
Identifying the Best Performing Time Series
Analytics for Sea Level Research

Phil. J. Watson

Abstract One of the most critical environmental issues confronting mankind
remains the ominous spectre of climate change, in particular, the pace at which
impacts will occur and our capacity to adapt. Sea level rise is one of the key
artefacts of climate change that will have profound impacts on global coastal
populations. Although extensive research has been undertaken into this issue, there
remains considerable scientific debate about the temporal changes in mean sea
level and the climatic and physical forcings responsible for them. This research has
specifically developed a complex synthetic data set to test a wide range of time series
methodologies for their utility to isolate a known non-linear, non-stationary mean
sea level signal. This paper provides a concise summary of the detailed analysis
undertaken, identifying Singular Spectrum Analysis (SSA) and multi-resolution
decomposition using short length wavelets as the most robust, consistent methods
for isolating the trend signal across all length data sets tested.
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1 Introduction

Sea level rise is one of the key artefacts of climate change that will have profound
impacts on global coastal populations [1, 2]. Understanding how and when impacts
will occur and change are critical to developing robust strategies to adapt and
minimise risks.

Although the body of mean sea level research is extensive, professional debate
around the characteristics of the trend signal and its causalities remains high [3]. In
particular, significant scientific debate has centred around the issue of a measurable
acceleration in mean sea level [4–9], a feature central to projections based on the
current knowledge of climate science [10].
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Monthly and annual average ocean water level records used by sea level
researchers are a complex composite of numerous dynamic influences of largely
oceanographic, atmospheric or gravitational origins operating on differing temporal
and spatial scales, superimposed on a comparatively low amplitude signal of sea
level rise driven by climate change influences (see [3] for more detail). The mean
sea level (or trend) signal results directly from a change in volume of the ocean
attributable principally to melting of snow and ice reserves bounded above sea level
(directly adding water), and thermal expansion of the ocean water mass. This low
amplitude, non-linear, non-stationary signal is quite distinct from all other known
dynamic processes that influence the ocean water surface which are considered to
be stationary; that is, they cause the water surface to respond on differing scales and
frequencies, but do not change the volume of the water mass. In reality, improved
real-time knowledge of velocity and acceleration rests entirely with improving the
temporal resolution of the mean sea level signal.

Over recent decades, the emergence and rapid improvement of data adaptive
approaches to isolate trends from non-linear, non-stationary and comparatively
noisy environmental data sets such as EMD [11, 12], Singular Spectrum Analysis
(SSA) [13–15] and Wavelet analysis [16–18] are theoretically encouraging. The
continued development of data adaptive and other spectral techniques [19] has given
rise to recent variants such as CEEMD [20, 21] and Synchrosqueezed Wavelet
Transform (SWT) [22, 23].

An innovative process by which to identify the most efficient method for
estimating the trend is to test against a “synthetic” (or custom built) data set with
a known, fixed mean sea level signal [3]. In general, a broad range of analysis
techniques have been applied to the synthetic data set to directly compare their
utility to isolate the embedded mean sea level signal from individual time series.
Various quantitative metrics and associated qualitative criteria have been used to
compare the relative performance of the techniques tested.

2 Method

The method to determine the most robust time series method for isolating mean sea
level with improved temporal accuracy is relatively straightforward and has been
based on three key steps, namely:

1. development of synthetic data sets to test;
2. application of a broad range of analytical methods to isolate the mean sea level

trend from the synthetic data set and
3. comparative assessment of the performance of each analytical method using

a multi-criteria analysis (MCA) based on some key metrics and a range of
additional qualitative criteria relevant to its applicability for broad, general use
on conventional ocean water level data worldwide.
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2.1 Step 1: Development of Synthetic Data Sets for Testing
Purposes

The core synthetic data set developed for this research has been specifically designed
to mimic the key physical characteristics embedded within real-world ocean water
level data, comprising a range of six key known dynamic components added to a
non-linear, non-stationary time series of mean sea level [3]. The fixed mean sea level
signal has been generated by applying a broad cubic smoothing spline to a range of
points over the 1850–2010 time horizon reflective of the general characteristics of
the global trend of mean sea level [24], accentuating the key positive and negative
“inflexion” points evident in the majority of long ocean water level data sets [25].

