
EFESTO: A Platform for the End-User
Development of Interactive Workspaces

for Data Exploration

Giuseppe Desolda1(&), Carmelo Ardito1, and Maristella Matera2

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro,
Via Orabona, 4, 70125 Bari, Italy

{giuseppe.desolda,carmelo.ardito}@uniba.it
2 Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20134 Milan, Italy
maristella.matera@polimi.it

Abstract. This paper illustrates EFESTO, a mashup platform designed to
enable end users to explore information by creating interactive workspaces.
Within a Web composition environment, end users dynamically create “live
mashups” where relevant information, extracted from heterogeneous data
sources - including the Linked Open Data – is integrated according to visually
defined queries. Visualizations of the resulting data sets can be flexibly
shaped-up at runtime. Functions, exposed by local or remote services, also allow
users to manipulate the resulting data depending on their situational needs. With
respect to other mashup platforms, EFESTO privileges visual composition
paradigms that accommodate the end-user mental model for a lightweight data
integration within Web workspaces.

Keywords: Mashups � Web composition environments � Data integration

1 Introduction

Mashups are data-centric applications that can be created by composing heterogeneous
resources [1]. They are considered a solution for supporting data exploration processes
that exceed one-time interactions and allow users to progressively seek for information.
As studied in [2], typically users invoke general-purpose search engines and/or spe-
cialized verticals, and then use “their brain” (or suitable cognitive aids, e.g., annotations
or clipboards) for remembering results to be used next. Mashups solve (at least par-
tially) these limitations, as they try to accommodate users’ needs for data integration
within personal, ad-hoc created workspaces.

Despite these advantages, some factors still prevent a wider use of the mashup
paradigm in real contexts, especially by users who are not experts in programming.While
mashups have been identified as a useful mean for application development by the end
users [1], so far the research on mashups has largely focused on the enabling integration
technologies and standards, with limited attention on easing the mashup development
process - in many cases mashup creation still involves the manual programming of

© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 63–81, 2016.
DOI: 10.1007/978-3-319-28727-0_5



service integration. Some user-centric studies [3] also found that, although the most
prominent platforms (e.g., Yahoo!Pipes) tried to simplify mashup development, they are
still difficult to use by non-technical users, who encounter difficulties with the adopted
composition languages [4]. Besides the complexity of the composition paradigm [5], the
active interaction with the retrieved data, by means of exploration and manipulation
actions, is hardly supported.

With the intent of overcoming the limitations identified in literature, we defined
EFESTO (EFesto End uSer composition plaTfOrm), a platform for the End-User
Development of mashups. Efesto was a god of the Greek mythology, who realized
magnificent magic arms for other Greek gods and heroes. Analogously, the EFESTO
platform aims to put in the hands of end users powerful tools to accomplish their tasks.
Our platform, in fact, is characterized by a paradigm for the exploration and compo-
sition of heterogeneous data sources that tries to accommodate the end-user mental
model for a lightweight data integration within Web workspaces. The paradigm was
designed taking into account the results of some elicitation studies aimed to identify the
end-user mental model for service composition [5, 6]. It was also validated during two
field studies in specific application domains, namely Cultural Heritage [5] and Tech-
nology Enhanced Learning [7]. Besides helping us assess the elicited mental model,
these studies also highlighted new (unexpected) requirements. Among the most
important ones, the users expressed the need to manipulate, in a more powerful way,
data extracted from services, and the possibility to satisfy more complex information
needs by gathering data from the entire Web - not only from pre-packaged components.
To overcome these drawbacks, the most recent version of EFESTO offers: (i) visual
mechanisms to integrate data retrieved from different data sources; (ii) a new “poly-
morphic” data source model that, by exploiting the Linked Open Data (LOD) cloud,
enables the access to “mutable” information depending on the situational needs
expressed in the mashup under construction; (iii) a set of tools to organize, visualize
and manipulate extracted data according to specific functions. This new version of the
platform is available online at the address: http://efesto.ddns.net/.

This paper illustrates EFESTO with a specific focus on the features presented and
discussed during the ICWE 2015 Rapid Mashup Challenge. In particular, Sect. 2
presents, by means of a scenario, the composition paradigm implemented in our
mashup platform and also illustrates the sequence of composition steps presented at the
challenge. Section 3 describes the platform architecture and in particular the mecha-
nisms supporting the visual construction of live mashups and the way the platform
invokes and integrates heterogeneous services, including LOD data sources. Section 4
discusses the level of maturity of our platform, by illustrating how EFESTO has been
customized, adopted and evaluated in specific application domains. Section 5
emphasizes the peculiarities of EFESTO by comparing it with other mashup platforms.
Section 6 reports how we prepared for the Rapid Mashup Challenge. Section 7 con-
cludes the paper and outlines our current and future work.

64 G. Desolda et al.

http://efesto.ddns.net/


2 The EFESTO Composition Paradigm

To illustrate the main features of EFESTO, we now introduce a usage scenario that
recalls the live demo given during the ICWE 2015 rapid mashup challenge1.

