Spatio-Temporal Modeling for fMRI Data
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Abstract Functional magnetic resonance imaging (fMRI) uses fast MRI techniques
to enable studies of dynamic physiological processes at a time scale of seconds.
This can be used for spatially localizing dynamic processes in the brain, such as
neuronal activity. However, to achieve this we need to be able to infer on models of
four-dimensional data. Predominantly, for statistical and computational simplicity,
analysis of fMRI data is performed in two-stages. Firstly, the purely temporal
nature of the fMRI data is modeled at each voxel independently, before considering
spatial modeling on summary statistics from the purely temporal analysis. Clearly,
it would be preferable to incorporate the spatial and temporal modeling into one
all encompassing model. This would allow for correct propagation of uncertainty
between temporal and spatial model parameters. In this paper, the strengths and the
weaknesses of currently available methods will be discussed based on hemodynamic
response (HRF) signal modeling and spatio-temporal noise modeling. Specific
application to a medical study will also be described.

1 Introduction

Functional magnetic resonance imaging (fMRI) is based on the blood-oxygen level
dependent (BOLD) principle. When neurons are active they consume oxygen,
which then leads to increased blood flow to the activated area. As a result, neural
activities can be inferred from the BOLD signals. In fact, the BOLD signal
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from fMRI scanner has been shown to be closely linked to neural activity [11].
Through a process called the hemodynamic response, blood releases oxygen to
active neurons at a greater rate than to inactive ones. The difference in magnetic
susceptibility between oxyhemoglobin and deoxyhemoglobin, and thus oxygenated
or deoxygenated blood, leads to magnetic signal variation which can be detected
using an MRI scanner. The relationship between the experimental stimulus and
the BOLD signal involves the hemodynamic response function (HRF). For the
simplicity of illustration, we denote the relationship by

BOLD = F(STIMULUS, HRF) + NOISE.

Several pioneer papers have used experiments to confirm that the functional form
of F is approximately linear based on some typical STIMULUS such as auditory
or finger tapping. Furthermore, it has been reported that the fMRI time series is
hampered by the hemodynamic distortion. These effects result from the fact that
the fMRI signal is only a secondary consequence of the neuronal activity. See, for
example, Glover [8]. These observations have simplified the above model greatly
leading to the following popular model adopted by many fMRI studies:

BOLD = convolution(STIMULUS, HRF) + NOISE. D

Estimating or determining the HRF is important for the correct interpretation of
neural science and human brain research. For example, standard fMRI analysis
packages such as Statistical Parametric Map (SPM) [7] and FMRIB Software
Library (FSL) [9] developed statistical inference based on

BOLD =  x convolution(STIMULUS, HRF) + NOISE. 2)

by estimating the parameter 8 under the following assumptions:

1. The HRF takes a pre-specified function known as the double-gamma function in
the literature [8]:

HRF(1) = c1f™ exp(—t/t1) — azcat™ exp(—t/t,),
¢; = max(f" exp(—t/t;)), i=1,2.

2. The noise takes on simple time series models such as AR(1).

Some of the earlier papers also reported that the HRF may vary according to the
location of the neurons and the type of stimulus [2, 4]. For example, the parameters
n; and t; depend on the motor or auditory regions of the brain. Thus flexible
nonparametric estimation of HRF is an important problem in fMRI that allows
different HRFs for different subjects and different brain regions. The identification
of the HRF has been studied under event-related designs because the design
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paradigm allows the HRF to return to baseline or recover after every trial. Most of
the approaches are time domain based because of the spiking nature of the stimuli.

In this paper, we introduce a Fourier method based on the transfer function
estimate (TFE). This is a frequency domain nonparametric method for extracting
the HRF from any kind of experimental designs, either block or event-related.
This approach also allows TFE to detect the activation through test of hypotheses.
Moreover, it can be further developed to validate the linearity assumption. This
is very important as reported in some of the earlier papers, the BOLD response
is an approximate linear function of the stimuli and the HRF, and the linearity
assumption may not hold throughout the brain. These desirable features of TFE will
be demonstrated using on simulation and real data analysis. More specifically,

— We first extend Bai et al.’s [1] method to multivariate form to estimate multiple
HRFs simultaneously using ordinary least square (OLS). We also verified and
reported the consistency and asymptotic normality of the OLS estimator.

— TFE detects the brain activation while estimating HRF by providing the F map
and also tests the linearity assumption inherited from the convolution model.