This data set has been designed as a monthly average time series spanning a 160-
year period (from 1850 to 2010) to reflect the predominant date range for the longer
records in the Permanent Service for Mean Sea Level (PSMSL), which consolidates
the world’s ocean water level data holdings.

The synthetic data set contains 20,000 separate time series, each generated by
successively adding a randomly sampled signal from within each of the six key
dynamic components to the fixed mean sea level signal. The selection of 20,000
time series represents a reasonable balance between optimising the widest possible
set of complex combinations of real-world signals and the extensive computing
time required to analyse the synthetic data set. Further, the 20,000 generated trend
outputs from each analysis provide a robust means of statistically identifying the
better performing techniques for extracting the trend [3].

Additionally, the core 160-year monthly average data set has been subdivided
into 2 � 80 and 4 � 40 year subsets and annualised to create 14 separate data sets to
also consider the influence of record length and issues associated with annual versus
monthly records.

2.2 Step 2: Application of Analysis Methods to Extract Trend
from Synthetic Data Sets

The time series analysis methods that have been applied to the synthetic data set to
estimate the trend are summarised in Table 1. This research has not been designed to
consider every time series analysis tool available. Rather the testing regime is aimed
at appraising the wide range of tools currently used more specifically for mean sea
level trend detection of individual records, with a view to improving generalised
tools for sea level researchers. Some additional, more recently developed data
adaptive methods such as CEEMD [21] and SWT [22, 23] have also been included
in the analysis to consider their utility for sea level research. It is acknowledged
that various methods permit a wide range of parameterisation that can critically
affect trend estimation. In these circumstances, broad sensitivity testing has been
undertaken to identify the better performing combination and range of parameters
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for a particular method when applied specifically to ocean water level records (as
represented by the synthetic data sets).

With methods such as SSA and SWT, it has been necessary to develop auto
detection routines to isolate specific elements of decomposed time series with
characteristics that resemble low frequency trends. Direct consultation with leading
time series analysts and developers of method specific analysis tools has also
assisted to optimise sensitivity testing.

2.3 Step 3: Multi-Criteria Assessment of Analytical Methods
for Isolating Mean Sea Level

In addition to identifying the analytic that provides the greatest temporal precision in
resolving the trend, the intention is to use this analytic to underpin the development
of tools for wide applicability by sea level researchers. Comparison of techniques
identified in Table 1, have been assessed across a relevant range of quantitative and
qualitative criteria, including:

• Measured accuracy (Criteria A1). This criterion is based upon the cumulative
sum of the squared differences between the fixed mean sea level signal and the
trend derived from a particular analytic for each time series in the synthetic data
set. This metric has then been normalised per data point for direct comparison
between the different length synthetic data sets (40, 80 and 160 years) as follows:

A1 D 1

n

20;000X

iD1

.xi � X/2 (1)

where X represents the fixed mean sea level signal embedded within each time
series; xi represents the trend derived from the analysis of the synthetic data set
using a particular analytical approach and n represents the number of data points
within each of the respective synthetic data sets (or lesser outputs in the case of
moving averages).

It is imperative to note that particular combinations of key parameters used as
part of the sensitivity testing regime for particular methods (refer Table 1), resulted
in no (or limited) outputs for various time series analysed. This occurred either
due to the analytic not resolving a signal within the limitations established for a
trend (particularly for auto detection routines necessary for SSA and SWT) or where
internal thresholds/convergence protocols were not met for a particular algorithm
and the analysis terminated. Where such circumstances occurred, the determined
A1 metric was prorated to equate to 20,000 time series for direct comparison across
methods. Where the outputs of an analysis resolved a trend signal in less than 75 %
(or 15,000 time series) of a particular synthetic data set, the result was not included
in the comparative analysis.
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• Maximum standard deviation (Criteria A2). This straightforward statistical
measure is based on the outputted trends from the application of a particular
analytical method to the synthetic data sets, providing a measure of the scale of
the spread of outputted trend estimates. Intuitively, the better performing analytic
will minimise both criterions A1 and A2.

• Computational expense (Criteria A3). This criterion provides a comparative
assessment of the average processing time to isolate the trend from the longest
synthetic data set (160 years). This metric provides an intuitive appraisal of the
value of some of the more computationally demanding analytical approaches
when weighed against, in particular, the measured accuracy (criteria A1).

