
A Compounded Multi-resolution-Artificial
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of Time Series with Complex Dynamics
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Abstract Time series realizations of stochastic process exhibiting complex dynam-
ics are dealt with. They can be affected by a number of phenomena, like asymmetric
cycles, irregular spikes, low signal-to-noise ratio, chaos, and various sources of
turbulences. Linear models are not designed to perform optimally in such a
context, therefore a mixed self-tuning prediction method—able to account for
complicated patterns—is proposed. It is a two-stage approach, exploiting the multi-
resolution capabilities delivered by Wavelet theory in conjunction with artificial
neural networks. Its out-of-sample forecast performances are evaluated through an
empirical study, carried out on macroeconomic time series.

Keywords Complex dynamics • Feed-forward artificial neural networks • Maxi-
mum overlapping discrete wavelet transform • Time series forecast

1 Introduction

One of the most effective and well-established practical uses of time series
analysis is related to the prediction of future values using its past information [1].
However, much of the related statistical analysis is done under linear assumptions
which—outside trivial cases and ad hoc lab—controlled experiments—hardly ever
do possess features compatible with real-world DGPs. The proposed forecast
procedure has been designed to account for complex, possibly non-linear dynamics
one may encounter in practice and combines the wavelet multi-resolution decompo-
sition approach, with a non-standard, highly computer intensive statistical method:
artificial neural networks (ANN). The acronym chosen for i—i.e. MUNI, short for
Multi-resolution Neural Intelligence—reflects both these aspects. In more details,
MUNI procedure is based on the reconstruction of the original time series after its
decomposition, performed through an algorithm based on the inverse of a wavelet
transform, called Multi-resolution Approximation (MRA) [2–4]. Practically, the
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original time series is decomposed into more elementary components (first step),
each of them representing an input variable for the predictive model, and as such
individually predicted and finally combined through the inverse MRA procedure
(second step). In charge of generating the predictions is the time domain—Artificial
Intelligence (AI)—part of the method which exploits an algorithm belonging to the
class of parallel distributed processing, i.e., ANN [5, 6], with an input structure of
the type autoregressive.

1.1 Signal Decomposing and Prediction Procedures

In what follows the time series (signal) of interest is assumed to be real-valued,

uniformly sampled of finite length T, i.e.: xt WD
n
.xt/

T
t2ZC

o
. MUNI has been

implemented with a wavelet [7–9] signal-coefficient transformation procedure of the
type Maximum Overlapping Discrete Wavelet Transform (MODWT) [10], which is
a filtering approach aimed at modifying the observed series fxgt2ZC , by artificially
introducing an extension of it, so that the unobserved samples fxgt2Z� are assigned
the observed values XT�1, XT�2; : : : ;X0. This method considers the series as it were
periodic and is known as using circular boundary conditions, where wavelet and
scale coefficients are respectively given by:

dj;t D 1

2j=2

Lj�1X
lD0

Qhj;l;Xt�l modN ; SJ;t D 1

2j=2

Lj�1X
lD0

Qgj;l;Xt�l modN ;

with
˚Qhj;l

�
and

˚Qgj;l
�

denoting the length L, level j, wavelet, and scaling filters,
obtained by rescaling their Discrete Wavelet Transform counterparts, i.e.,

˚
hj;l

�
and˚

gj;l
�
, as follows: Qhj;l D hj;l

2 j=2 and Qgj;l D gj;l

2 j=2 . Here, the sequences of coefficients
˚
hj;l

�
and

˚
gj;l

�
are approximate filters: the former of the type band-pass, with nominal

pass-band f 2 Œ 1
4 �j

; 1
2
�j�, and the latter of the type low-pass, with a nominal

pass-band f 2 Œ0; 1
4
�j�, with �j denoting the scale. Considering all the J D Jmax

sustainable scales, MRA wavelet representation of xt, in the L2.R/ space, can be
expressed as follows:

x.t/ D
X

k

sJ;k�J;k.t/C
X

k

dJ;k J;k.t/C
X

k

dJ�1;k J�1;k.t/C � � �

C
X

k

dj;k j;k.t/ � � � C
X

k

d1;k 1;k.t/; (1)
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with k taking integer values from 1 to the length of the vector of wavelet coefficients
related to the component j and and �, respectively, the father and mother wavelets
(see, for example, [11, 12]). Assuming that a number J0 � Jmax of scales is
selected, MRA is expressed as xt D PJ0

jD1 Dj C SJ0 , with Dj D P
k dJ;k J;k.t/

and Sj D P
k sJ;k�J;k.t/; j D 1; 2; : : : ; J. Each sequence of coefficients dj, (in

signal processing called crystal), represents the original signal at a given resolution
level, so that the MRA conducted at a given level j . j D 1; 2; : : : ; J), delivers
the coefficients set Dj, which reflects signal local variations at the detailing level
j, and the set SJ0 , accounting for the long run variations. By adding more levels˚
djI j D 1; 2; : : : ; Jmax

