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Abstract. We present a procedure that detects myocardial infarction
by analyzing left ventricular shapes recorded at end-diastole and end-
systole, involving both shape and statistical analyses. In the framework
of Geometric Morphometrics, we use Generalized Procrustes Analysis,
and optionally an Euclidean Parallel Transport, followed by Principal
Components Analysis to analyze the shapes. We then test the perfor-
mances of different classification methods on the dataset.

Among the different datasets and classification methods used, we
found that the best classification performance is given by the following
workflow: full shape (epicardium+endocardium) analyzed in the Shape
Space (i.e. by scaling shapes at unit size); successive Parallel Transport
centered toward the Grand Mean, in order to detect pure deformations;
final statistical analysis via Support Vector Machine with radial basis
Gaussian function. Healthy individuals show both a stronger contrac-
tion and a shape difference in systole with respect to pathological sub-
jects. Moreover, endocardium clearly presents a larger deformation when
contrasted with epicardium. Eventually, the solution for the blind test
dataset is given. When using Support Vector Machine for learning from
the whole training dataset and for successively classifying the 200 blind
test dataset, we obtained 96 subjects classified as normal and 104 classi-
fied as pathological. After the disclosure of the blind dataset this resulted
in 95 % of total accurracy with sensitivity at 97 % and specificity at 93 %.

Keywords: Geometric morphometrics · Statistical shape analysis

1 Introduction

We present a procedure able to detect myocardial infarction by analyzing Left
Ventricular (LV) shapes, under the assumption that statistical shape analysis
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can predict a patient disease status. Such a procedure involves two main issues:
shape analysis and statistical analysis

As regards shape analysis, Geometric Morphometrics offers the most used
tool, very effective when shape data are based on homologous landmarks, i.e.
Generalized Procrustes Analysis (GPA) [1,2]. GPA may be performed in both
Size-and-Shape Space (SSS) or Shape Space (SS); it centers and optimally rotates
shapes, optionally scaling to unit size, in order to remove non-shape informed
attributes. Usually, GPA is followed by a Principal Components Analysis (PCA)
performed on aligned coordinates, which gives a ranking of the main shape-
change modes; PCA can be linear or non-linear, and allows visualizing main
shape-change modes.

Raw Data
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Fig. 1. Data handling: Given the raw data, we consider as representative of the LV
configurations three different shape-data: the full shape, the endocardial shape, and
the epicardial shape. On each of the three datasets, containing 800 shapes, we per-
form different types of shape analyses whose outcome is split in end-diastolic (ED) or
end-systolic (ES) data, numbered from 1 to 6 in the Figure, and then submitted to
classification procedures.

A major issue in motion sampling is the generation of homologous landmarks
for each time frame, and the selection of homologous time instants along the
cardiac cycle; as example, in [3] end-diastolic (ED) and end-systolic (ES) data
were analyzed, in [4,5] the entire cardiac revolution was analyzed, and evaluated
at homologous electro-mechanical times.

Another key issue is the discrimination among shape differences and motion
differences: two left ventricles having quite different ED and ES shapes may
beat in the same way, that is the deformation from ED to ES is the same. A
fundamental distinction should be made in the context of shape analysis: is the
between-groups shape difference the objective of the analysis or rather the defor-
mation differences occurring between them? This question applies only if, for the
same subject, at least two different shapes corresponding to two different times
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Table 1. The 30 different types of shape analyses submitted to classification proce-
dures; note that parallel transport (PT) can be centered in at least two ways, i.e. in
ED or in GM. cED=centered in diastole; cGM=centered in grand mean.

Analysis Type → GPA-SSS GPA-SS GPA-SSS PT - GPA-SS PT - GPA-SSS PT - GPA-SS PT -

Dataset for PCA PCA cED PCA cED PCA cGM PCA cGM PCA

classification ↓
(1) Endo+Epi ES 1 7 13 16 19 22

(2) Endo+Epi ED 2 8 - - 25 28

(3) Endo ES 3 9 14 17 20 23

(4) Endo ED 4 10 - - 26 29

(5) Epi ES 5 11 15 18 21 23

(6) Epi ED 6 12 - - 27 30

such as ED and ES, appear in the dataset [3]. Optionally, a complete sequence
of shapes, representing the entire cardiac revolution, might be included in the
analysis as in [4,5]. Shape differences can be gauged with standard GPA+PCA;
its drawback is the mixing of inter- and intra- individual variations, thus pre-
venting the detection of deformation patterns.

