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Abstract. A major challenge for cardiac motion analysis is the high-
dimensionality of the motion data. Conventionally, the AHA model is
used for dimensionality reduction, which divides the left ventricle into
17 segments using criteria based on anatomical structures. In this paper,
a novel method is proposed to divide the left ventricle into homoge-
neous parcels in terms of motion trajectories. We demonstrate that the
motion-driven parcellation has good reproducibility and use it for data
reduction and motion description on a dataset of 1093 subjects. The
resulting motion descriptor achieves high performance on two exemplar
applications, namely gender and age predictions. The proposed method
has the potential to be applied to groupwise motion analysis.

1 Introduction

The evaluation of cardiac function involves assessing not only the anatomy of
the heart but also its motion [1,2]. Modern imaging modalities such as magnetic
resonance (MR) and ultrasound (US) provide a convenient way for visualisation
and analysis of cardiac motion. A major challenge for cardiac motion analysis
is the high-dimensionality of the image data, both spatially and temporally.
In order to reduce the dimensionality, the 17-segment model proposed by the
American Heart Association (AHA) is conventionally used to divide the image
data into regional segments using criteria based on anatomical structures [3].

For cardiac motion analysis, however, it is possible that certain regions with
unique motion signatures, e.g. regions with scars or other pathologies, may not
align with the pre-defined anatomical segments of the AHA model. In this work,
we propose to parcellate the left ventricle (LV) into a number of segments such
that each segment contains similar and consistent motion information. To the
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Fig. 1. The flowchart consists of motion tracking, spatial normalisation and motion-
driven parcellation.

best of our knowledge, this is the first time that motion-driven parcellation is pro-
posed for the heart, although a similar idea, functional parcellation, has become
common for brain analysis [4]. Using a large dataset of cardiac MR images from
1093 subjects, we demonstrate that the parcellation has good reproducibility
and can be used to reduce data dimensionality and be applied to cardiac motion
analysis.

2 Methods

In this work, we are interested in the motion of the LV and parcellation is based
on the motion tracking results for the LV. We employ a group-wise parcellation
method, in which the motion fields of a large population are normalised onto a
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template surface mesh and then clustering is applied to the normalised motion
feature vectors of the vertices. Figure 1 illustrates the flowchart of the method
and we will explain each step in the following.

2.1 Data Description

The dataset used in this work consists of cardiac MR images of 1093 normal
subjects (493 males, 600 females; age range 19–75 yr, mean 40.1 yr). Cardiac
MR was performed on a 1.5T Philips Achieva system (Best, Netherlands) using
the 3D cine balanced steady-state free precession (b-SSFP) sequence. The voxel
spacing is 1.25×1.25×2 mm. Cine MR images are used here for cardiac motion
analysis, which consists of 20 time frames across a cardiac cycle with the 0-th
frame representing the end-diastolic (ED) frame. Other imaging modalities such
as tagged MR or ultrasound may also be used, which can capture the motion of
the heart at a different spatio-temporal resolution and with different quality.

2.2 Motion Tracking

Motion tracking is performed for each subject using a 4D spatio-temporal B-
spline image registration method with a sparseness regularisation term [5]. The
motion field estimate is represented in the subject space by a displacement vector
at each voxel and at each time frame t, which measures the displacement from
the 0-th frame to the t-th frame.

2.3 Spatial Normalisation

Parcellation is performed in a template image space, as shown at the top-right
corner of Fig. 1. To represent the motion fields of all the subjects in the template
space, the subject images are aligned to the template image by non-rigid B-spline
image registration [6]. Using the transformation between the template space and
subject space, the motion field of each subject is transported to the template
space. Let x′ = T (x) denote the transformation from template to subject, where
x and x′ are respectively the coordinates in the template space and in the subject
space. By considering the spatial transformation as a change of coordinates [7],
we have,

d(x, t) = JT−1(x′) · d′(x′, t) (1)

where d′ denotes the displacement in the subject space, d denotes the corre-
sponding displacement in the template space and JT−1(x′) ≡ dx

dx′ denotes the
Jacobian matrix of the inverse transformation.