• Consistency across differing length data sets (Criteria A4). This criterion is
based on a qualitative assessment of the consistency in the performance of the
respective method across the three key length data sets (40, 80 and 160 years)
which cover the contemporary length of global data used by sea level researchers.
It is important to gain an understanding of how the relative accuracy changes in
the extraction of the trend (if at all) from shorter to longer length data sets. A
simple tick indicates a general consistency in the level of accuracy across all data
sets. A cross indicates that the analytic may not have been able to consistently
isolate a signal with “trend-like” characteristics across all length data sets within
the limits established through the sensitivity testing regime.

• Capacity to improve temporal resolution of trend characteristics (Criteria
A5). This criterion is similarly based on a qualitative assessment of the capacity
for the isolated trend to inform changes to associated real-time velocity and
accelerations, which are of great contemporary importance to sea level and
climate change researchers.

• Resolution of trend over full data record (Criteria A6). This criterion relates
to the ability of a particular analytic to resolve the trend over the full length of
the data record. It has become increasingly important for sea level researchers to
gain a real-time understanding of any temporal changes in the characteristics of
the mean sea level (or trend) signal in the latter portion of the record.

• Ease of application by non-expert practitioners (Criteria A7). Several ana-
lytical approaches considered require extensive expert judgement to optimise
performance. Despite the sensitivity analyses undertaken to broadly identify the
optimal settings of a specific analytic in relation to the signals within the synthetic
data sets, the sensitivity of key parameters can be quite high. Where limited (or
no) specific knowledge of the analytic is required to optimise its performance the
analytic has been denoted with a tick.

3 Results

In total, 1450 separate analyses have been undertaken as part of the testing regime,
translating to precisely 29 million individual time series analyses. Figure 1 provides
a pictorial summary of the complete analysis of all monthly and annual data
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Fig. 1 Analysis overview based on Criteria A1. Notes: This chart provides a summary of all
analysis undertaken (refer Table 1). Scales for both axes are equivalent for direct comparison
between respective analyses conducted on the monthly (top panel) and annual (bottom panel)
synthetic data sets. The vertical dashed lines demarcate the results of each method on the 160-,
80- and 40-year length data sets in moving from left to right across each panel. Where the analysis
permitted the resolution of a trend signal across a minimum of 75 % (or 15,000 time series) of a
synthetic data set, this has been represented as “complete”. Those analyses resolving trends over
less than 75 % of a synthetic data set are represented as “incomplete”

sets (40-, 80- and 160-year synthetic data sets) plotted against the key metric,
criteria A1. Equivalent scales for each panel provide direct visual and quantitative
comparison between monthly and annual and differing length data sets. For the sake
of completeness, it is worth noting a further 36 monthly analysis results lie beyond
the limit of the scale chosen and therefore are not depicted on the chart. Where
analysis resolves a trend signal across more than 75 % (or 15,000 time series) of
a synthetic data set, the output is used for comparative purposes and depicted on
Fig. 1 as “complete”.

From Fig. 1, it is evident that the cumulative errors of the estimated trend
(criteria A1) are appreciably lower for the annual data sets when considered across
the totality of the analysis undertaken. More specifically, for the 579 “complete”
monthly outputs, 408 (or 71 %) fall below an A1 threshold level of 30 � 106 mm2

(where the optimum methods reside). Comparatively, for the 632 “complete” annual
outputs, 566 (or 90 %) are below this threshold level.

The key reason for this is that the annualised data sets not only provide a
natural low frequency smooth (through averaging calendar year monthlies), but,
the seasonal influence (at monthly frequency) is largely removed, noting the bin
of seasonal signals sampled to create the synthetic data set also contains numerous
time-varying seasonal signals derived using ARIMA.
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Based on visual inspection of Fig. 1, it is difficult to distinguish the influence
of record length on capacity to isolate the trend component. However, detailed
examination of the “complete” monthly outputs indicates that 77 % of the 160-
year data set are contained below the A1 threshold level of 30 � 106 mm2, falling to
62 % for the 40-year data sets. Similarly for the “complete” annual outputs, 98 % of
the 160-year data set are contained below this threshold, falling to 85 % for the 40-
year data sets. The above-mentioned results provide strong evidence that estimates
of mean sea level are enhanced generally through the use of longer, annual average
ocean water level data.