— TFE is able to compare the difference among multiple HRFs in the experiment
design.

— TFE adapts to all kinds of experiment designs, and it does not depend on the
pre-specified HRF length support.

The present paper is based on the first author’s Ph.D. dissertation [5] in which
the methodology and its statistical sampling properties are described in more
details. The current approach is based on the OLS method, a weighted least square
(WLS) version for estimating the HRF has been implemented and a more detailed
discussion on these approaches to fMRI can be found therein.

2 Method

In this section, we will outline how we developed TFE in order to make it feasible
to estimate HRF under a multi-stimulus design experiment.

Using multiple stimuli in one experiment session is in high demand as it obtains
stronger response signal compared to the single stimulus design. In the view of
human brain’s biological process, the advantage from multiple stimuli is to avoid the
refractory effect, which causes nonlinearity in the response over time [6]. Subjects
are easy to get bored if only one stimulus shows repeatedly in a session. In the
view of experiment design, multiple stimuli are helpful to make efficient design in a
limited time that the scanner provides. Thus the change of stimulus over successive
trials is beneficial for experiment design.
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2.1 Model

Consider the BOLD response model given by
yO) = @x1(t) + ha @ x2(t) + -+ + hy @ x,(2) +2(t), t=0,....,T—1, (3)

where x;(¢) represents the ith stimulus function, 4;(¢) is the corresponding HRF,
and @ is the binary convolution operator define by x ® h(r) = ), x(u)h
(t — u). We assume that the error or noise series, z(f), is stationary with 0 mean
and power spectrum s,,(r), where r is the radian frequency. Here T is the duration
of the experimental trial.

To write the convolution model (3) in a matrix form, let x(#) be an n vector-valued
series, i.e., X() = (x1(¢),x2(?), ..., x,(¢))". Suppose that h(u) is a 1 x n filter given
by h(u) = (h1(u), ha(w), . .., h,(u)). The BOLD model (3) to be considered in this
paper is

YO =Y h@x(t— u) + (7). )

We further assume that the HRF h(u) is O when u < 0 or u > d, where d is the
length of HRF latency determined by underlying neural activity.

Let H(-) denote the finite Fourier transform (FFT) of h(-) given by H(r) =
>, h(r) exp(—irt). Define similarly

T—1 T—1
Y(r) = YD) =Yy exp(=ir),  X(r) = XD (r) = > x(r) exp(—ir),
=0 =0
T—1
Z(r) =2 (r) = Y " z(t)exp(—ir), reR.
=0

By the properties of FFT, we have
Y(r) = H@)X(r) + Z(r), reR.

If H(:) is smooth, then it can be estimated reasonably well by a local approximation
of the above relationship. Specifically, let K be an integer with 27 K /T near radian
frequency r. Suppose T is sufficiently large. From the asymptotic property of FFT.

YQr(K+k)/T)=H()XQ2r(K+k)/T)+ZQ2n(K+k)/T), k=0,£1,...,+m.
(%)

Here m is an appropriate integer to be specified, which is related to the degree of
smoothing the Fourier transform in estimating the spectral density function.
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By applying Fourier transform, the convolution in time domain is transformed
to the product in frequency domain. The product forms the linear relationship
between Y (-) and X(+), which makes the estimation very much similar to the typical
linear regression setting. Also, applying Fourier transform is a good way to avoid
estimating the autocorrelation in the time domain. When we deal with Fourier
coefficients instead of time points, these coefficients are asymptotically uncorrelated
at different frequencies.

2.2 OLS Estimate

Relation (5) is seen to have the form of a multiple regression relation involving
complex-valued variates provided H(r) is smooth. In fact, according to [3], an
efficient estimator is given by

H(r) = §yx(r)§xx(r)_ls reR. (6)
Here $yy is a smooth or window-type estimator of the auto-spectral density function

sxx of the vector-valued processes x, and §yx is defined similarly as a smooth
estimator of the crossed-spectra s,x of the processes y and x.

A reasonable estimator of the HRF h is obtained by the inverse FFT of H:
T—1
~ 1 ~ (27t
B = = ;H (%) exp(i2nau/T), u=0,1,....d. %)

It has been shown that ﬁ(u) has attractive sampling properties that it is an
asymptotically consistent and efficient estimate of h(u).

