
Towards Left Ventricular Scar Localisation
Using Local Motion Descriptors

Devis Peressutti1(B), Wenjia Bai2, Wenzhe Shi2, Catalina Tobon-Gomez1,
Thomas Jackson1, Manav Sohal1, Aldo Rinaldi1,

Daniel Rueckert2, and Andrew King1

1 Division of Imaging Sciences and Biomedical Engineering,
King’s College London, London, UK
devis.1.peressutti@kcl.ac.uk

2 Biomedical Image Analysis Group, Imperial College London, London, UK

Abstract. We propose a novel technique for the localisation of Left Ven-
tricular (LV) scar based on local motion descriptors. Cardiac MR imag-
ing is employed to construct a spatio-temporal motion atlas where the
LV motion of different subjects can be directly compared. Local motion
descriptors are derived from the motion atlas and dictionary learning is
used for scar classification. Preliminary results on a cohort of 20 patients
show a sensitivity and specificity of 80 % and 87 % in a binary classifica-
tion setting.

1 Introduction

Accurate assessment of Left Ventricular (LV) scar location is paramount in many
clinical applications, ranging from the evaluation of viable LV myocardium fol-
lowing myocardial infarction, to the planning of optimal lead placement in Car-
diac Resynchronisation Therapy (CRT) or cardiac stem cells transplant [1,10].

Cardiac Magnetic Resonance (CMR) has become the imaging modality of
choice for the characterisation of cardiac function and scar distribution due to
its high spatial resolution, soft-tissue contrast and non-invasiveness. In particu-
lar, delayed-enhancement MR (DE-MR) imaging allows evaluation of the extent
of scarred myocardium after injection of a contrast agent [10]. In DE-MR, scarred
areas appear hyper-enhanced compared to healthy myocardium and scar trans-
murality is typically quantified by manually adjusting an intensity threshold.
Standard clinical DE-MR protocols typically acquire 2D short-axis (SA) and
long-axis (LA) images of the LV with slice thickness ≈ 10mm, and therefore
lack accurate through-plane scar information. Furthermore, DE-MR requires the
use of a contrast agent, which is typically a gadolinium-based nephrotoxic drug.

Injured myocardium alters LV electrical activation and mechanical contrac-
tion, which causes differences in LV motion between ischaemic and non-ischaemic
myocardium [7]. We present a framework for the prediction of LV scar location
purely based on LV motion, without the need for a DE-MR scan or user inter-
action. We present preliminary results on a cohort of patients selected for CRT,
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but the proposed framework has potential use in the assessment of LV scar dis-
tribution for other applications. To the authors’ knowledge, very little work has
been done on the use of 3D LV motion for automatic localisation of scar. Related
work includes [8], in which the cardiac shape at different cardiac phases was used
to characterise scarred myocardium, although it should be noted that their best
results were achieved using the shape at only a single phase (end systole).

In the proposed method, LV motion is estimated using (T-MR) imaging,
which provides 3D high-spatial resolution motion information. A spatio-temporal
motion atlas is generated to remove biases towards LV geometry and cardiac
cycle duration, allowing direct comparison of the LV motions of different patients.
The novelty of our method lies in the use of local motion descriptors and dic-
tionary learning to localise scar. Provided with the 3D LV motion descriptors of
an unseen patient, the proposed framework is able to predict location of scarred
myocardium.

2 Materials

A cohort of 20 patients1 fulfilling conventional criteria for CRT (New York Heart
Association functional classes II to IV, QRS duration > 120ms, and LV ejection
fraction ≤ 35%) was considered. All patients underwent CMR imaging using a
1.5 T scanner (Achieva, Philips Healthcare, Best, Netherlands) with a 32-element
cardiac coil. Details of the acquired CMR sequences are as follows:

cine MR: a multi-slice SA and three single-slice LA (2-chamber, 3-chamber
and 4-chamber view) 2D cine Steady State Free Precession (SSFP) sequences
were acquired (TR/TE = 3.0/1.5ms, flip angle = 60◦). The SA and LA images
have a typical slice thickness of 8mm and 10mm, respectively and an in-plane
resolution ≈ 1.4 × 1.4mm2;