Based upon the appreciably reduced error in the estimate of the trend by using
annual over monthly average ocean water level data, the multi-criteria assessment of
the various methodologies advised in Table 1 have been limited to analysis outputs
based solely on the annual synthetic data sets. Table 2 provides a summary of the
multi-criteria assessment of the better performing methods, based on optimisation
of relevant parameters for each specific analytic. From this assessment, multi-
resolution decomposition using short maximal overlap discrete wavelet transform
(MODWT) and short length wavelets has proven the optimal analytic over the broad
range of criteria outlined in Sect. 2.3, whereby limited expert judgment is required
to optimise performance.

In addition to the results discussed above, there are some other interesting
observations to be gleaned from the weight of analysis undertaken as part of this
work. Of all methods considered in Table 1, the comparatively simple structural
models applied to the monthly data sets provided the least utility in extracting the
mean sea-level trend component. This is not unexpected given that the range of
complex signals within the synthetic data set are forced to be resolved into trend,
seasonal and noise components only by these general models.

Similarly, methods such as EMD with inherent limitations associated with mode
mixing and splitting, aliasing and end effects [41], performed comparatively poorly
across the range of synthetic data sets and across the range of parameters varied to
optimise performance. The EEMD variant [12] which effectively combines EMD
with noise stabilisation to offset the propensity for mode mixing and aliasing [19],
exhibited substantially enhanced performance compared to EMD. Across all 14
monthly and annual average synthetic data sets, EEMD exhibited more stable and
consistent results across all sensitivity tests with the best performing EEMD on
average reducing the squared error by 15 % compared to the best performing EMD
combination.

A further advancement in the form of CEEMD [21] was developed to overcome
a nuance of EEMD in which the sum of the intrinsic mode functions determined
by the algorithm does not necessarily reconstruct the original signal [19]. When
similarly averaged across all synthetic data sets, the best performing combination of
CEEMD parameterisation only reduced the squared error by less than 5 % compared
to the best performing EMD combination. Further, it should be noted the CEEMD
algorithm was not able to resolve a trend for every time series where internal
thresholds/convergence protocols were not met.
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Based on the testing regime performed on the synthetic data sets, EEMD outper-
formed CEEMD. Both variants of the ensemble EMD, using the sensitivity analysis
advised, proved the most computationally expensive of all the algorithms tested.
Both of these EMD variants were substantially outperformed by the MODWT and
SSA, but importantly, processing times were of the order of 3000–4000 times that
of these better performing analytics.

Clearly for these particularly complex ocean water level time series, the excessive
computational expense of these algorithms has not proven beneficial. One of
the more inconsistent performers proved to be the SWT. This algorithm proved
highly sensitive to the combination of wavelet filter and generalisation parameter.
Certain combinations of parameters provided exceptional performance on indi-
vidual synthetic data sets but proved less capable of consistently resolving low
frequency “trend-like” signals across differing length data sets. Of the analytics
tested, this algorithm proved the most complex to optimise in order to isolate and
reconstruct trends from the ridge extracted components. Auto detection routines
were specifically developed to test and isolate the low frequency components based
on first differences. However, a significant portion of the sensitivity analyses for
SWT had difficulty isolating the low frequency signals across the majority of the
data sets tested.

SSA has also been demonstrated to be a superior analytical tool for trend
extraction across the range of synthetic data sets. However, like the SWT, SSA
requires an elevated level of expertise to select appropriate parameters and internal
methods to optimise performance. Auto detection routines were also developed
to isolate the key SSA eigentriple groupings with low frequency “trend-like”
characteristics, based on first differences. With this approach, not all time series
could be resolved to isolate a trend within the limits established. Auto detection
routines based on frequency contribution [42] were also provided by Associate
Professor Nina Golyandina (St Petersburg State University, Russia) to test, proving
comparable to the first differences technique.