Let us consider an end user, Michael, who is going to organize his summer holi-
days. Michael has not yet decided where to go between London and Madrid but,
regardless the destination, he would like to attend a concert during his holidays. For
this reason, Michael uses EFESTO to retrieve and integrate various information (i.e., to
create mashups) about music events. Michael starts looking for pertinent services
among those registered in the platform. A wizard procedure guides him to make a
selection from a popup window where services are classified by category (e.g., videos,
photos, music, social). Michael selects SongKick, a service that provides information
on music events given an artist name. He also selects a map UI template for displaying
the retrieved information. The aim of Michael’s activities in the EFESTO workspace is
indeed to create some widgets, called UI components [8], that visually render, in a
chosen format, data extracted from selected data sources. As SongKick data are
geo-localized, Michael decides to visualize the retrieved data on a map.

As shown in Fig. 1 (circle #1), the SongKick data attributes are visualized in a
panel on the left. To make the attributes understandable by the user, the system also
shows some example values. First, Michael drags and drops the latitude and longitude

1 2

3

Fig. 1. Mapping between the SongKick data attributes and UI template fields (Color figure online)

1 The video that faithfully reports the live demo is available at https://youtu.be/bBG5O266y4g.

EFESTO: A Platform for the End-User Development 65

https://youtu.be/bBG5O266y4g


SongKick attributes into the related fields in the map UI template (Fig. 1, circle #2).
Then he chooses a table UI template with three items in column (Fig. 1, circle #3) for
visualizing, when required, some additional details about a musical event. He selects
and drops the desired attributes in the fields of the table template (highlighted in yellow
in Fig. 1, circle #2). These actions represent queries on the underlying data sources that
will be successively executed to create the mashup data set.

After performing the mapping phase, Michael saves the mashup. Figure 2 reports
an example of the created mashup, which is immediately executed in the Web
browser. By typing “Vasco Rossi” in the search box, the forthcoming events of this
singer are visualized as pins on the map.

Michael can also integrate data coming from different services through union and
join operations (also called merge in other mashup tools [8]) that he visually expresses
through drag and drop actions operated on the running mashup. For example, to
enrich the dataset of events retrieved by SongKick, Michael integrates SongKick with
Last.fm, thus exploiting the union operation. In particular, he acts directly on the
SongKick UI component previously created by clicking on the gearwheel icon in the
toolbar (pointed by the circle #1 in Fig. 2) and choosing the “Add results from new
source” menu item. A wizard procedure now guides Michael in choosing a new service
and in performing a new mapping between the Last.fm attributes and the UI template
already used when SongKick was created. The newly created dataset is shown in the
same fashion as reported in Fig. 2 but now, when queried with an artist name, the
widget visualizes results gathered both from the SongKick and Last.fm services.

Padua

1

Fig. 2. SongKick data source visualized as a map and joined with Google Images to show city
pictures related to each SongKick event

66 G. Desolda et al.



Another data integration operation available in EFESTO is the join of different
datasets. For example, since SongKick does not provide images of the location where
concerts are held, Michael joins the SongKick city attribute with Google Images; the
city name now becomes the keyword for extracting from Google Images a sequence of
related pictures. To perform this operation, Michael clicks on the component gearwheel
icon and choses the “Extend results with details” menu item. A new wizard procedure
guides him while choosing the service attribute to be extended (City in this example),
the new data source (Google Images) and how to visualize the Google Images results.
From now on, as shown in the right-hand side of Fig. 2, when clicking on the city name
in the map info window, another pop-up visualizes the Google Images pictures related
to the selected city.

Let us suppose now that, during the interaction with EFESTO, Michael wants to get
details about the artists of the music events, such as genre, starting year of activity and
artist photo. He does not find any service, among those registered in the platform, that
can satisfy this new information need. Thus, he decides to join the SongKick artist
attribute with a DBpedia-based polymorphic data source [9]. The platform now shows
a list of properties related to the musical artist class2, and Michael creates a new data
source based on the properties genre, starting year of activity and artist photo.
Henceforward, Michael can find a list of upcoming events in the SongKick component
and visualize the additional artist’s information, retrieved through the new data source,
when clicking on the artist name in SongKick. We call this data source “polymorphic”
because, different from pre-registered data sources (e.g., Google Images) that only
provide a pre-defined, invariable set of properties, it can enable the access to different
information (properties) depending on the attribute in the origin data source it is bound
to. For example, if the Michael’s join starting point is the SongKick city attribute,
properties like borough, census, year, demographics would be proposed.

Another operation available in EFESTO is the change of visualization for a given
UI component. Michael, in fact, during the interaction with SongKick, decides to
switch from the map UI template to the list UI template (see the result in Fig. 3, circle
#1). To perform this action, he clicks on the gearwheel icon in the SongKick toolbar
and choses the Change visualization menu item. A visual procedure allows Michael to
choose a UI template (a list in this case), and drag and drop the SongKick attributes
onto the UI template, as already performed during the SongKick creation.

Until now, Michael has aggregated and composed information according to a
paradigm that is similar for some aspects to the ones provided by other mashup plat-
forms [1]. Our field studies, however, revealed that mashups generally lack data
manipulation functions that can be instead useful to support common tasks [5, 7] and
can empower the users to play a more active role than just consuming the finally
visualized information. We thus extended EFESTO with a set of tools that, by
exploiting functions local to the platform or exposed by remote APIs, provide the
possibility to “act” on the extracted contents, for example to collect and save favourites,

2 When a service is registered in the platform, each attribute is automatically annotated with a DBpedia
class that is semantically close to the attribute meaning [9]; for example the SongKick Artist attribute
is annotated with the DBpedia Musical Artist class.

