
123

Florian Daniel
Cesare Pautasso (Eds.)

First International Rapid Mashup Challenge, RMC 2015
Rotterdam, The Netherlands, June 23, 2015
Revised Selected Papers

Rapid Mashup
Development Tools

Communications in Computer and Information Science 591

Communications
in Computer and Information Science 591

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Florian Daniel • Cesare Pautasso (Eds.)

Rapid Mashup
Development Tools
First International Rapid Mashup Challenge, RMC 2015
Rotterdam, The Netherlands, June 23, 2015
Revised Selected Papers

123

Editors
Florian Daniel
DISI/RP SI
University of Trento
Povo, Trento
Italy

Cesare Pautasso
University of Lugano
Lugano
Switzerland

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-28726-3 ISBN 978-3-319-28727-0 (eBook)
DOI 10.1007/978-3-319-28727-0

Library of Congress Control Number: 2015959582

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume prints the proceedings of the ICWE 2015 Rapid Mashup Challenge (http://
mashup.inf.usi.ch/challenge/2015/) that was held on June 23, 2015, in Rotterdam, The
Netherlands, in conjunction with the 15th International Conference on Web Engi-
neering (ICWE, http://icwe2015.webengineering.org/). The 2015 edition of the chal-
lenge is the first installment of a series of challenges that aim to engage researchers and
practitioners in a competition for the best mashup approach. The next edition will be
held at ICWE 2016 in Lugano, Switzerland.

The contributions contained in this volume are post-challenge extensions of initial,
short-version proposals that served for the authors to express their interest to participate
in the challenge with little effort and for the organizers of the challenge to select
participants based on the interestingness and maturity of the proposals. The short
versions of the contributions are available online in the program section of the chal-
lenge: http://mashup.inf.usi.ch/challenge/2015/program.html.

We would like to thank the authors for their excellent work before and after the
challenge as well as for their commitment and engagement during the challenge itself.
The presented tools and approaches are of course the core of the event and of this
volume. We would also like to thank the jury that helped rate contributions and assure
quality in the post-challenge preparation of the contributions printed in this volume. Of
course, we would like to thank Springer, especially Aliaksandr Birukou, for promoting
and publishing the proceedings of the challenge in their CCIS series, a choice that
allowed us to provide a complete picture of the proposals the challenge attracted,
without having to be too strict on the acceptance of contributions in the first place and
allowing us to work together with the authors on their contributions in the
post-challenge phase.

We are grateful to everyone who contributed to this volume and confident the reader
will find the content interesting, inspiring, and – hopefully – also challenging.

September 2015 Florian Daniel
Cesare Pautasso

http://mashup.inf.usi.ch/challenge/2015/
http://mashup.inf.usi.ch/challenge/2015/
http://icwe2015.webengineering.org/
http://mashup.inf.usi.ch/challenge/2015/program.html

Jury Members

Maristella Matera Politecnico di Milano, Italy
Peep Küngas University of Tartu (UT), Tartu, Estonia
Oscar Diaz University of the Basque Country, Spain
Victoria Torres Universidad Politécnica de Valencia, Spain
Nikolay Mehandjiev University of Manchester, UK
Cinzia Cappiello Politecnico di Milano, Italy
Michael Weiss Carleton University, Canada
Tomas Vitvar Czech Technical University, Czech Republic
Agnes Koschmider Karlsruhe Institute of Technology, Germany
Saeed Aghaee University of Cambridge, UK
Christoph Bussler Oracle Corporation, USA
Sven Casteleyn Universitat Jaume I, Castellon, Spain
Martin Gaedke Chemnitz University of Technology, Germany
Tommi Mikkonen Tampere University of Technology, Finland

Contents

ICWE 2015 Rapid Mashup Challenge: Introduction. 1
Florian Daniel and Cesare Pautasso

FlexMash – Flexible Data Mashups Based on Pattern-Based
Model Transformation . 12

Pascal Hirmer and Bernhard Mitschang

Interactive, Live Mashup Development Through UI-Oriented Computing 31
Anis Nouri and Florian Daniel

SmartComposition: Extending Web Applications to Multi-screen Mashups . . . 50
Michael Krug, Fabian Wiedemann, and Martin Gaedke

EFESTO: A Platform for the End-User Development of Interactive
Workspaces for Data Exploration . 63

Giuseppe Desolda, Carmelo Ardito, and Maristella Matera

Web Mashups with WebMakeup. 82
Oscar Díaz, Iñigo Aldalur, Cristóbal Arellano, Haritz Medina,
and Sergio Firmenich

Mashup Development with Web Liquid Streams . 98
Andrea Gallidabino, Masiar Babazadeh, and Cesare Pautasso

Challenge Outcome and Conclusion . 118
Cesare Pautasso and Florian Daniel

Author Index . 123

http://dx.doi.org/10.1007/978-3-319-28727-0_1
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.1007/978-3-319-28727-0_2
http://dx.doi.org/10.1007/978-3-319-28727-0_3
http://dx.doi.org/10.1007/978-3-319-28727-0_4
http://dx.doi.org/10.1007/978-3-319-28727-0_5
http://dx.doi.org/10.1007/978-3-319-28727-0_5
http://dx.doi.org/10.1007/978-3-319-28727-0_6
http://dx.doi.org/10.1007/978-3-319-28727-0_7
http://dx.doi.org/10.1007/978-3-319-28727-0_8

ICWE 2015 Rapid Mashup Challenge:
Introduction

Florian Daniel1(B) and Cesare Pautasso2

1 University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
daniel@disi.unitn.it

2 Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
cesare.pautasso@usi.ch

Abstract. The ICWE 2015 Rapid Mashup Challenge is the first install-
ment of a series of challenges that aim to engage researchers and prac-
titioners in a competition for the best mashup approach. This paper
introduces the reader to the general context of the Challenge, its objec-
tives and motivation. It summarizes its structure into phases and the
requirements contributions were asked to satisfy, so as to be eligible for
participation. A brief summary of the contributions that were selected
for presentation provides an overview of the content of the remainder of
this volume.

Keywords: Mashups · Mashup tools · Challenge · Benchmarking

1 Context and Objective

By now, it’s more or less a decade that the scientific community and industry
use the term “mashup” in the context of Web engineering to refer to a type of
Web application that heavily relies on the reuse of third-party constituent ele-
ments in their development. In fact, we usually define a mashup as “a composite
application developed starting from reusable data, application logic and/or user
interfaces typically, but not mandatorily, sourced from the Web” [1]. Mashups
have been associated with their situational nature and the serendipitous reuse of
components not necessarily originally intended for the purpose of the mashup.
That is, the term mashup refers more to the way applications are developed and
less to a specific type of application as perceived by its users – in the end we are
always talking about a Web application.

The ICWE 2015 Rapid Mashup Challenge (the Challenge, http://mashup.
inf.usi.ch/challenge/2015) acknowledges this peculiarity of mashups and puts its
focus on the techniques, approaches, libraries, and tools that researchers and
practitioners have come up with so far to aid the development of mashups.
This perspective is different from the perspectives of similar challenges known
from other contexts or communities. For instance, the Semantic Web Challenge
(http://challenge.semanticweb.org/) focuses on the application of Semantic Web
[2] technologies in the development of software with commercial potential, large
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-28727-0 1

http://mashup.inf.usi.ch/challenge/2015
http://mashup.inf.usi.ch/challenge/2015
http://challenge.semanticweb.org/

2 F. Daniel and C. Pautasso

user bases, or functionality that is useful and of societal value. The AI Mashup
Challenge (http://aimashup.org/), instead, more specifically focuses on mashups
that use AI (Artificial Intelligence) technology (e.g., machine learning and data
mining, machine vision, natural language processing, reasoning, ontologies) and
intelligence to mashup existing resources. The ICWE 2015 Rapid Mashup Chal-
lenge does not limit its focus to any specific technology and rather aims to com-
pare how mashups are developed, independently of how their internals look like.

The maturity and sophistication of mashup tools/approaches has been grow-
ing over the past decade. Many research projects and industry tools have been
dedicated to design and develop tools for the composition of Web services, Web
data sources and Web widgets. Given their diversity, comparing and evaluating
mashup approaches has been very challenging. Doing so from a practice-oriented
point of view is the goal of the Challenge, of course, while still keeping also an
eye on the quality and usefulness of the mashups developed during the Chal-
lenge. The only constraints we introduced concerned the required use of a set of
representative Web APIs and the strict time limit of 10 min for the construction
of the mashup itself.

In the following, we describe all the pre-challenge aspects, such as the Call for
Participation, the requirements candidate approaches had to satisfy, the orga-
nization of the Challenge itself, as well as the set of selected competitors. The
following articles in this volume describe each of the contributions individually
and report on the mashups developed live during the Challenge using these tools.
The last article in this volume then provides insight into the voting procedure
and tool and the outcomes of the Challenge, including the winner.

2 Participation Requirements and Organization

2.1 Call for Participation and Requirements

In line with the above goals of the Challenge, this year’s call for participation
started as follows:

The ICWE 2015 Rapid Mashup Challenge launches a competition
between mashup approaches/tools with special attention to their expres-
siveness and speed. We invite developers and researchers working on
mashups, mashup tools and assisting technologies to compete in the cre-
ation of the most interesting and/or complex mashup they can develop
within a given time boundary, using a given set of source components.
The goal of the Challenge is to allow everybody working on mashups and
composite Web applications to showcase their ideas and solutions and to
establish an event that is both challenging and fun.

We are interested in all kinds of mashup composition tools and
approaches: from programming languages, domain-specific languages to
natural language, from visual modeling tools to textual ones, etc. Sub-
missions will be screened based on relevance, originality and maturity.
Admitted contributions will be evaluated as follows: Points will be given

http://aimashup.org/

ICWE 2015 Rapid Mashup Challenge: Introduction 3

by a jury for the complexity of the resulting mashup, the elegance of
its construction and the features of the mashup tool/approach that have
been used to build it. The public will also be able to give feedback and
participate in the challenge evaluation process.

The call highlights the three key aspects of the evaluation:

– Complexity of mashup: The key criterion of any development environment
is of course the quality of the output it is able to generate. In the case of
mashup tools/approaches, this output are the mashups. During the Chal-
lenge, participants were therefore asked to showcase live the development of
a mashup using their own tool/approach, whose complexity and quality as
application was assessed.

– Elegance of construction: Talking about aiding the development of software, it
is important to look at how this aid is implemented. The elegance of construc-
tion, in this respect, refers to how easy the proposed mashup tool/approach
is perceived, how efficient the jury and audience think the tool is compared
to the state of the art, and which benefits it provides to its users.

– Features of mashup approach: Finally, since a single mashup may not be able
to showcase all the features of a proposed tool/approach, it is also good to have
a look at which exact development features it provides. For instance, a tool
that is oriented toward professional programmers is fundamentally different
from one that instead targets end-users.

As for the kind of mashup tool/approach that was considered eligible to par-
ticipate, the Challenge was very open, and all kinds of mashup composition tools
and approaches were allowed: from programming languages, domain-specific lan-
guages to natural language and visual modeling tools. The limitation was only
the imagination and creativity of the participants. The complexity of mashups
and the features of the mashup tool/approach were self-declared by the authors
using a dedicated feature checklist (see Sect. 3) and assessed by the jury and the
audience during the Challenge.

2.2 Structure of Challenge

The Challenge was organized into four phases:

1. Admission: Submission of application. The application should include a brief
description of the proposed tool/approach and a filled feature checklist.

2. Preparation: If a proposal was accepted to the challenge, the authors received
a list of Web APIs that are allowed to be used to compose the demo mashup
during the competition. This preparation phase gave the authors about one
month to prepare for the event.

3. Competition: During the ICWE conference, participants had to give a live
demonstration of how you build their own mashup within at most 10 min of
time, preceded by a 10–15 minutes presentation of their approach and prepa-
ration for the Challenge. The time limits made the challenge more challenging.

4 F. Daniel and C. Pautasso

4. Post-challenge: Preparation of post-challenge paper explaining the proposed
solution and giving technical details about the approach and how it was used
to rapidly build the mashup.

The goal of this structure was to have authors focus more on the practical
aspects before the Challenge (the preparation of their demonstration), while
asking them to concentrate on the conceptual and scientific aspects afterwards
(with the writing of the paper to be included in the proceedings). Submitted
applications for participation were evaluated by the organizers of the Challenge
based on the relevance and maturity of the proposed approach.

3 Feature Checklist

In order to facilitate the comparison of approaches, authors were required to
accompany their submission with a filled feature checklist that describes the
two key parts of the evaluation, i.e., the nature of the mashups that their
tool/approach allows one to develop and the development features of the pro-
posed tool. Figure 1 graphically summarizes the features identified as relevant
for the Challenge, while the following subsections describe the features in more
detail.

3.1 Mashup Features

In order to be able to compare the mashups produced by the different approaches
during the Challenge, the mashup features proposed by Daniel and Matera [1]
were taken as reference:

– Mashup type: The mashup type expresses the positioning of the mashup
at one or more of the three layers of the typical application stack (data,
logic, presentation), depending on where the mashup’s integration logic is
positioned. Data mashups operate at the data layer, integrate data sources,
and are typically published again as data sources (e.g., RSS feeds or RESTful
Web services). Logic mashups integrate components at the application logic
layer, reuse data and application logic (e.g., Web services), and are typically
published as Web services. User Interface (UI) mashups are located at the
presentation layer, integrate UI components/widgets, and are published as
Web applications that users can interact with via the Web browser. Finally,
hybrid mashups span multiple layers of the application stack.

– Component types: The types of mashups introduced above strongly relate
to the types of the components they integrate. Data components comprise
RSS and Atom feeds, XML JSON, CSV and similar data resources, web data
extractions, micro-formats, but also SOAP or RESTful web services that are
used as data services only. Logic components comprise SOAP and RESTful
web services, JavaScript APIs and libraries, device APIs, and API extrac-
tions. UI components comprise code snippets and JavaScript UI libraries,
Java portlets, widgets and gadgets, web clips and extracted UI components.

ICWE 2015 Rapid Mashup Challenge: Introduction 5

Mashup
tool

Targeted
end-user

Automation
degree

Interaction
technique

Level 1 (mockup)

Local developers

Expert programmers

Progr. by demonstration
Spreadsheets

Form-based

Level 2 (manual deployment)

Editable example

Level 3 (autom. deployment)
Level 3 (live deployment)

Non-programmers

Liveness level

Online user
community

Public

None
Private

Full automation

Manual
Semi-automation

Visual lang. (wiring, implicit CF)
Visual lang. (wiring, explicit CF)

Visual lang. (iconic)
Textual DSL

Natural language
WYSIWYG

Mashup

Mashup type

Component
types

Integration
logic

Client-side only

Logic mashups

Choreography
Orchestration

Server-side only

UI-based integration

Client-server

Data mashups

Runtime
location

Instantiation
lifecycle

Long-living

Stateless
Short-living

Data components

UI components
Logic components

UI mashups
Hybrid mashups

Fig. 1. The feature checklist used to compare and position mashup approaches.

– Runtime location: There are generally a variety of possible architectural
configurations that may be adopted for the development of mashups, com-
patibly with the requirements of the chosen components. Client-side mashups
are executed in the client browser. Server-side mashups are executed in the
server. Client-server mashups are distributed over client and server, and both
parts interact the one with the other at runtime.

– Integration logic: The integration logic tells how integration happens, that
is, how components are used to form a composite application and how they

6 F. Daniel and C. Pautasso

are enabled to communicate with each other (if at all). UI-based integration
applies exclusively to UI components and uses the graphical layout of the
mashup’s user interface to render UI components in parallel next to each other
inside one or more web pages. Orchestrated integration applies to all kinds of
components and consists in a centralized composition logic. Choreographed
integration is for all those types of components that are able to comply with
a given convention (oftentimes also called a contract or protocol), so as to
manage integration without a central coordinator.

– Instantiation lifecycle: The last aspect of mashups considered is how long
an instantiated mashup is running. Stateless mashups do not require keeping
any internal state for their execution and end after processing. Short-living
mashups are mashups that last the time of a user session, i.e., as long as a
user is interacting with the mashup in the client browser, and terminate with
the closing of the client browser. Long-living mashups may last longer than a
user session, that is, they survive even after the user closes the browser with
the rendered mashup or after the first invocation of the mashup.

These five features allow one to easily classify mashups and to assess their
internal complexity. Of course, this is not an exhaustive list of characteristics
and many other distinguishing features could be examined [1]. Yet, for the sake
of assessing the suitability and interestingness of approaches in this first version
of the Challenge we considered these five features as enough.

3.2 Mashup Tool Features

The comparison of the features of the mashup tools/approaches was instead
based on the work by Aghaee et al. [3].

– Targeted end-user: Determining which group of users is targeted by a
mashup tool/approach is a strategic design issue decided on by the devel-
opers. Non-programmers do not have programming skills. Yet, they may be
interested in creating mashups as long as it does not require them to learn
and use a programming language. Local developers are those non-programmers
who usually have advanced knowledge in computer tools. Expert programmers
have adequate programming skills and experience to develop mashups using
programming and scripting languages (e.g., JavaScript and PHP).

– Automation degree: The automation degree of a mashup tool refers to how
much of the development process can be undertaken by the tool on behalf of its
users. Full automation of mashup development eliminates the need for direct
involvement of users in the development process. Semi-automatic tools par-
tially automate mashup development by providing guidance and assistance.
Manual approaches do not provide any automated support during develop-
ment; typically, these approaches come in the form of programming libraries
or runtime middlewares.

– Liveness level: Tanimoto proposed the concept of liveness [4], according to
which four levels of liveness can be distinguished. At Level 1 (non-executable

ICWE 2015 Rapid Mashup Challenge: Introduction 7

prototype mockup), a tool is just used to create prototype mashups that are
not directly connected to any kind of run-time system. Level 2 (explicit com-
pilation and deployment steps) of liveness is characterized by mashup design
blueprints that carry sufficient details to give them an executable semantics.
Level 3 (automatic compilation and deployment) tools support rapid deploy-
ment into operation, e.g., triggered by each edit-change or by an explicit action
executed by the developer. Level 4 (dynamic modification of running mashup)
of mashup liveness is obtained by the tools that support live modification of
the mashup code, while it is being executed.

– Interaction technique: There have been a number of interaction techniques
through the use of which the barriers of programming can be lifted to its
developers [5]. Editable examples let users modify and change the behavior of
existing examples, instead of programming from scratch. In form-based inter-
action, users are asked to fill out a form to create a new or change the behavior
of an existing object. Programming by demonstration suggests to teach a com-
puter by example how to accomplish a particular task. Spreadsheets are one of
the most popular and widely used end-user programming approaches to store,
manipulate, and display complex data. Textual DSLs are languages targeted
to address specific problems in a particular domain; they have a textual syn-
tax that may or may not resemble an existing general-purpose programming
language. A visual language (iconic), as opposed to a textual programming
language, is any programming language that uses visual symbols, syntax, and
semantics. Some visual languages support wiring with implicit control flow,
where the control flow of the mashup is derived from its data flow graph.
Other visual languages support wiring with explicit control flow, where the
control flow is explicitly defined, for instance, by adding directed arrows con-
necting the boxes, or putting the boxes in a specific order (e.g., from left to
right). WYSIWYG (What You See Is What You Get) enables users to create
and modify a mashup on a graphical user interface that is similar to the one
that will appear when the mashup runs. Natural language allows developers
to express their mashup via a restricted, controlled set of natural language
constructs (e.g., a subset of English) that can be interpreted unequivocally by
a runtime environment.

– Online user community: Online communities are an important resource in
assisting developers, especially end-users, to program [6]. If a tool does not
support any online community (none), it is harder to leverage on the experi-
ence of others. In public communities, the content is accessible to any user on
the Web who wishes to join the community (with or without registration). In
private communities, the authority to join the community is granted on the
basis of compliance with some operator-specified criteria.

Like for the mashup features, also in the case of the mashup tools/approaches
many other characteristics could be considered (e.g., collaboration). The features
selected for the Challenge, however, already provide good insight into the phi-
losophy behind each approach, and we preferred to keep the list concise.

8 F. Daniel and C. Pautasso

4 Participants

The purpose of the above feature checklist with its 10 features is threefold: firstly,
it allows interested participants to understand what kind of contributions the
Challenge is interested in; secondly, it allows the organizers of the Challenge to
pre-screen contributions and select submissions for inclusion in the Challenge and
proceedings; and, thirdly, it allows the participants to better position their con-
tributions and the jury and audience to better compare the contributions. The
first two steps led to the following list of participants to the ICWE 2015 Rapid
Mashup Challenge (we postpone the discussion of the jury/audience assessment
to the concluding article of this volume):

– FlexMash: Extended Techniques for Flexible Modeling and Execution of
Data Mashups, by Pascal Hirmer and Bernhard Mitschang. FlexMash is a
visual mashup tool for the development of data mashups that targets non-
programmers. The tools pays particular attention to flexibility and extensi-
bility to enable the integration of heterogeneous data sources as well as the
dynamic (un-)tethering of data sources. The authors participate with a pro-
totypical implementation of their tool.

– UI-Oriented Computing: Interactive, Live Mashup Development through
UI-Oriented Computing, by Anis Nouri and Florian Daniel. UI-oriented com-
puting is less an individual mashup tool and more a novel idea of programming
paradigm that looks at the Surface Web as at a programming environment
and aims to support interactive and live mashup development inside the Web
browser, without requiring users to program any line of code. The authors par-
ticipate in the Challenge with a prototype implementation of a Web browser
extensions that extends the browser with UI-oriented computing capabilities.

– SmartComposition: Extending Web Applications to Multi-Screen Mashups,
by Michael Krug, Fabian Wiedemann and Martin Gaedke. SmartComposition
takes mashups to a different level by proposing an environment based on Web
components that supports the development of multi-screen mashups, that
is, mashups that are naturally distributed over multiple devices. Web sockets
allow the environment to synchronize components across screens. The authors
participate with a prototype environment with support for dynamic runtime
modifications.

– EFESTO: A platform for the End-User Development of Interactive Work-
spaces for Data Exploration, by Giuseppe Desolda, Carmelo Ardito and Maris-
tella Matera. EFESTO is a platform for the creation of interactive workspaces
supporting end-users in the exploration and seamless composition of hetero-
geneous data sources. Internally, it makes use of Linked Open Data, so as to
provide its users with advanced data integration features almost for free. The
authors showcase their current implementation of development environment
in the form of a workspace for integrating UI components and data sources.

– WebMakeup: Empowering Users to Mod Websites, by Oscar Diaz, Iñigo
Aldalur, Cristobal Arellano, Haritz Medina and Sergio Firmenich. Also Web-
Makeup proposes an original perspective on the problem of mashup develop-
ment: instead of proposing an own, new development environment, it leverages

ICWE 2015 Rapid Mashup Challenge: Introduction 9

Table 1. Overview of the mashup and mashup tool features declared by the approaches
that participated in the ICWE 2015 Rapid Mashup Challenge.

on the Web browser and the applications running therein as natural environ-
ment for the modding (client-side extension) of existing applications (e.g., by
adding widgets that fetch data from other applications). The authors partic-
ipate with their publicly available Chrome extension.

10 F. Daniel and C. Pautasso

– WLS: Mashup Development with Web Liquid Streams, by Masiar Babazadeh,
Andrea Gallidabino and Cesare Pautasso. Finally, Web Liquid Streams (WLS)
delves into one peculiar aspects of modern mashups, i.e., streaming data. The
approach enables the development of mashups with streaming operators that
support the live, runtime integration of data streams. The authors showcase
the use of their dynamic streaming framework that takes advantage of stan-
dard Web protocols and targets expert programmers.

Table 1 summarizes the characteristics of the selected approaches as declared
by the authors. Compared to the emergence of mashups, the approaches rep-
resent well the recent focus of the mashup community on the user interface
side of mashups. In fact, UI mashups are widely considered most suitable for
end-users without programming skills, and end-users have been in the mind of
mashup tool developers from the very beginning on. Thanks to the availability
of stable JavaScript communication technologies, such as AJAX, it is also evi-
dent, that more and more approaches enable the development of full-fledged,
client-server mashups whose resource consumption can strategically be distrib-
uted over client (e.g., for UI synchronization) and server (e.g., for data integra-
tion). Interestingly, most of the proposed approaches feature mashups with a
short-lived lifecycle, that is, mashups that run inside the Web browser as long
as the browser is open.

On the development support side, a preference for dynamic, live development
approaches (level 4) is evident – again, in line with the latest trends in end-user
development. The paradigms proposed to approach development (the interac-
tion techniques) are, instead, very heterogeneous and led to a very varied and
diversified live demo session during the Challenge. The degree of automation is
mostly that of semi-automation, while only one tool (WebMakeup) already has
an own online user community. This last result is strictly related with the early
stage of development (prototypes) of most of the proposed approaches.

We believe the selected mashup approaches represent a vivid and cutting-
edge picture of the state of the art in research on mashups development and are
confident the reader will enjoy discovering how each tool was able to compete in
the challenge, as described in the next chapters.

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer,
Heidelberg (2014)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: Barbosa, S.D.J., Campos, J.C., Kazman, R., Palanque, P.A., Harrison,
M.D., Reeves, S. (eds.) EICS, pp. 211–220. ACM (2012)

4. Tanimoto, S.L.: VIVA: a visual language for image processing. J. Vis. Lang. Comput.
1(2), 127–139 (1990)

ICWE 2015 Rapid Mashup Challenge: Introduction 11

5. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user program-
ming. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems,
pp. 75–80. ACM (2006)

6. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Computing.
MIT Press, Cambridge (1993)

FlexMash – Flexible Data Mashups Based
on Pattern-Based Model Transformation

Pascal Hirmer(B) and Bernhard Mitschang

Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

pascal.hirmer@ipvs.uni-stuttgart.de

http://www.ipvs.uni-stuttgart.de

Abstract. Today, the ad-hoc processing and integration of data is an
important issue due to fast growing IT systems and an increased connec-
tivity of the corresponding data sources. The overall goal is deriving high-
level information based on a huge amount of low-level data. However, an
increasing amount of data leads to high complexity and many technical
challenges. Especially non-IT expert users are overburdened with highly
complex solutions such as Extract-Transform-Load processes. To tackle
these issues, we need a means to abstract from technical details and pro-
vide a flexible execution of data processing and integration scenarios.
In this paper, we present an approach for modeling and pattern-based
execution of data mashups based on Mashup Plans, a domain-specific
mashup model that has been introduced in previous work. This non-
executable model can be mapped onto different executable ones depend-
ing on the use case scenario. The concepts introduced in this paper were
presented during the Rapid Mashup Challenge at the International Con-
ference on Web Engineering 2015. This paper presents our approach, the
scenario that was implemented for this challenge, as well as the encoun-
tered issues during its preparation.

Keywords: ICWE rapid mashup challenge 2015 · Data mashups ·
Transformation patterns · TOSCA · Cloud computing

1 Context and Goals

Nowadays, the complexity and size of the IT systems used in enterprises con-
stantly increase. Especially in the area of data processing and integration, this
leads to high costs as well as communication effort between domain-specific
users, e.g., business persons, and IT experts that implement the data process-
ing. This oftentimes results in hand-made, monolithic, non-flexible solutions that
are exclusively suitable for a few number of use cases. For example, Extract-
Transform-Load (ETL) process models and their execution can usually only be
used for specific scenarios, i.e., they offer nearly no flexibility. Furthermore, exist-
ing data mashup or data streaming solutions mostly offer a single possibility how
data is processed, fulfilling only a limited number of user requirements.
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 12–30, 2016.
DOI: 10.1007/978-3-319-28727-0 2

FlexMash – Flexible Data Mashups 13

To tackle these issues, we need a data mashup solution that offers domain-
specific modeling as well as a corresponding technical execution of data process-
ing and integration depending on the use case scenario. That is, its execution
has to flexibly suite a scenario’s special requirements, e.g., robustness, scala-
bility, security, efficiency. Using a non-technical, domain-specific model enables
users to define data processing and integration scenarios they are interested in
without any need of implementation and execution details. Aside the domain-
specific model, the user should have the possibility to define requirements that
are fulfilled by the mashup execution. In previous work, we introduced Mashup
Plans [11], a graph-based model that enables domain-specific modeling of data
mashups. Mashup Plans enable modeling data sources as so called business
objects [6,14] that represent domain-specific objects, e.g., an enterprise infor-
mation system or a production machine, and abstract from low-level data struc-
tures such as databases, ontologies, sensors or unstructured text. In the context
of this paper as well as of previous work, these business objects are called Data
Source Descriptions (DSD). Furthermore, Mashup Plans contain Data Process-
ing Descriptions (DPD) that abstract from fine-grained data operations and
offer generic, easy-to-use, domain-specific data processing operations (e.g., fil-
ter or combine) that can be mapped onto a multitude of implementations that
depend on the context the DPD is used in. Mashup Plans are modeled as shown
in Fig. 1. In this paper, we introduce a new approach to transform Mashup Plans
into alternative, executable formats depending on the requirements set by the
use case scenario. Note that due to the implementation focus of this paper, we
are not looking into conceptual details.