2.4 Motion-Driven Parcellation

Let M denote the number of vertices on the template surface mesh (8528 vertices
in our case), N denote the number of subjects and F denote the dimension
of the motion trajectory. The motion trajectory at a vertex is defined as the
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concatenation of the radial, longitudinal and circumferential displacements of all
the time frames across the cardiac cycle. Then at each vertex, we concatenate the
motion trajectory of all the subjects, resulting in a feature vector of dimension
n = NF . Parcellation can be regarded as clustering of the M vertices into K
groups such that the vertices in each group display similar group-wise motion
trajectory. It produces a reduced representation of the input data.

A number of approaches have been proposed for clustering, such as K-means,
Ward’s algorithm [8], EM algorithm which models the clusters as a mixture of
Gaussians or other distributions [9] and graph partitioning [10]. We use the
Ward’s algorithm which has been shown to perform with good reproducibility
in [11].

Ward’s algorithm starts by considering each vertex as a cluster [8]. Then at
each step, it merges the two closest clusters. It defines the loss function as the
within-cluster variance and the two clusters which lead to the minimal increase
of the loss function are selected for merging,

(c1, c2) = arg min
c1,c2

∑

i∈c1∪c2

||yi − ȳc1∪c2 ||2 −
( ∑

i∈c1

||yi − ȳc1 ||2 +
∑

i∈c2

||yi − ȳc2 ||2
)

(2)
where c1 and c2 denote the clusters to be merged, yi denotes a data point in the
cluster and ȳ denotes the cluster mean.

The feature vector at each vertex is of n dimension. To reduce the compu-
tational cost of clustering, we reduce the dimension of the feature vector using
PCA. We keep the first few principal components which account for 95 % of
the data variance and thus reduce the feature vector dimension to 36. Ward’s
clustering is applied to the data after dimensionality reduction.

2.5 Reproducibility Index

To evaluate the reproducibility of the clustering or the parcellation, we use the
Rand index as in work [11], which measures the agreements between two clus-
tering results [12]. For M vertices, the total number of vertex pairs is

(
M
2

)
. Let a

denote the number of vertex pairs that are placed in the same class in clustering
1 and also in the same class in clustering 2, b denote the number of vertex pairs
that are placed in different classes in clustering 1 and also in different classes in
clustering 2. The Rand index is defined as R = (a+b)/

(
M
2

)
. It is a value between

0 and 1, with 0 indicating that two clusterings do not agree with each other at
all and 1 indicating that two clusterings are the same.

3 Experiments and Results

3.1 Visualisation

We empirically set the number of clusters for Ward’s clustering to 17 to be
comparable with the AHA 17-segment model. Figure 2 compares the AHA 17-
segment model with the 17-segment model produced by motion-driven parcel-
lation, which we name as “functional 17-segment model” for short. The AHA



Motion-Driven Parcellation of the Left Ventricle 17

(a) AHA 17-segment model (b) Functional 17-segment model

Fig. 2. Comparison of the anatomical segment model with the functional segment
model.

model, Fig. 2(a), distributes 35 % of the volume to the basal part (6 segments),
35 % to the mid-ventricular part (6 segments), 30 % to the apical part (4 seg-
ments) and 5 % to the apex [3]. The functional 17-segment model does not fol-
low the empirical definition for the volume percentage, but instead it creates
segments which have homogeneous motion trajectories. There are several inter-
esting findings in the functionally parcellated model, as shown in Fig. 2(b). First,
the segments are not of equal size. Those at the basal part (pointed by the arrow)
are relatively small, which hints that the variance of motion is large at this part
so the parcellation needs to be dense. Second, the septal wall (left of line 1)
is separated from the other parts of the wall (right of line 1), which is physi-
ologically reasonable, because the motion of the septal wall is restricted by its
connection with the right ventricle while the other parts are more free.