EFESTO: A Platform for the End-User Development 67



to compare items, to plot data items on a map, to inspect full content details, or to
arrange items in a mind map to highlight relationships [10]. Coming back to our
scenario, as shown in Fig. 3, Michael adds some tools into his workspace, each of them
devoted to a particular task. For example, each time Michael drags a SongKick event
into the Map tool (Fig. 3, circle #3), this item is automatically ‘translated’ as pin on the
map. Another example is the Comparing tool (Fig. 3, circle #2) that assists the user in
comparing items retrieved by one or more services (SongKick events in Fig. 3). In
general, item transitions across different tools determine different organizations and
visualizations of data and progressively enable different functions.

3 Architecture and Feature Checklist

Figure 4 illustrates the overall organization of EFESTO. The platform supports the
composition of heterogeneous components (data, UI and logic components) by means
of an orchestration logic that enables extracting and integrating data and operations
provided by different services, mainly to create the so-called UI components. A UI
synchronization logic then allows one to synchronize at the presentation layer the
behavior of different UI components. This synchronization is based on an event-driven
paradigm that couples events generated by source components to operation enacted in
target components. The platform thus generates hybrid mashups that integrate data
and orchestrate functions, and provides structured and coordinated visualizations of the
integrated data set and functions.

As already highlighted in the previous section, with respect to other mashup
platforms EFESTO is strongly characterized by its interaction layer and, in particular,
by its visual language that allows the users to create “live” mashups without writing a

1

2

3

Fig. 3. Use of some tools available in EFESTO to manipulate SongKick data

68 G. Desolda et al.



line of code. The adoption of a visual notation and the liveness of the mashups under
construction demand for the definition of an execution logic that is distributed between
the platform front-end and back-end and is in charge of interpreting the user compo-
sition actions and putting them in action immediately.

Another relevant feature is the capability of generating models (Workspace
Descriptors and UI Component Descriptors as described later in the paper), in a
model-driven engineering (MDE) fashion. Models, expressed according to a
Domain-Specific Language [5, 8], specify the user composition choices and drive the
instantiation of the mashup running code. The MDE paradigm thus enables the
deployment of a same mashup on multiple devices, as native execution engines can
interpret the same generated models on different target devices. In order to support this
execution paradigm, service descriptors are also needed to provide an adequate

Fig. 4. The EFESTO Three-layers architecture

EFESTO: A Platform for the End-User Development 69



abstraction layer for invoking and querying services. The rest of this section will
illustrate the mechanisms through which different modules, distributed along different
layers, interoperate to give life to the EFESTO composition and execution paradigm.

3.1 Interaction Layer

In EFESTO, the Interaction Layer provides a kind of key metaphor determining the
mashup logic and the overall system behaviour. Operations for mashup composition
are indeed expressed by the users through direct manipulation actions on UI elements
in charge of rendering data. According to a “programming-by example” paradigm, user
actions operated on sample data items extracted from data sources are interpreted as
models of queries to be executed on entire data sets and of the orchestration logic to be
applied on the involved services. For instance, users connect some UI elements that
display items retrieved from two different data sources to express a data flow for
merging the two sources; or they move into an existing UI component some data
attributes taken from a different service to define a union with this service. In other
words, while acting directly on sample data objects, users program service composition
to obtain new data sets, functions and visualizations.

This paradigm that, as demonstrated in some user studies [3, 6], is an essential
prerequisite to foster EUD of mashups, is made possible by some front-end modules.
As represented in Fig. 4, the Interaction Layer consists of a Web application that
represents a view on the model governing the logic for mashup composition and
execution. A Web mashup in EFESTO is a set of UI components, each one providing a
view on one or more data sources. The construction of such data views and their
visualizations are managed by the UI Component Manager, a front-end module that
instantiates each UI component based on the data sets built by the mashup engine. The
logic of the UI Component Manager is determined by UI Templates. UI Templates are
cornerstone elements in EFESTO, both for the way the users perceive the mechanisms
for building UI components, and for the data integration logic behind the construction
of the components data sets. Indeed, on the one hand, UI Templates provide the users
with a schematic representation of how data extracted from services will be organized
(i.e., aggregated and visualized) within each single UI component [5, 8]. On the other
hand, at the Logic Layer UI templates then provide data integration schemas, as they
determine how the mashup engine has to query the involved data sources and integrate
the resulting data. Indeed, by associating selected service attributes to UI template
elements, the composer defines a projection of the only attributes of interest. In
addition, if the attributes associated to a single UI template element are selected from
multiple services, then the structure of the UI template determines a global integration
schema mapping the attributes of single services into an integrated data set. These
actions captured at the interaction level are then translated into the specification, within
a UI component descriptor, of service queries and data fusion procedures used by the
mashup engine to build the integrated data sets [8].