3 Hypothesis Testing
After introducing TFE method, this section introduces the multivariate tests for
fMRI analysis.

3.1 Key Concepts

First, we introduce two key concepts [3] here to support the hypothesis testing.
Coherence is an important statistic that provides a measure of the strength of

a linear time invariant relation between the series y(f) and the series x(¢), that is, it

indicates whether there is a strongly linear relationship between the BOLD response
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and the stimuli. From a statistical point of view, we can test the linear time invariant
assumption for the convolution model; for the fMRI exploration, we can choose
the voxels with significant large coherence where the BOLD series have functional
response to the stimulus, and then estimate the HRF in those voxels.

Coherence is defined as

R ()| = $yx(P)xx () 5 (1) /53 (). )

Coherence is seen as a form of correlation coefficient, bounded by O and 1. The
closer to 1, the stronger linear time invariant relation between y(¢) and x(¢).

The second concept is partial coherence. If we look at the stimulus individually,
it is interesting to consider the complex analogues of the partial correlations or
partial coherence. The estimated partial cross-spectrum of y(t) and x;(t) after
removing the linear effects of other x;(¢) is given by

Syx;-x; (r) = Syx; (r)— Syx; (r)sxj-x_,- (r)_lsxjx,- (r). )

Usually the case of interest is the relationship between the response and a single
stimulus after the other stimuli are accounted for, that is, x; is the single stimulus of
interest, and x; is the other stimuli involved in the design paradigm.

The partial coherence of y(f) and x;(f) after removing the linear effects of x;(¢) is
given by

Syx,' 'Xj (r)2

2
Ryyx; (1) = ——————.
| VXi X_/( )i Syyx; (}’)Sx,-x,"xj (r)

(10)

If n = 2, that is, if there are two kinds of stimulus in the experiment, it can be
written as

|Ryx,-(r) - Ryx,- (V)Rx;x,- (r) ’2
[1 = Ry (D101 = R (P[]

Ry (M| = (11)

Partial coherence is especially important when we focus on a specific stimulus.
Not all stimuli are considered in equal measure. Stimuli such as the heart beat
and breathing, which cannot be avoided in any experiment involving humans,
are of secondary concern. Furthermore, as each type of stimulus has its own
characteristics, it is natural to perform an individual statistical analysis to see how
each one affects the overall fMRI response.
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3.2 Testing the Linearity

The linearity assumption functions as the essential basis of the convolution model.
As we know, any nonlinearity in the fMRI data may be caused by the scanner system
or the human physical capability such as refractory. Refractory effects refer to the
reductions in hemodynamic amplitude after several stimuli presented. If refractory
effects are present, then a linear model will overestimate the hemodynamic response
to closely spaced stimuli, potentially reducing the effectiveness of experimental
analyses. It is critical, therefore, to consider the evidence for and against the linearity
of the fMRI hemodynamic response.

It is possible that the nonlinearity is overwhelmed during scanning. Conse-
quently, it is crucial to make sure that the linearity assumption is acceptable.
The advantage of our method is that we can first determine whether the linearity
assumption is acceptable before using the convolution model for analysis.

The value of coherence, between O and 1, reflects the strength of the linear
relation between fMRI response and the stimuli. Under certain conditions, f?Yx(r)
is asymptotically normal with mean R (r) and variance proportional to constant
1- Rix (r))/Tb. Moreover, if Ryx = 0, then

(c—n) U}yx(r) |2
F = - 7 ~ Fonoc—n), 12
(V) I’l(l |Ryx(r)2|) 2n,2( ) ( )

where ¢ = bT/y and y = f k2 with k being the lag-window generator depending
on the choice of window function. If the F statistic on coherence is significant, it is
reasonable to accept the linearity assumption.

3.3 Testing the Effect from a Specific Stimulus

For each brain area, stimuli have varying effects. For the motor cortex in the left
hemisphere, right-hand motion causes much more neural activities than left-hand
motion. Partial coherence is able to distinguish between right- and left-hand effects,
determine whether left-hand motion evokes neural activity, and identify which
motion has greater effect. The following test is applied for these kinds of research
questions.

For partial coherence, if Ryyx; = 0, then

¢/ | Ry, ()2
F(r) = {—x’z ~  Faae—1), (13)
1— |Ryx,-~x]- (r) |

where ¢ =bT/y —n+landy = [ k2 with « being the lag-window generator.
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3.4 Detecting the Activation

The HRF in fMRI indicates the arising neural activity. If there is activation evoked
by the stimulus, then the corresponding HRF cannot be ignored. If there is no HRF
in a brain region, there is no going-on neuronal activity. To detect activation in the
brain region is to see whether there is underlying HRF. For our frequency method,
we test H(rp) = 0 at stimulus-related frequency ry.

