
SmartComposition: Extending Web Applications
to Multi-screen Mashups

Michael Krug(B), Fabian Wiedemann, and Martin Gaedke

Technische Universität Chemnitz, Chemnitz, Germany
{michael.krug,fabian.wiedemann,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The overall objective of UI mashups is to enable non-experts
to create rich web applications. While current approaches focus on cre-
ating UI mashups running on a single screen, we propose SmartCom-
positionto enable local developers to create multi-screen mashups. We
present our enhanced SmartComponents, which are based on the lat-
est developments of the family of W3C standards called “Web Compo-
nents”, as part of our SmartCompositionapproach. SmartComponents
provide loosely coupling and support both single- and multi-device usage
scenarios by extending Web Components with dedicated communica-
tion and synchronization features. We support multiple types of Smart-
Components, not limiting them to user interface components. In con-
trast to other approaches, SmartComponents are independent, encapsu-
lated, configurable and programmable, which ensures hassle-free reuse in
any HTML5 web application. SmartCompositionprovides an event-based
communication infrastructure which enables inter-component communi-
cation as well as message exchange across multiple screens utilizing a
WebSocket-based synchronization service.

Keywords: Component-based web engineering ·Web components ·Dis-
tributed multi-device web applications · Web application development ·
Composition · Reusable components ·Multi-screen mashup · HTML5

1 Introduction

Within the last years, the amount of tools for creating user interface mashups (UI
mashups) significantly increased. The overall objective of UI mashups is to enable
non-experts to create rich web applications [2]. For solving complex tasks an UI
mashup consists of several components that offer a limited functionality and are
combined and aggregated. While other approaches for creating UI mashups focus
on automatic or semi-automatic mashup creation and deployment to desktop as
well as mobile screens, our approach eases the creation of UI mashups that run
distributed across several screens, so called multi-screen mashups.

The purpose of SmartComposition is to enable local developers to create multi-
screen mashups. We assume that a local developer is familiar with basic web
technologies, such as HTML5 and CSS [1]. Thus, our approach is based on these
technologies and does not require advanced knowledge of JavaScript. Furthermore,
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 50–62, 2016.
DOI: 10.1007/978-3-319-28727-0 4

SmartComposition: Extending Web Applications to Multi-screen Mashups 51

we want to achieve a high level of reuse of the developed components. This requires
loosely coupling and a suitable communication infrastructure tominimize the over-
head when integrating them. For enhancing existing web applications to multi-
screen mashups, SmartComposition needs to be easily integrable.

In the last years, with the rapid advancement of JavaScript, a lot of client-
side components were provided as JavaScript libraries or snippets. Mostly, their
functionality is added to standard HTML elements by calling special JavaScript
functions that extents them. Those elements are then used as containers to host
more dynamically created HTML elements. Common examples would be image
slideshows, lightboxes, map sections or enhanced user interface components. Well
known libraries that support such components are e.g., jQuery and Dojo.

We observed several limitations and problems using those approaches: First of
all, those components cannot beuseddirectly in theHTMLcode.Aplaceholder ele-
ment has to be added to the document on which some JavaScript code is applied.
Secondly, such solutions require an advanced knowledge of JavaScript and cumber-
someconfigurationand instantiation is needed.Furthermore, since the components
are created in the sameDOM(DocumentObjectModel) tree as the host document,
a high risk of conflicts with existing elements and style definitions is present.

Most of the currently existing JavaScript components are designed to work sep-
arately. A mashup-like scenario, where the composition of multiple components
that work together forms a new application, is not tackled. In such scenarios a uni-
form way to exchange data between components is required. Former research dealt
with the integration of inter-widget communication in existingwidgets approaches,
like W3C or OpenSocial Widgets [7]. Unfortunately, these widget types need to be
deployed and hosted in portal environments like Apache Rave or Apache Shindig.

The rest of this paper is organized as follows: First, we outline the context and
goals of the SmartComposition approach. In the next chapter, we present related
work. Section 4 will describe the SmartComposition approach itself. In Sect. 5 the
requested feature checklist is provided. Finally, we describe our preparation for
the mashup challenge, the demonstration itself and conclude our paper.