As represented in Fig. 4, each UI component displays a set of UI items, i.e., data
elements rendered according to the layout provided by the UI template. UI items are the
atomic elements composition actions can be applied to. Starting from a UI item, the

70 G. Desolda et al.



users can expand the mashup data set by defining data integration operations (union
and join) with data sets of additional services. The selection of a UI item can provide an
entry point for the exploration in the LOD. The user can also achieve coordinated
visualizations of the UI Components by synchronizing the event of selecting a UI item
in a component with the activation of operations that can change the status of other
components (e.g., to achieve a different data set filtering or a new visualization).

Given a UI component, transitions among different UI templates are possible to
achieve different data organizations (e.g., from a table highlighting detailed properties
of each single data instance to a mind map highlighting the relationship among different
instances) and visualizations (e.g., from a list of addresses to a map based represen-
tation of the same data). Transitions, however, imply the need of modelling the
structure of the data items originally extracted from data sources, to be able to trace and
identify the transformations needed when moving the items across different visual-
izations. For this reason, each service, when registered, is associated with a set of
possible service visualizations, i.e., the specification of UI templates families (i.e., lists,
maps, charts, graphs) that can be properly used to render the service data. The mapping
between the service data attributes and specific UI items in charge of attributes ren-
dering is also defined.

The live programming paradigm, which allows the users to see immediately the
effect of their actions on the mashup under construction, is achieved by means of Event
Listeners that are able to catch the events generated by the user actions (e.g., the drag of
a service attribute to a field of a UI template) and send them to an Event Manager. This
module of the Mashup Engine, located in the Logic Layer, is in charge of translating
events into the proper invocation of services whose effect is the refresh of the status of
the mashup and of its UI components, depending on the captured events.

3.2 Logic Layer

The Logic Layer provides for modules and mechanisms that translate the user com-
position actions operated at the Interaction Layer into the mashup executing logic. We
here describe the different modules supposing that they are deployed separately from
the Interaction Layer modules, i.e., on a back-end server. However, the Logic Layer
can be distributed between the client and the server or, at the other extreme, located
only at the client-side if the execution context requires a single-user, lightweight
deployment. Server-side execution offers the advantage of managing a long lasting
instantiation logic with the additional possibility of supporting multi-user mashups,
collaborative composition paradigms, and the distributed execution of interactive
workspaces, as we already discussed in some previous papers [7].

3.2.1 The Mashup Engine
The Mashup Engine is invoked by the UI Component Manager each time an event,
requiring the retrieval of new data or the invocation of service operations, is generated
at the interaction layer. For instance, when the user specifies a search key to filter a
component data set, the typed key and the component identifier are passed to the
Mashup Engine. The Mashup Engine retrieves from a dedicated repository the

EFESTO: A Platform for the End-User Development 71



XML-based UI Component Descriptor, and inspects it to identify all the services used
in the mashup. Figure 5 illustrates an example of UI component descriptor where
SongKick is joined with YouTube. Based on this specification, the Mashup Engine
retrieves from the Service Descriptor repository all the XML descriptors associated
with the services involved in the mashup (SongKick and YouTube in Fig. 5). Each
service descriptor is sent to the Source Dispatcher that, depending on the specified
service type, invokes specific adapters to retrieve the data. In fact, our platform can
manage different types of data sources, like RESTful and SOAP services, databases,
files (e.g., csv, excel) and Linked Open Data. If a new type of data source needs to be
registered in the platform, a new adapter has to be developed. Depending on the nature
of the data source, the Source Dispatcher instantiates an adapter available in the Source
Manager package that implements the logic for querying the specific type of data
source. Moreover, if a data source demands for an authentication, the Authentication
Manager provides for different classes implementing different types of authentication,
like OAUTH 2.0, OpenID and Custom Authentications.

After querying each service as modelled in the UI Component Descriptor, the
Result Builder creates the final data set, codified in JSON, and sends it back to the UI
component manager. Figure 6 represents an example of JSON array produced by
querying the mashup shown in Fig. 5. Finally, the UI Component Manager builds the
UI view to render the JSON data according to the layout of the component UI template.

3.2.2 The Event Manager
Another important module in the Logic Layer is the Event Manger. It is in charge of
translating any composition action into proper descriptors, and to enact immediately
service invocations to achieve the corresponding behaviour in the mashup under

Fig. 5. XML UI Component descriptor: the SongKick service is joined with YouTube through
the Artist attribute

72 G. Desolda et al.



construction. When the users operate on a mashup the visual actions are caught by the
Event Listener at the Interaction Layer and sent to the Event Manger. For example, at
the beginning of our reference scenario, Michael creates the SongKick UI component
by means of a wizard procedure that guides him to choose the data source (SongKick)
and the UI template (Map), and to associate through drag&drop actions the SongKick
attributes to the UI template fields. When Michael saves the SongKick mashup, two
descriptors are created. The first one is similar to the one reported in Fig. 5 (except for
the <joins> tag that does not have any children when Songkick is created). When users
expand the data source by joining and unifying it with other sources, the <joins> and
<unions> tags are enriched with specific children.

The second XML file then defines the mapping between the data attributes included
in the mashup (as described in the first descriptor) and the chosen UI template (whose
structure is in turn described in an XML file stored in the Service Visualizations
repository).

