the reduced weight space Λ(2) (see

Fig. 4.11a):

λ1 λ2 λ3½ �
55:5
47:5
2

2
4

3
5� 29

3

73

2
4

3
5

0
@

1
A � ε

Step 11. A new iteration, h¼ 2, starts in which the new current solution is

x 2ð Þ; z 2ð Þ� � ¼ x bð Þ; z bð Þ� �
.

The reduced weight space Λ(2) is defined by the original weight space Λ with the

constraints introduced in steps 7 and 10 of this iteration (Fig. 4.11b).

The method would continue for a second iteration by determining a central

weight vector in the reduced weight space Λ(2) and obtaining a new efficient vertex

through the optimization of the corresponding weighted-sum function.

The development of this second iteration can be found in the companion website.

4.4 TRIMAP

4.4.1 Method Presentation

TRIMAP is an interactive computational environment aimed at supporting the DM

in the search for nondominated solutions. This method can be used in different

ways, depending on the aims of the user. In this setting, TRIMAP is mainly a

learning oriented computational environment more than a method in the usual

sense.

z(b) is preferred

to z(a)

Λ(2)

(a) (b)

Fig. 4.11 Solutions computed and constraints introduced on the weight space in the first iteration
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The TRIMAP method, developed by Clı́maco and Antunes (1987, 1989), com-

bines a set of procedures allowing a free search based on the progressive and

selective learning of the nondominated solution set. It combines the reduction of

the feasible region with the reduction of the weight (parametric) space. The DM

may specify lower bounds for the objective functions and/or impose constraints on

the weight space. In each computation phase a weighted-sum of the objective

functions is optimized.

The aim of the method is to help the DM progressively eliminating

nondominated solutions that do not seem interesting to him/her. No convergence

to any optimal solution of an implicit utility function is searched for. The interactive

procedure only ends when the DM considers to have gathered ‘sufficient knowl-
edge’ about the nondominated solution set, which enables him/her to make a final

decision. TRIMAP combines three fundamental procedures: weight space decom-

position, introduction of constraints in the objective function space and introduction

of constraints on the weight space. The limitations introduced on the objective

function values are automatically translated onto the weight space, which is used as

a valuable means to gather and present the information to the DM. TRIMAP is

dedicated to problems with three objective functions. Although this characteristic is

a limitation, it allows the use of graphical means particularly useful in the dialogue

with the DM. The main purpose is enabling a progressive and selective filling/

exploitation of the weight space, which offers to the DM additional information

about the nondominated region. The process stops when the DM feels comfortable

to make a decision. In this way an exhaustive search of the solution set is avoided,

namely of nondominated solution regions where the objective function values are

very similar or considered uninteresting as a result of the information already

gathered.

The reduction of the scope of the search is made through the imposition of

limitations on the objective function values (a kind of information that is familiar to

the DM, from the cognitive point of view). These constraints are automatically

translated onto the weight space. The introduction of these additional limitations

can also be used to obtain nondominated solutions that are not vertices of the

feasible region. It is also possible to impose constraints directly on the weight

space. This option is particularly interesting when TRIMAP is used as a teaching

tool. The comparative analysis of the weight space and the objective function space

during the interactive process enables the DM to decide on the interest of searching

new nondominated solutions corresponding to regions of the weight space not yet

explored.

The block diagram of the TRIMAP interactive environment is displayed in

Fig. 4.12.

The use of TRIMAP combined with other interactive procedures is particularly

suitable for a strategic search of nondominated solutions.

Initially, the nondominated solutions optimizing individually each objective

function are computed, providing an overview of the range of variation of each

objective function in the nondominated region. The nondominated solution that

minimizes a weighted Chebyshev distance to the ideal solution can also be
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Eliminate sub-regions of the triangle 

by imposing limitations

- on the objective function values 

- directly on the weights

Compute the nondominated solutions that

optimize individually each objective function 

START

Additional information: fk,xi, L1, L2, L∞, Area (%)

f1

f2

A

B

C

The DM has gathered enough

information to make a final decision

STOP

Weight space
Projection of the objective 

function space

Compute nondominated

solutions by direct (graphical) 

selection of weights

Compute nondominated

solutions by indirect selection 

of weights

Information updated in each interaction

Decision

phase
"Cuts" of the 

feasible polyhedron

Continuous scanning of 

nondominated faces

Compute the nondominated solution that 

minimizes a weighted  Chebyshev 

distance to a reference point

Fig. 4.12 Block diagram of TRIMAP
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computed, providing complementary information for the definition of the search

direction for new nondominated solutions.

The selection of weights to compute new nondominated solutions can be made

in two ways:

– Directly, when the DM chooses a new weight vector in the region of the triangle

not yet filled, according to his/her options to continue the search;

– Indirectly, building a function whose gradient is normal to the plane defined by

three nondominated solutions already computed and selected for this purpose by

the DM. If some of the weights obtained using this process are not positive, a

small perturbation in the gradient of the weighted objective function is made in

order to assure this condition. This possibility of computing the weights is

essentially the SIMOLP method of Reeves and Franz (1985).

The introduction of additional limitations on the objective function values,

and the corresponding translation onto the weight space, allows the dialogue with

the DM to be made in terms of the objective function values gathering the obtained

information in the weight space. The introduction of an additional limitation,

fk(x)� Lk (Lk 2 ℝ, k 2{1,2,3}), leads to the construction of the following auxiliary
problem:

max zk ¼ f k xð Þ
s:t: x 2 Xa

Xa ¼ x 2 X : f k xð Þ � Lkf g
ð4:2Þ

The maximization of zk ¼ f k xð Þ in Xa leads to alternative optimal (basic)

solutions (note that the gradient of the function is normal to the hyperplane that

supports the auxiliary constraint fk(x)� Lk). Considering the objective functions of

the original problem and the feasible region Xa, all efficient basic solutions that

optimize (4.2) are computed. The corresponding indifference regions on the weight

space are determined and graphically displayed. These are the indifference regions

defined byλW � 0, regarding each alternative efficient basis. The union of all these

indifference regions determines the portion of the weight space where the addi-

tional limitation on the objective function value (imposed by the DM) is satisfied

for the original problem. If the DM is only interested in nondominated solutions that

satisfy f k xð Þ � Lk, then it is only necessary to restrict the search to this sub-region.

If the DM wants to impose more than one limitation on the objective function

values, then problem (4.2) is solved for each of them and the corresponding

sub-regions on the weight space are filled with different patterns (or colours),

thus allowing to clearly visualize the sub-regions of the weight space where there

are intersections. The introduction of these additional limitations can also be used to

obtain nondominated solutions that, in general, are not vertices of the original

feasible region.
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It is also possible to eliminate regions of the weight space by imposing direct

limitations on the weights of the type λi
λj
� uij, i, j 2 {1,2,3}, i 6¼ j, uij 2ℝ+, or

0< uL� λk� uH <1 with k2{1,2,3}.
The DM can also make cuts in the feasible region by establishing the values of

one or two objective functions. Then, TRIMAP computes the nondominated solu-

tions satisfying these additional constraints (which are not, in general, vertices of

the feasible region). Notice that, when a cut f k xð Þ ¼ Nk (Nk 2ℝ) is made and

nondominated vertices of the new problem (satisfying the additional constraint) are

computed, it is possible to obtain dominated solutions regarding the original

problem (for further details see Clı́maco and Antunes (1987, 1989)).

TRIMAP also allows to search for solutions in nondominated faces between

two previously computed nondominated points. This option is inspired by the

Pareto Race method.

Moreover, the DM can identify a reference point in the objective function space

and TRIMAP computes the nondominated solution that minimizes a weighted

Chebyshev distance to that point.

In its original implementation (Clı́maco and Antunes 1987, 1989), TRIMAP

presents two main graphs. The first graph displays the weight (parametric) space,

showing the indifference regions corresponding to the nondominated basic solu-

tions already known. The second graph displays a projection of the objective

function space, showing the nondominated solutions already computed. Other

available graph is a spider-web diagram, displaying the differences between the

objective function values of each solution and the corresponding components of a

reference point (for instance, the ideal solution). Several complementary indicators

are also available for each solution, namely: the L1, L2, andL1 distances to the ideal

solution and the area of the indifference regions (indicating the percentage occupied

of the total area of the triangle).

In the next sections some potentialities of TRIMAP for teaching MOLP are

emphasized and an illustrative example is presented to show how the main com-

putation procedures used by TRIMAP operate.

4.4.2 Teaching Multiobjective Linear Programming Using
TRIMAP

In this section, the use of TRIMAP is illustrated through simple examples, in order

to draw the readers’ attention to some characteristics of MOLP problems.

Let us consider the following example:
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max
x2X

z ¼ f xð Þ ¼
z1 ¼ f 1 xð Þ
z2 ¼ f 2 xð Þ
z3 ¼ f 3 xð Þ

2
4

3
5 ¼ �x1 þ 3x2

2x1 � x2
3x1 þ 2x2

2
4

3
5 ð4:3Þ

X ¼ x 2 ℝ2 : x1 � 10, x2 � 12, x1 þ x2 � 20, � x1 þ x2 � 7,
�
x1 � x2 � 8, x1 � 0, x2 � 0g:

The complete weight space decomposition into the indifference regions

corresponding to the nondominated vertices of this problem can be computed

using TRIMAP, as displayed in Fig. 4.13.

From this decomposition it can be concluded that it is possible to obtain the

nondominated solution that optimizes f3(x), denoted by 3, by optimizing weighted

sums of the objective functions that intuitively would not seem adequate to obtain

that solution. For example, for λ1¼ 0.36, λ2¼ 0.64, λ3¼ 0, the optimum of f3(x) is
obtained. This is a counter-intuitive result regarding the meaning of weights since

the optimum of f3(x) is obtained with λ3¼ 0.

Note that, in this example, the weight space decomposition consists of indiffer-

ence regions crossing the triangle from side to side (“stripy regions”). As the cone

defined by the objective function gradients is flat, one of the functions can always

be obtained as a linear combination of the other two. In these cases, the decompo-

sition is always striped and counter-intuitive situations may occur, as the one

indicated above.

Now, suppose that the first objective function is changed by multiplying f1(x) by
10, i.e. z1 ¼ f1(x)¼ –10x1 + 30x2, maintaining the remainder of (4.3). The resulting

weight space decomposition is presented in Fig. 4.14.

The nondominated solutions of the previous problem are maintained, but the

corresponding indifference regions are distorted as well as the relative percentages

of the respective areas are noticeably changed.

Fig. 4.13 Weight space

decomposition for problem

(4.3)
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Note that the change in the objective function f1(x) just alters the gradient

magnitude. It can be concluded that, in order to give some practical meaning to

the weight space decomposition and, therefore, to the set of weight vectors allowing

the calculation of each nondominated vertex, it is advisable to make a previous

normalization of the objective functions.

Finally, suppose that the initial problem (4.3) is maintained, except f3(x) that is
changed to z3¼ f3(x)¼ 3x1 – 2x2. The new weight space decomposition is shown in

Fig. 4.15.

The comparison of the weight space decomposition regarding problem (4.3),

Fig. 4.13, with Fig. 4.15 allows concluding that, while in the original problem the

optimal solutions of the three objective functions are distinct, now f2(x) and f3(x)
have the same optimal solution.

Fig. 4.14 Weight space

decomposition of problem

(4.3) by changing f1(x)

Fig. 4.15 Weight space

decomposition of problem

(4.3) modified by changing

f3(x)
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4.4.3 Final Comments

TRIMAP allows a progressive and selective search of the nondominated solutions

set in three-objective linear programming problems. In general, in the dialogue with

the DM, he/she is asked to establish minimal satisfaction levels for the objective

function values, by progressively delimiting the nondominated regions which are

interesting to him/her, taking into account the existing knowledge about the

nondominated set gathered throughout the interactive process. So, an exhaustive

search of the nondominated solution set is avoided, thus saving computational

effort, by making a progressive focus on the nondominated regions in which

more interesting solutions for the DM are located.

The weight space and the optimization of weighted sums are essentially used for

operational reasons. However, mediation of the dialogue with the DM by an

analyst/facilitator is advisable due to the technical issues involved. Finally, we

point out that in interactive decision processes based on TRIMAP there are no

irrevocable decisions during the process, and it is not intended the convergence to

the best solution of any implicit utility function.

4.4.4 Illustrative Example of the TRIMAP method

Consider the following linear programming problem with three objective functions:

max z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
max z3 ¼ f 3 xð Þ ¼ x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3 � 0

For a better understanding of the following procedures, the feasible region in the

objective function space is presented in Fig. 4.16. Note that, in this case, this space

coincides with the decision space.

In TRIMAP the nondominated solutions optimizing individually the 3 objective

functions are automatically calculated and presented to the DM.

The optimization of weighted-sums of the objective functions constitutes the

main computation procedure used in TRIMAP. This procedure entails solving the

following linear programming problem:
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max
X3
k¼1

λk f k xð Þ
s:t: x 2 X

where X is the feasible region of the problem and λ 2 Λ.
Λ is the set of all the weight vectors and it is defined as:

Λ ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, . . . , 3;
X3
k¼1

λk ¼ 1

( )

We start by computing the nondominated solution that optimizes f1(x) and the

corresponding indifference region. In order to guarantee that the solution obtained

is nondominated, the weights λ1 ¼ 0:99, λ2 ¼ 0:005 and λ3 ¼ 0:005 will be used

instead of λ1 ¼ 1, λ2 ¼ 0 and λ3 ¼ 0 (since in this case just weakly nondominated

solutions could be guaranteed).

z2= x2

z1=x1

z3= x3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,2,3)

(0,0,5)

Fig. 4.16 Decision space and objective function space
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The following problem is solved using the simplex method:

max z ¼ 0:99x1 þ 0:005x2 þ 0:005x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3 � 0

In order to allow the subsequent computation of the indifference region, a

reduced cost row associated with each objective function is added to the simplex

tableau.

Let x4, x5 and x6 be the slack variables.

The resolution by the simplex method is as follows:

The optimal solution to the weighted-sum problem is found. This is the

nondominated solution optimizing f1(x) in the multiobjective problem:

x1 ¼ 5; x2 ¼ 0; x3 ¼ 0;
z1 ¼ 5; z2 ¼ 0; z3 ¼ 0;

Note that the values in the row z λj � c λj are equal to λ1 z1j � c1j

� �
þ λ2 z2j � c2j

� �
þλ3 z3j � c3j

� �
for the specified weight vector (in this case,

�
λ1, λ2, λ3

� ¼
0:99, 0:005, 0:005ð Þ ). All the weight vectors that lead to this nondominated

c 0.99 0.005 0.005 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6

0 x4 1 1 1 1 0 0 5

0 x5 1 3 1 0 1 0 9

0 x6 3 4 0 0 0 1 16

z1j � c1j �1 0 0 0 0 0 0

z2j � c2j 0 �1 0 0 0 0 0

z3j � c3j 0 0 �1 0 0 0 0

z λj � c λj �0.99 �0.005 �0.05 0 0 0

c 0.99 0.005 0.005 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6

0.99 x1 1 1 1 1 0 0 5

0 x5 0 2 0 �1 1 0 4

0 x6 0 1 �3 �3 0 1 1

z1j � c1j 0 1 1 1 0 0 5

z2j � c2j 0 �1 0 0 0 0 0

z3j � c3j 0 0 �1 0 0 0 0

z λj � c λj 0 0.985 0.985 0.99 0 0
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solution (indifference region) can be determined by verifying in what conditions all

z λj � c λj � 0 are obtained (optimality condition in the simplex method), that is:

λ1 z1j � c1j

� �
þ λ2 z2j � c2j

� �
þ λ3 z3j � c3j

� �
� 0. Thus, for the current solution, the

indifference region is given by:

Λ ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, ::, 3;
X3
k¼1

λk ¼ 1

( )
and

λ1 � λ2 � 0 (from the column of the reduced cost matrix corresponding to x2),
λ1 � λ3 � 0 (from the column of the reduced cost matrix corresponding to x3),
and

λ1 � 0 (from the column of the reduced cost matrix corresponding to x4).
In order to represent this region on the projection of the weight space (λ1, λ2), the

variable λ3 is substituted in λ1 � λ3 � 0, making λ3 ¼ 1� λ1 � λ2 (since
X3
k¼1

λk ¼ 1).

Then, this inequality is equivalent to 2λ1 þ λ2 � 1.

The indifference region corresponding to the solution that optimizes f1(x) is

presented in Fig. 4.17.2

Using a similar process, TRIMAP also computes the nondominated solutions

that optimize f2(x) and f3(x). These solutions are presented to the DM by using two

Fig. 4.17 Indifference

region of the solution that

optimizes f1(x)

2Most figures in this illustrative example are screen copies of the TRIMAP package for Macintosh

(Clı́maco and Antunes 1989).
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graphs: the weight space (or a projection of it) and the two-dimensional projection

of the objective function space. Figure 4.18 shows the projection of the weight

space onto (λ1, λ2) and the two-dimensional projection of the objective space onto

( f1, f2). In this graph, the value f3 is shown near the solution index and the ideal

solution is represented by a small black square. From Fig. 4.18 it can be concluded

that there is a nondominated edge connecting solutions (vertices) 1 and 3, because

the corresponding indifference regions are contiguous, that is, they have a common

edge.

Solution 1: x1 ¼ z1 ¼ 5; 0; 0ð Þ;
Solution 2: x2 ¼ z2 ¼ 0; 3; 0ð Þ;
Solution 3: x3 ¼ z3 ¼ 0; 0; 5ð Þ;

The existence of a single indifference region including each vertex of the

triangle, Fig. 4.18, indicates that no alternative nondominated optima exist for

each objective function. We will see below an example where alternative

nondominated optima exist.

Moreover, this problem is non-degenerate. In this case, all nondominated verti-

ces will be known only when the triangle is fully filled because there is a one-to-one

correspondence between indifference regions and nondominated vertices. When-

ever degenerate solutions exist, more than one basic solution may correspond to a

given vertex and, therefore, the decomposition of the weight space becomes more

complicated. In fact, in many degenerate problems it is possible to obtain all the

nondominated vertices without completely filling the triangle. The basic solutions

corresponding to the same nondominated vertex may correspond to different

indifference regions, possibly partially overlapping. This situation does not inhibit

but complicates the use of TRIMAP. An example of a multiobjective problem with

degenerate solutions is shown in Chap. 5.

Fig. 4.18 Solutions optimizing individually each objective function
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Other nondominated vertex solutions can be computed by direct or indirect

selection made by the DM of other weight vectors belonging to the region of the

triangle not yet filled.

Suppose that the DM wants to know the nondominated solution that is obtained

by optimizing a weighted function whose gradient is normal to the plane defined by

the three solutions already computed (indirect selection of weights). The computa-

tion of these weights is performed as follows:

Let v1 and v2 be two vectors of the objective function space defined by

v1 ¼ z2 � z1 ¼ �5, 3, 0ð Þ and v2 ¼ z3 � z1 ¼ �5, 0, 5ð Þ. These two vectors

define a plane parallel to the one defined by the points z1, z2 and z3. Then, the

vector v ¼ v1; v2; v3ð Þ, where v1 ¼ 3 0

0 5

����
���� ¼ 15, v2 ¼ �1ð Þ �5 0

�5 5

����
���� ¼ 25

and v3 ¼ �5 3

�5 0

����
���� ¼ 15, is normal to the plane defined by v1 and v2. Since the

weighted-sum function is λ1 f 1 xð Þ þ λ2 f 2 xð Þ þ λ3 f 3 xð Þ, the corresponding gra-

dient in the objective space is given by (λ1, λ2, λ3). Hence, λ will be equal to the

normalized vector v, that is (0.273, 0.455, 0.273).

The following weighted-sum problem is solved:

max z ¼ 0:273x1 þ 0:455x2 þ 0:273x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3 � 0

The solution of this problem is the nondominated solution 4, x4 ¼
z4 ¼ 2:67, 2, 0:33ð Þ, whose indifference region is presented in Fig. 4.19.

Figure 4.19 allows concluding that solutions 1, 3 and 4 belong to a

nondominated face (because there is a point in interior of the weight space that is

common to the indifference regions of these 3 solutions). Furthermore, solutions

2 and 4 also belong to another nondominated face.

The imposition of bounds on the objective function values and its translation into

the weight space is a TRIMAP procedure particularly useful to the DM. The

imposition of additional bounds allows reducing the feasible region and, therefore,

reducing the scope of the search for new nondominated solutions.

When the DM imposes one or more bounds on the objective function values, that

information is translated into the weight space: the area corresponding to the weight

vectors that lead to solutions that satisfy this (these) limitation(s) is presented.

Suppose that the DM decides to impose the lower bound f 3 xð Þ � 2. In order to

compute the region of the weight space where this constraint is satisfied, the

following auxiliary problem is solved:
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max f 3 xð Þ
s:t: x 2 X

f 3 xð Þ � 2

Note that the constraint introduced in the auxiliary problem, f3(x)� 2, is

opposed to the limitation imposed by the DM, i.e. f3(x)� 2, thus leading to

alternative optimal solutions. All these alternative optima are computed as well

as the corresponding indifference regions of the multiobjective auxiliary problem:

max f1 xð Þ
max f2 xð Þ
max f3 xð Þ
s:t: x 2 X

f3 xð Þ � 2

The union of these indifference regions defines the region of the weight space

where f3(x)� 2.

The auxiliary problem associated with the additional constraint is:

max z3 ¼ f 3 xð Þ ¼ x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x3 � 2

x1, x2, x3 � 0

The resolution of this problem using the simplex method is as follows:

(x4, x5, x6 and x7 are slack variables)

Fig. 4.19 Weight space

decomposition after

computing solution 4
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c 0 0 1 0 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x4 1 1 1 1 0 0 0 5
0 x5 1 3 1 0 1 0 0 9
0 x6 3 4 0 0 0 1 0 16
0 x7 0 0 1 0 0 0 1 2

z1j � c1j �1 0 0 0 0 0 0 0

z2j � c2j 0 �1 0 0 0 0 0 0

z3j � c3j 0 0 �1 0 0 0 0 0

zj � cj 0 0 �1 0 0 0 0

Second iteration (x3 becomes basic and x7 becomes nonbasic):

c 0 0 1 0 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x4 1 1 0 1 0 0 �1 3
0 x5 1 3 0 0 1 0 �1 7
0 x6 3 4 0 0 0 1 0 16
1 x3 0 0 1 0 0 0 1 2

z1j � c1j �1 0 0 0 0 0 0 0

z2j � c2j 0 �1 0 0 0 0 0 0

z3j � c3j 0 0 0 0 0 0 1 2

zj � cj 0 0 0 0 0 0 1

This is one of the optimal solutions to the auxiliary problem, but there are

alternative optima, as it can be verified from the corresponding optimal tableau,

since there are 2 values equal to 0 in the row zj � cj corresponding to the nonbasic

variables x1 and x2. The solution obtained x1 ¼ 0, x2 ¼ 0, x3 ¼ 2ð Þ is not an efficient
solution to the multiobjective auxiliary problem. The computation of the

corresponding indifference region using the conditions obtained from the

multiobjective simplex tableau enables to conclude that there is no weight vector

that satisfies all these conditions. This can be verified as follows:

Λ ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, ::, 3;
X3
k¼1

λk ¼ 1

( )
and

�λ1 � 0 from the column of the reduced cost matrix corresponding to x1ð Þ,
�λ2 � 0 from the column of the reduced cost matrix corresponding to x2ð Þ, and
λ3 � 0 from the column of the reduced cost matrix corresponding to x7ð Þ

The intersection of these conditions defines an empty set (because each weight is

strictly positive).

Then it is necessary to compute all the alternative optima of the previous

solution (for a more detailed study, see the algorithm for computing all alternative

optimal solutions to an LP proposed by Steuer (1986, chapter 4)).
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There are two pivot options:

1. making x1 basic and x4 nonbasic;
2. making x2 basic and x5 nonbasic.

Let us start by the first option:

c 0 0 1 0 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x1 1 1 0 1 0 0 -1 3
0 x5 0 2 0 �1 1 0 0 4
0 x6 0 1 0 �3 0 1 3 7
1 x3 0 0 1 0 0 0 1 2

z1j � c1j 0 1 0 1 0 0 �1 3

z2j � c2j 0 –1 0 0 0 0 0 0

z3j � c3j 0 0 0 0 0 0 1 2

zj � cj 0 0 0 0 0 0 1

Let this solution be designated by A, where x1 ¼ 3, x2 ¼ 0, x3 ¼ 2 and

z1 ¼ 3, z2 ¼ 0, z3 ¼ 2.

The computation of the indifference region proceeds as follows:

Λ ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, ::, 3;
X3
k¼1

λk ¼ 1

( )
and

λ1 � λ2 � 0 from the column of the reduced cost matrix corresponding to x2ð Þ
λ1 � 0 from the column of the reduced cost matrix corresponding to x4ð Þ
�λ1 þ λ3 � 0 from the column of the reduced cost matrix corresponding to x7ð Þ

From �λ1 þ λ3 � 0, 2λ1 þ λ2 � 1 the indifference region corresponding to

solution A can be graphically presented, as it is shown in Fig. 4.20. Solution A has a

non-empty indifference region, guaranteeing that it is an efficient solution to the

multiobjective auxiliary problem.