The remainder of this paper is structured as follows: in Sect. 2, we describe
basic concepts that are necessary to explain our approach. Section 3 describes
related work. In Sect. 4, the main contribution of our paper is presented: we
introduce an approach for pattern-based Mashup Plan transformation and exe-
cution. Section 5 describes the maturity of our tool and Sect. 6 its features. After
that, in Sect. 7, the prototypical implementation of our approach is presented,
in Sect. 8, the presented demo flow is shown, in Sect. 9 we describe the chal-
lenge preparation and the results are subsequently evaluated in Sect. 10. Finally,
Sect. 11 summarizes the results and gives an outlook to future work.

2 Basic Concepts

In this section, we describe basic concepts that are necessary to comprehend the
approach presented in this paper. These concepts are (i) Mashup Plans, as intro-
duced in previous work, and (ii) the Topology and Orchestration Specification
for Cloud Applications (TOSCA) that is used for provisioning of the mashup’s
execution components in a cloud computing environment.

2.1 Mashup Plans

A Mashup Plan is a non-executable, domain-specific model to define data
mashup (i.e., ad-hoc data processing and integration) scenarios and was

14 P. Hirmer and B. Mitschang

Fig. 1. Overview of Mashup Plans (based on [11])

introduced in our previous work [11]. The modeler of Mashup Plans is usually
a domain-expert such as a business person, without any knowledge of techni-
cal details. As depicted in Fig. 1, a Mashup Plan is a cohesive, directed flow
graph based on the Pipes and Filter pattern [15] containing two types of nodes
and a single edge type representing the data and control flow between these
nodes. The node types are subdivided into Data Source Descriptions (DSD) and
Data Processing Descriptions (DPDs) as well as a single start and end node.
Data Source Descriptions offer a non-technical way to model data sources, with-
out having to know about low-level details such as data base ports, URLs, etc.
These DSDs are based on so called business objects as described by [6,14]. The
second type of nodes, the DPDs, describe how the data is processed, i.e., how it
is filtered, aggregated, analyzed, or otherwise modified. That is, a DPD describes
an operation, i.e., a piece of code, that processes the data. The actual implemen-
tation of the DPD depends on its context. As a consequence, different imple-
mentations exist for a single DPD, depending on the data types, data structures,
etc. The mapping from DSDs and DPDs to their corresponding implementation
can be realized by a rule-based approach as described by Reimann et al. [19].
When modeling Mashup Plans, the following restrictions have to be considered:
(i) a Mashup Plan contains a single start node to indicate the entry point of
the flow, (ii) a completely modeled Mashup Plan contains at least one Data
Source Description and at least one Data Processing Description, and (iii) a
Mashup Plan contains a single output represented by an end node (depicted
in Fig. 1). The technical properties of DSDs and DPDs that are used to model
Mashup Plans are defined once by IT experts who store them in corresponding
repositories. This enables Mashup Plan modeling by domain-experts based on
the DSD and DPD repositories without them having to specify any technical
details. A concrete example of a modeled Mashup Plan using the FlexMash data
mashup tool is depicted in Fig. 5(a).

Note that we slightly modified the concept of Mashup Plans in this paper in
contrast to previous work by adding the start node. In previous work, the entry

FlexMash – Flexible Data Mashups 15

point of Mashup Plans was defined through the data source descriptions. As
a consequence, DSDs could not contain incoming connections and represented
the starting points of the flow. However, in some use cases it is necessary to
integrate data sources not only in the beginning but also within the flow (e.g.,
the Twitter data source in Fig. 5(a)). As a consequence, we added the start node
to the Mashup Plan.

2.2 TOSCA

In this section, basic concepts of the Topology and Orchestration Specification for
Cloud Applications (TOSCA) are introduced that are necessary to comprehend
the approach presented in this paper. The following section is based on [10].

TOSCA is a standard of OASIS to describe cloud applications in a portable
way. TOSCA-based descriptions define (i) the structure as well as (ii) the man-
agement functionalities of cloud-based applications. Although TOSCA is a rel-
atively new standard, several tools exist that ease modeling, provisioning, and
management of TOSCA-based applications. The open source ecosystem Open-
TOSCA, for example, includes a graphical modeling tool called Winery [13] and
a plan-based provisioning and management runtime environment [3], which can
be used to provision and manage TOSCA applications fully automatically. Fur-
ther details on the TOSCA standard can be found in the official OASIS TOSCA
specification [16], TOSCA Primer [17], or Binz et al. [2].

The core of the application description in TOSCA is the Topology Template,
a directed graph containing Node Templates (vertices) and Relationship Tem-
plates (edges). Node Templates may describe all components of an application,
including all software and hardware components. The relations between those
Node Templates are represented by Relationship Templates. Node and Relation-
ship Templates are typed by Node Types and Relationship Types, respectively.
Types define the semantics of the templates, as well as their properties, provided
management operations, and so on. Types can be refined or extended by an inher-
itance mechanism. TOSCA Policies are used to define non-functional require-
ments for the provisioning of an application. Using TOSCA Policies, it is possi-
ble to determine costs, security, availability, scalability or similar non-functional
requirements. TOSCA specifies an exchange format called Cloud Service Archive
(CSAR) to package Topology Templates, types, associated artifacts, plans, and
all required files into one self-contained package. This package is portable across
different standards-compliant TOSCA runtime environments [4].

3 Related Work

In the past, many data mashup solutions have been introduced in science and
industry that are built to enable an ad-hoc processing and integration of data.
Usually these solutions offer a graphical modeling tool that enables the users to
define data sources and data operations as well as the way data is processed.

16 P. Hirmer and B. Mitschang

Well-known examples are Yahoo! Pipes1, Intel MashMaker2 and the IBM Infos-
phere MashupHub3. These enterprise-ready solutions offer a lot of functionality
in regard to the data sources they are able to integrate as well as the data process-
ing operations they support. However, existing solutions only offer a single pos-
sibility for execution, i.e., they have a single, static implementation. Nowadays,
the user requirements may differ significantly, especially when it comes to data
processing and integration. In production environments, for example, it is very
important that data is processed in real-time, i.e., a very efficient execution has to
be supported. Furthermore, in businesses, for example, robustness and security
are very important aspects. In other scenarios, the coping with huge amounts of
data has to be supported, and so on. However, current mashup solutions cannot
cope with these heterogeneous requirements. In this paper, we tackle this issue
by introducing a flexible data mashup execution based on user requirements.

Furthermore, existing approaches define abstract, non-technical models to
describe data processing and integration scenarios similar to the introduced
Mashup Plans. However, oftentimes these approaches do not offer a sufficient
abstraction from technical details. For example, many modeling nodes in Yahoo!
Pipes require the knowledge of programming concepts such as string builders,
regular expressions, HTML scraping, for each-loops, and so on. This limits the
usage to software developers that have to know about technical details. Using
so called business objects [6,14], we can enable modeling data mashup scenarios
based on the user’s domain. This further enables a widely usable data mashup
solution, e.g., for business users and for technical experts as well.

In previous work [11], we already introduced the modeling of Mashup Plans
as well as some basic ideas of their transformation. These Mashup Plans can be
modeled using a variety of different formats, e.g., also using established standards
such as BPMN, XML or JSON. All these abstract languages have to be further
transformed onto an executable level as described in Sect. 4.2. As a consequence,
Mashup Plans offer a generic means to define data mashup scenarios and are not
bound to a specific format. In this paper, we focus on the transformation of this
model to an executable representation based on patterns, and we describe how
these concepts were applied during the ICWE Mashup Challenge 2015.

4 Flexible Data Mashups Based on Pattern-Based Model
Transformation

This section describes our proposed mashup approach: flexible data mashups
based on pattern-based model transformation. We subdivide the approach into
five main steps as depicted in Fig. 2: (i) the modeling of Mashup Plans, (ii) the
selection of transformation patterns, (iii) the pattern-based transformation of
Mashup Plans into an executable format, (iv) the cloud-based data mashup
execution based on user requirements, and (v) the storage and/or visualization
1 https://pipes.yahoo.com/pipes/.
2 http://intel.ly/1BW2crD.
3 http://ibm.co/1Ghxv27.

https://pipes.yahoo.com/pipes/
http://intel.ly/1BW2crD
http://ibm.co/1Ghxv27

FlexMash – Flexible Data Mashups 17

Fig. 2. Overall approach of flexible data mashups (based on [11])

of the derived result. These overall steps are based on previous work [11]. Note
that in the following, the terms pattern and transformation pattern are used
synonymously.

After modeling of the Mashup Plan that defines the data as well as how it
is processed and integrated, the user can select patterns that represent his/her
requirements for the mashup execution. That is, each pattern can fulfill certain
user requirements, such as efficiency or robustness. The transformation of the
domain-specific, non-executable model to an executable representation is done
based on the selected patterns. Finally, the mashup is executed in a suitable
engine. The result of the execution can be stored or visualized.

The modeling of Mashup Plans (Step 1) has already been described in pre-
vious work, as a consequence, the Mashup Plan modeling step depicted in Fig. 2
will not be described here. Its description can be found in [11]. Furthermore, the
use of the mashup result (Step 5) is mostly application-dependent and therefore
out of scope of this paper.

4.1 Step 2: Transformation Pattern Selection

In this section, we introduce the transformation patterns, how they are selected
and how they can be parameterized. Patterns are high-level descriptions of estab-
lished practices to solve reoccurring problems. Each pattern can be implemented
in a different fashion, i.e., patterns offer an abstract solution to specific problems
and can be mapped onto corresponding solution implementations [8]. Each of
the transformation patterns introduced in this paper fulfills certain user require-
ments for the data mashup execution.

During modeling of the Mashup Plan, the modeler has the possibility to select
the patterns him/herself based on his or her requirements. In case the Mashup
Plan modeler is a business person without any knowledge of the specific tech-
nical requirements, this decision can also be made by (IT) experts supporting
the modeler by analyzing the mashup scenario. To be able to select a pattern,

18 P. Hirmer and B. Mitschang

Fig. 3. Example of a pattern catalog entry – Robust Mashup

the modeler has to know about all existing patterns, know about their abilities
as well as their limitations. Furthermore, the modeler has to know how these
patterns can be combined in a reasonable manner. To enable this, we created an
extendable pattern catalog that describes widely used patterns regarding data
mashup processing. Each entry in this catalog describes a single transformation
pattern and has the following content: (i) a description containing the problem
that is solved by the pattern, (ii) the solution the pattern offers to solve this
problem, (iii) an example how the pattern can be applied, (iv) a short eval-
uation, and (v) information about if and how it can be combined with other
transformation patterns. When selecting a pattern, the user usually has to define
additional parameters that are necessary to find a corresponding implementa-
tion. For example, when selecting the time-critical mashup pattern, the user has
to specify the maximal time the execution may take. When selecting the robust
mashup pattern, the user e.g., has to specify whether error handling is needed,
logging has to be supported, etc. This parameterization is done during the pat-
tern’s selection. An exemplary entry of the pattern catalog is shown in Fig. 3.
As depicted, it contains a textual description of how the pattern can be applied.
The selected patterns influence the manner the mashup is executed, e.g., when
the depicted pattern Robust Mashup is selected from the pattern catalog, the
mashup is executed in a robust manner, e.g., using a workflow engine. That is,
the selected patterns give a directive for the executable format the mashup plan
is transformed into and, as a consequence, for the execution components.

4.2 Step 3: Pattern-Based Transformation

In this section, we describe how the non-executable Mashup Plan is transformed
into an executable representation based on patterns. The executable format the

FlexMash – Flexible Data Mashups 19

Mashup Plan is transformed into, depends on the patterns that were selected in
the previous step. The mapping of the Mashup Plan onto the executable model
as well as the selection of the execution engine that is being used to execute it, is
chosen using a rule-based transformation approach, similar to the one described
by [18,19]. To structure patterns and connect them to corresponding implemen-
tations, we use so called pattern graphs. A pattern graph is a tree-based, directed
graph containing nodes and edges. A node in the pattern graph represents either
a pattern or an implementation. An edge from one node to another represents a
specialization. There are two types of edges. The “consists of” edge is used to
connect patterns and indicates that a pattern consists of several sub-patterns.
As a consequence, the problem described by the pattern can only be solved, if
all of its sub-patterns are applied. The second edge type “implemented by” is
used to connect to the implementation nodes. If a pattern is connected to one
or more implementations, it means that it can be realized by either one of them.
In this case, one of them has to be selected either manually or automatically.

To summarize, a generic pattern at the root node of the tree is getting more
and more concrete by being subdivided into sub-patterns and finally into imple-
mentation fragments. As a consequence, patterns can be structured hierarchi-
cally through different abstraction levels. Furthermore, a single pattern can be
realized by different implementations. The root node of the pattern graph rep-
resents the most abstract pattern, which is the pattern described textually in
the pattern catalog. That is, a different pattern graph exists for each entry of the
pattern catalog. Which path in the pattern graph is chosen in order to reach the
implementation at the leaf nodes, depends on the pattern’s parameterization.
This decision is made based on rules that are evaluated during traversal of the

Fig. 4. Pattern graph example

20 P. Hirmer and B. Mitschang

pattern graph. These rules compare the parameters of the pattern with prede-
fined properties of the implementations to find the most suitable one. Note that
our approach will always find an implementation, however, it is not guaranteed
that it can fulfill all given user requirements. In this case, the user has to decide
whether to use the selected implementation or not. An exemplary pattern graph
for the Robust Mashup pattern is depicted in Fig. 4.

Note that for a single selected pattern, this rule-based transformation app-
roach can be applied in a straight-forward manner. However, if several patterns
are combined, the determination of a suitable pattern implementation is much
more complex and is currently part of our ongoing work.

Once a suitable implementation is found, the transformation of the Mashup
Plan to a suitable executable representation can be processed. We use predefined,
modularized implementation fragments that are scripted together to create the
executable model. For example, if the execution is done using a workflow engine,
we can create the executable workflow automatically using, e.g., invoke nodes
of the Business Process Execution Language (BPEL) to execute the operations
defined in the Mashup Plan. The programming logic of the DSDs and DPDs is
stored in code fragments, e.g. Java Web Services that are executed by the work-
flow. In other examples, e.g., when using the Node-RED4 execution engine, the
transformation works in a similar fashion by connecting predefined, JavaScript
code fragments. The implemented pattern transformations for the ICWE Rapid
Mashup Challenge are described in Sect. 9.

4.3 Step 4: TOSCA-Based Deployment and Execution

To execute our data mashups, several software components are necessary that
process the data flow, provide the programming logic of DSDs and DPDs and
visualize or store the result, e.g., in a database or data warehouse (Step 5). Our
goal is provisioning these components on-demand, i.e., only if a data mashup is
initiated. The provisioning of these components is done once on the first execu-
tion of the mashup flow. If the mashup is not needed anymore, the components
can be shut down to save costs. To enable this, we use approved cloud com-
puting technologies, the OASIS standard TOSCA [16], as well as the results of
our previous work [10]. In the first step, the components to be provisioned are
received by traversing the pattern graph. Based on this information, a TOSCA
topology can be created automatically containing the necessary components as
well as information about how they are connected. This can be achieved by the
concept of Node Templates and Relationship Templates provided by the TOSCA
standard. In our previous work [10], we introduced an approach for automated
completion of topologies for TOSCA-based cloud applications, which enables
completing topologies that are only containing application-specific components
and are missing platform as well as infrastructure components. Using these con-
cepts, we can automatically complete the topology and create a TOSCA cloud
service archive (CSAR), a self-contained package, containing all the information

4 http://nodered.org/.

http://nodered.org/

FlexMash – Flexible Data Mashups 21

and software components necessary to provision applications in a cloud envi-
ronment. For example, if the implementation contains a workflow engine to be
provisioned, the necessary components to run it, such as a web server, an oper-
ating system and an instance of a cloud provider are added automatically to
the topology and, as a consequence, to the CSAR. Using the plan generator
extension of our TOSCA runtime OpenTOSCA [4], this cloud service archive
can be used for an automated deployment of the components in the cloud. The
automated deployment and execution of the mashup can be initiated using man-
agement plans, as described by [5]. The interested reader is referred to [2,3,10]
and [16] for more information about TOSCA and the OpenTOSCA ecosystem.
The implementation of these concepts is part of our ongoing work.

5 FlexMash – Level of Maturity

This section describes the current maturity of the implementation of our previ-
ously described approach. We implemented a prototype of FlexMash and used it
in two different use case scenarios besides the one for the ICWE Rapid Mashup
Challenge described in Sect. 7. In the first scenario, sensor data is integrated
and processed to determine high-level situations in smart environments. For
this implementation, we developed our prototype to support the stream-based
processing of sensor data. The detailed results are described in [9]. The second
use case implements a data mashup for exception escalation in advanced manu-
facturing environments, which is described in [12]. In this use case, exceptions in
manufacturing environments are recognized and analyzed based on different data
sources. The executed data mashup provides a result to find and solve occurred
problems in an efficient manner by processing and integrating the corresponding
data of the sources.

The current version of our prototype is tailored to these use cases. However,
it offers a high degree of extensibility, which enables an easy adding of different
data sources, data operations, patterns, execution formats and engines.

6 FlexMash – Feature Checklist

In this section, the features of the current state of FlexMash’s implementation are
described based on the ICWE Rapid Mashup Challenge checklist, which contains
information about important properties and design choices of mashup tools to
enable their categorization. The feature checklist is based on related work and
is subdivided into two parts: (i) an overall mashup feature checklist as described
in [7] (Chap. 6), and (ii) a mashup tool feature checklist as described in [1]. The
detailed information about the single entries are provided in these references.

– Mashup Feature Checklist
• Mashup Type: Data mashups
• Component Type: Data components
• Runtime Location: Both client and server

22 P. Hirmer and B. Mitschang

• Integration Logic: Orchestrated integration
• Instantiation Lifecycle: Stateless

– Mashup Tool Feature Checklist
• Targeted End-User: Non programmers
• Automation Degree: Semi-automation
• Liveness Level: Level 3 – Automatic compilation and deployment,

requires re-initialization
• Interaction Technique: Visual language (Iconic)
• Online User Community: None (yet)

7 ICWE Rapid Mashup Challenge – Mashup Scenario

In this section, we introduce the scenario that was implemented and presented
during the ICWE Rapid Mashup Challenge 2015. For this challenge, we intro-
duced a specific mashup scenario according to the requirements. The goal of the
challenge was integrating specific data sources in an “elegant” manner using new
mashup tools and approaches. The choices of the data sources were as follows:
(i) the New York Times API5, which can be used to receive articles and other
news items, (ii) the YouTube API6 to integrate video data, as well as (iii) the
Google Maps API7 to display geo locations in the Google Maps user interface.
At least one of these APIs had to be chosen and at least two data sources had
to be processed and integrated in total. As a consequence, it was allowed to
add other web APIs arbitrarily. Due to our tool – respectively our prototypical
implementation – being a pure data mashup tool that cannot yet handle video
data and does not focus on the user interface, we used the New York Times web
API and the Twitter API8 as second data source for the challenge.

Based on these data sources, our scenario finds out the sentiment of people on
articles of the New York Times website. To retrieve these sentiment information,
we use corresponding Tweets that address the article’s topic. To achieve this,
simple integration techniques are not sufficient. It is necessary to use sophis-
ticated data analytics techniques, which can be achieved by using the concept
of the previously introduced DPDs. Firstly, a named entity recognition DPD is
required to search the articles for keywords that can be used to find correspond-
ing Tweets. Furthermore, a sentiment analysis has to be conducted based on the
found Tweets to receive the overall sentiment of an article. To model such a com-
plicated data mashup scenario, the user can make use of the introduced Mashup
Plans and create a graphical description using DSDs and DPDs. This descrip-
tion can then be used to create different executable representations as described
in Sect. 4. The graphical model for this scenario is displayed in Fig. 5(a). This
scenario has also been used for the runtime measurements described in Sect. 10.
The execution semantics of the demo flow is described in the following Sect. 8.
5 http://www.nytimes.com/services/xml/rss/index.html.
6 http://www.youtube.com/yt/dev/api-resources.html.
7 https://developers.google.com/maps/.
8 https://dev.twitter.com/.

http://www.nytimes.com/services/xml/rss/index.html
http://www.youtube.com/yt/dev/api-resources.html
https://developers.google.com/maps/
https://dev.twitter.com/

FlexMash – Flexible Data Mashups 23

(a) Screenshot of the demo flow used for the challenge

(b) Visualized result of the challenge mashup

Fig. 5. Screenshots of FlexMash’s Mashup Plan modeling and result view

8 Demo Flow

Figure 5(a) depicts the flow we modeled during the ICWE Rapid Mashup Chal-
lenge. This flow is representing the scenario that was described in Sect. 7. First,
a start node is added to the model. This is necessary to define the entry point of
the flow-based model during execution. This start node is connected to a data

24 P. Hirmer and B. Mitschang

source description NYT that receives all current articles of a corresponding cate-
gory (e.g., sports, politics, etc.) from the New York Times web API. Note that all
the received articles are processed within a single flow execution. The category
of the articles to be received can be configured in the node settings. Next, we
connect the node to a filter that selects articles that contain certain keywords,
which can also be defined in the node settings of the filter node. The filtered
set of articles is sent to the merge node as well as to the NamedEntity node
that executes a named entity recognition for each article based on the article’s
content to gain knowledge about its main aspects. For each article, these gained
entities are then used as input for the Twitter search node, which is returning
relating Tweets for the articles. The Twitter credentials, i.e., user name and
password as well as the amount of Tweets being used have to be configured in
the node settings. To do so, the credentials of an arbitrary Twitter account can
be used. This configuration has to be done because Twitter demands a valid user
account to access the Twitter API. For each article, the corresponding Tweets
are then used for a sentiment analysis, which computes the average sentiment of
all corresponding Tweets. Finally, the sentiments of the articles are merged with
the article information using the merge DPD. After modeling and configuration

(a) Executable
Mashup Plan as
BPEL workflow

(b) Executable Mashup Plan as Node-RED flow

Fig. 6. Different implementations of the challenge’s executable Mashup Plan

FlexMash – Flexible Data Mashups 25

of the nodes, the user selects Execute Data Mashup to run the flow. The out-
put of the flow is the generated HTML web site depicted in Fig. 5(b) containing
a list of all processed articles, including their topics, the result of the named
entity analysis, the computed average sentiment of an article and some exam-
ple Tweets that were used for sentiment analysis. As described in Sect. 4, the
Mashup Plan is transformed into executable representations based on patterns.
In the demo, we implemented the robust pattern using BPEL workflows exe-
cuted in the ApacheODE9 workflow engine as well as the time-critical pattern
using JSON-based Node-RED flows executed in the Node-RED runtime. The
transformed models are depicted in Fig. 6.

9 Challenge Preparations

This section describes the preparations for the challenge and gives an insight
into implementation details. An overview of FlexMash’s architecture specific
to the implementation for the challenge is depicted in Fig. 7. Similar to other
mashup tools, FlexMash is hosted online and can be accessed through a web
browser. By providing FlexMash as a service on a cloud computing infrastruc-
ture (IBM Bluemix10), it can be accessed, deployed and scaled easily. The archi-
tecture contains four main components. First, the Mashup Plan Modeler (also
depicted in Fig. 5(a)) that enables the user to define how the data is step-
wise processed. Furthermore, in this component patterns can be viewed and

Fig. 7. FlexMash architecture specific to the implemented scenario

9 http://ode.apache.org/.
10 www.bluemix.net.

http://ode.apache.org/
www.bluemix.net

26 P. Hirmer and B. Mitschang

selected. Second, the Pattern-based Model Transformation component (PbMT)
contains the pattern-implementation selector that automatically chooses a suit-
able implementation for parameterized patterns using a pattern graph-based and
rule-based approach as described in Sect. 4.2. For the challenge implementation,
the pattern-implementation mapping is kept simple due to the fact that only a
single implementation exists for each pattern. The PbMT furthermore contains
the logic of the mapping of the Mashup Plan to the executable representation
depending on the pattern implementation as well as the logic of the deployment
of this model onto a suitable engine. The Utils component contains methods sup-
porting this functionality. The execution engines to execute the resulting model
are not part of FlexMash, but cloud-based external services. Finally, the fourth
component is used for visualization of the engine’s output, i.e., the execution
result.

To prepare for this challenge, many implementation tasks had to be dealt
with. Firstly, the existing user interface of our tool – which is based on the
JavaScript framework AlloyUI11 – had to be adjusted to the newly added data
source descriptions and data processing descriptions used for the challenge. This
task could be completed in a short time due to the framework’s high extensibility.

As described in Sect. 4, the non-executable Mashup Plan is transformed into
different execution models depending on patterns that are selected after model-
ing. For this challenge, we implemented two mappings onto different executable
models. Each of these mappings fulfills the requirements of a single pattern. The
two patterns we implemented were the “Robust Mashup” and the “Time-critical
Mashup” pattern. The mapping for the Robust pattern creates a workflow using
the Business Process Execution Language as well as Java Web Services to exe-
cute DSDs and DPDs. The second mapping for the Time-critical pattern creates
a JSON-based execution model that can be processed by the data flow engine
Node-RED, which offers a very efficient flow execution. In the following, these
mappings are described in a generic manner covering both execution models due
to many similarities regarding the technologies being used.

To realize the mappings, first, the PbMT for the DSDs and DPDs had to be
implemented. The tool’s business logic is implemented in Java and JavaScript,
respectively. The data structure we use throughout the tool is JSON. The DSDs
and DPDs are implemented as Java Web Services for the “Robust” pattern and
as Node-RED JavaScript nodes for the “Time-critical” pattern. We implemented
the NYT DSD through a HTTP request to the New York Times API to receive
the RSS12 feed as XML string. This string is parsed to a DOM13 tree that
is traversed to extract information such as the article’s title, URL, category,
etc. These extracted information are stored in a JSON model for each article
that is received. The Twitter DSD is implemented using the Twitter API. The
DSD’s inputs are a number of keywords that are used to search corresponding
Tweets. However, during the implementation, we found out that it makes sense

11 http://alloyui.com/.
12 Really Simple Syndication.
13 Document Object Model.

http://alloyui.com/

FlexMash – Flexible Data Mashups 27

to limit the keywords to a maximum of five. Otherwise, the search for suitable
Tweets takes too much time. The received Tweets are also stored in a JSON
data structure. After implementing the DSDs, we implemented the DPDs that
are able to filter, merge and analyze the data.

The filter DPD used to extract articles containing specific keywords was
implemented in a straight-forward manner. The article’s text as well as the title is
checked for containment of the given keywords using the means of the respective
programming language. If it contains one or more of the keywords, it is added
to the list of filter results. Next, we implemented the two analytics DPDs, i.e.,
the named entity recognition and the sentiment analysis. For the named entity
recognition, we used libraries provided by the Apache UIMA framework14. After
a tokenization of the text, the named entities can be extracted automatically.
The output of the named entity recognition is also stored in the JSON model.
The sentiment analysis is conducted using the library LingPipe15. Finally, the
merge node was implemented by traversing and integrating the JSON model.
For the execution, we currently use execution engine services by the platform-
as-a-service provider IBM Bluemix.

The result of the Mashup is visualized in a web user interface, which is based
on HTML and JavaScript.

10 Discussion and Findings

During the implementation of our tool for the ICWE Rapid Mashup Challenge,
we encountered several issues that are described and discussed in this section. We
had some complications with the web APIs we used for this challenge. Firstly, we
encountered the issue that the Twitter API is limited to a fixed amount of 180
Tweets every 15 min. As a consequence, we had to severely reduce the number
of Tweets to be analyzed per article. However, this led to non-optimal results
because usually a large amount of Tweets is necessary to compute the sentiment
reliably. Furthermore, we identified weaknesses and limitations of the Twitter
search and the sentiment analysis. The Twitter search seems to return advertise-
ment, sometimes not even related to the topic we searched for. The sentiment
analysis only uses single words to compute a Tweet’s sentiment without involv-
ing its context. As a consequence, the results of the Mashup we presented varied
in their quality. We got some good results, however, some of the results were
obviously wrong or imprecise. Due to the fact that the cause of these issues can
be found in external components, the overall mashup approach could convince
in regard to functionality, flexibility and powerfulness.

Table 1 displays the runtime measurements we conducted on the demo imple-
mentation presented at the ICWE Rapid Mashup Challenge. As depicted,
the deployment and transformation time (which also contains the pattern-
implementation selection) is nearly the same for the two execution formats being
used. This can be explained by the fact that the transformation logic is very
14 https://uima.apache.org/.
15 http://alias-i.com/lingpipe/.

https://uima.apache.org/
http://alias-i.com/lingpipe/

28 P. Hirmer and B. Mitschang

Table 1. Runtime Measurements

Transf. Pattern Transformation Time Ø Deployment Time Ø Execution Time Ø

Robust 283,4 ms 193,8 ms 2382 ms

Time-Critical 222,8 ms 140,6 ms 23,4 ms

similar in both cases. The deployment of the executable model in the engine
is also similar for these pattern implementations, however, it strongly depends
on the location and efficiency of the engine being used. The main aspect, the
execution time, differs greatly when comparing the two implementations. The
robust execution has a high runtime due to the heavy-weight workflow engine
that is being used. Additional features such as orchestration, web service calls
and exception handling lead to a significant overhead. In contrast, the execution
of the time-critical Mashup enables a very low runtime. This can be explained
by the light-weight, JavaScript and NodeJS16-based implementation, executed in
the Node-RED runtime engine, which enables efficient processing of data flows.