3.2.3 The Annotation Engine and the Polymorphic Data Source
During our field studies, we noticed that very often, during the process of exploring
information, end users were forced to leave the platform to perform their tasks through
traditional search engines. To overcome this limitation and better satisfy the end users’
information needs, we introduced a new polymorphic data source built upon the LOD
cloud, and in particular exploiting the DBpedia knowledge base.

In order to create the polymorphic data source, a mapping step is required between
all the data sources registered in the platform and the DBpedia ontology classes.

Fig. 6. JSON array produced by the Mashup Engine invoked on the UI Component descriptor
shown in Fig. 5 with the “U2” query

EFESTO: A Platform for the End-User Development 73



The main goal of this mapping is to annotate the attributes of each service by using a
DBpedia class that is semantically similar to the attribute. In fact, each time the
EFESTO administrator registers a new service through the administration panel, the
Service Registration Manager (a module of the Web front-end) asks the administrator
to type some example queries (at most a dozen) to automatically annotate the service
attributes. The service descriptor, together with the provided example queries, is sent to
the Annotation Engine that automatically generates the service attribute annotations [9],
which are then stored in the Semantic Annotation repository.

Now let us come back to the Michael scenario and suppose that he wants to join the
SongKick Artist attribute with DBpedia. After he decides to use DBpedia as extension
data source, the Event Manager triggers the retrieval, by the source manager, of the
XML file with the annotations associated with SongKick. The class used to annotate
the artist attribute (MusicalArtist class) is then extracted from the DBpedia ontology.
Afterwards, the wizard procedure shows to Michael all the MusicalArtist properties as
attributes that he can choose to build the joined data source (see the highlighted box in
Fig. 7). After the drag and drop of a sub-set of properties into the UI template fields,
Michael saves SongKick. Now on, the event of clicking on a specific artist name in the
SongKick results triggers in EFESTO the retrieval of a specific instance of the DBpedia
knowledge base and its visualization in the chosen UI template, according to the
mapping previously performed by the user. To better understand what happens behind
the scene when an artist is clicked, let us suppose that Michael clicks on the U2 label.
First of all, the Mashup Engine, and in particular the Linked Open Data module,
queries DBpedia with a SPARQL query like:

The query result is a DBpedia instance characterized by a set of properties, some of
which have to be mapped in the chosen UI template (e.g., genre, starting year of
activity, and artist photo). Sometimes, it could happen that the retrieved instance does
not have a value for a specific property; in this case, this value is skipped in the UI
template. Furthermore, when the Mashup Engine queries DBpedia, it could happen that
different instances are associated with the same label. For example, if the previous
query includes the Ligabue search key instead of U2, five instances are retrieved:
Antonio Ligabue, an Italian painter; Giancarlo Ligabue, an Italian palaeontologist; Ilva
Ligabue, an Italian operatic soprano; Ligabue, a TV drama; Luciano Ligabue, the
Italian singer (our target). To identify the right instance (Luciano Ligabue), the system
checks which one is a sub-class of the class used to annotate the artist attribute, namely
MusicalArtist in the Michael’s scenario. This example highlights the dual role of
service attribute annotations, which are used (i) during the mapping phase, to show the
DBpedia class properties that the users can move into the UI Template fields (Fig. 7)
and (ii) during the execution of a SPARQL query, to disambiguate multiple retrieved
instances.

74 G. Desolda et al.



3.3 Service and Data Layer

Through the Service and Data layer, the EFESTO Web server exposes repositories of
XML-based descriptors that enable the invocation of services to extract data.

The Service Descriptors provide abstract specifications on how to query each data
source registered in the platform and how to read its results. The Workspace
Descriptors then contain representations of the workspaces created by each user. For
each workspace, a descriptor specifies the included UI components and possible UI
synchronizations defined among them. The UI Component Descriptors then specify the
services included into the components, the user-defined queries to integrate the services
data sets (see Fig. 5), and the specification of the component UI template.

The Workspace and UI Component descriptors are associated to the user who
creates them, and thus can be accessed depending on the users’ access rights. Some
“default” workspace descriptors are also available to any user; they provide the
specification for pre-packaged workspaces related to specific topics or domains. In fact,
users can compose their mashups starting from an empty workspace (like in Michael
scenario) or choosing a thematic template filled with some ready-to-use UI Compo-
nents that are relevant for particular domains/topics.

The Semantic Annotations repository stores the files used to describe the DBpedia
classes associated to each service attribute. Finally, the Service Visualizations
descriptors provide the abstract representations (in terms of offered UI elements) of the
available UI templates.

The definition of the service descriptors and semantic annotation is a technical task
that could be out of reach for non-programmers and, as such, could limit the introduction

Fig. 7. Mapping step between the DBpedia-based polymorphic data source properties and the
list UI template

EFESTO: A Platform for the End-User Development 75



of new services within the platform by end users.. To alleviate this problem, the defi-
nition of descriptors and annotations is facilitated by visual forms that only require
inserting some values; then the XML specification is automatically generated by the
system. Also, we envisage the adoption of our platform in meta-design scenarios, where
other stakeholders (i.e., expert programmers and domain experts) are supposed to
configure the platform for its initial use by the end users.

In general, despite the difficulties that end users might encounter, the adoption of
service descriptors and adapters enables a decoupling between the Mashup Engine and
the external resources so that adding a new data source only requires defining a new
descriptor; an adapter is also needed but only if the Source Manager does not already
include one able to manage that type of data source.