T-MR: tagged MR sequences in three orthogonal directions with reduced field-
of-view enclosing the left ventricle were acquired (TR/TE = 7.0/3.2ms, flip
angle = 19−25◦, tag distance = 7mm). The data for each tagging direction
consisted of multiple 2D slices covering the whole LV volume. The typical spatial
resolution in the plane orthogonal to the tagging direction is ≈ 1.0 × 1.0mm2;

DE-MR: delayed-enhancement MR images were acquired 15 to 20 min fol-
lowing the administration of 0.1 to 0.2mmol/kg gadopentate dimeglumine
(Magnevist, Bayer Healthcare, Dublin, Ireland) using conventional inversion
recovery sequences. A multi-slice SA and three single-slice LA 2D images were
acquired (TR/TE = 5.6/2.0ms, flip angle = 25◦). The same field-of-view and
orientation as the cine MR sequences was used. Slice thickness of both SA and
LA images is 10 mm with an in-plane resolution ≈ 1.4 × 1.4mm2.
All images were acquired during sequential breath-holds of approximately 15 s
and were ECG-gated. Given their high in-plane spatial resolution, the cine

1 Data were acquired from different projects and cannot be made publicly available
due to lack of ethical approval or patient consent on data sharing.
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MR images at end-diastole (ED) were employed to estimate LV geometry (see
Sect. 3.1). The other cine MR images were not used in this work. An average high
resolution 3D + t T-MR sequence was derived from the three T-MR acquisitions
with orthogonal tagging directions and was used to estimate the LV deformation
(see Sect. 3.1). Finally, the DE-MR images were used to estimate the location
of LV scar. These scar maps were used in the training and validation of the
classifier (see Sect. 3.2).

3 Methods

The main novelty of the proposed method lies in the application of dictionary
learning to 3D LV motion descriptors for classification of scarred myocardium.
An illustration of the proposed framework is shown in Fig. 1. To allow motion
comparison from different patients, a spatio-temporal motion atlas of the LV was
generated similarly to [4]. The use of a spatio-temporal motion atlas allowed
us to remove differences in LV anatomy and cardiac cycle duration from the
comparison of LV motion.

Fig. 1. Overview of the proposed framework.

3.1 Spatio-Temporal Motion Atlas

The formation of the LV spatio-temporal motion atlas comprises estimation of
LV geometry and motion, spatial normalisation of LV geometries and motion
reorientation from each subject-specific to the common atlas coordinate system.

Prior to the LV geometry and motion estimation, the SA and LA cine MR
sequences were spatially aligned to the T-MR coordinate system, as in [11].

LV Geometry Estimation. For each patient, the end-diastolic (ED) cardiac
phase was chosen as the temporal reference. The LV myocardium, excluding pap-
illary muscles, was manually segmented from the ED frames of the multi-slice SA
and three LA cine MR images. The four binary masks were fused together into
an isotropic 2mm3 binary image and the result was further refined manually to
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obtain a smooth LV segmentation. To determine point correspondences amongst
all LV geometries, an open-source statistical shape model (SSM) of the LV was
employed [6]. The SSM represents the anatomical variance of a population of
134 patients and consists of the epi- and endo-cardial surfaces. After an initial
landmark-based rigid alignment, the modes of variation of the SSM were opti-
mised to maximise the overlap between the LV segmentation and the volume of
the SSM. Non-rigid registration followed the mode optimisation to refine local
alignment. An example of a resulting LV surface is shown in Fig. 2(a), (b), (c),
(d), (e), (f) and (g).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example of estimated LV anatomical surface at end-diastole. The estimated LV
mesh is overlaid onto a (a) apical, (b) mid and (c) basal cine SA slice and (d) 2-chamber,
(e) 3-chamber, and (f) 4-chamber cine LA slices. Figure (g) shows the resulting SSM
epi- and endo-cardial meshes, while (h) shows the resampled medial LV mesh.