Let us continue computing the alternative optimal solutions to the auxiliary
problem, considering now the second pivot option, from the first optimal tableau (x2
becomes basic and x5 nonbasic):

c 0 0 1 0 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x4
2/3 0 0 1 –1/3 0 – 2/3

2/3
0 x2

1/3 1 0 0 1/3 0 –1/3
7/3

0 x6
5/3 0 0 0 –4/3 1 4/3

20/3
1 x3 0 0 1 0 0 0 1 2

z1j � c1j �1 0 0 0 0 0 0 0

z2j � c2j
1/3 0 0 0 1/3 0 – 1/3

7/3

z3j � c3j 0 0 0 0 0 0 1 2

zj � cj 0 0 0 0 0 0 1
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Let us designate this solution by B, where x1 ¼ 0, x2 ¼ 7
3
, x3 ¼ 2 and

z1 ¼ 0, z2 ¼ 7
3
, z3 ¼ 2. The corresponding indifference region is defined by:

ΛB ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, ::, 3;
X3
k¼1

λk ¼ 1, � λ1 þ 1

3
λ2 � 0,

(

1

3
λ2 � 0, � 1

3
λ2 þ λ3 � 0

	

This region is displayed in Fig. 4.21.

The computation of alternative optima can still be continued because the possi-

bilities of obtaining different alternative optimal bases have not yet been

completely exploited. From the optimal tableau of solution A another alternative

optimal solution is computed, by making x2 basic and x5 nonbasic:

c 0 0 1 0 0 0 0

cBð ÞT xB x1 x2 x3 x4 x5 x6 x7

0 x1 1 0 0 3/2 – 1/2 0 -1 1
0 x2 0 1 0 – 1/2

1/2 0 0 2
0 x6 0 0 0 – 5/2 – 1/2 1 3 5
1 x3 0 0 1 0 0 0 1 2

z1j � c1j 0 0 0 3/2 – 1/2 0 -1 1

z2j � c2j 0 0 0 – 1/2
1/2 0 0 2

z3j � c3j 0 0 0 0 0 0 1 2

zj � cj 0 0 0 0 0 0 1

A

2λ1+ λ2 ≤ 1

λ1 - λ2 ≥ 0

λ1

λ2
Fig. 4.20 Solution A is a

nondominated solution to

the multiobjective auxiliary
problem
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Let us designate this solution by C, where x1 ¼ 1; x2 ¼ 2; x3 ¼ 2 and

z1 ¼ 1; z2 ¼ 2; z3 ¼ 2. The indifference region is defined by:

ΛC ¼ λ 2 ℝ3 : λk > 0, k ¼ 1, ::, 3;
� X3

k¼1
λk ¼ 1, 3

2
λ1 � 1

2
λ2 � 0,

� 1
2
λ1 þ 1

2
λ2 � 0, � λ1 þ λ3 � 0g

This region is also displayed in Fig. 4.21.

Since all the possibilities of obtaining alternative optima have been considered,

TRIMAP presents the weight space region where the limitation f3(x)� 2 is satisfied

(Fig. 4.21). This region is composed by the union of the indifference regions

corresponding to the alternative optimal solutions to the auxiliary problem, which

are nondominated to the original multiobjective problem with the auxiliary con-

straint ( f3(x)� 2), that is, the multiobjective auxiliary problem. Note that, in certain

cases, nondominated solutions may exist for the multiobjective auxiliary problem

that are dominated for the original problem.

The visual inspection of the sub-regions A, B and C in Fig. 4.21 confirms the

existence of alternative optima for f3(x). Note that all these sub-regions include the
vertex of the triangle where λ1¼ 0, λ2¼ 0, λ3¼ 1.

In Fig. 4.22 the objective space is presented, indicating with a dashed pattern the

non-dominated frontier resulting from the imposition of the constraint f3(x)� 2.

Note that the first optimal solution obtained by solving the auxiliary problem,

which is not nondominated to the original problem, is indicated by Y in Fig. 4.22.

Solutions A, B and C are nondominated basic solutions for the multiobjective

problem with f3(x)� 2, although they are nonbasic to the original problem.

Suppose that the DM wants to search for a nondominated solution satisfying the

additional constraint f3(x)� 2. For this purpose, he/she selects a weight vector

A

B

C

A  3.000  0.000  2.000  :  x1=3.0 ;  x3=2.0 ;
B  0.000  2.333  2.000  :  x2=2.3 ;  x3=2.0 ;
C  1.000  2.000  2.000  :  x1=1.0 ;  x2=2.0 ;  x3=2.0 ;

λ1

λ2
Fig. 4.21 Indifference

regions of the alternative

optima of f3(x), for the
multiobjective auxiliary
problem
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within the dashed area of the triangle (union of the indifference regions in

Fig. 4.21)—see Fig. 4.23.

Suppose the choice is the weight vector (0.129, 0.550, 0.321)—Fig. 4.23. The

problem to be solved is:

max z ¼ 0:129f 1 xð Þ þ 0:550f 2 xð Þ þ 0:321f 3 xð Þ ¼ 0:129x1 þ 0:550x2 þ 0:321x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3 � 0

z2

z1

z3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,2,3)

(0,0,5)

1

2

3

4

A

B
C

Y

(0, 2.33,2)
(1,2,2)

Fig. 4.22 Nondominated solutions which satisfy f3(x)� 2

Fig. 4.23 Selecting a weight vector to compute a new solution satisfying f3(x)� 2
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A new nondominated solution is obtained, solution 5, where

x5 ¼ z5 ¼ 0, 2, 3ð Þ—Fig. 4.24.

If the DM wants to know all the other nondominated solutions that completely

fill the triangle, then all nondominated basic solutions to the original multiobjective

problem are calculated. The nondominated faces and edges can be identified

through the analysis of the graphs presented by TRIMAP.

Figure 4.25 shows the complete decomposition of the weight space. As the

problem under study is non-degenerate the entire set of nondominated vertices

and therefore the entire set of nondominated solutions can be obtained from the

information contained in the two graphs in Fig. 4.25.

Fig. 4.24 Weight space decomposition after computing solution 5

Fig. 4.25 All nondominated vertices are known
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Note that, in general, the purpose of TRIMAP is not to generate the entire set of

nondominated solutions.

The selective part of the progressive and selective search developed by TRIMAP

can be materialized through the introduction of constraints on the objective function

values, which are automatically translated onto the weight space. However, the

visual inspection of the two diagrams of Fig. 4.25 throughout the search can also

advise the analyst on the possible relinquishing of certain regions of the triangle that

have not been explored yet. In fact, if, for instance, during the search process,

solutions 2, 3 and 4 are already known and the corresponding objective function

values are considered very similar, it could not be worthwhile to search the hatched

weight space region where the cursor is located in Fig. 4.23. In fact, as the feasible

region is a convex polyhedron, solutions that could be found in that region would

not add further information. The elimination of the regions of the triangle not yet

searched is not particularly interesting for small problems. However, in real world

problems of considerable dimension, there might exist hundreds of nondominated

basic solutions in a region as the one corresponding to solution 5. Thus, if the

objective function values of the involving solutions in the weight space are con-

sidered sufficiently close to each other, a great computational effort can be avoided

by discarding the search that could be irrelevant from a practical point of view.

The comparison between the two graphs presented in Fig. 4.25 enables to

understand the geometry of the nondominated frontier of the problem.

Adjacent nondominated basic solutions (that is, connected by a nondominated

edge) have contiguous indifference regions. Thus,

(i) a nondominated vertex in the objective function space corresponds to an

indifference region of dimension p-1 (polygon) in the weight space;

(ii) a nondominated edge connecting two vertices in the objective function space

corresponds to a region of dimension p-2 (line segment) in the weight space

that belongs to the indifference regions associated with those two vertices;

(iii) a nondominated face in the objective function space corresponds to a point of

the weight space (that is, a single strictly positive weight vector) common to

all indifference regions associated with the nondominated vertices that define

the face.

In this example there are two nondominated faces, one defined by solutions 2, 6,

4 and 5, and another one defined by solutions 1, 3, 5, 4 and 7. The face defined by

solutions 4, 6 and 7 is dominated by the edges (4,6) and (4,7), i.e. all the points lying

on the face are just weakly nondominated and just the solutions on the edges (4,6)

and (4,7) are strictly nondominated. Through the visual inspection of the weight

space it is possible to conclude that the weight vector corresponding to this face,

(0.429, 0.571, 0), has a zero component in λ3. Note that vertices 6 and 7 are

adjacent, that is, there is a feasible edge that connects them. Since this edge is

weakly nondominated, the variable becoming basic when moving from one

extreme of the edge to the other one, although leading to a nondominated vertex,

it is not an efficient nonbasic variable (see the notion of efficient nonbasic variable

introduced in Chap. 3).
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For a better understanding of the geometry of the nondominated region, the

three-dimensional objective space with the identification of all nondominated basic

solutions is displayed in Fig. 4.26.

In Fig. 4.27 the complete weight space decomposition is presented. Note that the

weight space projection presented in Fig. 4.25 provides similar information to the

representation in Fig. 4.27, but changing the relative percentages of the areas of the

indifference regions.

z2

z1

z3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,2,3)

(0,0,5)

1

2

3

4

5

6

7

Fig. 4.26 Identification of nondominated vertices, edges and faces in the objective function space

Fig. 4.27 Representation of the weight space whose projection is displayed in Fig. 4.25
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4.5 Interval Criterion Weights Method

4.5.1 Introduction

The Interval Criterion Weights (ICW) developed by Steuer (1977, 1986) is an

interactive method, which progressively reduces the criterion cone (convex cone

generated by the objective function gradients). This reduction is performed

according to the DM’s preferences, by choosing the solution that he/she prefers

from a nondominated solution sample that is presented in each dialogue phase. In

each computation phase several weighted sums of the objective functions are

optimized.

The ICW method uses several uniformly dispersed vectors in the weight space,

to define a set of weighted-sums. Hence, the explicit indication of weight vectors

depending on the information elicited from the DM about his/her preferences is

avoided. Also, this method does not require the specification of satisfactory values

for the objective functions (as, for example, the STEM method). The information

provided by the DM by choosing his/her most preferred solution is used for

contracting the criterion cone around the objective function used for computing

that solution, which determines the reduced criterion cone for the next interaction.

The criterion cone is thus gradually reduced around specific directions, until the

search is focussed on a small portion of the feasible region, which hopefully

contains the nondominated vertex with the highest value for the DM’s implicit

utility function.

The foundations used for reducing the criterion cone are exposed in detail in

Steuer (1986) and are beyond the purpose of this book since this is not a specific

issue of multiobjective programming. Therefore, in this text we opted to present the

ICW method without detailing the computation of the T matrices used in the

criterion cone contraction procedure.

The information required from the DM in the dialogue phases concerns his/her

preferences among the proposed alternatives obtained in the previous computation

phase. The computation of the nondominated solutions proposed to the DM are

based on the optimization of weighted-sums of the objective functions, using in

each iteration 2p+ 1 weight vectors well distributed in the weight space ( p being

the number of objective functions). The procedure for determining these weight

vectors is presented during the description of the algorithm. It should also be noted

that the number of nondominated solutions proposed to the DM in each dialogue

phase is fixed and may be lower than the number of solutions obtained through the

optimization of weighted-sums using the 2p+ 1 weight vectors. For this purpose, a

filtering procedure may be used to select a sample of Q points, considered as the

most different ones, from a maximum of 2p+ 1 possible distinct solutions computed

in each iteration. The intention is to avoid the comparison by the DM of a high

number of solutions. For further details on the diverse filtering techniques that can

be used see Steuer (1986, chapter 9).
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4.5.2 ICW (Interval Criterion Weights) Algorithm

A simplified version of the ICWmethod is presented, regarding the one presented in

Steuer (1986).

Step 1

Initially, some parameters of the algorithm are specified (following the indications

given in Steuer 1986, chapter 13). The DM is asked to specify:

– the sample size, Q, of the nondominated solutions being presented in each

dialogue phase (p � Q < 2pþ 1);

– the number of iterations I (I � p).

Steuer also suggests the previous normalization of the objectives (to take into

account the different orders of magnitude) by multiplying the coefficients of the

decision variables in each objective function by an appropriate power of 10 (instead

of using any norm).

Let h¼ 1 (iteration counter).

Step 2

In each iteration 2p+ 1 convex combinations of the objective function gradients are

formed, with the purpose of obtaining well dispersed nondominated vertices

(regarding the criterion cone of the current iteration).

The convex combinations of the objective function gradients are given by the

following set of weight vectors:

λ1 ¼ 1; 0; . . . ; 0ð Þ Extreme convex combinations associated with the optimumð
of each objective functionÞ

λ2 ¼ 0; 1; . . . ; 0ð Þ
. . . . . . . . .

λp ¼ 0; 0; . . . ; 1ð Þ
λpþ1 ¼ 1

p2
; r; . . . ; r


 �
Non-central convex combinations

λpþ2 ¼ r;
1

p2
; . . . ; r


 �
. . . . . . . . .

λ2p ¼ r; r; . . . ;
1

p2


 �

λ2pþ1 ¼ 1

p
;
1

p
; . . . ;

1

p


 �
Central convex combination

and r ¼ pþ 1

p2

In the extreme convex combinations 1-ε is used instead of 1 (for the weights

equal to 1), and 0+
ε

p-1
instead of zero (for the weights equal to zero). Vectors on the
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frontier of the weight space are avoided in order to ensure that (strictly)

nondominated solutions are computed.

Step 3

In each calculation phase the following 2p + 1 linear problems are solved:

max
x2X

λkChx
� �

k ¼ 1, . . . , 2pþ 1

and

Ch ¼ Th�1 Th�2 . . . T1 C for h > 1

C for h ¼ 1




that is, in the initial iteration, h¼ 1, the objective function coefficient matrix is the

initial matrixC, in general normalized (that is, transformingC intoC0 ¼DC, where

D is a diagonal matrix, of p� p dimension, whose components are the normaliza-

tion factors of each row of C). Note that the normalizing operation does not change

the criterion cone, although it influences the weighted objective function gradient.

Therefore, it also influences the nondominated solutions resulting from each

weighted sum optimization. There is a T matrix defined for each weight combina-

tion and the pre-multiplication of C by the T matrices leads to the objective

function coefficients in the new iteration.

Step 4

The nondominated solutions obtained by optimizing the 2p+ 1 weighted sums of

the objective functions computed in step 3 are filtered to obtain a sample of size

Q and the DM is asked to choose the most satisfactory one according to his/her

preferences.

The filtering process has the purpose of selecting the Q most distinct points for
integrating the solution sample. A specific technique is used. For further details see

Steuer (1986, chapter 9), where the following filtering techniques are suggested:

closest point outside the neighborhoods and furthest point outside the
neighborhoods.

Then, the objective function coefficient matrix for the next iteration is built by

multiplying the previous one by aTmatrix, leading to a new contracted and dislocated

gradient cone with respect to the previous iteration cone. The new contracted cone

tends to be centered around the convex combination of the objective function gradi-

ents associated with the solution preferred by the DM in the last iteration. This cross-

section of the contracted cone is 1
p of the cross-section of the previous cone.

If the number I of iterations specified by the DM was not yet performed, then set

h h +1 and return to step 3.

Otherwise, go to step 5.

Step 5

Compute all nondominated vertices not yet known that can be generated using the

current cone of the objective functions.
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Step 6

A sample of the previously computed vertices with dimension Q is determined

through a filtering technique. Finally, the DM is asked to choose one of these

solutions.

Since the criterion cone is being gradually contracted in each iteration, according

to the DM’s preferences, the number of reachable nondominated vertices is pro-

gressively smaller. Steuer (1986) suggests that after the pre-specified number of

I iterations, an algorithm may be applied to compute all nondominated vertices

considering the current objective matrix, CI (step 5). These solutions are then

filtered once more to present a final sample to the DM, allowing him/her to make

the choice of the final solution (step 6).

The block diagram of the ICW method is presented in Fig. 4.28.

4.5.3 Final Comments

As this method uses weighted-sums of the objective functions with weight vectors

well dispersed in the weight space, it has the advantage of calculating, in each

iteration, potentially well differentiated solutions. However, the method is too rigid

in certain issues. For example, it sets a priori the maximum number of iterations

and does not allow the re-evaluation of decisions made in previous dialogue phases.

These issues have the purpose of limiting the computational burden. Also, it may

not be easy for the DM (from the cognitive point of view) to select a solution, in

each iteration.

Finally, it should also be noted that this method was built with the assumption

that there is a DM’s implicit utility function, trying to guarantee the convergence to

the nondominated vertex that is closer to the optimum of that implicit function.

4.5.4 Illustrative Example of the Interval Criterion Weights

Method

Consider the following linear programming problem with three objective functions:

4.5 Interval Criterion Weights Method 105



Contract the 

criterion

cone around the 

gradient that led to 

the DM’s choice

START

Optimize 2p+1 weighted-sum functions with 

well dispersed weight vectors in the weight 

space

− Set the sample size of the 

nondominated solutions Q
− Set the number of iterations I

- Select Q nondominated solutions using a 

filtering technique

- The DM chooses one of them 

NO

YES

Generate the entire set of nondominated solutions

using the (current) objective functions

The number of 

iterations was 

reached?

- Select Q nondominated solutions by using a

filtering technique

- The DM chooses one of them 

STOP

Fig. 4.28 Block diagram of the ICW method
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max z1 ¼ f 1 xð Þ ¼ 5x1 þ x2 þ x3
max z2 ¼ f 2 xð Þ ¼ 4:5x2
max z3 ¼ f 3 xð Þ ¼ x1 þ 4 x3
s:t:

x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

3x2 þ 2x3 � 11

x3 � 4:5
x1, x2, x3 � 0

9>>>>>>=
>>>>>>;

feasible region X

Figure 4.29 shows the feasible region X in the decision space, where the gradients of

the 3 objective functions ( f1, f2, f3) are also displayed (in a different scale w.r.t. X).

Step 1. Initially, the DM is asked to specify the sample size concerning the number

of nondominated solutions to be presented, Q, and the number of iterations, I.
Steuer (1986) suggests that Q should be between p (the number of objective

functions) and 2p + 1 (number of convex combinations of the objective function

gradients used in each iteration for computing nondominated solutions).

Suppose that the DM wants to know all the solutions computed in each iteration.

In this way, Q¼ 2p+ 1¼ 7, and no filtering process is necessary.

Consider the number of iterations I¼ 3.

x2

x1

x3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,1,4)

(0,0,4.5)

(0,0.5,4.5)

(0.5,0,4.5)

(0.2,2.33,2)

(0.5,2,2.5)

f2

f1

f3

Fig. 4.29 Feasible region in the decision space
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Step 2. A number of 2p+ 1¼ 7 well dispersed weight vectors is built (Fig. 4.30).

The corresponding convex combinations of the gradients of the objective functions

are:

λ1 ¼ 1, 0, 0ð Þ Extreme convex combinationsð Þ
λ2 ¼ 0, 1, 0ð Þ
λ3 ¼ 0, 0, 1ð Þ
λ4 ¼ 1

p2
, r, r


 �
¼ 0:111, 0:444, 0:444ð Þ Non-central convex combinationsð Þ

λ5 ¼ r,
1

p2
, r


 �
¼ 0:444, 0:111, 0:444ð Þ

λ6 ¼ r, r,
1

p2


 �
¼ 0:444, 0:444, 0:111ð Þ

λ7 ¼ 1

p
,

1

p
,

1

p


 �
¼ 0:333, 0:333, 0:333ð Þ Central convex combinationð Þ

where r ¼ pþ 1

p2
¼ 4

9
¼ 0:444.

First Iteration

Step 3. In the first iteration, the objective function matrix C1 is the initial matrix C:

C1 ¼ C ¼
5 1 1

0 4:5 0

1 0 4

2
4

3
5

It is not necessary to normalize the objective function coefficients in this

problem because they already have the same order of magnitude.

The following seven weighted-sum problems are solved, Pλk
� �

:

λ2

λ3

λ4 λ6

λ5

λ1

λ7

Fig. 4.30 Weight vectors

well dispersed in the weight

space
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max
x2X

λkC1x k ¼ 1, . . . , 7

The first instance to solve Pλ1
� �

is:

max 1� ε
ε
2

ε
2

h i 5 1 1

0 4:5 0

1 0 4

2
4

3
5 x1

x2
x3

2
4

3
5

s:t: x 2 X

with ε a small positive value, e.g. 0.001.

The optimal solution to this problem (which is a nondominated solution to the

multiobjective problem) is solution 1: x1 ¼ 5, 0, 0ð Þ, z1 ¼ 25, 0, 5ð Þ.
Using the remaining weight vectors λ2,. . ., λ7 the remaining six instances Pλk

� �
are solved. The following nondominated solutions are obtained:

Pλ2
� �

-solution 2 x2 ¼ 0, 3, 0ð Þ z2 ¼ 3, 13:5, 0ð Þ
Pλ3
� �

-solution 3 x3 ¼ 0:5, 0, 4:5ð Þ z3 ¼ 7, 0, 18:5ð Þ
Pλ4
� �

-solution 4 x4 ¼ 0, 1, 4ð Þ z4 ¼ 5, 4:5, 16ð Þ
Pλ5
� �

-solution 1 x1 ¼ 5, 0, 0ð Þ z1 ¼ 25, 0, 5ð Þ
Pλ6
� �

-solution 5 x5 ¼ 4, 1, 0ð Þ z5 ¼ 21, 4:5, 4ð Þ
Pλ7
� �

-solution 1 x1 ¼ 5, 0, 0ð Þ z1 ¼ 25, 0, 5ð Þ

Although seven linear problems have been solved, only five distinct

nondominated solutions were obtained. Note that solving Pλ5
� �

, Pλ7
� �

and Pλ1
� �

led to the same solution.

Figure 4.31 presents the indifference regions of these solutions on the weight

space.

Fig. 4.31 Indifference

regions of the solutions

computed in the first

iteration
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Step 4. The solutions computed in step 3 are presented to the DM, allowing

him/her to choose the best one according to his/her preferences.

Suppose that the DM chooses solution 4, obtained using the convex combination

of the objective function gradients associated with the weight vector

λ4 ¼ 0:111, 0:444, 0:444ð Þ.
The matrix corresponding to this weight vector is T(4), which is used to obtain

the criterion cone of the next iteration, contracted and dislocated from the cone of

the previous iteration.

The objective matrix of the second iteration is obtained from the matrix of the

current iteration by making C2 ¼ T1C1, where T1 ¼ T 4ð Þ.
Matrix T1 is obtained such that the new criterion cone is contracted around λ4C1.

As it was already mentioned, there is a pre-defined T matrix for each of the 2p + 1
convex combinations (for technical details see (Steuer 1986, chapter 9)):

λ1 :T 1ð Þ ¼
1 0 0

q 1�q 0

q 0 1�q

2
664

3
775

λ2 :T 2ð Þ ¼
1�q q 0

0 1 0

0 q 1�q

2
664

3
775 extreme convex combinationsð Þ

λ3 :T 3ð Þ ¼
1�q 0 q

0 1�q q

0 0 1

2
664

3
775

λ4 :T 4ð Þ ¼

1�q
q

a

q

a

0 1� p�2ð Þq
a

q

a

0
q

a
1� p�2ð Þq

a

2
666664

3
777775

λ5 :T 5ð Þ ¼

1� p�2ð Þq
a

0
q

a
q

a
1�q

q

a
q

a
0 1� p�2ð Þq

a

2
666664

3
777775 non-central convex combinationsð Þ
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λ6 : T 6ð Þ ¼

1� p� 2ð Þq
a

q

a
0

q

a
1� p� 2ð Þq

a
0

q

a

q

a
1� q

2
666664

3
777775

λ7 : T 7ð Þ ¼

1� q
a

p

q

p

q

p

q

p
1� q

a

p

q

p

q

p

q

p
1� q

a

p

2
6666664

3
7777775

central convex combinationð Þ

where a¼ p – 1 and q ¼ 1� p�
1
a

For p¼ 3, it is obtained:

T1 ¼ T 4ð Þ ¼
0:577 0:211 0:211
0 0:789 0:211
0 0:211 0:789

2
4

3
5

Second Iteration

Step 3. The objective function matrix corresponding to the contracted cone is given

by3:

C2 ¼ T1 C1 ¼
0:577 0:211 0:211
0 0:789 0:211
0 0:211 0:789

2
4

3
5 5 1 1

0 4:5 0

1 0 4

2
4

3
5

¼
3:098 1:528 1:423
0:211 3:549 0:845
0:789 0:951 3:155

2
4

3
5

In Fig. 4.32 the solutions already known are labelled and the objective function

gradients of the contracted cone regarding matrix C2 (corresponding to vectors

f 21, f
2
2 and f 23) are also represented.

The following seven weighted-sum problems are solved, Pλk
� �

:

3 In this example the result of the multiplication of matrices is slightly different from the right hand

side of the equality. These discrepancies are due to the fact that the computations were performed

with a higher precision.

