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Abstract. This paper presents a machine-learning algorithm for the
automatic localization of myocardial infarct in the left ventricle. Our
method constructs neighbourhood approximation forests, which are
trained with previously diagnosed 4D cardiac sequences. We introduce
a new set of features that simultaneously exploit information from the
shape and motion of the myocardial wall along the cardiac cycle. More
precisely, characteristics are extracted from a hyper surface that repre-
sents the profile of the myocardial thickness. The method has been tested
on a database of 65 cardiac MRI images in order to retrieve the diag-
nosed infarct area. The results demonstrate the effectiveness of the NAF
in predicting the left ventricular infarct location in 7 distinct regions. We
evaluated our method by verifying the database ground truth. Following
a new examination of the 4D cardiac images, our algorithm may detect
misclassified infarct locations in the database.
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1 Introduction

Cardiac imaging is now routinely used for evaluating specific anatomical and
functional characteristics of hearts. For instance, the localization of cardiac
infarcts requires contrast agent injection and a thorough examination of the
myocardial wall thickness and its motion [3,4]. We propose to assist and auto-
mate this process with a system that automatically categorizes the localization
of infarcts in the left ventricle. We exploit information from existing databases
of 4D cardiac image sequences, that already contain the infarct localization from
previously diagnosed patients. In such context, 4D images should be compared
in an image reference space.

One way to represent the population is with statistical anatomical atlases
[2] that are constructed by combining all available subjects in a single average
reference. In this paper, we favor a representation that considers all available sub-
jects in a database. Here, we consider data that is classified along their recorded
infarct localization. For this purpose, multi-atlas methods [5] could be used.
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However, they require costly image registrations [6]. Retrieval systems, instead,
find images of subjects in a database that are close to a query image [7]. The
information on the infarct location of the retrieved subjects may be relevant for
establishing diagnoses in previously unseen subjects.

Content based retrieval systems require the notion of distances between
images [10]. They have been used in other areas such as neuro-images [11] or
endomicroscopy [8]. However, to the best of our knowledge, they were not applied
for categorizing infarct locations in 4D cardiac images. This raises the question
on how distances between 4D images should be defined. We suggest to learn this
metric between subjects that belong to different categories of infarct locations,
using the Neighborhood Approximation Forests algorithm (NAF) [11]. This
machine-learning approach approximates distances between new query images
and images in a database, via an affinity matrix between subjects. Decision
forests have already been applied for processing medical images such as a fully
automatic segmentation of the left ventricle [9]. Our method builds upon simple
shape and motion features derived from binary segmentation that are fast to
compute and based on a hyper surface representing the myocardial thickness
along the cardiac cycle.

The contribution of this paper is the use of a distance learning approach
for automatically categorizing the location of cardiac infarcts from 4D cardiac
image sequences. We tested several features that are extracted from a novel
hyper surface representation of the thickness profile. The next section describes
our localization method, and is followed by our results that evaluates the per-
formance of the proposed features. We discuss on the differences found in our
results and elaborate on future improvements of our infarct localization method.

2 Method

Our localization method consists of categorizing automatically the location of car-
diac infarcts via a retrieval approach based on the Neighborhood Approximation
Forests (NAF). We now suggest feature representations that are specific for the
localization of infarcts in 4D cardiac image sequences. The underlying assumption
is that infarction affects the myocardial shape and motion since complex phenom-
ena are often involved, such as wall thickening or chamber dilation [3].

2.1 Neighbourhood Approximation Forests

The NAF consists of an ensemble of binary decision trees designed for the pur-
pose of clustering similar cardiac sequences together. Its automatic learning
of image neighborhoods provides the capability of querying a training dataset
of images, I, by retrieving the most similar images given a previously unseen
image, J . Further details of the algorithm are described in [11]. Three phases
are required: feature extraction, training and testing stages. We now describe
how to apply them for the specific problem of locating infarcts in 4D images.
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The learning process aims at finding the optimal shape and motion features
for predicting the category of infarct location. Our training dataset contains 4D
cardiac image sequences, each labeled with a category of infarct location, e.g.,
infarct is in septal or lateral area. Each 4D image should have an associated
4D segmentation mask of the left ventricular muscle. In our case, each binary
mask has been cropped with a bounding box centered on the left ventricle and
oriented such that both ventricles are aligned horizontally along a left-right axis.

Feature Extraction. A surface representing the thickness profile over the car-
diac cycle is first extracted from 4D myocardial masks. The barycenter of the
left ventricle mask is computed for each slice and each frame of the 4D mask.
Rays are subsequently casted from the barycenter to the exterior of the mask,
as illustrated on Fig. 4. The ray-binary mask intersection is used to evaluate
the myocardial thickness at each angle. As a result, the myocardial thickness
h(s, t, θ) is represented by a hyper surface, where the spatial coordinates are the
corresponding slice s, the frame time t, and the angle θ.