When a dataset contains many individuals, each represented by several
shapes varying in time, the filtering of inter-individual differences is impor-
tant. This point underlies many analytical consequences impacting the strategies
aimed at exploring the shape data. In fact, while shape differences can be eval-
uated using standard GPA+PCA, the motion differences among groups should
imply the eradication of inter-individual differences. This is necessary because, if
a dataset contains different individuals, each represented by several shapes vary-
ing in time, standard GPA+PCA ineluctably mix inter- and intra- individual
variations, thus preventing the appreciation of pure motion patterns. This prob-
lem can be solved by estimating deformations occurring within each individual,
and by applying them to a mannequin, which can be the Grand Mean (GM) of
the entire dataset, or another appropriately chosen configuration. Of course, the
mannequin represents the same shape for all individuals, and in correspondence
of it shape differences literally disappear, as it does not vary among individ-
uals. In [4,5] the GM was used, thus making both ED and ES recognizable as
deformed states, but another option could be that of centering in ED, depending
upon the disease under study, while ES should never be erased since it contains
information about inotropic state.

The geometrical tool needed for such operation is the Levi Civita Parallel
Transport (PT) and the workflow of shape analysis becomes GPA+PT+PCA.
It is possible to prove that once all the shapes have been optimally aligned
(via GPA), an Euclidean translation can well approximate PT on the Rie-
mannian manifold [6]. This kind of PT has the desirable property to maintain
the size increment when transporting deformations in SSS (size is here defined
as the square root of the summed squared distances of each landmark to the
centroid).
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As regards statistical analysis, classification problems are a central topic in
clinical practice for a wide range of medical fields [7,8]. However, both the nature
of the data and the statistical procedures used for classifying training versus test
datasets make this step highly situation-specific. Recently, besides classical meth-
ods such as Linear Discriminant Analysis (LDA) and Logistic Regression (LR),
several other methods entered classification practice e.g. Quadratic Discrimi-
nant Analysis (QDA), Support Vector Machine (SVM), Neural Networks (NN)
and Random Forest (RF) among others, whose comparison could be challenging
[9–11].

As a consequence, in any specific classification problem a comparison among
different classification methods should be performed. In particular, both sensi-
tivity and specificity should be evaluated as they have an unbalanced weight in
clinics. For example, in [9] it was suggested that, while SVM shows high accu-
racy, its sensitivity is low with respect to other methods. In addition, a goodness
of fit test, such as Hosmer Lomeshow test should be always performed in order
to evaluate the distribution of predictions in deciles.

2 Methods

Raw data includes 400 left ventricles (200 for training, plus 200 blind), sam-
pled with epi- and endo-cardial landmarks, at both ES and ED, for a total of
800 shapes, [12]. From the point of view of shape analysis, ES and ED must
be regarded as different shapes; thus, we organize our dataset as a list of 800
shapes, and we consider three sub shape-data: (1) full shapes, consisting of both
epicardial and endocardial data; (2) endocardial shapes; (3) epicardial shapes,
see Fig. 1. We apply both the GPA+PCA and GPA+PT+PCA strategies to the
three aforementioned shape-data, in both SSS and SS, and using PT with two
different data centering (i.e. in the Grand Mean or in Diastole), thus totalling 30
different sub-analyses which provide the PC scores to be used for classification
procedures, see Table 1; it is worth noting that all 800 shapes have to undergo
a common GPA+PCA or GPA+PT+PCA; once shape analysis has been done,
the 800 PC scores are split in ED or ES data, each with 400 cases: these will be
the datasets to be used for classification procedures.