4.5 Interval Criterion Weights Method 111



max
x2X

λkC2x k ¼ 1, . . . , 7

The solutions obtained are:

Pλ1
� �

-solution 1 x1 ¼ 5, 0, 0ð Þ z1 ¼ 25, 0, 5ð Þ
Pλ2
� �

-solution 2 x2 ¼ 0, 3, 0ð Þ z2 ¼ 3, 13:5, 0ð Þ
Pλ3
� �

-solution 6 x6 ¼ 0, 0:5, 4:5ð Þ z6 ¼ 5, 2:24, 18ð Þ
Pλ4
� �

-solution 4 x4 ¼ 0, 1, 4ð Þ z4 ¼ 5, 4:5, 16ð Þ
Pλ5
� �

-solution 3 x3 ¼ 0:5, 0, 4:5ð Þ z3 ¼ 7, 0, 18:5ð Þ
Pλ6
� �

-solution 7 x7 ¼ 2:667, 2, 0:333ð Þ z7 ¼ 15:667, 9, 4ð Þ
Pλ7
� �

-solution 4 x4 ¼ 0, 1, 4ð Þ z4 ¼ 5, 4:5, 16ð Þ

Figure 4.33 shows the indifference regions associated with these solutions:

(a) regarding the weight space corresponding to the contracted cone;

(b) regarding the original weight space, where the weight space of the contracted

cone can also be seen (shaded background) overlapping the original one.

Step 4. The solutions computed in step 3 are presented to the DM, allowing

him/her to choose the most satisfactory regarding his/her preferences.

Suppose that the DM chooses solution 6, which is obtained using the convex

combination of the objective function gradients of the contracted cone with the

x2

x1

x3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,1,4)

(0,0,4.5)

(0,0.5,4.5)

(0.5,0,4.5)

(0.2,2.33,2)

(0.5,2,2.5)
1

2

3

4

5

f1
2

f2
2

f3
2

Fig. 4.32 Objective function gradients of the contracted cone in the second iteration
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weight vector λ3 ¼ ε=2, ε=2, 1� εð Þ. With this information it is possible to

obtain the contraction matrix of the second iteration, T2:

T2 ¼ T 3ð Þ ¼
0:577 0 0:423
0 0:577 0:423
0 0 1

2
4

3
5

The objective function coefficients matrix for the next iteration is

C3 ¼ T2 C2 ¼ T2 T1 C, leading to a new contracted and dislocated cone regard-

ing the previous one.

Third Iteration

Step 3. The objective function matrix C3, corresponding to the contracted cone is

given by:

C3 ¼ T2 C2 ¼
0:577 0 0:423
0 0:577 0:423
0 0 1

2
4

3
5 3:098 1:528 1:423

0:211 3:549 0:845
0:789 0:951 3:155

2
4

3
5

¼
2:122 1:284 2:155
0:455 2:451 1:821
0:789 0:951 3:155

2
4

3
5

In Fig. 4.34 the solutions already known are labelled, and the gradients of the

contracted cone of the objective functions are also displayed, regarding matrix C3

(corresponding to vectors f 31, f
3
2 and f 33).

Fig. 4.33 Indifference regions of the nondominated solutions obtained in the second iteration. (a)

Weight space corresponding to the contracted cone. (b) Original weight space (the weight space

corresponding to the contracted cone is displayed with shaded background)
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The following seven weighted-sum problems are solved, Pλk
� �

:

max
x2X

λkC3x k ¼ 1, . . . , 7

The nondominated solutions found are:

Pλ1
� �

-solution 3

Pλ2
� �

-solution 4

Pλ3
� �

-solution 6

Pλ4
� �

-solution 6

Pλ5
� �

-solution 3

Pλ6
� �

-solution 6

Pλ7
� �

-solution 6

All these solutions were already known in the previous iterations. However, it

should be noted that there are nondominated vertices of the original problem not yet

computed until this phase of the search (Fig. 4.35b).

Figure 4.35 presents the indifference regions of these solutions both regarding

the weight space corresponding to the contracted cone and the original weight space

(where the weight space of the contracted cone is shown with a shaded background

overlapping the original one).

Since three iterations were already performed, the iterative process stops.

x2

x1

x3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,1,4)

(0,0,4.5)

(0,0.5,4.5) 6

(0.5,0,4.5)

(0.2,2.33,2)

(0.5,2,2.5)
1

2

3

4

5

7

f1
3

f2
3

f3
3

Fig. 4.34 Objective function gradients of the contracted cone in the third iteration

114 4 Interactive Methods in Multiobjective Linear Programming



Steuer (1986) suggests that, in the end, an algorithm should be applied to

compute all the nondominated basic solutions considering the objective functions

of the final contracted criterion cone (matrix C3 —Step 5). Nevertheless, in this

case, no additional computations are required. As it can be seen in Fig. 4.35, the

indifference regions of solutions 3, 4 and 6 completely fill the weight space

corresponding to the contracted cone, meaning that these solutions form the entire

set of nondominated basic solutions that can be obtained with matrix C3.

Step 6. In this case, the number of solutions obtained does not justify the

application of a filtering process. Then, the DM should choose a compromise

solution among solutions 3, 4 and 6.

4.6 Pareto Race Method

4.6.1 Method Description

The Pareto Race method proposed by Korhonen and Wallenius (1988) is based on

the work developed by Korhonen (1987) and Korhonen and Laakso (1986a, 1986b).

It is a directional search method allowing the DM moving freely on the

nondominated region. The information required from the DM essentially consists

in the specification of the objective functions to be improved, which changes the

direction of the motion. The nondominated solutions are obtained through the

optimization of a reference point scalarizing function and the use of parametric

programming.

A reference direction is built from the aspiration levels for the objective function

values, initially specified by the DM. This direction starts from a point in the

objective function space and offers a variation of the values of the objective

Fig. 4.35 Indifference regions of the solution in the third iteration. (a) Weight space

corresponding to the contracted cone. (b) Original weight space
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functions according to the DM’s preferences. The reference direction is then

projected onto the nondominated solution set by using an achievement scalarizing

function, which corresponds to a weighted Chebyshev metric if the reference

direction is not attainable, generating a trajectory (sub-set of the nondominated

solutions) that is presented to the DM. In this way, the DM can travel on the

nondominated frontier, controlling the direction of motion (by privileging the

objective functions that he/she wants to improve) and the speed (controlling how

close on that direction solutions should be calculated), as if he/she is driving a car

(hence, the designation Pareto Race) on that surface.

According to generalized goal programming, a constraint can be considered as a

non-flexible target and an objective function a flexible target. The Pareto Race

method considers the set G of flexible targets, which are associated with the

aspiration levels of the objective functions, and the set R of the non-flexible targets

(constraints).

Initially the DM is asked to specify the values of the aspiration levels for the

objective functions, i.e. the starting reference point. From this data, the vector b is

obtained, with dimension m + p, including the values of the right-hand sides of the

constraints (m non-flexible targets) and the aspiration levels for each objective

function ( p flexible targets).

The range of variation of the flexible targets (Δbk) is also specified by the

DM. These values implicitly limit the relative importance of each objective

function:

wk ¼ Δbk if k 2 G
0 if k 2 R




d is the reference vector which controls the direction of motion. Initially d¼w.

The normalization of the directions is achieved by maintaining s constant in all

iterations: s ¼
X
k

dk.

In order to compute nondominated solutions resulting from the projection of the

unbounded line segment, b+ t d, the following linear parametric problem is solved:

min v� ρ
Xp
k¼1

ckx

( )
s:t: cj xþ v wj � bj þ t dj j 2 G

Ai	 x ¼ bi i 2 R
x � 0

v 2 ℝ

ð4:4Þ

where ρ is a very small positive number and (ρ
Xp
k¼1

ckx) is a perturbation term

aimed at enforcing the computation of a nondominated solution (when there are

alternative optima for (4.4)). By omitting this term, there is only the guarantee that
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the solution obtained is weakly nondominated. The vectors Ai •, i ¼1,. . .,m, contain
the decision variable coefficients in the constraints (non-flexible targets), as well as

the coefficients associated with the auxiliary variables used for converting the

inequalities into equalities. The constraints Ai	 x ¼ bi, i 2 R, are equivalent to

Ai	 x ¼ bi þ t di, with di ¼ 0 for i 2 R. Note that the variable v can be positive or

negative, since the reference point can either be inside or outside the feasible

region. In order to deal with non-negative variables only, v is replaced by

v ¼ vþ � v�, with vþ, v� � 0.

The parameter t controls the speed of motion.

Therefore, the projection of the reference point onto the nondominated region is

obtained by minimizing an achievement scalarizing function. The computation of

the trajectory on the nondominated region is made by using a parametric program-

ming problem regarding the right-hand sides of the constraints associated with the

objective functions of the MOLP problem. Let the reference point be bG (i.e. the

part of vector b, such that its components are bj, j 2 G) and λ the weight vector (note

that, in this setting, the weights are essentially scaling factors). The scalarizing

program is:

min max
j¼1, 


, p

λj bj � cjx
� �� � � ρ

Xp
k¼1

ckx

( )
s:t: Ai	x ¼ bi i 2 R

x � 0

which is equivalent to:

min v � ρ
Xp
k¼1

ckx

( )

s:t: cjx þ v

λj
� bj j 2 G

Ai	x ¼ bi i 2 R
x � 0, v 2 ℝ

This problem can be written as:

min v� ρ
Xp
k¼1

ckx

( )

s:t: λj bj � cjx
� � � v j 2 G

Ai	x ¼ bi i 2 R
x � 0

v 2 ℝ

ð4:5Þ

This problem is similar to the one solved in the STEM method, except the term

ρ
Xp
k¼1

ckx in the objective function and v 2 ℝ because the reference point may be

4.6 Pareto Race Method 117



reachable. That term can also be introduced in the STEM method with the same

purpose, i.e. enforcing obtaining a strictly nondominated solution.

It can be seen that problem (4.5) is different from (4.4) because the right-hand

sides of the constraints in (4.5) are not parameterized. In order to define the

direction towards which the reference point should be moving, tdj is added to bj
for j 2 G (dj is the component j of the direction and t the parameter that controls the

movement). The weight λj has a similar meaning to the αj used in the STEM

method. In the Pareto Race method the weight wj is used, being defined by wj ¼ 1
λj
:

Each time that (4.4) is solved, t¼ 0 is initially considered. Using classical

sensitivity analysis regarding the right-hand sides of the constraints of (4.4), for

the optimal solution associated with a certain value of t, in particular t¼ 0, the

interval t� t1, tþ t2½ � is computed, indicating the possible variation of t in order

that the current basis remains feasible.

Solving the problem (4.4) for a particular value of t using the simplex method,

the values of the basic variables in the optimal solution are given by:

xB ¼ B�1 b þ t dð Þ

where xB is the vector of basic variables and B�1 the inverse of the basis matrix.

By changing t into tþ θ, it is obtained:

xB θð Þ ¼ B�1 bþ tþ θð Þ dð Þ
xB θð Þ ¼ xB þ θ B�1d

The upper and lower bounds of θ are computed such that the solution remains

feasible (since the optimality condition is not affected), that is, xB θð Þ � 0. The

interval θ 2 t� t1, tþ t2½ � is obtained.
From the initial nondominated solution, the DM has several options, which do

not request the specification of concrete values but only the indication of the

variation trends, i.e.:

– Proceeding along the current direction at constant speed. The step is updated by

making

t tþ min Δt ; t2f g if Δt > 0

tþ max Δt ; � t1f g if Δt < 0




Δt represents the speed of motion and it is initially equal to β, i.e. a scalar

representing the basic pace.

If t2 ¼ þ1, the DM is asked to change the direction.

If t2 ¼ 0 and Δt > 0, it means that it is not possible to proceed along the

current direction without changing the basis. The necessary operations are perfor-

med in order to obtain a new basis and to update the interval [t� t1, tþ t2].
If t1 ¼ 0 and Δt < 0, the DM is asked to change the direction.
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If none of these cases occur, the DM should proceed along the same direction

with a pace Δt, the new solution being xB  xB þ ΔtB�1d. The values t1 and t2
are updated.

– Changing direction, in order to improve a certain objective function. The

component of the reference direction corresponding to this target is increased:

dj  dj þ σjΔbj j 2 G

where j is the index of the objective function chosen by the DM and σj is a scalar
allowing to determine the variation in the direction of motion.

The direction vector is re-normalized such that
X
k

dk ¼ s.

The problem (4.4) is solved for t ¼0, and the interval [ t� t1, tþ t2 ] is

recomputed. The bj, j 2 G, considered in (4.4), when the DM wants to change

the direction, are the values of the flexible targets j corresponding to the point of
the nondominated frontier where the change of direction occurs.

– Changing course, making an opposite motion (forward or backward) on the

current direction.

Δt β if Δt < 0 : inversion of the course forward

�β if Δt > 0 : inversion of the course backward




The change of course always starts with speed β, although it is possible to

maintain the current speed, i.e. the speed when the motion is reversed (Δt).
– Increase or decrease the speed, moving faster or slower, in the current course

and direction.

The increase or decrease in the speed is obtained by varying the absolute value

of the scalar Δt. In order to increase the speed Δt α Δt, with α >1, is

performed. In order to decrease the speed Δt Δt
α , with α >1, is performed

(until reaching a minimum equal to β).
– “Fixing” the level of an objective function, by introducing a lower bound into a

flexible target equal to the corresponding current value.

The constraint of the type cjx � Lj is introduced, where Lj is the lower bound
corresponding to the objective function f j xð Þ, j 2 G.

– Release an objective function, by removing the limitation previously imposed.

The block diagram of the Pareto Race method is shown in Fig. 4.36.

4.6.2 Final Comments

The use of the Pareto Race method is particularly interesting for the DM from the

cognitive point of view. It offers a free search in which the DM decides where to

travel on the nondominated region. When there is no previous overview of the
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shape of the feasible region, this method is mostly suited if the trajectories on the

nondominated region, chosen by the DM by trial and error, can be performed fast

enough. Therefore, the search process of Pareto Race seems particularly suited for a

Change the initial

reference point

START

Find a solution, by projecting the current 

reference point onto the nondominated region 

Establish the reference values/aspiration levels

(initial reference point).

Define the initial direction of motion.

Define a new (or change) the 

direction of motion

NO

YES

STOP

Compute a trajectory on the

nondominated region when the 

reference point is moved.

Is the DM satisfied?

NO

Does the DM 
want to change 

the search 
direction?

YES

Fig. 4.36 Block diagram of the Pareto Race method

120 4 Interactive Methods in Multiobjective Linear Programming



final computation phase, previously considering a strategic search using other

procedure(s). The Pareto Race method could then be used to study in more detail

the solutions of a delimited nondominated region.

4.6.3 Illustrative Example of the Pareto Race Method

Consider the following linear problem with three objective functions (which was

used above for illustrating the TRIMAP method):

max z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
max z3 ¼ f 3 xð Þ ¼ x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3 � 0

The Pareto Race method starts by asking the DM to specify the aspiration levels

and the desirable ranges of variation of the objective function values.

Suppose that the DM establishes the aspiration levels with values 6, 5 and 5 for

f1(x), f2(x) and f3(x), respectively, and he/she would like to keep the objective

function values in the following intervals: [4.5, 7] for f1(x), [2.5, 6] for f2(x) and
[2, 6] for f3(x). Since it may not be possible to obtain the objective function values

within these intervals, they are only indicative. In this way, (6, 5, 5) is the original

reference point that will be projected onto the nondominated frontier and the

proposed variations, (7–4.5, 6–2.5, 6–2)¼ (2.5, 3.5, 4), form the initial weight

vector w. Note that the weights have here the role of scale factors. The variation

intervals [LBj,UBj] for each objective function ( j2G) will be updated during the

procedure.

The right-hand side vector (targets) is b ¼
bG
��
bR

2
4

3
5 ¼

6

5

5

��
5

9

16

2
666666664

3
777777775
and the

weight vector is w ¼

2:5
3:5
4

��
0

0

0

2
666666664

3
777777775
, where the first three components refer to the
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objectives (flexible targets) and the last three to the constraints (rigid targets).

Initially, the reference direction is considered as d ¼ w.

The directions are normalized by computing the value s for the initial reference

direction such that s ¼
X
j2G

dj, and s is kept constant in all iterations. In this

example, s¼ 10.

In order to project the unbounded segment line bþ td onto the nondominated

solution set, leading to a nondominated trajectory, the parametric linear problem

(4.4) is solved.

Problem (4.4) is firstly solved for t¼ 0. The computation of other nondominated

solutions for different values of t can be made by using parametric programming

regarding the right-hand side of the constraints G.
The variable v has no sign restriction and it can be rewritten as v ¼ vþ � v� with

vþ, v� � 0. Thus, the problem to be solved is (considering ρ ¼ 0:001):

min vþ � v� � 0:001 x1 þ x2 þ x3ð Þ
s:t: 2:5 vþ � 2:5 v� þ x1 � 6

3:5vþ � 3:5v� þ x2 � 5

4vþ � 4v� þ x3 � 5
x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16
x1, x2, x3, v

þ, v� � 0

The optimal simplex tableau converted into maximization and omitting the

columns of the basic variables is:

c 1 0 0 0 0
(cB)

T xB v� s1 s2 s3 s4

0.001 x3 0 0.4 0.4 -0.6 0.4 0.6
0 s5 0 -0.7 1.3 -0.7 -1.7 1.7
0 s6 0 0.85 1.85 -2.15 -2.15 1.65

0.001 x1 0 -0.75 0.25 0.25 0.25 3.25
0.001 x2 0 0.35 -0.65 0.35 0.35 1.15
-1 vþ -1 -0.1 -0.1 -0.1 -0.1 1.1

zj � cj 0 0.1 0.1 0.1 0.101

s1, s2 and s3 are the surplus variables of the first three constraints, and s4, s5 and
s6 are the slack variables of the last three constraints.

The nondominated solution obtained for the original problem is x¼ (3.25, 1.15,

0.6) and the corresponding image in the objective function space is z¼ (3.25, 1.15,

0.6).

The variation intervals of the objective functions are updated: [LB1,UB1] ¼
[3.25, 7], [LB2,UB2] ¼ [1.15, 6], [LB3,UB3] ¼ [0.6, 6]. These intervals are updated

whenever a new solution is computed in order that the objective function values

belong to the corresponding interval.
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The range of variation of t keeping the optimal basis, when b changes tobþ t d,

is computed through sensitivity analysis. If xB is the basic variable vector, then, for

t¼ 0, xB ¼ B�1 b, where B�1 is the inverse of the basis matrix. Changing b to

bþ t d, xB tð Þ ¼ B�1 bþ t dð Þ, with t taking values that guarantee the basis

remains feasible, i.e. xB tð Þ � 0.

xB ¼

x3
s5
s6
x1
x2
vþ

2
6666664

3
7777775
¼ B�1 bþ t dð Þ

¼

�0:4 �0:4 0:6 0:4 0 0

0:7 �1:3 0:7 �1:7 1 0

�0:85 �1:85 2:15 �2:15 0 1

0:75 �0:25 �0:25 0:25 0 0

�0:35 0:65 �0:35 0:35 0 0

0:1 0:1 0:1 �0:1 0 0

2
6666664

3
7777775

6

5

5

5

9

16

2
6666664

3
7777775
þ t

2:5
3:5
4

0

0

0

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

¼

0:6
1:7
1:65
3:25
1:15

1:1þ t

2
6666664

3
7777775
�

0

0

0

0

0

0

2
6666664

3
7777775

Therefore, t 2 [�1.1, +1]. Since currently t¼ 0, the lower variation is t1 ¼ 1:1 and
the upper bound of variation is t2 ¼ þ1, that is, [t� t1, tþ t2]¼ [�1.1, +1].

Suppose that the DM wishes to continue the search along a trajectory defined by

this reference direction, and that he/she chooses the option to proceed. However,

since t2 ¼ þ1, it is not possible to continue the search in this direction because any

point of the unbounded linear segment bþ t d would be projected onto the current

solution z¼ x¼ (3.25, 1.15, 0.6). Hence, the DM is asked to specify the objective

function that he/she wishes to improve.

Mandatory Change of the Direction

Suppose that the DM wants to improve f3(x). Then, d3 is changed to

d3 þ σ UB3 � LB3ð Þ;where σ is a scalar, for example, equal to 0.5 (value suggested

by the authors of the method):

d1 ¼ 2:5; d2 ¼ 3:5; d3 ¼ 4þ 0:5 6� 0:6ð Þ ¼ 6:7;

The vector d is normalized making
X
j2G

dj ¼ s ¼ 10 :

dj  dj
10

2:5þ 3:5þ 6:7
, j ¼ 1, . . . , 3
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The new direction is d ¼

1:969
2:756
5:276
0

0

0

2
6666664

3
7777775

The weights are also updated by decreasing w3, and then the vector is normalized

following a similar procedure as for d. For example, a possible way is dividing w3

by (1þ σ):

w1 ¼ 2:5; w2 ¼ 3:5; w3 ¼ 4

1:5
¼ 2:667;

After normalization w ¼

2:885
4:038
3:079
0

0

0

2
6666664

3
7777775

Note that the weights w produce an effect on the objective function values that

is, in general, the opposite of what might be expected; that is, a lower weight means

a higher importance assigned to the corresponding objective function. This occurs

when the reference point is located on the frontier or outside the feasible region, that

is, when v+ �0 and v– ¼0.
The reference point is updated with the objective function values of the last

solution4:

bG ¼
3:25
1:15
0:6

2
4

3
5

The following problem is solved considering t¼ 0:

min vþ � v� � 0:001 x1 þ x2 þ x3ð Þ
s:t: 2:885 vþ � 2:885 v� þ x1 � 3:25þ 1:969t

4:038 vþ � 4:038 v� þ x2 � 1:15þ 2:756t
3:079 vþ � 3:079 v� þ x3 � 0:6þ 5:276t

x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3, v
þ, v� � 0

4 These weight and reference point updates were not proposed in the original presentation of the

method. However, experimental results have shown that the performance of the method with these

modifications is superior to the original version, especially concerning the changing direction

control.
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The optimal solution for t¼ 0 is x¼ z¼ (3.25, 1.15, 0.6) as was expected

because this the reference point and it is reachable.

The range of variation of t is computed regarding (4.4) such that the optimal

basis is maintained:

xB tð Þ ¼ B�1 bþ t dð Þ � 0

x3
s5
s6
x1
x2
vþ

2
6666664

3
7777775
¼

�0:308 �0:308 0:692 0:308 0 0

0:808 �1:192 0:808 �1:808 1 0

�0:519 �1:519 2:481 �2:481 0 1

0:712 �0:288 �0:288 0:288 0 0

�0:404 0:596 �0:404 0:404 0 0

0:1 0:1 0:1 �0:1 0 0

2
6666664

3
7777775
�

3:25
1:15
0:6
5

9

16

2
6666664

3
7777775
þ t

1:969
2:756
5:276
0

0

0

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA
¼

0:6þ 2:199 t
1:7þ 2:565 t
1:65þ 7:879 t
3:25� 0:916 t
1:15� 1:283 t

0þ t

2
6666664

3
7777775
�

0

0

0

0

0

0

2
6666664

3
7777775

meaning that t 2 0, 0:897½ �. Since currently t¼ 0, then t1 ¼ 0 and t2 ¼ 0:897.
The DM can proceed with the search for solutions in this direction with the

displacement being made with the basic speed (Δt ¼ β ¼ 10�4—predefined scalar)

or at a higher speed. An increase in speed means a larger separation between the

nondominated solutions computed following the chosen trajectory, to be presented

to the DM. So, the trajectory is travelled faster.

Suppose that the DM increases the speed to Δt ¼ 0:02.
The trajectory presented to the DM is formed by the solutions to (4.4) for t values

spaced of Δt. These solutions, in particular, for t¼ 0.02, are computed as follows

(x values in bold):

x3
s5
s6
x1
x2
vþ

2
6666664

3
7777775
¼

0:6þ 2:199 � 0:02
1:7þ 2:565 � 0:02
1:65þ 7:879 � 0:02
3:25� 0:916 � 0:02
1:15� 1:283 � 0:02

0þ 0:02

2
6666664

3
7777775
¼

0:644
1:751
1:808
3:232
1:124
0:02

2
6666664

3
7777775

Hence, proceeding in this direction (Fig. 4.37) the DM is faced, in a sequential

and dynamical way, with a set of solutions:
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z1 z2 z3
t ¼ 0:02ð Þ 3:232 1:124 0:644
t ¼ 0:04ð Þ 3:213 1:099 0:688
t ¼ 0:06ð Þ 3:195 1:073 0:732
t ¼ 0:08ð Þ 3:177 1:047 0:776

 
 
 
 
 
 
 
 
 
 
 


t ¼ 0:897ð Þ 2:428 0 2:572

where f3(x) increases and f1(x) and f2(x) decrease.
When t reaches the value 0.897 (solution where z1 ¼ 2:428, z2 ¼ 0 and z3

¼ 2:572) an edge of the nondominated region is reached and so, in order to continue

the search following the same direction, it is necessary to change the basis (see

Fig. 4.40).

Changing the Basis (Deciding to Keep the Search Direction)

After updating the simplex tableau to change the basis (for example, using the dual

simplex method), a new variation interval is computed for t. The result is t1 ¼ 0 and

t2 ¼ 1:580, meaning that t (currently equal to 0.897) can change within the interval
[0.897, 0.897 + 1.580].

Admitting that the DM wishes a slight increase in the speed (choosingΔt ¼ 0:03),
the following sequence of solutions is presented, where f3(x) keeps increasing, f1(x) is
decreasing, and f2(x) stays constant (see Fig. 4.38):

Fig. 4.37 Bars of objective

function values varying

dynamically along the

trajectory
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z1 z2 z3
t ¼ 0:927ð Þ 2:382 0 2:618
t ¼ 0:957ð Þ 2:335 0 2:655

. . . . . . . . . . . .
t ¼ 1:047ð Þ 2:194 0 2:806

Suppose that, at this stage, analyzing the solution z¼ (2.194, 0, 2.806), the DM

opts for changing the direction (before knowing the entire nondominated trajectory

that could be computed following the current reference direction).