�
, finer levels js are involved in the reconstruction of the

original signal and the approximation becomes closer and closer, until the loss of
information becomes negligible. The forecasted values are generated by aggregation
of the predictions singularly obtained by each of the wavelet components, once they
are transformed via the Inverse MODWT algorithm, i.e.: Oxt.h/ D PJ0

jD1 ODinv
j .h/ C

OSinv
J0
.h/, where D and S are as above defined and the superscript inv indicates the

inverse MODWT transform. In total, four are the choices required for a proper imple-
mentation of MODWT, they are boundary conditions, type of wavelet filter, its width
parameter L, and number of decomposition levels. Regarding the first choice, MUNI
has been implemented with periodic boundary conditions. However, alternatives can
be evaluated on the basis of the characteristics of the time series and/or as a part of
a preliminary investigation. The choices related to the type of wavelet function and
its length L are generally hard to automatize, therefore their inclusion in MUNI
has not been pursued. More simply, it has been implemented with the fourth order
Daubechies least asymmetric wavelet filter (known also as symmlets) [8] of length
L D 8, usually denoted LA.8/. Regarding the forecasting method, MUNI uses a
neural topology belonging to the family of multilayer perceptron [13, 14], of the
type feed-forward (FFWD-ANN) [15]. This is a popular choice in computational
intelligence for its ability to perform in virtually any functional mapping problem
including autoregressive structures. This network represents the non-linear function
mapping from past observations fxt�� I .� D 1; 2; : : : ;T � 1/g to future values
fxhI .h D T;T C 1; : : :/g, i.e.: xt D �nn

�
xt�1; xt�2; : : : ; xt�p;w

� C ut, with p the
maximum autoregressive lag, �.:/ the activation function defined over the inputs
and w the network parameters and ut the error term. In practice, the input–output
relationship is learnt by linking, via acyclic connections, the output xt to its lagged
values, constituting the network input, through a set of layers. While the latter has
usually a very low cardinality (often 1 or 2), the input set is critical—being the
inclusion of not-significant lags and=or the exclusion of significant ones able to
affect the quality of the outcomes.
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1.1.1 The Learning Algorithm and the Regularization Parameter �

MUNI envisions the time series at hand split in three different, non overlapping
parts, serving respectively as training, test, and validation sets. The training set
is the sequence

˚
.x1;q1/; : : : ; .xp;qp/

�
, in the form of p ordered pairs of n- and

m-dimensional vectors, were qi denotes the target value and xi the matrix of the
delayed time series values. The network, usually initialized with random weights, is
presented an input pattern and an output, say oi, is generated as a result. Being in
general oi ¤ qi, the learning algorithm tries to find the optimal weights vector
minimizing the error function in the w-space, that is: op D fnn.w; xp/, where
the weight vector w refers, respectively, to the pi output and the pi input and fnn

the activation function. Denoting here the training set with Tr and with Ptr the
number of pairs, the average error E committed by the network can be expressed
as: QE.w/ D E.w/ C 1

2
�

P
i w2

i , where � is a constraint term aimed at penalizing
model weights and thus limiting the probability of over-fitting.

1.1.2 Intelligent Network Parameters Optimization

In this section, MUNI’s AI-driven part is illustrated and some notation introduced. In
essence, it is a multi-grid searching system for the estimation of an optimal network
vector of parameters under a suitable loss function, i.e., the root mean square error
(RMSE), expressed as

B.xi; Oxi/ D
"

T�1
TX
i

jeij2
# 1
2

; (2)

with xi denoting the observed value, e the difference between it and its prediction Oxi,
and T the sample size. The parameters subjected to neural-driven search, listed in
Table 1 along with the symbols used to denote each of themare stored in the vector
!, i.e.: ! � .ˇ; �; ˛; �; 	; 
/. Each of them is associated a grid, whose arbitrarily
chosen values are all in Z

