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Abstract. Macro-reentrant atrial and ventricular tachycardias originate
from additional circuits in which the activation of the cardiac chambers
follows a high-frequency rotating pattern. The macro-reentrant circuit
can be interrupted by targeted radiofrequency energy delivery with a
linear lesion transecting the pathway. The choice of the optimal ablation
site is determined by the operator’s experience, thus limiting the pro-
cedure success, increasing its duration and also unnecessarily extending
the ablated tissue area in the case of incorrect ablation target estimation.
In this paper, an algorithm for automatic intraoperative detection of the
tachycardia reentry path is proposed by modelling the propagation as a
graph traverse problem. Moreover, the optimal ablation point where the
path should be transected is computed. Finally, the proposed method
is applied to sparse electroanatomical data to demonstrate its use when
undersampled mapping occurs. Thirteen electroanatomical maps of right
ventricle and right and left atrium tachycardias from patients treated
for congenital heart disease were analysed retrospectively in this study,
with prediction accuracy tested against the recorded ablation sites and
arrhythmia termination points.

1 Introduction

In recent years, catheter ablation of cardiac arrhythmias has moved from ablation
of ‘simple’ substrates like accessory pathways to more complex arrhythmias such
as atrial or ventricular tachycardia or fibrillation. Even patients with complex
congenital heart disease (CHD) that may present with a very unusual cardiac
anatomy can now be candidates for catheter ablation procedures. Merging pre-
procedural 3D image data with the 3D electroanatomy has provided a very
valuable tool to improve ablation outcomes even during longterm follow-up.

The state-of-the-art in intraoperative guidance for mapping and ablating
tachycardias in CHD includes CARTO (Biosense Webster, Bar Diamond, CA,
US). After vascular access into the cardiac chamber, the mapping catheter is
moved in contact with the endocardial wall in order to generate the spatial
information, i.e. the fast anatomical map (FAM), and also acquire sparse elec-
trical data at specifically selected points on the FAM. The electrical parameters
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include unipolar and bipolar voltage and local activation times (LAT). With
each point acquisition, CARTO interpolates the electrical parameters across the
FAM using a preset distance threshold. From the LAT map, CARTO is able to
simulate the activation wave based on a sequential plot of activation time geo-
desics. Apart from CARTO, a second widely used electroanatomical mapping
system is EnSite NavX (St. Jude Medical, St. Paul, MN, US), which outputs
the same activation time and voltage maps as CARTO, but employs a different
technology. Despite the advances in these two systems, establishing the path of
fastest conduction, i.e. the main ectopic propagation circuit, and correlating it
with the location of fibrotic tissue shown on the bipolar voltage map are still
operator-dependent skills.

Intra-operatively, the electrophysiologists guide themselves in locating the
circuit by circuit entrainment mapping. They measure the post pacing interval
at the reset of the tachycardia to see if the circuit was entered successfully.
Naturally, with increasing numbers of mapping and pacing points, the activation
and voltage amplitude maps become more accurate. However, there is a trade-off
between mapping time and resolution. Moreover, if the ablation site is, by error or
misinterpretation of the mapping data, far from the conduction path, repeated
energy delivery will be required, causing more tissue damage than necessary.
Successful ablation is declared if the mapped tachycardia is terminated during
energy delivery and no longer inducible.

In order to understand the underlying mechanisms of macro-reentrant tachy-
cardias, different electrophysiological models have been proposed for simula-
tion. These models are meant to replace to some extent the more expensive
electroanatomical mapping systems. They use general electrical wave propaga-
tion principles applied to the cardiac tissue and anatomy and personalised with
electromechanical parameters from preoperative imaging. Although the well-
established CARTO and EnSite technologies are preferred in clinical practice,
the electroanatomical models can also provide the cardiologists with activation
time maps and potentially voltage information. Among the least computationally
expensive frameworks are the eikonal model for conduction parameter estimation
at macro-scale [1,2], but also simplified biophysical ionic channel models [3] or
mono-domain models such as Lattice-Boltzmann [4]. Fast Marching, an adapta-
tion of the graph traverse Dijkstra algorithm, is typically used to solve the differ-
ential equations in these models. The solution of these equations can be mapped
on 3D anatomy in order to mimic the information output of electroanatomical
mapping systems. Alternatives to these classical biophysical approaches are the
models of propagation in cellular automata [5] and the estimation of pathways
as a minimal cost graph traverse formulation [6], the latter having been used for
qualitative identification of the normal conduction along the Purkinje fibres.