4 Discussion

With so much reliance on improving the temporal resolution of the mean sea level
signal due to its association as a key climate change indicator, it is imperative
to maximise the information possible from the extensive global data holdings of
the PSMSL. Numerous techniques have been applied to these data sets to extract
trends and infer accelerations based on local, basin or global scale studies. Ocean
water level data sets, like any environmental time series, are complex amalgams
of physical processes and influences operating on different spatial scales and
frequencies. Further, these data sets will invariably also contain influences and
signals that might not yet be well understood (if at all).

With so many competing and sometimes controversial findings in the scientific
literature concerning trends and more particularly, accelerations in mean sea level
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(refer Sect. 1), it is difficult to definitively separate sound conclusions from those
that might unwittingly be influenced by the analytical methodology applied (and to
what extent). This research has been specifically designed as a necessary starting
point to alleviate some of this uncertainty and improve knowledge of the better
performing trend extraction methods for individual long ocean water level data.
Identification of the better performing methods enables the temporal resolution of
mean sea level to be improved, enhancing the knowledge that can be gleaned from
long records which includes associated real-time velocities and accelerations. In
turn, key physically driven changes can be identified with improved precision and
confidence, which is critical not only to sea level research, but also climate change
more generally at increasingly finer (or localised) scales.

The importance of resolving trends from complex environmental and climatic
records has led to the application of increasingly sophisticated, so-called data
adaptive spectral and empirical techniques [12, 19, 43, 44] over comparatively
recent times. In this regard, it is readily acknowledged that whilst the testing
undertaken within this research has indeed been extensive, not every time series
method for trend extraction has been examined. The methods tested are principally
those that have been applied to individual ocean water level data sets within the
literature to estimate the trend of mean sea level.

Therefore spatial trend coherence and multiple time series decomposition tech-
niques such as PCA/EOF, SVD, MC-SSA, M-SSA, XWT, some of which are used
in various regional and global scale sea level studies [45–51] are beyond the scope
of this work and have not been considered. In any case, the synthetic data sets
developed for this work have not been configured with spatially dependent patterns
to facilitate rigorous testing of these methods. In developing the synthetic data sets
to test for this research, Watson [3] noted specifically that a natural extension (or
refinement) of the work might be to attempt to fine tune the core synthetic data set
to reflect the more regionally specific signatures of combined dynamic components.

Other key factors for consideration include identifying the method(s) that
prove robust over the differing length time series available whilst resolving trends
efficiently, with little pre-conditioning or site specificity. Whilst recognising that
various studies investigating mean sea level trends at long gauge sites have utilised
the construction of comparatively detailed site specific general additive models,
these models have little direct applicability or transferability to other sites and have
not been considered further for this work.

Of the analysis methods considered, the comparatively simple 30-year moving
(or rolling) average filter proved the optimal performer against the key A1 criterion
when averaged across all length data sets. Although not isolating and removing
high amplitude signals or contaminating noise, the sheer width of the averaging
window proves to be very efficient in dampening their influence for ocean water
level time series. However, the resulting mean sea level trend finishes 15 years inside
either end of each data set, providing no temporal understanding of the signal for
the most important part of the record—the recent history, which is keenly desired to
better inform the trajectory of the climate related signal. Although well performing
on a range of criteria, this facet is a critical shortcoming of this approach. Whilst
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triple and quadruple moving averages were demonstrated to marginally lower the
A1 criteria, respectively, compared to the equivalent single moving average, the loss
of data from the ends of the record was further amplified by these methods.

It is also noted that the simple linear regression analysis also performed
exceptionally well against the A1 criteria when averaged across all data sets. Based
on the comparatively limited amplitude and curvature of the mean sea level trend
signal embedded within the synthetic data set it is perhaps not surprising that
the linear regression performs well. But, like the moving average approach, its
simplicity brings with it a profound shortcoming, in that it provides limited temporal
instruction on the trend other than its general direction (increasing or decreasing).
No information on how (or when) this signal might be accelerating is possible from
this technique, which regrettably, is a facet of critical focus for contemporary sea
level research.

It has been noted that unfortunately many studies using wavelet analysis have
suffered from an apparent lack of quantitative results. The wavelet transform
has been regarded by many as an interesting diversion that produces colourful
pictures, yet purely qualitative results [52]. The initial use of this particular multi-
resolution decomposition technique (MODWT) for application to a long ocean
water level record can be found in the work of Percival and Mofjeld [53]. There
is no question from this current research, that wavelet analysis has proven a “star
performer”, producing measurable quantitative accuracy exceeding other methods,
with comparable consistency across all length synthetic data sets and with minimal
computational expense.