We are aware that the benefits of our pattern-based transformation approach
do not out-stand in this use case, because there were no requirements such
as robustness or efficiency defined in this challenge. However, even though the
challenge use case was not completely suitable for our approach, FlexMash could
convince us as well as the jurors of the challenge.

11 Summary and Outlook

In this paper, we presented FlexMash, an approach and tool implementation for
flexible data mashups based on pattern-based model transformation. By subdi-
viding the data mashup into four abstraction levels, namely, the modeling, trans-
formation, execution and presentation level, we enabled an abstraction from the
non-technical, domain-specific modeling of data integration and processing sce-
narios to the technical execution and finally the visualization and storage of the
derived result. By doing so, we enabled a flexible approach through the use of
transformation patterns, which leads to a data mashup execution specific to user
requirements. As a consequence, we were able to create a generically applicable
data mashup solution, suitable for different data sources and data processing
operations usable in various use case scenarios. The evaluation of our approach
was done by a prototypical implementation that was presented during the ICWE
Rapid Mashup Challenge 2015 and by corresponding runtime measurements.

In the future, we are extending our pattern catalog as well as the correspond-
ing pattern implementations. Furthermore, we will introducemodeling patterns to
make the modeling of Mashup Plans even more domain-specific and easy-to-use.

Acknowledgment. This work is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) within the project SitOPT (Grant 610872).

16 https://nodejs.org/.

https://nodejs.org/

FlexMash – Flexible Data Mashups 29

References

1. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2012), Copenhagen, Denmark, pp. 211–220, June 2012

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Advanced Web Services,
pp. 527–549. Springer, New York, January 2014

3. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 692–695. Springer, Heidelberg (2013)

4. Breitenbücher, et al.: Combining declarative and imperative cloud application pro-
visioning based on TOSCA. In: IC2E, pp. 87–96. IEEE, March 2014

5. Breitenbücher, U., Binz, T., Leymann, F.: A method to automate cloud applica-
tion management patterns. In: Proceedings of the Eighth International Conference
on Advanced Engineering Computing and Applications in Sciences (ADVCOMP
2014), pp. 140–145. Xpert Publishing Services, August 2014

6. Cohn, D., et al.: Business artifacts: a data-centric approach to modeling business
operations and processes. Bull. IEEE Comput. Soc. Techn. Committee Data Eng.
32(3), 3–9 (2009)

7. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer, Heidelberg (2014)

8. Falkenthal, M., et al.: From pattern languages to solution implementations. In: Pro-
ceedings of the Sixth International Conferences on Pervasive Patterns and Appli-
cations (PATTERNS 2014), Venice, Italy (2014)

9. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U.,
Leymann, F.: SitRS - a situation recognition service based on modeling and exe-
cuting situation templates. In: Proceedings of the 9th Symposium and Summer
School on Service-Oriented Computing (SUMMERSOC 2015) (2015)

10. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology com-
pletion of TOSCA-based cloud applications. In: Proceedings des CloudCycle14
Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI).
LNI, vol. 232, pp. 247–258. Gesellschaft für Informatik e.V. (GI) (2014)

11. Hirmer, P., Reimann, P., Wieland, M., Mitschang, B.: Extended techniques for
flexible modeling and execution of data mashups. In: Proceedings of the 4th Inter-
national Conference on Data Management Technologies and Applications (DATA),
April 2015

12. Kassner, L.B., Mitschang, B.: MaXCept-decision support in exception handling
through unstructured data integration in the production context. An integral part
of the smart factory. In: Proceedings of the 48th Hawaii International Conference
on System Sciences (2015)

13. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

14. Künzle, V., et al.: PHILharmonicFlows: towards a framework for object-aware
process management. J. Softw. Mainten. Evol.: Res. Pract. 23(4), 205–244 (2011)

15. Meunier, R.: The pipes and filters architecture. In: Pattern Languages of Program
Design, pp. 427–440. ACM Press/Addison-Wesley Publishing Co. (1995)

16. OASIS: Topology and Orchestration Specification for Cloud Applications (2013)

30 P. Hirmer and B. Mitschang

17. OASIS: TOSCA Primer, November 2013. http://docs.oasis-open.org/tosca/
tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf

18. Reimann, P., et al.: Data Patterns to Alleviate the Design of Scientific Work Flows
Exemplified by a Bone Simulation. In: Proceedings of the 26th International Con-
ference on Scientific and Statistical Database Management (2014)

19. Reimann, P., Schwarz, H., Mitschang, B.: A pattern approach to conquer the
data complexity in simulation workflow design. In: Meersman, R., Panetto, H.,
Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM
2014. LNCS, vol. 8841, pp. 21–38. Springer, Heidelberg (2014)

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf

Interactive, Live Mashup Development Through
UI-Oriented Computing

Anis Nouri and Florian Daniel(B)

University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
anis.nouri-1@studenti.unitn.it, daniel@disi.unitn.it

Abstract. This paper proposes to approach the problem of developing
mashups by exclusively focusing on the Surface Web, that is, the data and
functionality accessible through common Web pages. Typically, mashups
focus on the integration of resources accessible through the Deep Web,
such as data feeds, Web services and Web APIs, that do not have own
UIs – next to data extracted from Web pages. Yet, these resources can
be wrapped with ad-doc UIs, suitably instrumented, and made accessible
through the Surface Web. Doing so enables a UI-oriented computing
paradigm that allows developers to implement mashups interactively and
in a live fashion inside their Web browser, without having to program any
line of code. The goal of this paper is to showcase UI-oriented computing
in practice and to demonstrate its feasibility and potential.

Keywords: UI-oriented computing · iAPIs · Mashups · Integration

1 Introduction

The most notable technologies today to publish and access data and functionality
over the Web are SOAP/WSDL Web services [2], RESTful Web services [12],
RSS/Atom feeds, and static XML/JSON/CSV resources. Alternatively, data
may be rendered in and scraped from HTML Web pages, for example, using tools
like Dapper (http://open.dapper.net) or similar that publish extracted content
again via any of the previous technologies. W3C widgets [4] or Java portlets [1]
are technologies for the reuse of small, full-fledged applications that also provide
for the reuse of user interfaces (UIs).

All these technologies (except the Web pages) are oriented toward program-
mers, and understanding the underlying abstractions and usage conventions
requires significant software development expertise. This makes data integration
a prerogative of skilled programmers, turns it into a complex and time-consuming
endeavor (even for small integration scenarios), and prevents less skilled users
from getting the best value out of the opportunities available on the Web.

UI-oriented computing (UIC [8]) takes a different perspective and starts from
the UIs of applications we all – programmers and users – are accustomed with
and that are free of developer-oriented abstractions. The research question UIC
poses is if and, if yes, which of the conventional Web engineering tasks can be
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 31–49, 2016.
DOI: 10.1007/978-3-319-28727-0 3

http://open.dapper.net

32 A. Nouri and F. Daniel

achieved if we start from the UIs of applications, instead of from their APIs or
services. The vision is to enable everybody to perform simple integration tasks
directly inside their Web browser, for example, the integration of data extracted
from different Web pages or the automation of repeated navigation actions.

In our prior work [9], we already investigated how to turn UIs into program-
mable artifacts and introduced the idea of interactive APIs (iAPIs), that is,
APIs users can interact with via their graphical Web UIs. In [8], we then studied
the specific case of data integration and described an end-to-end solution for UI-
oriented computing consisting of an iAPI annotation format, a graphical editor
for iAPI manipulation and integration, and a suitable runtime environment.

The goal of this paper is to showcase a more extensive case study (the one
developed in the context of the Rapid Mashup Challenge) and to provide insights
into the practical aspects of UI-oriented computing with the current prototype of
our development and runtime environments. In particular, the goal is to highlight
the benefits to both common users (interactive, live development without coding)
and programmers (programmatic UIC via a dedicated JavaScript library).

Next (Sects. 2 and 3), we introduce the concept and practice of UI-oriented
computing along with its underlying runtime infrastructure. In Sect. 4, we then
introduce the scenario we selected to approach the Rapid Mashup Challenge and
how we prepared for the Challenge. In Sect. 5, we then describe the step-by-step
development of the mashup scenario using the UI-oriented computing approach.
We conclude the paper with a discussion of a set of works that are related to the
proposal we push forward in this paper and a discussion of the findings, lessons
learned and future works.

2 UI-Oriented Computing

The idea of UIC is to propose a new kind of “abstraction”: no abstraction. The
intuition is to turn UI elements into interactive artifacts that, besides their pri-
mary purpose in the page (e.g., rendering data), also serve to access a set of
operations that can be performed on the artifacts (e.g., reusing data). Opera-
tions can be enacted either interactively, for example, by pointing and clicking
elements, choosing options, dragging and dropping them, and similar – all inter-
action modalities that are native to UIs – or programmatically.

The core ingredient, interactive APIs, come as a binomial of a microformat
for the annotation of HTML elements with data structures and operations and a
UIC engine able to interpret the annotations and to run UI-oriented data inte-
grations. The engine is implemented as a browser extension. A dedicated iAPI
editor injects into the page graphical controls that allow the user to specify data
integration logics interactively. The UIC engine maps them to a set of iAPI-
specific JavaScript functions implementing the respective runtime support. The
library of JavaScript functions can also be programmed directly by programmers,
without the need for interacting with UI elements. To users, the UI elements act
as proxies toward the features of the library. A UI-oriented computing middle-
ware complements the library; both are part of the browser plug-in. It takes care

Interactive, Live Mashup Development Through UI-Oriented Computing 33

Web browser

Web server

More news
 Get visible data
 Get full data
 Clone content

Database

Web serviceRuntime
environment

Data source

Programming interface

(a) A Web page with content made
accessible for reuse via an interactive API

(b) A Web server with content made
accessible for reuse via a REST/

SOAP Web service

Interactive API

Rendered HTML markup

Fig. 1. Analogy between visual, interactive APIs (iAPIs) and conventional RESTful or
SOAP Web services: iAPIs are executed inside the client browser and “programmed”
visually and interactively via graphical controls injected into the markup of the page.

of setting up communications among integrated applications (e.g., to load data
dynamically from third-party pages) and of storing interactively defined integra-
tion logics in the browser’s local storage. Programmers with access to the source
code of a page can inject their JavaScript code directly into it. If a potential
source page is not yet annotated to support iAPIs, it is possible to inject suit-
able annotations from the outside and to store them either locally on a remote
Web server for reuse and sharing.

For a better understanding, Fig. 1 shows a possible rendering of an iAPI
inside a Web page and also draws the parallelisms with conventional APIs, such
as RESTful or SOAP Web services. In [8], we discuss how the graphical controls
and standard user interactions like drag and drop, point and click, buttons,
and similar can be interpreted as programming intentions; the paper specifically
focuses on the case of data integration, the scenario we will approach in the
Challenge. The paper also provides a detailed description of the iAPI annotation
format used in the implementation described in this work.

3 UI-Oriented Computing Infrastructure

Figure 2 shows the internal architecture of the current prototype, which comes
as a Google Chrome browser extension. It comes with two core elements: a
UIC engine for the execution of UI-oriented data integration logics and an
iAPI editor for visual, interactive development. The UIC engine is split into

34 A. Nouri and F. Daniel

The Web

i

Browser window

UIC engine
(background script)

UIC engine
(content script)

Target page P2

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotations

HTML
augmenter

Loader

HTML 5
messages

loads resources

injects content

Event
handlers

interprets annotations

HTML
augmenter

iapi
JS library

Local
storage

Extension
lifecyle

manager

Annotation parsers

iAPI parser

RSS parserh-card parser

JSON parser

injects controls

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages
icon

iAPI editor
(injected script)

iAPI parser

react to user interactions

uses

JS
augmenter

injects JavaScript code

Fig. 2. Architecture of the UI-oriented computing environment as browser extension.

two parts: The background script provides core middleware services, such as
extension management (via its icon and pop-up menu), remote resource access,
data parsing, and local storage management. The content script implements the
iapi JavaScript library for programmatic UIC (the implementation is based on
http://toddmotto.com/mastering-the-module-pattern), injects JavaScript code
into the page under development, and provides for the rendering of data (using
the jQuery plug-in). Content and background script communicate via Chrome
system messages. The iAPI editor comes as JavaScript code that is injected into
the Web page under development. It parses the annotations of the iAPIs inside
the page, augments them accordingly with graphical controls, and injects the
event handlers necessary to intercept user interactions that can be turned into
JavaScript data integration logics (in turn, injected into the page by the content
script).

As for the features identified in the Call for Participation of the
Rapid Mashup Challenge (http://mashup.inf.usi.ch/challenge/2015/checklist.
html), UI-oriented computing and the current implementation of the prototyp-
ical computing infrastructure support the features summarized in Fig. 3. The
essence of UIC is that it aims at the development of applications without the
need to code any interaction with APIs or services of the Deep Web, therefore it

http://toddmotto.com/mastering-the-module-pattern
http://mashup.inf.usi.ch/challenge/2015/checklist.html
http://mashup.inf.usi.ch/challenge/2015/checklist.html

Interactive, Live Mashup Development Through UI-Oriented Computing 35

specifically focuses on UI mashups. Hybrid mashups, i.e., mashups that integrate
also application logic and/or data sources, are supported in that application logic
can be accessed by automating and making reusable the interaction with HTML
forms, and data can be extracted from Web pages (we will use both these fea-
tures in the Challenge). The core component types the approach focuses on are
UI components, the iAPIs, and they are integrated on the client-side inside the
Web browser. Some features of the runtime environment, e.g., the persistent
storage of external Web page annotations and the form automation service, are
hosted on a Web server but integrated inside the client browser. The respective
integration logic is UI-based, in line with the vision of UIC, and applications
are short-lining. That is, they are applications running inside the client browser,
and their runtime lifecyle only depends on the lifetime of the respective browser
window: once closed, the application is stopped.

Fig. 3. Summary of the features by the pro-
posed UI-oriented computing paradigm.

Regarding the features provided
by the iAPI editor (the “mashup
tool”), it targets end users and aims
to enable them to perform simple
data integration operations inter-
actively inside their own browser.
The JavaScript library for coding
iAPI reuse targets programmers.
The degree of automation is high
for end users (programming instruc-
tion are derived automatically from
their user interactions and configu-
rations), while coding the JavaScript
library is a manual effort. The live-
liness level of the resulting develop-
ment experience is that of dynamic
modification, that is, live develop-
ment inside the browser. The inter-
action technique proposed is WYSIWYG for the users of the iAPI editor (the
results of all integration actions are rendered immediately); the recording of user
interactions with forms for their automation follows a programming by demon-
stration approach, which is however again visual and interactive, just like the
iAPI editor. Programmers, instead, can rely on a textual DSL implemented as
a set of functions provided by the JavaScript library.

4 The Challenge: Scenario and Preparation

Given the set of APIs that can be used in the context of the Rapid Mashup Chal-
lenge (Google Maps, Youtube and the New York Times) and the described goals
and implementation of the UI-oriented computing approach, we chose to partic-
ipate in the Challenge with a data integration scenario. Next, we describe the
target mashup in more details and explain how we prepared for the Challenge.

36 A. Nouri and F. Daniel

Translation of

Fig. 4. The target data mashup running in the browser.

4.1 Mashup Scenario

We explain the target mashup by means of its screen shot in Fig. 4. The appli-
cation is a data integration that takes latest technology news from the New
York Times (http://www.nytimes.com/) and the Discover Magazine (http://
discovermagazine.com/) – news are represented by their title, author and sum-
mary – and also provides a translation of the summary from English to Italian
using the Yandex Translation API (https://tech.yandex.com/translate/). The
two data sources are integrated via a common merge/union operation, while the
translation requires iterating over each news article and invoking the translation
Web service for each summary. The result is rendered inside the target page of
the developer by means of a common HTML table.

http://www.nytimes.com/
http://discovermagazine.com/
http://discovermagazine.com/
https://tech.yandex.com/translate/

Interactive, Live Mashup Development Through UI-Oriented Computing 37

4.2 Preparation of Challenge

Mashing up the two data sources and the translation API in the scenario with
the proposed UIC paradigm requires some preparation. In general:

1. Implementing suitable UIs for all resources. For data and functionality to be
extracted from Web pages, the UI is already there. For data feeds, services
or APIs, this requires new simple Web front-ends that provide access to the
resources’ features, e.g., tables visualizing data from feeds or forms allowing
users to operate a remote service or API.

2. Annotating all UIs for reuse. For existing Web pages this requires inject-
ing annotations into the markup of the pages, e.g., using the interactive iAPI
annotator (developed in parallel to the core UI-oriented computing infrastruc-
ture) that allows one to inject iAPI annotations into a page at the client-side
at page loading time. Newly developed front-ends can directly be annotated
in their source markup.

Specifically, this means that we need to annotate the Discover Magazine to
enable the extraction of news and to implement an ad-hoc HTML form providing
access to the translation API. In addition, we also need to implement an empty
target page that will host the integrated data and translations. We do not anno-
tate the New York Times in advance, since we also would like to demonstrate
the use of the interactive iAPI annotator during the Challenge. We describe the
preparation of the other parts next, starting from the target page.

The screen shot in Fig. 5 illustrates the implementations of the target page.
The top part is the rendering of the page inside the browser; the lower part
reports the source HTML markup of the page. As can be seen in the code,
the page does not have any own data to be rendered, and the gray shaded div
element is marked as an interactive API by the annotation class="h-iapi".
This simple annotation is enough to turn the div into a UI element users can
interact with. In our case, this is the UI element that will host the integrated
data. Nothing more is needed to implement the target page.

Figure 6, instead, illustrates the annotated start page of the Discover Mag-
azine. The annotation is achieved by means of the iAPI annotator tool, which
allows one to annotate interactively a page and to inject annotations on the fly
each time the annotated page is accessed. This means that the annotation of
the magazine does not require us to download the page and to store it locally;
instead only the annotations are stored in a dedicated Web-accessible repository
and reused at each access to the page. The specific annotations used to extract
news from this page are (used in the class attribute of HTML elements):

– h-iapi: identifies the area from which to extract content;
– e-data:News: categorizes the identified iAPI as a data source and labels it as

“News;”
– e-item:Article: identifies the DOM nodes that host individual news items

and assigns the label “Article” to them;

38 A. Nouri and F. Daniel

Empty target iAPI

Annotation of empty target iAPI in source HTML markup

Fig. 5. The empty target mashup running in the browser.

– p-attr:Title, p-attr:Author, p-attr:Summary: identify the different com-
ponents that make up a news item (the attributes of the item) and labels
them as “Title”, “Author” and “Summary.”

The same annotation structure will be used during the Challenge to anno-
tated the New York Times news items. This allows us to automatically match
items at data integration time without the need for transforming input data
structures and to save time during the live demonstration.

Finally, Fig. 7 shows the HTML form developed on top of the Yandex Trans-
lation API (a RESTful Web service). Since we do not directly want to interact
with the API itself, the form is needed to make its functionality available through
the Surface Web. The form comes with three input fields (text to translate and
the input/output languages) that allow the user to translate text by invoking
the translation API in the background on behalf of the user. The result is shown
on another page after hitting the Translate button. In the next Section, we will

Interactive, Live Mashup Development Through UI-Oriented Computing 39

Annotated interactive API The browser extension detects the presence of the iAPI

Fig. 6. The annotated Discover Magazine with injected graphical controls.

see how this form can be programmed by example and turned into a piece of
reusable business logic for the development of the target mashup.

5 The Challenge: Live Mashup Development

Given the empty target page, the annotated Discover Magazine and the HTML
form that provides interactive access to the translation API, we are ready for
the development of the mashup to be showcased in the Challenge. The available
time to showcase the UI-oriented computing approach and to develop the mashup
outlined above is 10 min. We structure the demo into the following steps:

1. Annotation of the New York Times technology news
2. Fetching of news from the New York Times
3. Fetching of and merging with news from the Discover Magazine
4. Rendering of integrated data suing a table representation
5. Programmatic addition of a new column to host the translations
6. Recording of user interactions with the translation form for reuse

40 A. Nouri and F. Daniel

Standard HTML form with iAPI
annotations aiding the recording
of user interactions

Fig. 7. The auxiliary HTML form developed on top of the Yandex translation API to
enable UI-oriented reuse.

7. Programmatic iteration over news and reuse of recorded interactions
8. Rendering of integrated dataset

Next, we describe the demo showcased during the Mashup Challenge step by
step and provide the necessary explanations with the help of screen shots.

Figure 8 illustrates the annotation process for the New York Times technology
news (❶). We specifically focus on the “More news” area, which is well structured
and allows us to easily annotate and extract news items. Clicking on the “i” icon
with the pencil in the top right corner of the browser opens the overlay window
shown in the lower right part of the screen shot. This window serves as control
console for the annotation process. The process is as follows: First, the user
identifies the HTML area of interest (this is highlighted in the left-hand side of
the screen shot by the rectangular box surrounding the news to be extracted).
Then, the user identifies the DOM element that hosts an individual news article
(represented by the green-shaded area in the top part of the highlighted area
inside the page). The annotator tool automatically identifies all DOM elements
with similar structure. Next, the user identifies the individual attributes of each
news item by selecting them inside one of the identified news items. Once all
attributes are identified, the control panel allows the user to label the data
source (“News”), the items (“Article”) and the attributes (“Title”, “Author”,
“Summary”). Finalizing the annotation process saves the annotations using a

Interactive, Live Mashup Development Through UI-Oriented Computing 41

Control panel for the annotation of identified HTML elements

Selected HTML element of the DOM tree

Fig. 8. Interactive annotation of the New York Times Technology News site (Color
figure online).

dedicated Web service and injects them into the page. The newly created iAPI
is ready for data extraction.

The reuse of the identified news articles (❷) is now supported via a simple
drag and drop action. Figure 9 illustrates the process. When the user moves the
mouse over the area marked as iAPI inside the New York Times page, the black
graphical controls pop up and allow him/her to pick the data by dragging and
dropping the “Get data” menu entry of from the injected menu. Since the target
iAPI is still empty, this process fills the iAPI with the extracted data.

The next step of the data integration process (❸) requires the user to repeat
a similar drag and drop action using the Discover Magazine, as illustrated in
Fig. 10. The key difference from the first action is that now at drag release time

42 A. Nouri and F. Daniel

Drag and drop action
from one page to another

Fig. 9. Dragging and dropping news articles from the New York Times into the target
page fills the target iAPI with extracted data and applies a standard visualization
format, e.g., a list or table layout.

Drag and drop action + selection of data integration operation

Fig. 10. Dragging and dropping news articles from the Discover Magazine into the
target page causes the target iAPI to ask the user which action he/she wants to perform,
given that there are already data in the iAPI.

Interactive, Live Mashup Development Through UI-Oriented Computing 43

the target iAPI allows the user to specify how to disambiguate his/her action (in
fact, multiple interpretations of a drop action on an iAPI that already contains
data are possible, e.g., join, merge, substitute, etc.). In our scenario, the user
chooses to “merge” the new data with the one already fetched from the New York
Times, specifically using a “full union” operator (there is no need to eliminate
possible duplicates, as the two data sources are too different and it is unlikely
that there will be two articles with exactly the same title, author and summary).
A final selection of the table layout from the injected menu of the target iAPI
reformats the data fetched from the two data sources as illustrated in the top
part of Fig. 11 (❹).

JavaScript instruction adding a new column to the identified iAPI

The new, empty column added to the table

Fig. 11. Programmatic extension of the table with a new column for the translation

44 A. Nouri and F. Daniel

To showcase how programmers can leverage on the proposed UI-oriented
computing paradigm, we now switch off the interactive iAPI editor that injects
graphical controls using the pop up menu that opens when clicking on the exten-
sions logo in the top right of the browser window and turn on the JavaScript
console of the browser. This allows the skilled programmer to input UI-oriented
programming instructions in JavaScript and to modify the mashup rendered in
the browser window on the fly.

The screen shot in Fig. 11 illustrates the first step of the manual development
process, i.e., the expansion of the table in the browser with a new column able
to host the translations of the summaries (❺). The JavaScript console reports the
respective programming instruction. The selector $("#1") is the jQuery (https://
jquery.com/) selector that uniquely identifies the target iAPI inside the target page
(see Fig. 5). The function addAttribute injects the new column into the iAPI,
both into its in-memory data object and its graphical rendering inside the page.

The next step is the translation of the summaries. Doing so requires first
recording an exemplary interaction with the translation HTML form we prepared
before the Challenge (❻). This process is illustrated in Fig. 12. The recording

Exemplary inputs

Recording control panel

Fig. 12. Recording user interactions with the HTML form providing access to the
Yandex translation service. The controls at the right allow the user to start/stop the
recording and to identify variable inputs to be filled at invocation time.

https://jquery.com/
https://jquery.com/

Interactive, Live Mashup Development Through UI-Oriented Computing 45

control panel allows the user to start and stop the recording and to mark input
fields as either constants (the values provided as examples during the recording
will also be used when replaying the recorded interactions) or variables (the val-
ues of these can be provided as dynamic inputs each time recorded interactions
are replayed). A click on the Translate button invokes the Yandex translation
service and renders the translated text. This latter can now be indicated as out-
put of the recorded interaction process. A click on the Stop button terminates
the recording and opens a pop-up window that provides the user with a simple
script that can be used to invoke the recorded user interactions. This script is
shown in Fig. 13 in the JavaScript console (the string in red) and used inside an
iapi.each iterator that scans all news articles in the table and allows the invo-
cation of the iapi.fill Form function that mimics the filling of the translation
form for each summary found in the table (❼). The final re-render instruction
in the JavaScript console renders the retrieved translations (❽), and closing the
console brings us to the final mashup already shown in Fig. 4.

Re-rendering of iAPI

Iteration and invocation of form fill service

Newly added column
filled with translations

Fig. 13. Iteration over all articles and invocation of the translation form for each
summary with final re-rendering of the target iAPI (Color figure online).

46 A. Nouri and F. Daniel

The eight described steps showcase how the UI-oriented computing paradigm
has been implemented so far for both users and programmers. The video available
at http://youtu.be/yEtjIO3oMsI shows the screen cast of the demonstration and
provides better insight into the subjective experience of both types of developers.

6 Related Work

The key idea of UI-oriented computing is to interpret standard UI elements –
like the ones already in use for the implementation of Web UIs – as constructs
to express generic computation logics. Traditionally, computation logic for the
Web is expressed either via programming languages, such as Java, Python, PHP,
JavaScript, and similar, or via model-driven development formalisms [6]. Orthog-
onally to these paradigms, Web services [2,12] have emerged over the last decade
as one of the most prominent Web technologies that influenced integration on
the Web in general. Their focus, however, is on the application logic layer, not
the presentation layer (the UIs) of applications.

Research on the reuse of UIs has mostly focused on the identification and def-
inition of UI-centric component technologies, such as standard W3C widgets [14]
and Java portlets [13] or proprietary formats [15], and the development of suit-
able integration environments [5,7]. The former essentially apply the traditional
programmer perspective to UIs and still require integration at the application
logic layer, e.g., via Java or JavaScript. The latter generally follow a black-box
approach in the reuse of UIs: components are small, stand-alone applications
and they are either included or excluded in a composition/workspace. The Web
augmentation approach by Diaz et al. [11] is a partial exception: it allows for a
fine-grained reuse of data among websites, starting from their UIs. The approach
extracts data elements of limited size (individual labels or small fragments) with-
out requiring additional annotations; on the downside, the approach still requires
programming knowledge. None of these UI-centric approaches are however able
to implement the data integration scenario approached in this paper.

Mashups [10] are the approach that comes closest to the described scenario;
in fact, the discussed data integration can be seen as a mashup, in particular, a
data mashup. It could, for instance, be approached with the help of Yahoo! Pipes,
JackBe Presto, or similar data mashup tools. Pipes (http://pipes.yahoo.com),
for example, proposes a model-driven paradigm that starts from the assumption
that the data to be integrated are available as RSS/Atom feeds or XML/JSON
resources. The two lists of news articles integrated in our example scenario could
thus be merged by selecting and configuring dedicated built-in constructs; the
translation of the summaries would however require some manual development
of a back-end Web services compatible with Yahoo! Pipes data passing logic (in
complete lists, not individual items). The result would then be accessible as RSS
feed via Yahoo! Pipes. Although the described logic is very similar to the one
of our scenario, it still lacks the rendering and embedding of the result into the
user’s website, a task that requires again considerable manual development.