This paper proposes a novel approach for the detection of tachycardia
propagation path based on graph traverse theory by using the mapping data
directly and without the need for simulation or electroanatomical model fitting.
Furthermore, the point in the circuit of the highest termination probability
was computed. The algorithms were tested for repeatability in sparse mapping
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conditions when fewer points are acquired. The proposed method was validated
with data from 13 patients with previous CHD surgery and suffering from atrial
or ventricular reentrant tachycardias.

2 Methods

2.1 Data Acquisition

CARTO 3 studies of macro-reentrant right ventricular and left and right atrial
tachycardia were collected – 4 right ventricles, 6 right atria, 2 left atria, 1 total
cavopulmonary connection (TCPC). Each study contained a 3D endocardial
surface of the cardiac chamber, with a corresponding set of LATs, bipolar volt-
ages, and unipolar voltages for each surface vertex. The anatomical meshes were
smoothed with Poisson reconstruction, threshold set as the default 6, in Mesh-
Lab [7]. The electrical data at the new vertices were interpolated linearly from
the values on the original meshes. The latest and earliest activation times with
respect to the end-diastolic ECG peak (R peak) were extracted. The input data
required by the proposed method is independent of the CARTO system, as long
as the electroanatomical information can be recovered with another technology,
e.g. EnSite, or modelled using any cardiac activation principles.

2.2 Macro-Reentrant Circuit Reconstruction

For macro-reentrant circuit reconstruction, the shortest geodesic path between
the earliest and the latest activation vertices was computed. The mesh edges were
used as graph edges and the vertices as nodes. The edges were weighted with the
propagation speed between the vertices that they connected, multiplied by the
means of the bipolar and unipolar voltage amplitudes at the two vertices (Eq. 1).

wi,j =
di,j

|LATi − LATj | · Vuni,i + Vuni,j

2
· Vbi,i + Vbi,j

2
(1)

The variable wi,j is the weight of the edge connecting vertex i to vertex j, each
with activation times LATi and LATj , unipolar voltage amplitudes Vuni,i and
Vuni,j , and bipolar voltage amplitudes Vbi,i and Vbi,j . The propagation speed
between the neighbouring vertices i and j was computed from the Euclidean
distance di,j . The product of mean voltage amplitudes modelled the energy of
the wave traversing that part of the tissue, dependent on the tissue conductivity.
This modulated the path to avoid crossing areas of surgical scars, which have
low conductivity. Finally, Dijkstra’s algorithm was applied [8].

Due to the limitations of the interpolation algorithm in CARTO, the earliest
and latest activation points may not directly coincide, leaving a strip of artifi-
cially interpolated LATs (Fig. 1). Also in some cases, the incomplete geometry
of the endocardial chamber caused the activation circuit to be represented only
partially. The remaining gap was closed with a new application of the Dijkstra
algorithm on the complementary path, which was forced to pass through the
vertex opposite to the centre of the path found in the first Dijkstra run.
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2.3 Tachycardia Termination Point Detection

The electrical features of typical tachycardia points were learned and tested in
a leave-one-out fashion. For each of the 13 studies, the triplets of LAT, bipolar
voltages, and unipolar voltages of the points along the path were normalised
and concatenated. The LATs were a measure of position of the termination
points along the parameterised path running from earliest to latest activation;
the voltages were a measure of tissue fibrosis. Each study was left out in turn
from the full set of 13. The points on the remaining 12 paths were fed as a
training set into an adapted version of a random subsampling boosting classifier
(RUSBoost, presented in [9] and adapted as in Algorithm1).

The labels of the training set were exported from CARTO and projected
onto the paths, in order to distinguish between the features of the two classes,
ablation points and regular points. The learner predicted the labels of the path
points on the test case. RUSBoost was deemed the most adequate classification
method given the imbalanced number of termination points compared to the
other points on the path.