C. Consistently with the list of parameters of Table 1, the
set of these grids, is formalized as follows: � D .f�ˇg, f��g, f�˛g, f��g, f�	g,
f�
g), where each subset f�.�/g has cardinality respectively equals to Q̌, Q�, Q̨ , Q�,

Table 1 MUNI’s parameters
and related notation

Symbol Parameter

ˇ Number of the sets of decomposition levels

� Rescaling factor

˛ Number of iterations

� Decay ratio

	 Number of input neurons (lag-set)


 Number of hidden layer neurons
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Q	 Q
.1 The wavelet-based MRA procedure is applied Q̌ times, so that the time series
of interest is broken down into Q̌ different sets, each containing different numbers of
crystals, in turn contained by a set denominated A, i.e.: fAˇw I w D 1; 2; : : : ; Q̌g �
A. Here, each of the A’s encompasses a number of decomposition levels ranging
from a minimum and a maximum, respectively, denoted by Jmin and Jmax, therefore,
for the generic set Aˇw � A, it will be:

Aˇw D ˚
Jmin � k; k C 1; k C 2; : : : ;K � JmaxI Jmin > 1

�
: (3)

Assuming a resolution set Aˇ0 and a resolution level k0 � Aˇ0 , the related
crystal, denoted by Xk0;ˇ0 , is processed by the networkN1, which is parametrized by

the vector of parameters !
.k0;Aˇ0 /
1 � .�.k0;Aˇ0 /; ˛.k0;Aˇ0 /; �.k0;Aˇ0 /; 	.k0;Aˇ0 /; 
.k0;Aˇ0 //.

Once trained, the network N1, denoted by QC1
k0;Aˇ0 , is employed to generate H-

step ahead predictions. MUNI chooses the best parameter vector, i.e., �!.k0;Aˇ0 /

for Xk0;ˇ0 , according to the minimization of a set of cost functions of the form
B.Xk0;ˇ0 ;

OXk0;ˇ0/ iteratively computed on the predicted values OXk0;ˇ0 in the vali-
dation set. These predictions are generated by a set of networks parametrized and
trained according to the set of k-tuples (with k the length of !) induced by the set
of the Cartesian relations on � . Denoting the former by QCk0;Aˇ0 and by P the latter,
it will be:

�!
.k0;Aˇ0 / D arg min

P
B. OXk0;Aˇ0

.P/;Xk0;Aˇ0
/: (4)

The set of all the trained networks attempted at the resolution level Aˇ0 (i.e.,
encompassing all the crystals in Aˇ0), is denoted by QCAˇ0 , whereas the set of
networks trained in the whole exercise (i.e., for all the A’s), by QCA. The networks
QCAˇ0 , parametrized with the optimal vector .�!Jmin ; : : : ;� !Jmax/ � �˝ˇ0 , which is

obtained by applying (4) to each crystal, are used to generate predicted values at
each resolution level independently. These predictions are combined via Inverse-
MODWT and evaluated in terms of the loss function B, computed on the validation
set of the original time series. By repeating the above steps for the remaining
sets, i.e., fAˇw I w D 1; 2; : : : ; Q̌ � 1g � A, Q̌ optimal sets of networks � QCA,
each parametrized by optimal vectors of parameters f�˝wI w D 1; 2; : : : ; Q̌g are
obtained. Each set of networks in � QCA is used to generate one vector of predictions

1For example, for the grid �	 we have �	 D �
.1/

	 ; �
.2/

	 ; : : : ; �
.Q	/

	 , with the generic element � . j/
	

denoting one of the values chosen for the number of the input neurons.
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Table 2 MUNI procedure: a
priori activities and choices

Decomposition unit AI unit

Data exploration

Data pre-processing

Waveform and its length Network topology

Wavelet transform method Number of hidden layers

Boundary conditions Sets of grids

Reconstruction algorithm Squashing function

Prediction horizon

for xt in the validation set (by combination of the multi-resolutions predictions via
MODWT), so that, by iteratively applying (2) to each of them, a vector containing
Q̌ values of the loss function, say Lw, is generated. Finally, the set of networks in

a resolution set say �A, whose parametrizations minimize Lw, are the winners, i.e.:
�˝A D arg min

.�˝w/

.L/.

1.1.3 Human-Driven Decisions

Being MUNI a partially self-regulating method, while it embodies automatic
estimation procedures for a number of parameters, it requires a set of preliminary,
human-driven choices, involving both the decomposition and the AI parts, as
summarized in Table 2. Here, the first two entries are in common in that refer to
activities which are not unit specific.