Figure 4.38 shows the values of z1, z2 and z3, along the trajectory, and the dashed
line (t ¼1.047) indicates the moment in which the DM changed the direction of

search.

Voluntary Change of Direction

Admitting that the DM wants to improve f2(x), the component corresponding to this

objective function is increased in the direction d and the corresponding component

of the weight vector w is decreased:

d2  d2 þ σ UB2 � LB2ð Þ ¼ 2:756þ 0:5 6� 0ð Þ ¼ 5:756

w2  w2

1:5

After normalization:

Fig. 4.38 Objective function values along the first trajectory. The dashed line indicates the

moment the DM changed the direction of search
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d ¼

1:514
4:428
4:058
0

0

0

2
6666664

3
7777775

and w ¼

3:333
3:111
3:555
0

0

0

2
6666664

3
7777775

The reference point is updated with the objective function values of the last

solution:

bG ¼
2:194
0

2:806

2
4

3
5

The following problem is solved considering t¼ 0 (this problem corresponds to

the problem of the first trajectory with t¼ 1.047):

min vþ � v� � 0:001 x1 þ x2 þ x3ð Þ
s:t: 3:333 vþ � 3:333 v� þ x1 � 2:194þ 1:514 t

3:111 vþ � 3:111 v� þ x2 � 0þ 4:428 t
3:555 vþ � 3:555 v� þ x3 � 0:806þ 4:058 t

x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1, x2, x3, vþ, v� � 0

After the sensitivity analysis of the right-hand side of the constraints it is concluded

that the admissible interval for t is [0, 1.206].
If the DM chooses again the option proceed, maintaining the previous speed

Δt ¼ 0:03ð Þ, a second trajectory is presented where f1(x) decreases, f2(x) increases
and f3(x) increases:

z1 z2 z3
t ¼ 0ð Þ 2:194 0 2:806

t ¼ 0:03ð Þ 2:138 0:04 2:821
t ¼ 0:06ð Þ 2:083 0:121 2:852

. . . . . . . . . . . .
t ¼ 0:42ð Þ 1:417 0:562 3:020

Suppose that the DM considers the solution z¼ x¼ (1.417, 0.562, 3.020) a good

compromise solution. Then, the procedure stops.

Figure 4.39 shows the values of z1, z2 and z3 along the entire trajectory and the

moment when the DM decided to stop the search, represented by a dashed line.
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Figure 4.40 presents the objective function space, which in this example coin-

cides with the decision space, where the set of examined nondominated solutions is

represented using a solid thick line.

Fig. 4.39 Objective function values along the second trajectory. The dashed line indicates the

moment when the DM decided to stop the search

z2

z1

z3

(4,1,0)

(5,0,0)

(2.4,2.2,0)

(2.67,2,0.33)

(0,3,0)

(0,2,3)

(0,0,5)

(3.25, 1.15, 0.6)

(2.428, 0.2, 2.572)
(2.194,0.2,2.806)

(1.417,0.562,3.02)

Fig. 4.40 Trajectory on the nondominated frontier
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4.7 Proposed Exercises

1. Consider the MOLP problem:

max z1 ¼ f 1 xð Þ ¼ �x1 þ 4x2
max z2 ¼ f 2 xð Þ ¼ 3x1 � x2
s:t: � x1 þ x2 � 6

x1 þ x2 � 10

x1 � 8

x2 � 7

x1, x2 � 0

(a) Represent the feasible region in the decision space and in the objective

function space. Identify the efficient region and the nondominated region.

(b) Build the pay-off table and identify the ideal solution.

(c) Formulate the problem to find the first compromise solution according to

the STEM method.

(d) Considering that the solution of the problem formulated in (c) is (x1, x2)¼
(5.46, 4.54), formulate the problem to determine the second solution

generated by the STEM method if the DM decides relaxing f1(x) by

2 units. Graphically illustrate the reduction of the feasible region in the

decision space and in the objective function space.

(e) What is the new compromise solution obtained by solving the problem

formulated in (d)?

2. Consider the MOLP problem:

min z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
s:t: x 2 X

A(9,6)

B(11,5)

C(12,4)

D(13,2)

E(10,1)

F(5,0)

G(1,1)

H(2,3)

I(4,5)

J(7,6)

x1

x2

X

(a) Formulate the problem to solve the initial iteration of the STEM method.

(b) Compute the first solution proposed to the DM.
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(c) Suppose that a second iteration is performed and the DM decides to relax

f1(x) by 2 units with respect to the solution obtained in (b). Formulate the

new problem to be solved and graphically illustrate the new feasible region.

(d) What is the second solution proposed by the STEM method?

3. Consider the following MOLP problem:

max z1 ¼ f 1 xð Þ ¼ x1 þ 5x2
max z2 ¼ f 2 xð Þ ¼ 6x1 þ 2x2
s:t: x1 þ x2 � 10

3x1 þ x2� 24

x1, x2 � 0

(a) Formulate the problem to be solved in the first iteration of the STEM

method.

(b) Would it be possible to reach a weakly efficient solution in the STEM

method? If so, indicate a solution in these circumstances.

4. Consider the MOLP problem:

max z1 ¼ f 1 xð Þ ¼ 3x1 þ x2 þ 2x3 þ x4
max z2 ¼ f 2 xð Þ ¼ x1 � x2 þ 2x3 þ 4x4
max z3 ¼ f 3 xð Þ ¼ �x1 þ 5x2 þ x3 þ 2x4
s:t: 2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

x1, x2, x3, x4 � 0

(a) Find the indifference region on the weight space (use the projection on the

plane λ1,λ2), corresponding to the nondominated basic solution that

optimizes

max 0:1f 1 xð Þ þ 0:6f 2 xð Þ þ 0:3f 3 xð Þ
s:t : x 2 X X denotes the feasible region defined aboveð Þ

Comment on the solution obtained.

(b) What are the efficient nonbasic variables for this solution? What is the

variation of each objective function per unit of each efficient nonbasic

variable that becomes basic?

(c) What are the nondominated basic solutions that are obtained when each of

these efficient nonbasic variables becomes basic? Graphically illustrate the

corresponding indifference regions.

(d) After contracting the gradient cone (as in the ICW method) around the

vector of central weights (1/3,
1/3,

1/3), what are the solutions found in

(a) and (c) still possible to reach? Make the graphical analysis of the weight

space.
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(e) What are the constraints being introduced into the weight space if the DM

prefers all the adjacent nondominated vertices regarding the solution com-

puted in (a) in the method of Zionts and Wallenius?

(f) Comment on the following statement: “The nondominated solutions

already known are not sufficient to completely characterize a

nondominated face”.

(g) Let x0¼ (5.73,7.16,1.63,6.26) be the initial nondominated solution

obtained by the STEM method. Formulate the problem to be solved in

the next iteration of the STEM method if the DM decides to relax f3(x) by
14 units, with respect to that solution.

(h) Consider the auxiliary problem:

min v

s:t: x 2 X

10� f 1 xð Þ � v

40� f 2 xð Þ � v

20� f 3 xð Þ � v

v � 0

Is the solution to this auxiliary problem a nondominated solution to the

initial problem?

If not, what would be the changes required in the formulation of the

auxiliary problem to guarantee a nondominated solution?

(i) Comment on the following statements, regarding the original

multiobjective problem:

1. “All the nondominated (basic and nonbasic) solutions already known

belong to the same nondominated face”.

2. “The nondominated basic solutions already known are sufficient to

characterize the plane where a nondominated face is located, but not

the face itself”.

3. “There are no nondominated solutions that are alternative optima of at

least one objective function.”

4. “It is possible to obtain a nondominated solution that optimizes the

objective function fk(x) by optimizing a weighted-sum of the objective

functions with λk¼ 0 for k¼ 1, 2, 3”.

5. Consider a linear programming problem with 3 objective functions being max-

imized, 4 decision variables and 3 constraints of the type ‘�’ (where s1, s2 and s3
are the corresponding slack variables). Suppose that the weight space decom-

position is the following:
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(a) Make the correspondence between each of the indifference regions 1–5 in

the figure and the solutions A–E in the following table:

(b) Identify the nondominated faces and edges of the problem.

6. Consider a MOLP with p objective functions for which a first compromise

solution is obtained through the resolution of the following linear problem:

min α
s:t: λk z*k � ck x

� � � α k ¼ 1, . . . , p
Ax ¼ b

x � 0

α � 0

where z�k is the k
th component of vector z*, which represents the ideal solution.

(a) Reformulate this problem to obtain a linear parametric programming prob-

lem that allows computing the nondominated solutions trajectory, when the

reference point is displaced from the ideal solution in a direction d.

(b) For simplicity reasons it has been assumed that the resolution of the

problem above always leads to nondominated solutions. Is this truth?

z1 z2 z3 Basic variables

A 12.5 50 25 x4¼ 12.5; s1¼ 22.5;

s2¼ 35

B 15 �15 75 x2¼ 15; s1¼ 45; s3¼ 20

C 51 50 4 x1¼ 14; x4¼ 9; s1¼ 5

D 66 30 �12 x1¼ 18; x3¼ 6; s3¼ 14

E 55.5 47.2 2 x1¼ 14.5; x3¼ 2.5; x4¼ 7
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7. Consider a linear programming problem with 3 objective functions, 4 decision

variables and 2 constraints of the type ‘�’, for which the following weight space
decomposition was obtained

z1 z2 z3 Basic variables

A 60 36 72 x3¼ 12; x2¼ 12

B 45 63 66 x4¼ 18; x2¼ 6

C 45 22.5 75 x5¼ 45; x2¼ 15

(a) Identify the nondominated faces and edges of the problem.

(b) Suppose that first solution obtained using the method of Zionts-Wallenius

is C, which is associated with the following simplex tableau:

x1 x2 x3 x4 x5 x6

x5 1.25 0 3.75 2.5 1 �0.25 45
x2 0.75 1 0.25 0.5 0 0.25 15

z1–c1 0.75 0 �1.25 0 0 0.75
z2–c2 1.125 0 �1.125 �2.25 0 0.375
z3–c3 4.75 0 0.25 0.5 0 1.25

x5 and x6 are the slack variables of the constraints.
Regarding the first iteration of the method, indicate:

1. the solution pairs that are presented to the DM for evaluation and the

constraints resulting from the answers given by the DM.
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2. The possible compromise vectors between the objectives (trade-offs)
presented to the DM and the constraints resulting from the answers

given by the DM.

8. Consider the following MOLP problem:

max z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
max z3 ¼ f 3 xð Þ ¼ x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9

3x1 þ 4x2 � 16

x1 þ 2x3 � 10

x1, x2, x3 � 0

(a) This is a problem with degenerate solutions. How many bases correspond to

the vertex that optimizes f3(x)? Compute those basic solutions.

(b) Find the indifference regions on the weight space corresponding to each

basic solution.

9. Consider the following MOLP problem:

Max z ¼ f xð Þ ¼
3 1 2 1

1 �1 2 4

�1 5 1 2

2
4

3
5

x1
x2
x3
x4

2
664

3
775

s:t: Ax � b, x � 0

where A ¼ 2 1 4 3

3 4 1 2

� �
and b ¼ 60

60

� �
Suppose that the following information is obtained using the TRIMAP

method:
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(a) What are the nondominated edges already known?

(b) Is there any feasible face completely known? Is it a nondominated face?

(c) Consider that the DM is only interested in continuing the search for

nondominated solutions that satisfy f2(x)� 28. Find the region of the

weight space to keep searching considering the constraint just introduced.
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Chapter 5

A Guided Tour of iMOLPe

5.1 Introduction

The interactive MOLP explorer (iMOLPe) software is a computational package to

deal with MOLP problems, which has been developed by the authors and accom-

panies this book. This computational package is mainly designed for teaching and

decision support purposes in MOLP problems. The aim is to offer students in

engineering, management, economics and applied mathematics an intuitive envi-

ronment as the entrance door to multiobjective optimization in which the main

theoretical and methodological concepts can be apprehended through experimen-

tation, thus enabling them to learn at their own pace (Alves et al. 2015).

The iMOLPe software offers a user-friendly environment with graphical inter-

face. The main characteristics and distinctive features of iMOLPe are: it includes

different search strategies and solution computation techniques that can be freely

used to explore the nondominated solution set of the problem; it integrates some

structured interactive methods (currently, the STEM, Interval Criterion Weights—

ICW and Pareto Race methods, as well as most features of the TRIMAP method); it

provides several result displays and graphics that interconnect the information that

is being gathered.

This chapter is not intended to be an extensive guide of the software because

not all the available options are described herein. The reader can find a detailed

description of each operation in the ‘Help’ menu of the software. This chapter aims

to provide a guided tour of the software through examples, highlighting some of its

most relevant features.
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5.2 iMOLPe: Interactive MOLP Explorer

The iMOLPe software has been implemented in Delphi for Windows and uses the

free code lpsolve55 for solving the LP scalar problems. The main features included

in iMOLPe are the following:

• Different scalarizing techniques for computing nondominated solutions

(presented in Chap. 3), namely the optimization of weighted-sums of the objec-

tive functions, optimization of one of the objectives considering the others as

constraints (e-constraint technique) and projection of a reference point onto the

nondominated frontier—these techniques are available through the ‘Compute’
menu (Fig. 5.1). The weighted-sum and the reference point scalarizing tech-

niques can be used alone or with additional constraints on the objective function

values—option available in the ‘Limits’ menu (Fig. 5.1).

• Search strategies and visualization of results that are features of the TRIMAP

method (presented in Chap. 4), which consists of a learning oriented set of tools

dedicated to problems with three objective functions:

– whenever a nondominated solution is computed by optimizing a weighted-

sum of the objective functions, its indifference region on the weight space is

also computed and graphically displayed—‘Weight Space’ window shown in

Fig. 5.3 (rectangle) for a two-objective problem and in Fig. 5.8 (triangle) for a

three-objective problem;

– graphical display of the 2D or 3D objective function space, showing the

nondominated points already computed and the nondominated edges

connecting adjacent nondominated vertices—‘Solution Graphs’ shown, e.g.,
in Fig. 5.6 for a two-objective problem (2D) or in Fig. 5.7 for a three-

objective problem (3D); this graph as well as the ‘Weight Space’ are shown
by selecting the respective items in the ‘Solutions’ menu (Fig. 5.1);

Fig. 5.1 Main menu of the iMOLPe software
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– conversion of bounds specified for the objective function values into the weight

space, that is, computation and graphical representation of the region of the

weight space defined by the weight vectors leading to (known and unknown)

nondominated solutions satisfying those bounds; this feature is available

through the ‘Calculate’ menu in the ‘Weight Space’ window (Fig. 5.9);

• There are other options (not originally included in TRIMAP) available on the

graph windows mentioned above by means of local menus or buttons; for

instance, the graphical representation on the weight space of constraints

resulting from preferences expressed as “solution x is preferred to solution y”,
as in the Zionts–Wallenius method (Fig. 5.9);

• Integration of the following interactive methods (presented in Chap. 4): STEM,

Pareto Race and ICW—‘Methods’ menu (Fig. 5.1); each method has a submenu

for its specific operations.

• Options to manage the nondominated solutions already computed, such as

choosing which solutions are kept in memory (solution basket), saving solutions
in disk or choosing different means for visualizing results—‘Solutions’ menu

(Fig. 5.1).

• Implementation of an exact procedure to compute the nadir point (proposed in

Alves and Costa 2009)—‘Compute’ menu (Fig. 5.1). The nadir point gives the

minimum (worst) objective function values over the set of all nondominated

solutions.

• Although the intention of the software is to be mainly used as an interactive

explorer, it further includes a VMA-vector maximum algorithm (Steuer 1986)

that computes all nondominated basic solutions (vertices) to the MOLP prob-

lem—‘Compute’ menu (Fig. 5.1). In problems with up to three objective func-

tions, the corresponding indifference regions are displayed on the parametric

weight diagram (‘Weight Space’) and the nondominated points and edges in the

objective space are shown in the ‘Solution Graphs’. This algorithm can also be

used within the ICW interactive method after the contraction of the criterion

cone to compute a subset of all nondominated basic solutions that are reachable

considering the reduced criterion cone (see step 5 of ICW in Chap. 4). This

option is available under the specific menu of the ICW method.

In the following section we illustrate the use of the software with four examples.

The first example considers a problem with two objective functions (to be maxi-

mized), the next two problems have three objective functions (also to be maxi-

mized) and the last problem has four objective functions (two to be maximized and

two to be minimized).

5.2.1 Example 1

Consider the following bi-objective problem with four decision variables and four

constraints:
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max z1 ¼ f 1 xð Þ ¼ �6x1 þ 30x2 þ 6x3 þ 12x4
max z2 ¼ f 2 xð Þ ¼ 30x1 þ 10x2 þ 20x3 þ 10x4
s:t:

2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

4x1 þ 3x2 þ 2x3 þ x4 � 50

x1, x2, x3, x4 � 0

After creating the problem (or opening the respective data file if the problem has

already been created), the iMOLPe software starts by computing the nondominated

solutions that individually optimize each objective function and constitute the pay-
off table (window (a) in Fig. 5.2). Every solution computed is shown on the main

window ((b) in Fig. 5.2), which displays bar graphs for the objective values and

numerical information (values of the variables and the objective functions). Each

point is also depicted on the 2D graph that represents the objective space (‘Solution
Graphs’—window (c) in Fig. 5.2). These two solutions have been obtained by

optimizing weighted-sums of the objective functions, considering a weight close

to 1 for the objective that is being optimized and close to 0 for the other. The

corresponding indifference regions on the weight space are drawn (‘Weight

Space’—window (d) in Fig. 5.2); since the problem has two objective functions,

the weight space is a line segment from (λ1¼ 0, λ2¼ 1) to (λ1¼ 1, λ2¼ 0). This line

needs, however, some “thickness” so that the indifferent regions can be visualized;

so, it assumes a rectangle shape.

Fig. 5.2 Example 1: nondominated solutions that individually optimize each objective function
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All the other tools to analyze the problem become now available. Some of them

can be chosen either by means of a menu item or a button in the toolbar of the main

window ((b) in Fig. 5.2), which has two tabs, one for ‘SEARCH options’ and

another for ‘VIEW options’.
Suppose that the DM chooses a new weight vector by clicking directly on a point

within the blank area of the weight space to compute another nondominated basic

solution. Consider that the weight vector pointed by the arrow in Fig. 5.3 is selected,

i.e., λ¼ (0.86, 0.14).

The corresponding weighted-sum of the objective functions is optimized and

solution 3 is obtained—see Fig. 5.4. Solutions 1 and 3 are found to be adjacent

Fig. 5.3 Example 1: the DM selects a new weight vector

Fig. 5.4 Example 1: optimization of a weighted-sum of the objective functions leading to

solution 3
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because they have contiguous indifference regions on the weight space. This means

that there is a nondominated edge connecting solutions (vertices) 1 and 3, which is

also displayed on the objective space graph. Figure 5.4 further shows the ‘Solution
values’ window, which presents the values of all nondominated solutions computed

thus far.

Now, suppose that the DM wishes to compute the nondominated solution that

minimizes the Chebyshev distance to the ideal point, z*¼ (450, 433.333). There-

fore he/she chooses the option ‘min distance to reference point’ in the ‘Compute’
menu and selects the ideal point (which is presented by default) in the dialogue box

that is shown afterwards. The resulting nondominated solution is: x¼ (0.481, 9.037,

10.481), z¼ (331.111, 314.444). Supposing that the DM considers the z2 value

unsatisfactory and wants to compute another solution close to the ideal point but

imposing a lower bound of 350 on f2(x), then he/she calls again this computation

process considering the additional limitation f2(x)� 350 (this limitation is included

using the option ‘impose limitations on objectives’ in the ‘Limits’ menu). The

nondominated solution obtained is: x¼ (1.667, 6.667, 11.667), z¼ (260, 350).

The two latter nondominated solutions are nonbasic (i.e., they are not vertices of

the original nondominated region), which can be saved in the solution basket by the
DM. Only basic solutions obtained by weighted-sums of the objective functions

(i.e., vertices of the original nondominated region) are automatically saved, unless

the option for saving all nondominated solutions—basic and nonbasic—has been

previously indicated in the ‘Solutions’ menu (Fig. 5.1). In this case, the DM opted

for saving these two solutions, thus they received the id. 4 and 5, respectively—see

Fig. 5.5. They are represented by crosses on the objective space graph so that they

can be easily distinguished from the vertices.

Fig. 5.5 Example 1: minimizing the Chebyshev distance to the ideal point without additional

limitations (solution 4) and with a lower bound f2(x)� 350 (solution 5)
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If the additional limitation on f2(x) is removed and all nondominated basic

solutions are computed by optimizing weighted-sums of the objective functions

(either by choosing weight vectors from unfilled areas of the weight space or by

calling the VMA-vector maximum algorithm), then four additional nondominated

solutions are obtained. This problem has seven nondominated vertices (solutions

1, 2, 3, 6, 7, 8 and 9 in Fig. 5.6). The nondominated edges (which are six) are

also known, thus defining the whole nondominated set. Figure 5.6 shows the

nondominated set on the objective function space, the decomposition of the weight

space and the values of objective functions and variables of all solutions computed.

The non-extreme points 4 and 5, previously computed using the reference point

technique, are also displayed on the objective function space; they are located on

the edge connecting vertices 7 and 8.

5.2.2 Example 2

Consider the following three-objective problem with the same feasible region as in

Example 1 but different objective functions:

Fig. 5.6 Example 1: all nondominated basic solutions plus two nondominated nonbasic solutions

(4 and 5)
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max z1 ¼ f 1 xð Þ ¼ 18x1 þ 13x2 þ 12x3
max z2 ¼ f 2 xð Þ ¼ �6x1 þ 30x2 þ 6x3 þ 12x4
max z3 ¼ f 3 xð Þ ¼ 5x1 �6x2 þ 12x3 þ 24x4
s:t:

2x1 þ x2 þ 4x3 þ 3x4 � 60

3x1 þ 4x2 þ x3 þ 2x4 � 60

x1 þ 2x2 þ 3x3 þ 4x4 � 50

4x1 þ 3x2 þ 2x3 þ x4 � 50

x1, x2, x3, x4 � 0

As with the previous example, iMOLPe starts by computing the individual

optima, i.e., the nondominated solutions that optimize each objective function

fk(x), k¼ 1, 2, 3; these are the solutions 1, 2 and 3, respectively, in Fig. 5.7.

It can be recognized from the weight space that there will be at least one more

nondominated basic solution that optimizes f1(x) because the indifference region

of solution 1 does not completely fill the right corner of the triangle (where

λ¼ (1,0,0)). This means that there will be other indifference region(s) including

the point λ1¼ 1, λ2¼ λ3¼ 0. Let us suppose that the DM points toward the weight

vector marked below region 1 on the weight space of Fig. 5.7. The optimization of

the corresponding weighted-sum leads to solution 4 (Fig. 5.8). From the weight

space it can be concluded that f1(x) has two (and only two) alternative optimal basic

solutions. These are solutions 1 and 4, which trade-off the values of the other

objective functions: z1¼ (260, 210, 132.5) and z4¼ (260, 30, 173.333).

Fig. 5.7 Example 2: first three nondominated solutions which individually optimize each objec-

tive function
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As illustrated above in Example 1, the DM can include additional bounds on the

objective function values (i.e., express inferior bounds below which solutions are

not desired) and use them in combination with scalarizing techniques to compute

new nondominated solutions in those restricted regions. However, this is not the

only possibility of getting information resulting from imposing bounds on the

objective functions. In problems with three objective functions, the DM can also

visualize the graphical translation of those bounds into the weight space. This is a

feature of the TRIMAPmethod that is illustrated in Fig. 5.9, which shows the region

of the weight space corresponding to f2(x)� 400 (dashed area). Note that the

selection of this feature (local option in the ‘Weight Space’ window) does not

trigger the option ‘Impose limitation on objectives’ (‘Limits’ menu in the main

window); it rather shows the weight area that leads to nondominated solutions that

satisfy the bound(s) without the need of explicitly including them in the subsequent

solution computation process.

The DM can also visualize the translation into the weight space of pairwise

comparisons of nondominated solutions as in the Zionts–Wallenius method. The

weight constraint resulting from the preference information “solution 1 is preferred
to solution 4” is also displayed in Fig. 5.9.

A further option is available in the ‘Calculate’ menu of the ‘Weight Space’
window: it is to compute and show the area of the weight space where the

nondominated solutions below the minimum already known for a given objective

function are located, i.e., where the nadir value for that objective function can be

found. The way this area is computed is described in Alves and Costa (2009). The

nadir values are the minima attained by the objective functions over the set of all

Fig. 5.8 Example 2:

solutions 1 and 4 are

alternative optima for f1(x)
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nondominated solutions. They provide valuable information for characterizing the

ranges of the objective function values over this set. Together with the ideal values

they define the nondominated bounds of each objective function, which are of

major interest to allow a DM to size up the extent of variation of the objective

function values in the region of interest. However, they are very difficult to

determine except for the bi-objective case. The method proposed by Alves and

Costa (2009) to compute the nadir values consists in the computation of the weight

space region associated with the nondominated solutions that have a value below

the minimum already known for the objective function under analysis. If this region

is empty, the nadir value has been found; otherwise, a new nondominated solution

is computed (through the optimization of a weighted-sum of the objective func-

tions) using a weight vector picked from the delimited region. The process is

repeated until the nadir value is found. The complete process to compute each

nadir value for any number of objective functions is available in the ‘Compute’
menu—‘The true nadir values’ item. The option ‘Area to find a nadir value’ in the

‘Calculate’ menu of the weight space window only computes the weight space

region where the nadir value of a specified objective function can be searched for

(i.e., the first step of the method). This latter option is restricted to three objective

functions as the region is graphically displayed.