To aid both the extraction of content from HTML markup and the transpar-
ent invocation of backend Web services, this paper proposes the use of explicit

http://youtu.be/yEtjIO3oMsI
http://pipes.yahoo.com

Interactive, Live Mashup Development Through UI-Oriented Computing 47

annotations, similar to microformats (http://microformats.org). If these are not
provided natively inside of the markup of a source page (as in the case of the
form we annotated for the reuse of the RESTful translation service), the iAPI
Annotator provides the necessary means to attach them from the outside to
third-party pages (as in the case of the New York Times). The approach does
not yet focus on the annotation of data with semantics, as proposed by the
Semantic Web initiative [3]. The goal of the annotations in this work is to pro-
vide immediate functional benefits to the consumers of data: annotations in fact
allow the injection of graphical controls that enable the visual UIC paradigm.

7 Discussion and Future Work

The demo showcased in the context of the Rapid Mashup Challenge and
described in this paper is the development of a simple data mashup follow-
ing a UI-oriented computing approach. The idea of the approach is to leverage
on the graphical UIs of applications as programming artifacts, to extend them
with additional, programming-specific controls, and to allow developers (both
common users and programmers) to express data integration operations inter-
actively inside the browser without having to write any line of program code.
The idea of UI-oriented computing and interactive APIs is still in its infancy.
Yet, the demo – although apparently simple – showed a data integration sce-
nario that is not trivial in general but that was solved in a fashion that does not
require programming skills (the first part of the demo) or manually program-
ming low-level interactions with Web services or data extractors (second part of
the demo). The benefits of the approach therefore span from common users to
skilled programmers.

There are however still some limitations that come with the showcased imple-
mentation of the UI-oriented computing infrastructure and the iAPI editor:

– The current implementation of the editor does not yet support the visual
specification of iterators and the reuse of recorded user interactions for the
automation of forms. We turned this shortcoming in the demo into an advan-
tage and used it to also showcase how programmers can leverage on the pro-
posed paradigm. This was possible thanks to the ready implementation of
the respective functionality in the iapi JavaScript library. The next step is
however making the these features available also to regular users through the
interactive iAPI editor.

– The interaction paradigm proposed in this paper and the demonstration to
derive programming intentions from user interactions is a best-effort devel-
opment. We did not yet have time to study different types of interpretations
(e.g., whether a drag and drop action better represents a data fetching action
or a layout action) or different interaction paradigms (e.g., without drag and
drop actions, with contextual menus that can be opened with a right-click,
voice interactions, etc.). However, the current implementation of the described
software infrastructure already supports the independent development of dif-
ferent editors on top of the runtime environment, which will ease these kinds
of investigations in future developments.

http://microformats.org

48 A. Nouri and F. Daniel

– The annotation format proposed so far to equip UIs with interactive pro-
gramming capabilities, the interactive APIs, does not leverage on any form
of semantic knowledge. The format is inspired by the microformats 2 pro-
posal (http://microformats.org/) and provides syntactic cues for the runtime
environment only. We are aware that especially targeting end users without
specific programming skills may require better assistance mechanism, able to
provide them with as much aid as possible. Doing so may require using also
semantic annotations, e.g., in order to automate some data integration tasks
(most notably, data disambiguations).

– The UI-oriented computing features supported so far are mostly focused on
data integration tasks, with the exception of the user interaction recorder that
allows interpreting standard HTML forms as reusable pieces of business logic.
The idea of UI-oriented computing is however much broader and comprises
also use cases for cloning complete UI widgets (markup, styles and function-
ality), automating short-living and long-living processes (e.g., the parametric
execution of repeated navigation actions), and the establishment of commu-
nications among integrated widgets or UI elements. These advanced use cases
are part of our future work.

As these considerations point out, UI-oriented computing is not a pure engi-
neering problem only. Identifying the right set of operations and use cases that
make sense in a UI-only context, understanding how to best interpret user inten-
tions, designing effective interaction paradigms, etc. are all HCI challenges that
need good answers on their own. Of course, the engineering of the necessary
software support inside and outside of the browser requires profound software
engineering and Web development skills. The challenge of the proposed idea is
finding the right answers in both areas and to bring them together profitably.
The final vision of iAPIs and UI-oriented computing is proposing an alternative
to the current interpretation that programming is only for skilled programmers
that can only be achieved by means of abstractions and constructs that only
programmers are familiar with and can master. That is, the vision is to make
“programming” accessible to an increasingly wider area of “developers.”

What makes us confident about the potential success of UI-oriented comput-
ing is that, although it’s final vision targets non-programmers, it also immedi-
ately provides tangible benefits the programmers: The deployment of iAPIs is
contextual to the deployment of their host application, and they do not require
separate deployment or maintenance (like, for instance, the RSS feeds published
by the New York Times in parallel to the main Web site). The documentation
of iAPIs comes for free; the UI and the injected graphical controls already tell
everything about them. The retrieval of iAPIs does not ask for new infrastruc-
ture or query paradigms; since iAPIs are an integral part of the Surface Web, it
is enough to query for desired data or functionality via common Web search; if
Google indexes a Web site, its iAPIs are indexed too.

The iAPI microformat is maintained via the W3C Interactive APIs Com-
munity Group (http://www.w3.org/community/interative-apis), the browser
extension on https://github.com/floriandanielit/interactive-apis.

http://microformats.org/
http://www.w3.org/community/interative-apis
https://github.com/floriandanielit/interactive-apis

Interactive, Live Mashup Development Through UI-Oriented Computing 49

References

1. Abdelnur, A., Hepper, S.: Java Portlet Specification, Version 1.0. Technical Report
JSR 168, Sun Microsystems Inc., October 2003. http://download.oracle.com/
otndocs/jcp/PORTLET 1.0-FR-SPEC-G-F/

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures, and Applications. Springer, Heidelberg (2003)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

4. Caceres, M.: Packaged web apps (widgets) - packaging and xml configuration, 2nd
edn. W3C Recommendation (2012)

5. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.:
DashMash: a mashup environment for end user development. In: Auer, S., Dı́az, O.,
Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer,
Heidelberg (2011)

6. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kauffmann, San Francisco (2002)

7. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J.I.,
Chepegin, V.I., Fornas, J.A., Wilson, S., Kögler, C., Chang, H.: End-user-oriented
telco mashups: the OMELETTE approach. In: WWW 2012 (Companion Volume),
pp. 235–238 (2012)

8. Daniel, F.: Live, personal data integration through UI-oriented computing. In:
Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 479–497. Springer, Heidelberg (2015)

9. Daniel, F., Furlan, A.: The interactive API (iAPI). In: Sheng, Q.Z., Kjeldskov, J.
(eds.) ICWE 2013 Workshops. LNCS, vol. 8295, pp. 3–15. Springer, Heidelberg
(2013)

10. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer,
Heidelberg (2014)

11. Dı́az, O., Arellano, C., Azanza, M.: A language for end-user web augmentation:
caring for producers and consumers alike. ACM Trans. Web 7(2), 9:1–9:51 (2013)

12. Fielding, R.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. Dissertation, University of California, Irvine (2007)

13. Hepper, S.: Java Portlet Specification, Version 2.0, Early Draft. Technical
Report JSR 286, IBM Corp., July 2006. http://download.oracle.com/otndocs/jcp/
portlet-2.0-edr-oth-JSpec/

14. Web Application Working Group. Widgets Family of Specifications. Technical
report, W3C, May 2012. http://www.w3.org/2008/webapps/wiki/WidgetSpecs

15. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: WWW 2007, pp. 923–
932 (2007)

http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/
http://download.oracle.com/otndocs/jcp/PORTLET_1.0-FR-SPEC-G-F/
http://download.oracle.com/otndocs/jcp/portlet-2.0-edr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/portlet-2.0-edr-oth-JSpec/
http://www.w3.org/2008/webapps/wiki/WidgetSpecs

SmartComposition: Extending Web Applications
to Multi-screen Mashups

Michael Krug(B), Fabian Wiedemann, and Martin Gaedke

Technische Universität Chemnitz, Chemnitz, Germany
{michael.krug,fabian.wiedemann,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The overall objective of UI mashups is to enable non-experts
to create rich web applications. While current approaches focus on cre-
ating UI mashups running on a single screen, we propose SmartCom-
positionto enable local developers to create multi-screen mashups. We
present our enhanced SmartComponents, which are based on the lat-
est developments of the family of W3C standards called “Web Compo-
nents”, as part of our SmartCompositionapproach. SmartComponents
provide loosely coupling and support both single- and multi-device usage
scenarios by extending Web Components with dedicated communica-
tion and synchronization features. We support multiple types of Smart-
Components, not limiting them to user interface components. In con-
trast to other approaches, SmartComponents are independent, encapsu-
lated, configurable and programmable, which ensures hassle-free reuse in
any HTML5 web application. SmartCompositionprovides an event-based
communication infrastructure which enables inter-component communi-
cation as well as message exchange across multiple screens utilizing a
WebSocket-based synchronization service.

Keywords: Component-based web engineering ·Web components ·Dis-
tributed multi-device web applications · Web application development ·
Composition · Reusable components ·Multi-screen mashup · HTML5

1 Introduction

Within the last years, the amount of tools for creating user interface mashups (UI
mashups) significantly increased. The overall objective of UI mashups is to enable
non-experts to create rich web applications [2]. For solving complex tasks an UI
mashup consists of several components that offer a limited functionality and are
combined and aggregated. While other approaches for creating UI mashups focus
on automatic or semi-automatic mashup creation and deployment to desktop as
well as mobile screens, our approach eases the creation of UI mashups that run
distributed across several screens, so called multi-screen mashups.

The purpose of SmartComposition is to enable local developers to create multi-
screen mashups. We assume that a local developer is familiar with basic web
technologies, such as HTML5 and CSS [1]. Thus, our approach is based on these
technologies and does not require advanced knowledge of JavaScript. Furthermore,
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 50–62, 2016.
DOI: 10.1007/978-3-319-28727-0 4

SmartComposition: Extending Web Applications to Multi-screen Mashups 51

we want to achieve a high level of reuse of the developed components. This requires
loosely coupling and a suitable communication infrastructure tominimize the over-
head when integrating them. For enhancing existing web applications to multi-
screen mashups, SmartComposition needs to be easily integrable.

In the last years, with the rapid advancement of JavaScript, a lot of client-
side components were provided as JavaScript libraries or snippets. Mostly, their
functionality is added to standard HTML elements by calling special JavaScript
functions that extents them. Those elements are then used as containers to host
more dynamically created HTML elements. Common examples would be image
slideshows, lightboxes, map sections or enhanced user interface components. Well
known libraries that support such components are e.g., jQuery and Dojo.

We observed several limitations and problems using those approaches: First of
all, those components cannot beuseddirectly in theHTMLcode.Aplaceholder ele-
ment has to be added to the document on which some JavaScript code is applied.
Secondly, such solutions require an advanced knowledge of JavaScript and cumber-
someconfigurationand instantiation is needed.Furthermore, since the components
are created in the sameDOM(DocumentObjectModel) tree as the host document,
a high risk of conflicts with existing elements and style definitions is present.

Most of the currently existing JavaScript components are designed to work sep-
arately. A mashup-like scenario, where the composition of multiple components
that work together forms a new application, is not tackled. In such scenarios a uni-
form way to exchange data between components is required. Former research dealt
with the integration of inter-widget communication in existingwidgets approaches,
like W3C or OpenSocial Widgets [7]. Unfortunately, these widget types need to be
deployed and hosted in portal environments like Apache Rave or Apache Shindig.

The rest of this paper is organized as follows: First, we outline the context and
goals of the SmartComposition approach. In the next chapter, we present related
work. Section 4 will describe the SmartComposition approach itself. In Sect. 5 the
requested feature checklist is provided. Finally, we describe our preparation for
the mashup challenge, the demonstration itself and conclude our paper.

2 Context and Goals of the SmartComposition Approach

The focus of our SmartComposition approach is the client-side composition with
an emphasis on user-interface components. To make our approach stand out
from other solutions, we set the goal to support and ease the development of
multi-screen capable web applications. We want to eliminate the requirement of
many other approaches that need a dedicated runtime environment and enable
usage in any standard HTML5 website or application. Therefore, we aim to
use only client-side JavaScript and standard Web technologies. We do not want
to limit the types of components in our approach. Thus, our solution should
enable the development and usage of UI as well as data or logic components.
A combination of all three types should also be possible. In contrast to existing
UI mashup approaches, where components are mostly called widgets, we always
use the term component. This is justified by not limiting our component types

52 M. Krug et al.

to user interface elements. To ease the development of multi-screen capable web
applications, we want to provide not only inter-component communication but
also a easy to integrate multi-device message exchange functionality.

How we reached our goals will be presented in the following chapters, after
we state related approaches for client-side component-based web development.

3 Related Work

Since we especially focus on the component technologies for creating mashups
by composition, we will state related work in the field of component technologies
in the Web.

jQuery1 provides a plugin system that enables developers to create extended
HTML elements. In most cases the instantiation and configuration is done by
selecting the desired element and applying the provided plugin constructor to
it. Elements are inserted in the document’s DOM and therefore are not encap-
sulated. Communication features are not included.

Dojo2 focuses on a more comprehensive approach and provides a UI library
called Dijit. Dijit is a widget system layered on top of Dojo. Dojo widgets are
instantiated and configured using the “data-dojo-type” and “data-dojo-props”
attributes in the HTML markup. The template content in inserted directly in
the document’s DOM what increases the risk for conflicts. Dojo provides a topic-
based publish/subscribe mechanism for communication purposes.

W3C Widgets3 (also called Packaged Web Apps) and OpenSocial Widgets4

are open web standards. Since they need to be executed in special platform envi-
ronments, such as Apache Rave5 or Apache Shindig6, the acceptance and usage is
limited. They provide encapsulation by running in iFrames and can exploit inter-
widget-communication features for composing applications like mashups. The
integration of OpenAjax Hub7 into Apache Rave is an approach to achieve com-
munication between those widgets. The DireWolf framework [4] is one solution
that integrates multi-device communication into the Apache Shindig
platform.

Another approach is MultiMasher [3]. MultiMasher is a visual tool for multi-
device mashups using a direct manipulation interface where a user can select
existing UI elements and send them to connected devices. There, the elements
will be mashed up with the content that has been sent. Thus, in contrast to the
widget approaches, MultiMasher does not support separated components but
relies on existing UI elements.

1 http://jquery.com.
2 http://dojotoolkit.org.
3 http://www.w3.org/TR/widgets/.
4 http://opensocial.atlassian.net/wiki/display/OSD/Specs.
5 http://rave.apache.org/.
6 http://shindig.apache.org/.
7 http://www.openajax.org/member/wiki/OpenAjax Hub 2.0 Specification.

http://jquery.com
http://dojotoolkit.org
http://www.w3.org/TR/widgets/
http://opensocial.atlassian.net/wiki/display/OSD/Specs
http://rave.apache.org/
http://shindig.apache.org/
http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification

SmartComposition: Extending Web Applications to Multi-screen Mashups 53

4 The SmartComposition Approach

The SmartComposition approach is based on the idea of creating mashups by
composing loosely coupled components using standard web technologies. In [6],
Krug et al. proposed a component-based architecture for multi-screen web appli-
cations. We advance the presented ideas by using the Web Components tech-
nologies for defining and implementing SmartComponents.

We propose a uniform way of defining, implementing and composing loosely
coupled independent components by using the new set of W3C standards called
Web Components. Thus, we support developers in handling those new technolo-
gies by providing an extended version of the Polymer framework8 that wraps
the creation of Web Components in an easy-to-use declarative syntax and is
enriched with new communication features based on an event-driven architec-
ture. Additionally, we present an optional messaging service that seamlessly
integrates into an application developed with the SmartComposition approach
and provides message exchange between multiple devices.

The major benefit of using the proposed technologies for creating modern
widgets is that no dedicated portal software is needed to host such composed
applications. This enables the integration of SmartComponents into common
content management systems like WordPress, Drupal or Joomla, as well as in
any other HTML5 based website.

To make multi-screen mashup applications more interactive, SmartCompo-
nents can be configured to be easily movable by drag-and-drop. Additionally,
SmartComponents can also be moved to other connected screens with their
state preserved. SmartComponents are stateful DOM objects and provide script
interfaces. Thus, developers are able to influence the behavior of the used com-
ponents on runtime with standard HTML5 DOM methods. SmartComponents
can be added, removed and reconfigured at any time. By making SmartCompo-
nents available as HTML elements, users that are familiar with HTML but do
not have knowledge in programming are also able to create mashups.

In the following section we will guide through the structure of SmartCompo-
nents and their technological background.

4.1 Structure of SmartComponents

SmartComponents exploit a set of new W3C technologies calledWebComponents,
consisting of Templates, Shadow DOM, Custom Elements and HTML Imports.
The first technology called Templates (http://w3.org/TR/html5/scripting-1.html)
defines chunks of markup that are inert but can be activated for use later.
That means, the content of the template element is parsed by the parser, but it is
inactive and not rendered. Within the <template> tags normal HTML markup
is used to describe the structure of the components static content. When creating
the component, the template’s content is copied to an adjunct DOM tree called
Shadow DOM (http://w3.org/TR/shadow-dom/). The Shadow DOM is the second

8 http://www.polymer-project.org.

http://w3.org/TR/html5/scripting-1.html
http://w3.org/TR/shadow-dom/
http://www.polymer-project.org

54 M. Krug et al.

new W3C standard in the set of Web Components. This adjunct tree of DOM
nodes can be associated with an element, but does not appear as a child node of
the element. Instead, the subtree forms its own scope. Due to the different scope
of the Shadow DOM, the styles, names or IDs of elements in the root document
do not interfere with the definitions in the component.

The template is followed by an optional style section, where the look of
the component’s content can be defined. Existing style sheet definitions can be
reused by including the CSS @import statement. To address the custom element
that is hosting the component’s content, the new pseudo-class :host is provided.
Due to the previously mentioned scoping, the developer has not to worry about
conflicting style definitions, class names or IDs.

New SmartComponents are defined using a declarative syntax provided by
the Polymer framework. An example definition file for a SmartComponent is
shown in Listing 1.

<dom−module id=”wikipedia−ex t r a c t ”>
<s t y l e>

: h o s t { d i s p l a y : i n l i n e−block ; }
</ s t y l e>
<template>

<div id=” conta ine r ”></ div>
</ template>
<s c r i p t>

Polymer ({
i s : ’ wik ipedia−ex t r a c t ’ ,
b ehav i o r s : [Polymer . SmartComponentBehavior] ,
p r o p e r t i e s : {

query : {
type : Str ing ,
r e f l e c tToAt t r i b u t e : true ,
ob s e r v e r : ’ queryChanged ’

}
} ,
queryChanged: func t i on () {

// Request to f e t ch data from Wikipedia
} ,
a t t a ched : func t i on () {

t h i s . s ub s c r i b e (’ wik i ’ , t h i s . queryReceived) ;
} ,
detached : func t i on () {

t h i s . unsubscr ibe (’ w ik i ’ , t h i s . queryReceived) ;
} ,
queryRece ived : func t i on (message) {

t h i s . query = message . data ;
}

}) ;
</ s c r i p t>

</dom−module>

Listing 1. Definition file of a SmartComponent

SmartComposition: Extending Web Applications to Multi-screen Mashups 55

This declarative description handles all necessary actions to create a custom
element and setting up event bindings. A developer can define any number of
properties that can be configured with type settings, observer functions and e.g.
reflection to attributes. By using the behaviors property to inject our Smart-
ComponentBehavior, we can provide our later described extensions for inter-
component communication without modifying the Polymer framework itself.
This supports the maintainability of both our extension and the framework.

SmartComponents are new types of DOM elements that can be defined
by developers. They are stateful DOM objects and provide script interfaces.
New components can be easily integrated in a website by using HTML Imports
(http://w3.org/TR/html-imports/). The import statement uses the <link> tag to
load external definition files (see Listing 2). The new custom element tag can
be instantly used in the HTML markup after importing the component resource
file. SmartComponents are registered as new HTML elements. Thus, they can
be used them in the same way as other standard elements. The usage requires
no knowledge of JavaScript. Configuration is possible through attributes or child
elements.

<html>
<head>

<l ink rel=” import ”href=”smart−component . html”>
</head>
<body>

<smart−component some−a t t r=”some−value ”></smart−component>
</body>
</html>

Listing 2. Usage of SmartComponents in HTML5 websites

In the following section we will describe the communication aspect we inte-
grated into the components of the SmartComposition approach.

4.2 Inter-Component Communication

Loosely coupling of components is important to ensure reuse and enable new
compositions. To support message exchange between SmartComponents we
therefore propose an event-driven communication channel using a topic-based
publish/subscribe mechanism. Figure 1 provides a simplified overview of the
inter-component and inter-device communication architecture of the SmartCom-
position approach.

Components can consume and produce events described by a topic and the
attached data. The publish/subscribe message bus is implemented using the
JavaScript’s native eventing system. Messages are sent using a custom event
and received by adding an event listener for that custom event. The payload can
be structured objects or simple values.

As it is displayed in Listing 1, the subscribe method should be called within the
life-cycle event attached, which means when the component is added to the DOM.

http://w3.org/TR/html-imports/

56 M. Krug et al.

Fig. 1. Simplified inter-component and inter-device communication architecture

But this is not a limitation. In fact, it can be called anytime after attaching. To stop
theSmartComponent fromconsumingevents after it is removed fromtheDOM, the
unsubscribe method should be called within the detached life-cycle event. A Smart-
Component can have any number of subscriptions to any topic. Messages can be
sent using a publish(topic, data) method that is available in the SmartComponent
context. All communication functionality is injected using the behaviors property
and contained in our implemented SmartComponentBehavior.

Byemploying this eventing systemandbygiving themessageapredefined struc-
ture, containing the topic and the data, we achieve a topic-based and event-driven

SmartComposition: Extending Web Applications to Multi-screen Mashups 57

communication channel. Without blocking the user interface, we ensure high per-
formant and low latency communication by relying on JavaScript’s native event
system.

In the following section we show how inter-component communication is
extended for multi-device usage.

4.3 Inter-Device Communication

By providing a WebSocket-based synchronization service, we enable developers
to easily create multi-device-capable web applications. Our approach proposes a
stand-alone solution with no dependencies and side-effects on other components.
The solution consists of a synchronization server and a client-side messaging
service. The client-side component is also implemented as SmartComponent that
captures all events transmitted on the previously described publish/subscribe
message bus and sends them to the server-side component. When the client-
side component receives a message from the server, it sends it back to the local
message bus where the components will be notified.

We are utilizing the WebSocket protocol (https://tools.ietf.org/html/rfc6455)
for the client-server communication. This provides us with a full-duplex, low-
latency communication channel based on standard web technologies. The server-
side component is implemented as a WebSocket server using Node.js.

Fig. 2. Basic functionality of the synchronization server

The WebSocket server (see Fig. 2) provides functionality for a set of message
types (authentication, clients, ping, data) and can easily be extended. Received
messages are analyzed and broadcast to groups (sessions) of connected devices.
We define the term connected devices as: devices with the same synchronization
endpoint that share the same session identifier, i.e. context. The session identi-
fier enables the usage of one synchronization endpoints for multiple application
contexts. The basic functionality is that messages are only distributed to devices
within the same session. Another task of the server-side component is the man-
agement of connected devices. On connection, each device will get an up-to-date

https://tools.ietf.org/html/rfc6455

58 M. Krug et al.

list of connected devices with their details (name, type, identifier). This list
is also updated and distributed if a client connects, disconnects or changes its
details.

One major advantage of our synchronization approach is that no reconfigura-
tion of existing components is necessary for multi-device communication. Since
the messaging service is working like a hook, all messages sent by the Smart-
Components are captured without changing the code or configuration.

5 Feature Checklist

Mashup Type Hybrid mashups

Component Types Data components

Logic components

UI components

Runtime Location Both Client and Server

Integration Logic Choreographed integration

Instantiation Lifecycle Short-living

Targeted End-User Local Developers

Automation Degree Manual

Liveness Level Level 4 (Dynamic Modificationof Running Mashup)

Interaction Technique Editable Example

Online User Community None

6 Mashup Challenge

6.1 The Presented Mashup

We demonstrate our SmartComposition approach by presenting a distributed
media enrichment application using various SmartComponents to showcase web
application development through client-side composition. The application imple-
ments a mashup scenario, which was previously discussed and implemented with-
out the usage of Web Components in [5]. One possible resulting mashup can be
seen in Fig. 3.

To create an application by composition, multiple SmartComponents can be
imported and inserted into an HTML website as it is displayed in Listing 3.

We start our mashup with an empty web page that has an option to add new
components to the application. Using the New York Times news feed component
as the starting point, we add more and more components that work together to
form a new interactive experience. For a detailed description of the mashup
components and how they work together see Sect. 6.3.

To proof the multi-device capabilities of our solution, we show that Smart-
Components can display different kinds of information synchronized on multiple
devices, and that they can even be moved between devices. Our demos can be

SmartComposition: Extending Web Applications to Multi-screen Mashups 59

Fig. 3. Screenshot of the presented mashup

used in any modern web browser without the installation of additional software.
Not all technologies we are using are currently implemented in all browsers as
most of them are still W3C working drafts. By optionally using the webcompo-
nent.js polyfills (http://webcomponents.org/polyfills/), SmartComponents are also
enabled in web browsers that lack native support.

Online Demonstration:
http://vsr-demo.informatik.tu-chemnitz.de/smartcomposition/icwe2015/

<html>
<head>
< l i n k r e l=” import ” h r e f=”nytimes−news−component . html”>
< l i n k r e l=” import ” h r e f=” semantic−ex t rac t i on−component . html”>
. . .

</head>
<body>
<nytimes−news></nytimes−news>
<semantic−ex t r a c t i on></ semantic−ex t r a c t i on>
<youtube−search query=” Iran ”></youtube−search>
<smart−video></smart−video>
<google−geocoder address=” Iran ”></ google−geocoder>
<google−map l a t=”51” lng=”12”zoom=”12”></ google−map>
<tw i t t e r−tweets query=” Iran ”></ tw i t t e r−tweets>
<wikipedia−ex t r a c t query=” Iran ”></wikipedia−ex t r a c t>
<google−images query=” Iran ”></ google−images>

</body>
</html>

Listing 3. Application development by composition

http://webcomponents.org/polyfills/
http://vsr-demo.informatik.tu-chemnitz.de/smartcomposition/icwe2015/

60 M. Krug et al.

6.2 Preparation of the Challenge

In preparation of the challenge, we created different kinds of new SmartCom-
ponents. Most of them gather data from various web services regarding a topic
or keyword to display information that can be useful while watching a video.
Firstly, we implemented a component that retrieves the New York Times RSS
feed and extracts the news entries separated by categories. It provides a selection
of the category and displays all matching news headlines. When the user clicks
on one entry, the news text is published to the message bus of the application.
Secondly, we reused a component that uses the AlchemyAPI to extract keywords
(entities) from text by applying natural language processing technologies. These
keywords are categorized and again published to our message bus.

Additionally, we created a YouTube search component. This component takes
a search phrase as input and displays a list of videos that are related to that
phrase. Furthermore, we implemented a special video component that publishes
messages at specific timestamps - in this case parts of the transcript - while
playing a video. This is done by exploiting the TextTrack-API and an attached
VTT subtitles file containing time-based metadata. The video component works
with local videos as input as well as with YouTube URLs that are automatically
resolved. To visualize information about different entities, we implemented com-
ponents that catch data from web sources, like Twitter, Google Maps, Images
and Wikipedia. A drawback that needs to mentioned is that the topic names
and data formats of connected components have to be known by the developers.

6.3 The Demo Flow

In general, the first source of information can be any component. In our specific
demonstration, we use the New York Times news feed as an entry point. New
components can be easily added to the application by either stating them in the
markup or adding them dynamically using the given select box and button. When
the user clicks on one of the displayed news headline entries, the component pub-
lishes the corresponding news text. By adding the semantic extraction component,
the mashup is able to obtain different entities from published text content. They
are annotated with categories and can be used by other components to retrieve
related information. If there is e.g., an entity categorized as location, the Google
Maps Geocoder component is using the entity to convert it to geographical coor-
dinates that can be again consumed by the Google Maps component to display
this place on a map. Furthermore, entities of the type person can be e.g., visual-
ized by the Google Images or Wikipedia component. To make the mashup more
interactive, not only the news feed is used as information source. The gathered
entities are also used by the YouTube search component to retrieve related videos
with subtitles. If the user clicks on one of the listed videos, it will be passed to
the video component that is able to play the video and at the same time publish
time-based metadata. The metadata - in this case the transcript - is also used for
semantic extraction and will trigger the display of different kind of information
visualizations. An example message flow can be seen in Fig. 4.

SmartComposition: Extending Web Applications to Multi-screen Mashups 61

Fig. 4. Message flow of an example mashup

The extension of the mashup to use multi-device communication is straight-
forward. First of all, a synchronization server has to be set up, which is a Node.js
WebSocket server. Additionally, the messaging service has to be included in
the web application and configured with the endpoint address as displayed in
Listing 4.

