
Interactive, Live Mashup Development Through
UI-Oriented Computing

Anis Nouri and Florian Daniel(B)

University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
anis.nouri-1@studenti.unitn.it, daniel@disi.unitn.it

Abstract. This paper proposes to approach the problem of developing
mashups by exclusively focusing on the Surface Web, that is, the data and
functionality accessible through common Web pages. Typically, mashups
focus on the integration of resources accessible through the Deep Web,
such as data feeds, Web services and Web APIs, that do not have own
UIs – next to data extracted from Web pages. Yet, these resources can
be wrapped with ad-doc UIs, suitably instrumented, and made accessible
through the Surface Web. Doing so enables a UI-oriented computing
paradigm that allows developers to implement mashups interactively and
in a live fashion inside their Web browser, without having to program any
line of code. The goal of this paper is to showcase UI-oriented computing
in practice and to demonstrate its feasibility and potential.

Keywords: UI-oriented computing · iAPIs · Mashups · Integration

1 Introduction

The most notable technologies today to publish and access data and functionality
over the Web are SOAP/WSDL Web services [2], RESTful Web services [12],
RSS/Atom feeds, and static XML/JSON/CSV resources. Alternatively, data
may be rendered in and scraped from HTML Web pages, for example, using tools
like Dapper (http://open.dapper.net) or similar that publish extracted content
again via any of the previous technologies. W3C widgets [4] or Java portlets [1]
are technologies for the reuse of small, full-fledged applications that also provide
for the reuse of user interfaces (UIs).

All these technologies (except the Web pages) are oriented toward program-
mers, and understanding the underlying abstractions and usage conventions
requires significant software development expertise. This makes data integration
a prerogative of skilled programmers, turns it into a complex and time-consuming
endeavor (even for small integration scenarios), and prevents less skilled users
from getting the best value out of the opportunities available on the Web.

UI-oriented computing (UIC [8]) takes a different perspective and starts from
the UIs of applications we all – programmers and users – are accustomed with
and that are free of developer-oriented abstractions. The research question UIC
poses is if and, if yes, which of the conventional Web engineering tasks can be
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 31–49, 2016.
DOI: 10.1007/978-3-319-28727-0 3

http://open.dapper.net

32 A. Nouri and F. Daniel

achieved if we start from the UIs of applications, instead of from their APIs or
services. The vision is to enable everybody to perform simple integration tasks
directly inside their Web browser, for example, the integration of data extracted
from different Web pages or the automation of repeated navigation actions.

In our prior work [9], we already investigated how to turn UIs into program-
mable artifacts and introduced the idea of interactive APIs (iAPIs), that is,
APIs users can interact with via their graphical Web UIs. In [8], we then studied
the specific case of data integration and described an end-to-end solution for UI-
oriented computing consisting of an iAPI annotation format, a graphical editor
for iAPI manipulation and integration, and a suitable runtime environment.

The goal of this paper is to showcase a more extensive case study (the one
developed in the context of the Rapid Mashup Challenge) and to provide insights
into the practical aspects of UI-oriented computing with the current prototype of
our development and runtime environments. In particular, the goal is to highlight
the benefits to both common users (interactive, live development without coding)
and programmers (programmatic UIC via a dedicated JavaScript library).

Next (Sects. 2 and 3), we introduce the concept and practice of UI-oriented
computing along with its underlying runtime infrastructure. In Sect. 4, we then
introduce the scenario we selected to approach the Rapid Mashup Challenge and
how we prepared for the Challenge. In Sect. 5, we then describe the step-by-step
development of the mashup scenario using the UI-oriented computing approach.
We conclude the paper with a discussion of a set of works that are related to the
proposal we push forward in this paper and a discussion of the findings, lessons
learned and future works.

2 UI-Oriented Computing

The idea of UIC is to propose a new kind of “abstraction”: no abstraction. The
intuition is to turn UI elements into interactive artifacts that, besides their pri-
mary purpose in the page (e.g., rendering data), also serve to access a set of
operations that can be performed on the artifacts (e.g., reusing data). Opera-
tions can be enacted either interactively, for example, by pointing and clicking
elements, choosing options, dragging and dropping them, and similar – all inter-
action modalities that are native to UIs – or programmatically.

