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Abstract. This study presents a novel method for building paramet-
ric representations of myocardial microstructure of the left ventricle
from multi-directional diffusion weighted magnetic resonance images
(DWI). The direction of maximal diffusion is directly estimated from
the DWI signal intensities using finite element field fitting. This frame-
work avoids the need to compute diffusion tensors, which introduces
errors due to least squares fitting that are generally neglected when
building microstructural models of the heart from DWI. Nodal parame-
ters describing cardiac myocyte orientations throughout a finite element
model of the left ventricle were fitted to a series of raw diffusion signals
using non-linear least squares optimisation to determine the direction
of maximum diffusion. An ex vivo DWI data set from a Wystar-Kyoto
rat was processed using the proposed method. The fitted myocyte orien-
tations were compared against conventional diffusion tensor/eigenvector
analysis and the degree of correlation was measured using a normalised
dot product (nDP). Good agreement (nDP = 0.979) between the new
method and the traditional tensor analysis approach was observed for
regions of high fractional anisotropy (FA). In regions of low FA, the
errors were much more variable, but the proposed method maintains a
smoothly varying myocyte angle distribution as is generally used in tissue
and organ scale heart models.
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1 Introduction

Building heart models for investigating the electrical [1–3], biomechanical [4–7],
and energetic function of the heart [8,9] is crucial to fully understand the underly-
ing effects of cardiac diseases. For such heart models, finite element (FE) interpo-
lation is generally used to describe cardiac geometry and microstructure. These
models allow for integration of structural and functional data acquired using
various imaging modalities, together with other measurements, such as haemo-
dynamic or electrophysiological recordings, to analyse the electro-mechanics of
the heart on a subject-specific basis.

Shape and microstructural tissue organisation are important, well-established
determinants of the biomechanical function of the heart. While in vivo mea-
surements of cardiac geometry are readily available via computed tomography,
magnetic resonance imaging (MRI), or ultrasound, in vivo microstructural mea-
surements from the whole heart remain sparse and difficult to quantify.

One option for acquiring microstructural information throughout the whole
heart is to use diffusion weighted MRI (DWI). This imaging modality exploits
the Brownian motion of water molecules within myocardial tissue to determine
local anisotropic diffusion in the ventricular walls [10]. Several approaches have
been explored to determine myocyte orientations, using either ex vivo or in vivo
imaging [11–15]. Typically, a diffusion tensor is derived at each voxel from the
acquired DWI, and the direction of maximum water diffusion, as represented by
the primary eigenvector of the derived local diffusion tensor, has been found to
correlate well with the local histologically-measured myocyte orientation [16,17].
The myocyte orientation is often represented as a helix angle with respect to
the short-axis plane of the heart. FE models typically incorporate the spatial
distribution of fibre orientations by interpolating helix angle parameters at the
nodes of the FE mesh [2,5,6]. Representing and analysing the apparent diffusion
with diffusion tensors comes with several drawbacks [18] including: (1) spatial
discontinuities in helix angle distributions; and (2) misrepresentation of myocyte
orientation in regions of high image noise or low fractional anisotropy (FA).

A third issue arises from the use of least squares fitting methods when cal-
culating a diffusion tensor for each voxel. This leads to a generally neglected
error, which expresses how well a tensor can represent the underlying diffusion
behaviour. Figure 1(b) shows a slice extracted from the whole heart (Fig. 1(a)),
indicating the coefficient of determination (R2) of the least squares fit for each
diffusion tensor1. If the data can be well represented by a diffusion tensor,

1 The fitted diffusion tensor was projected back onto the original set of j gradient
directions to get a set of estimated signal strengths (Se(j)). The estimated signal
strengths, the measured signal strengths (Sm(j)), and the mean of the measured
signal strengths (S̄m) were then used to calculate the coefficient of determination:

R2 = 1 −
∑

j(Sm(j) − Se(j))
2

∑
j(Sm(j) − S̄m)2

. (1)