Returning to Example 2, let us suppose that the DM chooses the interactive

method ICW to continue the study of the problem. Firstly, the method optimizes

weighted-sums of the objective functions using a pre-defined set of seven (2p+ 1)
weight combinations regularly dispersed in the weight space. These are the white

dots indicated on the weight space of Fig. 5.10, three in the vertices of the triangle

Fig. 5.9 Example 2:

conversion into the weight

space of an objective bound

and pairwise comparison

between solutions
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and four inside the triangle. The nondominated solutions 1, 2, 3, 5, 6 and 7 are

obtained (note that solution 4 could have been obtained instead of solution 1).

Solution 7 is computed twice, as two different weight combinations lead to this

solution.

If a new iteration of the ICW method is performed, the DM is asked to choose

his/her preferred solution from the previous sample of solutions. Suppose that the

DM chooses solution 7. Since this solution was obtained for the sixth and seventh

pre-defined weight combinations (see ICW method in Chap. 4), λ6¼ (4/9, 4/9, 1/9)

and λ7¼ (1/3, 1/3, 1/3), the DM is further asked to select between these two weight

vectors. Consider that the DM selects the most central one, λ7. Then the criterion

cone is contracted around the convex combination of the objectives given by this

weight vector. The ICW method considers again the pre-defined set of weight

combinations (white dots in the triangle on the right of Fig. 5.11), but now they

are used for optimizing weighted-sums of the contracted objective functions. In

Fig. 5.11 the graph on the right shows the weight space of the contracted criterion

cone with the nondominated solutions obtained in this second iteration (solutions

5, 6, 7, 8 and 9), while the original weight space is shown on the left, presenting the

nondominated solutions computed thus far; the region corresponding to the

contracted criterion cone is also displayed inside the original weight space (dashed

small triangle).

The nondominated region reachable with the contracted criterion cone can be

completely searched using the option ‘Contracted VMA’ in the ICW menu (see

Fig. 5.11). As a result, the nondominated basic solutions whose indifference regions

fully decompose the weight space associated with the contracted criterion cone are

computed (Fig. 5.12).

Fig. 5.10 Example 2: first iteration of the ICW method
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As can be seen in the original weight space depicted on the left of Fig. 5.12,

the nondominated solutions computed until now do not constitute the full set of

nondominated basic solutions because there is still an unfilled area on the original

weight space. If the DM wants to compute the whole nondominated solution set,

he/she may exit the ICW method and ask for the optimization of weighted-sums

of the objectives with weight vector(s) belonging to this unfilled area. One

Fig. 5.11 Example 2: second iteration of the ICW method

Fig. 5.12 Example 2: computing all nondominated basic solutions that are reachable with the

contracted cone of the objectives
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optimization is enough since there is only one more nondominated basic solution—

solution 11. Figure 5.13 shows all solutions generated so far, including their

numerical information. It can be observed that the problem has 11 nondominated

vertices, 15 nondominated edges and 5 nondominated faces (which are defined by

the vertices 1-4-6, 1-6-9-10-7-8, 3-5-10-9, 5-7-10 and 7-11-8). It is worth noting

that points 2, 11, 7 and 5 are located on the same face but the solutions on the

interior of the face are just weakly nondominated; they are dominated by the

solutions on the edges 2-11, 11-7 and 7-5. A nondominated or weakly

nondominated face is associated with a point of the weight space where three or

more indifference regions intersect. However, while a (strictly) nondominated face

is associated with a point in the interior of the weight space, a weakly nondominated

face corresponds to a point in the border of the triangle, i.e., where one of the

weights is equal to 0 (λ1¼ 0 for the face 2-11-7-5)� see Fig. 5.13.

Finally, suppose that the Pareto Race method is chosen. This method enables the

DM to travel over the nondominated region as if he/she was driving a car,

controlling the direction of motion (by selecting different objective functions to

be improved) and the speed (obtaining solutions closer or farther from each other).

Figure 5.14 shows the course that starts at the nondominated point obtained by the

projection of the ideal point z*¼ (260, 450, 300) and moves in a direction that

improves f3(x).

5.2.3 Example 3

Now we provide a third example, also with three objective functions, in order to

illustrate the decomposition of the weight space in a degenerate problem.

Consider the following problem:

Fig. 5.13 Example 2: all nondominated basic solutions of the problem are known
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max z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
max z3 ¼ f 3 xð Þ ¼ x3
s:t:

5x1 þ 6x2 þ 3x3 � 30
x1 þ x2 þ x3 � 6

5x1 þ 3x2 þ 6x3 � 30

x1, x2, x3 � 0

At the stage shown in Fig. 5.15 all nondominated vertices of the problem have

already been computed, although there are still unfilled areas on the weight space

and not all the nondominated edges have been identified.

After completing the decomposition of the weight space the graph in Fig. 5.16

is obtained. As can be observed in this figure, solution 1 is degenerate and it is

associated with three different bases. A nondegenerate basic solution corresponds

to a single indifference region on the weight space. However, degenerate solutions

have several bases, each one corresponding to an indifference region on the weight

space. All nondominated edges leading to the degenerate solution can be identified

as long as all bases have been computed.

The iMOLPe software acknowledges when different bases for the same solution

are being computed. Thus, it keeps the same id. # of the solution (in this case, 1) and

other bases are identified with #/2, #/3, etc. The indifference regions in Figs. 5.15

and 5.16 are represented using patterns instead of solid colors (an option available

in the ‘Weight Space’ window) so that the different indifference regions associated
with solution 1 can be better recognized. In general, indifference regions of

degenerate solutions may exist that partially overlap each other. This is not the

case of this example, as regions “1”, “1/2” and “1/3” do not overlap. Exercise 5 in

Fig. 5.14 Example 2: traveling on the nondominated surface using the Pareto Race method
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Sect. 5.3 presents a problem in which there is overlapping of regions associated

with different bases of a degenerate solution. The completion of this exercise is

suggested to the reader to get a better understanding of this situation.

Fig. 5.16 Example 3: several bases for the degenerate solution 1 lead to several indifference

regions

Fig. 5.15 Example 3: all nondominated vertices are known but not all bases have been computed
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5.2.4 Example 4

Consider the following problem with four objective functions, two being maxi-

mized and two being minimized:

max z1 ¼ f 1 xð Þ ¼ x1 þ 4x2 þ x3
max z2 ¼ f 2 xð Þ ¼ 2x1 þ 3x2 þ 7x3
min z3 ¼ f 3 xð Þ ¼ 10x1 þ 2x2 þ x3
min z4 ¼ f 4 xð Þ ¼ x1 þ x2 þ 7x3
s: t: x1 þ 2x2 þ x3 � 60

6x1 þ 3x2 þ 4x3 � 180

x1 þ x2 þ x3 � 10

x1, x2, x3 � 0

Initially, each objective function is individually optimized and the pay-off table
is built—see Fig. 5.17. Since the problem has more than three objective functions,

neither the weight space nor the objective function space is shown.

Let us suppose that the DM wants to analyze this problem using the STEM

method. Hence, he/she selects the ‘first Iteration’ item of the ‘STEM’ sub-menu

(Fig. 5.18).

The nondominated solution computed is x5 ¼ (12.058, 16.823, 14.295),

z5¼ (93.647, 174.650, 168.526, 128.945), which is shown in Fig. 5.19. The

STEM method computes the nondominated solution closest to the ideal

point z*¼ (120, 315, 10, 10) according to a weighted Chebyshev metric (for details,

see Chap. 4). The weights are automatically determined by the algorithm (w in the

Fig. 5.17 Example 4: nondominated solutions that individually optimize each objective function
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information presented in Fig. 5.19 corresponds to the α in the description of the

method in Chap. 4). In the first iteration the weights are (0.394, 0.210, 0.148,

0.247).

As previously mentioned (in Chap. 2) the worst value of the pay-off table for a
given objective function generally does not correspond to the worst value of that

objective function over the nondominated set (i.e., the nadir value). This situation is

well illustrated in this problem, in which the worst value (maximum) of f3(x) in the
pay-off table is 60 and z3¼ 168.526 in the last solution computed (Fig. 5.19).

The version of the STEM method implemented in iMOLPe is more flexible than

the original one proposed by Benayoun et al. (1971) because it allows simultaneous

Fig. 5.18 Example 4: choosing the STEM method

Fig. 5.19 Example 4: nondominated solution obtained in the first iteration of the STEM method
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relaxations of several objective functions and relaxing a given objective function

more than once.

Suppose that the DM wants to perform a second iteration of the STEM method

and he/she considers the values of f1(x) and f2(x) satisfactory in the solution

obtained in the first iteration (x5, z5 in Fig. 5.19). Accordingly, he/she accepts

relaxing 15 in f1(x) and 20 in f2(x) in order to try to improve f3(x) and f4(x) (i.e., to
decrease their values)—Fig. 5.20.

Hence, the method computes the nondominated solution that minimizes a

weighted Chebyshev metric to the ideal point in the feasible region restricted by

f1(x)� 93.647�15¼ 78.647, f2(x) �174.650�20¼ 154.650, f3(x)� 168.526 and

f4(x)� 128.945, setting the weights to (0, 0, 0.375, 0.625). The weights of f1(x)
and f2(x) are equal to 0 because the values of these objective functions were

considered satisfactory. The solution obtained in the second iteration of the method

is shown in Fig. 5.21; it is x6¼ (12.058, 18.642, 10.658), z6¼ (97.283, 154.650,

168.526, 105.309). Figure 5.21 shows bar graphs for the last two solutions com-

puted, being the latter represented by the bars on the right.

It can be observed that the relaxation in f1(x) had no effect in the solution

obtained in the second iteration as this objective function has even improved; the

value of f4(x) decreased (i.e., improved) but the value of f3(x) did not get better,

being equal to the one obtained in z5. It can be experimentally verified that any

isolated relaxation of f1(x) from the solution of the second iteration (x6, z6) always

results in the same solution.

Suppose that the DM performs a third iteration of the STEM method seeking

to improve f3(x), but he/she would not want to sharply deteriorate f2(x) and

f4(x). Therefore, he/she accepts relaxing 30 in f1(x) but only 2 in f2(x) and f4(x).
The nondominated solution of the third iteration is x7¼ (0, 22.671, 12.091),

z7¼ (102.774, 152.650, 57.433, 107.309). It can be observed that the relaxation

allowed for f1(x) did not produce any effect, but the small relaxation of two units in

f2(x) and f4(x) allowed f3(x) to have a significant improvement, decreasing from

168.526 to 57.433 (this is a minimizing function). This solution is shown in

Fig. 5.20 Example 4: specifying relaxation amounts for a new iteration of the STEM method
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Fig. 5.22, being represented by the darker bars on the right for each objective

function.

If the DM decides to exit the STEM method to continue the search for new

nondominated solutions using another procedure, he/she can keep or not the

additional constraints imposed on the objective function values. If the DM accepts

these constraints, he/she will always be allowed to discard them at any phase of the

future search.

5.2.5 Final Comments

Examples 1, 2 and 3 aimed at illustrating some main features of the iMOLPe

software using problems with two and three objective functions. As can be seen

in these examples, the decomposition of the weight space together with the 2D/3D

graph of the objective function space are very useful means for exploring the

results, particularly for teaching and decision support purposes, as they allow to

better understand the geometry of the nondominated frontier and the underlying

trade-offs among the objective functions.

Fig. 5.21 Example 4: nondominated solution obtained in the second iteration of the STEM

method
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The software can also deal with problems with four or more objective functions,

as shown in Example 4, although the graphical representation of the objective space

and the weight space are not available. Example 4 also aimed to illustrate the use of

a more structured interactive procedure, the STEM method.

5.3 Proposed Exercises

1. Consider the following MOLP problem with three objective functions:

Max
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Fig. 5.22 Example 4: nondominated solution obtained in the third iteration of the STEM method

156 5 A Guided Tour of iMOLPe



Use the iMOLPe Software to:

(a) Compute all nondominated basic solutions to the problem.

(b) Analyze the decomposition of the weight space to determine

• the nondominated edges and faces;

• the vertices that define each nondominated face;

• whether any of the objective functions reach its optimal value in more

than one nondominated solution;

• whether there is any nondominated solution that provides the optimal

value simultaneously for more than one objective function.

2. Consider the following MOLP problem with two objective functions:

min f 1 xð Þ ¼ x1 þ 2x2 þ 3x3
max f 2 xð Þ ¼ �x1 þ 3x2 þ 8x3
s:t: x1 þ x2 þ x3 � 150

x1 þ 5x2 þ 3x3 � 56

�x1 þ x3 � 10

x1, x2, x3 � 0

Use the iMOLPe Software to:

(a) Compute the nondominated solution that optimizes the weighted-sum of

the objective functions with the weight vector (λ1, λ2)¼ (0.6, 0.4). Does

this solution optimize any of the objective functions of the bi-objective

problem?

(b) Find an approximate range of weights that lead to the solution computed in

a) by visually inspecting the weight space.

(c) Compute the nondominated basic solution adjacent to the solution com-

puted in a) that improves f1(x) and worsens f2(x) in relation to the previous

solution.

(d) Compute the nondominated solution that optimizes f1(x) restricting f2(x) to
values not lower than 100.

(e) Compute the nondominated solution corresponding to the projection of the

reference point (60, 120) onto the nondominated set.

3. Consider the following MOLP problem with three objective functions:

max z1 ¼ f1 xð Þ ¼ x1
max z2 ¼ f2 xð Þ ¼ x2
max z3 ¼ f3 xð Þ ¼ x3
s:t: x1 þ x2 þ x3 � 5

x1 þ 3x2 þ x3 � 9
3x1 þ 4x2 � 16

0:4x1 þ 0:2x2 þ x3 � 4:7
x1 þ 0:3x2 þ 0:3x3 � 4:5

0:15x1 þ x2 þ 0:15x3 � 2:8
x1, x2, x3 � 0
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Use the iMOLPe software to:

(a) Compute the nondominated solutions that individually optimize each

objective function.

(b) Compute new nondominated vertices (basic solutions) by optimizing

weighted-sums of the objective functions (by direct selection of weights)

until all the vertices defining a face are identified. How do you identify that

face on the weight space?

(c) Suppose that the DM only wants new nondominated vertices satisfying the

following constraint on the objective function values: f2(x)� 1.5. Identify

the region of the weight space satisfying this constraint and compute the

nondominated vertices that are reachable considering this constraint.

4. Consider the following MOLP problem with three objective functions:

max z1 ¼ f1 xð Þ ¼ 3x1 þ x2 þ 2x3 þ x4
max z2 ¼ f2 xð Þ ¼ x1 � x2 þ 2x3 þ 4x4
max z3 ¼ f3 xð Þ ¼ �x1 þ 5x2 þ x3 þ 2x4
s:t:

2x1 þ x2 þ 4x3 þ 3x4 � 60 1ð Þ
3x1 þ 4x2 þ x3 þ 2x4 � 60 2ð Þ
x1 þ 2x2 þ 3x3 þ 4x4 � 50 3ð Þ
4x1 þ 3x2 þ 2x3 þ x4 � 80 4ð Þ
4x1 þ 5x2 þ 2x3 þ 3x4 � 70 5ð Þ
�x1 þ 4x2 þ 8x3 þ 5x4 � 60 6ð Þ

x1, x2, x3, x4 � 0

Use the iMOLPe software to:

(a) Obtain the nondominated solutions that individually optimize each objec-

tive function and the corresponding indifference regions on the weight

space.

(b) Comment on the following statement: “There is at least another

nondominated basic solution that is alternative optimal for fk(x), k¼ 1,

2, 3”.

(c) Compute another nondominated solution (and the respective indifference

region) by optimizing a weighted-sum of the objective functions with a

combination of weights such that λ1� λ2� λ3.
(d) Compute another nondominated solution (and the respective indifference

region), which could be obtained by a pivoting operation on the simplex

tableau associated with the nondominated solution obtained in c).

(e) Characterize all nondominated vertices, edges and faces.

(f) Comment on the following statement: “There are nondominated vertices to

the problem that are dominated in all the three bi-objective problems that

are formed by dropping one of the objective functions (i.e., f1(x) and f2(x),
f1(x) and f3(x), f2(x) and f3(x)”.
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Add the following objective function to the problem:

min z4 ¼ f 4 xð Þ ¼ x1 þ x2 þ x3 þ x4

(g) Obtain a nondominated solution using the STEM method.

(h) Suppose that the DM considers satisfactory the value z4 in the previous

solution and accepts relaxing this function by 2. What is the solution

obtained in the second iteration of the STEM method? Which objective

functions improved their values with respect to the previous solution?

(i) Exit the STEM method but keep the constraints imposed on the objective

functions. Optimize a weighted-sum of the objective functions considering

all weights equal and including those additional constraints. What is the

solution obtained? Which functions improved and which worsened their

values in relation to the solution computed in h)?

5. Consider the MOLP problem of Exercise 4 with three objective functions, but

change the right-hand-side of constraint (4) from 80 to 50.

(a) Compute all nondominated basic solutions to the problem.

(b) Identify a degenerate solution and all regions on the weight space associ-

ated with the efficient bases of this solution.

Hint: the number of efficient bases is 4 and there are overlapping regions

on the weight space.
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Chapter 6

Multiobjective Integer and Mixed-Integer

Linear Programming

6.1 Introduction

The introduction of discrete variables into multiobjective programming problems

leads to all-integer or mixed-integer problems that are more difficult to tackle, even

if they have linear objective functions and constraints. The feasible set is no longer

convex, and the additional difficulties go beyond those of changing from single

objective linear programming to integer programming. Thus, in many cases the

problems cannot be handled by adaptations of MOLP methods to deal with integer

variables. In addition, there are approaches specifically designed for multiobjective

pure integer problems that do not apply to the multiobjective mixed-integer case.

Therefore, even for the linear case, techniques for dealing with multiobjective

integer/mixed-integer linear programming (MOILP/MOMILP) involve more than

the combination of MOLP approaches with integer programming techniques. In this

chapter we focus on MOILP/MOMILP problems formulated as (6.1):

max z1 ¼ f 1 xð Þ ¼ c1x

. . .
max zp ¼ f p xð Þ ¼ cpx

9=
; “Max” z ¼ f xð Þ ¼ Cx

s:t x 2 X ¼ x 2 ℝn : Ax ¼ b, x � 0, xj 2 ℕ0, j 2 I
� �

ð6:1Þ

where I is the set of indices of the integer variables, I� {1,. . .,n}, I 6¼∅. It is

assumed that X is bounded and non-empty. Let Z denote the feasible region in the

objective space, that is, Z¼ f(X). If all decision variables are integer then the

multiobjective problem is all-integer (MOILP), which is a special case of the

multiobjective mixed-integer case. In what follows we will refer to MOMILP as

the general case, in which integrality constraints are imposed on all or a subset of

the decision variables. For basic concepts concerning this type of problems, namely

the characterization of efficient/nondominated solutions and the distinction
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between supported and unsupported nondominated solutions, please refer to

Chap. 2.

As in other multiobjective programming problems, methods to address

MOMILP problems may assume that the decision maker (DM)’s preferences are
expressed a posteriori—generating methods—or be interactive methods. Generat-

ing methods are designed to find the whole set of nondominated solutions or a

predefined subset, e.g., all supported or all extreme nondominated solutions. Inter-

active methods are characterized by phases of human intervention alternated with

phases of computation.

Generating methods generally require a huge computational effort because all

nondominated solutions, which may be a very large number even for moderate size

problems, should be computed. For this reason, many generating methods are only

intended for problems with binary variables (as it is easier to use enumeration

techniques in these type of problems) or for bi-objective problems. A number of

generating methods was firstly developed in the 1970s and 1980s decades, whereas

the research focus shifted to interactive methods in the following decades. Still, new

research on the field of exact generating methods has been carried out in recent

years.

Several reviews of MOMILP methods have been published in the last three

decades. Teghem and Kunsch (1986) presented a survey of interactive methods

published until the final of 1985 (the first method dates from 1980). Covering the

same period of time, another review is due to Rasmussen (1986) concerning

multiobjective 0–1 programming, including both interactive and non-interactive

methods. Clı́maco et al. (1997) proposed a categorization of methods for

multiobjective integer, linear and non-linear programming. Alves and Clı́maco

(2007) presented a review of interactive methods for MOMILP in which about

twenty interactive methods are characterized and summarized.

6.2 Generating Methods and Scalarizing Processes

The first generating methods for MOILP/MOMILP problems were proposed in the

1970s and in the early years of the 1980s decade. Bitran (1977, 1979), Kiziltan and

Yucaoglu (1983), and Deckro and Winkofsky (1983) proposed implicit enumera-

tion algorithms for MOILP problems with binary variables only. The method of

Bitran uses a constructive process, in which new nondominated solutions are

successively generated and added to the set of nondominated solutions. This type

of generating methods can be stopped before computing all nondominated solu-

tions, returning a subset of the nondominated solution set. On the other hand, the

methods of Kiziltan and Yucaoglu (1983) and Deckro and Winkofsky (1983)

generate candidate solutions for nondominated solutions and the true nondominated

set is known only at the end of the process. This type of methods operate, in the

intermediate phases of the process, with potentially nondominated solutions, i.e.,

solutions that are not dominated by any solution already known. These methods
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cannot be interrupted before the end as they can fail in yielding nondominated

solutions.

Klein and Hannan (1982) developed a constructive process for MOILP problems

with general integer variables. It progressively restricts the feasible region through

the introduction of auxiliary constraints, which eliminate nondominated solutions

already calculated and solutions dominated by them. The method starts by opti-

mizing one of the objective functions in the original feasible region. Then, it

follows an iterative process in which the same objective functions is optimized in

a feasible region restricted by additional constraints that force the next solution to

be better in some objective function (‘_’ conditions) with respect to all
non-dominated points already known (‘^’ conditions). Since the formulation of

‘_’ conditions as linear constraints needs auxiliary binary variables, the size of the

auxiliary program increases from one iteration to the next. The process ends when

the feasible region of the auxiliary program becomes empty. This method has been

the basis for further developments of MOILP generating methods. Sylva and Crema

(2004) presented a variation of the Klein and Hannan’s algorithm considering the

maximization of a weighted-sum of the objective functions instead of choosing

only one of the objective functions to optimize in each iteration. In order to discuss

these methods in more detail, let us first recall some MOMILP fundamental

concepts concerning the optimization of weighted-sums or just one of the objective

functions, considering additional constraints in all or some objective functions.

Consider the scalarizing program (6.2) that optimizes a weighted-sum of the
objective functions with additional constraints on the objective functions, where

λ 2Λ¼ {λ2ℝp: λk> 0, k ¼1,. . .,p,
Xp

k¼1
λk ¼ 1

�
:

max
Xp
k¼1

λk f k xð Þ
s:t: f k xð Þ � ek, k ¼ 1, . . . , p

x 2 X

ð6:2Þ

The introduction of additional constraints on the objective function values into

the weighted-sum scalarizing program (6.2) enables to reach any nondominated

solution, supported or unsupported. Remind that the optimization of a weighted-

sum in the original feasile region only enables to compute supported nondominated

solutions to a MOMILP (all-integer or mixed-integer) problem (cf. Sect. 3.2).

Problem (6.2) can be regarded as a particularization of the general scalarization

proposed by Soland (1979):

max g f 1 xð Þ, . . . , f p xð Þ� �
s:t: f k xð Þ � ek, k ¼ 1, . . . , p

x 2 X
ð6:3Þ

Let g(.) be an arbitrary real-valued function defined on ℝp which is strictly

increasing on Z. Then, x0, z0 ¼ f(x0) is an efficient/nondominated solution to the
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multiobjective problem if and only if it solves the problem (6.3) for at least one

e vector. This proposition is also valid for problem (6.2).

The e-constraint scalarization, in which one of the objective functions of the

multiobjective problem is optimized while the other objective functions are con-

sidered as constraints (cf. Sect. 3.1), can also be encompassed by the previous

scalarization (both (6.2) and (6.3)). The weight assigned to the objective function

selected to be optimized, say fi(x), is 1 and the other weights are 0 or a very small

positive value ρ in order to ensure that a nondominated solution is computed rather

than just a weakly nondominated solution, i.e.,: max f i xð Þ þ ρ
Xp

k¼1,k 6¼i
f k xð Þ

� �
.

The e-constraint scalarizing problem (6.4) enables to compute every nondominated

solution to the MOMILP problem.

max f i xð Þ þ ρ
Xp

k¼1, k 6¼i

f k xð Þ

s:t: f k xð Þ � ek, k ¼ 1, . . . , p, k 6¼ i
x 2 X

ð6:4Þ

Although the previous scalarizing problems enable to fully characterize the

nondominated set of a MOMILP problem, they do not offer direct means to

compute every nondominated solution and to ensure that all of them have been

computed. They are only scalarizing techniques for computing nondominated

solutions, which have been used in several methods, either in the exposed forms

or variants thereof. Other scalarizing techniques used in MOMILP will be discussed

later in this chapter.