The core ingredient, interactive APIs, come as a binomial of a microformat
for the annotation of HTML elements with data structures and operations and a
UIC engine able to interpret the annotations and to run UI-oriented data inte-
grations. The engine is implemented as a browser extension. A dedicated iAPI
editor injects into the page graphical controls that allow the user to specify data
integration logics interactively. The UIC engine maps them to a set of iAPI-
specific JavaScript functions implementing the respective runtime support. The
library of JavaScript functions can also be programmed directly by programmers,
without the need for interacting with UI elements. To users, the UI elements act
as proxies toward the features of the library. A UI-oriented computing middle-
ware complements the library; both are part of the browser plug-in. It takes care

Interactive, Live Mashup Development Through UI-Oriented Computing 33

Web browser

Web server

More news
 Get visible data
 Get full data
 Clone content

Database

Web serviceRuntime
environment

Data source

Programming interface

(a) A Web page with content made
accessible for reuse via an interactive API

(b) A Web server with content made
accessible for reuse via a REST/

SOAP Web service

Interactive API

Rendered HTML markup

Fig. 1. Analogy between visual, interactive APIs (iAPIs) and conventional RESTful or
SOAP Web services: iAPIs are executed inside the client browser and “programmed”
visually and interactively via graphical controls injected into the markup of the page.

of setting up communications among integrated applications (e.g., to load data
dynamically from third-party pages) and of storing interactively defined integra-
tion logics in the browser’s local storage. Programmers with access to the source
code of a page can inject their JavaScript code directly into it. If a potential
source page is not yet annotated to support iAPIs, it is possible to inject suit-
able annotations from the outside and to store them either locally on a remote
Web server for reuse and sharing.

For a better understanding, Fig. 1 shows a possible rendering of an iAPI
inside a Web page and also draws the parallelisms with conventional APIs, such
as RESTful or SOAP Web services. In [8], we discuss how the graphical controls
and standard user interactions like drag and drop, point and click, buttons,
and similar can be interpreted as programming intentions; the paper specifically
focuses on the case of data integration, the scenario we will approach in the
Challenge. The paper also provides a detailed description of the iAPI annotation
format used in the implementation described in this work.

3 UI-Oriented Computing Infrastructure

Figure 2 shows the internal architecture of the current prototype, which comes
as a Google Chrome browser extension. It comes with two core elements: a
UIC engine for the execution of UI-oriented data integration logics and an
iAPI editor for visual, interactive development. The UIC engine is split into

34 A. Nouri and F. Daniel

The Web

i

Browser window

UIC engine
(background script)

UIC engine
(content script)

Target page P2

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotations

HTML
augmenter

Loader

HTML 5
messages

loads resources

injects content

Event
handlers

interprets annotations

HTML
augmenter

iapi
JS library

Local
storage

Extension
lifecyle

manager

Annotation parsers

iAPI parser

RSS parserh-card parser

JSON parser

injects controls

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages
icon

iAPI editor
(injected script)

iAPI parser

react to user interactions

uses

JS
augmenter

injects JavaScript code

Fig. 2. Architecture of the UI-oriented computing environment as browser extension.

two parts: The background script provides core middleware services, such as
extension management (via its icon and pop-up menu), remote resource access,
data parsing, and local storage management. The content script implements the
iapi JavaScript library for programmatic UIC (the implementation is based on
http://toddmotto.com/mastering-the-module-pattern), injects JavaScript code
into the page under development, and provides for the rendering of data (using
the jQuery plug-in). Content and background script communicate via Chrome
system messages. The iAPI editor comes as JavaScript code that is injected into
the Web page under development. It parses the annotations of the iAPIs inside
the page, augments them accordingly with graphical controls, and injects the
event handlers necessary to intercept user interactions that can be turned into
JavaScript data integration logics (in turn, injected into the page by the content
script).