.
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Fig. 1. Suitability of representing DWI voxels using a diffusion tensor, as indicated by
the coefficient of determination (R2) of the least squares tensor fit for (a) the whole
heart and (b) one mid-ventricular slice. Normalised diffusion signals are plotted as
vectors at two voxels; one with a low fitting error (high R2) where the vectors can be
well represented by an ellipsoid (diffusion tensor), and one with a high fitting error
(low R2) where the signals would be poorly represented by an ellipsoid.

the R2 would be close to 1 and therefore the error in fitting a tensor to the
data would be low. In these cases, the data show a clear apparent diffusion
direction. On the other hand, the diffusion tensor can be a poor representation
of the DWI data for some voxels, especially if non-adjacent directions have very
high normalised signal strengths. We propose that avoiding the intermediate
step of least squares fitting of a diffusion tensor would therefore be useful for
understanding the accuracy of the FE field and sensitivity to variation/noise in
the DWI data.

In this study we have extended the modelling framework presented in [18]
to avoid the least squares error issue by direct parameterisation of the myocyte
orientation field from the raw diffusion signals. In contrast to the conventional
method, the intermediate step of diffusion tensor calculation is not required in
this process and the raw diffusion signals are carried all the way through from
image acquisition to the final fibre field fitting process.

2 Methods

2.1 Experimental Procedure

The experimental study was approved by the Animal Ethics Committee of the
University of Auckland and conforms to the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (NIH Publication No. 85-23).

A Wistar-Kyoto rat heart was excised, perfused with St Thomas cardioplegic
solution for relaxation, and fixed using Bouins solution in an approximate end-
diastolic state. DWI was performed using a 3D fast spin-echo pulse sequence on
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a Varian 4.7 T MRI scanner. The image set consisted of 12 short-axis slices with
a thickness of 1.5 mm, and no gap between slices; the in-plane resolution was
set to 128 voxels × 64 voxels (zero-pad interpolated to 128 voxels × 128 voxels)
with an in-plane voxel dimension of 156 µm × 156 µm. The image data for each
slice contained one non-diffusion weighted anatomical image, and 30 diffusion
weighted images. The 30 diffusion gradient directions were evenly distributed
across a hemisphere. Further details in [18].

2.2 Workflow for Myocyte Orientation Field Parameterisation

The following method was developed to parameterise a spatially-varying myocyte
orientation field for the LV myocardium directly from the raw diffusion signals
(i.e. without the calculation of diffusion tensors).

Step 1: Image Segmentation andLVFEGeometricModelConstruction.
The endocardial and epicardial surfaces of the LV, excluding the papillary muscles,
were manually segmented from the non-diffusion images using MATLAB2. Three
landmark points (LV base, LV apex, and right ventricle (RV) base) defined the
orientation of the orthogonal cardiac coordinate system (further details in [18]).

A prolate spheroidal-shaped 16-element (4 circumferential, 4 longitudinal
and 1 transmural) hexahedral tri-cubic Hermite FE model was customised to
the segmented surfaces to represent the LV geometry. The surfaces of the model
were fitted using non-linear least squares minimisation.

Step 2: Field-Based Parameterisation of LV Myocyte Orientation. To
parameterise the myocyte orientation field throughout the LV FE geometric
model, we developed a novel method to estimate spatially-continuous myocyte
angle fields (interpolated using tri-cubic Hermite basis functions) that best rep-
resent the maximal diffusion direction at all voxels within the LV. Firstly, the
myocyte orientation field was initialised by setting the helix angles (θ(n)) to 0◦

for endocardial and epicardial nodes. Initial imbrication angles (ϕ(n)) at all nodes
were also set to 0◦. Secondly, the FE local coordinates within the LV geomet-
ric model were determined for each voxel (v), and an estimate of the myocyte
orientation (f(v)) at each voxel was interpolated. This was done by Euler angle
rotations of vectors [19] by the interpolated angles θ(n) and ϕ(n).