We are interested in testing the hypothesis H(r) = 0. This is carried out by means
of analogs of the statistic (8). In the case H(r) = 0,

(BT /y)YH(r)3xx (N H(r)®

ns(r)

(14)

is distributed asymptotically as 3 >7/y—n).

3.5 Testing the Difference Between HRFs

The multivariate method simplifies the functional hypothesis testing by comparing
the corresponding Fourier coefficients at frequency r in order to see whether there
is any discrepancy between HRF curves corresponding to different stimuli. HRFs
curves are functions, but when we focus just on Fourier coefficients at frequency r,
we look at a common hypothesis testing on points. To see the difference between the
two HRFs, it is enough to consider the hypothesis that the two Fourier coefficients
at task-related frequency ry are equivalent.

As we know H(-) is the Fourier transform of h(-). For the contrast hypothesis to
compare HRF functions ¢’h = 0, we have the equivalent hypothesis ¢c"H(r) = 0,
where r is usually the task-related frequency ry.

In OLS method, we know the distribution of I:I(r)f is asymptotically

NnC(H(r)I,sZZ(r)Z), H(r) e C", (15)
where

_ (bT/y) 8xx(r)™! r#0 mod 7
0Ty = 1D)8() r=0 mod 7

NE€(,) is the complex multivariate normal distribution for the n vector-valued
random variable [3]. .

The contrast between different HRF estimates can be represented by ¢"H(r)",
where ¢ = (cy,¢2,...,c,)" Which satisfies that Z?:l ¢; = 0. For the complex
number cTI:I(r)T, the hypothesis testing can be conducted by the definition of
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complex normal distribution, which converts complex normal to multivariate normal
distribution.

. Re H(r)* A
Under the hypothesis c"H(r) = 0, (¢ ¢) N , denoted by ¢ H,,, where
Im H(r)*
¢, =(ci,...,Cn.C15. .., Cy), is distributed asymptotically as
1
N{O, Eszz(r)c;Zvcv . (16)

At the same time the distribution of 5.,(r) is approximated by an independent

2
52(r) X2b6T/y—n)

26Ty —n) r#0 mod 7. (17)

Thus, the ¢ statistic for the contrast between different HRF estimates is
¢ H, ()"

2(bT/y—n) 4 -
Ve s e,

~  ber/y-n, r7F0 mod . (18)

The contrast is highly utilized in fMRI to point out the discrepancy of responses
in different conditions. In the fMRI softwares SPM and FSL, we need first to specify
“conditions,” which is analogous to types of stimuli here. For example, if we have
two types of stimuli from the right and left hands, there are two conditions: Right
and Left. Then we need to set up the contrast of conditions according to our interest.
For testing whether the right hand has greater effect than the left hand, the contrast
should be Right > Left, equivalent to Right — Left > 0. So we state the contrast in a
vector ¢ = (1,—1), 1 for the condition Right and —1 for the condition Left. After
settling the contrast, SPM and FSL will continue their general linear model, using
parameters to conduct the 7 statistic.

The hypothesis of comparing the HRF similarity here equates the contrasts in
SPM and FSL. We have two types of stimuli: Right and Left. Then we have
respective HRF estimates for Right and Left. To test whether Right > Left, we
specify ¢ = (1, —1)" in ¢"H(r)". As the result, # statistic in (18) is used for testing
their difference.

3.6 Remarks

We will make a few remarks or comments on our method in contrast with the
existing methods.

1. Some popular packages [7, 9] estimate the activation based on (3) and (2) using
general linear models (GLM) procedure. The model considered in SPM and FSL
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is given by

(@) = B1 i ®x1()+ B2 ha@x2(t) +++ -+ Bp ha ®@x, () +2(1), t=0,...,T—1,
(19)

where the HRFs 4y, .. ., h, are pre-specified (such as the double-gamma function
described in Sect. 1) and the time series z(f) is a simple AR(1) model with
two parameters to be estimated. Model (19) is a linear regression model with
B = (Bi1, ..., Bn) as the regression parameters, and the design matrix is formed
by the convolution of the stimuli x(¢) and the double-gamma functions h(z). The
estimates of Bi,..., [, are obtained by the least squares (LS) method which
may be consistent (depending on the specification of the HRF) but may not
be efficient. The latter is caused by the mis-specification of the AR(1) and the
standard errors (se) of the LS estimates may be large. Another challenge is to
conduct the voxel-wise significant test of activation. Namely, at each voxel, the
test is based on the #-statistic given by

~

ﬂA
se(F)

whose p-value may be over- or under-estimated depending on whether the
standard error se(,é) has been correctly estimated, which in turn depends on
the specification of the model for the (noise) time series z(f). This will result
in a higher false-positive or false-negative rates in detecting activation. One may
address the estimation of the model for z(), but this will be inefficient in fitting
and testing a correct time series model at each voxel. The default setting in those
packages usually starts with AR(1) at the expenses of specification error.