A further aspect to be noted is that, although the service and mashup descriptors are
codified using a custom XML grammar, the Mashup Engine is designed to work even
with different grammars designed for service and mashup descriptions, like for example
EMML (Enterprise Mashup Markup Language)3 for which an open community already
provided a large amount of descriptors. Any other service ecosystem, where services
are homogeneously described, would work as well. However, to speed up the platform
development and validation we opted for a custom XML grammar, which is anyway
inspired to EMML, but it is simpler.

4 Level of Maturity

The current version of the EFESTO platform is the results of a 4-years research. During
this period, we adopted a user-centred approach with the main goal of identifying how
a mashup composition paradigm could really help the users themselves. Our research is
indeed strongly inspired by and oriented towards End-User Development principles
[11]. We therefore conducted several user studies to elicit end-user requirements with
respect to the composition of mashups [6] and to validate our design choices and their
consequent implementation in the platform [7, 8]. These studies show that EFESTO
can be adopted by users without specific expertise in programming with a good level of
effectiveness, efficiency, and satisfaction.

These findings are true for several application domains. The EFESTO architecture
and the composition paradigm have been indeed designed having in mind customization
as a mean to ease the adoption of the platform by different communities of end users,
each one featuring specific requirements, background and expertise. In particular, we
have investigated meta-design approaches, where different stakeholders (e.g., devel-
opers, graphic designers, domain experts) customize different elements of the platform
(e.g., UI components, UI templates, visual composition mechanisms) and create artifacts
that the end users can exploit profitably [5, 7]. In the end, thanks to this methodological
framework, end users can use or customize the platform in different modalities,
depending on their expertise and willingness to be engaged in the creation of artifacts:
from the visual composition of ready-to-use UI components created by other and more

3 http://mdc.jackbe.com/prestodocs/v3.8/index.html.

76 G. Desolda et al.

http://mdc.jackbe.com/prestodocs/v3.8/index.html


expert stakeholders, to the definition of their own components by means of the mashup
operations illustrated above in this paper, to the development of new UI templates in
casw a specific application domain requires for different types of data visualizations.

We validated our approach to customization in different contexts. One extensive
experimentation was conducted in the Cultural Heritage domain, when our platform
was customized to support professional tourist guides. The emerging need in this
scenario was to enhance the visits lead by the guides in an archeological park with the
possibility to create flexibly multi-device mashups to show to the visitors comple-
mentary multimedia material retrieved by different (both public and private) online
sources [5, 7, 12].

Another customization experience is then related to the adoption of EFESTO in a
Technology-Enhanced Learning (TEL) scenario. In this context students learn about a
topic presented in class by their teacher, then complement the teacher’s lesson by
searching information on the Web, and communicate and share the results of their
search with the teacher and other students [7]. Nowadays, schools are provided with
different computing devices, not only desktop but also tablets and interactive white-
boards. Teachers and students are increasingly using such devices and various software
tools in their daily activities.

A further interesting scenario in which we have customized and we are experi-
menting EFESTO is the living labs of the VINCENTE (A Virtual collective INtelli-
genCe ENvironment to develop sustainable Technology Entrepreneurship ecosystems)
research project. The aim of the project is to design, implement and test methodological
and technological platforms that use services to create ecosystems for sustainable
entrepreneurship, which optimize the use of resources, enhance the knowledge, respect
the environment and ethical values and ensure the social inclusion. Our current work is
devoted to the customization of EFESTO to the specific requirements related to the
establishment of collaborative entrepreneurial ecosystems.

5 Related Work

The problem of facilitating the access to Web services and APIs through mashup tools
has been attracting the attention of several researchers, who in the last years focused on
different issues. From an HCI perspective, empowering a larger class of users to create
their own applications requires intuitive abstraction mechanisms, easy development
tools and a high level of assistance. Therefore, some research projects have been
dealing with the problem of enabling the creation of effective presentations on top of
Web services and APIs, to provide a direct channel between the user and the service
(e.g. [13]). They focused on the notion of Web Service Graphical User Interfaces
(WSGUIs) [14], i.e., on a set of mechanisms to enrich the Web service specifications
with annotations that could make the definition of visual interfaces easy.

The previous approaches do not allow the composition of multiple services in an
integrated application. In some cases, building a complete Web application equipped
with a user interface requires the adoption of additional tools or technologies. Recently,
different approaches have been proposed to blend design and execution environments
while exploiting intuitive mechanisms to define mashups. For example, NaturalMash

EFESTO: A Platform for the End-User Development 77



allows one to express in natural language what service(s) the users want to use and how
to synchronize them [15]. To ensure the accuracy of the expressed user queries, Nat-
uralMash narrows the user in a controlled natural language (a subset of a natural
language with a limited vocabulary and grammar). If on the one hand the users have
only to type assisted queries to mashup services, on the other hand this paradigm
inherits all the natural language processing problems and limitations.