To express the amount of diffusion along the jth gradient direction (g(j)) we
introduced a weight (w(j,v)) for direction j in voxel v derived from the basic
diffusion equation3:

S(j,v) = S(0,v)e
−γ2G2D(j)δ

2(Δ− δ
3 ). (2)

2 The MathWorks, Inc., Natick, Massachusetts, United States.
3 γ represents the gyromagnetic ratio of protons, δ and G the duration and magnitude

of application of the motion probing gradient along direction g(j), D(j) the apparent
diffusivity in the same direction, and Δ the time difference between the centres of a
pair of gradient pulses.
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Rearranging Eq. 2 gives:

− ln(
S(j,v)

S(0,v)
) = γ2G2D(j)δ

2(Δ − δ

3
) ≡ w(j,v). (3)

Scaling the unit vectors g(j) by w(j,v) provided weighted direction vectors
(w(j,v)) that represented the magnitude of diffusion along each gradient direction.

Finally, an objective function (Ψ) was constructed:

Ψ =
∑

v

∑

j

(w(j,v) · f(v))2, (4)

which is greatest when f(v) is aligned with the directions of w(j,v) with great-
est magnitude. The objective function was maximised using non-linear optimi-
sation4 by modifying the nodal parameters (θ(n) and ϕ(n)). The method was
implemented using the OpenCMISS-Cmgui software package5 [20].

2.3 Surrogate Estimate of Fractional Anisotropy

By avoiding the calculation of a diffusion tensor the conventional estimate of FA
from the eigenvalues of the diffusion tensor is not available. FA describes how
much the ellipsoid associated with a diffusion tensor differs from a sphere. To
provide an equivalent index, we derived an estimate of FA from the raw diffusion
signals (rdsFA) in a formulation similar to the expression used to compute FA
from the eigenvalues of the diffusion tensor [21]:

rdsFA =

√
d

d − 1

∑
j(w(j) − w̄)2
∑

j w2
(j)

, (5)

where d is the number of directions and

w̄ =
1
d

∑

j

w(j). (6)

This enabled a comparison of the relative anisotropy between voxels without
the need to compute diffusion tensors. As a comparison with the conventional
approach, we found that there was a strong linear correlation between FA and
rdsFA (correlation coefficient of R2 = 0.9975).

3 Results

Having fitted the myocyte orientation field to the raw diffusion signals, the
myocyte angles were then interpolated at each of the image voxel locations. The
4 least squares quasi Newton function, OPT++ optimisation library, http://software.

sandia.gov/opt++.
5 OpenCMISS-Cmgui application, www.opencmiss.org.

http://software.sandia.gov/opt++
http://software.sandia.gov/opt++
www.opencmiss.org
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result is plotted in Fig. 2(a) using the helix angle to colour-code the myocyte ori-
entation. The helix angle field varied smoothly throughout the LV, with positive
angles at the endocardium and negative angles at the epicardial surface.

We compared the fitted myocyte orientations (f(v)) with the primary eigen-
vectors (e1(v)) calculated by conventional eigenanalysis of the diffusion tensors.
We used a normalised dot product (nDP, see Eq. 7) to quantify the overall align-
ment of the fitted orientation and the primary eigenvector at each voxel by
scaling their dot product by the FA(v) at the corresponding voxel. This accounts
for the differing degree of confidence in the calculated eigenvectors since a voxel
with a FA of 0 does not have a unique primary eigenvector. nDP ranges from
0 to 1, with 1 representing a perfect alignment of both vectors within an image
voxel. The resulting nDP in this study was very close to 1, which suggests a
high correlation between the primary eigenvector of the diffusion tensor and the
fitted myocyte orientation across all myocardial voxels:

nDP =
∑

v(FA(v)|f(v) · e1(v)|)∑
v FA(v)

= 0.979. (7)

When building personalised models of the heart based on primary eigenvec-
tors of diffusion tensors, it is common to parameterise myocyte orientations using
a FE model by interpolating their spatial distribution (after phase-unwrapping).
We processed the primary eigenvectors with this approach to provide a compar-
ison set of myocyte orientations (h(v)) fitted to the eigenvectors e1(v).