This problem can be remedied using the TFE approach described above.
Apply the discrete Fourier transform to (3) yields two important results at
once. First, the TFE of HRF is direct (without introducing the B’s) and
consistent estimate. Second, the FFT of the noise time series is uncorrelated
(exactly independent in the Gaussian case), and consequently, the F-test (14) is
consistent for testing activation. Note that our F-test is described in the frequency
domain, which should not be confused with the model-based F-test in SPM or
FSL described in time domain, which is easily accessible by the majority of
statisticians. In the current setting, however, Fourier transformation provides a
direct and highly interpretable activation detection.

2. The TFE method was thought to be only applicable to block designs with some
forms of periodicity. Hence the popular event-related designs have ruled out the
use of it. This is certainly not the case as one can see from [3]. The current paper
demonstrates the usefulness of the TFE through simulation and real data sets
taken from the above package sites for the sake of comparison. More results can
be found in [5].

3. The TFE also offers a check on the linearity assumption in (3) using the F-
statistics based on the coherence (12). On the other hand, the time domain method

=
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will further need to verify the error auto-covariance structure for this step, which
can be inefficient for the whole brain.

4. A key issue to be addressed in using the TFE method is the smoothing parameter
in estimating various auto- and cross-spectra. Some data-adaptive procedures
such as cross-validation have been investigated in [5] and the HRF shape has
made such a choice less challenging.

5. When the voxel time series is non-stationary, then both time and frequency
domain methods will not work that well. In that situation, one can invoke the
short time (or windowed) Fourier transform method (a special case of wavelets
analysis) to estimate the HRF, this will be carried out in another paper.

6. An extensive review is given in one of the chapters of Chen [5]. Here the main
objective is to highlight some important contributions to the problem of HRF
estimation using Fourier transform. This type of deconvolution or finite impulse
response (FIR) problems has been known to the area of signal processing.
The various forms of the test statistics (12), (13), however, have not been
appropriately addressed. Hence the aim of the current paper is to illustrate the
usefulness of the statistical inference tools offered by this important frequency
domain method.

4 Simulation

The simulation study was based on a multiple stimuli experiment design and a
simulated brain. The experiment in the section included two types of stimuli, called
left and right. The simulated brain had 8 x 8 voxels, which was designed to have
various brain functions in the left and right experiment design. The brain was
divided into four regions: one only responded to left, one only responded to right,
one can respond to both left and right, and the remaining one had no response in the
experiment.

The fMRI data was simulated based on the convolution model (3): the con-
volution of the pre-specified left HRF %;(-) and right HRF #;(-), and the known
experiment paradigm for left stimulus x; (¢) and right stimulus x,(¢). The response
was given by

YO) =h @x1(t) + h, @ x2(t) +z(1), t=0,...,T—1 (20)
with T = 600. The noise was generated from an ARMA(2, 2):

2(f) — 0.88972(1 — 1) + 0.4858z(t — 2) = w(t) — 0.227%w( — 1) + 0.2488w(t — 2),
w(t) ~iia N(0,0.2%), t=0,1,...,599.
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The ARMA was chosen to test the strength of our method under other types of
correlated structures, and the coefficients were selected to illustrate the performance
of the procedure under moderate, serially correlated noise.

The illustrated experiment paradigm and the brain map are shown in Fig. 1. This
was an event-related design with left and right interchanging, where the green stands
for the left, and the purple stands for the right. The left and right stimuli came
periodically. The stimulus-related frequency for each was 1/40, and the overall
task-related frequency for the experiment was 1/20. The brain map shows the brain
function in each region (Fig. 1b).

The first simulation was to detect the activation regions in the brain. We assumed
both of the original HRFs for left and right were Glover’s HRF. At the experiment
frequency 1/20, the coherence and F statistic map are shown in Fig. 2. The lighter
the color is, the higher the values are. The high value of coherence in the responsive
region implies a strong linear relation in the simulation. Also, the F statistic
represents the strength of activation in the voxel. As expected, there were three
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(a) Event-related design

(b) Simulated brain map.