2 Context and Goals of the SmartComposition Approach

The focus of our SmartComposition approach is the client-side composition with
an emphasis on user-interface components. To make our approach stand out
from other solutions, we set the goal to support and ease the development of
multi-screen capable web applications. We want to eliminate the requirement of
many other approaches that need a dedicated runtime environment and enable
usage in any standard HTML5 website or application. Therefore, we aim to
use only client-side JavaScript and standard Web technologies. We do not want
to limit the types of components in our approach. Thus, our solution should
enable the development and usage of UI as well as data or logic components.
A combination of all three types should also be possible. In contrast to existing
UI mashup approaches, where components are mostly called widgets, we always
use the term component. This is justified by not limiting our component types

52 M. Krug et al.

to user interface elements. To ease the development of multi-screen capable web
applications, we want to provide not only inter-component communication but
also a easy to integrate multi-device message exchange functionality.

How we reached our goals will be presented in the following chapters, after
we state related approaches for client-side component-based web development.

3 Related Work

Since we especially focus on the component technologies for creating mashups
by composition, we will state related work in the field of component technologies
in the Web.

jQuery1 provides a plugin system that enables developers to create extended
HTML elements. In most cases the instantiation and configuration is done by
selecting the desired element and applying the provided plugin constructor to
it. Elements are inserted in the document’s DOM and therefore are not encap-
sulated. Communication features are not included.

Dojo2 focuses on a more comprehensive approach and provides a UI library
called Dijit. Dijit is a widget system layered on top of Dojo. Dojo widgets are
instantiated and configured using the “data-dojo-type” and “data-dojo-props”
attributes in the HTML markup. The template content in inserted directly in
the document’s DOM what increases the risk for conflicts. Dojo provides a topic-
based publish/subscribe mechanism for communication purposes.

W3C Widgets3 (also called Packaged Web Apps) and OpenSocial Widgets4

are open web standards. Since they need to be executed in special platform envi-
ronments, such as Apache Rave5 or Apache Shindig6, the acceptance and usage is
limited. They provide encapsulation by running in iFrames and can exploit inter-
widget-communication features for composing applications like mashups. The
integration of OpenAjax Hub7 into Apache Rave is an approach to achieve com-
munication between those widgets. The DireWolf framework [4] is one solution
that integrates multi-device communication into the Apache Shindig
platform.

Another approach is MultiMasher [3]. MultiMasher is a visual tool for multi-
device mashups using a direct manipulation interface where a user can select
existing UI elements and send them to connected devices. There, the elements
will be mashed up with the content that has been sent. Thus, in contrast to the
widget approaches, MultiMasher does not support separated components but
relies on existing UI elements.

1 http://jquery.com.
2 http://dojotoolkit.org.
3 http://www.w3.org/TR/widgets/.
4 http://opensocial.atlassian.net/wiki/display/OSD/Specs.
5 http://rave.apache.org/.
6 http://shindig.apache.org/.
7 http://www.openajax.org/member/wiki/OpenAjax Hub 2.0 Specification.

http://jquery.com
http://dojotoolkit.org
http://www.w3.org/TR/widgets/
http://opensocial.atlassian.net/wiki/display/OSD/Specs
http://rave.apache.org/
http://shindig.apache.org/
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification

SmartComposition: Extending Web Applications to Multi-screen Mashups 53

4 The SmartComposition Approach

The SmartComposition approach is based on the idea of creating mashups by
composing loosely coupled components using standard web technologies. In [6],
Krug et al. proposed a component-based architecture for multi-screen web appli-
cations. We advance the presented ideas by using the Web Components tech-
nologies for defining and implementing SmartComponents.

We propose a uniform way of defining, implementing and composing loosely
coupled independent components by using the new set of W3C standards called
Web Components. Thus, we support developers in handling those new technolo-
gies by providing an extended version of the Polymer framework8 that wraps
the creation of Web Components in an easy-to-use declarative syntax and is
enriched with new communication features based on an event-driven architec-
ture. Additionally, we present an optional messaging service that seamlessly
integrates into an application developed with the SmartComposition approach
and provides message exchange between multiple devices.

The major benefit of using the proposed technologies for creating modern
widgets is that no dedicated portal software is needed to host such composed
applications. This enables the integration of SmartComponents into common
content management systems like WordPress, Drupal or Joomla, as well as in
any other HTML5 based website.