As for the features identified in the Call for Participation of the
Rapid Mashup Challenge (http://mashup.inf.usi.ch/challenge/2015/checklist.
html), UI-oriented computing and the current implementation of the prototyp-
ical computing infrastructure support the features summarized in Fig. 3. The
essence of UIC is that it aims at the development of applications without the
need to code any interaction with APIs or services of the Deep Web, therefore it

http://toddmotto.com/mastering-the-module-pattern
http://mashup.inf.usi.ch/challenge/2015/checklist.html
http://mashup.inf.usi.ch/challenge/2015/checklist.html

Interactive, Live Mashup Development Through UI-Oriented Computing 35

specifically focuses on UI mashups. Hybrid mashups, i.e., mashups that integrate
also application logic and/or data sources, are supported in that application logic
can be accessed by automating and making reusable the interaction with HTML
forms, and data can be extracted from Web pages (we will use both these fea-
tures in the Challenge). The core component types the approach focuses on are
UI components, the iAPIs, and they are integrated on the client-side inside the
Web browser. Some features of the runtime environment, e.g., the persistent
storage of external Web page annotations and the form automation service, are
hosted on a Web server but integrated inside the client browser. The respective
integration logic is UI-based, in line with the vision of UIC, and applications
are short-lining. That is, they are applications running inside the client browser,
and their runtime lifecyle only depends on the lifetime of the respective browser
window: once closed, the application is stopped.

Fig. 3. Summary of the features by the pro-
posed UI-oriented computing paradigm.

Regarding the features provided
by the iAPI editor (the “mashup
tool”), it targets end users and aims
to enable them to perform simple
data integration operations inter-
actively inside their own browser.
The JavaScript library for coding
iAPI reuse targets programmers.
The degree of automation is high
for end users (programming instruc-
tion are derived automatically from
their user interactions and configu-
rations), while coding the JavaScript
library is a manual effort. The live-
liness level of the resulting develop-
ment experience is that of dynamic
modification, that is, live develop-
ment inside the browser. The inter-
action technique proposed is WYSIWYG for the users of the iAPI editor (the
results of all integration actions are rendered immediately); the recording of user
interactions with forms for their automation follows a programming by demon-
stration approach, which is however again visual and interactive, just like the
iAPI editor. Programmers, instead, can rely on a textual DSL implemented as
a set of functions provided by the JavaScript library.

4 The Challenge: Scenario and Preparation

Given the set of APIs that can be used in the context of the Rapid Mashup Chal-
lenge (Google Maps, Youtube and the New York Times) and the described goals
and implementation of the UI-oriented computing approach, we chose to partic-
ipate in the Challenge with a data integration scenario. Next, we describe the
target mashup in more details and explain how we prepared for the Challenge.

36 A. Nouri and F. Daniel

Translation of

Fig. 4. The target data mashup running in the browser.

4.1 Mashup Scenario

We explain the target mashup by means of its screen shot in Fig. 4. The appli-
cation is a data integration that takes latest technology news from the New
York Times (http://www.nytimes.com/) and the Discover Magazine (http://
discovermagazine.com/) – news are represented by their title, author and sum-
mary – and also provides a translation of the summary from English to Italian
using the Yandex Translation API (https://tech.yandex.com/translate/). The
two data sources are integrated via a common merge/union operation, while the
translation requires iterating over each news article and invoking the translation
Web service for each summary. The result is rendered inside the target page of
the developer by means of a common HTML table.

http://www.nytimes.com/
http://discovermagazine.com/
http://discovermagazine.com/
https://tech.yandex.com/translate/

Interactive, Live Mashup Development Through UI-Oriented Computing 37

4.2 Preparation of Challenge

Mashing up the two data sources and the translation API in the scenario with
the proposed UIC paradigm requires some preparation. In general:

1. Implementing suitable UIs for all resources. For data and functionality to be
extracted from Web pages, the UI is already there. For data feeds, services
or APIs, this requires new simple Web front-ends that provide access to the
resources’ features, e.g., tables visualizing data from feeds or forms allowing
users to operate a remote service or API.

2. Annotating all UIs for reuse. For existing Web pages this requires inject-
ing annotations into the markup of the pages, e.g., using the interactive iAPI
annotator (developed in parallel to the core UI-oriented computing infrastruc-
ture) that allows one to inject iAPI annotations into a page at the client-side
at page loading time. Newly developed front-ends can directly be annotated
in their source markup.