We use five classification procedures: LDA, LR, QDA, RF and SVM with
Gaussian Radial Basis Kernel Function. To assess the performances of the five
different procedures, we use only the labelled training dataset, that is, half of
the 400 cases (100 healthy + 100 pathological) as follows:

1. At first, using the whole training dataset, and for any of the 30 types of
shape analyses, we perform an univariate association filtering via ANOVA
on the first 100 PC scores. The design is a classical one-way ANOVA using
the training affiliation healthy/pathological as a two-levels factor. P-value
was set (conservatively) to 0.05. All significant PC scores are retained for
classifications.

2. We assemble a warm-up dataset by randomly extracting 50 healthy individu-
als, and 50 patients affected by Myocardial Infarction (MI) from the training
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Fig. 2. Once shape analysis has been done on the whole shape-dataset, only the training
subset is considered for classification method selection; from the training subset we
assemble a learning dataset, composed of a sub-train and a sub-test dataset (not blind),
by randomly selecting 50 healthy and 50 pathological cases to fill each of the two sub-
datasets. The assembly is repeated and analyzed 1000 times. ES=end-systolic data,
ED=end-diastolic data, P=Pathology, H=Healthy.

Fig. 3. Top left: Proportion of non significant H-L test over the 1000 classification
simulations performed for the 5 methods on any type of shape analysis. Ordinal posi-
tions on x-axis correspond to shape analysis’ types in Table 1. Top right: Correspond-
ing mean AUC over 1000 simulations. Best performances, in all panels, according to
H-L test and ROC AUC is for type 22 (vertical, dashed line). Bottom left: Mean
total misclassification over 1000 simulations. Bottom right: Mean sensitivity over 1000
simulations.
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Table 2. We report the scores for the 30 types of analyses resulting from SVM; they
show the higher percentage of non significant H-L test in comparison to other classifi-
cation methods. Figures represent SVM proportions and AUC as in Fig. 3.

Type of analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non Sig. H-L test 0.93 0.94 0.95 0.83 0.86 0.84 0.81 0.89 0.64 0.74 0.79 0.77 0.88 0.94 0.80

Total misclass 0.15 0.14 0.15 0.30 0.29 0.19 0.13 0.20 0.19 0.40 0.34 0.22 0.11 0.13 0.25

Sensitivity 0.06 0.06 0.07 0.13 0.14 0.09 0.06 0.10 0.10 0.23 0.19 0.10 0.05 0.06 0.17

AUC 0.98 0.98 0.98 0.93 0.94 0.97 0.98 0.97 0.96 0.87 0.92 0.96 0.99 0.98 0.95

Type of analysis 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Non Sig. H-L test 0.96 0.90 0.87 0.90 0.93 0.83 0.97 0.91 0.70 0.91 0.93 0.81 0.97 0.90 0.78

Total misclass 0.13 0.16 0.21 0.11 0.13 0.26 0.13 0.16 0.27 0.11 0.13 0.27 0.13 0.16 0.26

Sensitivity 0.06 0.08 0.14 0.05 0.06 0.17 0.05 0.08 0.19 0.05 0.07 0.17 0.05 0.09 0.17

AUC 0.98 0.98 0.96 0.99 0.98 0.95 0.99 0.98 0.94 0.99 0.98 0.95 0.99 0.98 0.94

dataset; this procedure yields a learning training subset and a pseudo-blind
subset, each containing 100 cases (i.e. 50 healthy and 50 pathological), see
Fig. 2.

3. We use this training subset in the 5 classification methods and we employ
their learning functions in order to predict the pseudo-blind dataset; given
that this is not blind, we can evaluate the performance of each classification
method.

Steps (2) and (3) are repeated 1000 times. Basing on the corresponding results
we counted total misclassified cases and their two components, e.g. Sensitivity
and Specificity. Hosmer Lomeshow test (H-L test) was used in order to assess
the Goodness of Fit of any classification problem. Receiving Operating Curves
(ROC) and the Area under the Curve (AUC) were also computed. The type of
shape analysis and the classification method with the best global performance
in classifying the 1000 random sub-test datasets were successively used for clas-
sifying the blind test dataset. As primary criterion, we choose the percentage
of non significant H-L test (the higher the better) in order to select the best
classification method.