< l i n k r e l=” import ” h r e f=”Messag ingServ ice . html”>

<messaging−s e r v i c e
endpoint=” ht tp : // example . o rg :1234 ” s e s s i o n=”Sess ionID ”>

</messaging−s e r v i c e>

Listing 4. Code snippet of the messaging-service

Any reconfiguration or even altering of code of existing SmartComponents is
not necessary. All published events will now be synchronized between multiple
connected devices. Applying it to the mashup application, it then can be used on
different devices in parallel with synchronized state without touching the code of
the components. Thus, the user can display e.g., the Google Map on his mobile
device while watching the video on his laptop.

62 M. Krug et al.

7 Conclusion

In this paper we presented extended Web Components, called SmartCompo-
nents, as a part of the SmartComposition approach. We support developers
in creating multi-screen-enabled mashups and other complex, distributed web
applications. Using the Polymer framework that wraps necessary functionality
lowers the barrier of using the new W3C Web Components technologies. Since
SmartComponents are custom elements that become first-class HTML elements,
you can add and configure new parts of you web application directly in your
HTML markup. The import is done with only one line of code. Inserting the con-
tent of SmartComponents into an adjunct shadow DOM subtree prevents CSS
rules and IDs of elements from conflicting. Our extension of adding an event-
based communication channel as well as the provision of a WebSocket-based
synchronization service enables the composition of mashups for usage across dis-
tributed platforms and multiple devices. Further research will address how to
provide a repository to store and distribute reusable SmartComponents and the
description of communication interfaces and topic names to ensure hassle-free
composition of SmartComponents.

References

1. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 211–220, Copenhagen, Denmark, June 2012

2. Chudnovskyy, O., Fischer, C., Gaedke, M., Pietschmann, S.: Inter-widget communi-
cation by demonstration in user interface mashups. In: Daniel, F., Dolog, P., Li, Q.
(eds.) ICWE 2013. LNCS, vol. 7977, pp. 502–505. Springer, Heidelberg (2013)

3. Husmann, M., Nebeling, M., Norrie, M.C.: Multimasher: a visual tool for multi-
device mashups. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWEWorkshops 2013. LNCS,
vol. 8295, pp. 27–38. Springer, Heidelberg (2013)

4. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: Direwolf - distributing and
migrating user interfaces for widget-based web applications. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99–113. Springer, Heidelberg (2013)

5. Krug, M., Wiedemann, F., Gaedke, M.: Enhancing media enrichment by semantic
extraction. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, WWW Companion 2014, pp. 111–114.
International World Wide Web Conferences Steering Committee (2014)

6. Krug, M., Wiedemann, F., Gaedke, M.: Smartcomposition: a component-based app-
roach for creating multi-screen mashups. In: Casteleyn, S., Rossi, G., Winckler, M.
(eds.) ICWE 2014. LNCS, vol. 8541, pp. 236–253. Springer, Heidelberg (2014)

7. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated user interface mashups
using W3C widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059,
pp. 49–61. Springer, Heidelberg (2012)

EFESTO: A Platform for the End-User
Development of Interactive Workspaces

for Data Exploration

Giuseppe Desolda1(&), Carmelo Ardito1, and Maristella Matera2

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro,
Via Orabona, 4, 70125 Bari, Italy

{giuseppe.desolda,carmelo.ardito}@uniba.it
2 Dipartimento di Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20134 Milan, Italy
maristella.matera@polimi.it

Abstract. This paper illustrates EFESTO, a mashup platform designed to
enable end users to explore information by creating interactive workspaces.
Within a Web composition environment, end users dynamically create “live
mashups” where relevant information, extracted from heterogeneous data
sources - including the Linked Open Data – is integrated according to visually
defined queries. Visualizations of the resulting data sets can be flexibly
shaped-up at runtime. Functions, exposed by local or remote services, also allow
users to manipulate the resulting data depending on their situational needs. With
respect to other mashup platforms, EFESTO privileges visual composition
paradigms that accommodate the end-user mental model for a lightweight data
integration within Web workspaces.

Keywords: Mashups � Web composition environments � Data integration

1 Introduction

Mashups are data-centric applications that can be created by composing heterogeneous
resources [1]. They are considered a solution for supporting data exploration processes
that exceed one-time interactions and allow users to progressively seek for information.
As studied in [2], typically users invoke general-purpose search engines and/or spe-
cialized verticals, and then use “their brain” (or suitable cognitive aids, e.g., annotations
or clipboards) for remembering results to be used next. Mashups solve (at least par-
tially) these limitations, as they try to accommodate users’ needs for data integration
within personal, ad-hoc created workspaces.

Despite these advantages, some factors still prevent a wider use of the mashup
paradigm in real contexts, especially by users who are not experts in programming.While
mashups have been identified as a useful mean for application development by the end
users [1], so far the research on mashups has largely focused on the enabling integration
technologies and standards, with limited attention on easing the mashup development
process - in many cases mashup creation still involves the manual programming of

© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 63–81, 2016.
DOI: 10.1007/978-3-319-28727-0_5

service integration. Some user-centric studies [3] also found that, although the most
prominent platforms (e.g., Yahoo!Pipes) tried to simplify mashup development, they are
still difficult to use by non-technical users, who encounter difficulties with the adopted
composition languages [4]. Besides the complexity of the composition paradigm [5], the
active interaction with the retrieved data, by means of exploration and manipulation
actions, is hardly supported.

With the intent of overcoming the limitations identified in literature, we defined
EFESTO (EFesto End uSer composition plaTfOrm), a platform for the End-User
Development of mashups. Efesto was a god of the Greek mythology, who realized
magnificent magic arms for other Greek gods and heroes. Analogously, the EFESTO
platform aims to put in the hands of end users powerful tools to accomplish their tasks.
Our platform, in fact, is characterized by a paradigm for the exploration and compo-
sition of heterogeneous data sources that tries to accommodate the end-user mental
model for a lightweight data integration within Web workspaces. The paradigm was
designed taking into account the results of some elicitation studies aimed to identify the
end-user mental model for service composition [5, 6]. It was also validated during two
field studies in specific application domains, namely Cultural Heritage [5] and Tech-
nology Enhanced Learning [7]. Besides helping us assess the elicited mental model,
these studies also highlighted new (unexpected) requirements. Among the most
important ones, the users expressed the need to manipulate, in a more powerful way,
data extracted from services, and the possibility to satisfy more complex information
needs by gathering data from the entire Web - not only from pre-packaged components.
To overcome these drawbacks, the most recent version of EFESTO offers: (i) visual
mechanisms to integrate data retrieved from different data sources; (ii) a new “poly-
morphic” data source model that, by exploiting the Linked Open Data (LOD) cloud,
enables the access to “mutable” information depending on the situational needs
expressed in the mashup under construction; (iii) a set of tools to organize, visualize
and manipulate extracted data according to specific functions. This new version of the
platform is available online at the address: http://efesto.ddns.net/.

This paper illustrates EFESTO with a specific focus on the features presented and
discussed during the ICWE 2015 Rapid Mashup Challenge. In particular, Sect. 2
presents, by means of a scenario, the composition paradigm implemented in our
mashup platform and also illustrates the sequence of composition steps presented at the
challenge. Section 3 describes the platform architecture and in particular the mecha-
nisms supporting the visual construction of live mashups and the way the platform
invokes and integrates heterogeneous services, including LOD data sources. Section 4
discusses the level of maturity of our platform, by illustrating how EFESTO has been
customized, adopted and evaluated in specific application domains. Section 5
emphasizes the peculiarities of EFESTO by comparing it with other mashup platforms.
Section 6 reports how we prepared for the Rapid Mashup Challenge. Section 7 con-
cludes the paper and outlines our current and future work.

64 G. Desolda et al.

http://efesto.ddns.net/

2 The EFESTO Composition Paradigm

To illustrate the main features of EFESTO, we now introduce a usage scenario that
recalls the live demo given during the ICWE 2015 rapid mashup challenge1.

Let us consider an end user, Michael, who is going to organize his summer holi-
days. Michael has not yet decided where to go between London and Madrid but,
regardless the destination, he would like to attend a concert during his holidays. For
this reason, Michael uses EFESTO to retrieve and integrate various information (i.e., to
create mashups) about music events. Michael starts looking for pertinent services
among those registered in the platform. A wizard procedure guides him to make a
selection from a popup window where services are classified by category (e.g., videos,
photos, music, social). Michael selects SongKick, a service that provides information
on music events given an artist name. He also selects a map UI template for displaying
the retrieved information. The aim of Michael’s activities in the EFESTO workspace is
indeed to create some widgets, called UI components [8], that visually render, in a
chosen format, data extracted from selected data sources. As SongKick data are
geo-localized, Michael decides to visualize the retrieved data on a map.

As shown in Fig. 1 (circle #1), the SongKick data attributes are visualized in a
panel on the left. To make the attributes understandable by the user, the system also
shows some example values. First, Michael drags and drops the latitude and longitude

1 2

3

Fig. 1. Mapping between the SongKick data attributes and UI template fields (Color figure online)

1 The video that faithfully reports the live demo is available at https://youtu.be/bBG5O266y4g.

EFESTO: A Platform for the End-User Development 65

https://youtu.be/bBG5O266y4g

SongKick attributes into the related fields in the map UI template (Fig. 1, circle #2).
Then he chooses a table UI template with three items in column (Fig. 1, circle #3) for
visualizing, when required, some additional details about a musical event. He selects
and drops the desired attributes in the fields of the table template (highlighted in yellow
in Fig. 1, circle #2). These actions represent queries on the underlying data sources that
will be successively executed to create the mashup data set.

After performing the mapping phase, Michael saves the mashup. Figure 2 reports
an example of the created mashup, which is immediately executed in the Web
browser. By typing “Vasco Rossi” in the search box, the forthcoming events of this
singer are visualized as pins on the map.

Michael can also integrate data coming from different services through union and
join operations (also called merge in other mashup tools [8]) that he visually expresses
through drag and drop actions operated on the running mashup. For example, to
enrich the dataset of events retrieved by SongKick, Michael integrates SongKick with
Last.fm, thus exploiting the union operation. In particular, he acts directly on the
SongKick UI component previously created by clicking on the gearwheel icon in the
toolbar (pointed by the circle #1 in Fig. 2) and choosing the “Add results from new
source” menu item. A wizard procedure now guides Michael in choosing a new service
and in performing a new mapping between the Last.fm attributes and the UI template
already used when SongKick was created. The newly created dataset is shown in the
same fashion as reported in Fig. 2 but now, when queried with an artist name, the
widget visualizes results gathered both from the SongKick and Last.fm services.

Padua

1

Fig. 2. SongKick data source visualized as a map and joined with Google Images to show city
pictures related to each SongKick event

66 G. Desolda et al.

Another data integration operation available in EFESTO is the join of different
datasets. For example, since SongKick does not provide images of the location where
concerts are held, Michael joins the SongKick city attribute with Google Images; the
city name now becomes the keyword for extracting from Google Images a sequence of
related pictures. To perform this operation, Michael clicks on the component gearwheel
icon and choses the “Extend results with details” menu item. A new wizard procedure
guides him while choosing the service attribute to be extended (City in this example),
the new data source (Google Images) and how to visualize the Google Images results.
From now on, as shown in the right-hand side of Fig. 2, when clicking on the city name
in the map info window, another pop-up visualizes the Google Images pictures related
to the selected city.

Let us suppose now that, during the interaction with EFESTO, Michael wants to get
details about the artists of the music events, such as genre, starting year of activity and
artist photo. He does not find any service, among those registered in the platform, that
can satisfy this new information need. Thus, he decides to join the SongKick artist
attribute with a DBpedia-based polymorphic data source [9]. The platform now shows
a list of properties related to the musical artist class2, and Michael creates a new data
source based on the properties genre, starting year of activity and artist photo.
Henceforward, Michael can find a list of upcoming events in the SongKick component
and visualize the additional artist’s information, retrieved through the new data source,
when clicking on the artist name in SongKick. We call this data source “polymorphic”
because, different from pre-registered data sources (e.g., Google Images) that only
provide a pre-defined, invariable set of properties, it can enable the access to different
information (properties) depending on the attribute in the origin data source it is bound
to. For example, if the Michael’s join starting point is the SongKick city attribute,
properties like borough, census, year, demographics would be proposed.

Another operation available in EFESTO is the change of visualization for a given
UI component. Michael, in fact, during the interaction with SongKick, decides to
switch from the map UI template to the list UI template (see the result in Fig. 3, circle
#1). To perform this action, he clicks on the gearwheel icon in the SongKick toolbar
and choses the Change visualization menu item. A visual procedure allows Michael to
choose a UI template (a list in this case), and drag and drop the SongKick attributes
onto the UI template, as already performed during the SongKick creation.

Until now, Michael has aggregated and composed information according to a
paradigm that is similar for some aspects to the ones provided by other mashup plat-
forms [1]. Our field studies, however, revealed that mashups generally lack data
manipulation functions that can be instead useful to support common tasks [5, 7] and
can empower the users to play a more active role than just consuming the finally
visualized information. We thus extended EFESTO with a set of tools that, by
exploiting functions local to the platform or exposed by remote APIs, provide the
possibility to “act” on the extracted contents, for example to collect and save favourites,

2 When a service is registered in the platform, each attribute is automatically annotated with a DBpedia
class that is semantically close to the attribute meaning [9]; for example the SongKick Artist attribute
is annotated with the DBpedia Musical Artist class.

EFESTO: A Platform for the End-User Development 67

to compare items, to plot data items on a map, to inspect full content details, or to
arrange items in a mind map to highlight relationships [10]. Coming back to our
scenario, as shown in Fig. 3, Michael adds some tools into his workspace, each of them
devoted to a particular task. For example, each time Michael drags a SongKick event
into the Map tool (Fig. 3, circle #3), this item is automatically ‘translated’ as pin on the
map. Another example is the Comparing tool (Fig. 3, circle #2) that assists the user in
comparing items retrieved by one or more services (SongKick events in Fig. 3). In
general, item transitions across different tools determine different organizations and
visualizations of data and progressively enable different functions.

3 Architecture and Feature Checklist

Figure 4 illustrates the overall organization of EFESTO. The platform supports the
composition of heterogeneous components (data, UI and logic components) by means
of an orchestration logic that enables extracting and integrating data and operations
provided by different services, mainly to create the so-called UI components. A UI
synchronization logic then allows one to synchronize at the presentation layer the
behavior of different UI components. This synchronization is based on an event-driven
paradigm that couples events generated by source components to operation enacted in
target components. The platform thus generates hybrid mashups that integrate data
and orchestrate functions, and provides structured and coordinated visualizations of the
integrated data set and functions.

As already highlighted in the previous section, with respect to other mashup
platforms EFESTO is strongly characterized by its interaction layer and, in particular,
by its visual language that allows the users to create “live” mashups without writing a

1

2

3

Fig. 3. Use of some tools available in EFESTO to manipulate SongKick data

68 G. Desolda et al.

line of code. The adoption of a visual notation and the liveness of the mashups under
construction demand for the definition of an execution logic that is distributed between
the platform front-end and back-end and is in charge of interpreting the user compo-
sition actions and putting them in action immediately.

Another relevant feature is the capability of generating models (Workspace
Descriptors and UI Component Descriptors as described later in the paper), in a
model-driven engineering (MDE) fashion. Models, expressed according to a
Domain-Specific Language [5, 8], specify the user composition choices and drive the
instantiation of the mashup running code. The MDE paradigm thus enables the
deployment of a same mashup on multiple devices, as native execution engines can
interpret the same generated models on different target devices. In order to support this
execution paradigm, service descriptors are also needed to provide an adequate

Fig. 4. The EFESTO Three-layers architecture

EFESTO: A Platform for the End-User Development 69

abstraction layer for invoking and querying services. The rest of this section will
illustrate the mechanisms through which different modules, distributed along different
layers, interoperate to give life to the EFESTO composition and execution paradigm.

3.1 Interaction Layer

In EFESTO, the Interaction Layer provides a kind of key metaphor determining the
mashup logic and the overall system behaviour. Operations for mashup composition
are indeed expressed by the users through direct manipulation actions on UI elements
in charge of rendering data. According to a “programming-by example” paradigm, user
actions operated on sample data items extracted from data sources are interpreted as
models of queries to be executed on entire data sets and of the orchestration logic to be
applied on the involved services. For instance, users connect some UI elements that
display items retrieved from two different data sources to express a data flow for
merging the two sources; or they move into an existing UI component some data
attributes taken from a different service to define a union with this service. In other
words, while acting directly on sample data objects, users program service composition
to obtain new data sets, functions and visualizations.

This paradigm that, as demonstrated in some user studies [3, 6], is an essential
prerequisite to foster EUD of mashups, is made possible by some front-end modules.
As represented in Fig. 4, the Interaction Layer consists of a Web application that
represents a view on the model governing the logic for mashup composition and
execution. A Web mashup in EFESTO is a set of UI components, each one providing a
view on one or more data sources. The construction of such data views and their
visualizations are managed by the UI Component Manager, a front-end module that
instantiates each UI component based on the data sets built by the mashup engine. The
logic of the UI Component Manager is determined by UI Templates. UI Templates are
cornerstone elements in EFESTO, both for the way the users perceive the mechanisms
for building UI components, and for the data integration logic behind the construction
of the components data sets. Indeed, on the one hand, UI Templates provide the users
with a schematic representation of how data extracted from services will be organized
(i.e., aggregated and visualized) within each single UI component [5, 8]. On the other
hand, at the Logic Layer UI templates then provide data integration schemas, as they
determine how the mashup engine has to query the involved data sources and integrate
the resulting data. Indeed, by associating selected service attributes to UI template
elements, the composer defines a projection of the only attributes of interest. In
addition, if the attributes associated to a single UI template element are selected from
multiple services, then the structure of the UI template determines a global integration
schema mapping the attributes of single services into an integrated data set. These
actions captured at the interaction level are then translated into the specification, within
a UI component descriptor, of service queries and data fusion procedures used by the
mashup engine to build the integrated data sets [8].

As represented in Fig. 4, each UI component displays a set of UI items, i.e., data
elements rendered according to the layout provided by the UI template. UI items are the
atomic elements composition actions can be applied to. Starting from a UI item, the

70 G. Desolda et al.

users can expand the mashup data set by defining data integration operations (union
and join) with data sets of additional services. The selection of a UI item can provide an
entry point for the exploration in the LOD. The user can also achieve coordinated
visualizations of the UI Components by synchronizing the event of selecting a UI item
in a component with the activation of operations that can change the status of other
components (e.g., to achieve a different data set filtering or a new visualization).

Given a UI component, transitions among different UI templates are possible to
achieve different data organizations (e.g., from a table highlighting detailed properties
of each single data instance to a mind map highlighting the relationship among different
instances) and visualizations (e.g., from a list of addresses to a map based represen-
tation of the same data). Transitions, however, imply the need of modelling the
structure of the data items originally extracted from data sources, to be able to trace and
identify the transformations needed when moving the items across different visual-
izations. For this reason, each service, when registered, is associated with a set of
possible service visualizations, i.e., the specification of UI templates families (i.e., lists,
maps, charts, graphs) that can be properly used to render the service data. The mapping
between the service data attributes and specific UI items in charge of attributes ren-
dering is also defined.

The live programming paradigm, which allows the users to see immediately the
effect of their actions on the mashup under construction, is achieved by means of Event
Listeners that are able to catch the events generated by the user actions (e.g., the drag of
a service attribute to a field of a UI template) and send them to an Event Manager. This
module of the Mashup Engine, located in the Logic Layer, is in charge of translating
events into the proper invocation of services whose effect is the refresh of the status of
the mashup and of its UI components, depending on the captured events.

3.2 Logic Layer

The Logic Layer provides for modules and mechanisms that translate the user com-
position actions operated at the Interaction Layer into the mashup executing logic. We
here describe the different modules supposing that they are deployed separately from
the Interaction Layer modules, i.e., on a back-end server. However, the Logic Layer
can be distributed between the client and the server or, at the other extreme, located
only at the client-side if the execution context requires a single-user, lightweight
deployment. Server-side execution offers the advantage of managing a long lasting
instantiation logic with the additional possibility of supporting multi-user mashups,
collaborative composition paradigms, and the distributed execution of interactive
workspaces, as we already discussed in some previous papers [7].

3.2.1 The Mashup Engine
The Mashup Engine is invoked by the UI Component Manager each time an event,
requiring the retrieval of new data or the invocation of service operations, is generated
at the interaction layer. For instance, when the user specifies a search key to filter a
component data set, the typed key and the component identifier are passed to the
Mashup Engine. The Mashup Engine retrieves from a dedicated repository the

EFESTO: A Platform for the End-User Development 71

XML-based UI Component Descriptor, and inspects it to identify all the services used
in the mashup. Figure 5 illustrates an example of UI component descriptor where
SongKick is joined with YouTube. Based on this specification, the Mashup Engine
retrieves from the Service Descriptor repository all the XML descriptors associated
with the services involved in the mashup (SongKick and YouTube in Fig. 5). Each
service descriptor is sent to the Source Dispatcher that, depending on the specified
service type, invokes specific adapters to retrieve the data. In fact, our platform can
manage different types of data sources, like RESTful and SOAP services, databases,
files (e.g., csv, excel) and Linked Open Data. If a new type of data source needs to be
registered in the platform, a new adapter has to be developed. Depending on the nature
of the data source, the Source Dispatcher instantiates an adapter available in the Source
Manager package that implements the logic for querying the specific type of data
source. Moreover, if a data source demands for an authentication, the Authentication
Manager provides for different classes implementing different types of authentication,
like OAUTH 2.0, OpenID and Custom Authentications.

After querying each service as modelled in the UI Component Descriptor, the
Result Builder creates the final data set, codified in JSON, and sends it back to the UI
component manager. Figure 6 represents an example of JSON array produced by
querying the mashup shown in Fig. 5. Finally, the UI Component Manager builds the
UI view to render the JSON data according to the layout of the component UI template.

3.2.2 The Event Manager
Another important module in the Logic Layer is the Event Manger. It is in charge of
translating any composition action into proper descriptors, and to enact immediately
service invocations to achieve the corresponding behaviour in the mashup under

Fig. 5. XML UI Component descriptor: the SongKick service is joined with YouTube through
the Artist attribute

72 G. Desolda et al.

construction. When the users operate on a mashup the visual actions are caught by the
Event Listener at the Interaction Layer and sent to the Event Manger. For example, at
the beginning of our reference scenario, Michael creates the SongKick UI component
by means of a wizard procedure that guides him to choose the data source (SongKick)
and the UI template (Map), and to associate through drag&drop actions the SongKick
attributes to the UI template fields. When Michael saves the SongKick mashup, two
descriptors are created. The first one is similar to the one reported in Fig. 5 (except for
the <joins> tag that does not have any children when Songkick is created). When users
expand the data source by joining and unifying it with other sources, the <joins> and
<unions> tags are enriched with specific children.

The second XML file then defines the mapping between the data attributes included
in the mashup (as described in the first descriptor) and the chosen UI template (whose
structure is in turn described in an XML file stored in the Service Visualizations
repository).

3.2.3 The Annotation Engine and the Polymorphic Data Source
During our field studies, we noticed that very often, during the process of exploring
information, end users were forced to leave the platform to perform their tasks through
traditional search engines. To overcome this limitation and better satisfy the end users’
information needs, we introduced a new polymorphic data source built upon the LOD
cloud, and in particular exploiting the DBpedia knowledge base.

In order to create the polymorphic data source, a mapping step is required between
all the data sources registered in the platform and the DBpedia ontology classes.

Fig. 6. JSON array produced by the Mashup Engine invoked on the UI Component descriptor
shown in Fig. 5 with the “U2” query

EFESTO: A Platform for the End-User Development 73

The main goal of this mapping is to annotate the attributes of each service by using a
DBpedia class that is semantically similar to the attribute. In fact, each time the
EFESTO administrator registers a new service through the administration panel, the
Service Registration Manager (a module of the Web front-end) asks the administrator
to type some example queries (at most a dozen) to automatically annotate the service
attributes. The service descriptor, together with the provided example queries, is sent to
the Annotation Engine that automatically generates the service attribute annotations [9],
which are then stored in the Semantic Annotation repository.

Now let us come back to the Michael scenario and suppose that he wants to join the
SongKick Artist attribute with DBpedia. After he decides to use DBpedia as extension
data source, the Event Manager triggers the retrieval, by the source manager, of the
XML file with the annotations associated with SongKick. The class used to annotate
the artist attribute (MusicalArtist class) is then extracted from the DBpedia ontology.
Afterwards, the wizard procedure shows to Michael all the MusicalArtist properties as
attributes that he can choose to build the joined data source (see the highlighted box in
Fig. 7). After the drag and drop of a sub-set of properties into the UI template fields,
Michael saves SongKick. Now on, the event of clicking on a specific artist name in the
SongKick results triggers in EFESTO the retrieval of a specific instance of the DBpedia
knowledge base and its visualization in the chosen UI template, according to the
mapping previously performed by the user. To better understand what happens behind
the scene when an artist is clicked, let us suppose that Michael clicks on the U2 label.
First of all, the Mashup Engine, and in particular the Linked Open Data module,
queries DBpedia with a SPARQL query like:

The query result is a DBpedia instance characterized by a set of properties, some of
which have to be mapped in the chosen UI template (e.g., genre, starting year of
activity, and artist photo). Sometimes, it could happen that the retrieved instance does
not have a value for a specific property; in this case, this value is skipped in the UI
template. Furthermore, when the Mashup Engine queries DBpedia, it could happen that
different instances are associated with the same label. For example, if the previous
query includes the Ligabue search key instead of U2, five instances are retrieved:
Antonio Ligabue, an Italian painter; Giancarlo Ligabue, an Italian palaeontologist; Ilva
Ligabue, an Italian operatic soprano; Ligabue, a TV drama; Luciano Ligabue, the
Italian singer (our target). To identify the right instance (Luciano Ligabue), the system
checks which one is a sub-class of the class used to annotate the artist attribute, namely
MusicalArtist in the Michael’s scenario. This example highlights the dual role of
service attribute annotations, which are used (i) during the mapping phase, to show the
DBpedia class properties that the users can move into the UI Template fields (Fig. 7)
and (ii) during the execution of a SPARQL query, to disambiguate multiple retrieved
instances.

74 G. Desolda et al.

3.3 Service and Data Layer

Through the Service and Data layer, the EFESTO Web server exposes repositories of
XML-based descriptors that enable the invocation of services to extract data.

The Service Descriptors provide abstract specifications on how to query each data
source registered in the platform and how to read its results. The Workspace
Descriptors then contain representations of the workspaces created by each user. For
each workspace, a descriptor specifies the included UI components and possible UI
synchronizations defined among them. The UI Component Descriptors then specify the
services included into the components, the user-defined queries to integrate the services
data sets (see Fig. 5), and the specification of the component UI template.

The Workspace and UI Component descriptors are associated to the user who
creates them, and thus can be accessed depending on the users’ access rights. Some
“default” workspace descriptors are also available to any user; they provide the
specification for pre-packaged workspaces related to specific topics or domains. In fact,
users can compose their mashups starting from an empty workspace (like in Michael
scenario) or choosing a thematic template filled with some ready-to-use UI Compo-
nents that are relevant for particular domains/topics.

The Semantic Annotations repository stores the files used to describe the DBpedia
classes associated to each service attribute. Finally, the Service Visualizations
descriptors provide the abstract representations (in terms of offered UI elements) of the
available UI templates.

The definition of the service descriptors and semantic annotation is a technical task
that could be out of reach for non-programmers and, as such, could limit the introduction

Fig. 7. Mapping step between the DBpedia-based polymorphic data source properties and the
list UI template

EFESTO: A Platform for the End-User Development 75

of new services within the platform by end users.. To alleviate this problem, the defi-
nition of descriptors and annotations is facilitated by visual forms that only require
inserting some values; then the XML specification is automatically generated by the
system. Also, we envisage the adoption of our platform in meta-design scenarios, where
other stakeholders (i.e., expert programmers and domain experts) are supposed to
configure the platform for its initial use by the end users.

In general, despite the difficulties that end users might encounter, the adoption of
service descriptors and adapters enables a decoupling between the Mashup Engine and
the external resources so that adding a new data source only requires defining a new
descriptor; an adapter is also needed but only if the Source Manager does not already
include one able to manage that type of data source.

A further aspect to be noted is that, although the service and mashup descriptors are
codified using a custom XML grammar, the Mashup Engine is designed to work even
with different grammars designed for service and mashup descriptions, like for example
EMML (Enterprise Mashup Markup Language)3 for which an open community already
provided a large amount of descriptors. Any other service ecosystem, where services
are homogeneously described, would work as well. However, to speed up the platform
development and validation we opted for a custom XML grammar, which is anyway
inspired to EMML, but it is simpler.

4 Level of Maturity

The current version of the EFESTO platform is the results of a 4-years research. During
this period, we adopted a user-centred approach with the main goal of identifying how
a mashup composition paradigm could really help the users themselves. Our research is
indeed strongly inspired by and oriented towards End-User Development principles
[11]. We therefore conducted several user studies to elicit end-user requirements with
respect to the composition of mashups [6] and to validate our design choices and their
consequent implementation in the platform [7, 8]. These studies show that EFESTO
can be adopted by users without specific expertise in programming with a good level of
effectiveness, efficiency, and satisfaction.