Data:
– (ytrain,i, LATtrain,i, bitrain,i, unitrain,i), i = 1, ntrain and ytrain,i ∈ {0, 1}, where 0

denotes regular path point and 1 termination point, as marked in CARTO
– number of termination points is significantly lower than the number of regular

path points, i.e. n1 � n0

– (LATtest,i,bitest,i,unitest,i), i = 1, ntest

– weak learner, which does not necessarily yield a good initial classification.

Initialization: w1,i = 1
ntrain

, i = 1, ntrain, where wk,i is the weight of sample i in

iteration k;
while preset number of iterations not reached do

1. subsample from the full set using the weights wk,i, i = 1, ntrain;
2. feed the subset and the weights to the learner;
3. learner estimates the labels of the training data;
4. update the weights with the classification error;

end

Result: ytest,i = 0 or ytest,i = 1, p(ytest,i = 1), and p(ytest,i �= 1), where i = 1, ntest

Algorithm 1. RUSBoost classification algorithm for detection of most prob-
able point of tachycardia termination

2.4 Subsampling of Electroanatomical Maps

Electrical Data Interpolation. In order to test how the circuit reconstruction
and the termination point detection perform on sparse electroanatomical data,
subsampling of the original maps was performed. The electrical values of every
vertex in the sparse maps were obtained through a two-step interpolation and
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threshold filling algorithm, tuned to mimic the online interpolation of CARTO
when new electroanatomical data is acquired.

In the first step, for every vertex, only the mapping points within a 12 mm
radius were taken into consideration. The value at that vertex was either that
of the mapping points, if it coincided, or the mean of the values of all mapping
points within 12 mm, weighted inversely with the distance from the vertex. In
the second step, the vertices which did not have any mapping points to meet the
proximity threshold were given the value of their closest vertex with an assigned
value from the interpolation step. The value of 12 mm was set by trial and error
to best match the CARTO ground truth. A qualitative comparison can be made
between the figures in Table 2 and the original mesh in Fig. 1.

Iterative Cluster Subsampling. The original mapping points were clustered
around 5 centroids computed with the k-means method and approximated by
the closest mapping point in the cluster according to the Cartesian distance. The
5 centroids were ordered using a greedy search with respect to their marginal
information, which is explained in the next paragraphs.

Given the full set of mapping points P0, from which the ground-truth elec-
troanatomical map was built, and a subset P⊂P0, the map reconstruction accu-
racy when using subset P for interpolation can be computed as the inverse of
the error

εP∼P0 =
1
3

∑

i∈{LAT,uni,bi}

1
j

nV∑

j=1

|fi,j,P − fi,j,P0 |
maxi,j fi,j,P0 − mini,j fi,j,P0

. (2)

The anatomy is in both cases a 3D surface of nV vertices. The value fi,j , i ∈
{LAT,uni,bi}, is either the LAT, unipolar voltage (uni), or bipolar (bi) voltage
at vertex j. For each vertex, the difference in electroanatomical values was scaled
with reference to the P0 map. The marginal information of a mapping point can
be defined as the difference in map accuracy between two maps constructed with
and without that particular point. The adapted greedy search for ordering the
centroids according to their marginal information is presented in Algorithm2.

The path reconstruction and termination point detection were run in 5 iter-
ations, where in each iteration a new cluster of points was added to interpolate
the colour maps.

3 Results

3.1 Macro-Reentrant Circuit Reconstruction

For each of the 13 cases, the graph was built with the FAM vertices and edges.
The forward circuit was computed using Matlab’s implementation of the Dijkstra
algorithm with weights as in Eq. 1. Figure 1 shows qualitative results on a right
ventricle and on left and right atria. The CARTO ablation, circuit entrainment,
and termination points are displayed as reference points of the ground-truth
propagation path detected intraoperatively. The dense bipolar voltage maps were
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Data:
• P0 full set of mapping points;
• fi,j,P0 , i ∈ {LAT, uni, bi}, j = 1, nV, electrical features of all vertices for

the map computed with the points in P0

• vertex indices of the 5 centroids

Initialization: c1 = argmink ε(P0−{k})∼P0 , k = 1, 5;
while i <= number of clusters - 1 do