Fig. 1 The simulated brain map in the simulation. (a) shows the experiment design of the
simulation with two kinds of stimuli, which are finger taping on the right (shown in purple) and
on the left (shown in green). (b) is the simulated brain map: the purple region only responds to
the right-hand stimulus; the green region only responds to the left-hand stimulus; the brown region
responds to both left and right; and the white region has only noise. Originally published in Chen
(2012). Published with the kind permission of © Wenjie Chen 2012. All Rights Reserved



Spatio-Temporal Modeling for fMRI Data 305

Lot e g

(b) (e) (d)_,

Fig. 2 Detecting the activation regions by TFE. The activation region is where the brain has
response to the experiment stimulus. (a) shows that the true HRFs for both left and right are the
same. (b) shows the coherence value obtained in voxels (the red color means high intensity, and the
yellow indicates low intensity). (c¢) shows the corresponding F statistic, called F map. As shown
in (d), both right and left activated regions (marked in red) are detected. Originally published in
Chen (2012). Published with the kind permission of © Wenjie Chen 2012. All Rights Reserved

LLeft and Right HRF
T \" — z | N l
[}
b4 4 .\I Vg i
(a) HRF (b) ¢ statistic
o L 2 4 L £ S 4 L3
(c) Acceptance region: L>R (d) Acceptance region: L<R (e) Acceptance region: L#R

Fig. 3 Hypothesis testing with two identical HRFs in the simulated brain. (a) shows the Glovers
HREF for both left and right. (b) shows the overall ¢ statistic over the brain map, where red
color means high positive values, green color means negative values, and yellow means near 0.
(c) shows the rejection region for the test: left <right; (d) shows the rejection region for
left > right; (e) shows the rejection region for left=right. Originally published in Chen (2012).
Published with the kind permission of © Wenjie Chen 2012. All Rights Reserved

activation regions: Left (L), Right (R), Left and Right (L&R), which was selected
ato = 0.01 level.

At the stimulus-related frequency 1/40 level, we compared the similarity of left
and right HRFs. The true left and right HRFs are the same Glover’s HRF. The HRF
discrepancy region is only two regions: Left (L) and Right (R), where we regarded
no response as zero HRF. The simulation result is displayed in Fig. 3. The rejection
region for L>R is the region L; the rejection region for L<R is the region R; the
rejection region for L#R is L&R at level = 0.05. As we can see, if the voxel
has the same response to different stimuli, it shows in the result that there is no
difference in the HRFs.
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() B (b)

Fig. 4 Detecting the activation regions by TFE with non-identical HRFs. The activation region is
where the brain has response to the experiment stimulus. (a) shows the true HRFs for both left
(green) and right (purple). (b) shows the coherence obtained in voxels (the red color means high
intensity, and the yellow indicates low intensity). (¢) shows the corresponding F statistic, F' map.
As shown in (d), both right and left activated regions (marked in red) are detected. Originally
published in Chen (2012). Published with the kind permission of © Wenjie Chen 2012. All Rights
Reserved

Laft and Right HRF

2 . s . " 4

(a) Left and Right HRF (b) t statistic

(] ' 2 a [ ' 2 a ] e

" T

(¢) Acceptance region: L>R (d) Acceptance region: L<R (e) Acceptance region: L#R

Fig. 5 Hypothesis testing with two non-identical HRFs in the simulated brain. (a) shows the
Glovers HRF for left (green) and half Glovers HRF for right (purple). (b) shows the overall
¢ statistic over the brain map, where red color means high positive values, green color means
negative values, and yel/low means near 0. (¢) shows the rejection region for the test: left < right;
as the left HRF has much higher amplitude than the right one, the rejection region for the test
left <right is the two regions that response to left-hand stimulus. (d) shows the rejection region
for right > left; (e) shows the rejection region for left =right. Originally published in Chen (2012).
Published with the kind permission of © Wenjie Chen 2012. All Rights Reserved

The second simulation was built on different HRFs. The left HRF kept Glover’s
HRE, and the right HRF reduced Glover’s HRF to half. As we can see, the left and
right HRFs had different amplitudes. The left was larger than the right one. At the
experiment frequency 1/20, the activation region is accurately spotted in Fig. 4.