These findings are true for several application domains. The EFESTO architecture
and the composition paradigm have been indeed designed having in mind customization
as a mean to ease the adoption of the platform by different communities of end users,
each one featuring specific requirements, background and expertise. In particular, we
have investigated meta-design approaches, where different stakeholders (e.g., devel-
opers, graphic designers, domain experts) customize different elements of the platform
(e.g., UI components, UI templates, visual composition mechanisms) and create artifacts
that the end users can exploit profitably [5, 7]. In the end, thanks to this methodological
framework, end users can use or customize the platform in different modalities,
depending on their expertise and willingness to be engaged in the creation of artifacts:
from the visual composition of ready-to-use UI components created by other and more

3 http://mdc.jackbe.com/prestodocs/v3.8/index.html.

76 G. Desolda et al.

http://mdc.jackbe.com/prestodocs/v3.8/index.html

expert stakeholders, to the definition of their own components by means of the mashup
operations illustrated above in this paper, to the development of new UI templates in
casw a specific application domain requires for different types of data visualizations.

We validated our approach to customization in different contexts. One extensive
experimentation was conducted in the Cultural Heritage domain, when our platform
was customized to support professional tourist guides. The emerging need in this
scenario was to enhance the visits lead by the guides in an archeological park with the
possibility to create flexibly multi-device mashups to show to the visitors comple-
mentary multimedia material retrieved by different (both public and private) online
sources [5, 7, 12].

Another customization experience is then related to the adoption of EFESTO in a
Technology-Enhanced Learning (TEL) scenario. In this context students learn about a
topic presented in class by their teacher, then complement the teacher’s lesson by
searching information on the Web, and communicate and share the results of their
search with the teacher and other students [7]. Nowadays, schools are provided with
different computing devices, not only desktop but also tablets and interactive white-
boards. Teachers and students are increasingly using such devices and various software
tools in their daily activities.

A further interesting scenario in which we have customized and we are experi-
menting EFESTO is the living labs of the VINCENTE (A Virtual collective INtelli-
genCe ENvironment to develop sustainable Technology Entrepreneurship ecosystems)
research project. The aim of the project is to design, implement and test methodological
and technological platforms that use services to create ecosystems for sustainable
entrepreneurship, which optimize the use of resources, enhance the knowledge, respect
the environment and ethical values and ensure the social inclusion. Our current work is
devoted to the customization of EFESTO to the specific requirements related to the
establishment of collaborative entrepreneurial ecosystems.

5 Related Work

The problem of facilitating the access to Web services and APIs through mashup tools
has been attracting the attention of several researchers, who in the last years focused on
different issues. From an HCI perspective, empowering a larger class of users to create
their own applications requires intuitive abstraction mechanisms, easy development
tools and a high level of assistance. Therefore, some research projects have been
dealing with the problem of enabling the creation of effective presentations on top of
Web services and APIs, to provide a direct channel between the user and the service
(e.g. [13]). They focused on the notion of Web Service Graphical User Interfaces
(WSGUIs) [14], i.e., on a set of mechanisms to enrich the Web service specifications
with annotations that could make the definition of visual interfaces easy.

The previous approaches do not allow the composition of multiple services in an
integrated application. In some cases, building a complete Web application equipped
with a user interface requires the adoption of additional tools or technologies. Recently,
different approaches have been proposed to blend design and execution environments
while exploiting intuitive mechanisms to define mashups. For example, NaturalMash

EFESTO: A Platform for the End-User Development 77

allows one to express in natural language what service(s) the users want to use and how
to synchronize them [15]. To ensure the accuracy of the expressed user queries, Nat-
uralMash narrows the user in a controlled natural language (a subset of a natural
language with a limited vocabulary and grammar). If on the one hand the users have
only to type assisted queries to mashup services, on the other hand this paradigm
inherits all the natural language processing problems and limitations.

A completely different approach is described in [16] where the authors propose a
new perspective on the problem of data integration on the Web, the Surface Web. The
idea is to consider Web pages UI elements as interactive artefacts that enable the access
to a set of operations that can be performed on the artefacts. For example, a user can
integrate into his personal Web page a list of videos gathered from YouTube and can
also append a list of Vimeo videos. This data integration can also be improved by
means of filtering and ordering mechanisms. These operations can be performed, for
example, by pointing and clicking elements (YouTube and Vimeo video lists), drag-
ging and dropping them into a target page (e.g. personal Web page), choosing options
(filtering and ordering). As highlighted by the authors, despite this approach is very
promising, some limitations still affect this solution, for example, low performance (UIs
need to be instantiated locally), the missing support for more advanced use cases
beyond data integration and heterogeneity of structured data in the Web.

As we have illustrated in this paper, in our approach the integration of different
services is guided by UI templates, which implicitly provide an integration schema and
therefore do not require the users to specify the mapping of service attributes with a
global integration schema. Mechanisms similar to UI templates are adopted also in
other approaches for the composition of service-based interactive applications, but
from a different perspective. For example, in the mashup composition approach pre-
sented in [13], a so-called service front end is a form-based UI module that gives a
representation of the technical interface of a Web service and provides the users with
the list of parameters expected by the service. The user can specify values for such
parameters, depending on the needed content. The resulting application is thus able at
runtime to query the service and visualize the results in a tabular template. Our UI
templates also offer support to query services, but through a paradigm that seamlessly
allows the user to define integrated views over different services. Our UI templates then
introduce additional abstractions, which go beyond pure service querying as they guide
the users in a data integration process resulting into integrated visualizations.

Other recent approaches to perform mashup focus on distributed and/or multi-screen
mashups. Among them, the SmartComposition approach [17] enables the end users to
easily create multi-screen mashups in terms of different widgets distributed and syn-
chronized on different devices like PC, smartphone, smart TV. For example, a teacher
can create a distributed mashup to present his lesson with a laptop connected to a
projector and deliver additional information to participants’ mobile devices. Even
though the development of distributed, multi-device mashups is not discussed in this
paper, we also worked on extending EFESTO to allow multiple users to collaboratively
construct and execute mashups across different devices. In fact, the workspaces created
in EFESTO can be shared among different users so that they can synchronously

78 G. Desolda et al.

collaborate in creating and manipulating new information. The available mechanisms
for sharing and collaboration are inspired to the ones of Google Drive. Moreover, chat,
annotations and offline messages also support asynchronous collaboration. We validated
the devised extensions, and especially their usefulness for the end users, in a user study
in the Technology Enhanced Learned domain [7]. The users were satisfied of the
devised collaborative mechanisms and found them very useful. However, they
expressed the need to further “manipulate” the collaboratively-created workspaces
through functions that could allow them to accomplish collaboratively some situational
tasks. It was this study that suggested us to move towards the notion of actionable
mashups [10], i.e., interactive workspaces where users could also invoke tools to
manipulate the integrated data across several dimensions. Such new features permit the
transition of information between different task containers, i.e., dedicated, contextual
task environments that, according to the recently proposed notion of Transformative
User Experience [18], can support users in accomplishing in an elastic way their tasks.
We believe this feature, scarcely explored in literature and not investigated in other
mashup platforms, provides for a very innovative direction that could give value to
mashups as tools to let users to make sense of data for accomplishing their tasks.

6 ICWE 2015 Rapid Mashup Challenge

During the Rapid Mashup Challenge, we illustrated the EFESTO characteristics
described above by means of a demo that followed the same flow of actions as the
reference scenario described in Sect. 2. The mashup built on the fly included the
services SongKick, YouTube, Vimeo, Google Maps and Google Images, and allowed
us to demonstrate: (1) how to define a union of the YouTube and Vimeo data sets;
(2) how to join the SongKick Artist attribute (visualized in a Map UI Template) with
YouTube; (3) how to shift from a map UI template to a list UI Template for the
SongKick UI Component; and (4) how to synchronize at the UI level the new data set
with Google Maps (showing the location of selected music events) and Google Images
(showing images of the cities where the events take place). During the demo, we also
showed how to extend the integrated information retrieved by this core set of services
by navigating in the LOD.

Getting prepared for the challenge actually did not require additional efforts as the
services mashed up during the demo were already registered in the platform. We only
made sure that their descriptors and the adapters for invoking them were running
correctly. A problem compromising the correct behaviour of the platform, which is
anyway common to many mashup platforms, could be the change of APIs for the
registered services, which could compromise their invocation by the platform.

During the demo everything worked perfectly; we wished we had more time to
demonstrate some features that we recently introduced in EFESTO that, as described in
the previous section, relate to the notion of actionable mashups. The readers interested
in these extensions can find more details in [10], and watch the video available at:
https://youtu.be/bBG5O266y4g (min 4:00–6:10).

EFESTO: A Platform for the End-User Development 79

https://youtu.be/bBG5O266y4g

7 Conclusions

In several application domains there is an increasing demand by end users to access,
integrate, and use flexibly multiple resources available online. The EFESTO platform
tries to respond to this need by letting users easily integrate, by means of an End-User
Development paradigm, heterogeneous information that otherwise would be totally
unrelated. This approach is very useful in all those situations where, due to varying
information needs exposed by the end users, a pre-packaged application could not work
properly. The modus operandi promoted by the EFESTO approach also facilitates the
construction of new knowledge and its continuous enrichment in contexts where the
establishment of communities implies the collaborative creation of knowledge.

This paper described how, in addition to what offered by other platforms, EFESTO
also enables a seamless transition of the retrieved data across different organizations,
visualizations and functionality. We believe this is a characterizing feature that can
pave the way to a new conception of mashups as effective tools for supporting users’
tasks and we are devoting several efforts to formalizing the new interaction model for
characterizing the possible transitions across different data organizations. The potential
of the interaction paradigm was also recognized at the Mashup Challenge. The com-
ments of the jury and of the participants were very positive; and in the end we won the
challenge! We also received very encouraging feedback on the idea of including LOD
data sources. Our current work is devoted to consolidating LOD navigation and
extending the current mechanisms by means of recommendations.

Acknowledgment. This work is partially supported by the Italian Ministry of University and
Research (MIUR) under grants PON02_00563_3470993 “VINCENTE”, PON04a2_B
“EDOC@WORK3.0”, and PON03PE_00136_1 “DSE” and by the Italian Ministry of Economic
Development (MISE) under grant PON Industria 2015 MI01_00294 “LOGIN”. We are also
immensely grateful to Prof. Maria Francesca Costabile for her valuable and constant support.

References

1. Daniel, F., Matera, M.: Mashups: Concepts. Models and Architectures. Springer, Berlin
(2014)

2. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Synth.
Lect. Inf. Concepts Retrieval Serv. 1(1), 1–98 (2009)

3. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and usability issues in the composable
web of software services. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385,
pp. 396–407. Springer, Heidelberg (2010)

4. Casati, F.: How end-user development will save composition technologies from their
continuing failures. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) IS-EUD
2011. LNCS, vol. 6654, pp. 4–6. Springer, Heidelberg (2011)

5. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., Picozzi, M.:
User-driven visual composition of service-based interactive spaces. J. Vis. Lang. Comput.
25(4), 278–296 (2014)

80 G. Desolda et al.

6. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi, M.: Visual
composition of data sources by end-users. In: Proceedings of International Working
Conference onAdvancedVisual Interfaces (AVI), pp. 257–260. Como, Italy, 28–30May 2014

7. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Picozzi, M.: Creation and
use of service-based distributed interactive workspaces. J. Vis. Lang. Comput. 25(6), 717–
726 (2014)

8. Cappiello, C., Matera, M., Picozzi, M.: A Ui-centric approach for the end-user development
of multidevice mashups. ACM Trans. Web 9(3), 1–40 (2015)

9. Desolda, G.: Enhancing workspace composition by exploiting linked open data as a
polymorphic data source. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G.
(eds.) Intelligent Interactive Multimedia Systems and Services, vol. 40, pp. 97–108. Springer
International Publishing (2015)

10. Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M.: Making mashups
actionable through elastic design principles. In: Díaz, P., Pipek, V., Ardito, C., Jensen, C.,
Aedo, I., Boden, A. (eds.) IS-EUD 2015. LNCS, vol. 9083, pp. 236–241. Springer,
Heidelberg (2015)

11. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual interactive systems for end-user
development: a model-based design methodology. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 37(6), 1029–1046 (2007)

12. Ardito, C., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi, M.:
Composition of situational interactive spaces by end users: a case for cultural heritage. In:
Proceedings of Nordic Conference on Human-Computer Interaction (NordiCHI), pp. 79–88,
Copenhagen, Denmark, 15–18 October 2012

13. Krummenacher, R., Norton, B., Simperl, E., Pedrinaci, C.: Soa4all: enabling web-scale
service economies. In: Proceedings of International Conference on Semantic Computing
(ICSC), pp. 535–542, Berkeley, CA, USA, 14–16 September 2009

14. Wajid, U., Namoun, A., Mehandjiev, N.: Alternative representations for end user
composition of service-based systems. In: Costabile, M.F., Dittrich, Y., Fischer, G.,
Piccinno, A. (eds.) IS-EUD 2011. LNCS, vol. 6654, pp. 53–66. Springer, Heidelberg (2011)

15. Aghaee, S., Pautasso, C.: End-user development of mashups with naturalmash. J. Vis. Lang.
Comput. 25(4), 414–432 (2014)

16. Daniel, F.: Live, personal data integration through UI-oriented computing. In: Cimiano, P.,
Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 479–
497. Springer, Heidelberg (2015)

17. Krug, M., Wiedemann, F., Gaedke, M.: Smartcomposition: a component-based approach for
creating multi-screen mashups. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, pp. 236–253. Springer, Heidelberg (2014)

18. Latzina, M., Beringer, J.: Transformative User Experience: Beyond Packaged Design.
Interactions 19(2), 30–33 (2012)

EFESTO: A Platform for the End-User Development 81

Web Mashups with WebMakeup

Oscar Dı́az1(B), Iñigo Aldalur1, Cristóbal Arellano1, Haritz Medina1,
and Sergio Firmenich2,3

1 University of the Basque Country (UPV/EHU), San Sebastián, Spain
{oscar.diaz,inigo.aldalur,cristobal.arellano}@ehu.es

2 Universidad Nacional de la Patagonia San Juan Bosco,
Comodoro Rivadavia, Argentina

3 CONICET, Buenos Aires, Argentina
sergio.firmenich@lifia.info.unlp.edu.ar

Abstract. Modding refers to the act of modifying hardware, software, or
virtually anything else, to perform a function not originally conceived or
intended by the designer. The rationales for modding should be sought
in the aspiration of users to contextualize to their own situation the
artefact at hand. Websites are not exception. WebMakeup targets mod
scenarios where web pages are turned into canvases users can tune to
account for their situational, idiosyncratic, and potentially, short-lived
needs. By clicking, users turn DOM nodes into widgets. Widgets can next
be rearranged, deleted, updated or stored for later reuse in other pages. In
addition, widgets can be involved in “blink” patterns where interactions
with a widget might affect the related widgets. This empowers users to
tune not only what but also when content is to show up in an AJAX-like
way. WebMakeup is publicly available as a Chrome extension.

1 Context and Goals

A mashup has been defined as “a composite application developed starting from
reusable data, application logic, and/or user interfaces typically, but not manda-
torily, sourced from the Web” [2]. It has been observed that mashups tend to
be limited in their scope, addressing what is being referred to as the long tail
of the software market whose limited demands and/or benefits make mashups
fall outside mainstream applications [2]. This observation rises the question of
who develops mashups, i.e., the profile of those addressing the long tail. Hence,
it is relevant to start by first characterizing this audience. Differences between
mashup tools frequently rest on the different user profiles being targeted. In
other words, tool success very much depends on the accuracy to which these
profiles are pinpointed.

Our mashup scenario is characterized as being situational, idiosyncratic and,
potentially, short-lived. These aspects challenge traditional software develop-
ment, and shift the focus from professional programmers to hobby programmers
or even, laymen. This changes the rules of the game. Available time, available
skills or motivation greatly differ depending on the target developers. For pro-
fessional programmers, development takes place in a working setting where time
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 82–97, 2016.
DOI: 10.1007/978-3-319-28727-0 6

Web Mashups with WebMakeup 83

and skills are assumed, and motivation is turned into duty. This setting changes
when development is handed over to laymen. It might well be part of work or
not. Some support might be available but most of the time, development is con-
ducted on layman’s own account. Basically, we characterize our target audience
(i.e. the mashup developer) along three features:

1. available expertise: no programming experience. Our target audience should
not need to known HTML, APIs, JavaScript or other programming environ-
ment in which mashup are realized.

2. available time: 30’. The expectation is for the mashup to be developed in
around 30’

3. sparking motivation: improving the Web Experience.

Broadly, our approach can be characterized as follows. First, and unlike tra-
ditional mashup approaches, we do not aim at creating a brand new applica-
tion (the mashup) but customizing an exising one. Second, we do not consider
any kind of data source but HTML pages. The term “modding” is used to
refer to the possibility of users to tune HTML content and interactions to fit
their own patterns. The ultimate goal is improving the User Experience (UX).
This is achieved through modding mashups (here after referred to as “mods”).
This vision accounts for a post-production (i.e. once the modded website is in
operation), user-driven Web customization. This paper describes WebMakeup, a
Chrome plug-in for mod development. Specifically, we focus on the mashup side
of WebMakeup, i.e. how WebMakeup allows for copying HTML fragment from
the Web to be later pasted into the modded website. A more complete account
of WebMakeup’s functionality can be found at [4]. This paper focuses on the
case study at the Mashup Contest held at the International Conference on Web
Engineering (ICWE) in 2015.

2 A Mod Scenario

Consider a layman browsing The New York Times website (NYT). What can
make him mod this website? Better said, how strong should this mod desire be for
the user getting down to work and develop a mod? Although motivations vary,
a common source of discomfort is when other websites need to be visited. This
might involve opening new tabs, and moving back and forth between different
tabs. This makes the user loose focus and break the reading flow. Consider three
scenarios when reading the NYT (see Fig. 1):

1. the user is a frequent traveller between Amsterdam Central Station and Rot-
terdam Central Station. Periodically, the user checks when the next train
leaves. NYT is often read while waiting at the train station. Checking next
train, involves googling in a new tab,

2. the user is a broker. He needs to keep an eye on share prices even when
reading the newspaper,

3. the user likes to check how headlines are covered by media other than the
NYT (e.g. NBC news).

84 O. Dı́az et al.

4. the user is interested in two sections of the NYT: Science and Sports. He
doesn’t always check them fully but like to have a glance to the headlines in
these sections

These scenarios involve a tab shifting from the NYT website to other websites.
Despite its simplicity, the few clicks involve might well break the reading flow.
This is not a main discomfort except if conducted in a regular basis. If you are a
frequent train traveler, working as a broker, curious about NBC news coverage,
or interested in Science and Sports, tab shifting might be a main discomfort
in your UX when accessing the NYT website. Modding might help by moving
scattered Web content to the website when the main task is conducted, in this
case the NYT website. Next section addresses how this NYT scenario can be
tackled by WebMakeup.

Fig. 1. Websites accessed while reading the NYT (in clockwise order): Google search,
Science section of the NYT, Visual Economy, and search facility at the NBC website.

3 A Session with WebMakeup

WebMakeup is both an editor and an engine for Web modding. As an
editor, it offers a GUI for obtaining mods. As an engine, it interprets
mods, and modifies the target page accordingly. WebMakeup is avail-
able at the Chrome Web Store: https://chrome.google.com/webstore/detail/
alnhegodephpjnaghlcemlnpdknhbhjj. Usability studies were conducted and

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

Web Mashups with WebMakeup 85

reported at [4]. This section describes the creation of a mod for supporting
the NYT scenario.

The process starts by the user focusing on the website causing the discom-
fort. If discomfort is due to visual clutter, then he can start by removing some
content. If discomfort is due to disperse content, then he can start by singling
out this content, and somehow making it appear at the host website. Finally, he
should decide whether all content should be readily available or rather, become
visible provided some user interaction occurs. More specifically, this notion of
content that is singled out to be operated upon is captured in terms of a “wid-
get”. For our purposes, a widget is basically an HTML fragment that is being
singling out and equipped with some operations and additional meta-properties.
Therefore, modding is achieved in terms of widgets, specifically, through four
main interventions: widget creation, widget mining, widget handling and wid-
get animation. Next subsections present each intervention with the help of the
running example.

3.1 Widget Creation

WebMakeup is a plugin for Google Chrome. Its installation is reflected by the
WebMakeup button at the right of the address bar. On clicking this button, a
scrollable menu pops up (see Fig. 2). Clicking on “New” causes the following
effects:

Fig. 2. The WebMakeup scrollable menu.

1. the current page is turned into an editor canvas where the pointer is turned
into a camera,

2. a grid-like structure is interspersed on top of the current DOM tree, and
3. two tabs pops up: the piggyBank tab and the patterns tab.

By mousing over the page, the underlying DOM nodes are highlighted. By click-
ing, the user singles this node out as a meaningful HTML fragment, i.e. a widget.
A limitation is the handling of “hidden nodes”, i.e. DOM nodes that do not have
a graphical counterpart and hence, they cannot be pinpointed through the cur-
sor. For instance, a table row (<tr>) is graphically hidden if its graphical space

86 O. Dı́az et al.

is totally taken by its content. If the row does not explicitly have some graphical
counterpart (e.g. a border), then all the space is occupied by the row’s content so
that the cursor will always select the row’s content rather than the row element
itself. To overcome this problem, we resort to the keyboard. Keys “w”, “s”, “a”
and “d” help to move up, down, left and right along the DOM tree, respectively,
w.r.t to the node being pinpointed by the cursor.

No matter the mechanism (i.e. cursor vs. keyword), the selected node is
surrounded by a decorator. In other words, the HTML fragment is turned into
a widget, and hence, amenable to be manipulated. Figure 3 depicts the DOM
nodes from the NYT website once three DOM nodes are turned into widgets,
namely, linkBar, headline, and rightColumn. Broadly, widgets are “those page
chunks” to be operated upon in order to be deleted, re-allocated or changed in
some of its content. But before moving to widget handling, it is important to
note that widgets are not limited to those of the modded page (e.g. the NYT
page) but they can be obtained from any place in the Web sphere. This moves
us to widget mining.

Fig. 3. DOM nodes are turned into widgets. A decorator permits to operate upon the
widget: remove, visibility-state modification and un-widgetization (i.e. turning back to
a mere DOM node).

3.2 Widget Mining

For our purposes, Web mashuping involves putting together otherwise scat-
tered Web content. The basic aim: avoiding tab switching and, in some case,

Web Mashups with WebMakeup 87

copy & paste operations between websites. In the NYT example, we aim at offer-
ing train information, stock exchange data or headlines for other newspapers,
all without leaving the NYT page. In this example, Google (for the train infor-
mation), Visual Economy (for the share prices) or NBC (for the headlines) act
as the information providers. This information is supported in terms of HTML
pages in their respective websites. Therefore, the process goes along a similar
pattern as the one described in the previous section, i.e. HTML fragments are
turned into widgets. Nevertheless, some subtle differences exist.

Widgets can be mined any time while browsing, not just when creating the
mod. To this end, the right-click contextual menu is extended with the mineIT
item (see Fig. 4). When you come across with a content of interest, select it, and
a grid-like structure will be interspersed on top of the current page. Due to mouse
hovering, the DOM node under the current cursor location is highlighted. Once
the desired node is highlighted, click mineIT to be prompted to name the just-
created widget. So, mined widgets are kept in the PiggyBank, a clipboard-like
facility that is later reachable through the PiggyBank tab (see later).

Fig. 4. Widget mining from http://www.nbcnews.com/: right click, select MineIT,
highlight the desired node, and press enter. A popup will request the widget name
(e.g. NBC). From them on, the widget is kept in the PiggyBank.

http://www.nbcnews.com/

88 O. Dı́az et al.

Worth noting, a mined widget might stand not just for a single node but a
set of nodes can be agglutinated upon the same widget as long as all come from
the very same page. Just provide the same widget name, and the highlighted
node will be merged with the existing widget’s structure. The NBC widget is a
case in point (see Fig. 4). It aggregates the search bar and the node standing for
the first answer. When inlayed, this widget will allow to obtain the first answer
without leaving the NYT page.

Besides NBC, the running example extracts four widgets (see Fig. 5): namely,
sportHL from http://www.nytimes.com/pages/sports/international/index.html,
scienceHL from http://www.nytimes.com/section/science, stockMarket from
http://www.visualeconomy.com/, and trainData from googling “next train from
Amsterdam to Rotterdam Central Station”. These widgets will be available in
the PiggyBank clipboard.

From a users perspective, all widgets are obtained in the same way, i.e.
through the contextual menu. However, their internal representation might
greatly differ based on the underlaying HTML code. Though the technical details
are outside the scope of this work [4], readers can gain some insights by looking
at the previous examples:

– sportHL and scienceHL, capture static and always-visible content,
– trainData holds also static content but some parts are initially hidden (e.g.

trip details) and become visible after some user interaction,
– stockMarket holds dynamic data. Share prices are continuously being updated,

i.e. frequent server requests are needed to keep the content in sync.

These examples serve to get an insight into the complexities of widgetization. It
is rarely the case that just cloning the DOM node will do. More often, CSS and
associated JS scripts should also be considered.

3.3 Widget Handling

Previous subsections illustrate how widget can be obtained from the modded
page itself or mined from somewhere else. Mined widgets are kept in the Pig-
gyBank (available through the namesake tab), and moved to the canvas (i.e.
the current page) through drag and drop. Widget placement is automatically
handled by the engine through some built-in heuristics. Once on the canvas, all
widgets behave the same, i.e.

1. widgets can be deleted or moved around by interacting through the widget
decorator,

2. widgets have an initial state, either visible or collapsed, reflected in the decora-
tor through the opened-eye icon or closed-eye icon, respectively (see Fig. 3).
At runtime, this state can be changed through user interactions (see Sub-
sect. 3.4) so that widgets move from visible to collapsed, or vice versa,

3. widgets can be parameterized. Parameters are automatically derived based on
the underlying HTML fragment. This includes labels, entry form parameters
or the refresh polling frequency (for mined widgets). Double click upon the
widget to see its parameters.

http://www.nytimes.com/pages/sports/international/index.html
http://www.nytimes.com/section/science
http://www.visualeconomy.com/

Web Mashups with WebMakeup 89

Fig. 5. Mining widgets for the sample scenario (in clockwise order): sportHL, sci-
enceHL, stockMarket and trainData. The widget’s node counterpart is highlighted.

Figure 6 shows the parameters after double clicking the linkBar widget. Basically,
labels and hrefs are made available so that the user can now change any of
them. In this case, we change the first link from pointing to the World News
to the ICWE program. Parameter assignment can be by value or by reference.
By value refers to the user manually providing the value as in the previous
example. By reference involves the system automatically retrieving the value by
applying an XPath upon the modded page at runtime. XPaths are derived from
user interaction upon the host page at parameterization time. Uses do not need
to know XPath. The NBC widget is a case in point. This widget’s parameters
include the searching text. If you type a value, the widget will always look for
this value. By contrast, a reference to some content of the NYT page can be set.
While the parameter list is visible, go to the canvas, copy the right hand-side

90 O. Dı́az et al.

headline, and next, paste it as the value of the searching parameter. Internally
the engine associates this parameter to the headline’s XPath expression. At
runtime, the engine enacts the XPath expression and assigns the result to the
NBC’s searching parameter “Personalities Clashing Over How to Handle Greek
Bailout”. In this way, the NBC widget will search for the current headline and
not for the headline at the time the mod was created.

Fig. 6. Changing linkBar’s parameters. First hyperlink’s label is changed from World
to ICWE Program while its URL now points to the ICWE website.

3.4 Widget Animation

Modding happens in an existing page which will probably have most of its space
taken. Indeed, our running example handles seven widgets, namely:

Web Mashups with WebMakeup 91

– from the modded page: linkBar, headline, rightColumn
– from the websphere: trainData, stockMarket, NBC, SportHL, ScienceHL

Displaying all these widgets simultaneously will lead to an even more cluttered
NYT page, impacting the UX. Hence, it is common to turn some nodes into wid-
gets with the only purpose of deleting them, and making room for new content.
This is the case of rightColumn. This widget is removed to leave room for stock-
Market. But, this might not be enough. We should also consider which widgets
should be readily visible (i.e. at loading time), and which should be visible on
demand, i.e. subject to a previous user interaction upon another widget. The
latter is referred to as widget animation.

Fig. 7. Setting blinks between widgets. Widget below will be visible after clicking on
the widget above.