1.1.4 The Algorithm

MUNI procedure is now detailed in a step-by-step fashion.

1. Let xt be the time series of interest [as defined in of interest (Sect. 1.1)], split in
three disjoint segments: training set

˚
xTr

�
t
I t D 1; 2; : : : ;T � .S C V C 1/,

validation set,
˚
xU

�
t t D T �.SCV C1/; : : : ; .T �V/ and test set,

˚
xS

�
t t D

T � .V C 1/; : : : ;T/, where with V and S, respectively, the length of validation
and test set are denoted;

2. MODWT is applied Q̌ times to xTr
t , and the related sets of crystals are stored

in Q̌ different sets, which in turn are stored in the matrix Dj;w, of dimension

(JMAX � Q̌) of the form2:

2The upper row containing the symbols for the A’s has been added for clarity.
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Aˇ1 Aˇ2 Aˇw A Q̌

Dj;w D

2
666666666666666666666666666664

XJMIN;1 XJMIN;2 � � � XJMIN;w � � � XJMIN; Q̌
XJMINC1;1 XJMINC1;2 � � � XJMINC1;w � � � XJMINC1; Q̌

:::
:::

:::
::: � � � :::

Xk;1 Xk;2 � � � Xk;w � � � Xk; Q̌
:::

:::
:::

::: � � � :::

XJMAX;1

::: � � � ::: � � � :::

; :::
:::

::: � � � :::

; XJMAX;2 � � � ::: � � � :::

; ; :::
::: � � � :::

; ; � � � XJMAX;w � � � :::

; ; ::: ; � � � :::
; ; � � � ; � � � XJMAX; Q̌

3
777777777777777777777777777775

:

Here, the generic columnˇw, represents the set of resolution levels generated
by a given MRA procedure, so that its generic element Xk;w is the crystal
obtained at a given decomposition level k belonging to the set of crystals
Aˇw . For each column vector ˇw, a minimum and a maximum decomposition
level (3), Jmin and Jmax, is arbitrarily chosen;

3. the set P of the parametrizations of interest is built. It is the set of all
the Cartesian relations P � ˚

�� � �˛ � �� � �	 � �

�

whose cardinality,
expressed through the symbol j � j, is denoted by jPj;

4. an arbitrary set of decomposition levels, say A0 � A, is selected (the symbol ˇ
is suppressed for an easier readability);

5. an arbitrary crystal, say Xk0;A0 � A0, is extracted;
6. the parameter vector ! is set to an (arbitrary) initial status !1 � P1 � �

�
.1/
˛ ,

�
.1/
� , � .1/

� , � .1/

	 , � .1/



�
;

(a) Xk0;A0 is submitted to and processed by a single hidden layer ANN of the
form

8
<
:
N.1/ D �

�
Xk0;A0 ;w.1/

�

w.1/ D � .!
k0;A0
1 /;

with � being the sigmoid activation function and w the network weights
evaluated for a given configuration of the parameter vector, i.e., !1.

(b) network N1 is trained and the network QC1
k0;A0 , obtained as a result, is

employed to generate H-step ahead predictions for the validation set xU .
These predictions are stored in the vector Pk0;A0

1 ;
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(c) steps 6a–6d are repeated for each of the remaining .jPj � 1/ elements of
P. The matrix Pk0;A0

m of dimension
�
U � jPj � 1

�
, containing the related

predictions (for the crystal Xk0;A0) is generated by the trained networks
QCk0;A0
2;:::;jPj;

(d) the matrix fullP
k0;A0 of dimensions

�
U � jPj� containing all the predictions

for the crystal Xk0;A0 is generated, i.e.,

fullP
k0;A0 D Pk0;A0

1 [ Pk0;A0
m I

(e) steps 6a–6d are repeated for each of the remaining crystals in A0, i.e.,

˚Xki;A0 I i D Jmin; JminC1; : : : ; .Jmax � 1/
� � A0 � A;

so that i D 1; 2; : : : ; .JMAX � 1/ prediction matrices Pki;A0 are generated;
(f) the

�
.JMAX � Jmin C 1/ � jPj� dimension matrix OJA0

�full Pk0;A0 [
Pki;A0 I i D Jmin; JminC1; : : : ; .Jmax � 1/, containing all the predictions
for the validation set