To facilitate the computation of motion descriptors, a medial surface mesh
with regularly sampled vertices (≈1500) was generated from the personalised
SSM epi- and endo-cardial surfaces. An example of a resampled medial surface
is shown in Fig. 2(h). The same resampling strategy was employed for all patients
to maintain point correspondence.

LV Motion Estimation. As mentioned in Sect. 2, an average high resolution
3D+t T-MR sequence was derived from the 3D+t T-MR sequences with orthogo-
nal tagging planes. For each patient, the trigger time tT specified in the DICOM
meta-tag of the T-MR volumes was normalised with respect to the patient’s
average cardiac cycle, such that tT ∈ [0, 1), with 0 being ED. A 3D + t free-
form-deformation algorithm with sparse spatial and temporal constraints [12]
was employed to estimate LV motion with respect to the ED cardiac phase.
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This algorithm estimates a smooth and continuous 3D + t transformation for
any t ∈ [0, 1). This way, temporal normalisation was achieved for each patient,
regardless of the number of acquired T-MR volumes and cycle length.

Spatial Normalisation. Spatial normalisation aims to remove bias towards
patient-specific LV geometries from the motion analysis. LV surfaces at ED
(see Fig. 2(h)) were derived from N patients using the steps outlined above.
An initial Procrustes alignment based on the point correspondences was per-
formed on the N medial LV surfaces, obtaining a set of affine transformations
{φn

aff}, n = 1, . . . , N with respect to a randomly chosen reference. An average
surface was computed from the aligned surfaces and an unbiased LV medial sur-
face was computed by transforming the average surface by the inverse of the aver-
age affine transformation φ̃aff = 1

n

∑
n φn

aff . This way, bias towards the initial
reference is removed. An example of an unbiased LV surface is shown in Fig. 3(b).
The original transformations {φn

aff} were similarly normalised to enforce an
average similarity transformation equal to identity φ̂n

aff = φn
aff ◦ (φ̃aff )−1.

To capture the local differences in LV geometry, all surfaces were consequently
aligned to the unbiased medial LV surface using Thin Plate Spline (TPS) trans-
formations {φn

TPS}. The resulting transformation from the patient-specific coor-
dinate system to the unbiased LV surface is given by φn = φn

TPS ◦ φ̂n
aff [4].

Motion Reorientation. To compare cardiac phases amongst all patients, the
reference ED medial surface was warped to T = 24 cardiac phases equally dis-
tributed in [0, 0.8] by using the estimated 3D+t transformation for each patient.
Only the first 80% of the cardiac cycle was considered since it is the typical cov-
erage of T-MR sequences, and the estimated motion for t ∈ (0.8, 1] is therefore
due to motion interpolation. As a result, the patient-specific LV motion was
fully represented by the T shapes. We denote with vn

p,t = un
p,t −un

p,0 the motion
at location u of vertex p ∈ 1, .., P at the cardiac phase t ∈ 1, .., T with respect
to the ED phase for patient n ∈ 1, .., N . The aim of motion reorientation is
to transport vn

p,t,∀n, t, p from each patient specific coordinate system to the
coordinate system of the unbiased average surface. Under a small displacement
assumption [3,9], this is achieved by computing vatlas

n,p,t = J−1(φn(up)) · vn
p,t,

where J(φn) denotes the Jacobian of the transformation φn [3,4,9]. After reori-
entation, LV motion from different patients can be directly compared at each
vertex p of the unbiased LV medial surface and cardiac phase t.