To make multi-screen mashup applications more interactive, SmartCompo-
nents can be configured to be easily movable by drag-and-drop. Additionally,
SmartComponents can also be moved to other connected screens with their
state preserved. SmartComponents are stateful DOM objects and provide script
interfaces. Thus, developers are able to influence the behavior of the used com-
ponents on runtime with standard HTML5 DOM methods. SmartComponents
can be added, removed and reconfigured at any time. By making SmartCompo-
nents available as HTML elements, users that are familiar with HTML but do
not have knowledge in programming are also able to create mashups.

In the following section we will guide through the structure of SmartCompo-
nents and their technological background.

4.1 Structure of SmartComponents

SmartComponents exploit a set of new W3C technologies calledWebComponents,
consisting of Templates, Shadow DOM, Custom Elements and HTML Imports.
The first technology called Templates (http://w3.org/TR/html5/scripting-1.html)
defines chunks of markup that are inert but can be activated for use later.
That means, the content of the template element is parsed by the parser, but it is
inactive and not rendered. Within the <template> tags normal HTML markup
is used to describe the structure of the components static content. When creating
the component, the template’s content is copied to an adjunct DOM tree called
Shadow DOM (http://w3.org/TR/shadow-dom/). The Shadow DOM is the second

8 http://www.polymer-project.org.

http://w3.org/TR/html5/scripting-1.html
http://w3.org/TR/shadow-dom/
http://www.polymer-project.org

54 M. Krug et al.

new W3C standard in the set of Web Components. This adjunct tree of DOM
nodes can be associated with an element, but does not appear as a child node of
the element. Instead, the subtree forms its own scope. Due to the different scope
of the Shadow DOM, the styles, names or IDs of elements in the root document
do not interfere with the definitions in the component.

The template is followed by an optional style section, where the look of
the component’s content can be defined. Existing style sheet definitions can be
reused by including the CSS @import statement. To address the custom element
that is hosting the component’s content, the new pseudo-class :host is provided.
Due to the previously mentioned scoping, the developer has not to worry about
conflicting style definitions, class names or IDs.

New SmartComponents are defined using a declarative syntax provided by
the Polymer framework. An example definition file for a SmartComponent is
shown in Listing 1.

<dom−module id=”wikipedia−ex t r a c t ”>
<s t y l e>

: h o s t { d i s p l a y : i n l i n e−block ; }
</ s t y l e>
<template>

<div id=” conta ine r ”></ div>
</ template>
<s c r i p t>

Polymer ({
i s : ’ wik ipedia−ex t r a c t ’ ,
b ehav i o r s : [Polymer . SmartComponentBehavior] ,
p r o p e r t i e s : {

query : {
type : Str ing ,
r e f l e c tToAt t r i b u t e : true ,
ob s e r v e r : ’ queryChanged ’

}
} ,
queryChanged: func t i on () {

// Request to f e t ch data from Wikipedia
} ,
a t t a ched : func t i on () {

t h i s . s ub s c r i b e (’ wik i ’ , t h i s . queryReceived) ;
} ,
detached : func t i on () {

t h i s . unsubscr ibe (’ w ik i ’ , t h i s . queryReceived) ;
} ,
queryRece ived : func t i on (message) {

t h i s . query = message . data ;
}

}) ;
</ s c r i p t>

</dom−module>

Listing 1. Definition file of a SmartComponent

SmartComposition: Extending Web Applications to Multi-screen Mashups 55

This declarative description handles all necessary actions to create a custom
element and setting up event bindings. A developer can define any number of
properties that can be configured with type settings, observer functions and e.g.
reflection to attributes. By using the behaviors property to inject our Smart-
ComponentBehavior, we can provide our later described extensions for inter-
component communication without modifying the Polymer framework itself.
This supports the maintainability of both our extension and the framework.

SmartComponents are new types of DOM elements that can be defined
by developers. They are stateful DOM objects and provide script interfaces.
New components can be easily integrated in a website by using HTML Imports
(http://w3.org/TR/html-imports/). The import statement uses the <link> tag to
load external definition files (see Listing 2). The new custom element tag can
be instantly used in the HTML markup after importing the component resource
file. SmartComponents are registered as new HTML elements. Thus, they can
be used them in the same way as other standard elements. The usage requires
no knowledge of JavaScript. Configuration is possible through attributes or child
elements.