Specifically, this means that we need to annotate the Discover Magazine to
enable the extraction of news and to implement an ad-hoc HTML form providing
access to the translation API. In addition, we also need to implement an empty
target page that will host the integrated data and translations. We do not anno-
tate the New York Times in advance, since we also would like to demonstrate
the use of the interactive iAPI annotator during the Challenge. We describe the
preparation of the other parts next, starting from the target page.

The screen shot in Fig. 5 illustrates the implementations of the target page.
The top part is the rendering of the page inside the browser; the lower part
reports the source HTML markup of the page. As can be seen in the code,
the page does not have any own data to be rendered, and the gray shaded div
element is marked as an interactive API by the annotation class="h-iapi".
This simple annotation is enough to turn the div into a UI element users can
interact with. In our case, this is the UI element that will host the integrated
data. Nothing more is needed to implement the target page.

Figure 6, instead, illustrates the annotated start page of the Discover Mag-
azine. The annotation is achieved by means of the iAPI annotator tool, which
allows one to annotate interactively a page and to inject annotations on the fly
each time the annotated page is accessed. This means that the annotation of
the magazine does not require us to download the page and to store it locally;
instead only the annotations are stored in a dedicated Web-accessible repository
and reused at each access to the page. The specific annotations used to extract
news from this page are (used in the class attribute of HTML elements):

– h-iapi: identifies the area from which to extract content;
– e-data:News: categorizes the identified iAPI as a data source and labels it as

“News;”
– e-item:Article: identifies the DOM nodes that host individual news items

and assigns the label “Article” to them;

38 A. Nouri and F. Daniel

Empty target iAPI

Annotation of empty target iAPI in source HTML markup

Fig. 5. The empty target mashup running in the browser.

– p-attr:Title, p-attr:Author, p-attr:Summary: identify the different com-
ponents that make up a news item (the attributes of the item) and labels
them as “Title”, “Author” and “Summary.”

The same annotation structure will be used during the Challenge to anno-
tated the New York Times news items. This allows us to automatically match
items at data integration time without the need for transforming input data
structures and to save time during the live demonstration.

Finally, Fig. 7 shows the HTML form developed on top of the Yandex Trans-
lation API (a RESTful Web service). Since we do not directly want to interact
with the API itself, the form is needed to make its functionality available through
the Surface Web. The form comes with three input fields (text to translate and
the input/output languages) that allow the user to translate text by invoking
the translation API in the background on behalf of the user. The result is shown
on another page after hitting the Translate button. In the next Section, we will

Interactive, Live Mashup Development Through UI-Oriented Computing 39

Annotated interactive API The browser extension detects the presence of the iAPI

Fig. 6. The annotated Discover Magazine with injected graphical controls.

see how this form can be programmed by example and turned into a piece of
reusable business logic for the development of the target mashup.

5 The Challenge: Live Mashup Development

Given the empty target page, the annotated Discover Magazine and the HTML
form that provides interactive access to the translation API, we are ready for
the development of the mashup to be showcased in the Challenge. The available
time to showcase the UI-oriented computing approach and to develop the mashup
outlined above is 10 min. We structure the demo into the following steps:

1. Annotation of the New York Times technology news
2. Fetching of news from the New York Times
3. Fetching of and merging with news from the Discover Magazine
4. Rendering of integrated data suing a table representation
5. Programmatic addition of a new column to host the translations
6. Recording of user interactions with the translation form for reuse

40 A. Nouri and F. Daniel

Standard HTML form with iAPI
annotations aiding the recording
of user interactions

Fig. 7. The auxiliary HTML form developed on top of the Yandex translation API to
enable UI-oriented reuse.

7. Programmatic iteration over news and reuse of recorded interactions
8. Rendering of integrated dataset

Next, we describe the demo showcased during the Mashup Challenge step by
step and provide the necessary explanations with the help of screen shots.