1. interpolate for fi,j,{c1,i} and fi,j,({c1,i}∪{k}), where k = 1, 5 − {c1,i};

2. ci+1 = argmaxk |ε{c1,i}∼P0 − ε({c1,i}∪{k})∼P0 |;
3. i = i + 1;

end
Result: c, decreasing order of centroid marginal information

Algorithm 2. Ordering of the cluster centroids according to their marginal
information added to the electroanatomical map

thresholded at 0.5 mV, a value commonly used in the EP literature for ventricular
scar segmentation in electroanatomic data. The third row of results, displayed
on top of the scar maps, shows that the calculation of propagation paths avoids
the crossing of scars, according to the edge weights in Eq. 1.

Several qualitative observations can be made from the results shown in Fig. 1.
Firstly, there was a good correlation between the LAT geodesics and the com-
puted path perpendicular to them. Secondly, the paths were modulated by the
presence of surgical scar, encoded by the bipolar voltage amplitude at each ver-
tex. The perpendicularity of the paths to the LAT geodesics is ensured by the
core principle of shortest path in the Dijkstra algorithm.

Table 1 shows a quantitative analysis of both tachycardia circuit detection
and termination point learning. Assuming that all critical points labelled intra-
operatively and imported from CARTO, i.e. circuit entrainment, ablation, and
final tachycardia termination points, lie on the true wave propagation path, an
accuracy measure was defined as the distance between this ground-truth and the
computed path, namely the mean distance to CARTO points. The average of
16.36 mm was comparable to the range of tip instability of the ablation catheter
(12 mm), as recorded by the electromagnetic sensors in the CARTO framework.

3.2 Tachycardia Termination Point Detection

Several measures were defined to assess the method’s performance in this step:
the accuracy, sensitivity, and specificity, all of which quantified the ability to dis-
tinguish a regular path point from an critical point on the path. A critical point
is either an ablation, a termination, or a circuit entrainment point as labelled and
exported from CARTO. A critical path point is the projection of a critical point
onto the tachycardia path reconstructed in the first step of the method.
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Fig. 1. Tachycardia propagation path for average right and left atria and for an average
right ventricle. The panels show from top to bottom the LAT, bipolar voltage, and scar
maps, the probability of tachycardia termination at each point along the path, and the
distance of the computed termination points from the closest ground-truth ablation.
AP – antero-posterior axis, LR – left-right axis, SI – supero-inferior axis.

Apart from the relative performance measures, the average minimal distance
to the critical path points was computed. These points were all considered the
ground-truth termination points, as it was difficult to assess which of them led
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Table 1. Distance of computed propagation path from critical points, i.e. ablation,
termination and circuit entrainment points marked in CARTO, i.e. critical CARTO
points; characteristics of the tachycardia termination point classifier and distance of
the point with the highest computed probability of termination from actual CARTO
critical points.

RV RA LA TCPC Mean

Mean distance to CARTO points [mm] 22.25 14.09 13.98 3.77 16.36

Standard deviation [mm] 13.05 12.16 6.98 3.53 12.03

Accuracy [%] 59.26 71.59 72.37 79.10 68.49

Specificity [%] 62.07 75.64 75.40 82.26 71.94

Sensitivity [%] 38.54 33.06 47.62 40.00 37.52

Avg. min. dist. to CARTO points [mm] 0.00 2.84 0.00 2.46 1.52

Standard deviation [mm] 0.00 4.19 0.00 0.00 3.06

to the tachycardia termination. For every path point, the closest critical path
point was found. This distance was then averaged over all path points.

The leave-one-out ensemble learning yielded a mean accuracy of 68.49 % in
detecting critical points along the propagation path (Table 1). The points with a
termination probability over 50 % lay within 1.52 mm from their closest critical
path point. The lowest error was recorded in RV and LA, for which all computed
termination points matched a ground-truth critical point (0.00 entries in the
table). The computed tachycardia termination was colour-coded to emphasize
the points of highest probability. Table 1 averages the results of both circuit
reconstruction and critical point detection for each type of cardiac chamber.