<html>
<head>

<l ink rel=” import ”href=”smart−component . html”>
</head>
<body>

<smart−component some−a t t r=”some−value ”></smart−component>
</body>
</html>

Listing 2. Usage of SmartComponents in HTML5 websites

In the following section we will describe the communication aspect we inte-
grated into the components of the SmartComposition approach.

4.2 Inter-Component Communication

Loosely coupling of components is important to ensure reuse and enable new
compositions. To support message exchange between SmartComponents we
therefore propose an event-driven communication channel using a topic-based
publish/subscribe mechanism. Figure 1 provides a simplified overview of the
inter-component and inter-device communication architecture of the SmartCom-
position approach.

Components can consume and produce events described by a topic and the
attached data. The publish/subscribe message bus is implemented using the
JavaScript’s native eventing system. Messages are sent using a custom event
and received by adding an event listener for that custom event. The payload can
be structured objects or simple values.

As it is displayed in Listing 1, the subscribe method should be called within the
life-cycle event attached, which means when the component is added to the DOM.

http://w3.org/TR/html-imports/

56 M. Krug et al.

Fig. 1. Simplified inter-component and inter-device communication architecture

But this is not a limitation. In fact, it can be called anytime after attaching. To stop
theSmartComponent fromconsumingevents after it is removed fromtheDOM, the
unsubscribe method should be called within the detached life-cycle event. A Smart-
Component can have any number of subscriptions to any topic. Messages can be
sent using a publish(topic, data) method that is available in the SmartComponent
context. All communication functionality is injected using the behaviors property
and contained in our implemented SmartComponentBehavior.

Byemploying this eventing systemandbygiving themessageapredefined struc-
ture, containing the topic and the data, we achieve a topic-based and event-driven

SmartComposition: Extending Web Applications to Multi-screen Mashups 57

communication channel. Without blocking the user interface, we ensure high per-
formant and low latency communication by relying on JavaScript’s native event
system.

In the following section we show how inter-component communication is
extended for multi-device usage.

4.3 Inter-Device Communication

By providing a WebSocket-based synchronization service, we enable developers
to easily create multi-device-capable web applications. Our approach proposes a
stand-alone solution with no dependencies and side-effects on other components.
The solution consists of a synchronization server and a client-side messaging
service. The client-side component is also implemented as SmartComponent that
captures all events transmitted on the previously described publish/subscribe
message bus and sends them to the server-side component. When the client-
side component receives a message from the server, it sends it back to the local
message bus where the components will be notified.

We are utilizing the WebSocket protocol (https://tools.ietf.org/html/rfc6455)
for the client-server communication. This provides us with a full-duplex, low-
latency communication channel based on standard web technologies. The server-
side component is implemented as a WebSocket server using Node.js.

Fig. 2. Basic functionality of the synchronization server

The WebSocket server (see Fig. 2) provides functionality for a set of message
types (authentication, clients, ping, data) and can easily be extended. Received
messages are analyzed and broadcast to groups (sessions) of connected devices.
We define the term connected devices as: devices with the same synchronization
endpoint that share the same session identifier, i.e. context. The session identi-
fier enables the usage of one synchronization endpoints for multiple application
contexts. The basic functionality is that messages are only distributed to devices
within the same session. Another task of the server-side component is the man-
agement of connected devices. On connection, each device will get an up-to-date

https://tools.ietf.org/html/rfc6455

58 M. Krug et al.

list of connected devices with their details (name, type, identifier). This list
is also updated and distributed if a client connects, disconnects or changes its
details.

One major advantage of our synchronization approach is that no reconfigura-
tion of existing components is necessary for multi-device communication. Since
the messaging service is working like a hook, all messages sent by the Smart-
Components are captured without changing the code or configuration.

5 Feature Checklist

Mashup Type Hybrid mashups

Component Types Data components

Logic components

UI components

Runtime Location Both Client and Server

Integration Logic Choreographed integration

Instantiation Lifecycle Short-living

Targeted End-User Local Developers

Automation Degree Manual

Liveness Level Level 4 (Dynamic Modificationof Running Mashup)

Interaction Technique Editable Example

Online User Community None

6 Mashup Challenge

6.1 The Presented Mashup

We demonstrate our SmartComposition approach by presenting a distributed
media enrichment application using various SmartComponents to showcase web
application development through client-side composition. The application imple-
ments a mashup scenario, which was previously discussed and implemented with-
out the usage of Web Components in [5]. One possible resulting mashup can be
seen in Fig. 3.