Figure 8 illustrates the annotation process for the New York Times technology
news (❶). We specifically focus on the “More news” area, which is well structured
and allows us to easily annotate and extract news items. Clicking on the “i” icon
with the pencil in the top right corner of the browser opens the overlay window
shown in the lower right part of the screen shot. This window serves as control
console for the annotation process. The process is as follows: First, the user
identifies the HTML area of interest (this is highlighted in the left-hand side of
the screen shot by the rectangular box surrounding the news to be extracted).
Then, the user identifies the DOM element that hosts an individual news article
(represented by the green-shaded area in the top part of the highlighted area
inside the page). The annotator tool automatically identifies all DOM elements
with similar structure. Next, the user identifies the individual attributes of each
news item by selecting them inside one of the identified news items. Once all
attributes are identified, the control panel allows the user to label the data
source (“News”), the items (“Article”) and the attributes (“Title”, “Author”,
“Summary”). Finalizing the annotation process saves the annotations using a

Interactive, Live Mashup Development Through UI-Oriented Computing 41

Control panel for the annotation of identified HTML elements

Selected HTML element of the DOM tree

Fig. 8. Interactive annotation of the New York Times Technology News site (Color
figure online).

dedicated Web service and injects them into the page. The newly created iAPI
is ready for data extraction.

The reuse of the identified news articles (❷) is now supported via a simple
drag and drop action. Figure 9 illustrates the process. When the user moves the
mouse over the area marked as iAPI inside the New York Times page, the black
graphical controls pop up and allow him/her to pick the data by dragging and
dropping the “Get data” menu entry of from the injected menu. Since the target
iAPI is still empty, this process fills the iAPI with the extracted data.

The next step of the data integration process (❸) requires the user to repeat
a similar drag and drop action using the Discover Magazine, as illustrated in
Fig. 10. The key difference from the first action is that now at drag release time

42 A. Nouri and F. Daniel

Drag and drop action
from one page to another

Fig. 9. Dragging and dropping news articles from the New York Times into the target
page fills the target iAPI with extracted data and applies a standard visualization
format, e.g., a list or table layout.

Drag and drop action + selection of data integration operation

Fig. 10. Dragging and dropping news articles from the Discover Magazine into the
target page causes the target iAPI to ask the user which action he/she wants to perform,
given that there are already data in the iAPI.

Interactive, Live Mashup Development Through UI-Oriented Computing 43

the target iAPI allows the user to specify how to disambiguate his/her action (in
fact, multiple interpretations of a drop action on an iAPI that already contains
data are possible, e.g., join, merge, substitute, etc.). In our scenario, the user
chooses to “merge” the new data with the one already fetched from the New York
Times, specifically using a “full union” operator (there is no need to eliminate
possible duplicates, as the two data sources are too different and it is unlikely
that there will be two articles with exactly the same title, author and summary).
A final selection of the table layout from the injected menu of the target iAPI
reformats the data fetched from the two data sources as illustrated in the top
part of Fig. 11 (❹).

JavaScript instruction adding a new column to the identified iAPI

The new, empty column added to the table

Fig. 11. Programmatic extension of the table with a new column for the translation

44 A. Nouri and F. Daniel

To showcase how programmers can leverage on the proposed UI-oriented
computing paradigm, we now switch off the interactive iAPI editor that injects
graphical controls using the pop up menu that opens when clicking on the exten-
sions logo in the top right of the browser window and turn on the JavaScript
console of the browser. This allows the skilled programmer to input UI-oriented
programming instructions in JavaScript and to modify the mashup rendered in
the browser window on the fly.

The screen shot in Fig. 11 illustrates the first step of the manual development
process, i.e., the expansion of the table in the browser with a new column able
to host the translations of the summaries (❺). The JavaScript console reports the
respective programming instruction. The selector $("#1") is the jQuery (https://
jquery.com/) selector that uniquely identifies the target iAPI inside the target page
(see Fig. 5). The function addAttribute injects the new column into the iAPI,
both into its in-memory data object and its graphical rendering inside the page.