The methods of Klein and Hannan (1982) and Sylva and Crema (2004) referred

to above are intended to compute all nondominated solutions to a MOILP problem.

The former considers the objective function of the e-constraint scalarization (6.4),

while the latter uses a weighted-sum objective function as in (6.2). However, they

require more than p additional constraints in order to ensure, in each iteration, that

the next solution is different from the previous ones and all nondominated solutions

have been computed at the end of the process. Accordingly, after finding each

nondominated point, these methods require more p new auxiliary binary variables

and p+ 1 new constraints as an operational means to guarantee that a new

nondominated point to the MOILP problem will be computed. The algorithm

stops when the scalarizing problem becomes infeasible.

Let us briefly describe the general principle of these algorithms. Suppose that the

method will perform the iteration h + 1, so it has already computed h different

nondominated points zt ¼ (zt1, z
t
2, . . ., z

t
p), t¼ 1,. . .,h; the binary variables ytk and the

following constraints are added to x2X in order to find the (h+ 1)th nondominated

solution:
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f k xð Þ � z tk þ 1
� �

ytk �M 1� ytkð Þ, k ¼ 1, . . . , p; t ¼ 1, . . . , hXp

k¼1
ytk � 1, t ¼ 1, . . . , h

ytk 2 0; 1f g, k ¼ 1, . . . , p; t ¼ 1, . . . , h

M is a sufficiently large positive constant so that the constraint k,t is redundant

when ytk ¼ 0; the lower bound z tk þ 1
� �

is imposed to fk(x) when ytk ¼ 1. It is

assumed that all objective functions are integer valued, so fk(x)� z tk þ 1
� �

imposes

that the kth objective must be strictly greater than its value in zt and no gap will

remain between the value ztk and the bound z
t
k þ 1. The constraint

Xp

k¼1
ytk � 1 for

each t forces the new nondominated solution to be better than the nondominated

point zt in at least one of the objectives; one of these constraints is imposed for each

zt previously computed.

Lokman and K€oksalan (2013) proposed an improvement to this approach,

decreasing the number of binary variables from hp to h( p� 1) and additional

constraints from h( p+ 1) to hp to find the (h + 1)th new nondominated solution.

However, the model size still grows and causes computational difficulties when the

number of nondominated solutions is large. Theoretically, only p� 1 additional

constraints in the e-constraint scalarization (6.4) are sufficient to compute every

nondominated solution, but the difficulty lies in determining appropriate lower

bounds ek. Based on this principle, Lokman and K€oksalan (2013) proposed another

algorithm to improve the previous one, which identifies the necessary constraints by

solving submodels with p� 1 or fewer additional lower bound constraints.

Although this process avoids binary variables, it requires a significant number of

submodels to be solved.

The difficulties in finding all nondominated solutions decrease substantially in

bi-objective problems for which the design of an algorithm that scans the whole

nondominated frontier is much easier, either for all-integer or mixed-integer

multiobjective problems. An approach similar to the one of Klein and Hannan but

restricted to MOILP problems with two integer valued objective functions was

proposed by Chalmet et al. (1986). In each iteration, a weighted-sum of the

objective functions is optimized with p¼ 2 additional constraints on the objective

function values–scalarization (6.2). No additional binary variables are required and

the lower bounds ek can be easily determined for each new computation. The

method works as follows.

Firstly, the nondominated solutions that optimize individually each objective

function are computed and these solutions form a first pair to be analyzed. In each

iteration, the method picks a pair of nondominated solutions already computed (za,

zb) that are candidate for being adjacent and analyzes whether there is any

nondominated solution between them. It solves (6.2) with fk(x) � z
^

k þ 1, k¼ 1,

2 where z
^

k ¼ min{zak , z
b
k}. Solutions z

a and zb are really adjacent if the scalarizing

problem (6.2) is infeasible—as illustrated in Fig. 6.1a; otherwise, a new

nondominated solution between za and zb is found, say zc, and the pairs (za, zc)

and (zc, zb) are formed to be further analyzed—this situation is illustrated in
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Fig. 6.1b; in this figure, fλ denotes the gradient of a weighted-sum of the objective

functions with an arbitrary weight vector. The method stops when all pairs of

solutions have been analyzed.

The e-constraint scalarization (6.4) can also be used to compute all

nondominated solutions to a bi-objective integer problem. Once again, consider

that the objective functions are integer valued, so that constraints of the type

fk(x) � z
^

k +1 can be used to ensure that the kth objective function improves its

value with respect to z
^

and no other objective values exist between z
^

k and z
^

k +1.

If the objectives are real-valued, then z
^

k +1 can be replaced by z
^

k + ε, with ε a
small positive value, and the method computes all nondominated solutions that

differ from any other by (at least) ε in each objective function.

The classical e-constraint generating method for bi-objective integer program-

ming problems can be described as follows, where ZE denotes the set of

nondominated solutions to the problem. Without loss of generality, let us assume

that i¼ 1 is the index of the objective function chosen to be optimized in (6.4).

Step 0: ZE ¼ ∅
Sete2 ¼ �M

Step 1: Solve:

max f 1 xð Þ þ ρf 2 xð Þ
s:t: f 2 xð Þ � e2
x 2 X

If the problem has no feasible solution, then STOP.

Otherwise, let the optimal solution be x0 with z0 ¼ f(x0).

f2

f1

f2(x)≥ z2
a+1

f1(x)≥ z1
b+1

za

zb

(a)

fλ

f2

f1

f2(x)≥ z2
a+1

f1(x)≥ z1
b+1

za

zb

fλ

zc

(b)

Fig. 6.1 Computing all nondominated solutions in bi-objective MOILP problems using weighted-

sums with bounds on the objectives
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Step 2: ZE ¼ ZE [ z0f g
Set e2 ¼ z

0
2 þ 1

Return to Step 1.

M in Step 0 is a large positive constant in order that the constraint f2(x)��M

becomes redundant in the first optimization. As in (6.4), ρ is a small positive

number (close to zero). Therefore, the first solution obtained in Step 1 is a

nondominated solution that optimizes f1(x); this solution presents the minimum

value of f2(x). Nondominated solutions successively improving the second objec-

tive function are then computed. Figure 6.2 illustrates three iterations of the

algorithm, respectively from (a) to (c), using the same example of Fig. (6.1).

So far we have been referring to methods that use scalarizing techniques to

compute nondominated solutions based on the optimization of weighted-sums with
additional constraints on the objectives, where the e-constraint scalarization may

be included as a particular case. Other scalarizing techniques can be used, namely

those based on reference points. Let us remind this type of scalarization (cf. Sect.

3.3) and further detail it in the particular context of MOILP and MOMILP

problems.

Consider a point z+ of the objective space, called reference point, which satisfies
z+� z for all z2Z. The scalarizing problem (6.5) computes the nondominated

solution that minimizes the distance to z+ according to a λ-weighted Chebyshev

metric, λ� 0. A reference point often used is the ideal point (ideal solution) of the

multiobjective problem, z* (where z*k ¼ maxx2X f k xð Þf g, k¼ 1,. . .,p) but other

reference points may be used instead.

min max
k¼1, ..., p

λk zþk � f k xð Þ� �� �� 	
s:t: x 2 X

ð6:5Þ

If x02X is an efficient solution to a multiobjective mathematical program, then

some λ0 � 0 exists such that x0 optimizes (6.5) with λ¼ λ0 (Bowman 1976).

Normalized weights are generally used, that is λ 2Λ0¼ {λ2ℝp: λk� 0, k¼1,. . .,p,Xp

k¼1
λk ¼ 1

�
; and the previous assertion is still valid for λ02Λ0. Hence, the

parameterization of this scalarizing problem on λ 2Λ0 enables to reach all

f2

f1

z0

ρ
1f

(a) f2

f1

f2(x)≥ z2
0+1

z0

z1

ρ
1f

(b) f2

f1

z0

z1

ρ
1f

z2

f2(x)≥ z2
1+1

(c)

Fig. 6.2 Illustrating the e-constraint method for bi-objective integer problems

6.2 Generating Methods and Scalarizing Processes 167

http://dx.doi.org/10.1007/978-3-319-28746-1_3


efficient/nondominated solutions to the multiobjective problem, though it may also

yield weakly nondominated solutions. This undesirable result is avoided by con-

sidering the augmented weighted Chebyshev programming problem formulated in

(6.6), where ρ is a small positive constant.

min max
k¼1, ..., p

λk zþk � f k xð Þ� �� �� ρ
Xp

k¼1
f k xð Þ

� 	
s:t: x 2 X

ð6:6Þ

The term ρ
Xp

k¼1
f k xð Þ is a perturbation of the min-max objective function

intended to ensure that the solution obtained is strictly nondominated. The aug-
mented weighted Chebyshev programming problem can be written equivalently in

the following away:

min v� ρ
X p

k¼1
f k xð Þ

� �
s:t: λk zþk � f k xð Þ� � � v, k ¼ 1, . . . , p

x 2 X

v � 0

with λ � 0 and zþ � z for allz2Z

ð6:7Þ

Considering the problem (6.7) parameterized on λ 2Λ0 with a fixed reference

point z+> z*, there always exists a small enough ρ such that all nondominated

solutions to a MOILP problem are reachable (Steuer and Choo 1983). In MOMILP

problems (and also in nonlinear cases), even considering ρ very small there may be

portions of the nondominated set (close to weakly nondominated solutions) that this

scalarizing problem is unable to compute for a constant ρ. This case is illustrated in
Fig. 6.3, where the segment from C to C0 is not reached. Nevertheless, ρ can be set

so small that the DM is unable to discriminate those ‘hidden’ nondominated

solutions from nearby weakly nondominated solutions (this corresponds to C0

getting closer to C in Fig. 6.3). It is worth noting that, even in the cases for which

there is a ρ small enough that enables to reach any nondominated solution (the cases

of MOLP and MOILP), the existence of such ρ is mainly of theoretical interest

because it is not known a priori. Thus, we can say that, in practice, the scalarization

(6.7) enables to characterize the whole nondominated set of a MOMILP problem.

Reference points z 2ℝp that are attainable because they are inside the feasible

region, or they are outside the feasible region but do not satisfy the condition z �
z for all z2Z, can also be used providing that the v variable in (6.7) is defined

without sign restriction. This problem is defined in (6.8). It corresponds to the

minimization of a distance from Z to the reference point if the latter is not attainable

and to the maximization of such a distance otherwise. If the reference levels that

compose the reference point are used as the controlling parameters, the (weighted)

Chebyshev metric changes its form of dependence on controlling parameters and

should be interpreted as an achievement scalarizing function (Lewandowski and

Wierzbicki 1988).
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min v� ρ
Xp

k¼1
f k xð Þ

� �
s:t: λk zk � f k xð Þð Þ � v, k ¼ 1, . . . , p

x 2 X

v 2 ℝ
with λ � 0 and z 2 ℝp

ð6:8Þ

The optimal solution of the scalarizing problem (6.8) is a nondominated solution

to the MOMILP problem for any z 2ℝp. The problem (6.8) may by parameterized

on λ, z, or both. If it is parameterized on z, the weights λ can be discarded (i.e.,

λk¼ 1 for all k¼ 1,. . .,p) or fixed, thus playing the role of scale factors for

normalizing purposes. There always exist reference points z 2ℝp such that (6.8),

with or without weights, produces a particular nondominated solution. This is still

true considering only non-attainable reference points. Hence, there always exist

reference points z+> z*such that (6.8) or (6.7) with z ¼ z+ produces a particular

nondominated solution. Figure 6.4a illustrates the outcome of the reference point

scalarizing problem (6.7) or (6.8) when the weights are changed and Fig. 6.4b

illustrates the outcome when the reference point is changed. The achievement

scalarizing problem (6.8) should be considered in Fig. 6.4b rather than the aug-

mented Chebyshev programming problem (6.7) as v takes a negative value for the

reference point z3.

The principle of exploring new nondominated solutions between pairs of solu-

tions for bi-objective MOILP problems, which has been described above for the

method of Chalmet et al. (1986), has also been adopted by Solanki (1991) but using

the augmented weighted Chebyshev metric (6.7). The method of Solanki applies to

both all-integer and mixed-integer bi-objective linear problems and it is an exten-

sion for MOMILP of the Non-Inferior Set Estimation (NISE) method developed by

A

BC

f2

f1

D

z2
C =z2

B

z+

this distance

depends on ρ

Weighted
Chebyshev contour

Augmented weighted
Chebyshev contour

C'

Fig. 6.3 The augmented

Chebyshev metric in

MOMILP
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Cohon et al. (1979) for bi-objective MOLP problems. The NISE method aims at

obtaining a representation of the nondominated set by successively computing

nondominated solutions that optimize weighted-sums of the objective functions.

In NISE, the segment joining a pair of solutions, say za and zb, can be considered a

good approximation of the nondominated frontier between za and zb if the error of
the approximation is within a predefined error bound. The measure of the error in
MOLP is based on the convexity of the feasible region, which is no longer valid in

integer or mixed-integer programming problems. Moreover, the weighted-sum

problem used in NISE to generate nondominated solutions cannot obtain

unsupported solutions to the MOMILP problem. These difficulties led Solanki to

adopt the augmented weighted Chebyshev programming problem and to

reformulate the measure of the error. In each iteration, the method changes both

the reference point and the weights in (6.7), in order to explore intermediate

solutions between nondominated solutions. This method works as follows.

Let (za, zb), with za1 > zb1 , be a pair of nondominated points already computed.

For this pair, an error is calculated as δab ¼ max za1 � zb1
� �

=R1, zb2 � za2
� �

=R2

� �
where R1 and R2 are scale factors given by the difference between the maximum

and the minimum of each objective function in the nondominated set. If δab> δmax

(the predefined error bound), then the scalarizing problem (6.7) is solved in order to

search for a nondominated solution between za and zb. To explain how z
+ and λ are

defined in each iteration, consider the example in Fig. 6.5. A rectangle formed

with za and zb as its corners is defined and Diag(za, zb) is the line passing

through the appropriate corners of the rectangle. The reference point z+ is a point

on Diag(za, zb) such that z+> z* and (λ1, λ2) are calculated so that the diagonal of

the Chebyshev metric coincides with Diag(za, zb). In the example of Fig. 6.5, the

nondominated solution returned by (6.7) is zc and the new pairs (za, zc) and (zc, zb)

are formed. The associated errors δac, δcb are then calculated, replacing δab. In the

general case, if the nondominated solution returned by (6.7) is one of za or zb, then

δab is set to 0. The approximation of the whole nondominated frontier is thus

A

BC

D

f1

f2
E z+

λ2

λ3
λ1

(a)

A

B
C

D

f1

f2
E

z

z

z1

2

3

(b)

Fig. 6.4 Varying the weights (a) or varying the reference point (b) in reference point scalarizing

problems
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progressively improved by decreasing the errors associated with the approximate

representation of the pairs. In each iteration, the method chooses the pair of

solutions with the largest error and stops when it is within the predefined error
bound δmax. This method can be classified as a generating method. It can even

compute all the nondominated solutions to a MOILP problem if δmax is set to 0. In

addition, the method can also be easily embodied in an interactive framework, in

which the DM selects the pair of solutions to be analyzed in each iteration, and

interactively decides whether the method is to be continued or stopped, without the

need to define a priori the maximum error tolerance.

Still concerning generating methods, some other methods are worth of reference

although we will not expose them in detail.

Mavrotas and Diakoulaki (1998, 2005) proposed a generating method for

bi-objective mixed 0–1 linear problems. The technique consists in implicitly

enumerating all possible values of the 0–1 variables, using a branch-and-bound

algorithm, in order to generate potentially nondominated solutions. The dominated

solutions are successively eliminated by pairwise comparisons and, at the final of

the process, only nondominated solutions remain. Mavrotas and Diakoulaki con-

sider only nondominated extreme points throughout the solution process and an

improved method has been further proposed by Vincent et al. (2013).

Özlen and Azizo�glu (2009) proposed an extension for three objectives of the

classical e-constraint method for bi-objective integer problems (described above).

The approach intends to generate all nondominated solutions to the MOILP prob-

lem. An auxiliary bi-objective integer problem is defined: {max f1(x) + ρf3(x), max

f2(x) + ρf3(x): x2X, f3(x)� e3}. To generate the tri-objective nondominated set, the

algorithm initially sets e3 to a sufficiently small value (e.g.,�M, as above) that does

not cut any feasible solution, and generates all nondominated points to the surrogate

bi-objective problem; then, it increases e3 systematically and repeats the process in

order to generate the other bi-objective nondominated sets. The e3 value is updated
as follows: e3 ¼ z03 þ 1, with z03 ¼ min f 3 xð Þ, x 2 Ef gwhere E is the set of efficient

solutions yielded by the previous surrogate bi-objective problem. An extension of

this algorithm for more than three objective functions is also proposed but, as in

other generating algorithms, its interest for p> 3 is mostly theoretical due to the
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Fig. 6.5 Illustration of the
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computational burden resulting from the recursive process. Also Kirlik and Sayın

(2014) presented an algorithm for generating all nondominated solutions of MOILP

problems based on the e-constraint scalarization.
In addition, there are some methods devoted to generate all extreme supported

nondominated solutions to MOMILP problems (see also Chap. 2). A nondominated

point z02 ZE (ZE denotes the set of all nondominated points) is supported if it is

located on the boundary of the convex hull of Z (conv Z); extreme supported
nondominated points z02 ZE are vertices of conv Z. The optimization of a simple

weighted-sum of the objective functions using the classical branch-and-bound

method for (mixed-)integer linear programming yields an extreme supported
nondominated solution. If there are alternative optima, a further exploration of

the branch-and-bound tree allows computing non-extreme supported nondominated

solutions. Figure 6.6 illustrates the difference between these types of solutions in a

MOILP problem: (a) shows the problem in the decision space and (b) shows the
corresponding nondominated solutions in the objective space, where the dotted line

is just to evidence the boundary of the convex hull. Solutions A, B, E, F, G, H are

supported nondominated solutions; among these, A, B, E, and H are the extreme
solutions, and F and G are the non-extreme solutions. C and D are unsupported

nondominated solutions. Concerning mixed-integer problems, observe, for

instance, Fig. 6.3 above. In this problem, A, B and D are the extreme supported
nondominated solutions. The other supported (but non-extreme) nondominated

solutions are the points lying on the line segment [AB]; the points lying on

]CD[ are unsupported nondominated solutions and point C is a weakly

nondominated solution.

Przybylski et al. (2010) and Özpeynirci and K€oksalan (2010) proposed algo-

rithms for determining all extreme supported nondominated points to MOMILP

problems. These algorithms are mainly operationalized for three objective

(a)

B

A

D

f1

f2

C

E

F

G
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Fig. 6.6 Illustrating extreme and non-extreme supported, and unsupported, nondominated solu-

tions in MOILP
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functions and they are based on the exploration of the weight space through the

optimization of simple weighted-sums of the objective functions.

6.3 Interactive Methods

As already noticed, generating methods for problems with more than three objec-

tive functions are difficult to design and computationally expensive. In addition, if a

large set of alternatives is presented to the DM at the final of the procedure, this will

raise additional difficulties to the DM in analyzing all the information and making a

final choice. Therefore, several researchers have developed interactive methods to

deal with MOILP/MOMILP problems. Interactive methods enable to reduce the

computational effort and aid the DM in the decision process. In interactive methods,

the set of nondominated solutions is explored by a progressive articulation of the

DM’s preferences. This feature is shared by every interactive method, but there are

different strategies followed by the authors. Some authors admit that the DM’s
preferences can be represented by an implicit utility function and the interactive

process aims to ‘discover’ the optimum (or an approximation of it) to that implicit

function. There are other approaches that allow a free progressive and selective

search for nondominated solutions. These multiobjective approaches are not

intended to converge to any ‘best’ solution, but to help the DM in the search for

interesting nondominated solutions in order to identify a satisfactory compromise

solution. We will refer to these approaches as learning oriented procedures.

There are also differences among the interactive methods in the type of

scalarizing technique used to compute nondominated solutions, in the information

provided to and required from the DM and in the way the method reduces the search

space (not applicable to all methods). We present below a classification of several

interactive methods representative of different approaches considering the follow-

ing characteristics.

(a) Type of problems that the method is able to address: only multiobjective

all-integer linear problems or general multiobjective mixed-integer linear

problems.

(b) Scalarizing technique used to compute nondominated solutions: weighted-
sums, weighted-sums with additional constraints, e-constraint scalarization,
reference point based scalarizing problems or other technique.

(c) Information provided to and required from the DM, and the strategy used to

reduce the scope of the search for new nondominated solutions.

(d) Type of protocol used to interact with the DM: the assumption of an implicit
utility function or a learning oriented procedure.

In the following categorization we separate bi-objective methods from the

multiobjective ones as the former group has naturally a more restricted application

than multiobjective methods.
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6.3.1 Bi-objective Interactive Methods

• Ramesh et al. (1990)

(a) Bi-objective all-integer linear programming.

(b) Weighted-sums with additional constraints.
(c) The method employs a modified version of the MOLP method of Zionts

and Wallenius (1983) (see Chap. 4) using a branch-and-bound framework.

The DM’s preference structure is assessed using pairwise comparisons of

nondominated solutions.

(d) Assumes an implicit utility function of the DM, pseudo-concave and

non-decreasing.

• Aksoy (1990)

(a) Bi-objective mixed-integer programming.

(b) e-constraint scalarization.
(c) The method employs a branch-and-bound scheme to divide the subset of

nondominated solutions of each node into two disjoint subsets by bisecting

the range of values of a given objective function. The DM makes pairwise

comparisons in order to determine the branching node and adjust the

incumbent solution to the preferred nondominated solution.

(d) Assumes that the DM’s preferences are consistent, transitive and invariant

over the process aiming to optimize an implicit utility function.

• Shin and Allen (1994)

(a) Bi-objective all-integer (linear and nonlinear) problems, with concave

objective functions and a convex feasible region (apart from the integrality

constraints).

(b) A particular technique is used to compute, at each phase, the supported

nondominated solution closer to an already known nondominated solution

(to the right or to the left).

(c) The method successively excludes search regions by imposing constraints

on the objective functions resulting from pairwise comparisons of

nondominated solutions performed by the DM.

(d) Assumes an implicit utility function of the DM.

• Ferreira et al. (1994)

(a) Bi-objective mixed-integer programming.

(b) Weighted-sums with additional constraints.
(c) At each interaction the DM chooses a pair of solutions to further explore the

nondominated region between them. The region to explore is reduced in

relation to the original feasible region by constraints on the objective

function values. The computation of new nondominated solutions enables

to progressively eliminate some objective function regions, either by dom-

inance or infeasibility.

(d) Learning oriented procedure.
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6.3.2 Multiobjective Interactive Methods

• Villarreal et al. (1980), Karwan et al. (1985), Ramesh et al. (1986)

(a) Multiobjective mixed-integer linear programming.

(b) Weighted-sums with additional constraints.
(c) These methods are extensions to MOMILP of the MOLP method of Zionts

and Wallenius (1983), like the above-mentioned bi-objective method of

Ramesh et al. (1990). These methods start by applying the Zionts-

Wallenius algorithm to the linear relaxation of the MOMILP problem,

following then a branch-and-bound phase to obtain a (mixed-)integer

solution according to the DM’s preferences. These preferences are assessed
using pairwise evaluations of decision alternatives and tradeoff analysis.

(d) Assumes an implicit utility function of the DM.

• Marcotte and Soland (1980, 1986), White (1985)

(a) Problems with a convex or discrete feasible set. It can handle MOILP

problems but is not applicable to the mixed-integer case.

(b) Weighted-sums with additional constraints.
(c) The algorithm separates the multiobjective problem into sub-problems, in a

branch-and-bound scheme, by introducing a constraint on one objective

function for each sub-problem (the feasible regions of the descendant

problems are not necessarily disjoint). The nondominated solutions are

computed by optimizing weighted-sums over the feasible subset

corresponding to each sub-problem. The DM is asked to designate the

incumbent solution among the nondominated solutions found thus far,

and a node will be fathomed if its ideal point is not preferred to the

incumbent solution. White (1985) proposed a Lagrangean technique to

narrow the bounds provided by the ideal points for each sub-problem in

order to eliminate more nodes of the tree that would be uninteresting to

the DM.

(d) Assumes that the DM’s preferences are stable, but not requires the exis-

tence of an implicit utility function.

• Gonzalez et al. (1985)

(a) Multiobjective integer linear programming.

(b) Simple weighted-sums (at the first stage to compute supported

nondominated solutions), weighted-sums with a particular additional con-
straint (at the second stage to compute unsupported nondominated

solutions).
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(c) The information required from the DM in each interaction consists of

selecting the least preferred solution from a set of solutions in order to

keep always p candidate nondominated solutions. The hyperplane that

passes through those p objective points is used to define both the weights

and the additional constraint of the scalarizing problem that is used to

compute the next solution.

(d) Assumes an implicit utility function of the DM.

• Durso (1992)

(a) Multiobjective mixed-integer linear programming.

(b) Augmented Chebyshev programming problem (varying the reference point

and including additional bounds on the objective functions).