3.2 Reproducibility

We evaluate the reproducibility of the parcellation by comparing the clustering
results on two subsets. We randomly select 500 subjects as the first set and 500
subjects as the second set and the two sets are mutually exclusive. Motion-driven
parcellation is performed on both sets and the clustering results are compared
visually and quantitatively. As Fig. 3 shows, the septal wall (left of line 1) is
consistently separated from the lateral wall (right of line 1) on both subsets.
The basal part (above line 2) is consistently separated from the mid-ventricular
part (below line 2). The separations at line 3 and line 4 are also consistent. These
separating lines and regions are also noticeable on the parcellation based on the
full dataset, Fig. 2(b).

To quantitatively evaluate the reproducibility of parcellation, we repeat the
random subset division for 10 times and measure the Rand index between the
two parcellations. The mean Rand index is 0.922 ± 0.006. This means that for
92.2 % of the vertex pairs, the two parcellations agree on whether or not they
belong to the same parcel.
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(a) Subset 1 (b) Subset 2

Fig. 3. The parcellation results based on two mutually exclusive subsets, each contain-
ing 500 subjects. The colour codes of the two parcellations are not exactly the same,
because the cluster IDs given by the Ward’s algorithm can be different in two runs.
Please refer to the paragraph for the explanation of the lines (Color figure online).

Table 1. Gender and age prediction performance using the motion descriptors with
different number of parcels and with the AHA 17-segment model.

Gender Accuracy Age Correlation

7 parcels 87.4 % 0.823

17 parcels 88.0 % 0.830

27 parcels 89.0% 0.831

37 parcels 88.6 % 0.834

AHA 88.9 % 0.827

3.3 Application: Classification

Parcellation is often used for dimensionality reduction and it has a wide range
of potential applications. In this study, we use it to extract a motion descriptor
for cardiac motion analysis. We compute the mean motion trajectory for each
parcel and concatenate them to form a motion descriptor of the left ventricle.
We demonstrate the ability of the motion descriptor using two exemplar classi-
fication tasks, gender classification and age prediction. For comparison, we test
the performance when different numbers of clusters are used in parcellation and
when the AHA 17-segment model is used for computing the motion descriptor.

We performed 10-fold cross-validation on the set of 1093 subjects. Given the
motion descriptor as input, SVM classifiers with RBF kernels were trained on
the training set and then applied to the testing set to predict the gender and
age of a given subject. The prediction accuracy for gender and the correlation
coefficient between predicted age and real age are evaluated. The results are
reported in Table 1 and plotted in Fig. 4. It shows that using the parcellation-
based motion descriptor, we can achieve high accuracy for both gender and age
prediction. For gender prediction, motion-driven parcellation using 27 segments
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(a) Gender prediction (b) Age prediction

Fig. 4. Gender and age prediction performance using the motion descriptors with dif-
ferent number of parcels (7, 17, 27 or 37 parcels) and with the AHA 17-segment model.

achieves slightly better performance than the AHA model (p > 0.01). For age
prediction, motion-driven parcellation using 17, 27 or 37 parcels perform better
than the AHA model (p < 0.01). In addition, using a small number of parcels
such as 7 only slightly sacrifices the performance. The reason is that gender and
age affects the cardiac motion globally and therefore a small number of parcels
can also encode the information.

4 Conclusions

To conclude, a novel method is proposed for cardiac motion analysis, which
parcellates the left ventricle based on motion information instead of using
pre-defined anatomical structure. Although each individual component of the
method (registration, transport and clustering) may not be novel in itself, they
are combined to form a novel way to investigate cardiac motion. It can be used
for visualising regional clustering of motion and for reducing high-dimensional
motion data. As an exploratory step in this direction, we use the displacement
trajectory to represent cardiac motion, but other representation such as velocity,
strain or electroanatomical recording can be explored in future in this framework.

In the work, our data are all healthy subjects and therefore we only demon-
strate the motion descriptor on two exemplar classifications, gender and age
predictions. These two factors affect motion globally and may not be the best
examples for demonstrating a regional descriptor. However, the proposed method
has the potential to be extended to other applications, where regional descriptors
are more important. For example, it can be used for groupwise motion analysis
in which two groups of subjects present different local motion patterns.

A limitation of the proposed method is that it may be more suited to group
analysis instead of case studies. A direction of future work is to include patients
data with similar pathologies into our dataset and to perform motion analysis
and comparison between the healthy and the patients.
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