3.2 Local Motion Descriptors

As a result of the previous steps, the LV motions vatlas
n,p,t , ∀n, p, t are represented

in a common coordinate system. For a better description of the LV motion,
the atlas was segmented into the standard 16 AHA segments [2] (see Fig. 3(a)
and (b)) and the LV motions vatlas

n,p,t were decomposed into longitudinal, radial
and circumferential cylindrical coordinates (vatlas

n,p,t = [ln,p,t, rn,p,t, cn,p,t]
T ) with

respect to the long axis of the LV ED medial surface.
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For each patient, the LV scar distribution was estimated from the SA and LA
DE-MR images by using cmr42 (Circle Cardiovascular Imaging Inc.). The soft-
ware requires the observer to delineate the endo- and epi-cardial LV contours and
to set an intensity threshold to best separate scarred from healthy myocardium.
In this work, a single clinical expert derived the scar maps to eliminate inter-
observer variability. Figure 3(c) shows an example of a resulting scar map, where
the scar transmurality is specified for each AHA segment, while Fig. 3(d) shows
the scar distribution mapped onto the unbiased LV atlas.

The aim of this work is to characterise scar as a function of the LV spatio-
temporal motion information. To this end, as described in Guha et al. [5], local
motion pattern (LMP) descriptors were computed from the spatio-temporal
motion atlas to characterise the scar, and dictionary learning was subsequently
employed on the LMP descriptors for classification. Finally, in order to robustly
cope with outliers, a Random Sample Reconstruction [5] was employed to localise
the scar of an unseen patient.

(a) (b) (c) (d)

Fig. 3. The standard AHA bull’s eye plot (a) and the segmented unbiased LV medial
mesh at ED (b). An example of scar distribution provided by the software cmr42 and
mapped onto the atlas is shown in (c)–(d)

Local Motion Pattern Descriptors. A LMP descriptor represents the local
variations of the LV in the spatio-temporal dimensions [5]. After normalisation
of the LV motions vatlas

n,p,t with respect to the temporal norm ‖vatlas
n,p ‖, a neigh-

bourhood Bp for each vertex p was considered. LMP descriptors were computed
as the concatenation of the first 4 central temporal moments (mean, variance,
skewness and kurtosis) for the circumferential, radial and longitudinal compo-
nents for each point pi ∈ Bp at different temporal intervals (see Fig. 4). The
three components were treated separately, as evidence has shown the different
impact of the components on scar characterisation [7]. This results in a matrix
X ∈ R

(M)×(NP ), where M is proportional to the number of temporal intervals
and the size of the neighbourhood (see Fig. 4). Given the high dimensionality of
the LMP descriptors, Random Projections were used to reduce the complexity
of the classification task, resulting in a matrix Ψ ∈ R

(D)×(NP ),D � M , which
contains projections of X onto a random D-dimensional subspace [5].
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Concatenated Dictionary Learning. Dictionary learning (DL) techniques
can learn an overcomplete set of basis functions (i.e. dictionary) to represent a
signal with a high level of sparsity. DL has been employed successfully in many
image processing tasks, including denoising, inpainting and classification.

In our context, the scar transmurality was divided into K evenly distributed
classes within the 0−100% scar transmurality range and the sparsity properties of
DL were exploited for classification. In particular, a concatenated DL technique
was employed under the hypothesis that LMP descriptors of scar class k are
better represented by the corresponding dictionary rather than a dictionary of
a different class. Therefore, class-specific dictionaries were trained by solving

〈Φk,Sk〉 = argmin
Φk,Sk

‖Ψk − ΦkSk‖22 + α‖Sk‖1, (1)

where Ψk ∈ R
(D)×(NP )k , Φk ∈ R

(D)×(A) and Sk ∈ R
(A)×(NP )k respectively are

the descriptor matrix, the dictionary and the sparse code for the scar class k,
while A is the number of basis functions (i.e. atoms) and (NP )k is the number
of points belonging to the scar class k. We denote by 〈..〉 the variables being
optimised. The scikit − learn python package was used for the code implemen-
tation and a least angle regression method was used to solve the lasso problem.
After training, the K dictionaries were concatenated into a single dictionary
ΦC = [Φ1|...|ΦK ] and, provided with a set of unseen descriptors Ψun, the sparse
code Sun was computed using the Orthogonal Matching Pursuit (OMP) greedy
algorithm for the optimisation of