˚XU
�

t, of all the crystals in A0, is generated,3 i.e.:

OJA0
D

2
6666666666664

OXJMIN;!1
OXJMIN;!2 � � � OXJMIN;!k

� � � OXJMIN;!jPj

OXJMINC1;!1
OXJMINC1;!2

� � � OXJMINC1;!k
� � � OXJMINC1;!jPj

:::
:::

:::
::: � � � :::

OXk;!1
OXk;!2 � � � OXk;!k � � � OXk;!jPj

:::
:::

:::
::: � � � :::

OXJMAX;!1
OXJMAX;!2 � � � OXJMAX;!k

� � � OXJMAX;!jPj

3
7777777777775

I

7. loss function minimization in the validation set is used to build the set of winner
ANNs for each of the crystals in A0, i.e., C�A0 �

n
Jmin

C�A0 ; : : : ; Jmax
C�A0

o
.

For example, for the generic crystal k, the related optimal network is selected
according to: kCA0� D arg min

P
B. XU

k ;
OXU
k .P//;

8. C�A0 is employed to generate the matrix OX A0� of the optimal predictions for the
validation set of each resolution level in A0, i.e.,

OX A0� �
h

Jmin OXU ; : : : : : : ; Jmax OXU
i0

;

9. by applying inverse MODWT to OX A0� , the series
˚
xU

�
t

is reconstructed, i.e.,

Inv. OX A0� / D ˚OxU
A0

�
t
, so that the related loss function B.xU

t ; Ox.U/t / is computed
and its value stored in the vector � whose length is .JMAX � Jmin C 1/;

3In order to save space, the empty set symbol ; is omitted.
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10. steps 4–9 are repeated for the remaining sets of resolutions A1; : : :Aw; : : : ;AQw�1,
so that all the Qw error function minima are stored in the vector �;

11. the network set C� generating the estimation of the crystals minimizer of � over
all the network configurations C, is the final winner, i.e., C� D arg min

CA
�

�.C/;

12. final performances assessments are obtained by using C� on the test set xS
t .

2 Empirical Analysis

In this section, the outcomes of an empirical study conducted on four
macroeconomic time series—i.e., Japan/USA Exchange rate, USA Civilian
Unemployment rate (un-transformed and differenced data), Italian industrial
production Index, respectively denoted TS1, TS2, TS3, TS4—are presented. These
series (detailed in Tables 3 and 5) along with their empirical autocorrelation
functions (EACF) [16], depicted respectively in Figs. 1 and 2, have been considered
as they differ substantially for the type of phenomenon measured other than for
their own inherent characteristics as time span, probabilistic structure, seasonality,
and frequency components. In particular, TS2 and TS3, refer to the same variable
(US civilian unemployment rate), and are included in the empirical analysis to
emphasize MUNI’s capabilities to yield comparable results when applied to both
the original and transformed data (and thus to simulate the case of a not pre-
processed input series). As expected, the two series exhibit a different pattern:
the un-transformed one (TS2), in fact, shows an ill behavior, in terms of both
seasonal components and non-stationarity, in comparison with its differenced
(the difference order is 1 and 12) counterpart TS3. On the other hand, TS1–2

Table 3 Specification of the time series employed in the empirical analysis

Name Variable Source Period Span Transform

TS1 Japan/USA
Exchange rate

Board of
Governors of the
Federal Reserve
System

Jan. 1992–Jan. 2015 277 No

TS2 Civilian
unemployment rate

US Bureau of
Labor Statistics
(Household
survey)

Jan. 1948–Jan. 2015 805 No

TS3 Civilian
unemployment rate

US Bureau of
Labor Statistics
(Household
survey)

Jan. 1948–Jan. 2015 792 Diff(1,12)

TS4 Italian industrial
production Index

Italian National
Institute of
Statistics

Jan. 1981–Jun. 2014 402 No
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Fig. 1 Graphs of the time series employed in the empirical study

shows roughly an overall similar pattern, with spikes, irregular seasonality, and
non-stationarity both in mean and variance. Such a similarity is roughly confirmed
by the patterns of their EACFs (Fig. 2). Regarding the time series TS3–4, they
exhibit more regular overall behaviors but deep differences in terms of their
structures. In fact, by examining Figs. 1 and 2, it becomes apparent that unlike TS4,
TS3 is roughly trend stationary with a 12-month seasonality with a persistence of
the type moving average—according to the (unreported) Partial EACF—different
from the one characterizing TS4, appearing to follow an autoregressive process.
Regarding TS4, this time series has been included for being affected by two major
problems: an irregular trend pattern with a significant structural break located in
2009 and seasonal variations with size approximately proportional with the local
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Fig. 2 EACFs for the time series employed in the empirical study