The thickness profile is smoothed out by a Gaussian kernel filter (with a
width of 0.4) to reduce possible segmentation errors. The thickness profile is
also normalized in order to adjust its thickness values in a standardized common
scale, such that the average thickness value over the 4D hyper surface is 0 and
the standard deviation 1 (Fig. 1).

a) Thickness extraction. b) Thickness hyper surface.

Fig. 1. (a) Thickness extraction along the myocardial mask in red, red circle shows
the mask barycenter, h denotes the thickness and θ the angle of a casted ray. (b) 4D
thickness profile at end-diastolic and end-systolic frames, parameterized by h(s, t, θ),
with the slice s, the frame time t, and the angle θ (Color figure online).

As the space and temporal resolutions are specific to each image, point sam-
pling should be normalized. The slice position s is normalized between 0 at the
apex, and 1 at the left ventricular base. The frame time t is normalized between
0 at diastole, and 1 at the end of the cardiac cycle. The angle is kept between 0
and 2π, starting from a reference in the lateral wall.

Below, we describe groups of features f(I) extracted from the thickness pro-
files. In the following cases, h(s, t, θ) denotes the thickness, sampled on the slice
s, the frame time t and the angle θ.
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Feature 1: Raw thickness. The profile constitutes the input features for each
tree:

f1(I) = {h(si, tj , θk)}i,j∈[0;1], and θ∈[0◦;360◦].

In other words, given a 4D image I, this feature representation consists of
the list of surface heights. This should characterize infarcts as a function of
myocardial thickness over space and time.

Feature 2: Raw thickness and thickness differences. This feature repre-
sentation provides the raw thickness profile and the absolute difference of thick-
nesses sampled between the frame t0 and each frame t:

f2(I) = {h(si, tj , θk), |h(si, t0, θk) − h(si, tj , θk)|}i,j∈[0;1], and θ∈[0◦;360◦].

This feature is similar to the first feature representation, however, the thick-
ness difference is added. This should characterize infarcts as discrepancies in
myocardial thickness over space and time.

Training Phase. During this phase, the forest is trained: parameters of each
tree are fixed using the training set I and the distance measurement ρ(In, Im)
between each pair of images (In,Im). The distance metric ρ(In, Im) for a regres-
sion problem is defined as follows: ρ(In, Im) = |θa(In) − θa(Im)|, where θa(In)
denotes the angle that corresponds to the infarct location, as illustrated on
Fig. 3a. A set of visual features f(In) is computed from each training image
In. Along the forest construction, each tree tests a randomized subset of f(In).
A tree is grown by finding at each node p, the optimal split of the dataset into
two branches (IpLeft , IpRight) that best separates the incoming images Ip in com-
pact clusters. In the best case, cardiac images with similar infarct location should
end in one leaf. In other words, the best threshold τp is found for each selected
feature fmp

. The couple (parameters mp,threshold τp) are stored at each node
awaiting for the testing phase.

Obtaining the most compact partioning of Ip is also equivalent to maximizing
the information gain G (Eq. 1) at node p:

(mp, τp) = arg max
m,τ

G(Ip,m, τ ), (1)

where m is the set of features, and τ the set of potential thresholds, and

G(Ip,mp, τp) = C(Ip) −
|IpRight |
|Ip| C(IpRight) −

|IpLeft |
|Ip| C(IpLeft), (2)

where the set of images IpLeft of the left child node is defined by the test
function Γ (mp, τp) applied on the images of the parent node, and similarly
for the definition of the right node. Moreover, the compactness is defined by

C(A) =
1

|A|2
∑

Ii∈A

∑
Ij∈A ρ(Ii, Ij), and |A| is the number of images within a

subset A. More details on the training phase of the NAFs can be found in [11].
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Testing Phase. During the following phase, one testing cardiac image travels
across all tree nodes using the trained decisions, starting from the root node
and ending in one leaf. Each leaf contains the training images for which similar
decisions were taken. Consequently, when a testing image reaches a final leaf, it
is considered a neighbor of the training images already present in the same final
leaf. An affinity matrix is built by repeating this neighborhood approximation
for each tree by storing the affinities between all testing images and the training
images, as illustrated in Fig. 2.

Fig. 2. The NAF testing phase. The trained NAF determines the most similar
images (in the bottom/in red) of the testing cardiac sample (in the top of each tree/in
green), by performing trained tests at each node (Color figure online).

Indeed, the NAF algorithm keeps a record of the most similar cardiac
sequences to a testing image Jj in a similarity matrix W , where rows corre-
spond to training images, and columns to testing images. For each tree, W (i, j)
is incremented when Jj reaches the leaf node that also includes the training
image Ii [11]. In this paper, the resulting affinity matrix determine the angle,
where the myocardial infarct is approximatively located (refer to Fig. 3). The
predicted angle on a testing image Jj , is based on the resulting similarity matrix
such that: θa(Jj) =

∑
i W (i,j)θa(Ii)∑

i W (i,j) .