The next step is the translation of the summaries. Doing so requires first
recording an exemplary interaction with the translation HTML form we prepared
before the Challenge (❻). This process is illustrated in Fig. 12. The recording

Exemplary inputs

Recording control panel

Fig. 12. Recording user interactions with the HTML form providing access to the
Yandex translation service. The controls at the right allow the user to start/stop the
recording and to identify variable inputs to be filled at invocation time.

https://jquery.com/
https://jquery.com/

Interactive, Live Mashup Development Through UI-Oriented Computing 45

control panel allows the user to start and stop the recording and to mark input
fields as either constants (the values provided as examples during the recording
will also be used when replaying the recorded interactions) or variables (the val-
ues of these can be provided as dynamic inputs each time recorded interactions
are replayed). A click on the Translate button invokes the Yandex translation
service and renders the translated text. This latter can now be indicated as out-
put of the recorded interaction process. A click on the Stop button terminates
the recording and opens a pop-up window that provides the user with a simple
script that can be used to invoke the recorded user interactions. This script is
shown in Fig. 13 in the JavaScript console (the string in red) and used inside an
iapi.each iterator that scans all news articles in the table and allows the invo-
cation of the iapi.fill Form function that mimics the filling of the translation
form for each summary found in the table (❼). The final re-render instruction
in the JavaScript console renders the retrieved translations (❽), and closing the
console brings us to the final mashup already shown in Fig. 4.

Re-rendering of iAPI

Iteration and invocation of form fill service

Newly added column
filled with translations

Fig. 13. Iteration over all articles and invocation of the translation form for each
summary with final re-rendering of the target iAPI (Color figure online).

46 A. Nouri and F. Daniel

The eight described steps showcase how the UI-oriented computing paradigm
has been implemented so far for both users and programmers. The video available
at http://youtu.be/yEtjIO3oMsI shows the screen cast of the demonstration and
provides better insight into the subjective experience of both types of developers.

6 Related Work

The key idea of UI-oriented computing is to interpret standard UI elements –
like the ones already in use for the implementation of Web UIs – as constructs
to express generic computation logics. Traditionally, computation logic for the
Web is expressed either via programming languages, such as Java, Python, PHP,
JavaScript, and similar, or via model-driven development formalisms [6]. Orthog-
onally to these paradigms, Web services [2,12] have emerged over the last decade
as one of the most prominent Web technologies that influenced integration on
the Web in general. Their focus, however, is on the application logic layer, not
the presentation layer (the UIs) of applications.

Research on the reuse of UIs has mostly focused on the identification and def-
inition of UI-centric component technologies, such as standard W3C widgets [14]
and Java portlets [13] or proprietary formats [15], and the development of suit-
able integration environments [5,7]. The former essentially apply the traditional
programmer perspective to UIs and still require integration at the application
logic layer, e.g., via Java or JavaScript. The latter generally follow a black-box
approach in the reuse of UIs: components are small, stand-alone applications
and they are either included or excluded in a composition/workspace. The Web
augmentation approach by Diaz et al. [11] is a partial exception: it allows for a
fine-grained reuse of data among websites, starting from their UIs. The approach
extracts data elements of limited size (individual labels or small fragments) with-
out requiring additional annotations; on the downside, the approach still requires
programming knowledge. None of these UI-centric approaches are however able
to implement the data integration scenario approached in this paper.

Mashups [10] are the approach that comes closest to the described scenario;
in fact, the discussed data integration can be seen as a mashup, in particular, a
data mashup. It could, for instance, be approached with the help of Yahoo! Pipes,
JackBe Presto, or similar data mashup tools. Pipes (http://pipes.yahoo.com),
for example, proposes a model-driven paradigm that starts from the assumption
that the data to be integrated are available as RSS/Atom feeds or XML/JSON
resources. The two lists of news articles integrated in our example scenario could
thus be merged by selecting and configuring dedicated built-in constructs; the
translation of the summaries would however require some manual development
of a back-end Web services compatible with Yahoo! Pipes data passing logic (in
complete lists, not individual items). The result would then be accessible as RSS
feed via Yahoo! Pipes. Although the described logic is very similar to the one
of our scenario, it still lacks the rendering and embedding of the result into the
user’s website, a task that requires again considerable manual development.