level of the mean. A potential source of nonlinearity, this form of seasonality is
often dealt with by making it additive through ad hoc data transformation. However,
this is not a risk-free procedure, for being usually associated with the critical task
of back-transforming the data, as shown in [17, 18]. Quantitative assessment of the
quality of the predictions generated by MUNI are made by means of the following
three metrics—computed on the test sets of each of the four time series—i.e.:

RMSE.h/ D
q

1
s

P jxS � OxSj2, MPE.h/ D 1001s
P
Œ xS�OxS

xS �, MAPE.h/ D
1001s

P j xS�OxS

xS j, with s the length of xS and h the number of steps ahead the
predictions are evaluated, here h D 1; 2; 3; 4 (Figs. 3 and 4).
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Fig. 3 TS1: test set. True (continuous line) and 1,2,3,4-step ahead predicted values (dashed line)

2.1 Results

As illustrated in Sect. 1.1.4, each of the employed ANNs has been implemented
according to a variable-specific set � , containing all the grids whose values are
reported in Table 4. It is worth emphasizing that, in practical applications, not
necessarily the set � encompasses the optimal (in the sense of the target function
B) parameter values of a given network. More realistically, due to the computational
constraints, one can only design a grid set able to steer the searching procedure
towards good approximating solutions (Table 6). The outcomes of the empirical
analysis outlined in the previous Sect. 2 are reported in Table 7. From its inspection,
it is possible to see the good performances, with a few exceptions, achieved by the
procedure. The series denominated TS4, in particular, shows a level of fitting that can
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Fig. 4 TS4: test set. True (continuous line) and 1,2,3,4-step ahead predicted values (dashed line)

be considered particularly interesting, especially in the light of its moderate sample
size and the irregularities exhibited by the lower frequency components, i.e., d4 and
s4 (Fig. 5). The procedure chooses in this case relatively simple architectures: in
fact (see Table 6), excluding s4 (with six lags and the parameter 
 D 5), for all
the remaining components we have a more limited number of delays and of hidden
neurons .
 � 3/. Regarding the performances, it seems remarkable the level of
fitting obtained at horizon 1 and 2, for a MAPE respectively equal to 0.85 and 1.43,
and a RMSE of 0.71 and 1.5. Visual inspection of Fig. 4 confirms this impression
as well as the less degree of accuracy recorded at farther horizons, even though it
appears how, especially horizon 3 predictions (MAPE D 2:63), can provide some
insights about the future behavior of this variable. Other than from Table 7, less
impressive performances can be noticed for TS1 by examining Fig. 3. However, it
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Table 5 Length of the
subsets of the original time
series

Size

Set TS1 TS2 TS3 TS4˚
x A

�
t 229 673 660 354˚

xV
�

t 36 120 120 60˚
x S

�
t 12 12 12 12

d1
d2

d3
d4

s4

670 134 201 268 335 402

Fig. 5 TS4 and its MODWT coefficient sequence dj; tI j D 1; : : : ; 4
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Table 6 Parameters chosen by MUNI for each time series at each frequency component

Parameters

Time series Crystals ˛ � 	 


TS1 d1 200 0:1 1-2-3-12-18-36 7

� D 400 d2 200 0:1 1-2-3-4-12-36 8

ˇ D 5 d3 200 0:1 1-2-3-4-12-15-18 8

d4 200 0:1 1-2-3-4-12-15-18-30 8

s4 200 0:1 1-2-3-4-12-18-24-30 8

TS2 d1 100 0:001 1-2-12 4

� D 7 d2 100 0:001 1-2-12-18 5

ˇ D 6 d3 100 0:001 1-2-3-30 4

d4 50 0:001 1-2-4-48 3

d5 100 0:001 1-2-12–30 4

d6 100 0:01 1-4-36 2

s6 100 0:01 1-2-3-10-60 4

TS3 d1 100 0:01 1-2-12 2

� D 2 d2 100 0:01 1-2-3-12 2

ˇ D 5 d3 100 0:01 1-2-12-18 3

d4 50 0:01 1-2-3-4-21 3

s4 100 0:01 1-2-3-5-6-21 3

TS4 d1 100 0:001 1-2-3-12 2

� D150 d2 100 0:001 1-2-12 2

ˇ D5 d3 100 0:001 1-2-5-15 3

d4 200 0:01 1-3-4-24 3

s4 200 0:1 1-3-15-18-36-48 5

Table 7 Goodness of fit statistics computed on the test set for the four time series considered