A completely different approach is described in [16] where the authors propose a
new perspective on the problem of data integration on the Web, the Surface Web. The
idea is to consider Web pages UI elements as interactive artefacts that enable the access
to a set of operations that can be performed on the artefacts. For example, a user can
integrate into his personal Web page a list of videos gathered from YouTube and can
also append a list of Vimeo videos. This data integration can also be improved by
means of filtering and ordering mechanisms. These operations can be performed, for
example, by pointing and clicking elements (YouTube and Vimeo video lists), drag-
ging and dropping them into a target page (e.g. personal Web page), choosing options
(filtering and ordering). As highlighted by the authors, despite this approach is very
promising, some limitations still affect this solution, for example, low performance (UIs
need to be instantiated locally), the missing support for more advanced use cases
beyond data integration and heterogeneity of structured data in the Web.

As we have illustrated in this paper, in our approach the integration of different
services is guided by UI templates, which implicitly provide an integration schema and
therefore do not require the users to specify the mapping of service attributes with a
global integration schema. Mechanisms similar to UI templates are adopted also in
other approaches for the composition of service-based interactive applications, but
from a different perspective. For example, in the mashup composition approach pre-
sented in [13], a so-called service front end is a form-based UI module that gives a
representation of the technical interface of a Web service and provides the users with
the list of parameters expected by the service. The user can specify values for such
parameters, depending on the needed content. The resulting application is thus able at
runtime to query the service and visualize the results in a tabular template. Our UI
templates also offer support to query services, but through a paradigm that seamlessly
allows the user to define integrated views over different services. Our UI templates then
introduce additional abstractions, which go beyond pure service querying as they guide
the users in a data integration process resulting into integrated visualizations.

Other recent approaches to perform mashup focus on distributed and/or multi-screen
mashups. Among them, the SmartComposition approach [17] enables the end users to
easily create multi-screen mashups in terms of different widgets distributed and syn-
chronized on different devices like PC, smartphone, smart TV. For example, a teacher
can create a distributed mashup to present his lesson with a laptop connected to a
projector and deliver additional information to participants’ mobile devices. Even
though the development of distributed, multi-device mashups is not discussed in this
paper, we also worked on extending EFESTO to allow multiple users to collaboratively
construct and execute mashups across different devices. In fact, the workspaces created
in EFESTO can be shared among different users so that they can synchronously

78 G. Desolda et al.



collaborate in creating and manipulating new information. The available mechanisms
for sharing and collaboration are inspired to the ones of Google Drive. Moreover, chat,
annotations and offline messages also support asynchronous collaboration. We validated
the devised extensions, and especially their usefulness for the end users, in a user study
in the Technology Enhanced Learned domain [7]. The users were satisfied of the
devised collaborative mechanisms and found them very useful. However, they
expressed the need to further “manipulate” the collaboratively-created workspaces
through functions that could allow them to accomplish collaboratively some situational
tasks. It was this study that suggested us to move towards the notion of actionable
mashups [10], i.e., interactive workspaces where users could also invoke tools to
manipulate the integrated data across several dimensions. Such new features permit the
transition of information between different task containers, i.e., dedicated, contextual
task environments that, according to the recently proposed notion of Transformative
User Experience [18], can support users in accomplishing in an elastic way their tasks.
We believe this feature, scarcely explored in literature and not investigated in other
mashup platforms, provides for a very innovative direction that could give value to
mashups as tools to let users to make sense of data for accomplishing their tasks.

6 ICWE 2015 Rapid Mashup Challenge

During the Rapid Mashup Challenge, we illustrated the EFESTO characteristics
described above by means of a demo that followed the same flow of actions as the
reference scenario described in Sect. 2. The mashup built on the fly included the
services SongKick, YouTube, Vimeo, Google Maps and Google Images, and allowed
us to demonstrate: (1) how to define a union of the YouTube and Vimeo data sets;
(2) how to join the SongKick Artist attribute (visualized in a Map UI Template) with
YouTube; (3) how to shift from a map UI template to a list UI Template for the
SongKick UI Component; and (4) how to synchronize at the UI level the new data set
with Google Maps (showing the location of selected music events) and Google Images
(showing images of the cities where the events take place). During the demo, we also
showed how to extend the integrated information retrieved by this core set of services
by navigating in the LOD.

Getting prepared for the challenge actually did not require additional efforts as the
services mashed up during the demo were already registered in the platform. We only
made sure that their descriptors and the adapters for invoking them were running
correctly. A problem compromising the correct behaviour of the platform, which is
anyway common to many mashup platforms, could be the change of APIs for the
registered services, which could compromise their invocation by the platform.

During the demo everything worked perfectly; we wished we had more time to
demonstrate some features that we recently introduced in EFESTO that, as described in
the previous section, relate to the notion of actionable mashups. The readers interested
in these extensions can find more details in [10], and watch the video available at:
https://youtu.be/bBG5O266y4g (min 4:00–6:10).

EFESTO: A Platform for the End-User Development 79

https://youtu.be/bBG5O266y4g


7 Conclusions

In several application domains there is an increasing demand by end users to access,
integrate, and use flexibly multiple resources available online. The EFESTO platform
tries to respond to this need by letting users easily integrate, by means of an End-User
Development paradigm, heterogeneous information that otherwise would be totally
unrelated. This approach is very useful in all those situations where, due to varying
information needs exposed by the end users, a pre-packaged application could not work
properly. The modus operandi promoted by the EFESTO approach also facilitates the
construction of new knowledge and its continuous enrichment in contexts where the
establishment of communities implies the collaborative creation of knowledge.