3 Results

3.1 Dataset and Settings

Cardiac images of patients with coronary artery disease and a left ventricle
infarction were randomly selected from the Defibrillators to Reduce Risk by
Magnetic Resonance Imaging Evaluation database (DETERMINE) included in
the Cardiac Atlas Project (CAP) [1]. 65 4D left ventricular masks were obtained
with the software CAP Client, made available by the Left Ventricular Segmenta-
tion Challenge conducted for the Statistical Atlases and Computational Models
of the Heart Workshop (STACOM) in 2011. Each mask is annotated by addi-
tional clinical information including the infarct location (anterior-septal, ante-
rior, anterior-lateral, lateral, inferior-lateral, inferior, inferior-septal).
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3.2 Evaluation of Infarct Localization

We validated our approach by retrieving the neighbours and the predicted angle
by forming a training set and a testing set from the expert-annotated database.
Some of the cardiac images are duplicated to obtain balanced class distribution
in the training set. Therefore, the database consists of 115 images that groups 7
types of infarct location together.

The 10-fold cross validation technique is used for estimating the accurate
performance of our classifier. The set of 115 images is partitioned into 10 subsets:
1 subset is randomly chosen as the testing set while the 9 remaining subsets form
the training set. This method is repeated 10 times by varying the testing subset.
Each infarct location in the dataset is labeled by an angle according to Fig. 3a.
Left-ventricular regions cover large areas, spanning up to 60◦. Following the
testing phase of the NAF method, the predicted angle of each testing image is
compared to the expected angle of infarction.

We proposed two types of features to locate the infarct of unseen cardiac
images. Our forest is composed of 100 trees where the maximal depth is 20.
Results associated with each type of features are shown in Fig. 3b, where the
average angle of each category is reported.

a) Sections of the left ventricular
wall [12].

b) Results on average prediction

of infarct location.

Fig. 3. (a) Sections of the myocardial wall related to an angle, ranging from 0◦ to 360◦.
(b) Results and comparison with the expected angle for each category: anterior (A),
anterior-septal (AS), inferior-septal (IS), inferior-posterior (IP), inferior-lateral (IL),
lateral (L), anterior-lateral (AL).

With the first type of features, which characterizes the thickness of the
myocardium, the localization of seven areas lead to average angular errors
between 5◦ and 48◦, which are below the maximal span of each areas of 60◦.
However, the inferior-posterior area lead to an average error of 175◦.

This leads us to examine each 4D image labeled with inferior-posterior
infarct, revealing potentially misclassified infarct location, as seen on Fig. 4. The
main drawback of this first type of features is that only the myocardial wall
shape is taken into account, notably, only the wall thinning in the infarct area
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a) Infarct locations in the database and the predicted locations with our method.

b) Misclassified infarct locations in the database.

Fig. 4. The white arrows represent the database ground truth, whereas the red arrows
show the infarct location that was predicted with our method. In Fig. 4b, our algo-
rithm underlined a possible misclassification as the infarct seems located in another
myocardial area (Color figure online).

or the wall thickening in the opposite wall of the infarct. Indeed, considering
only the minimal thickness is not enough to localize an infarct, as the thickness
of the myocardial wall changes over time and possibly gets thinner at end-systole
than in the infarct area.

Motivated by the previous results, motion information is combined to shape
information in the features 2 by considering the difference of thicknesses over
time. Following a myocardial infarction, the cardiac wall may not necessarily
change over the cardiac cycle whereas the wall thickness of a healthy heart
changes over time. Consequently, our second feature type that captures the
thickness differences over time infarcts should indicate infarct as areas where
the thickness is not changing over time.

With the second type of features, the infarct location is predicted with an
average angular error of up to 52◦ from the expected angle in all categories. This
remains below the maximal span of each areas of 60◦. Our algorithm is able
to locate the infarct location within the right area even if there are potential
sources of error in the dataset. For instance, the database ground truth may be
corrupted by misaligned binary masks if the septum is not perfectly located at
180◦ as illustrated on Fig. 3a.
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4 Conclusion

We used our machine learning neighbourhood-based algorithm for detecting the
infarct in the left ventricular wall. We propose 2 types of features for improving
the infarct localization where shape and motion information have been taken
into consideration. These features have been extracted from a hyper surface that
represents the thickness profile and has been designed along the cardiac cycle.
We learnt to approximatively locate the infarct by retrieving the corresponding
angle from the undiagnosed images. The most relevant infarct location is based
on an affinity matrix. Our approach may be relevant in assisting clinical diagnosis
of left ventricular infarct and may sometimes detect misclassified infarct in a
database. Future work will focus on evaluating local wall deformation fields to
better localize the infarct over the 3D cardiac volume. We could also consider
to collect the myocardial thickness from 4D cardiac images instead of binary
masks.
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