Horizon RMSE MPE MAPE Horizon RMSE MPE MAPE

TS1 1 1:729 0:303 1:485 TS2 1 0:093 �0:105 1:424

2 2:705 �0:097 2:354 2 0:186 0:408 2:829

3 4:71 1:063 3:56 3 0:294 0:75 4:382

4 7:184 1:588 6:133 4 0:375 1:361 5:835

TS3 1 0:129 �0:677 1:841 TS4 1 0:712 �0:047 0:849

2 0:215 0:712 3:224 2 1:507 0:351 1:43

3 0:224 �0:694 3:12 3 2:908 0:035 2:626

4 0:295 2:693 4:075 3 5:591 0:807 5:938

Values for TS3 obtained by back-transformation
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has to be said that, among those included in the empirical experiment, this time
series proves to be the most problematic one both in terms of sample size and
for exhibiting a multiple regime pattern made more complicated by the presence
of heteroscedasticity. Such a framework induces MUNI at selecting architectures
which are too complex for the available sample size. As reported in Table 6, in fact,
the number of hidden neurons is large and reaches, for almost all the frequency
components chosen (ˇ D 5), its maximum grid value (
 D 8). Also, the number
of input lags selected is always high, whereas the regularization parameter reaches,
for all the decomposition levels, its maximum value (� D 0:1). Such a situation
is probably an indication of how the procedure tries to limit model complexity
by using the greatest value admitted for the regularization term, nevertheless the
selected networks still seem to over-fit. This impression is also supported by the high
number of iterations (the selected value for ˛ is 200 for each of the final networks)
which might have induced the selected networks to learn irrelevant patterns. As
a result, MUNI is not able to properly screen out undesired, noisy components,
which therefore affect the quality of the predictions. However, notwithstanding this
framework, the performances can be still regarded as acceptable considering the
predictions at lag 1 and perhaps at lag 2 (RMSE D 1:73 and 2:70, respectively),
whereas they significantly deteriorate at horizon 3, where the RMSE reaches the
value of 4:71. Horizon 4 is where MUNI breaks down, probably for the increasing
degree of uncertainty present at higher horizons associated with poor network
generalization capabilities. With an RMSE of 7.18, that is, more than 4 times higher
than horizon 1 and an MPE of 1.59 (>5 times), additional actions would be in order,
e.g., increasing the information set by including ad hoc regressors in the model. As
already mentioned, TS2 shows an overall behavior fairly similar to TS1, in terms
of probabilistic structure, non-stationarity components and multiple regime pattern.
However, the more satisfactory performances recorded in this case are most likely
to be connected to the much bigger available sample size. In particular, it is worth
emphasizing the good values of the MAPE for the short term predictions (h D 1; 2),
respectively, equal to 1:42 and 2:83 as well as the RMSE obtained at horizon 4,
which amounts to 0:37. In this case, more parsimonious architecture are chosen
(see Table 6) for the ˇ D 6 selected number of components the original time series
has been broken into, with a number of neurons ranging from 2 (for the crystal d6)
to 5 (for the crystals d2), which are associated with input sets of moderate size,
(	 D 5 is the max value selected). As a pre-processed version of TS2, TS3 shows
a more regular behavior (even though a certain amount of heteroscedasticity is still
present) with weaker correlation structures at the first lags and a single peak at
the seasonal lag 12 (EACF D �0:474). As expected, MUNI for this case selects
simpler architectures for each of the ˇ D 5 sub-series, with a limited number of
input lags and a smaller number of neurons (
 � 3). Although generated by more
parsimonious networks, the overall performances seem to be comparable to those
obtained in the case of TS2. In fact, while they are slightly worse for the first two
lags (MAPE D 1:84; 3:22 for h D 1; 2 respectively versus 1:42 and 2:83), the
error committed seems to decrease more smoothly as the forecast horizon increases.
In particular at horizon 4, MUNI delivers better predictions than in the case of
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the un-transformed series: in fact, the recorded values of RMSE and MAPE are
respectively of 0.29 and 4.07 for TS3 and 0.37 and 5.83 for TS2.
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