The use of H-L test as a primary criterion deserves particular attention. In
fact, two classifications could have identical AUCs, sensitivities and specificities
but the distributions of probabilities corresponding to misclassified cases can be
very different. H-L test divides subjects into deciles based on predicted proba-
bilities, then computes a chi-square from observed and expected frequencies. For
example, in two different classifications, the probabilities of misclassified cases
can be around 0.5. Or they can have values (leading to wrong classification) close
to 0 or 1. In the latter case the severity of misclassification is worse.

Only for the best type analysis selected with this method, we also re-run a
non linear PCA based on the Relative Warps Analysis (RWA) [2]. RWA uses the
Thin Plate Spline (TPS) interpolation function in order to compute and visualize
the deformation occurring between a reference and a target shape. RWA, with
the associated scores, yields a sequence of ordered subspaces onto which each
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Fig. 4. PCA results for type of analysis 22. Left: Shapes in the PC1-PC3 space;
green=healthy, black=MI, red=blind. Right: 3D shape corresponding to PC1 and PC2
modes, colored according to the distance with respect to the GM (blue: minimum; red:
maximum) (Color figure online).

single case is projected. Warping is parametrized by the α parameter: for α = 1,
large-scale variations (variations among specimens in the relative positions of
widely separated landmarks) are given more weight with respect to the small-
scale ones; for α = −1, the opposite is true, and more weight is given to variation
in the relative positions of landmarks that are close together. A value of α = 0
yields to virtually identical results of a linear PCA on Procrustes coordinates.
More details can be found in [13,14]. To detect the importance of large- or small-
scale variations, the exponent α of the bending energy matrix was set equal to
1, 0 (corresponding to standard PCA), and −1. On the resulting RW scores of
these three types of RWA we run the best classification method found when
using standard PCA. The results were compared with the standard PCA results
and the absolute best result is used for classifying the blind dataset.

3 Results

In Fig. 3 results of performances of the five methods are shown. It appears evident
that SVM with Gaussian Radial Basis kernel function is characterized, under the
1000 simulations, by a higher probability to present a non significant H-L test.
Table 2 reports the results relative to the 30 types of analyses (only for SVM)
that shows the higher percentage of non significant H-L test in comparison to
other methods. Analysis type 22 is the best for H-L evaluation; it uses the full
shape for shape analysis, subjected to a GPA-SS, plus PT-cGM (PT centered in
Grand Mean), plus PCA; then, only systolic data are used for statistical analysis.

Among the firsts 100 PC scores for analysis type 22, the univariate association
filtering found 1, 2, 3, 5, 6, 8, 12, 13, 21, 24, 31, 38, 57, significant (significance
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Fig. 5. From left to right: endocardium for healthy; endocardium for pathological;
epicardium for healthy; epicardium for pathological. Color denotes the distance with
respect to the GM (blue: minimum; red: maximum) (Color figure online).
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Fig. 6. A: probability-density distributions emerging from our classification of the blind
dataset. Only the results obtained with the optimal analysis method (type 22) and the
first two sub-optimal ones (types 16 and 28) are presented. B: the corresponding his-
tograms. C: healthy-subject distribution fitted by the sum of two normal distributions.
D: pathological-subject distribution fitted by the sum of two normal distributions.

level = 0.05) by using the known healthy/pathological affiliation as binary factor.
These PC scores were used to select the best classification method.

We found that, in comparison to results of Table 2, RWA performed on the
type of analysis 22 with α = −1 yields a lowest percentage of misclassification
(8%), and of significant H-L test (1.9%) after re-running the resampling pro-
cedure we described above. RW scores significant in the univariate association
filtering were: 1∼5, 7∼10, 15, 16, 20, 38, 74. Moreover, mean AUC was slightly
improved (99.3), the sensitivity reduced (3%), as well as total misclassification
(8 %). RWA on type of analysis 22 with α = −1 will then be used in order to
predict the blind test dataset.