To create an application by composition, multiple SmartComponents can be
imported and inserted into an HTML website as it is displayed in Listing 3.

We start our mashup with an empty web page that has an option to add new
components to the application. Using the New York Times news feed component
as the starting point, we add more and more components that work together to
form a new interactive experience. For a detailed description of the mashup
components and how they work together see Sect. 6.3.

To proof the multi-device capabilities of our solution, we show that Smart-
Components can display different kinds of information synchronized on multiple
devices, and that they can even be moved between devices. Our demos can be

SmartComposition: Extending Web Applications to Multi-screen Mashups 59

Fig. 3. Screenshot of the presented mashup

used in any modern web browser without the installation of additional software.
Not all technologies we are using are currently implemented in all browsers as
most of them are still W3C working drafts. By optionally using the webcompo-
nent.js polyfills (http://webcomponents.org/polyfills/), SmartComponents are also
enabled in web browsers that lack native support.

Online Demonstration:
http://vsr-demo.informatik.tu-chemnitz.de/smartcomposition/icwe2015/

<html>
<head>
< l i n k r e l=” import ” h r e f=”nytimes−news−component . html”>
< l i n k r e l=” import ” h r e f=” semantic−ex t rac t i on−component . html”>
. . .

</head>
<body>
<nytimes−news></nytimes−news>
<semantic−ex t r a c t i on></ semantic−ex t r a c t i on>
<youtube−search query=” Iran ”></youtube−search>
<smart−video></smart−video>
<google−geocoder address=” Iran ”></ google−geocoder>
<google−map l a t=”51” lng=”12”zoom=”12”></ google−map>
<tw i t t e r−tweets query=” Iran ”></ tw i t t e r−tweets>
<wikipedia−ex t r a c t query=” Iran ”></wikipedia−ex t r a c t>
<google−images query=” Iran ”></ google−images>

</body>
</html>

Listing 3. Application development by composition

http://webcomponents.org/polyfills/
http://vsr-demo.informatik.tu-chemnitz.de/smartcomposition/icwe2015/

60 M. Krug et al.

6.2 Preparation of the Challenge

In preparation of the challenge, we created different kinds of new SmartCom-
ponents. Most of them gather data from various web services regarding a topic
or keyword to display information that can be useful while watching a video.
Firstly, we implemented a component that retrieves the New York Times RSS
feed and extracts the news entries separated by categories. It provides a selection
of the category and displays all matching news headlines. When the user clicks
on one entry, the news text is published to the message bus of the application.
Secondly, we reused a component that uses the AlchemyAPI to extract keywords
(entities) from text by applying natural language processing technologies. These
keywords are categorized and again published to our message bus.

Additionally, we created a YouTube search component. This component takes
a search phrase as input and displays a list of videos that are related to that
phrase. Furthermore, we implemented a special video component that publishes
messages at specific timestamps - in this case parts of the transcript - while
playing a video. This is done by exploiting the TextTrack-API and an attached
VTT subtitles file containing time-based metadata. The video component works
with local videos as input as well as with YouTube URLs that are automatically
resolved. To visualize information about different entities, we implemented com-
ponents that catch data from web sources, like Twitter, Google Maps, Images
and Wikipedia. A drawback that needs to mentioned is that the topic names
and data formats of connected components have to be known by the developers.

6.3 The Demo Flow

In general, the first source of information can be any component. In our specific
demonstration, we use the New York Times news feed as an entry point. New
components can be easily added to the application by either stating them in the
markup or adding them dynamically using the given select box and button. When
the user clicks on one of the displayed news headline entries, the component pub-
lishes the corresponding news text. By adding the semantic extraction component,
the mashup is able to obtain different entities from published text content. They
are annotated with categories and can be used by other components to retrieve
related information. If there is e.g., an entity categorized as location, the Google
Maps Geocoder component is using the entity to convert it to geographical coor-
dinates that can be again consumed by the Google Maps component to display
this place on a map. Furthermore, entities of the type person can be e.g., visual-
ized by the Google Images or Wikipedia component. To make the mashup more
interactive, not only the news feed is used as information source. The gathered
entities are also used by the YouTube search component to retrieve related videos
with subtitles. If the user clicks on one of the listed videos, it will be passed to
the video component that is able to play the video and at the same time publish
time-based metadata. The metadata - in this case the transcript - is also used for
semantic extraction and will trigger the display of different kind of information
visualizations. An example message flow can be seen in Fig. 4.