To aid both the extraction of content from HTML markup and the transpar-
ent invocation of backend Web services, this paper proposes the use of explicit

http://youtu.be/yEtjIO3oMsI
http://pipes.yahoo.com

Interactive, Live Mashup Development Through UI-Oriented Computing 47

annotations, similar to microformats (http://microformats.org). If these are not
provided natively inside of the markup of a source page (as in the case of the
form we annotated for the reuse of the RESTful translation service), the iAPI
Annotator provides the necessary means to attach them from the outside to
third-party pages (as in the case of the New York Times). The approach does
not yet focus on the annotation of data with semantics, as proposed by the
Semantic Web initiative [3]. The goal of the annotations in this work is to pro-
vide immediate functional benefits to the consumers of data: annotations in fact
allow the injection of graphical controls that enable the visual UIC paradigm.

7 Discussion and Future Work

The demo showcased in the context of the Rapid Mashup Challenge and
described in this paper is the development of a simple data mashup follow-
ing a UI-oriented computing approach. The idea of the approach is to leverage
on the graphical UIs of applications as programming artifacts, to extend them
with additional, programming-specific controls, and to allow developers (both
common users and programmers) to express data integration operations inter-
actively inside the browser without having to write any line of program code.
The idea of UI-oriented computing and interactive APIs is still in its infancy.
Yet, the demo – although apparently simple – showed a data integration sce-
nario that is not trivial in general but that was solved in a fashion that does not
require programming skills (the first part of the demo) or manually program-
ming low-level interactions with Web services or data extractors (second part of
the demo). The benefits of the approach therefore span from common users to
skilled programmers.

There are however still some limitations that come with the showcased imple-
mentation of the UI-oriented computing infrastructure and the iAPI editor:

– The current implementation of the editor does not yet support the visual
specification of iterators and the reuse of recorded user interactions for the
automation of forms. We turned this shortcoming in the demo into an advan-
tage and used it to also showcase how programmers can leverage on the pro-
posed paradigm. This was possible thanks to the ready implementation of
the respective functionality in the iapi JavaScript library. The next step is
however making the these features available also to regular users through the
interactive iAPI editor.

– The interaction paradigm proposed in this paper and the demonstration to
derive programming intentions from user interactions is a best-effort devel-
opment. We did not yet have time to study different types of interpretations
(e.g., whether a drag and drop action better represents a data fetching action
or a layout action) or different interaction paradigms (e.g., without drag and
drop actions, with contextual menus that can be opened with a right-click,
voice interactions, etc.). However, the current implementation of the described
software infrastructure already supports the independent development of dif-
ferent editors on top of the runtime environment, which will ease these kinds
of investigations in future developments.

http://microformats.org

48 A. Nouri and F. Daniel

– The annotation format proposed so far to equip UIs with interactive pro-
gramming capabilities, the interactive APIs, does not leverage on any form
of semantic knowledge. The format is inspired by the microformats 2 pro-
posal (http://microformats.org/) and provides syntactic cues for the runtime
environment only. We are aware that especially targeting end users without
specific programming skills may require better assistance mechanism, able to
provide them with as much aid as possible. Doing so may require using also
semantic annotations, e.g., in order to automate some data integration tasks
(most notably, data disambiguations).

– The UI-oriented computing features supported so far are mostly focused on
data integration tasks, with the exception of the user interaction recorder that
allows interpreting standard HTML forms as reusable pieces of business logic.
The idea of UI-oriented computing is however much broader and comprises
also use cases for cloning complete UI widgets (markup, styles and function-
ality), automating short-living and long-living processes (e.g., the parametric
execution of repeated navigation actions), and the establishment of commu-
nications among integrated widgets or UI elements. These advanced use cases
are part of our future work.

As these considerations point out, UI-oriented computing is not a pure engi-
neering problem only. Identifying the right set of operations and use cases that
make sense in a UI-only context, understanding how to best interpret user inten-
tions, designing effective interaction paradigms, etc. are all HCI challenges that
need good answers on their own. Of course, the engineering of the necessary
software support inside and outside of the browser requires profound software
engineering and Web development skills. The challenge of the proposed idea is
finding the right answers in both areas and to bring them together profitably.
The final vision of iAPIs and UI-oriented computing is proposing an alternative
to the current interpretation that programming is only for skilled programmers
that can only be achieved by means of abstractions and constructs that only
programmers are familiar with and can master. That is, the vision is to make
“programming” accessible to an increasingly wider area of “developers.”