(c) This method is a modification of the method of Marcotte and Soland

(1986). Unlike the former, Durso’s method is also suitable for mixed-

integer programming. It employs a branch and bound scheme considering

progressively smaller portions of the nondominated set by imposing lower

bounds on the objective values. In each interaction the DM is asked to

select the tree node for analysis and his/her most preferred solution among

the p+ 1 nondominated solutions computed for this node, which are the

individual optima plus a ‘central’ solution obtained by the Chebyshev

scalarizing problem. The selected solution is used to partition the problem

into sub-problems, each one further restricting the bound of one objective.

The reference point for the Chebyshev scalarizing problem is the ideal

point of each node.

(d) Learning oriented procedure.

• L’Hoir and Teghem (1995)

(a) Multiobjective mixed-integer linear programming.

(b) Augmented weighted Chebyshev programming problem (varying the

weights and the reference point, and including additional bounds on the

objective functions).

(c) This method (called MOMIX) uses an interactive branch-and-bound frame-

work related to the one introduced by Marcotte and Soland (1986). How-

ever, in the present case, the feasible regions of the descendant nodes of a

given node are disjoint sets (contrariwise to the Marcotte and Soland’s
method). For each node, a nondominated solution is determined as in the

STEM method (Benayoun et al. 1971) (see Chap. 4), i.e., by minimizing a

weighted Chebyshev function to the ideal point of that node. In each

interaction the DM is asked to choose the objective he/she wishes to

improve with higher priority; this information is used to create the next

sub-node.

(d) Learning oriented procedure.

• Vassilev and Narula (1993), Narula and Vassilev (1994)

(a) Multiobjective mixed-integer linear programming.
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(b) Achievement scalarizing problem (varying the reference point and includ-

ing additional constraints on the objective functions).

(c) In each interaction the DM is asked to specify a new reference point; its

components should be better than the values in the last computed

nondominated solution for the objectives the DM wishes to improve,

worse for the objectives the DM accepts to deteriorate and equal for the

others. This reference point is used to set the parameters for the next

achievement scalarizing problem such that the next solution should move

as far as possible from the previous solution in the objectives the DM

wishes to improve with lower bounds (or equality constraints, depending

on the preferences expressed by the DM) for the other objectives. The

method does not consider any scheme to progressively reduce the search

space.

(d) Learning oriented procedure.

• Karaivanova et al. (1995)

(a) Multiobjective mixed-integer linear programming.

(b) Achievement scalarizing problem (varying the reference point and includ-

ing additional bounds on the objective functions).

(c) The underlying principle is close to the method of Vassilev and Narula,

although it is implemented in a distinct way. It devises a different achieve-

ment scalarizing problem, which minimizes the largest normalized differ-

ence to the aspiration levels in the objective functions the DM wants to

improve (rather than maximizing the smallest normalized difference to the

last solution, which is employed by the Vassilev and Narula’s method).

Lower bounds on the other objective functions are imposed. In each

interaction, the DM indicates a reference point with aspiration levels for

the objectives to be improved and reservation levels (lower bounds) for the

others.

(d) Learning oriented procedure.

• Alves and Clı́maco (2000)

(a) Multiobjective mixed-integer linear programming.

(b) Augmented Chebyshev programming problem (varying the reference

point).

(c) In each interaction the DM may specify a new reference point or just

indicate the objective function he/she wishes to improve with respect to

the previous nondominated solution. The method is mainly devoted to

perform directional searches, in which the DM has only to indicate the

objective to improve in each interaction. Then, the method automatically

adjusts the next reference point through a sensitivity analysis iterative

procedure. Besides choosing the objective function to be improved at

each moment, the DM has also the possibility of imposing bounds on the

objective functions in order to have further control over the directional

searches.
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This method follows the same principle as a previous all-integer method

presented in Alves and Clı́maco (1999). The two methods differ in the

techniques used to solve the scalarizing problems and, consequently, in the

sensitivity analysis procedure. While the first method uses cutting planes

the second one uses branch-and-bound, which is far more effective.

(d) Learning oriented procedure.

There are other general-purpose interactive methods which are applicable to

multiobjective integer and mixed-integer programming, including nonlinear

cases, e.g., Steuer and Choo (1983) and STEM method (see Chap. 4), provided

that the (mixed) integer scalarizing problems are solved by an appropriate

technique.

In the next section we will present in more detail the interactive method of Alves

and Clı́maco (2000). Although this is an interactive method, it can also be used as a

generatingmethod for bi-objective integer and mixed-integer linear problems. This

operating mode will also be exemplified. A software implementing the method

accompanies this book. The software incorporates other tools to deal with

MOMILP problems, e.g., the possibility of computing nondominated solutions

using distinct scalarizing techniques (including weighted-sums and weighted-

sums with additional bounds on the objective functions). A brief overview of the

software is also provided in this chapter.

6.4 An Interactive Reference Point Method Using Branch-

And-Bound: Performing Directional Searches
in MOMILP

Consider the achievement scalarizing problem (6.8) with equal fixed weights (i.e.,

λk¼ 1, k¼ 1,. . .,p), parameterized on the reference point z. Without loss of gener-

ality, we assume that z� z*. Note that the outcome of this scalarizing problem for a

given z is the same as for the reference point z+¼ z + δe, where e a vector of 1s and
δ a positive scalar. Therefore, any reference point can be shifted to be above all

feasible objective points, which enables to restrict the v variable to non-negative

values. This corresponds to the minimization of the augmented (non-weighted)
Chebyshev distance to the reference point z+, that is, problem (6.7) without weights

(i.e., λk¼ 1 for all k).
The reference point method of Alves and Clı́maco (2000) uses this scalarizing

problem to compute nondominated solutions. In (6.9) the scalarizing problem is

stated with the constraints being reorganized so that the terms with variables are on

the left-hand side and the reference point, z+, is on the right-hand side.
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min v� ρ
Xp

k¼1
f k xð Þ

� �
s:t: f k xð Þ þ v � zþk k ¼ 1, . . . , p

x 2 X, v � 0

ð6:9Þ

Any nondominated solution to the MOMILP problem can be reached using (6.9)

for some z+� z* provided that ρ is set small enough. In addition, we can obtain

solutions that improve a specific objective function with respect to a previous

solution by increasing the respective component of the reference point leaving

the other components unchanged. This change in the reference point leads to a

parametric right-hand side scalarizing problem. Alves and Clı́maco (2000) devel-

oped a post-optimality technique with sensitivity analysis that identifies ranges of

the reference points leading to the same nondominated solution and uses the

branch-and-bound tree that solved the previous scalarizing problem as a starting

point to compute the next nondominated solution. This enables to change automat-

ically the reference point during a directional search and to save time in compu-

tation phases.

6.4.1 Interactive Algorithm

Step 0 [optional]. Compute the pay-off table of the MOMILP problem.

Step 1. Ask the DM to specify a reference point, z+2ℝp. At the first

interaction, the ideal point of the MOMILP problem is

proposed by default, or the ideal point of the linear

relaxation of the problem if Step 0 has not been performed.

Solve the Chebyshev scalarizing problem (6.9) using branch-

and-bound to obtain a nondominated solution; if necessary, z+ is

firstly adjusted in order to satisfy z+� z* by adding a constant

amount to all the components of z+.

Step 2. If the DM is satisfied and does not want to compute more

nondominated solutions, STOP. Otherwise, if the DM

wants to perform a global search and is willing to

indicate explicitly a new reference point, return to Step 1.
Else, go to Step 3.

Step 3. Ask the DM to choose an objective function he/she wishes to

improve with respect to the previous nondominated solution.

Let fj(x) be the objective function specified by the DM.

A directional search is carried out by considering reference

points of the form zþ1 , . . . , z
þ
j þ θj, . . . , zþp

� �
in (6.9), with

increasing values of θj> 0, in order to produce a sequence of
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nondominated solutions that successively improve fj(x). The
computation of new solutions in this direction stops when the

DM wishes or a nondominated solution that optimizes fj(x) is
reached.

Return to Step 2.

The core of the algorithm is the Step 3 and the way a directional search is

performed. It consists of optimizing successive scalarizing problems (6.9) that only

differ from each other in the right-hand side of the jth constraint (corresponding to

the jth objective function). This task is performed by an iterative process with two

main phases: (S) sensitivity analysis and (U ) updating the branch-and-bound tree.
The sensitivity analysis (S) returns a parameter value θmax

j > 0 such that the

structure of the previous branch-and-bound tree remains unchanged for variations

in zþj up to zþj þ θmax
j . This means that reference points zþ1 , . . . , z

þ
j þ θj, . . . , zþp

� �
with θj � θmax

j either lead to the same nondominated solution or to different

nondominated solutions that are easily computed because they result from the

same node of the branch-and-bound tree. In the latter case, distinct nondominated

solutions may be computed for different parameter values below θmax
j and these

solutions are presented to the DM, who can interactively control the proximity of

solutions he/she wants to visualize. This situation arises when a continuous region

of solutions with the same integer part is being explored in a mixed-integer

problem. The branch-and-bound tree is then updated (U ) for θj slightly above

θmax
j and a nondominated solution is produced. It may happen that this solution is

the same as the last one because the θmax
j returned by the sensitivity analysis can be

only a lower bound for the true maximum value of the parameter. In that case

(which occurs more often in all-integer than in mixed-integer models) the process

automatically returns to (S). The iterative process ends when a new nondominated

solution is obtained in (U ), which is then presented to the DM.

Let us now give further details about this process.

Assume that the problem (6.9) was solved with zþ ¼ zþ1 ; . . . ; z
þ
j ; . . . ; z

þ
p

� �
yielding the nondominated solution xo, zo. Then, the DM chooses the objective

function fj(x) to be improved in relation to zo . The next nondominated solutions

will be obtained by solving the scalarizing problem (6.9) parameterized on θj� 0

(6.10), where the jth component of the reference point is increased. We will refer to

this problem as P(θj).
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f θj
� � ¼ min v� ρ

Xp

k¼1
f k xð Þ

� �
s:t: f k xð Þ þ v� sk ¼ zþk k ¼ 1, . . . , p , k 6¼ j

f j xð Þ þ v� sj ¼ zþj þ θj

x 2 X

v � 0, sk � 0, k ¼ 1, . . . , p

ð6:10Þ

The sk, k ¼1,. . .,p are the surplus variables of the k constraints associated with

the objective functions of the MOMILP problem.

Consider the branch-and-bound tree that solved the mixed-integer linear pro-

gramming problem (6.10) for θj¼ 0, that is P(0).

Each node Q of the optimal branch-and-bound tree that solved P(0) corresponds

to a linear sub-problem of P(0). Regarding the parametric scalarizing problem P(θj),
the linear sub-problem associated with a node Qrcan be formulated as (6.11), which

we will refer to as LPr(θj):

fr θj
� � ¼ min v� ρ

Xp

k¼1
f k xð Þ

� �
s:t: f k xð Þ þ v� sk ¼ zþk k ¼ 1, . . . , p, k 6¼ j

f j xð Þ þ v� sj ¼ zþj þ θj

x 2 Xr ¼ x 2 ℝn : Ax ¼ b, x � 0,Lr
i � xi � Ur

i , i 2 I
� �

v � 0, sk � 0, k ¼ 1, . . . , p

ð6:11Þ

In (6.11) some Lri may be zero and some Ur
i infinite.

In what follows let integer solution denote a solution to a sub-problem (6.11)

that has integer values for all the integer-restricted variables in the multiobjective

problem.

Let us analyze the effects of increasing θj on the leaf nodes of the current branch-
and-bound tree.

Infeasible sub-problems
When a sub-problem LPr(θj) is infeasible for θj¼ 0, it will remain infeasible for all

θj> 0. This proposition holds because, for θ2j > θ1j , the feasible set of LPr(θ1j )
contains the feasible set of LPr(θ2j ). Hence, all the infeasible nodes of the current

tree do have not to be further considered.

The behavior of each node of the tree
The optimal objective value of a minimizing parametric right-hand-side linear

programming problem is a piecewise linear convex function of the para-

meter. This is a well-known result for linear programming with particularities for
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LPr(θj): besides being convex, the piecewise linear function is non-decreasing and

the slope of the function in the last interval of θj is 1 (see Fig. 6.7).

Let πk� 0, k¼ 1,. . .,p be the dual variables associated with the first p constraints
of LPr(θj). The function fr(θj) must be non-decreasing because it is convex and

0� πj �1 (non-negative slopes). As θj grows through positive values, LPr(θj)
returns solutions with greater values for fj(x) until the solution that optimizes fj(x)
in Xr is reached. If θj increases more, LPr(θj) will yield the same solution, say xr,

only varying the values of the variables sk and v. There exists a specific value of θj
above which the Chebyshev distance (v) between the reference point and the

image of xr in the objective space is exclusively given by the jth component,

i.e., sj¼ 0 and sk> 0, k2{1,. . .,p}\{j}. Hence, for θj larger than that specific

value, πk¼ 0, k2{1,. . .,p}\{j} and πj ¼1.

(S) Sensitivity analysis to compute θmax
j

Consider that the current nondominated solution (xo,zo), which optimizes P(0), was

produced by the node Qo (sub-problem LPo(0)) of the branch-and-bound tree. The

purpose of the sensitivity analysis is to provide a range of values [0, θmax
j ] for the

parameter θj such that the optimal solutions of P(θj) will still be given by the node Qo

and its current basis. We should note that the θmax
j returned by this procedure may be

lower than the true maximum value.

Two different situations may occur depending on whether sj is a basic variable in
LPo(0) or not.

(S.1) sj is basic in LPo(0)

If sj is basic in LPo(0), then for θj up to the current value of sj, say soj , neither the

value of f o(θj) changes (due to πoj ¼ 0) nor xo; the node Qo is still the optimal

node to P(θj) with θj� soj and it yields the same nondominated solution (xo,zo).

Therefore, θmax
j ¼ soj and there is no need to explore variations of θj under this

value.

(S.2) sj is nonbasic in LPo(0)

Let θj 2[0, θomax

j ] be the positive interval of θj that ensures the optimality of the

current basis for LPo(θj). We will analyze only the case when variations of θj

θj

fr(θj)

slope=1

Fig. 6.7 Example of the

behavior of the optimal

objective value of LPr(θj)
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within the same basis still produce integer solutions (otherwise, θmax
j ¼0 is

considered).

Under this condition, the node Qo provides feasible solutions to P(θj) for θj �
θo

max

j and fo(θj)¼ fo(0)+ πoj θj. The performance of node Qo when θj is increased
will be compared with potential candidate terminal nodes of the branch-and-

bound tree (containing or not an integer solution). Denoting by πrj the current

value of the dual variable associated with constraint j in the node Qr, the

potential candidate nodes are the terminal nodes Qr that satisfy πrj < πoj . Nodes
for which πrj � πoj do not need to be considered because, for θj within the range

0� θj� θo
max

j , they cannot provide solutions to P(θj) better than the one given by
LPo (θj) (see Fig. 6.8). In fact, each linear segment of f r(θj) has a slope between
πrj (bottom dashed line in Fig. 6.8) and 1 (top dashed line in Fig. 6.8). Since πrj �
πoj and fr 0ð Þ � fo 0ð Þ, then f r(θj) cannot be lower than fo(θj) for 0� θj� θo

max

j .

For each potential node Qr, an intersection parameter value θo;rj is computed.

Whereas θo;rj is easily computed because it only requires information on current

bases, it may be only a lower bound of the real θj for which f r(θj) would intersect
f o(θj); θo;rj represents a point where fr(θj) intersects f o(θj) given by a ‘real’

intersection (e.g., Fig. 6.9a) or a ‘virtual’ intersection (e.g., Fig. 6.9b, c and d):

θo, rj ¼ fr 0ð Þ � fo 0ð Þ
πo
j � π r

j

For the sake of simplicity, thereafter the term intersection is also used with

respect to nodes (e.g., “Qr intersectsQo”) for which fr(θj) intersects fo(θj) according
to the description above.

The node Qo outperforms Qr at least until θo;rj if θo;rj < θo
max

j —see examples in

Fig. 6.9a and b—or at least until θo
max

j if θo;rj � θo
max

j —see examples in Fig. 6.9c

and d.

θjθ j
r max

θ j
ο max

π j
r

π j
ο

f
r
(θj)

fο(θj)f
r
(0)

fο(0)

Fig. 6.8 Example of a

situation where πrj � πoj
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Hence, the parameter value that ensures the next nondominated solutions will

still be given by node Qo is θmax
j ¼ min θo

max

j , minr θo, rj

n on o
. The nondominated

solutions that optimize P(θj) for 0� θj � θmax
j can be obtained in a straightforward

way by applying classic linear programming parametric analysis from the simplex

tableau of LPo(0).

In situation (S.1), where the surplus variable sj is basic in LPo(0) and θmax
j ¼ soj ,

no distinct nondominated solutions to the MOMILP problem can be found for

θj 2[0, θmax
j ].

Inactive nodes
Any node Qr 6¼Qo for which πrj ¼ 1 may be considered inactive while the para-

metric analysis refers to the jth constraint of the achievement scalarizing problem

because it is not a potential node for intersection. As a result, Qr and its future
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Fig. 6.9 Examples of intersections. (a) θo;rj < θo
max

j and θo;rj < θr
max

j , (b) θr
max

j < θo;rj < θo
max

j ,

(c) θo
max

j < θo;rj < θr
max

j , (d) θo;rj > θo
max

j and θo;rj > θr
max

j

184 6 Multiobjective Integer and Mixed-Integer Linear Programming



descendants cannot provide the optimal solution to the scalarizing problem for

larger values of θj. The node will be activated if the DM changes the direction of

search by choosing another objective function to be improved.

Individual optima
If πoj ¼ 1 and all the other terminal nodes of the branch-and-bound tree are

either inactive or their problems are infeasible, then the current nondominated

solution (xo, zo) optimizes the objective function fj(x) of the MOMILP problem;

if the optimum of fj(x) is reached, the directional search stops there.

(U) Updating the branch-and-bound tree
The previous branch-and-bound tree is used as a starting structure to solve the next

scalarizing problems. For 0� θj � θmax
j , the optimal solutions of P(θj) can be

obtained in a straightforward way because they still optimize the parametric linear

sub-problem associated with the node Qo of the tree. The structure of the tree does

not change for this range of parameter values.

To continue searching for nondominated solutions in the same direction, the

parameter is set to θ̂ j ¼ θmax
j +ε, with ε small positive. In MOILP problems with

integer valued objective functions, θ̂ j is set to the smallest integer value larger than

θmax
j because reference points can be restricted to integer components without loss

of intermediate nondominated solutions.

The next reference point is thus zþ1 , . . . , z
þ
j þ θ̂ j, . . . , z

þ
k

� �
.

The procedure for updating the branch-and-bound tree begins by updating the

simplex tableau of the node Qo for the new reference point. Afterwards, three

different cases ought to be distinguished.

(U.1) The solution of the node Qo is no longer integer although its basis has not

changed (this situation occurs within S.2 with θmax
j ¼ 0).

After updating the information on the other terminal nodes, the branching

process starts by splitting node Qo and the branch-and-bound proceeds as

usual until the optimum of the scalarizing problem P(θ̂ j) is reached.

(U.2) The node Qo has been intersected by another node and θmax
j was given by the

intersection parameter value θo;rj for some node Qr in the sensitivity analysis

phase (situation (S.2) with θmax
j ¼ θo;rj —note that if there are several nodes

that intersect node Qo within the range [θmax
j , θ̂ j], all of them must be taken

into account).

After updating the information on the intersecting node Qr for θ̂ j, Q
r is

compared again with Qo: if fo� fr (situation of ‘virtual’ intersection like in

Fig. 6.9b) then Qo still provides the optimal solution to the scalarizing

problem; if fo> fr then the solution of node Qr becomes the new optimal

solution if it is integer; otherwise, Qr is the best candidate node and should be

branched.
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If Qr needs to be branched, a low-level simplification of the tree is firstly

attempted. The procedure begins by examining the branching constraint that

links Qr to its parent. If this constraint is no longer active (i.e., it became

redundant as result of the basis change) then a simplification is made. This is

called a low-level simplification because it only regards the lowest link from

the node Qr to its direct ancestor. Since no historical information is kept, this

is the only branching constraint that was surely active in Qr when the node

was created. The simplification consists in the following: suppose that xi�Ki

is the inactive branching constraint that links Qr to its parent (Fig. 6.10); the

parent node is removed, as well as its descendants from the other branch

(xi�Ki +1); thus, Q
r becomes a direct descendant of its previous grandparent

(Fig. 6.10). Note that Qrwill possibly be branched on the variable xi. Without

this pruning the procedure would lead to two consecutive branching con-

straints on the same variable.

Once the simplification is made, the information on the remaining terminal

nodes is updated and the branch-and-bound proceeds as usual until the

optimum of the scalarizing problem P(θ̂ j) is reached.

(U.3) The basis of the node Qo changed, because θmax
j was given by θo

max

j in the

sensitivity analysis phase (situation S.1 and S.2 with θmax
j ¼ θo

max

j ).

If the updated solution of Qo is integer, then the new nondominated

solution is found. Otherwise, further branching is required, namely from Qo

(the best candidate node). A simplification of the tree is first attempted, which

now refers to all branching constraints that were active in the previous basis

of node Qo and become redundant when the basis changed. Therefore, low
(as in situation U.2) and/or high-level simplifications may occur, which are

explained below. Then, the information on the remaining terminal nodes is

updated and it is built for the new terminal nodes created by the simplifica-

tion process. The branch-and-bound proceeds as usual until the optimum of

the scalarizing problem P(θ̂ j) is reached.

It should be stressed that if both situations (U.2) and (U.3) occur within the range

[θmax
j , θ̂ j], Q

o must be compared again with the updated terminal nodes.

⇒ ⇒
parent of Qr

grandparent of Qr

xi≤Ki xi≥Ki+1

Qr

grandparent of Qr

Qr

xi≤Ki xi≥Ki+1

grandparent of Qr

Qr

Fig. 6.10 Low-level simplification process and the resulting tree
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A simplification of the tree aims to avoid an evergrowing tree. The steps that rule

the general simplification process in U.3 are the following (illustrated in Fig. 6.11).

Recall that the simplification refers to all branching constraints that become redun-

dant for Qo when its basis changed and Qo is the current best candidate node with a

non-integer solution.

For each branching constraint that was previously active in Qo and is now

redundant do:

Suppose that the branching constraint under consideration links Qw and Qv (Qv

being the parent of Qw). In a low-level simplification, Qw�Qo.

1. Cut off the branch Qv–Qw.

2. Link Qw directly to the parent of Qv, say Qu, by the branching constraint that

previously linked Qv to Qu; if Qv was the root then Qw becomes the root.

3. Remove Qv, its upper link and its descendants from the branch opposite to Qw.

4. Concerning Qw and its descendants, leave just the intermediate nodes needed to

get Qo but assure that they remain forked: considering that there are

q intermediate nodes between Qw and Qo, i.e., Qw�Q0, Q1,. . . Qq, Qq+1�Qo,

replace the descendants of Qi, i ¼ 0,. . .,q, from the branch opposite to Qi+1 with

a new single node (a temporary terminal node).

Now, neither Qw nor another descendant of Qw includes in its linear program-

ming problem the bounding constraint that linked Qw to Qv.

If the simplified tree has consecutive branching constraints on the same variable,

then a further simplification is made (following the steps above) in order to discard

the constraint that is redundant for Qo.

This additional simplification is illustrated in Fig. 6.12. Note that the new right

branch of Qw in Fig. 6.12 includes the feasible sub-regions of the old right branch of

Qu.

Details about the implementation of the method, namely the information of the

branch-and-bound tree that is preserved during the process, as well as computa-

tional results can be found in Alves and Clı́maco (2000).

Qu

Qw

Qv

Q

1.

2.

3.

4.

Qu

Qw

Q
New

New⇒

Fig. 6.11 Illustration of the general simplification process
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6.4.2 An Illustrative Example

Consider the MOMILP problem (Prob. 6.1) with two integer variables, x1 and x2,
and two continuous variables, x3 and x4.

max z1 ¼ 3x1 þ x2 þ 2x3 þ x4
max z2 ¼ x1 � x2 þ 2x3 þ 4x4
max z3 ¼ �x1 þ 5x2 þ x3 þ 2x4
s:t: 2x1 þ x2 þ 4x3 þ 3x4 � 56

3x1 þ 4x2 þ x3 þ 2x4 � 55

xj � 0, j ¼ 1, ::, 4
x1, x2 integer

ðProb: 6:1Þ

The pay-off table was firstly computed. The ideal point to this problem is

z*¼ (60, 74.667, 68).

Suppose that the DM chooses the reference point z+¼ (108, 80, 75) to start the

procedure: the scalarizing problem (6.9) (considering ρ¼ 0.001) is solved using the

branch-and-bound method yielding the efficient solution x¼ (10, 4, 8, 0) whose

image in the objective function space is z¼ (50, 22, 18).

Suppose that the DM wants to perform a directional search to improve the

objective function f2(x). The second component of the reference point will be

increased and (6.9) gives place to the parametric Chebyshev programming problem

P(θ2), i.e., (6.10) with j¼ 2.

The branch-an-bound tree that solved the scalarizing problem (6.9) is shown in

Fig. 6.13. The information on each terminal node Qr relevant for the next direc-

tional search is also included (see Fig. 6.13): value of the scalarizing function (fr),

the dual variable of the constraint associated with the second objective function

(πr2), the maximum value of the parameter that keeps the current basis unchanged

(θr
max

j ) and whether the solution satisfies all the integrality constraints (Int.) or not

(NInt.).