〈Sun〉 = argmin
Sun

‖Ψun − ΦCSun‖22, s.t. ‖sun‖0 ≤ β. (2)

The sparse code Sun is the concatenation of [SΦ1 |...|SΦK
] where SΦk

is the
sparse code corresponding to Φk. The estimated scar class is

ke = argmax
i∈1,..,K

‖SΦi
‖0, (3)

where ‖SΦi
‖0 counts the non-zero entries of SΦi

[5].
Since the scar size can vary within a given AHA segment, the classification

was performed using a Random Sample Reconstruction (RSR) [5], where the
class ke is assigned to the AHA segment if a randomly chosen subset of descrip-
tors also belongs to the same class. RSR provides robustness to the classification,
allowing classification of whole AHA segments based on a smaller set of descrip-
tive points, as is the case for localised scarred myocardium (see [5] for details).

4 Experiments and Results

Given the low number of datasets containing scar in the apical and basal seg-
ments, the AHA segments corresponding to the LV mid cavity only (i.e. segments
7 to 12) were analysed. On average, each segment contained ≈ 100 points. For
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Fig. 4. Toy example of LMP descriptor computation for a neighbourhood composed
of 3 points (Bp0 = 3). The descriptor is derived by concatenating the first four central
moments of the circumferential (blue), radial (green) and longitudinal (red) compo-
nents for each pi ∈ Bp, i = 1, 2, 3 computed over 6 temporal intervals Tj , j = 1, ..6
(Color figure online).

simplicity, a binary classification (i.e. K=2, 0 - no scar, 1 - scar) was considered.
The distribution of the binary ground-truth scar over all patients within the
considered segments is shown in Fig. 5(a).

A leave-one-out cross validation was employed. Given the high number of free
parameters for our technique, the best set was determined empirically, since an
exhaustive search proved to be cumbersome. The set of parameters used was:
Bp = 8, j = 6 temporal intervals (see Fig. 4), D = 256, sparsity coefficient α = .5,
maximum number of iterations = 200, number of atoms A = 512, number of non-
zero coefficients in OMP β = 2. For the RSR, random set size ≈ 5 descriptors,
probability of selecting an error-free set of points P = .9 (see [5]).

Results of the binary classification are reported in Fig. 5 considering each
segment as an independent observation. Values of sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV) achieved were 80%,
87%, 36% and 98%, respectively.

5 Discussion

In this paper, a novel framework for LV scar location using local motion descrip-
tors has been proposed. Results on a cohort of 20 patients enrolled for CRT
treatment were presented, with a sensitivity and specificity of 80% and 87% in
a binary scar classification setting. Although the investigation presented in this
paper is preliminary, to the authors’ knowledge this is the first work to demon-
strate that scar can be localised using motion information alone. Therefore, this
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(a) (b)

(c)

GT
0 1

PT 0 96 2 98
1 14 8 22

110 10

Fig. 5. (a) Scar distribution over AHA segments 7–12 (mid LV cavity). (b) Bull’s
eye plot of a GT map and predicted scar (0 - red, 1 - blue), mid-cavity segments
only. (c) the corresponding predicted scar mapped onto the medial surface is overlaid
onto the SA DE-MR image (the LV scar in yellow). (Bottom right) Joint frequency
table of AHA segment classification (GT - ground-truth, PT - proposed technique)
(Color figure online).

represents an important proof-of-principle that such a technique may one day
aid or even replace DE-MR in LV scar localisation and quantification.

There are a number of areas for future investigationbefore this possibilitymight
become reality. One is the use of a larger number of scar classes (i.e. not a binary
classification), or even a regression-based approach in which scar transmurality
is directly predicted from the LMP descriptors. Further work is also required to
refine the localisation of the ground truth scar, in which transmurality is currently
assigned for all points within a segment. Moreover, inter- and intra- observer vari-
ability in the determination of scar transmurality needs to be investigated. Finally,
investigations using larger numbers of scar-affected datasets is required.
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