92 O. Dı́az et al.

Widgets can be in two states: visible or collapsed. At design time, users decide
the initial state. At runtime, this state can be changed through “blinks”. Blink
relationships can be set between widgets so that interactions upon a widget
can impact another widget’s state. Blinks are graphically represented through
pipes. Widget decorators have in their right-hand side a yellow circle. This circle
denotes a pipe start. Click and drag from this point to expand till reaching
another widget. This sets a blink from the triggering widget (the pipe’s start) to
the triggered widget (the pipe’s end). An entry field on top of the pipe serves to
indicate the blink’s event. The default triggering event is click, though users can
select other DOM events. Figure 7 depicts such a pipe from headline to NBC.
NBC’ initial state is collapsed. This blink instructs that clicking headline will
change NBC state. Let’s see the rest of the animation (see Fig. 7):

Specifically, buttons can be introduced to make widgets available on demand
(i.e. through button interaction).

Let’s see a possible animation strategy for our sample case (see Fig. 7):

– headline and stockMarket are always visible (i.e. they are never involved as
triggered widgets in a blink),

– NBC is initially collapsed. It becomes visible when clicking on headline,
– trainData is initially collapsed. We introduce the nextTrain button to make

it available on demand. To this end, PiggyBank always holds three handy
widgets (i.e. link, image and button) which can be cloned and parameterized
as any other widget,

– sportHL is initially visible but collapsed when clicking on the whatElse button,
– scienceHL is initially collapsed but becomes visible when clicking on the wha-
tElse button.

The later introduces a disjunction-blink pattern whereby two widgets are shown
in alternation on clicking upon a common widget. By letting users play with the
tool, we noticed other recurrent composition of blinks:

– click2erase. This pattern involves only one widget. It accounts for a single
blink. For instance, consider “stockMarket blinks stockMarket on clicking”.
stockMarket will be available till the user click on it. On clicking, stockMarket
is gone for the current session.

– click2alternate. This pattern involves two widgets which are shown alterna-
tively. It accounts for two blinks: “scienceHL blinks sportHL.state=visible on
clicking” & “sportHL blinks scienceHL.state=collapse on clicking”. Initially
only sportHL is visible. Click on it, and sportHL is substituted by scienceHL.
Click again, and sportHL shows up again.

– conjunction. These patterns involve three widgets or more: the triggering
widgets, and two triggered widgets that are shown simultaneously. It accounts
for two blinks: “whatElse blinks sportHL on clicking” & “whatElse blinks sci-
enceHL on clicking”. On clicking, both sportHL and scienceHL pops up.

– disjunction. These patterns involve three widgets: the triggering widgets,
and two triggered widgets that are shown in alternation. It accounts for
two blinks: “whatElse blinks sportHL.state=visible on clicking” & “whatElse

Web Mashups with WebMakeup 93

blinks scienceHL.state=collapse on clicking”. Clicking successively on wha-
tElse shows sportHL and scienceHL in alternation.

– incremental. This pattern involves “n” widgets which are gradually pre-
sented as the user clicks. It accounts for “n-1” blinks. The first blink involves
the triggering widget (e.g. “headline blinks sportHL on clicking”) while sub-
sequent blinks subordinate the rendering of a widget to click in its widget
predecessor (e.g. “sportHL blinks scienceHL on clicking”). Therefore, widget
order matters.

– domino. It leverages the previous pattern so that clicking on the last widget
collapses all its predecessors except the triggering widget (i.e. “headline”).

These patterns are available through the namesake tab. Pattern definition is
achieved using a similar approach to PowerPoint’s SmartArts (see Fig. 8). Keep-
ing the ALT key pressed down, select the involved widgets. As widgets are being
selected, the widget region is shadowed, highlighting the order of the widget at
hand. Once all the participating widgets are picked out, and keeping the ALT
key pressed down, choose the desired behavior in the pattern tab. WebMakeup
will automatically generate the blinks that jointly account for the pattern at
hand.

4 The Mod Lifecycle

Though previous subsections present the different operations in sequence, the
user is free to intermingle those operations as they come to mind. Indeed, we
envisage mod development to be characterized as being in “perpetual beta”
in the sense of the mod being able to be easily modified at any time. Ease
deployment of partial mods allows users to get a glimpse of the development so
far. To this end, the WebMakeup menu offers the “Deploy” option (see Fig. 2).
On clicking, the page is reload but with the mod enacted. Now, the user can get a
real feeling on the result so far. For instance, Fig. 9 depicts the NYT website with
the sample mod. By interacting with the different widget regions, the user can
check out the mod’s animation. Previous figure depicts the outcome after clicking
nextTrain and headline. Finally, important and export facilities are available for
mod sharing through the namesake options in the WebMakeup menu. Export
generates a .mkp file. This file can then be imported, or even easier, dragged and
dropped into the browser for the consumer to enjoy the mod.

5 Level of Maturity and Discussion

WebMakeup is available at the Chrome Web Store: https://chrome.google.
com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj. It is then available
for public download. The case study described in this paper was conducted with
this plug-in. More complex cases still present main challenges. Mining widgets
from content resulting from AJAX interactions is still difficult. Implementation
details can be found at [4]. Technically, WebMakeup exhibit some limitations
that were highlighted during the Mashup contest:

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

94 O. Dı́az et al.

Fig. 8. Setting patterns. Keeping the ALT key pressed down, select first the widgets,
and next, the blink pattern.

– upgrades on the NYT website can break the mod apart. Since widget place-
ment and data binding are based on the page structure, changes to this struc-
ture can make the mod stop working. True. Notice however that re-building
the mod from scratch will take around 30’, and that after all, the layout of
the NYT website does not change so often. However, the risk is there.

– mod reuse might be limited to users exhibiting the same browser settings.
By browser settings, we refer to those client-side aspects that might impact
the page structure. First, extensions. Mods might not be the only extensions
deployed at the user’s browser installation. Thousands of extensions are avail-
able at browsers’ Web stores that might co-exist and interact with mods. A
common case is that of ad blockers. These popular extensions prevent adverts
from showing up. In so doing, they change the page structure, and hence, they
might impact the mod outcome.

Web Mashups with WebMakeup 95

Fig. 9. The mod at work. Screenshot once nextTrain and headline have been clicked.

– incremental development of mods might be penalized by rich, heavy Web
pages. The point is that mod enactment takes place once the page is fully
downloaded. That is, widgets start showing up once all the server content
is being loaded. No way to click nextTrain till all the content is available.
During the contest, this was a cause of distress since it took several seconds
for the NYT page to be fully loaded, hence hindering the quick feedback that
WebMakeup aims at.

– installability (i.e., the quality of requiring minimum installation
burden) is regarded as a main advantage of WebMakeup. Being
an extension itself, WebMakeup can be easily downloaded from Chrome Web
Store: https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcem
lnpdknhbhjj. This makes the WebMakeup icon to show up in the browser bar.
This is all needed to start modding your favorite websites.

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj
https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

96 O. Dı́az et al.

Table 1. Characterizing WebMakeup as a mashup tool.

Mashup feature checklist Mashup tool feature checklist

Mashup type UI mashup Targeted end-user Non programmers

Component types UI components Automation degree Semi-automation

Runtime location Client-side only Liveness level Level 3a

Integration logic UI-based integration Interaction technique WYSIWYG

Instantiation lifecycle Short-living Online user community Private but sharable
aAutomatic Compilation and Deployment, requires Re-initialization.

6 Related Work

The first question is whether modding should be considered a mashup technique.
The answer is unclear. It might be so in spirit but not in architecture. That
is, mods aim at improving the UX, and one way to achieve this is through
mashuping, here understood as side-by-side integration of Web content. However,
from an architectural perspective, mods are not self-contained Web applications
but browser extensions (a.k.a. plugs-in) to be frequently achieved at the back of
the website and by users who might not have server access. From this perspective,
modding falls within the area of Web Augmentation [3]. Table 1 sets WebMakeup
within the feature checklist put forward by the Contest organizers:

– mashup components (i.e. the artefact to be reused and that is accessible either
locally or remotely) are limited to HTML fragments which are extracted from
websites and included in the modded website.

– mashup logic (i.e. the internal logic of operation of a mashup) includes aspects
such as widget location within the modded page, data flow between the mod-
ded page and the hosted widgets, or widget animation.

Specifically, WebMakeup pivots around the notion of “widget”. There already
exist W3C standards for UI Reuse like Widgets [10] and Web Components [11].
W3C Widgets are “full-fledged client-side applications that are authored using
Web standards such as HTML and packaged for distribution”. Web Compo-
nents allow to “Web application authors to define widgets with a level of visual
richness and interactivity not possible with CSS alone, and ease of composition
and reuse”. Reusing such components is possible in our context. However, we
decided not to integrate them due to its immaturity and the low number of such
components that already exist on the Web.

Another possibility for widget creation is to create them based on a fragment
selected by the user. This process comprises two steps: the selection of the area
to be widgetized and the extraction of such area. For the selection step, it would
be useful any guidance. As introduced earlier, a widget is meaningful piece of
information support as a DOM element. It is trivial to allow users the selection
of any DOM element. However this is not the same for filter this selection to such
elements that are meaningful as a unit. In the accessibility area, there are some
works that face the problem of page segmentation. This page segmentation is
used to slice a webpage in meaningful units that are later consumed by impaired

Web Mashups with WebMakeup 97

users [8,9]. These algorithms can be used in our context to guide to end-users
while selecting a DOM element. For mirroring the fragment as closely as pos-
sible, it would be needed to extract the content, style and functionality of the
original webpage. This is far from trivial. Whereas there are multiple libraries
to extract content and style automatically [5,6], as far as we know, there is no
automatic mechanism to extract the functionality. There are some works that
relates user interactions with the JavaScript code that handles them [1,7], in
order to help programmers during the maintenance tasks. Departing from such
point, it could be possible to extract such code and execute in the augmented
web in an automatic way. However, again, this is far from trivial. A possible way
could be the programmatic generation of all possible interactions, the extrac-
tion and dependency resolution of the executed code and its injection in the
augmented page.

Acknowledgments. This work is co-supported by the Spanish Ministry of Education,
and the European Social Fund under contract TIN2011-23839 (“Scriptongue”). Aldalur
has a doctoral grant from the Spanish Ministry of Science & Education.

References

1. Alimadadi, S., Sequeira, S., Mesbah, A., Pattabiraman, K.: Understanding
javascript event-based interactions. In: ICSE 2013 (2013)

2. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer, Heidelberg (2014)

3. Dı́az, O., Arellano, C.: The augmented web: rationales, opportunities, and chal-
lenges on browser-side transcoding. TWEB 9(2), 8 (2015)

4. Dı́az, O., Arellano, C., Aldalur, I., Medina, H., Firmenich, S.: End-user browser-
side modification of web pages. In: Benatallah, B., Bestavros, A., Manolopoulos,
Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part I. LNCS, vol. 8786, pp. 293–307.
Springer, Heidelberg (2014)

5. Dzwinel, K.: SnappySnippet (2013). https://github.com/kdzwinel/SnappySnippet
6. Florentin. HtmlClipper (2010). http://www.betterprogramming.com/htmlclipper.

html
7. Maras, J., Stula, M., Carlson, J., Crnkovic, I.: Identifying code of individual fea-

tures in client-side web applications. IEEE Trans. Softw. Eng. 39(12), 1680–1697
(2013)

8. Melnyk, V., Ashok, V., Puzis, Y., Soviak, A., Borodin, Y., Ramakrishnan, I.V.:
Widget classification with applications to web accessibility. In: Casteleyn, S.,
Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 341–358. Springer,
Heidelberg (2014)

9. Safi, W., Maurel, F., Routoure, J., Beust, P., Dias, G.: Hybrid segmentation of web
pages for vibro-tactile access on touch-screen devices. In: ICWE 2014, DC (2014)

10. W3C. Packaged Web Apps (Widgets) (2012). http://www.w3.org/TR/widgets/
11. W3C. Web Components (2013). http://www.w3.org/TR/components-intro/

https://github.com/kdzwinel/SnappySnippet
http://www.betterprogramming.com/htmlclipper.html
http://www.betterprogramming.com/htmlclipper.html
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/components-intro/

Mashup Development with Web Liquid Streams

Andrea Gallidabino(B), Masiar Babazadeh, and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
{andrea.gallidabino,masiar.babazadeh,cesare.pautasso}@usi.ch

Abstract. Web services such as Twitter and Facebook provide direct
access to their streaming APIs. The data generated by all of their users
is forwarded in quasi-real-time to any external client requesting it: this
continuous feed opens up new ways to create mashups that differ from
existing data aggregation approaches, which focus on presenting with
multiple widgets an integrated view of the data that is pulled from mul-
tiple sources. Streaming data flows directly into the mashup without the
need to fetch it in advance, making it possible to exchange data between
mashup components through streaming channels. In this challenge sub-
mission we show how streaming APIs can be integrated using a stream
processing framework. Mashup components can be seen as stream opera-
tors, while the mashup can be defined by building a streaming topology.
The mashup is built with Web Liquid Streams, a dynamic streaming
framework that takes advantage of standard Web protocols to deploy
stream topologies both on Web servers and Web browsers.

Keywords: Mashups · Streaming · Liquid Software

1 Introduction

The mashup concept and the interest in the mashup tools started to appear when
more and more Web services and Web Data sources were released [1]. While
mashups can be built using traditional Web development tools, languages and
frameworks, specialized mashup composition tools have appeared focusing on
raising the level of abstraction and thus enabling non-programmers to compose
mashups [2]. Different tools can be characterized depending on the users they
target, and the mashup development approach they implement [3]. A precise
categorisation of the various mashup tools describes synthetically their expressive
power and the type of solution they propose can be found in [4].

Mashups are in general data centric applications which gather data from
many Web services or Web data sources and mix them together in a single inte-
grated application. Data may be fetched from the Web in many different forms:
static resources accessible through static URLs (e.g. JSON/XML files), resources
accessible through REST APIs, or – in the case of this paper – streaming and
feed APIs that forward new data to clients without the need of any new request
after the initial subscription. Mashup tools make it easy to integrate one or more
of those type of data.
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 98–117, 2016.
DOI: 10.1007/978-3-319-28727-0 7

Mashup Development with Web Liquid Streams 99

This paper presents the rapid mashup challenge solution proposed by the
Web Liquid Streams (WLS) framework [5], a stream processing runtime that
helps developers deploy streaming topologies running on heterogeneous Web-
enabled devices. WLS helps the users to develop logic mashups by creating
JavaScript logic components. Components may interact with any of the data
sources described above and components may be connected together in order to
create a streaming topology representing the mashup.

2 Related Work

As witnessed during the challenge, there exists many mashup tools based on
different paradigms and runtime architectures. By using the Web browser as
a platform, many tools implement the logic of both the integration and the
presentation directly on the Web browser. While the presentation layer suits
perfectly the Web browser environment, there are some issues with the integra-
tion layer, which can not always be fully deployed on the Web browser [6]. The
solution to this problem is decoupling the integration and presentation layer by
shifting the development of mashup from the client-side to the server-side [7].
With Web Liquid Streams, it is possible to dynamically decide where mashup
components should be deployed.

Many mashup tools take advantage of the data flow paradigm to represent
how information and events flow between mashup components connected into
pipelines. Tools like FeedsAPI 1, Superpipes2, or Yahoo Pipes3 use pipelines as
a mechanism for developing mashups. The idea is to create a flow of data that
goes from a multitude of sources through one or many integration layers and
finally ends the flow in the presentation layer.

The pipeline approach can be easily implemented in a streaming framework
[8] because all the layers of a pipelined mashup can be directly translated to a
type of operator in a streaming topology: data sources used in a mashup trans-
late to producer operators, the integration layers translate to filter operators,
and the presentation layer translates to consumer operators. Even if stream-
ing frameworks naturally suit the implementation of pipelines, not all stream-
ing frameworks are suited for mashup development. Mashup development with
streaming frameworks must meet two criteria: operators must be able to inter-
act with external data sources and Web APIs and there must be a mechanism
enabling visualisation of the consumer operators and their deployment as Web
Widgets.

JOpera is a process-based [9] mashup composition tool that was extended
in 2009 with streaming execution support to build real-time mashups of stream
data sources found on the Web [10].

1 http://www.feedsapi.com/.
2 https://github.com/superfeedr/superpipes.
3 https://pipes.yahoo.com/pipes/.

http://www.feedsapi.com//
https://github.com/superfeedr/superpipes
https://pipes.yahoo.com/pipes/

100 A. Gallidabino et al.

Chrooma+ [11] is a streaming mashup tool that enables construction of
mashups with video and audio sources. It can create composition of media
streams with any HTML component.

SensorMasher [12] uses streams of data produced by sensors as data sources
and builds visual compositions on a Web browser. SensorMasher publishes the
data of the attached sensors as Web data sources, making it possible to integrate
them with other data sources.

3 Web Liquid Streams Framework

WLS helps Web developers to create streaming topologies running across hetero-
geneous Web-enabled devices. Any device on which a Web browser or a node.js
Web server can run, can be used to produce, process or consume a WLS stream.
WLS targets programmers that are able to write JavaScript code that runs both
on the server and on the client. Mashup components in WLS are called oper-
ators and may interact with any Web service API (both streaming, RESTful
and RPC-based). An operator is the core building block of a streaming topol-
ogy, it can receive data, process it and forward results downstream. By binding
(connecting) two or more operators together it is possible to define a streaming
topology.

Operators may run on Web servers or on Web browsers. In both environments
they can use the same WLS API to produce and consume the data stream
(see Sect. 3.4). Operators running on a Web Browser also have access to an
extended API for rendering the data stream and visualize it on web pages (see
Sect. 3.5). Figure 1 shows the scheme of a possible topology composed by three
operators: the producer and filter run in the server-side while the producer runs
on a browser. In this example the filter makes requests to an external API.

WLS abstracts away the deployment on the heterogeneous machines from
the development of the topology. It keeps the mashup alive in case of failures.
If a mashup component overload is detected it automatically allocates more
resources to that component [13].

In this section we discuss the features offered in the WLS framework in more
detail. Explanations are followed by real examples used in the demo.

3.1 Startup and Discovery of the Devices

Discovery of the devices happens by direct connection through different entry
points provided by the WLS runtime. When WLS finishes the initialisation, a
list of ports is prompted on the screen (Fig. 2). Every port defines a specific entry
point or a service published by the WLS application. Smart devices running the
WLS-node script can connect to the application by connecting to the RCP entry
point, while Web browser enabled peers can connect to the Remote entry point.
Through the HTTP port it is possible to send HTTP requests.

WLS also publishes a RESTful API [14] through the REST API ROOT
port. During the demo we show how to retrieve topology descriptions through
this interface (Fig. 9).

Mashup Development with Web Liquid Streams 101

Producer Filter

Server-side Client-side
(Browser)

External
Service

API

Consumer

DOM

Fig. 1. Web Liquid Streams topology example

Fig. 2. Web Liquid Streams startup

When devices connect to the WLS application they become Peers and an
unique peer id (pid) is assigned to them. Figure 3 shows the WLS application’s
answer to the connection of one server peer and three remote peers connected
through a Web browser.

Fig. 3. Web Liquid Streams discovery

3.2 Commands

WLS provides a list of console commands allowing live development of a mashup:

run script pid (e.g. run producer.js 1)
Creates a new operator on peer pid and loads the defined script. Workers
inside the operator will run the loaded script. The run command returns a
unique operator identifier (cid) representing the created operator.

102 A. Gallidabino et al.

bind cidFrom cidTo (e.g. bind 1 2)
Creates a one-way communication channel between two operators: from oper-
ator cidFrom to operator cidTo.

kill cid (e.g. kill 1)
Unloads all the workers inside the operator cid and kills it.

unbind cidFrom cidTo (e.g. unbind 1 2)
Removes the communication channel created from operator cidFrom to oper-
ator cidTo.

exec topology (e.g. exec icwe topology.js)
Given the definition of a topology, automatically runs the needed run and
bind commands in order to deploy the operators on the available peers.

migrate cid pid (e.g. migrate 1 0)
Move operator cid from its current peer to peer pid.

Figure 4 shows a real example of running and binding operators. Two operators
are run with scripts icwe producer.js and icwe f1.js on pid 0. The run command
returns two cid : the runtime assigns to the first operator cid 0 and to the second
one cid 1. When both operators are started it is possible to bind them with the
bind command.

Fig. 4. Running and binding example

3.3 Topology

A topology can be described with our internal DSL based on the JSON syntax4.
The description defines both operators and bindings as follows:

operators
id Identifier of the operator
script Script loaded in the operator and ran by the workers
browser Defines if an operator may run on the client-side, if not defined

the operator exists exclusively on the server-side
path Relative path of the domain that enables direct access to the

operator through a Web browser connection
4 http://json.org/.

http://json.org/

Mashup Development with Web Liquid Streams 103

only If true an operator runs exclusively on the client-side, if false the
operator may run on both server-side and client-side

bindings
from Identifier of an operator defined in the operator array
to Identifier of an operator defined in the operator array
type Sending algorithm such as: round-robin or broadcast

Listing 1.1 shows the implementation of a linear topology composed by three
operators: the first and second operators can run only on the server-side, while
the third one can run only in a browser and is accessible to the URL /map. The
first operator sends messages to the second one in a round-robin fashion, the
second broadcasts messages to the third one.

Listing 1.1. Topology JSON description example: linear topology with three operators
used in the first iteration of the demo

1 {
2 "topology": {
3 "id": "test",
4 "operators": [{
5 "id": "producer",
6 "script": "icwe_producer.js "
7 },{
8 "id": "filter",
9 "script": "icwe_f1.js"

10 },{
11 "id": "consumer",
12 "script": "icwe_browser.js",
13 "browser": {
14 "path" : "/map",
15 "only" : true
16 }
17 }
18],
19 "bindings": [{
20 "from": "producer",
21 "to": "filter",
22 "type": "round_robin"
23 },{
24 "from": "filter",
25 "to": "consumer",
26 "type": "broadcast"
27 }
28]
29 }
30 }

104 A. Gallidabino et al.

3.4 Script API

WLS provides developers with the following basic API:

var wls = require(’wls.js’)
An operator script has to import the WLS library. The library contains
the two streaming routines needed to create the topology’s streaming flow.
Our framework redefines the require function in the remote clients in order
to make server-side scripts and client-side scripts as compatible as possible
without the need of any further modification. It is important to note that
in the client-side the require function should be called only once in order
to load the WLS library, since it always returns the WLS object no matter
the arguments passed (it does not load any server-side node modules).

wls.createOperator(function(message){. . . })
The createOperator method is used to execute scripts on messages com-
ing from upstream. It takes a callback function parameter which is exe-
cuted every time a message is parsed by the operator. The callback function
receives the message itself as the first argument. A script can define only a
single operator.

wls.send(message)
The send method is used to send messages downstream to all operators
bound to the sender. The message must be a serializable object. We highly
recommend to send JSON parsable objects as messages.

Listing 1.2 shows the implementation of one of the scripts used in the rapid
mashup challenge (Sect. 4). The script receives a message from upstream as an
argument to the callback registered with wls.createOperator (lines 4–8). When
processing every stream message, the script makes an external HTTP request
in the geoNamesRequest function (lines 10–25). The answer to the request is
eventually forwarded downstream through the wls.send function (lines 18–22).

Listing 1.2. Server script: Tweet Geolocate

1 var wls = require(’wls.js’)

2 var http = require(’http’)

3
4 wls.createOperator(function(msg) {

5 var tweet = msg.tweet

6 var locationName = getLocationName(tweet)

7 geoNamesRequest(locationName , tweet)

8 })

9
10 var geoNamesRequest = function(locationName , tweet){

11 var options = {...}

12
13 http.get(options , function(res) {

14 var coords = undefined

15 ...

16

Mashup Development with Web Liquid Streams 105

17 res.on(’end’, function () {

18 wls.send({

19 tweet: tweet ,

20 color: createRandomColor (),

21 location: coords

22 })

23 })

24 })

25 }

26 // Returns the name of a location connected to the tweet

27 var getLocationName = function (tweet) {...}

28 // Returns a random color

29 var createRandomColor = function () {...}

3.5 Extended Remote Script API

Implementation of WLS in the Web browser is slightly different from the server-
side. Workers in the server-side are spawned as child-processes of the WLS run-
time, while in the Web browser workers run as WebWorkers. Scripts running in
a Web browser should be able to access and interact with the Document Object
Model (DOM) of the Web page, but WebWorkers lack direct access to the DOM.
The remote peers in the browsers have access to an extended set of API methods
that enhance the communication between the DOM and the operator’s script.

wls.createHTML(id, html)
The createHTML method adds HTML code snippets to the DOM. It takes
two parameters: a unique id and the HTML code snippet passed as a String.

wls.createScript(id, scriptPath)
The createScript method adds a client-side script to the header of the asso-
ciated Web page. It takes two parameters: a unique id and the path to the
script relative to the domain name.

wls.callFunction(name, argumentsArray [, function(result){. . . }])
The callFunction method calls a function associated to the DOM from within
the WebWorker. If the DOM defines a function named name, then it will be
executed by passing the argumentsArray as the arguments. If the optional
callback function is passed as an argument, it will be executed after the
function call ends. The callback takes the returned value of the executed
function as the first parameter.

wls.setDOM(selector, attribute, value)
The setDOM method sets a new value to the attribute of the specified DOM
elements. The elements are specified by the selector parameter and are writ-
ten as jQuery selectors5.

wls.subscribe(id)
The subscribe method creates a direct communication channel from the DOM
to the WebWorker. Once the WebWorkers subscribe, the DOM can create

5 https://api.jquery.com/category/selectors/.

https://api.jquery.com/category/selectors/

106 A. Gallidabino et al.

and send messages to the WebWorkers as if the DOM is an operator in
the topology. It can send messages through the channels with the frame-
work function WLS.publish(id, message), where id is the unique iden-
tifier specified in the subscribe call and message is the object forwarded by
the DOM.

Listings 1.3, 1.5, and 1.6 show the implementation of the three remote scripts
used in the rapid mashup challenge (Sect. 4).

In Listing 1.3 we show the script that creates markers inside the GoogleMap.
The first time the script is loaded it will inject the GoogleMap HTML into the
DOM by using the function wls.createHTML (line 7) and it will inject into the
header of the Web page the script ’js/map.js’ (Listing 1.4) by using the function
wls.createScript (line 8). When a message arrives from upstream (lines 1–6) the
message is processed and the worker will call the addMarker function which is
now defined in the DOM by using the wls.callFunction method.

In Listing 1.5 we show the script that visualises information associated to
the markers on the GoogleMap. The first time the script is loaded it registers
a new subscriber by calling the wls.subscribe method (line 9). Whenever in the
DOM the method WLS.publish(’markermouseover’, msg) is called (Listing 1.4:
line 8–10), a message is forwarded to the worker script, as if it had received a
message from upstreams (lines 2–8). Once the message is processed, the script
will modify some attributes of the Web page by calling the wls.setDOM method
(lines 5–7).

Similarly in Listing 1.6 the script registers a subscriber called markerclick(line
9). Wherever the DOM calls the method WLS.publish(’markerclick’, msg) (List-
ing 1.4: line 4–6) a message is sent to the worker script.

Listing 1.3. Browser Script: Marker Creator

1 wls.createOperator(function(msg) {

2 var tweet = msg.tweet

3 var color = msg.color

4 var location = msg.location

5 wls.callFunction(’addMarker ’,[tweet ,color ,location],

undefined)

6 })

7 wls.createHTML(’mapDiv ’, ’<div id="map -canvas"></div >’);

8 wls.createScript(’mapScript ’, ’js/map.js’);

Listing 1.4. js/map.js script

1 var addMarker = function(tweet , color , location) {
2 ...
3
4 google.maps.event.addListener(marker ,’click ’,function (){
5 WLS.publish(’markerclick ’, {tweet:tweet , color:color ,

count:count })
6 }
7 ...
8 google.maps.event.addListener(marker ,’mouseover ’,function (){

Mashup Development with Web Liquid Streams 107

9 WLS.publish(’markermouseover ’, {tweet:tweet , color:color
})

10 }
11 ...
12 }

Listing 1.5. Browser Script: Marker Viewer

1 var wls = require(’wls.js’)
2 wls.createOperator(function(msg) {
3 var tweet = msg.tweet
4 var color = msg.color
5 wls.setDOM(’#marker_color ’, ’css’, "background -color", color

)
6 wls.setDOM(’#marker_author ’, ’html’, tweet.user.screen_name)
7 wls.setDOM(’#marker_tweet ’, ’html’, tweet.text)
8 })
9 wls.subscribe(’markermouseover ’)

10 wls.createHTML (...);

Listing 1.6. Browser Script: Marker Clicker

1 var wls = require(’wls.js’)

2 wls.createOperator(function(msg) {

3 wls.send({

4 tweet: msg.tweet ,

5 color: msg.color ,

6 count: msg.count

7 })

8 })

9 wls.subscribe(’markerclick ’)

4 Rapid Mashup Challenge

Figure 5 summarizes the final topology deployed during the demo, the description
of the scripts can be found in Sect. 4.2. The mashup we propose in the demo mixes
the following three external APIs:

Geonames
Geonames6 converts name Strings to a pair of latitude-longitude coordi-
nates. Answers from the GeoNames API are in JSON format, which can be
forwarded downstream without the need of any processing.