At the individual-stimulus-related frequency 1/40, the difference between left
and right HRF was detected, as shown in Fig.5. The rejection region for L>R
contains the regions that respond to both L and R. The hypothesis testing of similar
HRFs clearly separated different HRFs.
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5 Real Data Analysis

5.1 Auditory Data

In order to test whether the method of Bai et al. [1] is applicable to real data
and detect fMRI activation, we applied the nonparametric method to the published
auditory data set on the Statistical Parametric Mapping website (http://www.fil.ion.
ucl.ac.uk/spm/data/auditory/). According to the information listed on the website,
these whole brain BOLD/EPI images were acquired on a modified 2T Siemens
MAGNETOM Vision system. Each acquisition consisted of 64 contiguous slices
(64 x 64 x 64,3 mm x 3 mm x 3 mmvoxels). Acquisition took 6.05 s, with the scan
to scan repeat time (TR) set arbitrarily to 7 s. During the experiment 96 acquisitions
were made in blocks of 6 that resulted in 16 42-s blocks. The blocks alternated
between rest and the auditory stimulation. We included eight trials in our dataset,
with the first six images acquired in the first run discarded due to T1 effects. The data
was preprocessed using SPMS5, and included realignment, slice timing correction,
coregistration, and spatial smoothing.

Figure 6a shows the time course data from the one voxel that had the greatest F
value in Eq. (14). The voxel time series depicted in Fig. 6a has been detrended [10]
because the trends may result in false-positive activations if they are not accounted
for in the model. Since the voxel has a high F value, its time series has good
relationship to the task, similar to the pattern we obtained in our second simulation.
Figure 6b shows several HRF estimates from the 12 voxels with the highest F-
values in the brain. The majority of the HRF estimates closely match the HRF
shape, showing the increase in the signal that corresponds to the HRF peak and
some even depicting the post-dip after the peak signal. The TR for this dataset is 7 s,
which corresponds to the time interval between the acquisition of data points. This

fMRI signal
|
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Time
(a) Raw FMRI data from the voxel with the grea test F value (b) HRF estimates

Fig. 6 HRF estimation for auditory data. (a) is the experimental design paradigm (the red dashed
line) for the auditory data. The solid line is fMRI response from an activated voxel over time;
(b) is the HRF estimates from the 12 highly activated voxels found by using TFE in the brain. Due
to the large TR (7 s), there is a limitation on showing the HRF estimate in finer temporal resolution.
In (b), we still can see the different shapes of HRF. Originally published in Chen (2012). Published
with the kind permission of © Wenjie Chen 2012. All Rights Reserved
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leads to a very low temporal resolution with which to measure the hemodynamic
response. The limitation of large TR time for estimating HRF is not only the low
temporal resolution, but it also conducts the wrong timing for the stimulus onset.
For instance, if TR is seven seconds, we have 40-s blocks instead of 42-s. If the
stimulus function X(7) is O-1 function which indicates the onset for every seven
seconds, then we will miss the exact onset on 40, 80, 120, 160, ... s. The strategy
here we used is interpolation. We interpreted the preprocessed data on the second-
based time series, and then applied TFE to see the HRF. As a result, we could only
see the framework of the HRF and approximate its value. Despite this limitation,
the resulting framework gave us evidence that our method does indeed capture the
various HRFs in the voxels. In addition, it establishes that our HRF-based analysis
can be applied to real data and may be improved with correspondingly refined
temporal resolution.

In the experimental design of this study, there are seven stimulus blocks in the
time series data that have a total duration of 90 acquisitions. As a result, the task-
related frequency is 7/90 = 0.0778. Using this information, we can apply our
method in order to generate an F-statistic map to show the activation in the brain that
is triggered by the stimuli (bottom row in Fig. 7). For comparison, we also generated
a T map using SPMS5 (the SPM T map) that is shown in the upper row of Fig. 7. The
SPM T map is a contrast image that obtains the activation triggered by the stimulus
by applying the canonical SPM HRF uniformly throughout the brain. As a result,
it does not take into account any HRF variation that might occur in the different
regions of the brain.