Importantly, it is worth noting that the sensitivity testing and MCA used to
differentiate the utility of the various methods, unduly disadvantages the SSA
method. In reality the SSA method performs optimally with a window length
varying between L/4 and L/2 (where L is the length of the time series). Varying the
window length permits necessary optimisation of the separability between the trend,
oscillatory and noise components [54]. However, for the sensitivity analysis around
SSA, only fixed window lengths were compared across all data sets. Although SSA
(with a fixed 30-year window) performed comparably for the key A1 criteria with
MODWT (refer Table 2), a method that optimises the window length parameter
automatically would, in all likelihood have further improved this result. Only a
modest improvement of less than 4 % would be required to put SSA on parity with
the accuracy of MODWT. In addition, auto detection routines designed to select
“trend-like” SSA components are unlikely to perform as well as the interactive
visual inspection (VI) techniques commonly employed by experienced practitioners
decomposing individual time series [43]. Clearly VI techniques were not an option
for the testing regime described herein, which involved processing 14 separate data
sets each containing 20,000 time series.

It is important that both the intent and the limitations of the research work
presented here are clearly understood. The process of creating a detailed synthetic
ocean water level data set, embedded with a fixed non-linear, non-stationary mean
sea level signal to test the utility of trend extraction methods is unique for sea
level research. Despite broad sensitivity testing designed herein, this work should
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be viewed as a starting point rather than a fait accompli in providing a transparent
appraisal of the utility of currently used techniques for isolating the mean sea level
trend from individual ocean water level time series. The author warmly welcomes
the opportunity to work further with analysts on refining parameters of tested
methods and alternative methods of trend extraction to optimise performance of
these tools for sea level research.

5 Conclusion

The monthly and annual average ocean water level data sets used to estimate
mean sea level are like any environmental or climatic time series data, ubiquitously
“contaminated” by numerous complex dynamic processes operating across differing
spatial and frequency scales, often with very high noise to signal ratio. Whilst the
primary physical processes and their scale of influence are known generally [3],
not all processes in nature are fully understood and the quantitative attribution
of these associated influences will always have a degree of imprecision, despite
improvements in the sophistication of time series analyses methods [44]. In an
ideal world with all contributory factors implicitly known and accommodated, the
extraction of a trend signal would be straightforward.

In recent years, the controversy surrounding the conclusions of various published
works, particularly concerning measured accelerations from long, individual ocean
water level records necessitate a more transparent, qualitative discussion around
the utility of various analytical methods to isolate the mean sea level signal with
improved accuracy. The synthetic data set developed by Watson [3] was specifically
designed for long individual records, providing a robust and unique framework
within which to test a range of time series methods to augment sea level research.

The testing and analysis regime summarised in this paper is extensive, involving
1450 separate analyses across monthly and annual data sets of length 40, 80 and
160 years. In total, 29 million individual time series were analysed. From this work,
there are some broad general conclusions to be drawn concerning the extraction of
the mean sea level signal from individual ocean water level records with improved
temporal accuracy:

• Precision is enhanced by the use of the longer, annual average data sets;
• The analytic producing the optimal measured accuracy (Criteria A1) across all

length annual data sets was the simple 30-year moving average filter. However,
the outputted trend finishes half the width of the averaging filter inside either end
of the data record, providing no temporal understanding of the trend signal for
the most important part of the record – the recent history;

• The best general purpose analytic requiring minimum expert judgment and
parameterisation to optimise performance was multi-resolution decomposition
using MODWT and
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• The optimum performing analytic is most likely to be SSA whereby interactive
visual inspection (VI) techniques are used by experienced practitioners to
optimise window length and component separability.

This work provides a very strong argument for the utility of SSA and multi-
resolution decomposition using MODWT techniques to isolate mean sea level with
improved temporal resolution from long individual ocean water level data using
a unique, robust, measurable approach. Notwithstanding, there remains scope to
improve the utility of several of the data adaptive approaches using more extensive
tuning of alternative parameters to optimise their performance to enhance mean sea
level research.
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