What makes us confident about the potential success of UI-oriented comput-
ing is that, although it’s final vision targets non-programmers, it also immedi-
ately provides tangible benefits the programmers: The deployment of iAPIs is
contextual to the deployment of their host application, and they do not require
separate deployment or maintenance (like, for instance, the RSS feeds published
by the New York Times in parallel to the main Web site). The documentation
of iAPIs comes for free; the UI and the injected graphical controls already tell
everything about them. The retrieval of iAPIs does not ask for new infrastruc-
ture or query paradigms; since iAPIs are an integral part of the Surface Web, it
is enough to query for desired data or functionality via common Web search; if
Google indexes a Web site, its iAPIs are indexed too.

The iAPI microformat is maintained via the W3C Interactive APIs Com-
munity Group (http://www.w3.org/community/interative-apis), the browser
extension on https://github.com/floriandanielit/interactive-apis.

http://microformats.org/
http://www.w3.org/community/interative-apis
https://github.com/floriandanielit/interactive-apis

Interactive, Live Mashup Development Through UI-Oriented Computing 49

References

1. Abdelnur, A., Hepper, S.: Java Portlet Specification, Version 1.0. Technical Report
JSR 168, Sun Microsystems Inc., October 2003. http://download.oracle.com/
otndocs/jcp/PORTLET 1.0-FR-SPEC-G-F/

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures, and Applications. Springer, Heidelberg (2003)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

4. Caceres, M.: Packaged web apps (widgets) - packaging and xml configuration, 2nd
edn. W3C Recommendation (2012)

5. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.:
DashMash: a mashup environment for end user development. In: Auer, S., Dı́az, O.,
Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer,
Heidelberg (2011)

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kauffmann, San Francisco (2002)

7. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J.I.,
Chepegin, V.I., Fornas, J.A., Wilson, S., Kögler, C., Chang, H.: End-user-oriented
telco mashups: the OMELETTE approach. In: WWW 2012 (Companion Volume),
pp. 235–238 (2012)

8. Daniel, F.: Live, personal data integration through UI-oriented computing. In:
Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 479–497. Springer, Heidelberg (2015)

9. Daniel, F., Furlan, A.: The interactive API (iAPI). In: Sheng, Q.Z., Kjeldskov, J.
(eds.) ICWE 2013 Workshops. LNCS, vol. 8295, pp. 3–15. Springer, Heidelberg
(2013)

10. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer,
Heidelberg (2014)

11. Dı́az, O., Arellano, C., Azanza, M.: A language for end-user web augmentation:
caring for producers and consumers alike. ACM Trans. Web 7(2), 9:1–9:51 (2013)

12. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. Dissertation, University of California, Irvine (2007)

13. Hepper, S.: Java Portlet Specification, Version 2.0, Early Draft. Technical
Report JSR 286, IBM Corp., July 2006. http://download.oracle.com/otndocs/jcp/
portlet-2.0-edr-oth-JSpec/

14. Web Application Working Group. Widgets Family of Specifications. Technical
report, W3C, May 2012. http://www.w3.org/2008/webapps/wiki/WidgetSpecs

15. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: WWW 2007, pp. 923–
932 (2007)

http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/
http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/
http://download.oracle.com/otndocs/jcp/portlet-2.0-edr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/portlet-2.0-edr-oth-JSpec/
http://www.w3.org/2008/webapps/wiki/WidgetSpecs

	Interactive, Live Mashup Development Through UI-Oriented Computing
	1 Introduction
	2 UI-Oriented Computing
	3 UI-Oriented Computing Infrastructure
	4 The Challenge: Scenario and Preparation
	4.1 Mashup Scenario
	4.2 Preparation of Challenge

	5 The Challenge: Live Mashup Development
	6 Related Work
	7 Discussion and Future Work
	References