Figure 4 (left) shows the 800 shapes in PCA scatterplot corresponding to the
type of analysis 22. Healthy individuals (green) clearly set apart from patholog-
ical ones (black), while blind (red) subjects are dispersed across the two distrib-
utions; see also Supplementary Figure S1 with dynamic 3D pdf (requires Adobe
Reader).
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Deformations associated to PC1 and PC2 extremes are also shown in Fig. 4:
we plot the values of ‖xM − x‖, with xM the position of a point in the GM, and
x its position at ED or ES; the colormap ranges from blue (min) to red (max).
It is evident that PC1 represents contraction. This contraction is more evident
on the endocardium than in epicardium and healthy individuals occupy a more
extreme position, along PC1, than pathological individuals. This can be better
appreciated in Fig. 5 where mean deformations (relative to the Grand Mean) of
healthy and pathological individuals are illustrated conjointly. Clearly healthy
subjects undergo a larger, thus more efficient, contraction than MI patients even
in the epicardium. The larger shape differences occur in the middle of endocardial
geometry. It is important to note here that we illustrated endocardium and
epicardium separately for sake of clarity while actually in type of analysis 22
they were analyzed together as a whole geometry (thus one inside the other).
See also Supplementary Figure S2.

Using SVM for learning from the whole training dataset and for successively
classifying the blind test dataset, and RWA with α = −1, we obtained 96 subjects
classified as normal and 104 classified as pathological. After the disclosure of the
blind dataset this resulted in 95 % of total accurracy with sensitivity at 97 %
and specificity at 93 %.

We are thus able to report, case by case, the resulting classification and
the probability of being found pathological according to the specified learning
function. Figure 6 shows the per-class density distributions of this probability.
We illustrated the results coming from type of analysis 22 (our optimal result)
together with the first two sub-optimal types, i.e. types 16 and 28. The two
curves are pretty similar and the 0/1 classifications are much similar among the
three types. It is evident that the two groups are well separated with very few
cases possessing probabilities around 0.5.

The distributions of the two probabilities suggest that, within each class,
more than one normal distribution is represented. This could be evidence of
a few pre-clinical healthy individuals and a few only moderately pathological
subjects.

The fact that RWA with α = −1 performs better in discriminating healthy
from pathological subjects could be related to physiological evidences: myocar-
dial infarction is a particularly localized pathology. It can be transmural or
subendocardial, but in both cases a relatively small region of LV is interested.
This region can be found at several LV locations, and α = −1 gives more impor-
tance to small scale variations; this is coherent with this particular type of pathol-
ogy. On the opposite, for example, a pathology that moulds the entire LV shape,
such as Aortic Regurgitation could be better discriminated using α = 1. Testing
this is beyond the scope of the present paper.

However, this result suggests that a tuned evaluation of deformation could
correlate with the deep nature of pathology. Another result that should be com-
mented is the evidence that the full shape (i.e. epicardium+endocardium) better
discriminates than epicardium or endocardium alone. Given that the location of
infarction was not known for the available sample of pathological individuals, we
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can only speculate that the lesser contraction of pathological condition evidenced
in Fig. 5 is inevitably related to a lesser extent of myocardial thickness variation
and that this feature can only be recognized by analyzing together epicardium
and endocardium.

Finally, it has also to be pointed out that the relative age of infarction,
whose information was missing in the blind dataset, might be a further factor
contributing to diagnostic accuracy. It is in fact well known that LV under-
goes a time-dependent overall shape change post-infarction which was variably
interpreted and measured but is in general termed “remodeling”, just to under-
score that not only the infarcted area but also the remaining still healthy LVs
undergo modifications to adapt, globally, to the loss of viable contracting muscle.
As remodeling might be minimal in some cases due to a little recent infarction
or to a relatively old one and stabilized, the double normal distributions seen in
Fig. 6 (pathological side) might represent these conditions. On the other hand,
subclinical and localized ischemia might, on the “healthy” side, explain the dou-
ble distribution there. Clearly, these are speculations and only the full disclosure
of the blind database will enable adequate considerations.

4 Conclusions

Deformation analysis performs better than shape analysis alone in detecting
pathology. This can be done by adding the PT to standard GPA+PCA. This
allows recovering the attributes linked to the contraction process per-se that,
ultimately, follows the mechanics of heart functioning. Filtering inter-individual
shape differences becomes, thus, very important when exploring systo-diastolic
shape changes occurring in a blind sample of healthy subjects and patients
affected by Myocardial Infarction.
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