This paper described how, in addition to what offered by other platforms, EFESTO
also enables a seamless transition of the retrieved data across different organizations,
visualizations and functionality. We believe this is a characterizing feature that can
pave the way to a new conception of mashups as effective tools for supporting users’
tasks and we are devoting several efforts to formalizing the new interaction model for
characterizing the possible transitions across different data organizations. The potential
of the interaction paradigm was also recognized at the Mashup Challenge. The com-
ments of the jury and of the participants were very positive; and in the end we won the
challenge! We also received very encouraging feedback on the idea of including LOD
data sources. Our current work is devoted to consolidating LOD navigation and
extending the current mechanisms by means of recommendations.

Acknowledgment. This work is partially supported by the Italian Ministry of University and
Research (MIUR) under grants PON02_00563_3470993 “VINCENTE”, PON04a2_B
“EDOC@WORK3.0”, and PON03PE_00136_1 “DSE” and by the Italian Ministry of Economic
Development (MISE) under grant PON Industria 2015 MI01_00294 “LOGIN”. We are also
immensely grateful to Prof. Maria Francesca Costabile for her valuable and constant support.

References

1. Daniel, F., Matera, M.: Mashups: Concepts. Models and Architectures. Springer, Berlin
(2014)

2. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Synth.
Lect. Inf. Concepts Retrieval Serv. 1(1), 1–98 (2009)

3. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and usability issues in the composable
web of software services. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385,
pp. 396–407. Springer, Heidelberg (2010)

4. Casati, F.: How end-user development will save composition technologies from their
continuing failures. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD
2011. LNCS, vol. 6654, pp. 4–6. Springer, Heidelberg (2011)

5. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., Picozzi, M.:
User-driven visual composition of service-based interactive spaces. J. Vis. Lang. Comput.
25(4), 278–296 (2014)

80 G. Desolda et al.



6. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi, M.: Visual
composition of data sources by end-users. In: Proceedings of International Working
Conference onAdvancedVisual Interfaces (AVI), pp. 257–260. Como, Italy, 28–30May 2014

7. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Picozzi, M.: Creation and
use of service-based distributed interactive workspaces. J. Vis. Lang. Comput. 25(6), 717–
726 (2014)

8. Cappiello, C., Matera, M., Picozzi, M.: A Ui-centric approach for the end-user development
of multidevice mashups. ACM Trans. Web 9(3), 1–40 (2015)

9. Desolda, G.: Enhancing workspace composition by exploiting linked open data as a
polymorphic data source. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G.
(eds.) Intelligent Interactive Multimedia Systems and Services, vol. 40, pp. 97–108. Springer
International Publishing (2015)

10. Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M.: Making mashups
actionable through elastic design principles. In: Díaz, P., Pipek, V., Ardito, C., Jensen, C.,
Aedo, I., Boden, A. (eds.) IS-EUD 2015. LNCS, vol. 9083, pp. 236–241. Springer,
Heidelberg (2015)

11. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual interactive systems for end-user
development: a model-based design methodology. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 37(6), 1029–1046 (2007)

12. Ardito, C., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi, M.:
Composition of situational interactive spaces by end users: a case for cultural heritage. In:
Proceedings of Nordic Conference on Human-Computer Interaction (NordiCHI), pp. 79–88,
Copenhagen, Denmark, 15–18 October 2012

13. Krummenacher, R., Norton, B., Simperl, E., Pedrinaci, C.: Soa4all: enabling web-scale
service economies. In: Proceedings of International Conference on Semantic Computing
(ICSC), pp. 535–542, Berkeley, CA, USA, 14–16 September 2009

14. Wajid, U., Namoun, A., Mehandjiev, N.: Alternative representations for end user
composition of service-based systems. In: Costabile, M.F., Dittrich, Y., Fischer, G.,
Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 53–66. Springer, Heidelberg (2011)

15. Aghaee, S., Pautasso, C.: End-user development of mashups with naturalmash. J. Vis. Lang.
Comput. 25(4), 414–432 (2014)

16. Daniel, F.: Live, personal data integration through UI-oriented computing. In: Cimiano, P.,
Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 479–
497. Springer, Heidelberg (2015)

17. Krug, M., Wiedemann, F., Gaedke, M.: Smartcomposition: a component-based approach for
creating multi-screen mashups. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, pp. 236–253. Springer, Heidelberg (2014)

18. Latzina, M., Beringer, J.: Transformative User Experience: Beyond Packaged Design.
Interactions 19(2), 30–33 (2012)

EFESTO: A Platform for the End-User Development 81


	EFESTO: A Platform for the End-User Development of Interactive Workspaces for Data Exploration
	Abstract
	1 Introduction
	2 The EFESTO Composition Paradigm
	3 Architecture and Feature Checklist
	3.1 Interaction Layer
	3.2 Logic Layer
	3.2.1 The Mashup Engine
	3.2.2 The Event Manager
	3.2.3 The Annotation Engine and the Polymorphic Data Source

	3.3 Service and Data Layer

	4 Level of Maturity
	5 Related Work
	6 ICWE 2015 Rapid Mashup Challenge
	7 Conclusions
	Acknowledgment
	References