SmartComposition: Extending Web Applications to Multi-screen Mashups 61

Fig. 4. Message flow of an example mashup

The extension of the mashup to use multi-device communication is straight-
forward. First of all, a synchronization server has to be set up, which is a Node.js
WebSocket server. Additionally, the messaging service has to be included in
the web application and configured with the endpoint address as displayed in
Listing 4.

< l i n k r e l=” import ” h r e f=”Messag ingServ ice . html”>

<messaging−s e r v i c e
endpoint=” ht tp : // example . o rg :1234 ” s e s s i o n=”Sess ionID ”>

</messaging−s e r v i c e>

Listing 4. Code snippet of the messaging-service

Any reconfiguration or even altering of code of existing SmartComponents is
not necessary. All published events will now be synchronized between multiple
connected devices. Applying it to the mashup application, it then can be used on
different devices in parallel with synchronized state without touching the code of
the components. Thus, the user can display e.g., the Google Map on his mobile
device while watching the video on his laptop.

62 M. Krug et al.

7 Conclusion

In this paper we presented extended Web Components, called SmartCompo-
nents, as a part of the SmartComposition approach. We support developers
in creating multi-screen-enabled mashups and other complex, distributed web
applications. Using the Polymer framework that wraps necessary functionality
lowers the barrier of using the new W3C Web Components technologies. Since
SmartComponents are custom elements that become first-class HTML elements,
you can add and configure new parts of you web application directly in your
HTML markup. The import is done with only one line of code. Inserting the con-
tent of SmartComponents into an adjunct shadow DOM subtree prevents CSS
rules and IDs of elements from conflicting. Our extension of adding an event-
based communication channel as well as the provision of a WebSocket-based
synchronization service enables the composition of mashups for usage across dis-
tributed platforms and multiple devices. Further research will address how to
provide a repository to store and distribute reusable SmartComponents and the
description of communication interfaces and topic names to ensure hassle-free
composition of SmartComponents.

References

1. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 211–220, Copenhagen, Denmark, June 2012

2. Chudnovskyy, O., Fischer, C., Gaedke, M., Pietschmann, S.: Inter-widget communi-
cation by demonstration in user interface mashups. In: Daniel, F., Dolog, P., Li, Q.
(eds.) ICWE 2013. LNCS, vol. 7977, pp. 502–505. Springer, Heidelberg (2013)

3. Husmann, M., Nebeling, M., Norrie, M.C.: Multimasher: a visual tool for multi-
device mashups. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWEWorkshops 2013. LNCS,
vol. 8295, pp. 27–38. Springer, Heidelberg (2013)

4. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: Direwolf - distributing and
migrating user interfaces for widget-based web applications. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99–113. Springer, Heidelberg (2013)

5. Krug, M., Wiedemann, F., Gaedke, M.: Enhancing media enrichment by semantic
extraction. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, WWW Companion 2014, pp. 111–114.
International World Wide Web Conferences Steering Committee (2014)

6. Krug, M., Wiedemann, F., Gaedke, M.: Smartcomposition: a component-based app-
roach for creating multi-screen mashups. In: Casteleyn, S., Rossi, G., Winckler, M.
(eds.) ICWE 2014. LNCS, vol. 8541, pp. 236–253. Springer, Heidelberg (2014)

7. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated user interface mashups
using W3C widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059,
pp. 49–61. Springer, Heidelberg (2012)

	SmartComposition: Extending Web Applications to Multi-screen Mashups
	1 Introduction
	2 Context and Goals of the SmartComposition Approach
	3 Related Work
	4 The SmartComposition Approach
	4.1 Structure of SmartComponents
	4.2 Inter-Component Communication
	4.3 Inter-Device Communication

	5 Feature Checklist
	6 Mashup Challenge
	6.1 The Presented Mashup
	6.2 Preparation of the Challenge
	6.3 The Demo Flow

	7 Conclusion
	References