Figure 2(b) presents a map of FA (top) in a mid-ventricular slice, along with
the alignment between f(v) and e1(v) (bottom-left), and between f(v) and h(v)

(bottom-right). At locations where FA was high, the directions were similar,
however significant differences were observed in regions of low FA (highlighted
with dashed boxes in Fig. 2(b)). The alignment with spatially-interpolated eigen-
vectors was much closer, and remaining differences, which tended to arise near
boundaries, may have been caused by those voxels containing partial-volume
imaging artefacts.

Figure 3 shows transmural gradients of raw and fitted helix angles at two
locations around the LV wall, and illustrates that even in regions of low FA,
such as the intersection of LV and RV, this method provided a smoothly varying
myocyte angle field.

4 Discussion

A novel method was developed to parameterise a continuous myocyte orientation
field throughout a FE model of the LV by directly fitting to raw diffusion signals
acquired by DWI. This method circumvents issues associated with the eigen-
analysis of diffusion tensors that can potentially lead to misrepresentation of the
local myocyte orientation. These disadvantages can have a significant impact on
electrophysiological and mechanical modelling studies as they affect the descrip-
tion of the electrical, contractile, and passive mechanical constitutive properties
of the tissue. In addition, this new method does not assume the diffusion to be
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Fig. 2. (a) Fitted myocyte orientations colour-coded by the interpolated helix angles
at all voxels within the LV. (b) A mid-ventricular slice showing (top) FA, and the align-
ment between interpolated myocyte orientations f(v) and (bottom-left) primary eigen-
vectors e1(v), and (bottom-right) between f(v) and spatially-interpolated eigenvectors
h(v). The dotted squares indicate (top) areas of low FA and (bottom) corresponding
regions of poor alignment. The FA spectrum was set to range between 0 and 0.4 to
highlight the regional variability (Color figure online).

Fig. 3. Transmural gradients of helix angle along the indicated lines at the intersection
of LV and RV and at the LV free wall. Fitting to the raw diffusion signals (red lines)
shows good agreement with the raw helix angles. The result for fitting to the helix
angles is illustrated for comparison reasons (Color figure online).
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best represented by a tensor, and thus avoids the loss of information associated
with the least squares fit of the diffusion tensor. Instead of using a voxel-wise
data reduction to a tensor, the new method incorporates the spatial distribution
of diffusion signals. The error therefore only involves one fitting process instead
of two by eliminating the intermediate step of least squares fitting of the diffusion
tensor, and requires less computation. It would be possible to further extend this
technique to capture microstructural features that are not well represented by
a diffusion tensor. One example would be to represent crossing fibres by allow-
ing multiple orientations within a single voxel, and another would be to allow
the representation of tissue isotropy (where there is no preferred direction) as
it may be found in regions of myocyte disarray. Myocyte orientations estimated
using this method agree well with the conventional method of fitting a myocyte
field to primary eigenvectors for regions of high FA, within which the primary
eigenvector has been shown to reliably represent the local myocyte orientation.
In regions of low FA, this method provides continuously varying myocyte orien-
tations. If the main contributor to low FA is noise, then maintaining continuity
in the myocyte orientation field despite low FA is an important advantage.

The results suggest that fitting to the raw diffusion signals gives a better
representation of the underlying structure than fitting to the primary eigenvec-
tors of diffusion tensors, because the objective function implicitly accounts for
variations in FA.

5 Conclusions

In this study, a model-based parameterisation method was proposed to directly
interpret diffusion signals provided by ex vivo DWI. Our scheme does not require
the conventional calculation of diffusion tensors, but directly fits a myocyte ori-
entation field to spatial distributions of raw diffusion signals. A comparison of
the proposed framework with a conventional eigenvector fitting method showed
good agreement in regions of high FA, and smooth solutions in regions with
low FA. Future studies will include exploring the influence of noise and motion
artefacts on the fitting results.
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