3.3 Performance on Subsampled Electroanatomical Maps

The path reconstruction and termination point detection algorithms were
applied on 5 iterations of subsampling in each study. Results for a right atrium
are presented in Table 2 which shows how the tachycardia circuit was re-shaped
with the addition of new mapping points and how the classification algorithm
changed its output.

4 Discussion and Conclusion

In this paper, a traversed graph representation for sparse encoding of macro-
reentrant tachycardia was presented. In addition to good qualitative correlation
with the geodesics in the LAT map, the Cartesian distance to the true ter-
mination and circuit entrainment points also support the applicability of the
algorithm. The observed error in this study was primarily caused by the inter-
polation limitations in CARTO, a system error which could be alleviated with
the use of another electroanatomical mapping system or in a simulated cardiac
activation software.
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Table 2. Sequence of propagation path reconstruction for the right atrium in Fig. 1
(upper table) and average over all cases (lower table). The points were added in decreas-
ing order of their k-mean cluster centroid’s marginal information value. A – accuracy
[%], Sp – specificity [%], Se – sensitivity [%], d – minimal distance to CARTO ablation
[mm], D – average distance to CARTO critical points, assumed on the ground-truth
path [mm], σ – standard deviation of the distances to CARTO critical points [mm].

Also, partial anatomical maps, due to the cardiologist’s interest in one par-
ticular area, lead to incompleteness of the activation wave. While constructing a
more detailed map would be time consuming, operator input, where the cardiol-
ogist can correct or add features locally, is a feasible solution for better results.
In this regard, the subsampling algorithm and the application of the presented
method to sparse data provide guidance for the cardiologist in deciding which
region needs more detailed information for a more accurate reconstruction.

In terms of termination point detection, while part of the error can be traced
back to the path reconstruction inaccuracy, the learning feature vector itself can
be enhanced with information such as wall thickness and estimated catheter tip
motion at each point on the path, as described by [10]. The importance of addi-
tional information can be inferred from Table 2, where it is shown how different
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activation paths led to different termination points. Starting with only a fifth of
the full set of mapping points, the detection algorithm had limited electrical data
gradients to differentiate between ablation and regular sites (high sensitivity and
low specificity). With the addition of mapping points, the specificity increased.

Despite the expected benefit of the leave-one-out learning of tachycardia ter-
mination, the results in Table 1 do not support this method. The most numerous
cohort of RA tachycardias does not have a high score in any of the accuracy,
sensitivity, or specificity. This is probably due to the high variability in the set,
but also because of the error in the first stage of path reconstruction. In fact, it
can be inferred from Table 1 that the termination accuracy is inversely correlated
with the mean distance to the CARTO points on the ground-truth path, i.e. the
path reconstruction accuracy. This is also the reason why the single TCPC case,
with a small error of path reconstruction, has the best accuracy and specificity
result, despite not being able to learn from other TCPC maps.

On the computational side, the two-step method of reconstruction and learn-
ing can be easily integrated into a real-time solution. The tachycardia circuit
detection runs in approximately 42.2 ms. The subject-specific RUSBoost classifi-
cation runs in approximately 2.1 s, considering that the data base of the training
model can be learned offline and only the test data needs to be labelled. Times
were measured on an i7 CPU at 2.4 GHz with unoptimised Matlab code.

In conclusion, this paper presents a method for effective combination of
graph traverse and ensemble learning classification algorithms for reconstructing
macro-reentrant tachycardia circuits and identifying the site of most probable
termination. It is based on the identification of the shortest path from the ear-
liest to the latest activation time along the arrhythmia propagation curve. The
anatomy was modelled as a graph with edges weighted by the propagation speed
between two adjacent vertices and the conductivity of the tissue measured as
local potential. After reconstructing the activation path, the point of most prob-
able termination was sought. RUSBoost was applied in a leave-one-out ensemble
learning framework, where the pattern of LAT-bipolar-unipolar voltage of typical
termination points was learned.

Finally, both the activation reconstruction and the termination point detec-
tion were run on subsets of the original mapping points. This anticipates
re-mapping guidance after ablation in order to verify the uninducibility of the
ablated tachycardia. Moreover, the reconstruction from undersampled data can
provide an optimal order of mapping points acquisition in similar anatomy.
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