Qu

Qw

Q
New

New

xi Ki xi Ki+1

xi Ki -1 xi Ki

Q
w

Q
New

New

xi Ki -1 xi Ki

⇒

Fig. 6.12 Additional simplification
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In this example we will consider 0� ε� 0.1 in θ̂ j ¼ θmax
j +ε and, for simplicity

reasons, ε is set such that θ̂ j has only one decimal digit.

First Iteration

(S) Sensitivity analysis
Q4 (in Fig. 6.13) is the current optimal node and the solution remains integer for

any variation of θ2 that keeps the same basis, i.e., for θ2� θ4
max

2 ¼2.4. Each terminal

node Qr for which πr2 < π42 is compared with Q4 by computing the corresponding

intersection parameter value: θ4;32 ¼ 31.386, θ4;52 ¼ 10.25. θmax
2 ¼ min{θ4

max

2 , θ4;32 ,

θ4;52 }¼ 2.4. Hence, Q4 still provides optimal solutions to the scalarizing problems

for θ2� 2.4. Since the current basis of Q4 remains feasible for θ2� 2.4 and the

variation of θ2 does not destroy the integer-feasibility of the solutions, the compu-

tation of nondominated solutions closest to reference points from (108, 80, 75) to

(108, 82.4, 75) is straightforward. Supposing that the DM chooses a stepsize

μ¼ 1 % (maximum normalized difference in two consecutive values of f2(x), the
objective function being improved), a sequence of two reference points is defined

by the algorithm leading to the objective function values below. As it was expected,

z2 is being improved with respect to the previous solution.

• z+¼ (108, 81.061, 75)! z¼ (49.823, 22.884, 18.442)

• z+¼ (108, 82.122, 75)! z¼ (49.646, 23.768, 18.884).

To continue the search, the parameter value is then set slightly higher than θmax
2 :

θ̂ 2 ¼2.4 + ε(1) ¼2.5. The next reference point is (108, 82.5, 75).

(U) Updating the tree for z+¼ (108, 82.5, 75)

Situation (U.3)—the basis of Q4 changes leading to a non-integer solution. The

branching constraint x2� 4 becomes redundant and a low-level simplification of the

tree is performed (Fig. 6.14). The information on the other terminal node (only Q3)

is updated.

The branch-and-bound method is applied, starting with the simplified tree and

continuing until the optimum of the scalarizing problem is reached (Fig. 6.15). The

following nondominated solution is obtained: x¼ (10, 4, 7.4, 0.8), z¼ (49.6,

24, 19).

Q1

Q3
Q2

Q5Q4

x1≤10 x1≥11

x2≤4 x2≥5 (60.016, 0.0985, 3)

(57.91, 0.1656, 2.4) (59.607, 0, 0.2)

NInt.

NInt.Int. optimum

LEGEND:

( rf , r
2π ,

max

2
rθ )

Int.− integer solution

NInt. − non-integer solution

Fig. 6.13 The Branch-and-bound tree for the reference point z+¼ (108, 80, 75)
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Let us suppose that the DM wishes to continue the search along the same

direction (improving z2) in this and the next interactions. Hence, the procedure

returns to the sensitivity analysis. Whenever the reference point is changed, θ2 is
reset to 0 for the next iteration.

Second Iteration

(S) Sensitivity analysis
Q9 (in Fig. 6.15) is the new current optimal node and the solution remains integer

for every positive change of θ2. θmax
2 ¼ min{θ9

max

2 , θ9;62 , θ9;82 , θ9;32 }¼min{1, 0.929,

*,*}¼ 0.929. The entries * do not need to be computed because f*> f6 and π: �2 > π:62
both for Q8 and Q3, which lead to intersection values larger than 0.929.

Thus, for θ2� 0.929, Q9 is still the optimal node of the scalarizing problem and

the computation of nondominated solutions closest to reference points from

(108, 82.5, 75) to (108, 83.429, 75) is straightforward because they are given by

the same basis of the LP problem associated with Q9.

To continue the search, θ̂ 2 is then set to θmax
2 +ε(2)¼ 0.929 + ε(2)¼ 1.0 and the

new reference point is z+¼ (108, 83.5, 75).

Q1

Q3

Q2

Q5Q4

x1≤10
x1≥11

x2≤4 x2≥5

Q1

Q3

x1≥11x1≤10

Q4

Fig. 6.14 Simplification of the previous tree to obtain the starting-tree for z+¼ (108, 82.5, 75)

x2≥4

Q4

Q1

Q3

Q7

x1≤10 x1≥11

x2≤3 (60.262, 0.0985, 0.5)

(59.869, 0.1813, 7.9)

(59.336, 0, 5.071)

NInt.

NInt. Int. optimum

Q6

Q9Q8

x1≤9 x1≥10

(58.407, 1, ∞)

Int.

Fig. 6.15 The final tree for z+¼ (108, 82.5, 75)
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(U) Updating the tree for z+¼ (108, 83.5, 75)

Situation (U.2)—Q9 is intersected by Q6
. The basis of Q6 does not change for θ̂ 2

and the corresponding solution is still integer. The tree structure is not affected;

only the information on terminal nodes must be updated (Fig. 6.16). The new

nondominated solution is given by Q6: x¼ (10, 3, 6.857, 1.857), z¼ (48.571,

28.143, 15.571).

Third Iteration

(S) Sensitivity analysis

Q6 (in Fig. 6.16) is the current optimal node with π62 ¼ 0; the s2 variable (surplus
variable of the constraint associated with f2(x) in the scalarizing problem) is basic.

Hence, the previous nondominated solution remains the closest one to reference

points (108, 83.5 + θ2, 75) with 0< θ2 � θ6
max

2 ¼ s2 ¼4.071. So, θ̂ 2 ¼ 4.071 + ε(3) ¼
4.1.

(U) Updating the tree for z+¼ (108, 87.6, 75)

Situation (U.3)—the basis of Q6 changes. Since Q6is the best candidate node and its

new solution is integer, Q6 remains the optimal node, x¼ (10, 3, 6.850, 1.867), z¼
(48.567, 28.167, 15.583).

Next Iterations

In order to illustrate different situations, we will skip several iterations assuming

that the search has followed the same direction. Accordingly, consider the reference

point z+¼ (108, 120.5, 75) corresponding to the tree shown in Fig. 6.17, x¼
(10, 0, 0.875, 10.833), z¼ (42.583, 55.083, 12.542). Q22 is the current optimal

node.

(S) Sensitivity analysis
Q22 (in Fig. 6.17) is the current optimal node and the solution remains integer for

variations of θ2 within the current basis, i.e., for θ2 � θ22
max

2 ¼ 3.5. In addition, no

other node satisfies the requirement for checking the intersection condition. So, Q22

is still the optimal node of the scalarizing problem for θ2� 3.5 and nondominated

solutions closest to reference points from (108, 120.5, 75) to (108,124, 75) can be

easily computed by parametric linear programming applied to Q22.

x2≥4

Q4

Q1

Q3

Q7

x1≤10 x1≥11

x2≤3 (60.361, 0.0994, 35.5)

(60.051, 0.1818, 6.9)

(59.336, 0, 4.071)

NInt.

NInt.

Int. optimum

Q6

Q9Q8

x1≤9 x1≥10

Inactive

Fig. 6.16 The final tree for

z
+¼ (108, 83.5, 75)
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Let θ̂ 2 ¼ 3.5+ ε¼ 3.6 and the new reference point z+¼ (108, 124.1, 75).

(U) Updating the tree for z+¼ (108, 124.1, 75)

Situation (U.3)—the optimal basis of Q22 changes and the bounding constraints

x2� 0 and x1� 10 become redundant for Q22. Although the non-negativity con-

straint for x2 is active, so that x2¼ 0, the solution is non-integer because x1¼ 9.975.

Q22 is the best candidate node and should be branched. Before branching, two

simplifications of the tree are done: firstly, the bounding constraint x2� 0 is picked

and afterwards x1� 10, leading to two consecutive low-level simplifications which

are shown in Fig. 6.18.

Starting the branch-and-bound with the simplified tree—just the node Q22—and

continuing until the optimum of the scalarizing problem is reached (Fig. 6.19), a

nondominated solution is obtained: x¼ (10, 0, 0, 12), z¼ (42, 58, 14).

Q20

x2≥1

Q14

Q1

Q18

Q23

x1≤10 x1≥11

x2≤0

(66.198, 0.374, 6.1)(65.306, 0.166, 3.5)
NInt.Int. optimum

Q22 Q21

InactiveInactive

x2≥1x2≤0

Fig. 6.17 The final tree for z+¼ (108, 120.5, 75)

x2≤0

x1≤10 x1≥11

Q21Q20
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Q20Q20

x2≤0
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Q18

Q23

x1≤10
x1≥11
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Q22 Q21

x2≥1
Q22

Q1

Q18
x1≤10 x1≥11

Q21

x2≤0

Q22 Q18 Q22

x1≤10

Fig. 6.18 Simplification yielding the starting-tree for z+¼ (108, 124.1, 75)
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6.4.3 Generating Method for Bi-Objective Problems

The interactive reference point method presented above can be used as a generating

algorithm to characterize the whole nondominated set of bi-objective MOMILP

problems. It can generate all nondominated solutions to MOILP problems and, in

the mixed-integer case, the user sets a stepsize μ that defines the maximum variation

(in percentage) desired for the value of one of the objective functions when

continuous nondominated solutions are computed. This stepsize is also used in

the interactive algorithm to define the proximity of continuous nondominated

solutions obtained during a directional search (see, e.g., the first iteration of the

previous example).

To examine the whole nondominated set of a bi-objective problem, the algo-

rithm can either start at the optimum of the first objective function, and perform a

directional search that improves the second objective, or do the reverse. Since

increasing an objective function implies decreasing the other, the nondominated

set is fully determined using such an approach except for a gap between continuous

solutions that is controlled by the stepsize μ. As stated above, the algorithm

automatically recognizes when it reaches the nondominated solution that optimizes

one objective function (even if the pay-off table has not been computed). Therefore,

if a directional search is performed to improve fj(x) and a nondominated solution

maximizing this function is at hand, then the procedure indicates that no more

improvement is possible and the directional search finishes.

Without loss of generality, let us consider that the algorithm starts at the optimum

of the first objective function. So, f1(x) is firstly maximized (using a weighted-sum of

the objectives or a lexicographic optimization approach to ensure that a nondominated

solution is obtained). Let this solution be x1* with z1*¼ ( f1(x
1*), f2(x

1*)). It can be

proved that there always exists a small enough ρ such that solution x1* also optimizes

the achievement scalarizing problem (6.8) without weights (i.e., all λk¼ 1) consid-

ering z ¼ z1* (Alves et al. 2012). This is still true for the augmented Chebyshev

programming problem (6.9). So, the first reference point to be considered is z1*.

The bi-objective generating algorithm can be stated as follows:

Step 0. Compute the pay-off table of the bi-objective MOMILP problem or just

a nondominated solution that maximizes f1(x). Let z
1* be its image in the

objective function space.

Step 1. Define the first reference point as z+¼ z1*.

Fig. 6.19 The final tree for

z
+¼ (108, 124.1, 75)
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Solve the Chebyshev scalarizing problem (6.9) using branch-and-bound as

in Step 1 of the interactive algorithm.

Step 2. Set f2(x) as the objective function to be improved.

If the multiobjective problem is mixed-integer, choose a stepsize μ > 0

that defines a gap between continuous nondominated solutions.

Perform a directional search as in Step 3 of the interactive algorithm

stopping when a nondominated solution that maximizes f2(x) is reached.

The stepsize μ represents the maximum value that is allowed for the ratio

znew2 � zprev2

� �
= ez*2 � z1*2
� �

, where znew and zprev are two consecutive nondominated

solutions on a continuous path, the new and the previous one, respectively, ez*2 is an
approximation of the maximum of f2(x) (e.g., the maximum of f2(x) in the linear

relaxation of the problem) or its true maximum value if the pay-off table has been

computed in Step 0.
The algorithm above starts at the optimum of f1(x) and stops at the optimum of

f2(x). Naturally, starting at the optimum of f2(x) and selecting the first objective to

be improved is another possibility to scan the nondominated region of the

bi-objective problem. In this case, μ is used for restricting differences in f1(x).

Example

Consider the following MOILP problem (Prob. 6.2) with two objective functions

and two integer variables (this problem has been displayed above in Fig. 6.6).

max z1 ¼ f 1 xð Þ ¼ x1 � x2
max z2 ¼ f 2 xð Þ ¼ �x1 þ 2x2
s:t : x1 þ 6x2 � 21 ðProb: 6:2Þ

14x1 þ 6x2 � 63

x1, x2 � 0 and integer

Step 0. The nondominated solution that maximizes f1(x) is computed: x1*¼ (4,0),

z1*¼ (4,�4).

Step 1. The first reference point is set to z+¼ (4, �4). The Chebyshev scalarizing

problem is solved, obtaining again x1*, z1*.

Step 2. The objective function f2(x) is selected to be improved.

(There is no need to define a stepsize μ because this is a MOILP problem).

Perform a directional search to improve f2(x):

• the reference point is changed to z+¼ (4, �3) yielding the solution

x2¼ (4,1), z2¼ (3,�2),

• the reference point is changed to z+¼ (4, 0) yielding the solution

x3¼ (3,1), z3¼ (2,�1),

• the reference point is changed to z+¼ (4, 2) yielding the solution

x
4¼ (3,2), z4¼ (1,1),

• the reference point is changed to z+¼ (4, 5) yielding the solution

x5¼ (3,3), z5¼ (0,3),
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• the reference point is changed to z+¼ (4, 8) yielding the solution

x6¼ (2,3), z6¼ (�1,4),

• the reference point is changed to z
+¼ (4, 11) yielding the solution

x7¼ (1,3), z7¼ (�2,5),

• the reference point is changed to z+¼ (4, 13) yielding the solution

x8¼ (0,3), z8¼ (�3,6),

• indication that the optimum of f2(x) has been reached at solution 8.

The eight solutions obtained constitute the set of all nondominated

solutions to the problem (Prob. 6.2). These solutions are depicted in

the objective function space in Fig. 6.20.

6.4.4 The Software

A software for MOMILP problems accompanies this book. It implements the

interactive reference point method described in Sect. 6.4.1, also including the

generating algorithm for bi-objective problems (Sect. 6.4.3) and a set of tools that

can be used at any phase of the decision process. These tools aim at providing a

progressive learning of solutions and a gradual establishment of the DM’s prefer-
ences. Some of these tools, such as the optimization of weighted-sums of the

objective functions, may be more useful in an initial phase of the decision process.

Fig. 6.20 All

nondominated solutions of

(Prob. 6.2)
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The combination of the directional search with the possibility of imposing addi-

tional limitations on the objective function values can be used to scan

nondominated solutions in different directions or to carry out a search focused on

a delimited region (local search), for instance within the neighborhood of a

nondominated solution that the DM considers interesting. In general, the latter

option would be more useful in a final phase of the decision process.

The flowchart in Fig. 6.21 outlines the scheme of interaction with the DM

implemented in this software.

The interface of the software for MOMILP is similar to the one of the iMOLPe
software for MOLP. The main window (Fig. 6.22) includes a menu bar that pro-

vides access to any operation and icon-controls on a tool panel (with two tabs,

Standard and View options) to perform specific operations, such as:

Fig. 6.21 Scheme of interaction with the DM
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– inputing preference information, namely to specify new reference points (infor-

mation needed to perform E in Fig. 6.21), to choose an objective function to be

improved during a directional search (G, to perform F), to specify weight

vectors for weighted-sums (to perform C) or to impose bounds on the objective

function values (D);
– requiring the computation of new nondominated solutions by projecting a

reference point onto the nondominated solution set (E), starting a new direc-
tional search (entering F), continuing in the same directional search (keeping in

F) or optimizing a weighted-sum (C); these computations can be performed

considering the original feasible region or a restricted region delimited by

bounds on the objective functions (D);
– operations concerning visualization and analysis of the results, in particular to

set up display aspects (colors, number of solutions visible in the main window)

or to open separate windows that show different numerical or graphical infor-

mation; to insert or delete nondominated solutions into a solution archive

(“bag”) or to save solutions to disk.

The available controls depend on the procedure previously selected in the menu.

Figure 6.22 shows the controls in the Standard tab when an operation E or F has

been just performed. The track bar enables to adjust the stepsize μ
and it is only available for mixed-integer problems.

Figure 6.23 shows the nondominated frontier of a mixed-integer problem, which

has been scanned using the generating algorithm with a stepsize of 0.1 %. The

problem is similar to (Prob. 6.2) but it has x1 integer and x2 continuous. Figure 6.24
shows the data of the objective functions and the constraints of this problem in the

editing environment provided by the software. The type of the variables (binary,

integer or continuous) and their lower and upper bounds are defined through a

window as in Fig. 6.25. This figure shows the definition of x1 as integer and x2 as
continuous, both with lower bound 0 and no upper bound (represented by M).

Fig. 6.22 Main window of the software for MOMILP
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Fig. 6.23 Nondominated frontier of a mixed-integer problem

Fig. 6.24 Editing the objective functions and the constraints

Fig. 6.25 Defining the type of the variables and their lower and upper bounds
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For multiobjective all-integer problems (MOILP) with 2 or 3 objective func-

tions, the software also includes a graphical representation of indifference regions

of reference points, i.e., sets of reference points that lead to the same nondominated

solution. As presented in the previous chapters, in MOLP it is possible to determine

the indifference region on the weight space associated with each nondominated

basic solution computed. However, indifference regions in MOILP/MOMILP are

very difficult to compute. Unless all nondominated solutions are already known,

there is no recognized method that enables to compute a complete indifference

region at once (i.e., after only one optimization), either in the weight space (when

weighted-sums of the objective functions are optimized) or in the reference point

parametric space. This software calculates convex sets of reference points that lead

to the same solution, which are, in general, partial rather than complete indifference

regions in the reference point space. The procedure (described in Alves and

Clı́maco, 2001) takes advantage of the directional searches to define larger subsets

of indifference regions that are successively appended. Indifference regions of

reference points are usually non-convex unlike indifference regions on the weight

space, which are always convex regardless the type of the problem (MOLP,

MOILP, MOMILP or non-linear problem). An approach to compute subsets of

indifference regions on the weight space to MOILP/MOMILP was recently pro-

posed in (Alves and Costa 2016).

The reference point space coincides with the objective function space. Indiffer-

ence regions are not lost if only a cut of this space is visualized in which the sum of

the components of the reference points is constant. This means a plane for 3 objec-

tive functions and a line for 2 objective functions. Furthermore, the representation

of indifference regions can be limited to the extent of a triangle/line segment

provided that the limits are defined large enough so that all nondominated solutions

are included in the picture; the individual optima of the objective functions fill areas

near the vertices of the triangle/line segment.

Figure 6.26 shows examples of the representation of subsets of indifference

regions in the reference point space for (a) a problem with three objective functions

and (b) a problem with two objective functions. In the first case, the regions were

obtained when the pay-off table was computed (solutions 1, 2 and 3, respectively)

and a directional search was conducted from solution 4 (obtained by choosing the

ideal solution as reference point) in order to improve f2(x); this directional search
ended at solution 2, which is the optimum of f2(x), passing through solutions 5 and

6. The graph of Fig. 6.26b corresponds to the problem (Prob. 6.2) and was obtained

at the same time as the generating algorithm was applied to the problem. In the case

of bi-objective problems, the whole indifference regions are obtained when a

directional search is performed.
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6.5 Proposed Exercises

1. Consider the following MOILP problem:

max f 1 xð Þ ¼ x1
max f 2 xð Þ ¼ �x1 þ 2x2
s:t:

x1 � 5

7x1 þ 6x2 � 42

9x1 þ 20x2 � 90

x1, x2 � 0 and integer

(a) Represent graphically the problem in the decision space and determine all

efficient/nondominated solutions.

(b) What are the nondominated solutions that are reachable using weighted-

sums of the objective functions?

2. Consider the problem of exercise 1 with x1 integer and x2 continuous.

(a) Identify all supported nondominated extreme and non-extreme solutions.

(b) Identify all unsupported nondominated solutions.

Fig. 6.26 Subsets of indifference regions in the reference point space
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3. Consider the following MOILP problem:

max z1 ¼ f 1 xð Þ ¼ 3x1 þ x2 þ 2x3 þ x4
max z2 ¼ f 2 xð Þ ¼ x1 � x2 þ 2x3 þ 4x4
s:t:
2x1 þ x2 þ 4x3 þ 3x4 � 56

3x1 þ 4x2 þ x3 þ 2x4 � 55

x1, x2, x3, x4 � 0 and integer

Suppose that the following two nondominated solutions to this problem have

already been computed and the DM wishes to search for other nondominated

solutions between za and zb.

xa ¼ 7, 0, 0, 14ð Þ za ¼ 35, 63ð Þ
xb ¼ 4, 0, 0, 16ð Þ zb ¼ 28, 68ð Þ

(a) Formulate a weighted-sum of the objective functions with additional

bounds on the objectives that enables to find a nondominated solution

(if it exists) between this pair of solutions.

(b) Solve the problem formulated in a) using the MOMILP software.
Hint: impose additional constraints on the objectives by choosing the

option and then call the weighted-sum procedure.

(c) Follow a similar process as the method of Chalmet et al. (Sect. 6.2) to

continue the search for new nondominated solutions between the new pairs

of solutions.

(d) Discuss the impact of choosing a particular weight vector when the purpose

is to compute all nondominated solutions between a pair of solutions in a

bi-objective integer problem.

(e) Use the MOMILP software to generate all nondominated solutions to this

bi-objective problem.

4. Consider the problem of exercise 3 with x1, x2 integer and x3, x4 continuous.
Use the MOMILP software:

(a) Suppose you want to compute a nondominated solution that optimizes f2(x).
Optimize a weighted-sum of the objectives with appropriate weights to

obtain that solution.

(b) Choose the reference point procedure and an appropriate reference point to

compute (again) the nondominated solution that optimizes f2(x). What

reference point did you choose?

(c) Suppose you solved (b) without knowing neither the result of (a) nor any

other nondominated solution to the multiobjective problem. Indicate a

reference point that you probably would choose for (b). How could you

be sure that you have found the solution that optimizes f2(x) using only the

interactive reference point algorithm?
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(d) Scan all nondominated solutions by performing a directional search,
starting at the previous solution and choosing f1(x) to be improved, until

the optimum of this objective function is reached.

5. Consider the following MOILP problem:

max z1 ¼ f 1 xð Þ ¼ x1
max z2 ¼ f 2 xð Þ ¼ x2
max z3 ¼ f 3 xð Þ ¼ x3
s:t:

3x1 þ 2x2 þ 3x3 � 18

x1 þ 2x2 þ x3 � 10

9x1 þ 20x2 þ 7x3 � 96

7x1 þ 20x2 þ 9x3 � 96

x1, x2, x3 � 0 and integer

Suppose that the following two nondominated solutions to this problem are

already known:

za ¼ xa ¼ 4, 3, 0ð Þ
zb ¼ xb ¼ 1, 0, 5ð Þ

(a) Considering the weight vector λ¼ (1/3,
1/3,

1/3), formulate a weighted-sum

problem with additional constraints and auxiliary binary variables that

ensures the computation of a nondominated solution different from za and

zb, as in the methods of Klein & Hannan or Sylva & Crema.

(b) Can the optimal solution to the problem formulated in a) be an unsupported

nondominated solution or will it certainly be a supported solution?

6. Consider the following MOILP problem with 3 integer variables and 2 binary

variables:

max z1 ¼ f 1 xð Þ ¼ 8x1 þ 7x2 þ 10x3 þ 5x4 � 2x5
max z2 ¼ f 2 xð Þ ¼ 3x1 � x2 þ x3 þ x4 � x5
max z3 ¼ f 3 xð Þ ¼ 9x1 � x3 þ 5x4 þ 10x5
s:t:

2x1 þ 3x3 þ 5x4 þ 2x5 � 30

5x1 þ x2 þ x3 þ 2x5 � 30

5x1 þ 2x2 þ 3x3 þ 4x5 � 30

4x1 þ 3x2 þ 5x3 þ 3x4 þ 2x5 � 30

x1, x2, x3 � 0 and integer

x4, x5 2 0; 1f g

Using the MOMILP software:

(a) Compute the pay-off table of the problem. What is the ideal solution?

(b) Determine the nondominated solution closest to the ideal solution

according to the augmented Chebyshev metric (reference point procedure).
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(c) Perform a directional search from the previous solution in order to improve

f2(x) until its maximum is achieved.

(d) Change the direction and perform now a directional search to improve

f1(x).
(e) Assume that the DM wants to impose a lower bound of 60 on f1(x). Thus,

include the constraint f1(x)� 60. Compute the nondominated solution

closest to the ideal solution considering this additional constraint. Is this

solution the same as the one obtained in b)?

(f) Start from the solution obtained in e) and perform a directional search to

improve f3(x) keeping the constraint f1(x)� 60. How many solutions are

computed? Why?

(g) Analyze the subsets of indifference regions in the reference point space and

give at least three different reference points that lead to the nondominated

solution that optimizes f2(x) (without considering additional bounds on the

objectives).
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