In both rows of Fig. 7, increased activation is depicted by increased hot color,
such that the bright yellow regions represent more activation. As expected from an
auditory study, both the F map generated using our method and the SPM-generated
T map display activation in the temporal lobe. The F map from our analysis shows

Fig. 7 (b) F map and (a) T map of the activation by using TFE and SPM. T maps contain blue
and hot colors which respectively indicates negative and positive factor. The F map generated by
TFE (bottom row) appears to have less noise compared to the SPM-generated 7" map (upper row).
Originally published in Chen (2012). Published with the kind permission of © Wenjie Chen 2012.
All Rights Reserved
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increased activation almost exclusively in the temporal lobe, again as would be
expected from an auditory study. Whereas the contrast map generated using SPM
also displays the activation in the temporal lobe, there is also significant activation
in other regions of the brain, including parietal and prefrontal cortical areas. In
addition, the activation in the temporal lobe is more diffuse using SPM compared
to that seen using our F method. We conclude that the map generated using our
method appears to display less noise, such that there is less activation in regions
other than the primary auditory cortex. In addition, our method displayed a less
diffuse activation area in the auditory region, which may be interpreted as either a
more focused activation pattern or there may be some loss of sensitivity for detecting
the actual activation. Despite this possible limitation associated with our method, it
does have the additional benefit of being a test for the linearity assumption.

6 Discussion

The TFE, based on the method of Bai et al. [1], completes the fMRI data analysis
procedure: from adapting to various experimental design, through estimating HRF,
to detecting the activation region.

The first benefit is the experiment design. TFE can be applied for any type of
experimental design, including multiple stimulus design, event-related design, and
block design. Our nonparametric method can be applied to the multiple stimulus
experiment paradigm. From the property of HRF, different stimuli may cause
different hemodynamic responses even in one specific region. Consequently, the
corresponding HRF estimates to each stimulus will be given in our method, and
furthermore we carry out the statistical testing to see whether they are equivalent to
each other.

Our method can also be applied to block design and some rapid event-related
design. Most of the existing HRF estimation methods are only applied to event-
related design. With our method’s adaptability to various experimental design, we
extended the application to rapid event-related design and to block design by adding
an extra rest period. In fact, as long as there is a resting period during the design,
our method is better in estimating HRF.

The second benefit is reducing the noise. Noises might come from multiple
sources, such as the various types of scanners with systematic errors in use, the
background noise in the environment, and differences in the individual subjects’
heart beats and breathing. These noises would lead to heterogeneity of the records
of fMRI data. By using TFE, the heterogeneity is considered in the frequency
domain, which simplifies the error structure estimation process. Such simplicity
comes from the asymptotic independence of the spectrum in different Fourier
frequencies when we transfer the time series analysis to the frequency domain. In
addition, for efficiency, we use the WLS method to estimate the error spectrum.
Unlike the existing work [3, 13] based on the WLS method, which is implemented
by a computationally costly high-dimensional-matrix operation, our method shows
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higher performance, since the dimension of our matrix operation depends only on
the number of stimulus types in the experiment design.

The third benefit is HRF estimation. TFE does not require the length of HRF,
which is also called the latency (width) of HRF. As in most HRF modeling methods,
the length of HREF is the input as a priori to start the analysis. In practice, however,
the latency of HRF is unknown for the researchers. If the length of HRF is assumed
as known, such as in smooth FIR or the two-level method in [13], the final result
may be very sensitive to the input lengths. For TFE, the latency of HRF is not a
factor that affects the estimates. Additionally, the TFEs gives us a rough idea about
the latency of HRF by looking at how the estimates go to zero eventually over time.

One of the most important benefits is that TFE is able to generate the brain
activation map without using the general linear method (GLM). In fact, it simplified
the analysis by reducing the number of steps from two to one. The typical fMRI
analysis (SPM, FSL) requires two steps to customize HRF in the analysis. The first
step estimates HRF, and the second step applies the GLM to study the detection of
activation. Some issues related to GLM have not been addressed even in the most
recent versions of these packages. For example, the estimated standard error used
in tests for activation is a model-based approach and it is not efficient to check the
model validity for each voxel. Nevertheless, the GLM method continue to be applied
to explore other areas of brain research such as connectivity. In TFE, activation
detection is generalized by testing the hypothesis for the HRF estimates, which does
not require additional GLM and the specification of the error structure. Applications
of TFE to Parkinson’s disease and schizophrenia patients can be found in [5].

Also, the unique feature of using TFE is being able to test the linearity
assumption. As the linearity assumption is the foundation of the convolution model
we used, our method is able to test its validity before estimation, which is definitely
important for further analysis. As the linearity assumption is valid for the fMRI
data after testing, we are then able to use our nonparametric method to perform
the analysis, or any analysis tool based on the linearity assumption. If the linearity
testing fails, nonlinearity dominates the fMRI data, and the nonlinear estimation
method might be used [6, 8, 12].
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