GoogleMaps
GoogleMaps7 adds a geographic map to a Web page, its API allows creation
of markers on the map given the latitude-longitude coordinates.

6 http://www.geonames.org/.
7 https://developers.google.com/maps/.

http://www.geonames.org/
https://developers.google.com/maps/

108 A. Gallidabino et al.

Tweet
Retriever

Tweet
Geolocate

Stream

Marker
Creator

REST

Marker
Clicker

Retweet
Gatherer

Marker
Viewer

on
mouseclick

on
mouseover

S
erver-sid

e
C

lien
t-sid

e

Fig. 5. Complete stream topology and component deployment

Twitter REST API8 and Streaming API9

REST: The Twitter REST API is used to retrieve all the re-tweets associ-
ated to a given tweet.

Streaming: We subscribe to the streaming feed of The New York Times
(TNYT) Twitter account @nytimes. Every time The New York Times
tweets a piece of news, a message is forwarded to our operator.

The rapid mashup challenge demo mashup marks on a map the geographical
location of the news published by The New York Times. Moreover the mashup
detects two different events associated to the marker: when the mouse is over a
marker the mashup returns additional textual information about the news; when
a marker is clicked it shows on the map, with smaller markers of the same color,
the geographical location of all the users who retweeted it.

During the challenge we incrementally build the mashup from scratch, start-
ing with the definition of a simple linear topology with our JSON syntax. The
initial topology only shows the tweets on the GoogleMap.

After the initial solution, we expand the topology dynamically by invok-
ing the console commands described in Sect. 3.2. The extended topology is now
non-linear, it re-uses the Tweet Geolocate component, and offers the onclick and
mouseover functionalities. The extended mashup has been obtained by incre-
mentally adding components to it without stopping its execution, a form of live
mashup development [15].

8 https://dev.twitter.com/rest/public.
9 https://dev.twitter.com/streaming/overview.

https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview

Mashup Development with Web Liquid Streams 109

At the end of the demo we ask the audience to connect to our Web applica-
tion. Anybody that connects to the mashup with his Web browser will be able
to see the GoogleMap. With the new clients connected to WLS we demonstrate
the migration and the distribution of the mashup components over the set of
peers contributed by the audience.

4.1 Motivation

The proposed mashup allows the demonstration of the most important features
offered by WLS:

Topology definition. Topologies can be created by the means of our DSL
language and executed automatically.

Live mashup development. Topologies can be extended at runtime and com-
ponents can be added or removed while already existing mashups are run-
ning.

Reusable components. Components are independent from the topology they
were created for. The Tweet Geolocate is used both in the initial topology
and the extended one with different upstreams operators.

Distributed user interface mashups. The live demo shows that more than
one operator can be instantiated to visualise the data. The stream topology
can be deployed on different clients and therefore its results are shared among
multiple users.

4.2 Scripts

The rapid mashup challenge is composed by three server-side scripts and three
client-side scripts.

4.2.1 Server-Side
Tweet Retriever. The operator subscribes to the feed of ’The New York Times’

Twitter. When a new tweet is forwarded to the operator it is processed and
trimmed of the useless data. The processed tweet is forwarded to the Tweet
Geolocate operator.

Tweet Geolocate. The implementation of this operator can be found in List-
ing 1.2. The Twitter feed does not directly return the latitude-longitude coor-
dinates of the news. This operator searches for a location name inside the
tweet and sends an HTTP request to the GeoNames API. The tweet and
the GeoNames answer is broadcasted downstream to all Marker Creator
operators.

Re-tweet Gatherer. The operator receives a tweet and a number from
upstream. It sends an HTTP request to the REST Twitter API and requests
the first n re-tweets connected to the given tweet, where n is the number
received from upstream. Every single retweet is then forwarded in a message
to the Tweet Geolocate operator.

110 A. Gallidabino et al.

4.2.2 Client-Side
Marker Creator. The implementation of this operator script can be found

in Listing 1.3. This operator injects the HTML code and javascript of the
GoogleMap into the Web page. Every time a tweet arrives from upstreams it
calls a function defined in the DOM which adds a marker on the GoogleMap.
Figure 6 shows the map on the Web page with some markers on it. Big
markers are news tweeted by the TNYT, while small markers are retweets.

Marker Viewer. The implementation of this operator script can be found in
Listing 1.5. This script adds an HTML tweet viewer to the Web page (Fig. 7).
When the mouseover event of a marker is fired the operator receives the tweet
as a stream message and changes the page accordingly by showing the most
relevant information on the Web page: marker color, author, and text of the
tweet.

Marker Clicker. The implementation of this operator script can be found in
Listing 1.6. This script adds a number picker to the Web page. When the
click event of a marker is fired the operator receives a message with the
tweet and the number selected in the picker. The operator sends a request
downstream to the Retweet Gatherer with both information.

Fig. 6. Marker Creator

Fig. 7. Marker Viewer

Mashup Development with Web Liquid Streams 111

5 Demo

We present our plan for the rapid mashup challenge with a five-phase demo.
Scripts are defined in advance and are not discussed during the challenge demon-
stration.

5.1 Slides Presentation

The slides presentation10 gives the audience a general introduction to WLS. The
presentation describes the concept of operators, binding, and topology. Moreover
it presents the console commands used during the demo: run, bind, exec, and
migrate. Lastly it introduces the JSON description of a topology and the possi-
bility to dynamically change it at runtime.

5.2 Startup and Connection

We open the demo by starting the application and explaining the console log
messages (see Sect. 3.1). In particular we not only show the audience the different
ports and services, but specifically the connection of the peers. We explain that
the server itself is a peer and the application assigns pid 0 to it.

Aftwerwards we open a Web browser (Chrome or Firefox) and connect to the
framework through the remote port. The console logs the connection of a new
remote peer and assigns the pid 1 to it.

At this point the set of peers managed by the application consists of two
peers: a server with pid 0 and a remote peer with pid 1.

5.3 Topology Creation and Deployment

We create the JSON description of a linear topology. The topology is created
on a text editor so that people can see the description of the operators and
bindings. We construct the topology iteratively allowing the audience to connect
what they see with what they heard during the slides presentation.

We use an empty JSON template (Listing 1.7) as a starting point for the
creation. After briefly explaining the template we add the three operators Tweet
Retriever, Tweet Geolocate, and Marker Creator. In particular we make sure to
explain the audience that the first two operators will run on the server while the
last one will run on a Web browser by defining the browser flag (see Sect. 3.3).

Lastly we add to the description two bindings connecting the three operators,
making sure to explain the difference between the round-robin and broadcast
sending algorithm. The final topology description can be viewed in Listing 1.1.

10 http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-
challenge-icwe-2015.

http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-challenge-icwe-2015
http://www.slideshare.net/AndreaGallidabino/web-liquid-streams-mashup-challenge-icwe-2015

112 A. Gallidabino et al.

Listing 1.7. Topology description starting point

1 {
2 "topology": {
3 "id": "test",
4 "operators": [
5 "ADD OPERATORS HERE"
6],
7 "bindings": [
8 "ADD BINDINGS HERE"
9]

10 }
11 }

After the definition of the JSON file we can execute the topology. We remind
the audience about the console commands and call exec. The console prompts
messages as if it had executed three run commands and two bind commands
(see Sect. 3.2). Figure 8 shows the view created on the Web browser: it shows
the pid 1 on the top, the GoogleMap and the cid 2 which is the same operator
identifier written on the console (meaning that the GoogleMap was added to the
Web page by the Marker Creator operator).

Fig. 8. First Iteration: News Stream on the Map

Then we show that by connecting to the REST API port (see Sect. 3.1), we
can see the current topology ran by the application. Figure 9 shows the extended
JSON description displayed on the Web browser. This description has many more
fields than the one described previously because it also contains information
about the runtime of the operators (such as the cpu usage or workers).

Mashup Development with Web Liquid Streams 113

Fig. 9. Topology description retrieved from the REST API

At this point the Web browser displays the map and every time a tweet or
retweet arrives to the client operator a randomly colored marker drops on the
map.

5.4 Topology Development

We dynamically extend the current topology so that we construct the complete
solution to the rapid mashup challenge. We use the console commands run for
the three scripts Marker Viewer, Marker Clicker, and Retweet Gatherer.

Once the run commands finish their execution we show the changes on the
Web browser (Fig. 10). The Web page now contains some new HTML, in par-
ticular we see a number picker added by the Marker Clicker operator with cid
3 and the tweet viewer added by the Marker Viewer operator with cid 4.

We show that by triggering the mouseover event on a marker the Tweet
Viewer HTML changes accordingly, while if we try to trigger the click event
nothing happens. We explain to the audience what is missing, i.e. the fact that

114 A. Gallidabino et al.

Fig. 10. Second Iteration: Marker Creator, Marker Viewer, and Marker Clicker views

Fig. 11. Fully functional rapid mashup challenge

Mashup Development with Web Liquid Streams 115

we still did not create the bindings to the Retweet Gatherer. We run on the
console the two needed bind commands, connecting the Retweet Gatherer to the
Marker Clicker and to the Tweet Geolocate operators.

Finally we can show the audience that by clicking on a marker in the map
the retweets appear. Figure 11 shows the final outcome of the demo on the Web
browser: if a tweet (big marker) is clicked, then many retweets (small markers)
of the same color appear on the map.

5.5 Live Demo and Migration

We invite the audience to participate in the demo and give them the application
URL. They connect to the direct address of the map operator defined in the
JSON topology (Listing 1.8). Anybody connecting to the application can see the
GoogleMap and receive the markers on their Web browser. We show that we
can move the map from one peer to another with the command migrate without
stopping the runtime.

Listing 1.8. Consumer browser direct access

1 {
2 "id": "consumer",
3 "script": "icwe_browser.js",
4 "browser": {
5 "path" : "/map",
6 "only" : true
7 }
8 },

6 Conclusions

We presented Web Liquid Streams and how it can be used to develop mashups
of streaming Web APIs. Like many data-flow based mashup tools, Web Liquid
Streams uses pipelines to represent how information flows between Web data
sources and the widgets visualising it. However, Web Liquid Streams data flow
pipelines can have arbitrary topology and are used to continuously stream data
so that the mashup widgets can be updated in real-time as more information is
streamed through the mashup.

WLS runs both on Web servers and Web browser-enabled devices mak-
ing it possible to implement the presentation layer on the Web browsers and
dynamically spread the integration layers between the Web servers and the Web
browsers. Moreover any peer attached to the application (i.e. sensors, browsers,
. . .) can become a Data producer, filter as well as consumer of a topology. During
the 10 min of the rapid mashup challenge we demonstrated the main features of
the framework: Static deployment of the mashup topology with JSON descrip-
tions, iterative and incremental live development of a topology at runtime and
the liquid [16] distribution of the mashup widgets on different Web browsers.

116 A. Gallidabino et al.

We are currently working on a visual topology editor tool, which would shift
the building of a mashup from the textual editing of low-level JSON descrip-
tions to a high level visual drag-and-drop. The tool would connect and interact
with the already implemented REST API of the runtime for monitoring and
deployment of the mashup topology.

Acknowledgment. The work is supported by the Hasler Foundation with the Liquid
Software Architecture (LiSA) project.

Appendix

Mashup Feature Checklist

Mashup Type Logic mashups
Component Types Logic components
Runtime Location Both Client and Server
Integration Logic Choreographed integration
Data Passing Logic Direct data passing
Instantiation Lifecycle Short-living

Mashup Tool Feature Checklist

Targeted End-User Programmers
Automation Degree Semi-automation or manual
Liveness Level Level 4
Interaction Technique Textual DSL and other (console)
Online User Community None

References

1. Zang, N., Rosson, M.B., Nasser, V.: Mashups: who? what? why? In: CHI 2008
Extended Abstracts on Human Factors in Computing Systems, pp. 3171–3176.
ACM (2008)

2. Liu, Y., Liang, X., Xu, L., Staples, M., Zhu, L.: Composing enterprise mashup
components and services using architecture integration patterns. J. Syst. Softw.
84(9), 1436–1446 (2011)

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems, pp. 211–220. ACM (2012)

4. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Data-
Centric Systems and Applications. Springer, Heidelberg (2014)

5. Babazadeh, M., Gallidabino, A., Pautasso, C.: Decentralized stream processing
over web-enabled devices. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC
2015. LNCS, vol. 9306, pp. 3–18. Springer, Heidelberg (2015)

Mashup Development with Web Liquid Streams 117

6. Aghaee, S., Pautasso, C.: Mashup development with HTML5. In: 4th Interna-
tional Workshop on Web APIs and Services Mashups (Mashups 2010), Ayia Napa,
Cyprus, pp. 10:1–10:8. ACM, December 2010

7. Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.: Under-
standing ui integration: a survey of problems, technologies, and opportunities.
IEEE Internet Comput. 11(3), 59–66 (2007)

8. Hirzel, M., et al.: A catalog of stream processing optimizations. ACM Comput.
Surv. 46(4), 46:1–46:34 (2014)

9. Daniel, F., Koschmider, A., Nestler, T., Roy, M., Namoun, A.: Toward process
mashups: key ingredients and open research challenges. In: Proceedings of the 3rd
and 4th International Workshop on Web APIs and Services Mashups. Mashups
2009/2010, New York, NY, USA, pp. 9:1–9:8. ACM (2010)

10. Biörnstad, B., Pautasso, C.: Let it flow: building mashups with data processing
pipelines. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp.
15–28. Springer, Heidelberg (2009)

11. Oehme, P., Krug, M., Wiedemann, F., Gaedke, M.: The chrooma+ approach to
enrich video content using HTML5. In: Proceedings of the 22nd International Con-
ference on World Wide Web Companion, pp. 479–480 (2013)

12. Phuoc, D.L., Hauswirth, M.: Linked open data in sensor data mashups. In: Pro-
ceedings of SSN 2009, CEUR, pp. 1–16 (2009)

13. Babazadeh, M., Gallidabino, A., Pautasso, C.: Liquid stream processing across web
browsers and web servers. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe,
D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 24–33. Springer, Heidelberg (2015)

14. Babazadeh, M., Pautasso, C.: A restful api for controlling dynamic streaming
topologies. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, International World Wide Web Con-
ferences Steering Committee, pp. 965–970 (2014)

15. Aghaee, S., Pautasso, C.: Live mashup tools: challenges and opportunities. In: 2013
1st International Workshop on Live Programming (LIVE), pp. 1–4 IEEE (2013)

16. Mikkonnen, T., Systa, K., Pautasso, C.: Towards liquid web applications. In: Cimi-
ano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol.
9114, pp. 134–143. Springer, Heidelberg (2015)

Challenge Outcome and Conclusion

Cesare Pautasso1 and Florian Daniel2(B)

1 Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
cesare.pautasso@usi.ch

2 University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
daniel@disi.unitn.it

Abstract. In the following we report on the outcome of the ICWE 2015
Rapid Mashup Challenge (RMC), describe the voting system used, and
draw some conclusions regarding the presented works.

Keywords: Mashups · Challenge · Benchmarking

1 Challenge Organization

We recall that every tool participating in the challenge was allocated 10 min for
a short presentation with the goal to introduce the tool, illustrate its design and
enumerate its most important features. Some participants also used the time to
present the mashup to be built and discuss their choice of required Web APIs
to be mashed up with others they could freely choose and how they were going
to use their tool to assemble the mashup.

The demo part was also 10 min long, during which the mashup was developed
in front of the audience. The starting point for all demos was an empty workspace
in which the components to be used in the mashup had been pre-registered and
pre-defined, but not yet assembled. Some authors chose to follow an iterative
process, whereby the mashup was grown incrementally, piece by piece. Others
also included a more general overview of the mashup tool capabilities, which was
useful to demonstrate the expressive power of the tool, but did not necessarily
help them build the most impressive mashup during the allocated time frame.

Each time a mashup was complete and the time for the demonstration had
expired, the jury and audience had the opportunity to ask questions to the
authors. This short interactive session had not been originally planned, but was
very useful to provide the mashup authors with valuable feedback. During the
same time, the challenge evaluation was collected through the ASQ system. The
results were aggregated and the challenge ranking updated and shown to the
audience and the tool authors.

2 The ASQ Voting System

The challenge evaluation phase was supported by the ASQ system [1]. ASQ (a per-
mutation over Slides-Questions-Answers) allows anyone with a Web browser to
c© Springer International Publishing Switzerland 2016
F. Daniel and C. Pautasso (Eds.): RMC 2015, CCIS 591, pp. 118–122, 2016.
DOI: 10.1007/978-3-319-28727-0 8

Challenge Outcome and Conclusion 119

follow a slideshow presentation and interact with the content by answering ques-
tions embedded in the slides. Itwas originally developed at theUSIFaculty of Infor-
matics to support in-classroom teaching activities by taking advantage of the fact
that every student comes with his/her laptop to follow the lectures. Students not
only can better read the content broadcast to their devices, but teachers can get
real-time feedback about their level of understanding and thus adapt their pace
and explanation depth during the lecture.

As such ASQ is a general tool and can be used also for any interactive
presentation. In particular for the RMC, ASQ was extended with the following
features:

– A special question type to gather ratings, over a 5-star scale, with the possi-
bility to award also half stars.

– A count-down timer activated at the beginning of each demonstration to
ensure every participant demonstrates his/her tool during the same amount
of time.

The intention of introducing ASQ during the RMC was to broaden partici-
pation in the evaluation of the challenge participants from the jury to the whole
audience (including the authors themselves, who did however not vote in their
own turn). A secondary goal was to automate and increase the efficiency of
the scoring process, where the answers are aggregated and the final ranking is
recomputed after every participant is evaluated. Additionally, the slides showing
the metadata about the current participants were interleaved with the questions
to evaluate them. This helped to focus the jury’s and audience’s attention and
build a shared awareness of the proceedings of the challenge and manage the
time without introducing unnecessary delays.

3 Evaluation Criteria

In line with the call for participation of the RMC, every demonstration was
evaluated according to four different criteria:

1. Mashup Idea. This focused on the functionality of the mashup to be assembled
in under ten minutes. Also it took into account how the authors choose to
combine the required APIs with others, if at all. The usefulness of the mashup
also would come into play concerning this criteria.

2. Mashup Complexity. Given the strict time limit of 10 min, the complexity of
the mashup is the challenging aspect. How complex can a mashup actually
be when built in such a short time? This criteria was added also to measure
the difficulty of building the envisioned mashup idea.

3. Mashup Solution Elegance. This criteria shifts the focus to the mashup imple-
mentation in the context of the specific mashup tool. The elegance, simplicity
and understandability of the resulting mashup solution are all very important
aspects that should not be underestimated, despite the emphasis we gave to
the speed with which the solution has been assembled.

120 C. Pautasso and F. Daniel

4. Tool Power. Based on the demonstration of the tool, seen in action for 10 min
to build a specific mashup, the audience could also reflect on their impression
of the tool’s expressive power. Thus, this criteria does not reflect a complete
analysis of the features of a given tool, but only what could be demonstrated
in the limited time available.

4 Results

Table 1 summarizes the feedback obtained from the jury and the audience for
each of the tools participating in the challenge in order of presentation.

Table 1. Feedback gathered from the jury/audience during the challenge

Tool Mashup Idea Mashup Complexity Mashup Solu-

tion Elegance

Tool

Power

Number

of Votes

FlexMash 3.35 3.54 3.15 2.92 13

UI-Oriented Computing 3.07 2.57 3.18 2.36 14

SmartComposition 2.79 2.79 2.61 2.79 14

EFESTO 3.29 3.36 3.29 3.82 14

WebMakeup 2.61 2.21 2.64 2.96 14

WLS 3.07 2.90 2.70 3.10 15

Overall, the range of points collected by the tools is rather narrow, from 2.21
(the Mashup Complexity of WebMakeup) to 3.82 (the Tool Power of EFESTO).
This shows that the audience – from a minimum of 13 to a maximum of 15
people provided feedback – provided a set of varied ratings, and that there is
still room left for improvement in all criteria.

Concerning the Mashup Idea criterion, the tool ranked highest was Flex-
Mash (3.35), which also scored highest (3.54) in the Mashup Complexity crite-
ria. EFESTO, on the other hand, was ranked first according to both the Mashup
Solution Elegance (3.29) and Tool Power (3.82) criteria.

Combining all criteria with equal weights led to the final ranking in Table 2,
according to which EFESTO was awarded the first place in the ICWE 2015
Rapid Mashup Challenge.

5 Limitations

Given the wide variety of approaches to mashup tool design, both from research
and industry, and the lack of standard or commonly accepted benchmarks to
assess development tools, it remains difficult to give a fair comparison of mashup
development tools. To provide an as representative picture as possible of the
state of the art in mashup development, the RMC was intentionally left open
concerning the type of tool admitted and challenged instead the participants

Challenge Outcome and Conclusion 121

Table 2. Ranking of the tools participating in the 2015 Rapid Mashup Challenge

Position Tool Total score

1 EFESTO [2] 13.75

2 FlexMash [3] 12.96

3 WLS [4] 11.77

4 UI-Oriented Computing [5] 11.18

5 SmartComposition [6] 10.96

6 WebMakeup [7] 10.48

with the rapidity of mashup assembly as the main constraint to compare the
tools.

During the challenge, tools were demonstrated by their own authors, some-
thing that may invalidate any claim of usability or accessibility, especially by
end-user programmers, usually associated with mashup tools. However, since
every tool was used by the corresponding authors, the fairness of the compari-
son is not affected.

Concerning the use of the Web APIs, the second constraint of the chal-
lenge, Table 3 shows which APIs were used by each tool. The required APIs were
announced one month in advance, giving the authors plenty of time to prepare.
If one would want to stress the ability of tools to integrate heterogeneous Web
APIs, components and data sources, this time could be reduced while increasing
the number of required components in future editions of the challenge.

Table 3. Web APIs composed during the challenge by each mashup tool

Tool score

FlexMash NYT, Twitter

UI-Oriented Computing NYT, Discover Magazine, Yandex Translate

SmartComposition NYT RSS, AlchemyAPI, YouTube Search, TextTrack,
Google Maps, Twitter, Wikipedia, Google Images

EFESTO Song Kick, YouTube, Vimeo, Google Maps, Google
Images

WebMakeup NYT, NBC News, Google Search, Visual Economy

WLS Twitter, Google Maps, GeoNames

6 Outlook

Concluding, we consider this first edition of the Rapid Mashup Challenge a
success, from the point of view of both the quality of the presented mashup
approaches (and authors) and from the number of participants overall to the

122 C. Pautasso and F. Daniel

event (about 30 people throughout the whole event). While on the one hand
we have to register that comparing approaches for mashup development that
are very different and diverse in their features is intricate and nontrivial, on
the other hand, we also have to acknowledge that it is exactly this diversity
and the distinguishing features that make the comparison (and the Challenge)
interesting. So, the challenge for the future editions of the Challenge – and the
process we wanted to start with this first edition of the Challenge – is to identify
the right benchmarking approach for mashup tools, while staying open to all
kinds of approaches the research community may come up with. This obviously
represents a long-term objective, to be achieved over multiple iterations.

The next edition of the Rapid Mashup Challenge will take place at the 16th
International Conference on Web Engineering (ICWE2016) next June 9th, 2016
in Lugano, Switzerland.

Acknowledgment. We would like to thank the participants for their enthusiasm
and the jury and audience for their active help with the evaluation of the presented
approaches. We would also like to thank Vasileios Triglianos for his help and support
with the ASQ tool.

References

1. Triglianos, V., Pautasso, C.: Interactive scalable lectures with ASQ. In: Caste-
leyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 515–518.
Springer, Heidelberg (2014)

2. Desolda, G., Ardito, C., Matera, M.: EFESTO: a platform for the end-user devel-
opment of interactive. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS 591, pp.
63–81. Springer, Heidelberg (2015)

3. Hirmer, P., Mitschang, B.: FlexMash flexible data mashups based on pattern-based
model. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS 591, pp. 12–30. Springer,
Heidelberg (2015)

4. Gallidabino, A., Babazadeh, M., Pautasso, C.: Mashup development with web liq-
uid streams. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS 591, pp. 98–117.
Springer, Heidelberg (2015)

5. Nouri, A., Daniel, F.: Interactive, live mashup development through UI-oriented
computing. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS 591, pp. 31–49.
Springer, Heidelberg (2015)

6. Krug, M., Wiedemann, F., Gaedke, M.: SmartComposition: extending web applica-
tions to multi-screen mashups. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS
591, pp. 50–62. Springer, Heidelberg (2015)

7. Dı́az, O., Aldalur, I.A., Arellano, C., Medina, H., Firmenich, S.: Web mashups with
WebMakeup. In: Daniel, F., Pautasso, C. (eds.) RMC 2015, CCIS 591, pp. 82–97.
Springer, Heidelberg (2015)

Author Index

Aldalur, Iñigo 82
Ardito, Carmelo 63
Arellano, Cristóbal 82

Babazadeh, Masiar 98

Daniel, Florian 1, 31, 118
Desolda, Giuseppe 63
Díaz, Oscar 82

Firmenich, Sergio 82

Gaedke, Martin 50
Gallidabino, Andrea 98

Hirmer, Pascal 12

Krug, Michael 50

Matera, Maristella 63
Medina, Haritz 82
Mitschang, Bernhard 12

Nouri, Anis 31

Pautasso, Cesare 1, 98, 118

Wiedemann, Fabian 50

	Preface
	Jury Members
	Contents
	ICWE 2015 Rapid Mashup Challenge: Introduction
	1 Context and Objective
	2 Participation Requirements and Organization
	2.1 Call for Participation and Requirements
	2.2 Structure of Challenge

	3 Feature Checklist
	3.1 Mashup Features
	3.2 Mashup Tool Features

	4 Participants
	References

	FlexMash -- Flexible Data Mashups Based on Pattern-Based Model Transformation
	1 Context and Goals
	2 Basic Concepts
	2.1 Mashup Plans
	2.2 TOSCA

	3 Related Work
	4 Flexible Data Mashups Based on Pattern-Based Model Transformation
	4.1 Step 2: Transformation Pattern Selection
	4.2 Step 3: Pattern-Based Transformation
	4.3 Step 4: TOSCA-Based Deployment and Execution

	5 FlexMash -- Level of Maturity
	6 FlexMash -- Feature Checklist
	7 ICWE Rapid Mashup Challenge -- Mashup Scenario
	8 Demo Flow
	9 Challenge Preparations
	10 Discussion and Findings
	11 Summary and Outlook
	References

	Interactive, Live Mashup Development Through UI-Oriented Computing
	1 Introduction
	2 UI-Oriented Computing
	3 UI-Oriented Computing Infrastructure
	4 The Challenge: Scenario and Preparation
	4.1 Mashup Scenario
	4.2 Preparation of Challenge

	5 The Challenge: Live Mashup Development
	6 Related Work
	7 Discussion and Future Work
	References

	SmartComposition: Extending Web Applications to Multi-screen Mashups
	1 Introduction
	2 Context and Goals of the SmartComposition Approach
	3 Related Work
	4 The SmartComposition Approach
	4.1 Structure of SmartComponents
	4.2 Inter-Component Communication
	4.3 Inter-Device Communication

	5 Feature Checklist
	6 Mashup Challenge
	6.1 The Presented Mashup
	6.2 Preparation of the Challenge
	6.3 The Demo Flow

	7 Conclusion
	References

	EFESTO: A Platform for the End-User Development of Interactive Workspaces for Data Exploration
	Abstract
	1 Introduction
	2 The EFESTO Composition Paradigm
	3 Architecture and Feature Checklist
	3.1 Interaction Layer
	3.2 Logic Layer
	3.2.1 The Mashup Engine
	3.2.2 The Event Manager
	3.2.3 The Annotation Engine and the Polymorphic Data Source

	3.3 Service and Data Layer

	4 Level of Maturity
	5 Related Work
	6 ICWE 2015 Rapid Mashup Challenge
	7 Conclusions
	Acknowledgment
	References

	Web Mashups with WebMakeup
	1 Context and Goals
	2 A Mod Scenario
	3 A Session with WebMakeup
	3.1 Widget Creation
	3.2 Widget Mining
	3.3 Widget Handling
	3.4 Widget Animation

	4 The Mod Lifecycle
	5 Level of Maturity and Discussion
	6 Related Work
	References

	Mashup Development with Web Liquid Streams
	1 Introduction
	2 Related Work
	3 Web Liquid Streams Framework
	3.1 Startup and Discovery of the Devices
	3.2 Commands
	3.3 Topology
	3.4 Script API
	3.5 Extended Remote Script API

	4 Rapid Mashup Challenge
	4.1 Motivation
	4.2 Scripts

	5 Demo
	5.1 Slides Presentation
	5.2 Startup and Connection
	5.3 Topology Creation and Deployment
	5.4 Topology Development
	5.5 Live Demo and Migration

	6 Conclusions
	References

	Challenge Outcome and Conclusion
	1 Challenge Organization
	2 The ASQ Voting System
	3 Evaluation Criteria
	4 Results
	5 Limitations
	6 Outlook
	References

	Author Index

